Zur Seitenansicht


Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations
Verfasser / Verfasserin Stock, Philipp ; Monroe, Jacob ; Utzig, Thomas ; Shell, Scott ; Smith, David ; Valtiner, Markus
Erschienen in
ACS Nano, 2017, Jg. 11, H. 3, S. 2586-2597
ErschienenAmerican Chemical Society (ACS), 2017
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)AFM / hydrophobic interaction / Jarzynskis equality / molecular dynamics / peptide / self-assembled monolayer / single-molecule force spectroscopy / steered molecular dynamics
Projekt-/ReportnummerNSF: DMR-1312548
Projekt-/ReportnummerGerman Research Foundation (DFG): VA 689/3-1
Projekt-/ReportnummerCenter for Scientific Computing at UCSB (NSF): CNS-0960316
Projekt-/ReportnummerNational Science Foundation Graduate Research Fellowship Program: DGE 1144085
Projekt-/ReportnummerEuropean Research Council (ERC): 677663
URNurn:nbn:at:at-ubtuw:3-4666 Persistent Identifier (URN)
 Das Werk ist frei verfügbar
Supporting Information [6.57 mb]Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations [3.6 mb]
Zusammenfassung (Englisch)

Interactions between hydrophobic moieties steer ubiquitous processes in aqueous media, including the self-organization of biologic matter. Recent decades have seen tremendous progress in understanding these for macroscopic hydrophobic interfaces. Yet, it is still a challenge to experimentally measure hydrophobic interactions (HIs) at the single-molecule scale and thus to compare with theory. Here, we present a combined experimentalsimulation approach to directly measure and quantify the sequence dependence and additivity of HIs in peptide systems at the single-molecule scale. We combine dynamic single-molecule force spectroscopy on model peptides with fully atomistic, both equilibrium and nonequilibrium, molecular dynamics (MD) simulations of the same systems. Specifically, we mutate a flexible (GS)5 peptide scaffold with increasing numbers of hydrophobic leucine monomers and measure the peptides desorption from hydrophobic self-assembled monolayer surfaces. Based on the analysis of nonequilibrium work-trajectories, we measure an interaction free energy that scales linearly with 3.03.4 kBT per leucine. In good agreement, simulations indicate a similar trend with 2.1 kBT per leucine, while also providing a detailed molecular view into HIs. This approach potentially provides a roadmap for directly extracting qualitative and quantitative single-molecule interactions at solid/liquid interfaces in a wide range of fields, including interactions at biointerfaces and adhesive interactions in industrial applications.

Das PDF-Dokument wurde 6 mal heruntergeladen.