
Rupp EURASIP Journal on Advances in Signal
Processing  (2016) 2016:18 
DOI 10.1186/s13634-015-0291-1

RESEARCH Open Access

Asymptotic equivalent analysis of the LMS
algorithm under linearly filtered processes
Markus Rupp

Abstract

While the least mean square (LMS) algorithm has been widely explored for some specific statistics of the driving
process, an understanding of its behavior under general statistics has not been fully achieved. In this paper, the mean
square convergence of the LMS algorithm is investigated for the large class of linearly filtered random driving
processes. In particular, the paper contains the following contributions: (i) The parameter error vector covariance
matrix can be decomposed into two parts, a first part that exists in the modal space of the driving process of the LMS
filter and a second part, existing in its orthogonal complement space, which does not contribute to the performance
measures (misadjustment, mismatch) of the algorithm. (ii) The impact of additive noise is shown to contribute only to
the modal space of the driving process independently from the noise statistic and thus defines the steady state of the
filter. (iii) While the previous results have been derived with some approximation, an exact solution for very long filters
is presented based on a matrix equivalence property, resulting in a new conservative stability bound that is more
relaxed than previous ones. (iv) In particular, it will be shown that the joint fourth-order moment of the decorrelated
driving process is a more relevant parameter for the step-size bound rather than, as is often believed, the second-order
moment. (v) We furthermore introduce a new correction factor accounting for the influence of the filter length as well
as the driving process statistic, making our approach quite suitable even for short filters. (vi) All statements are
validated by Monte Carlo simulations, demonstrating the strength of this novel approach to independently assess the
influence of filter length, as well as correlation and probability density function of the driving process.
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1 Introduction
The well-known least mean square (LMS) algorithm [1] is
the most successful of all adaptive algorithms. In its nor-
malized version (NLMS), it can be found by the million
in electrical echo compensators [2], in telephone switches,
and also in the form of adaptive equalizers [3]. No other
adaptive algorithm has been so successfully placed in
commercial products.1 With a fixed step-size, starting at
initial value w0, the LMS algorithm is given by

ek = dk − ukTwk = vk + ukT (w − wk) (1)
wk+1 = wk + μukek ; k = 0, 1, 2, . . (2)
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Here, a reference model dk = wTuk + vk has been
introduced, as is common for a system identification prob-
lem, assuming that an optimal solution w ∈ IRM×1

exists. It is further assumed that the observed system
output is additively disturbed by real-valued, zero-mean,
noise vk ∈ IR of variance σ 2

v . The regression vector is
uk ∈ IRM×1, with M denoting the order of the filter.
The algorithm starts with an initial value of w0, trying to
improve its estimate wk ∈ IRM×1 with every time instant
k. All signals are formulated as real-valued (i.e., ∈ IR),
which makes the derivations easier to follow. Although, in
most cases, it is straightforward to extend the results to
complex-valued processes if difficulties arise, results for
the complex-valued case will be pointed out.
While deterministic approaches have proven l2 stabil-

ity for any kind of driving signal uk [4–7], results from
stochastic approaches are restricted to specific classes of
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random processes (unfiltered independent identically dis-
tributed (IID) [8], Gaussian [9, 10], and spherically invari-
ant random processes (SIRP) [11]). A recent historical
overview is provided in [12]. Nevertheless, such stochas-
tic analysis is useful since it provides information about
how the speed of convergence and the steady-state error
depend on the step-size μ. The resulting stability bounds
[8–11, 13] are typically conservative:

μclassic ≤ 2
3tr[Ruu]

(3)

and are based on fourth-order moments of Gaussian vari-
ables, which in turn can be expressed as second-order
moments of the autocorrelation matrix Ruu = E

[
ukukT

]
.

Furthermore, the derivation of this bound for stability in
the mean square sense is based on the so-called indepen-
dence assumption (IA), an assumption that also will be
applied throughout this article.
In Section 2, it is demonstrated that an initial parame-

ter error vector covariance matrix is forced by the LMS
algorithm to remain a member of the modal space of Ruu.
However, this rule is not true in a strict sense for arbitrary
driving processes and requires some mild approximations
to make it a more general statement.
In Section 3, our considerations are complemented by

analyzing the steady-state behavior of the algorithm and
finally we link all these elements to a strong statement
about a large class of linearly filtered random processes
of the moving average type. This class naturally includes
linearly filtered IID processes but it is even possible
to include some particular statistically dependent terms,
meaning that SIRPs are also covered. A crucial parameter
to describe dynamical as well as stability behavior turns
out to be the joint fourth-ordermomentm(2,2)

x = E
[
x2kx

2
l
]
;

for l �= k of the corresponding decorrelated (white)2 driv-
ing process. In the case of very long filters, it turns out
that even the mild approximations of the driving process
are no longer required and thus less conservative step-size
bounds are obtained. This is reported in Section 4. Finally,
a validation of the theoretical statements is provided in
Section 5 by Monte Carlo simulations. Some conclusions
in Section 6 round up the paper.
Notation: To further facilitate the reading of the article,

a list of commonly used variables and terms is provided
in Table 1. The notation A[xk] is used to describe a lin-
ear operator on a scalar input and A[xk] on a vector input.
As the linear operator A[·] in our contribution is lim-
ited to a linear time-invariant filter, it can equivalently be
described by a convolution A[xk]=

∑P
m=0 amxk−m with

the coefficients am describing the impulse response of
the filter. Consequently, A[xk]= ∑P

m=0 amxk−m. Equiv-
alently, such a convolution can be described by a linear
transformation applying an upper right Toeplitz matrix
A ∈ IRM×(M+P) to an input vector xk ∈ IR(M+P)×1.

Table 1 List of commonly used terms for filters of lengthM

Variable Dimension Meaning

dk IR Desired output of unknown system

w IRM×1 Impulse response of unknown system

wk IRM×1 Estimate ofw

uk IRM×1 Regression vector

uk IR1×1 Elements of the regression vector

vk IR Additive noise

Ruu IRM×M Autocorrelation matrix of uk

�u IRM×M Diagonal matrix = QRuuQT

Kk IRM×M Covariance matrix ofw − wk

xk IR White generating process

m(2)
x IR Second-order moment of xk

m(2,2)
x IR Joint fourth-order moment of xk

μ IR Step-size

A IRM×(M+P) upper right Toeplitz matrix

I IRM×M Identity matrix of dimensionM

IP IRP×P Identity matrix of dimension P

1 IRM×1 Vector with ones as entries

In this case, the output vector uk = Axk is of dimen-
sion IRM×1. If the vector xk = [ xk , xk−1, . . . xk−M−P+1]T
exhibits a shift property, so does the corresponding out-
put uk = [uk ,uk−1, . . . suk−M+1]T . The variable xk will be
denoted for describing a white process throughout the
paper while uk will denote the corresponding filtered pro-
cess throughout this paper. Furthermore, two other linear
operators on square matrices will be used: (1)� = diag[L]
on a matrix L results in a diagonal matrix � whose diago-
nal entries are identical to the diagonal of L and all other
entries are zero; (2) tr[L] on a matrix L results in the
trace of the matrix, i.e., tr[L]= ∑M

m=1 Lmm. The symbol⊗
denotes a tensor or Kronecker product.

2 Modal space of the LMS algorithm
Let us consider the classical LMS analysis [8, 10], utilizing
the IA as stated in the introduction:
Independence assumption (IA): The regression vector uk

is statistically independent of the past regression vectors,
i.e., {uk−1,uk−2, . . . ,u0}.
This assumption was introduced by Ungerboeck [8]

and thoroughly investigated by Mazo [14] in the con-
text of adaptive equalizers. A consequence of such an
assumption is that parameter estimate wk (as well as
parameter error vector w̃k = w − wk) is independent
of uk and thus E

[
ukukT (w − wk)(w − wk)

TukukT
] =

E
[
ukukTE

[
(w−wk)(w−wk)

T ]ukuk]=E
[
ukukTKkukukT

]
where the parameter error vector covariance matrix

Kk = E
[
(w − wk)(w − wk)

T
]

(4)
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was applied.3 In the literature, w̃k is also often referred
to as weight error vector, wk as weight estimate, and Kk
as weight error vector covariance matrix. The IA holds
exactly for the linear combiner case in which the suc-
ceeding regression vectors are statistically independent of
each other (see, for example, in multiple sidelobe canceller
(MSLC) applications [15]) while in practice, the LMS algo-
rithm is mostly run on transversal filters in which the
regression vectors exhibit a shift dependency. Note that
we will consider the shift structure of the regression vector
that is uk = [uk ,uk−1, . . . ,uk−M+1]T only for its genera-
tion process, as it will be generated by linearly filtering
random processes over time. The IA in the derivations for
analyzing the algorithm will however be required which is
not a contradiction to the generation process. The major
advantage of the IA is that the evolution of the parameter
error covariance matrix Kk can be computed and thus the
learning curves of the algorithm, i.e., its learning behavior,
can be derived. This knowledge also provides the steady-
state values and, furthermore, the derivation of practical
step-size bounds.
Note that some analyses in the past have attempted to

overcome the independence assumption; good overviews
on techniques can be found in [16, 17]. In [17, 18], the
authors have assumed small step-sizes (much smaller than
the largest possible step-size) so that the updates are
mostly static compared to the rapid changes in the sig-
nals. This approach, however, basically leads to first-order
results as the LMS algorithm then behaves similarly to
the steepest decent algorithm. In [19, 20], Douglas et al.
solved the problem by introducing a linearly filtered mov-
ing average (MA) process and formulating all terms in the
evolution of the covariance matrixKk explicitly. While the
outcomes obtained are precise, the method relies on sym-
bolic computation (MAPLE) and results, even for small
problems (filter order M < 10), in a very large set of lin-
ear equations. The method only provides numerical terms
that neither give much insight into the functionality of the
algorithm nor provide general analytical statements. Also,
the approach in [21, 22] follows along such lines, however
with imposing the IA, where a large set of linear equations
(of the orderM2 ×M2) is required to be computed due to
terms of the form ukuTk ⊗ ukuTk and then analyzed. Simi-
lar to the previous idea, this method also does not provide
analytical insight and becomes tedious if not infeasible for
correlated signals as well as large matrices. Finally, But-
terweck [18, 23–25] has introduced a novel idea based
on wave propagation. He showed that for very long fil-
ters (M → ∞), the derivation does not require the classic
IA. However, several other signal conditions are required
(e.g., Gaussian driving process, small step-size, infinite
filter order M). Our results in Section 4 will be com-
pared to his results when stability conditions for very long
filters are derived. Finally, it should be mentioned that

neither do the deterministic approaches [4, 5, 7] require
the IA in order to derive step-size bounds, but as in the
case of other contributions, they are unable to provide
learning curves or steady-state values without imposing
the IA. Experimental results have shown that utilizing
the IA in FIR filter structures may lead to poor learning
behavior estimates under strongly correlated processes
but surprisingly accurate values for steady-state values of
the parameter covariance matrix. The IA therefore is still
frequently used in current analyses of gradient-type algo-
rithms, see, for example, recent publications [3, 26, 27].
Note that our analysis is also based on an infinite filter
length approach but different to others, we quantify the
error term related to the filter length which allows us to
provide rather accurate results even for short filters (e.g.,
M = 10).
In this paper, the classic stochastic approaches from

Horowitz and Senne [9] and Feuer and Weinstein [10] are
pursued and extended in numerous directions, relying on
a general MA driving process similar to that proposed in
[19, 20]. Symmetric matrices as they appear in the form of
the parameter error vector covariance matrix Kk can be
decomposed into two complementary subspaces (see [28]
and Appendix 1 for details), namely

Kk = b0I+b1Ruu+. . .+bM−1RM−1
uu +K⊥

k = P(Ruu)+K⊥
k .
(5)

Here, P(Ruu) denotes a polynomial in Ruu and K⊥
k is

an element of its orthogonal complement, i.e., every-
thing in Kk that cannot be approximated by P(Ruu). Note
that the impact of the complement space is only evident
in the trace but not in the matrix itself: K⊥

k R
l
uu �= 0

while tr
[
K⊥
k R

l
uu
] = 0. It turns out that only members

in subspace P(Ruu) contribute to the error performance
measures (see Eq. (42) for mismatch: tr

[
KkR0

uu
]
; see (43)

for misadjustment: tr [KkRuu]) of the algorithm as only
terms of tr

[
KkRl

uu
]
are of interest while the complemen-

tary part tr
[
K⊥
k R

l
uu
] = 0 and thus does not contribute to

the performance measures.
In a first step, the following equation

K1 = E
[(

I − μu0uT0
)
K0

(
I − μu0uT0

)T]
= K0 − μRuuK0 − μK0Ruu + μ2E

[
u0uT0 K0u0uT0

]
+ μ2Ruuσ

2
v

(6)

is obtained. Let us start with an example to illustrate its
behavior.
Example: A general K0 will be a linear combination as

shown in (5). Take, for example, a fixed system w to be
identified. In this case, K0 = wwT . This value can be
decomposed into P(Ruu) in the modal space of Ruu and
a component K⊥ from its orthogonal complement. This
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also allows the description of the evolution of the indi-
vidual components; starting with Kk = K‖

k + K⊥
k , with

K‖
k ∈ Ru and K⊥

k ∈ R⊥
u , a set of equations is obtained

K‖
k+1 = K‖

k − μRuuK‖
k − μK‖

kRuu

+μ2
(
2RuuK‖

kRuu+Ruutr
[
K‖
kRuu

])
+μ2Ruuσ

2
v .
(7)

K⊥
k+1 = K⊥

k − μRuuK⊥
k − μK⊥

k Ruu + 2μ2RuuK⊥
k Ruu.

(8)

Parameter error covariance matrix Kk = K‖
k + K⊥

k thus
evolves into a new matrix Kk+1 = K‖

k+1 + K⊥
k+1 in which

its part K‖
k from Ru stays in the modal space and appears

as new part K‖
k+1, contributing to learning performance

terms. Similarly, the perpendicular term K⊥
k stays in the

complement space as K⊥
k+1 and will thus not contribute to

the algorithm’s performance curves under the trace oper-
ation. The noise contributes only to the modal space. This
makes it possible to formulate an initial first statement for
Gaussian driving processes.

Lemma 2.1. Assume the driving process to be a corre-
lated Gaussian process with autocorrelation matrix Ruu.
Under the IA, the initial parameter error vector covariance
matrix K0 of the LMS algorithm evolves (1) into a polyno-
mial in Ruu of the modal space of Ruu, solely responsible
for the mismatch and the misadjustment of the algorithm,
and (2) a part in its orthogonal complement which has no
impact on the performance measures.

Note that the correlated Gaussian case has been solved
for a while [9, 10], typically resulting in a matrix evolu-
tion as presented in (7), see, e.g., [13, 29]. However, the
term ((8) has never been studied at all. Including uncorre-
lated IID or SIRP processes required modifications of the
method [11, 30]. With the proposed method, we will be
able to include arbitrary correlated processes within the
same framework.
As such example presented above is somewhat intuitive

for the particular case of a Gaussian driving process, what
can be said about larger classes of driving processes is of
interest. To achieve this goal, a number of considerations
with respect to the driving process are required.
Driving process: The properties of Lemma 2.1 are not

only maintained by Gaussian random processes but also
by a much larger class of driving processes. It will be
shown that these properties hold for random processes
that are constructed by a linearly filtered white zero-mean
random process uk = A[xk]=

∑P
m=0 amxk−m, whose only

conditions are that:

Driving process assumptions (A1a):

m(2)
x = E

[
x2k

] = 1 (9)
m(2,2)

x = E
[
x2kx

2
l
] ≤ c2 < ∞; k �= l (10)

m(4)
x = E

[
x4k

] ≤ c3 < ∞ (11)
m(1,1,1,1)

x = E [xkxlxmxn] = 0; k �= l �= m �= n (12)
m(2,1,1)

x = E
[
x2kxmxn

] = 0; k �= m �= n (13)
m(1,3)

x = E
[
xkx3l

] = 0; k �= l (14)
mx = E[xk]= 0. (15)

Note that the conditions are shown for real-valued pro-
cesses; for complex-valued processes, they need to be
adjusted. The last four conditions (12)–(15) are listed
here for completeness. They exclude processes that do
not have a zero mean in some sense and have been
assumed, although not often explicitly mentioned, in most
of the literature. Linearly filtering such processes will
preserve the zero-mean properties (12)–(15). These pro-
cesses certainly include not only real-valued Gaussian and
SIRP

(
3m(2,2)

x = m(4)
x = 3

)
and complex-valued Gaus-

sian and SIRP
(
2m(2,2)

x = m(4)
x = 2

)
, processes, but also

IID processes
(
m(2,2)

x =
(
m(2)

x
)2)

. Once vectors xk =
[xk , xk−1, . . . , xk−N+1]T have been constructed, the fol-
lowing second- and fourth-order expressions are found:

E
[
xkxTk

]
= IN , (16)

E
[
xkxTk xkx

T
k

]
=

(
m(4)

x + (N − 1)m(2,2)
x

)
IN . (17)

Correspondingly, the linearly filtered vectors read

uk = Axk =

⎡
⎢⎢⎢⎣
a0 a1 . . . aP

a0 a1 . . . aP
. . . . . .

a0 a1 . . . aP

⎤
⎥⎥⎥⎦ xk (18)

with an upper right Toeplitz matrix A of dimension M ×
N = M × (M + P). The impulse response of the coloring
filter is given by a0, a1, . . . aP and appears on every row
of A starting with a0 on its main diagonal. In general, the
driving process vector xk is longer than uk , depending on
the order P of the impulse response.
However, in order to guarantee independence of vectors

uk ,uk−1, . . . we have to impose a second condition on the
driving process:

Driving process assumptions (A1b): Assume the driving
process uk being generated by a linearly filtered process xk
as described above. We furthermore have to assume that
at each time instant k, a new statistically independent pro-
cess

{
x(k)
l

}
is being generated whose values are processed

from l = k − N + 1 . . . k to generate uk . For two different
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time instants k1 and k2, we assume that their joint pdfs are
statistically independent, i.e.,

f{x(k1)

l

}
,
{
x(k2)

l

} = f{x(k1)

l

}f{x(k2)

l

} (19)

Note that Assumption A1b is sufficient to avoid the
IA but not required. On the other hand, dropping A1b
requires the IA to ensure the results of the paper hold.
To facilitate reading, we will drop the notation x(k)

l → xl.
With such assumptions, we are now ready for our first
general statement.

Lemma 2.2. Assume driving process uk = A[xk] to orig-
inate from a linearly filtered white random process xk so
that uk = Axk with xk = [xk , xk−1, . . . , xk−N+1]T , where A
denotes an upper right Toeplitz matrix with the correlation
filter impulse response and xk satisfies conditions (9)–
(17). The initial parameter error vector covariance matrix
K0 = K‖

0 + K⊥
0 of the LMS algorithm essentially (with

error of order O(μ2)) evolves into a polynomial in AAT

in the modal space of Ruu while terms in its orthogonal
complement K⊥ either remain there or die out.

Note that this formulation may imply that this is only
true for linearly filtered processes of the moving aver-
age (MA) type. As no condition on the order P of such
a process is imposed, P (and thus N = M + P) can
become arbitrarily large (e.g., P → ∞) and thus autore-
gressive processes (AR) or combinations (ARMA) can also
be resembled as well (e.g., see [13] (chapter 2.7)).

Proof. The proof proceeds in two steps: first, rewriting
(6) for K0 = I in order to discover the most important
terms and mathematical steps based on a simpler formu-
lation and then refining the arguments for arbitrary values
of Kk to Kk+1.
For K0 = I and recalling that Ruu = E

[
ukukT

] =
AE

[
xkxkT

]
AT = AAT , the following is obtained:

K1 = I − 2μAAT + μ2AE
[
xkxkTATAxkxkT

]
AT

+ μ2σ 2
v AAT .

(20)

On the main diagonal of the M × M matrix AAT ,
identical elements are found:

∑P
i=0 |ai|2, thus, tr[ATA]=

tr[AAT ]= M
∑P

i=0 |ai|2, with P denoting the filter order
of the MA process.
Due to properties (9)–(17) of driving process xk ∈ IR

E
[
xkxkTLxkxkT

]
ij

=
{
m(2,2)

x (Lij + Lji) ; i �= j
m(4)

x Lii + m(2,2)
x

∑
k �=i Lkk ; i = j

E
[
xkxkTLxkxkT

]
=m(2,2)

x (L + LT )+m(2,2)
x tr[L] IM+P

+
(
m(4)

x − 3m(2,2)
x

)
diag[L]

(21)

is found, where diag[L] denotes a diagonal matrix with the
diagonal terms of a matrix L as entries. When xk ∈ IC, a
slightly different result is obtained:

E
[
xkxkHLxkxkH

] = m(2,2)
x L + m(2,2)

x tr[L] IM+P

+
(
m(4)

x − 2m(2,2)
x

)
diag[L] .

(22)

For spherically invariant random processes (including
Gaussian), the term

(
m(4)

x − 3m(2,2)
x

)
for real-valued sig-

nals, or
(
m(4)

x − 2m(2,2)
x

)
for complex-valued signals, van-

ishes and thus the problem can be solved classically.
In our particular case, L = ATA ∈ R(M+P)×(M+P)

with tr[ATA]= M
∑P

i=0 |ai|2 and diag[AAT ]=∑P
i=0 |ai|2IM+P = 1

M tr[ATA] IM+P . There still remains
one problematic term, however: diag[ATA]. At this point,
the following is proposed:
Asymptotic equivalence: limM→∞ 1

M

∥∥∥ diag[ATA]−
tr[ATA]

M IM+P

∥∥∥
F

= 0 with an identity matrix IM+P of the
corresponding dimension. Note that the equivalence
would hold exact even for small dimensions if it had
the term diag[AAT ] instead of diag[ATA]. The asymp-
totic equivalence can be interpreted as replacing each
of the diagonal elements of ATA by their average value
1
M tr[ATA]. Consider the relative difference matrix

�ε =
(
tr[ATA]

M

)−1 [
diag[ATA]− tr[ATA]

M
IM+P

]

= M
tr[ATA]

diag[ATA]−IM+P (23)

of dimension (M + P) × (M + P). Its P diagonal terms
at the beginning and end of the diagonal remain unequal
to zero while those terms in the middle (whose range can
be substantially large if M > P) are zero. The first P ele-
ments on the diagonal are, for example, given by �ε,ii =
−∑P

m=i |am|2/∑P
m=0 |am|2; i = 1..P. If M 
 P, the next

elements are all zero and finally, the last P elements are
the first in backward notation. In case P > M/2, the zero
elements do not occur. We can conclude from the con-
struction of the diagonal elements �ε,ii that they are all in
the interval (−1, 0], or alternatively ‖�ε‖∞ ≤ 1, where we
have applied a max norm. Note that for white processes
a0 = 1 and ai = 0; i = 1, 2, . . . , thus ‖�ε‖∞ = 0.
It is worth comparing the long filter derivations by

Butterweck [24] that exclude border effects at the begin-
ning and ending of the matrices. Our approximation
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can therefore be interpreted as being along the same
lines of approximations, only originating from a different
approach. We however are able to quantify the error term
which will further be helpful. Note that in Section 4, this
approximation will be dropped entirely for large values
of M for different reasons. With this error term �ε for
real-valued driving processes,

E
[
xkxkTATAxkxkT

]
= 2m(2,2)

x ATA

+
(
m(2,2)

x +
(
m(4)

x −3m(2,2)
x

)
/M

)
tr[ATA] IM+P

+
(
m(4)

x − 3m(2,2)
x

)
tr[ATA]�ε

= 2m(2,2)
x ATA + γxm(2,2)

x tr[ATA] IM+P

+ (γx − 1)m(2,2)
x tr[ATA]�ε ,

(24)

is obtained with a newly introduced pdf shape correction
value

γx = 1 +
(

m(4)
x

m(2,2)
x

− 3
)

1
M

, (25)

a value that depends on the statistic of random process
xk . The term m(4)

x
m(2,2)

x
− 3 is similar to the excess kurtosis

E
[|x−mx|4

]
E[|x−mx|2]2

− 3 = m(4)
x(

m(2)
x

)2 − 3. Processes with negative

excess kurtosis are often referred to as sub-Gaussian pro-
cesses while a positive excess kurtosis leads to so-called
super-Gaussian processes. This (slightly abused) termi-
nology will be used correspondingly to discriminate the
term m(4)

x
m(2,2)

x
−3. Thus, sub-Gaussian processes in this sense

take on γx values smaller than one while super-Gaussian
processes have values larger than one. However, it is also
noted that our approximation error�ε only has an impact
when γx �= 1, which vanishes not only for Gaussian
pdfs but also with decreasing step-size μ (which comes
along naturally with growing filter order M). If compar-
ing the approximation term (γx−1)m(2,2)

x tr[ATA]�ε with
γxm(2,2)

x tr[ATA] IM+P , we recognize that the approxima-
tion is of order 1/M smaller, thus diminishes with higher
filter order.
Note further that the term in the LMS algorithm where

the asymptotic equivalence applies is proportional to μ2.
It thus has no impact for small step-sizes but certainly is
expected to have one on the stability bound. A first con-
clusion, therefore, is that the error on the parameter error
vector covariance matrix due to this approximation is of
order O(μ2). Note that the step-size being small is not
to be interpreted as small relative to the step-size at the
stability bound but small in absolute terms, i.e., μ � 1,
which is certainly given for long filters as μ ∼ 1/M. The
consequence that the applied approximation is negligible
for small step-sizes (large filter order M) as well as for

Gaussian-type processes is reflected in Lemma 2.2 by the
wording “essentially.” This means that in extreme cases
(large μ (small M) and far from Gaussian), a very small
proportion can indeed leak into the complementary space.
At the first update with K0 = I,

K1 = I − 2μAAT + 2μ2m(2,2)
x (AAT )2 (26)

+ μ2m(2,2)
x γxtr[ATA]AAT + μ2AATσ 2

v + O(μ2)

is obtained, a polynomial in AAT .
Now, the proof starts for general updates from Kk to

Kk+1.While the first terms that are linear inμ are straight-
forward, the quadratic part in μ needs further attention.

E
[
ukukTKkukukT

]
= AE

[
xkxkTATKkAxkxkT

]
AT

= m(2,2)
x A

(
2ATKkA + tr

[
AATKk

])
AT

+
(
m(4)

x − 3m(2,2)
x

)
Adiag

[
ATKkA

]
AT .

(27)

Here, the same asymptotic equivalence concept
as used above is imposed, i.e., diag

[
ATKkA

] ≈
tr
[
AATKk

]
IM+P/M resulting in

E
[
ukukTKkukukT

]
= 2m(2,2)

x AATKkAAT (28)

+ γxm(2,2)
x AAT tr

[
AATKk

]
+ O(μ2)

and eventually obtaining

Kk+1 = Kk − μAATKk − μKkAAT

+ μ2m(2,2)
x

(
2AATKkAAT+γxAAT tr

[
AATKk

])
+ μ2σ 2

v AAT + O(μ2).
(29)

This can now be split into two parts, one in its modal
space K‖ and in its orthogonal complement K⊥ as in (7)
and (8) above, and the following is obtained:

K‖
k+1 = K‖

k − μAATK‖
k − μK‖

kAA
T (30)

+ μ2m(2,2)
x

(
2AATK‖

kAA
T + γxAAT tr

[
AATK‖

k

])
+ μ2σ 2

v AAT + O(μ2)

= K‖
k − 2μAATK‖

k (31)

+ μ2m(2,2)
x

(
2[AAT ]2 K‖

k + γxAAT tr
[
AATK‖

k

])
+ μ2σ 2

v AAT + O(μ2),

K⊥
k+1 = K⊥

k − μAATK⊥
k − μK⊥

k AA
T

+ 2μ2m(2,2)
x AATK⊥

k AA
T + O(μ2). (32)

The consequence of this statement is that the parame-
ter error vector covariance matrix is forced by the driving
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process to remain only in the modal space of the latter.
This is not only true for its initial values but also at every
time instant k. The components of the orthogonal comple-
ment either remain there or die out. This statement will be
addressed later in greater detail in the context of step-size
bounds for stability. Note also that for complex-valued
processes, the only difference in (29) is the occurrence of
AAHKkAAH rather than 2AATKkAAT .

3 Learning and steady-state behavior
As we have already recognized, independent of its statis-
tics, the additional noise term also lies in the modal space
of the driving process and thus is entirely responsible for
the learning and steady-state behavior. Components of
the orthogonal complement thus die out as long as 0 <

μ < 1/
[
m(2,2)

x λmax
]
, λmax denoting the largest eigenvalue

of Ruu4. As we will see later, the step-size bound for the
component K‖ of the modal space is smaller and thus all
terms in the orthogonal complement will die out for the
step-size range of interest. The learning behavior is thus
typically derived based on the modal space, i.e., the terms
on the main diagonal of K||

k . To obtain this, we start with
(30) and transform themodal matrices by a unitary matrix
QK||

kQ
T = �Kk and QAATQT = QRuuQT = �u. We

can now apply a vectorization �u1 = λu,�Kk1 = λKk and
obtain the evolution in the modal space as

λKk+1 =
[
I − 2μ�u + μ2m(2,2)

x
(
�2

u
) + λuλ

T
u

]
︸ ︷︷ ︸

B

λKk .

(33)

The eigenvalues of matrix B define the learning speed, in
particular the largest eigenvalue λmax(B(μ)). We call

μopt = argmin
μ

λmax(B(μ)) (34)

the optimal step-size, causing fastest convergence.
Steady-state behavior: From I − B, steady-state values

such as misadjustment can be computed. As terms in the
orthogonal complement die out, K∞ = limk→∞ Kk is
expected to exist only in the modal space of Ruu. Com-
pute the steady-state solution for k → ∞ and, omitting
the approximation error terms O(μ2) in the following for
simplicity,

K∞ = K∞ − 2μAATK∞ + μ2σ 2
v AAT

+ μ2m(2,2)
x

(
2(AAT )2K∞ + γxAAT tr

[
AATK∞

])
(35)

is obtained, or equivalently[
2AAT−2μm(2,2)

x (AAT )2
]
K∞−μm(2,2)

x γxtr
[
AATK∞

]
AAT = μσ 2

v AAT . (36)

Since K∞ exists only in the modal space of AAT ,
diagonalizing both by the same unitary matrix leads to
QK∞QT = �K andQAATQT = �u.

2�u�K − μm(2,2)
x

(
2�2

u�K − γx�utr[�u�K ]
) = μσ 2

v �u.
(37)

Stacking the diagonal values of the matrices into vec-
tors: �u1 = λu,�K1 = λK , λu =[λ1, λ2, . . . , λM]T , the
following is obtained[

2�u − 2μm(2,2)
x �2

u − μm(2,2)
x γxλuλ

T
u

]
λK = μσ 2

v λu.

(38)

resulting in the well-known form [11] [Eq. (3.15)]:

λK = μσ 2
v

[
2�u − 2μm(2,2)

x �2
u − μm(2,2)

x γxλuλ
T
u

]−1
λu

= β∞
[
2�u − 2μm(2,2)

x �2
u

]−1
λu, (39)

with the abbreviation

β∞ = 2μσ 2
v

2 − μm(2,2)
x γx

∑
i

λi
1−μm(2,2)

x λi

, (40)

obtained by employing the matrix inversion lemma
[13]:

[
P(�u) + λuλTu

]−1
λu = 1/

[
1 + λTu P−1(�u)λu

]
P−1(�u)λu. The final steady-state system mismatch is
thus given by

MS = tr[K∞] = ‖λK‖1 = 1TλK (41)

=
μσ 2

v
∑

i
1

1−μm(2,2)
x λi

2 − μm(2,2)
x γx

∑
i

λi
1−μm(2,2)

x λi

(42)

and the misadjustment

M= tr[K∞Ruu]
σ 2
v

= λTu λK
σ 2
v

=
μ
∑

i
λi

1−μm(2,2)
x λi

2 − μm(2,2)
x γx

∑
i

λi
1−μm(2,2)

x λi

,

(43)

the only difference with classic solutions for SIRPs [11]
being the term γx that contains influences of the fourth-
order momentsm(4)

x andm(2,2)
x as well asm(2,2)

x explicitly.
For complex-valued driving processes, the final steady-

state system mismatch is given correspondingly by

MS =
μσ 2

v
∑

i
1

2−μm(2,2)
x λi

1 − μm(2,2)
x γx

∑
i

λi
2−μm(2,2)

x λi

(44)

and the misadjustment

M =
μ
∑

i
λi

2−μm(2,2)
x λi

1 − μm(2,2)
x γx

∑
i

λi
2−μm(2,2)

x λi

. (45)
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Stability bounds: The step-size bound can now be
derived either from (42) or by means of Gershgorin’s cir-
cle theorem from the largest eigenvalue of matrix B in
(33). The result is identical whichever way is used and
conservative for real-valued xk :

0 < μ ≤ 2
m(2,2)

x (2λmax + γxtr[Ruu] )
. (46)

Depending on the statistic of the driving process, a more
or less conservative bound is obtained. It is worth distin-
guishing sub- and super Gaussian cases. For sub-Gaussian
distributions, γx < 1, the bound grows while for super-
Gaussian distributions, γx > 1, the bound decreases.
The step-size bound thus varies with the distribution type
by approximately tr[Ruu] in the bound (46). For SIRPs
(and thus Gaussian) distributions, as well as for very long
filters, γx = 1 and thus

0 < μ ≤ 2
3m(2,2)

x tr[Ruu]
≤ 2

m(2,2)
x (2λmax + tr[Ruu] )

.

(47)

This result is identical to (3) for Gaussian processes as
m(2,2)

x = 1. For complex-valued processes xk , the bounds
are obtained in a very similar way, simply replacing the
term 2λmax with λmax.
For a real-valued statistically white driving process, an

exact bound without Gershgorin’s theorem can be com-
puted, leading to

0 < μwhite ≤ 2
m(2,2)

x tr[Ruu] (γx + 2/M)
, (48)

thus also a significantly larger bound than (3), but still
dependent on the distribution by the value of γx.
Such a result, in particular the lower 2/3 bound in (47)

and (3), originating from the correlation of the random
process, is conservative. Note that the largest eigenvalue
λmax is related to the maximal magnitude of the corre-
lation filter, i.e., λmax ≥ max	 |A(ej	)|2 with equality
approaching for M → ∞. Thus, for very long filters, the
energy (tr[Ruu] ) will not be entirely concentrated around
its peak magnitude, unless we intended to build an oscil-
lator. With this argument, the term λmax can be omitted
for the long filter (see also [29] Eq. (10.4.40)), and a much
larger bound is obtained:

0 < μlong ≤ 2
m(2,2)

x tr[Ruu]
. (49)

We will return to the discussion of stability bounds in
the context of simulation results in Section 5.

4 Very long adaptive filters
An analysis for very long filter ordersM has been consid-
ered by Butterweck [18, 23–25], however, in the context
of avoiding the IA. The previously introduced term γx =

(
1 +

(
m(4)

x /m(2,2)
x − 3

)
/M

)
already hints towards γx = 1

for very large filter orders M. But note that the deriva-
tion in the previous sections required a further asymptotic
equivalence result that can be traded against a much sim-
pler asymptotic equivalence result for the long filter case.
This will provide us with a second opinion at least for the
special case of very long filters that should be in agreement
with our findings so far.
The main reason for eliminating our first asymptotic

equivalence lies in the fact that for very long linear fil-
ters, it is well known that Toeplitz matrices A behave in
an asymptotically equivalent manner to circulant matrices
[31], say C. Rather than AAT , now, CCT = Ruu and the
diagonalization is achieved by DFT matrices F ∈ ICM×M:
C = FH�

1/2
u F and thus FH�uF = Ruu.

Theorem 4.1. Assuming driving process uk = C[xk] to
originate from a linearly filtered white random process xk
according to (9)–(17) by cyclic filtering, i.e., uk = Cxk with
circulant matrix C ∈ IRM×M. Then, any initial parameter
error covariance matrixK0 evolves only in the modal space
of Ruu, now defined by DFT matrices F ∈ ICM×M.

Proof. Following the fact that circulant matrices can be
diagonalized by DFT matrices, say F, reconsider the term
E
[
ukukTKkukukT

]
, remembering that a process linearly

filtered by a unitary filter F for very long filters preserves
its properties (see Appendix 2 for proof) at the output of
the filter. It is found that

E
[
ukukTKkukukT

]
= CE

[
xkxkTCTKkCxkxkT

]
CT

= FH�1/2
u FE

[
xkxkTFH�1/2

u FKkFH�1/2
u FxkxkT

]
FH�1/2

u F

= FH�1/2
u E

[
fkfkH(�1/2

u FKkFH�1/2
u )fkfkH

]
�1/2

u F
= FH�1/2

u E
[
fkfkH

(
�1/2

u �Kk�
1/2
u

)
fkfkH

]
�1/2

u F. (50)

In the last line, we assumed thatKk is also circulant. But
similar to the considerations in Section 2, we could start
from an initial parameter error covariance matrix K0 that
is not circulant, e.g., K0 = wwT . In this case, K0 can be
separated in one part that lies in the modal space, defined
by F, and one part from its complement space. As the part
in the complement space is no longer excited, it will follow
the evolution as described in (32) and dies out.
Note that the filter is now being formulated in terms of

a complex-valued driving process fk = Fxk even though
xk ∈ IRM×1. Noticing that the center term of the last
equation is of diagonal form, and simplifying the terms to

E
[
fkfkHLfkfkH

] = m(2,2)
f L + m(2,2)

f tr[L] I +
(
m(4)

f −2m(2,2)
f

)
L,

= m(2,2)
f tr[L] I + m(2,2)

f L, (51)
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with the particular solution L = �
1/2
u �Kk�

1/2
u and the

property tr[L]= tr
[
�

1/2
u �Kk�

1/2
u

]
= tr[�u�Kk ]. Note

that m(4)
f = 2m(2,2)

f as shown in Appendix 2, mf denoting
the corresponding moments of the driving process fk . The
parameter error vector covariance matrix in transformed
form �Kk+1 = FKk+1FH now evolves as

�Kk+1 = �Kk − 2μ�u�Kk + μ2σ 2
v �u (52)

+ μ2m(2,2)
f

(
tr[�u�Kk ]�u + �2

u�Kk

)
.

This shows that for very large filter orders, our previ-
ous considerations hold exactly and the parameter error
vector covariance matrix Kk indeed remains in the modal
space of the driving process uk defined by the DFT matri-
ces F ∈ ICM×M.

Steady-state behavior: The steady-state values are
obtained for k → ∞, i.e.,

�K = �K − 2μ�u�K + μ2σ 2
v �u

+ μ2m(2,2)
f

(
tr[�u�K]�u + �2

u�K
)

(53)

2�u�K = μm(2,2)
f

(
tr[�u�K]�u + �2

u�K
) + μσ 2

v �u.
(54)

Reshaping the diagonal terms into vectors �K1 = λK
leads to

2�uλK = μm(2,2)
f

[
λuλ

T
u λK + �2

uλK
]

+ μσ 2
v λu. (55)

and finally by applying the matrix inversion lemma

λK = β∞
[
2�u − μm(2,2)

f �2
u

]−1
λu. (56)

with

β∞ = μσ 2
v

1 − μm(2,2)
f

∑
i

λi
2−μm(2,2)

f λi

. (57)

The final steady-state system mismatch is thus given by

MS = tr[K∞]= 1TλK =
μσ 2

v
∑

i
1

2−μm(2,2)
f λi

1 − μm(2,2)
f

∑
i

λi
2−μm(2,2)

f λi

,

(58)

and the misadjustment reads

M = tr[K∞Ruu]
σ 2
v

= λuTλK
σ 2
v

=
μ
∑

i
λi

2−μm(2,2)
f λi

1 − μm(2,2)
f

∑
i

λi
2−μm(2,2)

f λi

.

(59)

Note that this result for the long filter depends only on
the joint moment m(2,2)

f of the DFT of the driving pro-
cess. As shown in the Appendix, for most distributions,
this moment takes on the same value. This explains why

the long LMS filter behaves more or less identically, inde-
pendently of the driving process, as long as the correlation
is the same. The interested readermay like to compare this
with an older publication by Gardner [30] in which the
very similar fourth-order moment m(4)

x was emphasized
for purely white driving processes.
Stability bounds: The last equation in turn results in the

conservative step-size bound

0 < μ ≤ 1
m(2,2)

f tr[Ruu]
≤ 2

m(2,2)
f (λmax + tr[Ruu] )

.

(60)

The step-size bound for the very long filter appears con-
siderably larger (by one third when compared to (47)) than
that for short lengths. Following the same argument for
long filters as at the end of the previous section, we can
argue that λmax is small compared to tr[Ruu] and obtain
the even larger bound

0 < μ ≤ 2
m(2,2)

f tr[Ruu]
, (61)

which is identical to (49) as for long filtersm(2,2)
x = m(2,2)

f .
An alternative bound is also possible now. As the eigen-

values λi are simply originating from the circulant matri-
ces C that linearly filter the driving process, they are
obtained by a DFT on the filter matrices CCT , or equiv-
alently correspond to the powers of the spectrum of uk
at equidistant frequencies 2π/M, allowing an alternative
bound for λmax ≥ max	 |C(ej	)|2, both being identical for
largeM. For the long filter, we thus find

0 < μ ≤ 2
m(2,2)

f Mmax	 |C(ej	)|2
= 2

m(2,2)
f Mλmax

≤ 2
m(2,2)

f tr[Ruu]
. (62)

This more conservative bound corresponds to the spec-
tral variations in the driving process while the former
bound including the trace term focuses more on the gain
of the correlation filter. A similar (even more conserva-
tive) bound based on the power spectrum of the driving
process has already been proposed by Butterweck [24] and
reads in our notation

0 < μButterweck ≤ 1
m(2)

x Mmax	 |C(ej	)|2
. (63)

The bound was derived for the long filter without
IA but under Gaussian processes for which m(2,2)

f =
m(2)

x , following a wave-theoretical argument. As for long
filters max	 |C(ej	)|2 = λmax(CCH) = ‖CCH‖2,ind,
Butterweck’s result appears conservative. It is nevertheless
reassuring to learn that classic matrix approaches lead to
very similar results even though the Butterweck’s analysis
is based on Gaussian processes and thus the fourth-order
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moment m(2,2)
f is not accounted for. In particular, this

plays a crucial role for non-Gaussian spherically invariant
processes.

5 Validation by simulation
In this section, we validate our theoretical findings in
terms of convergence bounds and steady-state behavior
of the LMS algorithm by Monte Carlo (MC) simulations.
Table 2 below lists six typical zero-mean distributions and
corresponding second- and fourth-order moments. The
corresponding value before and after the DFT (top and
bottom, respectively) is shown for each process. While
the first line provides mx terms, the second exhibits the
corresponding mf terms of the complex-valued process
after the DFT, according to the relations described in
Appendix 2. Note that the valuesmf are provided for large
values of the filter order M so that γx = 1 (see also
(76) in the Appendix). The first two are classic Gaussian
distributions in either IR or IC. The next three are IID,
whether bipolar, uniform, or a product of two indepen-
dent Gaussian processes (Gauss2). Finally, an SIRP origi-
nating from a mixture of two Gaussian processes is pre-
sented.While the first two IID processes are sub-Gaussian
(γx < 1), the last IID process as well as the SIRP are
super-Gaussian (γx > 1).
All MC simulations are run on linear combiners and

thus satisfy the driving process assumptions A1a and
A1b. The M taps of the system w to identify were
selected randomly from N (0, 1), a fresh selection being
made for each MC run. Simulations were run with fil-
ter length M = {10, 100, 400} and step-sizes μ =
{1, 2, 5, 9, 12, 15, 18, 21, 24, 27, 29}×1/[ 15M], thus ranging
up to the largest possible stability bound 2/M. The driv-
ing process had unit variance (m(2)

x = 1) and the additive
noise was Gaussian with variance 10−4.

Table 2 Second- and fourth-order moments of various
(decorrelated) distributions for large filter orderM

Distribution m(2)
x m(2,2)

x m(4)
x

Gauss ∈ IR 1 1 3

DFT of Gauss 1 1 2

Gauss ∈ IC 1 1 2

DFT of Gauss 1 1 2

IID bipolar ∈IR 1 1 1

DFT of IID bipolar 1 1 2

IID uniform ∈IR 1 1 1.8

DFT of IID uniform 1 1 2

IID Gauss2 ∈IR 1 1 9

DFT of Gauss2 1 1 2

K0 SIRP ∈IR 1 3 9

DFT of K0 SIRP 1 3 6

In a first step, we analyzed the number of MC runs
required for averaging in order to obtain consistent
results. Here, the findings of [32] are a great help as they
propose to analyze the mismatch fluctuations, defined as

ρk =
√
var

{||w̃||2k
}

E||w̃||2k
, (64)

a value that increases, when μ approaches the stabil-
ity bound. Based on experiments with relatively large
step-sizes, we decided that 1 000 MC runs provide suf-
ficiently good results. For long filters, the fluctuations
become considerably smaller, and 100 MC runs appear
sufficient. We thus applied {1 000, 1 000, 100} averages for
M = {10, 100, 400}, respectively, to keep simulation times
manageable. The observation M̄S for the steady-state sys-
tem mismatch is obtained by ensemble averaging over the
number ofMC runs and finally averaging the last 10 % val-
ues over time. As the numbers thus obtained are typically
very close to the predicted values, the relative error in sys-
tem mismatch (MS − M̄S)/MS is computed and plotted as
a percentage.
Experiment 1: In the first set of experiments, the white

processes with properties in Table 2 were the driving
source. The outcome of such experiments provides a vali-
dation to the predicted steady-state behavior. For the long
filter, (58) simplifies to

MS = μM
2 − μMm(2,2)

f
, (65)

while (42) for the arbitrary LMS algorithm simplifies to
the same expression with m(2,2)

x replacing m(2,2)
f . This is

in agreement with (76) (see Appendix 2) as for large fil-
ter orderM; both terms become identical. Such simplified
formula is often applied in practice. As we expect differ-
ences only if the step-size is large, the precision of the
formula is investigated in this experiment.
Figure 1 presents the relative errors 1 − M̄S

MS
obtained, in

percentage terms when applying (65).
The results are as follows:

1. In all distributions, the errors obtained for small
step-sizes are very small, confirming our theoretical
predictions.

2. The larger the filter length M, the smaller the errors.
This is expected as formula (65) was not only derived
for long filters but also for small step-sizes, which are
unavoidable for large filter lengths.

3. Only in the case ofM = 10, for which a significant
γx �= 1 is expected, the errors are moderate to large
compared to the other cases.

4. As expected, the errors are higher for processes that
are the furthest from Gaussian (see, for example,
Gauss2) and of large μ (small filter length M). The
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Fig. 1 Relative system mismatch (MS − M̄S)/MS in percent based on simplified formula for white driving processes with different filter lengths
(M = {10, 100, 400})

results in the figure clearly show the impact of our
asymptotic equivalence assumption, as the mismatch
decreases with smaller step-sizes (which is a
consequence of higher filter order M).

5. Even for the SIRPs, our prediction is excellent. Note,
however, that this depends very much on how an
SIRP is modeled. A K0 SIRP is generated by a product
process of a Gaussian process with a random variable
that is itself Gaussian distributed. If this RV, serving
as the standard deviation of the process and defining
its variance, is kept constant for each simulation run,
the ensemble average will not converge. As the RV
can take on arbitrarily large values (high energy
driving process), the adaptation process can become
extremely slow for some runs due to its fixed
step-size. But even worse, as there is a finite
probability that the variance of this process is below
any bound, a fixed step-size is then too large for these
runs to become stable. Such SIRP processes are only
possible in the context of the normalized LMS
(NLMS) algorithm. The situation is considerably
better if the RV that defines the variance of the
random process is itself generated by a random
process, producing a slight change at every time
instant so as to slowly modify the signal’s variance

over time, as is commonly done to resemble speech
signals with their slowly changing variance. Note that
for SIRPs,m(2,2)

x = 3, restricting the step-size range
considerably (the stability bound is roughly at
μlimM = 2/3).

The step-size range in Fig. 1 is limited to μ =
{1, . . . , 29} × 1/[ 15M]. The problem with higher step-size
values is that the fluctuations become larger and thus sig-
nificantly longer averaging is required (see also [32] for
explanations of this effect), this not being feasible. In par-
ticular for short filters (M = 10), the convergence bounds
are alternated by γx and thus the classical bound (3) is
still too high. This can be observed very clearly for the
IID Gauss2 process, which leads to extremely high errors,
when operating in close vicinity to the stability bound.
Experiment 2: We repeat the previous experiment, but

we compare the results with themuchmore precise bound
derived from (42) for a white driving process (real-valued):

MS = μMσ 2
v

2 − μm(2,2)
x (2 + γxM)

= μMσ 2
v

2 − μm(2,2)
x

(
M − 1 + m(4)

x
m(2,2)

x

) . (66)
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In case the process is complex-valued, the bound (44) sim-
plifies to a similar expression as (66); just the term M − 1
in the denominator is to be replaced byM − 2.
Figure 2 depicts the results. The major difference now

is that the precision becomes much higher even for those
processes that are far away from Gaussian (for exam-
ple Gauss2). No matter what distribution or length of
the filter, the error obtained remains below roughly 1 %
as long as the step-size does not reach the stability
bound.
We compare now our observations for the predicted sta-

bility bound (48), which reads in our case for real-valued
processes:

0 < μ ≤ 2

m(2,2)
x

(
M − 1 + m(4)

x
m(2,2)

x

) . (67)

We recognize that for large M, we find μlimM =
2/m(2,2)

x , thus 2 in general and 2/3 for SIRPs. For small val-
ues ofM, the situation is different and we obtain μlimM =
{10/6 = 1.66, 20/11 = 1.81, 2, 20/10.8 = 1.85, 10/9 =
1.11, 5/9 = 0.55} for our six processes, an excellent
agreement when compared to the left hand side of
Fig. 2.
Experiment 3: In a last set of experiments, the previous

simulation runs from Experiments 1 and 2 were repeated

for correlated driving processes. We applied a linear filter
with impulse response

ak = 0.6 × 0.8k ; k = 0, 1, . . . (68)

on the six driving processes of the previous experi-
ment. The so-obtained AR(1) process with unit gain
exhibits a relatively high correlation as it is com-
mon in speech processes. If as in this case, the filter
A(q−1) = 0.6

1−0.8q−1 becomes very long (P → ∞), the
largest eigenvalue becomes small compared to tr[Ruu].
Thus, the convergence bound for μ becomes practically
2/

(
m(2,2)

f tr[Ruu]
)
, which agrees well with our simula-

tion results. Note that such bound can be much larger
as well as much smaller than the classic bound in (3),
depending on the value of m(2,2)

f . In Fig. 3, we compare
our simulation results with the predicted values from
(42) and (44), for real- and complex-valued processes,
respectively. As before, we find excellent agreement in
the order of 1 % error. For a small filter length M =
10, the largest eigenvalue becomes λmax = 5.5 and the
predicted stability bounds are reduced from μlimM =
{1.66, 1.81, 2, 1.85, 1.11, 0.55} of the white driving pro-
cesses to μlimM = {0.95, 1.29, 1.05, 1.01, 0.74, 0.31} which
is well reflected in the simulation results. For larger filters,
the stability bound moves towards μlimM → 2 (2/3 for

Fig. 2 Relative system mismatch (MS − M̄S)/MS in percent based on precise formula for white driving processes with different filter lengths
(M = {10, 100, 400})
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Fig. 3 Relative system mismatch (MS − M̄S)/MS in percent of correlated AR(1) driving processes

SIRP) for all processes, independent of the correlation. For
M = 400, the largest eigenvalue has only slightly increased
to λmax = 8.9 and thus has little influence on the stability
bound.
We finally are interested in the fluctuations of the vari-

ous runs (see [32]), defined in (64), which are evaluated at
steady state now:

ρ = lim
k→∞

ρk = lim
k→∞

√
var

{‖w̃||2k
}

E‖w̃||2k
. (69)

As expected, the fluctuations, depicted in Fig. 4,
increase considerably only for step-sizes close to the
stability bound. For the very long filter, such bound
was correctly predicted in (61), independent of pdf and
correlation.

6 Conclusions
In this contribution, a stochastic analysis of second-order
moments in terms of the parameter error covariance
matrix has been shown for the LMS algorithm under
the large class of linearly filtered random driving pro-
cesses. While results were previously only known for a
small number of statistics, this contribution deals with
the large class of linearly filtered white processes with
arbitrary statistics. Particularly interesting is the fact that

the parameter error covariance matrix is essentially being
forced to remain in themodal space of the driving process,
defined by its autocorrelation matrix Ruu. Such a prop-
erty was shown to be independent of the correlation and
the pdf of the driving process. Next to the independence
assumption, an asymptotic equivalence is required for this
derivation, producing minor errors only for large step-size
(short filters) and pdfs that are far from Gaussian. The
error term on the other hand also quantifies and allows to
accurately predict the filter behavior even for small filters.
Alternatively, for very long filters, an even simpler asymp-
totic equivalence guarantees exact results. The result for
the very long filter is particularly interesting as it shows a
more relaxed step-size bound compared to the short fil-
ter. Moreover, an alternative step-size bound that includes
the maximum gain of the spectral filter rather than the
trace of the autocorrelationmatrix is provided, this poten-
tially being a more practical solution. It is shown that the
joint moment m(2,2)

x of the decorrelated process is more
relevant than the termm(2)

x for the steady-state prediction
even though it has no impact for most typical processes.
Furthermore, a correction factor γx occurs in the step-size
bound, describing the influence of having either short fil-
ters or non-Gaussian driving processes. These results may
appear less practical than previous ones since more details
regarding the statistics of the driving process now need to



Rupp EURASIP Journal on Advances in Signal Processing  (2016) 2016:18 Page 14 of 16

Fig. 4 Fluctuations ρ as a function of μM for three different filter lengths (M = {10, 100, 400}) of correlated AR(1) driving processes

be known, but note that also for classic results, the second-
order moments, i.e., the autocorrelation matrix, needed
to be known a priori (or estimated). Bringing in more
parameters is the price of having a more general form of
theory.

Endnotes
1Naturally, the basic LMS algorithm requires

modification to apply it successfully in various
applications; we simply refer here to the entire family
with similar algorithmic structure whose core elements
are the LMS algorithm. Worth mentioning is in any case
the normalized version NLMS of the LMS algorithm that
ensures independence of the input’s signal power. Such
small modification alone, however, already complicates
the analysis substantially [11, 33]. Even for very long
filters, non-Gaussian excitation such as speech signals
can lead to severe problems [34] if no normalization is
applied.

2The terms white and decorrelated will henceforth be
used interchangeably.

3Note that the requirement of having statistically
independent regression vectors is actually far too strong
as we only need to ensure that E

[
ukukT (w − wk)

(w − wk)
TukukT

] = E
[
ukukTKkukukT

]
. One could also

call it independence approximation and just require this
property.

4The procedure for obtaining such result is the same as
explained in the following paragraph for K‖, only much
simpler, as the trace terms do not appear.

Appendix
Appendix 1: decomposition of symmetric matrices
A problem in the derivation of the LMS behavior is that
the covariance matrices as they appear for the param-
eter error vector Kk = E

[
(w − wk)(w − wk)

T ] are in
general not in the modal space of the driving pro-
cess uk = [

uk ,uk−1, . . . ,uk−M+1
]T with autocorrelation

matrix Ruu = E
[
ukukT

] = Q�uQT thus

Kk �= b0I + b1Ruu + b2R2
uu + . . . (70)

Since the derivation of the LMS algorithm only requires
that the trace of such matrices be known, it is sufficient
to analyze only the algorithm’s impact on the parameter
error vector with respect to Ruu. It is therefore proposed
to decompose a given matrix K into a first part, i.e., in
the modal space of the autocorrelation matrix Ruu of the
driving process uk and a second part in its orthogonal
complement space, i.e.,

K = b0I+b1Ruu+. . .+bM−1RM−1
uu +K⊥ = P(Ruu)+K⊥.

(71)
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Here, P(Ruu) denotes a polynomial in Ruu. Note that due
to the Cayley-Hamilton theorem, an exponent larger than
M − 1, withM denoting the system order, is not required
[28].

Lemma 1. Any symmetric matrix K can be decomposed
into a part from the subspace of a given modal spaceRu =
span

{
I,Ruu,R2

uu, . . . ,RM−1
uu

}
and its orthogonal comple-

ment subspaceR⊥
u for which tr

[
K⊥Rl

uu
] = 0 for any value

of l = 0, 1, 2, . . ..

Proof. The optimal set of coefficients for approximating
the symmetric matrix K is found by

min
{b0,b1,..,bM−1}

tr
[
(K − P(Ruu))(K − P(Ruu))

T
]
, (72)

which is a simple quadratic problem with linear solution:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M tr[Ruu] . . . tr
[
RM−1
uu

]
tr[Ruu] tr

[
R2
uu
]

. . . tr
[
RM
uu
]

tr[R2
uu] tr

[
R3
uu
]

. . . tr
[
RM+1
uu

]
...

tr
[
RM−1
uu

]
tr
[
RM
uu
]

. . . tr
[
R2M−2
uu

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b0
b1
b2
...
bM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tr[K]
tr[KRuu]
tr
[
KR2

uu
]

...
tr
[
KRM−1

uu
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(73)

The trace of R0
uu = I is simplyM, the system order. Due

to the orthogonality property of the least squares solution,
it is found that

tr
[
K⊥Rl

uu

]
= 0, (74)

for arbitrary values of l = 0, 1, 2, . . ..

As a further consequence terms of the form
tr
[
Rm
uuK⊥Rl

uu
] = 0, and thus Rm

uuK⊥Rl
uu ∈ R⊥

u , and any
polynomial P(Ruu) ∈ Ru. Note that it is straightforward
to extend the results to Hermitian matrices that occur for
complex-valued processes.

Appendix 2: relation to higher order moments
Here, the second- and fourth-order moments are consid-
ered once a random process is Fourier-transformed by a
unitary matrix F. Assume a random process xk with the
properties (9)–(17). Take M consecutive values of such
process, build a vector xk , and convert it to its Fourier
transform by fk = Fxk .
It is straightforward to show that the process fk is zero

mean if xk is zero mean and, due to the unitary property
of F, it is found that m(2)

f = E[|fk|2]= 1 as long as m(2)
x =

E[|xk|2]= 1.
For the fourth-order moments, the expression

E
[
xkxkTghHxkxkT

]
is considered, where g and h are

simply two different rows of F, thus gHh = gTh = 0 and
gHg = hHh = 1. By L = ghH in (21), it is found that

E
[
xkxkTghHxkxkT

]
=m(2,2)

x

(
ghH+h∗gT

)
+m(2,2)

x tr[ ghH ]I

+
(
m(4)

x − 3m(2,2)
x

)
diag[ ghH ] .

(75)

From here, the following can be computed:

m(2,2)
f = E

[
gHxkxkTghHxkxkTh

]
= m(2,2)

x +
(
m(4)

x − 3m(2,2)
x

)∑
|gi|2|hi|2

= m(2,2)
x +

(
m(4)

x − 3m(2,2)
x

) 1
M

= m(2,2)
x

(
1 +

(
m(4)

x

m(2,2)
x

− 3
)

1
M

)
= m(2,2)

x γx.

(76)

The latter relation is simply due to the fact that each
element of the DFT matrix F is a rotation scaled by
1/

√
M. For M → ∞, it is concluded that m(2,2)

f = m(2,2)
x .

The result would not change if xk ∈ IC. It is in fact this
equivalence that convinced us to use m(2,2) rather than
m(4) in our formulations. Note also that the term γx from
(25) shows up here again. It is thus the correction term for
the joint fourth-order moment that only has an impact on
small filter dimensions.

Similarly, for the fourth-order moment, select g = h
and obtain m(4)

f ≤ 2m(2,2)
x +

(
m(4)

x − 3m(2,2)
x

)
1
M and

again for large M, m(4)
f = 2m(2,2)

x remains, also indepen-
dently of whether xk is from IR or IC. Finally, E[ fkflfmfm]≤(
m(4)

x − 3m(2,2)
x

)
1
M once k �= l �= m and thus for large

M: E[ fkflfmfm]→ 0. The properties of the driving process
are thus preserved under DFT for very long filters. Fur-
thermore, regardless of the input process, after DFT of
the long sequence, it is always found that m(4)

f = 2m(2,2)
f ,

which significantly simplifies subsequent analysis.
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