
Mario Saric, BSc
Matr. Nr. 01428305

Simulation-based Testing of Failsafe
Industrial Peripheral Modules

Diploma Thesis
Master’s degree programme: Energy Systems and Automation Technology

submitted to

Vienna University of Technology

Supervisor
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Thilo Sauter

Institute of Computer Technology

Vienna, March 2019

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Eidesstattliche Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct -
Regeln zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung
des jeweiligen Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel,
angefertigt wurde. Die aus anderen Quellen direkt oder indirekt übernommenen
Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die Arbeit
wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher Form
in anderen Prüfungsverfahren vorgelegt.

Datum Unterschrift

ii

Acknowledgment

This thesis was written in SIEMENS AG Development House in Graz, which is
why I would like express my gratitude to Herbert Tanner for this opportunity
and all the resources and patience I got during the writing process. A very
special thanks to my colleague Joachim Wahrbichler for the generous technical
support and knowledge he shared with me. I would also like to thank my
colleague, Nermin Kajtazović, for his support, suggestions and discussions
during this time. By all means, I would like to thank my supervisor Prof. Thilo
Sauter for his professional and academic support.

Finally, I can not express how much I am grateful to my family: my father
Ivan, mother Jadranka and sisters Magdalena and Marijana. It is for their
support and sacrifice that I was able to do my studies in Croatia and Austria.
They were always there for me, day or night. Thank you!

iii

Abstract

Nowadays, programmable logic controllers (PLCs) are a common technology
used for automating industry processes and plants. Their scope of application
ranges from simple emergency stop systems to more advanced systems, such
as those used in hydro power plants for monitoring turbine rotation. Some of
these PLCs and their corresponding peripheral I/O devices are used in the
so-called ”critical” environments, where in case of failures such systems may
pose harm to humans or cause damage to the equipment. Thus, these so-called
safety-critical systems must be developed rigorously with a high degree of
quality assurance. If such system detects a failure in hardware or software it
automatically goes into safe state, usually by de-energizing the outputs of the
peripheral I/O modules. To ensure functional safety, the modules are developed
in accordance with the IEC 61508 standard. For the software part, the use of
the V-model is highly recommended by the IEC 61508. One of the common
issues in terms of verification is a large gap between module/unit tests, which
are normally performed in software for each software module separately, and
hardware/software integration tests, which are performed when the system
is integrated and functional. In order to bridge this gap, intermediate levels
of integration are required between these two test phases. Simulation-based
hardware-software testing is therefore presented in this thesis. Except for a host
machine, this approach does not require any hardware. Instead, simulation-
based testing is conducted using simulated hardware and an instruction set
simulator. The simulation-based components are integrated into the legacy
test environment. The tests are compiled and run redundantly on two different
tool-chains, resulting in a test report and a coverage report. The new method
is applied in a specific use-case: a traditional hardware-software integration
test case is implemented in the simulation. The results show that it is possible
to execute traditional integration tests without the hardware prototype and
obtain a test coverage overview in addition. Consequently, the new method
proves that it can be used as a supplement to traditional integration tests.

iv

Kurzfassung

Speicherprogrammierbare Steuerungen (SPS) sind heutzutage eine weit ver-
breitete Technologie in der industriellen Prozessautomatisierung. Ihr Anwen-
dungsgebiet reicht von simplen Not-Aus Systemen bis hin zu sehr komplexen
Anlagen, wie z.B. die Überwachung der Turbinen in einem Wasserkraftwerk.
Manche dieser SPS (samt den zugehörigen E/A Peripheriemodulen) werden
in sogenannten

”
kritischen“ Umgebungen eingesetzt, wo der Ausfall dieser

Systeme eine Gefahr für Menschen bedeutet sowie ökonomische anrichten kann.
Aus diesem Grund besitzen sogenannte sicherheitskritischen Systeme eine sehr
rigorose Entwicklung und hohe Qualitätsansprüche. Wenn das System einen
Fehler in Hardware und/oder Software detektiert, so schaltet es automatisch in
den sicheren Zustand, der üblicherweise das Abschalten der Peripherieausgänge
zur Folge hat. Um funktionale Sicherheit zu gewährleisten werden die Module
gemäß IEC 61508 Standard entwickelt. Für die Software empfiehlt der Standard
die Verwendung des V-Modells. Eines der Probleme bei der Verifikation ist,
dass eine große Lücke zwischen Modultests, welche in Software ausgeführt
werden und jede Komponente einzeln betrachten, und den Hardware/Software-
Integrationstests welche im Systemverband getestet werden besteht. Um diese
Lücke zu schließen sind Zwischenstufen im Test nötig. Aus diesem Grund
wird eine simulationsbasierte Hardware-Software Testmethode in dieser Arbeit
vorgestellt. Dieser Ansatz benötigt außer einem Hostsystem keine zusätzliche
Hardware. Stattdessen wird beim Testen nur simulierte Hardware mit einem
Befehlssatz-Simulator eingesetzt. Die simulationsbasierten Komponenten wur-
den in die bestehende Testumgebung integriert. Die Tests werden übersetzt und
laufen redundant auf zwei verschiedenen Tool-chains und resultieren in einem
Testbericht und einem Codeabdeckungsbericht. Die neue Methode wurde an
einem bestehenden Use-Case; einem gewöhnlichen HW/SW-Integrationstest
angewendet. Das Ergebnis zeigte, dass es möglich ist gewöhnliche Integra-
tionstestfälle ohne Hardwareprototyp auszuführen und zusätzlich eine Übersicht
über die Codeabdeckung zu erhalten. In Folge dessen wird die neue Methode
ergänzend zu den bestehenden Integrationstests verwendet.

v

Contents

Abstract iv

Abbreviations xi

1. Introduction 1
1.1. Motivation . 1
1.2. Thesis Structure . 4

2. Failsafe Programmable Logic Controllers 5
2.1. SIMATIC PLC System . 5
2.2. Failsafe PLC Peripheral Module 6
2.3. PROFIsafe . 9

3. Testing Embedded Systems 12
3.1. Safety V-Model Life-cycle . 13
3.2. Testing Techniques . 15

3.2.1. Black-box Testing . 15
3.2.2. White-box Testing . 17

3.3. Test Levels . 20
3.3.1. Unit Test . 20
3.3.2. SW Integration Test . 20
3.3.3. HW/SW Integration Test 22
3.3.4. Validation Testing . 22

3.4. Simulation Techniques in Testing 23
3.5. Conclusion . 24

4. Modeling Embedded Systems 26
4.1. Abstraction Levels . 26
4.2. Abstraction Pyramid . 27
4.3. System Level Modeling . 29

4.3.1. Single-Language Approach 29

vi

Contents

4.3.2. Multi-Language Approach 30
4.4. Existing System-Level Modeling Languages 30

4.4.1. SpecC . 31
4.4.2. SystemC . 31
4.4.3. C/C++ Modeling . 33

4.5. System-Level Modeling Platforms 34
4.5.1. Commercial Tools . 34
4.5.2. OVPSim . 34
4.5.3. QEMU . 35

4.6. Modeling Timing Behavior . 35
4.7. Conclusion . 36

5. System Design 39
5.1. Simulated Hardware . 39

5.1.1. Generic I/O Pin Model 39
5.1.2. Generic Register Model 42
5.1.3. ARM Cortex M3 . 42
5.1.4. STM32F2xx Peripherals 42
5.1.5. Timer . 43
5.1.6. Other Hardware . 43

5.2. Firmware . 46
5.3. Middleware . 48

5.3.1. F-CPU and PROFIsafe Simulation 48
5.3.2. Simulation Event Manager 48

5.4. Test Environment . 50

6. Implementation 54
6.1. PROFIsafe Address Assignment 54

6.1.1. Manual Setting Using a Hardware Switch 55
6.1.2. Address Assignment via Engineering Station 55
6.1.3. HW-SW Integration Test Cases 56

6.2. Virtual Address Assignment . 61
6.3. Improving Test Coverage . 64

7. Results and Evaluation 66
7.1. Test Coverage . 66
7.2. Test Resource Savings . 68

vii

Contents

7.3. Discussion . 68

8. Conclusion 70
8.1. Summary . 70
8.2. Future Work . 71

Bibliography 72

Appendix 78

A. STM32F2xx Block Diagram 79

viii

List of Figures

1.1. Typical V-model [3] . 2
1.2. Traditional development (top) vs. development using a simula-

tion platform (bottom) [5] . 3

2.1. SIMATIC PLC system: S7-1500 CPU with ET 200SP (Image
courtesy of SIEMENS) . 6

2.2. PLC program execution . 7
2.3. Generic failsafe I/O peripheral module block diagram 8
2.4. 1oo2D architecture [7] . 8
2.5. PROFIsafe ”black channel” concept [8] 10
2.6. PROFIsafe layer structure [8] 10
2.7. PROFIsafe message format [8] 11

3.1. Profit vs. verification effort in software testing [9] 13
3.2. Cost vs. development time in software testing [10] 13
3.3. Safety V-model [4] . 14
3.4. Black-box testing . 16
3.5. Equivalence class partition . 16
3.6. Boundary value analysis . 17
3.7. Integration test strategy example [15] 21
3.8. Top down integration strategy [15] 21
3.9. Bottom up integration strategy [15] 22
3.10. Simulation techniques in the development of modern ECUs [17] 24
3.11. SiL simulation diagram . 25

4.1. Y-chart diagram [19] . 27
4.2. Abstraction pyramid [20] . 28
4.3. Single-language approach [21] 29
4.4. Multi-language approach [21] 30
4.5. Basic structure of a SpecC model [23] 32
4.6. SystemC language architecture [26] 33

ix

List of Figures

4.7. Level of abstraction vs. performance in modeling timing behavior
[46] . 37

5.1. Complete system overview . 40
5.2. Pins class diagram . 41
5.3. Generic register class diagram 42
5.4. Modified device header file: a) Physical processor accessing hard-

ware perihperals b) Accessing modeled peripherals using the
modified header file . 44

5.5. Timer block diagram [50] . 45
5.6. Timer class diagram . 45
5.7. Firmware architecture . 47
5.8. Simulated bus interface . 49
5.9. Code instrumentation in module controller 50
5.10. Simulation event manager time sequence diagram 51
5.11. Test environment configuration 52

6.1. Setting the failsafe address using a hardware switch 55
6.2. Implementation configuration in TIA Portal 56
6.3. Step 1 of the address assignment in TIA Portal 57
6.4. Step 2 of the address assignment in TIA Portal 58
6.5. Step 3 of the address assignment in TIA Portal 58
6.6. TIA Portal address assignment time sequence diagram 59
6.7. Activity diagram for the simulation-based address assignment . 62
6.8. Simulation-based address assignment time sequence diagram . . 63
6.9. Additional test cases derived from data records 65

x

Abbreviations

1oo2D One-Out-Of-Two-Diagnostic

ADC Analog-to-Digial Converter

BCET Best Case Execution Time

CRC Cyclic Redundancy Check

DIP Dual-In-line-Package

DUT Device Under Test

ECU Engine Control Unit

ESL Electronic System Level

F-CPU Failsafe CPU

FMEA Failure Mode and Effects Analysis

HDL Hardware Description Language

HiL Hardware-in-the-Loop

I2C Inter-Integrated Circuit

IP Intellectual Property

ISS Instruction Set Simulator

MiL Model-in-the-Loop

OVP Open Virtual Platforms

PiL Processor-in-the-Loop

xi

Abbreviations

PL Performance Level

PLC Programmable Logic Controller

SIL Safety Integrity Level

SiL Simulation-in-the-Loop

SLDL System-Level Design Language

TLM Transaction-Level Modeling

WCET Worst Case Execution Time

xii

1. Introduction

Nowadays, programmable logic controllers (PLCs) are the most widely used
industrial automation technology [1]. They are used for production and process
control in various industrial systems. Their application ranges from simple
automation tasks such as conveyor systems to complex control systems such as
nuclear plants. The latter is considered a safety-critical environment. Failure in
such environments can cause damage to the property or environment, which
in turn, either directly or indirectly, leads to physical injury or damage to
the human health [2]. Moreover, the failure can also induce serious economic
consequences. The root of the failure can be caused by any functional part
of the system, including the programmable logic controllers. Given the fact,
that the PLCs are becoming more and more complex in terms of hardware and
software, a number of guidelines and standards have been introduced lately,
in order to ensure functional safety and make them as reliable as possible. In
the context of industrial application, the international standard IEC 61508 has
emerged [2]. IEC 61508 covers the system development of failsafe programmable
electronic systems. It has seven parts that are focused on different development
aspects and features a set of methods and recommendations to support the
development and ensure functional safety.

1.1. Motivation

This thesis focuses on the software part of the development of failsafe PLC
peripheral modules. This is covered in the Part 3 of the IEC 61508 [4]. The
software design is largely based on the use of the V-model approach. A typical
V-model is shown in the Figure 1.1. The principle of the V-model is a top-
down approach for development and testing. Each development level has a
corresponding test level. The focus of this thesis is further narrowed to the right
side of the V-model: testing and verification. Two major problems arise from
testing the software with using the V-model approach. One is that software

1

1. Introduction

Software
Safety
Requirement
Specification

Intermediate
Design
Stages

Module
Design

Coding

Module
Testing

Intermediate
Testing
Stages

Full System
Testing

Validation

Verification

Verification

Validated
System

Figure 1.1.: Typical V-model [3]

testing heavily depends on hardware architecture and the other is that there is a
large gap between module/unit tests, which are normally conducted in software
for each software module in isolation, and hardware/software integration tests,
which are conducted when a system is integrated. To be more appropriate, an
intermediate levels of integration are required between these two test phases,
since on the one side, unit testing can help to identify the potential systematic
faults with reasonably good coverage in isolated software modules, and on
the other side, hardware/software integration allows to verify functions of the
integrated system, but lacks in achieving high test coverage.

Hardware-dependent Software Testing

Software development can be conducted as detached from the hardware only to
some extent. It is feasible to develop and test software components with little or
no interaction with the hardware. However, when developing software modules
which closely interact with the hardware (e.g., drivers), a hardware prototype
is essential. Ideally, one would be completely independent from hardware
development and have an executable software without the need of hardware. A
potential solution to this would be to introduce virtual hardware components by
introducing a simulation-based platform. With this new platform, the software
developer is not only able to execute hardware-dependent test cases before

2

1. Introduction

HW development

HW-dependent SW development

HW/SW integration and testing

HW development

HW/SW integration and testing

HW-dependent SW development

Reduced time-to-market

Figure 1.2.: Traditional development (top) vs. development using a simulation platform
(bottom) [5]

actually getting the hardware, but also to use it to develop and test new
functionalities. This leads to a reduced time-to-market, as illustrated in Figure
1.2.

Integration Testing Gap

In the most optimal scenario, the software should be fairly tested. However,
there are two problems with software testing. First, it is difficult to determine
what it means that the system is completely tested. Second, even if the exact
determination would be possible, there is still only a limited number of resources
for testing. IEC 61508 partially handled that problem and introduced a formal
metric to measure to which degree the system has been tested. This metric is
called test coverage. Ideally, 100% of statements, methods and branches shall
be covered. If that is not possible, a valid explanation has to be supplemented.
Furthermore, the statement about the code coverage is relatively easy to
generate for isolated software units and software integration tests, since there is
a transparent overview over the software architecture at these levels. However,
when moving to hardware-software integration test, the source code is no longer
available and thus, there is no feedback from the software part. Hardware-
software integration tests are used for functional verification but they lack an
overview about the code coverage. This thesis introduces a simulation-based
hardware-software integration test approach, which provides a code-coverage
overview for traditional hardware-software integrations tests.

3

1. Introduction

Thesis Contributions

To tackle the problems above, this thesis will focus on introducing a simulation-
based hardware-software testing platform. In accordance with the IEC 61508
and based on the traditional software development using a V-model approach,
a simulation-based testing approach is introduced for testing failsafe peripheral
modules. The platform will not have any hardware components. The goal is to
execute traditional hardware-software integration test cases on the simulation
platform.

1.2. Thesis Structure

The thesis is organized in eight chapters. After this introductory chapter,
subsequent three chapters deal with theoretical background, literature review
and related work. Chapter 2 introduces the SIEMENS SIMATIC PLC system
to the reader. The presented peripheral module is a safety-critical embedded
system. In order to get the target system certified, it has to be comprehensively
tested. Chapter 3 gives a brief overview of testing methods used for embedded
systems in general, as well as those specifically used for the target system. One
of the testing techniques applied is also software simulation. To implement a
simulation in the testing life-cycle, a software model of the embedded system is
necessary. Chapter 4 focuses on modeling an embedded system on a system
level. System-modeling state-of-the art is presented and backed up with the
related work. After providing theoretical fundamentals, Chapter 5 describes
the final system. In Chapter 6, the system is implemented in a specific use-case.
The results of the implementation and detailed evaluation of the system are
presented in the Chapter 7. Finally, Chapter 8 offers a brief summary of the
thesis after which some future work is presented.

4

2. Failsafe Programmable Logic
Controllers

2.1. SIMATIC PLC System

A brief description on how a PLC works is explained through an example
of the SIEMENS SIMATIC PLC system depicted in the Figure 2.1. The
CPU (1) and the peripheral I/O modules (2) are mounted on a mounting
rail (6) and supplied with a supporting power supply. Optionally an interface
module (5) is used in a distributed system to connect the distributed I/O group
with the CPU. Automation application runs on either a regular CPU or a
failsafe CPU (F-CPU). The system supports both Ethernet, PROFINET and
PROFIBUS communication. The data between CPU and peripheral modules
is exchanged cyclically and acyclically. Cyclic data exchange is used for process
data (e.g. input data from sensors) and acyclic for other communication (e.g.
parametrization of the module). For exchanging the safety relevant process data,
the PROFIsafe protocol is applied. Peripheral I/O modules form an interface
between the controller and the plant. They handle physical input or output
signals obtained from sensors and provided to actuators. Depending on the
signal type, I/O modules can be generally divided into following categories:

• Digital input (DI)
• Digital output (DQ)
• Analog input (AI)
• Analog output (AQ)

For safety-critical plants, the yellow-labeled modules (3) in Figure 2.1, are used.
These are a special SIMATIC I/O module product family for safety integration.

5

2. Failsafe Programmable Logic Controllers

2

6

3

4

5

1

Figure 2.1.: SIMATIC PLC system: S7-1500 CPU with ET 200SP (Image courtesy of
SIEMENS)

PLC Program Cycle

The main application is implemented as an infinite loop with instructions
executed in a specified order and interrupted with time-critical tasks in form of
interrupts. This is illustrated in Figure 2.2. Each cycle starts by reading the
input values from sensors and ends with setting the output data for actuators.
In-between, instructions are executed to provide functionality of the loaded
application. Total cycle time depends on the complexity of the application and
performance of the used CPU. However, the cycle time must be short enough
to ensure that the system operates almost in real time. Typical time values
range from 1ms to 20ms [1].

2.2. Failsafe PLC Peripheral Module

Fail-safe modules cover a number of functional safety measures from various
international standards (e.g. IEC 61508). Furthermore, the modules have to
get certified by an accredited functional safety certification organization (e.g.
TÜV). They are designed for safety-related use up to SIL (Safety Integrity

6

2. Failsafe Programmable Logic Controllers

Read Inputs

Execute Program

Instruction 2

Update Outputs

Instruction 1

Instruction N

Figure 2.2.: PLC program execution

Level) 3 according to IEC 62061 and PL (Performance Level) ”e” according to
ISO 13849 [6].

The general internal block structure of a failsafe module is shown in Figure
2.3. The module is connected to the F-CPU via bus interface. On the other
side, sensors/actuators in the plant are connected via different I/O channels.
The data is redundantly processed on two identical micro-controllers, which run
the same firmware images and are constantly being synchronized. Each module
has a group of module-specific hardware. The peripheral analog modules, for
example, feature a third-party ADC hardware component.

Functional Safety Measures

The failsafe peripheral module essentially realizes functionality as regular
modules do: exchange process data between the plant and controller. However,
to ensure failsafe operation, several functional safety measures according to
the IEC 61508 are integrated into the failsafe modules. Most important is the
use of one-out-of-two-diagnostic (1oo2D) architecture. This means that the
process data is evaluated using two identical microprocessors running the same
firmware images. Supplementary, a number of diagnostic monitoring measures
are implemented.

7

2. Failsafe Programmable Logic Controllers

Failsafe I/O Module

Bus
Interface

Module-
specific

Hardware

I/O Channel 1

I/O Channel 2

I/O Channel N

Sensor/
Actuator

Sensor/
Actuator

Sensor/
Actuator

Backplane
bus

µC1

Firmware

µC2

Firmware

F-CPU

Figure 2.3.: Generic failsafe I/O peripheral module block diagram

Channel

Channel

1oo2D
Diagnostics

Diagnostics

Figure 2.4.: 1oo2D architecture [7]

1oo2D Architecture

The sensor values are processed and evaluated using a dual channel structure,
depicted in Figure 2.4. The channels are connected in parallel. If there is a
diagnostic fault in one of channels or a discrepancy between the two of them,
then the module goes to the safe state [7].

Diagnostic Monitoring

As recommended by IEC 61508, a number of monitoring functions are imple-
mented to ensure the correct operation of the peripheral modules. Examples
of such monitoring functions are voltage monitoring, temperature monitoring,
RAM Comparison, watchdog monitoring etc. If one of the monitored values
does not match the reference or expected values, the module goes into the

8

2. Failsafe Programmable Logic Controllers

failsafe state.

2.3. PROFIsafe

PROFIsafe [8] is a safety communication technology defined as an international
standard in IEC 61784-3-3. PROFIsafe protocol can be used for safety applica-
tions up to SIL3 according to IEC 61508. It allows a failsafe communication
on existing standard networks such as PROFIBUS and PROFINET without
any impacts on them. Both standard and failsafe messages are transmitted on
the same cables. However, from the perspective of a PROFIsafe profile, the
underlying bus system and other network components (switches and routers
i.e.) are seen as ”black channel”. This concept is shown in Figure 2.5. A safety
communication profile must deliver updated and correct data (data integrity)
to the intended destination (authenticity) just-in-time (timeliness). To meet
these tasks, [8] includes following safety measures:

1. Consecutive numbering of PROFIsafe messages: a 24-bit consecutive
number is used to assure that the receiver obtained the complete message
within the correct sequence.

2. Time expectation with acknowledgment: in the safety critical systems, it
not only matters if the received message is complete as mentioned above,
but it is just as important that the message arrives within a fault tolerant
time. This is solved by utilizing a watchdog timer.

3. Codename between sender and receiver: to avoid misdirecting messages,
both sender and receiver have a unique network-wide identification in a
form of failsafe address.

4. Data integrity checks (CRC): A cyclic redundancy check is used for
detecting corrupted bits. PROFIsafe uses 24-bit and 32-bit CRC generator
polynomial to calculate the CRC signatures.

PROFIsafe services

As previously shown in Figure 2.5, the PROFIsafe layers are located above the
”black channel” and are implemented in software as drivers with a central state
machine controlling message processing, CRC error handling and exceptions
such as startup and power on/off. Figure 2.6 shows the service interaction
between the host (e.g. F-CPU) and the device (peripheral module).

9

2. Failsafe Programmable Logic Controllers

Standard
protocol

Standard
protocol

PROFIsafe
layer

PROFIsafe
layer

Safety
application

Standard
application

Safety
application

Standard
application

(Industrial Ethernet) PROFINET IO, PROFIBUS-DP,
Backplanes, Wireless

“Black
Channel”

Figure 2.5.: PROFIsafe ”black channel” concept [8]

F-Host driver instance

User
application

Services

State machine

F-Device driver

F-Device

Services

State machine

F-Parameter

iParameter

PROFIsafe message

Control byteCRC Output data

Status byteInput data CRC

PROFIsafe
layer

Figure 2.6.: PROFIsafe layer structure [8]

10

2. Failsafe Programmable Logic Controllers

Status/Control byteF-Input/Output data CRC signature

1 byteMaximum of 12 or 123 bytes 3 or 4 bytes

Figure 2.7.: PROFIsafe message format [8]

Host Services

The main services implement the exchange of input/output process data. In
case of errors, the process values are replaced by failsafe values which are by
default zero in order to force the receiver in safe state. There are devices in
which the de-energize is not the only possible state. Instead, an alternative
state during which the device is put to low speed is also possible. This is also
covered by the host services. After the devices switches to the safe state, it is
usually not allowed to return to normal operation without human interaction.
PROFIsafe provides additional service for operator acknowledgment.

Device Services

The PROFIsafe services for the device technology cover the same aspects men-
tioned above, but from the perspective of the device itself. Beside services for
reporting faults, a special service is used for passing over the diagnostic informa-
tion. Last but not least, the device uses PROFIsafe services for parametrization.
There are two groups of parameters: I-parameters which are technology-specific
device parameters and F-parameters containing information for the PROFIsafe
layer (i.e. failsafe address).

PROFIsafe Message Format

Figure 2.7 shows the default PROFIsafe message format. The main part is the
input/output data. Factory automation and process automation have different
requirements: one deals with short signals, the other involve longer process
values. Consequently, there are two different lengths of data structure: one
limited to maximum of 12 bytes with 3-byte CRC signature and the other
limited to 123 bytes requiring a 4-bye CRC signature. The CRC signature ends
the PROFIsafe data message. The above mentioned consecutive number is not
transmitted within the message. Instead, the counter values of sender/receiver
and synchronized via the control/status byte.

11

3. Testing Embedded Systems

Previous chapter introduced the failsafe PLC system. The failsafe peripheral
module is basically an embedded system. Testing embedded systems covers
testing not just the software the hardware as well. For the modules to go
to production, they need to be developed in accordance to the international
functional safety standard IEC-61508 and pass a national certification process.
However, this thesis solely focuses on th software part. As mentioned before,
these modules are usually used in safety critical industrial systems. A failure
or malfunction in the PLC module could potentially have catastrophic con-
sequences for the environment and/or the people. In the best-case scenario,
a failure would result in the temporary shut down of the production, which
would nevertheless cause massive financial losses and bad reputation for the
manufacturer of the automation system. The best solution therefore is to reduce
the number of potential failures to a bare minimum. This is archived by thor-
oughly testing the system including the embedded software. Even though it is
practically impossible to release a fault-free software, by applying a systematic
testing approach it is possible to discover and eliminate as many faults as
possible. This approach requires a lot of resources. The relation between the
profit and the invested verification effort is shown in Figure 3.1. If insufficient
resources are allocated for the testing and verification, the system is much
more likely to fail in operation and, as a result, cause immense profit loss. On
the other hand, if the system is tested to extensive measures, it may result in
a better, more fault-free product but the overall profitability is questionable.
Additionally, Figure 3.2 shows that a failure is likely to cost more if discov-
ered in later development stages. Testing and verification of the software is as
important as developing. It is a complex, repetitive and resource-consuming
process. This chapter is used as a general introduction to embedded software
testing based on the V-model according to IEC 61508.

12

3. Testing Embedded Systems

Profit

Verification

Figure 3.1.: Profit vs. verification effort in software testing [9]

Costs per
Failure

Development
Time

Figure 3.2.: Cost vs. development time in software testing [10]

3.1. Safety V-Model Life-cycle

Software testing and verification are parts of the general software development
process. Software life-cycle models are used for a more structured and methodical
approach on the software development. The main idea is to break down the
whole software development process into multiple and distinct phases. There are
numerous software life-cycle models nowadays. The failsafe peripheral embedded
software is developed based on the V-model recommended by the IEC 61508-3
[4] and depicted in Figure 3.3. Compared to a standard V-model life-cycle
used in standard software development, the V-model recommended by IEC
61508 additionally handles safety-critical requirements derived from the general
system safety requirements specification. The phases of this model form a shape
in the form of “V”, which explains its name. Development phases are placed at
the left side of the “V”. Each development phase has an associated testing phase
on the opposite side. The goal of each testing phase is to verify the opposite
development phase. The abstraction level is represented by the horizontal
axis while the vertical axis represents the total time of the development. The

13

3. Testing Embedded Systems

Software safety
requirement
specification

Software
architecture

Software system
design

Module
design

Coding

Module
testing

SW Integration
testing

HW/SW
Integration

testing

Validation
testing

ValidationSystem safety
requirements
specification

System
architecture

Validated
software

Output

Verification

Figure 3.3.: Safety V-model [4]

V-model includes following phases:

• Software safety requirement specification: The objective here is to
specify the requirements for safety-related software. These requirements
are derived from the general system safety requirements specification,

• Software architecture: Software architecture, derived from the general
system architecture is created to fulfill the above specified safety-related
requirements.

• Software system design: Technical implementation of the software
architecture. A set of tools, languages, compilers, user interfaces etc. is
selected to be used in further development process. Major elements and
subsystems of the software architecture are also defined.

• Module design: The software system submodules are refined in individ-
ual software modules with more implementation detail.

• Coding: Actual coding of the previous developed modules.
• Module testing: The goal is to verify if every module is delivering the

specified functionality.
• SW integration testing: Used to verify the interaction of multiple

modules as defined by the software system design.
• HW/SW integration testing: Verifies that the interface between the

14

3. Testing Embedded Systems

software and hardware is working properly.
• Validation testing: The system is tested to certify that it meets the

set requirements and functionality.

Test Driven Development

Another approach to software testing is the test driven development. It was
introduced as part of agile development process. In this approach, the developer
writes new functionalities and corresponding test cases at the same time. In
some cases tests are written even before writing the code. The test cases are
derived from the system requirements. However, there needs to be a clear
relationship between the written code and the requirements specification. This
is not always possible [11].

3.2. Testing Techniques

Different testing techniques are used for different test levels. A white-box
approach is usually applied for lower level tests such as unit tests. Black-box
approach is used for testing at a higher level (e.g., HW/SW integration tests).
Both are described in more detail in the following sections.

3.2.1. Black-box Testing

A black-box testing technique verifies the components functionality without
knowledge about the component’s internal structure. In the example of an
object-oriented class, a black-box test is conducted without the original source
code. The only important resource is the components design specification as we
use it as a test reference to verify the proper functionality of the component.
A component is represented as a black-box with inputs and outputs 3.4. To
completely test the functionality of the component, a combination of all possible
inputs and outputs shall be tested. This is of course, practically impossible, as it
would be heavily time and resource consuming. To achieve a reasonable amount
of test possibilities, methods like equivalence class partitioning and boundary
value analysis techniques are used. A major disadvantage of black-box testing
is that it does not provide insight about the test coverage.

15

3. Testing Embedded Systems

UnitInput Output

Figure 3.4.: Black-box testing

UnitInput

Equivalence class partitions

Figure 3.5.: Equivalence class partition

Equivalence Class Partitioning

One way of reducing the number of inputs to a reasonable amount is partitioning
the input range into finite number of partitions. This is illustrated on the
example shown in Figure 3.5. The input is partitioned in three input equivalence
classes. A partition or equivalence class has a representative member of that
class. The test cases can be generated under the assumption that all members
of an equivalence class are processed in an equivalent way. Identifying the
equivalence classes is the main challenge here. To effectively identify the groups
following guidelines by [12] are used:

1. If an input condition specifies a range of values, one valid equivalence
class and two invalid equivalence classes must be identified.

2. If an input condition specifies several values, again, one valid equivalence
class and two invalid equivalence classes must be identified

3. If an input condition specifies a set of input values and the software
handles each differently, a valid and an invalid equivalence class must be
identified for each.

If there is a “must-be” situation specified, one valid and one invalid equivalence
class must be identified. The valid equivalence classes represent all valid inputs
to the program while the invalid classes represent all other possible states, such
as erroneous inputs. Although equivalence partitioning covers a decent amount
of test cases, it still overlooks some test cases. One example are the boundary
values of the appropriate equivalence classes.

16

3. Testing Embedded Systems

Unit

Lower boundary value

Upper boundary value

Equivalence
class partition

Figure 3.6.: Boundary value analysis

Boundary Value Analysis

Boundary value analysis is a supplementation method for the equivalence class
partitioning. When testing equivalence classes, one usually selects a typical test
input value, while overlooking atypical values. These values are often found on
lower and upper boundary values. Consequently, test cases using those values
shall also be written [11]. Figure 3.6 shows an example of applying the boundary
value analysis one equivalence class defined above where the upper and lower
boundary values are selected as test case inputs.

Other Black-box Techniques

The above-mentioned techniques cover most of the unit test cases. Additional
test cases can be designed by using one of the following black-box techniques:

• Cause-Effect graphing: Formal language used to yield test cases which
explore combinations of different inputs.

• Error guessing: The tester/developer uses his intuition, testing ex-
perience and existing knowledge to write additional uncategorized test
cases.

3.2.2. White-box Testing

A white-box testing approach uses the knowledge of the internal structure of
a component to derive test-cases and ensure that all elements of the unit are
functioning properly. The source code of the components is usually available at
the unit test level. The code contains structural elements such as statements and
branches. White-box tests are focused on the degree to which these elements are
executed. Test coverage defines the proportion of structural elements which are
exercised in the test. Table 3.1 by [13] shows an overview of selected coverage

17

3. Testing Embedded Systems

types with an ”•” indicating which coverage criteria is applied. IEC 61508-3 [4]
recommends different code coverage metrics for different safety integrity levels.
For SIL 3, a 100% coverage for entry points, statements and branches is highly
recommended. One should be careful: archiving a high code coverage does not
mean that the code is fault free! It can, however, give an overview of which
code has been overlooked during testing.

Statement Coverage

The simplest method to evaluate the test coverage is the statement coverage.
The goal is to check if every statement in the program is executed at least once.
The minimum requirement for most programs is the decision coverage which
in most cases satisfy statement coverage. Consequently, statement coverage is
rather an unpopular criterion [14].

Decision Coverage (Branch Coverage)

To achieve complete decision coverage, each decision element (if-else, switch-case
and do-loop) must execute all possible outcomes at least once. The advantage
of decision coverage is that it includes the statement coverage as well [15].

Condition Coverage

The decision coverage may be stronger than the statement coverage, but it
is still considered to be weak because it does not cover all possible condition
outcomes in a decision. This is covered by the condition coverage. Condition
coverage, however, does not require that all decisions take all possible outcomes.
This is covered by the next test coverage.

Decision/Condition Coverage

If, in addition to 100 % decision coverage, every condition outcome is also
required, then it is called decision/condition coverage. The problem with this
coverage is that certain conditions mask other conditions.

18

3. Testing Embedded Systems

Table 3.1.: Coverage criteria overview: 1) Statement coverage 2) Decision coverage 3) Condi-
tion Coverage 4) Decision/Condition Coverage 5) Modified Condition/Decision
Coverage [13]

Coverage Criteria 1 2 3 4 5

Every point of entry and exit in the program has been
invoked at least once

• • • •

Every statement in the program has been invoked at least
once

•

Every decision in the program has taken all possible
outcomes at least once

• • •

Every condition in a decision has taken all possible
outcomes at least once

• • •

Every condition in a decision has been shown to
independently affect that decisions outcome

•

Modified Condition/Decision Coverage

MC/DC criteria requires that each condition is shown to independently affect
the outcome of the decision. This ensures that each condition is tested in
relation to the other condition. MC/DC, however, requires considerably more
test cases [13].

Other Coverage Criteria

The above coverage criteria are widely used and are highly recommended criteria.
There are also some other optional techniques mentioned in IEC 61508-7 [16]
like LCSAJ (Linear Code Sequence and Jump) coverage, data-flow coverage
and path coverage. However, these techniques are not used in testing failsafe
peripheral modules and, thus not covered in the scope of this thesis.

19

3. Testing Embedded Systems

Table 3.2.: Brief overview of test levels and their purpose in the life-cycle

Test level Purpose

SW unit Testing SW components in isolation

SW integration Testing interaction between SW components

HW/SW integration Testing interaction between HW and SW components

Validation Testing that the system works as specified

3.3. Test Levels

The V-model software life-cycle covers different test levels. Table 3.2 shows a
brief overview and the main objective of each level.

3.3.1. Unit Test

Unit test is the first testing activity after coding. The software components
which were defined and programmed in the previous development phase are now
being tested. Unit testing ensures that the component is functioning properly
in isolation. It is decisive to ensure that the individual components are tested
properly before moving onto the integration test. How to define a component
under test? A component should be a smallest meaningful unit which can be
tested individually and has a specified function. If a fault is detected, it is then
assigned to the tested component. A good example is a class as unit-under-test
in object-oriented programming.

3.3.2. SW Integration Test

Precondition for the software integration test is that all the modules are fully
tested. This should ensure the correct functionality of the individual modules.
Integration tests are used in order to show that all software modules interact
correctly. The integration test strategy is explained on the example from [15]
as shown in in Figure 3.7. A group of modules is represented as rectangles
named from M1 to M13. A line from an upper module to a lower means that
the upper calls the lower. To test all the submodules, there are basically two

20

3. Testing Embedded Systems

M1

M3M2 M4

M6 M7 M8 M9

M5

M10 M11 M12 M13

Figure 3.7.: Integration test strategy example [15]

M1

S3S2 S4 S5

Figure 3.8.: Top down integration strategy [15]

main approaches: from bottom to top and from top to bottom.

Top-down Integration Test

Top-down integration starts with the top module. In the example shown
in Figure 3.8, M1 is the highest-level module. To write test cases, stubs for
modules M2, M3 and M4 are used. The next modules which are integrated are
the subordinate modules of the top module. One stub at a time is replaced by
the actual module until all modules at this level are tested (M2, M3 and M4).
After that, the lowest-level modules are integrated by the same principle as for
the higher-level modules. In some cases, testing can be done in parallel. For
example, while one tester is testing M2 and its subordinates, the other can test
the M3 subsystem. The top-level module is tested first in this type of integration.
This can be quite useful for more complex modules which need more time for
testing. Furthermore, it can also be advantageous if major flaws are found in
the top-level module.

Bottom-up Integration Test

Bottom-up integration is explained on the same example as above. It begins
with testing the lowest-level modules. These are the modules which do not
include any other modules. In the example above, these are the modules from
M6 to M13. After testing the lowest module, the next step is to integrate the
modules on the upper level. The upper level module, which was used as a driver

21

3. Testing Embedded Systems

D2

M6

Figure 3.9.: Bottom up integration strategy [15]

for the lower level modules, is now replaced by the actual module. At this
stage, this module needs a driver. The same procedure is followed for all other
modules until the highest-level module is reached. Lowest level modules are
tested well at the beginning of the process. This can be useful if flaws occur
toward the bottom of the program. However, due to the lack of time at the
later process of integration, the top module may not be well tested. This can
be quite risky if the top module is safety-critical. Another major disadvantage
of the bottom-up integration is that the program does not exist until the last
module is integrated.

Neither of the methods have a clear-cut advantage. Thus, in many cases a
combination of the two approaches is used. Also, risk factors and complexity are
taken into consideration. Safety-critical modules should be tested adequately
and earlier in the integration process. Another aspect to consider is the avail-
ability of the modules: not all modules will be available at any time. The
software integration is completed after all software modules are integrated. The
next step is to test the interaction between software and hardware.

3.3.3. HW/SW Integration Test

After all of the software modules have been integrated, the next step is to
integrate the software subsystems into hardware. The goal here is to verify the
interaction and interfaces between the software and hardware.

3.3.4. Validation Testing

While previous test phases focus on discovering faults in the system, validation
testing validates if the system fulfills all the requirements. Primary goal of the
validation is to show that the system delivers specified functionality and is good
enough in terms of performance and reliability. Validation tests usually include
requirements-based testing, scenario testing and performance tests. Typical

22

3. Testing Embedded Systems

test cases are derived from system specifications and use a black-box approach
[11].

3.4. Simulation Techniques in Testing

Table 3.3 is an extended version of Table 3.2. Added columns specify which
components of a system are used as experimental, prototyped or real on different
testing levels. It is evident that different parts of the embedded system are
simulated through different test levels. To cover that, the general term X-in-
the-loop has been established in the literature [10]. The term X-in-the-loop
covers a group of simulation techniques: model-in-the-loop, software-in-the-loop,
hardware-in-the-loop and processor-in-the-loop. Following is a brief description
of the x-in-the-loop techniques:

• Model-in-the-Loop (MiL): Except the host PC where the simulation
is executed, the MiL approach does not include any hardware components.
This technique is used at an early stage of safety life-cycle and is not
covered in this thesis.

• Software-in-the-Loop (SiL): In some literature the term SiL is often
referred to as MiL because, just like MiL, no real hardware is used. The
only difference is that the model of the embedded software is replaced
by the real prototyped software. The software is compiled on an ISS
(Instruction Set Simulator) and a simulation of hardware components is
used. This is the simulation technique covered in this thesis.

• Processor-in-the-Loop (PiL): PiL is like SiL with one key difference:
the software is compiled and run on the target processor instead of
using the ISS. The PiL is important because it can reveal faults caused
specifically by the target architecture.

• Hardware-in-the-Loop (HiL): HiL approach is used at later stages
of the software development for validation purposes. The target embed-
ded software is compiled on the target processor and hardware. The
environment of the embedded system is simulated.

The example of development of automotive ECUs, [17] offered a good overview
how different x-in-the-loop techniques are implemented in different phases of
the V-model. This is illustrated in Figure 3.10. Early in the development phase,
the functional specification phase is supported by a MiL simulation. In the

23

3. Testing Embedded Systems

1

3

3

3

2

System
Specification

Functional
Specification

Program
Design

Module
Design

Coding

Module
Test

Integration
Test

Functional
Test

System
Test

1 Model-in-the-Loop
2 Software-in-the-Loop
3 Hardware-in-the-Loop

Figure 3.10.: Simulation techniques in the development of modern ECUs [17]

testing phase, SiL simulation is used in module testing. The later test stages
such as integration, functional and system testing are supported by a HiL
simulation.

3.5. Conclusion

Software development of peripheral failsafe modules directly follows the V-
model life-cycle, especially in the testing phase. Traditional testing only carried
out tests on levels mentioned in Table 3.2. However, the need to discover faults
and test new functionalities as early in development phase as possible, combined
with the need to have more transparent overview of the HW/SW integration
test, led to an idea to use simulated hardware components. Consequently, a set
of test levels was introduced which can be found emphasized in Table 3.3. It
is important to note that the proposed test levels are not meant to substitute
existing test levels but rather to supplement them. From the x-in-the-loop
approach, these tests are closest to a SiL simulation, because the hardware is
not being used. Basic SiL simulation block diagram is shown in Figure 3.11.
The device under test (DUT) is the virtual peripheral module which includes
the software code compiled on an ISS (Instruction Set Simulator) and simulated
hardware. Test environment controls the simulation, provides input to the DUT

24

3. Testing Embedded Systems

DUT

Test Environment

Figure 3.11.: SiL simulation diagram

and gets output data from it. Finally, to successfully implement and fully utilize
the proposed testing levels, software models of the target hardware is needed.
Therefore, the subsequent chapter elaborates how to model the hardware of an
embedded system.

Table 3.3.: Test levels and simulation

Test level Software Hardware Processor

SW unit experimental prototype real

SW unit (S) experimental simulated simulated

SW integration experimental prototype real

SW integration (S) experimental simulated simulated

HW/SW integration real prototype real

HW/SW integration (S) real simulated simulated

Validation real real real

25

4. Modeling Embedded Systems

In the previous chapter, simulation-based testing was introduced which requires
simulated hardware. It was established that, software models of the hardware are
needed in particular. Modeling in general and specifically modeling embedded
systems is by no means a straightforward and streamlined process. By using
one of the many modeling methodologies and frameworks, the challenge is not
the modeling process by itself, but rather the preparation. Before modeling,
ofollowing questions arise: what is the main task that the model should be used
for and, in respect to that task, how much detail is needed. Furthermore, a
model can be realized on different abstraction levels. Optimal modeling effort
is achieved by choosing the right abstraction level.

4.1. Abstraction Levels

One approach to categorize abstraction levels in the embedded systems is the
Gajski-Khun Y-Chart, invented in 1983 [18]. It was originally introduced to
deal with the classification and structuring of design process by using a set of
well-defined abstraction levels. Four different abstraction levels are represented:
system, processor, logic and circuit level. They are graphically represented as
concentric circles shown in Figure 4.1. The levels are defined by the components
derived on the specified level. On every abstraction level, three different aspects
are considered: behavioral, structural and physical. Behavioral aspect covers
the functionality of the design. The design is considered as set of interconnected
components in the structural aspect. Finally, physical aspect adds dimension
specifications to each component. Gajski [19] also lists the typical components
found on each abstraction level, which helps in identifying the right level. These
components, sorted by levels, are:

• Circuit level: cells consisted of P/N-type transistors
• Logic level: registers, register files, ALUs and multipliers

26

4. Modeling Embedded Systems

• Processor level: processors, memory controllers, bridges and different
interface components

• System level: embedded systems made of processors, memories, buses
and other components.

Circuit

Logic

Processor

System

Behavior Structure

Physical

Figure 4.1.: Y-chart diagram [19]

4.2. Abstraction Pyramid

To choose the right abstraction level always requires the trade-offs to be made.
This involves mainly three different issues: the modeling effort, evaluation effort
and the model accuracy. To put those aspects into the perspective of the system
level design, the abstraction pyramid was introduced by [20]. Abstraction levels
presented in the previous section are placed in the context of the abstraction
pyramid shown in Figure 4.2.

Level of Detail. Concentric circles from the previously introduced Y-Chart
diagram are directly mapped as horizontal lines on the abstraction pyramid.

27

4. Modeling Embedded Systems

Cost of Modeling. Moving down in the pyramid means moving down to
lower abstraction levels. This results in a more detailed architecture where more
details need to be considered and which consequently results in an increasing
amount of effort. This is indicated on the axis on the right side of the pyramid.

Opportunity to Change. Different design choices lead to lower abstrac-
tion levels. At that point, to consider another architecture becomes costlier.
Consequently, the exploration opportunity at that level is low.

Accuracy. The accuracy of the models is represented by the axis on the
left side of the pyramid. The model accuracy increases with lower abstraction
levels.

Cost of Evaluation. Placed on the same axis as the cost of the modeling
is the cost of evaluation. It was already mentioned that the modeling effort
increases proportionally with the amount of modeling detail involved. This also
means an increasing evaluation effort.

A
b

st
ra

ct
io

n

Low

Low Design Space

A
cc

u
ra

cy

C
os

t o
f M

o
d

e
lin

g
a

n
d

 E
va

lu
a

tio
n

High

High

System

Processor

Logic

Circuit

O
p

p
o

rt
un

iti
e

s

Figure 4.2.: Abstraction pyramid [20]

With a specific modeling task in mind and in respect to the abstraction
pyramid above, it is time to consider the abstraction level. Since the main
task is simulation-based testing and not hardware synthesis, level of detail
and accuracy is traded for simulation speed and effort of modeling. This puts
the target model on a system abstraction level which by definition handles
embedded system components such as processors, memories, peripherals etc.

28

4. Modeling Embedded Systems

4.3. System Level Modeling

After choosing the right abstraction level, the next decision to make is how
to approach the modeling process. According to [21], there are basically two
different modeling approaches used to model a system: homogeneous/single-
language modeling and heterogeneous/multi-language modeling. By using the
homogeneous approach, a single-language is used to model the complete system
including the hardware and software. This approach is often not applicable to
complex systems. In such cases the heterogeneous approach is applied, where
multiple languages are used for different domains of the system.

4.3.1. Single-Language Approach

By using a single-language approach, the intent is to find possibly one general
language to describe the complete system. Homogeneous modeling approach
results in a single, executable system. Only one simulator is needed to execute
and verify the model and simulation handling is therefore much easier. However,
it is hard to find a system which is simple enough to be described by just
one language. Most of the systems require different languages for different
domains. To tackle such systems, a multi-language approach is introduced. This
is illustrated on Figure 4.3

System

Model Description
Single Language

Executable Model

Simulation

Figure 4.3.: Single-language approach [21]

29

4. Modeling Embedded Systems

4.3.2. Multi-Language Approach

Multi-language approach uses different modeling languages for different domains
simultaneously. This results in multiple execution models with different simula-
tion environments. A major problem here is the coupling of these simulation
environments. One of the possible solutions is to use a common intermediate
language. This way, different models are converted into a common language
which is later executed in a single simulation environment. This method is an
extension of the single-language approach but provides more flexibility and
makes modeling of the complex systems possible. Another option is to skip the
intermediate common language altogether and combine the respective execution
models and corresponding simulation environments into a multi-domain simu-
lator. Every model is simulated separately and at the final stage synchronized
with a common simulator. Although the formal verification of the complete
system is hardly achievable, the approach provides a platform for developing
complex simulations which can be executed efficiently. Multi-language approach
is shown in the Figure 4.4.

System

Model Description
Language 1

Multi-Domain Simulation

Model Description
Language 2

Executable
Model 1

Executable
Model 2

Single-Domain Simulation Single-Domain Simulation

Figure 4.4.: Multi-language approach [21]

4.4. Existing System-Level Modeling Languages

After choosing the right modeling approach, the designer faces one more chal-
lenge: to select the modeling language or platform. In early stages of hardware

30

4. Modeling Embedded Systems

modeling, dealing with gate level and register-transfer-level design, hardware-
description-languages (HDLs) such as VHDL and Verilog were introduced.
Although, these languages were suitable for modeling hardware on lower ab-
straction levels, the transition to the system level modeling resulted in new
requirements such as modeling parts of the system implemented in software.
Additionally, a system-level language must be executable, modular and com-
plete [22]. This lead to an introduction of system-level design languages (SLDL)
based on C/C++ [19].

4.4.1. SpecC

One of the system-level design languages is SpecC [23], which is based on C
programming language. Thus, it covers the complete set of C constructs. Addi-
tionally, it supports constructs covering the system level design requirements.
One of those requirements is modularity, which is required to separate the
behavior of the system from its structure. With behavioral hierarchy the system
behavior is decomposed in multiple sub-behaviors, whereas structural hierar-
chy allows decomposing a system into multiple interconnected components. A
SpecC program typically consists of a set of behaviors, channels and interfaces
[22]. A behavior describes a functionality and consists of ports, component in-
stantiations, variables and functions and a main function. Channels encapsulate
the communication while the interfaces represent a link between behaviors and
channels. An example of a SpecC system is shown in Figure 4.5. The system
realizing a behavior B is hierarchically decomposed into two sub-behaviors b1

and b2 which communicate via channel c1. The sub-behaviors can be executed
either sequentially or concurrently [23]. A special SpecC compiler is needed to
compile the program. The compilation results in an intermediate C++ model,
which can be then compiled using a standard C++ compiler [22].

4.4.2. SystemC

Another system-level modeling language is SystemC [24], which is basically
a set of C++ classes. It allows fast simulation at different abstraction levels,
from system to register-transfer-level. Another great feature of the SystemC is
the model interoperability, which was introduced with the Transaction Level
Modeling (TLM) [25]. SystemC meets the imposed requirements set by ESL
design. These include the abstraction span on several levels, a standardized

31

4. Modeling Embedded Systems

B

b1 b2

c1

p1 p2

p1 p1 p2p2

Figure 4.5.: Basic structure of a SpecC model [23]

language, proper simulation speeds and performance and support of TLM
concepts. For that reason, SystemC is rapidly adopted in the industry [26].

Figure 4.6 describes SystemC as a set of blocks and layers. The base layer
on the bottom shows that SystemC is built and based on the standard C++
language. The bold emphasized group of blocks are parts of the SystemC
standard which includes the simulation kernel and core language elements.
Alongside the core language is the data-type group. The elementary channels
layer above the core language and data-types include models such as signals,
timers and FIFO buffers. Unlike the emphasized layers, the topmost layers are
not part of the SystemC standard but represent other models, libraries and
extensions to support additional features [27]. A study by [28] used SystemC to
model a safety-critical embedded system. A co-design and a simulation of fault
injection in train on-board safety-critical odometry system has been proposed.
The goal was to develop a simulation environment to implement fault-injection
techniques in multiple steps of the design process, as recommended by IEC
61508. This approach resulted in preventing late discovered faults. The study
demonstrated advantages of SystemC such as describing both hardware and
software in common language and execution of concurrent processes.

SystemC and VHDL Comparison

A case study [29] directly compared traditional hardware-definition-language
VHDL with SystemC by modeling a simple load-store processor on a register-
transfer-level. The comparison relied upon the simulation time and modeling
effort. In terms of simulation time, SystemC is much faster compared to VHDL,
reaching a difference in an order of magnitude. Although hardware-software co-
simulation is possible in VHDL, it requires external tools and libraries. SystemC
uses the same language for hardware description and for co-simulation. Hence,

32

4. Modeling Embedded Systems

C++ Language Standard

Core Language

Modules, Ports, Processes, Events,
Interfaces, Channels, Event-Driven

Simulation Kernel

Elementary Channels

Data-Types

Standard Channels for Various
Models of Computation

Methodology-Specific Channels

Figure 4.6.: SystemC language architecture [26]

the modeling effort with SystemC is much lower compared to VHDL. In
conclusion, SystemC is much better suited for higher abstraction levels.

4.4.3. C/C++ Modeling

A methodology for hardware/software co-verification in C/C++ presented by
[30] provides several advantages of C/C++ based methodologies over HDL-
based methodologies. In traditional hardware-software co-simulations the hard-
ware is usually described in an HDL whereas the software is mainly C/C++
based. Data is transferred between software and hardware written in different
languages. By using just one language, the data transfer can be made much
efficiently. Productivity can be further improved by eliminating the transition
to a HDL and reusing test benches written in C/C++. Avoiding the translation
to a HDL not only improves the efficiency of the simulation but also removes
bugs produced by this translation. The programmers, which are already pro-
ficient in using C/C++ save time and effort by not learning a new language.
Instead, they can focus on writing better functional models. [31] discussed
the use of C++ in modeling digital systems and came to the conclusion that
C++ is a well-suited language for system modeling. Without introducing new
syntax or compiler, it allows the writing of modeling primitives based on C++
mechanisms such as classes, templates and operator overloading. The main
drawbacks of C/C++ modeling are lack of concurrency, missing the ability to
entail structural information and constraints and lack of support for timing
constraints. However, these drawbacks can be neglected when using functional
models on a system level and are not relevant for hardware synthesis [32].

33

4. Modeling Embedded Systems

4.5. System-Level Modeling Platforms

4.5.1. Commercial Tools

There are several commercial virtual prototyping tools available. Wind River
Simics [33] is a full-system simulation tool which can simulate the processor
and dedicated peripherals in such detail that it can run the target software.
It features very fast bit-accurate instruction set simulators which can emulate
targets such as PowerPC, MIPS, MIPS64, ARM, x86 or SPARC without any
special host hardware and software. Alongside the processors, Simics offers a
number of models for flash memories, I2C buses, timers and other components.
If a specific target model needs to be developed and it is not available by Simics,
a specific language called DML is created for writing new models [5]. Synopsis
[34] also offers a virtual prototyping solution covered by Platform Architect,
Virtualizer Studio and according to their website, the largest portfolio of TLM
models. Virtual System Platform by Cadence [35] is another commercial tool
for virtual prototyping. Just like Wind River and Synopsis, Cadence also offers
a library of TLM IP models. Additionally, they also offer support for Imperas
OVP fast processor models (which is covered later). Another great feature is an
automatic TLM 2.0 code generation, which reads a custom text-based language
called IP-XACT and produces a TLM 2.0 model without requiring TLM 2.0
knowledge. There are many other commercial virtual prototyping commercial
tools. This section only mentioned the most popular ones. These tools have high
licence fees. However, there are a number of open-source alternatives covered
below.

4.5.2. OVPSim

Imperas Open Virtual Platforms [36] offer open source software for developing
virtual platforms: an API, a simulator and a library of free open source processor
and peripheral modules. All OVP models are fully SystemC and TLM 2.0
compatible by using APIs and TLM 2.0 wrappers. However, every model needs
to be redesigned individually. [37] offered a much easier way to integrate OVP
models in SystemC using a SystemC bridge. In [38] OVP was used in a SiL
simulation of an embedded control application.

34

4. Modeling Embedded Systems

4.5.3. QEMU

QEMU [39] is a generic and open source machine emulator and virtualizer. Two
emulation modes are available: full-system and user-mode. In the user-mode,
QEMU can launch processes compiled for one CPU on another CPU. Full-
system mode is used to emulate the processor and its peripherals. QEMU offers
and provide support for systems based on following architectures: x86, ARM,
PowerPC and MIPS. Unlike OVP, there is no native support for integration of
SystemC models. However, [37] developed a SystemC bridge for integrating
QEMU in SystemC. Moreover, a number of co-simulations have worked on
that. [40] added a set of plug-ins that enabled to integrate SystemC modules
in QEMU as peripherals to the emulated platform. The connection between
was implemented using TLM channels. [41] offered a different approach by
integrating QEMU in a SystemC. The QEMU virtualizer is treated as a standard
SystemC module. In modeling cyber-physical systems, [42] used SystemC and
QEMU for modeling hardware of the micro-controller. [43] developed a simulator
for networked embedded systems. The simulation framework is based on QEMU
and SystemC, where QEMU was used for the execution of target software while
SystemC was used for accurate modeling of network protocols and topologies.
The simulator was then applied for robustness testing of the communication
layers in a embedded fire alarm system. The test results only confirmed the
benefits of using a virtual prototype such as test automation, exploration
of unlikely test scenarios and increased observability. [44] presented another
approach in connecting QEMU and SystemC using a TLM-2.0 interface. [45]
used QEMU, SystemC with other commercial ESL simulation tools.

4.6. Modeling Timing Behavior

Timing is an important aspect to cover in system modeling. When considering
integrating timing behavior in a virtual prototype, the same universal modeling
principles apply: making design decisions in terms of abstraction level and simu-
lation performance. [46] illustrated that in Figure 4.7. Below the approximately
timed (AT) abstraction level are clocked levels. This means that the simulation
is clock-driven. Above the AT level, simulation is advanced by transactions
(data transfer e.g.). The diagram shows that the simulation performance differs
by one or two orders of magnitude between two levels. Additionally, the time

35

4. Modeling Embedded Systems

required to develop the model is also increasing with lower abstraction level.
Levels below the AT are typically used in the domain of hardware developers.
In scope of system modeling, higher abstraction levels are interesting.

Code Instrumentation

[47] introduces a basic approach for integrating timing behavior into a system:
code instrumentation. The base idea is to instrument the code by timing
statements with a dedicated time values. The main advantage of this approach
are very fast simulation times. However, the determination of execution time
requires detailed code analysis and is very time consuming. There are basically
two approaches in determining execution times: analytical and simulative.
Analytical approaches use detailed code analysis and WCET/BCET (Worst
Case Execution Time/Best Case Execution Time). The result is an approximate
mean value of execution times which gives a rough impression of the behavior
of the system. Simulative approaches use a simulation on a target ISS and
simulated hardware peripherals to obtain timing behavior. [48] presented a
hybrid approach by combining the two. First, they used a static analysis of code.
The extracted timing information is then back-annotated in the simulation
code. This considers the aspects not covered by static approaches. Moreover,
the approach showed significant simulation speeds while maintaining good
accuracy.

As a conclusion, to accurately integrate timing behavior in the simulation, one
needs a cycle-accurate processor model. The simulation however, is at a system
level and the timing information is only used for logging and diagnosis purposes.
Thus, for the implementation of the target system a software-timed model
is preferred. The timing will be implemented using the code instrumentation
method.

4.7. Conclusion

The chapter concludes with a decision about what kind of a system modeling
platform/language is used for modeling the target system. Virtual prototyping
commercial tools would be a great choice because they offer a number of
toolboxes, large database of IP models and even support importing of additional
SystemC-TLM models. However, commercial tools are not available without

36

4. Modeling Embedded Systems

Abstraction level

Performance [MIPS]

0.1

1.0

10.0

100.0

1000.0

Figure 4.7.: Level of abstraction vs. performance in modeling timing behavior [46]

paying high license fees, thus they are not taken into consideration. Alternatively,
there are open-source platforms such as OVP and QEMU. Even though, they
both offer support for a great number of processors, including the target ARM
processor, they lack a database of our target peripheral IP models. This means,
that one would have to manually create, not only the SystemC models, but also
wrappers and bridges to connect them to the simulation. This would lead to an
excessive modeling effort. When it comes to system-level modeling languages,
literature research above showed a massive use of SystemC. SystemC in a
combination with a instruction set simulator would indeed be a good choice if
the sole purpose of this thesis was to create a virtual prototype of the target
hardware. However, this thesis deals with modeling failsafe programmable
systems in accordance with the international standards. IEC 61508 also covers
the aspect of software tools used during the software development life-cycle
and according to [49], all software tools used during the software development
life-cycle are divided in three classes:

• T1: tools that generate no outputs that can directly or indirectly con-
tribute to the executable code (e.g., text editor)

• T2: tools that support the test or verification of the executable code,
where errors in the tool can fail to reveal defects but cannot directly
create errors in the executable (e.g., test coverage tools)

• T3: tools which generate outputs that directly or indirectly contribute to
the executable code (e.g., compiler tools)

Either way, to integrate tools from classes T2 and T3, verification and qualifi-
cation activities are applied to the tool property. This means that the tools

37

4. Modeling Embedded Systems

must undergo a system FMEA analysis or, if applicable, a comment if the
tool property is already qualified by the tool vendor. Since the above tools
either directly (modeling platforms) or indirectly (compilers) classify as T2
or T3, the same verification and qualification activities would be applied. Ad-
ditionally, the proposed system shall be easily integrated in the existing test
environment. This includes the reuse of the tools for code coverage analysis
test reporting. Furthermore, to introduce new tools and languages would mean
increased learning and integration effort. For the given reasons, a modeling
approach with C/C++ integrated in existing tools, which already passed the
tool qualification activity, is chosen. The tool-chain also provides an integrated
instruction set simulator of the target ARM processor. Other devices are mod-
eled using C/C++. This approach should be sufficient in terms of performance
and modeling accuracy for creating a simulation platform for testing. Details
about the modeling approach are in the chapter below.

38

5. System Design

The complete simulation-based system design and all the components are shown
in Figure 5.1. Each subsection covers one block from the layered structure in the
figure. The only hardware used is a host machine (PC). The simulation project
is compiled and runs on this machine. The simulation utilizes the hardware
resources such as memory and processing power from this machine. Thus, the
machine shall offer enough computing power and memory resources.

5.1. Simulated Hardware

The failsafe peripheral module was previously introduced in Chapter 2.2. It
includes a redundant microcontroller system which consists of two STMicro-
electronics STM32F2xx microcontrollers and each featuring an ARM 32-bit
Cortex M3 CPU. For more details about the microcontroller see the reference
manual [50]. The block diagram of the board is found in the Appendix A.

5.1.1. Generic I/O Pin Model

Different hardware components are all connected to the board via digital
input/output pins. This fact is used to create a generic digital I/O pin model
which can be utilized for modeling other peripheral devices on the board. The
pin model is basically a C++ class with its class diagram shown in Figure
5.2. Each Pin instance has its pin value stored as a boolean to true/false.
Additionally the previous values are stored. The Pins class has following
methods:

• isInputHigh allows an external class to check the boolean status of a
pin. If the pin value is set to high, the method returns true.

• isOutputHigh is the identical method like the one above. It is used to
check the status of an output pin. Returns true if the output pin is set
to high.

39

5. System Design

Host Machine

Host OS

Simulated Hardware

STM32F2xx

ISS Peripherals

Other Devices

Generic I/O Pin Model

Firmware

Original Firmware Components

Modified Firmware Components

Test Environment

Test Report

Test Specification

Test Tools

Middleware

Virtual Event Manager

PROFIsafe Simulation

F-CPU Simulation

Generic Register Model

Figure 5.1.: Complete system overview

40

5. System Design

Pins

+ isInputHigh() : bool
+ isOutputHigh() : bool
+ isTransitionHighToLow() : bool
+ isTransitionLowToHigh() : bool
+ registerCallbackInputOnAccess() : void
+ registerCallbackInputOnChangeHighToLow() : void
+ registerCallbackInputOnChangeLowToHigh() : void
+ void registerCallbackOutputOnAccess() : void
+ setInput(bool) : void
+ void setOutput(bool) : void

Figure 5.2.: Pins class diagram

• isTransitionHighToLow method returns true if the pin status changed
from high to low.

• isTransitionLowToHigh is identical to the method above. Returns true
if the pin value changed from low to high.

• registerCallbackInputOnAccess allows to register a callback function
for the case when the input pin is accessed.

• registerCallbackOutputOnAccess is the same method as above but
applied for the output.

• registerCallbackInputOnChangeHighToLow is another method for reg-
istering a callback function, thus in this case when ab input change from
high to low has occurred.

• registerCallbackInputOnChangeLowToHigh is the same method as above
just for the output pin direction.

• setInput is used to set the input pin value to true/false. The method
then sets the current state of the pin to the desired value. After updating
the current state, it compares the value to the old state and checks if
there was a transition from low to high or the other way around and calls
the corresponding callback function mentioned above. Finally, it executes
the callback function registered on the input pin access.

• setOutput is used to change the output pin value the same way as
described above for the input pin direction.

41

5. System Design

5.1.2. Generic Register Model

This relatively simple class is used to model the STM32Fxx hardware registers.
The class diagram is shown in the Figure 5.3. The register model value is
basically a 32-bit unsigned integer value. With the public methods set and
get one can set and get the register value, respectively. Similar to the generic
pin model, the class offers the method registerCallbackOnAccess to register
a callback function in case a register is accessed.

Registers

- value_ : uint32_t
- oldValue_ : uint32_t
+ get() : uint32_t
+ set() : uint32_t
+ registerCallbackOnAccess() : void

Figure 5.3.: Generic register class diagram

5.1.3. ARM Cortex M3

The target ARM processor is simulated by using the Green Hills Software
instruction set simulator armsim. This ISS interpretively executes ARM pro-
grams on the host PC without the need for target hardware by simulating the
execution of the target processor at the instruction level. It is a part of the
Green Hills Software MULTI toolchains which also provides full debug features,
host I/O, command window, extended profiling and hardware breakpoints. The
executable software is compiled and debugged on the simarm [51].

5.1.4. STM32F2xx Peripherals

The complete list of STM32F2xx peripherals is found in the Appendix A. They
are modeled as classes containing dummy registers (using the class Register).
In the device specific file stm32f2xx.cpp, the peripheral instances are allocated.
At the same time, the original header file stm32f2xx.h is modified. Particularly,
the peripheral memory map has been changed. The physical addresses in the
memory map are exchanged through addresses of the virtual peripherals in the

42

5. System Design

hosts RAM. This is illustrated in the Figure 5.4. Depending on the application,
the functionality of individual peripherals can be added. In the scope of the
thesis, only the timer functionality is modeled and included in the simulation.

5.1.5. Timer

STM32F2xx board has a total of 14 timers: 2 basic (TIM6 and TIM7), 2 advanced-
control (TIM1 and TIM8) and 10 general-purpose timers (TIM2 to TIM5 and
TIM9 to TIM14). They consist of a 16-bit/32-bit auto-reload counter driven by
a programmable prescaler. Most of the timers support up, down, up/down
auto-reload counter-mode. The 16-bit programmable prescaler is used to divide
the counter clock frequency by any factor between 1 and 65535. For this thesis,
the timer is modeled based on the basic model. The way the basic timer works
is explained on the timer block diagram in Figure 5.5. The main blocks of
the programmable timer are the counter register (TIMx_CNT), prescaler register
(TIMx_PSC) and auto-reload register (TIMx_ARR). The counter is clocked by
the prescaler output CK_CNT, which is enabled only when the counter enable
bit (CEN) in the TIM_CR1 register is set to true. The auto-reload register is
preloaded with a specific value. After the counter reaches the overflow value an
update event is sent.

The functionality of the timer is modeled as a C++ class. Figure 5.6 shows
the class diagram. It contains all the relevant registers modeled as the class
Register. The timer is called with the doExecute method. This checks the
TIM_CR1 content to see if the CEN flag is enabled. If the counter is enabled,
it calls the doCountUp method which basically realizes the up-counting mode
based on the configured values of the auto-reload and prescaler register. When
the counter reaches the overflow value (TIM_ARR) it sends an update event.
Additionally, the option to register an interrupt handler is also implemented
but not used in the scope of this thesis. The timer is already utilized to realize
a virtual time system in the event manager in the section below.

5.1.6. Other Hardware

The modular system architecture allows simple adding or removing of addi-
tional simulated hardware components from the project. Simulated hardware
components are modeled using C++ classes. To include a hardware component
in a project, a .cpp is simply included in the simulation project. An example is

43

5. System Design

Processor
core

Stm32fxx.h

Peripheral 1

Peripheral 2

Peripheral N

Address 1

Address 2

Address N

STM32Fxx Memory

Address N

Access
Peripheral N

Address N of
Peripheral N

(a)

simarm

Stm32fxx_sim.h

Peripheral 1

Peripheral 2

Peripheral N

Address 1

Address 2

Address N

Host RAM

Address N

Access
Peripheral N Address N of

virtual
peripheral
instance

(b)

Figure 5.4.: Modified device header file: a) Physical processor accessing hardware perihperals
b) Accessing modeled peripherals using the modified header file

44

5. System Design

TIM_CNT
Counter

TIM_ARR
Auto-reload Register

TIM_PSC
Prescaler

Trigger
Controller

CK_INT CK_PSC CK_CNT
±

Update Event

Figure 5.5.: Timer block diagram [50]

Timer

+ ARR : Register
+ BDTR : Register
+ CCER : Register
+ CCMR1 : Register
+ CCMR2 : Register
+ CCR1 : Register
+ CCR2 : Register
+ CCR3 : Register
+ CCR4 : Register
+ CNT : Register
+ CR1 : Register
+ CR2 : Register
+ DCR : Register
+ DIER : Register
+ DMAR : Register
+ EGR : Register
+ OR : Register
+ PSC : Register
+ PCR : Register
+ SMCR : Register
+ SR : Register
- timeInUs_ : uint64_t

+ doExecute(uint32_t) : void
- doCountUp(uint32_t) : void
+ getTimeInUs() : uint64_t
+ setTimeInUs() : void

Figure 5.6.: Timer class diagram

45

5. System Design

the third-party ADC component used in the analog-input modules. Although,
not relevant for the scope of this thesis, it can be simply added for simulation-
based testing of FAI modules. Other examples include the I2C bus and I2C
devices such as the EEPROM memory or the temperature sensor, which can be
connected to the modeled bus. The same is applied to virtually any hardware
IP component in the system.

5.2. Firmware

The firmware, which runs on both processors, covers the complete software
functionality of the peripheral module. The base component of the firmware
is the framework. The framework implements common functionality for every
failsafe module. Additionally, some module specific components are included.
A simplified firmware architecture is shown in the Figure 5.7 and described
below:

• ModuleSpecific component represents functionalities implemented ex-
plicitly for one group of modules. An example would be the functionality
of the ADC for the analog input modules.

• DeviceSpecific component contains the device specific headers and
sources, which are provided by the toolchain or microcontroller vendors
and are needed for realizing hardware access on the supported target.
platforms.

• Configuration contains various files which make possible that the frame-
work can be easily tailored to the module-specific application.

• BusConnection contains the externally developed bus communication
components needed for realizing the bus communication.

• BusInterface component is a wrapper between the internal bus com-
munication interface provided for all framework components, and the
interfaces of all possible bus communication components, which real-
ize peripheral bus communication. With this solution the framework
components have a unified way of transferring data over the bus.

• HardwareAbstractionLayer is a bundle of various components provid-
ing hardware management functionality. These components and their
functionality are accessible for all firmware components. The hardware
abstraction layer isolates the rest of the firmware from direct hardware
management.

46

5. System Design

• ModuleController component provides the base infrastructure for the
firmware covered in Section 2.1. It implements the main state machine,
manages the module cycles and provides entry points for the interrupt
calls of the framework. The module specific part does not need to take
care of these activities.ModuleController also controls the maintenance
functionality of the module such as: calibration, reading/writing hardware
version and reading fatal error information.

• Utilities provide miscellaneous functionality for modules. For exam-
ple: an endianess converter, a CRC calculation unit, a random number
generator etc. Utilities also include a timer component which provides
functionalities for time measurement.

The firmware is compiled and run on the simulated processor. Ideally, the
original binary image would be used. However, some of the firmware compo-
nents had to be modified due to implementation choices. These are the above
mentioned STM32F2xx header files from DeviceSpecific component. The
ModuleCycleController has also been modified to include instrumentation
for the virtual time system. Details about that are described in the section
below. Another firmware component that needed modification in order to be
compatible with the virtual time system is the Timer class from Utilities

category. The class originally provides functionalities as time measurement and
timeout and is utilized for measuring simulation cycle times and event times in
the simulation event manager.

Firmware

DeviceSpecific

BusConnection Configuration

ModuleSpecific

Framework

BusInterface

ModuleController

HAL

Utilities

Figure 5.7.: Firmware architecture

47

5. System Design

5.3. Middleware

The middleware layer can be individually tailored to support different simulation
test cases. Components can be added and removed in a modular way. For
the sake of the implementation use-case demonstrated later, two additional
components are added to the system: an F-CPU simulation and the PROFIsafe
simulation.

5.3.1. F-CPU and PROFIsafe Simulation

Bus Interface

The data between the F-CPU and the peripheral module is exchanged cyclically
and acyclically. Cyclic communication is used for process data exchange. The
later one is used for exchanging data records, parametrization and sending
diagnostic data. This communication is simulated with the BusInterfaceFCPU

class. As illustrated by the Figure 5.8, a memory set in the hosts RAM is allo-
cated for data records, process and parameter data individually. Furthermore, a
set of methods is included to simulate the F-CPU and peripheral module send-
ing/receiving data over the bus. This is basically realized by reading/writing
from/to the respective memory blocks. Additionally, the class contains methods
for parameterizing the virtual module.

PROFIsafe Simulation

Section 2.3 described the PROFIsafe technology realizing failsafe communication
aspects between the F-CPU and the failsafe peripheral module. The class
ProfiSafeSimulation simulates this. It provides the functionalities described
in the mentioned chapter such as parametrization and CRC calculation for
example.

5.3.2. Simulation Event Manager

A simulation event manager including a virtual time system has been imple-
mented. Based on the Figure 2.2, the Figure 5.9 illustrates how the MainCycleController
has been instrumented to implement a simulation event manager. After each
component in the main cycle is called and executed, immediately after a
TimeTrigger call follows. The time trigger has an argument of the class Event.

48

5. System Design

RAM

inputProcessData

outputProcessData

inputDataRecordData

outputDataRecordData

parameterData

Virtual F-CPU
Virtual

Peripheral
Module

write

read

read

write

Figure 5.8.: Simulated bus interface

In the Events.xml, time durations in microseconds are assigned to every type
of event. A complete list of the time events including their duration in mi-
croseconds is found in the Table 5.11. The listed time values are just rough
approximations based on developers experience. For example, the Event ID 2
corresponds to the Event ResetWatchdogTimers which takes approximately
100µs. On the other hand, the Event ID 5 is the ProcessDataExchange and
takes much longer, approximately 1500µs. These time values are sufficient for
logging and diagnosis purposes. However, approaches introduced in the Section
4.6 could be used for a more accurate approach. Additionally, one could also use
hardware tools to measure the event types. Based on the time sequence diagram
shown in the Figure 5.10, the virtual time system is realized in following steps:

• 1.0 The ModuleCycleController dispatches a new time event Event to
the ModuleEventTrigger

• 1.1 The Event is further handled by the ModuleEventHandler. It iden-
tifies the event assigns the event its dedicated time duration from the
Table 5.1.

1Event names are confidential company IP

49

5. System Design

• 1.2 It calls the method doExecute(uint32_t EventTimeInUs) which
basically forwards the event time to the timers.

• 1.3 After receiving the time duration, the Timer checks if the timer is
enabled and if it is, calls the doCountUp method.

• 1.4 The timer counter register is up-counted according to the description
in the Subsection 5.1.5.

• 1.5 After the counting has finished, the ModuleEventHandler requests
the time value stored from the Timer.

• 1.6 The time value in microseconds is returned to the ModuleEventHandler
• 1.7 Using the time value from above step as a current time stamp and

the measured minimum and maximum cycle times, the Event is logged
on the console in the format:
"[Cycle Time]: min: _us max: _us current: _us [Event]: EventID"

Read Inputs

Execute Program

Time Trigger 1

Update Outputs

Instruction 1

Time Trigger N

Time Trigger 2

Instruction 2

Instruction N

Figure 5.9.: Code instrumentation in module controller

5.4. Test Environment

The final part of the simulation system is the test environment. This is the part
where the user interacts with the system. The user configures the simulation,
defines and executes test cases. It is shown in Figure 5.11. The test specification

50

5. System Design

ModuleEventTrigger

LOG

TimerModuleEventHandlerModuleCycleController

1.7

1.5 currentTime =getTimeInUs()

1.3 doExecute(uint32_t EventTimeInUs)

1.0 trigger(Event)

1.6 return(uint32_t timeInUs)

1.4 doCountUp(uint32_t timeInUs)

1.2 execute(uint32_t EventTimeInUs)

1.1 handleEvent(Event)

Figure 5.10.: Simulation event manager time sequence diagram

in form of a .xml file is included. It defines the name of the test and includes a
list of drivers, stubs and units under tests. A generic test configuration is shown
in the listing below. The test execution file is a .cpp file. It is the entry point of
the simulation platform. The test sequence is written in this file in form of test
steps. A set of language macros for effortlessly writing test cases is available to
the user. The simulation image is then compiled and run on two different plat-
forms: the Green Hills MULTI ARM platform and the GCC toolchain platform.
Both platforms then generate a test report. Additionally, the GCC toolchain in-
cludes tools such as LCOV and gcov [52]. LCOV is a graphical front-end for GCC’s
coverage testing tool gcov. It collects gcov data for multiple source files and
creates HTML pages containing the source code annotated with coverage infor-
mation. LCOV supports statement, function and branch coverage measurement.

51

5. System Design

TestConfigurati
onFile.xml

TestExecution
File.cpp

Firmware and
Simulated
Hardware

TestReport

TestReport

Coverage
Reportgcov

Green Hills MULTI
Platform for ARM

GNU GCC toolchain

Figure 5.11.: Test environment configuration

<?xml version=” 1 .0 ” encoding=” i so −8859−1”?>
<UnitTests xmlns :x i=” ht tp : //www. w3 . org /2001/ XInclude ”>
<UnitTest name=” In t eg ra t i onTes t ”>

<Drive r s>
. . .
</ Dr ive r s>

<UnitsUnderTest>
. . .
</ UnitsUnderTest>

<UsedStubs>
. . .
</UsedStubs>

</ UnitTest>
</ UnitTests>

Listing 5.1: Test specification .xml file

52

5. System Design

Table 5.1.: Time events and duration

Time Event ID Duration [µs]

1 100

2 100

3 100

4 1000

5 1500

6 500

7 500

8 100

9 100

10 100

11 100

12 100

13 1000

14 100

15 100

16 100

17 100

18 100

19 100

20 100

53

6. Implementation

In this chapter the proposed simulation platform is implemented in an use-case.
The implementation use-case covers failsafe address assignment of a peripheral
module. In section 2.2, a number of safety measures have been introduced.
Another safety specific feature is the failsafe address assignment. To ensure that
the data is exchanged between the F-CPU and the correct peripheral module,
every module gets an unique address assigned. At start-up, the F-CPU checks
the address of every module against the expected address. If the address does
not match, the system goes in a failsafe state.

6.1. PROFIsafe Address Assignment

Every failsafe module has its unique PROFIsafe address, which consists of
a destination and a source address. The source address refers to the F-CPU.
Destination address is different for every module. When using a PLC system
with one F-CPU, then the source address is the same for every module in the
configuration. The uniqueness of the F-address is ensured by the destination
addresses. The F-Address is stored as F-Reference in a non-volatile storage
element (e.g., EEPROM). The PROFIsafe address must be assigned to every
module before commissioning. There are also other cases which involve address
reassignment such as:

• later placement of a failsafe module during initial commissioning,
• intentional modification of the source address parameter for the associated

F-CPU,
• replacement of the non-volatile element and
• replacement of the failsafe module after commissioning.

To assign the address, there are basically two approaches: to manually set the
address using a hardware switch and to use an engineering station (e.g., laptop)
equipped with engineering software (e.g., SIEMENS TIA Portal).

54

6. Implementation

9 8 7 6 5 4 3 2 1 0

ON

OFF

5
1

2

2
5

6

1
2

8 6
4

3
2 1
6 8 4 2 1

Example:
Address = 512+256+128+64+32+16+8+2 = 1018

Figure 6.1.: Setting the failsafe address using a hardware switch

6.1.1. Manual Setting Using a Hardware Switch

The classic solution is based on manual setting of the F-Address using a
hardware address switch (10-pin DIP switch). The valid range of the addresses
is 1 to 1022. Not all product families have the DIP switch (e.g., the ET200SP

product family) and not every module is always accessible. Environmental
conditions (e.g., poor light conditions) make the hardware accessibility difficult.
Alternatively, the address is assigned using the engineering platform (e.g.,
laptop) equipped with the engineering software (TIA Portal). However, this
method requires the availability of an engineering station at the commissioning
site. Furthermore, all modules must be online during the entire process, which
is not possible in every plant.

6.1.2. Address Assignment via Engineering Station

The address assignment process via engineering station is performed using the
SIEMENS TIA Portal software package installed on a computer. The software
then communicates with the F-CPU. A central source address is assigned to
the F-CPU and destination addresses are assigned to modules. The destination
address, however, shall be a 16-bit number between 1024 and 64534 to avoid
any possible address conflicts with numbers assigned using the hardware switch.
Following section briefly illustrates the steps used for address assignment on an
example project shown in the Figure 6.2. The hardware configuration consists
of a CPU and a decentralized et200sp peripheral station including one failsafe
module, to which the address is assigned to. The connection between the
CPU and the peripheral group is realized with a PROFINET connection. The
assignment process is performed using the following steps:

1. In TIA Portal, a right-click on the station opens the context menu where

55

6. Implementation

Figure 6.2.: Implementation configuration in TIA Portal

to user clicks on “Assign PROFIsafe address”. (Figure 6.3)
2. A pop-up window shows up. A click on “Identification” button flashes

the module. The module LEDs start to flash green. Simultaneously, a
timer starts. The user has 60 seconds before a timeout occurs. (Figure
6.4)

3. After the user clicks “Assign PROFIsafe address” button, a final con-
firmation dialog pops up. Again, a new timer is started and the user
has 60 seconds to confirm the assignment. If the user clicks “Yes”, the
assignment process is confirmed. Otherwise, if the user quits with clicking
the “No” button or the timeout is over, the module stops flashing and
the assignment process is aborted. (Figure 6.5)

The same process is shown in the time sequence diagram in Figure 6.6. The
user interacts with TIA Portal interface. Each user action results in sending in-
formation over the F-CPU. The F-CPU then communicates with the peripheral
module using data records.

6.1.3. HW-SW Integration Test Cases

The ET200SP F-Module test specification file1 defines the test environment and
all the test cases for the HW/SW integration test of the address assignment
process mentioned above. The numbered test cases, including a short description
is shown in the Table 6.1. The table additionally features the time needed to
complete each test cases. The test duration is later discussed in the Section
7.2. There are in total 13 test cases featuring different scenarios. Each test case
has exactly defined test steps and expected diagnosis data in the specification
file. Based on that information, the simulation-based test cases were written.
Ultimately, the goal is to execute all the test cases on the simulation platform.

1Confidential company IP

56

6. Implementation

Figure 6.3.: Step 1 of the address assignment in TIA Portal

57

6. Implementation

Figure 6.4.: Step 2 of the address assignment in TIA Portal

Figure 6.5.: Step 3 of the address assignment in TIA Portal

58

6. Implementation

1.4 Get station info

1.5 Return station info

Startup and parametrization

Figure 6.6.: TIA Portal address assignment time sequence diagram

59

6. Implementation

Table 6.1.: HW-SW integration test cases

Test
ID

Description Dura-
tion
[min]

1 Assign a new (valid) failsafe address to an unaddressed
F-module.

5

2 Assign a new (valid) failsafe address to an invalid addressed
F-module (destination address mismatch).

3

3 Assign a new (valid) failsafe address to an invalid addressed
F-module (source address mismatch).

3

4 Assign a new (valid) failsafe address to an invalid addressed
F-module (source and destination address mismatch).

2

5 Startup with non-volatile storage element containing invalid
address verification information (1/2).

3

6 Startup with non-volatile storage element containing invalid
address verification information (2/2).

2

7 Power up an F-module without the non-volatile storage
element.

1

8 Power up F-module without a non-volatile storage element
and in an environment where no parameterization is
attempted.

20

9 Cancel address assignment. 2

10 Let connection timer expire. 3

11 Let address assignment timer expire. 3

12 Verify that the session ID changes during an ongoing address
assignment.

5

13 Check system behavior in case that users try to concurrently
assign addresses to the same F-module from two individual
engineering Stations.

10

TOTAL 62

60

6. Implementation

6.2. Virtual Address Assignment

Following the same modeling principles in Chapter 5 and based on the descrip-
tion of address assignment using the engineering station covered above, the
simulation-based counterpart has been modeled using C++. The class also
includes the simulation of the non-volatile storage element. One can set the
content of the storage element in the test environment or even make the element
not accessible (used in test ID 7 and 8). The complete address assignment
functionality is implemented in the state machine with nine states in total:

• SendConfigurationData

• GetModuleInfo

• FlashModule1

• FlashModule2

• StartTimer

• Cancel

• Confirm

• Assigned

• Canceled

What states are executed depends on the test case. The activity diagram
is shown in the Figure 6.7. For the default test case for assigning a new
failsafe address (test ID: 1 to 4 in Table 6.1), the program goes into all states
except for Cancel and Canceled. More execution details about each state
is shown in a time sequenced diagram in the Figure 6.8. Compared to the
actual assignment process shown in Figure 6.6, in the simulation-based one
the user and TIA Portal actions are represented in the test environment. The
communication between the virtual components is done using the simulated
asynchronous data exchange using data records. In a given state, the data
record structure is prepared. After the data record is initialized, the data record
is assigned to the simulated bus interface between the F-CPU and Module. This
is realized using FCPUSimulation.cpp and PROFISafeSimulation.cpp classes
from Section 5.3.1). After that, the module cycle is executed. The data record
is interpreted in the firmware and module is updated. Depending on the test
case, the state machine ends in either Assigned or Canceled state. In the End

state, the address assignment result is returned to the test environment.

61

6. Implementation

SendConfig
urationData

GetModule
Info

Flash
Module1

Flash
Module2

StartTimer

Confirm

Assigned Canceled

Cancel

[Close]

[Assign]

[Yes]

[No]

Start

End

Figure 6.7.: Activity diagram for the simulation-based address assignment

62

6. Implementation

SendConfigurationData

Figure 6.8.: Simulation-based address assignment time sequence diagram

63

6. Implementation

6.3. Improving Test Coverage

Having the address assignment implemented in the simulation platform, there
is a possibility not only to write identical test cases from Subsection 6.1.3, but
also to include additional simulation-based test cases. Additional test cases can
be written by using the testing techniques introduced in the Chapter 3.

Class Partitioning and Boundary Analysis

Given the fact that the complete address assignment process is based on the
data record communication, black-box techniques such as equivalence class
partitioning, boundary value analysis and fault injection can be applied to
the communication package throughout the assignment process. This provides
several test cases per each state described in the Figure 6.7. The black-box
testing approach applied to the data record communication is illustrated in the
Figure 6.9. The figure represents a generic data record with N data blocks. The
data record is partitioned so that each data block represents an equivalence
class, which means at least N test cases. Applying the boundary value analysis
and selecting a minimum, maximum and middle value for each equivalence
class, a minimum of 3N test cases is achieved.

Fault-injection

Fault-injection is another method to write additional test cases. This technique
is also applied on the data-record communication. In each data record sent
throughout the assignment process a fault has been injected, resulting with
additional test cases. To demonstrate how the test coverage can be increased,
seven additional test cases are written using class partitioning and fault-injection
methods on specific data records. One could generate even more test cases but
these were sufficient to show the coverage increase. The results are shown and
discussed in the chapter below.

64

6. Implementation

BV1 BV2 BV3

EC1

BV1 BV2 BV3

EC1

BV1 BV2 BV3

EC1

DB 1 DB 2 DB N Data Record (n bytes)

Equivalence Class Partition

Boundary Value Analysis

N test cases

3N test cases

DB … Data Block
EC … Equivalence Class
BV … Boundary Value

Figure 6.9.: Additional test cases derived from data records

65

7. Results and Evaluation

7.1. Test Coverage

Table 7.1 shows the test coverage for each test case included in Table 6.1. The
coverage data is extracted individually from the lcov coverage report for each
test ID, for the test cases in total and the additional written test cases. The
gcov coverage tool measures the line, function and decision coverage for the
unit under test classes, for which the framework classes1 associated with the
address assignment process are selected. Lowest test coverage was archived
in the test IDs 7, 8 and 9. This was expected, as the assignment process is
started without the coding element or, as for test ID 9, the assignment process
is canceled at the beginning. Highest test coverage was archived for test IDs 1
to 4. This was also expected as the assignment process is completed in these
cases. A total test coverage of 78,1% for line, 89,7% for function and 59,3% for
decision coverage is archived. The additional test cases showed an increase of
approximately 2%. Although a modest value, it showed how to increase the
coverage writing additional simulation-based cases. The above mentioned data
records have two protocol version. It should be noted that the implementation
covered only one protocol version. By implementing the test cases with the
second protocol versions, a slightly higher coverage would be archived. The
coverage data reported in this thesis have been observed using pure black box
tests, therefore only slight coverage improvements have been achieved. With
carefully selected white box tests, these coverage values can easily be brought
to the maximum, at least for function and line coverage (branch coverage
would require more effort). It is infeasible to archive this test coverage using
traditional HW-SW integration tests.

1Confidential company IP

66

7. Results and Evaluation

Table 7.1.: Test coverage for virtual HW-SW integration test cases

Test ID Coverage [%]

Line Function Decision

1 72,5 87,2 46,2

2 72,5 87,2 46,2

3 72,5 87,2 46,2

4 72,5 87,2 46,2

5 31,8 74,4 11,1

6 31,8 74,4 11,1

7 23,8 69,2 7,0

8 16,2 53,8 5,0

9 16,2 53,8 5,0

10 57,2 84,2 35,2

11 62,6 84,6 42,2

12 58,6 84,6 39,7

13 61,2 84,6 41,2

Total 76,2 87,2 57,3

Additional 78,1 89,7 59,3

Increase 1,9 2,5 2,0

67

7. Results and Evaluation

7.2. Test Resource Savings

Table 6.1 includes for each HW-SW integration test case the time duration
needed to complete the test. The time values are approximate and were measured
using a stopwatch. The preparation for the testing is not taken into account.
It shall also be noted that the values highly depend on the testers experience.
For the sake of this thesis, they were conducted by a tester with several years
of experience in integration testing. For most test cases, it took about 2 to 3
minutes to complete. Test case with ID 8 took most time to be completed, a
total of 20 minutes but this was because the tester has to wait for the maximal
timeout value to be reached.

Compared to the hardware test cases, the simulation-based counterparts are
executed almost instantaneously. The execution time depends on the computing
power, but a standard PC configuration executes them in a few seconds.
However, the compilation takes some more time: approximately 10 minutes.
The code is however, compiled just once. This means that, after compiling the
project, the test reports can be finalized within few minutes. The comparison
is made to show that the tester can have the test report in a matter of minutes
instead of setting up the hardware test environment and waiting for hours. This
is especially useful when making small changes in code or when testing new
functionalities.

7.3. Discussion

The simulation-based testing approach certainly offers some advantages com-
pared to the traditional testing. One of these is the ability to write highly
unlikely test scenarios A good example is the Session ID test case. In the
address assignment process the Session ID is generated by a hardware random
number generator. Although the probability to generate two identical session
numbers is highly unlikely, it is still conceivable but it is almost impossible to
test this scenario using the traditional HW-SW integration test methods. It
is doubtful if this scenario would occur even with years of testing. With the
use of simulation-based testing however, even highly unlikely scenarios like this
one can be written and simulated with just few lines of code.

Another feature is the simulation of hardware fault injections. A good example
is the defective non-volatile storage element. For testing this scenario, one would

68

7. Results and Evaluation

require special hardware tools. However, by using a software model of the non-
volatile storage element, one only needs to modify the code. The same applies
for basically every hardware model in the simulation platform.

Finally, the simulation platform offers a possibility to add and test func-
tionalities for new peripheral modules before the delivery of the first hardware
prototype. This results in early verification of the system and can reduce the
number of faults in later stages.

However, there are also some shortcomings of the simulation platform. Just
like with every other simulation, one should keep in mind that it is after all,
only a simulation and can-not be compared to the real system in terms of
accuracy and level of detail, especially when the platform was modeled on a
system level of abstraction, where accuracy is traded for modeling effort. An
example is the modeling of the timing system. In real hardware, the system is
driven by a hardware clock whereas the timing system in the simulation was
realized by approximate code instrumentation.

Another problem is that the simulation platform is device specific. It was
written for one peripheral module with specific microcontroller. For a new
peripheral module, with new hardware architecture, a new simulation platform
must be written from scratch. Thus, it is not reusable. Apart from that, even
for existing modules, the simulation code leads to a increased code complexity
and results in decreased maintainability of the code.

At this place, with all the advantages and disadvantages in mind, it shall be
noted that the simulation-based testing is by no means meant to substitute
the traditional HW-SW integration test. It is rather a supplement to the
hardware testing. After all, the product would never get certified without
testing it on all levels in accordance with IEC 61508. However, simulation-based
testing provides valuable information about integration testing such as coverage
overview. Additionally, highly unlikely test scenarios can be tested. Lastly, the
simulation platform allows to carry out integration test cases long before the
first hardware prototype is available. When implementing new functionalities,
one could easily integrate it and verify its compatibility with the system.

69

8. Conclusion

8.1. Summary

This thesis covers the development of failsafe peripheral modules which are used
in safety-critical industrial systems. Thus, it features a number of hardware
and software measures to ensure functional safety. The modules are developed
according to the IEC 61508 standard. For the software part, IEC 61508 rec-
ommends the V-model. It is explained in the Chapter 3 along with software
testing methods used for verification of the failsafe software. The chapter was
finalized with the introduction of simulation-based techniques in testing, the
term which is well-established in automotive industry. The idea of introducing
a software-in-the-loop simulation as a supplementation method for integration
testing is presented. This means simulation-based testing with no use of real
hardware, except a host machine. Chapter 4 dealt with modeling embedded
systems. A well established field in embedded systems development. Literature
research showed a number of different modeling platforms and languages for
system-level modeling. Some of them are commercial and some open-source
tools. However, to integrate any of these methods into current development
process, the associated tools would have to pass a special certification process.
For this reason, a hardware modeling approach using C/C++ language and
integrated in existing tools was chosen. One of the tools is the Green Hills
Software MULTI environment which features an instruction set simulator for
the target ARM processor. The simulation platform is handled in the Chapter
5. It features the above-mentioned ISS and hardware peripherals modeled as
C++ classes. Additionally, the platform features a test environment which,
among others, incorporates a simulation event manager. The simulation event
manager realizes a virtual time system used for diagnostic and logging dur-
ing the simulation-based testing. Another powerful feature of the simulation
platform is the modular software architecture. Different hardware models can
be easily added/removed to support various use-cases. In scope of this thesis,

70

8. Conclusion

the simulation platform was implemented to realize a specific simulation-based
hardware-software test case. For this purpose, the address assignment test
case is chosen. It was not only possible to write identical simulation-based
test cases, but for the first time, one got a transparent overview of the testing
code coverage. Not only that, but the possibility to write additional test cases,
even ones that with a highly unlikely occurrence is presented. Ultimately, the
simulation-based platform allows software development to some extent without
a real hardware prototype.

8.2. Future Work

Future work certainly involves adapting additional HW-SW integration tests
in the simulation platform. This would automatically mean the expanding
and improving of the simulation platform with new hardware models. The
simulation platform could further be improved by introducing an online GUI-
based testing tool. It would provide real-time feedback of the simulation-based
tests. This would include event and diagnosis logging output. Additionally, the
status of the diagnostic LEDs would be shown and recorded at the same time.
Finally, the tool could also be extended to feature a new GUI for coverage which
would provide a transparent coverage overview over every firmware component.
Coverage data would be exported from the lcov report. The program would
then plot the firmware components as squares. Each square would have two
attributes: size and color. The size of the square would be related to the size
of the software component (e.g., lines of code), while the color of the square
would be determined by the coverage. This would provide an unique and even
better feedback from the hardware-software integration test to the user.

71

Bibliography

[1] Frank D Petruzella. Programmable logic controllers. Tata McGraw-Hill
Education, 2005 (cit. on pp. 1, 6).

[2] Ron Bell. “Introduction to IEC 61508.” In: Proceedings of the 10th
Australian workshop on Safety critical systems and software-Volume 55.
Australian Computer Society, Inc. 2006, pp. 3–12 (cit. on p. 1).

[3] David J Smith and Kenneth GL Simpson. The Safety Critical Sys-
tems Handbook: A Straightforward Guide to Functional Safety: IEC
61508 (2010 Edition), IEC 61511 (2015 Edition) and Related Guidance.
Butterworth-Heinemann, 2016 (cit. on p. 2).

[4] International Electrotechnical Commission. IEC 61508-3: Functional
safety of electrical/electronic/programmable electronic safety-related sys-
tems – Part 3: Software requirements. International Standard. 2010 (cit.
on pp. 1, 13, 14, 18).

[5] Jakob Engblom, Guillaume Girard, and Bengt Werner. “Testing Embed-
ded Software using Simulated Hardware.” In: ERTS 2006 (2006), pp. 1–9
(cit. on pp. 3, 34).

[6] SIEMENS. Failsafe I/O Module SM 526. url: https://w3.siemens.
com/mcms/distributed-io/en/ip20-systems/et-200mp/io-modules/

pages/failsafe-io.aspx (cit. on p. 7).

[7] International Electrotechnical Commission. IEC 61508-6: Functional
safety of electrical/electronic/programmable electronic safety-related sys-
tems – Part 6: Guidelines on the application of IEC 61508-2 and IEC
61508-3. International Standard. 2010 (cit. on p. 8).

[8] PROFIsafe. PROFIsafe System Description: Technology and Applica-
tion. url: https://www.automation.com/pdf_articles/profinet/
PROFIsafe_system_description_v_2010_English.pdf (cit. on pp. 9–
11).

72

https://w3.siemens.com/mcms/distributed-io/en/ip20-systems/et-200mp/io-modules/pages/failsafe-io.aspx
https://w3.siemens.com/mcms/distributed-io/en/ip20-systems/et-200mp/io-modules/pages/failsafe-io.aspx
https://w3.siemens.com/mcms/distributed-io/en/ip20-systems/et-200mp/io-modules/pages/failsafe-io.aspx
https://www.automation.com/pdf_articles/profinet/PROFIsafe_system_description_v_2010_English.pdf
https://www.automation.com/pdf_articles/profinet/PROFIsafe_system_description_v_2010_English.pdf

Bibliography

[9] Stephan Grünfelder. Software-Test für Embedded Systems: Ein Praxis-
handbuch für Entwickler, Tester und technische Projektleiter. dpunkt.
verlag, 2017 (cit. on p. 13).

[10] T Bäro, E Sax, and S Schmerler. “Erhöhung der Testtiefe durch HiL-
Testing.” In: Proceedings der Jahrestagung der ASIM/GI-Fachgruppe
4.5.5 Simulation technischer Systeme December (2005), pp. 4–13 (cit. on
pp. 13, 23).

[11] Ian Sommerville. Software Engineering: Global Edition. 2016, p. 811. isbn:
978-1-292-09613-1 (cit. on pp. 15, 17, 23).

[12] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011 (cit. on p. 16).

[13] Kelly J Hayhurst et al. Decision Tutorial Coverage on Modified Condition
/. May. 2001. isbn: 2001210876 (cit. on pp. 17, 19).

[14] Peter Liggesmeyer. Peter Liggesmeyer, Software-Qualität. Vol. 2. 2009,
pp. 1689–1699. isbn: 978-3-8274-2056-5. doi: 10.1017/CBO9781107415324.
004. arXiv: arXiv:1011.1669v3 (cit. on p. 18).

[15] Ilene Burnstein. Practical software testing: a process-oriented approach.
Springer Science & Business Media, 2006 (cit. on pp. 18, 20–22).

[16] International Electrotechnical Commission. IEC 61508-7: Functional
safety of electrical/electronic/programmable electronic safety-related sys-
tems – Part 7: Overview of techniques and measures. International Stan-
dard. 2010 (cit. on p. 19).

[17] C Gühmann. “Model-Based Testing of Automotive Electronic Control
Units.” In: 3rd International Conference on Materials Testing: Test 2005
49.30 (2005) (cit. on pp. 23, 24).

[18] Daniel D Gajski and Robert H Kuhn. “New VLSI tools.” In: Computer
12 (1983), pp. 11–14 (cit. on p. 26).

[19] Daniel D. Gajski et al. Embedded System Design. Vol. 35. 1. 2009, p. 366.
isbn: 978-1-4419-0503-1. doi: 10.1007/978-1-4419-0504-8 (cit. on
pp. 26, 27, 31).

[20] Bart Kienhuis et al. “A methodology to design programmable embedded
systems.” In: International Workshop on Embedded Computer Systems.
Springer. 2001, pp. 18–37 (cit. on pp. 27, 28).

73

https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/978-1-4419-0504-8

Bibliography

[21] Stefan Eilers. “Zeitgenaue Simulation gemischt virtuell-realer Proto-
typen.” In: (2006), pp. 27–28 (cit. on pp. 29, 30).

[22] Daniel D Gajski, Rainer Dömer, and Jianwen Zhu. “Ip-centric method-
ology and design with the specc language.” In: System-Level Synthesis.
Springer, 1999, pp. 321–358 (cit. on p. 31).

[23] Daniel D. Gajski et al. SPECC: Specification Language and Methodology.
2000, p. 313. isbn: 0792378229. doi: 10.1007/978-1-4615-4515-6
(cit. on pp. 31, 32).

[24] Accellera. SystemC. url: https://accellera.org/downloads/standards/
systemc (cit. on p. 31).

[25] Daniel Große and Rolf Drechsler. Quality-Driven SystemC Design. Springer,
2010 (cit. on p. 31).

[26] David C. Black et al. Systemc: From the ground up. 2005, pp. 1–279.
isbn: 9781402080876. doi: 10 . 1007 / 978 - 0 - 387 - 69958 - 5. arXiv:
arXiv:1011.1669v3 (cit. on pp. 32, 33).

[27] Thorsten Grotker. “System Design with SystemC.” In: Journal of Exper-
imental Psychology: General 136.1 (2007), pp. 23–42 (cit. on p. 32).

[28] Jon Perez, Mikel Azkarate-Askasua, and Antonio Perez. “Codesign and
simulated fault injection of safety-critical embedded systems using sys-
temC.” In: EDCC-8 - Proceedings of the 8th European Dependable Com-
puting Conference MiL (2010), pp. 221–229. doi: 10.1109/EDCC.2010.34
(cit. on p. 32).

[29] N. Calazans et al. “From VHDL register transfer level to SystemC trans-
action level modeling: A comparative case study.” In: Proceedings - 16th
Symposium on Integrated Circuits and Systems Design, SBCCI 2003
(2003), pp. 355–360. doi: 10.1109/SBCCI.2003.1232853 (cit. on p. 32).

[30] Luc Séméria. “Methodology for Hardware / Software Co-verification in
C / C ++.” In: () (cit. on p. 33).

[31] Diederik Verkest, Joachim Kunkel, and Frank Schirrmeister. “System
level design using C++.” In: Proceedings of the conference on Design,
automation and test in Europe - DATE ’00 February 2000 (2000), pp. 74–
83. doi: 10.1145/343647.343709. url: http://dl.acm.org/citation.
cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.

74

https://doi.org/10.1007/978-1-4615-4515-6
https://accellera.org/downloads/standards/systemc
https://accellera.org/downloads/standards/systemc
https://doi.org/10.1007/978-0-387-69958-5
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/EDCC.2010.34
https://doi.org/10.1109/SBCCI.2003.1232853
https://doi.org/10.1145/343647.343709
http://dl.acm.org/citation.cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709
http://dl.acm.org/citation.cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709
http://dl.acm.org/citation.cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709
http://dl.acm.org/citation.cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709

Bibliography

cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/

citation.cfm?doid=343647.343709 (cit. on p. 33).

[32] Abhijit Ghosh et al. “Hardware Synthesis from C / C ++.” In: Design ()
(cit. on p. 33).

[33] Wind River. Simics Website. url: https://www.windriver.com/

products/simics/ (cit. on p. 34).

[34] Synopsis. Virtual Prototyping Website. url: https://www.synopsys.
com/verification/virtual-prototyping.html (cit. on p. 34).

[35] Cadence. Cadence Virtual System Platform. url: https://www.cadence.
com/content/dam/cadence-www/global/en_US/documents/Archive/

virtual_system_platform_ds.pdf (cit. on p. 34).

[36] Open Virtual Platforms. Open Virtual Platforms Website. url: https:
//www.windriver.com/products/simics/ (cit. on p. 34).

[37] Filippo Cucchetto, Alessandro Lonardi, and Graziano Pravadelli. “A
common architecture for co-simulation of SystemC models in QEMU
and OVP virtual platforms.” In: IEEE/IFIP International Conference on
VLSI and System-on-Chip, VLSI-SoC 2015-Janua.January (2015). issn:
23248440. doi: 10.1109/VLSI-SoC.2014.7004154 (cit. on pp. 34, 35).

[38] Stephan Werner et al. “Software-in-The-Loop simulation of embedded
control applications based on Virtual Platforms.” In: 25th International
Conference on Field Programmable Logic and Applications, FPL 2015
(2015). issn: 1946-1488. doi: 10.1109/FPL.2015.7294020 (cit. on p. 34).

[39] QEMU. QEMU Website. url: https://www.qemu.org/ (cit. on p. 35).

[40] Màrius Montón et al. “Mixed SW/systemC SoC emulation framework.”
In: IEEE International Symposium on Industrial Electronics (2007),
pp. 2338–2341. issn: 2163-5137. doi: 10.1109/ISIE.2007.4374971

(cit. on p. 35).

[41] Guillaume Delbergue et al. “QBox : an industrial solution for virtual
platform simulation using QEMU and SystemC TLM-2 . 0.” In: (2016),
pp. 1–10 (cit. on p. 35).

[42] Wolfgang Mueller et al. “Virtual prototyping of cyber-physical systems.”
In: 17th Asia and South Pacific Design Automation Conference. IEEE.
2012, pp. 219–226 (cit. on p. 35).

75

http://dl.acm.org/citation.cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709
http://dl.acm.org/citation.cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709
http://dl.acm.org/citation.cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709
http://dl.acm.org/citation.cfm?id=343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=343647.343709
https://www.windriver.com/products/simics/
https://www.windriver.com/products/simics/
https://www.synopsys.com/verification/virtual-prototyping.html
https://www.synopsys.com/verification/virtual-prototyping.html
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/Archive/virtual_system_platform_ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/Archive/virtual_system_platform_ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/Archive/virtual_system_platform_ds.pdf
https://www.windriver.com/products/simics/
https://www.windriver.com/products/simics/
https://doi.org/10.1109/VLSI-SoC.2014.7004154
https://doi.org/10.1109/FPL.2015.7294020
https://www.qemu.org/
https://doi.org/10.1109/ISIE.2007.4374971

Bibliography

[43] Massimiliano D’Angelo et al. “A Simulator based on QEMU and SystemC
for Robustness Testing of a Networked Linux-based Fire Detection and
Alarm System.” In: 6th European Congress on Embedded Real-Time
Software and Systems (2012) (cit. on p. 35).

[44] Tse Chen Yeh, Zin Yuan Lin, and Ming Chao Chiang. “Enabling TLM-2.0
interface on QEMU and SystemC-based virtual platform.” In: 2011 IEEE
International Conference on Integrated Circuit Design and Technology,
ICICDT 2011 May 2011 (2011). doi: 10.1109/ICICDT.2011.5783207
(cit. on p. 35).

[45] Shye Tzeng Shen, Shin Ying Lee, and Chung Ho Chen. “Full system
simulation with QEMU: An approach to multi-view 3D GPU design.”
In: ISCAS 2010 - 2010 IEEE International Symposium on Circuits and
Systems: Nano-Bio Circuit Fabrics and Systems (2010), pp. 3877–3880.
doi: 10.1109/ISCAS.2010.5537690 (cit. on p. 35).

[46] Daniel Aarno and Jakob Engblom. Software and System Development
using Virtual Platforms: Full-System Simulation with Wind River R©
Simics R©. 2014, pp. 1–349. isbn: 9780128008133. doi: 10.1016/C2013-
0-14366-8 (cit. on pp. 35, 37).

[47] Wolfgang Ecker. Hardware-dependent Software Principles and Practice.
Vol. 39. 5. 2008, pp. 561–563. isbn: 9781402094354 (cit. on p. 36).

[48] Jürgen Schnerr et al. “High-performance timing simulation of embedded
software.” In: Proceedings - Design Automation Conference July (2008),
pp. 290–295. issn: 0738100X. doi: 10.1109/DAC.2008.4555825 (cit. on
p. 36).

[49] International Electrotechnical Commission. IEC 61508-4: Functional
safety of electrical/electronic/programmable electronic safety-related sys-
tems – Part 4: Definitions and abbreviations. International Standard.
2010 (cit. on p. 37).

[50] STMicroelectronics. Reference Manual: STM32F205xx, STM32F207xx,
STM32F215xx and STM32F217xx advanced Arm-based 32-bit MCUs. url:
https://www.st.com/content/ccc/resource/technical/document/

reference_manual/51/f7/f3/06/cd/b6/46/ec/CD00225773.pdf/

files/CD00225773.pdf/jcr:content/translations/en.CD00225773.

pdf (cit. on pp. 39, 45).

76

https://doi.org/10.1109/ICICDT.2011.5783207
https://doi.org/10.1109/ISCAS.2010.5537690
https://doi.org/10.1016/C2013-0-14366-8
https://doi.org/10.1016/C2013-0-14366-8
https://doi.org/10.1109/DAC.2008.4555825
https://www.st.com/content/ccc/resource/technical/document/reference_manual/51/f7/f3/06/cd/b6/46/ec/CD00225773.pdf/files/CD00225773.pdf/jcr:content/translations/en.CD00225773.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/51/f7/f3/06/cd/b6/46/ec/CD00225773.pdf/files/CD00225773.pdf/jcr:content/translations/en.CD00225773.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/51/f7/f3/06/cd/b6/46/ec/CD00225773.pdf/files/CD00225773.pdf/jcr:content/translations/en.CD00225773.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/51/f7/f3/06/cd/b6/46/ec/CD00225773.pdf/files/CD00225773.pdf/jcr:content/translations/en.CD00225773.pdf

Bibliography

[51] Gren Hills Software. MULTI development environment. url: https:

//www.ghs.com/products/xilinx_zynq.html (cit. on p. 42).

[52] GNU GCC. Introduction to gcov. url: https://gcc.gnu.org/onlinedocs/
gcc/Gcov-Intro.html#Gcov-Intro (cit. on p. 51).

77

https://www.ghs.com/products/xilinx_zynq.html
https://www.ghs.com/products/xilinx_zynq.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro

Appendix

78

Appendix A.

STM32F2xx Block Diagram

79

	Abstract
	Abbreviations
	Introduction
	Motivation
	Thesis Structure

	Failsafe Programmable Logic Controllers
	SIMATIC PLC System
	Failsafe PLC Peripheral Module
	PROFIsafe

	Testing Embedded Systems
	Safety V-Model Life-cycle
	Testing Techniques
	Black-box Testing
	White-box Testing

	Test Levels
	Unit Test
	SW Integration Test
	HW/SW Integration Test
	Validation Testing

	Simulation Techniques in Testing
	Conclusion

	Modeling Embedded Systems
	Abstraction Levels
	Abstraction Pyramid
	System Level Modeling
	Single-Language Approach
	Multi-Language Approach

	Existing System-Level Modeling Languages
	SpecC
	SystemC
	C/C++ Modeling

	System-Level Modeling Platforms
	Commercial Tools
	OVPSim
	QEMU

	Modeling Timing Behavior
	Conclusion

	System Design
	Simulated Hardware
	Generic I/O Pin Model
	Generic Register Model
	ARM Cortex M3
	STM32F2xx Peripherals
	Timer
	Other Hardware

	Firmware
	Middleware
	F-CPU and PROFIsafe Simulation
	Simulation Event Manager

	Test Environment

	Implementation
	PROFIsafe Address Assignment
	Manual Setting Using a Hardware Switch
	Address Assignment via Engineering Station
	HW-SW Integration Test Cases

	Virtual Address Assignment
	Improving Test Coverage

	Results and Evaluation
	Test Coverage
	Test Resource Savings
	Discussion

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix
	STM32F2xx Block Diagram

