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Abstract In this paper, the behavior of gas chromatography
mass spectroscopy (GCMS) tar components in a three-stage
water gas shift (WGS) unit is discussed. The GCMS tar mea-
surements were carried out during the long-term operation
(2250 h) of a WGS unit with tar-rich product gas from the
commercial biomass steam gasification plant in Oberwart,
Austria. In order to investigate the behavior of the GCMS
tar components, four tar measurements were performed during
the long-term operation of the WGS unit which employed a
commercial Fe/Cr-based catalyst. The tar-rich product gas was
extracted before reaching the scrubbing unit of the biomass
steam gasification plant, therefore, the extracted gas contained
a high amount of tar. In order to investigate the behavior of the
GCMS tar in the WGS unit, the GCMS tar concentrations
were determined at the inlet and the outlet of the WGS unit.
The samples were taken during full load operation and during
partial load operation of the WGS unit, respectively, the bio-
mass steam gasification plant. In addition to the increase of the
volumetric hydrogen content from about 40 % (d.b.) to 50 %
(d.b.), the amount of GCMS tar was reduced (up to 38 %) as
the gas passed through theWGS unit. No catalyst deactivation
was observed. Furthermore, the efficiency of the hydrogen
increase or the GCMS tar reduction did not depend on

whether the operation of the WGS unit, respectively, the gas-
ification plant was at partial load or full load.
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Abbreviations
AC Aromatic components
ANC Aromatic nitrogen components
BDL Below detection limit
BTEX Benzene, toluene, ethylbenzene, and xylene
CHP Combined heat and power
d.b. Dry basis
DFB Dual fluidized bed
DL Detection limit
FPD Flame photometric detector
FR Flow record
GC Gas chromatograph
GCMS Gas chromatography mass spectroscopy
ORC Organic Rankine cycle
PAH Polycyclic aromatic hydrocarbons
RME Rapeseed methyl ester
STP Standard temperature and pressure

(273.15 K and 101325 Pa)
TA Thermocouples along reactor A
TB Thermocouples along reactor B
TC Thermocouples along reactor C
TCD Thermal conductivity detector
WGS Water gas shift
Symbols
ϕi Volumetric fraction of component i in -
ci, Inlet GCMS tar concentration of component i

at the inlet of the WGS unit in mg m−3
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ci, Outlet GCMS tar concentration of component i at the
outlet of the WGS unit in mg m−3

Δ Absolute change of the GCMS tar
concentration in mg m−3

δ Relative change of the GCMS tar
concentration in %

ΔH Enthalpy of formation (at 298.15 K and
101325 Pa) in kJ mol−1

STDGR Steam to dry gas ratio in –
STCR Steam to carbon ratio in –
VCatalyst Catalyst volume in m3

V̇Dry Volumetric dry gas flow rate in m3 h−1

V̇H2O Volumetric dry gas flow rate in m3 h−1

XCO CO conversion in –

1 Introduction

The increasing CO2 emissions caused by increasing energy
consumption are one reason for global warming. In order to
stop this climate change, CO2 neutral alternatives for the en-
ergy supply need to be established. Beside wind, water, and
solar energy, biomass is a promising CO2 neutral energy
source which has been used for centuries and which is avail-
able all over the world.

Biomass gasification offers the possibility of the renewable
production of a wide range of products for chemical industry
and energy supply. Especially biomass steam gasification,
employing the dual fluidized bed (DFB) technology is a prov-
en process. Various products from the biomass, for example,
electricity, heat, hydrogen, synthetic natural gas, Fischer-
Tropsch products, and alcohols (see [6, 20, 21, 23]) can be
produced.

The water gas shift (WGS) reaction (see Eq. 1) can be used
to adjust the H2/CO ratio in the generated product gas for
several of the above-mentioned synthesis reactions.

COþ H2O⇌H2 þ CO2 ΔH ¼ −41:1kJmol−1 ð1Þ

An unwanted side product of the gasification process is tar.
According to [4], tar is a hydrocarbon-containing mixture
which can form deposits (ranging from liquid to highly vis-
cous to solid) by a cooling of the gaseous phase down to the
ambient temperature.

The tar formation and reduction related to biomass gasifi-
cation was extensively discussed by different authors, for ex-
ample in [2, 3, 10, 12, 26].

During a long-term operation of a WGS unit (see [15]), gas
chromatography mass spectroscopy (GCMS) tar

measurements were performed. The WGS unit employed a
commercial Fe/Cr-based catalyst and was operated with tar-
rich product gas that was extracted before reaching the scrub-
bing unit of the commercial DFB biomass steam gasification
plant in Oberwart, Austria.

This paper discusses the effects of the WGS unit on the
GCMS tar components which were measured in the tar-rich
product gas from the commercial DFB biomass steam gasifi-
cation plant. However, it should be pointed out that the WGS
unit was rather operated to increase the hydrogen content of
the product gas than to reduce the tar content. Consequently,
the observed tar reduction was a positive side effect.

2 Materials and methods

The experimental work was carried out at the site of the DFB
biomass steam gasification plant in Oberwart, Austria, where
the WGS unit is located. The WGS unit consisted of three
reactors in series which employed a commercial Fe/Cr-based
catalyst. The GCMS tar samples were taken at the inlet and the
outlet of the WGS unit. The GCMS tar analyses were per-
formed by the Test Laboratory for Combustion Systems at
the TUWien. In addition, during the tar sampling, the temper-
ature profile along each reactor was recorded and the gas
composition was determined.

2.1 The biomass steam gasification plant

The WGS unit processed product gas from the DFB biomass
steam gasification plant in Oberwart, Austria. This plant is a
combined heat and power (CHP) plant. Figure 1 shows a
simplified flowchart of the overall process.

The gasification plant is based on the DFB steam gasifica-
tion technology described in detail in [7, 9]. The plant gener-
ates heat for the district and electricity with biomass
(woodchips) as feedstock. [5, 14] give a short overview of
the working principle of the process.

Biomass is fed into the biomass dryer and, subse-
quently, transported into the gasifier by a screw convey-
or. In the gasifier which operates at ambient pressure, the
biomass reacts with steam and is in contact with the
catalytically active bed material (olivine) at about
850 °C resulting in a product gas with a high hydrogen
content (ϕH2 ≈ 40 % (d.b.)). Then, the product gas is
cooled and cleaned in a bag house filter and in an
Rapeseed methyl ester (RME) gas scrubber. In the
RME gas scrubber, tar, NH3, and other condensable frac-
tions of the product gas are removed before the product
gas is fed into the gas engines for electricity generation.
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Heat from the flue gas line is mainly recovered for the
process and for district heating. Fly ash is removed be-
fore the flue gas is released into the atmosphere.

For the operation of the WGS unit, a partial flow of the
product gas was extracted before reaching the RME gas scrub-
ber of the gasification plant (see Fig. 1). Table 1 shows the
conditions at this extraction point.

The overall tar content in the product gas which is
extracted before the RME gas scrubber is much higher
compared to a point after the RME gas scrubber. This is
a challenge for a reliable operation of the WGS unit. The
product gas composition at the extraction point can be
seen in Sect. 3.

2.2 The water gas shift unit

The experimental work was carried out with a WGS unit lo-
cated at the site of the gasification plant in Oberwart. The
WGS unit employed a commercial Fe/Cr-based catalyst
(ShiftMax 120). Figure 2 shows a simplified flowchart of
the WGS unit.

The WGS unit consisted of three fixed bed reactors
(A, B, and C) in series filled with the Fe/Cr-based cata-
lyst. Each catalyst bed had a diameter of about 9 cm and

a bed height of about 40 cm, resulting in an Fe/Cr-based
catalyst volume of about 2.5 dm3 for each reactor.

Along the height of each reactor, seven type J thermocou-
ples (TA0 to TA6, TB0 to TB6, and TC0 to TC6) were
installed in order to record the temperature profiles. At the
inlet and outlet of reactors A and B, the gas stream could be
heated or cooled in order to achieve the desired gas inlet tem-
peratures of about 350 °C.

In addition to the steam which was already contained in the
product gas, more steam was added to the product gas before
the inlet of the WGS unit in order to avoid coking and carbon
deposition on the surface of the catalyst.

The WGS unit was operated at ambient pressure.
[14, 15] give a detailed description of the WGS unit.
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Fig. 1 Simplified flowchart of the gasification plant in Oberwart, Austria

Table 1 Operating conditions at the extraction point (see Fig. 1) of the
CHP plant in Oberwart, Austria, at full load operation [6]

Parameter Before RME scrubber Units

Temperature ≈ 150 °C

Volumetric H2O content ≈ 35 %

GCMS tar content ≈ 2700–8200 mg m−3

Biomass Conv. Bioref.



2.3 Measurement of the gas composition and the steam
content

A gas chromatograph (GC, Clarus 500 from Perkin Elmer)
measured the gas composition before and after the WGS unit.

In the GC, a thermal conductivity detector (TCD) enabled
the quantification of CO, CO2, CH4, N2, O2, C2H6, C2H4, and
C2H2. The C2 species were summarized and are referred to as
C2Hy. The H2 content was determined via calculation. A flame
photometric detector (FPD) was used to detect the H2S, COS,
and C4H4S content in the product gas.

The steam content of the processed gas was determined via
the water balance along the whole of its passage through the
WGS unit.

In addition, all gas volumes and volumetric gas flow rates
are given at standard temperature and pressure (STP, 273.15 K
and 101325 Pa).

2.4 Tar sampling and classification

During the experimental run of the WGS unit, tar sam-
ples from the inlet (reactor A) and outlet (reactor C) of
the WGS unit were taken. Additional information about
the method is available in [24, 25]. Figure 3 shows the
principle of the tar sampling, which is described in detail
in [15].

Toluene as solvent allowed the determination of the
GCMS tar concentration and the water content of the
extracted product gas at the same time. However, it did
not allow the detection of benzene, toluene, ethylben-
zene, and xylenes (BTEX).

The samples were handed over to the Test Laboratory
for Combustion Systems at the TU Wien. The Test
Laboratory determined the concentrations of the GCMS
tar components.

Overall, according to the tar guideline (see [1]), tar can be
classified into gravimetric tar and GCMS tar. In addition, sev-
eral additional classifications for biomass tar exists in litera-
ture ([16, 18, 19]). For example, the classification in primary,
secondary, and tertiary tar (see [18]). Another approach was
chosen by [8, 17]. These authors classified the tar based on the
molecular weight.
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Fig. 2 Simplified flowchart of the WGS unit located at the site of the
gasification plant in Oberwart, Austria
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Fig. 3 Flowchart of the tar sampling principle
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In this work, the tar is classified according to the molecular
weight and the chemical properties which strongly depend on
the functional groups of the components (compare [25]).
However, this work only considers GCMS tar components
which were categorized into groups as described in Table 2.

2.5 Characteristic figures

The operating conditions of the WGS unit were described by
the following three characteristic figures (see Eqs. 2, 3, and 4).
These figures were the gas hourly space velocity (GHSV), the
steam to dry gas ratio (STDGR), and the steam to carbon ratio
(STCR).

GHSV ¼ V
•
Dry

VCatalyst
ð2Þ

STDGR ¼ V
•
H2O

V
•
Dry

ð3Þ

STCR ¼ V
•
H2O

V
•
Dry � ϕCO þ ϕCO2 þ ϕCH4 þ ϕC2Hy

� � ð4Þ

The values of the GHSV, the STDGR, and the STCR were
calculated for the first reactor of the WGS unit and do not
consider the other two reactors.

Two figures were used in order to describe the behavior of
the GCMS tar components. They were calculated according to
Eqs. 5 and 6.

Δ ¼ ci;Outlet−ci;Inlet ð5Þ

δ ¼ 1−
ci;Outlet
ci;Inlet

� �
� −1ð Þ � 100% ð6Þ

A negative value ofΔ or δmeans a decrease of GCMS tar,
and a positive value means an increase of GCMS tar along the
WGS unit.

In addition, the dilution effect caused by the higher volu-
metric dry gas flow rate after the WGS unit has to be taken
into account. The volumetric dry gas flow rate after the WGS
unit is about 20% higher than the volumetric dry gas flow rate

before the WGS unit for all performed GCMS tar measure-
ments. The results show the measured concentrations of the
GCMS tar components at the inlet and outlet of theWGS unit.

3 Results and discussion

This section presents the results of four GCMS tar mea-
surements which were carried out during a long-term
operation (2250 h) of the WGS unit with tar-rich prod-
uct gas (see [15]).

For all four GCMS tar measurements, the GCMS tar con-
tent was within the typical order of magnitude for DFB bio-
mass steam gasification systems (compare [25]).

3.1 Load conditions of the water gas shift unit
and the gasification plant during the GCMS tar samplings

Table 3 gives an overview of the load conditions of the gasi-
fication plant and the WGS unit during the four GCMS tar
samplings.

It can be seen that during the first and the fourth GCMS
tar sampling, both, the WGS and the gasification plant,
operated at full load. However, during the second sampling,
the gasification plant operated at partial load due to main-
tenance work which resulted in a higher steam to fuel ratio
in the gasifier of the gasification plant. During the third
sampling, the WGS unit operated at partial load due to a
problem with the membrane gas pump which extracted the
product gas from the gasification plant.

Table 2 Categorization of all detected GCMS tar components

Phenols Phenol

Furans Benzofuran; dibenzofuran

AC Phenylacetylene; styrene; mesitylene; 1H-indene

ANC Isoquinoline; indole; quinoline

Naphthalenes Naphthalene; 2-methylnaphthalene; 1-methylnaphthalene

PAH Biphenyl; acenaphthylene; acenaphthene; fluorene;
anthracene; phenanthrene; 4,5-methylphenanthrene;
fluoranthene; pyrene

Thiophenes 1-benzothiophene

Based on [10, 11, 17, 24]

Table 3 Overview of the GCMS tar samplings

Number Hours of operation Load conditions
gasification plant

Load conditions
WGS unit

1st ≈ 430 h Full Full

2nd ≈ 1190 h Partial Full

3rd ≈ 1710 h Full Partial

4th ≈ 2050 h Full Full

Table 4 Operating parameters of the WGS unit during the GCMS tar
samplings

Number GHSV STDGR STCR

– h−1 – –

1st 495 1.6 2.7

2nd 445 1.9 3.2

3rd 326 1.6 2.7

4th 495 1.6 2.7

All parameters are given for the inlet, respectively, the first reactor of the
WGS unit
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3.2 Operating conditions of the water gas shift unit
during the GCMS tar samplings

Table 4 shows the operating parameters of the WGS unit dur-
ing the GCMS tar samplings.

During the first GCMS tar sampling, both the WGS
unit and the gasification plant operated at full load. It
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Fig. 4 Temperature profiles along reactors A, B, and C during the first, second, third, and fourth GCMS tar sampling

Table 5 Volumetric concentrations (d.b.) of the main gas components
of the processed gas along the WGS unit (DL = 2 cm3 m−3)

ϕH2 ϕCO ϕCO2 ϕCH4

% % % %

1st Inlet 38.9 25.4 20.7 10.5
1st Outlet 50.0 1.7 36.5 8.7
2nd Inlet 37.3 23.0 24.1 10.4
2nd Outlet 46.0 1.5 37.7 8.7
3rd Inlet 39.8 25.3 21.1 9.5
3rd Outlet 51.4 1.5 36.2 7.8
4th Inlet 38.6 25.9 21.1 9.9
4th Outlet 51.2 1.8 36.3 8.0

ϕC2Hy ϕN2 ϕO2
% % %

1st Inlet 2.8 1.5 0.2
1st Outlet 1.9 1.1 0.1
2nd Inlet 2.4 2.0 0.2
2nd Outlet 1.9 2.0 0.2
3rd Inlet 2.5 1.7 0.1
3rd Outlet 1.9 1.1 0.1
4th Inlet 2.6 1.8 0.1
4th Outlet 1.9 0.7 0.03

The measurement was a single sample measurement. Therefore, no stan-
dard deviation can be given

Table 6 Volumetric concentrations (d.b.) of the sulfur gas components
of the processed gas in the WGS unit (DL = 0.3 cm3 m−3). The
measurement was a single sample measurement. Therefore, no standard
deviation can be given

ϕH2S ϕCOS ϕC4H4S

cm3 m−3 cm3 m−3 cm3 m−3

1st inlet 93.7 3.1 4.3

1st outlet 89.3 BDL 2.4

2nd inlet 94.5 4.5 5.1

2nd outlet 84.9 BDL BDL

3rd inlet 88.6 2.7 4.3

3rd outlet 55.2 BDL 1.5

4th inlet 83.6 2.9 3.9

4th outlet 84.3 BDL 3.7

Biomass Conv. Bioref.



can be seen that the STDGR and the STCR are higher
during the second GCMS tar sampling because the gasi-
fication plant operated at partial load. During the third tar
sampling, the gasification plant operated at full load and
the WGS unit at partial load which is indicated by the
lower GHSV. During the fourth GCMS tar sampling, the
GHSV, STDGR, and STCR were at the same level as for
the first GCMS tar sampling.

3.3 Temperature profiles along the water gas shift reactors

Figure 4 shows the temperature profiles along all three WGS
reactors during the GCMS tar samplings.

The temperature profiles indicate that most of the exother-
mic WGS reaction occurred in the first reactor (reactor A). In
reactors B and C, nearly no reaction occurred, therefore, the
temperature profile decreased along these two reactors due to
heat losses exceeding the temperature increase caused by the
exothermic reaction.

During the second GCMS tar sampling, the temperature
maximum in reactor Awas slightly lower which can be attrib-
uted to the lower CO content in the product gas because of the
partial load operation of the gasification plant.

During the third sampling, the temperature maximum in
reactor Awas also lower and the temperature profiles in reac-
tors B and C decreased even more compared to the other
GCMS tar samplings. This effect can be attributed to the over-
all lower volumetric product gas flow rate through the WGS
unit caused by the defect membrane gas pump.

3.4 Gas concentrations along the water gas shift unit

Table 5 shows the volumetric concentrations of the measured
main gas components during the GCMS tar samplings.

Typical for the partial load operation of the gasification
plant was the higher CO2 content at the inlet of the WGS unit
compared to the full load operation of the gasification plant. In
this case, it was even higher than the CO content. This can be
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Fig. 5 Picture of a typical tar sample. Left before reaching the WGS unit.
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with dissolved tar and the lower phase is the water phase
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explained by the higher steam to fuel ratio in the gasifier
(compare [13]).

Table 6 shows the volumetric concentrations of the mea-
sured sulfur components.

It can be seen that the sulfur concentrations were
within the same order of magnitude during all GCMS
tar samplings. In addition, COS was most likely con-
verted to H2S along the WGS unit (compare [22]).

3.5 GCMS tar measurements

Figure 5 shows typical GCMS tar samples taken before
reaching and after leaving the WGS unit.

The sample which was taken before reaching theWGS unit
can be seen on the left, and the sample which was taken after
leaving the WGS unit can be seen on the right. The upper
phase of a sample is the toluene phase with the dissolved tar
and the lower phase is the water phase. In the following, de-
tailed results of all four GCMS tar measurements will be
presented.

Figure 6 summarizes the results of all four GCMS tar
measurements.

It can be seen that the overall amount of GCMS tar was
reduced while passing through the WGS unit because the unit
offered a reactive environment with additional residence time.
Depending on the measurement, the overall amount of GCMS
tar was reduced by 28 to 38 %.

However, the figure also shows that the overall
amount of GCMS tar is different for every single mea-
surement. During the first GCMS tar sampling, fresh
olivine was used as bed material in the gasifier. With
increasing residence time of the olivine in the gasifier, it
came to advancing layer formation on the surface of the
olivine. These layers improved the catalytic activity of
the olivine and, therefore, led to a lower overall tar
content in the product gas which was processed in the
WGS unit (compare [11]).

Figure 7 shows the amount of the different tar groups ac-
cording to Table 2.

Based on these results, aromatic components (AC),
naphthalenes, and polyaromatic hydrocarbons (PAH)
were considered as the significant GCMS tar groups
because they were present in a much higher amount
than the other tar groups. This could be explained by

Table 7 First GCMS tar measurement in mg m−3

Group Component Inlet Outlet Δ δ

Phenols Phenol 2 BDL −2 −100 %

Furans Benzofuran 2 BDL −2 −100 %

Dibenzofuran 48 36 −12 −25 %

AC Phenylacetylene 47 BDL −47 −100 %

Styrene 272 32 −240 −88 %

Mesitylene BDL BDL

1H-indene 376 109 −267 −71 %

ANC Isoquinoline 1 BDL −1 −100 %

Indole BDL BDL

Quinoline 6 4 −2 −33 %

Naphthalenes Naphthalene 5804 4291 −1513 −26 %

2-Methylnaphthalene 57 38 −19 −33 %

1-Methylnaphthalene 34 25 −9 −26 %

PAH Biphenyl 57 44 −13 −23 %

Acenaphthylene 835 47 −788 −94 %

Acenaphthene 24 506 +482 +2008 %

Fluorene 71 56 −15 −21 %

Anthracene 375 467 +92 +25 %

Phenanthrene 49 55 +6 +12 %

4,5-Methylphenanthrene 11 14 +3 +27 %

Fluoranthene 38 56 +18 +47 %

Pyrene 29 44 +15 +52 %

Thiophenes 1-Benzothiophene 7 5 −2 −29 %

All ∑ 8145 5829 −2316 −28 %

The measurement was a single sample measurement. Therefore, no standard deviation can be given (DL = 1 mg m−3 )
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the fact that the furans (O), ANC (N), and thiophenes
(S) contained a heteroatom in the aromatic ring which
made them more reactive. In addition, the OH group of
the phenols enhances the reactivity. However, each sin-
gle tar group decreased along the WGS unit. The de-
crease was based on two effects. First, the WGS reac-
tion which lead to a higher volumetric dry gas flow rate
after the WGS unit. Therefore, the dry gas concentra-
tions of all measured components, except hydrogen and
carbon dioxide, decreased. Second, the hydrogenation
and decomposition reactions involving tar components.
The content of the furans, naphthalenes, PAH, and thio-
phenes was most probably not significantly decreased
by chemical reaction. The decrease mainly occurred be-
cause of the about 20 % higher volumetric dry gas flow
rate after the WGS unit. The results regarding naphtha-
lene were in agreement with the results gathered by
Devi et al. [4] who reported that an increasing amount
of H2 in the product gas leads to a decrease in naph-
thalene conversion.

In contrast, the concentration of the phenols, AC, and ANC
was most probably decreased by hydrogenation and decom-
position reactions. The decrease caused by hydrogenation and
decomposition reactions significantly exceeded the decrease
caused by the higher volumetric dry gas flow rate after the
WGS unit.

Based on the detailed results (see Tables 7, 8, 9, and 10), it
can be seen that phenylacetylene, styrene, 1H-indene, naph-
thalene, and acenaphthylene were contained in a much higher
amount at the inlet of the WGS unit in all four GCMS tar
measurements.

4 Conclusion and outlook

The varying GCMS tar compositions at the inlet of the WGS
unit could be explained by the bed material used, which was
olivine. Fresh olivine has significantly less catalytic activity.
Therefore, the tar content with fresh olivine is much higher. In
contrast, used olivine has significantly higher catalytic activity
and, therefore, the tar content is significantly lower [11].

Table 9 Third GCMS tar measurement in mg m−3

Group Component Inlet Outlet Δ δ

Phenols Phenol 2 2

Furans Benzofuran 2 2

Dibenzofuran 5 5

AC Phenylacetylene 24 BDL −24 −100 %

Styrene 190 20 −170 −89 %

Mesitylene 1 7 +6 +600 %

1H-indene 165 47 −118 −72 %

ANC Isoquinoline BDL BDL

Indole BDL BDL

Quinoline 1 1

Naphthalenes Naphthalene 2060 1595 −465 −23 %

2-Methylnaphthalene 22 19 −3 −14 %

1-Methylnaphthalene 15 13 −2 −13 %

PAH Biphenyl 15 12 −3 −20 %

Acenaphthylene 128 7 −121 −95 %

Acenaphthene 17 103 +86 +506 %

Fluorene 5 5

Anthracene 19 15 −4 −21 %

Phenanthrene 4 3 −1 −25 %

4,5-Methylphenanthrene 2 2

Fluoranthene 8 6 −2 −25 %

Pyrene 7 6 −1 −14 %

Thiophenes 1-Benzothiophene 5 3 −2 −40 %

All ∑ 2697 1873 −824 −31 %

The measurement was a single sample measurement. Therefore, no stan-
dard deviation can be given (DL = 1 mg m−3 )

Table 8 Second GCMS tar measurement in mg m−3

Group Component Inlet Outlet Δ δ

Phenols Phenol BDL BDL

Furans Benzofuran BDL BDL

Dibenzofuran 8 7 −1 −13 %

AC Phenylacetylene 25 BDL −25 −100 %

Styrene 166 38 −128 −77 %

Mesitylene BDL BDL

1H-indene 138 65 −73 −53 %

ANC Isoquinoline BDL BDL

Indole BDL BDL

Quinoline 1 BDL −1 −100 %

Naphthalenes Naphthalene 3822 2870 −952 −25 %

2-Methylnaphthalene 26 21 −5 −19 %

1-Methylnaphthalene 18 15 −3 −17 %

PAH Biphenyl 24 21 −3 −13 %

Acenaphthylene 233 6 −228 −97 %

Acenaphthene 37 190 +153 +414 %

Fluorene 9 6 −3 −33 %

Anthracene 118 46 −73 −61 %

Phenanthrene 11 4 −7 −64 %

4,5-Methylphenanthrene 4 2 −2 −50 %

Fluoranthene 33 18 −15 −45 %

Pyrene 30 17 −13 −43 %

Thiophenes 1-Benzothiophene 7 5 −2 −29 %

All ∑ 4710 3331 −1379 −29 %

The measurement was a single sample measurement. Therefore, no stan-
dard deviation can be given (DL = 1 mg m−3 )

Biomass Conv. Bioref.



According to the operators of the gasification plant,
the bed material had been recently changed before the
first GCMS tar measurement. This could explain the
significantly higher GCMS tar content at the inlet and
the outlet of the WGS unit during the first GCMS tar
measurement.

However, the operating conditions of the gasification plant
and the WGS unit did not affect the efficiency of the GCMS
tar reduction.

The significant GCMS tar components were the AC,
the naphthalenes, and the PAH. In passing through the
WGS unit, the decrease of the AC was significantly
higher than that of the naphthalenes and the PAH.
However, beside the increase of the hydrogen content,
the WGS unit was able to decrease the GCMS tar con-
tent by about 28 to 38 %.

Consequently, the presented results could lead to a sim-
pler tar cleaning process step in the gasification plant
process by means of a different and more economical
scrubbing agent being used for the gas scrubber when a

WGS unit is employed in the process in order to increase
the hydrogen content of the product gas.
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