Zur Seitenansicht
 

Titelaufnahme

Titel
Mixed 3D beam models: Differential equation derivation and finite element solutions
VerfasserAuricchio, Ferdinando ; Balduzzi, Giuseppe ; Lovadina, Carlo
Erschienen in
ECCOMAS 2012 - 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, 2012, S. 3860-3870
Erschienen2012
Ausgabe
Accepted version
SpracheEnglisch
DokumenttypAufsatz in einem Sammelwerk
Schlagwörter (EN)Hellinger-Reissner principle / 3D beam model / dimensional reduction / mixed beam finite element
ISBN978-3-9503537-0-9
URNurn:nbn:at:at-ubtuw:3-3017 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Mixed 3D beam models: Differential equation derivation and finite element solutions [0.34 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

In this document we illustrate the dimensional-reduction approach applied to 3D solid elastic equations in order to obtain a beam model. We start from the Hellinger-Reissner (HR) principle, in a formulation which guarantees the selection of a compatible solution in a family of equilibrated fields. Then, we introduce a semidiscretization within the cross-section, this allows to reduce the problems dimension from 3D to 1D and to formulate the properly called beam model. After a manipulation of the 1D weak model (done in order to guarantee the selection of an axis-equilibrated solution in a family of axis-compatible fields), we introduce a discretization also along the beam axis obtaining the related beam Finite Element (FE). On one hand, the initial HR principle formulation leads to an accurate stress analysis into the cross-section, on the other hand, the 1D model manipulation leads to an accurate displacement analysis along the beam-axis. Moreover, the manipulation allows to statically condensate stresses at element level, improving the numerical efficiency of the FE algorithm. In order to illustrate the capability of the method, we consider a slim cross-section beam that shows interesting non trivial behaviour in bending and for which the analytical solution is available in literature. Numerical results are accurate in description of both displacement and stress variables, the FE solution converges to the analytical solution, and the beam FE models complex phenomena like anticlastic bending and boundary effects.

Notiz
Lizenz
CC-BY-NC-ND-Lizenz (4.0)Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitung 4.0 International Lizenz