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Abstract In biopharmaceutical process development and
manufacturing, the online measurement of biomass and de-
rived specific turnover rates is a central task to physiologically
monitor and control the process. However, hard-type sensors
such as dielectric spectroscopy, broth fluorescence, or permit-
tivity measurement harbor various disadvantages. Therefore,
soft-sensors, which use measurements of the off-gas stream
and substrate feed to reconcile turnover rates and provide an
online estimate of the biomass formation, are smart alterna-
tives. For the reconciliation procedure, mass and energy bal-
ances are used together with accuracy estimations ofmeasured
conversion rates, which were so far arbitrarily chosen and
static over the entire process. In this contribution, we present
a novel strategy within the soft-sensor framework (named
adaptive soft-sensor) to propagate uncertainties frommeasure-
ments to conversion rates and demonstrate the benefits: For
industrially relevant conditions, hereby the error of the

resulting estimated biomass formation rate and specific sub-
strate consumption rate could be decreased by 43 and 64 %,
respectively, compared to traditional soft-sensor approaches.
Moreover, we present a generic workflow to determine the
required raw signal accuracy to obtain predefined accuracies
of soft-sensor estimations. Thereby, appropriate measurement
devices and maintenance intervals can be selected.
Furthermore, using this workflow, we demonstrate that the
estimation accuracy of the soft-sensor can be additionally
and substantially increased.
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Abbreviations
CER Carbon dioxide evolution rate (mol h−1)
E Elemental composition matrix
Fa,in Air flow in (L min−1)
Fa,out Air flow out (L min−1)
MFC Mass flow controller
MPD Median percentage of difference
OUR Oxygen uptake rate (mol h−1)
qS Specific substrate uptake rate (mol mol−1 h−1)
Rainert Inert gas ratio (−)
ri Consumption/formation rate for species i (mol h−1)
rX Biomass formation rate (mol h−1)
S Substrate, C-normalized (mol)
Vm Molar volume (L mol−1)
X Biomass, C-normalized (mol)
µ Specific growth rate (h−1)
ε Residual vector for non-closing balances
ywet Oxygen fraction in the off-gas without microbial

activity (−)
yO2;out Oxygen fraction in the off-gas stream (−)
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yO2;in Oxygen fraction in the inlet air (−)
γi Degree of reduction for species i (−)
yCO2;out Carbon dioxide fraction in the off-gas stream (−)
yCO2;in Carbon dioxide fraction in the inlet air (−)
YX/S Biomass/substrate yield coefficient
εi Applied relative error on species i (−)
Δy Absolute measurement error of signal y

Introduction

Biotechnological process development, analysis, and control
is key to obtain robust processes providing highest product
quality attributes as well as a reduced time-to-market latency.
Catalyzed by regulatory initiatives for biopharmaceutical
products, process analytical technology (PAT) emerged as a
major tool that demands for bioprocess analysis and control
by frequently measurements ensuring specified final product
quality [1]. Especially in biopharmaceutical production and
process development of heterologous protein expression, the
physiological state of the cells is highly related to the forma-
tion of critical quality attributes [2, 3]. Therefore, time-
resolved knowledge about physiological parameters, such as
the specific growth rate or specific substrate uptake rate, is
essential in the PAT framework as well as to perform process
development, characterization, and validation [4]. Moreover,
those variables frequently serve as targets for control strategies
[5–7]. The key to this physiological information is the catalyst
concentration—the biomass. However, the required online
measurement of biomass is a critical endeavor using hard-
type sensors such as dielectric spectroscopy, broth fluores-
cence or permittivity measurements, each connected to limi-
tations and drawbacks as outlined elsewhere [8]. Software
sensors, or short soft-sensors, provide an elegant, non-
invasive way to estimate biomass concentration using differ-
ent other, easy-accessible measurements [9].

In this contribution, we want to focus on a dominant bio-
technological process mode, the microbial fed-batch fermen-
tation, and on the improvement of one of the most mature soft-
sensor implementations using off-gas and substrate-feed mea-
surements. These soft-sensors are established tools for
bioprocess control and analysis, which was also frequently
shown in practical applications [5, 10, 11]. Briefly, mass con-
servation laws are used to calculate turnover rates from online
measurements, which might be superimposed with signal er-
rors. In a second step accuracy of turnover rates and con-
straints, formulated as first-order principles such as mass and
energy conservation laws, are used to reconcile the inaccurate
turnover rates in order to optimally obey the constraints.
Finally, the reconciled turnover rates are used to calculate
the biomass formation rate (rX), which leads after simple inte-
gration over time to the biomass concentration. The resulting
information can be used to calculate specific turnover rates,

such as the specific substrate uptake rate (qS), which frequent-
ly serves as a control variable [12]. Therefore, rX and qS are
regarded as the most prevailing benchmark entities to evaluate
biomass estimation—and physiological control—capability.

However, the control quality by soft-sensors is limited by
measurement errors of raw signals used to derive the mea-
sured turnover rates. When it comes to industrial applicability,
the ultimate question is: Which measurement accuracy is re-
quired in order to obtain a sufficiently accurate estimation of
the reconciled rates and the biomass?

This question can only be answered if the error sources, their
respective impact, and possible counteractions are understood.
We note that we use the definition of errors as deviations to the
true values, excellently defined elsewhere [13]. Random errors
leading to a lack of signal precision are caused by small changes
within the system, e.g., air movement, temperature, and electro-
static fluctuations. A multitude of algorithms exists to smooth
signals with random errors ranging from simplemedian filters to
polynomial filters such as Savitzky-Golay filter up to frequency
filters such as the Butterworth filter.

While random errors can be minimized quite easily, this is
not the case for systematic errors caused by miscalibrations,
inaccuracy of analytical devices, or a defective feature in the
sensor. Those systematic errors can only be detected and pos-
sibly reduced by making use of all available information in
terms of first-principle constraints and the accuracy of turn-
over rates in reconciliation procedures as outlined above.
First-order principles can be generically formulated for de-
fined processes, whereas the accuracy of turnover rates, which
are input to the reconciliation procedure, are not known a
priori. They highly depend on the accuracy of the raw signal
measurements and dynamically change over time. Previously,
this was approximated by propagating the variance of mea-
surement accuracies to the turnover rates [19]. However, com-
monly, the expected or maximal error on measurement signals
is provided by device manufacturers. Therefore, it is an
existing unmet need to establish a methodology that leverages
this accuracy information of the raw signals onto the derived
turnover rates, which are subsequently used in the reconcilia-
tion procedure.

Hence, it is the goal of this contribution to develop
an error propagation procedure to derive the accuracy of
turnover rates from expected measurement errors and
demonstrate its benefits in terms of increased physiolog-
ical accuracy within the soft-sensor framework in micro-
bial fed-batch mode. Moreover, in those previously
elaborated methodologies, the impact of measurement
error on softsensor accuracies could only be estimated
retrospectively, given the process data. Therefore, we
want to address the question raised above, and present
a novel generic workflow that identifies tolerable mea-
surement errors of combinations of multiple analytical
measurements in order to meet the desired accuracy of
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soft-sensor estimations prior to conducted experiments
using mechanistic knowledge.

Material and methods

Aim and relevance of the presented approach

The following studywas carried outwith in silico generated data.
The aim of the in silico data generation was to obtain representa-
tivemicrobial fed-batch fermentationdata including an induction
phase, the predominant industrial mode for the production of
recombinant proteins. The experiments were based on a typical
Escherichia coli process with oxidative growth and glucose as
substrate. As the batch phase is not part of the discussed soft-
sensor, only the fed-batch part was considered here.

As commonly used in industry, the modeled fed-batch phase
started with an exponential feeding profile. After 8 h, the induc-
tion phase started with a linear feed rate. The biomass yield
coefficient is dynamic. Due to the metabolic load, typically an
especially strong decrease can be observed in the induction
phase [14]. This can be measured by the soft-sensor and was
also considered in the data generation process (Fig. 1).

The advantages of an in silico study are obvious:

& It is possible to Brun^ a bioprocess completely without any
errors on the signals and to introduce defined errors into the
system. This is not possible with real data, as the exact Breal^
values without errors on the data cannot be determined.

& A virtually infinite number of experiments with different
combinations of errors can be carried out. This enables a
systematic study of errors in a high-dimensional
Buncertainty space.^

Computational environment

All calculations were conducted in a MATLAB environment
(2015a, The MathWorks, Inc.). The mechanistic model was
created in form of a system of ordinary differential equations.
As graphical user interface and bioprocessing toolbox
inCyght (2016.02, Exputec GmbH) was used.

In silico data generation

Main mechanistic assumptions

The main mechanistic assumptions behind data generation and
soft-sensor are the same. Substrate, ammonia, and oxygen are
converted to biomass and carbon dioxide. In this simple case,
the extracellular formation of product or metabolites will be
neglected. This assumption is true for many biopharmaceutical
processes, as the product formation rate often is several order of
magnitudes lower than the biomass formation rate [15]. For
processes were this assumption has to be rejected, the soft-
sensor framework has to be extended by online product mea-
surement, e.g., by using spectroscopic techniques [16].

rSCHpHOpO þ rO2O2 þ rNNH3 →rXCHzHOzONzn

þ rCO2CO2

Two first principle assumptions were made; the carbon
balance:

rS þ rX þ rCO2 ¼ 0

And the degree of reduction balance:

rSγS þ rXγX þ rO2γO2
¼ 0

Fig. 1 a Simulated feed profile and biomass concentration. b Simulated trajectories of the biomass/substrate yield (YX/S) and the specific growth rate (μ)
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The detailed list of equations for the data generation step is
shown in the Electronic Supplementary Material (ESM)
Section 1.

Addition of noise and errors on the data

To test the original and new soft-sensors with erroneous data,
both systematic as well as random errors were introduced into
the model. Based on information of off-gas sensor and mass
flow controller manufacturers, as summarized in Table 1, re-
alistic amounts of systematic errors were superimposed to the
off-gas data which were used as input for the soft-sensors.

O2 and CO2 concentrations in the exhaust gas are simply
applied on the model output for the off-gas data:

XO2; measured ¼ XO2;model ⋅ 1þ εO2ð Þ
X CO2; measured ¼ X CO2;model ⋅ 1þ εCO2ð Þ

As the error on the mass flow controller affects both total
oxygen and carbon dioxide input into the system and the
resulting final concentrations of O2 and CO2, the error has to
be given as input to the model. The set-points for the MFC are
the known values, but the model input and real values are
calculated as follows.

FO2;in;model ¼ FO2;in;setpoint

1þ εM FC

FCO2;in;model ¼ FO2;in;setpoint

1þ εMFC

For the errors in the feed rate, a relative error on the set-
point rate is applied.

rS;model ¼ rS;setpoint
1þ εrS

The amounts of systematic errors applied for the different
experiments are listed in BComparison of soft-sensor estimates
to unbiased model data^ section.

The model delivered an online value each seven seconds.
For the addition of random error, white Gaussian noise was
added to the off-gas signals. The noise was generated by using
MATLAB’s awgn function with a relative standard deviation

of 1% for the off-gas data and 10% on the feed rate. The noise
on the feed rate is typically relatively high, as the signal often
is calculated by deriving the scale signal.

Quantitative evaluation of bioprocess data and error
propagation

Preprocessing

As described in the BIntroduction^ section, random er-
rors can be minimized by using preprocessing methods.
We decided to apply a Savitzky-Golay filter with a win-
dow size of 30 min and second-degree polygon on the
off-gas signals. These parameters in most cases showed
a low signal distortion, while on the other hand, the
elimination of noise was good. However, it has to be
noted that for specific filtering and smoothing problems,
better filters and filter parameters may exist. In our ex-
perience, most of them are not generically applicable,
meaning that if they work very well for a specific prob-
lem on a defined signal with specific signal dynamics,
they may completely fail on another.

Data-driven rate calculation

The aim of the next section is to express estimators for those
conversion rates derived from measurements. In general, all
conversion rates can be formulated using the simple idea, that
the conversion rate equals the net accumulation within the
reactor minus the inflow into the reactor plus the outflow out
of the reactor.

For demonstration purpose of the subsequent error propa-
gation, the calculation of the conversion rate for CO2 will be
shown exemplarily:

rCO2 ¼ CER ¼ d CO2ð Þ
dt

−CO2;in

̇
þ CO2;out

̇

The term d CO2ð Þ
dt can be neglected since it is predominantly a

function of pH and temperature, which were kept constant

Table 1 Typical measurement
errors of off-gas analyzers and
mass flow controllers

Relative error to
measurement value

Measurement accuracy
(zero deviance)

Drift/year

ΔFa,in (mass flow controller) ±0.5 % of readout ±0.3–1 % of full scale ±1 % of full scale

ΔyCO2 ;out (infrared)
n.a. ±1 % of full scale ±1 % of full scale

ΔyO2 ;in (paramagnetic)
±3 % of readout ±0.2 % full scale ±2 % value

ΔyO2 ;in (Galvanic cell)
±3 % of readout ±0.2 % full scale ±2 % value
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over all in silico simulations. Therefore, the carbon emission
rate (CER) formulates to:

CER ¼ Fa;in

Vm
yCO2;out⋅Rainert−yCO2;in

� �

Where Rainert is the inert gas ratio, which connects the
inflow to the outflow by:

Rainert ¼ Fa;out

Fa;in

And is defined as:

Rainert ¼ 1−yO2;in−yCO2;in

yO2;out−yCO2;out−
ywet
yO2;in

Here, ywet is the oxygen concentration in the off-gas stream
without bio-reaction and indirectly relates to water stripping
out of the reactor.

Well-known procedures can be applied in order to calculate
the substrate- and oxygen- uptake rate for a substrate limited
E. coli fermentation as described elsewhere [15].

Error propagation

In general, all the input signals for estimating the conversion
rates are random variables, associated with a random and sys-
tematic error, therefore the estimators itself are random vari-
ables, too. As discussed in the BIntroduction^ section, random
errors in the raw signals can be minimized using preprocess-
ing methods, whereas systematic errors cannot be removed
and propagate directly to the estimated conversion rates.

However, via Gaussian error propagation, it is possible to
estimate the expected error of the conversion rates. This
knowledge will subsequently help us to formulate a much
more robust reconciliation procedure and estimation of
biomass.

The influence of the absolute measurement error (Δy) of
the signal y onto a derived signal r can be approximated using
a Taylor expansion [3]:

r yþΔyð Þ ¼ r yð Þ þ 1

1!

dr yð Þ
dy

�Δyþ 1

2!

dÇr yð Þ
dyÇ

� Δyð Þ2 þ…

We want to note that the absolute measurement errorΔy of
the measurement signal can be in most cases calculated from
technical device data sheets given by their maximal amplitude
(e.g., ±3 % of readout). Therefore, the absolute measurement
error Δy can be seen as worst-case error. For an approximate
solution, the Taylor expansion can be terminated after the
second term and the resulting absolute deviation of the derived
signal (Δr) can be written as:

r yþΔyð Þ−r yð Þ ¼ Δr ¼ dr yð Þ
dy

�Δy

If the derived signal (here the conversion rate) depends on
more than one input variable and the error of the input signal is
only known by its boundaries, which is the typical case for
biotechnological applications, we can write in analogy:

Δr ¼ ∂r
∂y1

����
���� �Δy1 þ

∂r
∂y2

����
���� �Δy2 þ…

For the CER, the error propagation formulates to:

Δ C E R ¼ ∂CER
∂Fa;in

����
���� ⋅ Δ Fa;in þ ∂CER

∂Vm

����
���� ⋅ Δ Vm þ ∂CER

∂yCO2;out

�����
����� ⋅ Δ yCO2;out þ

∂CER
∂Rainert

����
���� ⋅ Δ R ainert þ ∂CER

∂yCO2;in

�����
����� ⋅ Δ yCO2;in

ΔCER ¼ 1

Vm
yCO2;out⋅Rainert−yCO2;in

� �����
����⋅ΔFa;in þ Fa;in

V 2
m

yCO2;out⋅Rainert−yCO2;in

� �����
����⋅ΔVm þ Fa;in

Vm
⋅Rainert

����
����⋅ΔyCO2;out þ

Fa;in

Vm
⋅yCO2;out

����
����⋅ΔRainert þ Fa;in

Vm

����
����⋅ΔyCO2;in

Δ Ra;inert ¼
1−yO2;in−yCO2;in

yO2;out−yCO2;out−
ywet
yO2;in

 !
Ç

����������

����������
⋅ Δ yO2;out þ

1−yO2;in−yCO2;in

yO2;out−yCO2;out−
ywet
yO2 ;in

� �2
�������

�������
⋅ Δ yCO2;out þ

1−yO2;in−yCO2;in

1

yO2;in
⋅ yO2;out−yCO2;out−

ywet
yO2;in

 !
Ç

����������

����������
⋅ Δ ywet

This procedure can easily be extended to the OUR and the
substrate uptake rate (rS). Typical results of error propagation
to the off-gas rates are shown in Fig. 2a.

For the presented in silico study input signals: Fa,in, yCO2;out

for CER and yO2;out for the OUR, were regarded as

superimposed with considerably relevant systematic measure-
ment error. All other input signals were considered to be

perfectly accurate. Typical errors for mass flow controllers
and off-gas analytics are given in Table 1. However, the error
propagation model could be easily extended to more inputs
with systematic error. For the error propagation of rS, the only
considerably source of systematic signal error was the concen-
tration of the substrate, which might vary due to evaporation
during sterilization procedures.

Propagation of measurement accuracy to biomass soft-sensor estimation



Minimum variance rate reconciliation and biomass
soft-sensor estimation

In the following section, we want to briefly summarize an
established minimum variance reconciliation and biomass es-
timation procedure in order to reduce systematic error on mea-
sured turnover rates (OUR, CER, and rS) using first principles
as reported in detail elsewhere [15, 17, 18].

First principles, such as elemental balances (see
BMain mechanistic assumptions^ section), can be seen
as constraints to the bioreactor system. We can formu-
late many of those constraints and thereby connect com-
ponents with each other. Commonly, a compact matrix
formulation is used to connect conversion rates of com-
ponents with each other using multiple constraints:

E⋅r ¼ 0

E is the elemental composition matrix [e × n] with e being
the number of elemental balances and n the number of rele-
vant components. r is the vector containing the turnover rates.
Under real conditions, the elemental balances do not close due
to systematic errors of the rates with a residual vector ε:

E⋅r ¼ ε

For this in silico example, the elemental C balance as well
as the degree of reduction (DoR) balance were used as fre-
quently applied elsewhere [5].

In order to identify gross errors in the system, it is necessary
to check if the residual vector (ε) differs significantly from zero.
Therefore, Reilly and Carpani introduced a statistical measure (h
value) whichweights the residuals by their accuracy (covariance
matrix). Using this χ2 distributed measure, it is possible to set
confidence levels for detecting gross errors [18].

The presented concept can easily be extended to more ele-
mental balances or energy balances; however, the implemen-
tation with C- and DoR-balance is predominantly implement-
ed in industry since additional measurements (e.g., nitrogen or
heat transfer) are more complex to realize in practice.

The redundancy of the measurable rates (rank of redundan-
cy matrix R [15, 17, 18]) equals 1, and therefore this redun-
dancy can be used to balance themeasured rates in a minimum
variance sense and obtain reconciled rates [15].

After no gross error could be detected with statistical signifi-
cance and the measured rates are reconciled, those reconciled
rates can be finally used to estimate the biomass formation rate,
which is the only non-measured rate in this example. For this
minimum variance balancing procedure, the covariance matrix
of the measured signals is required. A fair assumption is to state
that the covariance of the measured rates is diagonal, which as-
sumes non-correlated errors in the measured signals. In current
soft-sensor implementations, an empirical approach was chosen
andthecovarianceofallmeasuredrateswasassumedtoequal3%
of the readout [10, 15]. As a unique feature of the presented soft-
sensor implementation, wewill use at this point the derived error
boundaries fromabove asworst-case estimators for the variances

Fig. 2 a Time-resolved profiles for OUR and CER are shown together
with their respective accuracy as error bars, calculated by error
propagation as described in BError propagation^ section. b Comparison
of biomass (black) and rx (gray) soft-sensor prediction to the unbiased
signals (solid lines). Estimations of traditional soft-sensor

implementations, assuming 3 % error of all input rates, are shown
dotted; the adapted soft-sensor with error propagation for the input rates
is shown in dashed lines. For this particular simulation, raw signals were
superimposed by 2 % error for CO2 and O2 off-gas concentration,
respectively, and 1 % error on the rS and the MFC, respectively

V. Steinwandter et al.



of the signals. Since the herein-derived error boundaries vary
dynamicallyover time, thenewapproachwill be furtheroncalled
adaptive soft-sensor.

Comparison of soft-sensor estimates to unbiased model
data

As amethodology to investigate the result of the soft-sensor as
a function of the error of the input signals, we investigated
5915 in silico experiments with systematically varied errors
on the off-gas measurements, substrate concentration, and
mass flow controlled (described in BAddition of noise and
errors on the data^ section). The selected ranges in Table 2
were based on technical manufacturer information of MFC
and off-gas analyzer (see Table 1).

As a final output of the soft-sensor, the estimated biomass

formation rate (r ̂X ) was compared to the true, unbiased biomass
formation rate from the in silico model (rX,true), which is known.
This comparisonwas done by calculating themedian percentage
of difference (MPD)over all data points of the time series accord-
ing to:

MPD ¼ 100 ⋅median
r ̂X−rX ;true
rX ;true

� �

For each of the 5915 simulations, a MPD value for rX and
qS was calculated. Those values are displayed as surface plots
as shown in Figs. 3 and 4.

Results

Comparison of the soft-sensors accuracy

Biomass formation rate

In the following sections, a comparison between the traditional
approachandtheadaptivesoft-sensor isdone.While traditionally,
the errors on CER, OUR, and rSwere estimated to be 3% for all
rates and over the whole process, the adapted soft-sensor calcu-
lates the accuracy on the rates through error propagation, by

making use of the known uncertainty ranges of the raw signals.
The herein dynamically resolved accuracy for OUR and CER,
assuming 3%maximal error on the read out of off-gas analytical
measurements of O2 and CO2, are depicted in Fig. 2a. The accu-
racy of CER is much higher than the accuracy of OUR. This
information is used by the adapted soft-sensor; therefore, we ob-
tainmuchmore accurate biomass and rX estimates than previous
implementations without error propagation, compared to unbi-
ased biomass and rX signals, as shown in Fig. 2b.

Since Fig. 2b shows only the results for one particular error
combination of errors on O2, CO2, rS and the MFC, we have to
resolve the predictions with all other error combinations in order
to show superiority of the adapted soft-sensor. Figure 3 shows a
comparison of the biomass formation rate (rX) between the true
rates (model) and the estimated rates (left column: traditional
soft-sensor, right column: adaptive soft-sensor) by means of
MPD. In each of the subfigures, theMPD is shown as a function
of the error on the O2 and CO2 off-gas concentration, varied
between −3 and +3 %. The error on the MFC and on rS was
varied across the rows of the subfigures.

When using the traditional approach (subplots on the left
side), especially errors on the oxygen signal lead to high errors
on the estimated rates as well asmuch higherMPD values (up to
42 % compared to maximal 19 % for the adaptive soft-sensor)
and almost horizontal lines of equivalent MPD lines in Fig. 3.
The adaptive soft-sensor propagates the measurement accuracy
to the turnover rates, which makes the OUR less trustworthy
than the CER as indicated by the error bars in Fig. 2. Therefore,
also errors on the CO2 off-gas measurement have an impact on
the MPD values, resulting in a rotation of the equivalent MPD
lines to the diagonal direction (subplots on the right of Fig. 3).
This change of influential parameters on the MPD will be ob-
servedmultiple times throughout this work and is always caused
by changing the accuracy of turnover rates to realistic values
using the error propagation procedure.

In the subplots (a1) and (a2) in Fig. 3, the MPD values
regarding rX are shown as a function solely of error on O2

and CO2 off-gas measurement. In the subplots b1 and b2,
we added a relative error of 2 % on rS to the true model values
and in subplots c1 and c2, we added an error of 2 % on the
MFC set-point. The average MPD values as well as the max-
imal MPD values (up to 40 vs. 18 %) reached throughout all
subplots are much lower for the adaptive soft-sensor com-
pared to the traditional approach.

Control quality for specific substrate uptake rate

As one of the main applications of the soft-sensor is the pro-
cess control based on physiological parameters, the two ver-
sions of the soft-sensors were also compared in terms of pre-
diction accuracy for the specific substrate uptake rate qS.

Here, subplots (a1) and (a2) in Fig. 4 show the MPD for qS
with varying error on O2 and CO2 measurement and no error on

Table 2 All errors listed here were combined with each other and
applied in 5915 experiments. All those in silico generated data sets
were used to test the prediction accuracy of traditional and adaptive
soft-sensor approach

Applied relative
error on in- and outputs

Step
size

εCO2 ; εCO2
−3 to +3 % 0.5 %

εrS
−3 to +3 % 1 %

εMFC −2 to +2 % 1 %

Propagation of measurement accuracy to biomass soft-sensor estimation



rS and MFC signal. Again, the adaptive soft-sensor shows on
average much lower MPD values as well as much lower max-
imal MPD values (up to 15 % for the traditional and up to 4 %
for the adaptive soft-sensor). b1 and b2 show that the estimated
relative standard deviation for both soft-sensors is in the area of
3 %. However, when looking at the results in A1 and A2, only
the adaptive soft-sensor delivers the estimated standard devia-
tions, since MPD values are in the range of ±3 %.

As shown in Fig. 4(c1 and c2), the h values of the traditional
soft-sensor quickly exceed levels of 3. In this case, the null hy-
pothesis, that there is no gross error in the system, has to be
rejected with a confidence level of 95 %. However, the system

had no gross error in reality, and as the h values of the adaptive
soft-sensor show, the null hypothesis cannot be rejected when
using the correctly calculated covariancematrix for theminimum
variance reconciliation. Therefore, the h values of the traditional
soft-sensor have no statistical significance as the covariance ma-
trix, as explained before, is not correctly estimated.

Integrated comparison over the entire uncertainty space

The goal of this section is to derive a global parameter which
we can use to judge which soft-sensor approach leads to gen-
erally more accurate estimations. In general, we face a four-

Fig. 3 Comparison of rX for
traditional (left) and adapted
(right) soft-sensor in terms of
MPD, showing the deviation
between the real biomass
formation rate and the soft-sensor
values (%) as a function of the
errors on the off-gas data. (a)
Errors on the off-gas data, but no
errors on rS and the MFC. (b)
Errors on the off-gas data and 2 %
error on rS. (c) Errors on the
off-gas data and 2 % error on the
MFC

V. Steinwandter et al.



dimensional input space consisting of different errors on the
O2, CO2, rS, and MFC measurement. This space will be sub-
sequently called the uncertainty space. At each point in this
uncertainty space, the MPD of the true model value of rX and
qS is compared to the two soft-sensor approaches. Taking the
mean of all those MPD values of the uncertainty space for
each soft-sensor approach gives us a clear measure which
soft-sensor implementation is generally more accurate. This
integrated parameter will be called the global average MPD.

Table 3 summarizes the results of this kind of analysis and
shows for each cell the mean MPD of simulations where the
O2 and CO2 error was varied between −3 and +3%, analogous
to one subplot of Fig. 3. In the columns of Table 2, the error on

the MFC is varied, in the rows the error on rS. The global
average MPD regarding rX of the adaptive soft-sensor is
8.7 % compared to 15.2 % of the traditional approach. This
is a reduction of the MPD by 43 %. For the estimation of the
specific substrate uptake rate qS, the global average MPD can
be even lowered from 7.6 to 2.7 which corresponds to a MPD
reduction of 64 %.

Generic workflow to ensure appropriate control quality

Besides showing superior behavior of the new soft-sensor
implementation over state of the art, we want to present a
novel generic workflow to obtain a desired soft-sensor

Fig. 4 Comparison of qS in terms
of MPD (a), the median of the
estimated relative standard
deviation on the reconciled qS (b),
and the median h values (c) for
traditional (left) and adapted
(right) soft-sensor, depending on
the error level of the off-gas
analyzers
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estimate or reconciliation quality by adapting accuracy of
measurement devices. This workflow includes the following
steps as indicated in Fig. 5:

1. Use a mechanistic process model to generate time-resolved
data which will be used to derive rates. These are used as input
to the soft-sensor (here O2 and CO2 concentration of the off-
gas stream, substrate concentration and inflowing air con-
trolled by MFC).
2. Obtain biased signals by superimposing them with repre-
sentative systematic (see manufacturer specifications) and
random noise (estimated process noise).
3. Calculate turnover rates including their accuracy as de-
scribed in BData-driven rate calculation^ section. The rates
and their accuracy (covariance) are input to the soft-sensor.
4. Use the soft-sensor’s first principles to reconcile measured
turnover rates unless gross errors are detected. The reconciled
rates can be used to estimate the biomass and all related enti-
ties (e.g., qS or biomass).
5. The herein obtained qS estimate (or biomass estimate) is
compared to the true, unbiased model signal. If the estimate
does not meet the predefined thresholds (e.g., 5 % global

average MPD), more accurate measurement devices and their
respectivemeasurement errors are used to continue with step 2
to 5 with reduced systematic error levels. The selection of
appropriate measurement devices is driven by technical,
manufacturing, and financial constraints, which is not scope
of this study.
6. If the estimate meets the predefined thresholds in terms of
global average MPD, a robust estimate under industrial rele-
vant process conditions is achieved.

As an example, the error ranges of Table 2 were taken as a
starting position in step 2 of the generic workflow presented in
Fig. 5. It was assumed that the desired control quality could
not be reached with the current analytical devices (step 5),
therefore, exemplary a higher accuracy of the oxygen sensor
andMFC from ±3 to ±0.5% and ±2 to ±1%, respectively, was
implemented. The results before and after this change are
shown in Fig. 6. After the change, the estimated error surface
of qS is rotated in a favorable direction to enlarge regions of
lower error (0 to 2 % error), as depicted in the non-shaded
areas of the two subfigures of Fig. 6. Overall, this results in
10 % reduced global average MPD.

Table 3 Comparison of traditional and adaptive soft-sensor for different error levels. Each of the cells show the mean MPD value of simulations in
which the error on O2 and CO2 was varied between −3 and +3 %

Tradi�onal approach Adap�ve so�-sensor

Mean MPDs of 

εMFC (%)

-2 -1 0 1 2 -2 -1 0 1 2

ε r
s

(%
)

-3 16.1 15.9 15.7 15.6 15.4 12.7 12.7 12.7 12.7 12.7

-2 14.8 14.6 14.4 14.3 14.1 8.6 8.6 8.6 8.6 8.6

-1 14.3 14.1 13.9 13.7 13.5 6.0 6.0 6.0 6.0 6.0

0 14.4 14.2 14.0 13.8 13.6 5.2 5.2 5.2 5.2 5.2

1 15.0 14.8 14.6 14.4 14.2 6.2 6.2 6.2 6.2 6.2

2 16.1 15.9 15.8 15.6 15.4 9.1 9.1 9.1 9.1 9.1

3 18.0 17.9 17.7 17.6 17.5 13.2 13.2 13.2 13.2 13.2

Global average MPD of : 15.2 Global average MPD of : 8.7

Mean MPDs of 

-3 8.7 8.6 8.5 8.4 8.3 3.9 3.9 3.9 3.9 3.9

-2 8.3 8.2 8.1 8.0 7.9 3.0 3.0 3.0 3.0 3.0

-1 7.9 7.8 7.7 7.6 7.5 2.4 2.4 2.4 2.4 2.4

0 7.5 7.4 7.4 7.3 7.2 2.1 2.1 2.1 2.1 2.1

1 7.3 7.2 7.1 7.1 7.0 2.1 2.1 2.1 2.1 2.1

2 7.2 7.1 7.0 7.0 6.9 2.4 2.4 2.4 2.4 2.4

3 7.2 7.1 7.0 6.9 6.9 2.8 2.8 2.8 2.8 2.8

Global average MPD of : 7.6 Global average MPD of : 2.7
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Discussion

Superior accuracy for the estimated rates of the adaptive
soft-sensor

As perceived in Figs. 2, 3, and 4(a1 and a2) as well as sum-
marized in Table 1, the adaptive soft-sensor delivers more
accurate estimates of rX, which integrates to biomass, and
qS. Moreover, maximal MPD values for rX and qS are much
lower for the adaptive soft-sensor which implies that the bio-
mass estimate as well as the control of qS can be performed
much more robust under real process conditions since large
deviations to the true values of rX and qS can be avoided.

This is due to the fact that the covariance matrix for the
minimum variance reconciliation procedure is arbitrary cho-
sen for the traditional soft-sensor, which assumes a too low
uncertainty range for the OUR, as shown exemplarily in
Fig. 2. The adaptive soft-sensor on the other hand dynamically

uses all available information (uncertainty ranges of off-gas
analysis) to calculate a realistic covariance matrix. This leads
to a much more robust estimate of rX and qS.

For each subfigure, there are some Bsweet spots^ for cer-
tain error combinations, where the classical soft-sensor shows
a better accuracy in the prediction of rX. Since the exact com-
bination of the present errors on the input signals is not known
a priori, this is no advantage under real process conditions.

In a previous approach, the uncertainty of turnover rates
was approximated by propagation of variance [19]. However,
under industrial applications, the maximal expected error is
provided or known as an empirical parameter. Moreover, in
the previous work, simulations were not used to systematical-
ly investigate the true error obtained by softsensor estimations.
Therefore, our approach including the generic workflow of-
fers the possibility to pre-access the expected dynamics of the
process and influence of measurement errors on soft-sensor
predictions using mechanistic modeling.

Fig 5 Generic workflow for
identification of desired
measurement error and noise for
robust biomass soft-sensor
estimation. Asterisk indicate
variables which were
superimposed by random noise
and systematic error

Propagation of measurement accuracy to biomass soft-sensor estimation



Statistical meaningfulness of standard deviation and h
value

The covariance matrix is a critical input for the minimum
variance reconciliation procedure. As for the traditional soft-
sensor, the covariance matrix consists of arbitrary values
which do not represent the true and dynamically changing
uncertainties; all calculated statistical measures, i.e., standard
deviation and h value, lose their significance. This is different
for the adaptive soft-sensor.

As shown in Fig. 4(b1 and b2), the relative standard devi-
ations of the estimated rates are in the range of 3 % and almost
identical for traditional and adaptive soft-sensor. However,
when comparing these standard deviations to the actually
measured errors in terms of MPD in Fig. 4(a1 and a2), it
becomes clear that the calculated standard deviations do not
fit to these errors for the traditional soft-sensor; the measured
MPDs go up to 15 % in the considered area. For the adaptive
soft-sensor, the standard deviations are meaningful and on the
same magnitude as the actually measured MPDs. Under real
process conditions, the calculated standard deviation of an
estimated rate is the only available measure to evaluate their
prediction accuracy and expected uncertainty and is therefore
of critical importance.

As shown in Fig. 4(c1 and c2), the h values of the traditional
soft-sensor quickly exceed levels of 3. As already explained in
BControl quality for specific substrate uptake rate^ section, the
calculated h values are statistically not meaningful. This means
that they cannot be used to detect a gross error in the systemwith
a defined level of significance. They only can be used to rela-
tively compare similar processes or detect gross errors when the
h values are magnitudes higher than expected. This is not true

for the adaptive soft-sensor, as over the whole uncertainty space
the h values are below 3, and no false positive detection of gross
errors occurred with 95 % confidence.

Applicability of the generic workflow to set measurement
accuracies and ensure desired accuracy of soft-sensor
estimations

The question about the required measurement accuracy of raw
signals to meet the desired accuracy of derived variables, such
as the soft-sensor estimation for bioprocess control, is equally
urged by device manufacturer as by process engineers. This is
due to the fact that measurement accuracy is often correlated
to higher asset costs of advanced devices or more frequent
maintenance intervals of existing devices.

In BGeneric workflow to ensure appropriate control
quality^ section, we present a generic workflow to answer this
question. Since the measurement accuracy of the derived soft-
sensor estimate is not only a function of the accuracy of the
input signals (step 2 of the workflow) but also of the dynamics
of the process, a mechanistic model has to provide this infor-
mation (step 1 of the workflow). If one has multiple possibil-
ities of exchanging devices or maintenance intervals to in-
crease accuracy of input signals, this can be solved iteratively
in the workflow by testing different of those combinations and
evaluating if the resulting accuracy of the soft-sensor is suffi-
cient. Moreover, as shown in Fig. 6, it is thereby possible to
not only get rid of areas with high levels of MPD but rather
additionally increase the accuracy in the reduced uncertainty
space due to the introduction of supplementary knowledge
about the accuracy of input signals.

Fig. 6 Estimation error of qS before (a ±3 % maximal error on oxygen
measurement and ±2 % maximal error on MFC) and after (b ±0.5 %
maximal error on oxygen measurement and ±1 % maximal error on

MFC) the increase of the input signal accuracies. Not only values
outside the uncertainty range can be excluded but also the mean MPD
inside the uncertainty space is more accurate

V. Steinwandter et al.



Extrapolations of the adaptive soft-sensor and the generic
workflow to other application areas

The presented error propagation approach as well as the pre-
sented workflow are generically applicable to include addi-
tional sources of information. For example, the consideration
of energy balances based on the metabolic heat production
during a process [20] or the already mentioned combination
of the soft-sensor with spectroscopic techniques [16] could be
included. This would result in an even more robust and di-
verse applicable package.

Conclusion

In this contribution, we aim to present an error propagation
procedure increasing the accuracy and robustness of the soft-
sensor estimates.

Traditionally, the uncertainties for conversion rates (CER,
OUR, rs) were arbitrarily assumed and static over the whole
process. Here, we established a novel procedure to obtain
meaningful uncertainties, dynamically changing over time,
which are used as representative knowledge source together
with first principles in the soft-sensor framework.

In this in silico case study, the new approach using the
adaptive soft-sensor, the error on the estimates could be re-
duced by 43 % for the estimated biomass growth rate (rX)
compared to traditional soft-sensor implementations. For the
estimation of the specific substrate uptake rate qS, the error on
the estimate could even be lowered by 64 %.

When using the traditional soft-sensor approach, the
resulting h values could not be used to statistically reject the
null hypothesis of detecting gross errors, since estimations of
covariance of the turnover rates were arbitrarily chosen and
static over time. The new approach delivers both statistically
meaningful h values for the detection of gross errors and in-
formative standard deviations on the estimated rates. Latter
ones are essential under real process conditions to judge
soft-sensor estimation quality, as obviously there exist no pos-
sibility to evaluate the control quality by comparing the esti-
mates to unbiased model values.

Additionally, we presented a new generic approach to en-
sure a predefined control quality of the soft-sensor estimate by
iteratively evaluating the effect of the different errors on the
raw signal measurements. It has been demonstrated that by
following this generic workflow, it is possible to additionally
significantly increase the adaptive soft-sensor accuracy.

Thepresented approach canbegenerically applied taking also
additional error sources into account. The new methodology is
practically applicable to industrial conditions, where maximal
errors of measurement devices are used to obtain dynamically
changingaccuraciesofderived turnover ratesas showninFig.2a.
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