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Abstract For an algebra A belonging to a quasivariety K,
the quotientA/� need not belong toK for every� ∈ Con A.
The natural question arises for which � ∈ Con A, A/� ∈
K. We consider algebrasA = (A,→, 1) of type (2, 0)where
a partial order relation is determined by the operations →
and 1. Within these, we characterize congruences on A for
which A/� belongs to the same quasivariety as A. In several
particular cases, these congruences are determined by the
property that every class is a convex subset of A.

Keywords Convex class · Convex congruence · Algebra
with induced order · BCK-algebra · BCI-algebra

It is well known that the class of BCK- resp. BCI-algebras
forms a quasivariety which is not a variety, see Arai et al.
(1966), Chajda and Kühr (2007), Imai and Iséki (1966), Iséki
(1966) and Wroński (1983) for details. That BCK-algebras
form a proper quasivariety was first shown in Wroński
(1983). The reason is that although all but one axioms
of BCK- resp. BCI-algebras are identities, the remaining
one is only a quasiidentity. Hence, having such an algebra
A = (A,→, 1) from a quasivariety K and a congruence �
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on A, the quotient algebra A/� need not belong to K again.
On every BCK- resp. BCI-algebra A = (A,→, 1) one can
define a partial order relation ≤ by x ≤ y if x → y = 1
(x, y ∈ A), see Imai and Iséki (1966) and Iséki (1966). It
was proved in Traczyk and Zarȩbski (1985) that for a BCK-
algebra A the algebra A/� is a BCK-algebra again if and
only if � is a so-called convex congruence, i.e., every class
of � is a convex subset of the poset (A,≤).

Our observation is that similar results hold for quasivari-
etiesK properly including the class of BCK-algebras. It turns
out that in general convexity of � need not be sufficient for
A/� ∈ K, but it is necessary in each case. We present a
detailed inspection of conditions under which an algebra of
the same similarity type as BCK- resp. BCI-algebras has a
quotient belonging to the same quasivariety. These condi-
tions can be formulated as identities and quasiidentities, but
the corresponding quasivariety will not be explicitly men-
tioned.

Throughout the whole paper, we agree on the following
conventions:

• The symbol A = (A,→, 1) denotes a fixed algebra of
type (2, 0).

• The symbol � denotes a fixed congruence on A.
• The symbol ≤ denotes the binary relation on A defined
by

x ≤ y if and only if x → y = 1. (1)

• The symbol ≤′ denotes the binary relation on A/�

defined by

[x]� ≤′ [y]� if and only if [x]� → [y]� = [1]�. (2)
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Further, we will consider the following conditions:

If x, y ∈ A and [x]� ≤′ [y]�, then there exists some z

∈ [x]� with z ≤ y. (3)

If x, y ∈ A and [x]� ≤′ [y]�, then there exists some z

∈ [y]� with x ≤ z. (4)

In what follows we are interested in algebras A = (A,→, 1)
for which the relation defined by (1) is a partial order on A.
Moreover, the following identities (5) – (8)will be considered
in the paper:

1 → x ≈ x (5)

x → ((x → y) → y) ≈ 1 (6)

(x → y) → ((y → z) → (x → z)) ≈ 1 (7)

(y → z) → ((x → y) → (x → z)) ≈ 1 (8)

First, we show some relations between the conditions just
defined:

Lemma 1 For the conditions (4)–(8) the following relation-
ships hold:

(i) For any algebra A = (A,→, 1) of type (2, 0) and any
congruence � on it, (5) and (6) imply (4).

(ii) (4) does not imply (6).
(iii) (5) and (6) imply neither (7) nor (8).

Proof (i) If a, b ∈ A and [a]� ≤′ [b]� then

(a → b) → b ∈ [(a → b) → b]�
= ([a]� → [b]�) → [b]�
= [1]� → [b]�
= [1 → b]� = [b]�

and a ≤ (a → b) → b.
(ii) If A = ({a, b, c, 1},→, 1) with

→ a b c 1
a 1 c c 1
b a 1 c 1
c a b 1 1
1 a b c 1

and � := {a}2 ∪ {b, c, 1}2, then � ∈ Con A, (A,≤)

and (A/�,≤′) are posets with the Hasse diagrams

� � � �

� �

�
�

�
�

�
�

�
�

a b c {a}

1 {b, c, 1}

and (4) holds, but (6) does not hold since

a → ((a → b) → b) = a → (c → b)

= a → b = c �= 1.

(iii) If A = ({a, b, c, 1},→, 1) with

→ a b c 1
a 1 b a 1
b b 1 c 1
c a b 1 1
1 a b c 1

then A satisfies (5) and (6), but not (7) since

(a → b) → ((b → c) → (a → c))

= b → (c → a) = b → a = b �= 1

nor (8) since

(c → a) → ((b → c) → (b → a))

= a → (c → b) = a → b = b �= 1.

	

An interesting example of an algebra A = (A,→, 1) for

which the relation defined by (1) is a partial order is the
(2, 0)-reduct of an integral commutative residuated poset.
For the reader’s convenience, we repeat the definition of inte-
gral commutative residuated posets.An integral commutative
residuated poset is an ordered quintupleP = (A,≤, ·,→, 1)
such that (A,≤) is a poset, (A, ·,→, 1) is an algebra of type
(2, 2, 0) and the following holds for all x, y, z ∈ A:

• (A, ·, 1) is a commutative groupoid with neutral element
1,

• x ≤ 1,
• xy ≤ z if and only if x ≤ y → z.

The following lemma is well known:

Lemma 2 If P = (A,≤, ·,→, 1) is an integral commutative
residuated poset and a, b ∈ A then the following hold:

(i) a ≤ b if and only if a → b = 1.
(ii) a ≤ b if and only if a ≤ 1 → b.
(iii) P satisfies (5) and (6).
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Proof (i) The following are equivalent:

a = 1a ≤ b, 1 ≤ a → b, a → b = 1.

(ii) The following are equivalent:

a ≤ b, a1 ≤ b, a ≤ 1 → b.

(iii) P satisfies (5) since 1 → b ≤ b (take a = 1 → b in
(ii)) and b ≤ 1 → b (take a = b in (ii)) and it satisfies
(6) since every one of the following assertions implies
the next one:

x → y ≤ x → y, (x → y)x ≤ y, x(x → y)

≤ y, x ≤ (x → y) → y, (6).

	

Remark 3 Lemma 2 justifies the notation ≤ in integral com-
mutative residuated posets since ≤ is connected with →
exactly as in (1).

Recall that A is called a BCK-algebra if the relation
defined by (1) is a partial order on A with greatest element 1
and (5) – (7) are satisfied. Since x ≤ 1 we have x → 1 ≈ 1
according to (1) and, moreover,

x → (y → x) ≈ 1 → (x → (y → x))

≈ (y → 1) → ((1 → x) → (y → x)) ≈ 1.

according to (5) and (7). Usually, A is called a BCK-algebra
if it satisfies (6), (7) and (9) – (11) (cf. Chajda et al. (2007)):

x → x ≈ 1 (9)

x → 1 ≈ 1 (10)

x → y = y → x = 1 ⇒ x = y (11)

Now the equivalence of both axiom systems follows easily
by using the results in Chajda et al. (2007). The algebra A is
called a BCI-algebra if the relation defined by (1) is a partial
order on A and (5), (6) and (8) are satisfied.

The following example shows that there exist integral
commutative residuated posets (P,≤, ·,→, 1) such that
(P,→, 1) is neither a BCK- nor a BCI-algebra.

Example 4 If A = {a, b, c, 1}, (A,≤) denotes the chain a <

b < c < 1 and binary operations · and → on A are defined
by

· a b c 1
a a a a a
b a a b b
c a b b c
1 a b c 1

and

→ a b c 1
a 1 1 1 1
b b 1 1 1
c a c 1 1
1 a b c 1

then (A,≤, ·,→, 1) is an integral commutative residuated
poset which is neither a BCK-algebra since

(c → b) → ((b → a) → (c → a)) = c → (b → a)

= c → b = c �= 1

contradicting (7) nor a BCI-algebra since

(b → a) → ((c → b) → (c → a)) = b → (c → a)

= b → a = b �= 1

contradicting (8). Moreover, (A, ·) is not a monoid since

(bc)c = bc = b �= a = bb = b(cc).

Lemma 5 If P = (A,≤, ·,→, 1) is an integral commutative
residuated poset and � ∈ Con(A, ·,→, 1) then (3) holds.

Proof If a, b ∈ A and [a]� ≤′ [b]� then

(a → b)a ∈ [(a → b)a]� = ([a]� → [b]�)[a]�
= [1]�[a]� = [1a]� = [a]�

and (a → b)a ≤ b since a → b ≤ a → b. 	

Definition 6 The congruence � is called convex if a, b, c ∈
A, a ≤ b ≤ c and a � c imply a � b.

Lemma 7 The relations defined by (1) and (2) satisfy the
following implications:

(i) If a, b ∈ A and a ≤ b then [a]� ≤′ [b]�.
(ii) If ≤ is reflexive so is ≤′.
(iii) If ≤′ is antisymmetric, then � is convex.

Proof (i) If a, b ∈ A and a ≤ b then [a]� → [b]� =
[a → b]� = [1]�.

(ii) This follows from (i).
(iii) If a, b, c ∈ A, a ≤ b ≤ c and a � c then according

to (i) we have [a]� ≤′ [b]� ≤′ [c]� = [a]� which
implies [a]� = [b]�, i.e., a � b. 	


Definition 8 The algebraA is called an algebra with induced
order if the relation defined by (1) is a partial order on A.
The algebra A/� is called an algebra with induced order if
the relation defined by (2) is a partial order on A/�.

Theorem 9 If A/� is an algebra with induced order, then
� is convex.

Proof This follows from (iii) of Lemma 7. 	

Theorem 9 shows that convexity of � is necessary for

A/� to be an algebra with induced order.
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Example 10 If A = ({a, b, 1},→, 1) with

→ a b 1
a 1 1 1
b a 1 1
1 a a 1

and � := {b}2 ∪ {a, 1}2 then � ∈ Con A, (A,≤) is a poset
with a ≤ b ≤ 1, � is not convex, and (A/�,≤′) is not a
poset since {b} ≤′ {a, 1} ≤′ {b}.

Next we present two conditions under which the property
of A/� to be an algebra with induced order is equivalent to
the convexity of �.

Theorem 11 If A is an algebra with induced order and (4)
holds, then A/� is an algebra with induced order if and only
if � is convex.

Proof Let a, b, c ∈ A. First we show that if (4) holds and �

is convex, then ≤′ is antisymmetric. Hence assume � to be
convex and (4) to hold. Further, assume [a]� ≤′ [b]� ≤′
[a]�. According to (4), there exists an element d of [b]�with
a ≤ d. Since [d]� = [b]� ≤′ [a]�, there exists an e ∈ [a]�
with d ≤ e according to (4). Now a ≤ d ≤ e and a � e. Since
� is convex, we have a � d and hence [a]� = [d]� =
[b]� showing antisymmetry of ≤′. Next we show that under
assumption (4), transitivity of ≤ implies transitivity of ≤′.
Hence assume ≤ to be transitive and (4) to hold. Further,
assume [a]� ≤′ [b]� ≤′ [c]�. According to (4), there exists
an f ∈ [b]�with a ≤ f . Since [ f ]� = [b]� ≤′ [c]�, there
exists an element g of [c]�with f ≤ g according to (4). Now
a ≤ f ≤ g and hence a ≤ g which implies [a]� ≤′ [g]� =
[c]� according to Lemma 7 showing transitivity of ≤′. The
rest follows from Lemma 7. 	


That assumption (4) in Theorem 11 cannot be dropped is
shown by the following

Example 12 If A = ({a, b, 1},→) with

→ a b 1
a 1 1 1
b b 1 1
1 b b 1

and � := {a}2 ∪ {b, 1}2 then � ∈ Con A, (A,≤) is a
poset with a ≤ b ≤ 1, � is convex, (A/�,≤′) is not a
poset since {a} ≤′ {b, 1} ≤′ {a} and (4) does not hold since
[1]� ≤′ [a]�, but 1 � a.

In an analogous way as it was already done for Theo-
rem 11, one can prove

Theorem 13 If A is an algebra with induced order and (3)
holds then A/� is an algebra with induced order if and only
if � is convex.

Theorem 14 If P = (A,≤, ·,→, 1) is an integral com-
mutative residuated poset and � ∈ Con(A, ·,→, 1), then
P/� := (A/�,≤′, ·,→, [1]�) is an integral commutative
residuated poset if and only if � is convex.

Proof According to Lemma 5, (3) holds and according to
Lemmata 1 and 2, (4) holds. Now assume � to be convex.
According to Remark 3 and Theorem 11, (A/�,≤′) is a
poset. Moreover, (A/�, ·,→, [1]�) is an algebra of type
(2, 2, 0) and (A/�, ·, [1]�) is a commutative groupoid with
neutral element [1]�. Let a, b, c ∈ A. Then [a]� ≤′ [1]�
according to Lemma 7. If [a]�[b]� ≤ [c]�, then [ab]� ≤
[c]� and hence according to (4) there exists an element d of
[c]� with ab ≤ d whence a ≤ b → d which finally implies

[a]� ≤′ [b → d]� = [b]� → [d]� = [b]� → [c]�

according to Lemma 7. If, conversely, [a]� ≤′ [b]� →
[c]�, then [a]� ≤′ [b → c]� and hence according to (3)
there exists an e ∈ [a]� with e ≤ b → c whence eb ≤ c
which finally implies

[a]�[b]� = [e]�[b]� = [eb]� ≤′ [c]�

according to Lemma 7. The rest follows from Remark 3 and
Theorem 11. 	


Lemma 15 The following implications hold:

(i) (5) and (7) imply that the relation defined by (1) is reflex-
ive and transitive.

(ii) (5) and (8) imply that the relation defined by (1) is reflex-
ive and transitive.

Proof Let a, b, c ∈ A.

(i) We have

a → a = 1 → (a → a)

= (1 → 1) → ((1 → a) → (1 → a)) = 1,

i.e., a ≤ a, and if a ≤ b ≤ c then

a → c = 1 → (a → c) = 1 → (1 → (a → c)) =
= (a → b) → ((b → c) → (a → c)) = 1,

i.e., a ≤ c.
(ii) We have

a = 1 → a ≤ (1 → 1) → (1 → a) = 1 → a = a

123



Convex congruences

and if a ≤ b ≤ c then

a → c = 1 → (a → c) = 1 → (1 → (a → c)) =
= (b → c) → ((a → b) → (a → c)) = 1,

i.e., a ≤ c. 	


Theorem 16 The following implications hold:

(i) If the relation defined by (1) is antisymmetric and A
satisfies (5) and either (7) or (8), then A is an algebra
with induced order.

(ii) If A satisfies (5) and (6) and either (7) or (8), then A/�

is an algebra with induced order if and only if � is
convex.

Proof (i) This follows from Lemma 15.
(ii) This follows from Lemmata 1 and 7 and from the proof

of Theorem 11. 	

Corollary 17 The following implications hold:

(i) (cf. Traczyk and Zarȩbski 1985) If A is a BCK-algebra
then A/� is a BCK-algebra if and only if � is convex.

(ii) If A is a BCI-algebra then A/� is a BCI-algebra if and
only if � is convex.

Proof These follow from Lemmata 1 and 7 and Theorem 11.
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Traczyk T, Zarȩbski W (1985) Convex congruences on BCK-algebras.

Demonstr Math 18:319–323
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