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TECHNICAL NOTE 

Combining two open source tools 
for neural computation (BioPatRec and Netlab) 
improves movement classification for prosthetic 
control
Cosima Prahm1,5*  , Korbinian Eckstein2, Max Ortiz‑Catalan3, Georg Dorffner4, Eugenijus Kaniusas1 
and Oskar C. Aszmann5

Abstract 

Background:  Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more 
electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode 
array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to 
compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate 
comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition 
models.

Methods:  Performances of the artificial neural networks, linear models, and training program components were 
compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that pro‑
vides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were 
applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding 
the best performing algorithm and network model. Evaluation criteria included classification accuracy and training 
time.

Results:  Results in both the linear and the artificial neural network models demonstrated that Netlab’s implementa‑
tion using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec.

Conclusions:   It is concluded that the best movement classification performance would be achieved through inte‑
grating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened 
and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).
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Background
Performance of machine learning algorithms are con-
stantly compared with one another to improve the clas-
sification of motion based electromyographic (EMG) 
signals in order to control a prosthetic device. Since 
mechatronically the number of controllable joints has 

increased and simultaneous control is replacing sequen-
tial control, the limiting factor to be improved in the 
future is the human-machine-interface.

Since this improvement is a challenging task, conven-
tional control strategies for myoelectric prostheses have 
not changed much over decades  [1]. Two bipolar elec-
trodes are placed on one of the amputee’s residual mus-
cles each and a sufficiently high amplitude of the EMG 
signal triggers a threshold detection method which then 
activates a prosthetic movement [2, 3]. This conventional 
control strategy, even though proven to be reliable [3, 4], 
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turns out to be tedious and slow when there is more than 
one joint to be controlled. To change a currently selected 
degree of freedom (DoF), e.g. from wrist to elbow, both 
electrodes need to be activated simultaneously. This 
manual switching between joints is far from the natural 
movement of a hand and prostheses users are quickly 
frustrated with the limitations of their device [3].

The machine learning approach for prosthetic control 
makes use of an array of electrodes instead of just two 
control sites and considers patterns of EMG activation 
to increase the number of motion classes. EMG pat-
tern classification in its early stages focused mainly on 
controlling one DoF at a time  [5], which was not very 
different from the user experience of the conventional 
control. In the last years, however, pattern recognition 
has been extended to concurrent classification of motion 
intent [6–8]. Each activation pattern received by the elec-
trode array around the amputees residual muscles cor-
responds to either an individual prosthetic motion, or a 
simultaneous one that involves multiple DoF. This way, 
the pattern recognition approach enables simultaneous 
control and thus promotes natural interaction with the 
environment.

To achieve a high classification accuracy, several types 
of classifiers for myoelectric prosthetic control have been 
examined such as artificial neural networks (ANN)  [9–
11], linear discriminant analysis (LDA) [12–15], support 
vector machines [16], k-nearest neighbour clustering [17] 
and unsupervised clustering  [18]. High classification 
accuracy is important to prevent misinterpretations of 
the prosthesis user’s motion intent.

Previous studies proposed a multi-layer perceptron 
(MLP) classification strategy that outperformed an 
LDA based approach and improved the state-of-the-
art classification  [19]. However, the error rate was still 
high with 5 % which has also been reproduced in this 
study. In another study, accuracies of 96.3  % have been 
reached with a Gaussian mixture model (GMM) based 
classifier compared to LDA with 95.6  %  [13]. They also 
compared GMM to MLP but did not specify the MLP 
training algorithm and network properties. Since the 
MLP only achieved an accuracy of only 95.4 %, it sug-
gests they did not use an optimized training algorithm 
such as scaled conjugate gradient (scg). Another research 
group achieved accuracies of up to 97.6 % comparing a 
self enhancing linear approach with a standard LDA 
that reached 94.1 % accuracy [15], which corresponds to 
the LDA accuracy achieved within this study. However, 
because both groups used their own data set which is not 
accessible, the results are not directly comparable.

This study aims to evaluate and compare the per-
formance of four open-source, Matlab-based pat-
tern classifiers taken from BioPatRec and Netlab on 

correctly categorizing offline EMG signals across differ-
ent movements.

The classifiers used in previous studies by BioPatRec 
are (amongst others) LDA and MLP. Therefore this study 
extends the previous studies [7, 20] using optimized algo-
rithms for MLP and generalized linear models (GLM) 
taken from the Netlab toolbox to improve classification 
accuracy. Regularly, many studies use their own data set 
to test algorithms, which limits generalization of their 
results across methods. To grant comparability across 
methods, this study works on the same openly available 
data set [21].

BioPatRec is a useful environment for pattern classifi-
cation already operated in a clinical setting [22]. Because 
training the classifier took very long and the resulting 
accuracy looked improvable, other options to increase 
classification accuracy were considered. To keep the ini-
tial set-up, these other options should consequently be 
implemented into the BioPatRec environment. The goal 
of this study is to find the algorithm with the highest clas-
sification accuracy and least computational complexity 
and therefore lowest training time that increases the per-
formance of a myoelectric prosthetic controller. Since the 
newest release of BioPatRec, Netlab has been successfully 
integrated.

Methods
A linear and non-linear classifier each, taken from both 
toolboxes BioPatRec and Netlab were compared with 
one another regarding offline movement classification 
performance and training time. The fastest algorithm 
within BioPatRec was LDA, which also is often used by 
researchers. The classifier reaching the highest accuracy 
within BioPatRec was MLP. Both classifiers were com-
pared with Netlab’s highly optimized training algorithms 
iteratively reweighted least squares (irls) and scaled con-
jugate gradient for GLM and MLP.

The main benefit of linear methods such as LDA and 
GLM is their low complexity and quick training [5, 12–
14, 23]. Artificial neural networks such as MLP depend 
on specific training algorithms and are inherently capable 
of simultaneous predictions. They can still be cost effec-
tive despite their increased complexity [10, 11, 19, 24].

To enable repeatability, the algorithms were compared 
using an open access data set from the BioPatRec data 
repository. This set has already been used for comparing 
different classifiers in previous evaluations [25, 26]. Three 
DoF are available for motion classification and used for 
individual and simultaneous control strategies, resulting 
in 26 possible movement labels and one no-movement 
label, in which no intentional EMG signal occurs. The 
resulting algorithm accuracy reflects the correspondence 
of the instructed user motion intend to the recognized 
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movement by the classifier. The higher the accuracy the 
more reliable is the movement recognition. It is calcu-
lated by the number of correct classifications divided by 
the overall number of performed classifications.

Netlab is an open source software toolbox with highly 
optimized training algorithms for data analysis, neu-
ral computation and neural network simulations which 
requires the Matlab environment to run  [27–29]. The 
library includes a variety of implementations for data 
analyses and neural network simulations.

BioPatRec is an open source Matlab-based research 
environment for development and evaluation of pat-
tern recognition algorithms for prosthetic control. Mat-
lab’s statistics toolbox is required. It provides tools for 
data acquisition, signal processing, feature selection and 
extraction, pattern recognition and real-time control and 
was developed by one of the authors—Max Ortiz-Cata-
lan [20].

A. Data source and treatment 
The data set which was used for comparing classification 
consists of 17 EMG recordings, one from each of the 17 
healthy participants (mean age of 25.9 ± 4.9 years) and is 
available within the BioPatRec data repository [21]. Data 
was recorded by eight bipolar surface electrodes attached 
around the forearm. From each of the eight electrode 
channels, four time domain signal features (mean abso-
lute value, waveform length, zero crossing and slope sign 
change) were extracted from 121 fixed time windows for 
each movement (200 ms with a time increment of 50 ms) 
which are used as feature vectors to feed the classifiers 
[20]. During recording the participant received a visual 
indication to perform a specific movement. Each move-
ment was repeated 3 times with a recording time of 3 s. 
The first and last 15 % of that recording were removed to 
make sure only isotonic contraction will remain. Thus, a 
total of 121 windows were generated per movement. Out 
of these 121 windows per movement, 72 were randomly 
selected as training set and 49 windows were set aside as 
a validation set to evaluate generalization after the train-
ing phase and were not previously used for training. Per-
formance accuracy was averaged over 100 iterations per 
subject (cross-validation), with a different random split-
ting into training and test set. All data was pre-processed 
and treated within BioPatRec.

Without normalization, features with different stand-
ard deviations would be weighted differently, error sur-
faces would be distorted and learning algorithms would 
not sufficiently converge. As a preliminary measure and 
because BioPatRec offers the possibility to choose among 
different normalizations, two commonly used linear nor-
malizations in data processing were compared across 
all models: standard normalization µ = 0, σ  = 1 and a 

transformation to [−1;1] called “midrange 0 range 2”. 
The comparison table can be found in the supplemen-
tary material. Due to equal or better performance of the 
standard normalization all data was treated with stand-
ard normalization.

Netlab is able to use multiple processor cores with 
an average workload of 80–100 % on a quadcore CPU. 
BioPatRec MLP uses one processor core with an aver-
age workload of 25 % on a quadcore CPU. The PC used in 
this study has an i5-2500K processor running at 3.3 GHz 
when multiple cores are occupied, and at 3.7 GHz when 
just one core is active.

B. Movement classification 
There are 27 possible labels for classification which derive 
from six individual hand and wrist movements as well as 
their simultaneous combination and an additional no-
movement state the participants were instructed to per-
form. The individual movements were hand open/close, 
hand flexion/extension and wrist pronation/supination. 
Possible output types are (a) one single active unit, that 
can either represent one individual movement or a simul-
taneous movement consisting of a combination of indi-
vidual movements; and (b) multiple active units in which 
each output unit represents one individual movement. 
Simultaneous movements are a combination of multiple 
output units.

C. Network architecture of BioPatRec and Netlab
BioPatRec was used as a platform to execute both its own 
inherent classifiers (LDA and MLP) and the additionally 
implemented Netlab classifiers (GLM and MLP). Both 
models employ the two forms of output types mentioned 
above (single and multiple), that are implemented in Net-
lab with softmax and logistic output functions respec-
tively. The advantage of using a softmax output function 
is an increase in accuracy, when there is a single classifi-
cation problem.
Linear classification method of BioPatRec and Netlab  
BioPatRec’s LDA is taken from the Matlab statistics tool-
box. Because this LDA can not generate multiple outputs 
as a single classifier, a BioPatRec inherent multi class 
problem approach was used that consists of one LDA 
for each degree of freedom. The individual LDAs possess 
four output neurons, two are for classifying the agonistic 
and antagonistic movement of the respective DoF, one is 
for every other movement and the last one is for a no-
movement state.

The Netlab GLM uses scaled conjugate gradient or 
iteratively reweighted least squares as training algorithm. 
Regarding multiple outputs, Netlab GLM also uses the 
same configuration as BioPatRec’s LDA with one net for 
each degree of freedom and four output units.
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Non-linear classification method of BioPatRec and Net-
lab The BioPatRec MLP is a feedforward artificial neu-
ral network (ANN) with backpropagation as supervised 
learning and gradient descent as training algorithm with 
a logistic activation function [20]. The standard configu-
ration of BioPatRec consists of 32 input neurons, two lay-
ers of 32 hidden neurons each and a variable number of 
output neurons corresponding to the number of classes 
[7, 25]. However, the number of hidden layers as well as 
hidden units (HU) can be adapted. For comparison, this 
study employs one and two hidden layers with 32 hidden 
neurons each and the number of neurons as evaluated by 
cross validation for each model.

The Netlab MLP is also a feedforward ANN, but with 
scaled conjugate gradient as training algorithm. It con-
sists of 32 input neurons, one hidden layer with 32 hid-
den neurons and variable output neurons. Because the 
Netlab architecture is based on Bishop [28], only one hid-
den layer is available. Output function used by the MLP 
was either softmax or logistic with a 0 to 1 output range.

Both training algorithms are limited to a maximum 
number of 200 iterations.

D. Analysis
The Wilcoxon Sign-Rank test with a significance level of α = 
0.05 is applied to all algorithms and their respective param-
eters to evaluate significance for each movement classifica-
tion accuracy. The mean accuracy (Acc), standard deviation 
(SD) and p value of the models, as well as training time in 
seconds, will be given in the tables. The SD was calculated 
over the averaged iterations and across subjects and move-
ments. Although training time is not regarded as an impor-
tant aspect for offline classification, short training time has 
advantages in practical applications such as immediately 
available prosthesis control without a delay caused by the 
computing training algorithm. Fast training would also be a 
requirement for prospective online adaptive learning.

Results
A. Performance comparison of linear models
The direct comparison of accuracies for BioPatRec LDA 
and Netlab GLM can be found in Table 1. Although LDA 

and GLM are both linear models, GLM performs better 
because it is based on the training algorithms scg or irls. 
For a single output model, GLM scg achieved significantly 
higher accuracies than GLM irls, although the difference 
is small. As for models with multiple output, the GLM irls 
and GLM scg training algorithms performed equally well. 
Highest significant accuracies are marked italics in Table 1.

B. Optimal number of hidden units
Considering that there was no indication in BioPatRec 
as to why two layers of 32 hidden units were used [20], 
an evaluation to find the optimal number of hidden units 
for each classification problem was performed. For each 
number of hidden units (1–100), 10 MLPs were trained 
and evaluated (cross-validation). The accuracy for each 
number of hidden units was averaged over those 10 
MLPs and can be seen for simgle output type in Fig. 1a 
and multiple output type in Fig. 1b.

Because of time concerns, hidden unit evaluation was 
performed for Netlab. The Wilcoxon Sign-Rank test 
evaluated if an increase in the number of hidden units 
significantly improved the accuracy. The smallest num-
ber of hidden units out of 100 maximum permissible, for 
which no significantly higher accuracy could be observed 
are: (a) 64 hidden units for a single output type and (b) 
74 hidden units for the multiple output type. However, 
from 30 to 40 hidden units on, the accuracy only slightly 
increases. The peaks seen on the curves cannot be attrib-
uted to statistical error but are due to systematic variance 
between the number of hidden units.

As the network for the multiple output (74 HU) prob-
lem is more complex than for single output (64 HU) it 
could be assumed that the multiple output problem is 
more complex.

C. Performance comparison of neural networks
MLPs with different network complexities were tested 
within Netlab and BioPatRec and results are shown in 
Table  2. Since the highest classification accuracy per 
output type has tested significant against all other meth-
ods in BioPatRec and Netlab, it is marked italics within 
the table. The Netlab neural nets achieved significantly 

Table 1  Comparison of linear models

Italics significantly higher accuracy against LDA with p < 0.01

 GLM netopt single output has significantly higher accuracy than GLM train with single but not multiple outputs

Outp. type BioPatRec LDA Netlab GLM netopt (scg) Netlab GLM train (irls)

Acc SD Acc SD Acc SD

Single 0.938 0.072 0.974 0.034 0.971 0.037

Multiple 0.789 0.178 0.837 0.140 0.837 0.139
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higher accuracies in single as well as in multiple output 
type. This is expected due to the better performance of 
the scg training algorithm compared to gradient descent. 
With an optimized number of hidden units, the accuracy 
of the Netlab MLPs could be additionally increased from 
98.3 to 98.7 % in the single output type and from 97.0 to 
98.0 % in the multiple output type. For the BioPatRec 
MLPs there is no higher accuracy for the optimized num-
ber of hidden units. This is probably due to the weak 
performance of gradient descent in higher complexity 
networks. Another finding is the better performance of 
single output type against multiple output type for the 
respective settings with highest accuracy, which was Net-
lab MLP with an optimized number of hidden units.

E. Training time 
Training time for linear models as well as artificial neu-
ral networks can be found in Table  3. Linear models 

train fastest and MLPs show a huge discrepancy between 
BioPatRec and Netlab, with Netlab MLP being 102 times 
faster than BioPatRec MLP.

Discussion
Netlab’s GLM with irls training algorithm performed 
significantly better than BioPatRec’s LDA and still main-
tained short training time. The performance accuracies 
of BioPatRec’s MLP are best with two hidden layers of 
32 neurons. However, Netlab’s MLP consisting of one 
layer of 32 hidden neurons performed significantly bet-
ter. During testing of different training algorithms for 
MLP which all had a maximum number of iterations of 
200, the results showed that the scg learning algorithm 
for MLP was superior in accuracy. These findings cor-
respond to the results of previous benchmarkings of scg 
against the standard backpropagation, the conjugate gra-
dient backpropagation and the quasi-Newton algorithm 

Fig. 1  a Single output type: this figure shows the accuracy reached for every number of hidden units. After 64 HU there was no significant increase 
in accuracy. b Multiple output type: this figure shows the accuracy reached for every number of hidden units. After 74 HU there was no significant 
increase in accuracy

Table 2  Performance comparison of non-linear models and optimal number of hidden units (HU)

Italics highest accuracy is significant against all other accuracies for single/multiple output type with p < 0.01
a   64 HU 
b   74 HU

BioPatRec MLP 32 HU 2 × 32 HU 64 /74 HU

Outp. type Acc SD Acc SD Acc SD

Single 0.941 0.062 0.951 0.054 0.923a 0.055

Multiple 0.954 0.047 0.949 0.049 0.953b 0.043

Netlab MLP 32 HU 64 /74 HU

Outp. type Acc SD Acc SD

Single 0.983 0.024 0.987a 0.019

Multiple 0.970 0.033 0.980b 0.025
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[30]. The Netlab MLP with optimized number of hidden 
units achieved 98.7 % accuracy compared to 95.1 % of the 
standard BioPatRec MLP, which in terms of error rate 
is an improvement from 4.9 to 1.3 %. When comparing 
normalizations for preprocessing standard normal distri-
bution was found to be superior to a transformation to 
mid-range of 0 and range of 2.

Multiple output types do not work well with linear meth-
ods because they seem to require non-linear separation 
(as can be seen in the classification accuracies) and single 
output types perform well with linear methods, however, 
non-linear algorithms are still considerably superior. Sin-
gle output type always performs better than multiple out-
put type (with BioPatRec MLP being the only exception). 
This suggests that the single output type is a more simple 
solution to the same problem, although multiple output 
type has the advantage to recognize combined movements 
with only having the single movements available. Future 
research could focus on the issue of recognizing combined 
movements after training only single movements.

Regarding training time, Netlab was possibly faster 
because it is a sophisticated toolbox especially opti-
mized for neural computation and its utilization of 
hyperthreading.

However, it is important to not only look at offline per-
formances, but also to take into consideration that sev-
eral factors challenge the robustness and reliability of 
pattern recognition algorithms in real-time. Electrode 
condition and displacement as well as sweat and muscle 
fatigue influence conductivity of the electrodes [31–34]. 
Therefore this study’s results will be incorporated into 
further movement classification assessments in real-time.

Conclusions
Integrating Netlab’s efficient training algorithms for 
artificial neural networks and linear models into the 
BioPatRec environment resulted in an improvement of 
offline classification accuracies and training time. The 

Netlab toolbox for neural computation has been success-
fully implemented into the newest releaese of BioPatRec 
(v4.0).
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