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Abstract Bone tissue engineering materials must
blend in the targeted physiological environment, in
terms of both the materials’ biocompatibility and
mechanical properties. As for the latter, a well-adjusted
stiffness ensures that the biomaterial’s deformation
behavior fits well to the deformation behavior of the
surrounding biological tissue, whereas an appropri-
ate strength provides sufficient load-carrying capac-
ity of the biomaterial. Here, a mathematical model-
ing approach for estimating the macroscopic load that
initiates failure of a hierarchically organized, granu-
lar, hydroxyapatite-based biomaterial is presented. For
this purpose, a micromechanics model is developed
for downscaling macroscopically prescribed stress (or
strain) states to the level of the needle-shaped hydrox-
yapatite crystals. Presuming that the biomaterial fails
due to the quasi-brittle failure of the most unfavor-
ably stressed hydroxyapatite needle, the downscaled
stress tensors are fed into a suitable, Mohr-Coulomb-
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type failure criterion, based on which the macroscopic
failure load is deduced. The change of the biomaterial’s
composition in response to placing it in physiological
solution, caused by growth of new bone tissue on the
granules’s surfaces, on the one hand, and by resorp-
tion of the hydroxyapatite crystals, on the other hand, is
taken into account by means of suitable evolution laws.
Numerical studies show how the macroscopic load-
carrying capacity of the biomaterial is influenced by its
design parameters. The presented modeling approach
could prove beneficial for the design process of the
studied biomaterials (as well as similarly composed
biomaterials), particularly in terms of optimizing its
mechanical performance.

Keywords Continuum micromechanics · Elastic
limit · Multiscale modeling · Bone ingrowth · Tissue
engineering

Abbreviations

gran Granule material (RVE II)
μCT Micro-computed tomography
polyHA Hydroxyapatite polycrystal (RVE I)
RVE Representative volume element
congl Conglomerate of granules coated with

bone tissue (RVE III)
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Latin symbols

A
polyHA
HA Fourth-order strain concentration ten-

sor of hydroxyapatite crystal needles in
hydroxyapatite polycrystal

A
gran
polyHA Fourth-order strain concentration tensor

of hydroxyapatite polycrystal in granule
material

B
polyHA
HA Fourth-order stress concentration ten-

sor of hydroxyapatite crystal needles in
hydroxyapatite polycrystal

B
gran
polyHA Fourth-order stress concentration tensor

of hydroxyapatite polycrystal in granule
material

Cbone Fourth-order stiffness tensor of bone tis-
sue

Cgran Fourth-order stiffness tensor of granular
material

CH2O Fourth-order stiffness tensor of water
CHA Fourth-order stiffness tensor of hydrox-

yapatite crystals
Cmacroφ Fourth-order stiffness tensor of macro-

pores
Cmesoφ Fourth-order stiffness tensor of meso-

pores
Cmicroφ Fourth-order stiffness tensor of micro-

pores
CpolyHA Fourth-order stiffness tensor of hydrox-

yapatite polycrystal
Ccongl Fourth-order stiffness tensor of bone-

scaffold conglomerate
Dk Material parameter
d Characteristic length of an inhomo-

geneity within a representative volume
element

e Crack density parameter
e1, e2, e3 Unit base vectors of a Cartesian base

system
er , eϑ , eϕ Unit base vectors of a spherical coordi-

nate system
EHA Young’smodulus of hydroxyapatite crys-

tals
Econgl Second-order strain tensor of the bone-

scaffold conglomerate
Econgl,i j Components of Econgl (i, j = 1, 2, 3)

f conglbone Volume fraction of bone tissue within
bone-scaffold conglomerate

f conglgran Volume fraction of the granules within
bone-scaffold conglomerate

f polyHAHA Volume fraction of the hydroxyapatite
needleswithin hydroxyapatite polycrys-
tal

f granpolyHA Volume fraction of the microporous
hydroxyapatite matrix within granule
material

f(σ ) Failure function formulated in terms of
stress tensor σ

I Second-order unit tensor
I Fourth-order unit tensor
J Deviatoric part of the fourth-order unit

tensor
kgran Bulk modulus of the granule material
kgrowth Formation rate of bone tissue
kH2O Bulk modulus of water
kHA Bulk modulus of the hydroxyapatite

crystals
kres Resorption rate of hydroxyapatite crys-

tals
kcongl Bulk modulus of the bone-scaffold con-

glomerate
K Volumetric part of the fourth-order unit

tensor
� Characteristic length of a representative

volume element
L Characteristic lengthof a structuremade

up the material defined on the level of a
representative volume element

n Vector oriented perpendicular to unit
base vector er

P
polyHA
cyl Fourth-order Hill tensor of cylindrical

inclusions in a matrix with stiffness
CpolyHA

P
polyHA
sph Fourth-order Hill tensor of spherical

inclusions in a matrix with stiffness
CpolyHA

Q Second-order transformation tensor
Q Fourth-order tensor defined through

Poisson’s ratio νpolyHA
rgran Granule radius
t Time variable

Greek symbols

�k
gran,1 Material parameter
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�
μ
gran,1 Material parameter

�
μ
gran,2 Material parameter

ε
polyHA
HA Second-order strain tensor of hydroxya-

patite crystals in hydroxyapatite poly-
crystal

ε
congl
gran Second-order strain tensor of granule

material in bone-scaffold conglomerate
ε
congl,dev
gran Second-order deviatoric strain tensor of

granule material in bone-scaffold con-
glomerate

ε
congl,vol
gran Second-order volumetric strain tensor

of granule material in bone-scaffold
conglomerate

ε
gran
polyHA Second-order strain tensor of hydroxya-

patite polycrystal in granule material
ϑ Angle defining the orientation of the

spherical coordinate system (er , eϑ , eϕ)
μgran Shear modulus of granule material
μHA Shear modulus of hydroxyapatite crys-

tals
μcongl Shear modulus of bone-scaffold con-

glomerate
νgran Poisson’s ratio of granule material
νHA Poisson’s ratio of hydroxyapatite crys-

tals
νpolyHA Poisson’s ratio of hydroxyapatite poly-

crystal
σ
polyHA
HA Second-order stress tensor of hydroxya-

patite crystals in hydroxyapatite poly-
crystal

σ
polyHA
HA,i j Component of σ

polyHA
HA (i, j = 1, 2, 3)

σ
ult,s
HA Shear strength of hydroxyapatite crys-

tals
σ
ult,t
HA Tensile strength of hydroxyapatite crys-

tals
σ
congl
gran second-order stress tensor of granule

material in bone-scaffold conglomerate
σ
congl,dev
gran Second-order deviatoric stress tensor of

granule material in bone-scaffold con-
glomerate

σ
congl,vol
gran Second-order volumetric stress tensor

of granule material in bone-scaffold
conglomerate

σ
congl
gran,i j Component of σ

congl
gran (i, j = 1, 2, 3)

σ
gran
polyHA Second-order stress tensor of hydroxya-

patite polycrystal in granule material
σ
gran
polyHA,i j Component of σ

gran
polyHA (i, j = 1, 2, 3)

�congl Second-order stress tensor of bone-
scaffold conglomerate

	congl,i j Component of �congl (i, j = 1, 2, 3)
	ult

congl,11 Component in direction e1 of the second-
order stress tensor of bone-scaffold
conglomerate representing the ultimate
loading

φ
congl
macro Volume fraction ofmacropores in bone-

scaffold conglomerate
φ
gran
meso Volume fraction of mesopores in gran-

ule material
φ
polyHA
micro Volume fractionofmicropores in hydrox-

yapatite polycrystal
ϕ Angle defining the orientation of the

spherical coordinate system (er , eϑ , eϕ)
ψ Angle defining orientation of vector n

1 Introduction

The field of bone tissue engineering aims at the rein-
forcing or even replacing diseased (or for other reasons
malfunctioning) bone tissue by scaffold structures that
are specifically engineered, for blending in the targeted
physiological environment, i.e. the immediate vicinity
of bone tissue, as well as possible (Burg et al. 2000;
Reichert and Hutmacher 2011). From a mechanical
point of view, careful tuning of such scaffold struc-
tures (and of the materials which they are made of)
is called for because contradictory requirements must
be brought in line—scaffold structures must be stiff
enough to sustain all relevant mechanical load cases,
but also soft enough to facilitate, through mechanobi-
ological couplings (Klein-Nulend et al. 2005; Porter
et al. 2009; Velasco et al. 2015), the integration into
their bony environment. In this regard, two mechani-
cal properties are of particular interest, both on mate-
rial and structural levels: the stiffness, governing the
elastic deformation behavior and therefore the forces
attracted by the involved macro- and microstructures;
as well as the strength, indicating the stress level that
induces material failure.

In the present paper, we study one specific scaffold
material that has been developed as bone replacement
material with the human mandible as targeted applica-
tion area (Komlev et al. 2002, 2003). This biomaterial
is produced in form of porous, pre-cracked granules,
composed of hydroxyapatite as main constituent, but
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also including various kinds of pore spaces of distinc-
tively different characteristic lengths. After exposing
this biomaterial to the targeted physiological environ-
ment prevailing in the immediate vicinity of mandibu-
lar bone tissue, two mechanisms are triggered, causing
aprogressing changeof thematerial’s compositionover
time. On the one hand, bone tissue grows on the gran-
ule surfaces, while, on the other hand, concurrently the
hydroxyapatite crystals are resorbed—in the long run,
the scaffold material merges with the surrounding bone
tissue.

In a first approach to analyzing their mechanical
behavior, these granules underwent micro-computed
tomography (μCT), and the resulting scans served as
basis for combined Finite Element/micromechanics-
based simulations (Dejaco et al. 2012, 2016). Here,
as a (computationally more efficient) complement, we
present a three-step, fully continuum micromechanics-
based macro-to-meso-to-micro (stress and strain)
downscaling scheme, linking in the end the quasi-
brittle failure of singlemicrometer- or sub-micrometer-
sized hydroxyapatite crystal needles to the overall
strength of both millimeter-sized biomaterial scaffolds
and composites comprising biomaterial scaffold and
bone tissue, respectively. For this purpose, a number of
homogenization concepts are adapted, extended, and
combined, considering the pioneering contributions of
Eshelby (1957), Hill (1963, 1965), Laws (1977, 1985),
Hervé and Zaoui (1993); and also considering more
recent contributions of Deudé et al. (2002), Dormieux
et al. (2004), Fritsch et al. (2006), Bertrand and
Hellmich (2009). Following Fritsch et al. (2009a, b),
we feed the stress of the most unfavorably loaded
hydroxyapatite needle into a suitable, Mohr-Coulomb-
type failure criterion, and deduce then therefrom the
corresponding ultimate macroscopic load bearable
by the aforementioned granular, hydroxyapatite-based
biomaterial (optionally containing ingrown bone tis-
sue).

After introducing the fundamental modeling con-
cept, together with the chosen model representation
of the studied biomaterial, see Sect. 2, a mathemat-
ical model for downscaling of the mechanical load-
ing, from the macroscopic to the hydroxyapatite nee-
dle scale, is presented, see Sect. 3. Then, a suitable
failure criterion is elaborated in Sect. 4.1, and numer-
ical studies show how the macroscopic mechanical
loading inducing single hydroxyapatite needle fail-
ure changes with varying biomaterial composition. In

order to simulate bone regeneration (which occurs
after having placed the biomaterial in the targeted
physiological environment), involving bone growth
and scaffold resorption, suitable evolution laws are
introduced, and the effects of different material input
parameters on the model-predicted development of
the load-carrying capacity over time are studied, see
Sect. 5. A brief discussion closes the paper, see
Sect. 6.

2 Material and methods

2.1 Characterization of the multi-porous
hydroxyapatite tissue engineering scaffold
material

The biomaterial investigated in this paper is a gran-
ular scaffold material, with the granules composed
of carbonate-containing hydroxyapatite, the chemical
composition of which reads as Ca10(PO4)6(OH)1.9
(CO3)0.05. Thismaterial is produced based on the effect
of immiscible liquids (Komlev et al. 2002, 2003), giv-
ing access to granules with diameters ranging from
50 to 2000µm, with the technically relevant granule
diameter being approximately 1800µm (Dejaco et al.
2012).

Severalmorphological features of these granules can
be observed, see the column on the left-hand side of
Fig. 1. Firstly, the granules contain pores of two dif-
ferent characteristic lengths: small pores, with a char-
acteristic length ranging from less than one to sev-
eral micrometers (Dejaco et al. 2016)—these pores are
termed “micropores” hereafter; and large pores, with a
characteristic length of several hundredmicrometers—
these pores are termed “mesopores” hereafter. A com-
posite of randomly oriented hydroxyapatite crystals
and the micropores constitutes the “base material” of
the granules. Increasing the observation scale by sev-
eral orders of magnitude, one can discern, besides
the mesopores, cracks pervading the granule body.
Finally, the scaffold material is made up of the above
described granules, with pore space in-between—due
to the characteristic length of these pores, which is
approximately equal to the granule diameter, they
are termed “macropores” in the remainder of this
paper.
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Strength increase during bone regeneration 221

Fig. 1 Three-level micromechanical representation of the
hydroxyapatite-based granular biomaterial (column on the right-
hand side), following themorphological features found in images
on different observation scales (column on the left-hand side);

the depicted images have been acquired by means of scanning
electronmicroscopy (hierarchical level I) andμCT imaging tech-
niques (hierarchical levels II and III)

2.2 Fundamentals of continuum micromechanics: the
representative volume element

A method particularly well suited for modeling the
mechanical behavior of the material described in
Sect. 2.1 is continuum micromechanics (Hill 1963;
Zaoui 1997, 2002), where a material is understood as
a micro-heterogeneous body filling a macro-homoge-
neous representative volume element (RVE) with char-
acteristic length �, � � d, d standing for the charac-
teristic length of inhomogeneities within the RVE, and
� � L, L standing for the characteristic lengths of
geometry or loading of a structure built up by themater-

ial defined on theRVE. It should be noted the aforemen-
tioned requirements of “much larger” (�) and “much
smaller” (�), respectively, have been shown to be
already satisfied if the respective characteristic lengths
are separated by a factor of two to three and five to ten,
respectively (Drugan and Willis 1996; Kohlhauser and
Hellmich 2013).

In general, the microstructure within an RVE is too
complicated to be described in complete detail. There-
fore, quasi-homogeneous subdomains with known
physical properties (such as volume fractions and
mechanical properties) are reasonably chosen. They are
called material phases. The homogenized (upscaled)
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behavior of the material on the observation scale of the
RVE, i.e. the relation between homogeneous deforma-
tions acting on the boundary of the RVE and resulting
macroscopic (average) stresses, can then be estimated
from the mechanical behavior of the material phases,
their volume fractions within the RVE, their charac-
teristic shapes, and their interactions. If a single mate-
rial phase is micro-heterogeneous itself, its mechani-
cal behavior can be estimated by introduction of RVEs
within this phase, with characteristic lengths �1 ≤ d,
comprising again inhomo- geneities with characteris-
tic length d1 � �1, and so on. Such an approach
is referred to as multi-step homogenization and pro-
vides, eventually, access to “universal” phase proper-
ties at sufficiently low observation scales (Fritsch and
Hellmich 2007).

2.3 Micromechanical modeling

Having inmind the concept of “separation of scales”, as
introduced in Sect. 2.2, the following three-levelmicro-
mechanical representation emerges for the biomaterial
under investigation:

On hierarchical level I, a microporous, overall
isotropic, hydroxyapatite polycrystal is composed of
spherical micropores (with volume fraction φ

polyHA
micro ),

which interact mutually with randomly oriented cylin-
drical hydroxyapatite crystals (with volume fraction
f polyHAHA = 1 − φ

polyHA
micro ). Typically, the microporosity

amounts to φ
polyHA
micro = 0.445 (Dejaco et al. 2012). The

characteristic length of the polycrystalline RVE I is in
the order of 10µm, see the bottom row of Fig. 1, with
a scanning electron micrograph of the granule nano-
structure on the left-hand side and the correspond-
ing RVE I on the right-hand side. In terms of stiff-
ness upscaling, themutualmechanical interaction of all
phases within RVE I calls for a self-consistent homoge-
nization scheme, as introduced by (Fritsch et al. 2006),
giving access to the stiffness tensor of the microporous
hydroxyapatite polycrystal,CpolyHA, based on the com-
position and morphology of RVE I, as well as on the
stiffness tensors of the hydroxyapatite crystals, CHA,
and of the micropores, Cmicroφ .

On hierarchical level II, penny-shaped cracks (with
vanishing volume fraction) and spherical mesopores
(with volume fraction φ

gran
meso) are embedded in the poly-

crystal matrix with properties arising from the struc-
ture of RVE I, this matrix filling within RVE II the

volume fraction f granpolyHA = 1 − φ
gran
meso. Typically, the

mesoporosity comes to φ
gran
meso = 0.189 (Dejaco et al.

2012). The characteristic length ofRVE II is in the order
of 1mm, see the middle row in Fig. 1, with a micro-
computed tomography (μCT) image of the microstruc-
ture within a granule on the left-hand side and the cor-
responding RVE II on the the right-hand side. The dis-
tinctive matrix-inclusion morphology of RVE II—i.e.
cracks and mesopores can be considered as inclusions
embedded in the hydroxyapatite polycrystal matrix—
suggests the use of a Mori-Tanaka-type homogeniza-
tion scheme (Mori and Tanaka 1973; Benveniste 1987)
for stiffness homogenization; mathematical treatment
of the penny-shaped cracks has been dealt with by
Deudé et al. (2002), Dormieux et al. (2004). The stiff-
ness tensor of the pre-cracked, mesoporous granule
material,Cgran is then governed by the composition and
morphology of RVE II, as well as by the stiffness ten-
sors of the hydroxyapatite polycrystal matrix,CpolyHA,
accessible fromstiffness homogenization acrossRVE I,
and of the mesopores, Cmesoφ , and by the density of
cracks, quantified by the so-called crack density para-
meter e (Budianksy and O’Connell 1976).

On hierarchical level III, amacroporous conglomer-
atematerial consisting ofmesoporous, cracked hydrox-
apatite granules and newly grown bone tissue emerges,
see the top of Fig. 1: granules with the stiffness of
RVE II described above and filling volume fraction
f conglgran , are surrounded by layers of newly grown bone

tissue,with volume fraction f conglbone and stiffness derived
from the ultrasonic tests of Ashman and van Buskirk
(1987). These coated spherical elements are assem-
bled, inmutual contact, to a granular conglomeratewith
macropores, with volume fraction φ

congl
macro, in-between.

At the time of granule implantation, no bone tissue has
been formed yet, and this initial configuration is char-
acterized by f conglbone = 0. For estimating the macro-
scopic stiffness tensor of the bone-scaffold conglom-
erate, Ccongl, the homogenization approach for an n-
layered spherical inclusion proposed by Hervé and
Zaoui (1993) is specialized for n = 1 (relating to
bone tissue), adapted for the case that the stiffness
of this layer is transversally isotropic, see (Bertrand
and Hellmich 2009), and further combined with a self-
consistent homogenization scheme, in order to account
for mutually interacting coated spheres with porous
space in-between—in absence of any explicit “matrix
phase”. This homogenization step is thus based on
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the composition and morphology of RVE III, as well
as on the stiffness tensors of the granule material,
Cgran, accessible from stiffness homogenization across
RVE II, of the bone tissue, Cbone, and of the macrop-
ores,Cmacroφ ; the underlying mathematical framework
is described at length in (Scheiner et al. 2016).

3 Downscaling of stresses from macro- to
microscale

The stiffness homogenization scheme for the herein
investigated biomaterial scaffold formandibular regen-
eration, described in Sect. 2.3, constitutes the basis
for stress downscaling. For conciseness, the deriva-
tion of this (mathematically extensive) model is not
repeated here in minute detail; instead, we focus on
elaborating how stress downscaling is achieved, while
assuming that the homogenized stiffness tensors on all
observation scales, compare Fig. 1, namely the stiff-
ness tensor of the nanoporous hydroxyapatite matrix,
CpolyHA, the stiffness tensor of the pre-cracked, meso-
porous granule material, Cgran, and the stiffness tensor
of the bone-scaffold conglomerate, Ccongl, are known
from the respective homogenization steps. In partic-
ular, we first clarify the mechanical input parameters
the employed downscaling approach is based on (see
Sect. 3.1), and present then briefly the three down-
scaling steps in terms of the underlying mathematical
framework:

1. From themacroporous bone-scaffold conglomerate
to the pre-cracked and mesoporous granules (see
Sect. 3.2);

2. From the pre-cracked and mesoporous granules
to the microporous, polycrystalline hydroxyapatite
matrix (see Sect. 3.3); and

3. From the microporous, polycrystalline hydroxyap-
atite matrix to single, arbitrarily oriented hydrox-
yapatite crystal needles (see Sect. 3.4).

3.1 Definition of mechanical input parameters

As for the underlying main elementary constituent, i.e.
hydroxyapatite, the respective stiffness tensor, CHA, is
defined via the bulk modulus, kHA, and the shear mod-
ulus, μHA, CHA = 3kHAK + 2μHAJ, with K being
the volumetric part of the fourth-order unit tensor I,
and J the corresponding deviatoric part, K + J = I.

Numerical values for kHA and μHA are found based
on the experiments performed by Katz and co-workers
(Katz and Ukraincik 1971; Gilmore and Katz 1982),
who revealed the Young’s modulus and Poisson’s ratio
of hydroxyapatite, EHA = 114GPa and νHA =
0.27, see also (Hellmich and Ulm 2002; Hellmich
et al. 2004). Through standard relations of continuum
mechanics, k = E/[3(1−2ν)] andμ = E/[2(1+ν)]
(Mang andHofstetter 2000), one finally obtains kHA =
82.61GPa and μHA = 44.88GPa. Furthermore, all
pore spaces are assumed to be drained at all times, thus
Cmicroφ = Cmesoφ = Cmacroφ = 0.

For defining the stiffness tensor of newly formed
bone tissue, Cbone, we consider the orthotropic stiff-
ness tensor determined for mandibular bone by means
of ultrasound measurements by Ashman and van
Buskirk (1987), and follow then the strategy described
in (Bertrand and Hellmich 2009) for converting the
ultrasound-based, anisotropic stiffness tensor into the
transversally isotropic stiffness tensor related to the
bone tissue growing on granules, see also (Scheiner
et al. 2016) for details, yielding

C
(er ,eϑ ,eϕ)

bone

=

⎛
⎜⎜⎜⎜⎜⎜⎝

15.90 9.00 9.00 0 0 0
9.00 21.74 10.70 0 0 0
9.00 10.70 21.74 0 0 0
0 0 0 11.04 0 0
0 0 0 0 7.93 0
0 0 0 0 0 7.93

⎞
⎟⎟⎟⎟⎟⎟⎠

GPa ,

(1)

with superscript (er , eϑ , eϕ) indicating that this stiff-
ness tensor is expressed in a spherical coordinate sys-
tem, owing to the fact that in the particular case, bone
tissue is added in form of a concentric shell on top of
the spherical granules.

3.2 From the macroporous bone-scaffold
conglomerate to the pre- cracked, mesoporous
granules (Fig. 1, hierarchical level III)

Based on the pioneering work of Hervé and Zaoui
(1993), the aforementioned stiffness homogenization
scheme for granular hydroxyapatite-based biomateri-
als, see Sect. 2.3, gives, on the one hand, access to
the volumetric stress tensor of the granule material,
ε
congl,vol
gran , in response to a macroscopically applied vol-

umetric strain tensor Evol
congl,
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σ
congl,vol
gran = 3kgran�k

gran,1

Dk
Evol
congl , (2)

and, on the other hand, to the deviatoric stress tensor of
the granule material, εcongl,devgran , in response to a macro-
scopic strain tensor representing pure shear, Eshear

congl,

σ
congl,dev
gran = 2μgran

⎛
⎝�

μ
gran,1 − 21�μ

gran,2

5(1 − 2νgran)

⎞
⎠Eshear

congl ,

(3)

where kgran is the bulk modulus, μgran the shear modu-
lus, and νgran the Poisson’s ratio of the granulematerial.
Furthermore, Eqs. (2) and (3) are governed by a number

of material properties, namely �k
gran,1, �

μ
gran,1, �

μ
gran,2,

and Dk . These material properties are functions of
the conglomerate’s composition (quantified by volume
fractions f conglgran and f conglbone ), as well as the stiffness ten-
sors of the conglomerate consisting of scaffoldmaterial
and bone tissue, Ccongl, of the granule material, Cgran,
of the added bonematrix,Cbone, and of themacropores,
Cmacroφ . The somewhat unusual form of the downscal-
ing relations given by Eqs. (2) and (3) as well as of the

lengthy mathematical expressions for �k
gran,1, �

μ
gran,1,

�
μ
gran,2, andDk , given in detail in (Scheiner et al. 2016),

result from thenature of the employed coated inclusion-
problem of Hervé and Zaoui (1993), where, in con-
trast to the classical Eshelby-problem, the stresses and
strains are not homogeneous throughout the inclusion.

Considering now that any strain (and, of course, also
stress) tensor can be decomposed into volumetric and
pure shear strain tensors, Eqs. (2) and (3) can be utilized
for downscaling a general macroscopic strain tensor,
Econgl to the corresponding stress tensor experienced
by the granule material,

σ
congl
gran = 3kgran�k

gran,1

Dk

trEcongl

3
I + 2μgran

×
⎛
⎝�

μ
gran,1 − 21�μ

gran,2

5(1 − 2νgran)

⎞
⎠

×
(
Econgl − trEcongl

3
I
)

,

(4)

where tr is the trace operator, trEcongl = Econgl,11 +
Econgl,22 + Econgl,33, and I is the second-order unit
tensor. Given that the underlying constitutive law on
the observation scale of the bone-scaffold conglomer-
ate is linear elastic, �congl = Ccongl : Econgl, Eq. (4)

Fig. 2 Image of the studied bone-scaffold conglomerate inserted
into the upper jaw, based on which the macroscopic mechani-
cal boundary conditions of the conglomerate consisting of bone
tissue-coated granules are defined: load application occurs in
direction e1 (resembling mastication), deformation in direction
e3 is presumably prevented, the material is stress-free in direc-
tion e2, the conglomerate material is furthermore free of shear
stresses and strains

can be straightforwardly applied for also downscaling
macroscopic stress tensors to the granulematerial level,
through substituting Econgl by (Ccongl)

−1 : �congl.
In the following, we want to exemplify stress down-

scaling, quantitatively, through prescribingmacroscop-
ically the predominant loading type expected for the
studied biomaterial in physiological conditions. Typ-
ically, the biomaterial investigated in this paper is
inserted from the buccal (exterior) mandible surface,
and the granules-filled bone defect is covered after-
wards by means of a bioresorbable membrane, see
Fig. 2 (where the membrane has not yet been put
in place). Considering that the macroscopic loading
is usually prescribed in terms of stress component
	congl,11 < 0 (relating to mastication), and that the
further mechanical boundary conditions for the bone-
scaffold conglomerate are Econgl,11 < 0, Econgl,22 >

0, Econgl,33 = Econgl,12 = Econgl,13 = Econgl,33 =
0, 	congl,33 < 0, and 	congl,22 = 	congl,12 =
	congl,13 = 0 gives access, via the linear elastic con-
stitutive law, to the corresponding macroscopic stress
tensor:

�congl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

	congl,11

0
3kcongl − 2μcongl

2(3kcongl + μcongl)
	congl,11

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)
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Fig. 3 Non-zero components of the stress tensor of the granule
material according to Eq. (4), for varying bone tissue volume
fraction f conglbone , and under physiologically relevant macroscopic
stress according to Eq. (5), with 	congl,11 = −10MPa

In the following, the macroscopic stress tensor compo-
nent in direction of base vector e1 is set to 	congl,11 =
−10MPa, while Eq. (5) gives access to the second non-
zero component of the macroscopic stress tensor. Fur-
thermore, the crack density parameter for quantifying
the occurrence of cracks on hierarchical level II is set
to e = 10 (representing a low to moderate crack den-
sity), see Sect. 3.3 for further details. The downscaling
relation given by Eq. (4) provides then the correspond-
ing stress tensor experienced by the granule material,
see Fig. 3, where also the effect of increasing bone vol-
ume fraction is illustrated. Notably, themacrocopically
applied biaxial loading relates to a triaxial loading on
one observation scale below.

3.3 From the pre-cracked,mesoporous granules to the
microporous hydroxyapatite polycrystal (Fig. 1,
hierarchical level II)

For this downscaling step we can make use of clas-
sical strain and stress downscaling as defined in the
framework of continuum micromechanics. As derived
elsewhere, see e.g. (Zaoui 2002; Dormieux et al. 2006),
continuummicromechanics allows to downscale strain
tensors through the so-called concentration (or local-
ization) tensors: for the present case, this implies that
the strain tensor of the microporous hydroxyapatite
polycrystal, ε

gran
polyHA, is related to the strain tensor of

the granule material, εconglgran , through

ε
gran
polyHA = A

gran
polyHA : ε

congl
gran , (6)

where A
gran
polyHA is the strain concentration tensor of

the microporous hydroxyapatite polycrystal. The lat-
ter is estimated bymeans of Eshelby’smatrix-inclusion
problem (Eshelby 1957); considering the matrix-
inclusion-type morphology discernible on hierarchical
level II, compare Fig. 1,Agran

polyHA is defined by (Deudé
et al. 2002; Dormieux et al. 2004)

A
gran
polyHA =

{
f granpolyHAI + φ

gran
meso

×
[
I − P

polyHA
sph : (

Cmesoφ − CpolyHA
)]−1 + eQ

}−1

,

(7)

wherePpolyHA
sph is the fourth-order Hill tensor related to

spherical inclusions embedded in a matrix exhibiting
a stiffness tensor CpolyHA, see (Eshelby 1957; Zaoui

2002) for how P
polyHA
sph is computed. Hence, in con-

trast to the situation in Sect. 3.2, we here employ the
Eshelby’s classical matrix-inclusion problem (Eshelby
1957). Finally, e is the so-called crack density parame-
ter (Budianksy and O’Connell 1976), e = N (rcrack)3,
withN as the number of cracks per volume, and rcrack
as the (average) crack radius, andQ is a tensor defined
via the Poisson’s ratio of the microporous hydroxya-
patite polycrystal, νpolyHA, through (Dormieux et al.
2004)

Q = 16

9

1 − (νpolyHA)2

1 − 2νpolyHA
K

+32

45

(1 − νpolyHA)(5 − νpolyHA)

2 − νpolyHA
J , (8)

where J is the devatoric part of the fourth-order unit
tensor I, J = I − K.

Linear elasticity on all hierarchical levels implies
ε
congl
gran = (Cgran)

−1 : σ
congl
gran , as well as ε

gran
polyHA =

(CpolyHA)−1 : σ
gran
polyHA, so that the strain concentra-

tion relation of Eq. (6) can be transformed into a fully
equivalent stress concentration relation of the format

σ
gran
polyHA = B

gran
polyHA : σ

congl
gran , (9)

with the stress concentration tensor of the microporous
hydroxyapatite matrix, Bgran

polyHA, following from the

strain concentration tensor Agran
polyHA, through
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Fig. 4 Non-zero components of the stress tensor of the micro-
porous hydroxyapatite polycrystal according to Eqs. (4) and (9),
for varying bone tissue volume fraction f conglbone , and under physi-
ologically relevant macroscopic stress according to Eq. (5), with
	congl,11 = −10MPa

B
gran
polyHA = CpolyHA : Agran

polyHA : (Cgran)
−1 . (10)

Downscaling of stresses according to Eq. (9) leads to
further magnification of stresses; see Fig. 4 for the non-
zero stress tensor components of themicroporous gran-
ule material, obtained through application of Eq. (9) to
the stresses depicted in Fig. 3.

3.4 From the microporous hydroxyapatite polycrystal
to the single hydroxyapatite crystal (Fig. 1,
hierarchical level III)

The hydroxyapatite crystals making up the the micro-
porous hydroxyapatite polycrystal are oriented arbi-
trarily, in all space directions, defined by in a spher-
ical coordinate system by Euler angles ϑ and ϕ, see
Fig. 5. Each orientation implies different stress lev-
els occurring in the respective hydroxyapatite crystal,
σ
polyHA
HA = σ

polyHA
HA (ϑ, ϕ), for a given macroscopic

loading.Makinguse of the orientation-dependent stress
concentration tensor related to hydroxyapaytite nee-
dles, BpolyHA

HA (ϑ, ϕ), stress tensor σ
polyHA
HA (ϑ, ϕ) fol-

lows as

σ
polyHA
HA (ϑ, ϕ) = B

polyHA
HA (ϑ, ϕ) : σ

gran
polyHA , (11)

with σ
gran
polyHA following from Eq. (9).

Fig. 5 Cylindrical hydroxyapatite needle oriented along vector
er , and inclined by the Euler angles ϑ and ϕ, with respect to
the reference base frame defined through the unit vectors e1, e2,
and e3; the local base frame, defined by unit vectors er , eϑ , and
eϕ , is attached to the cylindrical inclusion; vector n, oriented
perpendicular to er , is further defined by angle ψ

Stress concentration tensorBpolyHA
HA (ϑ, ϕ) is defined

analogously to Eq. (10),

B
polyHA
HA (ϑ, ϕ) = CHA : ApolyHA

HA (ϑ, ϕ) : (
CpolyHA

)−1
.

(12)

The orientation-dependent strain concentration tensor
A

polyHA
HA (ϑ, ϕ) is defined, according to (Fritsch et al.

2006), by

A
polyHA
HA (ϑ, ϕ)=

[
I + P

polyHA
cyl (ϑ, ϕ) : (

CHA−CpolyHA
) ]−1

:
{
f polyHAHA

[ 2π∫

ϕ=0

π∫

ϑ=0

[
I + P

polyHA
cyl (ϑ, ϕ)

: (
CHA − CpolyHA

) ]−1 sinϑ dϑ dϕ

4π

]

+ φ
polyHA
micro

[
I + P

polyHA
sph : (

Cmicroφ − CpolyHA
)] }−1

,

(13)

with P
polyHA
cyl (ϑ, ϕ) as the orientation-dependent Hill

tensor relating to cylindrical inclusions embedded in
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Fig. 6 Components of the stress tensor of the hydroxapatite nee-
dles: components a σ

polyHA
HA,11 , b σ

polyHA
HA,22 , c σ

polyHA
HA,33 , d σ

polyHA
HA,12 ,

e σ
polyHA
HA,13 , and f σ

polyHA
HA,23 as functions of the needle orientation

(defined by angles ϑ and ϕ), for constant volume fractions of
the macropores φ

congl
macro = 0.4 and of bone tissue f conglbone = 0,

when feeding the macroscopic stress tensor defined by Eq. (5)
into the downscaling relations given by Eqs. (4), (9), and (11)
with	congl,11 = −10MPa; g– iminimum and maximum values
of the stress tensor components for varying macroporosities and
bone tissue volume fractions

the isotropic microporous hydroxyapatite polycrystal
matrix with stiffnessCpolyHA, see (Eshelby 1957). The
double integral in Eq. (13), expressing summation over
all possible orientations, can be straightforwardly eval-
uated based on Stroud’s integration equations (Stroud
1971; Pichler et al. 2009). Notably, A

polyHA
HA (ϑ, ϕ)

has been derived based on Eshelby’s famous matrix-
inclusion problem (Eshelby 1957).

Feeding the composition-dependent stresses depicted
in Fig. 4 into Eq. (11) reveals substantial (hydroxyap-
atite needle orientation-dependent) stress magnifica-
tion effects, see Fig. 6. In particular, Fig. 6a–f show
the variations between the different components of the
hydroxyapatite stress tensor, for φ

congl
macro = 0.4 and

f conglbone = 0. In order to also highlight the extreme
values of the stress tensor components as functions
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Table 1 Minimum and maximum values of stress tensor com-
ponents σ

polyHA
HA,i j , occurring when prescribing the macroscopic

stress tensor given by Eq. (5), with 	congl,11 = −10MPa, com-
pare Fig. 6g– i

φ
congl
macro min σ

polyHA
HA,i j (MPa) max σ

polyHA
HA,i j (MPa)

0.3 −47.24 19.41

0.4 −54.31 23.45

0.5 −63.99 29.38

of the scaffold composition, Fig. 6g–i show the min-
imum and maximum values of all stress tensor compo-
nents over all hydroxyapatite needle orientations, see
also Table 1 for an overview of the observed maxi-
mum andminimum stress tensor components. Notably,
minimum stresses stresses (i.e. compressive stresses
with maximum magnitude) always occur in direc-
tion e1, while maximum stresses (i.e. tensile stresses
with maximum magnitude) always occur in direction
e2.

4 Estimates for the macroscopic strength of
hydroxyapatite-based granular biomaterials

4.1 Failure criterion suitable for hydroxyapatite
needles

Based on the three-step scheme presented in Sect. 3,
a macroscopically applied mechanical loading, pre-
scribed in termsofmacroscopic strainsEcongl ormacro-
scopic stresses �congl, were downscaled to the corre-
sponding stress state experiencedby a single, arbitrarily
oriented hydroxyapatite needle, σ polyHA

HA (ϑ, ϕ).
From (Fritsch et al. 2009a, b), we adopt that hydrox-

yapatite needle failure is governed by the normal stress
in needle direction,

σHA,rr (ϑ, ϕ) = er (ϑ, ϕ) · σ
polyHA
HA (ϑ, ϕ) · er (ϑ, ϕ) ,

(14)

and by the shear stress in planes orthogonal to the nee-
dle direction,

σHA,rn(ϑ, ϕ, ψ) = er (ϑ, ϕ) · σ
polyHA
HA (ϑ, ϕ) · n(ϑ, ϕ,ψ) .

(15)

In Eqs. (14) and (15), er (ϑ, ϕ) denotes the vector defin-
ing the direction of a particular needle, i.e. the base

vector of the employed spherical coordinate system in
radial direction, while vector n(ϑ, ϕ,ψ) denotes the
direction orthogonal to er (ϑ, ϕ), additionally governed
by angle ψ , compare Fig. 5. As for definition of vec-
tor n(ϑ, ϕ,ψ), we consider that the needle orientation-
dependent base vectors (er , eϑ , eϕ) are defined in the
Cartesian base system (e1, e2, e3) as

er = (
sin ϑ cosϕ, sin ϑ sin ϕ, cosϑ

)T
,

eϑ = (
cosϑ cosϕ, cosϑ sin ϕ, − sin ϑ

)T
,

eϕ = (− sin ϕ, cosϕ, 0
)T

,

(16)

and that the transformation tensorQ from base system
(e1, e2, e3) to base system (er , eϑ , eϕ) reads as

Q = (
er ; eϕ; eϑ

)T

=
⎛
⎝

sin ϑ cosϕ sin ϑ sin ϕ cosϑ

cosϑ cosϕ cosϑ sin ϕ − sin ϑ

− sin ϕ cosϕ 0

⎞
⎠ .

(17)

Then, vector n(ϑ, ϕ,ψ), dependent on anglesϑ , ϕ, and
ψ , and expressed in a Cartesian base frame, follows as

n(ϑ, ϕ,ψ) = QT ·
⎛
⎝

0
cosψ

sinψ

⎞
⎠ . (18)

As furthermore proposed in (Fritsch et al. 2009a, b),
the failure criterion for a single hydroxyapatite nee-
dles takes into account both tensile strength σ

ult,t
HA and

shear strength σ
ult,s
HA . The two strength values are acces-

sible through analyzing the experiments of Akao et al.
(1981) and Shareef et al. (1993), revealing σ

ult,t
HA =

52.2MPa and σ
ult,s
HA = 80.3MPa, see (Fritsch et al.

2009a). Mathematically, the failure surface related to
the hydroxyapatite needles reads as

fHA(σ
polyHA
HA ) = max

ϑ,ϕ

(
σ
ult,t
HA

σ
ult,s
HA

max
ψ

∣∣∣σ polyHA
HA,rn (ϑ, ϕ,ψ)

∣∣∣

+σ
polyHA
HA,rr (ϑ, ϕ)

)
− σ

ult,t
HA = 0 . (19)

Eq. (19) takes into account that for each needle orien-
tation the angle ψ inducing the maximum tangential
stress must be found, as well as the needle orientation
inducing the maximum value for the combination of
normal and tangential stresses. For this purpose, angles
ϑ , ϕ, and ψ are varied between ϑ = 0 . . . π , ϕ =
0 . . . 2π , and ψ = 0 . . . 2π . Substituting into Eq. (19)
the relation between σ

polyHA
HA and �congl, according to

the downscaling scheme elaborated in Sect. 3 allows
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Table 2 Iteration scheme
for deriving the
macroscopic loading of the
biomaterial inducing
quasi-brittle failure in the
most unfavorably stressed
hydroxyapatite needle

Iteration steps

1. Choice of initial value for 	congl,11.

2. Computation of macroscopic stress tensor according to Eq. (5).

3. Downscaling of macroscopic stress tensor to the level of hydroxyapatite needles as
function of the needle orientation, σ polyHA

HA (ϑ, ϕ), ϑ = 0 . . . π , ϕ = 0 . . . 2π , by
means of Eqs. (2–13).

4. Calculation of the corresponding normal and shear stress component experienced by
single hydroxyapatite needles, for any needle orientation, ϑ = 0 . . . π , ϕ = 0 . . . 2π ,
and for any tangential plane, ψ = 0 . . . 2π , by means of Eqs. (14–18).

5. Evaluation of the failure criterion given by Eqs. (19) and (20), respectively:

–If fHA(�congl) < 0, then |	congl,11| is increased; return to step 2.

–If fHA(�congl) = 0, then the load iteration is completed, and the current magnitude
for 	congl,11 induces failure of the material.

–If fHA(�congl) > 0, then |	congl,11| is decreased; return to step 2.

to alternatively express the failure criterion in terms of
macroscopic stresses,

fHA(�congl) = 0 . (20)

4.2 Computation of composition-dependent
macroscopic loading inducing hydroxyapatite
needle-failure

The failure criterion presented in Sect. 4.1, for estimat-
ing the macroscopic loading that leads to quasi-brittle
failure of themost unfavorably stressed hydroxyapatite
needle, is evaluated in an iterative manner, see Table 2.
Let us e.g. consider, for the sake of demonstration, a
biomaterial configuration defined byφ

congl
macro = 0.4 and

f conglbone = 0. Then, the iterative approach sketched in
Table 2 reveals that a macroscopic stress tensor with
non-zero components 	congl,11 = −20.31MPa and
	congl,33 = −3.09MPa is related to fHA(�congl) =
0, thus inducing failure of themost unfavorably stressed
hydroxyapatite needle. The stress state of the latter
is illustrated in Fig. 7a and b, in terms of the normal
and maximum shear stress components, as functions
of the needle orientation. The corresponding values of
the failure function fHA(�congl), as obtained through
insertion of the orientation-dependent normal andmax-
imum shear stress components into the failure crite-
rion, is again a function of the needle orientation, as
depicted in Fig. 7(c). In this figure, the needle orien-
tations that are actually evoking the most unfavorable
stress states for the aforementioned macroscopic load-

ing inducing fHA(�congl) = 0, are indicated, namely
(ϕ = 1.466, ϑ = 1.676) and (ϕ = 4.608, ϑ =
1.466), respectively; or (ϕ = 84.00◦, ϑ = 96.03◦)
and (ϕ = 264.03◦, ϑ = 84.00◦), respectively.

Furthermore, the magnitude of the macroscopic,
material failure-inducing loading increaseswith increas-
ing bone volume fraction ( f conglbone ), as well as with

decreasing volume fraction of the macropores (φcongl
macro),

see Fig. 7d.

5 Development of failure-inducing macroscopic
stresses during bone regeneration

Once immersed into its targeted physiological envi-
ronment, i.e. the immediate vicinity of (mandibular)
bone tissue, the studied biomaterial undergoes com-
positional changes, due to two distinct mechanisms.
On the one hand, the granules become coated with a
layer of newly forming bone tissue whose thickness is
growing with time. Presuming that the growth of bone
tissue occurs linearly over time (Cancedda et al. 2007),
the following bone volume fraction evolution law can
be deduced:

f conglbone =
[(

rgran + kgrowtht
)3

r3gran
− 1

]
f conglgran , (21)

where t is the time after placing the scaffold in a bony
environment, kgrowth is the bone growth rate, and rgran
is the radius of the granules. For the presently stud-
ied material, the typical bone growth rate is kgrowth =
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Fig. 7 a Normal stress component σ
polyHA
HA,rr (ϑ, ϕ), b maximum

shear stress component max
ψ

|σ polyHA
HA,rn (ϑ, ϕ,ψ)|, and c corre-

sponding values of the failure function fHA(�congl), evaluated

for φ
congl
macro = 0.4, f conglbone = 0, and 	congl,11 = −15.15MPa, as

functions of the needle orientation; in c, the needle orientations
at which fHA(�congl) = 0, are indicated; d the macroscopic,
material failure-inducing stress tensor component 	congl,11, as

function of φ
congl
macro and of f conglbone

4 ± 3µm/week (Scheiner et al. 2016). The time-
dependent bone tissue volume fraction defined by
Eq. (21) enters, as given in great detail in (Scheiner et al.

2016), the material functions �k
gran,1, �

μ
gran,1, �

μ
gran,2,

and Dk appearing in Eqs. (2–4). In this way, Eq. (21)
induces time-dependency in the strength of the investi-
gated conglomerate material. In the same way, Eq. (21)
induces time-dependencies in the homogenized stiff-
ness expressions relating to theRVEs depicted in Fig. 1,
as given in (Scheiner et al. 2016).

On the other hand, the contact of the bone-coated
granules with physiological solution also leads to

resorption of hydroxyapatite. As is known from analy-
sis of X-ray microtomography scans, this resorption
process occurs via growth of the micropores (Czenek
et al. 2014),

φ
polyHA
micro = φ

polyHA
micro,0 + krest , (22)

with φ
polyHA
micro,0 as the microporosity before resorption

sets in, and kres as scaffold resorption rate. Notably,
φ
polyHA
micro enters stress and strain downscaling at Eq. (13)

of this paper, thus influencing strain concentration
tensorApolyHA

HA (ϑ, ϕ), and therefore again the time-
dependent strength and stiffness properties of the con-
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Table 3 Values chosen for model input parameters, in order to
study corresponding variations in the macroscopic failure load
of bone tissue-coated hydroxyapatite-based scaffolds

Model input parameter Unit Numerical value (s)

Initial microporosity φ
polyHA
micro,0 (–) 0.445

Mesoporosity φ
gran
meso (–) 0.189

Macroporosity φ
congl
macro (–) 0.3, 0.4, 0.5

Crack density parameter e (–) 0, 10, 25

Granule radius rgran (µm) 300, 500, 1000

Bone formation rate kform (µm/week) 4, 7, 10

Scaffold resorption rate kres (week−1) 0, 0.008, 0.016

sidered hierarchical biomaterial. In vitro studies have
shown that the resorption rate may be as high as kres =
0.016week−1, depending on the actual composition of
the hosting medium (Scheiner et al. 2016).

In the following, a series of parametric studies are
presented, for elucidating the effects of model para-
meter variations on the predicted development of the
macroscopic failure-inducing stress tensor component
in direction e1, 	ult

congl,11. For the sake of clarity, all
model input parameters (and the variations considered
for the numerical studies presented in this paper) are
summarized in Table 3. The accordingly performed
simulations highlight strong sensitivites of the macro-
scopic loading that causes failure of the hydroxyap-
atite needles, on the considered parameter variations,
see Fig. 8. As regards the granule radius, it is strik-
ing that decreasing the radius initially implies acceler-
ating the bone ingrowth-related increase of the load-
carrying capacity, see Fig. 8a. However, the smaller the
granule radius the sooner the complete pore space is
filled with bone tissue, which is indicated by a peak of
	ult

congl,11 (the actualmagnitude ofwhich depends on the
macroporosity), followed by prolonged decrease of the
load-carrying capacity, caused by scaffold resorption.
Furthermore, it is interesting to note that the granule
radius influences strongly the development of	ult

congl,11
directly after placing the granules in the targeted physi-
ological environment (initiating scaffold resorption and
bone formation), while the actual value of	ult

congl,11 at a
later point of time is only governed by the macroporos-
ity. A high macroporosity supports the strength devel-
opment at mature bone regeneration states since it pro-
vides substantial space for newly added, load-carrying
bone tissue; but it compromises strength before onset of

bone regeneration as well as at early regeneration states
as then a comparably low amount of bone-scaffold
conglomerate needs to carry all (or most) of the load-
ing.

The scaffold resorption rate, in turn, governs both
the load-carrying capacity of the bone-coated gran-
ules when the macroporosity is completely filled with
new bone tissue, as well as the long-term development
afterwards. Zero resorption implies that the value of
	ult

congl,11 is maintained at a constant (maximum) level
(related to complete filling of the pore space by bone
matrix), whereas a non-zero resorption rate causes a
long-termdecrease of	ult

congl,11 after reaching the afore-
mentioned maximum value, see Fig. 8b. It should be
noted that this long-term decrease is caused by assum-
ing that bone growth merely occurs on the outer sur-
face of the (bone-covered) granules. However, in real-
ity, it can be assumed that after substantial resorption
of the hydroxyapatite crystals the physiological solu-
tion enters the micro- and mesopore spaces, leading
eventually also to bone formation within the granule
body. The omission of this potential additional bone
formation effect can be deemed as limitation of our
model.

Similar to the granule radius, the bone formation rate
only influences the time span until thewholemacropore
space is filled with bone tissue; the long-term develop-
ment of the load-carrying capacity is unaffected, see
Fig. 8c.

Remarkable effects are revealed when varying the
crack density parameter e, see Fig. 8d. In particu-
lar, decreasing the crack density parameter leads to a
significantly increased stiffness of the granule mate-
rial. Considering that in a composite material (such
as the material studied in this paper) stiffer con-
stituents attract larger fractions of a macroscopically
applied loading than softer constituents, which attract
lower fractions of the macroscopic loading, a granule
material containing less cracks hence transfers higher
stresses to the hydroxyapatite needles than those with
more cracks. This eventually implies that increasing
the crack density in the granule material leads to an
increased load-carrying capacity. This possibly coun-
terintuitive conclusion straightforwardly suggests that
future extensions of the here presented model should
comprise formulation of a failure criterion related to
the bone tissue as well, in order to improve the sig-
nificance of the model-predicted load-carrying capac-
ity.
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Fig. 8 Development of	ult
congl,11 over time due to bone ingrowth

and scaffold resorption, as function of the macroporosity φ
congl
macro,

φ
congl
macro = {0.3, 0.4, 0.5}, as well as of a the granule radius rgran,

rgran = {300, 500, 1000µm}, b the scaffold resorption rate kres,
kres = {0, 0.008, 0.016week−1}, c the bone formation rate kform,
kform = {4, 7, 10µm/week}, and d the crack density parameter
e, e = {0, 10, 25}

6 Discussion and concluding remarks

In this paper, a continuum micromechanics-based
model was presented for estimating the macroscopic
loading acting onto a hydroxyapatite-based granular
biomaterial, developed for application as bone replace-
ment material (inmandibular bone), that leads to quasi-
brittle failure of the material’s main constituent, i.e.
hydroxyapatite crystals. The parametric studies pre-
sented in Sect. 5 show how the load-carrying capac-
ity of the studied biomaterial develops over time once
placed in the targeted physiological environment, i.e.
the immediate vicinity of mandibular bone, consider-

ing the growth of new bone tissue on the surface of
the scaffold material, and resorption of the hydroxya-
patite needles. Thereby, main emphasis was on high-
lighting the influence of specific design parameters of
the production process, e.g. the exact chemical com-
position of the biomaterial might influence the rates of
bone ingrowth and scaffold resorption, the crack den-
sity may be related to the production process, and the
macroporosity can be tuned based on the packing den-
sity of the granules. From a practical point of view, the
presentedmodeling approach allows to determine from
when onwards a particular area of the mandible includ-
ing an implant composed of the studied biomaterial can
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be used formastication if themechanical loading acting
onto this mandibular region is approximately known,
e.g. from Finite Element simulations (Korioth et al.
1992; Meijer et al. 1993; Choi et al. 2005; Hellmich
et al. 2008; Bevilacqua et al. 2011).

However, the simulation results also point out two
model restrictions. On the one hand, the kind of
counterintuitive observation was made that a severely
cracked granule material implies that the bone tis-
sue growing on the granule surface attracts most of
themacroscopically applied stress. Thus, our model
suggests that increasing the crack density leads to an
increasing load-carrying capacity, owing to the fact that
the employed failure criterion considers only the most
unfavorably stressed hydroxyapatite needle contained
in the granules, neglecting however the stress experi-
enced by the newly formed bone tissue. On the other
hand, our model does not consider that the dissolu-
tion of hydroxyapatite needles would eventually lead
to morphological changes in the microporous hydrox-
yapatite matrix (hierarchical level I in compare Fig. 1),
implying that physiological solution could enter the
micropore space, facilitating there bone tissue for-
mation. Given that the described model inadequacies
become relevant only after a certain (not yet quantifi-
able) time span, but not directly after scaffold implan-
tation, leads to the conclusion that our model is partic-
ularly accurate for early-age bone-scaffold conglom-
erates (with respect to the time instant when the gran-
ules are placed into the targeted physiological envi-
ronment), while the prediction accuracy presumably
diminishes over time. This restriction constitutes the
basis for reasonable future research directions.

Finally, it is also important to discuss the rele-
vance of traditional fracture mechanics approaches,
typically focusing on the prediction of crack propa-
gation, thus assuming the existence of an initial crack
(Müller et al. 2002; Näser et al. 2007; Kolednik et al.
2010; Ott et al. 2010), in the context of the material
studied in this paper. Actually, it seems to be a worth-
while subject of future research actitivities to extend the
micromechanics-based assessment of specific, micro-
scopically sizedmaterial constituents (as demonstrated
in this paper) towards traditional fracture mechanics,
see e.g. (Pichler et al. 2007; Pichler and Dormieux
2009b, a). Such extension would be particularly rele-
vant for mature bone-scaffold conglomerates contain-
ing already a substantial amount of bone tissue, allow-
ing for studying the effects of crack emergence and

propagation in the bone tissue—given that a respective
failure criterion has been formulated, see e.g. (Fritsch
et al. 2009b)—as well as of biologically driven crack
healing.
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