
Automatische Generierung
Barrierefreier Grafischer

Benutzeroberflächen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Jasmin Kathrin Thöner, BSc
Matrikelnummer 1125020

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Roman Popp

Univ.Ass. Dipl.-Ing. Thomas Rathfux

Wien, 27. Dezember 2018
Jasmin Kathrin Thöner Hermann Kaindl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Automatically Generated
Accessible Graphical User

Interfaces

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

Jasmin Kathrin Thöner, BSc
Registration Number 1125020

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Roman Popp

Univ.Ass. Dipl.-Ing. Thomas Rathfux

Vienna, 27th December, 2018
Jasmin Kathrin Thöner Hermann Kaindl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Jasmin Kathrin Thöner, BSc
Schwendergasse 21-23/1/14, 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. Dezember 2018
Jasmin Kathrin Thöner

v

Danksagung

Ich möchte mich zuerst bei meinen Arbeitskollegen, und besonders bei Anna Tjagvad
Madsen, bedanken, die mich auf das Thema Barrierefreiheit brachten. Ohne euch hätte
ich dieses Thema wohl nicht für meine Diplomarbeit gewählt und mir wären dadurch
einige wertvolle Erkenntnisse entgangen.

Ich bin meinem Betreuer, Prof. Hermann Kaindl, und meinen Assistenz-Betreuern,
Dr. Roman Popp und Dipl.-Ing. Thomas Rathfux, sehr dankbar für ihre wertvollen
Denkanstöße und ihr umgehendes Feedback. Ich bedanke mich auch dafür, dass sie mir
die Gelegenheit gaben, mit ihnen ein Paper schreiben zu dürfen.

Ganz besonders möchte ich auch meiner Mutter und Jakob Englisch danken, die mir
immer mit ihrer Unterstützung zur Seite standen. Eure Ratschläge und eure Motivation
hat mir in meiner Studienzeit sehr geholfen.

Nicht zuletzt danke ich auch Clemens Heller für die großartige Zeit, die wir während
unseres Studiums hatten. Ich bin froh, dass wir uns schon so früh in unserer Studienzeit
kennengelernt und die gesamte Zeit über gegenseitig unterstützt haben.

vii

Acknowledgements

First, I want to thank my colleagues at work, especially Anna Tjagvad Madsen, for
leading me into the topic of accessibility. Without them, I might not have picked this
topic for my thesis, and would have missed some valuable insights.

I am very grateful to my advisor, Prof. Hermann Kaindl, as well as my assistant advisors,
Dr. Roman Popp and Dipl.-Ing. Thomas Rathfux, who always gave me valuable thought-
provoking impulses and immediate feedback. I was glad to also have the opportunity of
writing a paper together with them.

I want to thank my mother and Jakob Englisch for always being loving and supportive.
Your motivation and advice has helped me a lot during my studies.

Last but not least I want to thank Clemens Heller for the great times we had during our
studies. I am glad that we got to know each other very early on in our studies and for
supporting each other all this time.

ix

Kurzfassung

Die Entwicklung von Grafischen User Interfaces (GUIs) ist zeitaufwendig und fehleranfäl-
lig. Sie automatisch zu generieren senkt den Aufwand und lenkt gleichzeitig den Fokus auf
die Geschäftslogik. Allerdings, da Frameworks zur automatischen Generierung von GUIs
generisch sein müssen, um GUIs für die verschiedensten Anwendungsgebiete zu generie-
ren, stellt Barrierefreiheit ein bedeutsames Problem dar. Diese Diplomarbeit untersucht
anhand der Unified Communication Platform (UCP), einem modellgetriebenen Frame-
work zur automatischen Generierung von GUIs zur Design-Zeit, wie barrierefreie GUIs
automatisch generiert werden können und welche Einschränkungen hierbei existieren.

Eine Fallstudie wurde durchgeführt, um existierende Probleme bezüglich Barrierefreiheit
in UCP aufzudecken. Eine Proof-of-Concept Anwendung sollte demonstrieren, wie diese
Probleme mittels Responsive Design, Anreicherung semantischer Informationen und dem
Austausch von Widgets zur Laufzeit überwunden werden können. Die Anpassung der
Modelle und der Module zur Generierung des “Final User Interface” in UCP zeigen
die Machbarkeit dieses Ansatzes. Eine Evaluierung des Ergebnisses gegen die Web
Content Accessibility Guidelines 2.1 zeigt, dass UCP die meisten gesetzlich auferlegten
Barrierefreiheit-Richtlinien erfüllt. Um manche Kriterien erfüllen zu können, muss jedoch
der Model Designer über entsprechendes Wissen über Barrierefreiheit verfügen.

Diese Diplomarbeit zeigt, dass Frameworks zur automatischen Generierung von GUIs wie
UCP gewisse Barrierefreiheit-Probleme lösen kann. Der Vorteil solcher Frameworks ist,
dass dies immer reproduzierbar ist, da viele menschliche Fehler verhindert werden können.
Die Anpassung des GUIs an verschiedene Endgeräte, besonders in Kombination mit
Responsive Design, kann die Barrierefreiheit durch Optimierung des GUIs an die jeweils
verfügbare Bildschirmgröße verbessern. Dasselbe gilt für die Ersetzung von Widgets zur
Laufzeit, obwohl dies die Komplexität der Generierung erhöht. Der modellgetriebene
Ansatz bewirkt, dass der Model Designer das resultierende GUI mit zusätzlichen Informa-
tionen, wie beispielsweise Texte für Screenreader, anreichern kann. Allerdings muss der
Model Designer dafür entsprechendes Hintergrundwissen bezüglich Barrierefreiheit besit-
zen. Außerdem müssen Frameworks zur automatischen Generierung von GUIs laufend an
technische Fortschritte und sich ändernde Barrierefreiheit-Richtlinien angepasst werden.

xi

Abstract

The development of Graphical User Interfaces (GUIs) is a time-consuming and error-prone
task. Automatically generating them the decreases effort while turning the focus on
business logic. However, since automated GUI generation frameworks need to be generic
in order to create GUIs for a variety of domains, accessibility is major concern. This thesis
elaborates on how accessible GUIs can be automatically generated, and which limitations
exist, using the Unified Communication Platform (UCP), a design-time model-driven
GUI generation framework, as an example.

A case study was performed discovering existing accessibility issues in UCP. A proof-of-
concept application demonstrated how these issues can be overcome using responsive
design, enrichment of semantic information, and widget replacement at run-time. The
modification of models and Final User Interface generation modules in UCP show
the feasibility of this approach. Evaluation of the outcome against the Web Content
Accessibility Guidelines 2.1 shows that UCP can fulfill most of the legally required
accessibility criteria. Some criteria require the model designer to pay attention to them,
i.e., he or she needs to have at least some knowledge about accessibility.

This thesis shows that automated GUI generation frameworks like UCP can eliminate a
number of accessibility issues. The advantage of such frameworks is that this is always
reproducible, since many human errors are avoided. Device tailoring, especially when
combined with responsive design, can enhance accessibility by optimizing the GUI to
the available screen space. The same applies to widget replacement, while increasing
the complexity of the generation process. The model-driven approach to automated
GUI generation enables the model designer to enrich the resulting GUI with additional
information like texts for screen readers. However, the model designer needs to be
educated about accessibility to provide necessary information to the models. Moreover,
automated GUI generation frameworks need to be adapted to technical advances and
updates of accessibility guidelines and regulations.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Approach . 2
1.3 Outline . 3

2 Background and Related Work 5
2.1 Defining Accessibility . 5
2.2 Legal Aspects of Accessibility . 13
2.3 Accessibility Standards and Guidelines . 15
2.4 Technologies and Their Influence on Accessibility 18
2.5 Accessibility Evaluation . 28
2.6 Accessibility and the Software Development Process 33
2.7 Automated GUI Generation . 33
2.8 The Unified Communication Platform . 35
2.9 Related Work . 38

3 Case Study on Accessibility in UCP 45
3.1 The Reference Applications . 45
3.2 The Evaluation Process . 53
3.3 Accessibility Issues Identified . 62
3.4 Lessons Learned . 69

4 Improving the Accessibility of UCP 73
4.1 Accessibility Improvements . 73
4.2 Proof-of-Concept Application . 82
4.3 User Study . 93
4.4 Implementation of Accessibility Improvements in UCP 98

xv

5 Evaluation and Results 113
5.1 Evaluation . 113
5.2 Results . 114

6 Conclusion and Future Work 121
6.1 Conclusion . 121
6.2 Future Work . 123

List of Figures 125

Acronyms 129

Bibliography 133

CHAPTER 1
Introduction

Graphical User Interface (GUI) development usually is a time-consuming, error-prone
and, therefore, expensive task. Depending on the complexity of the user interface and the
technologies being used, GUI-relevant code adds up to a significant amount of the overall
source code. In 1992, Myers and Rosson [MR92] found that, on average, almost half of
an application’s source code is GUI-specific, while the time spending on user interface
development makes up for 45% of the design phase, 50% of the implementation phase,
and 37% of the maintenance phase [MR92]. In the last 25 years, a multitude of new
user interface techniques (e.g., Web 2.0, Rich Internet Applications) and devices (e.g.,
smartphones, smart TVs, virtual reality headsets) have evolved, resulting in new and
even more requirements than in the early 1990s [Pet07]. Therefore, the amount of time
and code spent on an application’s GUI has likely even increased.

Tools supporting automated generation of GUIs can decrease the software development
effort by relieving developers from writing GUI-specific code. As a result, they can focus
more on the business logic of their application. One approach to generate GUIs is to
use model-driven engineering [Ken02], where the developer defines high-level abstract
models of the tasks and domains involved in the user interface. These models are then
automatically transformed into GUI-specific source code. This often involves various
transformation steps, in which the models are iteratively refined and enhanced, e.g., to
tailor the GUI to various ouput devices or fine-tune it through manual adaptations by
the designer.

1.1 Motivation and Problem Statement
While model-driven automated GUI generation can help reducing the GUI development
effort, it also faces various difficulties, especially regarding usability. Usability is typically
lower when the GUI is automatically generated than when it is manually developed by
experienced developers. One reason for this might be that GUI generation tools need

1

1. Introduction

to be generic in order to be applicable in various contexts, while usability also depends
on the specific context of an application. Additionally, device tailoring poses a problem,
since nowadays applications often are required to run on multiple devices (e.g., desktop
computers, tablets, and smartphones). Both of these concerns have gained high interest
in research (e.g., [AaIV08], [AVCF+10], [CVC08], [FPR+07], [KRF+09], [RPK+11]) and
are continuously being addressed.

On the other hand, another important aspect to consider, namely accessibility, has not yet
been addressed to a satisfying extent. Accessibility in the context of software is the ability
of an application to be usable by people with physical or cognitive disabilities [OAS07]
without limitations or help from others [HW16] [Wir]. Certain environmental conditions
(e.g., noise, bright light, small screens, low bandwidth) can also influence the accessibility
of an application [VJP11].

In Austria, and also the European Union in general, there are various laws that require
Websites and software applications to be accessible. However, the government does not
provide developers with detailed techniques or practices to achieve accessibility in their
applications. Thus, one has to look for standards and guidelines that seem appropriate
for the specific use case. Accessibility is a complex topic that depends on the content’s
type and size, as well as the complexity of the user interface and the used technologies.
This context dependence makes it hard to ensure accessibility in automatically generated
GUIs. Device tailoring further complicates this issue since the various device types have
different needs and requirements regarding accessibility.

1.2 Approach

This thesis elaborates on how accessible GUIs can be automatically generated, using the
Unified Communication Platform [PKR12] as an example. It also shows which possible
limitations exist with regard to the models used for generation or the various types of
output devices.

The Unified Communication Platform (UCP), developed by the Institute of Computer
Technology at TU Wien, leverages a model-driven approach to generate GUIs at design-
time from high-level Discourse-based Communication Models [FKH+06]. While the
framework already supports device-optimized GUI generation [RKP15b] [PRK13], acces-
sibility has not yet been addressed, and hence the resulting interfaces currently are not
fully accessible.

In a first step, existing legal regulations, standards, and guidelines (in Austria, the
European Union, and worldwide) as well as the current state-of-the-art techniques
for achieving accessibility in software applications were identified. Since the UCP
framework makes use of HTML [W3Cc] as well as Apache Velocity [ASF10] and Eclipse
JET [Ecl07], the literature study focused on techniques for achieving accessibility using
these technologies.

2

1.3. Outline

Based on this background and related work, a case study was performed to discover the
current limitations of UCP with regard to accessibility. Moreover, a set of requirements
for meeting the legal demands and standards regarding the structure (and possibly
behavior) of the GUI as well as the kind of output device was defined.

In a further step, a conceptual prototype for the adaptation and extension of UCP to
fulfill these requirements was elaborated. An implementation of accessibility measures
(based on the prototype) in the UCP framework was provided and evaluated using
automated tools where possible, and using assistive technologies (e.g., screen readers)
where necessary. Finally, challenges posed by the automatic generation of GUIs were
determined.

1.3 Outline
Chapter 2 informs about the background of this thesis. The term “accessibility” is defined,
legal aspects (i.e., laws and regulations relevant to Austria) of accessibility are discussed,
and an overview of standards and guidelines is given. The technologies relevant for this
thesis and their influence on acccessibility are discussed, and the process of accessibility
evaluation is explained. A short introduction to automated GUI generation in general and
the UCP framework in particular is given. Related work, focusing on different aspects of
enhancing accessibility in automated GUI generation, is presented.

The case study that was performed to evaluate the current state of accessibility in UCP
is discussed in Chapter 3. Six example applications have been evaluated using automated
accessibility evaluation tools and assistive technology, and by manually checking their
adherence to accessibility guidelines. Identified accessibility issues and lessons learned
from the case study are discussed in detail.

In Chapter 4, accessibility improvements for UCP are proposed and implemented in a
proof-of-concept application that demonstrates how the resulting GUI should look like
when the improvements are implemented in UCP. The insights gained from a user study
performed on the proof-of-concept application are presented. Finally, changes to the
models needed to generate accessible GUIs are proposed and the adaptations of the
module responsible for generating the GUI source code from these models are explained.

The adapted version of UCP is evaluated in Chapter 5. Chapter 6 discusses the results
found during the evaluation and elaborates potential future work. The last chapter
summarizes what has been done in this thesis and draws conclusions from it.

3

CHAPTER 2
Background and Related Work

This chapter informs about relevant background information and related work. Section 2.1
defines the term “accessibility”, explains its principles, discusses the various types of
impairments an individual can be confronted with and points out the advantages of
integrating accessibility into an application besides enabling inclusion of the disabled.
Section 2.2 lists the various legal requirements posed by Austria, the European Union
(EU), and the United Nations (UN). Section 2.3 discusses standards and guidelines which
are currently available. Section 2.4 describes the influences technologies have on the
accessibility of an application, focusing on technologies relevant to this thesis. Section 2.5
informs about ways of evaluating accessibility and which methodologies and tools can be
used for an evaluation. Section 2.6 deals with the integration of accessibility engineering
in the software development process. Section 2.7 gives an introduction into automated
GUI generation using the model-driven development approach. Section 2.8 introduces
the UCP framework and explains how the automated GUI generation process in UCP
works. Section 2.9 reviews related work.

2.1 Defining Accessibility
Information and Communications Technology (ICT), and especially the Web, has become
an integral part of our everyday lives. Nowadays, we can use it to communicate with
others around the world, to buy products of any kind, to inform ourselves about the
latest news, for educational purposes or simply for entertainment (e.g., audio or video
streaming, playing games). Even more important, by now we are able to look for and
apply to jobs or use governmental services (e.g., mobile signature, health insurance or
financial services).

ICT has also enabled great opportunities for people with disabilities. Before the wide-
spread availability of ICT, blind individuals barely had access to written text (e.g.,
newspapers, books), since they would need to buy expensive transcriptions to braille

5

2. Background and Related Work

versions of the text or audio tapes. Alternatively, they would need someone else to read
it to them, preventing them from self-determined access to information. With ICT, blind
people can now use assistive technologies like braille displays or screen readers to access
information whenever they want without relying on expensive transcriptions or other
people. Likewise, individuals with motor disabilities, e.g., people bound to a wheelchair,
can now use the Internet to do their shopping, therefore saving time and not having to
rely on the physical accessibility of the shops.

Despite the fact that ICT opens up many chances for disabled people, it is often the case
that developers do not pay enough attention to the accessibility of their applications,
resulting in barriers that make it difficult or even impossible for disabled people to use
them. After all, people with disabilities cannot use the applications in the same ways as
people without disabilities can do. They need the information to be prepared in special
ways (e.g., subtitles for videos so that deaf users can read what is said in the video), or
they use various kinds of assistive technologies (see Section 2.4.4) which need to be able
to process the information.

Access to ICT is a basic human right (see Section 2.2.3). Therefore, people with
disabilities must be able to use ICT applications without particular limitations or help
from others [HW16] [Wir]. Of course, they have special needs and ways to use those
applications, but they have to be able to access all the information and perform all the
actions (or equivalent ones) provided by them. In the broader sense, accessibility does
not only apply to disabled people, but also to elderly people (who experience a gradual
deterioration of their sensual capacities and cognitive abilities) and to certain situational
or environmental conditions (e.g., small screens, noisy environments, bright light, low
bandwidth) [VJP11].

Accessibility and usability are closely related. The Austrian government even includes
usability in their definition of accessibility for software applications [RV16]. Usability
deals with the ability of a user to achieve his or her goals in an effective, efficient and
satisfying way using the application [ISOa]. Another closely related term is universal
design, also called design for all or inclusive design, which defines a process to provide ICT
applications for the biggest possible target group, involving everyone to the greatest extent
possible [W3Cb]. Universal design also includes aspects like digital literacy, education,
cultural aspects, or language.

2.1.1 Principles of Accessibility

The Web Content Accessibility Guidelines (WCAG) [CCGV08] define four principles of
accessibility. The information presented to users in an application and its user interface
components must be:

• perceivable, i.e., they must be available to their senses. For example, a deaf user
cannot perceive the information provided by an audio track, if there is no written
transcription available.

6

2.1. Defining Accessibility

• operable, i.e., interactions with the application must be designed in such a way
that all users can perform them. If a user interface is only operable using a mouse,
people that rely on a keyboard and cannot use a mouse (e.g., people having tremors
that prevent them from fine muscle control) would not be able to interact with it.

• understandable, i.e., information and interactions in an application must be un-
derstandable by the users. An icon button (e.g., a pencil icon to edit an input)
without any kind of textual description cannot be understood by a blind user, since
he cannot see the icon.

• robust, i.e., they must be able to be presented to a wide variety of user agents,
including assistive technology, also with regard to their evolution (future versions
should also support the application). If the application does not support screen
readers, for example, blind users will have a hard time to access it.

These principles are expressed in verifiable success criteria, e.g., in the European standard
EN 301 549 [EN315].

2.1.2 Types of Impairments

A person is disabled or impaired, if he or she cannot participate, or can only participate
with difficulty in everyday activities, because of personal characteristics or external
influences. The World Health Organization (WHO) defines the term “disability” as
a situation in which a person cannot do something because of a barrier. This social
model sees disability as a problem caused by society instead of as a problem of the
individual. The problem could be removed if the barrier is removed, such that the person
can perform the given task (even if it is done in a different way than the average person
would do). In the following, the different kinds of disabilities are discussed. They might
be congenital, or originated from an illness, a disease, an accident or developed with
age. An individual may have more than one of these impairments. Disabilities can be
temporary or permanent, and they may change over time (e.g., progressive or recurring
impairments, situational or environmental differences).

Disabilities of Sight

Reduced vision is quite common today. Many people wear glasses or contact lenses to
correct their eye-sight. However, sometimes one’s vision is so weak that these visual
corrections are not enough to compensate. In Austria, this is the case for approximately
3,9% of the population [BMA13]. Very low vision often originates from certain diseases
like macula degeneration, cataract, glaucoma, or diabetic retinopathy, but it can also
result from aging. In order to be able to read text on a screen, people with low vision can
use tools like screen magnifiers, which zoom in on a small part of the screen. Applications
should also provide means of enlarging text and images. Additionally, high contrast
between a text and its background can significantly facilitate reading on screens. Some

7

2. Background and Related Work

people with low vision even use their own high contrast color scheme to overwrite the
provided one. In general, applications can be made accessible for people with low vision by
making everything (i.e., text, layout, as well as text and background colors) configurable.

An individual whose visual acuity is less than 2% is termed legally blind. Using computers
with no eye-sight can be challenging, since neither a screen nor a mouse can be used.
Hence, blind users use special equipment and tools which translate textual contents to
tactile or audible information, and they heavily rely on the keyboard. Many use screen
readers, which are software programs that output text in synthesized speech, so the user
can listen to the content. Other tools for outputting text are refreshable braille displays,
which use small pins to form braille characters. Typical devices can display 40 to 80 of
such characters at the same time. As input devices, blind users mainly use a keyboard,
sometimes they also use speech recognition software. Using ICT, blind users face issues
when applications are not usable only by keyboard or when information is exclusively
presented visually (e.g., if color-based cues are used or graphics containing important
information are not accompanied by a textual description). Since screen readers do not
just read from a screen from top to bottom, but are able to recognize the structure of
the content, blind people can, for example, just browse through the headlines or links
and quickly find the information they are looking for. This requires the content to be
annotated accordingly (e.g., using correct tags in Hypertext Markup Language (HTML)).
Issues arise if content is not structured properly or is presented in a confusing order, or
when text is presented that is not meant to be read character by character (e.g., long
URLs).

A third kind of sight impairment is a disability to perceive colors or brightness correctly.
Color blindness is a condition that mainly affects men, and which can occur in various
forms. The most frequent form is red-green deficiency, i.e., one cannot differentiate
between red and green. In very rare cases, people can see no color at all, i.e., they
only perceive shades of gray, since their eye’s cones are not functioning. Color-blind
individuals can have difficulties if information is presented solely by colors or if colors
they cannot differentiate are too similar in saturation or brightness.

Auditory Impairments

Like visual impairments, auditory disabilities have a wide range in severeness, from mild
declines in hearing abilities to deafness. 2,5% of people in Austria suffer from auditory
impairments that cannot be corrected by hearing aids [BMA13].

People hard of hearing, i.e., with mild to moderate hearing loss, can have difficulties in
understanding speech, especially when there is a lot of background noise, even when they
use hearing aids. It can be helpful to provide subtitles or transcripts along with audio or
video contents, and to provide high-quality audio content for which the volume can be
adjusted.

When making ICT applications accessible to deaf people, one has to differentiate between
congenital and acquired deafness. Individuals that are deaf since birth or acquired

8

2.1. Defining Accessibility

deafness before they begin to speak (prelingual deafness) have difficulties developing
speech and language skills, since they have to rely on visual cues like lip reading. Thus,
they may experience difficulties understanding complex texts. Most written languages
use (combinations of) symbols that represent acoustic signals, and people that have
learned to use speech imagine the sound of the formed words and sentences while reading
to better understand their meaning. A congenitally or prelingually deaf person cannot
use this technique, since he or she has never learned the sound of a language, but instead
memorized which combinations of symbols represent certain concepts. This is similar to
sign language, in which each sign has a specific meaning. As a result, individuals with
congenital or prelingual deafness may have a harder time understanding difficult texts
than people who acquired deafness after having learned to speak.

Providing translations for audio content into sign language can be a good way to enable
deaf people to access the spoken content, but providing this as the only means for
accessing the content is most likely not enough. Not all deaf people are able to use sign
language, they may have just recently become deaf or they may have never learned a
sign language at all. Additionally, there are many different sign languages. Even for the
English language alone, there are various kinds of sign languages, e.g., American Sign
Language, British Sign Language, or Australian Sign Language. These sign languages
are not compatible, i.e., a deaf person using one of these languages does not understand
the others. Thus, also textual transcriptions should be provided for audio content.

Motor Impairments

By far the most frequent permanent disabilities in Austria are motor impairments,
making up for 13% of the population [BMA13]. Motor disabilities become an issue for
ICT accessibility, if the fine motor skills of the arms and fingers are affected (e.g., by
having tremors), or if a person cannot use typical input devices (i.e., mouse, keyboard,
touchscreen) at all (e.g., because the person is paralyzed).

Individuals suffering from tremors or other kinds of conditions that impact their fine
motor skills may have problems with clicking small areas or they need more time to
interact with the GUI. They also might not be able to type simultaneous keystrokes.
Hence, applications should provide long enough time frames to perform an action and
provide alternative commands that do not involve simultaneous keystrokes. They also
should be accessible by mouse or by keyboard only, and their clickable areas should be
large enough. Error correction options as well as clear indication of current focus areas
can also be of great help.

Some individuals with motor disabilities rely on alternative types of input devices, for
example, if they are quadriplegic (i.e., partial or complete paralysis of both the arms and
legs) or they have missing limbs. There is a wide variety of these devices, some of the
most commonly used ones are:

9

2. Background and Related Work

• Mouth stick / head pointer: A mouth stick is placed in the mouth and used to
tap on a touchscreen or press the buttons of a keyboard. It is a low cost tool and
thus one of the most popular devices people with motor impairments use. With
head pointers, the stick is mounted on the individual’s head and the person can
control it with head movements. Since using each of these devices quickly becomes
tiring, interactions should be as easy as possible and not involve any unnecessary
movements.

• Oversized trackball mouse / joystick: Trackballs or joysticks are easier to use for
people with tremors, because you can scroll with the trackball or joystick, and then
use separate buttons to perform a click. Sometimes, trackballs are even operated
with a foot.

• Adaptive keyboard: There are various kinds of adapted keyboards available. In some
cases, the space between each key is bigger than usual, or the areas between the keys
are raised (instead of lowered), so that it is easier to place a finger over the right
key. There are also overlays for standard keyboards. Additionally, word-completion
software can be used to save some keystrokes.

• Eye-tracking: If an individual has a very limited range of motion or if movement
is too tiresome, eye-tracking can be used. Using eye cameras, the movements of
the eyes are tracked and projected onto the screen. Thus, the person can navigate
through the application just with eye movements. Clicks can be simulated, for
example, if the person focuses a clickable area with the eyes. Word-completion
software can be used here as well, to save time when typing.

• Voice recognition software: If the speech producing organs are not affected by a
disability, voice recognition software can also be used to interact with applications.
If the software is trained properly, this is much quicker and less tiring than using
any alternative input devices.

Cognitive, Speech, and Neurological Disabilities

There is a wide variety of cognitive disabilities that affect very different kinds of abilities,
such as memory, problem-solving, reading / listening / verbal comprehension, attention,
or learning. Some people with difficulties in comprehension of contents use, for example,
screen readers to listen to the information while reading it at the same time. Others
disable animations, and change text colors or spacing, to concentrate on the text. A clear
structure of the content, good navigation, and easy-to-read texts aid in understanding the
contents and purpose of an application. Predictable behavior of the GUI, different ways
of navigation (e.g., breadcrumbs, search options, hierarchical structure of the navigation,
site maps) as well as clear and consistent labels of input fields or interaction forms are also
important. Some people with difficulties in problem solving can get easily frustrated, if
error messages are unclear. The application should provide error prevention and correcting
means, like suggesting alternate terms for search inputs or offering auto-completion of

10

2.1. Defining Accessibility

input terms. Distracting GUI elements such as pop-ups or animations should be avoided
whenever possible.

People with speech disabilities experience difficulties producing speech, so that voice
recognition software cannot recognize it properly. Hence, interaction with a GUI should
not rely on voice alone.

In some people, certain animations like flickering, flashing or strobing effects (and also
some optical illusions that suggest motion in a pattern) can trigger seizures. Thus,
animations should not exceed certain thresholds for the frequency, contrast or size of
these effects (e.g., WCAG provides such thresholds). In general, animations should be
avoided if they are not necessary, because besides the potential risk of seizures in some
people, they can also distract users or cause nausea.

Elderly People

Aging usually is accompanied by a gradual decrease in visual, auditory, memory, or
motor skills. These effects can be mild, but they can also become disruptive. Often,
there is a combination of impairments in multiple areas. In addition, inexperienced ICT
users are more likely to be among the elderly. Nowadays, approximately 18% of the
Austrian population are 64 years old or older [WPW12], and a shifting age distribution
will increase this number in the future.

Environmental and Situational Influences

Besides the disabilities described above, there might also be temporary conditions that
pose barriers for accessing ICT applications. These environmental and situational
influences can be, among others:

• Inexperience with ICT: Inexperienced users are not yet familiar with interaction
mechanisms of GUIs. Thus, GUI developers should adhere to common concepts
and make interactions and representations as easily understandable as possible.

• Low network bandwidth: Applications relying on the Internet should also be accessi-
ble if the network bandwidth is low. An example would be to additionally provide
a text-only version of the content for such situations.

• Bright light: Bright light can make text unreadable because of reflections on the
screen. Providing a measure to increase the contrast of GUI elements can help in
such cases.

• Noisy environment: Noisy environments pose difficulties for understanding audio
contents. Thus, transcriptions or captions should be available, so that users can
read the textual version of the contents in such a situation.

11

2. Background and Related Work

• Mobile devices: Mobile users can face a variety of the influences mentioned above:
low network bandwidth (or temporary connection disruptions), bright surrounding
light (e.g., the sun shining on reflective displays), a noisy environment, as well as
a small screen. Because the screen usually is much smaller than a typical laptop
screen or stand-alone display, much less content can be displayed on it at any point
in time. Therefore, special techniques of GUI design are needed to provide the user
with an intelligible interface and good usability.

2.1.3 Advantages of Accessibility

In addition to the inclusion of the user groups described above, there are various other
benefits in implementing good accessibility in ICT applications:

• Helps closing the “digital divide”: This term describes barriers posed for people
without disabilities, e.g., of economic or social origin (low digital literacy, limited
access to ICT, cultural differences, language barriers). An example would be to
support a wide range of user agents, i.e. also less advanced and, therefore, cheaper
ones. An application that is also usable with low network bandwidth enables people
with no access to high-speed infrastructures to use them (e.g., in rural areas).

• Mobile access: Since accessible applications support small screens, keyboard-only
interactions (i.e., to quickly change between form fields by activating the “enter”
key instead of having to touch the next form field), high contrast interfaces, bigger
fonts and interaction controls, as well as low bandwidth connections, they can be
easily used on mobile devices.

• Good basis for Search Engine Optimization (SEO): Well-structured content, alter-
native texts for images and multimedia, enabling of keyboard-only interaction, and
meaningful links make accessible Web applications easy to be indexed by search
engines.

• Larger target group: Due to the benefits mentioned above, there is a much wider
audience reach possible with accessible applications than with those which are not
accessible. This also leads to other economic benefits like higher sales rates, or
expanded market share.

• Higher quality software: Since accessible applications need to be future-proof in
terms of advancing technologies and user agents, and accessibility specifications
demand adherence to technical standards, accessible applications usually have
higher quality.

• Reduced maintenance costs: The robustness of accessible applications and their
adherence to technology standards improve their compatibility with future versions
of user agents or technologies. Incorporating accessibility right from the beginning
of development prevents from high changing costs, in terms of money and time,
when the development is already finished.

12

2.2. Legal Aspects of Accessibility

• Better reputation: Social inclusion implied by good accessibility can increase
customer loyalty. In fact, failing to provide accessible applications harms the image
of the provider.

• Adherence to policies and reduced legal risk: The next section describes what laws
there are regarding the accessibility of ICT applications. Providing accessibility
also reduces the risk of lawsuits, which imply significant legal and reputational costs.
Implementing the highest available standards also complies with more restrictive
requirements introduced in the future.

2.2 Legal Aspects of Accessibility
Governments worldwide have defined various laws and regulations regarding accessibility
in general and software accessibility in particular. In the following sections, regulations
defined by Austria, the EU and the UN are discussed.

2.2.1 Austria

Austrian law regarding accessibility applies to people with disabilities. The Austrian
government defines disabled individuals as individuals with any kind of non-temporary
physical, mental, psychological, or sensory impairment, which potentially impedes par-
ticipation within society (BGStG, BGBl. I Nr. 82/2005, Art 1 §3 and BBG, BGBl.
Nr. 283/1990 §1 Sec. 2). A non-temporary impairment is one that lasts more than six
months.

Bundesverfassungsgesetz (B-VG) - Article 7

The federal constitution explicitly states that individuals with disabilities must not be
at a disadvantage. Equal treatment of people with and without disabilities is to be
guaranteed in each area of everyday life. Any disadvantage for disabled individuals,
whose removal is legally possible and reasonable, is defined as a discrimination and can
be legally challenged.

Bundes-Behindertengleichstellungsgesetz (BGStG) - § 6 Section 5

Technical implementations of daily use and information processing systems (i.e., software)
have to be accessible, that is, they can be accessed and used by disabled individuals
normally, without limitations or help of others. This law was implemented on January 1,
2006.

E-Government-Gesetz (E-GovG) - § 1 Section 3

The e-government law states that governmental, administrative and business Websites
must adhere to international standards for accessibility. The General conditions of
contract for IT services and software of the Austrian republic (AVB-IT) require the

13

2. Background and Related Work

contractor to provide an accessibility statement which states that the software conforms
to the ÖNORM EN ISO 9241-171:2008 11 01 and at least level A of the WCAG (both
discussed in Section 2.3).

2.2.2 European Union

In the European Commission’s 10-year strategy Europe 2020 for the economic advance-
ment of the EU, started in 2010, one of the flagship initiatives is the Digital Agenda for
Europe. The initiative’s goals encompass accessibility of IT services, considering not only
disabled people (as in Austrian law), but also elderly people, and people lacking digital
literacy. The eGovernment Action Plan 2016-2020 includes the initiative “Inclusiveness
and accessibility”, which requires digital public services to be accessible for elderly and
disabled individuals by 2020.

Directive of the European Parliament and of the Council on the Accessibili-
ty of the Websites and Mobile Applications of Public Sector Bodies

The most recent European directive on ICT accessibility was published on July 18, 2016
and addresses the accessibility of Websites and mobile applications of the public sector.
The goal of this directive is to unitize the various laws and regulations at national level
which were introduced due to the ratification of the UN Convention on the Rights of
Persons with Disabilities (see 2.2.3). Until harmonized standards are published in
the Official Journal of the European Union, the requirements defined in EN 301 549
(see Section 2.3.4) are determined as the minimum requirements for Web and mobile
accessibility. Public sector bodies should provide an accessibility statement claiming the
compliance to the requirements posed by this Directive and a feedback mechanism should
be implemented, so that people can report an application’s shortcomings in accessibility.
Member States are encouraged to provide awareness-raising and training programs for
relevant stakeholders.

2.2.3 United Nations

Austria was one of the first EU member states that ratified the UN Convention on the
Rights of Persons with Disabilities in 2008. The convention requires the states parties
to “take appropriate measures to ensure to persons with disabilities access, on an equal
basis with others, [...] to information and communications, including information and
communications technologies and systems, and to other facilities and services open or
provided to the public, both in urban and in rural areas”. This includes the implementation
of minimum standards and guidelines in public digital services. These measures should
be applied in an early development stage to minimize costs.

14

2.3. Accessibility Standards and Guidelines

2.3 Accessibility Standards and Guidelines

In 1997, the World Wide Web Consortium (W3C) [W3Ca] called the Web Accessibility
Initiative (WAI) [WAI] into life in order to develop standards, guidelines, and resources
for creating accessible Web applications. The international standards proposed by WAI
are the most referenced standards regarding Web accessibility, among them the WCAG,
which form the basis of Austrian and European ICT accessibility laws. W3C standards are
called W3C Recommendations and are developed in a structured process involving various
steps: At the beginning, a Working Group publishes a Working Draft that is reviewed by
the community and iteratively improved by the Working Group. The last version to be
reviewed by the community is called the Last Call Working Draft, which includes the whole
document for the future standard. This draft then becomes a Candidate Recommendation,
i.e., an already quite stable guideline that can be implemented by developers. While
implementing the guideline, developers report back their experiences and issues with it
to the Working Group, which then adapts the Candidate Recommendation to further
improve it for technical implementations. When the guideline is fully implemented, the
Candidate Recommendation becomes a Proposed Recommendation and is ready for the
final endorsement by the W3C. When approved by the W3C and there is sufficient
support by the public, the Proposed Recommendation becomes a standard, which in case
of W3C standards is called a W3C Recommendation or simply Web Standard.

Other international standards, dealing not only with Web applications, but with ICT
applications in general, are provided by the International Organization for Standardization
(ISO). ISO standards are developed by a technical committee consisting of experts in
the industry and undergo a similar process as W3C Recommendations: A proposal for a
new standard is proposed and, if accepted, a working group develops a working draft,
which is iteratively improved. If all ISO members agree on the final draft (via voting), it
is declared as an ISO International Standard.

Alongside accessibility laws, the EU and Austria also provide standards, especially EN
301 549 and ÖNORM EN ISO 9241-171, respectively. These standards reference industry
standards like the WCAG.

2.3.1 Web Content Accessibility Guidelines

The WCAG 1.0 was published as a W3C Recommendation in May 1999. It has been
revised and extended when in December 2008, the WCAG 2.0 was published. The most
recent version of WCAG is 2.1, which became a W3C Recommendation in June 2018.
Today, WCAG is a well-established standard that is widely used and also referenced by
accessibility laws worldwide. It also became an ISO standard in October 2012 [ISOb].

It contains 13 guidelines which are organized into four principles: perceivable, operable,
understandable, and robust. Each guideline expresses a basic goal and contains multiple
testable and technology-independent success criteria. Guidelines and success criteria
are explained in a separate document in detail, so that developers and evaluators can

15

2. Background and Related Work

understand the issues disabled individuals can face with Web applications. Overall,
there are 78 success criteria, which are organized into three levels of conformance: A
(lowest), AA, and AAA (highest). A conformance level is reached, if all its success criteria,
as well as all success criteria from lower levels, are satisfied. For each guideline, the
WCAG Working Group also provides a set of sufficient and advisory techniques. Sufficient
techniques correctly meet the success criteria, while advisory techniques typically improve
accessibility, but might not fully meet the success criteria or are not (yet) supported by
some of the current assistive technologies or user agents. There are also documented
failures which are useful for identifying accessibility issues.

In September 2013, the WCAG Working Group published a note on the “Guidance
on Applying WCAG 2.0 to Non-Web Information and Communications Technologies
(WCAG2ICT)” [CKAV13]. This Working Group Note describes how the level A and AA
success criteria can be applied to non-Web ICT applications.

Along with the WCAG, the WAI also provides two more sets of guidelines. The Authoring
Tool Accessibility Guidelines (ATAG) 2.0, a W3C Recommendation since September
2015, describe how authoring tools (i.e., software used for creating Web and multimedia
content) can be made accessible as well as how authors can produce accessible Web
content using such tools. The ATAG requirements are also divided into the three levels
A, AA, and AAA. The User Agent Accessibility Guidelines (UAAG), on the other hand,
addresses the accessibility of user agents (e.g., browsers or multimedia players). Currently,
only UAAG 1.0 is a W3C Recommendation, but it is recommended by WAI to use the
UAAG 2.0 Working Group Note from December 2015, since it is essentially complete.
The only reason that it did not become a Candidate Recommendation was that sufficient
testing resources were not available. It is not further developed by W3C, therefore it
would not become a W3C Recommendation.

At the time being, a set of accessibility guidelines named “Silver”, is currently in the
works. While the WCAG 2.1 only focuses on the most urgent issues that were missing in
WCAG 2.0, “Silver” will be a substantial revision of the WCAG, focusing on a broader
scope (i.e., being less focused on Web technologies). WAI claims it will be easier to use
and include more disabilities (e.g., pain). The project is currently in the research phase,
and is said to be released in 2020.

2.3.2 Accessible Rich Internet Applications Suite (WAI-ARIA)

WAI-ARIA aims to make Rich Internet Applications (RIAs) accessible to assistive tech-
nologies (especially screen readers and keyboards). RIAs are dynamic Web applications
with advanced user interface controls (e.g., expandable menus, drag-and-drop features)
and dynamic content loading without requiring a page refresh. WAI-ARIA is an extension
to HTML which enriches the semantic information a Web application and its widgets by
providing a set of attributes which are typically preceded by the prefix “aria-”. These
attributes are interpreted by the user agents (e.g., browsers) and mapped to the operating

16

2.3. Accessibility Standards and Guidelines

system’s accessibility API, which is used by assistive technologies to access the application.
WAI-ARIA 1.1 is a W3C Recommendation since December 2017.

A key concept of WAI-ARIA is that of roles. The role attribute can be applied to an
HTML element to describe its meaning. On the one hand, roles are used to describe user
interface controls for which there are no equivalents in HTML. For example, there are
various div elements that represent a tab panel with multiple tabs. Then, the outermost
div element can be annotated with the role tabpanel, while the inner div elements
are marked with the tab role. On the other hand, roles can be used to organize the
document structure and as navigational landmarks. Using them can help making the
intention of a certain area in an application clear (e.g., toolbar, math, article).
Navigational landmarks, like the roles navigation, main, or search enable users to
directly navigate to a certain region of the application (e.g., directly jump to the main
part and skipping navigation).

Another important concept is that of states and properties. Properties can be used to,
e.g., provide labels or keyboard shortcuts for HTML elements. States are used to describe
the current state as well as state changes for elements, e.g., indicating that an element is
disabled, invalid, or selected. There could be, for example, a slider bar, for which one
can specify its minimum and maximum values as well as its currently selected value.

Live regions are the third key concept of WAI-ARIA and are used to indicate dynamic
updates (e.g., updating of other user’s states in a contact list of a chat application). This
is especially useful for screen readers, so that blind users can perceive that the data has
been updated.

2.3.3 ÖNORM EN ISO 9241-171

The ÖNORM EN ISO 9241-171:2008 11 01 – Ergonomics of human-system interaction
– Part 171: Guidance on software accessibility provides guidelines for general ICT
applications (i.e., not only for Web applications) and therefore can be seen as a supplement
to Web-centric standards like ISO/IEC 40500 (WCAG 2.0). The standard was adopted by
the according ISO standard and focuses on usability, the importance of context, and the
possibilities to individualize applications to one’s needs. The target group are individuals
with congenital or acquired disabilities, temporary disabilities, the elderly, and situational
or environmental barriers.

The ISO 9241-171 standard is part of the broader ISO 9241 multi-part standard, which
deals with ergonomics of ICT applications. Many other parts of the ISO 9241 standards
series deal with topics relevant to accessibility (e.g., usability, human-computer interaction,
presentation of information, design of dialogs and forms).

2.3.4 EN 301 549

In 2014, the European standard EN 301 549 [EN315] was published. This standard aims
to provide a guideline for implementing and evaluating accessibility in digital services of

17

2. Background and Related Work

any kind (e.g., Websites, software). It contains requirements regarding the accessibility
of ICT products and services (hardware, Websites, software, non-Web documents). The
minimum requirements for Websites match the level AA of WCAG 2.0.

Besides the EN 301 549, there are also three Technical Reports that help ensuring
accessibility in ICT products and services:

• TR 101 550 - Documents relevant to EN 301 549 (can be used as a reference source
for accessibility evaluation)

• TR 101 551 - Guidelines on the use of accessibility award criteria suitable for public
procurement of ICT products and services in Europe

• TR 101 552 - Guidance for the application of conformity assessment to accessibility
requirements for public procurement of ICT products and services in Europe

2.4 Technologies and Their Influence on Accessibility
Accessibility is heavily dependent on the technology being used, since it influences how
an application is being developed and how it is used. Some technologies make it easier to
create and use accessible technologies, while others can make it harder. Also, the way in
which technologies are used can be relevant. Even standards like WAI-ARIA, which were
intended to improve accessibility, can render an application inaccessible if not used in
the right way.

This section gives a short introduction into the implications on accessibility of technologies
which are central to this thesis.

2.4.1 Responsive Web Design

Responsive Web Design (RWD) [Mar10] is a technique for creating Web pages in such
a way that they adapt to different browser platforms. Instead of creating separate
tailored designs for several kinds of viewing devices (e.g., a desktop computer, tablet,
or smartphone), a single design is created and delivered to the browser that provides a
customized experience depending on the viewing device, i.e., it will appear differently
on a desktop computer than on a tablet or a smartphone. A common analogy used to
illustrate this concept is that the Web page content is like water: when poured into a
cup, water adapts to the shape of the cup, while on the other hand, when poured into a
bottle, water adapts to the shape of the bottle.

To achieve this kind of adaptability, RWD is implemented using fluid grid systems and
Cascading Style Sheets (CSS) media queries. A grid system is a layout technique to
organize layout elements within a page into a set of columns. This allows for a consistent
design in which the elements stay aligned. In a fluid grid system, relative units (like em,
rem or %) are used so that the layout can fit into various screen sizes. Media queries were

18

2.4. Technologies and Their Influence on Accessibility

introduced as part of the CSS3 specification [W3Cd]. A media query allows the Web
page to use certain style rules depending on specific characteristics of the viewing device,
most commonly the browser width, but also the media type (like screen, print, or
speech). A media query consists of two parts: the media type and the actual query
(e.g., max-width: 1024px) and can be used within the <link /> tag in order to
load a CSS file or inside a CSS file where it encloses a set of style rules within curly
braces. When the viewing device characteristics match the query, the CSS file (in case of
the <link /> tag), or the enclosed style rules, respectively, are applied to the markup.

Media queries in combination with a fluid grid system allow Web pages to reflow their
layout at certain so-called breakpoints, so that, for example, a four column layout is
displayed on a desktop computer, while the content reflows into a two column layout on
a tablet, or on a single column layout on a smartphone, respectively.

Not only can the grid layout be restructured, but RWD can also adapt font or target
sizes (e.g., making them bigger on small screens), selectively show and hide GUI elements
(e.g., making the GUI simpler on small devices by hiding less important information),
or support device-dependent input modalities (like enabling swiping or pinching on
touchscreen interfaces). Importantly, RWD can eliminate the need of scrolling into two
directions since the layout can adapt itself in a way that only requires scrolling in one
direction.

Studies show that RWD can benefit accessibility in multiple ways [HAS+15] [BS15].
Hallett et al. [HAS+15] found that reading comprehension tasks were completed more
quickly and accurately when using a Web page that leverages RWD than when using
screen magnifiers (which typically introduce the need of horizontal scrolling). Benda
and Smejkalová [BS15] found that participants suffering from mental disabilities (Down
syndrome and perinatal encephalopathy) could perform navigation tasks more easily on
RWD Web pages than on their non-responsive counterpart.

2.4.2 HTML, CSS, and JavaScript

HTML is a document markup language, which is used to structure Web pages. Its latest
version is 5.1, which became a W3C Recommendation on 1 November 2016. HTML
5 introduced many new features, among them the <audio> and <video> tags, the
2D drawing API of <canvas>, many new content structuring tags like <section>,
<article>, <header>, <footer>, and <nav>. All in all, HTML 5 seems to have
evolved to be more than just a markup language. The new changes are double-edged,
however. On the one hand, they pose a promising chance to enhance accessibility
significantly. For example, by introducing the new content structuring tags, screen
readers and similar assistive technologies have more semantic information about a certain
piece of content and can treat it accordingly. WAI-ARIA can further enhance the
accessibility of HTML markup. Another example are the <audio> and <video> tags,
which were introduced to remove the reliance on third-party browser extensions like

19

2. Background and Related Work

Flash1 or Silverlight2, which bring their own accessibility issues and are not even available
on every device (think of, e.g., Apple devices). On the other hand, some new features of
HTML 5 can make accessibility engineering more difficult. The new <canvas> element
can be used to render interactive bitmap images, like graphs, animations, or even games.
These images cannot be interpreted by, e.g., screen readers and, originally, there also
were no default focus indicators. The contents of a <canvas> element can be described
by fallback contents and hit regions have to be defined in order to associate a canvas
element with a fallback element. While the <canvas> element surely has introduced
interesting new possibilities for user interaction, it also introduced considerable effort for
accessibility engineering and should be used with caution.

CSS have the major benefit for accessibility to separate document structure from pre-
sentation. CSS adds spacing, alignment, and positioning to elements, colors and font
sizes can be adapted, and element misuse can be prevented (e.g., by using background
images instead of tags for decorative elements so that they are not visible to
screen readers). Users can override styles with their own style sheets, e.g., for overriding
colors when they’re colorblind. CSS also provides many attributes to modify a screen
reader’s voice, volume, pitch, stress and even pauses in speech. Often, CSS is also used
to provide visually hidden content like instructional cues and indicators only for screen
readers (e.g., a “Skip to main” link at the top of the document or a “You are here” label
previous to breadcrumbs).

JavaScript enables dynamic behavior of a Web page, and to load content changes without
requiring a page refresh. Typical accessibility problems due to JavaScript are lack of
keyboard accessibility, lack of user control, and confusion or disorientation. Using event
handlers like onmouseover or onclick prevent the user from interacting with the
application via the keyboard, because the event handlers are not triggered. Lack of user
control and confusion can originate from dynamically changing contents, where the user
might not be able to undo the actions or does not understand why and what information
has changed. But using JavaScript does not render the application inaccessible per se,
although it sometimes requires additional effort (e.g., adding WAI-ARIA live regions for
dynamic content) and special care (e.g., using input device independent event handlers
like onfocus or onchange). It is also a common misconception that disabled people,
especially blind individuals, do not use JavaScript, i.e., have it disabled. A survey
conducted by WebAIM in 2014 [WAI14] found that 97,6 % of respondents (all screen
reader users) had JavaScript enabled. Nevertheless, it should be noticed that some
users might have JavaScript disabled by default or scripting is not fully supported by
their user agent (e.g., when using text-based browsers), thus it is recommended that the
application is still accessible if JavaScript is disabled or at least an alternative version
without JavaScript is provided.

1https://www.adobe.com/products/flashplayer.html (Last Access: 2017-01-08)
2https://www.microsoft.com/silverlight/ (Last Access: 2017-01-08)

20

2.4. Technologies and Their Influence on Accessibility

Frameworks and Libraries Introduced to UCP

Several frameworks and libraries have been introduced to UCP as part of this thesis to
improve accessibility.

Bootstrap 4.1.2

Bootstrap3 is an HTML, CSS and JavaScript library which includes several GUI compo-
nents as well as a grid system that allows for responsiveness. It is a very popular and
widely-used library. Although there are other libraries with similar features, Bootstrap
was chosen based on the findings of Duarte et al. [DMV+16], who have analyzed the
accessibility of Web applications using different technologies and frameworks. Bootstrap
seemed to facilitate accessibility better than other libraries.

Bootstrap’s most powerful feature is the grid system. It includes a container that holds
several rows and up to twelve columns per row. Responsive breakpoints defined by CSS
media queries determine at which viewport width elements scale up or down, respectively.
Columns are defined by CSS classes and one HTML element can have multiple of these
classes. For example, if a <div> element has the CSS classes col-md-6 and col-sm-12
with Bootstrap’s default breakpoint settings, its width will be half the width of its parent
element (e.g., the <body> element) on a screen width larger than 767 pixels (this could
be the screen of a tablet or a desktop computer). If, on the other hand, the <div>
element will be shown on a screen smaller than that, its width will be the same as the
width of its parent. That is, if the parent holds more than that one <div> element, these
will reflow into another row, since the <div> element already takes up all the width.
This enables scenarios where a four-column-layout shown on a desktop computer reflows
into a two-column-layout on a tablet computer and finally into a one column layout on a
smartphone.

In addition, Bootstrap already provides some accessibility features, like the CSS sr-only
class for hiding elements from the screen while making sure that they are still accessible
by screen readers. This is done via absolute positioning and making sure that the contents
appear outside the viewport. Some other features, like its default color palette, might lead
to accessibility issues (e.g., some colors have insufficient contrast on white background)
and need to be taken care of manually. This is where the Assets Framework is useful.

Assets Framework

The Assets 3.4.1 framework4 is, like Bootstrap, an HTML, CSS and JavaScript library
which is based on various other libraries (namely Bootstrap and all libraries listed below
except Combobo). It was developed by the Centers for Medicare and Medicaid Services to
provide Section 508 compliant GUI components. Even though the Section 508 accessibility
standard, which was developed by the American government as part of the Rehabilitation

3https://getbootstrap.com/ (Last Access: 2018-11-18)
4https://assets.cms.gov/resources/framework/3.4.1/Pages/ (Last Access: 2018-11-24)

21

2. Background and Related Work

Act, is less restrictive than the WCAG guidelines, the Assets framework provides a good
baseline for accessibility. It compensates for most of Bootstrap’s accessibility issues
and gives detailed guidance for integrating and testing of the components into a Web
application.

In version 3.4.1, Assets provides 27 components, not all of which are used in UCP. For
each component, the documentation provides demonstrations including a basic template
for integrating the component into a Web application. Moreover, all dependencies on
other libraries are listed. Important notes for developers give instruction of what to
pay attention to when using the component (e.g., which sensible values for parameters
are necessary to ensure maximum accessibility). There are also notes for testers which
explain what features of the component are important to test (e.g., that the screen reader
announces day names within the date picker component while navigating through it).
Available keyboard operations for the components are also specified. Finally, known
accessibility issues for the component are explained in detail, so that developers can focus
on overcoming them or are at least noticed about what issues might arise when users use
certain kinds of assistive technologies. Some of these issues are the result of some assistive
technologies not interpreting certain accessibility markup correctly. For example, JAWS
does not announce the full names of days in the date picker but only their abbreviated
versions like “Mon”, although they full names are marked up with abbr, title, and
aria-label. In these cases, later versions and updates of the assistive technologies
could solve that problem.

jQuery and Plugins

jQuery is a JavaScript library which is mostly known for its Document Object Model
(DOM) traversal and manipulation functionality, but also provides event handling and
Ajax as well as basic animation.

jQuery UI 5 1.12.1 is an extension to jQuery and provides various GUI widgets along with
effects and functions to enable certain user interactions (e.g., enabling drag and drop or
resizing of elements). It also enables developers to create their own reusable widgets.

The Assets framework’s date picker component is based on Yet Another DatePicker6,
which provides many accessibility features by making use of ARIA roles and states,
presenting the date picker in a semantically correct <table> markup, providing extensive
keyboard support, and making sure that screen readers read all the important information
(i.e., the full date including day names).

The Custom Input7 plugin was leveraged by the Assets framework to provide a more
consistent appearance of radio buttons and checkboxes across browsers.

5https://jqueryui.com/ (Last Access: 2018-11-25)
6https://github.com/freqdec/datePicker (Last Access: 2018-11-25)
7https://github.com/filamentgroup/jQuery-Custom-Input (Last Access: 2018-11-25)

22

2.4. Technologies and Their Influence on Accessibility

The Input Mask8 extension was taken from Jasny Bootstrap 3.1.3, which extends Boot-
strap by providing further stylings and JavaScript functions to enhance user experience.
Input masks indicate a specific data format to the user by prefilling the input field with
format hints (e.g., “__.__.____” for the required date format in a date picker input
field). The input mask is replaced by the actual user input one character after the other
while the user is typing. This is an advantage over simply using placeholder texts on
an input field to indicate the data format, since the placeholder vanishes as soon as the
input field is focused.

The jQuery Validation9 1.17.0 plugin provides extensive functionality for client-side form
checking via JavaScript. Developers can define their own form checking rules or use the
already provided ones (e.g., for date formatting, number formatting or required fields).
The plugin listens to the form submit event and checks the form against all the defined
rules. If there are any form errors, the plugin prevents the browser from sending the
form data to the Web server and instead inserts the error messages into the DOM. Error
messages can be customized as needed to make them as descriptive as possible. As soon
as the user has corrected an error, the plugin removes the error message from the DOM,
so that the user gets immediate feedback of whether the input matches the expected
format. When the form is submitted again and there are no errors, the form data is sent
to the Web server.

Accessible Responsive Tabs10 provides an accessible tab and accordion component. It
will append all the necessary ARIA properties to their respective HTML elements
(e.g., aria-controls and aria-selected to the tabs, and aria-labelledby and
aria-hidden to the tab contents). It is also responsive, i.e., it can switch between tab
view and accordion view at a certain media breakpoint.

Combobo

Combobo 2.0.011 is an accessible combobox component provided by Deque Systems, a
company that focuses on digital accessibility, which also developed aXe12, a popular
browser extension for accessibility testing. Combobo is a combined text field and
dropdown, i.e., one can either select options by using the dropdown or search for available
options via the text input field. The searched text is highlighted within the option. It
makes use of all the relevant ARIA attributes (like aria-owns, aria-autocomplete,
aria-expanded, and so on). The announcements of screen readers regarding the
number of selected items or which item was selected, can be customized.

8http://www.jasny.net/bootstrap/javascript/#inputmask (Last Access: 2018-11-25)
9https://jqueryvalidation.org/category/plugin/ (Last Access: 2018-11-25)

10https://github.com/stevenMouret/accessible-responsive-tab (Last Access: 2018-11-25)
11https://github.com/dequelabs/combobo (Last Access: 2018-11-18)
12https://www.deque.com/axe/ (Last Access: 2018-11-18)

23

2. Background and Related Work

Modernizr

Modernizr 3.6.013 is a feature detection JavaScript library which identifies what HTML,
CSS, and JavaScript features are available in the user’s browser. Based on this informa-
tion, progressive enhancement and graceful degradation become possible. Progressive
enhancement means adding more technically advanced features to a Web application if
the browser supports them. Its premise is to provide a sensible basis which is available
on all devices and browsers, and to gradually extend that basis as more features are
supported. Graceful degradation, on the other hand, works the other way around by
detecting which features are not supported by a device or browser and disabling them or
providing alternatives (and thus providing backwards compatibility).

Duarte et al. [DMV+16] found that applications using Modernizr tended to be more
accessible than other applications. Modernizr detects features by running quick small
tests when the page loads. The results of these tests are stored in a JavaScript object (i.e.,
Modernizr) and appended to the <html> tag’s CSS classes. This way, the availability
of features can be requested via JavaScript by simply testing whether the Modernizr
object’s properties are set to true, or reacted to via CSS by styling the corresponding
CSS classes (e.g., setting display: block; for the paragraph which indicates that
not all features are enabled when the HTML tag contains the CSS class .no-js).
Modernizr also enables to add your own tests at page load (e.g., to test the availability
of certain JavaScript frameworks on the Web page).

Require.js

RequireJS 2.3.514 provides asynchronous module loading and dependency management
for JavaScript code. Its purpose is to load JavaScript files not always at page load but
only when necessary (i.e., lazy loading), and hence to improve page loading speed and
code quality. It enables the developer to define modules and declare dependencies on
them by making use of the Asynchronous Module Definition API specification. It also
allows building bundles of combined and minimized JavaScript files to minimize page
loading time.

Font Awesome

Font Awesome15 is an icon font. Fonts made of icons have various advantages over image
files, for example, one can change an icon’s color easily via CSS or scale its size by
changing the font size. This is especially helpful for responsive layouts, where an icon
is displayed bigger on a smartphone than on a desktop computer. Icons are shown via
CSS classes on an empty tag (e.g., the <i> or tag). In case the icon is not
just decorative but conveys meaning, a title attribute can provide a tooltip text and

13https://modernizr.com/ (Last Access: 2018-11-24)
14https://requirejs.org/ (Last Access: 2018-11-24)
15https://fontawesome.com/ (Last Access: 2018-11-18)

24

2.4. Technologies and Their Influence on Accessibility

the element can be accompanied by a text element that is visible only to screen readers
(similar to the alt attribute for images).

2.4.3 Mobile Devices

The importance of mobile device accessibility has become evident as the smartphone and
tablet industry emerged some years ago. Nowadays, in some parts of the world, especially
in developing countries, people are more likely to have access to a mobile device than a
desktop or laptop computer [RM08]. In 2015, Google even claimed that more Google
searches were performed via mobile devices than desktop computers16. Due to the fact
that mobile devices have different, and often restricted, prerequisites when it comes to
GUI engineering (e.g., small screens, low bandwidth), special care needs to be taken when
addressing the accessibility of mobile applications. The W3C has developed various best
practices for mobile Web applications [RM08] [CS10]. A working draft from February
2015 also explains how the WCAG 2.0 guidelines apply to mobile development [PSW15].

Mobile users usually have different intentions and interests than desktop users. They
often look for a specific piece of information relevant to their current context, for example,
finding out the opening hours of a shop or when the next train arrives in their proximity.
Mobile users typically are also less interested in browsing and reading lengthy documents.
Some UI elements are not suitable for mobile devices. For example, pop-ups can cause
confusion because they often appear without explicitly being triggered by user interaction,
take away a majority of the screen and sometimes it is not clear to the user how to close
them, hence they should be avoided. For applications involving network traffic, especially
Web applications which require a lot of navigation between pages, long retrieval times
should be avoided.

Because the screen size of mobile devices is typically much smaller than the screen size of
desktop or laptop computers, important information should be placed at the top where
scrolling is not necessary. It can also be reasonable to hide some detailed information,
which is only displayed to users with a larger screen size. Developers also have to consider
that there is a wide variety of screen sizes for mobile devices for which the content needs
to be tailored. Additionally, applications should support both landscape and portrait
orientation, because some users need to use their device in a fixed orientation (e.g., if it
is mounted on a wheelchair).

An important difference between mobile and desktop devices is the way users interact
with an application. While a desktop user typically uses a physical keyboard and a
mouse, mobile users mostly rely on touch gestures and a virtual keyboard. Assistive
technologies are available for both desktop and mobile devices. The virtual keyboard
of a mobile device is usually very small and takes away a certain, often considerable,
amount of screen space. It also provides barely any haptic feedback, i.e. one often has
only visual feedback of which key was activated (if any) while on a physical keyboard one
can feel the boundaries of each key and really needs to push it in order to activate it. In

16https://adwords.googleblog.com/2015/05/building-for-next-moment.html (Last Access: 2017-01-13)

25

2. Background and Related Work

addition, mobile users typically use only one or two fingers to type. Due to these reasons,
keystrokes should be minimized by avoiding free text entry and using default values for
input fields where possible. Hyperlinks should be as short as possible and automatic
sign-in should be provided to avoid the cumbersome input of passwords. Targets for
touch gestures have to be large enough and should be surrounded by a certain amount of
inactive space, so that the user does not accidentally activate the wrong target. Features
like mouse-over effects do not work for touch gestures. Gestures should be as easily as
possible to perform. Especially users with motor impairments or using a screen reader
or other assistive devices (e.g., head-mounted display, stylus) can have difficulties with
multi-touch gestures (i.e., gestures involving multiple fingers simultaneously). The same
holds for other control options triggered by physically manipulating the device (e.g.,
tilting, shaking). Hence, although these options can be supported by the application,
keyboard or simple touch alternatives should still be provided.

2.4.4 Assistive Technologies

Assistive technologies alter the way a user interacts with an application. For example,
some input devices for users with motor impairments (e.g., head-mounted pointers or eye-
tracking) make it hard for them to perform complex touch gestures or key combinations.
It is important to provide alternative ways of interacting with the application that do
not require such complex control options, e.g., by displaying buttons that can be clicked
or activated via a single key. Screen magnifiers have difficulties enlarging texts that are
embedded in graphics, since it becomes pixelated and thus hard to read.

One assistive technology that is probably the most complex to address is the screen
reader. This is because most operating systems and applications are designed for visual
feedback (i.e., GUIs that the user interacts with). A screen reader’s purpose, on the
contrary, is to transform all the visually presented information into acoustic and/or haptic
information, i.e., it addresses a completely different sense. The most important aspect for
screen readers is for the application to provide properly structured contents and suitable
semantic information along with the GUI elements. A screen reader does not just read
everything from top to bottom, it is also capable to navigate through special contents
of an application. For example, it may just read the headlines of a document, or only
the navigation elements, such that the user can quickly get an overview of the contents
and functionality an application provides. The majority of screen reader users does not
use a mouse, which is why an application needs to support keyboard-only interaction.
Typically, the screen reader has configured a primary language, which often matches
the language of the operating system. It is important that the application indicates
the language of its contents, so that the screen reader can switch to the right language.
Another aspect to consider are images, since a screen reader cannot describe them if no
alternative text describing their meaning is provided.

The way in which assistive technologies access the GUI of an application has evolved
over time. Originally, heuristic techniques were used to determine the purpose and
functionality of user interface elements on the screen by using hooks into graphics calls

26

2.4. Technologies and Their Influence on Accessibility

and scraping the screen. For example, labels organized in a horizontal row at the top
of the application could be interpreted as a menu. Based on the results, an alternative
off-screen model, which can be seen as a snapshot of the screen at any given time, was
built. These heuristics were very complex and needed to be updated whenever the GUI
changed dynamically. These updates were time-consuming and the results were not
always accurate if the information presented on-screen was ambiguous.

In the late 1990s, instead of letting the assistive technologies interpret the GUI elements,
operating systems and software started to expose information about GUI objects and
events through an Application Programming Interface (API). Assistive technologies can
query these so-called accessibility APIs to get relevant semantic information (such as
names, roles, and values) about the user interface elements and interact with them.
Accessibility APIs are a more reliable way for assistive technologies to access the GUI
than off-screen models, since developers can control which information is exposed by each
element within the application. Microsoft Active Accessibility (MSAA)17 was the first
available accessibility API. Today, UI Automation (UIA)18 for Windows, IAccessible2 19

for Windows and Linux, Assistive Technology Service Provider Interface (AT-SPI)20 for
Linux, and the NSAccessibility21 protocol for Mac OS X are popular examples.

Accessibility APIs expose information about an application’s GUI via the accessibility
tree, a hierarchical representation of accessible objects that the GUI consists of. An
accessible object is a GUI element (e.g., a dialog, menu, container, button, label, checkbox,
input field), which exposes semantic information like its name, role, state, or value that
can be used by an assistive technology. Based on this information, the assistive technology
then builds an alternative user interface which is presented to the user (like a sequence
of Braille signs or speech in case of a screen reader). In case the assistive technology
supports alternative ways of interacting with an application (e.g., using voice commands
instead of mouse clicks or key strokes), it communicates these user interactions through
the accessibility API back to the application, where they are translated into appropriate
actions in the context of the original user interface.

In case of Web applications, the accessibility is maintained as a parallel structure to
the DOM, a tree structure that represents the contents of a Web page. The DOM is
used to render the Web page’s contents and to manipulate them via scripts. Basically,
the accessibility tree is a subtree of the DOM, which trims out elements not relevant
to assistive technologies in terms of performance and simplicity. Such elements include
e.g., <div> or elements, which are typically used for introducing style changes.
Sometimes, these elements are used to represent interactive user interface elements
(e.g., dialogs or regions which contain dynamically changing contents). In these cases,
WAI-ARIA can be used to add semantic information (like a role or live region, see

17https://msdn.microsoft.com/en-us/library/ms971350.aspx (Last Access: 2017-01-25)
18https://msdn.microsoft.com/en-us/library/ee684013%28VS.85%29.aspx (Last Access: 2017-01-25)
19https://wiki.linuxfoundation.org/accessibility/iaccessible2/start (Last Access: 2017-01-25)
20https://developer.gnome.org/libatspi/stable/ (Last Access: 2017-01-25)
21https://developer.apple.com/reference/appkit/nsaccessibility-jku (Last Access: 2017-01-25)

27

2. Background and Related Work

Section 2.3.2), which then results in the inclusion of the <div> or element in
the accessibility tree. Elements can thus be modified to enhance accessibility.

2.5 Accessibility Evaluation

In order to check if an application is accessible and fulfills the requirements of standards
like WCAG or legal regulations, a structured accessibility evaluation process is needed.
An inspection of the application can be performed manually, semi-automatically, or auto-
matically. Usually, a combination of these techniques is used for accessibility evaluation,
since automatic tools are not able to detect every possible accessibility issue. For example,
automatic tools cannot decide if the structure of the content or the tab order make sense
or if an alternative description matches the image it belongs to. Also, automatic tools
fail to check dynamically changing contents for their accessibility. Sometimes, automatic
tools detect possible violations that need to be checked by an evaluator. Hence, automatic
accessibility evaluation tools can bee seen as a way to assist accessibility evaluation for
identifying accessibility problems which can be easily detected by software, but a manual
inspection of the application is still necessary.

When performing a manual accessibility evaluation, the evaluator confirms or refutes
accessibility problems found by automatic tools and also discovers new accessibility
issues which could not be found via automation. Typically, the evaluator uses existing
guidelines and standards like WCAG, during this process. In a semi-automatic approach,
the evaluator also uses tools like browser add-ons to investigate accessibility issues. A
common way to test accessibility using assistive technologies is to perform a screen reader
accessibility evaluation. Here, the evaluator uses screen reader software like JAWS22,
listens to the output and tries to comprehend the content and navigate through the
application using only the keyboard.

In addition to checking an application against standards and legal regulations, performing
tests with real users can be beneficial. Such tests can lead to a better understanding of
accessibility issues and how disabled individuals use an application. However, performing
tests with users can easily become time-consuming, and covering all the different types of
disabilities is hard to achieve. The extent to which such tests are performed depends on
the size and purpose of the application. For example, a governmental application needs
to be tested more thoroughly than a small private software tool that is only used by a
small number of users whose abilities and circumstances are known to the developers.

Bai et al. [BMSF16] identified four different accessibility evaluation methods, which,
apart from (1) automatic and semi-automatic testing and (2) user testing, also include
(3) expert testing and (4) testing using simulation kits. They recommend to use at least
two of these methods. In expert testing, an expert performs the evaluation using a set of
heuristics. Sometimes, persona walkthroughs, in which an expert simulates a persona
while performing predefined tasks, or cognitive walkthroughs, where the expert elaborates

22http://www.freedomscientific.com/Products/Blindness/JAWS (Last Access: 2017-01-26)

28

2.5. Accessibility Evaluation

his or her mental process while performing certain tasks with the application. Expert
testing is similarly time-consuming as user testing. Simulation kits are wearables that
simulate aspects of an impairment like glasses mimicking vision impairments or tools to
simulate hand tremors. They do not require expert knowledge to gain valuable insight
into possible accessibility issues, but they involve noticeable upfront costs.

2.5.1 Evaluation Methodologies

Website Accessibility Conformance Evaluation Methodology (WCAG-EM)

Various methodologies have been introduced for evaluating an application’s accessibility.
The WAI published a Working Group Note regarding a WCAG-EM in July 2014. This
methodology introduces an evaluation procedure for Websites, comprising five steps, which
is shown in Figure 2.1. Evaluators proceed each step sequentially. If new information
comes up during the evaluation process, they may return to any preceding step.

Figure 2.1: The five steps of the WCAG-EM 1.0. Copied from [VAZ14].

In the first step, the evaluation scope is defined. The parts of the Website considered in
the evaluation are defined, including mobile and language versions as well as potential
third-party services used by the Website. Then, the target conformance level of the
WCAG is defined. Supported browsers, assistive technologies and other user agents are
determined as well. Analyses of use cases or target user groups could be included here.
If user tests should be performed, they are planned during this first step.

The second step involves the exploration of the target Website to gain an understanding
of its purpose and features. Its features and types of Web pages (in terms of styles
and layout, content types, functional components, and so on) are identified. All used
technologies have to be identified in order to know which guidelines need to be applied.

29

2. Background and Related Work

During the third step, a representative sample of Web pages is selected from the Website.
The sample is representative, if it “reflect[s] the accessibility performance of the [W]ebsite
with reasonable confidence”. If it is feasible to evaluate the entire Website, this step
can be skipped. The sample should consist of a structured sample, which includes all
Web page types identified in the previous step, and a randomly selected sample which
is 10% of the size of the structured sample and is used to check whether the sample is
sufficiently representative for the Website’s accessibility performance. It is important to
include complete processes (which are defined, for example, in use cases) in the sample.

In the fourth step, the selected sample (or the entire Website, if feasible) is audited, i.e.,
evaluated in detail. For each Web page and each complete process, it is checked if it
adheres to the conformance requirements of the target conformance level of the WCAG.
Finally, the structured and the randomly selected sample are compared. The randomly
selected sample should not contain any new content types or show outcomes which were
not found in the structured sample, otherwise the evaluators need to return to step three
to include more Web pages that include the new content types or outcomes.

The last step comprises of reporting the evaluation findings. The findings are documented
throughout the process in every single step and are aggregated and summarized in this
last step to produce the final report document. Evaluation specifics like used evaluation
tools and methods are included in the report. Optionally, a machine-readable report,
using the Evaluation and Report Language (EARL)23, can be provided.

Unified Web Evaluation Methodology (UWEM)

The EU Web Accessibility Benchmarking Cluster proposed the UWEM with the goal to
provide standardized methodology for evaluating the accessibility of Websites in the EU.
Although this methodology would be very helpful in testing the compliance of a Web
application to the EU regulations, its latest version was published in 2007 and addresses
WCAG 1.0, which is outdated at the time of writing this thesis. There was an intent to
migrate the UWEM to incorporate WCAG 2.0, but the migration plan was published
back in 2008. By the time of writing this thesis, no updated version of UWEM has been
published, hence, this methodology can be considered outdated.

Methodology for Heuristic Evaluation of Web Accessibility Oriented to
Types of Disabilities [OTD16]

In 2016, Orozco et al. [OTD16] proposed a methodology that was designed as a com-
plement to the WCAG-EM process, which they claim does not take into account the
particularities of each form of disability. Their methodology comprises the following five
steps:

23https://www.w3.org/WAI/intro/earl (Last Access: 2017-01-26)

30

2.5. Accessibility Evaluation

1. Analysis and Characterization of the Population: In this first stage, the various
kinds of disabilities and their needs and barriers are identified with the help of
literature reviews describing such characteristics.

2. Definition of Indicators for Evaluation: The characteristics found in the first stage
are now used to identify specific barriers the different groups can face when accessing
an application. Using WCAG and similar guidelines, the indicators for accessibility
issues are picked and categorized for each form of disability identified.

3. Definition of Heuristics: During this stage, heuristics are defined considering the
indicators characterized before, which include examples for meeting or not meeting
the criteria.

4. Implementation of Accessibility Evaluation: This stage involves identifying the
scope of the evaluation (e.g., which parts of the application). Orozco et al. advise
to have a group of evaluators with varying experience with and knowledge of the
specific barriers being addressed.

5. Analysis of Results: At this final stage, the results from the evaluation are analyzed
and measures for solving the occurred accessibility issues are developed.

The purpose of this methodology is to address the peculiar problems of people with
specific disabilities and evaluating an application from this particular viewpoint, instead
of just checking for general principles.

2.5.2 Tools

Using accessibility evaluation tools can help in determining the conformance to standards
and legal regulations for accessibility checks which can be executed automatically (e.g.,
checking if every input field is labeled) and assist the evaluator in assessing accessibility
aspects which need to be evaluated manually. However, these tools cannot assert that an
application is accessible, or even compliant. Human judgment and manual evaluation is
always necessary as well.

Accessibility evaluation tools can and should be incorporated into every step of the
development process. Designers can use them, for example, to simulate various types of
vision impairments to see if font sizes or color contrasts are sufficient. Developers and
content authors can utilize tools which are integrated into their development environment
(e.g., editors, content management systems) to discover and avoid accessibility issues
early on. Testers and evaluators use these tools to examine the overall accessibility of
the application in detail, and give feedback to the designers and evaluators.

When choosing suitable accessibility tools, there are various factors to consider:

• Development Process: Different roles (e.g., designer, developer, tester) require
different tools. Some applications need a higher conformance level to standards
and regulations, because they are, for example, governmental applications.

31

2. Background and Related Work

• Size and Complexity of the Application: The approach to evaluate larger applications
is different from evaluating smaller applications (e.g., automated testing of the
whole application and manually testing only certain aspects instead of manually
evaluating the complete application).

• Knowledge, Experience and Skills of the Evaluators: Accessibility evaluation tools
require a varying amount of knowledge about accessibility or the technologies to be
evaluated. For example, so-called HTML and CSS validators require knowledge
about HTML and CSS, respectively.

• Development Environment: Sometimes, it is preferred to integrate accessibility
evaluation tools into editors or content management systems.

• Platform: While there are online services or browser extensions for evaluating Web
applications, there are also tools which need to be downloaded and installed. Some
tools are only available on certain operating systems.

• Scope: Some tools only check one page or feature at a time or they are limited to
certain accessibility issues (e.g., color contrasts). Other tools can evaluate large
parts or the complete application at once.

• Usage: Accessibility evaluation tools differ in the way they are used. There are,
e.g.:

– Fully Automatic Tools: Some tools do not require any user interaction. The
evaluator just provides the application files, starts the tool and gets back the
results. In some cases, the issues found by such tools need to be validated.

– Wizards: Some tools guide the user through the evaluation process step-by-step,
which can be useful for manual validation of the issues found automatically.
These tools also aid the evaluator in checking certain issues manually, e.g.,
images are shown to the user and the user assesses the appropriateness of their
textual descriptions.

– Transformations: There are also tools which transform the application, for
example, by showing only textual contents, removing the colors or read the
contents aloud.

• Reporting and Presentation of Results: There are various types of applications that
differ in the way they present the results and generate reports. For example, they
provide:

– Textual Reports: These tools generate lists describing the individual accessi-
bility issues and sometimes also include examples of possible solutions. Often,
they can be customized to one’s needs, and are fully automated.

– Integrated Feedback: Some tools highlight accessibility issues directly in the
GUI. This is helpful to immediately recognize the parts of the application
which need to be improved.

32

2.6. Accessibility and the Software Development Process

– Machine-Readable Reports: Sometimes, accessibility evaluation tools provide a
way to output their results in a machine-readable format like EARL. Results
from various tools could be integrated in this way into a final, aggregated
report.

Usually, it is best to use a variety of different tools to cover as many accessibility issues
as possible.

2.6 Accessibility and the Software Development Process

Since there is such a great diversity of disabilities in using ICT, making it accessible can
be a complex task, which also depends on the type of content, the size, complexity, and
purpose of the application as well as the used technologies. To achieve good accessibility,
it is important to integrate accessibility engineering into every stage of the development
process [BMSF16] [GK09] [XFW07]. Trying to fix an inaccessible application after
development has finished can pose a considerable effort, especially if developers missed
to adhere to current standards or the application involves lots of multimedia content and
complex user interface controls.

Accessibility cannot be fully automated [XFW07]. In the same way as evaluating accessi-
bility cannot be performed purely automatically because it requires human judgement for
certain issues, accessibility engineering needs manual effort for some aspects. For example,
designers and model engineers need to provide good usability (e.g., by making the flow
of interactions intuitive), and multimedia contents have to be transcribed or supported
by subtitles. However, by integrating accessibility considerations into the automated
generation of GUIs, at least some aspects of accessibility can be addressed right from
the beginning of user interface development. It can also reduce development time and
prevent implementation errors by providing correct implementations of accessible user
interface controls.

2.7 Automated GUI Generation

The concept of model-based software development promotes the usage of models, i.e. an
abstract representation of the application to be built (or some aspect of it), to aid the
software development process. In this approach, models are used for communication
between involved parties (e.g., customers and developers), but they were not applied to
automatically generate actual code from them [BCW12].

An advancement of this concept is model-driven software development, where the mod-
els become primary artifacts of the software development process. Using automated
transformations, source code is generated from the models [Sch06] [BCW12]. The ad-
vantages of this approach are manifold. Following the principle “model once, build
everywhere” [BCW12], model-driven development improves reusability and portability.

33

2. Background and Related Work

Once the model is created, it can be translated into source code for a variety of technolo-
gies and platforms using different transformation rules automatically. The approach also
turns the focus on business problems by empowering domain experts, since modeling can
be done without requiring knowledge in programming. Models also serve as an up-to-date
documentation of the software being built.

2.7.1 Model Driven Architecture (MDA)

To enforce model-driven development in the software development process, the Object
Management Group (OMG) published the MDA in 2003, which provides a set of standards
and guidelines [MDA14]. The key approach is to specify higher-level models, which are
used to iteratively generate lower-level models and eventually source code.

The highest level of abstraction is provided by the Business or Domain Model, historically
called Computation Independent Model (CIM). This model represents “real things” and
is computation- and platform-independent. It specifies the application’s requirements,
describes what it is expected to do and which objects and entities form its domain.

One level below is the Platform Independent Model (PIM), which defines details of the
structure of a system, while not taking into account the specifics of a certain platform.
The PIM is then transformed into a Platform Specific Model (PSM), which provides all
the necessary information for generating platform-specific source code.

Finally, the Implementation (in the form of source code) is derived from the PSM.

2.7.2 The CAMELEON Reference Framework

MDA is a generic approach for model-driven software development in general, i.e., it can
be used for creating various platforms like programming languages, operating systems,
databases, middleware-solutions, or user interfaces [Tru06]. The CAMELEON Reference
Framework (CRF) [CCT02] provides a standardization of the model-driven development
approach tailored to user interface generation. It contains four levels of abstraction,
which roughly correspond to the levels described in the MDA [CCT+03]:

1. Tasks & Concepts Level: This high-level model specifies interactions between the
user and the application and their temporal relationship as well as the domain of
interest.

2. Abstract User Interface (AUI) Level: Models on the AUI level are modality- and
device-independent, but define abstract interaction components and outline how
the application will roughly be structured in the end.

3. Concrete User Interface (CUI) Level: The CUI model specifies the particular
interaction components (e.g., widgets), which already define the appearance of the
application, but are still independent from any user interface toolkit. Each target
platform (e.g., smartphone, tablet, desktop computer) has its own CUI model.

34

2.8. The Unified Communication Platform

Hence, models on this level are already modality- and device-dependent, but not
yet transformed into actual code.

4. Final User Interface (FUI) Level: This level finally contains the resulting GUI
source code, which can be compiled or interpreted.

2.8 The Unified Communication Platform

The UCP [PKR12], developed by the Institute of Computer Technology at TU Wien,
can be used to create applications for human-machine or machine-machine interaction
using a model-driven approach. These applications are tailored to various target devices
(e.g., smartphones, tablets, desktop computers) and their models can be created without
requiring profound knowledge in programming, which enables designers to create the
application’s GUI and domain experts to define its business domain. UCP is available as
a Rich Client Platform (RCP) application based on the Eclipse24 Integrated Development
Environment (IDE).

Figure 2.2: UCP comprises of three major components. Copied from [PKR12].

Figure 2.2 shows the three major components UCP comprises of. The Communication
Model (UCP:CM) defines the communicative interaction between two parties based on
Speech Act Theory [Sea69]. The UI Generation (UCP:UI) framework semi-automatically
generates a Window, Icon, Menu, Pointer (WIMP) GUI from the Communication Model.
The Runtime (UCP:RT) component uses a Model-View-Controller (MVC) pattern to
integrate the generated GUI with the application back-end containing the business logic.

24https://eclipse.org/ (Last Access: 2017-01-31)

35

2. Background and Related Work

2.8.1 The GUI Generation Process

As the CRF suggested, UCP uses multiple abstraction levels for generating the GUI.
The highest level of abstraction is given by the Communication Model, which is defined
by a model designer (i.e., a person who creates the model using UCP). This model is
then transformed into lower-level models until the device- and GUI toolkit-specific source
code can be generated. Figure 2.3 depicts the various models involved in the UCP GUI
generation process and their correspondence to the levels proposed by CRF.

Figure 2.3: The various models involved in UCP and their relationship to the CRF.
Copied from [PKR12].

Communication Model

The Communication Model forms the basis for the GUI generation and corresponds
to the Tasks & Concepts level of the CRF. It consists of three models, which are
created by the model designer and describes the communicative interaction between two
parties (human-machine or machine-machine) as well as the business domain involved in
it [Pop12].

The Domain-of-Discourse (DoD) Model specifies the domain of the interaction, i.e., the
entities which the two parties are “talking about” during their communication. It is
expressed by an Unified Modeling Language (UML)25 or Ecore26 class diagram.

25http://www.uml.org/ (Last Access: 2017-02-03)
26https://wiki.eclipse.org/Ecore (Last Access: 2017-02-03)

36

2.8. The Unified Communication Platform

The Action-Notification Model (ANM) Model expresses which actions on the entities of
the DoD can be taken during the interaction. It provides an interface to the application’s
business logic. A basic set of actions and notifications are provided by UCP, which can
be extended for providing specific functionality for the application.

The Discourse Model specifies all possible flows of communication in the applica-
tion [KPR12]. It is defined by using a Domain Specific Language (DSL) that is based on
language theory concepts, which makes it much more intuitive to use for its special purpose
than general programming or modeling languages. The model’s basic building blocks, the
Communicative Acts, are based on Searle’s Speech Act Theory [Sea69]. Communicative
Acts specify elements of speech to express a certain intention: A statement is made to
provide information, a question is asked to get information, and a command is given to
trigger some kind of action by the other party. Communicative Acts refer to the entities
of the DoD and represent basic units of communication. Another important concept
of the Discourse Model are Adjacency Pairs based on Conversation Analysis [LFG90],
which form pairs of Communicative Acts to model typical turn-takings in a conversation
(e.g., question and answer, offer and acceptance).

The elements of a communication, i.e., Communicative Acts and Adjacency Pairs, are
linked using Discourse Relations, which can be of one of two types: Procedural Constructs
or Rhetorical Structure Theory (RST) Relations. Procedural Constructs are used to
define the control flow of the communication similarly as programming languages do using
loops, if-else-constructs or sequences of commands. Examples of Procedural Constructs
are Sequence, Condition, and IfUntil. RST Relations are based on Rhetorical Structure
Theory [MT88], and focus on the functionality of text by describing relationships, effects,
and constraints of text portions (i.e., Communicative Acts or Adjacency Pairs). There
are five RST relations applied in UCP: Background, Circumstance, Elaboration, Joint,
and Result. Together, Communicative Acts, Adjacency Pairs, and Discourse Relations
form a tree structure that represents the communicative actions performed by the two
parties.

Structural UI Model and UI Behavior Model

Using Model2Model Transformation and a set of Transformation Rules, the Communica-
tion Model is transformed into a Structural UI Model.

The Structural UI Model is an abstract representation of the GUI and already contains
information about the GUI’s structure and content. It is thus already modality- and
device-dependent, but still independent from the GUI toolkit being used for the final
GUI implementation. Hence, the Structural UI Model corresponds to the CUI level of
CRF. During the transformation from the Communication Model into the Structural UI
Model, a device specification is used for each target device, resulting in one Structural
UI Model per device. The device specification specifies, e.g., the resolution and dots per
inch (dpi) of the device, as well as the GUI toolkit and, if the device is operated using
a mouse or touch gestures. Using this information, the Structural UI Model is already

37

2. Background and Related Work

tailored to the screen size of its target device and places GUI widgets in a space-saving
way optimized for it. Widgets are organized in a hierarchical tree.

Besides the structure of a GUI, its behavior also has to be defined. Hence, a UI
Behavior Model, which represents a state machine, is automatically derived from the
Communication Model. This model is independent from the modality and device being
used, corresponding to the AUI level of CRF.

Screen Model

Via model weaving, the Structural UI Model and the UI Behavior Model are transformed
into the Screen Model on the CUI level of CRF. Weaving is the process of associating
elements which represent the same aspect of a UI from different viewpoints, from both
models with each other to form a single model. The resulting Screen Model consists
of two parts referencing each other: the Behavior Screen Model (a UML state machine
specifying all the possible sequences of screens) and the Structural Screen Model (defining
each concrete screen with all its GUI elements).

In the end, the final GUI implementation, i.e., the source code, is generated from the
Screen Model.

2.9 Related Work
Research regarding the integration of accessibility into model-driven software develop-
ment approaches is sparse. Accessibility research seems to focus mostly on integrating
accessibility measures into the process of programming and especially on the evaluation of
accessibility. Some studies focus on integrating accessibility into the modeling process, but
address only a specific part of accessibility or discuss the topic without ever providing a
prototypical implementation. Some of the studies use the outdated WCAG 1.0 guidelines.
Further, many models have not been used in realistic scenarios or day-to-day use due
to their complexity and difficulty to implement [JV17]. The scarcity of research in this
field indicates that there is still a major potential for scientific work regarding automated
generation of accessible GUIs.

In the following, four research trends regarding accessibility of model-driven applications
are exemplified.

2.9.1 Modifying Already Existing Applications Using a Model-Driven
Approach

There have been several studies that focus on making existing applications more accessible
by using a model-driven approach.

Yesilada et al. [YHGS03] developed DANTE, a semi-automated tool, which transforms
Web pages that lack sufficient HTML markup (e.g., that only use color and font size
to indicate headlines or use image links without alternative texts for navigation) to

38

2.9. Related Work

make them easier to navigate for users with visual impairments. They applied physical
traveling metaphors to Web navigation patterns and created an ontology, which is used
to annotate Web elements with these metaphors. To identify Web elements which need
to be annotated, the so-called travel objects, they developed a framework proposing a
semi-automated tool, which can automatically extract and annotate travel objects in a
first step. In a second step, these travel objects can be refined by human intervention to
gain a better result. When the travel objects have been extracted, they can be used to
transcode the Web page automatically to be accessible for users with visual impairments.
Various transcoding techniques are proposed by Yesilada et al., e.g., providing a table of
contents based on headings and sections, eliminating repetitions by providing “skip links”
to the main content or removing repetitive elements, or indicating the size of a certain
object (e.g., by adding the text “This item contains two elements.”).

Linaje et al. [LLTPT+11] combine the RUX method [LPSF07], a model-driven approach
for generating Rich Internet Application (RIA)s, and the SAW (System for Accessibility to
the Web) project [SF+07], which provides ontologies for Web accessibility. The approach
“allows enriching already developed Model-Based Web applications with RIA features and
accessibility issues”. To do this, they developed the ontology OntoRUX, which is based on
WAI-ARIA and defines which attributes RIA widgets have to implement to be accessible.
It also checks for possible inconsistencies to keep the widgets’ accessibility properties
consistent. An example would be a textbox component having both the required
and the hidden attribute set to true. Consistency can also be checked for changes over
time (e.g., if a widget’s state and appearance changes when clicking on it) by analyzing
representations of the widgets as Linear Time Logic formulae.

While these approaches might enhance the accessibility of already existing applications,
they do not support developers to create accessible applications upfront. In addition,
DANTE [YHGS03] is only focused on visually impaired users.

2.9.2 Design-Time Approaches

Various studies have focused on how to integrate accessibility concerns into the model-
driven engineering process at design-time.

Göhner et al. [GKJ+08] present a model-driven approach of integrating accessibility
into GUIs for IT and automation systems, which is derived from the CRF framework.
They argue that accessibility is a quality of the user interface which also influences
an application’s structure and functionality and that less extra effort is required when
accessibility is addressed right from the start of the design process. Hence, a so-called
user-oriented approach is needed, which starts the design process with analyzing the
requirements of the user interface from a user’s perspective. Pre-modeling activities like
Systematic Layout Planning can be used to discover mental models of potential users.
The Tasks & Concepts Level in their approach consists of a Task Model, a User Model,
and a Use Model. The Task Model describes all tasks a user can carry out, independently
from any possible (personal or environmental) barriers. The Use Model extends the Task

39

2. Background and Related Work

Model by describing whole workflows independent from used technologies or platforms.
The User Model describes users and their potential needs and restrictions as well as
which tasks they can perform. From the AUI Model, a Navigation Model is derived to
gain better insight into the user interface structure. Göhner et al. also include a Context
Model describing the influence of various platforms on the application. The CUI Model
then is extended to contain semantic annotations regarding accessibility, which are then
mapped on WAI-ARIA roles within the Final User Interface.

Vieritz et al. [VJP11] proposed a model-driven, user-centered approach of creating accessi-
ble user interfaces, where information about sensoric, motoric and technical disabilities are
integrated into the models. Since they focus on the accessibility of e-learning platforms,
where the main task is not only to present information to the user but also to impart
knowledge, they claim that accessibility has to consider the user’s way of thinking and
how he or she understands ideas and concepts, too [VPJ07]. For example, a person who is
blind by birth has different concepts about the world than a person who has functioning
vision or who went blind later in life. Hence, they propose integrating descriptions of
a user’s mental models into the modeling process in the form of so-called User Models.
They also point out that semantic meanings and relationships could be expressed through
the model and, hence, this knowledge is made explicit and formal [VJP11]. Their argu-
ment is based on the BeLearning project [DJSV05] [VPJ07] [JPV09], which combines
semantic encoding (i.e., explicit formulation of relevant knowledge) and model-driven
development to enhance the accessibility of e-learning platforms. For example, they
model the semantic information for an image, which indicates its functionality for the
Web application (e.g., if it is used solely for decorative purposes or if it actually carries
important information). Based on this information, an automatically generated HTML
<image /> tag for this image might contain a descriptive alt property or not. For
enhancing the navigation in the BeLearning project, they proposed using an OOWS
Navigational Model [FPAP03] extension for adaptive navigation based on User Models
introduced by Rojas et al. [RPF05].

EGOKI [AAC+11] automatically generates accessible GUIs for ubiquitous services, i.e.,
services that provide unified access via mobile devices to, for example, ATMs, vending
machines or ticketing machines. Based on both service characteristics specified by a User
Interface Description Language (UIDL) and user capabilities modeled as an ontology,
EGOKI’s Resource Selector Module chooses the most appropriate representation of an
interaction element. This requires the service provider to offer sufficient alternatives for
each of the capabilities, since EGOKI cannot create them by itself. To support service
providers with creating the service models that are used as input for EGOKI, Miñón et
al. [MMA13] developed SPA4USXML, a GUI tool for creating Task, AUI and multimedia
resource models. The multimedia resource models describe the various alternatives for
interaction elements. A wizard is provided to select the service description files, which are
then transformed into tasks for the Task Model, which can then be further refined by the
model designer. The Task Model is then transformed into the AUI model. SPA4USXML’s
AUI editor then enables the user to link abstract interaction elements with the various

40

2.9. Related Work

alternative representations, which are provided by the user. Related to this research is a
study by Miñón et al. [MMMA14] regarding the integration of accessibility requirements
into UsiXML.

There has also been the idea of integrating accessibility into the model-driven development
process as an aspect-oriented concern [MRCG10] [MSMG12]. In this way, accessibility
is closely related to architectural concerns, but still treated independently, emphasizing
the “non-functional, generic and cross-cutting characteristics” [MSMG12] of accessibility.
The connection between architectural decisions and accessibility concerns is defined by
so-called integration points of varying granularity into the User Interaction Diagram
(UID) [VSDS00]. Accessibility requirements according to the WCAG 1.0 guidelines are
modeled using a Softgoal Interdependency Graph (SIG) template. They are understood
as softgoal concerns as defined by Chung and Supakkul [CS04], i.e., since accessibility is
a non-functional requirement there have to be more loosely defined criteria.

The common aspect of the above research is that they incorporate users’ capabilities
into the models to derive a UI that meets their needs. This requires additional modeling
effort and a model designer’s in-depth knowledge of a multitude of disabilities.

2.9.3 Guidance and Assistance of Developers

Another approach has been to assist the developers and model designers in creating
accessible applications by guiding them and requiring them to specify information that is
needed to create accessible GUIs. In addition, technical aspects of accessibility guidelines
can be directly incorporated into the GUI components.

De Oliviera et al. [dOFP+14] developed the Homero Framework based on PHP to support
the development of accessible Web interfaces. The framework consists of several PHP
classes representing user interface components (e.g., Image, Link, Table) which produce
accessible HTML code. When invoking methods on these classes, the PHP developer has
to provide all necessary accessibility data (e.g., alternative texts for images), otherwise
the framework presents a warning to the developer. The automatically generated HTML
code adheres to the AAA conformance level of the WCAG 2.0 success criteria. However,
only technical aspects of the WCAG 2.0 guidelines which can be detected automatically,
are addressed within the framework. Success criteria which involve human evaluation
are not being addressed. Since it is a PHP framework, it also can be used only by
programmers, not by application designers or domain experts. The framework is intended
to avoid common, automatically detectable accessibility mistakes made by developers.

Moreno et al. [MMR08a] created a domain-specific metamodel, the Accessibility for
Web Applications (AWA)-Metamodel, which models technical aspects of WCAG 1.0
requirements at the CIM level of MDA. The AWA-Metamodel contains abstract constructs
of Web elements including their required attributes (e.g., an alternative text for an
image, a level of a heading, or the language of a Web document). To integrate the
metamodel into the MDA models, a graphical AWA-Metamodel editor is provided. Finally,
a code generator is proposed, which should translate the accessibility concepts from

41

2. Background and Related Work

the AWA-Metamodel into accessible HTML code using Model-to-Text transformation.
The AWA-Metamodel does not aim to model aspects requiring human assessment,
but still covers around 50% of the WCAG 1.0 checkpoints. While not obtaining full
accessibility, integrating accessibility requirements into a formal model which could be
used to automatically generate the GUI still would improve accessibility.

As part of the Accessibility for Web Applications research proposal, Moreno et al. [MMR08b]
also suggested an editing tool for creating accessible Web contents. The editing tool
should use accessible templates in XML format, which can be edited and filled with
content by the user and are then transformed via XSLT into accessible XHTML code.
This should guide and support the user when creating accessible content, for example,
requiring him or her to provide mandatory information (e.g., an alternative text for
images) or providing a dictionary module for automatically extending abbreviations.

González-García et al. [GGMM15] developed a model-based graphical editor for design-
ing accessible media players. It leverages UsiXML27, a UIDL. The authors modelled
relevant accessibility requirements as tasks and relationships in the Task Model of
UsiXML [GMM15] and developed a graphical editor for users with no prior experience
in accessibility [GGMM+13].

2.9.4 Run-Time Approaches

Several studies have focused on run-time approaches and context-aware adaptive GUIs
which change their appearance in response to certain user behaviors and preferences.

The Adaptation Integration System [MPAA16] facilitates the application of accessibility
adaptation rules at both design-time and run-time in a transparent way. The tool
supports modifying the models at any level of CRF except the FUI (for which the rules
are applied by transformations from the CUI). At design-time, GUI designers can use the
Adaptation Integration System without prior knowledge about accessibility by providing
it with an user interface description as well as a parameter describing user disabilities.
The tool describes adaptation rules using AAL-DL28 and uses MARIA [PSS09] as UIDL,
but supports language transformations (e.g., from and to UsiXML). At run-time, the
adaptation of the GUI is triggered by changes in the context of use, which are modeled
using the Serenoa run-time context model 29 and detected by a context manager. The
run-time adaptations facilitate, e.g., a dynamic change in the GUI modality based on
context changes. For example, if a user changes from a silent to a noisy environment,
the GUI exchanges audio elements with textual elements. The accessibility adaptation
rules are provided by the Adaptation Integration System and cannot be modified or
extended by model designers. Support for assistive technologies (e.g., activating them
when needed) is missing.

27http://www.usixml.org/ (Last Access: 2017-05-21)
28https://pdfs.semanticscholar.org/4b05/afd0ebeba74de2c97d61b401e271b201943c.pdf (Last Access:

2017-05-25)
29https://pdfs.semanticscholar.org/bf9e/0295d38bc346164819be575e0453e809f1bd.pdf

42

2.9. Related Work

SUPPLE [GLW06] leverages a run-time approach for automatically generating a custom
user interface based on a Functional UI Model (i.e., an abstract description of the user
interface) and a Custom Interaction Model. To generate the Custom Interaction Model,
the user has to go through a one-time personalization process lasting up to 20 minutes,
where he or she, e.g., compares pairs of concrete user interfaces. SUPPLE then uses
decision-theoretic optimization to generate an optimized GUI from these two models.
The personalized GUIs can differ in their widgets, layout and navigation structure. Its
successor, SUPPLE++ [GWW07], generates customized GUIs optimized for users with
motor impairments based on their actual (quantitative) performance in motor tasks
instead of mere (qualitative) preferences. The generated GUI aims to minimize a user’s
expected movement time, but might also be optimized for users with visual impairments.

The MyUI [PHJS12] framework and infrastructure also follows a run-time approach and
provides a publicly available and extensible multimodal design pattern repository for
adapting a GUI based on context changes. The intention of this research project was
to provide an extensible system to integrate all aspects of accessibility into the GUI
generation process. Designers and developers can create new design patterns in the design
pattern repository, which can be refined and reviewed by other accessibility experts. The
design patterns include a human-readable description of the addressed problem and its
solution as well as source code for the corresponding software component that implements
the solution. Before the GUI can be adapted dynamically, a User Interface Profile is
created. The profile is built from three parts: the Device Profile, the User Profile and
the Customization Profile (which is defined by the developer). The User Interface Profile
is created at the beginning of an interaction session with the GUI and then updated
on any significant context change. Based on the User Interface Profile and an Abstract
Application Interaction Model (AAIM), the most suitable GUI components for the current
situation are selected. After this step, the final GUI is rendered. Adaptations of the GUI
are system-initiated, i.e., relevant interaction events are recognized by a Context Manager
which updates the profiles automatically and triggers the GUI adaptation process. To
make the adaptations clear and understandable to the user, two adaptation patterns
are used. On the one hand, adaptation rendering patterns use animations to seamlessly
transform one GUI element into another (e.g., to switch from smaller fonts to larger
fonts). Animations are used to draw the user’s attention to the changing elements and to
help him or her to understand how the elements changed. However, adaptation dialog
patterns present the changes in a dialog which have to be confirmed by the user.

Yigitbas et al. [YSE17] developed an IDE for developing self-adapting UIs. They extended
the common model-driven approach of having abstract models and domain models
transformed into a FUI using a UI generator by two additional development paths which
are responsible for UI adaptation and context management. In one development path,
an abstract Adaptation Model is created, which is then transformed by the Adaptation
Service Generator into an Adaptation Service that will adapt the FUI at run-time. The
other path involves transforming a Context Model, which is referenced by the Adaptation
Model, into a Context Service (e.g., accelerator, GPS). Yigitbas et al. defined three

43

2. Background and Related Work

types of adaptations: Task-Feature-Set (e.g., showing or hiding certain components),
Navigation (e.g., modifying links), and Layout (e.g., changing colors, font sizes or the way
components are split among different screens). The resulting GUI is based on Angular 2.

Hussain et al. [HUHMB+18] developed an adaptive UI/UX authoring tool that auto-
matically evaluates a user’s context and experience and adapts the UI accordingly. The
context-of-use is based on three entities: user (e.g., preferences, abilities, goals), plat-
form (e.g., resolution, connectivity), and environment (e.g., noise, light). It is observed
implicitly (via user interaction) and explicitly (via questionnaires). At run-time, first a
default UI is being displayed and the user has to register him- or herself. During the
registration process, data for the models describing the context-of-use are collected. When
the user then logs in to the application, a Context Evaluator adds additional information
about the context, and the Adaptation Engine selects relevant rules and applies conflict
resolution to generate an adapted UI. An evaluation with 32 participants showed that
the consistency of the UI and thus the learning ability decreased if adaptations were
applied recurrently.

Run-time approaches can provide benefits, e.g., that the GUI can be tailored to the specific
needs of each user. However, GUI customizations and adaptations at run-time can take
a substantial amount of time and may exceed acceptable performance times [PHJS12].
Also, current approaches regarding adaptive UIs typically are limited to specific domains
and are not applicable to arbitrary scenarios [HUHMB+18].

44

CHAPTER 3
Case Study on Accessibility in

UCP

In order to determine the current status regarding accessibility of UCP, a case study
was conducted, where six sample applications built with UCP have been analyzed. The
evaluation of the accessibility of UCP has been done using multiple analysis techniques,
including automated as well as manual approaches, to obtain a detailed view of the
current status. Several accessibility shortcomings have been found, some of which are
relevant to the process of generating GUIs, others are a result of out-dated implementation
techniques.

The remainder of this chapter is organized as follows: Section 3.1 describes the reference
applications built with UCP which were used for the accessibility analysis. The evaluation
process that was used to analyze the status quo regarding accessibility in UCP is depicted
in Section 3.2. In Section 3.3, the accessibility issues found during the evaluation are
listed. Section 3.4 reflects on the lessons learned from the case study and elaborates
potential solutions to the issues found.

3.1 The Reference Applications

When a GUI generation framework has to be analyzed for its compliance to accessibility
standards, one has to evaluate the compliance of reference applications generated by
the framework. These reference applications have to cover the generation framework’s
capabilities. In case of UCP, such reference applications, provided by the developers
of UCP, have already been publicly available at the time of writing this thesis. They
have been created by the developers of UCP and are prototypes in a variety of business
domains with differing levels of complexity, focusing on different features of UCP.

45

3. Case Study on Accessibility in UCP

Seven applications were publicly available on the UCP Website1 at the time of writing
this thesis. Five of them have been used for this case study. The other two, Flight
Booking Round Trip2 and Hotel Booking3, did not provide any further insight, since
they were too similar to some of the other applications. Thus, they were excluded from
the analysis. While evaluating the accessibility of the existing prototype applications, a
use case was found in which a model designer could produce an application that violates
accessibility standards by using custom rules [RKP15a]. To cover this use case in a
sample application (called Flight Booking Round Trip Accessibility), the UCP developers
provided a variation of the Flight Booking Round Trip prototype (extended by a custom
rule), which was then also included in the analysis.

The seven applications analyzed in this case study are described below. Shopping,
Travel Booking and Booking Kärnten were fully-automatically generated without any
customization. In the Flight Booking prototype, a custom widget [RPK16] was included.
The Accommodation Booking prototype, which is the most complex of all available
prototypes, contains customized CSS as well as custom rules.

3.1.1 Shopping

The Shopping4 application (see Figure 3.1 for the first screen displayed on a desktop
computer) is a prototype of an online shop for computer hardware and other electronic
devices. The user can select a product category, add a product to the cart, and buy the
product(s) by filling out a form requesting the user’s payment details, delivery and billing
address. After submitting the form, the user receives a success message if everything
went fine, otherwise an error message is displayed (e.g., if relevant data is missing in the
form).

Figure 3.1: First screen of the Shopping prototype displayed on a desktop computer

1http://ucp.ict.tuwien.ac.at/ (Last Access: 2017-08-20)
2http://ucp.ict.tuwien.ac.at/UI/FlightBookingRoundTrip (Last Access: 2017-08-20)
3http://ucp.ict.tuwien.ac.at/UI/HotelBooking (Last Access: 2017-08-20)
4http://ucp.ict.tuwien.ac.at/UI/Shopping (Last Access: 2017-08-20)

46

3.1. The Reference Applications

The prototype was built using device specifications of a desktop computer and a mobile
phone, respectively. Hence it displays a tailored GUI for small screens when accessing it
via mobile phone (see Figure 3.2).

Figure 3.2: First screen of the Shopping prototype displayed on a mobile phone

3.1.2 Flight Booking

In the Flight Booking5 prototype, shown in Figure 3.3, a user can book a flight by
selecting a departure and destination airport and a flight date. The user is then requested
to select a flight, followed by a graphical view in which the user can select an available seat.
After entering credit card and passenger details, the user finally receives the purchased
ticket number.

Figure 3.3: First screen of the Flight Booking prototype displayed on a desktop computer

The prototype also contains a tailored GUI for mobile phones, which can be seen in
Figure 3.4.

The prototype was customized by including a custom widget [RPK16] representing a
seat picker (see Figure 3.5). It shows an illustration of the cabin of a plane, where
already taken seats are displayed in black, and available seats are displayed in blue,
which are selectable. A custom widget [RPK16] is an extension to the UCP framework’s
predefined GUI widgets and is included in the fully-automatic generation process. Custom
widgets can be provided by a widget designer by creating a Custom Widget Template
containing the widget’s implementation along with some Custom Widget Rules, which
map a specific part of the Discourse Model to the custom widget and thereby create a
placeholder for it during generation. To enable design-time variability, custom widgets

5http://ucp.ict.tuwien.ac.at/UI/FlightBooking (Last Access: 2017-08-20)

47

3. Case Study on Accessibility in UCP

Figure 3.4: First screen of the Flight Booking prototype displayed on a mobile phone

can be parameterized using variables defined by the widget designer. GUI designers can
then use these custom widgets without having in-depth knowledge of the UCP framework
internals or editing the source code themselves.

Figure 3.5: Seat picker custom widget of the Flight Booking prototype

48

3.1. The Reference Applications

3.1.3 Flight Booking Round Trip Accessibility

The Flight Booking Round Trip Accessibility6 prototype, which can be seen in Figure 3.6,
is very similar to the Flight Booking application, except for allowing the user to book a
round-trip flight. This prototype was not built using multiple device specifications, hence
it does not have a tailored GUI for small screens.

Figure 3.6: First screen of the Flight Booking Round Trip Accessibility prototype
displayed on a desktop computer

Flight Booking Round Trip Accessibility was derived from the Flight Booking Round
Trip prototype, which was not included in the accessibility evaluation, to demonstrate
a special case of adaptation by the model designer using custom rules [RKP15a], in
which a success criterion of a WCAG guideline was violated. This violation did not
occur in the already existing prototypes, although it is a possible outcome of UCP’s
fully-automatic generation process (i.e., without manually adapting the application’s
source code afterwards).

The only change to the Flight Booking Round Trip prototype was that the “Cancel”
button on the first screen was moved to the top right corner of the screen, which can be
seen in Figure 3.6. In the original prototype, the “Cancel” button was placed next to the
“Submit” button.

Custom rules [RKP15a] provide a way to customize a GUI through transformations
during the automatic generation process. They can be specializations of UCP’s basic rule
set (i.e., they can be extensions of existing rules). While they can be created specifically
for certain applications, there is also a way to provide so-called “generic-custom rules”,
which are predefined and do not depend on specific model structures in the Discourse
Model. During generation, the transformation engine can match multiple rules for a
specific discourse pattern, creating a search space of different potential GUIs for a single
Communication Model. Which GUI is selected for generation is based upon constraints
(e.g., available screen space). To enforce custom rules to be applied in the final GUI,
the transformation engine inhibits existing basic rules matched by the same discourse
patterns as a custom rule. While custom rules are specified manually, the final source code

6http://ucp.ict.tuwien.ac.at/UI/FlightBookingRoundTripAccessibility (Last Access: 2017-08-20)

49

3. Case Study on Accessibility in UCP

is generated automatically. This enables the GUI designer to make the customizations
persistent for re-generation and also to potentially re-use the same rules for multiple
device specifications (as it was done in the Accommodation Booking prototype).

3.1.4 Travel Booking

In the Travel Booking7 prototype (see Figure 3.7), a user can book a hotel in addition to
a round-trip flight. After selecting an origin and a destination place, as well as a hotel
category and the start and end date of the trip, the user can choose a flight and return
flight as well as a specific hotel. Then, he chooses a room within the hotel. After that,
he needs to fill out a form requesting the user’s credit card details, payment details and
personal details. Finally, the prototype displays a reservation number to the user. The
application’s GUI is not tailored to small devices.

Figure 3.7: First screen of the Travel Booking prototype displayed on a desktop computer

3.1.5 Booking Kärnten

The Booking Kärnten8 prototype lets a user plan a trip to the Austrian region Kärnten
including searching for matching transportation, hotels and events (see Figure 3.8). It
includes a navigation for switching between hotel search, arrival planning and event
search. For the hotel search, the user can provide more detailed information than in the
Travel booking prototype, and more details are shown for the respective hotels. The user
can also search for events by date, description and region and purchase a train ticket to
the destination. The application is not tailored to small devices.

7http://ucp.ict.tuwien.ac.at/UI/travelBooking (Last Access: 2017-08-20)
8http://ucp.ict.tuwien.ac.at/UI/BookingKaernten (Last Access: 2017-08-20)

50

3.1. The Reference Applications

Figure 3.8: First screen of the Booking Kärnten prototype displayed on a desktop
computer

3.1.6 Accommodation Booking

The Accommodation Booking9 application, which can be seen in Figure 3.9, is the most
complex prototype of the reference applications. It is an extension of the BookingKärnten
prototype and was built using additional custom rules, custom CSS and layout hints. It
is also tailored to small devices, as can be seen in Figure 3.10.

The Accommodation Booking prototype has the look-and-feel of a typical Website,
including a header image and a navigation on the left side of the screen (on desktop
computers). The navigation consists of a search field for quickly finding accommodations,
articles or events. The Homepage shows an overview of upcoming events and existing
articles. The user can search for an accommodation and receives a list of matching results,
each of them showing an overview of the respective hotel. For each result, there is a detail
page, containing further information about the hotel and a form to request a booking.
When choosing “Urlaub planen” (German for “plan holiday”) from the navigation, the
user can specify the beginning and ending of the holiday, a preferred region and preferred
activities, and receives a list of matching hotels. The user can find information for arriving
via plane, train or car. Finally, the user can search for events and read information about
them.

The tailored GUI for small devices looks different from the desktop GUI (see Figure 3.10).
It is organized into a tab view containing two tabs, one for the current Web page and
one for the navigation.

The Accommodation Booking prototype was generated using several custom rules, for
example showing only a subset of attributes for a given object (e.g., a hotel information
domain object from the DoD model) in a certain context (e.g., the search result list vs.
the hotel’s detail page). Other examples show additional labels for clarification and the

9http://ucp.ict.tuwien.ac.at/UI/accomodationBooking (Last Access: 2017-08-20)

51

3. Case Study on Accessibility in UCP

Figure 3.9: First screen of the Accommodation Booking prototype displayed on a desktop
computer

number of search results at the top of the page. Some of these rules could be re-used for
multiple device specifications. In case the rules could not be re-used (e.g., because the
size of the resulting widgets was too large for a small device), the existing custom rules
could be adapted to fit the respective device.

In cases where specific layout rules needed to be applied, so-called layout hints [RPV12]
were used. Layout hints explicitly specify certain layout parameters via transformation
rules. They were introduced because a widget’s position is strongly influenced by its
functionality, which is not generic. For example, one would expect buttons used for
navigation (e.g., a “Home” button to get back to the first screen of the application) to be
at the top of the screen, while a button used for submitting a form is typically expected
to be at the end of the form. Layout hints can be used in these cases to align elements
within their container. Other options are, for example, to specify the widget ordering
strategy (e.g., place the biggest widget first and then fill the rest of the space with smaller
widgets) or the widget insertion strategy (smallest waste space versus best ratio). In the
Accommodation Booking prototype, layout hints were used to place the navigation at
the left of the screen on desktop computers and to define the ordering of the navigation
entries. Also, the “Back” buttons were placed at the top right of the page.

52

3.2. The Evaluation Process

Figure 3.10: First screen of the Accommodation Booking prototype displayed on a mobile
phone

3.2 The Evaluation Process

For the accessibility evaluation process, the WCAG-EM was employed. This was due
to the fact that the purpose of the evaluation was to identify whether UCP adheres to
legally required accessibility guidelines, which cover a wide variety of disabilities. Since
the methodology provided by Orozco et al. [OTD16] focuses on addressing very specific
types of disabilities, it was not very suitable for this evaluation step.

Altogether, two evaluation cycles have been performed. During the first cycle performed
in February 2017, the prototype applications were evaluated against the conformance
level AA of the WCAG 2.0 guidelines. This conformance level was chosen since the EN
301 549 matches it, which is the minimum requirement for Web and mobile accessibility
defined by the most recent European directive on ICT accessibility (see Section 2.2.2).

53

3. Case Study on Accessibility in UCP

The second cycle, performed in July 2017, was carried out to evaluate against the recently
published WCAG 2.1 guidelines (in the Working Draft of June 30, 2017), which were
not yet available during the first evaluation run. The chosen target conformance level
was raised to AAA in order to investigate the degree to which UCP could adhere to this
highest level of conformance.

The reason for selecting the WCAG as the target standard to evaluate against was that
the other standards relevant in Austria, ÖNORM EN ISO 9241-171 and EN 301 549,
are both very similar to the WCAG guidelines and partly even derived from them. In
contrast to the other two standards, the WCAG guidelines are also used world-wide and
serve as a basis for multiple other standards in different countries. Since the current
implementation of UCP uses only Web technologies, the WCAG guidelines seemed most
appropriate. The guidelines were originally tailored to these technologies, but now are
generalized to basically any technology (although the recommended techniques to meet
the guidelines are still focused on Web technologies).

In both evaluation cycles, the same evaluation techniques (fully-automatic tools, manual
inspection, screen reader tests), which are described and compared in Section 3.2.1, have
been employed. The evaluation was carried out on a desktop computer (running Ubuntu
Linux and Windows 10, respectively, with a screen resolution of 1920x1080 pixels) as well
as a smartphone running Android 6 (with a screen resolution of 375x810 pixels). A mouse,
a keyboard and two screen readers (JAWS 17 and Google Talkback, see Section 3.2.3)
were used as input devices. The browsers used for the evaluation were:

• Chrome 55 (desktop and mobile version)
• Firefox 51
• Internet Explorer 11
• Edge 38

The second step of WCAG-EM involved exploring the target applications to gain an
understanding of their use cases, functionalities and underlying technologies. UCP is
based on HTML, CSS, JavaScript and the server-side Java template engine Velocity.
Since UCP currently is not capable of serving audio or video content, or timing-dependent
functionalities (like e.g., session expiration or auto-updating content), using its basic
functionalities, some guidelines from WCAG are not relevant to the prototypes. These
guidelines are:

• Guideline 1.1 - Time-based Media
• Guideline 1.4.2 - Audio Control
• Guideline 1.4.7 - Low or No Background Audio
• Guideline 2.2 - Enough Time

54

3.2. The Evaluation Process

• Guideline 2.3 - Seizures

The third step according to WCAG-EM was the selection of a representative sample
of the evaluated applications. Since the scope of the UCP prototype applications is
manageable, all screens were taken into account for the evaluation and hence this step
was skipped.

After defining the evaluation scope, the UCP prototype applications have been audited.
Several evaluation techniques have been employed (see Section 3.2.1). A report of the
discovered accessibility issues of the UCP framework is given in Section 3.3.

3.2.1 Applied Evaluation Techniques

During the two evaluation cycles, each screen (and also each complete use case) of each of
the UCP prototype applications was evaluated in detail and reviewed whether it adheres
to the conformance requirements. A combination of multiple evaluation techniques has
been applied. To get a rough overview of the current accessibility conformance status
of the applications and their most salient issues, several automated evaluation tools and
automated validators, which are listed in Section 3.2.3, have been employed. The results
from these tools had to be validated manually.

After this step, a manual inspection was performed, for which the WCAG 2.0 and 2.1
guidelines and documents (see Section 3.2.2) have been utilized. For every relevant
success criterion of the respective conformance level from the WCAG guidelines, each
screen and use case of each application was reviewed manually. This was done on the
desktop computer as well as on the smartphone.

Finally, a screening technique (or simulation kit approach) was applied by using a
screen reader (while turning off the monitor) and a keyboard (or the touchscreen on the
smartphone, respectively) to navigate through the applications.

All in all, three out of four different methods from the classification of Bai et al. [BMSF16]
(see Section 2.5) were used: the automatic/semi-automatic approach using automated
evaluation tools and validators, the expert testing approach (i.e., performing a manual
inspection using the WCAG guidelines), and the simulation kit approach (by using a
screen reader while turning off the monitor, and using only the keyboard/touchscreen as
input device).

The decision to choose these evaluation techniques was based on various studies ([Bra08],
[BYH10], [MFT05], [VBC13]) regarding the efficiency of different methods. Bra-
jnik [Bra08] compared the advantages and disadvantages of multiple techniques.

The conformance review, also called expert review or manual inspection, is the most widely
used technique and can be used for formative and summative evaluations [Bra08]. Its
great advantage is the ability to detect a wide range of different accessibility shortcomings
for a variety of disabilities. Checking an application’s conformance to a certain set of
guidelines is also a very cost-efficient evaluation technique. By using guidelines derived

55

3. Case Study on Accessibility in UCP

from regulative requirements, the evaluator can also make sure that the application
adheres to applicable laws. However, the quality of an evaluation also strongly depends
on the guidelines being used. If the guidelines do not provide detailed and reproducible
evaluation process descriptions as well as sensible success and failure criteria, the evaluator
will likely miss accessibility issues that disabled users might actually face in reality.

Automated tools are not viable to be used as the only technique for an accessibility
evaluation, as already discussed in Section 2.5.2. Nevertheless, because of their systematic
and automated nature, they can increase productivity and can easily cover a wide
range of Web pages in an application [Bra08]. When used carefully and validating
their results manually, fully-automated accessibility evaluation tools can become a
suitable enhancement of the evaluation process, especially for large applications. Vigo et
al. [VBC13] investigated the effectiveness of six fully-automated tools with respect to
WCAG 2.0 conformance checking. They claim that since these tools cannot interpret
context, they fail to find certain accessibility issues on the one hand, while reporting false
positives (i.e., supposed issues which are not actual issues) on the other hand. Coverage
(the number of success criteria reported at least once) was generally quite low (50 % or
less) for all tools. Success criteria from the Perceivable and Operable guidelines of WCAG
2.0 were covered the least. Completeness, i.e., the ratio between the number of reported
and actual violations, was best for the Robust guideline (larger than 73 %), while the
performance for the Operable and Understandable guidelines was much lower (between
14 and 47 %). Tools which scored higher with regard to completeness usually had lower
correctness scores, i.e., catching more violations resulted in producing more false positives,
too. The overall accessibility of the evaluated Websites had an effect on the tools, too:
the more inaccessible a Website was, the higher the completeness scores were. According
to Vigo et al., automatic evaluation tools are better in finding more frequent accessibility
issues, especially regarding the Perceivable guideline, than finding more subtle issues.
They also performed better in finding more crucial issues, i.e., those which belong to the
conformance level A, than finding issues of lower importance (i.e., conformance level AA
and above) [VBC13]. These results suggest that fully-automatic tools are suitable to use
in the beginning of an evaluation to discover the most salient issues and gain a rough
overview of the accessibility of an application. Hence, fully-automatic tools were used in
the beginning of the evaluation of the UCP prototypes.

Screening techniques, i.e., artificial degradation of sensory, motor or cognitive capabilities
while using the application under evaluation (like the use of a screen reader instead
of a monitor), are suitable for finding normative as well as empirical issues concerning
certain kinds of disabilities [Bra08]. On the other hand, this technique does not apply a
systematic approach, hence it might fail to find all issues. It also would not be practicable
when being the only one technique applied, since many different kinds of screening
techniques would have to be used in order to cover a wide variety of issues. When it
comes to the effectiveness of screening techniques, the results found in research studies
are inconclusive. While Brajnik [Bra08] claims that they are highly dependent on the
experience of the evaluators with the assistive technologies, Mankoff et al. [MFT05] found

56

3.2. The Evaluation Process

that multiple developers using screen readers performed best compared to laboratory
studies with blind users, automated tools, developers without screen readers and remote
testing with blind users. Using screen readers also reduced the number of false positives
compared to evaluations without screen readers [MFT05]. Since the screening technique
using screen readers showed success in this study, it was chosen to be used also for the
evaluation of UCP in addition to the other techniques.

Testing with users can be done in several ways, one of which is the think-aloud protocol,
where a user speaks out loud what he thinks while navigating through the application. A
benefit of testing with users is, of course, that issues are found which concern real users
and real usage scenarios. In contrast, this technique might fail to find relevant issues if
the user group is not chosen well (i.e., it represents most of the common disabilities and
varying experience levels). Additionally, the results might mirror not only accessibility
problems, but also usability issues that affect all users in general. Mankoff et al. [MFT05]
also found that testing with users (at least if performed remotely) was among the worst
performing evaluation methods when evaluating the accessibility of Web pages for blind
users. A reason for this might be that the users were too experienced in screen reader
usage and hence failed to find issues that users with lower experience commonly have.
Since this thesis addresses accessibility issues and not usability in general, and because
finding a representative user group was not feasible, testing with users was not part of
the accessibility evaluation of UCP.

3.2.2 Used Guidelines and Documents

Since the prototype applications were evaluated against the WCAG guidelines during
the first evaluation iteration, the relevant documents addressing this standard have been
taken into account. W3C provides the following documents, which have been used for
the evaluation:

• WCAG 2.010 and 2.111 Guidelines: These are the main documents of the WCAG
guidelines containing the actual standard including the success criteria to be checked
for each guideline.

• How to Meet WCAG 2.012 and 2.113: These documents are basically checklists
containing a list of links to techniques and failures for each guideline and its success
criteria. They also link to the according pages of the Understanding WCAG 2.0 and
2.1 documents and provide filters for certain tags, conformance levels, techniques,
failures and technologies.

10https://www.w3.org/TR/WCAG20/ (Last Access: 2017-09-06)
11https://www.w3.org/TR/WCAG21/ (Last Access: 2017-09-06)
12https://www.w3.org/WAI/WCAG20/quickref/ (Last Access: 2017-09-06)
13https://www.w3.org/WAI/WCAG21/quickref/ (Last Access: 2017-09-06)

57

3. Case Study on Accessibility in UCP

• Understanding WCAG 2.014 and 2.115: These documents provide additional infor-
mation to help developers and evaluators better understand why a certain guideline
exists. For each guideline, its intent and advisory techniques are explained. Further,
for each success criterion, its intents and benefits are clarified and some examples
and related resources are given. Additionally, techniques to meet the success
criterion and common failures regarding it are listed.

• Techniques for WCAG 2.016 and 2.117: These documents provide details about
sufficient techniques, advisory techniques and common failures for each of the
guidelines and their success criteria. For each technique and failure, examples are
shown and a description of test procedures for them is provided.

• WCAG2ICT18: This document explains how the WCAG 2.0 guidelines can be
applied to non-Web software. Although UCP currently only generates Web-based
software, it could potentially also use GUI toolkits for different technologies (e.g.,
the Java Swing19 GUI toolkit, as UCP did in the past.

• Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI Guidelines Apply to
Mobile20: This document describes how the WCAG 2.0 guidelines can be applied
to mobile Web applications.

During the second iteration of the evaluation, the WCAG 2.1 Working Draft as of June
30 201721 has been used. In this working draft, two new guidelines and nine new success
criteria have been introduced.

3.2.3 Used Accessibility Evaluation Tools

Various tools have been used during the accessibility evaluation. In a first step, automated
evaluation tools were used to discover some basic issues. HTML and CSS validators
have been used to identify technical flaws in the source code. During manual evaluation,
the prototype applications were navigated not only via keyboard and mouse, but also
through screen reader and keyboard.

Automated Tools

To get a basic assessment of the accessibility of UCP, four fully-automated analysis tools
were used in a first evaluation step.

14https://www.w3.org/TR/UNDERSTANDING-WCAG20/ (Last Access: 2017-09-06)
15https://www.w3.org/WAI/WCAG21/Understanding/ (Last Access: 2017-09-06)
16https://www.w3.org/TR/WCAG20-TECHS/ (Last Access: 2017-09-06)
17https://www.w3.org/WAI/WCAG21/Techniques/ (Last Access: 2017-09-06)
18https://www.w3.org/TR/wcag2ict/ (Last Access: 2017-09-07)
19https://docs.oracle.com/javase/tutorial/uiswing/index.html (Last Access: 2017-09-07)
20https://www.w3.org/TR/mobile-accessibility-mapping/ (Last Access: 2017-09-07)
21https://www.w3.org/TR/2017/WD-WCAG21-20170630/ (Last Access: 2017-09-07)

58

3.2. The Evaluation Process

WAVE22 is a widely used accessibility evaluation tool provided byWebAIM23. It is available
online, and there are free browser extensions for Chrome and Firefox. The advantage of
WAVE is that it can be conveniently used for applications which serve multiple screens
under the same URL, like the UCP prototypes do (e.g., all screens of the Flight Booking
prototype are served under http://ucp.ict.tuwien.ac.at/UI/FlightBooking), since the
browser extension analyzes every currently viewed screen. Another specialty compared
to other fully-automatic evaluation tools is that it provides a visual representation of the
accessibility violations within the Web page using annotations and suggests ways to fix
them.

Figure 3.11 illustrates such annotations in an example application generated by UCP. 18
errors (visualized by the red icons) have been found which relate to the fact that radio
buttons do not have a semantic label (using the <label> tag) associated to them. The
alerts (visualized as yellow icons) indicate that the radio buttons are also not enclosed
by a fieldset. The blue icons indicate structural elements on the page (in this case layout
tables). In the menu on the left side, detailed descriptions of the errors can be found.

Figure 3.11: WAVE’s Visual Representation of Accessibility Violations in the Flight
Booking Prototype

SortSite Trial24 is a free trial version of SortSite, a Website quality testing tool focusing
on accessibility, Web standards and usability. It can be used online or downloaded for
Windows and Mac OS X, for which it is usable for free for 30 days. Its aim is to analyze a
complete Website by traversing all links from the same domain on a Web page recursively,
using Web crawling techniques and scanning their contents for potential quality issues.

22http://wave.webaim.org/ (Last Access: 2017-09-07)
23http://webaim.org/ (Last Access: 2017-09-15)
24https://www.powermapper.com/products/sortsite/ (Last Access: 2017-09-07)

59

3. Case Study on Accessibility in UCP

While this is certainly a convenient feature in most cases, for the UCP prototype
applications it was a bit counter-productive. Since every prototype contained a link to
the UCP project Website which was hosted under the same domain as the prototypes,
SortSite traversed the project Website along with each prototype. Additionally, all
screens except the first screen of the prototype applications were accessible using form
buttons within the first screen (i.e., they were not linked to the first screen via hyperlinks),
therefore SortSite could only analyze the first screen of each prototype. Hence, only a
small subset of the analysis result was relevant for the accessibility evaluation of the
prototypes, while the whole scanning procedure took clearly more time than for the other
fully-automatic tools.

Total Validator25 performs WCAG 2.0 compliance checking, along with HTML and CSS
validation, spell checking and broken link checking. Its free Basic version is available for
Windows, Mac OS X and Linux. The Basic version provides all accessibility validation
features that the commercial Pro version does, but it does not automatically traverse a
complete Website and is not able to analyze login protected parts of a Website (which the
prototype applications did not have, anyway). There are also free browser extensions for
Chrome and Firefox, which require Total Validator to be installed on the computer. It is
not able to analyze multiple screens served under the same URL, hence, like SortSite, it
could only analyze the first screen of each prototype.

TAW26 is freely available as a Web tool and as a desktop application which provides more
functionality than the Web tool. There is also a Firefox extension. For the evaluation,
the desktop application was used. It categorizes issues found into certain violations (e.g.,
missing form input labels) and issues that require human judgment (e.g., meaningful
alternative texts for images), which makes it easier to validate them. TAW also provides
visual highlighting of issues within a local copy of a Web page (similarly to WAVE).

Since WCAG 2.1 did not yet reach the status of a W3C Recommendation, none of these
tools supports newly introduced success criteria from WCAG 2.1. All four tools are
officially listed on the Web Accessibility Evaluation Tools List27 provided by the W3C.

The decision to use these tools was based on a study performed by Vigo et al. [VBC13],
who benchmarked the effectiveness regarding the evaluation of WCAG 2.0 compliance
of six state-of-the-art fully-automated accessibility evaluation tools. Among those six
tools, TAW performed best with regard to coverage (i.e., the number of different success
criteria correctly identified as violated) and completeness (i.e., the ratio of reported
violations over actual violations). SortSite performed very well regarding correctness,
which was defined as the ability to minimize the number of false positives (i.e., reported
violations which are not actual violations), while TAW and TotalValidator had a much
lower correctness (likely due to the higher completeness scores).

25https://www.totalvalidator.com/ (Last Access: 2017-09-07)
26http://www.tawdis.net/ingles.html?lang=en (Last Access: 2017-09-07)
27https://www.w3.org/WAI/ER/tools/ (Last Access: 2017-09-25)

60

3.2. The Evaluation Process

TAW, TotalValidator and SortSite have been chosen for the evaluation because they
performed well across all WCAG 2.0 principles. A combination of relatively high
completeness and coverage (TAW and TotalValidator) and high correctness (SortSite)
seemed like a balanced choice. Each of the automatically found violations was reviewed
manually to exclude false positives. WAVE was not benchmarked by Vigo et al. [VBC13].
Yet, since it is a widely-used tool supporting easy analysis of multiple screens served
from the same URL path via a browser extension, it was also included in the evaluation.

Validators

Both HTML28 and CSS29 validators have been applied on each application prototype.
These validation services are provided by the W3C and support validation by URI
(suitable for the first screen of a prototype) as well as validation by file upload or direct
input (used for the remaining screens of a prototype).

Screen Readers

Two screen readers were used, one for desktop computers and one for mobile phones.
The decision upon which screen readers to pick for the evaluation was guided by the 6th
Screen Reader User Survey30 conducted by WebAIM in August 2015. A sample group of
2515 screen reader users, consisting not only of blind users, but also of people with low
vision and cognitive disabilities, participated in that survey.

For the evaluation on a desktop computer, JAWS 1731 has been used. JAWS was still
the most widely used desktop computer screen reader among the sample group in 2015,
although other screen reader solutions are becoming increasingly more popular recently.
JAWS is available in seven languages and also supports output on braille displays. During
the evaluation, the trial version of JAWS 17 has been used, which provides the full feature
set, but is limited to a usage time of 40 minutes at a time, after which a restart of the
computer is required to be able to use it again.

On mobile devices, VoiceOver32 (a screen reader for iOS devices) was the most frequently
used screen reader among the sample group, followed by Google Talkback33 for Android.
Because no iOS device was available for the first cycle of the evaluation, only Google
TalkBack was used on a smartphone in this cycle. For the second evaluation cycle, Google
Talkback was used on a smartphone and VoiceOver was used on a tablet. Google Talkback
and VoiceOver are both standard features of Android and iOS systems, respectively, and
can be activated in the accessibility settings.

28https://validator.w3.org (Last Access: 2017-09-07)
29https://jigsaw.w3.org/css-validator/ (Last Access: 2017-09-07)
30http://webaim.org/projects/screenreadersurvey6/ (Last Access: 2017-09-15)
31http://www.freedomscientific.com/Products/Blindness/JAWS (Last Access: 2017-09-07)
32https://www.apple.com/accessibility/iphone/vision/ (Last Access: 2017-09-07)
33https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback (Last Access:

2017-09-07)

61

3. Case Study on Accessibility in UCP

3.3 Accessibility Issues Identified
Several accessibility issues were identified during the evaluation. About half of them
concern criteria that are classified as level A of WCAG, and seven of them failed
to meet level AA criteria. Issues were found for each of the four WCAG sections
(Perceivable, Operable, Understandable, Robust), most problems (i.e., twelve) addressed
the “Perceivable” section, followed by “Operable” (eight issues) and “Understandable”
(seven issues). Four issues concern criteria from the updated WCAG 2.1 guidelines, most
of them are problems regarding the appearance on mobile devices, which previously were
only covered by the mobile accessibility mapping of WCAG 2.034. Figure 3.12 depicts the
distribution of the discovered shortcomings among the WCAG sections, and conformance
levels grouped by sections, respectively. Five of the accessibility issues identified appear
only on mobile devices. In the following, the shortcomings are explained in detail.

0 1 2 3 4 5 6 7 8 9 10 11

Perceivable

Operable

Understandable

Robust

1

3

1

2

1

2

7

3

4

3

A AA AAA

Figure 3.12: Distribution of discovered accessibility issues among the WCAG 2.1 sections

3.3.1 Accessibility Issues Failing Level A

Level A is the lowest conformance level of WCAG and required by the E-GovG. It covers
the most essential criteria applicable to any domain, which can be applied with reasonable
effort and do not limit the “look and feel” of the application [CCGV08].

Missing Semantic Information

Many discovered issues of the generated applications correspond to missing semantic
information in the source code, which results in the inability of assistive technologies to
access UI components or create perceivable and understandable output. These issues

34https://www.w3.org/TR/mobile-accessibility-mapping/ (Last Access: 2018-05-10)

62

3.3. Accessibility Issues Identified

were introduced because accessibility was not taken into consideration when UCP was
created. Many developers do not know (or have not enough knowledge about) the WCAG
and hence simply do not know which information is relevant for assistive technology.

To begin with, the generated applications’ language cannot be determined programmati-
cally. This is especially relevant for screen readers as they can utter text in the correct
language based on this information, otherwise they would fall back to their default lan-
guage, which may not match the application’s language. In the Accommodation Booking
application, the alternative texts of images are based on the respective image’s filename,
which is not descriptive at all, and even the language does not match the application’s
language (e.g., “Bild” for an image named <UUID>__0__Bild.jpeg). This makes it
impossible for some users that cannot see the image to know what it depicts.

Also with regard to forms, some important semantic information is missing. While input
elements do have a “label” that is visible to the user (e.g., “Select Your Origin” for the
radio button controls in Travel Booking, or “Number of Children” in front of the respective
input field in Booking Kärnten), this label cannot be identified programmatically (i.e.,
by assistive technology) since it is not marked as a label in the source code (e.g., by
using the <label> tag). This becomes an issue if, for example, a blind user navigates
through the form using the “tab” control to move the focus from one input to the next.
If the label of the focused input can be programmatically determined, the label is read
by the screen reader as soon as the input receives focus. Otherwise, only the input type
(e.g., text field, radio button) is indicated to the user, but the user does not know what
kind of information is expected (e.g., a name, a date, the number of children). The user
would have to instruct the screen reader to read the content surrounding the input field
to determine what its purpose is.

Another very similar issue with forms in the generated applications is that the name
attribute of input fields is not descriptive. While screen readers could fall back to
the name attribute in case there is no label, this would not help if the name is not
descriptive.

A further issue is that radio button groups in the prototypes are not surrounded by
a <fieldset> tag. Screen readers indicate grouped radio buttons based on this tag
and provide the user with a description that matches the legend belonging to the
fieldset. If this information is missing, the radio buttons within a group are not
perceived as belonging together and the user might miss some options.

Using HTML and CSS validators, some parsing issues were found, e.g., that IDs are
assigned multiple times to different elements, or that attribute values are not surrounded
by quotation marks.

Usage of Certain Interface Components

Two of the interface components being used in UCP currently are not accessible: the
date picker and the tab control.

63

3. Case Study on Accessibility in UCP

The date picker cannot be operated by a keyboard, since the date picker’s input field is
read-only per default and the trigger for opening the picker menu is an onClick handler,
which cannot be activated using a keyboard. Figure 3.13 shows how the date picker
is displayed. It appears to be disabled, hence it is not clear to the user that he or she
can actually pick a date. Additionally, since the input field does not have a label and is
marked as a text input field (<input type="text" .../>), a blind user does not
know which input is expected. When the date picker receives focus, there is no visual
indication that it is focused. To sum up, the date picker can neither be used by people
with disabilities requiring them to rely on keyboard-only input, nor by people who need
screen readers to read the contents to them.

Figure 3.13: The Flight Booking application viewed in Firefox. The date input field
appears to be disabled, but a date picker actually opens when clicking on it.

The tab control component misses semantic information that indicates for the tabs,
which tab is currently active, and whether a tab content is currently visible or hidden.
Such semantic information makes it possible for assistive technology and user agents
to interpret the controls correctly and can be achieved by applying the corresponding
aria roles and attributes (e.g., role="tablist", role="tab", role="tabpanel",
aria-controls, aria-selected, aria-hidden). Blind users, for example, cur-
rently do not know which tab is active, since the only indication for a tab being active is
its background color (which is white for inactive tabs, and gray for the active tab).

The handling of user input errors could be improved. Some required form fields are not
marked as such (e.g., the radio buttons). If the user does not fill in a required field or
there is any other input error, and the user clicks on submit, an alert dialog appears
that indicates an error. The alert dialog only displays one error at a time, i.e., if the
user made multiple mistakes, he or she has to submit the form multiple times and will
see an alert dialog after each submit describing the next error. This is cumbersome,
since it already takes many disabled people quite some time to fill out the form, read
and understand the content, and so on and having to correct one error at a time and
resubmitting prolongs the process further. The behavior after dismissing the alert dialog
is not consistent, too. In some cases, the focus is automatically set to the erroneous input
field mentioned in the alert dialog, in other cases it is not. Also, if the user dismissed the
alert dialog without reading its content, there is no other indication of the error and the

64

3.3. Accessibility Issues Identified

user would only see its description again after resubmitting the form. It would be better
to provide a textual description of all errors with links to the corresponding input fields,
which are themselves marked visually and semantically as being erroneous.

Keyboard-only Operability

Besides the date picker, which is not operable using just a keyboard, an onClick handler
is attached to the submit buttons that cannot activated when operated with a keyboard.
Interestingly, when using a mobile device, the return control of the on-screen keyboard
triggers a submit of the form. While this means that a form submit can be triggered on
mobile devices (i.e., without a mouse and only using the on-screen keyboard), this also
means that the form is submitted unexpectedly when pressing the return key. Typically,
the user would expect that as long as there are further input fields, the next input field
gains focus and the user can continue filling in the form.

Issues Faced When Using a Screenreader

Blind users that depend on screen readers for accessing the applications face several
issues. One of the reasons is that an old layout technique is used to display the content:
HTML layout tables. This technique uses <table> elements to create page layouts by
dividing content into rows and columns of the table. While this is per se not a violation
of the WCAG guidelines, some screen readers cannot handle layout tables well. Screen
readers try to linearize such layouts in order to determine the reading order of content.
The result of this linearization might not be the same as the visual reading order, which
becomes a problem when the reading sequence is not meaningful anymore. Moreover,
some screen readers (like Google Talkback) read out loud at which row or column of the
table the user currently is at (e.g. “row 1, column 1, checkbox not activated”), which
makes it really hard for the user to recognize the actual content of the Web page. An
example of a screen reader’s reading sequence being not meaningful occurs in the Travel
Booking application: On the second screen, the submit button is read first, followed by
“Select a Hotel” and the cancel button. Sometimes, after clicking on the submit button,
the screen reader does not automatically read any content on the next screen.

The Shopping application contains an additional problem for screen reader users. After
each form submit, the page reloads, and a new column of content appears at the right of
the screen in addition to the existing content (after choosing the product category, the
products to choose from appear right next to them, and so on). Since there is a page
reload, the screen reader first reads all the previously existing content before reading
the newly added information. In addition, all previously selected radio buttons are
deselected. If a blind user, for example, has chosen a product category, then the page
reloads and the screen reader would read the available product categories again and
would indicate that none of the products is chosen. Up to this point, the user would
think that something went wrong and no product category was selected. Only after the
screen reader continued reading the available products, the user would know that there
was no error. Figure 3.14 illustrates this issue. In this example, the user has already

65

3. Case Study on Accessibility in UCP

selected the “Software” product category. After pressing the “Submit” button below the
product categories, the page reloads and shows the products in the second column. Now,
the radio button for the “Software” product category is deselected and the screen reader
starts reading from the beginning of the Web page due to the page reload.

Figure 3.14: The Shopping application after selecting the “Software” product category.

Mandatory fields (which occur in the Travel Booking application, see Figure 3.15), are
only marked using an asterisk (*). They do not have any semantic markup that identifies
them as required fields (i.e., the required or aria-required="true" attributes).
The explanatory text at the bottom of the input fields (“*mandatory fields”) is not
directly next to one of the labels. By the time the screen reader reaches this text (and it
would not even reach it if the user just moves the focus from one input to the next), the
user might not relate this information to the labels that were read before, and hence, the
user would not understand that the corresponding input fields are mandatory. For users
with impaired vision, the explanatory text might be too small.

Figure 3.15: Indication of mandatory fields in the Travel Booking application

3.3.2 Accessibility Issues Failing Level AA

Level AA is required by the EN 301 549 standard. The discovered issues concerning this
conformance level mainly address the responsiveness of the layout to various screen sizes
and content magnification. When using the zoom function of the browser, horizontal
scroll bars appear, since the layout is a non-responsive table layout. The WCAG requires

66

3.3. Accessibility Issues Identified

content to be zoomed to an equivalent width of 320 CSS pixels without requiring to scroll
on more than one axis, since the impact of two scrolling axis would increase reading effort
40 to 100 times [CCGV08]. In the Shopping application, the layout requires the user
to scroll horizontally after choosing a product category because the additional content
(for choosing a product) does not appear at the bottom but on the right of the screen
(see Figure 3.16). Even more problematic is that the user might not even know that
additional content has appeared until he or she has scrolled horizontally, because the
additional content is not visible at first.

Figure 3.16: The Shopping application viewed on a smartphone: to view available
products, the user has to scroll horizontally

When switching from the portrait mode to the landscape mode in Flight Booking, the
content does not adapt to the new screen size (see Figure 3.17). There is a lot of white
space on the right of the screen that could be used to enlarge the content in order to fit
information on the screen or to make spaces between elements bigger in order to make
sizes of pointer targets bigger.

Figure 3.17: The Flight Booking application in landscape mode on a smartphone

Regarding the tab control, the naming and positioning of the tabs is not always coherent.
In the Shopping application, the tabs are named “C Q_ Offer Product Categories”, “New
Node”, and “proceed to checkout” at the beginning. After choosing a product category,

67

3. Case Study on Accessibility in UCP

the first tab is renamed to “New Node”. These names do not describe the contents of the
tab and are very confusing to the user.

3.3.3 Accessibility Issues Failing Level AAA

Level AAA is the highest conformance level of the WCAG, and it is not required by any
European regulation. In fact, the W3C recommends to not require level AAA by law
since it is not achievable for some types of content [CGV+18]. Guidelines on this level
are very likely to impact the “look and feel” of an application.

In the generated applications, five success criteria of level AAA were not met. While
the contrast requirements of level AA were met (4.5:1 for text and images of text, 3:1
for adjacent colors of user interface components), the required contrast for level AAA,
which is at least 7:1 for text and images of text, is not achieved for headlines and date
pickers. The intention of this guideline is that even people with low vision that do not
use contrast-enhancing assistive technology can read the content.

Headlines do not have semantic annotations (i.e., <h1-h6> tags). The only way to
identify them as headlines is by use of color (white text on dark blue background). This
means that screen readers cannot provide quick ways of navigating a Web page by moving
from one headline to the next, the user has to listen to the whole content to know what
the page is about.

The target size for clickable (focusable) elements is too small for level AAA, which requires
them to be at least 44x44 pixels. This is especially relevant for UI components that are
used frequently, are hard to reach (e.g., they are placed near the screen edges), are part
of a sequential task or trigger functionality that cannot easily be undone [CGV+18].

There is no context-sensitive help available. It would be helpful if the required format
is indicated for, e.g., date or credit card input fields (by an example given next to the
input field).

There is no possibility to navigate between the generated applications’ screens. Especially
people with a short attention span benefit from an indicator of their current location
(e.g., a breadcrumb or a site map), so that they know how many steps there are in the
process and at which step they currently are. A navigation between the screens would
also be helpful with regard to error prevention, since users could go back and forth to
review and correct their inputs.

3.3.4 Other Discovered Issues That Impact Accessibility

During evaluation, some potential issues were discovered that do not necessarily violate
WCAG success criteria, but still can be problematic. They are not necessarily violations,
because there is some room for interpretation of the guidelines that sometimes make it
hard to decide whether something is a violation of the guidelines or not. For example,
page titles are not very descriptive, since each page’s title (i.e., the <title> tag’s
content) simply is the name of the generated application. Descriptive page titles should

68

3.4. Lessons Learned

indicate the current location within an application, so that the user does not have to
skim through the content to know what the page is about. Even though the success
criterion “2.4.2 Page Titled” is not violated, it is recommended by the W3C to provide
more detailed titles that describe the contents of each page [CCGV08].

Two warnings were given by the CSS validator: (1) In case a foreground color (e.g.,
text color) is defined, a background color should also be defined and vice versa, and (2)
a generic font-family (e.g., serif or sans-serif) should be defined as a fallback option if
the preferred font could not be applied (e.g., if the font is not installed on the user’s
system). Missing foreground or background colors can pose a problem if the content is,
for example, resized and suddenly there are overlaps of certain regions that do not have
enough color contrast. If there is no generic font-family defined, unexpected layout issues
could occur, e.g., due to different character spacings.

In the Booking Kärnten application, date formats are inconsistent and sometimes not
easily readable, since they are too detailed (like in the example given in Figure 3.18).
The inconsistency can confuse users and people who are not familiar with the date format
depicted in the figure might not understand it at all.

Figure 3.18: Unneccessarily detailed date format which is not easily readable (found in
Booking Kärnten event search results)

3.4 Lessons Learned

The case study of UCP’s status regarding accessibility as analyzed revealed some inter-
esting findings:

Generating the GUI at design-time without leaving some flexibility for the GUI to adapt
itself to various context conditions is, in general, not sufficient with regard to accessibility.
Take, for example, the browsers zoom functionality: when the user zooms the application,
the GUI components are enlarged while keeping the current browser window size. When
the GUI generation framework built the GUI based on a device specification with a
certain screen size and uses fixed container and component sizes (as it is the case with
UCP), at some zoom level, the user will have to scroll, likely even in two directions. Take,
for example, the Accommodation Booking application viewed on a smartphone with a
resolution of 375x810 pixels. It was tailored to devices with a screen width of 380 pixels.
At 150% zoom level, the user already has to scroll both vertically and horizontally, as

69

3. Case Study on Accessibility in UCP

can be seen in Figure 3.19. This violates success criterion “1.4.10 Reflow” of WCAG 2.1,
which requires that the user can view the application at a 400% zoom level without having
to scroll in two directions. Using the current approach of UCP to generate GUIs that
adhere to this rule would require to generate a tailored GUI for each of the combinations
of defined screen sizes and zoom level, which obviously is infeasible. Moreover, the GUIs
would need to be exchanged as soon as the browser’s zoom level is changed. Hence, a
more flexible approach that dynamically adapts the GUI at run-time is needed.

Figure 3.19: The Accommodation Booking application viewed at 150% zoom level on a
smartphone with a resolution of 375x810 pixels

Another important issue to consider when developing a GUI generation framework is
what kind of information is needed to be given by the models in order to make the GUI
accessible. For example, elements that need to be in close proximity because they are
tightly related need to be grouped together in the model (e.g., elements belonging to a
field set within a form). This is especially relevant when parts of the GUI are reorganized
dynamically as the screen size changes. There must be a way to identify which elements
need to stay together.

Additionally, some components need certain kinds of semantic information to be accessible
(e.g., alternative texts for images, indication of the language, which form fields are required
and which are not). Such information must be incorporated into the model or otherwise
be provided by the model developer.

70

3.4. Lessons Learned

If the information cannot be woven into the models, there must be a way to adapt the
resulting GUI at some level (e.g., at CUI level), i.e., a semi-automatic approach of GUI
generation. For example, consider the various screens of the Flight Booking application.
The process of booking a flight is separated into multiple screens: on the first screen, the
user specifies the departure and destination airport as well as the flight date. On the
second screen, the desired flight is selected among several options. In the third screen,
the user can choose a seat. Credit card and passenger details are supplied in the fourth
screen and the fifth screen then presents the purchased ticket’s number. Each screen
should have a title or headline that outlines its contents. Which contents it contains can
only be known at the time the GUI components are split among the screens. The way the
components are distributed among the screens can differ between device specifications
(e.g., two components which are shown on the same screen on a desktop computer can
be split between two screens on a mobile phone).

Another aspect to be considered is which GUI libraries are being used. For example, the
date picker component in UCP was taken from a library. Unfortunately, it has several
shortcomings with regard to accessibility (see Section 3.3.1). The accessibility of GUI
components from libraries has to be evaluated beforehand. Moreover, these components
often expect a certain data format given to them, which has to be considered.

The GUI source code also needs to be generated in a way that allows users to adapt
certain aspects of the GUI for their needs. For example, in a Web application, the font
sizes should be given in relative units (typically em or rem), so that the user can increase
them via his or her browser settings. Using the zoom function of the browser, a user
should not be required to scroll in two directions (horizontally and vertically), but instead
the content should adapt and restructure itself to fit the new zoom level.

In principle, two different kinds of modalities of the application contents need to be
considered: the visual and the non-visual (i.e., auditive or haptic) representation. A
sighted user can identify related information based on visual cues like, for example,
proximity, color or shape. A blind user cannot make use of these cues but instead has to
rely on semantic information about the content which can be interpreted by assistive
technology (e.g., headlines, labels) and, especially, the order in which the content is
presented.

It can be reasonable to restructure or replace certain GUI components based on context
characteristics. UCP is already capable of organizing certain GUI elements into a tabbed
view on small screens. This can save space on the screen, so that the user does not have
to scroll that much. Moreover, the cognitive load tends to decrease, since there is less
information shown at once.

71

CHAPTER 4
Improving the Accessibility of

UCP

Based on the findings from the case study, several improvements for supporting the
development of accessible applications via GUI generation using UCP were identified and
built into the framework. The remainder of this chapter is organized as follows: Section 4.1
explains how the accessibility of the generated GUIs can be improved. Section 4.2 presents
a proof-of-concept application that demonstrates the improvements, which were evaluated
during a user study that is described in Section 4.3. Finally, Section 4.4 describes
technologies being used and the implementation for these accessibility enhancements
within UCP.

4.1 Accessibility Improvements

The major accessibility improvements that were identified can be grouped roughly into
five categories: responsiveness, enriching semantic information, error handling, enabling
customization by the end user, and widget replacement.

Besides these five types of improvements, which are especially relevant for GUI generation,
several other accessibility enhancing measures can be implemented to address issues
that are not directly relevant to GUI generation, but were introduced into UCP because
accessibility originally was not a major concern. For example, all onClick handlers has
to be removed in order to make the application accessible by keyboard only. Also the
date picker component has to be replaced by one that can be operated via keyboard.
The new date picker also must clearly indicate when it is focused and must not be a
read-only input field as it currently is in UCP. The color contrast has to be improved
for some components, and spaces between elements had to be enlarged when viewed on
mobile devices.

73

4. Improving the Accessibility of UCP

4.1.1 Responsive Design

The table layout of UCP was replaced by RWD using <div> tags. This ensures that
the layout adapts itself to the available screen width. The table layout in UCP uses
fixed widths and heights for the table cells, which coercively leads to horizontal scrolling
when zooming. Using RWD, the content will dynamically reflow when a user zooms
into the application. For example, if two widgets which are shown side-by side do not
fit next to each other anymore when zooming, they can be regrouped below each other.
Additionally, font sizes and spacings can also be enlarged as the user zooms in, making
it easier for the user to read text. Responsive design has also been found to increase
accessibility in various other ways (as discussed in Chapter 2).

4.1.2 Enriched Semantic Information

UCP would benefit greatly from more detailed semantic information. When generating
the GUI, this kind of information has to be derived from the models. For example, the
generated application should indicate which language is used throughout its contents.
Alternative texts for images should not just resemble their file names, but should actually
describe what is depicted.

Headlines were be marked up accordingly. Studies show that header elements (using
the <h1-6> tags) substantially improve accessibility for blind users. Watanabe [Wat09]
found that blind users’ task completion times were considerably reduced when navigating
through Web pages with marked up heading elements as compared to ones without them.
The seventh Screen Reader User Survey conducted by WebAIM [WAI17] found that
67.5% of their 1792 participants used headings as their primary resource for finding
information on a Web page.

Another main area where UCP would profit from enriched semantic information is in
forms. In UCP as given in the case study, mandatory fields are marked by an asterisk,
but are missing semantic markup that indicates that. This semantic markup has to be
added to the input fields to enable assistive technologies to recognize them as being
required. All input fields need to have a semantic label (using the <label> tag). This
not only helps assistive technology to interpret the purpose of the belonging input field,
but also helps sighted users, because they can also click on the label to focus the input
field. In UCP as given in the case study, the user has to click on the radio button itself
to activate it. Since radio buttons are quite small, users with motor disabilities may find
it hard to click on them. Labels make the target area much bigger and this makes it a
lot easier for users to focus the input fields.

Finally, input fields that are closely related should be grouped into fieldsets. This is
especially relevant for radio buttons and checkboxes, since assistive technology can
provide users with additional information (i.e., indicating the number of options in a
radio button fieldset). Furthermore, in some cases, it would be helpful to provide users
with context-sensitive help when dealing with forms. For example, date formats vary
greatly, not only depending on language and region, but also in verbosity (e.g., sometimes

74

4.1. Accessibility Improvements

only the date is required, sometimes the time should also be provided, and sometimes, as
for the credit card validity period, it is sufficient to only provide the month and year).
A hint given to the user about the required format is beneficial for avoiding errors and
hence steps required to correct them. These hints should be derivable from the models
used to generate the GUI.

4.1.3 Error Handling

Form input errors could be handled better. Currently, only one error is shown in an alert
dialog at a time. It would be better if all errors on a screen are indicated at once, so that
the user does not have to press the “Submit” button each time just to find out that there
are more errors. When activating the submit button, a list of error messages should be
displayed. Each error message should describe which input field is concerned and why
the input is erroneous. Each error message should also link to the according input field,
so that by clicking on the error message the input field automatically gets focused. Next
to the input field, there should be a further indication that it is erroneous.

4.1.4 Enabling Customization by the User

Sometimes users employ additional tools and techniques to make a Web interface more
accessible to them and further customize it to their needs. Besides assistive technologies,
they often use the browser’s zoom capabilities to enlarge Web contents. Browsers typically
support the enlargement of font sizes only. Users may also adapt their browser settings
or use custom stylesheets to override, for example, default font styles and sizes, letter
spacings, line widths and heights, or foreground and background colors. For example, as
can be seen in Figures 4.1, in Firefox it is possible to change default style and size, the
minimum font size shown on a Web page, text and background colors as well as unvisited
and visited link colors and whether links should always be underlined. Additionally, there
are various browser extensions that modify Web content to fit the user’s individual needs
(e.g., Google provides a Chrome plugin for enabling a high contrast color scheme on any
Website1).

To make a Web GUI customizable for the user in this way, several measures have to
be taken. To ensure that zooming Web content does not introduce scrollbars in two
directions, the content needs to reflow to fit onto the screen without introducing horizontal
scrollbars. This can be achieved by using responsive design. In order to be able to
enlarge or minimize font sizes only, they have to be defined in relative units (like em, rem,
or %). Using the expression !important in CSS should be avoided, since it elevates
the specificity of the rule it was applied to and, therefore, could potentially override a
matching rule defined in the user’s custom stylesheet (if the user’s custom rule is not
marked as !important and the browser does not treat custom stylesheets as a priority).

1https://chrome.google.com/webstore/detail/high-contrast/djcfdncoelnlbldjfhinnjlhdjlikmph (Last
Access: 2018-10-07)

75

4. Improving the Accessibility of UCP

(a) font settings

(b) color settings

Figure 4.1: Browser settings for customizing default font styles, sizes and colors in Firefox

Additionally to these techniques, the table component in UCP may benefit from cus-
tomizability. On small screens it may be helpful to provide the user with a possibility to
select the columns that he or she wants to be displayed. This would reduce the amount
of information that is shown at once and thus reduce cognitive load and the amount of
scrolling needed. However, this possibility to select columns might also distract the user

76

4.1. Accessibility Improvements

from the primary task (i.e., reading the data) and hence should only be shown if there
are many columns.

4.1.5 Widget Replacement

Some GUI components work well for accessibility in certain situations, but not in others.
For example, in the Accommodation Booking application, when viewed on a desktop
computer, UCP shows a quite complex interface with a header image, a navigation bar
on the left, and a main content box including two columns showing upcoming events and
some recent articles (see Figure 3.9). For small devices, the same GUI would be hard to
use, because the user would need to scroll in two directions. Thus, UCP already makes
use of device tailoring and replaces the widgets with a tab view, showing at least two
tabs (one or more for the current page and one for the navigation, see Figure 3.10).

Widget replacement can enhance accessibility by avoiding scrolling in two directions,
saving space (so that the user does not have to scroll as much), hiding less used func-
tionality, and showing a limited amount of information at once (and, therefore, reducing
cognitive load). Besides the already implemented widget replacement (i.e., reorganizing
page content into tabs), UCP could benefit from the following widget replacements.

Tabs to Accordion

When the tab view in UCP applications has too many tabs so that they cannot fit in one
line, the user might be confused by that. In Figure 4.2, the active tab is not connected
to its content anymore, and the user might miss this connection. In this case, it would
be clearer to use an accordion widget, where the tabs are organized vertically instead of
horizontally. Figure 4.3 shows an example of an accordion widget. Like in the existing
tab view, in the accordion widget only one tab can be expanded at a time. The content
is shown directly below its tab.

Figure 4.2: The Shopping application viewed on a smartphone in portrait mode, the tabs
do not fit in one line

77

4. Improving the Accessibility of UCP

Figure 4.3: The accordion view aligns tabs vertically with the content shown directly
below its tab

Radio Buttons to Dropdown

Radio button groups, especially when they contain many options, take up a lot of space.
This can be an issue on smartphones, since the user would have to scroll a lot and does
not see much else of the information other than these options. In such cases, it would be
better to replace the radio buttons with another widget that does not take up that much
space, like a dropdown.

Radio button groups and dropdowns each have their own advantages and disadvantages.
Radio button groups are easier to operate for users with motor disabilities if their options
have labels associated to them. As discussed in Section 4.1.2, labels enlarge the target
size of an input field, since one can also activate the inputs by clicking on the labels.
Radio button options are typically larger than dropdown options, and thus, dropdown
options require more precise mouse movements (or touch interaction on mobile devices,
respectively) to activate them. Additionally, there is one more action required (i.e.,
clicking or tapping on the dropdown) to view all available options. However, when there
are a lot of options, a dropdown needs significantly less space, and thus, the size of a
Web page is reduced. The user can see more of the screen and only expands the options
as he or she needs. Figures 4.4 and 4.5 demonstrate this: In Figure 4.4, the options for
selecting an origin in the Flight Booking application are displayed as radio buttons, while
in Figure 4.5, the options are grouped into a dropdown.

To use the best of both approaches, radio button groups should be replaced by dropdowns
when there are more than six options. Six options seem to be a sensible choice because
they can still fit on even a small screen. Thus, if there are at most six options, it makes
sense to display them as radio buttons, since selecting an option does require less precise
mouse movements than a dropdown. For more than six options, a dropdown can save

78

4.1. Accessibility Improvements

Figure 4.4: Selection of the origin airport, displayed as a radio button group

Figure 4.5: Selection of the origin airport, displayed as a dropdown

screen space. When displaying a dropdown, there should also be the possibility to search
and auto-complete the options, by using a combined text input field and dropdown. This
makes it easier to find the desired options among a large list of options, and users that
are able to operate a keyboard can select an option quicker than by using a mouse.

Table to Stacked Table

Tables pose a special challenge on small screens. The more columns there are, the more
the user has to scroll horizontally to view the data. If there are many rows, the user
has to scroll vertically, too. To avoid scrolling in two directions, stacked tables can be
used. In a stacked table, the columns are re-organized into labeled rows. To distinguish
the original table rows, they have, for example, alternating background colors and are

79

4. Improving the Accessibility of UCP

separated by thick horizontal lines.

Figures 4.6 and 4.7 demonstrate this replacement. Figure 4.6 shows the options for
selecting a flight displayed in a typical table view. If the columns cannot fit onto the
screen without introducing horizontal scrolling, the table is replaced by a stacked table,
as can be seen in Figure 4.7.

Figure 4.6: Selection of a flight, displayed as a table on a desktop computer

Figure 4.7: Selection of a flight, displayed as a stacked table on a smartphone

Now each column from the table is displayed as a row, in which the column title is

80

4.1. Accessibility Improvements

displayed as a headline and the column content is shown below the headline. The table
columns are now separated by a vertical line. Each table row is separated by a thicker
line to distinguish it. Additionally, the alternating background colors help to identify the
table rows.

In the example of Figure 4.7, it is also possible to show the full table in a new window
(to provide the typical tabular view if the user prefers it over the stacked table view and
does not mind if there is horizontal scrolling required).

Hiding Less Used Functionality or Information

The W3C recommends to hide less used functionality or information in order to reduce
cognitive load and to find relevant content more easily2.

In UCP, one place where this can be helpful is in tables (and stacked tables). Sometimes
the user is not interested in all the information displayed in the table. Especially in
stacked tables, less information can be helpful, since it leads to less scrolling and quicker
skimming of the content. Figure 4.8 shows how this can be accomplished. The (stacked)
table contains an option to select the columns that should be viewed. The user can select
all the columns he or she wanted and deselect the others.

Figure 4.8: Table columns may be shown and hidden as desired by the user, columns
required for user interaction are always visible

2https://www.w3.org/WAI/people-use-web/tools-techniques/#presentation (Last Access: 2018-06-
17)

81

4. Improving the Accessibility of UCP

However, this ability to select columns takes up some space of the screen and might
distract the user from his or her main task (i.e., selecting a flight in this case), so this
option might only be useful if the table has many columns.

4.2 Proof-of-Concept Application

Before actually implementing accessibility improvements within the UCP framework, a
proof-of-concept application was developed, which demonstrates the improvements. In a
user study, it was compared with the current approach of UCP. This was done in order
to get feedback early on, since adapting the implementation based on the insights gained
from the evaluation would have been more costly within the UCP framework.

There have been three versions of the proof-of-concept application. In the first version,
a navigation was provided. Because it became clear early on that implementing such
a navigation was technically not feasible in UCP without major enhancements of the
runtime framework, the navigation was excluded in later versions of the proof-of-concept
application. The second version of the proof-of-concept application (which included
everything from the first version but the navigation) was then used for the user study.
After the user study, two widget replacements, “table to stacked table” and “radio buttons
to dropdown” have been added to the third version of the proof-of-concept application
to incorporate lessons learned during the user study and further research.

The proof-of-concept application is based on the Flight Booking Round Trip application.
The decision to use this application was based on the fact that it incorporates most of the
features that UCP is capable of while at the same time being free from customizations
like custom widgets or custom CSS. Custom widgets or CSS files are outside the scope
of this diploma thesis, since they are provided by a (human) widget designer and hence
cannot be controlled by the framework. The Flight Booking Round Trip application
does not include a tab view or images, although tab views have been addressed in the
implementation of accessibility improvements in UCP.

The remainder of this section explains how the proof-of-concept application enhances
accessibility in comparison to the given implementation of UCP.

4.2.1 Overall Structure of the Application and Responsiveness

Figure 4.9 shows the proof-of-concept application viewed on a desktop computer.

The application is fully responsive, i.e., it reflows its contents when the screen gets smaller.
Figures 4.10 and 4.11 demonstrate this behavior on a tablet screen and a smartphone
screen, respectively. When the screen gets smaller, at first, the two boxes containing
the date pickers for selecting the departure and return date break into a new line below
the boxes containing the tables for selecting origin and destination. As the screen gets
smaller again, the four boxes align into a one-column-layout. Additionally, the tables
are replaced by a dropdown to save more screen space. Hence, horizontal scrolling is

82

4.2. Proof-of-Concept Application

Figure 4.9: The first screen of the proof-of-concept application viewed on a desktop
computer with a resolution of 1280x800px

83

4. Improving the Accessibility of UCP

Figure 4.10: The first screen of the proof-of-concept application viewed on a tablet with
a resolution of 1024x1366px

avoided (by reflowing the elements) and vertical scrolling is minimized (by replacing
widgets where possible).

In comparison to the original Flight Booking Round Trip application (see Figure 4.12]),
the spaces between elements are bigger. Spaces between the boxes separate them more
clearly, and spaces between input elements (along with the labels) increase the click
target.

A headline was added to the top (marked by the <h1> tag), which includes the name of
the application and describes what the current screen is about. It is especially helpful for

84

4.2. Proof-of-Concept Application

Figure 4.11: The first screen of the proof-of-concept application viewed on a smartphone
with a resolution of 375x812px

blind users, since screen readers will read it first when accessing the Web page and give
the user an idea of what it is about. Further, the headlines of the boxes are marked up
as such using the <h2> tag, so that it is possible for screen reader users to quickly skim
through the headlines and figure out which logical sections there are on the Web page.

In case JavaScript is deactivated in the user’s browser, a hint will be displayed that
indicates that certain functionalities will not be available.

85

4. Improving the Accessibility of UCP

Figure 4.12: The first screen of the Flight Booking Round Trip application viewed on a
desktop computer

HTML5 sectioning elements and ARIA landmarks are used to enhance the semantic
information provided to screen readers. The application headline at the top (h1) is
wrapped with a <header> element that has the banner landmark. These elements
typically appear at the top of the page and contain content that identifies what the whole
Web page is all about. This can include, e.g., page titles, logos, or search bars. At the
bottom, there is a <footer> element with the contentinfo landmark that wraps
the text “powered by UCP c©TU-Wien/ICT”. This text is included in all applications
generated by UCP and does not have a logical connection to the rest of the application,
which is why it is contained within the footer. The rest of the application is wrapped
within the <main> element.

In the footer, there are two external links, one leading to the UCP project Website, the
other leading to the institute Website of ICT at TU Wien. These links are underlined
(which is a widely-known convention for marking links as such), and are additionally
appended by an icon to indicate that they are external links. When these links have already
been visited before, they are colored in purple, otherwise their color is blue. Moreover,
the color contrast has been enhanced for the whole text in the footer. Additionally, there
is a hidden text that will only be read by screen readers which says “This link opens a
new window or tab”.

4.2.2 Visible Focus

In the proof-of-concept application, the focus is clearly visible for every element. In the
Flight Booking Round Trip application, this was a problem especially for the date pickers,
which did not indicate focus at all.

As demonstrated in Figure 4.13, when hovering an input element or its label with the
mouse, a green shadowed border appears around the input element.

When clicking into the input element or focusing the input element using a keyboard, a

86

4.2. Proof-of-Concept Application

Figure 4.13: Three examples of the hover effect in the proof-of-concept application

two pixel thick green border appears around the input element, which can be seen in
Figure 4.14. In case of radio buttons, the border also wraps around the radio button’s
label.

Figure 4.14: Three examples of the focus effect in the proof-of-concept application

4.2.3 Forms

Labels have been connected to their input fields using the <label> tag along with its
for attribute to specify its corresponding input field. Where labels have been missing
(e.g., for the date pickers on the first screen), they have been added. Connecting the
labels to their input fields not only is required for screen readers to be able to read the
purpose of an input field, there is also the advantage that the user can now also click
on the label to focus its input field (as opposed to just click on the input field itself).
This is especially helpful for radio buttons. In the original Flight Booking Round Trip
application you need to click on the radio button itself, which is quite a small target. By
being able to also click on its label to activate the radio button, the click target becomes
much larger (see the first example in Figure 4.14, where everything inside the green
rectangle can be clicked to activate the radio button for selecting “Frankfurt”).

87

4. Improving the Accessibility of UCP

Radio button groups and groups of input fields have been surrounded by the <fieldset>
tag to semantically group them. Each fieldset contains a <legend> tag that describes
the input group (e.g., “Select origin” or “Enter your credit card details”).

Input fields and the space between them are bigger in general and have more padding to
make them clickable more easily. Radio buttons have more space between them and are
replaced by dropdowns when there are more than six options and the screen width is
smaller than 992 pixels.

The submit and cancel buttons are visually differentiated to better distinguish them.
Users are less likely to accidentally activate the wrong button, since the submit button (the
primary action) is colored in blue, while the cancel button has a light gray background.

Date Pickers

Input hints were added to the date input fields to describe the expected date format. They
are connected to their respective input field by the ARIA attribute aria-describedby.
Additionally, the jQuery plugin “Jasny Bootstrap Input Mask”3 was used to add an input
mask to the date picker input field. The input mask (i.e., “__.__.____”, which is also
depicted in the second example shown in Figure 4.14) corresponds to the input hint and
allows the user to put in just the numbers (i.e., there is no need to press the “.” key).

For the date picker itself, a new library has been chosen: Yet Another DatePicker4. Next
to the date input field there is a button showing a calendar icon. By clicking on the
button, a pop-up with the date picker opens (see Figure 4.15).

Figure 4.15: Date picker in the proof-of-concept application

3https://www.jasny.net/bootstrap/javascript/#inputmask (Last Access: 2018-11-03)
4https://freqdec.github.io/datePicker/ (Last Access: 2018-11-03)

88

4.2. Proof-of-Concept Application

The date picker can be easily operated by keyboard: there are shortcuts for choosing
the previous or next day / week / month / year and a selection can be confirmed using
the Enter key. Exiting the pop-up without a selection can be done using the Escape
key, in which case the focus is given back to the date input field. As opposed to the
date picker used in the original Flight Booking Round Trip, the currently hovered day is
indicated visually by a dark blue background.

4.2.4 Error Handling

Figure 4.16 shows an example of error messages in the proof-of-concept application.

Figure 4.16: Indication of form errors in the proof-of-concept application after pressing
the “Submit” button

In case there are form errors after pressing the submit button, a red box appears below
the application’s headline. The red box is focused as soon as it appears, so that a screen
reader will start reading it. Its title indicates how many errors have been found that
need to be corrected before continuing to the next screen. The box’s content lists each of
the errors with a detailed description of the error. Each of the error descriptions is linked
to the input field: by clicking on an error description (or focusing it with a keyboard and
pressing the Enter key), the respective input field is focused. In case of radio buttons,
the first radio button is focused. Additionally to the error descriptions in the box, there
is an error message next to each input field that requires correction, which also can be
seen in Figure 4.16. These error messages are connected to their respective input field
using the aria-labelledby attribute.

89

4. Improving the Accessibility of UCP

4.2.5 Tables

As opposed to the original Flight Booking Round Trip application, tables have column
headlines (using the <thead> and <th> elements), which explain the meaning of their
respective columns (e.g., “City” and “Code” in the tables of the first screen). This was
done in order to avoid confusion when the meaning of the columns cannot be derived from
the context. Additionally, zebra striped coloring was used for table rows, i.e., alternating
background colors (white and light-gray) are used for table rows to distinguish them
better from each other. Moreover, a gray line separates table rows. Each table also
contains a table caption (e.g., “Select origin”) and summary (e.g., “Available origin cities
and their details”) so that screen reader users quickly can recognize their meaning when
skimming through the Web page.

4.2.6 Stacked Tables

The “table to stacked table” widget replacement has been introduced after the user study
in order to avoid horizontal scrolling in tables with many columns on smaller screens.
While this form of displaying tabular data increases the amount of vertical scrolling that
is needed (since the columns are displayed below each other), it avoids the more critical
accessibility issue of having to scroll both vertically and horizontally at the same time.

Compare the two fictional examples of the flight selection table in Figure 4.17, where
three new columns were introduced.

Both tables are viewed on a screen with a resolution of 375x667 pixels. On the left side,
the table is shown in a typical tabular form, while on the right side, the table is shown
as a stacked table. The advantage of the typical tabular form is that more table rows
can be displayed on the screen. This comes at the disadvantage that scrolling is needed
in both directions to view the whole Web page. With the stacked table solution, only
two of the five rows in the example can be shown on the screen, but it does not require
to scroll in two directions.

There is a trade-off between avoiding two scrolling axis and the amount of vertical
scrolling. Since the impact of two scrolling axis can increase reading effort 40 to 100
times [CCGV08], it was decided to use stacked tables for small screens when displaying
the columns in typical tabular form would introduce horizontal scrolling. There is also
the possibility to show the whole table in a new window (by using the link at the top of
the table), hence the user can decide for him- or herself which display form best suits his
or her needs. By selecting fewer columns to view, the user can also reduce the amount of
vertical scrolling as needed.

Additionally to the greater amount of vertical scrolling, stacked tables can also lead to
less clarity in the arrangement. With tabular data, one can compare directly the values
of a column for different rows (e.g., the departure date and time). This is not as easy
anymore with stacked tables. Hence, it was decided to show stacked tables only if there
are many columns that would lead to horizontal scrolling on smaller screens.

90

4.2. Proof-of-Concept Application

(a) (b)

Figure 4.17: Showing tabular data in typical form (a) versus stacked form (b) on a screen
resolution of 375x667 pixels

4.2.7 Dropdowns

Another widget replacement, “radio buttons to dropdown”, was introduced after the
user study while analyzing the limitations of design-time approaches in GUI generation
with regard to accessibility for low-vision disabilities [RTKP18]. In case there are more
than six options in a radio button group, the radio buttons are replaced by a searchable
dropdown (also called combo box). This noticeably reduces vertical scrolling. An example
of a combo box is given in Figure 4.18, where the user has already limited the results
shown in the dropdown by typing “an” into the input field. The input field text is
highlighted in the results.

91

4. Improving the Accessibility of UCP

Figure 4.18: Combo box as widget replacement for radio button groups on small screens

4.2.8 Navigation

In the first version of the proof-of-concept application, a navigation was available, too, in
order to demonstrate how an accessible navigation could be provided for applications that
involve various steps in a process like most of the applications from Chapter 3 generated
by UCP. Figure 4.19 illustrates the navigation in the first version of the proof-of-concept
application.

Figure 4.19: Navigation as given in the first version of the proof-of-concept application

The navigation makes it easy for the user to see how many steps there are in the process
and how far the user has already progressed. Previous steps in the process are marked
up with a hyperlink referencing to the respective screen. By clicking on the link, the
respective Web page opens prefilled with the user’s inputs. In this way, the user can
always go back and check the data he or she has put in. The current screen in the process
is indicated by a dark blue background, white text and an arrow symbol in the navigation.
Subsequent steps are listed, but not clickable.

Next to the headline “Navigation” there is a button to open or close the navigation,
Figure 4.20 shows the navigation in its closed state. The ability to close the navigation

92

4.3. User Study

helps the user to save space on the screen when he or she already knows about the
process steps, so that the user can focus on the actual contents of the current screen
and is not distracted by the additional information. The information about whether
the navigation is opened or closed is stored into a cookie so that its state is propagated
among all the screens. Additionally, there is an invisible skip link (using the anchor
attribute href=“#main”) that allows screen readers to skip the navigation and move
on with reading the main content of the application.

Figure 4.20: Navigation in closed state as given in the first version of the proof-of-concept
application

Since it became clear early on that implementing such a process navigation was not
technically feasible in UCP without major enhancements because there is no distinction
between process-like applications (like Flight Booking Round Trip) or applications
involving a typical Website navigation (e.g., the sidebar navigation in Accommodation
Booking), the navigation was excluded in later versions of the proof-of-concept application.

4.3 User Study

Before actually implementing these improvements in UCP, a user study was performed
comparing the proof-of-concept application with the original Flight Booking Round Trip
application generated by UCP.

The version used for the user study did not yet include the widget replacements “radio
buttons to dropdown” or “table to stacked table”. Moreover, the navigation was left out.
The “table to stacked table” widget replacement was introduced to the proof-of-concept
application at a later stage, since further research showed that this was a solution to
prevent horizontal scrolling for more complex tables with many columns. Each table
within the proof-of-concept application only has two columns, which is why that issue
did not become apparent at first. The “radio button to dropdown” widget replacement
got introduced during a research study that explored how the combination of design-time
GUI generation and RWD can improve low-vision accessibility [RTKP18].

Figure 4.21 shows the version of tables that was used for the user study. Section 4.4.1
explains the differences between the implementation in UCP and the proof-of-concept
application.

93

4. Improving the Accessibility of UCP

Figure 4.21: Version of a table as used during the user study

4.3.1 Setting and Process

The user study was performed by students of the TU Wien as part of a user interface
seminar in December 2017 and January 2018. 51 participants (17 female, 34 male; age
between 13 and 60 years) were asked to perform the same predefined task in both the
proof-of-concept application and the original Flight Booking Round Trip application. The
participants were differently experienced in dealing with computers, some had regularly
booked flights online before (but only on desktop computers), others did not. None of
the participants were disabled.

The description of the task that the participants had to perform is presented in Figure 4.22.
The birth year of Mr. Huber was originally defined to be 1970, but was set to 2017, since
the date picker in the Original Flight Booking Round Trip application required a lot
more time to navigate. Compare both date pickers in Figure 4.23. In the date picker of

94

4.3. User Study

the proof-of-concept application, the user can navigate between consecutive years using
the double arrows, while the double arrows in the original Flight Booking Round Trip
application only allow navigating between consecutive months.

Imagine you are somewhere abroad, and your boss Mr. Huber tells you to
book a flight ticket for his wife as quickly as possible.

Book a flight from Vienna to Munich on Monday next week (10:00), with
return on Friday (18:00), for Mrs. Anna Huber (born on March 15,
2017). Pay for it using her husband’s (Max Huber) VISA credit card
with the number 1258 8569 7532 1569 (CVC: 354) and the expiration
date 12/19.

Figure 4.22: Task description used in the user study

(a) Original Flight Booking Round Trip application (b) Proof-of-concept-application

Figure 4.23: Comparison of date pickers in the applications used for the user study

The user interfaces of the proof-of-concept application and the original Flight Booking
Round Trip application were displayed consecutively on a smartphone, whose position
was fixed on a table. Participants were asked to use only one hand for navigating through
the applications. Participants were split into two groups, and the order in which the
applications were presented to the participants differed between the groups (i.e., one
group started with performing the task on the proof-of-concept application first, and
then continued with the original Flight Booking Round Trip application, and vice versa).
Additionally, the radio button options were presented in a random order, differing between
both applications.

A video camera filmed the smartphone screen and the participants’ hands while the task
was being performed. The amount of time a participant has spent on each screen was
analyzed afterwards. Page loading times and the time a participant spent using the
software keyboard was excluded. After the participants had performed the task in both

95

4. Improving the Accessibility of UCP

applications, they were asked to fill out a questionnaire asking for subjective impressions
regarding both GUIs. Figure 4.24 lists all the questions being asked in the questionnaire.

1. Which interface is visually more attractive?

2. Which interface makes interaction more intuitive?

3. Which interface makes it easier to figure out what to do?

4. Which interface makes it clearer how to use it?

5. Which interface demands less time from you?

6. Which interface is easier to handle errors on?

7. Overall, which interface would you use to book flights?

Figure 4.24: Task description used in the user study

4.3.2 Results

When considering the subjective impressions the participants had regarding both GUIs,
the proof-of-concept application clearly was found visually more attractive (73 % preferred
it over the original Flight Booking Round Trip application) and participants would prefer
to use it when booking flights (58 %). No clear preference was shown with regard
to how intuitive, clear, or easy the GUI was, probably because both GUIs were too
similar (several participants had mentioned that). 34 % of the participants found the
proof-of-concept application easier to handle errors on, while 44 % thought that both
GUI were similarly easy in that regard.

Many participants claimed that the proof-of-concept application demanded less time
from them (42 % said so). However, the time spent on each screen measured from the
video tells a different story. On average, in the proof of concept application, participants
spent almost 13 seconds more on the first screen and 6 seconds more on the second
screen, than in the original Flight Booking Round Trip application. A reason for this is
likely that the participants had to scroll a lot more in the proof-of-concept application,
because the spaces between elements were much larger. Some participants that liked the
original Flight Booking Round Trip GUI more also mentioned in the questionnaire that
the reason for this was that it required less scrolling. Additionally, the font size in the
original Flight Booking Round Trip was larger, which made it easier to read the text.

Some participants preferred the proof-of-concept application, since they could click on
the label to select a radio button option, while in the original Flight Booking Round Trip
application they had to click on the radio button itself, which was a much smaller target

96

4.3. User Study

region. Some participants seemed to make less errors in the proof-of-concept application
because of that.

The date picker in the proof-of-concept application was preferred by some participants,
since selecting a date seemed to be easier. However, other participants mentioned that
they were a little bit confused because the date picker did not open when focusing the
date input field (only when clicking on the date picker icon). Some participants preferred
that the proof-of-concept application showed the required date format as a hint below
the input field.

Overall, the similarity between the two user interfaces was emphasized by several partici-
pants.

4.3.3 Lessons Learned

Even though the user study did not include disabled participants, some lessons have been
learned from it regarding accessibility. The major findings regarding accessibility were:

• Since the click targets of the radio buttons (due to the labels) are larger, it is less
likely to make errors and easier to select an option.

• The original Flight Booking Round Trip required far less scrolling due to less
spacing between elements. Users needed more time and more scrolling to finish
their tasks in the proof-of-concept application.

• There is a trade-off between the spacing between elements and the amount of
scrolling needed. A larger space between elements increases click targets and hence
can lead to less errors. However, a higher amount of scrolling increases overall task
performing time.

• Although the spaces between elements are larger in the proof-of-concept application,
the font size is slightly smaller than in the original Flight Booking Round Trip
application. The larger font size in the original Flight Booking Round Trip makes
it easier to read the text.

• Although the calender was perceived as being superior to the old version, users
wished it would open immediately when clicking into the date input field.

• Even non-disabled people would like to have input hints (like showing the required
date format for a date input field), even though they likely can correct their errors
much quicker than disabled people.

• The fact that the birth year of Mr. Huber in the task description had to be changed
due to limitations of the date picker in the original Flight Booking Round Trip
application shows that special care needs to be taken when selecting GUI component
libraries. Since the original date picker would require a lot more clicks, especially

97

4. Improving the Accessibility of UCP

people with motor disabilities would face issues and would require a lot more time
to select the correct date.

These learnings have been used for improving the proof-of-concept application and
implementing the accessibility improvements in UCP.

4.4 Implementation of Accessibility Improvements in
UCP

After the evaluation of the proof-of-concept application, the accessibility improvements
were implemented in UCP. Some features have slightly changed compared to the proof-
of-concept application due to the results from the user study and further research.
The implementation was bounded to two modules within UCP that are responsible for
generating the FUI (i.e., GUI source code). Some new technologies have been introduced
into UCP for inclusion of some run-time behavior and adaptations.

4.4.1 Differences to the Proof-of-Concept Application

Compared to the proof-of-concept application evaluated in the user study, some features
and stylings have been changed based on findings in the user study and further research.

To reduce scrolling and eliminate unnecessarily duplicated information, some labels (e.g.,
the date picker labels “Departure Date” and “Return Date”) have been removed again
from the visible screen and made implicit using the ARIA attribute aria-label, which
is demonstrated in Figure 4.25. This ensures that the label text is still available for
screen readers, while being visually hidden. Since the information is already shown in
the panel title, it does not make sense to show it twice (both the panel title and as a
label for the input field directly below). The screen reader still needs the information in
case the user jumps from one input field to the next using the Tab key on the keyboard,
in which case the panel title would not be read by the screen reader.

The font size was increased and the spaces between GUI components was reduced in
order to make the text more readable while reducing the amount of scrolling at the same
time (see Figure 4.26 for comparison).

Additionally, during manual accessibility evaluation, it was noticed that the font size
could not be customized via browser settings, since the font size of the <body> tag was
given in pixels (which was introduced by the Bootstrap framework). This was solved by
setting the font size of the <body> text to a relative measure (1.1em).

Furthermore, the color contrast has been enhanced for headings and buttons to suffice
the level AAA contrast requirement.

The button sizes (e.g., for submitting or canceling a form) have been increased to have a
minimum width of 120 pixels on large screens in order to increase the click target. The

98

4.4. Implementation of Accessibility Improvements in UCP

(a)

(b)

Figure 4.25: Comparison of explicit (a) and implicit (b) labels

table summary has been excluded since it is not automatically derivable from the model
within UCP. However, the table’s caption is, in fact, derivable from the model by using
the description of the Closed Question within the discourse model (“Select Origin”),
which is also used for the panel title.

The tab view component has been made accessible. This has not been covered by the
proof-of-concept application, since there was no use case in the original Flight Book
Round Trip application that would have been suitable for a tab view.

Finally, the widget replacement “Radio Buttons to Dropdown” is not only performed for
small screens with a width lower than 992 pixels, but in general, if there are more than
six options. This was done in order reduce mouse movements also on large screens. It
could be possible in the future to set different thresholds (i.e., number of options) for
this widget replacement on desktop computers, tablets and smartphones using device
specifications.

The date picker component was not changed to open immediately when clicking into

99

4. Improving the Accessibility of UCP

(a)

(b)

Figure 4.26: Comparison of the font sizes and spacings between the proof-of-concept
application (a) and the implementation in UCP (b)

the date input field, since it should be possible to either put in the date manually or to
select it in the date picker. Both cannot be enabled at the same time, since the date
picker would need to be synced with the date input field as soon as the user starts typing.
The date picker would jump back and forth while the user is typing, which would be
confusing. It would also be unclear how to switch focus between the input field and

100

4.4. Implementation of Accessibility Improvements in UCP

the picker. Additionally, the success criteria “3.2.1 On Focus” could be interpreted in a
way that would make the date picker component fail. It requires that, when focusing a
component, the focus is not changed to another component. That would be the case for
the date picker when focusing the date input field (since it would immediately switch
focus to the date picker).

4.4.2 Scope and Boundaries of Implementation

The implementation within UCP was limited to the two modules responsible
for generating the FUI (org.ontoucp.structuralui.code.generator and
org.ontoucp.structuralui.code.generator.html). At this point in the gen-
eration process, the Structural UI Model, i.e., the abstract representation of the GUI that
already contains information about the GUI’s structure and content, is already available.
This implies that all the information needed for implementing accessibility features in
the FUI needs to be available at this point.

The Structural UI Model did not yet support some of the features, namely input format
hints, table headers, connections between labels and their input fields, as well as widget
replacements. The missing model components have been provided by UCP developers.
Since these additional components cannot yet be generated from the Communication
Model, the (generated) Structural UI Model of the Flight Booking Round Trip application
was modified manually to incorporate all the missing features. This extended model
demonstrates how the model will have to look like so that accessible GUIs can be generated
in the future. Based on this extended model, the code generation was implemented as
part of this thesis.

The use case in which additional content is shown on the screen after a page reload,
like it is the case in the Shopping application, has not been addressed. Although this
poses an accessibility issue for blind users, as discussed in Section 3.3.1, fixing it would
require a substantial modification of the framework’s runtime framework to load contents
without requiring a page reload. This was out of the scope of this thesis.

Since there is currently no distinction between process-like applications and applications
involving a conventional Website navigation, the navigation discussed in Section 4.2.8
has not been implemented in UCP.

4.4.3 Changes to the Structural UI Model

As mentioned above, the Structural UI Model had to be modified manually in order to
be able to implement the code generation of the proposed accessibility features, since
UCP did not support some of these features at that time. Actually, two manually
modified Structural UI Models have been created based on the (generated) Structural
UI Model of the Flight Booking Round Trip application. The first one includes the
widget replacements “Radio Buttons to Dropdown” and “Table to Stacked Table”. The
second Structural UI Model was generated using a device specification for smartphone
resolutions and includes a tab component, which is replaced by an accordion at a defined

101

4. Improving the Accessibility of UCP

media breakpoint. These Structural UI Models demonstrate how the models should look
like when they would be generated by UCP in the future. The remainder of this section
explains the manual changes in the Structural UI Model for each accessibility feature
which could not be implemented using the generated Structural UI Model as is.

Table Headers

To show the headers of table columns in tables and stacked tables, a way of adding labels
to the list widget has been introduced by UCP developers. A list widget can contain a list
of these labels. Figure 4.27 shows the header labels within the list panel for selecting the
departure airport. A table’s column header text is represented by the “Text” property of
the header label.

Figure 4.27: Table header label (highlighted) within the list panel component for selecting
the departure airport

Connections between Labels and Input Fields

To be able to connect a label with its respective input field by setting the label’s for
attribute, a property called “For” was added to the label widget, which specifies a link to
the corresponding input widget. Figure 4.28 shows the representation of the panel for
entering personal data in the Structural UI Model, which contains two labels and two
text input fields. Below the model, the “Name” label’s properties are shown, in which
the “For” property has been set to the input widget “Text Box Name”.

Input Hints

Input hints are represented by label widgets that have a special style (i.e., “formatHint”)
associated with them. The are connected to their respective input field via the “For”
attribute. The format is specified by the label’s “Format” property and its “Text”
property holds the hint’s description. Figure 4.29 shows the input hint’s representation
in the Structural UI Model and its properties.

Widget Replacements

For widget replacements, two new components have been added by UCP developers: the
Display Alternative and its child component, the Alternative. A Display Alternative

102

4.4. Implementation of Accessibility Improvements in UCP

Figure 4.28: Connection between the label “Label Name” and the input widget “Text
Box Name” via the label’s “For” property

wraps multiple Alternative elements, which contain all GUI components that should be
shown under a certain display condition. The Display Alternative’s intention is to show
only one Alternative at any given time. To do this, mutually exclusive conditions are
assigned to properties of each Alternative. Currently, to model the widget replacements
introduced in Section 4.1.5, two conditions have been added to the Alternative via
properties. In the future, more conditions could be added as needed.

The first condition is the range of screen width for which the Alternative is shown, given
by the “Minimum Screen Width” and “Maximum Screen Width” properties. These are
the media breakpoints at which the Display Alternative switches from one Alternative to
another. When generating the Structural UI Model in the future, it has to be made sure
that the complete range of screen widths is covered, otherwise no Alternative would be
shown for non-covered ranges.

The second condition is related to the amount of options shown in an Alternative. This

103

4. Improving the Accessibility of UCP

Figure 4.29: Representation of an input hint for the departure date

is currently only used for radio to dropdown widget replacements, but could also be
extended to other widget replacements (e.g., the number of tabs in the tab to accordion
widget replacement). The condition is defined by the “Rows Greater Than” property
of the Alternative which indicates that it should be shown only if it contains more
options than the number given in the property. The upper limit of rows for which the
Alternative will be shown is given by the “Rows Greater Than” property of its sibling
Alternatives. For example, imagine a Display Alternative contains two Alternatives, one
which shows a list of radio buttons and the other showing a combo box. The radio button
list Alternative has set a “Rows Greater Than” of 0, and the combo box Alternative has
the property set to 6. The radio button list will be shown when it contains one to six
options, while the combo box will be shown if there are more than six options.

Figure 4.30 shows the model of the “Tabs to Accordion” widget replacement. The
Display Alternative contains two Alternatives, one for showing tabs and one for showing
accordions. Both Alternatives contain the tab component. Its display type (i.e., tab or
accordion view) is determined by a style applied to it (not shown in Figure 4.30). The

104

4.4. Implementation of Accessibility Improvements in UCP

Figure 4.30: Example model and properties for the “Tabs to Accordion” widget replace-
ment

tab Alternative is shown when the screen width is greater than or equal to 620 pixels.
The width of 620 pixels is exactly the width for which the tabs still can be viewed in
one line. The accordion Alternative is shown when the screen width is smaller than 620
pixels. The “Rows Greater Than” property is set to 0 for both Alternatives, since it
should not affect the decision of which Alternative to show.

Figure 4.31 illustrates the “Radio Buttons to Dropdown” and “Table to Stacked Table”
widget replacements. The Display Alternative contains three Alternatives: the first one
shows the data as a typical table, the second one shows it as a stacked table, and the
third one shows it as a combo box. Both conditions, the screen width and the number
of options, determine which Alternative should be shown. If there are more than six
options for the Display Alternative (as there are, for example, when selecting the origin
and destination airports), the combo box Alternative is shown regardless of the screen
width. If there are fewer than six options (e.g. when selecting flights and return flights),
the screen width determines which kind of table is shown. For a screen width of up to
550 pixels, the stacked table is displayed, otherwise the typical table is shown.

105

4. Improving the Accessibility of UCP

Figure 4.31: Example model and properties for the “Radio Buttons to Dropdown” and
“Table to Stacked Table” widget replacements106

4.4. Implementation of Accessibility Improvements in UCP

4.4.4 Implementation

This subsection explains how the accessibility features were implemented in UCP based
on the manually adapted Structural UI Models.

General Structure of the Screen

In UCP, the GUI is built from top to bottom, starting at the page (called “Screen”) and
moving down the Structural UI Model tree to generate all the components into a Velocity
(.vm) template file, recursively. Additionally, a controller and service, responsible for
loading the current Web page and all its resources, as well as a messages file are generated,
and all resources (e.g., CSS and JavaScript files) are moved to folders from which they
can be served.

This process was extended to copy all the new libraries introduced in Chapter 2 and to
generate the new GUI components (namely DisplayAlternative and Alternative)
and a new JavaScript file for adding runtime behavior. While in the original UCP
framework, only an HTML file per screen was generated, now there are both an HTML
and a JavaScript file generated per screen.

The generated Web page looks as follows: The HTML tag contains a lang attribute which
is set to the US locale (en-US), determining the language of the page. Two JavaScript
files are loaded, modernizr.js for feature detection and require.js, which then will
load all the necessary JavaScript files for the page asynchronously. Modernizr detects,
for example, which browser is being used and certain styles are then added by the
Assets framework depending on the browser (which is needed for some older browsers
to circumvent their lack of support of newer CSS and JavaScript features). The body
of the HTML document contains a <div> element with the container class to wrap
Bootstrap’s grid layout. A <noscript> tag wraps a message shown to the user in case
JavaScript was disabled to indicate that not all functionality might be available. The
page is structured by three sections: the header, a main area, and a footer. The header
contains the application’s title, the footer contains hyperlinks to the UCP project Website
and the Website of the Institute of Computer Technology at TU Wien, and the main
section holds all the generated GUI components wrapped by a global <form> element.

Layout Mechanism for the Screen

The layout mechanism of UCP had to be changed from a table layout to Bootstrap’s
responsive grid layout. In the Structural UI Model, the layout is given by a grid layout:
each container defines how many rows and columns it holds and the dimensions (width and
height) of a cell (i.e., column width and row height). Each widget (including containers)
defines in which column and row it is placed, how many rows and columns it spans, and
its alignment within a cell (e.g., NORTH_WEST for a top left alignment).

A new utility class, LayoutGridUtils, takes care of transforming this grid layout into
Bootstrap’s 12-column-grid. To do this, the columns have to be translated to fit that

107

4. Improving the Accessibility of UCP

format (i.e., they have to be spread among the 12 columns that make up a Web page’s
width). First, the width of each container is divided by 12 in order to get the width of
one column. Then, the width of each grid layout column within the container is divided
by the calculated column width. If there is a column span defined on a component, the
calculated values for the corresponding cells are added. As a result, each component
within a container gets assigned a number that determines the number of columns it
spreads among the 12-column-grid of its parent container (e.g., 3 if the components width
makes up a quarter of the container’s width). This number is then used to construct
the component’s CSS class to determine its width (e.g., col-md-3). For now, only one
type of grid classes (i.e., col-md for medium-sized screens) is used, which automatically
adapts itself to smaller screens by expanding the widths of the columns to that the
components will eventually reflow to a one-column-layout. This could be easily extended
by specifying multiple widths (one for each device specification), so that the grid becomes
more fine-grained.

Another new utility class, PrimaryPanelUtils, was introduced to distinguish bordered
panels from other containers that contain no styling (which are only used for creating
the layout). The bordered panels are determined by which element within the discourse
the corresponding element in the Structural UI Model represents. In case it is an Open
or Closed Question, an Informing or Accept element, its contents will be wrapped within
Bootstrap’s panel component. In case the element holds a label with a “heading” style,
that label will be put into the panel’s header.

Form Elements

The newly introduced utility class FormUtils takes care of deciding the styling, type
and behavior of form elements.

A label widget’s type and styling is defined by which styles are specified for it in the
Structural UI Model and whether it has set its “For” property to an input widget:

1. Label widgets having the “heading” style are interpreted as headlines (typically as
panel headlines) and are marked up with HTML <h*> tags.

2. Format hints are defined by the “formatHint” style and show not only the label
widget’s text, but also its format, which resembles the meaning of the data format
for its corresponding input field. A format hint label widget also needs to have
set its “For” property to an input widget, so that it can be connected to its
corresponding input element via the aria-describedby attribute of the input
element in HTML.

3. Label widgets which have their “For” property set but do not have a specified
styling, are interpreted as true HTML <label> elements. They are connected to
their input field by the HTML for attribute.

108

4.4. Implementation of Accessibility Improvements in UCP

4. Finally, label widgets with none of the above mentioned stylings or an empty “For”
attribute (or when it is set to a widget that is not an input widget), are interpreted
as plain text.

Besides being connected to their format hints, input elements can also have an
aria-label attribute, which is set to the panel headline, if no label widget was
defined connected to the input widget. Using the panel headline as an input element’s
label is sensible in cases where there is only one input widget within the panel, as it is
with the date picker in the Flight Booking Round Trip application for the departure date
and the return date, respectively. Otherwise (i.e., if there is more than one input widget
within a panel), the Structural UI Model should always provide a label widget along with
the input widget.

Date input fields are indicated via the date CSS class that is detected by a JavaScript
function on page load, which in turn initializes the date pickers, i.e., adding the button
for opening the date picker as well as adding accessibility-related markup to the date
input field. Figure 4.32 illustrates the input mask being used for indicating the required
date format, so that the user knows how to provide the date by typing in if he or she
chooses not to use the date picker. The date picker button uses a Font Awesome icon
of a calendar, which can also be seen in Figure 4.32. It is augmented by a hidden text
accessible to screen readers that says “Show calendar for [label name]”. Figure 4.33 shows
this for the date picker in UCP: The element containing the class sr-only is
hidden from the screen by setting its positioning to “absolute”, its dimensions to 1x1
pixels and its margin to -1 pixel. Hence, the element is moved out of the screen, but
still remains in the DOM to be accessible by screen readers. Additionally, the font icon
wrapped in the element with the fontIcon class is hidden from screen readers
using the aria-hidden attribute, which is set to true.

Figure 4.32: Input mask and Font Awesome icon used in the date picker component

Figure 4.33: Font icon on the link for the date picker in UCP

For radio buttons, their text has been turned into an HTML label, so that they are read
by screen readers when the radio button is focused and the user can click on the text to
select the option, hence increasing the click target.

109

4. Improving the Accessibility of UCP

Combo boxes are implemented using the Combobo library introduced in Chapter 2 and
contain the HTML attribute role="combobox", since there is no dedicated HTML
element resembling a combo box. There is an input element which owns a container
holding the available options by having the ARIA attribute aria-owns. Further ARIA
attributes it contains are aria-autocomplete="list" and aria-expanded. The
attribute autocomplete="off" prevents the browser from adding a list of suggestions
(determined by the user’s input history) to the input field while the user is typing,
since these would overlap the actual options of the dropdown. The container holding
the options has the role listbox and the options have the role option. JavaScript
functions and listeners provided by the Combobo library make sure that ARIA attributes
(like aria-selected) are being kept up-to-date while the user browses through and
selects options. Additionally, filtering options as the user types into the input field and
highlighting parts of the options that match the input, are done via the library.

Tab Controls and List Widgets

Tab controls can have two appearances, the typical tab view (indicated by the tab
CSS class), and the accordion view (indicated by the accordion CSS class). In
HTML, the tabs are represented by an unordered list of hyperlinks referencing to their
corresponding tab contents. Each link has the ARIA attributes aria-setsize and
aria-posinset to indicate how many tabs there are and the respective tab’s position.
Further accessibility-relevant markup is added via a JavaScript function on page load.

List widgets show their list elements within an HTML table. The table can also have
two appearances, the typical table view and the stacked table view (indicated by the
stacked CSS class). Table headers are generated through the header labels (i.e., the
special kinds of labels added manually to the Structural UI Model). To show the column
headers also in the stacked table version, the data-title attribute of a table cell is
also set to the column header text. The possibility for a user to select which columns
he or she wants to be displayed could not be implemented at this point, since it was
not clear at the time how columns that always need to be shown (e.g., because they are
required for user interaction or are necessary for the user to make sense of the other
columns) could be determined during model generation.

Runtime Capabilities

A few runtime capabilities have been added to UCP via JavaScript. For this, a JavaScript
file (<screenID>.js) is generated for each screen which loads the relevant dependencies
that are needed for the current Web page. It is defined as a module that includes
all the runtime logic for the current screen as well as various dependencies needed
to provide that logic. The newly introduced utility class RuntimeBehaviorUtils
determines, which dependencies need to be included for the respective screen. Some
dependencies (like jQuery, Bootstrap and the Assets Framework) are always loaded since
they are needed for initializing the Web page. Others, like scripts used for initializing
forms, tables, or tab controls are only loaded when the page contains corresponding

110

4.4. Implementation of Accessibility Improvements in UCP

elements to reduce page loading time. Also, the contents of <screenID>.js are
determined by which elements are actually on the page. This is done by recursively
traversing the tree of components from the Structural UI Model using a function in
the RuntimeBehaviorUtils. <screenID>.js is loaded using Require.js at page
load. To pick the correct file (since each screen has its own JavaScipt file), the <body>
tag of the HTML file contains a data-screen property, which is set to the unique
<screenID> for the respective screen.

At page load, several components that require JavaScript for their functionality are
initialized in <screenID>.js. For example, the date pickers are created by specifying
the date format, their labels and an input mask corresponding to the date format.
Additionally, all the relevant rules for the form checking are created. This is done by
taking the format property of the screen’s input widgets into account. For example,
the format property contains a minimum and maximum value for a number input
widget, and hence, a checking rule is created taking these values into account. The
newly introduced utility class ValidationUtils creates the checking rules that need
to be added by traversing the Structural UI Model tree and evaluating the format
property of the screen’s input widgets. These checking rules are then injected into the
<screenID>.js file during its generation. The <screenID>.js file initializes the
jQuery Validation plugin with the checking rules at run-time when the respective screen
is loaded.

When submitting a form, the jQuery Validation plugin takes care of checking the
relevant input elements against the defined rules. In case there have been errors while
submitting the form, the corresponding error messages are generated. The newly created
validationUtil.js module defines a function that receives the error messages from
the jQuery Validation plugin and creates a container with a summary of all error
messages, which is added to the top of the screen. Each error message is linked with its
corresponding input field so that the input field is focused when the user clicks on it.
validationUtil.js also places error messages directly next to their input fields and
connects both of them semantically via the ARIA attribute aria-labelledby.

Because of the way UCP was built, there is only one global form on the Web page, but
depending on which button the user clicks, only a part of the form should be checked for
errors (see, e.g., the Shopping application, where only the elements within the panel the
button belongs to should be checked). To do this, the relevant rules for the respective
input elements are filtered before each form submission. ValidationUtils is used to
traverse the Structural UI Model’s component tree and collect all input widgets belonging
to the same Communicative Act as the submit button that was activated. Those are
the input widgets that need to be checked for form errors when the submit button is
activated. In <screenID>.js, an event listener is set on each submit button, which
performs the filtering before the actual form submission. This is done by temporarily
removing the required attribute from the input widgets that should not be checked.
After the jQuery Validation plugin’s form checking function was invoked, the required
attribute is added again to the input widgets.

111

4. Improving the Accessibility of UCP

Widget Replacements

For widget replacement, all the alternatives are rendered into the HTML page at first.
To do this, a new template for alternatives has been added to the generation process that
wraps the respective alternative into a <div> container with a unique ID.

Alternatives which do not match the criteria are then hidden from the screen when
the Web page is loaded. This is done by keeping a map of DOM elements of all
available alternatives per Display Alternative. Which alternative belongs to which Display
Alternative is determined by the new utility class DisplayAlternativeUtils. On
page load, the map of DOM elements is initialized and the available conditions are
evaluated using a newly created JavaScript function. If an alternative matches the
alternative, it is shown on the screen, otherwise it is hidden. When certain events are
triggered, a re-evaluation of the conditions is performed and depending on the result, the
Display Alternative is updated with the matching alternative.

The first condition that needs to match is whether the number of options (in a list
widget) is greater than the value of the “Rows Greater Than” property of the Alternative
widget in the Structural UI Model. This condition has a higher priority than the second
condition, i.e., when the number of options is smaller than or equal to the property’s
value, the alternative will not be shown on the screen, no matter whether the second
condition matches. The first condition is evaluated once when the page loads, since the
number of options cannot change dynamically.

The second condition evaluates to true if the current screen width is within the range
defined by the “Minimum Screen Width” and “Maximum Screen Width” properties of
the Alternative widget. A media query string is built for each alternative based on
these properties using DisplayAlternativeUtils. Each media query string is then
injected into the JavaScript function responsible for evaluating the condition of the
respective alternative. The media queries are evaluated once at page load and every time
the browser window is resized (using an event listener on the window.matchMedia
function which is triggered every time the browser window size changes).

Containers holding the alternatives’ components are hidden via the CSS display:
none property (as opposed to setting their visibility) to hide them from both the
visible screen and screen readers.

112

CHAPTER 5
Evaluation and Results

The implementation of accessibility measures in UCP was evaluated by generating the
Flight Booking Round Trip application in various variants (to cover the different types of
widget replacements) and evaluating those variants against the WCAG 2.1. Section 5.1
describes the evaluation process. The results are given in Section 5.2.

5.1 Evaluation
Like in the case study in Chapter 3, the WCAG-EM was employed. The target guidelines
were WCAG 2.1 up to Level AAA. For the evaluation, four variants of the Flight Booking
Round Trip application have been generated using the adapted UCP framework that
included the accessibility improvements discussed in Section 4.4:

1. A variant containing the “Tabs to Accordion” widget replacement, wrapping all
the panels into their own tab. The tab view is replaced by an accordion view if the
screen width is smaller than 620 pixels.

2. A variant containing the typical table form for displaying the departure and
destination airports as well as the available flights.

3. A variant displaying the available flights, departure and destination airports in
stacked tables.

4. A variant showing combo boxes for available flights, departure and destination
airports.

Similarly to the case study, a combination of automatic evaluation, manual inspection,
and a screening technique (i.e., using screen readers and a keyboard or touchscreen,
respectively, while turning off the monitor) was used.

113

5. Evaluation and Results

The evaluation was carried out on a desktop computer (running Ubuntu Linux 18.04
and Windows 10, respectively), a tablet (running iOS 12.1), and a smartphone (running
Android 8.1). A mouse, a keyboard and three screen readers (JAWS 17, Voice Over and
Google TalkBack) were used as input devices. The browsers being used were Chrome 65,
Firefox 63, Internet Explorer 11, Edge 44, and Safari 12 (on iOS).

WAVE, SortSite Trial, Total Validator, and TAW were used as automatic accessibility
evaluation tools. These tools are currently only checking for compliance with WCAG
2.0, i.e., the additional guidelines from WCAG 2.1 could only be evaluated manually.
Additionally, the HTML and CSS validators have been applied.

The guidelines and documents being used as a reference for the accessibility evaluation
were:

• WCAG 2.1 Guidelines (W3C Recommendation as of June 2018)

• How to Meet WCAG 2.1

• Understanding WCAG 2.1

• Techniques for WCAG 2.1

• WCAG2ICT

• Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI Guidelines Apply to
Mobile

Notice that the last two documents only take WCAG 2.0 into account.

5.2 Results
In the following, the results regarding each of the four WCAG 2.1 sections are discussed
in detail. A summary including a table showing which success criteria were met can be
found at the end of this section.

5.2.1 Perceivable

A text alternative is provided for all non-text content (e.g., names and labels for input
fields, description text for the date picker and link icons accessible by screen readers).

Since time-based media is currently not supported in UCP, the guideline 1.2 Time-based
Media does not apply.

Information, structure, and relationships can be perceived both visually and via screen
readers. For example, panel headlines have a white text and blue background to distinguish
them from normal text, while they are marked up using a HTML headline tag so that
the screen reader interprets them as headlines.

114

5.2. Results

The sequence of content is determined by the model designer. If he or she models the flow
of the application in a meaningful way, then also the application content’s are generated
to be presented in a meaningful sequence.

Information is not limited to a certain sensory characteristic. For example, form errors
are not indicated solely by an icon or a red color, they are also using markup like
aria-invalid or aria-describedby. The date picker icon is placed in a button
that contains a hidden text which is accessible to screen readers that says “Show calendar
for [label name]”.

Since the adapted version of UCP generates responsive applications, the content is not
restricted to a certain display orientation. Component sizes and placements are adapted
based on the available screen width.

The purpose of input fields is described by their label and input hints (if available). The
purpose of other GUI components, icons or regions can also be determined by screen
readers due to their markup.

No additional content is shown only when hovering or focusing an element (except text
within the title attribute, which adheres to the guidelines).

Color contrast is high enough for level AA, requiring a contrast ratio of 4.5:1, and level
AAA, requiring a contrast ratio of 7:1. Adjacent colors of non-text elements in the GUI
(like input fields) have a contrast ratio of more than 3:1.

Text can be resized using browser settings as needed. Additionally, the whole GUI can
be zoomed, while the content will adapt and reflow to fit into the screen without adding
a horizontal scroll axis or overlapping contents. Adaptations of the styles can be made by
users with custom stylesheets, since no styling is enforced by the generated application
(e.g., using !important). Sensible defaults have been implemented (e.g., regarding line
spacing, colors, and so on).

Since there are no audio controls or background audio, the guidelines “1.4.2 Audio
Control” and “1.4.7 Low or No Background Audio” do not apply.

5.2.2 Operable

These guidelines relate to the operability of GUI components.

All GUI components of the adapted UCP framework can be operated via keyboard. The
keyboard focus is never trapped, i.e., the focus can be removed from an element using the
tab key. Keyboard shortcuts are used for some components like the date picker, where
the user can conveniently switch, e.g., between months or years, using a certain key.
However, these shortcuts are active only when focusing the respective GUI component,
hence the relevant success criterion is met.

Since there are no time limits for viewing the application’s content (e.g., automatic
updates of text) and no animations or flashes, the guidelines “2.2 Enough Time” and
“2.3 Seizures and Physical Reactions” do not apply to UCP.

115

5. Evaluation and Results

Page titles are given via the <title> tag in the header of the HTML document. They
reflect the name of the application, which is sufficient for meeting the success criterion,
although it could be more descriptive by describing the content of the current screen
(like “Flight Booking Round Trip: Select a Flight”). This could not be achieved because
it is not clear beforehand which content appears on which screen. There would have to
be a way for the model designer to manually specify more descriptive page titles.

The purpose of a link (e.g., the links in the footer) is given by the text (telling the user
what to expect) as well as an icon and a hidden text (which is only accessible to screen
readers) telling a person that it is a link referencing to an external source.

Section headings are implemented by the headings of the panels. There are various
headings and labels to describe the content. Of course, the model designer needs to make
sure that these headings and labels are descriptive by providing appropriate texts.

The focus is always visible. Regarding the focus order, UCP provides sensible defaults
by not interfering with the natural focus order. However, the Flight Booking Round
Trip Accessibility example application in Chapter 3 shows that the model designer could
interfere with a sensible focus order by using custom rules to modify the order of content.

Hints about the user’s location (like breadcrumbs, highlighting of the current page in the
navigation) within an application could not be provided, since the navigation could not
be implemented (see Section 4.2.8). The same applies to the success criterion requiring
multiple ways to navigate an application and bypassing blocks of repeated content on
each Web page.

Regarding input modalities:

• There are no GUI components that require multipoint or path-based gestures.

• There are no down events for activating a functionality, e.g., if the user has
accidentally pressed a button, then moving out of the button area while having the
button still pressed does not perform the button action.

• Programmatically accessible names match or start with the visible label of a GUI
control.

• Functionality is not operated via device motion (e.g., shaking, tilting).

• The target size of 44x44 pixels was not reached. This is required by a level AAA
success criterion. While the minimum target width of 44 pixels is met for all GUI
controls (buttons, input fields, links,...), a minimum height of 44 pixels was not
even met in the proof-of-concept application, where the larger target areas (e.g.,
the radio buttons in the table had a target height of 36 pixels) led to a lot more
scrolling which was criticized by the users in the user study.

• The application does not restrict the use of input modalities (e.g., exclude keyboards
or screen readers from accessing content or GUI components).

116

5.2. Results

5.2.3 Understandable

With these guidelines, it should be checked whether the GUI is understandable for the
users.

The first guideline deals with readability. The first success criterion, requiring the Web
page to specify a default language that can be programmatically determined, is met by
setting the language attribute of the HTML tag. It was defined that UCP currently
supports only English, but it could be easily extended to support any other language
by extending the model with a field asking the model designer for the language of the
application.

The other success criteria of this guideline cannot be met solely by making the source
code generated via UCP accessible. They require that the language must also be specified
for parts of the GUI, which are not in the same language as the rest of the Web page.
Additionally, unusual words (like idioms or jargon), abbreviations, and pronunciation
(e.g., when the meaning of a word depends on its pronunciation) have to be clarified.
Further, when a text is hard to understand for someone having just a lower secondary
education level, an alternative version of the text that is easier to understand, has to be
available. Since these success criteria strongly depend on the content and markup of the
text that is provided by the model designer, he or she would need to make sure that the
texts are readable.

The second guideline focuses on the predictability of the GUI. Its level A success criteria
require that the context is not changed when a component receives focus or during user
input. For example, opening a help dialog and focusing as soon as user focuses an input
field, or showing a set of further input fields when a certain user input was given, would
fail these success criteria. UCP meets these criteria, since neither focusing an input field
nor providing input changes the context. Context-sensitive help messages (i.e., the input
hints) are non-disruptive, since they are read by the screen reader when an input field
is focused without changing the focus from the input field to the hint (this is done via
aria-describedby).

Another success criterion is dealing with consistent navigation. Since the navigation has
only been addressed in the proof-of-concept application, but not in the implementation
in UCP, this is still an open issue. For example, in the Booking Kärnten application, the
three buttons used as a “navigation” sometimes change their order on consecutive pages.
They even change their position, i.e., in case they do not fit on the screen horizontally,
they are aligned vertically.

Consistent identification, also required by the guideline, could be achieved in the adapted
version of UCP. Components with the same functionality are consistent in their appearance
and usage (e.g., combo boxes are operated the same way every time, the icon button
for the date picker is always the same, error messages are presented in the same way).
The technique for implementing this guidelines, i.e., using consistent labels, names, and
alternative texts for components with the same functionality, has been applied.

117

5. Evaluation and Results

The last success criterion, requiring that context changes are only initiated by the user
or can be turned off if they are initiated automatically, has already been fulfilled by the
original version of UCP and the adapted version still adheres to it.

The third guideline requires the GUI to provide help in order to avoid errors or correct
mistakes. Form errors are detected on form submission and described textually as well as
marked up correctly (using aria-invalid). Several advisory techniques (providing a
summary of all errors at the top of the page, enabling the user to jump from the summary
directly to an error, and so on) have been applied. Descriptive labels (using the <label>
tag or aria-labelledby) and further input hints (using aria-describedby), and
grouping of related input elements using <fieldset> were implemented. When a form
error is detected, a suggestion for correction is displayed to the user (e.g., if no option
was selected for a required radio button group, the error message suggests “Please choose
an option”).

With regard to error prevention, forms are checked for errors when clicking on the
“Submit” button, and when errors have occurred, the form is not submitted but instead,
error messages are presented and the user can correct them. This basically meets the
success criterion for error prevention, but only if all the relevant fields are marked as
required (by the model developer). For example, in the Flight Booking Round Trip
application, one could submit the form even though he did not fill in personal or credit
card data. Hence, the model designer needs to make sure (and be aware) that the forms
are modeled correctly. The same applies to providing context-sensitive help. In case
some text input requires an expected data format, with the adapted Structural UI, a hint
can be displayed that indicates this data format and provides an example. But again,
the model designer needs to provide such examples, or else they will not be shown.

5.2.4 Robust

The goal of this WCAG section with regard to Web applications is that they support a
wide variety of (current and future) browsers and assistive technologies.

To ensure this, the markup has to be correct according to the specification. For example,
HTML elements have to be correctly opened and closed, no duplicate IDs should be used
and elements should be nested according to the specification. In the original version
of UCP, in some cases, identical IDs were assigned to multiple elements, and HTML
attributes were not always wrapped between double quotes. These issues have been
resolved in the new version of UCP developed for this thesis. Running the HTML and
CSS validators on the variations of the Flight Booking Round Trip application showed
no such errors.

Another aspect of robustness is that names, roles, states, properties, and values of GUI
components can be programmatically determined, and that assistive technologies are
notified when these elements change. This success criterion is now fulfilled for the adapted
UCP framework. For example, the revised tab component now exposes the correct roles
and states to determine its status: the roles tablist, tab, and tabpanel are assigned

118

5.2. Results

to the correct HTML elements, and state changes are indicated via the ARIA attributes
aria-selected and aria-hidden. In cases where there are no visible labels (like for
choosing the departure and return dates in the Flight Booking Round Trip application,
since the purpose of the input field is already given by the panel’s title), the aria-label
attribute is used to provide an implicit label that is accessible by assistive technologies.

The last aspect is that assistive technology needs to be notified about changing status
messages without receiving focus. This includes, for example, the number of results
available for a given input in the combo box. The focus remains in the input field, where
the user types in his or her desired option, while the screen reader reads the number
of options found in the combo box matching the user input. This was achieved in the
adapted UCP framework by using the aria-live attribute on an element containing,
e.g., the text “3 results found”. Whenever the user types in a character, this
element’s text is updated with the results found and read to the user by the screen reader.

5.2.5 Summary

Overall, many of the issues (67 %) found in the original version of UCP could be resolved.
These issues were mainly related to the “Perceivable” and “Robust” guidelines, for which
all issues have been resolved. The most significant improvement could be made for level
A accessibility issues, where 94 % issues were eliminated.

However, the adapted version of UCP failed to meet 10 success criteria of the WCAG
2.1, which can be seen in Figure 5.1. All of them relate to the “Operable” (six issues)
and “Understandable” (four issues) guidelines. One level A issue, three level AA issues,
and six level AAA issues could not be met.

The reason that there are four level AAA issues for the “Understandable” guideline as
compared to only one level AAA issue discovered in the case study in Chapter 3, is
that in the case study, no examples existed that required explanation of unusual words,

0 1 2 3 4 5 6
Perceivable

Operable

Understandable

Robust

2

4

1

2

1

A AA AAA

Figure 5.1: Distribution of discovered accessibility issues in the adapted UCP version
among the WCAG 2.1 sections

119

5. Evaluation and Results

abbreviations, or that required a reading level above secondary education level), so these
issues have not been discovered in the case study, although they existed.

The success criteria that could not be met by the adapted version of UCP were:

• 2.4.1 Bypass Blocks (A)
• 2.4.5 Multiple Ways (AA)
• 2.4.8 Location (AAA)
• 2.5.5 Target Size (AAA)
• 3.1.2 Language of Parts (AA)
• 3.1.3 Unusual Words (AAA)
• 3.1.4 Abbreviations (AAA)
• 3.1.5 Reading Level (AAA)
• 3.1.6 Pronunciation (AAA)
• 3.2.3 Consistent Navigation (AA)

Some success criteria can only be fulfilled if the model designer pays attention to them. If
done so, UCP provides measures to adhere to the guideline. This applies to the following
success criteria:

• 1.3.2 Meaningful Sequence (A)
• 2.4.3 Focus Order (A)
• 2.4.6 Headings and Labels (AA)
• 3.3.4 Error Prevention (Legal, Financial, Data) (AA)
• 3.3.5 Help (AAA)
• 3.3.6 Error Prevention (All) (AAA)

The following success criteria do not apply to the adapted version of UCP, since the
features being addressed are currently not being generated by the framework:

• 1.2 Time-based Media
• 1.4.2 Audio Control
• 1.4.7 Low or No Background Audio
• 2.2 Enough Time
• 2.3 Seizures and Physical Reactions

120

CHAPTER 6
Conclusion and Future Work

6.1 Conclusion
The adapted version of UCP shows that several accessibility issues can be addressed by
frameworks that automatically generate GUIs at design-time. If there are no repeated
blocks of content in the application to generate (e.g., navigation or header bars), and
the model designer structures the model in a way that leads to a meaningful sequence of
content, level A of the WCAG can be reached by the resulting GUI. Moreover, process-
oriented applications that use only one language, with descriptive headings and labels as
well as input hints, both defined by the model designer, can even reach level AA of the
WCAG. The Flight Booking Round Trip application, which was taken as the primary
example in this thesis, reaches level A as is, and could reach level AA if the personal and
credit card details were defined as mandatory fields (which is possible in UCP but was
not specified by the model designer).

From the results, it can be seen that design-time GUI generation frameworks can eliminate
accessibility issues, especially when it comes to the “Perceivable” and “Robust” guidelines
and level A criteria of the WCAG. These guidelines mainly address accessibility features
in the source code, which can easily be controlled by building the framework in a way that
generates the source code correctly. The big advantage of GUI generation frameworks
over manual development of GUIs is that the resulting (accessible) GUI source code is
always reproducible. When generating the GUI automatically, one will always receive a
result of the same quality with regard to the source code (i.e., all the accessibility features
that the framework is capable of are available), and human error (e.g., forgetting to add
a label to an input element) is avoided.

Another advantage of automatic GUI generation with regard to accessibility is that
generated GUIs are consistent, i.e., that if a user knows how to operate one automatically
generated GUI, he or she can also easily operate other GUIs that were generated by the
same framework.

121

6. Conclusion and Future Work

Device tailoring for automatic GUI generation makes sure that the number of GUI
components on a screen and their placement is optimized to the available space. This
by itself can reduce scrolling and hence lead to better accessibility. In this thesis,
device tailoring was combined with responsive design, which resizes and reflows GUI
components as needed to fit the available screen width. This enables the user to zoom while
preserving the tailoring of the layout (i.e., elements will still fit into the available screen
and scrolling in two direction is avoided). Creating responsive applications manually
can be cumbersome and error-prone, since one has to think about how the components
should reflow. Automatically generating responsive applications at design-time is a novel
approach, which is efficient and consistent. On the other hand, it makes the automatic
generation process of optimally tailored GUIs more difficult, since the ways in which
GUI components can resize and reflow at run-time depending on the available space
needs to be taken into account. For example, developers of frameworks like UCP need
to think about the breakpoints for reflowing content from a multi-column layout to a
single-column layout or when it makes sense to hide certain (less relevant) content on
smaller screens to save screen space.

The same applies to widget replacement. In this thesis, various widget replacements
have been proposed in order to optimize the presentation of contents depending on the
available space or amount of information. This can improve accessibility by saving screen
space, avoid scrolling in two directions and making the components easier to understand.
Again, this adds more complexity to the generation process, since the various conditions
for widget replacements need to be defined carefully and also the model becomes more
complex.

The approach of using discourse models (or other high-level models in general) enables
the model designer to enrich the source code with additional information like texts for
screen readers, without having to know how they need to be marked up to be accessible.
Automatic GUI generation turns the focus on business problems by empowering domain
experts, since modeling can be done without requiring knowledge in programming.
However, like accessibility evaluation, the implementation of accessibility measures cannot
be fully automated. The model designer also needs to be educated about accessibility
concerns, since some accessibility measures are directly reflected in the models. The
results of this thesis show that some success criteria of the WCAG, ranging over all levels,
can only be fulfilled if the model designer pays attention to them and provides sensible
information in the models (e.g., descriptive headings and labels, input hints, or logical
structuring of the content flow). Hence the model designer could render the application
inaccessible by unwittingly missing to provide necessary information. This also applies
to custom rules and custom widgets, on which the GUI generation framework has no (or
only limited) influence.

The thesis also showed that software aging is important to consider when dealing with
accessibility for automated GUI generation framework. The technologies and mechanisms
for generating the FUI have not been updated in UCP for several years. HTML table
layouts were still a widely-used layouting technique at the time they were introduced to

122

6.2. Future Work

UCP, but are now considered out-dated and even harmful when it comes to accessibility.
Moreover, in the course of writing this thesis, the WCAG guidelines were in the process
of being updated from version 2.0 to version 2.1, adding several new success criteria that
needed to be taken into account. In a few years, W3C project “Silver” will completely
revise the WCAG, leading to substantial changes in the guidelines that need to be
addressed. Hence, automated GUI generation frameworks need to keep up with changes
of the guidelines and technologies and should be updated accordingly in a timely manner.

One needs to consider that GUI generation frameworks are only one part of a broader
eco-system. Model designers (or content creators) are another part, and user agents
(like browsers or screen readers), for which their own set of guidelines (i.e., the UAAG)
exist, are yet another. All these three entities need to play together to provide an
accessible experience to the user. Moreover, the quality of the accessibility guidelines also
plays a major role when creating accessible applications. Some argue that the WCAG
are complex and hard to interpret, and do not provide enough guidance for solving
accessibility issues (e.g., [BMSF16], [OTD16]). Due to lack of other widely-adopted
accessibility guidelines and the manifestation of the WCAG in various laws, one does not
really have an alternative option.

6.2 Future Work
In January 2019, a second user study similar to the one included in this thesis is being
conducted comparing two versions of the Flight Booking Round Trip application generated
with the adapted version of UCP and viewed on a smartphone. The first one contains
typical table views for showing radio button options, while the other contains dropdowns
for showing the options. This study shall reveal which version is preferred by users and
whether it makes sense to perform the “Radio Button to Dropdown” widget replacement
on smartphones.

Studies involving users with certain disabilities could help identifying further accessibility
improvements that could be implemented within UCP. In a related study [RTKP18] it
was claimed that the “Radio Buttons to Dropdown” widget replacement may improve
low-vision accessibility. This could be examined by conducting a user study involving
participants with various kinds of disabilities of sight (like glaucoma, cataract, or macula
degeneration).

With regard to UCP, the process of automatically generating the adapted Structural
UI Model needed to generate accessible GUIs is still an open issue. In this thesis, the
Structural UI Model that is currently generated by UCP was manually modified in order
to automatically generate the accessible source code. These manual modifications include
display alternatives used for widget replacements, table headers, input hints and the
connection between labels and their respective input fields. Measures of how to add this
information to the Discourse Model or to infer it from the available data (e.g., creating
the display alternatives based on how many options there are in the data model) need to
be investigated and implemented in UCP.

123

6. Conclusion and Future Work

A question that still remains is how many media breakpoints for responsive design are
needed to provide the best accessibility. In this thesis, the assumption was made that two
breakpoints are sufficient, one switching between a view tailored for desktop computers
and a view tailored for tablets, and the other switching between views tailored for tablets
and smartphones, respectively. This presumption could be accepted or refuted in future
work.

Moreover, more detailed information for responsive design could be supplied by the
Structural UI Model (e.g. whether a three-column-layout on a desktop screen should
reflow to a two-column-layout on a tablet screen by specifying the class names col-lg-4
and col-md-6, respectively, using layout hints).

In case content includes parts in a different language, unusual words, abbreviations, or pro-
nunciations, UCP should either provide means for the model designer to indicate them or
leverage techniques and methods like Natural Language Processing (NLP) to automatically
detect these content parts and simplify the text content. There has been research sug-
gesting how to detect such parts and simplify text using NLP [HWLJMR11][MMSBR15],
but integrating it into UCP is still an open issue.

Furthermore, the problem of providing correct markup and multiple ways for navigation
that is consistent and can be skipped is another open issue in UCP. A solution of how
such a navigation could look like was provided by the proof-of-concept application in
this thesis, but implementing it in UCP would require substantial changes of its runtime
framework.

In case UCP includes generating players for audio or video content, or supports dynamic
or time-based content (like animations) in the future, the WCAG guidelines that currently
do not apply to applications generated by UCP need to be addressed. For example, UCP
would need to provide a way for the model designer to specify audio transcriptions and
the generated source code would have to provide a way to turn off animations.

In recent years, related work tends to focus on context-aware adaptive GUIs that change
their appearance in response to certain user behaviors and preferences (e.g., [MPAA16],
[YSSE17], [HUHMB+18]). This requires adaptations of the GUI at run-time. With
responsive design and widget replacement, this thesis already introduced some run-
time adaptations to UCP. Future work could augment the GUI that UCP generates
at design-time even further by, for example, adding user tracking techniques to detect
which disability one user has to decide from which widget replacement the user would
benefit most (as suggested in [RTKP18]). In this way, a generally accessible baseline
GUI could be generated at design-time, which is then personalized to a certain user’s
needs to improve accessibility for the respective user even further. Some accessibility
measures targeted for one disability might not be optimal for a user having a different
disability. With a combined approach of design-time generation and run-time adaptation
and personalization, the GUI could provide exactly those accessibility measures that each
user needs.

124

List of Figures

2.1 The five steps of the WCAG-EM 1.0. Copied from [VAZ14]. 29
2.2 UCP comprises of three major components. Copied from [PKR12]. 35
2.3 The various models involved in UCP and their relationship to the CRF. Copied

from [PKR12]. 36

3.1 First screen of the Shopping prototype displayed on a desktop computer . . . 46
3.2 First screen of the Shopping prototype displayed on a mobile phone 47
3.3 First screen of the Flight Booking prototype displayed on a desktop computer 47
3.4 First screen of the Flight Booking prototype displayed on a mobile phone . . 48
3.5 Seat picker custom widget of the Flight Booking prototype 48
3.6 First screen of the Flight Booking Round Trip Accessibility prototype displayed

on a desktop computer . 49
3.7 First screen of the Travel Booking prototype displayed on a desktop computer 50
3.8 First screen of the Booking Kärnten prototype displayed on a desktop computer 51
3.9 First screen of the Accommodation Booking prototype displayed on a desktop

computer . 52
3.10 First screen of the Accommodation Booking prototype displayed on a mobile

phone . 53
3.11 WAVE’s Visual Representation of Accessibility Violations in the Flight Book-

ing Prototype . 59
3.12 Distribution of discovered accessibility issues among the WCAG 2.1 sections . 62
3.13 The Flight Booking application viewed in Firefox. The date input field appears

to be disabled, but a date picker actually opens when clicking on it. 64
3.14 The Shopping application after selecting the “Software” product category. . . 66
3.15 Indication of mandatory fields in the Travel Booking application 66
3.16 The Shopping application viewed on a smartphone: to view available products,

the user has to scroll horizontally . 67
3.17 The Flight Booking application in landscape mode on a smartphone 67
3.18 Unneccessarily detailed date format which is not easily readable (found in

Booking Kärnten event search results) . 69
3.19 The Accommodation Booking application viewed at 150% zoom level on a

smartphone with a resolution of 375x810 pixels 70

125

4.1 Browser settings for customizing default font styles, sizes and colors in Firefox 76
4.2 The Shopping application viewed on a smartphone in portrait mode, the tabs

do not fit in one line . 77
4.3 The accordion view aligns tabs vertically with the content shown directly

below its tab . 78
4.4 Selection of the origin airport, displayed as a radio button group 79
4.5 Selection of the origin airport, displayed as a dropdown 79
4.6 Selection of a flight, displayed as a table on a desktop computer 80
4.7 Selection of a flight, displayed as a stacked table on a smartphone 80
4.8 Table columns may be shown and hidden as desired by the user, columns

required for user interaction are always visible 81
4.9 The first screen of the proof-of-concept application viewed on a desktop

computer with a resolution of 1280x800px . 83
4.10 The first screen of the proof-of-concept application viewed on a tablet with a

resolution of 1024x1366px . 84
4.11 The first screen of the proof-of-concept application viewed on a smartphone

with a resolution of 375x812px . 85
4.12 The first screen of the Flight Booking Round Trip application viewed on a

desktop computer . 86
4.13 Three examples of the hover effect in the proof-of-concept application 87
4.14 Three examples of the focus effect in the proof-of-concept application 87
4.15 Date picker in the proof-of-concept application 88
4.16 Indication of form errors in the proof-of-concept application after pressing the

“Submit” button . 89
4.17 Showing tabular data in typical form (a) versus stacked form (b) on a screen

resolution of 375x667 pixels . 91
4.18 Combo box as widget replacement for radio button groups on small screens . 92
4.19 Navigation as given in the first version of the proof-of-concept application . . 92
4.20 Navigation in closed state as given in the first version of the proof-of-concept

application . 93
4.21 Version of a table as used during the user study 94
4.22 Task description used in the user study . 95
4.23 Comparison of date pickers in the applications used for the user study 95
4.24 Task description used in the user study . 96
4.25 Comparison of explicit (a) and implicit (b) labels 99
4.26 Comparison of the font sizes and spacings between the proof-of-concept

application (a) and the implementation in UCP (b) 100
4.27 Table header label (highlighted) within the list panel component for selecting

the departure airport . 102
4.28 Connection between the label “Label Name” and the input widget “Text Box

Name” via the label’s “For” property . 103
4.29 Representation of an input hint for the departure date 104
4.30 Example model and properties for the “Tabs to Accordion” widget replacement105

126

4.31 Example model and properties for the “Radio Buttons to Dropdown” and
“Table to Stacked Table” widget replacements 106

4.32 Input mask and Font Awesome icon used in the date picker component 109
4.33 Font icon on the link for the date picker in UCP 109

5.1 Distribution of discovered accessibility issues in the adapted UCP version
among the WCAG 2.1 sections . 119

127

Acronyms

ANM Action-Notification Model. 36

API Application Programming Interface. 26, 27

AT-SPI Assistive Technology Service Provider Interface. 27

ATAG Authoring Tool Accessibility Guidelines. 16

AUI Abstract User Interface. 34, 37, 39, 40

AVB-IT General conditions of contract for IT services and software of the Austrian
republic. 13

CIM Computation Independent Model. 34, 41

CRF CAMELEON Reference Framework. 34–37, 39, 42, 123

CSS Cascading Style Sheets. 18–21, 23, 24, 31, 46, 51, 54, 58, 60, 61, 63, 66, 68, 75, 81,
104, 106–108, 110, 112, 116

CUI Concrete User Interface. 34, 37, 39, 42, 70

DoD Domain-of-Discourse. 36, 51

DOM Document Object Model. 22, 27, 107, 110

DSL Domain Specific Language. 36

EARL Evaluation and Report Language. 30, 32

EU European Union. 5, 13, 14, 30

FUI Final User Interface. 34, 42, 43, 97, 100, 120

GUI Graphical User Interface. 1–3, 5, 9–12, 19, 21, 22, 24, 26, 27, 32–35, 37–45, 47–51,
58, 69–71, 73–77, 90, 92, 95–97, 100, 101, 104, 106, 113–116, 119–122

129

HTML Hypertext Markup Language. 8, 16, 17, 19–21, 23, 24, 31, 38, 40, 41, 54, 58, 60,
61, 63, 65, 85, 104, 106–110, 112, 114–116, 120

ICT Information and Communications Technology. 5, 6, 8, 9, 11–18, 32, 53, 85

IDE Integrated Development Environment. 35, 43

ISO International Organization for Standardization. 15, 17

MDA Model Driven Architecture. 33, 34, 41

MSAA Microsoft Active Accessibility. 27

MVC Model-View-Controller. 35

NLP Natural Language Processing. 122

OMG Object Management Group. 33

PIM Platform Independent Model. 34

PSM Platform Specific Model. 34

RCP Rich Client Platform. 35

RIA Rich Internet Application. 39

RIAs Rich Internet Applications. 16

RST Rhetorical Structure Theory. 37

RWD Responsive Web Design. 18, 19, 74, 92

SEO Search Engine Optimization. 12

UAAG User Agent Accessibility Guidelines. 16, 121

UCP Unified Communication Platform. 2, 3, 5, 21, 22, 34–36, 38, 45–49, 53–59, 62, 63,
69–71, 73, 74, 76, 77, 81, 82, 85, 91, 92, 96, 97, 99–101, 104, 106–109, 111–125

UIA UI Automation. 27

UIDL User Interface Description Language. 40, 42

UML Unified Modeling Language. 36, 37

UN United Nations. 5, 13, 14

130

UWEM Unified Web Evaluation Methodology. 30

W3C World Wide Web Consortium. 15–17, 19, 25, 57, 60, 61, 67, 68, 80, 112, 121

WAI Web Accessibility Initiative. 15, 16, 28

WCAG Web Content Accessibility Guidelines. 6, 11, 14–18, 22, 25, 27–30, 38, 40, 41,
49, 53–58, 60–62, 65–69, 111, 112, 116, 117, 119–123, 125

WCAG-EM Website Accessibility Conformance Evaluation Methodology. 28–30, 53–55,
111, 123

WHO World Health Organization. 7

WIMP Window, Icon, Menu, Pointer. 35

131

Bibliography

[AAC+11] Julio Abascal, Amaia Aizpurua, Idoia Cearreta, Borja Gamecho, Nestor
Garay-Vitoria, and Raúl Miñón. Automatically generating tailored ac-
cessible user interfaces for ubiquitous services. In The proceedings of
the 13th international ACM SIGACCESS conference on Computers and
accessibility, pages 187–194. ACM, 2011.

[AaIV08] Silvia Abrahão, Emilio Iborra, and Jean Vanderdonckt. Usabil-
ity evaluation of user interfaces generated with a model-driven ar-
chitecture tool. In EffieLai-Chong Law, EbbaThora Hvannberg,
and Gilbert Cockton, editors, Maturing Usability, Human-Computer
Interaction Series, pages 3–32. Springer London, 2008. URL:
http://dx.doi.org/10.1007/978-1-84628-941-5_1, doi:10.
1007/978-1-84628-941-5_1.

[ASF10] The Apache Software Foundation. The Apache Velocity Project, 2010.
URL: https://velocity.apache.org/ [cited 2016-10-31].

[AVCF+10] Nathalie Aquino, Jean Vanderdonckt, Nelly Condori-Fernández, Óscar
Dieste, and Óscar Pastor. Usability evaluation of multi-device/platform
user interfaces generated by model-driven engineering. In Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software En-
gineering and Measurement, ESEM ’10, pages 30:1–30:10, New York, NY,
USA, 2010. ACM. URL: http://doi.acm.org/10.1145/1852786.
1852826, doi:10.1145/1852786.1852826.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice. Morgan & Claypool, 2012.

[BMA13] Begleitgruppe zum nationalen Aktionsplan Behinderung 2012-2020.
2013. URL: https://www.sozialministerium.at/cms/site/
attachments/5/1/5/CH3434/CMS1450699435356/statistik_
-_menschen_mit_behinderung_20131.pdf [cited 2016-12-21].

[BMSF16] Aleksander Bai, Heidi Camilla Mork, Trenton Schulz, and Kristin Skeide
Fuglerud. Evaluation of accessibility testing methods. which methods un-

133

http://dx.doi.org/10.1007/978-1-84628-941-5_1
http://dx.doi.org/10.1007/978-1-84628-941-5_1
http://dx.doi.org/10.1007/978-1-84628-941-5_1
https://velocity.apache.org/
http://doi.acm.org/10.1145/1852786.1852826
http://doi.acm.org/10.1145/1852786.1852826
http://dx.doi.org/10.1145/1852786.1852826
https://www.sozialministerium.at/cms/site/attachments/5/1/5/CH3434/CMS1450699435356/statistik_-_menschen_mit_behinderung_20131.pdf
https://www.sozialministerium.at/cms/site/attachments/5/1/5/CH3434/CMS1450699435356/statistik_-_menschen_mit_behinderung_20131.pdf
https://www.sozialministerium.at/cms/site/attachments/5/1/5/CH3434/CMS1450699435356/statistik_-_menschen_mit_behinderung_20131.pdf

cover what type of problems? Studies in health technology and informatics,
229:506, 2016.

[Bra08] Giorgio Brajnik. Beyond conformance: the role of accessibility evalu-
ation methods. In Web Information Systems Engineering–WISE 2008
Workshops, pages 63–80. Springer, 2008.

[BS15] P Benda and M Smejkalová. Web interface for education of mentally dis-
abled persons for work in horticulture. Agris on-line Papers in Economics
and Informatics, 7(1):13, 2015.

[BYH10] Giorgio Brajnik, Yeliz Yesilada, and Simon Harper. Testability and validity
of wcag 2.0: the expertise effect. In Proceedings of the 12th international
ACM SIGACCESS conference on Computers and accessibility, pages 43–50.
ACM, 2010.

[CCGV08] Ben Caldwell, Michael Cooper, Loretta Guarino Reid, and
Gregg Vanderheiden. Web Content Accessibility Guidelines 2.0,
2008. URL: https://www.w3.org/TR/UNDERSTANDING-WCAG20/
appendixE.html#WCAG20 [cited 2016-12-17].

[CCT02] Gaëlle Calvary, Joëlle Coutaz, and David Thevenin. The
CAMELEON Reference Framework. Technical report, 2002.
URL: http://giove.isti.cnr.it/projects/cameleon/pdf/
CAMELEON%20D1.1RefFramework.pdf [cited 2017-01-29].

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg,
Laurent Bouillon, and Jean Vanderdonckt. A unifying reference
framework for multi-target user interfaces. Interacting with Comput-
ers, 15(3):289–308, 2003. URL: http://www.sciencedirect.
com/science/article/pii/S0953543803000109, doi:
10.1016/S0953-5438(03)00010-9.

[CGV+18] Ben Caldwell, Loretta Guarino Reid, Gregg Vanderheiden, Wendy
Chisholm, John Slatin, and Jason White. Web Content Accessibility Guide-
lines (WCAG) 2.1, 2018. URL: https://www.w3.org/TR/WCAG21/
[cited 2018-07-01].

[CKAV13] Michael Cooper, Peter Korn, Snow-Weaver Andi, and Gregg Vander-
heiden. Guidance on Applying WCAG 2.0 to Non-Web Information
and Communications Technologies (WCAG2ICT), 2013. URL: https:
//www.w3.org/TR/wcag2ict/ [cited 2017-01-06].

[CS04] Lawrence Chung and Sam Supakkul. Representing NFRs and FRs: A
goal-oriented and use case driven approach. In International Conference
on Software Engineering Research and Applications, pages 29–41. Springer,
2004.

134

https://www.w3.org/TR/UNDERSTANDING-WCAG20/appendixE.html#WCAG20
https://www.w3.org/TR/UNDERSTANDING-WCAG20/appendixE.html#WCAG20
http://giove.isti.cnr.it/projects/cameleon/pdf/CAMELEON%20D1.1RefFramework.pdf
http://giove.isti.cnr.it/projects/cameleon/pdf/CAMELEON%20D1.1RefFramework.pdf
http://www.sciencedirect.com/science/article/pii/S0953543803000109
http://www.sciencedirect.com/science/article/pii/S0953543803000109
http://dx.doi.org/10.1016/S0953-5438(03)00010-9
http://dx.doi.org/10.1016/S0953-5438(03)00010-9
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/wcag2ict/
https://www.w3.org/TR/wcag2ict/

[CS10] Adam Connors and Bryan Sullivan. Mobile Web Application Best Prac-
tices, 2010. URL: https://www.w3.org/TR/mwabp/ [cited 2017-01-
18].

[CVC08] Benoît Collignon, Jean Vanderdonckt, and Gaëlle Calvary. Model-driven
engineering of multi-target plastic user interfaces. In Proceedings of the
Fourth International Conference on Autonomic and Autonomous Systems
(ICAS 2008), pages 7–14, Washington, DC, USA, 2008. IEEE Computer
Society. doi:http://dx.doi.org/10.1109/ICAS.2008.37.

[DJSV05] Nina Dahlmann, Sabina Jeschke, Ruedi Seiler, and Helmut Vieritz. Be-
learning: Accessibility in virtual knowledge spaces for mathematics and
natural sciences. 2005.

[DMV+16] Carlos Duarte, Inês Matos, João Vicente, Ana Salvado, Carlos M Duarte,
and Luís Carriço. Development technologies impact in web accessibility.
In Proceedings of the 13th Web for All Conference, page 6. ACM, 2016.

[dOFP+14] Roberto Cícero de Oliveira, André Pimenta Freire, Débora Maria Barroso
Paiva, Maria Istela Cagnin, and Hana Rubinsztejn. A framework to
facilitate the implementation of technical aspects of web accessibility.
In International Conference on Universal Access in Human-Computer
Interaction, pages 3–13. Springer, 2014.

[Ecl07] Eclipse Foundation. Model to Text (M2T), 2007. URL: https://
eclipse.org/modeling/m2t/?project=jet [cited 2016-10-31].

[EN315] EN 301 549 V1.1.2 Accessibility requirements suitable for public procure-
ment of ICT products and services in Europe, 2015.

[FKH+06] Jürgen Falb, Hermann Kaindl, Helmut Horacek, Cristian Bogdan, Roman
Popp, and Edin Arnautovic. A discourse model for interaction design
based on theories of human communication. In Extended Abstracts on
Human Factors in Computing Systems (CHI ’06), pages 754–759. ACM
Press: New York, NY, 2006. doi:http://doi.acm.org/10.1145/
1125451.1125602.

[FPAP03] Joan Fons, Vicente Pelechano, Manoli Albert, and Oscar Pastor. De-
velopment of web applications from web enhanced conceptual schemas.
In International Conference on Conceptual Modeling, pages 232–245.
Springer, 2003.

[FPR+07] Jürgen Falb, Roman Popp, Thomas Röck, Helmut Jelinek, Edin Arnau-
tovic, and Hermann Kaindl. UI prototyping for multiple devices through
specifying interaction design. In Proceedings of the 11th IFIP TC 13
International Conference on Human-Computer Interaction (INTERACT
2007), pages 136–149, Rio de Janeiro, Brazil, September 2007. Springer.

135

https://www.w3.org/TR/mwabp/
http://dx.doi.org/http://dx.doi.org/10.1109/ICAS.2008.37
https://eclipse.org/modeling/m2t/?project=jet
https://eclipse.org/modeling/m2t/?project=jet
http://dx.doi.org/http://doi.acm.org/10.1145/1125451.1125602
http://dx.doi.org/http://doi.acm.org/10.1145/1125451.1125602

[GGMM+13] María González-García, Lourdes Moreno, Paloma Martínez, Raúl Miñon,
and Julio Abascal. A model-based graphical editor to design accessible
media players. J. UCS, 19(18):2656–2676, 2013.

[GGMM15] María González-García, Lourdes Moreno, and Paloma Martínez. A model-
based tool to develop an accessible media player. In Proceedings of
the 17th International ACM SIGACCESS Conference on Computers &
Accessibility, pages 415–416. ACM, 2015.

[GK09] Jason Grieves and Masahiko Kaneko. Engineering Software for Accessi-
bility. 2009.

[GKJ+08] Peter Göhner, Simon Kunz, Sabina Jeschke, Helmut Vieritz, and Olivier
Pfeiffer. Integrated Accessibility Models of User Interfaces for IT and
Automation Systems. In CAINE, pages 280–285. Citeseer, 2008.

[GLW06] Krzysztof Z Gajos, Jing Jing Long, and Daniel S Weld. Automatically
generating custom user interfaces for users with physical disabilities. In
Proceedings of the 8th international ACM SIGACCESS conference on
Computers and accessibility, pages 243–244. ACM, 2006.

[GMM15] María González, Lourdes Moreno, and Paloma Martínez. Approach design
of an accessible media player. Universal Access in the Information Society,
14(1):45–55, 2015.

[GWW07] Krzysztof Z Gajos, Jacob O Wobbrock, and Daniel S Weld. Automatically
generating user interfaces adapted to users’ motor and vision capabilities.
In Proceedings of the 20th annual ACM symposium on User interface
software and technology, pages 231–240. ACM, 2007.

[HAS+15] Elyse C. Hallett, Blake Arnsdorff, John Sweet, Zach Roberts, Wayne
Dick, Tom Jewett, and Kim-Phuong L. Vu. The usability of magnification
methods: A comparative study between screen magnifiers and respon-
sive web design. In Sakae Yamamoto, editor, Human Interface and the
Management of Information. Information and Knowledge Design, pages
181–189, Cham, 2015. Springer International Publishing.

[HUHMB+18] Jamil Hussain, Anees Ul Hassan, Hafiz Syed Muhammad Bilal, Rahman
Ali, Muhammad Afzal, Shujaat Hussain, Jaehun Bang, Oresti Banos,
and Sungyoung Lee. Model-based adaptive user interface based on con-
text and user experience evaluation. Journal on Multimodal User In-
terfaces, 12(1):1–16, Mar 2018. URL: https://doi.org/10.1007/
s12193-018-0258-2, doi:10.1007/s12193-018-0258-2.

[HW16] Sabine Hennig and Wolfgang W Wasserburger. Design Patterns für
barrierefreie Online-Karten. pages 308–317, 2016.

136

https://doi.org/10.1007/s12193-018-0258-2
https://doi.org/10.1007/s12193-018-0258-2
http://dx.doi.org/10.1007/s12193-018-0258-2

[HWLJMR11] Jeffery Higginbotham, Gregory W Lesher, Bryan J Moulton, and Brian
Roark. The application of natural language processing to augmentative and
alternative communication. Assistive technology : the official journal of
RESNA, 24:14–24, 04 2011. doi:10.1080/10400435.2011.648714.

[ISOa] ISO 9241-11:1998 Ergonomic requirements for office work with visual
display terminals (VDTs) – Part 11: Guidance on usability.

[ISOb] ISO/IEC 40500:2012 Information technology – W3C Web Content Acces-
sibility Guidelines (WCAG) 2.0.

[JPV09] Sabina Jeschke, Olivier Pfeiffer, and Helmut Vieritz. Using web accessibil-
ity patterns for web application development. In Proceedings of the 2009
ACM symposium on Applied Computing, pages 129–135. ACM, 2009.

[JV17] J. Bern Jordan and Gregg C. Vanderheiden. Towards accessible automat-
ically generated interfaces part 1: An input model that bridges the needs
of users and product functionality. In Jia Zhou and Gavriel Salvendy,
editors, Human Aspects of IT for the Aged Population. Aging, Design
and User Experience, pages 129–146, Cham, 2017. Springer International
Publishing.

[Ken02] Stuart Kent. Model driven engineering. In International Conference on
Integrated Formal Methods, pages 286–298. Springer, 2002.

[KPR12] Hermann Kaindl, Roman Popp, and David Raneburger. Automated
generation of user interfaces: Based on use case or interaction design
specifications? In Slimane Hammoudi, Marten van Sinderen, and José
Cordeiro, editors, Proceedings of the 7th International Conference on
Software Paradigm Trends (ICSOFT’12), pages 303–308. SciTePress, July
2012.

[KRF+09] Sevan Kavaldjian, David Raneburger, Jürgen Falb, Hermann Kaindl,
and Dominik Ertl. Semi-automatic user interface generation considering
pointing granularity. In Proceedings of the 2009 IEEE International
Conference on Systems, Man and Cybernetics (SMC 2009), San Antonio,
TX, USA, Oct. 2009.

[LFG90] Paul Luff, David Frohlich, and Nigel Gilbert. Computers and Conversation.
Academic Press, London, UK, January 1990.

[LLTPT+11] Marino Linaje, Adolfo Lozano-Tello, Miguel A Perez-Toledano, Juan Car-
los Preciado, Roberto Rodriguez-Echeverria, and Fernando Sanchez-
Figueroa. Providing ria user interfaces with accessibility properties. Jour-
nal of Symbolic Computation, 46(2):207–217, 2011.

137

http://dx.doi.org/10.1080/10400435.2011.648714

[LPSF07] Marino Linaje, Juan Carlos Preciado, and Fernando Sánchez-Figueroa.
Engineering rich internet application user interfaces over legacy web
models. IEEE internet computing, 11(6), 2007.

[Mar10] Ethan Marcotte. Responsive web design, 2010. URL http://alistapart.
com/article/responsive-web-design, 2010.

[MDA14] MDA guide version 2.0. Technical report, Object Management Group
(OMG), 2014. URL: http://www.omg.org/cgi-bin/doc?ormsc/
14-06-01 [cited 2017-01-29].

[MFT05] Jennifer Mankoff, Holly Fait, and Tu Tran. Is your web page accessible?:
a comparative study of methods for assessing web page accessibility for
the blind. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 41–50. ACM, 2005.

[MMA13] Raúl Miñón, Lourdes Moreno, and Julio Abascal. A graphical tool to create
user interface models for ubiquitous interaction satisfying accessibility
requirements. Universal access in the information society, 12(4):427–439,
2013.

[MMMA14] Raúl Miñón, Lourdes Moreno, Paloma Martínez, and Julio Abascal. An
approach to the integration of accessibility requirements into a user inter-
face development method. Science of Computer Programming, 86:58–73,
2014.

[MMR08a] Lourdes Moreno, Paloma Martínez, and Belén Ruiz. A MDD approach
for modelling web accessibility. In ICWE 2008 Workshops, page 7, 2008.

[MMR08b] Lourdes Moreno, Paloma Martínez, and Belén Ruiz. Guiding accessibility
issues in the design of websites. In Proceedings of the 26th annual ACM
international conference on Design of communication, pages 65–72. ACM,
2008.

[MMSBR15] Lourdes Moreno, Paloma Martínez, Isabel Segura-Bedmar, and Ricardo
Revert. Exploring language technologies to provide support to wcag 2.0
and e2r guidelines. In Proceedings of the XVI International Conference
on Human Computer Interaction, page 57. ACM, 2015.

[MPAA16] Raúl Miñón, Fabio Paternò, Myriam Arrue, and Julio Abascal. Inte-
grating adaptation rules for people with special needs in model-based
UI development process. Universal Access in the Information Society,
15(1):153–168, 2016.

[MR92] Brad A. Myers and Mary Beth Rosson. Survey on user interface pro-
gramming. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’92, pages 195–202, New York, NY,

138

http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01

USA, 1992. ACM. URL: http://doi.acm.org/10.1145/142750.
142789, doi:10.1145/142750.142789.

[MRCG10] Adriana Martín, Gustavo Rossi, Alejandra Cechich, and Silvia Gordillo.
Engineering accessible Web applications. An aspect-oriented approach.
World Wide Web, 13(4):419–440, 2010.

[MSMG12] Adriana Martin, Viviana Saldaño, Gabriela Miranda, and Gabriela Gae-
tan. AO-WAD: A Generalized Approach for Accessible Design within
the Development of Web-based Systems. In Proceedings of The 7th In-
ternational Conference on Software Engineering Advances, ICSEA, pages
581–587, 2012.

[MT88] W. C. Mann and S.A. Thompson. Rhetorical Structure Theory: Toward
a functional theory of text organization. Text, 8(3):243–281, 1988.

[OAS07] Zeljko Obrenovic, Julio Abascal, and Dusan Starcevic. Universal ac-
cessibility as a multimodal design issue. Communications of the ACM,
50(5):83–88, 2007.

[OTD16] Anyela Orozco, Valentina Tabares, and Néstor Duque. Methodology for
heuristic evaluation of web accessibility oriented to types of disabilities.
In International Conference on Universal Access in Human-Computer
Interaction, pages 91–97. Springer, 2016.

[Pet07] Roland Petrasch. Model Based User Interface Design: Model Driven
Architecture. 2007.

[PHJS12] Matthias Peissner, Dagmar Häbe, Doris Janssen, and Thomas Sellner.
Myui: generating accessible user interfaces from multimodal design pat-
terns. In Proceedings of the 4th ACM SIGCHI symposium on Engineering
interactive computing systems, pages 81–90. ACM, 2012.

[PKR12] TU Wien. Unified Communication Platform, 2012. URL: https://ucp.
ict.tuwien.ac.at/ [cited 2016-10-13].

[Pop12] Roman Popp. A unified solution for service-oriented architecture and
user interface generation through discourse-based communication models.
Doctoral dissertation, Vienna University of Technology, Vienna, Austria,
2012.

[PRK13] Roman Popp, David Raneburger, and Hermann Kaindl. Tool support for
automated multi-device GUI generation from discourse-based communi-
cation models. In Proceedings of the 5th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS ’13), New York, NY,
USA, 2013. ACM.

139

http://doi.acm.org/10.1145/142750.142789
http://doi.acm.org/10.1145/142750.142789
http://dx.doi.org/10.1145/142750.142789
https://ucp.ict.tuwien.ac.at/
https://ucp.ict.tuwien.ac.at/

[PSS09] Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. MARIA: A
universal, declarative, multiple abstraction-level language for service-
oriented applications in ubiquitous environments. ACM Trans.
Comput.-Hum. Interact., 16:19:1–19:30, November 2009. URL: http:
//doi.acm.org/10.1145/1614390.1614394, doi:http://doi.
acm.org/10.1145/1614390.1614394.

[PSW15] Kim Patch, Jeanne Spellman, and Kathy Wahlbin. Mobile
Accessibility: How WCAG 2.0 and Other W3C/WAI Guide-
lines Apply to Mobile, 2015. URL: https://www.w3.org/TR/
mobile-accessibility-mapping/ [cited 2017-01-18].

[RKP15a] David Raneburger, Hermann Kaindl, and Roman Popp. Model transfor-
mation rules for customization of multi-device graphical user interfaces.
In Proceedings of the 7th ACM SIGCHI Symposium on Engineering In-
teractive Computing Systems, EICS ’15, pages 100–109, New York, NY,
USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2774225.
2774839, doi:10.1145/2774225.2774839.

[RKP15b] David Raneburger, Hermann Kaindl, and Roman Popp. Strategies for
automated GUI tailoring for multiple devices. In Proceedings of the 48th
Annual Hawaii International Conference on System Sciences (HICSS-48),
pages 507–516, Piscataway, NJ, USA, 2015. IEEE Computer Society Press.

[RM08] Jo Rabin and Charles McCathieNevile. Mobile Web Best Practices
1.0 – Basic Guidelines, 2008. URL: https://www.w3.org/TR/
mobile-bp/ [cited 2017-01-18].

[RPF05] Gonzalo Rojas, Vicente Pelechano, and Joan Fons. A model-driven ap-
proach to include adaptive navigational techniques in web applications.
In International Workshop on Web Oriented Software Technology (IW-
WOST), pages 13–24, 2005.

[RPK+11] David Raneburger, Roman Popp, Sevan Kavaldjian, Hermann Kaindl,
and Jürgen Falb. Optimized GUI generation for small screens. In Heinrich
Hussmann, Gerrit Meixner, and Detlef Zuehlke, editors, Model-Driven
Development of Advanced User Interfaces, volume 340 of Studies in Com-
putational Intelligence, pages 107–122. Springer Berlin / Heidelberg, 2011.

[RPK16] Thomas Rathfux, Roman Popp, and Hermann Kaindl. Adding cus-
tom widgets to model-driven GUI generation. In Proceedings of
the 8th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, EICS ’16, pages 16–26, New York, NY, USA, 2016.
ACM. URL: http://doi.acm.org/10.1145/2933242.2933251,
doi:10.1145/2933242.2933251.

140

http://doi.acm.org/10.1145/1614390.1614394
http://doi.acm.org/10.1145/1614390.1614394
http://dx.doi.org/http://doi.acm.org/10.1145/1614390.1614394
http://dx.doi.org/http://doi.acm.org/10.1145/1614390.1614394
https://www.w3.org/TR/mobile-accessibility-mapping/
https://www.w3.org/TR/mobile-accessibility-mapping/
http://doi.acm.org/10.1145/2774225.2774839
http://doi.acm.org/10.1145/2774225.2774839
http://dx.doi.org/10.1145/2774225.2774839
https://www.w3.org/TR/mobile-bp/
https://www.w3.org/TR/mobile-bp/
http://doi.acm.org/10.1145/2933242.2933251
http://dx.doi.org/10.1145/2933242.2933251

[RPV12] David Raneburger, Roman Popp, and Jean Vanderdonckt. An automated
layout approach for model-driven WIMP-UI generation. In Proceedings
of the 4th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, EICS ’12, pages 91–100, New York, NY, USA, 2012.
ACM. URL: http://doi.acm.org/10.1145/2305484.2305501,
doi:10.1145/2305484.2305501.

[RTKP18] Thomas Rathfux, Jasmin Thöner, Hermann Kaindl, and Roman Popp.
Combining design-time generation of web-pages with responsive design
for improving low-vision accessibility. In Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, page 10. ACM,
2018.

[RV16] Predrag Radic and Edith Vosta. Berücksichtigung der Barriere-
freiheit bei Auftragsvergaben - Planen und Umsetzen bar-
rierefreier IKT-Lösungen, 2016. URL: https://www.ag.
bka.gv.at/at.gv.bka.wiki-bka/img{_}auth.php/6/6b/
VM2016{_}Barrierefreiheit{_}bei{_}Auftragsverfahren.
pdf [cited 2016-12-17].

[Sch06] D.C. Schmidt. Guest editor’s introduction: Model-driven engineering.
Computer, 39(2):25–31, 2006. doi:10.1109/MC.2006.58.

[Sea69] John R. Searle. Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press, Cambridge, England, 1969.

[SF+07] F Sánchez-Figueroa et al. Saw, a set of integrated tools for making the
web accessible to visually impaired use. UPGRADE, 8, 2007.

[Tru06] Frank Truyen. The Fast Guide to Model Driven Architecture - The basics
of Model Driven Architecture, January 2006. URL: http://www.omg.
org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf.

[VAZ14] Eric Velleman and Shadi Abou-Zahra. Website Accessibility Conformance
Evaluation Methodology (WCAG-EM) 1.0, 2014. URL: https://www.
w3.org/TR/WCAG-EM/ [cited 2017-01-26].

[VBC13] Markel Vigo, Justin Brown, and Vivienne Conway. Benchmarking web
accessibility evaluation tools: measuring the harm of sole reliance on auto-
mated tests. In Proceedings of the 10th International Cross-Disciplinary
Conference on Web Accessibility, page 1. ACM, 2013.

[VJP11] Helmut Vieritz, Sabina Jeschke, and Olivier Pfeiffer. Benutzungsorien-
tierte Entwicklung barrierefreier Benutzungsschnittstellen. In Automation,
Communication and Cybernetics in Science and Engineering 2009/2010,
pages 569–578. Springer, 2011.

141

http://doi.acm.org/10.1145/2305484.2305501
http://dx.doi.org/10.1145/2305484.2305501
https://www.ag.bka.gv.at/at.gv.bka.wiki-bka/img{_}auth.php/6/6b/VM2016{_}Barrierefreiheit{_}bei{_}Auftragsverfahren.pdf
https://www.ag.bka.gv.at/at.gv.bka.wiki-bka/img{_}auth.php/6/6b/VM2016{_}Barrierefreiheit{_}bei{_}Auftragsverfahren.pdf
https://www.ag.bka.gv.at/at.gv.bka.wiki-bka/img{_}auth.php/6/6b/VM2016{_}Barrierefreiheit{_}bei{_}Auftragsverfahren.pdf
https://www.ag.bka.gv.at/at.gv.bka.wiki-bka/img{_}auth.php/6/6b/VM2016{_}Barrierefreiheit{_}bei{_}Auftragsverfahren.pdf
http://dx.doi.org/10.1109/MC.2006.58
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
https://www.w3.org/TR/WCAG-EM/
https://www.w3.org/TR/WCAG-EM/

[VPJ07] Helmut Vieritz, Olivier Pfeiffer, and Sabina Jeschke. Belearning: Designing
accessible elearning applications. In Frontiers In Education Conference-
Global Engineering: Knowledge Without Borders, Opportunities Without
Passports, 2007. FIE’07. 37th Annual, pages S3D–1. IEEE, 2007.

[VSDS00] Patrícia Vilain, Daniel Schwabe, and Clarisse Sieckenius De Souza. A
diagrammatic tool for representing user interaction in uml. In International
Conference on the Unified Modeling Language, pages 133–147. Springer,
2000.

[W3Ca] World Wide Web Consortium (W3C). About W3C. URL: https://www.
w3.org/Consortium/ [cited 2017-01-04].

[W3Cb] World Wide Web Consortium (W3C). Accessibility, Usability, and Inclu-
sion: Related Aspects of a Web for All. URL: https://www.w3.org/
WAI/intro/usable [cited 2016-12-17].

[W3Cc] World Wide Web Consortium (W3C). HTML5 - A vocabulary and as-
sociated APIs for HTML and XHTML. URL: https://www.w3.org/
TR/html5/ [cited 2016-10-31].

[W3Cd] World Wide Web Consortium (W3C). Media Queries. URL: https:
//www.w3.org/TR/css3-mediaqueries/ [cited 2018-07-01].

[WAI] World Wide Web Consortium (W3C). Web Accessibility Initiative (WAI).
URL: https://www.w3.org/WAI/ [cited 2017-01-04].

[WAI14] Screen Reader User Survey 5 Results, 2014. URL: http://webaim.
org/projects/screenreadersurvey5/ [cited 2017-01-08].

[WAI17] Screen Reader User Survey 7 Results, 2017. URL: https://webaim.
org/projects/screenreadersurvey7/ [cited 2018-06-16].

[Wat09] Takayuki Watanabe. Experimental evaluation of usability and accessibility
of heading elements. Disability and Rehabilitation: Assistive Technology,
4(4):236–247, 2009.

[Wir] Wirtschaftskammer Österreich. Barrierefreie Websites - Rechtliche
Grundlagen und vorhandene Empfehlungen. URL: https://www.wko.
at/Content.Node/service/t/Barrierefreie-Websites_
Inhaltliche-%0AUmsetzung_2015-06.pdf [cited 2016-10-13].

[WPW12] Petra Winkler, Elisabeth Pochobradsky, and Charlotte Wirl.
Gesundheit und Krankheit der älteren Generation in Österre-
ich. 2012. URL: http://www.goeg.at/index.php?pid=
produkteberichtedetail&bericht=253&smark=gesundheit+
und+krankheit&noreplace=yes [cited 2016-12-23].

142

https://www.w3.org/Consortium/
https://www.w3.org/Consortium/
https://www.w3.org/WAI/intro/usable
https://www.w3.org/WAI/intro/usable
https://www.w3.org/TR/html5/
https://www.w3.org/TR/html5/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/WAI/
http://webaim.org/projects/screenreadersurvey5/
http://webaim.org/projects/screenreadersurvey5/
https://webaim.org/projects/screenreadersurvey7/
https://webaim.org/projects/screenreadersurvey7/
https://www.wko.at/Content.Node/service/t/Barrierefreie-Websites_Inhaltliche-%0AUmsetzung_2015-06.pdf
https://www.wko.at/Content.Node/service/t/Barrierefreie-Websites_Inhaltliche-%0AUmsetzung_2015-06.pdf
https://www.wko.at/Content.Node/service/t/Barrierefreie-Websites_Inhaltliche-%0AUmsetzung_2015-06.pdf
http://www.goeg.at/index.php?pid=produkteberichtedetail&bericht=253&smark=gesundheit+und+krankheit&noreplace=yes
http://www.goeg.at/index.php?pid=produkteberichtedetail&bericht=253&smark=gesundheit+und+krankheit&noreplace=yes
http://www.goeg.at/index.php?pid=produkteberichtedetail&bericht=253&smark=gesundheit+und+krankheit&noreplace=yes

[XFW07] Joseph Xiong, Christelle Farenc, and Marco Winckler. Analyzing tool
support for inspecting accessibility guidelines during the development
process of web sites. In International Conference on Web Information
Systems Engineering, pages 470–480. Springer, 2007.

[YHGS03] Yeliz Yesilada, Simon Harper, Carole Goble, and Robert Stevens. Ontology
Based Semantic Annotation for Enhancing Mobility Support for Visually
Impaired Web Users. In K-CAP 2003 Workshop on Knowledge Markup
and Semantic Annotation, 2003.

[YSE17] Enes Yigitbas, Stefan Sauer, and Gregor Engels. Adapt-UI: An IDE
supporting model-driven development of self-adaptive UIs. In Proceed-
ings of the ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, EICS ’17, pages 99–104, New York, NY, USA, 2017.
ACM. URL: http://doi.acm.org/10.1145/3102113.3102144,
doi:10.1145/3102113.3102144.

[YSSE17] Enes Yigitbas, Hagen Stahl, Stefan Sauer, and Gregor Engels. Self-
adaptive UIs: Integrated model-driven development of UIs and their
adaptations. In Anthony Anjorin and Huáscar Espinoza, editors, Modelling
Foundations and Applications, pages 126–141, Cham, 2017. Springer
International Publishing.

143

http://doi.acm.org/10.1145/3102113.3102144
http://dx.doi.org/10.1145/3102113.3102144

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Approach
	Outline

	Background and Related Work
	Defining Accessibility
	Legal Aspects of Accessibility
	Accessibility Standards and Guidelines
	Technologies and Their Influence on Accessibility
	Accessibility Evaluation
	Accessibility and the Software Development Process
	Automated GUI Generation
	The Unified Communication Platform
	Related Work

	Case Study on Accessibility in UCP
	The Reference Applications
	The Evaluation Process
	Accessibility Issues Identified
	Lessons Learned

	Improving the Accessibility of UCP
	Accessibility Improvements
	Proof-of-Concept Application
	User Study
	Implementation of Accessibility Improvements in UCP

	Evaluation and Results
	Evaluation
	Results

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	Acronyms
	Bibliography

