
Proceedings in Applied Mathematics and Mechanics, 27 March 2013

Determination of the derivative of the tangent stiffness matrix with
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In order to solve the so-called consistently linearized eigenproblem in the frame of the Finite Element Method (FEM), the
derivative of the tangent stiffness matrix̃K T with respect to the load parameterλ needs to be calculated. In this work, three

schemes for calculation of˙̃KT are presented. The first scheme is based on an analytical expressionfor the first derivative of
the element tangent stiffness matrixK̃

e

T with respect toλ for the special case of a co-rotational beam element. The second one

is a finite difference approach for computation of˙̃KT := dK̃T/dλ. The third one is also a finite difference approach. However,
it is based on a directional derivative ofK̃T. An elastic beam, subjected to a compressive axial force and a small transverse
uniform load, is chosen as a numerical example. The effectiveness and the accuracy of the three schemes are compared. The
third scheme is found to be not onlyvery practical but alsomore effective than the two competing schemes.
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1 Introduction

The so-called consistently linearized eigenproblem (CLE), originally proposed in [1], plays a pivotal role in a new concept of
categorization of buckling of structures by means of spherical geometry [2]. Its mathematical formulation reads as

[K̃T + (λ∗

1
− λ) ˙̃KT] · v∗

1
= 0 (1)

whereK̃T denotes the tangent stiffness matrix of a structure, in the frame of the Finite Element Method (FEM), evaluated
along the primary path;

˙̃KT :=
dK̃T

dλ
, (2)

whereλ stands for a dimensionless load factor, and(λ∗

1
− λ, v∗

1
) is the first eigenpair. To solve the CLE,˙̃KT needs to be

calculated. The effectiveness of the calculation depends on the analysis method. In this work, three schemes for calculation

of ˙̃KT are presented. An elastic beam, subjected to an axial force and a small transverse uniform load, serves as the numerical
basis for a comparison of the potential of these schemes.

2 Analytical expression for ˙̃KT, considering co-rotational beam elements

Concerning the first scheme, an analytical expression for the first derivative of the element tangent stiffness matrixK̃
e

T with

respect toλ, denoted aṡ̃Ke

T, is derived for the special case of a co-rotational beam element [3]. It is obtained as

˙̃Ke

T =Ẋ
T
K̄

e

TX + XT ˙̄Ke

TX + XTK̄
e

TẊ +
(żzT + zżT)l̂ − zzT ˙̂l

l̂2
N̄ +

zzT

l̂

˙̄N

+
(ṙzT + r żT + żrT + zṙT)l̂2 − 2(rzT + zrT)l̂

˙̂
l

l̂4
(M̄1 + M̄2) +

rzT + zrT

l̂2
( ˙̄M1 +

˙̄M2)

(3)

whereX is a matrix required for transformations from local to global coordinates;̂l denotes the length of the deformed beam;
r ,z are vectors that represent abbreviations of lengthy expressions;K̄

e

T is referred to the local coordinate system;N̄ , M̄1, M̄2

denote the components of the force vector in the local coordinate system.X, l̂, r ,z are purely geometrical relationships. The
expressions for̄K

e

T, N̄ , M̄1, M̄2 depend on the chosen finite element. Herein, the axial displacementu is assumed to be linear,

and the deflectionw is taken as cubic. The element is based on the Euler-Bernoulli theory. After determination oḟ̃Ke

T, the

element matrices are assembled to the global matrix˙̃KT.
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3 Numerical approximations of ˙̃KT

The second scheme is based on a one-sided two-point finite difference approach for computation of˙̃KT according to Eq.(2).
It reads as

˙̃KT ≈

K̃T(λ+ ǫ)− K̃T(λ)

ǫ
(4)

whereǫ describes a small increment ofλ. The third scheme is also based on a one-sided two-point finite difference approach.

However, the finite difference expression for˙̃KT is obtained from a directional derivative, defined as

˙̃KT := K̃T,u · q̇ =
dK̃T(q + ǫq̇)

dǫ

∣

∣

∣

∣

ǫ=0

, (5)

whereq := q(λ) is the vector of nodal displacements in the frame of the FEM. The finite difference approximation of the
directional derivative is given as

˙̃KT ≈

K̃T(q + ǫq̇)− K̃T(q)
ǫ

(6)

whereǫq̇ denotes a small change of the displacement vector.

4 Numerical verification

The three schemes are coded inFEMv2, which is a nonlinear finite element program, developed by the first author. The beam

(see Fig. 1a) is discretized by 100 2-node elements.˙̃KT is calculated by means of the three aforementioned schemes.The
computer times required by the three schemes have been compared. Fig. 1b indicates that scheme 3 is faster than scheme 2.
The reason for this is theNewton-Raphson iteration, needed in scheme 2 to obtainK̃T(λ+ ǫ) (see Eq.(4)), but not in scheme 3.
Although scheme 3 is slower than scheme 1, it represents an element-independent approach, and, hence, is more practical. Fig.
1c shows that the results obtained by scheme 3 are more accurate than those obtained by scheme 2. This is the consequence
of evaluatingK̃T at q + ǫq̇ (see Eq. (6)) which is "closer" toq thanq(λ+ ǫ) , for which K̃T is evaluated in scheme 2. Hence,

it can be concluded that scheme 3 is not onlyvery practical but alsomore effective for calculation of ˙̃KT in the frame of the
FEM than the two competing schemes.
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Fig. 1 Numerical example: (a) configuration of the beam subjected to an axial compressive force and a small transverse uniform load, (b)
relative computer time of schemes 2 and 3, (c) accurracy of results obtained by means of schemes 2 and 3
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