Zur Seitenansicht
 

Titelaufnahme

Titel
Absorbing boundary conditions for a wave equation with a temperature-dependent speed of sound
Verfasser / Verfasserin Shevchenko, Igor ; Kaltenbacher, Manfred ; Wohlmuth, Barbara
Erschienen in
Journal of Computational Acoustics, 2013, Jg. 21, H. 2, S. 1250028
ErschienenWorld Scientific, 2013
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)Wave equation with variable coefficients / absorbing boundary conditions / pseudo-differential calculus / thermo-acoustic problem
Projekt-/ReportnummerAustrian Science Fund (FWF): I 533-N20
Projekt-/ReportnummerGerman Science Foundation (DFG): WO 671/6-2
ISSN0218-396X
URNurn:nbn:at:at-ubtuw:3-3564 Persistent Identifier (URN)
DOI10.1142/S0218396X12500282 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Absorbing boundary conditions for a wave equation with a temperature-dependent speed of sound [19.82 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

In this work, new absorbing boundary conditions (ABCs) for a wave equation with a temperature-dependent speed of sound are proposed. Based on the theory of pseudo-differential calculus, first- and second-order ABCs for the one- and two-dimensional wave equations are derived. Both boundary conditions are local in space and time. The well-posedness of the wave equation with the developed ABCs is shown through the reduction of the original problem to an equivalent one for which the uniqueness and existence of the solution has already been established. Although the second-order ABC is more accurate, the numerical realization is more challenging. Here we use a Lagrange multiplier approach which fits into the abstract framework of saddle point formulations and yields stable results. Numerical examples illustrating stability, accuracy and flexibility of the ABCs are given. As a test setting, we perform computations for a high-intensity focused ultrasound (HIFU) application, which is a typical thermo-acoustic multi-physics problem.

Notiz
Notiz
Statistik
Das PDF-Dokument wurde 11 mal heruntergeladen.