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Kurzfassung

Smart Home Technologien werden immer populärer und damit einhergehend immer öfter
in unser tägliches Leben integriert. Das Internet of Things (IoT) ermöglicht die Kommuni-
kation zwischen einer Vielzahl an smarten Geräten im Smart Home um mittels Predictive
Data Analytics den Wohnkomfort zu verbessern und Haussysteme zu automatisieren.
Zum größten Teil ist das heutige IoT mit Cloud Computing realisiert, weil es praktisch
unlimitierte Rechen- und Speicherkapazität bereitstellt.
Die zentrale Cloud unterliegt aber auch einigen Einschränkungen: relativ hohe La-
tenzzeiten, hohe Bandbreitennutzung, limitierte Datenübertragungsrate und benötigt
eine dauerhafte Internetverbindung. Edge Computing bringt Cloud Ressourcen näher
zum Anwender und umgeht somit diese Einschränkungen. Dabei kommen heterogene,
ressourcen-begrenzte Edge Geräte zum Einsatz auf welchen Applikationen ausgeführt
werden können. Zur Unterstützung dieser heterogenen Hardware wurde das Serverless
Programming Modell als ressourcenschonendes Abstraktionsmodell vorgeschlagen. Basie-
rend darauf wurden bereits erste kommerzielle Edge Computing Frameworks von Cloud
Providern entwickelt. Diese Frameworks ermöglichen die Ausführung von Serverless Funk-
tionen auf Edge Geräten, die mittels Cloud Service konfiguriert und bereitgestellt werden.
Es gibt aber nur wenige systematische Untersuchungen des Serverless Edge Computing
Paradigmas anhand von praktischen Anwendungsfällen.
Das Ziel dieser Diplomarbeit ist die Evaluierung des Serverless Programming Modells von
kommerziellen Frameworks im Kontext von IoT und Smart Home Data Analytics Appli-
kationen. Dazu definieren wir einen repräsentativen IoT Anwendungsfall: Optimierung
einer Warmwasserheizung. Anhand dessen Anforderungen analysieren wir verfügbare
Frameworks, im Speziellen AWS Greengrass und Microsoft Azure IoT Edge. Basierend
auf unserer Serverless Architektur für Smart Home Predictive Analytics wird ein Prototyp
und eine cloud-basierte Referenz für die Evaluierung entwickelt. Schließlich evaluieren wir
die Serverless Edge Computing Paradigma Behauptungen und präsentieren die Resultate
unserer Optimierung.
Diese zeigen dass die Boilertemperatur und die Heizdauer bei gleichbleibendem Lebens-
komfort erheblich reduziert werden können. Weiters stellt sich das Serverless Programming
Modell als ein vielversprechendes Edge Abstraktionsmodell dar. Dennoch fehlt wichtige
Funktionalität in kommerziellen Frameworks um die Edge Computing Vision zur Gänze
umsetzen zu können. Code Mobility existiert nur sehr eingeschränkt und es ist nicht
möglich Multi-Tenant Anwendungen bereitzustellen.
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Abstract

Smart Home technologies become more and more popular and are increasingly integrated
into our daily living environments. Smart Homes leverage the Internet of Things (IoT)
and combine many smart devices to improve living comfort and automate essential
supporting systems with predictive data analytics. For the most part, today’s IoT is
realized with cloud computing because it offers virtually unlimited computing and storage
capabilities.
Despite its benefits the central cloud also introduces several limitations: relatively
high latency, high Internet bandwidth usage, limited data transfer rate and requires
a continuous Internet connection. To mitigate these limitations the edge computing
paradigm brings data processing and storage closer to the user utilizing heterogeneous,
resource-constrained edge devices. This considerably reduces latency and bandwidth
usage and fosters scalability and reliability. To overcome the heterogeneity of edge devices
the serverless programming model has been proposed as a light-weight computation
model for the edge. Based on this proposal production-grade edge computing frameworks
have been developed by cloud providers. These frameworks provide a serverless function
orchestrator deployed at the edge and a cloud service for remote configuration and
deployment of applications. However, there have only been few real-world use case
evaluations that systematically examine the serverless edge computing paradigm.
The goal of this thesis is to evaluate the serverless programming model for production-
grade edge computing frameworks in the context of IoT and Smart Home data analytics
applications. First we define a representative real-world IoT use case: optimization
of a domestic water heating system. Subsequently we examine available frameworks,
specifically AWS Greengrass and Microsoft Azure IoT Edge, and choose one based on the
use case requirements. Then, we outline a general serverless architecture for predictive
Smart Home analytics applications. Based on this architecture a prototype and in
addition a cloud-based baseline is implemented for the evaluation. Eventually we evaluate
claims on the serverless edge computing paradigm and present use case results.
Our use case evaluation shows that the boiler temperature and heating time have been
significantly reduced while still satisfying inhabitants’ living comfort. Our evaluation of
serverless edge claims indicates that the serverless programming model is a promising
edge computation model. However, it also shows a lack of essential features in production-
grade frameworks to fully realize the idea of edge computing. Foremost is the limited
support of code mobility and missing support of multi-tenant application deployment.
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CHAPTER 1
Introduction

1.1 Motivation
Ever since the emergence of the Internet of Things (IoT) the number of devices connected
to the internet is rapidly growing and expected to exceed 24 billion devices by the year
2020 [GBMP13]. Those so called smart devices are built to simplify life by enabling
remote control of everyday items. Smart things led in further consequence to the term
Smart Home, a conglomeration of multiple connected devices in residences to increase
living comfort through applications including but not limited to water heating control
and smart meters. A key enabler for the IoT is the cloud computing paradigm [LL15].
Due to provided infinite on-demand computing power and storage it is an ideal solution
to handle the vast amount of generated data. Furthermore the centralized cloud is easier
to manage, allows more efficient scaling and enforces physical security [WSJ15]. For that
reasons prevailing applications are usually implemented with a centralized cloud. In the
meantime applications and frameworks were formed around the paradigm. One of them
is the Amazon Web Services (AWS) IoT [Amab] Framework: a platform abstracting
away relations between devices and the cloud providing configurable routing of messages
via message brokers. Moreover the service takes care of managing infrastructure and uses
auto-scaling techniques to cope with the load of billions of devices and messages. However
topics like data privacy, security and handling of long-term connection-loss haven’t been
tackled extensively in current frameworks. Also latency sensitive applications, that
require real-time processing of data in the order of a few milliseconds, form a problem in
the centralized cloud approach [VS17].

Above issues strive for decentralization to satisfy their strict requirements, which in further
consequence has led to an increase in research effort resulting in the edge computing
architecture. [Sat17] states that in this arising paradigm resources are placed at the
edge of the internet in close proximity to the users. Additionally it has been said that the
dispersed nodes provide storage and computing power and facilitate highly responsive
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1. Introduction

cloud services, scalability, privacy-policy enforcement and masking of cloud outages. This
enables real-time data analytics at the edge including local storage of data in order to
minimize sending data to cloud or perhaps even overseas. The heterogeneity of edge
computing forces applications to be encapsulated in virtual machines or containers to be
able to run on any node of the network. Latest scientific work [NRS+17] and in example
AWS Greengrass [Amaa] focus on the serverless programming architecture to overcome
the diversity. A description of serverless computing is given in [Eiv17] and says that
instead of dedicated servers the focus in serverless computing is on light-weight, event-
based functions, which are executed by an orchestration layer on-demand. Further it
states that serverless functions can be thought of as encapsulated microservices in contrast
to monolithic applications, and thus are well-suited for heterogeneous environments.

1.2 Problem Statement
The idea to apply the serverless programming model to the edge computing paradigm
appears to be promising. Serverless programming offers a high abstraction level to the
underlying hardware which removes infrastructure coupling. Furthermore it promotes
code mobility and a decrease in infrastructure management complexity. Thus, soft-
ware developers should be able to concentrate solely on the business logic. [BCC+17]
These properties have been successfully proven to hold true for the cloud computing
environment [CIMS17], but have yet to be put to the test for the edge computing
paradigm. Researchers in this field have proposed various serverless edge analytics
architectures [NRS+17, dLGL+16, MBS+17]. There have also been some experiments
carried out with scientific implementations, e.g., see Calvin Constrained [MBS+17]. In
the meantime commercial providers have developed proprietary frameworks that leverage
this new tendency. However, it is unknown if these frameworks fully incorporate the
edge computing architecture and the serverless programming model. Furthermore it has
to be shown that real-world edge computing applications can be implemented without
compromises with respect to their requirements within the serverless programming model.
Advantages and disadvantages have to be shown in real-world applications. For this
reasons, serverless programming at the edge research field is missing practical experiments
and lack scientific evaluation.

1.3 Aim of the Work
To fill this identified research gap, the aim of the work is to evaluate the serverless
architecture model for edge computing frameworks in the context of IoT and Smart Home
Data Analytics applications. Such applications typically consist of several sensors, which
measure certain metrics of interest, and various actuators to interact with local systems
targeted by the application. These sensors usually generate lots of data which need to be
processed and stored to perform real-time analytics as well as predictive analytics on
historic data to later control actuators. Current approaches for IoT applications send
the data into the cloud, apply data analytics routines and return control commands to
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the local system. Since this architecture is restricted by, e.g., available data transfer
rate and a continuous internet connection, the edge computing paradigm is an essential
key to overcome these issues and build more independent and stable IoT solutions.
Edge computing enables local preprocessing of data, minimizes data transfer by filtering
non-important data, can mask connection outages and furthermore enhances data privacy
by reducing data amount to a minimum and by storing critical information locally. For
that, existing IoT sensor/actuator gateways are typically extended with processing power
and storage to enable the local execution of code. The serverless paradigm has emerged
as a solution for an event-based execution environment on constrained IoT devices
providing sandboxed environments for each application and execution on configurable
events triggered in the network.

To showcase the viability of the edge computing paradigm we introduce a real-world
IoT data analytics use case. Then, we implement this use case based on a generic edge
data analytics architecture using a state-of-the-art edge computing framework leveraging
serverless programming. Subsequently this prototype serves as a basis for the evaluation.
This use case is briefly described as follows: Owners of a house want to minimize their
energy costs used for providing warm water. This can be achieved on the one hand by
regulating the heating cycles such that warm water is only heated when needed, and on
the other hand by providing only the necessary amount of warm water instead of heating
the water to maximum boiler temperature. In order to implement both optimizations, the
house residents’ warm water usage behavior has to be known in advance. Therefore the
prototype will apply machine learning on historic data to model and predict consumption
behavior and utilize real time analytics to take necessary actions on time.

We evaluate serverless programming in edge computing frameworks with respect to
multiple dimensions. The architecture is compared to a native cloud solution in terms
of quantitative and qualitative factors. Specifically, we examine financial aspects like
fixed and variable costs of both solutions for the service provider. In addition to the
economical interests data privacy is of great value nowadays and thus plays a central
role when comparing both paradigms. With respect to the described use case of water
heating optimization we finally discuss the possible savings resulting from the prototype
compared to nowadays typical systems.

1.4 Methodology

To reach the expected results defined in Section 1.3 the methodological approach consists
of four major parts. At first we conduct a literature review to gain knowledge in the
concepts of edge computing and serverless programming. Subsequently we apply this
knowledge when designing a serverless predictive edge analytics system, that is finally
implemented in a prototype of our IoT use case. On completion we extract conclusive
metrics during execution on our test environment — a genuine single-family home. Lastly
we evaluate the results and complete the thesis with a discussion chapter and future
research opportunities. The individual tasks are presented in the following:

3



1. Introduction

1. Literature review
In the first part we perform a literature review on the following topics: edge
computing, serverless programming and data analytics. For a better understanding
of the motivation towards the edge computing paradigm we additionally examine
the IoT, current IoT application design and the utilization of IoT in Smart Homes.
We further identify key challenges in state-of-the-art IoT application architectures
and resulting limitations. With regard to the literature review on data analytics we
narrow the search to the more specific topic of data analytics in IoT/Smart Homes.

2. Use case definition
The second part introduces a Smart Home IoT use case hat we base our evaluation
on. This use case has general elements of state-of-the-art IoT applications — sensors,
actuators, predictive analytics and real-time data analytics. For this reason the use
case can be used in the evaluation to argue about the serverless programming model
at the edge. We break the use case chapter down into an introductory explanation
of the current situation in household water heating systems to provide a common
basis for the rest of the thesis. We then highlight several problems of the present
situation and subsequently propose a solution.

3. Design
Based on an evaluation on state-of-the-art edge computing frameworks the third
part addresses the design and development of the prototype. The evaluation
compares IoT frameworks for the edge based on key characteristics like deployment
model, support of programming languages and the underlying security model.
The introduced use case will then be implemented with one of these frameworks.
Technically the prototype is outlined as follows: Each relevant device of the water
heating system will get its own sensor/actuator implementation, called a „ thing“
in terms of AWS IoT. These things communicate with a central controller that
temporarily stores received data in a local database. The controller also filters and
aggregates the data and finally sends essential data into the cloud. This collected
information is used on the one hand for predictive analytics on historic data and
on the other hand for real-time analytics. Both results in conjunction enable the
prediction of the next occurrence of warm water usage, the specific amount needed
at that time and moreover prevent non-essential heat up of water.

4. Evaluation
In the fourth and last part of the thesis we evaluate the prototype. We compare
several aspects of edge computing using serverless architecture and cloud computing.
In the evaluation we focus on multiple quantitative as well as qualitative aspects.
For that reason we add comprehensive logging in our prototype to gather significant
metrics. These metrics include the amount of sent messages between the devices,
used Internet bandwidth and detailed measurements of execution times. Using the
gained insights we discuss if proposed claims of the serverless programming model
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used in conjunction with edge computing hold true. Additionally we qualitatively
evaluate the paradigm and discuss inter-host migrations of edge applications and
edge device hardware replacement. Eventually we examine differences in data
storage placement and discuss data privacy issues.

1.5 Structure of the Thesis
After the introduction chapter, that states the motivation behind this thesis and the aim
of the work, we cover the fundamental concepts of IoT, Edge Computing and Serverless
Programming in Chapter 2 Background. These lay the foundation for the research work
presented in Related Work (see Chapter 3). We examine interdisciplinary research papers
in these topics, specifically research in edge analytics platforms that leverage the serverless
programming model. After having outlined the thesis’ contributing fields we define the
use case in Use Case: Elastic Heat (see Chapter 4). This use case presents a generalizable
IoT scenario that is used as a basis for the evaluation and encompasses typical elements of
an IoT application. It includes sensors, that persistently monitor the physical surrounding
and additionally requires a predictive data analytics component that instructs actuators to
act upon an application’s goal. In Chapter 5 Design we lay out the system’s architecture
that is intended to solve the stated problems from Chapter 4. Furthermore, we address
the development of our prototype and the consumption-oriented scheduling approach.
We also describe our machine learning model that is capable of forecasting hourly hot
water consumption required for accurate scheduling. Chapter 6 covers the Evaluation
of the thesis. Therein we describe the cloud reference implementation at the beginning.
Subsequently we compare the serverless edge analytics system to the cloud reference
implementation by previously defined characteristics. Then corresponding results are
presented and evaluated. A Discussion in Chapter 7 closes our thesis and summarizes
the essential results. In the end future research opportunities in the interdisciplinary
field of serverless programming model in edge computing are discussed.
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CHAPTER 2
Background

This chapter covers the basics of all related topics to this diploma thesis. We begin
with the vision of the IoT and necessary technologies to realize this vision. After that
we go over to a practical example thereof, the Smart Home, and the application of
analytical and predictive computations. Subsequently the edge computing paradigm is
introduced. It is an alternative approach to the existing cloud computing model, in which
computing resources are located geographically and/or logically closer to the end-user.
Finally we present serverless programming, a new cloud computing model inbetween
Software-as-a-Service (SaaS) and Platform-as-a-Service (PaaS).

2.1 Internet of Things
The IoT is a vision of ubiquitous computing, in which computing power is found in
any form and everywhere. The goal of ubiquitous computing was to reduce complexity,
demand of attention and isolation from social interactivity while interacting with PC’s
by creating an environment in which computers where seamlessly embedded in „the
complex social framework of daily activity“ [WGB99]. In [AIM10] Atzori et al. extract
three orientations in this vision of IoT. A things-oriented, an internet-oriented and a
semantic-oriented perspective.

1. In the things-oriented perspective researchers primarily focus on the integration of
everyday things into a common framework. Therefore they developed standards to
improve objects visibility, enabling traceability and the exchange of objects state
like its current location.

2. The internet-oriented perspective is concerned with the interconnectivity of things.
They promote the „Internet Protocol as the network technology for connecting
Smart Objects“ [AIM10] and therefore developed different lightweight variations of
the current IP to drive the IoT.
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2. Background

3. The semantic-oriented perspective deals with issues arising from the vast amount of
objects participating in the IoT. These include questions on how to uniquely address
these things, how to store the massive amount of information and furthermore how
to process or create meaning from this information.

Considering these three visions the „IoT can be considered as a global network infras-
tructure composed of numerous connected devices that rely on sensory, communication,
networking, and information processing technologies“ [TW10]. It enriches the traditional
internet, in which information was solely requested by humans and provided by web
services to a network in which global information is also autonomously provided and
consumed by a variety of appliances and electronic devices [WSJ15]. This shift in the
internet is additionally pushed by some existing technologies like Wireless Sensor Net-
work (WSN) and Radio-Frequency IDentification (RFID). In addition new low power
communication technologies allow power-constrained devices to be incorporated into the
IoT. This includes Bluetooth Low Energy (BLE), 6LoWPAN, ZigBee, RFID and Near
Field Communication (NFC).

With all those connected devices, ranging from appliances in industry to private homes,
the vision of ubiquitous and pervasive computing is close to realization. However there
are still many open challenges that need to be solved. The massive amount of data that
is generated by all those devices has to be efficiently stored and processed. Because
IoT devices usually have limited computational power, storage and energy [AWW18]
current implementations move control, storage and computational intensive tasks to the
cloud [CZ16, DGC+16]. The reason for that is cloud computing offers on-demand, virtual
unlimited processing power and unlimited storage capacity, thus is a perfect fit for the
ever-growing demand of IoT. This conjunction of IoT and cloud computing is termed
Cloud of Things [AKAH14]. Furthermore Want et al. argue in [WSJ15] that centralized
cloud services are easier to manage and maintain and also have the advantage of scale,
automatic backup of data and enforced physical security of closed off data centers.

2.2 Smart Home

Besides applying the concept of IoT in the industry to support and reduce costs in
manufacturing, its field of application also includes the domestic sector. One of the
most prevalent use case is home automation, also referred to as Smart Home. A first
definition of Smart Home or in general of Smart Environments was coined by Mark
Weiser, a forefather of ubiquitous computing in 1999. He defines a Smart Environment as
„a physical world that is richly and invisibly interwoven with sensors, actuators, displays,
and computational elements, embedded seamlessly in the everyday objects of our lives,
and connected through a continuous network“ [WGB99]. Back then the purpose of
a Smart Environment was to improve the way we live and interact with computers,
therefore the term „smart“ only referred to the integration of computing power into
homes and socioenvironment of residents.

8



2.2. Smart Home

Today in addition to this socio-technical view Smart Homes are also dedicated to simplify
life of its inhabitants, provide comfort and safety and reduce energy demand [RMD+06].
Aldrich presents a more up to date definition of a Smart Home in [Ald03]. He states
that it is „a residence equipped with computing and information technology which
anticipates and responds to the needs of the occupants, working to promote their comfort,
convenience, security and entertainment through the management of technology within
the home and connections to the world beyond“. Until now most of the existing consumer
Smart Home solutions try to solve these tasks by offering a single intuitive interface
for residents to change every aspect in homes according to their preferences [WRS+17].
Moreover the automation of home appliances happens only to a limited extent and is
achieved by preconfigured scenarios and the respective actions the system has to execute.
Typical scenarios are the management of space heating based on individual preferences
and weather, management of illumination depending on the time of the day and brightness
or saving of energy by automatically switching off unused devices.

2.2.1 Data Analytics & Machine Learning

In the recent years researchers focused on the realization of a truly automated home
and continue to make progress utilizing artificial intelligence techniques. Ricquebourg et
al. [RMD+06] claim Smart Home technology is not limited to turning devices on and off,
but rather monitors the internal environment and activities that are being performed.
For that purpose algorithms and statistical analysis methods from Big Data Analytics,
Machine Learning and Artificial Intelligence are used to build up knowledge out of mea-
sured physical information. Applied in Smart Home these techniques allow the prediction
of future actions conducted by inhabitants based on historical data and the forecast of
residents’ locations [WRS+17]. This data can be further used to automatically control
home appliances based on observed habits and expected whereabouts of inhabitants
rather than relying on a limited amount of preconfigured scenarios. Thus the notion
of „smart“ transitioned in the last years from being equipped with processing power to
being context aware and having the ability to fine-tune itself from observed behavior.

In addition to the algorithms that are used to predict future activities [AN06, WRS+17],
Smart Home applications also perform time series forecasting to anticipate future values in
temporal data [BBB+13]. Temporal data or time series refers to historical data measured
at equal time intervals. Examples thereof are measurements of outdoor temperature
measured every hour or hourly water consumption. For that purpose various machine
learning models have been developed [BBB+13, AAGES10, Die02]. One of these models
will be used in the prototype for this thesis to build the forecasting of warm water usage.
The reliability of such forecasting models mainly depend on the available predictors and
information granularity. Regularities in Smart Homes are „not only based on time of
day and day of week but rather are based on a large number of factors“ [Moz05]. For
that reason it is usually not sufficient to only sense the data you want to predict, but
also gather information the predicted value depends on. Furthermore the granularity
of temporal data determines what the system can achieve and how well it can perform.
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2. Background

Augusto et al. [AN06] state that in order to infer a trend it may be needed to view the
data in bigger interval of several minutes or days.

2.3 Edge Computing

As already pointed out in Section 2.1, IoT devices are typically resource constrained devices
with limited amount of computational power, battery, storage and bandwidth [AWW18,
YLL15]. Furthermore Atlam et al. [AWW18] state that the IoT suffers from performance,
security, privacy and reliability issues. The integration of cloud computing into IoT
solves many of these issues [AAA+17] but also implicates new challenges. Due to
the combination of cloud and IoT issues like high round-trip time or latency, network
bandwidth constraints, intermittent connectivity and new security implications have to
be payed attention to [AWW18, CZ16, DB16, VS17]. Besides these technical challenges
the cloud also implies problems from a user-centric perspective discussed in [GME+15].
Moving all personal and social data generated by IoT devices to centralized services implies
a loss of privacy. Moreover, having application logic reside in the cloud takes away control
over the system from users and delegates control to the centralized service [GME+15].

Subsequently, many researchers devoted themselves to develop a computing model that can
solve these issues. As a result, various computing paradigms have been proposed, among
them edge computing [SCZ+16], fog computing [BMZA12] and cloudlet computing [Sat17].
However, literature presents many different conflicting definitions. Some research works
clearly distinguish between edge and fog computing and argue that fog computing also
leverages computation resources inbetween the edge and cloud in addition to the limited
edge resources [VS17, DB16]. By contrast, others use edge computing as the umbrella term
and call fog and cloudlet computing different implementations thereof [DD17, APZ18].
Additionally, Shi et al. [SCZ+16] interpret the edge and fog computing paradigms equally
and state that both terms can be used interchangeably. Likewise, Yi et al. [YHQL15]
state that all of them describe eminently similar computing models that lack a common
definition that abstracts all. Because most papers in this scientific field describe profoundly
the same computation model no matter whether the authors discuss edge or fog computing,
to the best of our knowledge, we adopt Shi et al.’s interpretation and use both terms
interchangeably throughout this thesis. Consequently, we use the following definition of
edge/fog computing by Bonomi et al. [BMZA12]: „Fog computing is a highly virtualized
platform that provides compute, storage, and networking services between end devices
and traditional cloud computing data centers, typically, but not exclusively located at the
edge of the network“

The fundamental aspect of the edge computing paradigm is that computing should
happen close to the data sources. [SCZ+16] Nevertheless it is not a substitute of the
cloud, but rather thought of as an extension of the cloud to the edge of the net-
work [AWW18, BMNZ14, YMSG+14]. The main characteristics of the fog computing
paradigm are mobility support, location awareness, widely geographically distributed
heterogeneous nodes and low latency [BMNZ14]. Therefore an edge computing plat-
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form should implement multi-tenant distributed deployment of applications across the
path between the edge and the centralized cloud. Moreover the platform should handle
„policy-based orchestration and provisioning for scalable and automatic resource man-
agement“ [BMNZ14]. This imposes the usage of virtualization techniques that isolate
applications and enable inter-host migrations [BMNZ14]. Yanuzzi et al. claim that
lightweight containers like LinuX Containers (LXC) [Lxc], Docker [Doc] and CRIU [Cri]
are promising approaches especially in the context of IoT [YMSG+14]. In contrast,
others propose the serverless architecture as an excellent model for infrastructure ab-
straction [NRS+17, dLGL+16, MBS+17]. Above all it also requires appropriate network
virtualization like Software Defined Networking to support multi-tenant application
deployments.

According to the stated definition, data storage, caching as well as data processing
and analytics is shifted to the edge rather than being performed in a centralized
cloud [BMZA12, SCZ+16, YMSG+14, DB16]. Moreover because it extends and doesn’t
substitute the cloud, components of edge computing applications run both in the cloud
as well as in the edge devices, inbetween data sources and cloud data centers [DGC+16].
Alternatively to the dedicated providers’ fog nodes, the fog layer also consist of com-
puting resources from end users that want to share spare computation and storage
resources of their private clouds, smart gateways or routers in return for compensa-
tion [YLL15, VRM14]. Figure 2.1 depicts the edge computing paradigm and the interplay
between the edge and the cloud. Bonomi et al. describe the fog architecture as hierarchi-
cally structured from the edge to the cloud nodes in terms of information granularity
and response time [BMNZ14]. The lowest level — the data producers / data consumers
— perform real-time analytics on locally available data. Each further tier increases the
scope of consumed data, e.g., data of a small city or later a geographical region, up to
the global view at the cloud level. Moreover with each level latency between end devices
increases as well.

The resultant benefits of edge computing are summarized in [DGC+16, CZ16, DD17].
Moving computational resources closer to the edge provides location-sensitive information
of connected edge devices and thus enables local data processing based on geographical
location [SCZ+16, AWW18]. Additionally it lowers latency of connections between end
devices and edge computers — nodes that provide computational resources close to
the edge [RAD] — and facilitates real-time response for time-sensitive applications.
While the edge of the network changes due to the IoT from data-consumer only —
retrieving information from servers — to also produce a compelling amount of sensory
data [SCZ+16], Cisco predicts an increase in connected devices to around 50 billion devices
by the year 2020 [Eva11]. Pushing the tremendous amount of data generated by all these
devices to the cloud requires considerable network bandwidth. Edge computing enables
„hierarchical data processing along the Cloud-to-Things continuum“ [AWW18] hence is
able to filter and analyse generated data close to the edge before ever reaching the cloud.
This hierarchical data processing drastically decreases traffic sent to the centralized cloud.
As a consequence the fog provides scalability via edge analytics, since it also distributes
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Figure 2.1: Edge computing paradigm [SCZ+16]

computational tasks between fog nodes and minimizes the cloud’s workload. Additionally
an edge computer is able to manage sporadic cloud service outages due to network failure,
cloud failure or directed DOS attacks by operating autonomously thus masking cloud
service outages. Moreover the fog node is also capable of executing resource-intensive
tasks offloaded from resource-constrained devices on intermittent network connectivity.

2.4 Serverless Programming

As already stated edge computing requires a virtualization technique to isolate appli-
cations, enable multi-tenancy and live migration between nodes. In addition to the
proposed options by Yanuzzi et al. [YMSG+14], LXC [Lxc], Docker [Doc] and CRIU [Cri],
the work in [NRS+17] introduces the serverless programming model being a superior
alternative. The authors argue that the serverless model has significant advantages in
the context of cloud and edge computing because both try to reduce management and
development effort in large-scale heterogeneous distributed networks.

The serverless computation is the latest derivative in the continuous development of
server virtualization techniques and deployment of cloud applications [CIMS17]. Each
progression increased the level of abstraction, from deployment on bare-metal machines
to virtual machines and later to lightweight containers like LCX or Docker [HSH+16].
The reason for that is the difficulty in server configuration and management, furthermore
efficient scaling is challenging because of considerable startup time [HSH+16]. The
different types and evolution of deployment types are shown in Figure 2.2. The rightmost
is the serverless programming model, also referred to as Lambda model because of AWS
Lambda [Amac]. Compared to the other types serverless computation enables sharing
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of the runtime across applications in addition to the operating system for containerized
applications and hardware in a virtualized environment.

Figure 2.2: Evolution of sharing [HSH+16]. Gray layers are shared.

In order to allow applications to use a shared runtime, they are decomposed into slim
functions that are triggered by events. For that reason this deployment model is also
called Function-as-a-Service (FaaS) following Infrastructure-as-a-Service (IaaS), PaaS
and SaaS cloud offerings [CIMS17]. Therefore „instead of thinking of applications as
collections of servers, developers instead define applications with a set of functions with
access to a common data store“ [HSH+16, BCF+17]. These functions are stateless and
thus require a shared data store for persistent information across multiple executions.
During deployment of functions developers specify the desired runtime environment in
which the code gets executed. Typically cloud providers only offer a limited amount
of different environments like specific versions and programming languages. For that
reason developers are forced to implement the business logic using one of the provided
environments. Events trigger the execution of functions and mostly occur within the
cloud provider’s services [MB17]. This enables developers to build applications spanning
over multiple cloud services.

Figure 2.3 depicts an example of a simple serverless application taken from [CIMS17].
The illustration shows a function whose single responsibility is to create thumbnails from
uploaded images. In this scenario the image and thumbnail databases are object storages.
On image upload the image database publishes a „new image“-event that triggers the
user-defined function. Because functions are stateless they have to write the result back
to a common data store, in this example the storage for the generated thumbnails. To
deploy such „serverless application“ platforms must provide a way to manage these
functions, as well as the association with events that trigger them.

Figure 2.3: Example: Image processing using serverless programming [CIMS17]
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This paradigm yields many benefits for developers as well as for cloud providers. Because
functions in Serverless programming are stateless, application components can be scaled
individually [MB17]. Moreover it enables scaling to zero, which consequently reduces
costs for cloud applications because functions are billed by execution time and memory us-
age [Eiv17, CIMS17]. Another benefit of statelessness is the capability of cloud providers
to transparently optimize and update the underlying system without service interfer-
ence [BCC+17]. FaaS abstract away most operational concerns, thus freeing developers
from system maintenance, considerations on scalability, elasticity and latency. Conse-
quently developers can focus on business logic implementation rather than thinking about
necessary cloud resources or virtual machine/container provisioning [BCC+17]. From a
cloud provider’s perspective being responsible for the underlying system allows efficient
optimization and management of cloud resources, thus also reduces operational costs.
Furthermore because user-defined functions run in predefined runtime environments they
control the entire development stack and thus further improve manageability [CIMS17].
However FaaS providers may only support a limited amount of runtime environments,
hence restricting developers in their choice of programming languages [BCC+17].

All these benefits are likely to hold true also for the serverless edge paradigm, hence
it is thought of a good computing model for edge analytics. Especially beneficial is
the lightweight nature of serverless functions, because it minimizes the overhead of
virtualization compared to virtual machines and thus enables the execution on resource
constrained IoT devices. Additionally most IoT applications are event-driven and
perform actions on data arrival, which is a key aspect of the Serverless computation
model [CIMS17].
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CHAPTER 3
Related Work

This chapter discusses related research work surrounding the thesis’ scientific fields. For
that reason we outline the scientific fields to which this thesis contributes at the beginning
of this chapter. Subsequently we introduce related work to give a fundamental overview
of recent scientific work on these topics. Conclusively the divergence between this thesis
and the presented work is discussed.

We have previously described the thesis’ intentions in Section 1.3. The central designated
aim of this work is a comparison between the nowadays commonly implemented cloud
computing paradigm within the IoT context and modern edge computing architectures.
Moreover we want to focus on the serverless programming model leveraged by recent
edge frameworks. The use case introduced later in Chapter 4 by which we evaluate the
paradigms is a general real-world IoT smart home scenario that requires data analytics
on historic information as well as on real-time multi-sensory input. Despite involvement
of machine learning algorithms in this particular use case we will not cover a comparison
of available algorithms and an evaluation of the efficiency thereof. This summary of the
thesis’ aim yields several scientific fields to which this work contributes:

1. Edge computing

2. Serverless programming

3. Edge analytics

4. IoT / Smart Home

3.1 Serverless Edge Data Analytics Platforms
All of these scientific areas are reasonably novel, therefore receive great research effort.
Numerous work about the serverless programming model within edge computing data
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analytics applications have been published in the recent years. Among them is [NRS+17]
by Nastic et al.. The authors propose a „unified cloud and edge data analytics platform“
that implements the serverless programming model at the edge. Key aspect of the platform
is a serverless stream model in which user-defined functions represent transformation
functions along the data-stream. „Contracts“ enable the composition of these user-defined
analytic functions to complex stream processing applications. For that reason they
implement a 3-tier architecture consisting of a function wrapper layer, an orchestration
layer and a runtime mechanisms layer. The former layer takes user-defined functions,
adds a thin API and a state management component and then wraps each into a Linux
container. This enables to individually scale these functions as needed. The orchestration
layer interprets the contracts that specify deployment, placement and other runtime
mechanisms. This layer decides how to deploy and execute the described function
topologies using the mechanisms by the runtime mechanisms layer. The serverless stream
model grants several benefits. First of all the serverless programming model provides
a high abstraction of the execution environment so that user-defined functions can be
deployed on any node from the edge to the cloud without effort. Consequently this
uniform development model simplifies automatic orchestration of analytics functions in
the heterogeneous edge infrastructure.

A similar approach was implemented by Lara et al. [dLGL+16]. They developed a
research platform EdgeScale to explore the edge computing paradigm. Therefore they
also adopted the serverless computation model. However in contrast to the work of Nastic
et al. [NRS+17], the authors of EdgeScale did not pursue the idea of a serverless stream
model. Instead they argue that the serverless programming paradigm supports „code
and data mobility by enforcing a clear separation between computation and state“ and
is thus an ideal computing model for the edge. Furthermore they state that stateless
handlers typically are small and so easily migrated and executed on any node running
EdgeScale. Analogous to the above data-stream analytics platform it also supports
automatic deployment of applications and migrations between nodes with the overall aim
of optimizing access latency and bandwidth consumption. However in addition EdgeScale
further supports hardware acceleration services for, e.g., faster video and image analytics.

Similar to the two previous research works Mehta et al. [MBS+17] leverage the server-
less programming model to ease „distributed application development, deployment and
management on geo-distributed resources spanning from small constrained devices to
servers in cloud Data Centers (DCs)“. Hence the authors developed Calvin, a framework
for distributed IoT applications to overcome this research gap. The developers thereof
implemented a variation of the serverless computation model for the IoT edge which they
named Actor-as-a-Service (AaaS). Contrary to serverless functions the AaaS features ac-
tors that represent individual application components like sensors, actuators or processing
logic. However both functions and actors are stateless and self-contained. Actors can be
composed to analytic applications by connecting them in a dataflow manner [EJ12]. For
that reason another difference is that actors are triggered by tokens on their input ports
or events from the hardware. Each participating node is equipped with the Calvin run-
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time, the execution environment, that provides platform abstraction and data transport
facility. The Calvin framework implements automatic actor placement decision-making
on the distributed execution environments based on actor requirements, e.g., a particular
attached sensor and runtime capabilities. Furthermore it also performs auto-scaling of
actors, which includes replication and migration thereof to different runtimes.

3.2 Edge Data Stream Analytics
In addition to the research work on edge data analytics platforms that aim to extend the
serverless computing model to the IoT edge, researchers also explore more general IoT
data stream analytics approaches with edge computing. One recent work in this field
is [XHF+17]. According to the researchers of this paper application development in the
context of IoT requires Edge Analytics-as-a-Service (EAaaS). Their conclusion is based on
the prevailing high development effort for edge analytic logic along with immense expenses
for manual management and monitoring of bespoke edge applications / infrastructure.
Even simple analytic tasks as data stream aggregation require considerable expenditure.
As a consequence they developed a platform that supports easy deployment of data
analytic functions in a programming-free way. Their implementation is split up into cloud
and gateway side components. A per-organization MQTT broker for message transfer,
a real-time analytic service that allows management of rule-based analytic models and
on top a RESTful API form the cloud side of the EAaaS platform. The counterpart is
the Edge Analytic Agent consisting of a gateway controller, the core rule-based analytic
engine and device adapters. Key aspect of the platform is the unified rule-based analytic
model that provides a common formalization for real-time analytic logic. It facilitates
easy utilization also for users that are not yet familiar with programming to realize
analytic business logic. Moreover the model acts as a common analytic protocol that
works on both cloud and edge nodes. Xu et al. extracted four common stages within
analytic logics that are applied sequentially and specified in the analytic model: the
data source and the required fields of interest for the particular analysis; various data
transformations like mathematical functions and time-window based aggregations; rule
conditions (data filtering); and subsequently actions that get triggered by the rule-hit.
Actions can be user-defined local actions to third-party services or forwarding of events
to the cloud service.

A different approach to edge analytics is taken by Renart et al. [RDMP17], however
both [XHF+17] and [RDMP17] share the idea of an abstraction of the analytics logic.
In their article they propose a data-driven stream processing framework that allows
users to define stream-processing workflows using conditions on the content of the
streaming data. Basically the introduced framework consists of a peer-to-peer network
connecting distributed heterogeneous resources — sensors, actuators and computational
resources. Each computational resource runs a stream-processing engine responsible for
applying user-defined workflows on arriving data. On top of the peer-to-peer network is
an Associative Rendezvous Messaging Substrate (ARMS) for content-based decoupled
interactions based on [JSMP04, JSP06] to discover available resources, data sources and
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services. Applications / Users interact with the network using a programming abstraction
that defines „content-based interactions“ evaluated at runtime. In a first step the
application requests available rendezvous points and selects one based on its requirements,
e.g., low latency. Afterwards it can create/upload complex analytic workflows, also
referred to as topologies that are executed on sent data. Every message in the network
consists of a profile, a reactive behavior and optionally additional data, location and
a topology. Profiles are either „interest profiles“ or „data profiles“ that are matched
against each other. If a match occurred respective actions are executed. On an incoming
message the rendezvous point performs service discovery to identify relevant services, data
sources and computational resources taking user information — location, preferences, etc.
— into account. This gathered information is then used by the routing component to
„transparently decide where to perform the required computation“. Renart et al. argue
that this approach enables location-aware computation of analytic workflows at the edge
and furthermore is able to allocate streaming computations considering client location
and data sources.

All these research articles tried to reduce the complexity of development and deployment
of edge applications and also management and provision of distributed heterogeneous
nodes along the path between the edge and the cloud. They mainly differ in the
level of abstraction provided for developers / end users. [XHF+17] primarily provides
a programming-free experience to end users, whereas [NRS+17, dLGL+16, MBS+17]
provide a stripped down programming abstraction in the form of serverless functions or
actors. A tremendous difference to these articles represents the approach of [RDMP17]
that utilizes a peer-to-peer network consisting of edge and cloud nodes, and a well-defined
message protocol to enable data-driven edge analytics. In contrast to these research works
other scientific efforts in this field try to implement IoT scenarios in an edge computing
fashion and evaluate improvements in the particular use case.

3.3 Edge Computing Use Cases

Rahmani et al. [RGN+18] and Nikoloudakis et al. [NPM+16] implemented edge computing
systems in the fields of e-Health and Ambient Assisted Living (AAL). The former is
a system for health-monitoring of patients in hospitals or homes. Medical personal
should be notified if a patient’s status gets worse and moreover they should be able
to view real-time information like electrocardiography (heart rate monitoring) data.
Patients are equipped with body-area or implanted sensors transmitting their data to
a close gateway using various communication protocols, e.g., Bluetooth, Wi-Fi, ZigBee
or 6LoWPAN. These gateways perform data aggregation, filtering and dimensionality
reduction. Afterwards analyzed data is sent to the cloud for broadcasting and further data
analytics. This data is also used for long-term medical studies. Patients move around in
the buildings thus the smart gateways have to support device discovery and mobility in
order to avoid data loss and service interruptions. The smart gateways are also capable
of temporarily storing sensors’ and users’ data and executing local actions. These actions

18



3.3. Edge Computing Use Cases

include information streaming to nearby client devices, controlling of medical actuators
and sensor network reconfiguration.

The aim of an AAL systems is the support of elderly and individuals with activity
limitations to on the one hand increase quality of life and on the other hand to also
reduce health and social care costs. In [NPM+16] the AAL application’s task is to alert
local authorities and nearby volunteers in case a user leaves a certain geographical area
around his/her home and is thus declared unsafe. The alerting service uses a fog node
equipped with a 5G small-cell Wi-Fi interface in each home and a wearable embedded
device worn by the user. The user’s distance to the cell is then periodically calculated
based on the received signal strength indicator (RSSI) between the wearable device and
the cell. As long as the RSSI can be determined the user is considered safe. Otherwise the
user’s wearable device connects to the cellular network and transmits information about
connected cellular base stations to perform location triangulation. Afterwards the nearest
local authority and nearby volunteers will be notified about the user’s whereabouts. The
implementation is composed of five services that are coordinated by an orchestration
entity deployed in the cloud. A service logic component forms the central unit and models
the above described business logic, and interacts with all other services. A positioning
service performs the user’s distance calculation. A location-to-service translation service
computes the nearest public safety answering point based on the transmitted cellular
information. A profiling service encapsulates all stored personal user’s information and
implements an access control scheme to restrict information for authorities and volunteers.
As long as a user stays within the predefined boundaries the architecture ensures that all
processing is done locally and no information has to be transferred to the cloud, moreover
personal information is protected from unauthorized access. Experiments showed that
the time until a response from either an authority or a volunteer is below five seconds on
average.

Both articles showcased the viability of the edge computing paradigm applied in the Smart
Home. But instead of building the applications on top of a generalized edge framework
they implemented a bespoke fog architecture especially tailored to their requirements.
So the main difference between this thesis and these use case evaluations is the usage
of a common edge analytics platform that provides the low level tools required for the
edge computing paradigm and enables developers to focus on the analytics logic itself.
Furthermore their evaluation is mostly based on the usability of the final product rather
directly comparing an edge computing approach to a cloud native implementation. In
contrast thereof this thesis combines all of the introduced related work by evaluating a
Smart Home use case implemented with a serverless edge analytics platform.
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CHAPTER 4
Use Case: Elastic Heat

To examine the serverless computation model in the edge computing paradigm we define
a Smart Home use case that is composed of typical IoT components so that evaluation
results can be universalized across IoT smart home applications and requires computation
and storage at the edge. First, we outline the implemented use case, called Elastic
Heat, in this chapter. At the beginning we explain the initial situation and consequent
shortcomings of a conventional water heating system. Then we present ideas to improve
and resolve the identified drawbacks. Subsequently anticipated benefits are listed that
will also be explored in Chapter 6.

Figure 4.1: Conventional district heating [WSLW15]

The use case we implement throughout this thesis is about household water heating
systems, more precisely about drinkable water heating used for tap water and showering.
In Austria 21% of yearly heat generation are produced by district heating cogeneration
plants, according to a survey of the Austrian Ministry of Economy [Bun17]. Moreover
district heating gains popularity and increases every year. The schematic of a conventional
district heating system is shown in Figure 4.1. Usually the heat source is a cogeneration
plant that supplies households connected to the primary pipeline in a particular area.
Each household is equipped with a heat exchanger and a secondary pipeline that in
turn is connected to internal heating systems like boilers, radiators or underfloor heating
systems. The heat exchanger is the central control unit that ensures that each of these
systems has exactly the temperature as configured.
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4.1 Problems

In case of a boiler the heat exchanger acts on a predefined plan to check its temperature
if it is below specified threshold and starts heating accordingly until a fixed setpoint is
reached. This almost static configuration in combination with mostly irregular water
consumption raises several problems. The imaginable extremes with this configuration
possibilities are to check the temperature either only once a day or on the contrary all
day long. In the former case it is very likely to run out of warm water before the end of
the day despite additional warm water may be needed. This is because on the one hand
a boiler can store only a limited amount of warm water at a time and on the other hand
the temperature of the water inside is also capped to increase boiler lifetime. In the latter
case the boiler constantly heats up after losing some thermal energy and so maintains its
temperature even through nights when almost no warm water is needed. Additionally
a boiler usually loses temperature to the surrounding environment despite no water is
drained. At our test object we measured a loss of 9.6◦C per 24 hours. Therefore to cover
the daily water consumption, minimize constant heating and temperature losses usually
a setting inbetween these two extremes is desired, but irregular activities like taking a
bath hamper finding the best scheduling.

Additionally a trend towards sustainable energy systems in the private sector has emerged.
Many residential buildings and homes are equipped with a photovoltaic system (PVS) or
solar panels. But despite the eminently overall positive ecological impact some downsides
exist that can be further improved. On sunny days a PVS generates more power than
a home can consume and thus must feed the surplus into the electricity grid. However
power providers normally enforce an upper limit on power fed into the electricity grid,
therefore exceeding energy is wasted. So to prevent this behavior rechargeable batteries
can be used to accumulate surplus energy or the energy can additionally be used to heat
water in order to preserve otherwise lost energy. Yet again this is constrained by the
battery capacities and a tradeoff between temperature and attrition rate: the higher
the boiler temperature the higher the attrition due to e.g., calcification. Especially in
combination with the static configuration of a heat exchanger, that is not capable of
responding to external circumstances or a secondary heat source, the boiler has often
already reached the desirable temperature, hence may block heating by surplus energy.

4.2 Proposed Solution

Driven by the house owners’ desire to minimize their energy costs we propose a sys-
tem that replaces the static time-based scheduling by a dynamic consumption-oriented
scheduling called Elastic Heat. Moreover the proposed system should be capable of energy
minimization fed into the electricity grid and thus improve sustainable energy efficiency.
The fundamental concept of our approach is based on two principles:

1. Heat only when warm water is consumed
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2. Heat only as much as needed for consumption

So instead of keeping the boiler at a certain temperature throughout the day, the system
should be aware of when and how much water is needed. Using this knowledge we
are able to schedule the next heating treatment accordingly and thus minimize heating
when warm water is actually consumed. Furthermore the power used to heat the water
is also drastically reduced as the boiler only heats exactly the right amount of water,
instead of heating until reaching a fixed setpoint. As a consequence the average boiler
temperature is lowered, thus it is likely to cut overall energy / costs for water heating.
Lower average boiler temperature also results in less temperature loss and above all
ensures that water can be heated more frequently by the surplus energy of the PVS.
This in turn decreases energy fed into the global electricity grid and further facilitates
energy-self-sufficiency. Proper scheduling also means that heating is delayed as much as
possible while guaranteeing sufficient warm water for inhabitants. This delay ensures that
the PVS is more likely to provide the energy to heat the water, because some scheduled
heatings can be skipped if the PVS has already heated the water sufficiently in the
meantime.

Figure 4.2 depicts the basic structure of the system’s hardware so that the above-
mentioned concept can be implemented. In addition to the essential district heating
system components, the PVS adds photovoltaic panels on the roof, an inverter that
performs DC-to-AC conversion and also implements energy management and a heating
cartridge mounted at the boiler. Our testing site additionally has a rechargeable battery
to temporarily store surplus energy. In order to implement both optimization principles
the house residents’ warm water usage behavior has to be known in advance. Therefore
we equip the home appliances with IoT devices that provide sensing and actuation. These
devices should provide the necessary information, e.g., boiler temperature and warm water
consumption, that enables our consumption-oriented scheduler. The system then applies
machine learning techniques on this gathered historic data to model and predict future
consumption behavior to schedule necessary heating treatments. In addition real-time
analytics is utilized to take necessary actions on time. Both results in conjunction enable
the prediction of the next necessary water heating treatment, the specific amount needed
at that time and moreover prevent non-essential heat up of water.

The heating system is one of the residencies’ core systems that provide essential services
for its inhabitants. For this reason any management application has to be overly resilient
against external influences. Our specified IoT application has to handle limited internet
connectivity, slow bandwidth or entire connection outages but also internet service
failures. In addition missing measurements from sensors may downgrade forecasting
capabilities. Specifically missing real-time data from sensors may completely prevent
accurate scheduling. Besides these technical challenges such a continuous monitoring
system also faces ethical obstacles. Complete logging of water usage behavior and
accompanying information contain highly private data that have to be protected. However
providing personal consumption forecasting prevents data anonymization to a certain
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Figure 4.2: Home equipped with district heating and photovoltaic system

degree. Because of these unique challenges the presented use case is a prime example
for edge computing. Extending the cloud to the edge facilitates high service availability
despite limited internet connectivity or slow bandwidth. Furthermore having a central
edge gateway that acts as local datastore at the same time also prevents service failures
during connection or cloud service outages. It also minimizes data privacy issues because
sensitive information is kept locally, whereas globally shared data can be completely
anonymized.
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CHAPTER 5
Design

The use case we presented in the previous chapter contains some unique challenges
for supporting systems. High availability and resilience against external factors are
crucial for non-stop operation. Moreover these systems process substantial private data
about inhabitants’ preferences and actions. Special attention has to be paid to prevent
unintentional data disclosure. In this chapter we present our design to address these
challenges. We use one of the recent edge computing frameworks leveraging a serverless
architecture. For that reason we have a look at the variety of existing frameworks and
perform a brief evaluation. Afterwards we proceed with the description of the basic
architecture driven by the selected framework on the one hand and certainly by the
use case itself on the other hand. Having drafted the components of our system we
continue with the creation of our machine learning model. In this section we encompass
the necessary data we have to gather to be able to make a reasonably accurate prediction
of water consumption in the next time period. Eventually we illustrate the consumption-
oriented scheduling approach that forms the core system component.

5.1 Edge Computing Framework

The emergence of the edge computing paradigm in the form of cloudlets [SBCD09] and
fog nodes [BMZA12] has fostered the development of frameworks that promote analytics
at the edge. There exist many providers offering services in the field of IoT device
fleet management and data processing, but only a few adopted their products to enable
computing at the edge in close proximity to the devices. In this context we focus on the
most elaborated frameworks namely AWS Greengrass [Amaa] and Microsoft Azure IoT
Edge [Micb]. IBM Watson IoT Platform Edge [IBM] is listed for the sake of completeness,
but because it is still in limited preview at the time of writing and thus lacks a lot of
online resources and information it is not discussed in detail. Other IoT service providers
exist that also have a device gateway in place, but only for the purpose of integrating
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AWS Greengrass Microsoft Azure
IoT Edge

IBM Watson IoT
Platform Edge

Release Date June 2017 May 2017 March 2018
(Preview)

Business Logic
Deployment
Model

Serverless
Functions using
AWS Lambda

Docker Containers
+ Azure Services

Docker Containers
+ Edge Services

Function/Module
SDKs

Java 8, Python 2.7,
Node.js 6.10

C, C#, Java,
Node.js, Python

–

Data Routing
Mechanism

MQTT topic
subscriptions

Subset of IoT Hub
query language

–

Device SDKs Embedded C,
JavaScript, Arduino
Yún, Java, Python,
iOS, Android, C++

C, C#, Java,
Node.js, Python,
iOS

–

Device Security
Model

TLS with X.509
certificates

TLS with
symmetric keys +
X.509 certificates

TLS with token
authentication +
X.509 certificates

Table 5.1: Comparison of Edge Computing Frameworks

things using communication technologies other than ethernet. The frameworks from
AWS, Microsoft and IBM allow the deployment of application specific custom code on
the edge gateway. AWS Greengrass fully adopt the serverless architecture for the edge
gateway, whereas Microsoft Azure IoT Edge and IBM Watson IoT Platform Edge rely
on containerization of edge modules/services. Table 5.1 summarizes the key differences
between the frameworks which we discuss in this section.

The basic building block of these frameworks is the concept of a gateway deployed at the
edge whose main task is to facilitate device connectivity through a configurable message
broker by means of data routing mechanisms. Furthermore the frameworks provide a
way to remotely deploy functions or modules via a platform hosted in the cloud. The
arrangement and the interaction of different functions/modules are controlled by the
message broker by routing messages inbetween these components. Another feature these
frameworks have in common is the support for device shadows also called device twins.
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5.1. Edge Computing Framework

A shadow is a virtual copy of a device’s state and thus abstracts the actual sensor or
actuator using persistent message queues. Basically each IoT thing subscribes to its
shadow topic and listens for published messages. The persistent queue allows devices
to become offline without affecting other communicating things. As soon as it is online
again it receives the latest shadow state pushed to the queue. This has the advantage
that functions and IoT devices are highly decoupled. A software developer does not
have to care about the receiving device’s state. Instead the message broker takes care of
retransmitting data when the device comes online again.

In the leading paragraph we talked about aspects the frameworks share, now we focus
on things they handle differently. The first and most important aspect we have a look
at is their deployment process of custom business logic. AWS Greengrass leverages the
AWS Lambda [Amac] service. It is possible to create an AWS Lambda function, upload
desired code and deploy it to the edge gateway - the Greengrass Core. The core takes
care of provisioning and spawning the runtime environment for the functions. At the
time of writing runtime environments for Java 8, Python 2.7 and Node.JS are supported.
Microsoft Azure IoT Edge uses Docker containers as deployment units on their gateway
devices. The framework itself is also shipped in multiple Docker containers. Besides
the core software Microsoft Azure IoT Edge further provides certain dockerized Azure
services like Azure Stream Analytics [Micc] or Azure Functions [Mica] to be used as
modules. Custom modules can be implemented in C, C#, Java, Node.JS and Python.

The composition of all deployed functions/modules to the actual business logic is done
by the message broker defined by certain routing mechanisms. In AWS Greengrass these
routes can be defined by so called subscriptions which have a source and a target endpoint.
Furthermore these subscriptions can be filtered upon MQTT topics. Besides reserved
predefined topics for amongst other things device shadows, topics can be arbitrarily
chosen. Microsoft Azure IoT Edge uses a subset of the IoT Hub query language for the
purpose of data routing. They provide similar functionality but additionally support
data filtering.

The central part of IoT applications form the actual things — sensors and actuators.
Support for various programming languages is thus essential to such frameworks. The
AWS Greengrass underlying AWS IoT service has support for Embedded C, JavaScript,
Arduino Yún, Java, Python, iOS, Android and C++. So far only SDKs in C++ and
Python have been updated to directly support AWS Greengrass. The update comprises
a feature called Greengrass Discovery Service required to retrieve host information
and certificates of the Greengrass Core. So when using the other SDKs someone has
to implement the Greengrass Discovery by oneself, utilizing the Greengrass Discovery
RESTful API. In contrast Microsoft Azure IoT Edge provides SDKs for C, C#, Java,
Node.JS and Python.

The things in IoT are typically placed in untrusted environments, which opens another
attack vector for intruders. To mitigate such attempts the IoT system acts on a security
model. This model specifies how parts of the system interact with each other, how they
can authenticate to further be authorized for certain actions. In AWS Greengrass each
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device has a unique X.509 certificate which is used to establish a TLS connection between
the different devices, the Core, or the IoT cloud. Furthermore each certificate has one
or more policies attached. These policies authorize the certificate holder for certain
actions on certain resources. The same hold partially true for Microsoft Azure IoT Edge.
Here policies are called permissions and besides support for X.509 device certificates, the
service also supports TLS connections with symmetric keys.

In summary, both Greengrass and Azure IoT consist of almost identical building blocks
and provide essentially the same features. The most fundamental divergence between
them is the deployment model. AWS Greengrass fully leverages a serverless programming
model, whereas Azure IoT Edge uses containers. This implies that Azure IoT Edge grants
more freedom to the developers since they are not tied to any runtime environment as it
is the case with serverless functions. On the contrary building containers is more time-
consuming and requires domain knowledge. Besides the deployment model, frameworks
also have to provide SDKs for functions/modules to interact with edge devices. At
the moment Azure IoT edge offers SDKs for more programming languages than AWS
Greengrass and also has a more advanced data routing mechanism, supporting routing-
decisions based on transmitted data. In contrast AWS Greengrass implements more IoT
device SDKs, enabling more diverse things in different languages to connect to the service.
But these differences are only nuances and basically the decision streamlines to familiarity
of development teams with a cloud providers and quite likely the existence of in-use cloud
infrastructure. Because AWS Greengrass fully incorporates the serverless architecture we
implement our Elastic Heat use case, introduced in Chapter 4, using AWS Greengrass.
However, it has to be stated that Greengrass and Azure IoT share essential architectural
aspects and components. For this reason the decision for a certain framework does not
significantly influence the fundamental design of our system. Moreover, the design is
generalizable and can be applied to any serverless edge platform.

5.2 Architecture
Our application’s meta-architecture is predetermined by the AWS Greengrass framework
which combines IoT devices to so called Greengrass Groups (GGGs). Each group
encapsulates the configuration of a Greengrass Core (GGC) device and its associated
IoT devices that are interconnected via a local area network. A reasonable architecture
for serverless predictive analytics at the edge in Smart Homes is depicted in Figure 5.1.
The illustrated architecture represents an individual GGG. Mapped functions build the
predictive analytics system’s core components. These consist of one or more functions
that are responsible for persisting sensor data and perform initial data processing
steps. Additionally a regressor and predictor function perform model training as well
as forecasting. Supplementally a scheduler can be used to make decisions based on the
forecast and orchestrate IoT devices or additional functions to act accordingly. The
scheduler then instructs executor functions to put the planned actions into practice. The
depicted cloud segment is globally available to all existing groups. In an edge computing
manner IoT devices of a GGG communicate with the locally available GGC instead
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of directly transmitting data to the cloud. Any connection and transmission of data
between devices and the cloud leverages the Message Queueing Telemetry Transport
(MQTT) protocol characterized by lightweight and efficient design.

CloudGreengrass CoreIoT Devices

Executor

Scheduler
Predictor

Regressor

SensorStore

Figure 5.1: Fundamental architecture of a serverless predictive analytics platform at the
edge. Implemented in Elastic Heat.

5.2.1 Elastic Heat Components

Our Elastic Heat system is based on this generalized architecture and comprises all func-
tions from the fundamental predictive analytics architecture. The Greengrass framework
provides two types of functions:

• Event-triggered

Event-based functions are triggered by certain events that occur during the system’s
runtime. An event can be an IoT message from a particular device, on a specific
MQTT topic or directly invoked from within another function running on the GGC.

• Long-living

These functions are immediately invoked on deployment or startup of the GGC.
For this reason they are suitable for continuous workloads and periodic tasks that
are independent of events.

The GGC provides all required functionality to remotely deploy these functions with
orchestration information for a GGG from a cloud platform. As shown in Figure 5.1
the Elastic Heat system is composed of five functions running on a GGC. Some of these
connect to a local data storage, specifically a locally running database and the local
filesystem. Any function executed on a GGC can request real-time data from associated
IoT devices, invoke other local functions and also forward data to the AWS IoT cloud
service as long as it is allowed by the subscriptions in the GGG orchestration information.
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SensorStore

The first function, the SensorStore, is responsible for persisting data from the sensors
required for the machine learning model. All sensory data that belongs to the same
machine learning model instance have to share the same timestamp in order to be
identified as an instance in our Regressor function. For that reason we designed a
long-living function to actively collect the data from the various devices in a specified
interval instead of letting the function be triggered on a shadow delta event. Furthermore,
this has the advantage that the time interval between the measurements is centrally
configurable. The data is gathered by using the shadow of each involved IoT device. At
the same time the devices independently update their shadows as soon as the device’s
state changes. Before the data is persisted, the SensorStore function applies various data
aggregation and filtering methods. An example thereof is the conversion of units: from
total volume in liters to liters per hour. After data preprocessing the function persists
the data in a locally deployed relational database.

Regressor

The Regressor function accesses the previously stored data and further prepares the data
to generate the machine learning model used for water consumption forecasting. Most
notably it has to extract the necessary features for our regression model. This step also
includes extrapolation of date information, e.g., whether it is an official holiday, or what
day of the week it is. Another important phase is the unwinding of circular features and
creating the optimal feature lags. We explain these preparation steps in more detail in
Section 5.3. After applying all these steps the Regressor trains and persists the model on
the filesystem for later usage by the Predictor. However, each function is executed in an
isolated ephemeral environment, so they usually do not share any resources including
the filesystem. But it is possible to mount a folder from the host environment into the
serverless function’s execution environment such that the function can read and write
files in that directory.

Predictor

This function forecasts the water consumption. Every beginning of an hour the function
loads the persisted regression model from the mounted folder shared with the Regressor.
Using this model it predicts the water amount needed in the hour after the next based
on the most recent sensed data. Before that it applies the same preparation steps as the
Regressor, but only to build the most recent model instance for prediction. If the forecast
yields a required heating it invokes the Scheduler function with the predicted amount.

Scheduler

The Scheduler is the core component of the system. Its purpose is to convert the
previously predicted amount of water to concrete water temperature in the boiler. At the
same time it estimates the boiler temperature at that particular time to decide if heating
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is even necessary. In the case of a necessary heating the Scheduler then calculates the
time needed to heat until the desired temperature is reached. Eventually the function
yields the time for the next heating, the duration and the necessary boiler temperature.

Executor

The Executor function executes the planned heating. Using the information provided by
the Scheduler this function waits until planned time and commands the heat exchanger
to start heating. When the calculated duration is over it sends another message to the
heat exchanger to stop heating.

5.2.2 Elastic Heat Process Flow

The interplay between all these components/functions at the consumption-oriented
scheduling is shown in Figure 5.2. As can be seen the Regressor and the Predictor are
both long-living functions running on the GGC. The Regressor’s main function repeats
itself daily at midnight to retrain the model including the newly measured data. After
every training session it dumps the new model to a certain folder on the filesystem of the
GGC that is also accessible by the Predictor function. At the same time the Predictor
function repeats itself every beginning of an hour to predict the next future water usage,
based on the stored model and real-time data. Afterwards it invokes the Scheduler
function and transmits three quantities: the previously predicted volume, the current
predicted volume as well as the time when the predicted volume is needed. Based on this
data the Scheduler decides whether heating is required to provide the amount of warm
water in the first place. If it is the case then the Scheduler further calculates the exact
time when to start the heating process and the respective duration. Eventually it invokes
the Executor function sending along all the calculated information. Figure 5.3 depicts
both scenarios on a timeline. Example 1 illustrates a scenario in which no heating is
scheduled because either the prediction is close to zero and/or the boiler temperature is
sufficiently warm. The other case, as described above, is represented in Example 2. As
shown in Example 2, as soon as the Scheduler invokes the Executor function it starts to
wait until the planned starting time. Reaching that time it kicks off the heating process
by changing the shadow state of the heat exchanger unit. Then it keeps waiting again
until the duration is over. At that moment it changes the shadow state back to stop
heating.

5.3 Machine Learning Model
In the previous section we outlined the overall process flow and how we use the machine
learning model for the consumption-oriented scheduling approach. In this section we
focus on the machine learning model itself. Initially we present the regression algorithm
used in our Elastic Heat system. Then we describe how we selected our features for our
model and give an in-depth list of them. Afterwards we discuss the preparation steps we
apply on our raw data in order to extract the individual features. In a further step we
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optional

sleep

loop
[hourly]

loop
[dai ly]

HeatExchangerUnit : DeviceExecutor : FunctionScheduler : FunctionPredictor : Function

sd Consumption-oriented Scheduling

Regressor : Function

stop heating

start heating

heat

execute schedule

learn predict

runrun

schedule

Figure 5.2: Scheduling Process Flow of Elastic Heat components/functions

SchedulerPredictor Executor

ex. 2: heating scheduledex. 1: no heating scheduled

16:0015:0014:00

duration

heat

wai t

execute

schedule

hours

schedule

Figure 5.3: Examples of derived schedules and the execution thereof.

evaluate the training time of our model on the GGC, in particular the performance as
time passes and the number of instances increases. After validating the model using time
series cross-validation we describe the deployment of the machine learning model in our
system.

As we have shown in Chapter 4 and the previous Section 5.2 it is necessary, in our
system, to predict the volume of water that is consumed from the boiler. Specifically, as
illustrated in Figure 5.3, our model should be capable of forecasting the values an hour
before actual consumption to have time to heat the water. In the example taken from
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the figure, the Predictor has to estimate the volume needed from 15:00 to 16:00 at 14:00.

For our use case implementation we choose the random forest regression algorithm [Bre01].
As stated by Breiman random forests have many positive characteristics. They are
resistant against overfitting, they give insight into variable importances thus perform
implicit feature selection. Furthermore, a comparison of supervised learning algorithms
by Caruana R. et al. [CKY08] showed that random forests perform consistently well in
multiple different machine learning tasks. Moreover they state that random forests are
easy to parallize and efficiently scalable to fit problems with high dimensions. Another
benefit is the widespread availability of open-source implementations, with particular
focus on the scikit-learn library in Python [PVG+12].

5.3.1 Feature Engineering

As stated by Mozer [Moz05] regularities in Smart Homes are „not only based on time
of day and day of week but rather are based on a large number of factors“. With this
statement in mind we analyze the factors that may influence warm water consumption,
especially while taking a shower or a bath which are the activities with the highest flow
rate. Table 5.2 presents a list of external factors that might have an influence on daily
water consumption behavior. The first external influence is the outdoor temperature.
A lower outdoor temperature may indicate a longer or warmer shower or may even
lead to take a bath instead. On the contrary on warmer days someone may take a
colder refreshing shower or take a shower instead of a bath, hence need less warm water.
A second indicator for warm water consumption is the bathroom temperature. The
argument is similar to the outdoor temperature, the colder the more likely it is to have a
longer shower or bath. The third aspect in considering water consumption is the actual
consumers in the house, in particular the number of occupants. The higher the occupancy
level the higher the water consumption. It is clear that four inhabitants drain more warm
water than two. Additionally, visitors may increase consumption as well by having, e.g.,
more dishes to clean on lunch time or because they stay over night and take a shower in
the morning or evening. In addition to these factors the research works [APK16, FAS18]
state that there are significant differences in consumption profiles between weekdays and
weekends. Usually people have a daily rhythm during the workdays, e.g., typical wake-up
time or start of work. This rhythm is regularly disrupted on weekends, which may affect
the water consumption pattern. Because public holidays normally lead to a non-working
day they similarly affect consumption behavior.

In order to measure these external influences from Table 5.2 we add several IoT devices
to our test environment. Our test environment is an ordinary single-family home that
uses the necessary supporting systems — district heating and PVS. The home equipped
with the required IoT devices is shown in Figure 5.4. It depicts all installed sensors
at the various locations to observe the factors that affect water consumption behavior.
Additionally we equipped the boiler with a volume transmitter which senses the amount
of water that is drained and a thermometer to constantly measure the water temperature
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Factor Rationale

Outdoor temperature In contrast to summer someone may take a longer shower
or even tends to take a bath on cold days

Bathroom temperature If the bathroom is cold it may be cozy in the bathtub or
shower tray, thus time spent for washing and water usage
are increased

Number of occupants A high number of occupants may indicate that more people
use warm water for washing

Weekday On weekends the time when someone consumes water may
be drastically different compared to workdays

Holiday A public holiday may influence time and amount of water
consumption

Table 5.2: External factors that may influence water consumption behavior

inside. These continuous measurements of the external factors are our independent
variables used as features in our machine learning model.

Edge Gateway - Greengrass Core

Temperature Sensor
- Outdoor Temperature
- Bathroom Temperature
- Boiler Temperature

Occupants Sensor

Flow Sensor

Figure 5.4: IoT devices installed in a home for Elastic Heat

Figure 5.5a visualizes a sample from real data collected in our test bed. The sample
shows measurements from the outdoor temperature, bathroom temperature, number of
occupants and consumed volume in intervals of an hour. The plot reveals a daily seasonal
pattern of consumed water that can be traced back to the fact that all residents have
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Feature Description

Hour The hour when the instance was measured
Day The day of the month
Weekday The particular weekday, e.g., Monday, Tuesday, etc.
Week of year The number of the week of the year
Month The month when the instance was measured
Holiday Whether the instance was measured on a public holiday

Table 5.3: Time information used in feature vector

regular work. It has a peak in the early morning and flattens over the day. There is no
water consumption at all over night. To further gain additional knowledge of the data’s
underlying interdependencies we visualize cross-correlation and plot histograms of the
different variables in a scatterplot matrix shown in figure 5.5b. The examination reveals a
non-trivial relationship between the observed factors and water consumption that cannot
easily be recognized with the help of the cross-correlation matrix. In addition to that
we can use autocorrelation of water consumption and the correlations to other variables’
past values in general. These preceding values are also known as lags or lag values and
will be further discussed in the performed preprocessing steps.

To further improve the model we apply several data preprocessing steps and add further
values to our feature vector for better accuracy.

1. Extract additional information from timestamp
Table 5.3 lists additional features we can extract from the measurement’s timestamp.
Besides the previously mentioned information about the weekday and public holidays
we split up the timestamp into different attributes in a first step. By doing this we
have four additional attributes regarding the time. The hour, the day, the week of
the year and the month.

2. Cyclical feature unwinding
However all of the extracted time-related values are called cyclical features, according
to Dossman in [Dos17]. These are features that regularly repeat themselves. By
applying machine learning algorithms some information about these get lost. For
example, the interval between 23:00 and 00:00 is equal to the interval between
01:00 and 02:00. The algorithm however treats them as pure integers values and
thus discards this information. In a referenced blog entry [Kal17] cyclical feature
engineering is described in detail. This write-up describes the process that is based
on the even distribution of values on the unit circle and thus preserves the equal
intervals. The result of this preprocessing step is a new sine and cosine value that
replaces the original feature.

3. Shift volume value
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(a) Excerpt of gathered sensor data in intervals of an hour.

(b) Scatterplot matrix of the full data set.

Figure 5.5: Different visualizations of sensor data.

By the way the mechanical flow sensor that is built into the input pipe of the
boiler operates we can not directly read the water flow values. The main reason
for this is because the mechanical sensor reports flow data in real-time to the
heat exchanger unit. We would need to continuously send requests to the heat
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exchanger unit in order to not miss out any values. Any missing value results in a
wrong flow measurement. However this would flood the local network with a huge
number of HTTP requests. For that reason we instead measure the total amount
of consumed water in liters and subtract the last value to calculate the actual
amount. A measurement thus contains the liters consumed since the previous one.
But because we require the amount that will be consumed in the next interval
we need to shift the volume column by one row. This results in a feature vector
that contains the liters that will be consumed until next measurement. This shift
is extremely important because otherwise we would forecast a volume from the
previous interval.

4. Create feature lags
The last preprocessing step is to create certain lag values for the variables and drop
unnecessary ones. So at first we have to figure out useful lag values that improve
the overall accuracy of the model. The random forest algorithm has the capability
to calculate feature importances of the provided feature set. We can leverage this
feature to determine the most important features and discard the rest. For this
we expand our data set with lag values for all variables and fit the algorithm with
our preprocessed data. The calculated importances are shown by the blue bars in
Figure 5.6.
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Figure 5.6: Feature importances of random forest algorithm.

Besides this estimated importances we also calculate the autocorrelation of the
measured volume consumption to find suitable past values. Figure 5.7 presents
the autocorrelation between the different lag values. This chart unambiguously
show a high correlation between the current volume and any interval of 24 hours
ahead. It also reveals an interesting negative correlation to six hours earlier and
also a repetition every 12 hours. In addition to these two results we also use a
trial-and-error method to further increase the accuracy.

After performing all the preprocessing steps above we end up with the final feature
vector listed in Table 5.4. Experiments with feature selection techniques showed that
adding other variables’ lag values, like earlier bathroom temperature or previous number
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Figure 5.7: Autocorrelation of volume.

Feature Description

volume_temp-1 Volume consumption the hour before
volume_temp-6 Volume consumption 6 hours before
volume_temp-12 Volume consumption 12 hours before
volume_temp-24 Volume consumption the day before
volume_temp-48 Volume consumption two days before
volume_temp-72 Volume consumption three days before
volume_temp-168 Volume consumption the week before
outdoor_temp Outdoor temperature
bathroom_temp Bathroom temperature
occupants Number of occupants (estimated by connected WiFi devices)
hour_sin Hour sine part
hour_cos Hour cosine part
day_sin Day of month sine part
day_cos Day of month cosine part
week_sin Week of year sine part
week_cos Week of year cosine part
month_sin Month sine part
month_cos Month cosine part
holiday 0 or 1 whether it is a holiday

Table 5.4: Final feature vector

of occupants in the residency, reduced the accuracy of the model. For this reason we
removed all lags except the most prevalent autocorrelated volume values.

This features inevitably result in following IoT sensors attached to the various components
of the district heating system:

• Flow Sensor
Attached to the outlet pipe of the boiler. Measures the passed through water in
volume per hour.
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• Boiler Temperature Sensor
Leverages the inboard temperature sensor of the boiler.

• Bathroom Sensor
Temperature sensor mounted in the bathroom.

• Outdoor Temperature Sensor
Temperature sensor mounted on the outside of the house.

• Occupants Sensor
Estimates occupants by counting connected WiFi devices.

Including these the Elastic Heat system comprises of the IoT devices shown in Figure 5.8
depicting a global system overview.

Cloud

Greengrass Core
Heat Exchanger

Outdoor Temperature
Sensor

Flow Sensor
Bathroom Sensor

Occupants Sensor

Boiler Temperature
Sensor

Figure 5.8: Global view of IoT devices, the GGC and the cloud in Elastic Heat
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hour bath_tp out_tp . . . vol

10 21.12 7.08 . . . 7.0
11 21.10 6.92 . . . 1.0
12 21.01 6.17 . . . 6.0
13 20.91 8.08 . . . 4.36

=⇒

hour bath_tp out_tp . . . vol

10 21.12 7.08 . . . 1.0
11 21.10 6.92 . . . 6.0
12 21.01 6.17 . . . 4.36
13 20.91 8.08 . . .

Table 5.5: Label set shift on instances for model training.

5.3.2 Training

With the feature set complete we can now proceed to implement the training of our
random forest regression model. Because IoT edge devices are typically resource restricted,
as mentioned in Section 2.3, we have to analyze expected training duration with respect
to the training dataset size. However beforehand we have to further prepare the training
data slightly.

Because our goal is to predict the consumption of the full hour after next (see Section 5.2.2),
we need to shift our label set by one row once more. This produces instances that contain
the volume measurement from the intended timespan. This shift is illustrated in Table 5.5.
It can be taken note that this also results in an instance that does not contain any value
to train with, therefore we continue to remove any instance that has at least one empty
value in any of its columns.

The random forest algorithm is resistant against overfitting, thus too many variables do
not negatively affect the accuracy of the regression model. However the more dependent
variables the longer the training period of the model. This and additionally restricted
processing power of edge devices logically get us to decrease the instance size for better
scalability at the edge. Figure 5.9 clearly exemplifies the performance gain through
visualization of training time with respect to the sample size — once executed with all
lag values (blue line) and once with the final reduced variables (orange line). Both show
a projection for the amount of data collected over five years ahead. According to these
experiments the training, using the bigger feature vector, would take about an hour with
approximately 43.000 samples — the amount after five years. In contrast the simpler
feature set requires only a third of that time, in particular roughly 20 minutes after five
years. Taking this results into account it is feasible to retrain our model daily for many
years before reaching the limit of resources.

5.3.3 Validation

The accuracy of our model directly influences the effectiveness of our scheduling ap-
proach, consequently our whole smart heating system. Therefore we define the accepted
discrepancy between the actual required volume and the prediction to be less than three
percent. The reason for this threshold is that a three percent error results in a difference
from merely about half a degree boiler temperature at our testing site, equipped with a
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Figure 5.9: Estimation of training-time to system runtime.

200 liter capacity boiler. This in turn guarantees that we can simply heat half a degree
more than needed without wasting to much energy. A three percent error implies that at
a total capacity of 200 liters the error has to be less than 6 liters.

In order to evaluate the accuracy of our model we perform a time series cross-validation
on our latest refined model. Time series cross-validation splits the data into N chunks.
Figure 5.10 illustrates this process using a rolling window approach. As can be seen in
the figure, on each iteration the window is moved to the right by the size of one chunk.
Data to the left of this junk, therefore earlier data, is then used to predict the hold
back data within the window. Training data is visualized in blue, whereas the red color
highlights data that has been predicted. The line colored green shows the original data,
used to calculate the mean absolute error.
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Figure 5.10: Time series cross-validation of model using six splits.
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The mean absolute error calculated by the cross-validation method is 6.4l/h, thus slightly
bigger than our set requirement. Nonetheless it can be noted that the random forest
regression model successfully models the repetitiveness of the consumption behavior to a
certain degree. However apparently the model has some problems predicting the peak
values. So to assure enough warm water we constantly add this estimated error to the
prediction in our scheduling approach, since it only results in heating half a degree more.

5.4 Consumption-oriented Scheduling
The scheduling approach implemented in our use case is entirely based on the consumption
behavior of inhabitants. It hourly forecasts the consumption rate two hours ahead, as
explained in Section 5.2.2. After the forecast it has to convert the predicted amount from
liter per hour to a concrete boiler temperature that provides the required volume. Then
it has to calculate the time to start heating. This heating duration is also significantly
affected by the initial boiler temperature. Since we start scheduling an hour before actual
water usage this temperature is going to change because of water consumption in the
meantime. Therefore we also need to estimate the initial boiler temperature for the
beginning of the next hour by combining a real-time temperature measurement with the
predicted amount for that particular period.

The Algorithm 5.1 describes the basic functionality of the Scheduler lambda function. It
takes the previous predicted volume and the current predicted volume to estimate the
heating duration. The read_temperature_from_sensor function directly retrieves
the temperature from the boiler temperature sensor. We discuss the calculate_
functions in more detail because they represent the essential calculations mentioned in
the previous paragraph.

Algorithm 5.1: Scheduling based on volume prediction
Input: The previous predicted volume κ and the current predicted volume ε
Output: Heating duration

1 Tboiler = read_temperature_from_sensor() ;
2 Tanticipated = calculate_temperature_after_consumption(κ, Tboiler) ;
3 Tdesired = calculate_desired_boiler_temperature(ε) ;
4 if Tanticipated ≥ Tdesired then
5 return 0, 0 ;
6 end
7 theating = calculate_required_time_for_heating(Tanticipated, Tdesired) ;
8 return theating ;

5.4.1 calculate_temperature_after_consumption

This function determines the anticipated boiler temperature at the beginning of the
prediction’s timespan. This temperature, in turn, is required to calculate the required
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5.4. Consumption-oriented Scheduling

heating time more accurately. We use Richmann’s calorimetric mixing formula [Ric76]
that simplifies to a weighted average when used with equal materials, e.g., cold and warm
water. It is possible to use this formula because consuming warm water is the same as
replacing the hot water by the same amount of cold water in the boiler. So the rest of
the warm water mixes with the cold water until an equilibrium is found. It is important
to note that an equilibrium between the two is not established immediately. But since we
want to estimate the temperature that is approached after an hour this should accurately
reflect the true value.

The formula is given in Equation 5.1.

Tm = mhTh +mcTc
mh +mc

(5.1)

The result Tm represents the temperature of the mixed water. It is the result of mixing Th
warm water of mh mass with Tc cold water of mc mass. In our use case Tc is a constant of
roughly 10◦C and mh +mc equals the boiler capacity. The general case of this equation
expects masses, e.g., kilogram, to be inserted, however since we use it for mixing materials
of equal mass density we can insert our volume information as well. Furthermore, the
formula is only valid with the temperatures given in units of Kelvin.

5.4.2 calculate_desired_boiler_temperature

We could rearrange Richmann’s formula such that it depends on the amount of warm water
replaced by the cold water and thus calculates the required hot water temperature Th

Th(mc) = Tm(mh +mc)−mcTc
mh

. (5.2)

Because the boiler should reach the lowest temperature that is still perceived as warm
after consuming water, we define

Tm = 311.15K (=̂ 38◦C) (5.3)

for this rearranged Equation 5.2. However this equation does not accurately describe the
dynamic behavior of the boiler’s water temperature.

In fact mh is dependent on mc by

mh(mc) = 200−mc (5.4)

because of the boiler’s capacity. The resulting effect is shown in Figure 5.11. The graph
shows the timespan between usage start and the point in time as soon as the water was
perceived too cold for shower usage (≤ Tm). The orange dots represent the measured
boiler temperature. In total we drained the full boiler capacity of 200 liters until then.
Furthermore, the graph reveals that Equation 5.2 approaches infinity with higher hot
water amounts mh. Therefore we cannot use this equation to calculate the required
temperature for a certain amount of warm water.
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Figure 5.11: Boiler temperature when consuming warm water

The graph also shows that the boiler’s water temperature was roughly 17.5◦C while the
drained water was still perceived warm. This effect can be explained by Figure 5.12. Before
actual warm water consumption the boiler is fully heated at a particular temperature,
as shown in Figure 5.12a. While hot water is drained from the top when consumed,
cold water is pumped into the boiler from underneath, Figure 5.12b. But because the
consumption happens faster than the mixing of the differently tempered volumes of water,
the warm water on top has only partially cooled down at this point. Moreover, because
the boiler’s temperature sensor is placed centrally, it reports a colder temperature even
if there is some more warm water left on top. This results in practice, in having more
warm water available than measured.

Nonetheless we can use Equation 5.1 to calculate the temperature after water consumption
in Section 5.4.1. Since we are interested in the boiler’s temperature after some time the
water temperature has already found an equilibrium until then according to Richmann’s
calorimetric mixing formula. This equilibrium is illustrated in Figure 5.12c, which shows
a uniform boiler’s temperature.

To derive a more accurate function that calculates the desired boiler temperature we plot
the perceived temperature curve by linearly interpolating the initial temperature with
the point of 38◦C at 200 liters.

Th(mc) = − 18
200mc + 329.15 (5.5)

With the resulting interpolated function 5.5 and because of Equation 5.4 we are now able
to calculate the desired temperature for a specific amount mh. This results in the final
equation

Th(mh) = 18
200mh + 311.15 (5.6)
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5.4. Consumption-oriented Scheduling

(a) Fully heated boiler. (b) Cold water pumped into
boiler.

(c) Boiler temperature after
some time.

Figure 5.12: States of the boiler at the time of consumption.

that depends on the required amount of warm water.

5.4.3 calculate_required_time_for_heating

The last function in our Scheduler calculates the time needed for heating based on the
desired temperature from the last function. Therefore the desired function should define
the time in minutes for a specific water temperature t(T ). In practice water heating
works by having a pipe coil inside the boiler connected to the secondary pipeline, as
shown in Figure 4.1. The hot water flows through the pipe coil and emits heat to the
surrounding cold water. The temperature change while heating is shown in Figure 5.13.
The line of orange dots plots the true temperature values during heating when the flow
temperature Th is set at 56◦C.
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Figure 5.13: Heating curve during full heating

In order to derive a descriptive function thereof we assume that the temperature of the
hot water Th does not change as time passes. This is justified because in practice the
temperature change of the hot water will be much less then the temperature change of
the cold water, since the heat of the hot water gets replenished by the external heating
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source. Furthermore we define the temperature difference in Kelvin by

∆T = Th − Tc. (5.7)

In addition, we assume that the rate of temperature change is proportional to the
temperature difference between the two mediums,

d∆T
dt

= −κ∆T, κ > 0 (5.8)

where κ is the proportional constant which can be interpreted as an efficiency coefficient
of the heat diffusion. Because of the condition

Tc(0) != T 0
c (5.9)

that states that the temperature at time 0 is the initial temperature of the cold water,
Equation 5.8 has a unique solution

Tc(t) = T 0
c e

−κt + Th(1− e−κt). (5.10)

This equation describes the temperature of the water to be heated at a specific point in
time, given an initial cold temperature T 0

c , a flow temperature Th and the constant κ.

Every necessary parameter for this equation is given except for the constant κ. So in
order to find the correct value we apply a curve fitting algorithm. This algorithm uses
non-linear least squares to fit the function to our measured temperature values. Since we
know the values of the initial temperature and the flow temperature that produced our
data we let the algorithm only adjust κ in this process. The function with the fitted κ is
shown as green line in Figure 5.13. It can be noted that it almost perfectly describes
the original values. The slight discrepancy can be explained by a not constant flow
temperature in reality, that we assumed in our function.

The final equation that yields the time in dependence of temperature is given as

t(T ) = 1
κ

ln
(
Th − Tc
Th − T

)
. (5.11)
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CHAPTER 6
Evaluation

To show the technical applicability of the serverless programming model in the edge
computing paradigm we evaluate our prototypical use case implementation by defined
characteristics. Specifically, the following evaluation should yield whether the server-
less programming model is an appropriate computation model for the edge computing
paradigm. Furthermore, it should answer the question whether a serverless edge ap-
plication is more favorable for IoT scenarios than a centralized cloud implementation.
To provide a comprehensive evaluation we initially present a list of characteristics that
describe the serverless cloud as well as the serverless edge paradigms. We then describe
our cloud reference implementation to our prototype. This reference implementation
helps us to compare the serverless edge paradigm to a cloud-native IoT application.
Subsequently we describe our test environment and how we gathered the data used
throughout the evaluation of the individual characteristics. During this evaluation server-
less edge refers to our implementation using AWS Greengrass and consequently serverless
cloud refers to our cloud reference implementation. At the end we evaluate our novel
consumption-oriented scheduling approach. We examine if our scheduler is able to reduce
the average boiler temperature as well as the amount of heating cycles.

The claims of each characteristic, summarized from other scientific papers, are listed in
Table 6.1. Besides the in-depth evaluated serverless cloud and serverless edge paradigms,
Table 6.1 also lists properties of a comparable local monolithic application. It is used
to highlight the benefits and/or necessities of a serverless edge application compared to
long-established local monoliths deployed at each home. In the serverless cloud paradigm,
a potentially very large amount of data is sent to the cloud for processing, leading to
considerable bandwidth requirements [APZ18]. In contrast, the serverless edge model
applies data filtering and aggregation at the edge, before data is sent to the cloud and
therefore decreases the traffic to the centralized cloud [APZ18, DB16]. Responsiveness
is measured by the latency on one hand and by the execution time of functions on the
other hand. Ai et al. [APZ18] state that „edge computing can provide services with
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faster response and greater quality in comparison with cloud computing“. Furthermore,
because computational resources are closer to the edge, link latency is reduced to a
minimum [BMNZ14, DD17]. Regarding runtime costs Baldini et al. [BCC+17] argue
that the serverless programming model lowers deployment costs in the cloud because of
the provided billing system. Cloud users of serverless functions are charged for execution
time rather than resource allocation, as it is the case with server instances. For the
same reason and further because functions are not executed in the cloud but on the
edge gateway device the serverless edge paradigm is expected to incur lower runtime
costs. However some one-off costs for the edge gateway device may occur. According to
Baldini et al. [BCC+17] serverless programming releases the programmer of operational
concerns like resource provisioning, maintenance and scalability. Moreover, they state
that serverless cloud platforms „strive to make deployment as simple as possible“. This
corresponds to the conclusion of Bonomi et al. [BMNZ14] for edge computing platforms, as
they articulate that these platforms should handle „multi-tenant distributed deployment
of applications across the path between the edge and the centralized cloud“ [BMNZ14].
The authors also argue that this requires inter-host migrations of applications, hence
transparent support of code mobility. Because the edge is seen as an extension of the
cloud, components of edge computing applications have to run both in the cloud as well
as in the edge devices [DGC+16]. The research work of Garcia Lopez et al. [GME+15]
focuses on a user-centric perspective of the edge computing vision. They emphasize that
moving all personal and social data generated by IoT devices to centralized services
implies a loss of privacy. Furthermore, they argue that the „trust is in the edge“, hence
sensitive data is more secure when stored in the edge.

6.1 Prerequisites

6.1.1 Cloud Reference System Implementation

Before we are able to examine the serverless edge paradigm we implement a reference
system, running in the cloud. For this we migrate the existing edge computing prototype
to serverless functions in the cloud as far as possible. Limitations, like the maximum
execution time or maximum filesize of the unzipped function code, are circumvented
by outsourcing these to web services running in virtual servers. These web services are
then called from within the respective serverless function. The resulting serverless cloud
architecture is illustrated in Figure 6.1. It is composed of the exact same functions as
the initial serverless edge implementation, but additionally requires two web services and
additional cloud services. Because a GGG encapsulates an individual home, functions
executed on each GGC do not have to be aware of the home they run in. A developer
can simply ignore the fact that these functions are used by different customers / homes.
In contrast, the serverless cloud implementation is globally responsible for all residencies,
thus each function call has to be customer-aware. Therefore we have to store our machine
learning models in an AWS S3 bucket with a unique name and assign it to every residency.
Furthermore, we persist per-home metadata in AWS DynamoDB — a key-value store —
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Characteristic Serverless Cloud Serverless Edge Local Monolithic
Application

Internet
Bandwidth Usage

high – all data
transmitted

low – limited data
transmitted

none – completely
local

Responsiveness low – dependent on
latency
(cloud ↔ edge)

high – LAN
communication

high – zero latency

Runtime Costs high – many cloud
services

low – few cloud
services +
inexpensive edge
gateway device per
home

middle – powerful
device for monolith

Application
Deployment

done by cloud
provider

mostly done by
cloud provider –
initial setup
required

entire setup
required + manual
deployment

Code Mobility transparent
execution in the
cloud

transparent
execution across
edge and cloud

no mobility

Data Privacy low – data in cloud high – sensitive
data stored locally

high – all data
stored locally

Table 6.1: Characteristics of Serverless Cloud, Serverless Edge and Local Monolithic
Application
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instead of using each GGC’s shadow state.

CloudIoT Devices

Executor

SchedulerPredictor

Machine Learning Server Lambda Dispatcher

Regressor

SensorStore

Figure 6.1: Conventional district heating

The limitations of cloud functions, as explained before, prevent us from performing
machine learning directly in the Regressor and Predictor functions. First, the longer
the system is in use, the more training instances are recorded and the longer is the
overall time to train the model. Second, the size of the dependencies necessary for the
machine learning algorithm exceeds the maximum filesize restriction. So instead we call
a web service that handles the training of the model and the prediction itself. In case
of the Regressor the web service trains the model with the new data asynchronously
to keep execution time low, thus also reduce induced costs. The Predictor however is
not affected by this, that is why it requests the web service and keeps waiting for the
response. In case any water consumption is predicted it acts like the serverless edge
system and invokes the Scheduler function. Subsequently if the scheduler determines to
heat, the Executor function is invoked. In our comparative system the Executor function
waits until scheduled time is reached to start heating and further waits until the end
of the scheduled plan to stop it again. However, due to the maximum execution time
limitation of cloud functions and charges per execution time, we have to separate waiting
and execution phases. For this reason, and because of the lack of an existing cloud-native
solution for lambda ad-hoc scheduling, we implement our own lambda dispatching service.
So the Scheduler of the cloud system indirectly invokes the Executor function via the
dispatching service, given the desired invocation time. On invocation the Executor then
starts the heating cycle and subsequently dispatches itself to stop it again after the
scheduled duration.

6.1.2 Test Environment & Data Measurement

We have deployed our serverless edge system for an entire year at our test location —
a single-family home located in Austria. During this year three people lived in this
home and had the instruction not to adjust their water consumption behavior due to the
new water heating system. The inhabitants consisted of three adults, a student and his
parents. The father has followed regular full-time work, whereas the mother has been
employed for a part-time job.
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During this year we gathered initial training data and improved our model to achieve the
desired forecasting accuracy. Because we needed a huge data set for accurate prediction
results, this lasted for about the first nine months. Subsequently we replaced the original
heating system with our serverless edge implementation of the proposed consumption-
oriented scheduling approach. From then onwards we started to monitor our system with
respect to the listed characteristics from Table 6.1.
The methods we applied to measure all quantitative characteristics are described in the
following section. In general, for both implementations, we measured all aspects for one
week and calculated the averages thereof.

• Internet Bandwidth Usage
We analyzed the bandwidth usage using Wireshark, a „widely-used network protocol
analyzer“ [Wir17]. For gathering network communication we specifically used a
command line utility, called dumpcap, part of Wireshark’s toolkit. Once started the
tool records all network communication that can be later analyzed using Wireshark.
In addition to the network communication we examine the amount of transmitted
IoT messages to the cloud. This can be done with AWS Cloudwatch, a centralized
logging service that also gathers metrics across multiple AWS services. AWS
IoT publishes metrics about sent and received messages associated with different
message types. These types include the ones we are interested in: GetThingShadow
and UpdateThingShadow.

• Responsiveness
To measure the responsiveness of the systems we categorized the serverless functions
into execution flows. These are: IoT devices’ shadow updates, storing the sensor
data, train the model and predict and act. We then added verbose logging to our
functions. Log entries followed defined keywords like STARTED and STOPPED
and a segment name, e.g., STARTED [SensorStore]. Based on the contained
key words that marked the beginning and end of a certain segment along with
precise timestamps, we were able to reconstruct the defined execution flows. A
custom parser converted these log files into JSON objects representing the recursive
structure of segments. Each segment contained start and end timestamps to
determine the durations. In a last step we calculated the averages across all related
segments. Additionally we estimated the latency between individual devices/servers
with MTR [MTR] to complete execution flows distributed across multiple machines.

• Runtime Costs
AWS has a cost explorer that lets you track expenses of individual services. To
distinguish between costs caused by the individual systems we ran the systems
independently of each other. Therefore, we used one system at a time for a
whole week, while the other system was completely shutdown during that period.
Afterwards we extracted the induced costs from the cost explorer grouped by used
services.
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Serverless Edge Serverless Cloud

WAN LAN Total WAN LAN Total

Packets 1,317 763,264 764,581 32,014 692,609 720,169

Avg. Packets/sec 0.0152 8.8341 8.8493 0.3705 8.0163 8.3353

MB 0.1183 388.4061 388.2544 6.2151 375.1113 381.3264

Avg. Bytes/sec 1.3692 4495.441 4496.8102 71.9338 4341.5665 4413.5004

Avg. MBit/sec 0.00001 0.036 0.036 0.0006 0.0347 0.0353

Table 6.2: Average bandwidth usage per day

6.2 Characteristics

6.2.1 Internet Bandwidth Usage

The first characteristic we have a look at is the differences in bandwidth usage between a
serverless cloud and a serverless edge system. Table 6.2 lists the exact measurements
of packets and respective data volumes that are transmitted during a single day. These
measurements are divided into transmissions between the home and cloud, referred to as
WAN, and transmissions that happens between the GGC and sensors/actuators, referred
to as LAN. The packet filters that were used to separate these transmissions are shown
in Listing 6.1 and Listing 6.2 respectively. It is also necessary to limit the IP protocol
to TCP transmission to remove all unrelated communications like ARP broadcasting or
ICMP messages. The IP addresses in Listing 6.2 are the address of the devices running
the GGC, the sensors and the control and monitoring interface of the heat exchanger
unit.

! ip . s r c in {192 . 168 . 0 . 0/16 172 . 16 . 0 . 0 /12 1 0 . 0 . 0 . 0 / 8 1 2 7 . 0 . 0 . 1 } or
! ip . dst in {192 . 168 . 0 . 0/16 172 . 16 . 0 . 0 /12 1 0 . 0 . 0 . 0 / 8 1 2 7 . 0 . 0 . 1 } and
ip . proto == "TCP"

Listing 6.1: Wireshark Filter for WAN communication

ip . s r c in { 192 . 1 68 . 0 . 2 0 192 . 1 68 . 0 . 3 2 192 . 1 68 . 0 . 3 8 } and
ip . dst in { 192 . 1 68 . 0 . 2 0 192 . 1 68 . 0 . 3 2 192 . 1 68 . 0 . 3 8 } and
ip . proto == "TCP"

Listing 6.2: Wireshark Filter for LAN communication
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As we can see the exchanged data in total are almost identical in regard to packet count
and transferred data volume. The serverless edge system however, transmits only about
0.0017% of all packets to the cloud, whereas the serverless cloud sends roughly 4.5%
to the cloud. The transmitted packets of the serverless edge application do not result
from our prototype implementation, but rather from the AWS Greengrass framework
itself. For this reason we were not able to assuredly identify the sources of the packets
sent in the serverless edge application. But we assume that these packets are used to
regularly update the connectivity information required for the Discovery API used in IoT
devices. This means that the serverless edge application saves about 95.9% of packets
sent between the cloud and each home. In terms of data volume this corresponds to a
reduction of approximately 98.1%, thus only transmits 0.1183MB on average per day.
This observation is also reflected in the amount of IoT messages sent. Figure 6.2 contrasts
the amount of IoT activities against the cloud service of a serverless cloud application
with the ones of a serverless edge application. The serverless cloud system performs in
total 8,677 shadow updates and reads on average per day. In contrast, the serverless
edge application only performs 12 activities per day.

Origin

0K 1K 2K 3K 4K 5K 6K 7K 8K 9K

Avg. Message Count

Serverless Cloud
Serverless Edge

8,677
12

Type
GetThingShadow
UpdateThingShadow

Figure 6.2: Average count of IoT-messages per day

6.2.2 Responsiveness

In Section 6.1.2 we have briefly explained our approach to soundly compare the respon-
siveness of both systems. For this, we split our systems into separate processes to simplify
the comparison. The processes that make up the whole system are stated as follows:

• IoT devices
This process includes all sensors that measure the surrounding and subsequently
update their shadows. Figure 6.3 illustrates this execution flow. At first each device
gathers its measurement and finally update its shadow state.

Sense Update Shadow

Figure 6.3: Execution flow of IoT devices

• SensorStore
The SensorStore flow consists of an initial step to gather all thing-shadows. Then
it persists these measurements into the database, whether it is the local database
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in the case of the serverless edge application or a database deployed in the cloud.
This execution flow can be seen in Figure 6.4.

Store in DBGet Shadows

Figure 6.4: Execution flow of SensorStore function

• Regressor
The Regressor flow is illustrated in Figure 6.5. It consists of initially loading all
available training data. Then the function trains the model and finally stores it
either on the file system or in an object storage. Latter is required for the serverless
cloud implementation.

Store ModelTrain ModelGet DB Data

Figure 6.5: Execution flow of Regressor function

• Predictor
The last execution flow involves the Predictor function and its successors — the
Scheduler and Executor function. At first latest measurements are retrieved from
the database and the stored model is loaded. Then the volume is predicted and
consequently the Scheduler is invoked if necessary. Subsequently the Scheduler
requests real-time shadow data for its scheduling algorithm. Finally the Executor
function executes the plan and acts accordingly. This is shown in Figure 6.6.
For the serverless cloud system this execution flow differs slightly because of the
fundamental limitations mentioned in Section 6.1.1 and consequently the system’s
differences. The cloud Predictor function instead calls the web service that performs
the initial tasks including the prediction of the volume. Furthermore, the Executor
is invoked twice. Once for starting the heat cycle and once for stopping it again.

Execute

Update Thing
Shadow

Schedule

Get Thing
Shadow

Predict Volume

Load ModelGet DB Data

Figure 6.6: Execution flow of Predictor function including scheduling and execution
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In the following we present the measurements for each of these execution flows individually.
In all of the following charts the orange bars denote the segments of the serverless edge
solution, whereas the blue color marks the segments of the serverless cloud system.

IoT Devices

The measurements of the different IoT devices are shown in Figure 6.7. In general it can
be noted that the Sensing segments are almost identical for all devices. These segments
mark the times a device is either reading from a connected sensor or requesting data from
another device via HTTP requests. Deviations, as in the Outdoor Sensor (see Figure 6.7d)
and Heat Exchanger Unit (see Figure 6.7f), can be traced back to fluctuations of the
response time from the control and monitoring interface. However, the most interesting
segment is the IotData segment. It captures the duration of the shadow update MQTT
request until a response arrives. It is essential to observe that in all cases the requests to
the cloud take at least twice as long as the requests to the GGC in the serverless edge
system. On average, shadow updates in the serverless edge variant are 55.94% faster.
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Figure 6.7: Execution Time of IoT devices
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Segment
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Figure 6.7: Execution Time of IoT devices (cont.)

SensorStore

As explained before, the SensorStore gathers all the shadow states from the devices and
subsequently persists them into the database. So, as can be seen in Figure 6.8, the
SensorReading segments take up about half of the execution time. The individual IotData
segments follow the same pattern, as observed from the IoT device measurements. They
take at least double the execution time in the serverless cloud implementation. However,
despite intensive examination we cannot answer why the first IotData requests take much
longer than the subsequent requests. The raw data did not reveal any notable statistical
deviation, hence was not induced by statistical outliers.
The SecretManager is used to securely fetch the database user and password. But, because
there was no similar functionality for AWS Greengrass at the time of writing, we fell back
to a configuration file deployed with the lambda function. The SecretManager service
call takes almost four times the time of the actual database interaction. Furthermore, it
can also be noted that the database updates are also almost twice as fast in the edge
SensorStore than in the cloud SensorStore. The reason for this is the logical distance
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between the server that executes the lambda function and the database server, although
both reside in the same data center. The overall runtime of the edge SensorStore is
therefore roughly 82.5% on average shorter than the function running in the cloud —
150ms versus 858ms.
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Figure 6.8: Execution Time of SensorStore

Regressor

For these average runtime calculations we set the amount of instances to 610 thousand
training instances, equivalent to slightly more than one year of data. A major part of the
Regressor function’s runtime is used to train the model. Only about a fourth is used to
load latest measurements from the database and store the model. On the GGC it takes
more than 2m to fetch the data from the database, in contrast to merely 16 seconds in
the cloud. Figure 6.9 also reveals a significant difference in training time. The function
running at the edge gateway takes more than 8m compared to 1m25s in the cloud. As
already mentioned, the cloud Regressor function does not directly perform the model
training but hands off the work to a web service. This can be seen by the two Segments
MLRequest and MLServer. The request to the web service does not have a significant
impact on the total runtime, since the measured latency between the EC2 instance and
the different servers hosting our lambda functions was only about 1ms. Storing the model
into an AWS S3 bucket takes 795ms, whereas storing the model onto the local filesystem
on the edge gateway takes 572ms. In the DynamoDB and IotData segments at the end
of the functions we save machine learning metadata, like the mean absolute error of the
model in the GGC shadow, respectively a DynamoDB table. The local shadow update
again is by far faster, 13ms versus 82ms, than the update of a DynamoDB item.

57



6. Evaluation
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Figure 6.9: Execution Time of Regressor

Predictor

Finally we examine the runtime durations of the Predictor function. The associated
measurements are shown in Figure 6.10. For accurate comparison we set the „waiting“
time of the Executor to be 1s in each case. Otherwise the Scheduler’s results would
influence the total runtime. The most notable things in this plot are again the different
results of the machine learning tasks. The cloud Predictor waits 929ms to get a response
from the web service with the prediction. The prediction itself only takes about 193ms,
the rest is used for data and model loading. The same sequence in the serverless edge
variant requires 6s. However, despite this huge difference, the total time until the end
of the heating cycle is nearly identical. Because of the significant delay till the cloud
Executor function is invoked, the total time increases to 7.9s. On the GGC this time
is marginally longer with 8.4s. This delay is caused by the cold starts of the lambda
function. These occur when a function is executed the first time. On subsequent calls
the latency is considerably lower [HSH+16], because it is then kept into memory for a
finite amount of time. This time is set dynamically by AWS and is influenced by, e.g.,
server load and other unspecified metrics. If the function is not called within this time it
has to cold start again for the next invocation. This phenomenon can also be observed
when we have a look at the time from when the prediction is completed until the heat
exchanger unit starts heating. We can see that the serverless edge system is a lot faster.
It takes 1.2s at the GGC in contrast to 3.1s in the cloud.

6.2.3 Costs

The last examined quantitative characteristic is runtime costs. Both systems, the edge
and cloud variants, required the necessary sensors / actuators that collect the data and
enable the control of the water heating system. In total six sensors / actuators are
necessary — a bathroom temperature sensor, a water flow sensor, an occupants sensor,
an outdoor temperature sensor, a boiler temperature sensor and a device handling the
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Figure 6.10: Execution Time of Predictor

heat exchanger unit. However, the serverless edge system also required a device capable
of running the GGC software. For this we used a single RaspberryPi 3. Therefore the
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only difference in runtime costs per residency are the costs associated with the GGC
device which at the time amount to roughly $36.

A direct comparison of runtime costs for one running instance is shown in Figure 6.11.
The depicted costs do not include IoT devices hardware costs, only cloud service costs.
The serverless edge system only creates costs of AWS IoT and AWS S3. AWS IoT
costs consist of a per-million-message price. Additionally each connected GGC device
is charged per month. For large lambda functions it is recommended to upload the
functions to AWS S3 beforehand. That is the reason for the extremely small expenses
for AWS S3. All these costs sum up to $0.001 per day, hence about $0.03 per month per
residency, for the serverless edge variant. The serverless cloud system in contrast uses
many more AWS services. At first it requires the AWS Lambda service for our functions
and a relational database, namely RDS. Further it needs at least one EC2 instance for the
web services. In addition to these it requires a configured Virtual Private Cloud (VPC)
with a NAT gateway that allows servers and functions in that VPC to communicate
with the AWS IoT service. The VPC NAT gateway is listed as EC2-Other. Then it also
needs a NoSQL database, in our case DynamoDB, that stores machine learning metadata
for each home. Some of these are not listed in Figure 6.11 because they have an initial
free-of-charge volume. All in all serverless cloud costs amount to about $2.23 per day for
a single residency, or roughly $69 per month. With an increasing amount of residencies
these costs decrease as far as these initial services can manage workload. After that,
cloud services scale up accordingly.
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Figure 6.11: Average runtime costs per day for a single residency

6.2.4 Code Mobility

Edge computing emphasizes the universal deployment of applications across the path
between the edge and the cloud. Hence applications have to be decoupled from the
underlying infrastructure and support migrations between hosts. [BMNZ14, DGC+16]
The serverless programming model promotes the release of operational concerns and simple
deployment done by the cloud provider [BCC+17]. In addition, the high abstraction level
and statelessness of serverless functions should therefore simplify inter-host migrations
and automatic deployment by providers. In the following we discuss two scenarios to
evaluate code mobility support in serverless edge.
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Migration of an Application from Serverless Edge to Cloud

The first scenario is the migration of an application built for the serverless edge to the
cloud. Our starting point is a finished implementation of our serverless edge analytics
system. The system has already been deployed and successfully controls the household
water heating system. The edge gateway device is malfunctioning and we want to migrate
the entire system to the cloud. We describe the tasks that we had to do to make our
system run in the cloud. While doing so we highlight potential obstacles and applied
changes.

1. IoT Devices
IoT devices in the serverless edge platform require host discovery of the GGC
gateway in the local network. Therefore devices have to initially request a provided
discovery API to obtain connection information about the associated group’s GGC.
Then they connect to the received host and start their routine workflow. IoT
devices that connect to the cloud service do not require the host discovery process.
Instead they pass over the discovery and directly connect to a fixed endpoint in
the cloud. Despite this rather small difference a developer either has to explicitly
implement fallback logic by oneself to support both variants or limit the application
scope.

2. SensorStore
AWS Greengrass does not support function scheduling, e.g., run a function every
hour. However it supports long-living functions which can be used to implement
them in a way that they execute their main tasks in desired intervals. The serverless
cloud counterpart, AWS Lambda, does feature this capability with the additional
Cloudwatch service. It allows developers to trigger events either at a defined
rate or by providing a cron-like expression. The rest of the function is almost
identical, except the missing possibility to centrally manage secrets in a secure way
at the serverless edge application. For this reason we had to deploy our functions,
packaged with a config file that holds our database information including username
and password. However, this missing feature was then released later and is now
generally available. The cloud SensorStore already leverages AWS SecretManager,
a service to store and retrieve arbitrary secrets, in our case the database connection
string and access details.

3. Regressor
Fundamentally, the differences between the edge and cloud variants are similar to
those of the SensorStore function, a long-living function versus a function regularly
triggered by Cloudwatch events. A major implementation difference is induced
by the lambda function’s maximum execution time limitation. To circumvent
this limitation we moved the machine learning part to a web service running on
an AWS EC2 instance. Furthermore, because we fetch training data from the
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database we also leverage the SecretManager service in the cloud and fallback to
a conventional but not recommended configuration file at the edge. In addition,
we store customer-specific metadata of our machine learning model. For this we
use a NoSQL database, specifically AWS DynamoDB at our cloud Regressor. In
contrast, the edge function stores this information in the GGC shadow. Eventually
the model is exported for future uses by the Predictor function. The export is done
either directly on the filesystem of the GGC or by uploading to the AWS S3 object
storage in the cloud.

4. Predictor
The limitations of the Regressor function also apply to the Predictor function.
The refactored cloud function again uses the web service to predict the water
consumption. However, the rest of the code is completely identical to the edge
Predictor function.

5. Scheduler
The Scheduler function is not a long-living function like the SensorStore, Regressor
and Predictor. Instead it is directly triggered on demand by the Predictor function.
At the GGC the function performs all necessary actions — waiting, starting, waiting,
stopping — by itself. However, because of the maximum function execution time that
applies in the cloud the cloud function cannot run longer than 15 minutes [Ama18],
hence has to be dynamically scheduled from an external service. Because there was
no out-of-the-box service available we had to develop another web service for this
task. This service allows us to dispatch triggers that invoke given functions at a
specified time. The web service also provides the possibility to include function
parameters for the function call. So on the GGC the Scheduler invokes the Executor
directly whereas in the cloud the Scheduler is triggered from the web service that
performs the waiting inbetween the starting and stopping phases.

6. Executor
For the same reasons mentioned above the implementation changes in the Executor
function focus on the waiting logic. We completely removed the waiting phases in
the cloud function. Instead we let the Executor schedule itself to stop the heating
again, using the dispatching web service. The rest of the code is identical to the
edge function.

Migration between Serverless Edge Gateway Devices

The second scenario discusses the capability to replace an existing edge gateway device
with a new one. The main difference to a cloud-migration is that we do not face difficulties
due to difference in supported features, only differences due to varied infrastructure. Our
initial situation in this scenario is a successfully deployed GGG on a GGC running our
serverless edge analytics application. Furthermore, we have a second device running
the GGC platform and a local database ready to be used. The new GGC has valid a
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certificate and has been set up at the AWS IoT service. Technically this means that we
have a valid GGC definition, associating the new core device with the certificate and
sufficient permissions. The following steps are necessary to perform the GGC migration:

1. Replace existing GGC definition with the newly created one

This step can only be done through the command-line interface provided by AWS.
To do so, we have to update the existing GGG definition and replace the old GGC
definition by the new one.

2. Copy database content to the new GGC device

In a next step we have to migrate existing data from the database to the new
device. However, since the MySQL installation is entirely separate AWS Greengrass
does not provide this functionality. For this reason we have to manually dump the
database and import it on the new device.

3. Copy existing machine learning model to the new GGC device

Moving the existing machine learning model to the new device also has to be done
manually. However, this step can be skipped if the prediction is not required to
run immediately. As soon as the Regressor retrains the model and stores it on the
filesystem the Predictor resumes work.

4. Install missing libraries on new GGC device

Besides the maximum function execution time limitation, AWS also enforces an
upper bound of the unzipped function size. At the time of writing this size is 250MB.
The machine learning library used in the Regressor and Predictor functions with all
its dependencies is larger than this limitation. For this reason we additionally had
to install the libraries directly on the GGC device and mount the Python libraries
folder into our function’s execution runtime. This has to be repeated on the new
GGC device as well in order to successfully run both functions.

5. Redeploy GGG

Finally, we can redeploy the GGG. This deploys the updated GGG definition to
the new GGC including the entire configuration and the functions.

6. Restart IoT devices

Lastly, to reconnect the IoT devices they need to fetch the connectivity information
of the new GGC device. This can be achieved by simply restarting the sensors and
actuators. On restart each device fetches the new information from the Discovery
API and subsequently connects to the newly assigned gateway.
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6.2.5 Data Privacy

The final characteristic in our evaluation on the serverless programming model at the
edge is Data Privacy. We examine the privacy protection from a user-centric perspective.
For this we compare the different data storage mechanism in the serverless edge as
well as in the serverless cloud. We investigate where certain information is stored and
draw conclusions from this knowledge. Furthermore, we discuss possible limitations in
functionality because of data privacy design decisions.

Table 6.3 summarizes the various systems used for the individual information. The
serverless cloud system uses multiple storage solutions in the cloud. Global anonymous
statistics across homes and sensor measurements are stored separately in two relational
databases in the cloud. Additionally an object storage is used for the trained models
of the homes. For the persistence of machine learning metadata that we calculate on
each regression we use AWS DynamoDB, a NoSQL database. Finally AWS IoT stores
the latest version of each device’s shadow state. However, it is not public which kind
of storage mechanism is used for that purpose. Nonetheless we can state that any
information collected from the system is distributed in the cloud. A user has to trust the
company that sells these systems to comply with data privacy laws and to ensure data
safekeeping.
In contrast, the serverless edge is able to keep data closer to the user. In our serverless
edge application the entire generated sensor data is stored locally on the GGC device.
Continuous sensor data is persisted in a local MySQL database. Anonymized data for
global statistics of water consumption or other big data analytics is stored in the cloud
using AWS RDS. Instead of the AWS S3 object storage the machine learning model is
stored on the GGC filesystem. Additionally, the related metadata is saved in the GGC
shadow state that in turn is also persisted on the GGC with other IoT devices’ shadow
documents in a SQLite database by default. So any non-anonymous information is kept
in the local network of the home and is not transmitted to the cloud. However, users
still depend on the company. Users do not have a simple way to verify that no data is
transmitted or to stop undesired transmission.

6.3 Use case Evaluation

Finally we evaluate our use case implementation, specifically our novel consumption-
oriented scheduling approach. For this we first examine the boiler temperature before and
after enabling our scheduler. However, the PVS can slightly skew results because water
can be heated despite not using the district heating system. Nonetheless a lower average
temperature means that less energy has been used for heating. A second indicator for
reduced energy consumption is the amount of total heating cycles or the total time of
heating in a period of time. We investigate heating time of two months using the old
system and two months using the new scheduling. Subsequently we compare the average
heating time per day.
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Serverless Cloud Serverless Edge

Global Statistics AWS RDS AWS RDS

Sensor Data AWS RDS GGC MySQL

Machine Learning Model AWS S3 GGC Filesystem

Machine Learning Metadata AWS DynamoDB GGC Shadow State

IoT Device Shadow States AWS IoT GGC SQLite

Table 6.3: Storage mechanisms in Serverless Cloud and Serverless Edge

6.3.1 Boiler Temperature

Figure 6.12 shows the average boiler temperature throughout a day. The red line marks
the temperature with the static heating approach of the old system. Compared to the
blue line which represents the consumption-oriented scheduling approach it is almost
8◦C higher at any time. Table 6.4 confirms the positive impact of the new approach.
The overall average boiler temperature is — with 48.2◦C — 8.2◦C lower than before.
According to the calculated standard deviation the previous system normally operated at
a boiler temperature of 50 to 62.9◦C, whereas the new approach usually keeps the boiler
temperature between 41.6 and 54.8◦C.
Some further interesting aspects are the 75% quantiles and the high difference in the
maximum temperature. In 75% of the time the temperature is lower than 61.6◦C for
static heating. In contrast, our consumption-oriented scheduling keeps the temperature
below 51.3◦C in 75% of the time. The maximum temperature lists the biggest statistical
outliers. Normally the boiler temperature is capped at 55◦C at the heat exchanger. The
only reason for such high temperatures is the PVS. We can conclude that either fewer
sunny days have occurred or the boiler temperature is significantly lower when the PVS
starts feeding energy into the boiler. Nevertheless, a lower maximum temperature spares
boiler materials and hence increases boiler lifetime.

6.3.2 Heating Time

Finally we discuss the total amount of heating cycles and a potential save of heating time.
For this Table 6.5 summarizes statistics of heating behavior while using each system for
two months, specifically 59 days. The table shows a total count of 130 heating cycles
compared to 97 heatings with our novel scheduler which means a decrease of 25.4%
(or 2.2 heatings per day, in contrast to 1.6 heatings per day). Mean heating duration
is nearly identical — 18m45s compared to 16m08s. However, especially the standard
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Figure 6.12: Boiler temperature before and after switching to consumption-oriented
scheduling

Static Heating Consumption-oriented
Scheduling

Mean 56.44397 48.19434

Std 6.438236 6.608566

Min 17.8 16.1

25% 52.3 44.6

50% 56.2 47.9

75% 61.6 51.3

Max 81.9 69.0

Table 6.4: Boiler temperature statistics before and after switching to consumption-oriented
scheduling in ◦C

deviation is higher with the old system. We can derive that the traditional system had
considerably more short-term heatings. This is also reflected in the analysis of quantiles.
The minimum and 50% quantile values are identical, but the 25% quantile in the static
heating measured 6m compared to 11m. In total the static heating heated for as long
as 1d 16:38:01 within two months. In the same timespan the consumption-oriented
scheduling has executed heatings that lasted 1d 02:44:03. Hence we could reduce heating
time by about 34.2%. Converted to an average time per day this means about 41m
with the static heating system and 27m with the consumption-oriented scheduling. This
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Static Heating Consumption-oriented
Scheduling

Count 130 97

Mean 0 days 00:18:45.238461 0 days 00:16:08.6907221

Std 0 days 00:16:17.152458 0 days 00:09:19.104163

Min 0 days 00:01:00 0 days 00:01:00

25% 0 days 00:06:00 0 days 00:11:00

50% 0 days 00:13:00 0 days 00:13:00

75% 0 days 00:30:00 0 days 00:18:00

Max 0 days 01:34:01 0 days 00:47:00

Sum 1d 16:38:01 1d 02:44:03

Table 6.5: Heating time statistics before and after switching to consumption-oriented
scheduling. Data represents two months of each system.

reduction in heating time can be also observed in Figure 6.13. The figure shows the
cumulative heating duration with respect to the system runtime of 59 days. In the first 14
days both systems behaved almost identical, however after that the consumption-oriented
scheduling approach constantly heated less than the previous static heating system.
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Figure 6.13: Heating time before and after switching to consumption-oriented scheduling
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CHAPTER 7
Discussion

The results presented in Chapter 6 demonstrate the benefits and shortcomings of the
serverless edge computing paradigm. In this Chapter, we discuss these results and
consequently proof the claims summarized in Table 6.1.

The tabular evaluation, presented in Table 6.2, evidently show that the internet bandwidth
usage has been significantly reduced. Only 1.4 Bytes/sec are sent to the cloud in the
serverless edge computing model. In contrast, the serverless cloud paradigm required
71.9 Bytes/sec. This bandwidth usage is per residency, hence 1000 homes would produce
6.2 GB of traffic each day using a serverless cloud system. Counted up this is a traffic
of 2.2TB per year. The serverless edge solution would only produce 43.2GB of traffic
per year. These numbers are evidence that the claim, a considerably lower internet
bandwidth usage (see Table 6.1), is true. A serverless edge system transmits a lot less
data than the serverless cloud counterpart.

Regarding the responsiveness we observe that IoT message transfers are generally faster
in the serverless edge system. Moreover, function invocations, as can be seen in the
Predictor execution flow, take much less time. Another proof of these observations is
the SensorStore function. Its execution is 82.5% faster at the edge than in the cloud.
The Predictor execution flow is also much faster, when we only consider the subsequent
lambda invocations and shadow updates after the CPU-intensive prediction. The machine
learning tasks are constantly faster in the cloud variant by an approximate factor of 5
at the Regressor and the Predictor function. We argue that serverless edge partially
fulfills the claim from Table 6.1 with respect to responsiveness in the case of message
transmission and reactivity. However, CPU-bound tasks are much slower, hence diminish
the edge computing benefit of low-latency. Clearly, however, this will depend on the type
of edge computer used. With that said, the generalized argument of low-latency at the
edge is only significant in scenarios that are not bound to the processor. A cloud server
can scale vertically to increase CPU power, whereas an edge gateway’s compute power is
limited and generally cannot be scaled on demand.
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The virtually unlimited, on-demand scalability of the cloud comes at a cost. Figure 6.11
presents the cost structures of the serverless edge and serverless cloud systems. It has to
be noted that cloud services like EC2 instances, RDS, DynamoDB and specifically the
NAT gateway can be used for many residencies, thus become cheaper with the amount
of enrolled homes. The evaluation of runtime costs yields additional costs of $2.23 per
day for the initial cloud services. However, these expenses do not include services with a
free-of-charge volume. For these reasons the serverless cloud has high stepped fixed costs,
hence is relatively expensive with less residencies. With more homes using the cloud
system, these extra charges decrease but the free-of-charge volumes are depleted at the
same time. Therefore the discount on a per-home basis also decrease, which in turn raises
costs again. For higher quantities a detailed cost structure analysis is required. [Eiv17]
examines the economics of serverless cloud computing and presents a real-world case
study that yields the same conclusions. In contrast, the serverless edge has lower variable
costs. These can be split into low one-off costs for the GGC device and negligible monthly
costs of $0.03. Therefore, we conclude that the runtime costs claim from Table 6.1 is
proven true.

The considerable difference in costs is not only caused by the need for more cloud services,
but also due to necessary changes in the implementation. To evaluate the code mobility
we kept track of barriers we noticed while moving our serverless edge system to the
serverless cloud. Almost all implementation differences can be traced back to certain
predefined limitations of cloud services from the provider’s side or missing features on one
side that have to be replaced for the other. This lack in features or one-sided limitations
hinder code mobility. The main obstacles we observed during the migration is presented
in the following:

1. Long-living functions vs. Maximum execution time

2. User-centric view vs. Global view

3. GGC Filesystem vs. AWS S3

The first and most important barrier in code mobility is the possibility of long-living
functions on the GGC. Highly beneficial at the edge, but not directly supported in
the cloud. For this reason it requires major code and sometimes also architectural
changes. The second biggest obstacle is the difference in function scope. At the GGC a
function only handles an individual user, thus can be developed without heavy logic for
multi-user support. However, the cloud functions need to distinguish between users on
each invocation to associate water consumption predictions and execute the schedule for
the correct user. The third obstacle is state management of functions. You cannot use
AWS S3 at the edge without fallbacks if you have to support full-functionality during
connection losses. A fallback, like the local GGC filesystem, is not available in the cloud,
hence also requires additional modification. These three obstacles have to be removed
for full support of code mobility and transparent migration between edge devices and
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cloud servers. In addition to the migration between the two domains — edge and cloud
— we also evaluated the migration of an entire GGG between two GGC devices. With
regard to code mobility we can state that the serverless functions can be migrated to a
new edge gateway without any implementation changes. Nonetheless, some steps have
to be carried out manually, including database and model migration as well as manual
installation of necessary dependencies for functions that exceed the maximum lambda size
limitation. When we look at both scenarios as a whole we can state that code mobility
with serverless edge is only supported to a small extent. Functions can be executed
on different servers or devices in the respective domain, but cannot be migrated from
one domain to another without major manual intervention. We argue that the claim,
the support for transparent execution of functions across the edge and the cloud, is not
fulfilled in today’s production-grade serverless edge frameworks.

In addition to code mobility we also evaluated the Data Privacy in serverless edge
applications. For this we examined the various storage mechanisms used in both imple-
mentation types. These are listed in Table 6.3. It can be noted that most of the data in
the serverless edge application is stored locally on the GGC. Additionally, anonymized
and, e.g., aggregated data can still be used for big data analytics in the cloud without
decreasing data privacy. However users of IoT services, no matter if implemented within
the serverless edge or serverless cloud paradigms, still have to trust the companies to
keep their data safe. There is no simple way for non-expert users to keep track of what
data is processed or even persisted in the cloud. Moreover, users do not have control
over their data. In summary, we conclude that the serverless edge improves data privacy
by reducing the amount of private data that is stored in the cloud, but it is still a matter
of trust and data privacy is not directly enforceable by the users.

All our results on the claims from Table 6.1 are summarized in Table 7.1.

7.1 Limitations

7.1.1 Serverless Edge

Three of our defined characteristics are only partially fulfilled using the serverless edge
paradigm. The responsiveness is only improved with respect to latency, but as soon as
the edge gateway executes CPU-bound tasks the overall execution takes considerably
more time than in the cloud. So the effectiveness of processing data closer to the source
is decreased. This impact can be seen in Section 6.2.2, in particular at the Regressor
execution flow.
Another significant aspect of the serverless edge is code mobility of functions. It enables
the execution of functions on different nodes. The qualitative evaluation however revealed
problems when migrating edge functions to the cloud. In the edge framework’s current
state functions are too coupled to specific functionalities of the GGC. This prevents direct
migration to the cloud and results in the need for two implementations of the function —
one for the edge and one for the cloud. Directly related to this is the present deployment
mechanism. Functions are either deployed to a GGC or not. The cloud service does not
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Characteristic Serverless Edge

Internet Bandwidth Usage yes

Responsiveness partial

Runtime Costs yes

Application Deployment partial

Code Mobility no

Data Privacy partial

Table 7.1: Evaluation results

automatically scale or migrate functions inbetween a GGC and the cloud.
In addition, we noticed limitations in data privacy handling from a user’s perspective.
Overall, the results show that the serverless edge provides the capabilities to enhance
data privacy. It significantly reduces or even completely prevents sensitive data from
being sent to the cloud without affecting service functionality. However, the serverless
framework does not provide a control mechanism to enforce the data privacy settings of
a user. Users have to trust the companies to keep their data safe.

7.1.2 Serverless Framework

Besides the unmet characteristics we also faced several technical limitations. The frame-
work itself does not come with an integrated storage system besides the IoT device
shadows. If edge applications require additional persistence systems like relational
databases or similar, they have to be installed explicitly on the edge gateways. Ad-
ditionally, AWS lambda functions have a filesize limitation of the unzipped function
code. At the time of writing it is 250MB. But because the libraries for data aggregation,
data preparation and machine learning in sum are bigger than this limit we were not
able to deploy the Regressor and Predictor functions to our GGC. To work around this
limitation we had to install the libraries on the GGC device beforehand and include them
at runtime. All these issues further hinder code mobility and migration.

Another major obstacle during development was software testing. Splitting application
code into small atomic functions should considerably increase testability. AWS provides
testing and debugging for lambda functions through AWS Serverless Application Model
(SAM). It enables local testing and step-through debugging of serverless applications.
However, edge functions depend on several GGC features and as already stated do not
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run in the cloud without modification. This renders edge functions untestable locally.
The only way to test correct behavior, is to deploy the functions to a GGC and conduct
manual testing. Moreover, debugging is not available and someone can only use systematic
logging output to find errors.

On the IoT devices side there is the need to call a Discovery API to retrieve GGC
connectivity information. However, this imposes problems if there is no internet connection
at the moment when sensors / actuators try to connect to the GGC. Even if the local
network is intact, sensors and actuators are still not able to connect to each other. So,
if an application is required to work flawlessly on internet outages IoT devices have
to explicitly cache gathered connectivity information. Besides this, a developer is also
responsible for the implementation of ordinary connection retry logic. These rather
important features are not included in IoT devices SDK provided by AWS.

To sum up, AWS Greengrass provides serverless functions and analytics at the edge, but
nonetheless misses some important aspects of edge computing and serverless programming.
The serverless functions deployed at the edge gateway is too coupled to the GGC and does
not abstract away all infrastructural aspects. Furthermore, edge computing facilitates
multi-tenancy of edge devices, hence enable deployment of multiple vertical applications
from different cloud users. At the moment, AWS Greengrass, as well as the other
evaluated serverless edge frameworks, are not built to host multiple strictly separated
applications on their edge gateways. This is especially not the case if these applications
belong to distinct cloud users. Therefore every cloud user has to deploy an edge gateway
for its own application, hence we claim that these frameworks are only for bespoke
applications.

7.2 Consumption-oriented Scheduling
Finally we discuss the results from the use case evaluation in Section 6.3. The results
clearly show a considerable improvement, both in average boiler temperature and total
heating time. Moreover, despite a lower boiler temperature, on average by 8.2◦C,
inhabitants did not complain about water temperature for personal hygiene. However
sometimes the water temperature was slightly too low for dish-washing, that in general
requires hotter water than showering. This points out that the desired boiler temperature
is not only dependent on the required amount of water, but also on the temperature that
is required for a specific task. To further improve the scheduler, it must be possible to
differentiate between, e.g., showering and dish-washing. This would allow for more precise
temperature calculations. A possible solution for this would be to add water temperature
sensors at the sinks and build another machine learning model that predicts required
water temperature for a specific task or enables profiling of water consumption. The
result from this could be integrated in the formula for boiler temperature calculations.

The total heating time was also drastically reduced by a third (see Table 6.5 and
Figure 6.13). However, the heating consists of two phases and our scheduler is only
capable to calculate the time of the last phase and uses a constant time for the other.
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The first phase is to heat up the primary pipeline (see Figure 4.1) from the district
heating plant to the heat exchanger unit. As soon as the external circulation system has
reached sufficient temperature the secondary pump is activated. Not before this, the
water in the boiler is heated. For this reason, the heating time is dependent on the time
that is required to finish the first phase and after that to actually heat the boiler. The
scheduler’s calculation of time only considers the second phase and approximates the
first phase by a constant time. In reality this time varies greatly. The primary pipeline
is almost continuously warm in winter, due to active radiators and underfloor heating.
This significantly reduces the required time in winter. In summer, the complete opposite
is the case. So to further improve the scheduler it would be necessary to know the water
temperature of the primary pipeline and estimate a heating duration thereof.

Both discussed limitations refer to the accuracy of the boiler temperature and heating
time calculations in the scheduler. Another limitation is the accuracy of the forecasting
model itself. Due to the irregular nature of water consumption an exact prediction is
extremely complex. Furthermore, abnormal high water consumption causes peaks and
downgrade the machine learning model. At the same time, the model lacks the possibility
to accurately predict these peaks. But nonetheless, the current results show that the
combination of PVSs, conventional heating and a smart consumption-oriented scheduling
can save energy and reduce costs.
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CHAPTER 8
Conclusion

The IoT is constantly growing and expected to exceed 24 billion devices in 2020 [GBMP13].
The cloud computing paradigm provides virtually unlimited processing power and storage,
hence is a key element of today’s IoT to support this vast amount of devices [LL15].
However, the Cloud of Things [AKAH14] faces limited data transfer rate, requires
continuous Internet connection and causes transmission of a significant data volume. The
edge computing paradigm brings data processing and storage closer to the user, hence
enables latency sensitive applications, reduces bandwidth and fosters scalability and
reliability. The heterogeneous and resource-constrained runtime environments of the edge
of the network require light-weight application encapsulation to support code mobility
and inter-host migration. For this reason [NRS+17, dLGL+16, MBS+17] propose the
serverless programming model as suitable programming and infrastructure abstraction
model.

However, besides proposed serverless edge analytics architectures, there have only been
minimal real-world use case evaluations that examine the serverless edge computing
paradigm. Therefore we evaluated the serverless edge model using a production-grade
edge computing framework. We compared the serverless edge to the serverless cloud
paradigm by quantitative and qualitative metrics defined in Table 6.1. Prior to this
we defined an IoT use case and built two respective prototypes. The use case consists
of general IoT application building blocks — environment monitoring, home appliance
control to fulfill set goals, data analytics on historic data as well as real-time data
analytics. Our prototypes implement a novel consumption-oriented scheduling approach
for water heating. The systems leverage district heating and a PVS and optimizes heating
cycles by domestic water consumption profiling on historic data. For this we built a
random forest model and combine it with real-time information to determine necessity of
heating and further schedule next heating.

In a next step we compared available serverless edge computing frameworks, specifically
AWS Greengrass and Microsoft Azure Iot Edge. Subsequently we described a generic
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serverless edge analytics architecture and applied it to our use case implementation using
the selected framework. We then presented our random forest machine learning model,
the independent variables thereof and the deployment in our test installation. Then, we
defined an acceptance criteria and validated our model using time series cross-validation.
Concluding our prototype design we illustrated the novel consumption-oriented scheduling
approach. Therein we presented the derivation of required mathematical formulas and
the utilization in our scheduler.

To evaluate both paradigms we deployed the serverless edge system in a single-family home.
Before we enabled our scheduler, we initially collected data to train our model and achieve
defined accuracy. At the same time we migrated our serverless edge system to the cloud
and subsequently replaced the serverless edge system in our test environment. We then
compared both implementations by defined characteristics (see Table 6.1). Specifically
internet bandwidth usage, responsiveness, runtime costs, application deployment, code
mobility and data privacy. The results showed that the serverless edge has the potential
to significantly reduce bandwidth requirements and runtime costs. The evaluation also
confirmed the presumed decrease in latency. However, CPU-bound tasks diminish the
improvement because we found that these tasks can be computed considerably faster
in the cloud than on resource-constrained edge gateways. We also identified issues that
hinders code mobility to support automatic application deployment and scaling across the
edge and the cloud. Moreover, we observed that at the time of writing production-grade
frameworks do not support multi-tenancy, hence only enable bespoke edge applications.
Finally, the qualitative evaluation revealed that it is not possible to seemlessly distribute
applications across edge and cloud without additional development efforts.

We argue that the serverless programming model is a suitable edge computation model.
However, production-grade frameworks lack some important features, identified in our
evaluation, to fully realize the idea of edge computing. Foremost is the support of a multi-
tenant architecture on edge gateways to mitigate limitations to specifically customized
applications and provide better general access for cloud users. For this, research on
multi-tenant edge gateway architectures has to be done. Additionally, current frameworks
do not entirely abstract away infrastructure details, which prevents code mobility and
transparent execution on cloud or edge. To facilitate seemless migration between hosts
we argue that research on some type of service discovery has to be performed. The
service discovery endpoint should then provide mechanisms to switch for example between
cloud storage and local file storage in a transparent way. However, in order to enable
transparent service replacement, edge frameworks additionally need to be able to perform
data migration, such that application states can be replicated on different hosts. This
includes replication of local databases and local files. Research in these three fields would
remove edge application development obstacles and foster global accessibility to edge
computing for cloud users. With regard to the identified data privacy concerns, scientific
work could develop methods to include IoT devices / application users into the control
loop to oversee and perhaps restrict transmission of sensitive data. Restrictions could
then be a decisive factor for serverless function deployment.
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