
Hydrol. Earth Syst. Sci., 19, 3845–3856, 2015

www.hydrol-earth-syst-sci.net/19/3845/2015/

doi:10.5194/hess-19-3845-2015

© Author(s) 2015. CC Attribution 3.0 License.

Use of satellite and modeled soil moisture data for predicting event

soil loss at plot scale

F. Todisco1, L. Brocca2, L. F. Termite1, and W. Wagner3

1Department of Agricultural, Food and Environmental Sciences, Hydraulic and Forestry Division, University of Perugia,

Perugia, Italy
2Research Institute for Geo-Hydrological Protection, National Research Council, Perugia, Italy
3Department of Geodesy and Geoinformation, Vienna University of Technology, 10 Gusshausstr. 27–29, Vienna, Austria

Correspondence to: F. Todisco (francesca.todisco@unipg.it)

Received: 18 February 2015 – Published in Hydrol. Earth Syst. Sci. Discuss.: 13 March 2015

Revised: 5 August 2015 – Accepted: 24 August 2015 – Published: 11 September 2015

Abstract. The potential of coupling soil moisture and a Uni-

versal Soil Loss Equation-based (USLE-based) model for

event soil loss estimation at plot scale is carefully investi-

gated at the Masse area, in central Italy. The derived model,

named Soil Moisture for Erosion (SM4E), is applied by con-

sidering the unavailability of in situ soil moisture measure-

ments, by using the data predicted by a soil water balance

model (SWBM) and derived from satellite sensors, i.e., the

Advanced SCATterometer (ASCAT). The soil loss estima-

tion accuracy is validated using in situ measurements in

which event observations at plot scale are available for the

period 2008–2013. The results showed that including soil

moisture observations in the event rainfall–runoff erosivity

factor of the USLE enhances the capability of the model to

account for variations in event soil losses, the soil moisture

being an effective alternative to the estimated runoff, in the

prediction of the event soil loss at Masse. The agreement be-

tween observed and estimated soil losses (through SM4E) is

fairly satisfactory with a determination coefficient (log-scale)

equal to ∼ 0.35 and a root mean square error (RMSE) of

∼ 2.8 Mg ha−1. These results are particularly significant for

the operational estimation of soil losses. Indeed, currently,

soil moisture is a relatively simple measurement at the field

scale and remote sensing data are also widely available on

a global scale. Through satellite data, there is the potential

of applying the SM4E model for large-scale monitoring and

quantification of the soil erosion process.

1 Introduction

Soil is the interface between earth, air and water and hosts

most of the biosphere. As soil formation is an extremely

slow process, soil can be considered essentially as a non-

renewable resource. Soil is recognized as a strategic non-

renewable resource that, in addition to the specific relevant

environmental role, assumes also that of a strategic policy

framework for competitiveness. Therefore, specific policies

and actions designed to limit the consumption of soil are re-

quired in order to create, where possible, a barrier to stop

the worrying phenomenon of progressive depletion of the re-

source with a consequent acceleration of erosion and geolog-

ical instability. The prerequisite for the effective protection

of the territory is to monitor processes at different spatial and

temporal scales and use the obtained database to formulate,

calibrate and validate predictive models needed to define the

“risk areas” and to quantify this risk. Usually, these models

must be properly calibrated and validated over the territory in

which they are used, making use of databases and studies car-

ried out on a local scale (Bagarello et al., 2011, 2014; Butzen

et al., 2014; Cerdà, 1998; Di Stefano et al., 2005; Kinnell,

2010; Leh et al., 2013; Morgan and Nearing, 2000; Porto et

al., 2014; Vrieling et al., 2014).

Regarding soil erosion, the Universal Soil Loss Equation,

USLE (Wischmeier and Smith, 1978) is the most used empir-

ical model for the estimation of the long-term average annual

soil loss of a plot associated with sheet and rill erosion. The

USLE estimates the soil loss using six factors that are as-

sociated with climate, soil, topography, vegetation and soil
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management. The USLE is considered the best compromise

between applicability in terms of required input data and re-

liability of the soil loss estimates (Risse et al., 1993). It was

originally formulated to estimate the soil loss in rural areas

of the USA, and then extended in the Revised USLE, RUSLE

(Renard et al., 1997) and further modifications (RUSLE1,

RUSLE2, Foster et al., 2003). The RUSLE conserves the

same mathematical structure of the USLE, the revision be-

ing limited to the estimating procedure of some of the in-

volved factors. Currently, the USLE/RUSLE is widely ap-

plied in Europe and in many other Mediterranean countries

for practical purposes (e.g., Larson et al., 1997; Huang, 1998;

Rejman et al., 1999; Bagarello and Ferro, 2004; Morgan,

2005; Parsons et al., 2006; Bagarello et al., 2008, 2010, 2011,

2012; Ligonja and Shrestha, 2013). The process-based mod-

els characterized by low computational efforts fail to pro-

duce better results than the USLE/RUSLE model (Tiwari et

al., 2000). Consequently the USLE/RUSLE model is often

used for purposes for which it was not designed (Kinnell,

2010). In particular, it is widely used in watershed models

even at the event temporal scale. However, it was found in

the scientific literature (Todisco et al., 2009; Bagarello et

al., 2008; Risse et al., 1993) that the USLE/RUSLE model,

and similarly (Tiwari et al., 2000) process-oriented models

(e.g., Water Erosion Prediction Project, WEEP, Flanagan et

al., 1995), tends to overestimate (underestimate) soil losses

for low (high) erosive events. Foster et al. (1982) noted that

the USLE model is somewhat unsatisfactory for estimating

soil loss from individual storms, and observed that includ-

ing rainfall amount, rainfall intensity and runoff amount in

the erosivity factor provided better performance. Foster et

al. (1982) also noted that erosivity factors with separate terms

for rainfall and runoff erosivity were more appropriate. Suc-

cessively, Kinnell (1997) suggested that the sediment con-

centration for individual rainfall event is dependent on the

event rainfall erosivity index per unit rainfall depth and de-

veloped the so-called USLE-M model, including direct mea-

sures of the runoff in the event rainfall–runoff erosivity fac-

tor (Kinnell and Risse, 1998; Kinnell, 2007, 2010; Bagarello

et al., 2011). Bagarello et al. (2010), by using soil loss and

runoff data for a relatively high number of simultaneously

operating plots of different length (11–44 m) established at

the experimental station of Sparacia in southern Italy (clay

soil), developed a modified version of the USLE-M, named

USLE-MM, in which the event rainfall–runoff erosivity fac-

tor is raised to a power greater than 1. The USLE-MM was

found to perform better than both the USLE and the USLE-

M at Sparacia site (Bagarello et al., 2008, 2010, 2014), and it

was also successfully applied at the Masse station in central

Italy, silty–clay–loam soil (Todisco et al., 2009; Bagarello et

al., 2013).

Even if including runoff in the USLE/RUSLE model im-

proves its accuracy, it should be highlighted that the mea-

surement of the event runoff is not straightforward. At exper-

imental stations, the surface runoff is generally collected into

specific storage tanks allowing the estimation of the event

runoff by measuring the amount of water in the tanks after

the end of each rainfall event (Todisco et al., 2012a)

However, this procedure is time consuming and expensive,

and it requires specific measurement campaigns. Otherwise,

the water amount collected in the tanks could be measured by

hydrometric gauges that, unfortunately, require strong main-

tenance and are not easy to be realized. It should be also un-

derlined that by using the measured runoff, the same quan-

tity (runoff) is used both for estimating the event soil losses

(given by the product of runoff and the bulk sediment con-

centration in the tanks) and in the rainfall–runoff erosivity

factor thus introducing a conceptual issue in the model deter-

mination procedure.

In the absence of direct measurements, runoff can be esti-

mated through rainfall–runoff modeling. This usually needs

a specific calibration of the parameters (and structure) to

provide satisfactory results which are not easily applied at

the plot scale. Therefore, notwithstanding the USLE-M and

USLE-MM models have a noticeable practical interest, these

models are difficult to be applied over large areas mainly for

the need to also predict event runoff (Bagarello et al., 2014).

The same issue can be found in other existing USLE-derived

models, such as MUSLE (Williams, 1975; Williams and

Berndt, 1977), EPIC (Williams et al., 1984a,b) and APEX

(Williams et al., 2008), which explicitly consider the runoff

characteristics, even with a certain detail, for the estimation

of soil losses. Efforts have been recently made in order to in-

corporate reliable and parsimonious methods for the runoff

estimation in the USLE-derived models. However, it is ev-

ident that a poor estimation of event runoff will produce a

low-accuracy forecast of the soil loss. Gao et al. (2012) cou-

pled a modified SCS-CN (Soil Conservation Service curve

number) and RUSLE model for runoff and soil loss simula-

tion at plot scale in the Loess Plateau. In RUSLE2, runoff

prediction for storm events is obtained using the SCS-CN

method with empirical equations that vary the values of CN

in association with both soil moisture and rainfall intensity

(Kinnell, 2014). Todisco et al. (2012b) evaluated the effi-

ciency of the MISDc model (Modello idrologico semidis-

tribuito in continuo, Brocca et al., 2011a), coupled with an

USLE-derived model, for the estimation of surface runoff

and soil loss at the event timescale at Masse experimental

station. The model performance is found to be promising, but

it was underlined that the antecedent soil moisture proved to

be a good alternative with respect to runoff for correcting

the rainfall–runoff erosivity factor in the USLE-MM model.

These preliminary results open interesting scenarios for im-

proving the capability of USLE-derived models in predicting

the unit soil loss at the event scale. Indeed, measuring in situ

soil moisture is much easier (e.g., by using Time Domain

Reflectometry, Brocca et al., 2014a) and less expensive than

estimating surface runoff. Moreover, the recent widespread

availability of satellite-derived soil moisture data (e.g., Wag-

ner et al., 2013) might allow one to easily apply over large
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Table 1. Summary statistics of the 22 m long plot data available at the Masse site.

Plot size s L S Ne he Re Nm Qe,i Ae,i

µ CV µ CV µ CV µ CV

22× 8 16 2.04 62 35.4 65.2 81.8 102.6 113 3.6 136.6 4.1 221.5

22× 4 16 2.04 53 33.2 66.6 75.1 110.0 98 2.4 145.7 2.8 260.7

s, slope steepness ( %); LS, USLE topographic factors; Ne, number of events per plot scheme; he, event rainfall depth (mm); Re,

event rainfall erosivity factor (MJ mm ha−1 h−1); Nm, number of measurements per plot scheme; Qe,i , plot event runoff volume

(mm); Ae,i , plot event soil loss (Mg ha−1); µ, mean; CV, coefficient of variation (%).

areas a modified USLE/RUSLE model incorporating this in-

formation. In summary, it could be highly beneficial to find a

procedure for incorporating soil moisture in the erosivity fac-

tor rather than runoff coefficient as in previous investigations

(e.g., Kinnell, 2010; Bagarello et al., 2014).

The main objective of this study is to investigate the use

of satellite-derived and modeled soil moisture data for im-

proving the prediction of unit soil loss through a modifi-

cation of USLE-based models. Specifically, it is expected

that modeled soil moisture data will provide better perfor-

mance, but they require continuous meteorological observa-

tions not always available. Satellite data, even though with

an expected lower accuracy, have the enormous advantage of

being available on a global scale, thus allowing model appli-

cation everywhere. The Masse experimental area (Umbria,

central Italy) is used as a case study in which rainfall, air

temperature, soil losses and runoff are measured at the event

timescale for different bare plots in the period 2008–2013.

The satellite soil moisture product is obtained from the Ad-

vanced SCATterometer (ASCAT) through the TUWien algo-

rithm (Wagner et al., 2013). Moreover, modeled soil moisture

data obtained from the soil water balance model (SWBM)

developed by Brocca et al. (2014b) are also considered. The

specific objective of this study is to evaluate the opportu-

nity of coupling soil moisture and rainfall data for correct-

ing the erosivity index of the USLE model. For comparison,

the results are evaluated against those obtained by the stan-

dard USLE/RUSLE and USLE-M-based models in previous

investigations (Todisco et al., 2012b).

2 Materials

2.1 The Masse experimental station and the soil loss

database

The Masse experimental station for soil erosion measure-

ments (Fig. 1) of the Department of Agricultural, Food

and Environmental Sciences, Perugia University, is located

20 km south of Perugia, in the region of Umbria (central

Italy).

The soil is Typic Haplustept (Soil Survey Staff, 2006)

with a silty–clay–loam texture (clay= 34 %, silt= 59 % and

Figure 1. View of the Masse experimental station for monitoring

water soil loss at plot scale in Umbria (central Italy).

sand= 7 %). The soil has a polyhedral angle structure and

the gravel content is negligible. The Ap horizon has a depth

of approximately 0.40 m. The meteorological data are mon-

itored by a weather station located within the experimental

site and are recorded at a time resolution of 5 min. The sta-

tion includes plots of different length λ= 11 and 22 m and

width w = 2, 4 and 8 m. All plots are oriented parallel to

a 16 % slope and are maintained in a cultivated fallow by

obliterating the rills at the end of each erosive event. The to-

tal runoff amount and the soil loss per unit area are measured

in each plot after an erosive event, defined as an event yield-

ing a measurable soil loss. The Masse database was there-

fore developed by considering, for each event, the simulta-

neous measurements of plot runoff, Qe,i , and soil loss, Ae,i ,

and of the rainfall data required to derive the erosivity factor,

Re, according to Wischmeier and Smith (1978), with a mean

interval time of 6 h (Bagarello and Ferro, 2004; Mannocchi

et al., 2008; Todisco, 2014). The study area and the experi-

mental schemes, installations and procedures are already de-

scribed more in depth in Bagarello et al. (2011) and Todisco

et al. (2012a).

For the purposes of this investigation, only the data col-

lected on the λ= 22 m plots (two plots with w = 4 m and

two plots with w = 8 m) were considered. A total of 63 ero-

sive events were monitored in the years from 2008 to 2013.

Over 70 % of them (45 events) occurred during the wet pe-

riod (from October to May). In the 22 m× 8 m experimental

schemes, 62 events yielded a measurable runoff, correspond-

ing to 113 plot measurements. In the 22 m× 4 m schemes, 58

events were erosive, corresponding to 98 plot measurements.

The plot data used in this investigation are summarized in

Table 1.
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2.2 Soil moisture from satellite data

The satellite soil moisture product adopted in this study was

obtained from the ASCAT radar scatterometer onboard the

Metop satellites. ASCAT measures radar backscatter at the

C-band (5.255 GHz) in VV polarization. Specifically, the

product delivered through the “Satellite Application Facil-

ity on Support to Operational Hydrology and Water Man-

agement (H-SAF)” project is used. Global coverage over Eu-

rope is achieved in ∼ 1.5 days, while in Italy measurements

are available about once a day. The spatial resolution of the

soil moisture product is 25 km with a sampling distance of

12.5 km. The surface soil moisture product is calculated from

the backscatter measurements through a time-series-based

change detection approach (Wagner et al., 1999, 2013). The

soil moisture product obtained is expressed in terms of de-

gree of saturation, from 0 % (dry) and 100 % (wet). The

product obtained provides knowledge of soil moisture for a

very thin surface layer (about 2 cm), whereas a root-zone soil

moisture product would be required for the prediction of soil

losses. Even though an exact quantification of the depth of

the root zone is not possible, in this study we considered that

a layer depth of 15 cm is required. Therefore, the Soil Water

Index (SWI) method (Wagner et al., 1999) was employed to

convert surface soil moisture observations into a root-zone

soil moisture product (i.e., the SWI). This method relies on

the estimation of a single parameter, the characteristic time

length, T , that was obtained by calibration. The reader is re-

ferred to Wagner et al. (1999) for more details on the SWI

approach. Lastly, the data were converted in volumetric units

(m3 m−3) through a linear rescaling approach (Brocca et al.,

2011b) for matching the range of variability of satellite and

modeled soil moisture data provided by the SWBM. The AS-

CAT data for the pixel closest to the Masse study area were

used.

The ASCAT soil moisture product was already validated

in central Italy through the comparison with in situ observa-

tions by Brocca et al. (2010, 2011b). The obtained accuracy

(RMSE) was found to range between 0.03 and 0.07 m3 m−3.

3 Methods

3.1 Soil Moisture for Erosion model

A USLE-derived model to predict the unit event soil loss

was formulated, parameterized and tested with the use of soil

moisture in the rainfall–runoff erosivity factor. The model

was derived from the USLE:

A= R ·K ·L · S ·C ·P, (1)

whereA is the mean annual soil loss (Mg ha−1 yr−1) over the

long term (e.g., 20 years), R (MJ mm ha−1 h−1 yr−1) is the

rainfall–runoff erosivity factor, andK (Mg h MJ−1 mm−1) is

the soil erodibility factor. L and S are the topographic fac-

tors depending on the slope length and gradient, C is the

crop management factor, and P is the soil conservation prac-

tice factor. L, S, C, and P are dimensionless factors. Equa-

tion (1) with the erosivity factor calculated for the single ero-

sive event, Re (MJ mm ha−1 h−1), is also used to determine

the plot soil loss at the event temporal scale, Ae (Mg ha−1),

and the corresponding unit value, Aue, as follows:

Aue =
Ae

L · S ·C ·P
= Re ·K. (2)

Equation (2) estimates the average event soil losses fairly

well, but it tends to overestimate the lowest and underesti-

mate the highest values (Kinnell, 2010). The reason for this is

found in the lack of explicit consideration of runoff. Indeed,

although the rainfall erosivity and the soil erodibility are re-

sponsible for the detachment of soil particles, it is the runoff

that transports the detached particles causing the soil loss.

Therefore the USLE model has been further modified to ac-

count for the relationship between soil loss and runoff. Two

well-known examples are the USLE-M (Kinnell and Risse,

1998) and the USLE-MM (Bagarello et al., 2008) models, in

which the event rainfall–runoff erosivity factor is given by

the product of Re and the runoff coefficient Qr =Qe / he,

with Qe (mm) being the event runoff and he (mm) the rain-

fall depth, as follows:

Aue =Ku · (Qr ·Re)
α (3)

with α = 1 in the USLE-M and α > 1 in the USLE-MM and

where Ku varies in accordance with the selected model.

In this study, the Eq. (3) was modified using soil moisture,

θ , in place of the runoff coefficient,Qr, in the rainfall–runoff

erosivity factor. The following model was finally formulated

and named Soil Moisture for Erosion (SM4E) model:

Aue =Kuθ · (θ ·Re)
α. (4)

With α = 1, the SM4E model is linear; that is, Aue increases

linearly with the erosivity factor corrected with the soil water

content, θ ·Re. With α > 1, the SM4E model is a power law;

that is, the Aue, is proportional to the power of θ ·Re.

Equation (4) was parameterized and tested using soil mois-

ture data estimated by a soil water balance model (SWBM),

θ = θest, and derived from satellite observations θ = θsat.

3.2 Soil water balance model

The soil water balance model (SWBM, Brocca et al., 2008,

2014b) was used to estimate the temporal evolution of soil

moisture from standard meteorological data. SWBM consid-

ers the surface soil layer as a spatially lumped system, for

which the continuous time variation of soil moisture is de-

rived from the application of the soil water balance equation,

taking into account the infiltration, evapotranspiration and

drainage processes. The infiltration rate is estimated using

the Green–Ampt equation. The empirical relation of Blaney

and Criddle, as modified by Doorenbos and Pruitt (1977),
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is used to determine the potential evapotranspiration, from

which the evapotranspiration rate is computed. The drainage

rate is derived with the relation proposed by Famiglietti and

Wood (1994). The model requires rainfall and air tempera-

ture data as input and incorporates five parameters that are

optimized as described later in the paper. Further details on

SWBM, with the full list of equations, are given in Brocca et

al. (2014b).

The soil water balance model was extensively validated

with actual soil moisture measurements in different stud-

ies already published in the scientific literature (Brocca et

al., 2008, 2013, 2014b; Lacava et al., 2012). Specifically, in

Brocca et al. (2013) the model was validated exactly in the

same study area by obtaining reliable and satisfactory re-

sults. Based on previous studies, the accuracy (RMSE) of

SWBM was found to range between 0.02 and 0.04 m3 m−3

when compared with in situ measurements. On this basis, we

believe the soil water balance model is an appropriate tool

for obtaining reliable soil moisture estimates.

3.3 Calibration and testing

The SM4E model, Eq. (4), and the SWBM model require

calibration. The measured soil loss data at the different plots

of the Masse experimental station were used for this purpose.

Specifically, only the 22 m long plots were considered. The

average value of the unit soil loss, Aue, was then computed

by using Eq. (2) in which, specifically, Ae is the mean of the

plot measures; C and P equal values that are assumed equal

to 1 as bare plots were used; the topographic factors, L and

S, were calculated (see Table 1) according to the relations

proposed by Wischmeier and Smith (1978), Eq. (5) and by

Nearing (1997), Eq. (6).

L=

(
λ

22.13

)m
, (5)

where λ (m) is the plot length and m is an exponent. In the

USLE, m is equal to 0.5 if slope steepness, s, is greater than

or equal to 5 %.

S =−1.5+
17

1+ exp(2.3− 6.1sinβ)
, (6)

where β is the slope angle.

For the analysis, the database of erosive events was split

to define a calibration and a validation set of events: the 63

events were arranged in descending order with respect to

the Aue values and alternatively assigned to the calibration

(n= 32 events) or the validation set (m= 31 events). The

calibration set was used to optimize the five parameters of the

SWBM, the characteristic time length of the SWI method,

and the two coefficients (Kuθ and α) of the SM4E models.

The parameters were defined maximizing the coefficient of

determination R2, of the regression between the measured

Aue and the erosivity factor θ ·Re, with θ = θest and θ = θsat.

For the power model (α> 1), R2 is computed by a linear re-

gression on a logarithmic scale, while for the linear model

(α = 1), as the regression line is forced to pass through the

origin, R2 is computed on a linear scale as

R2
= 1−

n∑
j=1

(
Aue,j −Aue,est,j

)2
n∑
j=1

(
Aue,j

)2 , (7)

where Aue,est,j is the estimated value of Aue for the j th ero-

sive event (i.e., the soil loss that would result from the regres-

sion models), and n is the number of erosive events in the

calibration subset. The validation set was used to test the ac-

curacy and robustness of the regression models SM4E, which

was evaluated by the RMSE between the measured and the

estimated Aue values.

The effectiveness of the event soil loss models was also

compared with that of the USLE-derived models with a simu-

lated runoff coefficient in the erosivity factor (Kinnell, 2015;

Todisco et al., 2012b). In particular Todisco et al. (2012b)

coupled the USLE models with a continuous rainfall–runoff

model, MISDc (Brocca et al., 2011a), for the estimation of

the runoff volumes. MISDc incorporates a limited number of

parameters and it is characterized by low computational ef-

forts. The input data required are only rainfall and air temper-

ature. Besides runoff, the model simulates also the temporal

evolution of soil moisture.

In this paper, the analysis performed in Todisco et

al. (2012b) was extended to the current 63 erosive events. The

MISDc model was parameterized, maximizing the Nash–

Sutcliffe efficiency index between the estimates Qe,est and

the corresponding observed Qe values of the set of calibra-

tion events. A regression analysis was also performed be-

tween the observed Aue and the erosivity indices Re, Qr,est ·

Re and (Qr,est ·Re)
α . The accuracy of the regression models

in soil loss estimation was evaluated by RMSE between the

estimates (Aue,est) and the measurements (Aue) of the set of

validation events.

4 Results and discussion

4.1 Soil moisture estimation through modeled and

satellite data

Based on the procedure mentioned above, the parameter val-

ues of the SWBM and of the SM4E models were obtained

by maximizing the R2 value between the observed and es-

timated Aue values in the calibration events. Figure 2 shows

the temporal evolution of the modeled and satellite soil mois-

ture data at the beginning of the 63 erosive events that oc-

curred during the 2008–2013 study period.

Even though the parameters of the SWBM and of the SWI

method were calibrated for reproducing soil losses, and not

www.hydrol-earth-syst-sci.net/19/3845/2015/ Hydrol. Earth Syst. Sci., 19, 3845–3856, 2015
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Figure 2. Time series of satellite-derived and estimated (through the SWBM) soil moisture at the beginning of 63 erosive events in the study

period 2008–2013.

for making the two soil moisture data sets match each other,

a very good agreement among the soil moisture time series is

evident. Indeed, a very low RMSE= 0.03 m3 m−3 was ob-

tained, even for the validation sets. These results confirm

the capability of the ASCAT-derived soil moisture product to

provide high-quality measurements in central Italy (Brocca

et al., 2010, 2011b), even though the spatial mismatch be-

tween satellite and ground data is significant. As has already

been shown in the scientific literature, these unexpected good

results must be attributed to the statistical properties of soil

moisture spatial patterns. Indeed, the temporal dynamics of

soil moisture field is often very similar across a wide range

of scales – a phenomenon usually referred to as “temporal

stability” (e.g., Brocca et al., 2011b, 2014a). Therefore, local

point measurements can be used for obtaining an estimate of

soil moisture over large areas (Brocca et al., 2009) and, vice

versa, coarse-scale soil moisture measurements can be prop-

erly used for small-scale applications (Brocca et al., 2012).

4.2 Estimation of SM4E model parameters

The scatterplots in Fig. 3 show the regressions between the

soil loss and the erosivity factor θ Re with α ≥ 1 both with

θ = θsat (Fig. 3a and d) and θ = θest (Fig. 3b and e) for the

set of calibration events. The linear SM4E models (α = 1)

are very similar in the scale factors Ku,θ = 0.178 and 0.180.

The coefficient of determination using satellite soil moisture

data θ = θsat, R
2
= 0.358, is higher than that obtained with

the simulated soil moisture data θ = θest, R
2
= 0.325. Also

the power SM4E models are similar both in the scale factors

equal to 0.007 and 0.006, and in the exponent α equal to 1.69

and 1.77 for the modeled and satellite data, respectively. The

coefficient of determination is slightly higher for the θ = θest

(R2
= 0.501), than for θ = θsat (R2

= 0.462), and in any case

much higher than the linear models. The parameters for the

SM4E models are given in Table 2 (all the events). The white

dots in Fig. 3 represent the events that occurred during the dry

period (from June to September), which will be commented

on later in the paper. The erosivity index θRe performs better

when raised at an exponent α > 1, making it possible to obtain

higher coefficients of determination R2.

4.3 Soil losses estimated by SM4E models

The calibrated SM4E models were then tested with the val-

idation set to estimate the soil loss, Aue,est, by using the

corresponding satellite soil moisture retrievals, θ = θsat, or

the modeled ones, θ = θest, and event rainfall data. The

results are given in Fig. 4, by showing the dispersion of

the (Aue, Aue,est) pairs around the 1 : 1 line for the linear

model (Fig. 4a and b) and the power model (Fig. 4d and

e). The results in terms of RMSE are derived and given in

Table 2 (all the events). With satellite soil moisture, θ =

θsat, the RMSE obtained with the linear SM4E model is

equal to 3.07 Mg ha−1 (R2
= 0.329) and decreases slightly to

RMSE= 3.04 Mg ha−1 (R2
= 0.371) when the power model

is used. The errors decrease, even if not substantially, using

estimated soil moisture θ = θest, with RMSE= 2.85 Mg ha−1

(R2
= 0.401) and RMSE= 2.80 Mg ha−1 (R2

= 0.338) with

linear and power models respectively. The better perfor-

mance of SM4E when using modeled data is due to the ex-

pected better accuracy of SWBM (∼ 0.03 m3 m−3) with re-

spect to satellite data (∼ 0.05 m3 m−3).

Moreover, the linear and the power models are compared

in terms of confidence intervals of the regression coefficients.

The uncertainty is estimated as the percentage of the size of

the 90 % confidence interval with regard to the correspond-

ing coefficient value. The results show that the uncertainty in

the estimation of coefficients is similar (100 %). This result

is expected, given that the data set used is the same. The low-

est uncertainty (60 %) is estimated for the exponent of the

power model when the erosivity factor (θ Re)
α is used. Fur-
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Figure 3. Regression models between measured soil loss Aue and the erosivity indices θ Re and QrRe of the calibration subset. Linear

models (a), (b), (c): SM4E model and satellite soil moisture (a); SM4E model and estimated soil moisture (b); USLE-M model and estimated

runoff coefficient (c). Power models (d), (e), (f): SM4E model and satellite soil moisture (d); SM4E model and estimated soil moisture (e);

USLE-MM model and estimated runoff coefficient (f).

Table 2. Calibration parameters and validation root mean square error for the SM4E models (Eq. 4).

Erosivity factor All the events Wet period events

RMSE (Mg ha−1) Ku,θ α RMSE (Mg ha−1) Ku,θ α

θsat Re 3.07 0.178 – 1.10 0.174 –

(θsat Re)α 3.04 0.007 1.70 1.15 0.042 1.14

θest Re 2.85 0.180 – 1.63 0.270 –

(θest Re)
α 2.80 0.006 1.78 1.26 0.043 1.29

RMSE: root mean square error; Ku: scale factor; α: exponent for the erosivity factor.

thermore, for model comparison, two criteria, namely Akaike

information criterion (AIC, Akaike, 1974) and Bayesian in-

formation criterion (BIC, Burnham and Anderson, 2002), are

used. According to these criteria the best model provides the

lowest AIC and BIC values. The results show that the power

model performs better than linear model.

The power model provides AIC values of 30.14 and 32.56

respectively for θ = θest and θ = θsat, which are lower than

the corresponding values, 85.41 and 83.80, derived from the

linear model, thus denoting a statistically significant better

accuracy. Similarly, the BIC values for the power model,

26.47 and 28.89, are lower than the corresponding values,

83.63 and 82.02, derived from the linear model. Moreover,

according to Nagin and Roeder (2001), the difference be-

tween the BIC values, 57.15 and 53.12, obtained respectively

for θ = θest and θ = θsat, can be considered significant, being

greater than 10. The models using (θ Re)
α as erosivity factor

(both satellite and simulated θ) appear to work quite well. We

note that the SM4E model incorporating satellite-derived soil

moisture data might effectively and easily be applied over

large areas for the estimation of event water soil loss.

4.4 Comparison with the previous studies at Masse site

The results provide a clear indication that the power models

perform better than the linear models. They also show that

the coefficients of determination of the USLE-derived mod-

els that include simulated or satellite-retrieved soil moisture
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in the erosivity factor (SM4E models) never exceed the value

of 0.5. This is lower than that obtained by the USLE-M and

USLE-MM (R2
= 0.82), which include direct measurements

of the runoff in the event rainfall–runoff factor (Todisco et

al., 2012b). However, the benchmark for a correct assess-

ment of the accuracy of the SM4E models is the perfor-

mance of the USLE-derived models that include predicted

runoff coefficient, Qr,est, in the event rainfall–runoff factor

such as that analyzed by Todisco et al. (2012b). This analy-

sis was extended to the current database. As stated earlier the

runoff volumes were estimated from the calibrated rainfall–

runoff model MISDc. A paired t test shows that there are no

significant (α = 0.05) differences between the observed and

the estimated runoff samples in both the calibration and in

the validation sets. Furthermore MISDc provides fairly ac-

curate event runoff estimates with a Nash and Sutcliffe ef-

ficiency index, NSE= 0.416 between the Qe,est and the ob-

servedQe of the calibration events and an RMSE= 2.56 mm

and NSE= 0.450 between the validation events.

The regressions models between the soil loss and the ero-

sivity factor Qr,est Re with α≥ 1 (Fig. 3c and f) for the set of

calibration events were derived and shown in the scatterplots

of Fig. 3. The coefficient of determination using (Qr,est·Re)
α ,

R2
= 0.304, is higher than that obtained with the correspond-

ing linear model, R2
= 0.255. The erosivity index Qr,estRe

performs better when raised to an exponent α > 1, making it

possible to obtain higher coefficients of determination R2.

In all cases the coefficient of determination is slightly lower

than that obtained for the corresponding SM4E models.

Furthermore both the AIC and BIC criteria show that the

power model provides lower values, 40.80 and 37.13, than

the linear model, 88.57 and 86.78, thus denoting a statisti-

cally significant better accuracy. As seen earlier, according

to Nagin and Roeder (2001), the difference between the BIC

values obtained, 49.65, can be considered significant. More-

over, the AIC and BIC values associated with the USLE-

derived models with simulated runoff in the erosivity fac-

tors are always higher than those provided by the SM4E

models, which prove to be more efficient. The accuracy of

the calibrated models in estimating the event plot soil loss,

Aue,est, was tested with the validation values ofRe andQe,est.

The results are given in Fig. 4, by showing the dispersion

of the (Aue, Aue,est) pairs around the 1 : 1 line for the lin-

ear model (Fig. 4c) and the power model (Fig. 4f). The re-

sults in terms of RMSE obtained with the linear model are

equal to 2.96 Mg ha−1 and remain almost constant when the

power model is used. The errors are higher, even if only

slightly, than those obtained with the linear SM4E and be-

tween those obtained with the two power SM4E models

tested. Figure 5 also shows the comparison between the re-

sults obtained in terms of RMSE and R2 in this study with

Eq. (4), the results obtained by extending the analysis per-

formed in Todisco et al. (2012b) to the current 63 erosive

events, and the results obtained with the USLE model. Only

the results of the power models compared with the USLE

are shown in Fig. 5 since the power models have proven to

be better than the linear models both in this study and in

Todisco et al. (2012b). The accuracy in the estimation of the

soil loss by the USLE-MM model that includes the predicted

runoff coefficient in the event rainfall–runoff factor quanti-

fied in an RMSE= 2.96 Mg ha−1 is higher than that obtained

with (θest ·Re)
α and slightly lower than that derived obtained

with (θsat ·Re)
α (Fig. 5). The worst performance is that of

the USLE model with an RMSE= 3.28 Mg ha−1, while the

lowest coefficient of determination is obtained for the USLE-

MM with estimated runoff (R2
= 0.185). It is interesting to

notice that the accuracy in estimating the event soil loss of

the models with erosivity factor that includes the simulated

runoff coefficient, i.e., (Qr,est·Re)
α , is overcome surpassed

by at least one model that uses the antecedent soil moisture

θ in the erosivity index. In Fig. 6, the deviations between

observed and predicted soil loss values are also given with

the corresponding runoff coefficient and the mean soil mois-

ture (average of θest and θsat) values. On the one hand, it is

evident that the introduction of both the soil moisture and

the predicted runoff coefficient data significantly reduces the

overestimation issues of the USLE model. The correction is

also effective when USLE highly overestimates soil losses,

e.g., in May 2009 and August 2013. On the other hand, when

USLE underestimates the measured values, the use of soil

moisture and predicted runoff coefficient slightly increases

the deviations (June and September 2010, July 2011 and Au-

gust 2012). Also given in Fig. 6 is the mean absolute error

(MAE), which confirms the ranking of the best performing

models and clearly shows that the soil moisture is an effec-

tive alternative to estimated runoff in the prediction of the

event soil loss.

4.5 Model performance in wet and dry periods

As stated earlier, the white dots in Figs. 3 and 4 represent

the events that occurred during the dry period (from June to

September). It is evident that for these events the estimated

soil losses are distant from the regression line and the 1 : 1

line, thus reducing the value of R2 and RMSE. In Fig. 6 the

highest deviations between the observed and estimated val-

ues occur in the dry period events. This is likely due to the

particular characteristics of summer rainfall events in central

Europe (Todisco et al., 2012b; Todisco, 2014). Summer rain-

fall events are generally isolated and characterized by high

intensity associated with low antecedent soil moisture but el-

evated soil losses. Therefore, even with a high Re, the ero-

sivity factor θRe is reduced since both θsat and θest assume

typically low values. As a representative example, the event

characterized by the highest soil loss (Aue = 19.14 Mg ha−1,

July 2012) is associated with the lowest pre-event soil mois-

ture, both satellite-derived (θsat = 0.09 m3 m−3) and simu-

lated (θest = 0.05 m3 m−3). This issue affects the Qr Re ero-

sivity factor too, if Qr is derived from runoff simulated by

standard rainfall–runoff models in which runoff increases
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Figure 4. Testing of the Aue vs. θ Re and the Aue vs. QrRe models with the validation subset. Linear models (a), (b), (c): SM4E model and

satellite soil moisture (a); SM4E model and estimated soil moisture (b); USLE-M model and estimated runoff coefficient (c). Power models

(d), (e), (f): SM4E model and satellite soil moisture (d); SM4E model and estimated soil moisture (e); USLE-MM model and estimated

runoff coefficient (f).

Figure 5. Comparison of the results obtained by the power SM4E

model with both satellite and estimated soil moisture, the USLE-

MM including predicted runoff, and the original USLE, in terms

of root mean square error (RMSE) and coefficient of determination

(R2).

with antecedent soil moisture conditions (Todisco et al.,

2012b). In the dry period, high surface runoff is observed,

despite low θ values, due to the development of superficial

crusts creating a shield that is responsible for low infiltra-

tion and high runoff. This aspect is particularly significant

for bare soil as in the plots considered in this study.

Given the above consideration, another analysis was per-

formed excluding the dry period’s events from the database.

Among the 45 remaining events, 23 are used to calibrate the

models and 22 to validate the results. In this case, as ex-

pected, the performances of all the equations analyzed gener-

ally increase (Table 2). In particular, for the calibration sub-

set, R2
= 0.247 and R2

= 0.496 are obtained for the ero-

sivity factor (θsat Re)
α for α = 1 and α > 1, respectively. The

(θest Re)
α factor gives R2

= 0.605 and R2
= 0.715 for α = 1

and α > 1, respectively. Therefore, particularly the perfor-

mance of the regression significantly increases in terms of

R2 especially when modeled data are used.

In validation, RMSE= 1.10 Mg ha−1 (1.15 Mg ha−1) is

obtained with satellite soil moisture with the linear (power)

model; by using modeled soil moisture, the linear model

gives RMSE= 1.63 Mg ha−1, while the power model gives

RMSE= 1.26 Mg ha−1 (see Table 2). In comparison, the

USLE model provides an RMSE= 1.99 Mg ha−1; thus the

modified-USLE model moisture data – the SM4E models –

improved the performance of the USLE when satellite (mod-

eled) data were considered.
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Figure 6. Comparison of the results obtained by the power SM4E model with both satellite and estimated soil moisture, the USLE-MM

including predicted runoff, and the original USLE, in terms of deviations between estimated, Aue,est, and observed, Aue, soil losses. The

values of the estimated runoff and of the mean soil moisture computed as the mean between the estimated and the satellite-retrieved values

are also given.

5 Conclusions

The attempt made in the paper is to use the pre-event soil

moisture to account for the spatial variation in runoff within

the area for which the soil loss estimates are required. More

specifically the analysis was focused on the evaluation of

the effectiveness of the Soil Moisture for Erosion model

(SM4E), which is derived by coupling modeled or satellite-

derived soil moisture with the USLE model, in predicting

event unit soil loss at the plot scale in a silty–clay–loam soil

in central Italy. To this end, the Masse experimental station

database for the measurement of event soil losses at plot scale

was used.

The formulations analyzed are the USLE-derived equa-

tions, called SM4E models, in which the event erosivity fac-

tor, Re, is corrected by the antecedent soil moisture, θ , and

powered to an exponent α≥ 1 (α = 1: linear model; α > 1:

power model). Both satellite measurements from the ASCAT

sensor (θ = θsat) and modeled values through the SWBM

(θ = θest) were tested. The results showed that including di-

rect consideration of antecedent soil moisture in the event

rainfall–runoff erosivity factor of the USLE enhanced the ca-

pacity of the model to account for variations in event soil

losses.

The accuracy of the original USLE model was lower than

that obtained by incorporating satellite and modeled soil

moisture data. The most accurate model is that with the mod-

eled soil moisture data when the entire the database is used

and with the satellite-retrieved soil moisture data when only

the wet period events are considered. It was in fact also ver-

ified that much of the inaccuracy of the tested models is due

to summer rainfall events, probably because of the particular

characteristics that the soil assumes in the dry period (su-

perficial crusts causing higher runoff): in these cases, high

soil losses are observed in association with low soil moisture

values, and, hence, the model performance decreases. As ex-

pected, by excluding the summer events, the performance of

all the analyzed equations increases. This aspect is particu-

larly important, as it highlights the conditions in which the

developed models fail to reproduce soil losses and that de-

serves further investigation. More specifically, the incorpora-

tion of the mechanism for the formation of superficial crusts

in the developed soil water balance model will be the subject

of future investigations.

We highlight that the obtained results open interesting sce-

narios in the overview of the studies aimed at defining USLE-

derived models that could improve the unit soil loss estima-

tion at the event scale. In particular, the choice of using soil

moisture data to correct the rainfall–runoff erosivity factor

takes on great importance for the practice. Indeed, soil mois-

ture is a relatively simple measurement, and different tech-

niques are available for providing accurate measurements at

the field scale. Moreover, remote sensing soil moisture data

are also widely available on a global scale. Through satellite

data, there is the potential of applying the developed USLE-

derived model for large-scale monitoring and quantification

of the soil erosion process.
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