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Abstract— The teacher–learner constellation is a special one
in Human-Robot Interaction (HRI), as it can essentially im-
prove intuitive interaction with robots. In a 2 (background:
programmer vs. non-programmer) x 3 (teacher: self vs. be-
lieved other vs. other) between participants experiment (n=48,
counter-balanced in gender), participants kinesthetically taught
a humanoid NAO robot a specific behavior, which the robot had
to execute afterwards. Next, participants downloaded a taught
behavior to the NAO and were told that, the executed behavior
either is (1) the one they previously taught (self), (2) the one
someone else taught, but actually it was their own (believed
other), or (3) the one someone else taught (other). We were
interested in two main aspects: (1) whether programmers and
non-programmers show differences in their teaching behavior
and the perception of the teaching workload and (2) whether
participants show a greater self-extension and trust into a robot
they taught themselves over a robot they believed someone else
taught. The study revealed that the teaching style independently
of the background extends in the behavior execution time.
Programmers showed a higher perceived workload than non-
programmers. Differences in trust could not be found, but a
self-extension effect was observed that people showed greater
self-extension into a robot they taught themselves. Implications
for Human-Robot Interaction are discussed.

I. INTRODUCTION

Human-Robot Interaction research is focusing a lot on
questions concerning “natural and intuitive” interaction
paradigms for naive users and how teaching and training of
robots could look like in the future [1]. The introduction of
robots into actual working and living environments will lead
to the situation that users with different skills or backgrounds
have to be able to teach robots different behaviors, which
robots can execute autonomously afterwards. The approach
of robot Programming-by-Demonstration (PbD) has always
claimed to be an intuitive mean for teaching and interacting
with robots [2] [3] and is well studied in terms of usability
aspects such as efficiency [4] [5]. However, little research has
been done so far to better understand how users with differ-
ent backgrounds experience PbD not only in the teaching
situation, but also in the situation when the robot executes
a previously taught behavior. We stress the importance of
perceived workload and programming pre-experience when
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teaching a robot, as well as perceived self-extension and
trust into the previously taught executed behavior to attain
the user’s willingness to perform PbD tasks with robots in
everyday life.

Consider a robot in a working context, e.g. a factory
scenario, in which operators with different skill levels should
be able to teach the robot various tasks and the robot should
execute them appropriately after teaching. The teaching
process should not cause a high workload for the operator
and the operator should afterwards trust in the executed
behavior. Moreover, in the working context it is highly likely
that operators will not always train robots themselves, but
also use behaviors co-workers previously have taught. Will
this make a difference in system trust? Will operators trust
significantly more in robot behaviors they taught compared
to the ones others taught?

Other research suggests that people tend to perceive a
robot as a part of themselves in some situations; in other
words they feel an extension of their self into the robot [6].
As such we posit that PbD for robots alters the way how
people experience the robot after it executes a previously
taught task. Similarly, people feel differently about things
they created themselves compared to things someone else
created [7].

The current study explores two important aspects of PbD
for Human-Robot Interaction, namely (1) whether program-
mers and non-programmers show differences in their teach-
ing behavior and the perception of the teaching workload
and (2) whether participants show a greater trust and self-
extension into a robot they taught themselves over a robot
they believed someone else taught.

The work is presented as follows: First related research
on PbD in robotics is reviewed, also considering studies on
teaching behavior, trust, and self-extension in HRI. Second,
the study design including hypotheses, research methodol-
ogy, and procedure is described, followed by the results
of the user study. The last part of the presented work is
dedicated to a discussion of the implications for HRI.

II. RELATED WORK

PbD appeared in the early 1980’s and made its way from
the first ideas in software development up to the usage in
robotics, especially in the area of manufacturing. In software
development it was an intuitive and flexible way for users
to program a computer simulation without having to learn
a computer language [8]. Soon, researchers recognized the
potential of PbD as an alternative to the tedious manual
programming of robots as well as a way to achieve cost



reduction of the development and maintenance of robots in a
factory. A first approach in robotics was symbolic reasoning
[9]. Early studies were made to explore processes within this
approach such as teach-in, guiding, and play-back methods
(manual (teleoperated) control).

Around the early 1990’s research appeared in the direction
of Machine Learning (ML) techniques to extend the direct
repetition process prevailing until then with record and play
to one of generalization. This allows to transfer the gener-
ated programs to new robots or to products with different
variations. The commonly used ML technique in Robot
Programming-by-Demonstration (RPbD) is to learn a policy
from examples provided by a teacher and after training, the
robot recodes and reproduces the demonstrated actions. A
survey of RPbD and its diversity of types can be found in
[1]. This is in contrast to other techniques, e.g. reinforcement
learning in which a policy is obtained by exploration. RPbD
is considered as an intuitive communication medium for
humans and is appropriate for experts as well as non-experts
of robotics [5].

For a positively experienced RPbD in HRI both aspects are
relevant: the user teaching situation and the perception of the
robot behavior execution. Thus, subsequently we have a look
on related research on human teaching behavior (section II-
A) and on the two factors self-extension and trust in the
perception of robot behavior (section II-B).

A. Human-Teaching Behavior

Little research has been conducted so far on the actual
human teaching behavior in HRI. Thomaz and Breazeal [10]
stress that people develop a mental model of the learner;
they use the reward channel for both guidance and feedback.
Furthermore, they require a separate channel for motivational
feedback. Investigating the characteristics a robot needs for
efficient work with a human partner, Breazeal et. al [4]
refer to joint intention and learning theory [11], [12], [13].
They assume that humans are used to teaching in a social
and collaborative way and usually choose the dialog as a
form for tutelage. Grice [13] emphasizes the importance of
confirmations for mutual agreement on accomplishment of a
task and highlight the importance of making the collaborative
work with robots not only efficient but also enjoyable for
humans by using social skills [4].

B. Trust and Self-Extension in HRI

There is no doubt that trust plays an important role
and impacts the effectiveness of human-human as well
as human-robot cooperation. Luhmann [14] defined that
“Interpersonal trust is a vital component of personal and
work relationships as trust provides the foundations for
accepting the unknown and coping with complexities that
are beyond our control, leading to new opportunities to
acquire new knowledge and experience.” Regarding trust in
automation Lee and Moray [15] defined that trust is “the
attitude that an agent will help achieve an individual’s goals
in a situation characterized by uncertainty and vulnerability.”

McKnight et al. [16] presented in their article definitions
and measures towards trust and stress that trust is a primary
predictor of technology usage. Billings et al. [17] raised
the question if human-interpersonal trust is a good analogy
for human-robot trust and additionally introduced trust in
human-robot teams. They claim that among the most im-
portant robot characteristics for trust are performance, ap-
pearance and proximity. Further they noted that manipulating
these design aspects and reliability of the robot can support
the calibration of trust to an appropriate level for facilitating
successful interaction.

We carry this thought one step further, considering that
trust is also calibrated by the fact who manipulated the
behavior of the robot: me or someone else as this might
impact the experience of human-robot teams.

Similarly, we are interested in the concept of self-extension
and if it carries over to RPbD in HRI. A person is par-
ticularly likely to extend one’s sense of self into objects
that one controls, creates, or personalizes [6]. Groom et al.
[6] evaluated in a study how assembling and operating a
robot as well as the form of the robot influences the degree
of self-extension to the robot. Results show greater self-
extension into a robot and preferred the personality of the
robot people assembled over a robot they believed to be
assembled by another. People who assembled the robot they
operated showed greater overlap in terms of personality with
the robot, were more attached to it, and felt more like a team.
They also perceived the robot to be more like themselves,
because they had more familiarity with the inner working
of the robot. Groom et al. [6] also found, that human-like
physical attributes minimize self-extension, which was also
noted by Kiesler and Kiesler [18]. The reason for this effect
is that an anthropomorphic robot is perceived as unique
identity.

We assume that this aspect of self-extension should also
appear when a user observes the behavior execution of a
robot that was previously kinesthetically taught.

III. STUDY DESIGN

We used a 2 (background: programmer vs. non-
programmer) x 3 (teacher: self vs. believed other vs. other)
between participants experiment design. All participants had
to teach the NAO robot a specific “pick-and-place” task.
This type of task is commonly considered in robotic research
for the factory context and explained in more detail in sec-
tion III-B below. First the participants had to teach NAO with
kinesthetic teaching (“Teaching Phase”) and then they had to
download (“Behavior Transfer”) a previously taught behavior
to the robot. We were interested if the pre-experience in
programming affects the kinesthetic teaching and if people
do perceive a robot differently depending on what they are
told who has trained the robot: (1) they themselves (self), (2)
someone else, but actually it was their own taught behavior
(believed other), or (3) someone else (other).

We anticipated that people with programming experience
need less demonstrations and experience a lower workload
while teaching the robot. Furthermore, we expected people



to trust and self-extend more into a robot they have trained
themselves.

These assumptions led to the following four research
hypotheses:

• H1. People with programming experience will need less
demonstrations to teach the robot.

• H2. People with programming experience will experi-
ence a lower workload while training the robot.

• H3. People will self-extend more into a robot they
taught themselves than someone else.

• H4. People will trust a robot they taught themselves
more than someone else.

A. Participants

In total 48 people aged between 18 and 55 years
(mean=29.25, SD=5.13) participated in the study. The selec-
tion was gender-balanced within all conditions (background,
teacher). We have chosen the age range 18 to 55 because
this is a good representation of employees who might come
into touch with robot programming in the work context. As
mentioned before the condition “background” only differs
within the degree of programming experience. People with
programming experience in our study are either professional
programmers or computer science students. In contrast peo-
ple without programming experience never engaged with any
kind of programming, neither in their everyday lives nor for
professional reasons. All participants were German native
speakers and the study was conducted in German language.

B. Study Setup

The study was set up as a factory scenario in which the
user should teach a robot to pick up a box and place it in
a machine. For this purpose we built a mock-up factory
with two different machines (M1 and M2, see Fig. 1).
The humanoid robot NAO served as a platform for the
implementation of kinesthetic teaching, the selected RPbD
approach.

During the “Teaching Phase” the participant taught the
robot a complete behavior sequence to pickup a box, carry
to it to a machine and put it in there.

Fig. 1. Floor plan of the study setup: left execution area for the robot
to perform, middle download area “Transfer Behavior”, left teaching area
“Kinesthetic Teaching”

Within the “Behavior Transfer” phase the task of the
participant was to download a behavior via a web-interface
to the robot. Therefore, we implemented a web-interface to
give the participants the possibility to download a behavior

(a) Execution start (b) During execution (c) Execution end

Fig. 2. The NAO robot within the execution area

sequence for picking up and placing a box in the machine,
which the robot should than execute. This was a very
simple web-interface offering three different saved behaviors
including the self-taught behavior as well as two behaviors
provided by other persons. For each training data set a little
description was shown together with the teacher’s name and
a choice of the target machine. In the following section we
outline the study procedure in more detail.

Fig. 3. “Behavior Transfer“ via web-interface

C. Procedure

In a first step participants were welcomed and asked
to fill in two questionnaires besides a data usage consent
form. One questionnaire collected demographic data, the
other gathered information about existing programming and
robotic experience. Robotic experience was not counter-
balanced.

In phase1 named “Kinesthetic Teaching” the participant
had to teach the robot to pick-and-place a box. During
phase2 “Behavior Transfer” the participant’s task was to
transfer an existing behavior to the robot by downloading
the behavior via the web-interface. All participants first run
through phase1 and afterwards phase2. Figure 4 outlines
the procedure within the phases which we describe in detail
below.

a) “Kinesthetic Teaching” (phase1): Teaching and
execution of taught behavior: The mandatory restricted
teaching and the optional teaching comprise the kinesthetic
teaching parts. During each teaching the participant is guid-
ing the robot to pick-and-place a box. After each teaching
performance the robot reproduces the taught behavior as a
feedback for the participant. Subsequently, the user could
choose to repeat the teaching of the robot if he or she was
not satisfied. During the restricted teaching the participants
had at most four tries to be satisfied with the teaching. This
restriction was set to increase the workload level for the



participants and simulate a programming task which has to
be completed with limited resources.

Afterwards the user started the execution by pressing the
start button on the head of the robot (see Fig. 2a.). The
robot picked up the box (as taught by the user), walked
autonomously to the machine (see Fig. 2b.), and placed the
box (also taught by the user) there (see Fig. 2c.). Now the
participant saw for the first time if the previously taught
behavior was satisfying within the environment of the
mock-up factory. If the requirements were not met (e.g. the
robot lost the box during transport due to loose grip) the
participants were allowed to re-train the robot without any
restriction on the number of trails. This stage is represented
by optional teaching, cf. Fig. 4.

Questionnaires and interview: To investigate aspects of
self-extension, knowledge about the participants’ personality
is needed. Fig. 4 shows the time-line of the study procedure
which took up to two hours and introduces abbreviations.
The participants had to fill in a personality questionnaire
three times following Jacobs and Scholl [19]: with QP1
personality traits of the participant were determined, whereas
with QR1 and QR2 the participants had to complete the
same questionnaires for the robot. The Nasa-RTLX ques-
tionnaire (QN1) investigated the participants’ workload for
programming the robot. With the last questionnaire within
this phase we collected data concerning trust (QT2). The
participants completed this phase with an interview I1about
the intuitiveness of the kinesthetic teaching approach.

Fig. 4. Detailed overview of study phases: QP: Questionnaire participant’s
personality, QR: Questionnaire robot’s personality, QN: Questionnaire
Nasa-RTLX, QT: Questionnaire trust, I: Interview.

b) “Behavior Transfer” (phase2): The participant’s
activity within this phase was to transfer a certain behavior
to the robot. Each participant got either the assignment (i)
“download the training data you taught to the robot”, or (ii)
“download the training data of another person to the robot”.
Thereby we wanted to evaluate if people tend to self-extend
and trust more into a robot they taught themselves vs. a
robot trained by someone else. For the condition “teacher”
we defined three levels and assigned 16 participants to each
(gender and background balanced within the levels).

Level self: The participant got assignment (i) and the
behavior downloaded to the robot was indeed the
behavior previously taught by the participant during
phase1.

Level believed other: The user was misled: Although as-
signed (ii), the behavior downloaded to the robot
was not another person’s training data, but in fact
his or her own. This level was intentionally de-
signed to control for the effect that participants
cannot distinguish a self-taught behavior from a
behavior someone else taught. We assume that a
self-extension effect should appear also at this level,
as participants should rate the behavior execution
of the robot and not what they were told.

Level other: The participant got assignment (ii) and the
program was really trained by another person.

After downloading the robot executed the transportation
of the box within the execution area, according to the
behavior transfered. This was followed by an other round
of questionnaires: trust (QT2) and personality (QR3). QR3
is targeted at the robot, not the participant. At the end a
short interview I2 is conducted about the overall acceptance
followed by the debriefing.

D. Measures

1) Teaching Observations: We count the number of teach-
ings and record the time each teaching takes. At first partic-
ipants were told to have at most four repetitions to teach the
“pick-and-place” task. Later on participants were allowed to
optionally re-train the robot.

The user-teaching-time (overall time of a demonstration)
can be divided into the robot-idle-time and the robot-
execution-time. Robot-idle-time is the time the robot does
nothing, because participants were shy, or afraid to move
the robot’s arms, or they were planning or thinking how to
fulfill the task with the robot. The robot-execution-time is
the period the robot was in motion to execute the previously
taught or downloaded pick-and-place task.

2) Teaching Workload: We used the Nasa-RTLX ques-
tionnaire (QN1) to evaluate the workload of the participants
immediately after the restricted training.

3) Self-Extension: We asked the participants to fill in the
personality questionnaire from Jacobs and Scholl [19] four
times: initially to assess the personality of the participant
(QP1) and subsequently three times to assess the personality
of the robot after restricted training (QR1), optional training
(QR2), and download (QR3).

The first three measurements permit to check whether the
participant rates the personality of the robot after kinesthetic
teaching in a similar way compared to his or her own
personality. The last measurement rates the personality of the
robot after download. We measured PA (self-assured, domi-
nant) and HI (subservient, shy). Participants rated how well
thirty words, such as “shy”, “confident” or “inconsiderate
” described them. They indicated their responses on eight-
point scales ranging from “Strongly disagree” to “Strongly
agree”.



4) Trust: In order to investigate trust and based on the lack
of available trust questionnaires for our requirements, we
composed a questionnaire consisting of selected dimensions
from existing questionnaires. To measure functionality and
reliability as dimensions of trust, we took the according items
from McKnight’s questionnaire [16]. Additionally, System
Trust was measured by applying the System Trust items
defined by Master [20]. Perceived Usefulness and Perceived
Ease of Use (as dimensions of technology acceptance) were
taken from Venkathesh and Davis [21]. The rating was on
a 5-point Likert scale (1-Strongly disagree to 5-Strongly
agree). Functionality refers to whether one expects a technol-
ogy to have the capacity or capability to complete a required
task [16]. Reliability suggests one expects a technology to
work consistently and predictably [16]. Perceived Usefulness
is defined as the degree to which a user believes that using the
system will enhance his or her performance. Perceived Ease
of Use is defined as the degree to which the user believes
that using the system will be free from effort. All scales
summativly give an overall system trust rating.

IV. RESULTS

A. Teaching Behavior

The results are divided into two aspects. The first deals
with a) the number of demonstrations and the second b)
focuses on the time per demonstration.

a) In total 48 participants trained the robot 218 times.
On average the number of demonstrations per participant
was 4.54 (SD=2.35). The training phase was divided into
a restricted teaching (max. four times) and an optional
teaching (no restrictions on the number of demonstrations).
During the restricted teaching, all participants (n=48)
trained the robot 116 times (mean=2.42, SD=0.79). During
the optional teaching, 35 participants trained the robot 102
times (mean=2.91, SD=2.25). 13 participants choose not to
train again.

As mentioned before our first assumption was that pro-
grammers would performed fewer demonstrations. As Table I
shows there is hardly any difference between the average
number of demonstrations of non-programmers and program-
mers in the overall teaching as well as the restricted teaching.
However, a difference becomes apparent in the optional
teaching, showing that non-programmers tend to do more
trainings. This difference was not statistically significant
(Wilcoxon-rank sum test: W = 199.5, p > .05).

TABLE I
AVERAGE NUMBER OF DEMONSTRATIONS, OVERALL, RESTRICTED AND

OPTIONAL TEACHING, P (PROGRAMMER), NP (NON-PROGRAMMER)

average number of demonstrations
overall teaching restricted teaching optional teaching

P 4.37 SD = 2.10 2.42 SD = 0.78 2.47 SD = 2.12
NP 4.71 SD = 2.61 2.42 SD = 0.83 3.44 SD = 2.37

b) Similarly, comparing the teaching times in seconds
between programmers and non-programmers did not re-
sult in significant differences, see Table II. However, there
was a significant correlation between the user-teaching-time
and the robot-execution-time of the taught behavior, r =
0.87, p < .001. Programmers were affected more than non-
programmers, similarly male participants more than female
participants (see Table II). This evidence suggests that the
user-teaching-time is in a strong relationship with the robot-
extension-time. The longer the user-teaching-time takes, the
longer is the robot-execution-time. This might indicate that
self-extension is even observable on a behavioral level.

TABLE II
CORRELATION (r, SPEARMAN, ∗∗∗ = p < .001), USER-TEACHING-TIME

WITH ROBOT-EXECUTION-TIME. P (PROG.), NP (NON-PROG.)

r average
user-teaching-time (s)

average
robot-execution-time (s)

all users 0.87∗∗∗ 50.48 SD = 29.07 28.47 SD = 16.32
P 0.92∗∗∗ 48.01 SD = 24.51 28.78 SD = 16.17
NP 0.86∗∗∗ 52.78 SD = 32.68 28.19 SD = 16.53
male 0.93∗∗∗ 51.72 SD = 28.28 30.57 SD = 16.67
female 0.64∗∗∗ 49.17 SD = 29.95 26.26 SD = 15.71
P-male 0.98∗∗∗ 44.37 SD = 21.15 27.81 SD = 13.15
P-female 0.67∗∗∗ 52.67 SD = 27.79 30.02 SD = 19.45
NP-male 0.90∗∗∗ 59.91 SD = 32.84 33.64 SD = 19.55
NP-female 0.67∗∗∗ 46.48 SD = 31.47 23.37 SD = 11.47

B. Teaching Workload

We computed the Nasa-RTLX (QN1) score to explore
the perceived workload during teaching. The workload for
programmers (mean=42.5, SD=11.64) in contrast to non-
programmers (mean=36.84, SD=13.68) to teach the NAO
robot did not differ significantly W=237, p > .05, r =
−0.15 (Wilcoxon rank sum test). Consequently, we cannot
confirm our hypothesis that programmers experience a lower
workload than non-programmers.

However, we found a significant difference when we
additionally consider pre-experience with robots. On aver-
age, programmers with robot experience perceived a greater
workload (mean=44.79, SD=13.22) than non-programmers
with robot experience (mean=33.06, SD=11.96). This differ-
ence was significant t(21.78) = 2.28, p < .05 and it did
represent a middle-sized effect r = 0.439 (t-test).

During the interviews we revealed that based on a better
idea of the complexity of the robot and the underlying pro-
cedures, programmers with robot experience are concerned
about missing information on error handling. Therefore they
try to perform the teaching very diligently which causes a
perceived higher workload. The majority of the programmers
with robot experience stated in the interviews that they
consider the kinesthetic approach as an intuitive way to
program the robot. They also all noted that in order to handle
the robot in an appropriate way they need more experience
with it: “It requires experience in the use”. In contrast, non-
programmers with robot experience seem to be completely
unbiased.



C. Self-Extension

We measured four times the personality QP1,QR1,QR2 ,
QR3 (see subsection III-D.3 and Fig. 4) to evaluate if people
tend more to self-extend in a robot they taught themselves
than in a robot taught by another person.

When participants taught the robot themselves and down-
loaded the behavior knowingly to the robot, we found no
significant difference between the QP1 and the QR3 ratings
(Level self, T(153)= 1.13, p > .05). In contrast, when
participants believed the downloaded behavior was from
another person the rating differs significantly, no matter if
the behavior really was taught by themselves (Level believed
other, T(153)=3.64, p < .001) or by another person (Level
other, T(153)=2.06, p < .04).

TABLE III
AVERAGE SCORE: SEMANTICAL DIFFERENTIAL (1=HI (SUBSERVIENT,

SHY) TO 8=PA (SELF-ASSURED, DOMINANT))

Level
self believed other other

PA/HI (QP1) 4.83 SD=0.14 5.09 SD=0.13 4.84 SD=0.15
PA/HI (QR1) 4.44 SD=0.13 4.78 SD=0.14 4.80 SD=0.13
PA/HI (QR2) 4.40 SD=0.13 4.57 SD=0.13 4.67 SD=0.14
PA/HI (QR3) 4.58 SD=0.14 4.50 SD=0.13 4.48 SD=0.14

In other words, the data supports that participants in
the self level demonstrated a greater overlap in personality
ratings, than in the other two levels. However, our hypothesis
is only partly supported, as a self-extension effect should
have also happened at the level were the robot executes the
self-taught behavior, even though the user is mislead and is
told that some else taught the robot. In other words it is more
important for people’s assessment of the executed behavior
what they were told than the actual behavior execution.
Interestingly, this effect only holds true for participants with
programming experience. For non-programmers no signifi-
cant differences could be observed at all, which indicates
that a feeling of self-extension is always present for naive
users.

D. Trust

As mentioned before we measure Functionality and Relia-
bility as dimensions of trust, Perceived Ease of Use and Per-
ceived Usefulness as dimensions of technology acceptance
and System Trust. We assessed the degree of trust using
QT1 and QT2 after “Kinesthetic Teaching” and “Behavior
Transfer”, respectively.

We found no significant differences between the trust
ratings (QT2) for Level self, Level believed other, Level
other, no matter for overall trust or the sub-dimensions. As
a consequence H4 has to be rejected. Also we compared the
trust ratings (QT1 and QT2), without finding a significant
difference; see Table IV. The sub-scale Perceived Ease
of Use (PEU) is not significant by a very small margin
T(29)=−2.04 p = .0502.

TABLE IV
AVERAGE TRUST SCORE, T=TRUST, ST=SYSTEM TRUST,

TA=TECHNOLOGY ACCEPTANCE, R=RELIABILITY, F=FUNCTIONALITY,
PU=PERCEIVED USEFULNESS, PEU=PERCEIVED EASE OF USE

QT1 QT2 yuend/t-test
overall 3.50 SD= 0.63 3.23 SD=1.03 t=−0.28 df = 93.83 p > .05
T 3.35 SD=0.83 3.32 SD=0.78 T(29)= 0.55 p > .05
ST 3.53 SD=0.60 3.55 SD= 0.63 T(29)= 0.04 p > .05
TA 3.46 SD=0.83 3.60 SD=0.74 T(29)=−1.18 p > 0.5
R 3.12 SD= 0.85 3.13 SD=0.80 T(29)= 0.44 p > .05
F 3.60 SD= 0.97 3.62 SD=0.97 T(29)=−0.45 p > .05
PU 3.17 SD=1.22 3.20 SD=1.18 T(29)=−0.17 p > .05
PEU 3.76 SD=0.90 4.00 SD=0.70 T(29)=−2.04 p < .06

V. DISCUSSION

A. Summary and interpretation of results

Not all of our hypotheses were supported by data. The
predicted effect in H1 that people with programming experi-
ence will need less demonstrations to teach the robot could
not be supported. However, we could observe another inter-
esting effect, namely that longer user-teaching-time relates
to a longer robot-execution-time. This shows that there is a
teaching behavior transfer which actually affects the robot
behavior execution. This indicates a self-extension effect not
only on the attitudinal level, but also on the behavioral one.

Similarly, H2 was not supported by data in the way we
expected it. No significant differences regarding perceived
workload (measured with the Nasa-RTLX questionnaire)
could be identified. However, another interesting effect could
be found in the data: programmers with robot pre-experience
perceived a significantly higher workload compared to non-
programmers with robot pre-experience. We assume that
programmers with robot experience are more sentizied to
handle the robot correctly and are more aware of potential
errors and therefore experience a higher workload.

As predicted by H3, participants in level self demonstrated
a greater overlap in personality ratings than participants in
the other levels where they were told the robot was trained
by someone else (believed other and other). Moreover,
we found that the programming pre-experience impacts the
self-extension effect: non-programmers always show a self-
extension effect, whereby participants with experience seem
to be mislead by what the experimenter tells them about
the robot behavior and despite that information assess every
robot behavior equally.

These findings provide further evidence that PbD causes
a perceived extension of the self for naive users, however as
the other results showed there is no effect on System Trust.
In other words H4 that participants will trust a robot they
taught themselves more has to be rejected.

B. Implications for HRI

These findings have implications for the user’s willingness
to perform PbD tasks with robots in everyday life. For
example, if we go back to the working context scenario,
the results support that it does not matter who program
a robot in terms of System Trust, even though there is a
higher self-extension, but only for operators without any



pre-experience in programming. On the other hand, in a
domestic or care context application a higher self-extension
can positively influence the human-robot relationship and
increase the bonding to personal service robots above all
for naive users.

Similarly, our study supports the claim that PbD is an
intuitive mean for naive users to train robots, but that
pre-experience in robotics and programming increases the
perceived workload as users are more careful and reflective
about how to train the robot. This might have an impact on
using PbD in the industrial context (e.g. the Baxter robot
[22]) and strategies for error handling and maintenance by
experienced operators should be considered in future.

C. Limitations

There are several limitations to this study. First our study
was conducted in a factory mock-up and the artificial and
very controlled study setting might have had an impact on
the trust and self-extension ratings. Second the usage of the
NAO robot which only performed one task, which a human
could have performed faster in the study setup, might have
impacted the self-reporting measures as well. Future studies
should be done with different robots and tasks not only for
a working scenario, but also domestic and care scenarios as
this might produce different results. Clearly long-term studies
on how the teaching behavior and the perception of the robot
execution behavior are also required to validate our findings.

VI. CONCLUSION

Programming-by-Demonstration is considered as intuitive
mean to teach and interact with robots, however studies in
this field tend to be limited on efficiency aspects. This study
indicates that the teacher experience differs depending on
the pre-experience and that the perception of the executed
behavior differs depending on the belief who taught the
robot (self vs. other). These results suggest that for PbD in
HRI not only the teaching phase needs to be considered but
also the behavior execution phase to optimize for the users’
willingness to teach robots that way in everyday life.
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[9] T. Lozano-Pérez, “Robot programming,” in Proceedings of the IEEE,
vol. 71, Jul. 1983, pp. 821–841.

[10] A. L. Thomaz and C. Breazeal, “Teachable robots: Understanding
human teaching behavior to build more effective robot learners,”
Artificial Intelligence, vol. 172, no. 6, pp. 716–737, 2008.

[11] L. L. S. Vygotskii, Mind in society: The development of higher
psychological processes. Harvard university press, 1978.

[12] P. R. Cohen, H. J. Levesque, J. H. Nunes, and S. L. Oviatt, Task-
oriented dialogue as a consequence of joint activity. SRI Interna-
tional, 1990.

[13] H. P. Grice, “Logic and conversation,” Syntax and Semantics, vol. 3,
pp. 41–58, 1975.

[14] N. Luhmann, “Trust and power: Two works.” 1979.
[15] J. Lee and N. Moray, “Trust, control strategies and allocation of

function in human-machine systems,” Ergonomics, vol. 35, no. 10,
pp. 1243–1270, 1992.

[16] D. H. Mcknight, M. Carter, J. B. Thatcher, and P. F. Clay, “Trust in a
specific technology: An investigation of its components and measures,”
ACM Trans. Manage. Inf. Syst., vol. 2, no. 2, pp. 12:1–12:25, Jul. 2011.
[Online]. Available: http://doi.acm.org/10.1145/1985347.1985353

[17] D. R. Billings, K. E. Schaefer, J. Y. Chen, and P. A. Hancock, “Human-
robot interaction: Developing trust in robots,” in Proceedings of the
Seventh Annual ACM/IEEE International Conference on Human-Robot
Interaction, ser. HRI ’12. New York, NY, USA: ACM, 2012, pp. 109–
110. [Online]. Available: http://doi.acm.org/10.1145/2157689.2157709

[18] T. Kiesler and S. Kiesler, “My pet rock and me: An experimental
exploration of the self extension concept,” Advances in Consumer
Research, vol. 32, 2004.

[19] I. Jacobs and W. Scholl, “Interpersonale Adjektivliste (IAL),” Diag-
nostica, vol. 51, no. 3, pp. 145–155, 2005.

[20] R. Master, X. Jiang, M. T. Khasawneh, S. R. Bowling, L. Grimes,
A. K. Gramopadhye, and B. J. Melloy, “Measurement of trust over
time in hybrid inspection systems,” Human Factors and Ergonomics
in Manufacturing & Service Industries, vol. 15, no. 2, pp. 177–196,
2005. [Online]. Available: http://dx.doi.org/10.1002/hfm.20021

[21] V. Venkatesh and F. D. Davis, “A theoretical extension of the
technology acceptance model: Four longitudinal field studies,”
Manage. Sci., vol. 46, no. 2, pp. 186–204, Feb. 2000. [Online].
Available: http://dx.doi.org/10.1287/mnsc.46.2.186.11926

[22] E. Guizzo and E. Ackerman, “The Rise of the ROBOT WORKER,”
IEEE Spectrum, vol. 49, no. 10, pp. 34–41, Oct. 2012.


