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Abstract

Semiconductors are an indispensable part of the tools and machines used by
mankind today. While the intrinsic (pure) semiconductors have limited utility on
their own, most of the enhanced functional properties of the semiconductors are
achieved through extrinsically doping them. When seen from the perspective of
enhancing the electrical properties of the system, dopants are named according
to whether they donate (donors) or accept (acceptors) electrons from the system.
However, the same dopants also act as a hindrance to the flow of heat in the
system and are referred to as point defects. Therefore, it has become imperative
for device design that equal attention is paid to the effect of the dopants on both
the electrical and the thermal properties of the system. This is because, a dopant
which behaves as an excellent donor or acceptor might severely impede the heat
flow in the system thereby affecting the device performance. While, in certain
applications like thermoelectrics this is beneficial, for others like optoelectronics
this is a limiting factor.

In the present thesis, we investigate in detail the effect of dopants on the charge
carrier concentrations as well as their phonon scattering characteristics. We
calculate the ab initio defect formation energies and carrier concentrations of
various intrinsic and extrinsic defects in the TiNiSn and TiCoSb half-Heusler
compounds (HHCs), and cubic SiC (3C-SiC). We also calculate the ab initio point-
defect phonon scattering rates using the atomistic Green’s function approach. The
main thrust of this work revolves around elucidating in detail the exact mechanism
and factors causing enhanced point-defect phonon scattering in semiconductors.

For the TiNiSn and TiCoSb HHCs, we provide an in-depth understanding of the
defect thermochemistry and explore various dopants like Cu, Sb, and V for the
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TiNiSn system and Sc, Y, La, Fe, Ge, and Sn for the TiCoSb system. We find
that the positively charged Ni and Ti interstitials dominate the intrinsic defects in
TiNiSn, whereas, only SbSn extrinsic defect is suitable for n-doping. In contrast,
TiCoSb is not intrinsically n-dopable, where ScTi, FeCo, and SnSb were found as
possible p-type dopants. We also investigate the B- and N-doped 3C-SiC and
find that both the neutral and charged states of the dopants are stable in the
band gap. The neutral BC defect (B(0)

C ) produces resonant phonon scattering in
3C-SiC drastically reducing its thermal conductivity, even at small concentrations.
This is caused by a small asymmetrical relaxation of the B(0)

C defect in 3C-SiC.
Such a relaxation is then shown to produce a large interatomic force constant
(IFC) perturbation which is an essential ingredient of resonant phonon scattering.
However, a similarly small relaxation of the B(0)

C defect in diamond fails to produce
any enhanced scattering, and this is found to be related to smaller density of states
of diamond as compared to 3C-SiC. We explain this complex phenomenon with
the help of a simple monoatomic 1D chain. A defect is introduced in the chain by
modifying the interactions of three contiguous atoms with the help of a Tersoff-like
potential, resulting in a double well potential. We show that, when the bond order
parameter of the potential is progressively increased, the potential energy barrier
of the double well potential becomes smaller and smaller. This decrease in the
potential barrier results in the two minima moving closer to each other and a
subsequent increase in the IFC perturbation. At sufficiently large IFC perturbation
a resonant phonon scattering is observed.

Further, we calculate the lattice thermal conductivities (κ`) of bulk and vacancy Si
using the Green-Kubo (GK) and homogeneous non-equilibrium molecular dynamics
(HNEMD) techniques. We find that the relatively newly-developed HNEMD
technique is better suited to calculate κ` of the defected structures as κ` decreases
with increasing vacancy concentration and HNEMD becomes computationally
cheaper for lower κ` values. Furthermore, in order to overcome the limitations of
the parameterized empirical interatomic potentials used in molecular dynamics
(MD) techniques, we also calculate the ab initio κ` of bulk and thin-film α-Al2O3

using both the local density approximation (LDA) and the generalized gradient
approximation (GGA) to the exchange and correlation. LDA reproduces the
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thermal conductivity of bulk α-Al2O3 better than the GGA. This is related to the
increased phonon group velocities in the LDA calculations as compared to GGA.

We expect that the insights developed by the study of points defects will help
the device design in terms of choosing the right dopants by effectively quantifying
their doping properties and phonon scattering characteristics. Furthermore, we
expect that the parameter-free ab initio approach to the κ` calculations of bulk
and thin-film compounds will help overcome the limitations of the MD techniques
and become an integral part of understanding the experimental observations.
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Kurzfassung

Halbleiter sind ein unverzichtbarer Bestandteil der Werkzeuge und Maschinen, die
heutzutage von Menschen verwendet werden. Während intrinsische (reine) Halbleiter
bereits begrenzt einsetzbar sind, werden die meisten verbesserten funktionalen
Eigenschaften von Halbleitern durch extrinsische Dotierung erreicht. Hinsichtlich der
Verbessung der elektrischen Eigenschaften des Systems werden Dotierstoffe danach
benannt, ob sie Elektronen abgeben (Donoren) oder aus dem System annehmen
(Akzeptoren). Diese Dotierstoffe behindern jedoch auch den Wärmefluß im System
und werden als Punktdefekte bezeichnet. Daher ist es für das Design von Geräten
unabdingbar geworden, dass dem Effekt der Dotierstoffe sowohl auf die elektrische
als auch auf die Wärmeleitfähigkeit des Systems gleichermaßen Beachtung geschenkt
wird. Dies liegt daran, dass ein Dotierstoff, der sich als ausgezeichneter Donor
oder Akzeptor verhält, den Wärmefluss im System erheblich beeinträchtigen kann,
wodurch die Leistung des Geräts beeinträchtigt wird. Während dies bei bestimmten
Anwendungen wie der Thermoelektrik von Vorteil ist, ist es für andere Anwendungen
wie die Optoelektronik ein limitierender Faktor.

In dieser Arbeit untersuchen wir den Effekt von Dotierstoffen auf die Ladungs-
trägerkonzentration sowie deren Phononenstreuungseigenschaften detailliert. Wir
berechnen die ab initio Defektbildungsenergien und Ladungsträgerkonzentratio-
nen verschiedener intrinsischer und extrinsischer Defekte in den Halb-Heusler-
Verbindungen (HHCs) TiNiSn- und TiCoSb und kubischem SiC (3C-SiC). Weiters
berechnen wir die ab initio Phononenstreuungsraten von Punktdefekten unter
Verwendung eines atomistischen Ansatzes mit Green’schen Funktionen. Der Schwer-
punkt dieser Arbeit besteht darin, den genauen Mechanismus und die Faktoren,
die zu einer verstärkten Punktdefekt-Phononenstreuung in Halbleitern führen, im
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Detail aufzuklären.

Für die TiNiSn- und TiCoSb-HHCs bieten wir ein detailliertes Verständnis der De-
fektthermochemie und untersuchen verschiedene Dotierstoffe wie Cu, Sb, V für das
TiNiSn-System beziehungsweise Sc, Y, Fe , La, Ge und Sn für das TiCoSb-System.
Es zeigt sich, dass die positiv geladenen Ni- und Ti-Interstitials die intrinsischen
Defekte in TiNiSn dominieren, wohingegen nur der extrinsische SbSn-Defekt für
n-Dotierung geeignet ist. Im Gegensatz dazu kann TiCoSb nicht intrinsisch dotiert
werden, wobei Sc Ti, FeCo und SnSb als mögliche p-Dotierstoffe gefunden wurden.
Außerdem untersuchen wir B- und N-dotiertes 3C-SiC und finden heraus, dass
sowohl der neutrale als auch der geladene Zustand der Dotierstoffe in der Band-
lücke stabil sind. Wir beobachten, dass der neutrale BC-Defekt (B(0)

C ) zu resonanter
Phononenstreuung in 3C-SiC führt, was die Wärmeleitfähigkeit bereits bei geringen
Konzentrationen drastisch reduziert. Dies wird durch eine kleine asymmetrische
Relaxation des B(0)

C -Defekts in 3C-SiC verursacht. Wir zeigen, dass eine solche Re-
laxation eine große interatomare Kraftkonstante (IFC) erzeugt, die ein wesentlicher
Bestandteil der resonanten Phononenstreuung ist. Eine ähnlich kleine Relaxation
durch den B(0)

C -Defekt in Diamant erzeugt jedoch keine verstärkte Streuung, und wir
stellen fest, dass sie mit der geringeren Zustandsdichte von Diamant im Vergleich
zu 3C-SiC zusammenhängt. Wir erklären dieses komplexe Phänomen mit Hilfe
einer einfachen monoatomaren eindimensionalen Kette. Ein Defekt wird in die
Kette eingeführt, indem die Wechselwirkungen dreier benachbarter Atome mit
Hilfe eines Tersoff-ähnlichen Potentials modifiziert werden, was zu einem Potential
mit zwei Minima führt. Wir zeigen, dass bei einer schrittweisen Erhöhung des
Bond-Order-Parameters des Potentials die potentielle Energiebarriere zwischen
den Potentialminima immer kleiner wird. Diese Abnahme der Potentialbarriere
führt dazu, dass sich die beiden Minima einadner annähern und die IFC-Störung
zunimmt. Bei ausreichend großer IFC-Störung wird resonante Phononenstreuung
beobachtet.

Des Weiteren berechnen wir die Wärmeleitfähigkeiten (κ`) von Bulk-Si und Si mit
Leerstellen unter Verwendung der Green-Kubo-Methode (GK) und der homogenen
Nichtgleichgewichts-Molekulardynamik (HNEMD). Wir finden, dass die relativ neu
entwickelte HNEMD-Technik besser geeignet ist, um κ` der Defektstrukturen zu be-
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rechnen, da κ` mit zunehmender Leerstellenkonzentration abnimmt und außerdem
HNEMD geringere Rechenleistung für niedrigere κ`-Werte benötigt. Um jedoch die
Einschränkungen der parametrisierten empirischen interatomaren Potentiale zu
überwinden, die in Molekulardynamik-Techniken (MD) verwendet werden, berech-
nen wir auch den ab initio Wert für κ` von Bulk- und Dünnschicht-α-Al2O3, wobei
wir sowohl die lokale Dichteabschätzung (LDA) als auch die generalisierte Gradi-
entenannäherung (GGA) für den Austausch und die Korrelation verwenden. Wir
finden, dass LDA die Wärmeleitfähigkeit von Bulk-α-Al2O3 besser als GGA repro-
duziert. Dies steht im Zusammenhang mit den erhöhten Gruppengeschwindigkeiten
der Phononen in LDA-Berechnungen verglichen mit GGA.

Wir erwarten, dass die Erkenntnisse dieser Untersuchung von Punktdefekten dem
Design von Geräten helfen werden, die richtigen Dotierstoffe auszuwählen, in-
dem sie ihre Dotierungseigenschaften und Phononstreuungseigenschaften effektiv
quantifizieren. Außerdem erwarten wir, dass die parameterfreie ab initio Methode
für die κ`-Berechnungen von Bulk- und Dünnschichtverbindungen dazu beitragen
wird, die Einschränkungen der MD-Techniken zu überwinden, und ein wesentlicher
Bestandteil des Verständnisses der experimentellen Beobachtungen werden wird.
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1 Introduction

1.1 Aim of the work

In the present thesis, we start with the investigation of the effect of different dopants
on the electronic properties of TiNiSn and TiCoSb half-Heusler compounds (HHCs)
by carefully analyzing their defect formation energies, chemical potentials, and
carrier concentrations, using state-of-the-art computational methodologies. Next we
study in detail, the phenomena of dopant-induced phonon scattering and its effect
on the thermal conductivity of cubic SiC with the help atomistic Green’s functions
(AGF) technique. The primary consideration of the AGF technique is to evaluate
the phonon scattering rates based on the transformation matrix which itself requires
the computation of the perturbation matrix and the Green’s functions matrix of
the unperturbed host lattice. The main thrust of the this work deals with the
computation of the aforementioned quantities as well as elucidating the effect of each
of them on point-defect phonon scattering. Next, the thermal conductivity of bulk
and thin-film α-Al2O3 is calculated from first principles by solving the Boltzmann
transport equation (BTE). We also carry out classical molecular dynamics (MD)
simulations to understand the effect of intrinsic point defects like vacancies on the
the thermal conductivity (κ) of Si using Stillinger-Weber potential.

1.2 State of the art and methodology

From the first documented observation of the semiconducting effect by Michael Fara-
day in 1883, through the development of first devices like rectifiers and transistors,
all the way to modern day electronic devices, semiconductors have revolutionized

1



1. Introduction

almost every sphere of human activity today [2]. The two primary reasons for
various semiconductor technologies to flourish are the availability of the substrates
and the ease of altering the functional properties of semiconductors by doping.
This renders simple semiconducting devices like diodes and transistors as the
building blocks of more sophisticated devices like microprocessors, metal-oxide-
semiconductor field-effect transistors (MOSFETs), rectifiers, amplifiers, solar cells,
and light-emitting diode (LED) displays. Germanium was used to make the first
transistor which was a point-contact transistor and shortly thereafter Schockley
invented the junction transistor by adding small amount of impurities. Silicon
quickly replaced germanium as the material of choice for making transistors because
of its ability to form a dioxide, crucial for today’s integrated circuits. Since then,
compound semiconductors like GaAs, GaN, SiC, InP, and PbSe have also found
widespread usage in optoelectronic and thermoelectric applications.

Most of the intrinsic semiconductors, however, have limited utility on their own,
and at the heart of modulating the electrical, optical, and magnetic properties of a
semiconductor, lie dopants. Electron donating or electron accepting atoms make
the semiconductors n- or p-type, respectively, which then become the basic units of
devices like diodes, transistors, etc.. Traditionally, the properties of a semiconductor
were altered by using an ensemble of dopants, however, over the last couple of
decades a large progress has been made in identifying the effects of a single dopant
on the fundamental properties of semiconductors, to the extent of opening a new
field of "solotronics" [3, 4]. Nanoscale technologies such as single-dopant transistors
or single-spin devices for quantum information have also been realized by carefully
controlling the doping with only one dopant [3]. These dopants inherently act as a
hindrance to the flow of heat in semiconductor devices. More precisely, the dopants
can be considered as point defects that induce mass and force-constant disorder in
the system and consequently lead to elastic scattering of the phonons. This results
in a reduction in the thermal conductivity of the material and inefficient diffusion
of heat away from the source [5]. Thermal conductivity is an important metric for
applications like thermoelectrics which require low κ, as well as devices such as
transistors, LEDs, and lasers which require high κ for efficient cooling of the device.
Therefore, it becomes imperative to do a comprehensive study of the effect of the
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1.2. State of the art and methodology

dopants not only on the electrical properties but also the thermal conductivity of
the semiconductors. Over the last couple of decades, this has been facilitated by
the advent of modern computers and ever more predictive simulation tools, where
a range of properties including the electronic structure, lattice relaxation, force
constants, etc. associated with a particular dopant can be routinely calculated in a
predictive manner. Also, finding the best dopants to attain a given set of properties
is not always straightforward and it is experimentally cumbersome to study each
and every dopant. In this regard, simulations have become a key tool for not only
achieving the aforementioned tasks, but also interpreting the experimental results
and helping the device design.

In this thesis, we have carried out simulations to study the extrinsic doping of half-
Heusler compounds which is discussed in Sec. 1.2.1, calculating thermal conductivity
within the Boltzmann transport equation formalism (Sec. 1.2.2.1) with a special
emphasis on the point-defect phonon scattering (Sec. 1.2.2.2) explained with the
help of a simple 1D monoatomic chain (Sec 1.2.2.3). Calculation of the thermal
conductivity using molecular dynamics methods like Green-Kubo and homogeneous
non-equilibrium molecular dynamics is discussed in Sec. 1.2.3.

1.2.1 Extrinsic doping of half-Heuslers

In order to reduce the worldwide carbon footprint and counter the drastic changes
in the climate, various international agreements like the Kyoto protocol [6] and the
Paris agreement [7] have laid a tremendous emphasis on the reduction of the use
of fossil fuels and increasing the utilization of renewable energy sources. Globally,
heat is the most abundant energy form used and waste heat accounts for nearly
two-thirds of the overall energy production [8,9]. Therefore, finding methods for
waste heat recovery is an area of paramount importance in the scientific pursuits
today. To this end, thermoelectric technology has emerged as one of the most
promising techniques for waste heat recovery, as it directly converts thermal energy
to electrical energy [9].

Thermoelectric devices are commonly made up of heavily doped n- and p-type
semiconductor pairs which are connected thermally in parallel and electrically in
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1. Introduction

Figure 1.1: Schematic of a thermoelectric device. The n and p correspond to the
n- and p-type semiconductors.

series, as shown in Fig.1.1 [10]. The efficiency of a TE material to convert heat
energy to electrical energy or vice-versa, is measured by its dimensionless figure of
merit zT = S2σT

κe+κ`
, where S is the Seebeck coefficient, σ the electrical conductivity,

T the temperature, κe and κ` the electronic and the lattice contribution to the
thermal conductivity, respectively. Although, the TE modules offer a cost efficient,
noise-free, and green technology to produce electricity without the hazards related
to moving parts, the main challenge associated with the TE technology is the
low value of zT of materials used in making the TE devices. This is because, a
good thermoelectric material should have a large S, high σ, and low κ, achieving
which simultaneously is non-trivial [11]. Depending on the operational temperature
various semiconductor materials like Bi2Te3, Sb2Se3, PbSe, CoSb3, SiGe, and
Zn4Sb3 are being used in the thermoelectric modules [9].

Half-Heusler compounds have shown a great potential as thermoelectric materials
for the moderate temperature (T = 500− 800 ◦C) applications such as, recovering
automobile exhaust, and industrial waste heat [1]. HHCs owe their usability
to their non-toxicity, high thermal stability, mechanical strength, and moderate
zT compared to their counterparts like PbTe, and skutterudites [12]. HHCs
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with formula ABX have the cubic MgAgAs type structure (space group F 4̄3m),
which is formed by three interpenetrating face-centered-cubic (fcc) sublattices of A
(occupying Wycoff position 4b (1/2, 1/2, 1/2)), B (every alternate 4c (1/4, 1/4,
1/4)), and X (4a (0, 0, 0)) , as shown in Fig.1.2 [1]. Is has been shown earlier that
HHCs with the valence electron count (VEC) of 18 per unit cell are stable and have
a band gap of 0− 1.1 eV [1]. The most extensively studied half-Heuslers are MNiSn
and MCoSb, where M is Ti, Zr, and Hf, whereas new HHCs like (Nb/V)FeSb [12],
NbCoSn [13], and even 19 VEC systems like NbCoSb [14] are currently being
studied.

A B X
Figure 1.2: Crystal structure of a half-Heusler compound. A can be a transition
metal, a nobel metal, or a rare-earth element, B can also be a transition or noble
metal, and X is a main group element [1].

The two main strategies to improve the zT values of the HHCs are, improving the
power factor (S2σ), and reducing the lattice thermal conductivity (κ`). The high
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thermal conductivity (6.7−20 W m−1 K−1at 300 K) of the HHCs has been identified
as one of the main bottlenecks for their thermoelectric applications [1]. Much effort
has gone into solving this and more than 50% reduction in κ` has been reported
by the generation of point defects during the binary and ternary isoelectronic
doping of n-type MNiSn and p-type MCoSb, where M = Ti, Zr, and Hf [15–28].
A high zT ∼ 1 was also achieved for the ternary isoelectronic doping with less Hf
amounts in both p- and n-type half-Heuslers [29–31]. Enhancing grain boundary
scattering by reducing the grain size in polycrystalline samples has also been shown
to greatly reduce the thermal conductivity in HHCs [32–34]. Furthermore, the
addition of high melting point oxides like Al2O3 [35] and ZrO2 [36, 37], metallic
phase nanoinclusions like InSb [38,39], and full-Heuslers [40,41] have been reported
to act as phonon scattering centers and reduce κ`.

Power factor can be improved by enhancing the Seebeck coefficient and the electrical
conductivity. Increasing the carrier concentration and carrier mobility are the two
handles to enhance the electrical conductivity. It should again be noted that all the
factors influencing the zT , viz., S, σ, and κ are interdependent, and often, a change
in one leads to a change in the other. For example, the aforementioned use of the
InSb nanoparticles in Ti(Co, Fe)Sb not only reduces κ`, but also leads to an increase
in σ [39]. Similarly, the in situ formation of InSb [38] or full-Heusler phase [40–42]
nanoprecipitates employed to increase the carrier concentration also leads to an
increase in the Seebeck coefficient by scattering low energy charge carriers. Dopants
have been more extensively used to enhance the carrier concentration, as they
generally increase or decrease the VEC making the HHC n- or p-type, respectively.
In half-Heuslers all three lattice sites, viz., A, B, and X can be doped independently
to vary the VEC, adding to the chemical versatility of the HHCs. n-type type
doping has been effectively done on the MNiSn (M = Ti, Zr, Hf) systems with
V, Nb, and Ta at the M site [16, 20], Cu at Ni site [43], and Sb, and Bi at the
Sn site [16, 20]. Such systems being inherently n-type, it is difficult to p-dope
them [1]. On the contrary, MCoSb compounds are not intrinsically n-dopable
due to a relatively larger bandgap. However, they can be effectively p-doped by
partially replacing M with Sc, and Ta [44, 45], Co with Fe [46, 47], and Sb with
Sn, and Ge [18, 22, 30, 33, 48–51]. Furthermore, intrinsic defects formed under
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certain growth conditions are also known to enhance the carrier concentrations in
HHCs [52–56].

It is thus evident that finding the right dopants to achieve optimal carrier con-
centration in HHCs is not trivial, as it an interplay between the intrinsic and
extrinsic defects, and the growth conditions. It is also possible that the extrinsic
doping has not been fully explored in HHCs due to their chemical versatility and
possibility to substitute each lattice stie independently. Moreover, considering each
and every case experimentally is not easy. It further demands a comprehensive
knowledge of the underlying parameters to study the dopability of such mate-
rials. To this end, density functional theory (DFT) has emerged as a powerful
tool to calculate the properties of the defects in the the host material from first
principles. The most widely used approach to calculate the formation energies
of the defects is the supercell approach [57]; Green’s function approach [58], and
cluster approach [59,60] being among others. The supercell approach overcomes the
limitations of the cluster approach which suffer from quantum confinement effects in
delocalized wave functions and the Green’s function technique which doesn’t treat
the electrostatic and elastic response accurately [61]. In the following, we present
the methodology to calculate the defect formation energies within the supercell
approach, the chemical potentials, and the carrier and defect concentrations of
the point defects in semiconductors. We also emphasize the importance of the use
of on-line repositories like AFLOWlib [62], and the Materials Project [63] which
adhere to the REST architectural constraints, in speeding up the calculations.

1.2.1.1 Defect formation energy

Several studies have established the use of DFT within the supercell approach to
calculate the defect formation energies (DFE), where the defect is located in a
supercell which is made of several repeating unit cells [61, 64–66]. The defect is
surrounded by a finite number of atoms of the supercell and periodic boundary
conditions are imposed. In order to avoid the defect-defect interactions in the
periodic images, the supercell should be large enough to reach the dilute limit and
mimic isolated defects. The defect formation energy for a defect D in charge state
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q, as a function of the electron chemical potential µe can be calculated as [67,68]:

E0
D(q)(µe) = Ef,D(q) −

∑
α

nα∆µα + qµe, (1)

where,
Ef,D(q) = ED(q) − Ebulk −

∑
nαE

ref
α . (2)

The quantities ED(q) and Ebulk correspond to the ground state energies calculated
using DFT for the defected and bulk supercells, respectively. nα is the number
of atoms of species α that are exchanged with the reservoir, with (n > 0) if the
atoms are added to the crystal and (n < 0) if the atoms are removed from the
crystal. Eref

α is the reference energy or in other words ground state total energy of
the species α. ∆µα is the change in chemical potential of species α and accounts
for the energy needed to exchange it with the reservoir. For neutral defects (q = 0),
the DFE is independent of the electron chemical potential, meaning to say that
since no electrons are exchanged with an external electron reservoir, it does not
effect the DFE. µe is referenced with respect to the valence band maximum (VBM)
of the bulk system.

The DFE is assumed to be independent of the temperature. Temperature largely
plays a role in determining the defect concentrations in thermodynamic equilibrium
through the configurational entropy, as we will see later. For defect concentrations
below 10−4 the configurational entropy per defect is larger than 10kB, rendering
the additional contributions like vibrational, electronic, and magnetic contributions
negligibly small [61]. These contributions also significantly add to the computational
costs and therefore are not considered in the present study.

For the charged supercells, say q = −1, one has to consider that, since one electron
is being added to the system, the charge neutrality condition is no more satisfied.
Also, the periodic repetition of such a system would lead to the divergence of
the electrostatic potential. To compensate for this, a jellium background charge
is applied by setting the average electrostatic potential to zero during the DFT
calculations. The periodic images also cause artificial Coulomb interaction between
the defect arrays, which only decays as 1/r, and cannot be simply overcome by
increasing the supercell size due to computational limitations. Therefore, for
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reasonable supercell sizes these interactions cannot be neglected. Furthermore, the
Kohn-Sham eigenvalues and therefore the VBM calculated within DFT depend
on the average electronic potential in the bulk. The DFE for the charged systems
is also dependent on the value of the VBM through µe, see Eq. 1. Since the
absolute reference of the average electrostatic potential is not defined, the average
electrostatic potential in defect supercell has to be aligned with that in the bulk.
In the present study we apply the corrections mentioned above a posteriori in
the form of Markov and Payne multipole correction (∆EMP) [69] and potential
alignment correction (∆Epa) [66]:

∆EMP(D(q)) = q2αM
2ε0L

+ 2πqQ
3ε0L3 +O(L−5), (3)

and
∆Epa(D(q)) = q[VR(D(q))− V bulk

R ] + ∆εVBM, (4)

respectively. In Eq. 3, αM is the Madelung constant which is a geometrical factor
and depends on the lattice type. ε0 is the dielectric constant of the host material
which screens the Coulomb interaction between the defect arrays, and Q is the
quadrupole moment. The two terms correspond to the monopole and quadrupole
corrections, respectively, and in the present study only monopole correction is
considered. In Eq. 4, VR are the potential energies at given reference points far
from the defect and ∆εVBM aligns the valence band maximum of the defected and
non-defected cells. Finally, after considering the corrections, the DFE takes the
form:

ED(q)(µe) = E0
D(q)(µe) + ∆Epa(D(q)) + ∆EMP(D(q)). (5)

1.2.1.2 Chemical potentials

The chemical potentials that enter Eq. 1 are of the atoms forming the defect
in the host material. They represent the energies of the reservoirs with which
they are exchanged and are uniquely defined by the experimental conditions. In
other words, we can explore different experimental conditions by varying the
chemical potentials in the calculations. The chemical potentials always depend
on temperature, pressure, and their implicit reference. In the present calculations,
they are referenced to the total energy of the elementary phases at T = 0 K, and it
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is crucial that a consistent choice is made for all chemical potentials. Although,
the chemical potentials are treated as variables in the general formalism, they are
subject to specific bounds set by the secondary phases. For example, if we consider
a compound XY , since the chemical potentials are referenced with the elementary
phases, upper bounds are set on the chemical potentials of X and Y so that they
do not precipitate into their reference states as:

µX ≤ Eref
X (6)

µY ≤ Eref
Y . (7)

The chemical potential of the compound XY is fixed as:

µX + µY = µXY . (8)

Subtracting the reference energies on both side further yields:

∆µX + ∆µY = 2∆H(XY ), (9)

where ∆µi = µi − Eref
i . Now, if there are any competing phases of X and Y, like

XaYb, then the chemical potentials of X and Y are further limited, such that they
do not form this phase as:

a∆µX + b∆µY ≤ (a+ b)∆H(XaYb). (10)

Therefore, in order to get the actual chemical potential stability domain of the
desired compound, the list of the conditions imposed by the competing phases has
to be complete. The formation energies of such competing phases can be directly
obtained from the online repositories like, AFLOWlib, and Materials Project. If
doping is done, additional conditions are imposed by the phases formed by the
dopant and the elements of the host structure. For example, if we consider the
simple case of Si doped with P, the following conditions have to be satisfied. First
of all, without any dopants, the chemical potential of Si is limited only by the
condition:

µSi ≤ Eref
Si , or (11)

∆µSi ≤ 0. (12)
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Now, when the P is introduced, all the phases formed between Si and P have to be
considered. Such a list of competing stable phases can be easily obtained on-line
using the aforementioned materials repositories. So for P-doped Si, the competing
phases obtained form Materials Project [63] are SiP and SiP2. Therefore, the
bounds placed on the chemical potentials are:

∆µSi + ∆µP ≤ 2∆H(SiP), (13)

∆µSi + 2∆µP ≤ 3∆H(SiP2). (14)

Figure 1.3 shows the competing phases when Si is doped with P. The upper bounds
placed on the chemical potential of P in order to avoid the formation of competing
phases, i.e ∆µP < 0.31 (red point Fig. 1.3).

Figure 1.3: Competing phases in P-doped Si. The red point corresponds to the
maximum value of the chemical potential of P, before the competing phase SiP is
formed. Green line is the allowed chemical potentials of P.

Further, if we consider the binary system of cubic SiC (3C-SiC), similar conditions
for the individual chemical potentials are placed:

µSi ≤ Eref
Si , (15)

µC ≤ Eref
C . (16)
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In addition to this, now the chemical potentials of Si and C are bound only by
twice the formation energy of 3C-SiC, as there are no competing phases:

∆µSi + ∆µC = 2∆H(SiC). (17)

If SiC is doped with nitrogen, the competing phases which can be formed are
shown in the ternary phase diagram (Fig.1.4). These compounds pose the following
bounds on the chemical potentials:

3∆µSi + 4∆µN ≤ 7∆H(Si3N4), (18)

2∆µSi + ∆µC + 4∆µN ≤ 7∆H(Si2CN4), (19)

limiting the maximum allowed chemical potential of N such that all the three
conditions, viz., Eq. 17, Eq. 18, and Eq. 19 are satisfied.

N2

Si C

Si3N4 Si2CN4

SiC
Figure 1.4: Ternary phase diagram of N-doped SiC consisting of the most stable
respective binary and ternary phases.

1.2.1.3 Defect concentrations and electron chemical potential

Various kinds of point defects like vacancies, interstitials, antisites, and substitu-
tional atoms are present in a material because of thermodynamic considerations
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and fabrication limitations. These defects break the order of the otherwise perfectly
ordered crystal structure. The defects are considered to occur in the dilute limit,
meaning that the defect-defect interactions can be ignored. This assumption is
justified as the number of available lattice sites N is much larger than the number
of defects in the lattice.

The defect formation energies are always positive, as negative energies would mean
that the host lattice is unstable. However, temperature effects largely in the
form of configurational entropy compensate for the energy cost per point defect.
In thermodynamic equilibrium, Gibbs free energy determines the equilibrium
concentration of the defects, and for nD point defects it is given as:

G = nDED − TSconf , (20)

where ED is formation energy of a single point defect, T the temperature, and Sconf

the configurational entropy. For the N lattice sites available, if there are nD point
defects that occupy them, then the configurational entropy can be calculated as:

Sconf = kBln
(

N !
(N − nD)!nD!

)
. (21)

Applying Stirling’s approximation, ln(x!) = xln(x), since the number of atoms is
of the order of Avogadro’s constant NA, yields:

Sconf = kB(N ln(N)− (N − nD)ln(N − nD)− nDln(nD). (22)

Using concentration instead of number of the defects, cD = nD/N , gives:

Sconf = −kBN((1− cD)ln(1− cD) + cDln(cD). (23)

Substituting Eq. 23 in Eq. 20, we get:
G

N
= cDED + kBT ((1− cD)ln(1− cD) + cDln(cD). (24)

Under thermodynamic equilibrium, the Gibbs free energy has to be minimized with
respect to the defect concentration, such that:

∂G

∂cD
= 0 (25)

ED + kBT
∂

∂cD
((1− cD)ln(1− cD) + cDln(cD) = 0. (26)
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Differentiating and rearranging gives:

ED + kBT ln
(

cD
1− cD

)
= 0 (27)

cD
1− cD

= exp
(
− ED
kBT

)
. (28)

In dilute limit, cD << 1, therefore,

cD = exp
(
− ED
kBT

)
. (29)

Eq. 29 suggests that for T > 0 K, there is a finite concentration of point defects of
a certain kind with formation energy ED. At a particular temperature, the higher
the DFE the smaller the concentration, and vice-versa.

Further, in semiconductors, unlike metals, the point defects commonly occur in
charged states. Considering the dependence of ED on the electronic and defect
chemical potentials for charged defects, Eq. 29 can be rewritten as:

cD(q)(µe, T ; ∆µα) = exp
(
−ED(q)(∆µα, µe)

kBT

)
. (30)

A particular defect can be present in different charge states in the system as shown
in Fig. 1.5. Each defect is independent and has its own formation energy which
varies linearly with µe, the respective charge being the slope. As can be seen in
the figure that, at certain values of µe (red points), two differently charged defects
have the same energy and a transition between them takes place. At such points
both the defects will have the same concentration. Such transitions make different
defects energetically more stable than others at particular range of values of µe,
depicted as solid black line in Fig 1.5. In can be interpreted that, it is energetically
less costly to make positively charged (electron donating) defects near the VBM
and negatively charged (electron accepting) defects near the CBM.

Taking all the defects into account, charge neutrality has to be maintained in the
system such that:

nh(µe, T )− ne(µe, T ) +
∑
D(q)

cD(q)(µe, T ; ∆µα) = 0. (31)
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0

+1

+2

-1

VB CB

Figure 1.5: Schematic illustration of the defect formation energies of a particular
defect in its different charge states, ranging from +2 to -1. The most stable charge
state at a particular value of the chemical potential is given by the thick black line,
whereas the red points denote the transition between two different charge states.
The two shaded regions VB and CB correspond to the valence and conduction
band regions, respectively.

The sum is taken over all the intrinsic and extrinsic defects of interest. In the
dilute limit, it can be assumed that the bandstructure is approximately the same
as that of the pure host material. In that case, the number of holes is given by:

nh =
∫ εVBM

−∞
D(ε)(1− f(ε, µe))dε, (32)

and the number of electrons:

ne =
∫ ∞
εCBM

D(ε)f(ε, µe)dε, (33)

where D(ε) is the density of states and f(ε) =
(
exp

(
ε−µe
kBT

)
+ 1

)−1
the Fermi-Dirac

distribution. Since the concentration is dependent on the temperature and the ED(q)

is dependent on the electronic chemical potential, the charge neutrality condition
has to be solved self-consistently, as shown in Fig. 1.6. This can be done using
standard root-finding algorithms.
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Figure 1.6: Self-consistent cycle for calculating µe in order to maintain charge
neutrality.

Finally, it should be noted that, the Kohn-Sham DFT (KS-DFT) based supercell
approach suffers from a prominent problem knows as the band gap problem, which
has its origin in the choice of exchange-correlation functionals [61]. The most
commonly used functionals are the local-density approximation (LDA) [70] and
the generalized gradient approximation (GGA) by Perdew, Bruke, and Ernzerhof
(PBE) [71], which contain a spurious self-interaction in DFT. While these functionals
are parameter-free and give reasonable lattice constants for many materials, the
underestimation in the band gap by a factor of up to two has been seen in case
of LDA [72]. A correct band gap is necessary for the calculation of the number
of holes and electrons, Eqs. 32 and 33, which are required in the self-consistent
calculation of the electron chemical potential in the charge neutrality condition,
Eq. 31. Moreover, a smaller band gap can also lead to a wrong prediction of the
relative stability of different defects. This can be seen in Fig. 1.5, where the −1
charged defect is not stable in the first-half of the band gap at all.
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1.2.2 Predictive ab initio lattice thermal conductivity
and point defect phonon scattering

Over the last few decades, semiconductor devices have experienced a continuous
miniaturization and increasing operating speeds and frequencies, which has put
tremendous thermal loads on them. Heat dissipation or thermal transport at
the nanoscale has been identified as the bottleneck in producing smaller and
faster transistors, consequently pointing to the end of Moore’s Law’s [73–75].
Various other applications such as thermal barrier coatings, thermoelectric energy
conversion, phase change memory devices, heat-assisted magnetic recording, heated
nanoparticles in medical therapy, and micro-electrochemical systems are also
functionally dependent on nanoscale heat transfer [74,76]. In order to tackle the
problem of nanoscale thermal transport, materials like high-thermal-conductivity
cubic crystals, two-dimensional layered materials, and low-dimensional systems
like nanowires, nanotubes, or nanoribbons have been employed as heat-spreading
layers and substrates in electronic devices [77]. In contrast, nanostructuring
using superlattices has also been employed to reduce thermal conductivity in
thermoelectric devices [1, 9, 12, 78]. However, modeling thermal transport in these
structures is much more complex than for macroscopic systems. This is because,
the macroscale continuum approach based on the classical heat transfer is no
longer valid for the nanoscale devices where the mean free paths (MFPs) of the
heat-carrying phonons become comparable to the characteristic length of the
device [74, 79]. Moreover, various defects like vacancies, dislocations, interfaces,
grain boundaries, or nanoinclusions present in the system scatter the phonons,
where the scattering rate for each defect has to be considered explicitly.

Phonons are the main heat carriers in semiconductors and insulators [80]. In such
materials, the phonon-contributed thermal conductivity, also called the lattice
thermal conductivity (κ`), largely outweighs the electronic part (κe) in the total
thermal conductivity, κ = κ` + κe. Recent advances on the theoretical and
computational fronts have facilitated understanding and dealing with heat transport
at the nanoscale. In this regard, the Boltzmann transport equation (BTE) combined
with DFT has emerged as a powerful tool to study phonon transport from first
principles [81,82]. Owing to its various advantages like parameter-free computation
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of the relevant quantities, predictive ability, and a quantum-mechanical treatment
of phonons, it has been used on a wide variety of materials, in understanding
certain physical phenomena, as well as critically analyzing experimental data [83].
In the DFT-BTE approach the calculation of the transport properties is based on
the ab initio computation of the interatomic force constants and the numerical
solution of the phonon Boltzmann transport equation.

In the previous section, we discussed the importance of dopants or point defects
for tuning the properties of semiconductors and the associated thermochemistry. It
was shown in case of HHCs, how certain dopants are effective in reducing the lattice
thermal conductivity, thereby increasing zT . However, in other technologies that
are also heavily dependent on doping, such as power electronics, optoelectronics,
photovoltaics, efficient heat removal from the active region is critical to the device
performance. In such cases, the dopants can severely hinder the flow of heat-carrying
phonons, specially in highly-doped systems or at low temperatures [84]. Thus,
accurately describing defect-phonon scattering is critical for the above-mentioned
parameter-free DFT-BTE formalism to not only function predictively in case of
intrinsic κ` calculations but also for real materials containing defects.

The development of atomistic Green’s function (AGF) methodology utilizing the T
matrix [85] and coupled with the BTE, during the last decade or so, has made it
possible to treat the defect-phonon scattering in the crystal from first principles.
AGF has been successfully applied to study point defects like vacancies [86–91],
as well as external dopants [90–92] in semiconductors. It has also been applied
to nanoparticles [93] and very recently to random semiconductor alloys [94] and
dislocations [95]. Enhanced scattering caused by certain dopants has also been
analyzed by carefully studying the role of the underlying parameters of the AGF
approach [92, 96]. AGF takes into account the perturbation to all orders and
overcomes the limitations of earlier models that rely only on mass perturbations
due to the defects [84,97,98], or fitting parameters to match experimental data [84,
99–103].

In the following, we present the theory behind the thermal conductivity calculations
with the BTE, and the atomistic Green’s function method to treat the defect-phonon
scattering.
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1.2.2.1 Thermal conductivity using the Boltzmann transport
equation

At thermal equilibrium, phonons are distributed according to Bose–Einstein statis-
tics as:

n0(ωλ) = 1
exp

(
~ωλ
kBT

)
− 1

, (34)

where ωλ is the angular frequency of the mode λ ≡ (q, p), which is the short hand
notation for the phonon mode with wave vector q and branch or polarization
index p. A temperature gradient ∇T perturbs n0, which causes the diffusion of
phonons and their scattering arising from the allowed processes, resulting in a
non-equilibrium phonon distribution nλ. This deviation can be captured by the
BTE which gives the time evolution of the phonon populations as [80]:

∂nλ
∂t

= ∂nλ
∂t

∣∣∣∣∣∣
diffusion

+ ∂nλ
∂t

∣∣∣∣∣∣
scattering

. (35)

In the steady state the rate of change in the distribution must go to zero, ∂nλ/∂t = 0,
such that:

− ∂nλ
∂t

∣∣∣∣∣∣
diffusion

= ∂nλ
∂t

∣∣∣∣∣∣
scattering

. (36)

The diffusion term can be written as:

∂nλ
∂t

∣∣∣∣∣∣
diffusion

= −∇T · vλ
∂nλ
∂T

, (37)

where vλ is the phonon group velocity of the mode λ. The scattering term in
Eq. 36 is determined by the allowed scattering events occurring in the system.
These events comprise of the temperature-dependent anharmonic scattering due to
phonon-phonon interactions and the temperature-independent harmonic scattering
caused by the impurities and defects in the system. Considering a small temperature
gradient ∇T , the non-equilibrium phonon distribution can be expanded up to the
first order in ∇T as [104]:

nλ = n0
λ + Fλ · ∇T

(
−∂n

0
λ

∂T

)
. (38)
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In this treatment, the linearized BTE is represented by Fλ as:

Fλ = τ 0
λ (vλ + ∆λ) . (39)

τ 0
λ is the total relaxation time of mode λ whose inverse is the total scattering rate,
1
τ 0
λ

, which can be obtained according to the Matthiessen’s rule as [80]:

1
τ 0
λ

=
+∑
λ′λ′′

Γ+
λλ′λ′′ +

−∑
λ′λ′′

1
2Γ−λλ′λ′′ +

∑
λ′

Γiso
λλ′ +

∑
λ′

Γpd
λλ′ . (40)

∆λ couples the phonon populations of the mode λ with the other modes through
the anharmonic and elastic scattering as [104]:

∆λ =
+∑
λ′λ′′

Γ+
λλ′λ′′

(
ωλ′′

ωλ
Fλ′′ − ωλ′

ωλ
Fλ′

)

+
−∑
λ′λ′′

1
2Γ−λλ′λ′′

(
ωλ′′

ωλ
Fλ′′ + ωλ′

ωλ
Fλ′

)
+
∑
λ′

Γiso
λλ′
ωλ′

ωλ
Fλ′ +

∑
λ′

Γpd
λλ′
ωλ′

ωλ
Fλ′ , (41)

where Γ±λλ′λ′′ are the three-phonon transition probability rates, and Γiso,pd
λλ′ are the

two-phonon transition probability rates of isotopes and point defects, respectively.
The methodology to calculate these quantities is shown below. First of all, in the
present work we consider the anharmonicity only up to the third order in Taylor
expansion of the potential energy E as:

E ≈ E0 +
∑
lkα

∂E

∂uαlk

∣∣∣∣∣∣
0

uαlk + 1
2
∑
lkα
l′k′β

∂2E

∂uαlk∂u
β
l′k′

∣∣∣∣∣∣
0

uαlku
β
l′k′

+ 1
6
∑
lkα
l′k′β
l′′k′′γ

∂3E

∂uαlk∂u
β
l′k′∂u

γ
l′′k′′

∣∣∣∣∣∣
0

uαlku
β
l′k′u

γ
l′′k′′ +O(u4), (42)

where α, β, and γ run over the Cartesian axes, l refers to the unit cell, and k

locates the atom within the motif. The u describe the atomic deviations from their
equilibrium positions. The first term of Eq. 42 is a constant that can be ignored
and the second term describes the force exerted on a particular atom by all other
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atoms. At equilibrium, where the crystal potential (E) has its minimum, this force
must be equal to zero and therefore this term can also be ignored. The second-
and third-order derivatives of E are the interatomic force constants (IFCs) of the
system which are abbreviated as:

∂2E

∂uαlk∂u
β
l′k′

∣∣∣∣∣∣
0

= Kαβ
lk,l′k′ (43)

∂3E

∂uαlk∂u
β
l′k′∂u

γ
l′′k′′

∣∣∣∣∣∣
0

= Φαβγ
lk,l′k′,l′′k′′ (44)

These IFCs can be obtained from first principles using either the linear-response
approach within the density-functional perturbation theory [105–107], or the finite-
displacement method [108, 109]. In the present study we have used the finite-
displacement method as it is straightforward and conceptually simpler to implement.
In this method the IFCs are calculated in the direct space, usually on a supercell
expansion of the unit cell, from the forces induced on the atoms of the supercell
when displacing other ions from their equilibrium positions. This can be done
utilizing the space-group symmetries of the concerned system and then either
displacing atoms by a finite amount sequentially, as done in Phonopy [110] and
thirdorder.py [104], or displacing all the atoms in random directions at once,
as done in the newly developed technique [111]. In this study, we use the former.

The total anharmonic crystal hamiltonian is then given as:

H ≈ H2 + H3 +O(u4), (45)

where the first term is the harmonic part given as:

H2 =
∑
lk

plk · plk
2Mlk

+ 1
2
∑
lkα
l′k′β

Kαβ
lk,l′k′uαlku

β
l′k′ . (46)

For this system, the equation of motion for the k-th atom in the l-th unit cell,
having mass M , can be written as [112]:

Mlkü
α
lk = ∂E

∂uαlk
= −

∑
l′k′β

Kαβ
lk,l′k′u

β
l′k′ . (47)
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Taking
uαlk = 1√

Mlk

Aαk (q) exp (iqrlk − ωt) (48)

as a solution to Eq. 47, we obtain the phonon frequencies as

ω2ũαlk =
∑
l′k′β

Kαβ
lk,l′k′√

MlkMl′k′
ũβl′k′ , (49)

where Aαk is the amplitude, rlk the position vector of atom k in unit cell l, and
ũα =

√
Muα. Writing Eq. 49 to obtain the polarization and wave-vector dependent

frequencies, we get
ω2
λe
α
λ(k) =

∑
k′β

Dαβ
kk′(q)eβλ(k′), (50)

where the dynamical matrix D is given as:

Dαβ
kk′(q) =

∑
l′

Kαβ
lk,l′k′√

MlkMl′k′
exp (iq(rl′k′ − rlk)), (51)

where eαλ is the normalized eigenvector of the dynamical matrix. The sum on the
right-hand side of the equation is independent of l, as l can be set to 0 owing to
the property that Kαβ

lk,l′k′ = Kαβ
0k,(l−l′)k′ .

The second term on the right-hand side of Eq. 45, H3, is the anharmonic contribution
which can be seen as a perturbation to the harmonic part of the hamiltonian.
Therefore, within the perturbation theory, the transition probability rates Γ± for
such a perturbation can be obtained by using Fermi’s golden rule. Fermi’s golden
rule relates the perturbation H3 with the transition of the system from the initial
state |i〉 to a final state 〈f | to yield the transition rate to the first order as:

Γfi = 2π
~
|〈f |H3|i〉|2δ(Ef − Ei) (52)

Using Eq. 52, the transition probability rate Γ+ can be calculated for a coalescence
transition from |nλnλ′nλ′′〉 to |(nλ − 1)(nλ′ − 1)(nλ′′ + 1)〉 as:

Γ+
λλ′λ′′ = ~π

4
n0
λ′ − n0

λ′′

ωλωλ′ωλ′′

∣∣∣Ψ+
λλ′λ′′

∣∣∣2 δ(ωλ + ωλ′ − ωλ′′), (53)

and for a decay transition from |nλnλ′nλ′′〉 to |(nλ − 1)(nλ′ + 1)(nλ′′ + 1)〉 as:

Γ−λλ′λ′′ = ~π
4
n0
λ′ + n0

λ′′ + 1
ωλωλ′ωλ′′

∣∣∣Ψ−λλ′λ′′

∣∣∣2 δ(ωλ − ωλ′ − ωλ′′), (54)
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where nλ is the occupancy number of phonons with wave vector q in branch p.
Ψ±λλ′λ′′ is the scattering matrix element given by:

Ψ±λ′λ′λ′′ =
∑
k∈u.c.

∑
k′,k′′

∑
αβγ

Φαβγ
kk′k′′

eαλ(k)eβp′,±q′(k′)eγp′′,−q′′(k′′)√
MaMbMc)

, (55)

where eαλ(k) is the α component of the normalized eigenfunction of mode λ at the
atom k. The summations run over the atom indices k, k′, and k′′ and the Cartesian
coordinates. The sum k runs over only atoms in the central unit cell, whereas k′

and k′′ cover the whole system [104].

Considering that naturally occurring materials consist of significant concentrations
of isotopic and other point-defect impurities, in the Eq. 40, apart from the three-
phonon scattering rates, the scattering rates due to isotopic disorder ( 1

τ isoλ
=

∑
λ′ Γiso

λλ′) and point defects ( 1
τpdλ

= ∑
λ′ Γpd

λλ′) are also calculated.

The transition probability rate due to the isotopic defects is given as [93,97]:

Γiso
λλ′ = πω2

2
∑
k∈u.c.

g(k)
∣∣∣e†

λ(k)eλ′(k)
∣∣∣2 δ(ωλ − ωλ′) (56)

where g(k) = ∑
s fs(k)[1 − Ms(k)/M(k)]2 represents the Pearson deviation co-

efficient of the masses Ms(k) of isotopes s of atom k, which are found with a
relative frequency 0 < fs ≤ 1, and M(k) = ∑

s fs(k)Ms(k) is their average. The
methodology to calculate the third term in Eq. 40, which is the scattering rates

due to the point defects
(

1
τpdλ

)
, is the central topic of this thesis and is presented

separately in Sec. 1.2.2.2.

Once all the quantities are calculated in Eqs. 39, 40, and 41, κ` can be computed
in terms of Fλ as:

καβ` = 1
kBT 2Vu.c.N

∑
λ

n0(n0 + 1)(~ω)2vαλF
αβ
λ (57)

where, Vu.c. is the volume of the unit cell. The zeroth-order approximation to
the Eq. 39, i.e. setting ∆λ = 0, yields the relaxation time approximation (RTA)
contribution to the thermal conductivity. RTA assumes that the relaxation time
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of each phonon from its non-equilibrium distribution function to its equilibrium
function is independent of perturbations of other phonons. In contrast to Eqs. 39 and
41 which couple the scattering events to the phonon populations, this assumption
decouples the non-equilibrium phonon distributions of different modes caused by
the allowed scattering events. The RTA works well for lower κ` materials [113–
115], however, in certain high-thermal conductivity systems like diamond, it can
underestimate the room temperature κ` up to 48% [116]. This is because, RTA
treats all the three-phonon scattering processes as resistive. Furthermore, the
three-phonon scattering phase space for resistve processes in diamond is smaller
as compared to say, Si or Ge. This is caused by high phonon group velocities in
diamond owing to its stiff bonds and small mass of carbon. Therefore, an iterative
procedure is required to attain a steady-state where the resistive and non-resistive
processes balance each other [117]. The iterative solution to the BTE can be
obtained by starting with the zeroth-order approximation, F0

λ = τ 0
λvλ, and checking

for the convergence in the thermal conductivity tensor, as shown in Fig. 1.7.

Figure 1.7: Solving Eq. 39 iteratively to obtain the fully converged thermal con-
ductivity tensor, Eq. 57. The zero-th iteration value where ∆λ = 0, corresponds to
the RTA thermal conductivity.

In a more direct approach, utilizing the symmetries of the system, the exact solution
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to the linearized BTE can also be obtained by solving the linear system of equations,
Eqs. 39 and 41, that take the form [83]:

XF = Y. (58)

The solution of Eq. 58 is returned in the form of a Cartesian vector F λ =
(Fα

λ , F
β
λ , F

γ
λ ) which can be directly fed into Eq. 57 to obtain the full-BTE thermal

conductivity.

1.2.2.2 Ab initio point-defect phonon scattering

In the previous section, we discussed how the anharmonicity of the crystal Hamilto-
nian establishes a temperature gradient in the system giving rise to inelastic phonon
scattering events and subsequently causing thermal resistance. Similarly, there
can also be temperature independent perturbation to the harmonic equations of
motion in the form of mass (VM) and second-order interatomic force constant (VK)
perturbations caused by point defects. Point defects like vacancies, interstitials,
and substitutional atoms not only effect the system in terms of a mass perturba-
tion but also locally alter the bonding in their vicinity resulting in force-constant
perturbation, as shown in Fig 1.8. As evident from Eq. 40, the scattering caused
by point defects directly adds up to the scattering caused by the three-phonon
processes and isotopes, thereby effecting the thermal conductivity of the system.
This necessitates an ab initio treatment of the point-defect phonon scattering to all
orders. Such a problem can be dealt with the help of atomistic Green’s function
(AGF) approach, where the central idea is to obtain 1

τpdλ
in terms of the easily

accessible Green’s function of the host lattice (g+) and the total perturbation
V = VM + VK.

To begin with, Eq. 49 can be written more compactly in the matrix form as:
(
ω2M0 −K0

)
u = 0, or(

ω2I−M0
− 1

2 K0M0
− 1

2
)

ũ =
(
ω2I−H0

)
ũ = 0 (59)

where the K0 and M0 are 3aNuc × 3aNuc matrices, a being the total number of
atoms in the primitive unit cell and Nuc the number of such unit cells that make
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Vacancy
Interstitial

Substitutional 
Defect

Figure 1.8: Schematic representation of the perturbation caused by different point
defects in the system and resulting phonon scattering.

up the crystal.

K0 =



Kαα
0,0 Kαβ

0,0 Kαγ
0,0 · · · · · · Kαγ

0,3aNuc

Kβα
0,0 Kββ

0,0 Kβγ
0,0

Kγα
0,0 Kγβ

0,0 Kγγ
0,0

... . . .

... . . .
Kγα

3aNuc,0 Kγγ
3aNuc,3aNuc


(60)
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M0 =



M0 0 0 · · · · · · 0
0 M0 0
0 0 M0
... M1
... . . .
0 M3aNuc


(61)

Ideally, Nuc → ∞, which makes it difficult to solve this set linear equations in
direct space basis. This problem can be circumvented by finding the eigenvalue
equation in the reciprocal space basis, which is obtained by back-folding H0 into
the unit cell, such that Eq. 50 can be written in the matrix form as:

D0(q)eλ = ω2
λeλ, (62)

where D0(q) is the dynamical matrix of dimension 3a×3a for a given q. The above
treatment makes use of the periodicity of the system and reduces the problem
of solving Eq 59 in the real space with 3aNuc degrees of freedom to considering
only 3a degrees of freedom in the unit cell for each q point of the Brillouin zone.
We then define the Green’s function for Eq. 59, consisting of the mass-normalized
harmonic force-constant matrix H0, as [118]:

g(ω2) =
(
ω2I−H0

)−1
(63)

More generally, when ω2 approaches the eigenvalues of H0, which are also the
eigenvalues of D0, g diverges and can only be defined in a limiting case to obtain
the retarded spectral Green’s function of the host lattice, g+(ω2), as [118]:

g+(ω2) = lim
ε→0+

1
ω2 + iε−H0

(64)

= lim
ε→0+

∑
λ

ẽλẽ†λ
ω2 + iε− ω2

λ

, (65)

where, ẽλ is the segment of eλ extended to the whole crystal. The Green’s function
matrix projected on the atom pairs lk and l′k′ is then given as:

g+
lk,l′k′(ω2) = lim

ε→0+

∑
λ

ẽλ(lk)ẽ†λ(l′k′)
ω2 + iε− ω2

λ

, (66)
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where, ẽλ(lk) is the eigenvector of the mode λ at the k-th atom in the l-th unit
cell.

Next, we consider the doping of the host crystal which leads to the introduction
of substitutional defects on different lattice sites. As mentioned earlier, doping
will cause both mass and force-constant perturbations in the system. For the
defect-laden system, the equations of motion can be written analogous to Eq. 59,
where the mass of the atom k in the unit cell l, M0(kl), is replaced by the mass
of the incoming dopant M ′, such that M(kl) = M ′. Similarly, the presence of
these defects will alter the harmonic force constants of the system which leads to
the modification of the host IFC matrix K0 resulting in a new IFC matrix of the
defected system K′. The equation of motion for the defected system can then be
written as: (

ω2M′ −K′
)

u = 0, (67)

Normalizing Eq. 67 by the masses of the host lattice, we get:

(
ω2M0

− 1
2 M′M0

− 1
2 −M0

− 1
2 K′M0

− 1
2
)

ũ = 0. (68)

Adding and subtracting Eq. 59 from Eq. 68:

0 =
[
ω2I−M0

− 1
2 K0M0

− 1
2 +

ω2M0
− 1

2 M′M0
− 1

2 −M0
− 1

2 K′M0
− 1

2 −(
ω2I−M0

− 1
2 K0M0

− 1
2
) ]

ũ

=
[
ω2I−H0 + ω2(M0

− 1
2 M′M0

− 1
2 − I)︸ ︷︷ ︸

= VM

−M0
− 1

2 (K′ −K0) M0
− 1

2︸ ︷︷ ︸
= VK

]
ũ

= [ω2I−H0 + VM + VK]ũ

= [ω2I−H0 + V]ũ, (69)

where the elements of the mass perturbation and the force constant matrices are
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given as:

VM;lk = M ′
lk −M0;lk

M0;lk
ω2, and

V αβ
K;lk,l′k′ = −K

′αβ
lk,l′k′ −Kαβ

0;lk,l′k′√
MlkMl′k′

, (70)

respectively. Eq. 69 denotes the influence of the substitutional impurities on the
ideal(host) crystal equations of motion in terms of the perturbation V = VM + VK.

Similar to Eq. 63, we can write the retarded spectral Green’s function for the
perturbed system, G+(ω2), as:

G+(ω2) =
(
ω2 + iε−H′

)−1
, (71)

where H′ = H0 + V. Substituting this value and using Eq. 64 in Eq. 71, we
get [118]:

G+(ω2) =
[
ω2 + iε− (H0 + V)

]−1

=
{

(ω2 + iε−H0)
[
1−V(ω2 + iε−H0)−1

]}−1

= g+(ω2)[1−Vg+(ω2)]−1. (72)

Expanding the operator [1−g+(ω2)V]−1 in Eq. 72 in power series and then writing
the equation in a compact form, we obtain:

G+ = g+ + g+Vg+ + g+Vg+Vg+ + · · ·
= g+ + g+V(g+ + g+Vg+ + · · · )
= g+ + g+VG+. (73)

Eq. 73 is the Dyson equation, which enables the computation of the Green’s function
of the perturbed system purely in terms of the perturbation and Green’s function
of the host system [118].

Central to the scattering theory is the so-called T -matrix which can be defined as:

T+ = (1−Vg+)−1V. (74)

Eq. 73 can be easily written in terms of T+ as:

G+ = g+ + g+T+g+. (75)

29



1. Introduction

The practical implication of working with the T -matrix, as opposed to just V is
that in Eq. 74 the perturbation caused by V is treated in all orders. This becomes
evident if we expand T+ in a Born series as:

T+ = V + Vg+V + Vg+Vg+V + · · · .

Terminating the above series to just first order in V, is equivalent to staying within
the well-known Born approximation. However, solving the scattering problem with
T+ helps us consider the perturbation to all orders in V. This can be understood
in terms of Eq. 52 which treats the perturbation caused by H3 only to first order
in the evaluation of the three-phonon scattering rates. In contrast, the two-phonon
scattering rates can be obtained using the equivalent of Fermi’s golden rule in exact
time-independent perturbation theory, by considering the perturbation as T, such
that V is treated in all orders as [82,92]:

1
τλ

= πndefVuc
1
ωλ

∑
λ′

∣∣∣ẽ†λ′Tẽλ
∣∣∣2 δ (ω2

λ′ − ω2
λ

)
, (76)

where ndef is the volumetric concentration of the point defects, Vuc the volume of the
unit cell, and ω the angular frequency of phonons. It can be seen that the scattering
rate for a particular phonon with wave-vector q and polarization p is obtained by
summing up all the elastic scattering processes which involve the transition from an
incoming phonon ẽλ to an outgoing phonon ẽλ′ . However, simultaneously carrying
out the sum and satisfying the energy conservation imposed by the Dirac delta
function in Eq. 76 can be avoided with the help of the optical theorem as [85]:

1
τλ

= −ndefVuc
1
ωλ
=
{
ẽ†λTẽλ

}
. (77)
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1.2.2.3 1D chain

Figure 1.9: A one dimensional chain model where the equilibrium lattice spacing is
a and the displacement of the n-th atom is shown as un.

A monoatomic 1D chain presents the most simple yet physically insightful treatment
of the phonons. In this section, we consider the study of phonon transport using
such an infinite chain with one degree of freedom per atom, where the atoms of
mass M , are bonded through nearest-neighbor harmonic interactions of magnitude
K, and separated by lattice constant a, as shown in Fig. 1.9. Considering only first
nearest neighbor interactions, the equation of motion for an atom at position n
can be obtained from Eq. 47 as:

Mün = −K[(un − un+1) + (un − un−1)] (78)

The displacements in Eq. 48 is written as:

un = 1√
M
A(q) exp [i(qna− ωt)] (79)

Substituting this value in Eq. 78, we get the one-dimensional equivalent of Eqs. 49
and 50 as:

ω2A = 2K
M

(1− cos qa)A ≡ D(q)A. (80)

Comparing Eq. 80 with equation Eq. 62, we see that for a 1D chain with only one
degree of freedom per unit cell, the dynamical matrix is reduced to just one number,
for a given q. The analytic expression (Eq. 80) gives the phonon dispersion the 1D
chain.

Such a problem can also be studied with the help of atomistic Green’s function
method which does not require a priori knowledge of the phonon dispersion curves
or density of states [119]. Rather, the local density of states on each atom can
be obtained using this method. Moreover, the methodology discussed in the
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previous section to calculate the point-defect phonon scattering rates can be better
illustrated with the help of a 1D chain where a perturbation in the chain can be
easily introduced by altering the interaction of a particular atom with its left and
right neighbors, as we will see later. Under the AGF method, the atoms in the 1D
chain in Fig. 1.10 can be described as a device region connected to two semi-infinite
contacts [119], as shown in Fig. 1.10(top). The idea is to calculate the Green’s
function for the device region, then obtain the T matrix given a perturbation V,
and finally calculate the scattering rates using Eq. 77.

0 1 2 3-1-2-3

0 1 2 3-1-2-3

Left Contact Right ContactDevice

Figure 1.10: (Top) A one dimensional chain model with three device atoms con-
nected to semi-infinite contacts on either side. The atoms are indexed with
respective numbers below them. (Bottom) Force-constant perturbation VK intro-
duced in the chain by modifying the interaction of 0-th atom with its left (-1) and
right (1) neighbors.

We first define the total harmonic matrix Htot of whole system when the contacts
left (l) and right (r) are coupled with the device (d) as [120]:

Htot =


Hl τ †l 0
τl Hd τr

0 τ †r Hr

 (81)

where, Hl, Hr, and Hd are the mass-normalized harmonic force constant matrices
for the left contact, right contact, and the device, respectively. τl and τr are the
hopping matrices whose nonzero elements are the force constants for the bonds
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between the atoms of the device and the contacts. In the present case, since the
chain is homogeneous, the harmonic matrices of the contacts and the device are
given as:

Hl =



. . .

[0] −K
m

2K
m

−K
m

0

[0] −K
m

2K
m

−K
m

[0] −K
m

2K
m



(82)

Hr =



2K
m

−K
m

[0]

−K
m

2K
m

−K
m

[0]

0 2K
m

−K
m

[0]

. . .



(83)

Hd =



2K
m

−K
m

0

−K
m

2K
m

−K
m

0 −K
m

2K
m


(84)

33



1. Introduction

The hopping matrices are given as:

τl =


0 0 0
0 0 0

−K
m

0 0

 (85)

τr =


0 0 −K

m
0 0 0
0 0 0

 . (86)

Similar to Eq. 59, we can write the equations of motion for the isolated contacts
as [119]:

[ω2I −Hl]Φc
l = 0 (87)

[ω2I −Hr]Φc
r = 0, (88)

and their greens functions as:

gl = [(ω2 + iε+)I −Hl]−1 (89)

gr = [(ω2 + iε+)I −Hr]−1 (90)

The dynamical equation for the connected system can be written making use of
Eqs. 81, 87, and 88 as [119]:

ω2I −Hl τ †1 0
τ1 ω2I −Hd τ2

0 τ †2 ω2I −Hr




Φc
l + χl

Ψ
Φc
r + χr

 =


0
0
0

 . (91)

where, Φc
l and Φc

r are the eigenvectors of the isolated contacts and χ account for
the change in the atomic displacements of the contact after they are connected to
the device. Ψ is the excitation of the atoms in the device due to phonon waves
from the contacts. Using Eqs. 91, 89, and 90 we can derive the following relations:

χl = [(ω2 + iε+)I −Hl]−1τ †l Ψ

= glτ
†
l Ψ (92)

χr = grτ
†
rΨ (93)

Ψ = [ω2I −Hd + Σl − Σr]−1S (94)
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where,
[ω2I −Hd + Σl − Σr]−1 = Gd (95)

represents the Green’s function of the device, which is a subset of the overall Green’s
function of the coupled system. Σl = τlglτ

†
l and Σr = τrgrτ

†
r are the self-energy

matrices associated with the left and right contacts, respectively.

S = τlΦc
l + τrΦc

r (96)

physically represents the excitation of the device caused by the phonon waves from
the contacts [120].

From Eq. 95 we can see that the computation of Gd requires the evaluation of the
self-energies which in turn depend on the Green’s functions of the contacts, gl and
gr. The Green’s functions of the contacts can be evaluated using a technique called
the decimation technique [121]. The central idea of this technique is to obtain a
converged value of the last block of gl and gr. This is done by building a sequence
of finite clusters that approximate the infinite contacts, with each successive cluster
containing twice the number of layers as its predecessor. The advantages of the
decimation method are that the size of the matrices required for the calculation
stays constant throughout the iteration, and that it converges geometrically. Once
the contact Green’s functions are available the Green’s functions of the device can
be computed which are then used to calculate the T matrix. Next, we introduce the
force-constant perturbation in the device by modifying the force constants of the
atom labelled 0 with its left and right neighbours, from K to K ′. The perturbed
harmonic matrix for the defect device is given as:

H ′d =


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0 −K
m

K +K ′

m


. (97)
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We obtain the force-constant perturbation matrix as:

VK = −(H ′d −Hd)

= −


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
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Using Gd which is also a 3× 3 matrix in the present case, and VK , the T matrix
can be computed according to Eq. 74. Finally, using the T matrix, the wave-vector
and mode resolved scattering rates can be computed according to Eq. 77.

1.2.3 Calculating thermal conductivity using Molecular
Dynamics

In Sec. 1.2.2 we discussed how the DFT-BTE approach is able to provide accurate
prediction of the thermal conductivities of various semiconductors, the only input
information being the chemical composition of the system under study. This
approach serves the important purposes of being parameter-free, fully predictive,
and transferable to any material. Since it provides the most accurate values, it is
often used to explore various experimental setups with much less associated costs.
The translational symmetry of the systems under investigation allows the atomic
vibrations to be described as collective modes or phonons facilitating the wave-vector
and mode resolved computation of the thermal conductivities. However, for systems
like amorphous materials that lack the transnational invariance, such a treatment
is no longer feasible. Also for systems consisting of tens of thousands of atoms, the
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DFT-BTE approach can not be used due to computational limitations. In such
cases, one can profit from a more direct approach where the atomic trajectories can
be computed in real space. To this end, molecular dynamics (MD) [122] can be used
to calculate quantities like heat flux on the fly during the simulation as an ensemble
average over atomic trajectories. MD presents an alternate means to calculate
the thermal conductivity as opposed to the aforementioned DFT-BTE formalism.
The commonly used MD methods for calculating thermal conductivity are the
direct method [123–125], the equilibrium molecular dynamics (EMD) based on the
Green-Kubo formula [126,127], and the homogeneous non-equilibrium molecular
dynamics (HNEMD) [128].

One of the most critical aspects in MD simulations is describing the atomic
trajectories using a force field. Classical empirical potentials are the simplest way
to describe the atomic interactions due to their low numerical complexity. However,
they suffer from two major drawbacks, namely, accuracy and transferability, since
they do not consider the electronic interactions in the system and they are usually
parameterized for a particular set of physical properties, respectively. Hence, they
are better suited to obtaining trends in thermal conductivity prediction rather
than accurate numbers. More sophisticated quantum semi-empirical schemes
are available which offer better accuracy than the empirical potentials but are
also more expensive [129]. Finally, the most fundamental and superior, therefore
most expensive methods are the fully-quantum ab initio techniques [130–132].
Studies on molecular dynamics in conjunction with BTE has also been carried
out to calculate the phonon related properties and thermal conductivity using
both the classical empirical potentials and first principles methods [133–136]. A
comparison of different potentials and techniques in terms of their accuracy and
computational costs for calculating the lattice thermal conductivity has attracted
sustained scientific efforts [123,135,137–141]. In the present study, we have used
the Stillinger-Weber (SW) potential [142] to calculate the thermal conductivity of
bulk and defect-laden (vacancies) silicon using both GK and HNEMD methods.
SW potential is known to accurately describe elastic properties, yield strengths,
phonon dispersion curves, and thermal-expansion coefficients [123].

From a mathematical and physical point of view, the MD method can be described
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as an initial value problem where the positions and momenta of a set of atoms are
allowed to evolve from an initial configuration by numerically integrating Newton’s
equations of motion,

mir̈i = Fi = −∇V (ri). (99)

Central to the calculation of the thermal conductivity using MD is the computation
of the heat current J which is the rate of change of thermal energy transfer through
a given surface. It characterizes the spatial average of the local energy transport
property and is given as [123]:

J = 1
Ω
d

dt

∑
i

riεi(t) (100)

where Ω is the volume of the system and εi(t) the total energy of atom i which is the
sum of kinetic and potential energies. A generic MD algorithm to calculate the heat
current using classical empirical potentials is shown in Fig. 1.11. Within the Born-
Oppenheimer approximation in MD simulations (called classical MD), the nuclear
mass is approximated as a classical point mass wherein the quantum mechanical
character of the nucleus is disregarded and the electrons are assumed to stay in the
ground state when the atoms move. The simulation typically starts with setting
the required parameters, which include, the initial positions of the atoms, the total
length of time the simulation will run, the duration of time between successive
simulation steps (∆t), the potential describing the atomic interactions, etc.. Once
the parameters are set, the system is allowed to thermalize and equilibrate at the
desired temperature, in the NPT ensemble, which is accomplished by modifying the
equations of motion using desired integrators. Next, the computation of relevant
quantities like 〈J〉, 〈J · J〉 is carried carried out in the NVE ensemble or using
desired integrators, which are also stored at regular time intervals.

In the following, we present the theory behind the GK and HNEMD methods used
in the present thesis.

1.2.3.1 Equilibrium MD (GK method)

As the name suggests, the Green-Kubo method represents an EMD technique where
the simulations are carried out in thermodynamic equilibrium and κ` is calculated
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Figure 1.11: MD algorithm to calculate the ensemble average of the heat current and
HCACF, which are used to calculate κ`, consisting of two parts: (a) Equilibration
and thermalization at a desired temperature T for a certain time period. (b)
Calculation of relevant quantities.

according to the Green-Kubo formula [126,127]. It relates the fluctuations of the
heat current vector, J, to κ` via the fluctuation-dissipation theorem as:

κ` = 1
3kBV T 2

∫ ∞
0
〈J(0)⊗ J(t)〉dt, (101)

where kB is the Boltzmann constant, V the volume of the system, T the temperature
and 〈J(0)⊗ J(t)〉 the heat current auto-correlation function (HCACF) where 〈•〉
represents the ensemble average. HCACF describes the correlation strength between
values of the signals of the heat current separated by a time lag t. With the GK
method the full second-order thermal conductivity tensor can be calculated, however,
for a material with cubic symmetry Eq. 101 gives a scalar as an output. In practice,
the simulation is performed on discrete MD steps of length ∆t and the integral in
Eq. 101 is replaced with a sum as [123]:

κ`(τM) = ∆t
kBV T 2

M∑
m=1

N−m∑
n=1

J(n)J(m+ n)
(N −m) , (102)

where τM is the the maximum correlation time given byM∆t until which summation
is carried out, and J(m+ n) is the value of the heat current at time step m+ n.
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From Eq. 102 it is evident that the total number of simulation steps N should be
larger than the number of summation steps M .

The Green-Kubo method is prone to two potential errors in calculating κ` as
follows [143]:

1. Averaging error: Within MD, the ensemble average C(t) = 〈J(0) ⊗ J(t)〉
in Eq. 101 is calculated as a time-average from the data of a single MD
simulation using the ergodic hypothesis as:

C(t) = lim
τN→∞

1
τN

∫ τN

0
J(n)J(m+ n)dn = lim

τN→∞
CτN (t), (103)

where, CτN (t) is an estimate of the correlation function C(t) for a finite
simulation time τN = N∆t and is given in Eq. 102 as:

CτN (m) =
N−m∑
n=1

J(n)J(m+ n)
(N −m) . (104)

N should ideally be infinite, however a simulation can only be carried out for
a finite time duration, which gives rise to the averaging error. In order to
minimize the averaging error, which is equivalent to increasing the value of
N , we have averaged the C(t) also over several independent simulations with
different initial conditions [123,138,144].

2. Truncation error: In Eq. 101 the integration of C(t) should be carried out
ideally till infinity. But in practice, it is only carried out for a finite correlation
time τM = M∆t which adds to the averaging error already present due to
finiteness of τN [143]. This truncation of the correlation time is called as the
truncation error. A judicious choice has to be made to select the correct value
of τM , as too small τM would underestimate κ` and too big a value would
lead to large statistical errors generated by the cross-correlation functions.
This can be seen in Fig. 1.12 that as auto-correlation function (green) decays
it crosses the cross-correlation functions or noise after the correlation time
marked with a red line. Therefore, the summation to calculate κ` in Eq. 102
should only be carried out till τM reaches the red line. The noise can be
calculated with the cross-correlation functions as [138]:

ζ(t) =
√
〈Jx(0)Jy(t)〉2 + 〈Jy(0)Jz(t)〉2 + 〈Jz(0)Jx(t)〉2

3 . (105)
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Figure 1.12: Schematic illustration of κ` calculation with the GK method. It can
be seen that with increasing τM the error bars in the value of κ` also get bigger.
The red line indicates the correlation time after which the HCACF (blue line) is
dominated by the noise (green line).

1.2.3.2 Homogeneous non-equilibrium molecular dynamics

The HNEMD method was originally proposed by Evans [128,145] and later extended
to three-body potentials [139], multi-body potentials [146], and mixtures and
alloys [147] by Mandadapu et al.. In this method the thermal transport process is
considered as a mechanical problem where a fictitious time-independent external
force field (Fe) is used to mimic the effect of a thermal gradient. Such a force
field is essentially used to as a perturbation to the Nosé-Hoover [145] thermostated
equations of motion which are then used for the calculation of the transport
coefficients. For a single element, N-body system, the underlying equations of
motion are then given as [148]:

ṙi = pi
mi

+ CiFe

ṗi = Fi + CiFe + ζpi (106)

ζ̇ = 1
Q

(
N∑
i=1

pi · pi
mi

− 3NkBT
)
,
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where p is the atomic momentum, ζ is the thermodynamic fraction coefficient
associated with the Nosé-Hoover thermostat and Q the external reservoir mass-like
parameter (with units of energy·time2) which affects the period and amplitude
of the thermal fluctuations [145]. Ci and Di are the second-order tensor phase
variables which describe the coupling of the system to the applied external field Fe.

For the resulting non-equilibrium system, using ergodic hypothesis and linear
response theory, the long-time ensemble average of the heat current vector J(t) can
be shown to be proportional to small values of the external force field Fe. For such
a case, the constant of proportionality is the GK formula for the heat transport
coefficient tensor [148]:

〈J(t)〉
V T

=
[ 1
kBV T 2

∫ ∞
0
〈J(0)⊗ J(t)〉dt

]
Fe = κ`Fe. (107)

The HNEMD method circumvents the calculation and integration of the HCACF
required in the GK method. In practice, Fe is applied in one single direction (Fex)
for a particular set of calculations and therefore only a scalar value of κ` is obtained
in Eq. 107.

Three different methods can be used to deduce the thermal conductivity from the
estimates of 〈Jx(t)〉 corresponding to a range of force fields F i

ex, i = 1, . . . , n as
follows [139]:

1. Gradient: In this method, the 〈J
i
x(t)〉
V T

values are calculated and plotted versus
respective F i

ex, and a least-squares fit of the function κ`Fex is obtained. The
slope of this fit is identified as the thermal conductivity. It is assumed that
the fit passes through origin such that limFex→0 Jx = 0.

2. Mean: Here, the thermal conductivity is taken to be the average over all the
calculated values of κi` = 〈Jix(t)〉

V TF iex
, i.e., κ` = n−1∑n

i=1 κ
i
`.

3. Extrapolation: This approach is similar to the gradient one, except that here
κi` is plotted versus F i

ex and a least-squares fit of the function κ` + mFex

is obtained between the two. The fit is extrapolated to Fex = 0 and the
intercept is identified as the true κ`.

42



1.2. State of the art and methodology

It should be noted that, while calculating κ` using the above three methods, only
those points that fall under the linear regime should be included in the fit or the
average. The points that deviate strongly from the linear regimes in Fig. 1.13 have
to be omitted. Thus, in the HNEMD method it is critical to find the linear regime
to correctly predict the true thermal conductivity.

Figure 1.13: Schematic illustration of κ` calculation with the HNEMD method. (a)
Gradient method. (b) Mean method. (c) Extrapolation method.
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2 Summary of published journal
articles and contributions

2.1 Extrinsic doping of half-Heusler compounds

Robin Stern, Bonny Dongre, and Georg KH Madsen; Nanotechnology, 2016, 27(33),
334002.
Abstract:
Controlling the p- and n-type doping is a key tool to improve the power-factor of
thermoelectric materials. In the present work we provide a detailed understanding of
the defect thermochemistry in half-Heusler compounds. We calculate the formation
energies of intrinsic and extrinsic defects in state of the art n-type TiNiSn and
p-type TiCoSb thermoelectric materials. It is shown how the incorporation of
online repositories can reduce the workload in these calculations. In TiNiSn we find
that Ni- and Ti-interstitial defects play a crucial role in the carrier concentration
of TiNiSn. Furthermore, we find that extrinsic doping with Sb can substantially
enhance the carrier concentration, in agreement with experiment. In case of TiCoSb,
we find ScTi , FeCo and SnSb being possible p-type dopants. While experimental
work has mainly focussed on Sn-doping of the Sb site, the present result underlines
the possibility to p-dope TiCoSb on all lattice sites.
Contribution:
Defect formation energy and carrier concentration calculations for the TiCoSb
system, evaluation and interpretation of the data. Writing - review and editing the
manuscript.
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2.2 Exceptionally Strong Phonon Scattering by
B Substitution in Cubic SiC

Ankita Katre, Jesús Carrete, Bonny Dongre, Georg KH Madsen, and Natalio
Mingo; Physical Review Letters, 2017, 119(7), 075902.
Abstract:
We use ab initio calculations to predict the thermal conductivity of cubic SiC
with different types of defects. An excellent quantitative agreement with previous
experimental measurements is found. The results unveil that BC substitution has
a much stronger effect than any of the other defect types in 3C-SiC, including
vacancies. This finding contradicts the prediction of the classical mass-difference
model of impurity scattering, according to which the effects of BC and NC would
be similar and much smaller than that of the C vacancy. The strikingly different
behavior of the BC defect arises from a unique pattern of resonant phonon scattering
caused by the broken structural symmetry around the B impurity.
Contribution:
Evaluating the Frobenius norm of the VK matrices. Interpretation and visualization
of the data. Writing - review and editing the manuscript.

2.3 Resonant phonon scattering in
semiconductors

Bonny Dongre, Jesús Carrete, Ankita Katre, Natalio Mingo, and Georg KH Madsen;
Journal of Materials Chemistry C, 2018, 6(17), 4691-4697.
Abstract:
Boron impurities have recently been shown to induce resonant phonon scattering
in 3C-SiC, dramatically lowering its thermal conductivity. The B-doped 3C-SiC is
associated with an off-center relaxation of the B atom, inducing a local transition
from Td to C3v symmetry. Similar relaxations in B and N-doped diamond, with
a similarly large effect on the interatomic force constants (IFCs), fail to produce
resonances. Here we develop an intuitive understanding of such dopant-induced
resonant phonon scattering in semiconductors with the help of a 1D monoatomic
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chain model. We find that the phenomenon is connected to a slight asymmetry
in the relaxed position of the defect, with its origin in two or more minima of the
potential energy surface in close proximity. The large perturbation they introduce
in the IFCs is the essential ingredient of a resonance.
Contribution:
Partial conception of the study, data curation, formal analysis, investigation,
methodology, software, validation, visualization Writing - original draft, reviewing
and editing the manuscript.

2.4 Ab initio lattice thermal conductivity of
bulk and thin-film α-Al2O3

Bonny Dongre, Jesús Carrete, Natalio Mingo, and Georg KH Madsen; MRS
Communications, 2018, 8(3), 1119-1123.
Abstract:
The thermal conductivities (κ) of bulk and thin-film α-Al2O3 are calculated from
first principles using both the local density approximation (LDA) and the generalized
gradient approximation (GGA) to exchange and correlation. The room temperature
single crystal LDA value ∼39 W/m K agrees well with the experimental values ∼35-
39 W/m K, whereas the GGA values are much smaller ∼26 W/m K. Throughout
the temperature range, LDA is found to slightly overestimate κ, whereas GGA
strongly underestimates it. We calculate the κ of crystalline α-Al2O3 thin films
and observe a maximum of 79% reduction for 10 nm thickness.
Contribution:
Partial conception of the study, data curation, formal analysis, investigation,
methodology, software, validation, visualization. Writing - original draft, reviewing
and editing the manuscript.
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2.5 Comparison of the Green–Kubo and
homogeneous non-equilibrium molecular
dynamics methods for calculating thermal
conductivity

Bonny Dongre, Tao Wang, and Georg KH Madsen; Modelling and Simulation in
Materials Science and Engineering, 2017, 25(5), 054001.
Abstract:
Different molecular dynamics methods like the direct method, the Green-Kubo
(GK) method and homogeneous non-equilibrium molecular dynamics (HNEMD)
method have been widely used to calculate lattice thermal conductivity (κ`). While
the first two methods have been used and compared quite extensively, there is a
lack of comparison of these methods with the HNEMD method. Focusing on the
underlying computational parameters, we present a detailed comparison of the GK
and HNEMD methods for both bulk and vacancy Si using the Stillinger-Weber
potential. For the bulk calculations, we find both methods to perform well and yield
κ` within acceptable uncertainties. In case of the vacancy calculations, HNEMD
method has a slight advantage over the GK method as it becomes computationally
cheaper for lower κ` values. This study could promote the application of HNEMD
method in κ` calculations involving other lattice defects like nanovoids, dislocations,
interfaces.
Contribution:
Partial conception of the study, data curation, formal analysis, investigation,
methodology, software, validation, visualization. Writing - original draft, reviewing
and editing the manuscript.
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Abstract
Controlling the p- and n-type doping is a key tool to improve the power-factor of thermoelectric
materials. In the present work we provide a detailed understanding of the defect thermochemistry
in half-Heusler compounds. We calculate the formation energies of intrinsic and extrinsic defects
in state of the art n-type TiNiSn and p-type TiCoSb thermoelectric materials. It is shown how the
incorporation of online repositories can reduce the workload in these calculations. In TiNiSn we
find that Ni- and Ti-interstitial defects play a crucial role in the carrier concentration of TiNiSn.
Furthermore, we find that extrinsic doping with Sb can substantially enhance the carrier
concentration, in agreement with experiment. In case of TiCoSb, we find ScTi, FeCo and SnSb
being possible p-type dopants. While experimental work has mainly focussed on Sn-doping of
the Sb site, the present result underlines the possibility to p-dope TiCoSb on all lattice sites.

Keywords: half-Heusler compounds, defect thermochemistry, DFT repository

(Some figures may appear in colour only in the online journal)

1. Introduction

Energy efficiency has become more and more important in
recent years. For that purpose thermoelectric materials are of
great interest, since they can convert a temperature gradient
into an electric field thereby enabling the recovery of waste
heat as electric energy. The performance of a thermoelectric
material is measured by the dimensionless figure of merit

= s
k

zT S T2

, with S the Seebeck coefficient, σ the electrical
conductivity, T the temperature and κ the thermal
conductivity.

Among the thermoelectric materials, half-Heusler com-
pounds (HHCs) have received great interest [1]. Experiments
have shown thermoelectric properties, such as >zT 1.2 for
nanostructured n-type MNiSn -x1 Sbx, M=Ti, Zr and Hf [2–4]
and = -zT 0.9 1.0 for p-type MCoSb -x1 Snx [5–7], which
are comparable to other state of the art thermoelectric
materials.

zT can be improved by isoelectronic alloying which
introduces mass-disorder scattering of phonons thereby low-
ering the thermal conductivity. Interestingly, solubility limits
can also be taken advantage of to introduce a ‘natural’ nano-
structuring, which further lowers the thermal conductivity

[4, 7]. Another possibility to improve the performance by
chemical substitution is to optimize the power factor sS2 of
the material. This can be achieved by doping the material with
electron donating or accepting atoms to reach an optimal
carrier concentration. In TE materials this typically means a
carrier concentration around 1020–1021 cm−3. Taking a state-
of-the-art TE HHC like Tix(ZryHf -y1 ) -x1 NiSn -x1 Sbx one
would thus think of the isovalent alloying of Ti, Zr and Hf as
a handle to lower the thermal conductivity. The doping of the
Sn site by Sb, thereby introducing one extra valence electron
per dopant, can be thought of as a handle to optimize the
electronic power factor.

Dopants can be seen as point defects in the host structure.
Point defects occur naturally in any kind of material even in
the absence of extrinsic dopants. They can be seen as an
exchange of atoms between a distant reservoir and the host
structure. If the material is non-metallic, defects can also
occur in charged states. This fact is taken advantage of in the
fabrication of p-type and n-type semiconductors. The for-
mation energy of the defects control the doping limits of the
material, where the dopability increases with low defect for-
mation energies.

The main experimental work has been on optimizing the
carrier concentration by substituting the Sn site, either by an
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electron donating Sb substitution, SbSn in TiNiSn or a hole
donating Sn substitution, SnSb, in TiCoSb [2, 8–12]. Some
attempts have also been made to p-dope TiCoSb by ScTi [13],
TaTi [14], FeCo [15] and GeSb [16] but the most successful
still seems to be SnSb [6, 12]. A special interest of HHCs is
their chemical versatility [17] and the possibilities to sub-
stitute each lattice site independently and it is very possible
that extrinsic doping has not been explored fully. At the same
time, intrinsic defects have been found to play an important
role in producing carriers in HHC. If TiNiSn is grown under
Ni-rich conditions interstitial Ni defects (NiInt) are formed at
the full Heusler positions [18–21]. Furthermore, it has also
been found that under Ti rich conditions, where the growth of
the TiNiSn will be in equilibrium with the Ti rich phases
Ti2Ni2Sn, Ti2Sn and Ti3Sn, also Ti form electron donation
interstitials [21].

The carrier concentration in HHC is thus an intricate
interplay between intrinsic and extrinsic dopants and growth
conditions. In this study, we show how extrinsic doping of
TiNiSn and TiCoSb can significantly increase the carrier
concentration. We considered different experimental condi-
tions by treating the chemical potentials of the constituents
and the dopants as variables and explored under which con-
ditions optimal results for the power factor are achieved. We
discuss how the increasing availability of external databases
of density functional theory (DFT) energies are very useful in
this step.

2. Method

The most commonly used first principles method for the
calculation of defect formation energies is DFT within the
supercell approach, where the defect is located in a cell with a
finite number of atoms [22–25]. This cell is supposed to be
large enough to reach the dilute limit, which means that a
periodic repetition of this cell does not lead to defect-defect
interactions. Within this approach we define the defect for-
mation energy as [26, 27]

åm m m= - D +
a

a aE E n q . 1D e f D e,q q( ) ( )( ) ( )

The first term is the defect formation energy with respect to
the reference states of the defect forming atoms and involves
the calculations on (charged) supercell. nα is the number of
atoms, that are transferred to the crystal ( >n 0) or to the
reservoir ( <n 0). The energy to exchange atoms with the
reservoir is captured in the chemical potentials mD a of the
defect forming atoms. If the defect carries the charge q, then
the defect formation energy also depends on the electron
chemical potential me.

2.1. Supercell calculation of the defect formation energy

In the defect formation energy

å= - -
a

a aE E E n E 2f D D, bulkq q ( )( ) ( )

ED q( ) and Ebulk are the energies of the supercell with and
without the defect, Eα are the reference energies of the defect
forming atoms and nα, as in equation (1), the transferred
atoms.

Charged defect states were realized by changing the
number of electrons in the supercell. Due to periodic
boundary conditions, the resulting net charge of the cell has to
be compensated by a jellium background charge, which is
realized by setting the average electrostatic potential to zero.
In this case, the Kohn–Sham eigenvalues are only defined up
to a constant, which depends on the average crystal potential
and the choice of pseudopotential. The total energies of the
supercells containing charged defects and the pure bulk
material are corrected by [24]

eD = - + DE D q V D V , 3q q
pa R R

bulk
VBM( ) [ ( ) ] ( )( ) ( )

where VR are the potential energies at given reference points,
far from the defect and eD VBM aligns the valence band
maximum of the defected and non-defected cell. Furthermore,
the electrostatic interaction of the charged defect with their
periodic images can not simply be overcome by using larger
cells, since the Coulomb interaction is rather long range. To
correct this effect we used the method by Makov and
Payne [28].

Thus, the energy of the defect containing supercell is
given by

= + D + DE E E D E q , 4D D
q0

pa MPq q ( ) ( ) ( )( )( ) ( )

where E Df
q0 ( )( ) is the uncorrected energy of the defect

containing supercell as in equation (1).DEMP accounts for the
correction of the electrostatic interaction.

2.2. Chemical potential domain

The chemical potentials of the atoms forming a defect in the
host material represent the energies of the reservoirs, with
which they are exchanged and can change according to the
experimental scenario. However, specific bounds are set by
competing phases, that limit the allowed chemical potential
domain of a stable host material. To map out the chemical
potentials that represent a stable host material a number of
conditions have to be fulfilled. First, the chemical potentials
have to equal the potential energy of the material

m m mD + D + D = DH TiNiSn . 5Ni Ti Sn ( ) ( )
To make sure that the constituents do not precipitate in their
reference state, they have to satisfy

  m m mD D D0; 0; 0. 6Ni Ti Sn ( )
The chemical potential domain is further constrained by the
formation energies of the competing phases. This leads to the
general condition

m m mD + D + D Dk l m H Ni Ti Sn . 7k l mNi Ti Sn ( ) ( )
For example, the chemical potentials of Ni and Sn have to
fulfill the condition

m mD + D DH NiSn 8Ni Sn ( ) ( )

2
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since NiSn is a stable structure that can precipitate under
certain conditions. To get an accurate answer in which
chemical potential domain the desired structure is stable, the
list of conditions has to be complete. Similar conditions have
to be considered, if impurities are added. Taking as an
example Sb doping, one of the important competing phases is
TiNiSb, which is one of the few stable HHC whose valence
electron count does not fulfill the 18 electron rule. The
presence of TiNiSb leads to the condition

m m mD + D + D DH NiTiSb . 9Ni Ti Sb ( ) ( )
The formation energies of the competing phases,
equations (5)–(9), can be calculated using DFT or extracted
from on-line repositories. Since both the chemical potentials
and the defect formation energies are given with respect to the
same reference states, the formation energies necessary for
calculating the chemical potential limits can be extracted from
on-line repositories. This is illustrated schematically in
figure 1. Both the AFLOWlib and the Materials Project have
APIs that adhere to the REST architectural constraints
[29, 30]. Comparing the chemical potential ranges calculated
here with those obtained from AFLOWlib and Materials
Project, the main difference comes from the Ti2Ni2Sn phase
not being present in the online data-bases, despite it being a
known experimental phase in equilibrium with the HHC
phase [21, 31].

2.3. Defect concentrations

In thermal equilibrium the concentration of a given defect,
cD q( ), will be determined by a minimum in the Gibbs free
energy landscape

¶
¶

=
G

c
0. 10

D q
( )

( )

Approximating the free energy by the defect formation
energy, means that the concentration is given by

⎛
⎝⎜

⎞
⎠⎟m m

m m
D = -

D
a

ac T
E

k T
, ; exp

,
. 11D e

D e

B

q
q( ) ( ) ( )( )

( )

In general, each lattice site can only accept one defect and we
do not consider such exclusion effects of defects that are
located at the same lattice site. In the dilute limit this will not
affect the concentration of the individual defects significantly.
Charged defects are considered to donate electrons to the

conduction band or to accept electrons from the valence band.
Charge neutrality of the crystal requires

åm m m m- = - D an T n T qc T, , , ; . 12h e e e
D

D e
q

q( ) ( ) ( ) ( )
( )

( )

In the dilute limit, the band structure is approximately the
same as for the pure host material. The number of holes is
given by

ò e e m e= -
e

-¥
n n f1 , d 13h e

VBM ( )( ( )) ( )
and the number of electrons

ò e e m e=
e

¥
n n f , d , 14e e

VBM

( ) ( ) ( )

where en ( ) is the density of states. Since the defect energy
equation (1) depends on the electron chemical potential,
equation (12) has to be solved self-consistently, which can be
done with standard root-finding algorithms.

2.4. Computational procedure

The primitive unitcell of the half-Heusler structure consists of
three interpenetrating fcc lattices with positions (0, 0, 0), (1/
4, 1/4, 1/4) and (3/4, 3/4, 3/4). We studied all intrinsic
defects, such as vacancies, antisites and interstitial atoms on
the full Heusler position (1/2, 1/2, 1/2). For the defect cal-
culations, we used large supercells with 192 atoms per uni-
tcell for TiNiSn and 96 atoms per unitcell in TiCoSb. We
used ´ ´3 3 3 and ´ ´5 5 5 kpoints for TiNiSn and
TiCoSb respectively and relaxed the positions of the atoms in
the cell. We considered Cu, Sb and V as extrinsic defects in
TiNiSn and Sc, Y, La, Fe, Ge and Sn in TiCoSb. Calculations
were performed for all possible substitutional and interstitial
sites. Calculations were performed with the VASP code [32].
As exchange correlation functional we used a generalized
gradient approximation [33] and a plane wave cut-off of
350 eV in both cases.

3. Results and discussion

The relevant chemical potentials for doping TiNiSn are
shown in figure 2(left). We have chosen four sets of chemical
potentials representing Ti-poor and Ni-rich (point 1), Sn-rich
(point 2), Ti-rich (point 3) and Ni-rich, Sn-poor (point 4)
growth conditions. Figure 2(right) shows the ED q( ) as a
function of me for the intrinsic defects. Mainly the results
confirm the experimental observations, namely that the most
stable intrinsic defects are the NiInt and TiInt [21]. At this point
it should be pointed out that, due to an incorrect alignment of
the potentials equation (3), Ef D, q( ) of the negatively charged
interstitial defects were underestimated in our earlier work
[21]. This however does not change the main conclusion,
namely that the interstitial NiInt and TiInt are the most stable
intrinsic defects in TiNiSn. At Sn-rich growth conditions
(point 2), the formation of Ni and Ti interstitial defects is
suppressed by the low chemical potential of Ni and Ti,
figure 2.

Figure 1. Schematic illustration of the flow for the three parts of
equation (1).

3
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Figure 2(right) also illustrates that, independent of con-
ditions CuNi and VTi have a high formation energy, making V
and Ti unfavorable for doping. In contrast to that the extrinsic
SbSn

1 defect is the lowest energy positively charged defect.
This is in good agreement with the available experimental
information, where it is found that doping the Sn site with Sb
is known to significantly increase the electrical conductivity
and leads to an improved power factor of the material [8–11].
To a certain degree the low energy of the NiInt and SbSn can
be related to the known experimental full Heusler TiNi2Sn
and non 18 electron half Heusler TiNiSb phases. TiNiSb has a
similar lattice constant of =a 5.872NiTiSb Å compared
to =a 5.941TiNiSn Å.

Figure 3 illustrates the chemical potential ranges and
defect formation energies for TiCoSb. Similar to the TiNiSn
case, figure 2, we have chosen four sets of chemical potentials
representing Ti-poor and Co-rich (point 1), Sb-rich (point 2),
Ti-rich (point 3) and Co-rich, Sb-poor (point 4) growth con-
ditions. Furthermore, we illustrate the defect formation

energies in figure 3(right). Comparing figure 2(right) and
figure 3(right), the defect thermodynamics of the two com-
pounds at first sight look very different. The differences are
mainly due to two reasons, namely the larger band gap and
stability region found in TiCoSb. Taking as an example Ti-
poor and Co/Ni rich point 1, it is clear that the CoInt

1 ,
respectively the NiInt

1 , defect dominates at the VBM. As a
result of the positive charge (and slope with me) this defect
does not make TiCoSb intrinsically n-doped, as opposed to
TiNiSn which has a smaller band gap. As expected the CoInt

1

and NiInt
1 defects are destabilized at the Co/Ni poorest point

(point 2) studied. This upward shift of NiInt
1 is however only

about 0.4 eV, whereas the CoInt
1 defect is shifted upwards by

almost 1 eV at point 2 compared to point 1 due to the larger
stability region of the TiCoSb. A further obvious difference is
the formation of negatively charged defects in TiCoSb, such
as VacTi at p1, close to the CBM. These will make it difficult
to n-dope TiCoSb, and their presence is clearly related to the
larger band gap found in TiCoSb. The multivalent character
of several of these defects, e.g. SbTi is also clear from the

Figure 2. (left) The allowed chemical potential domains (colored area) of TiNiSn. White regions correspond to growth conditions under
which competing phases are formed. Competing phases in the quaternary Sb–Ti–Ni–Sn system are shown in color. All chemical potentials
are shown in the mD Ni and mD Ti plane, thus mD Sn is given implicitly. (right) Defect formation energies with respect to me. According to the
chosen sets of chemical potentials (p1–p4) the defect formation energies take different values. The positive slope results from a positively
charged state of the defects and vice versa.

Figure 3. (left) The allowed chemical potential domains (colored area) of TiCoSb. White regions correspond to growth conditions under
which competing phases are formed. Competing phases in the quaternary Fe/Sn–Ti–Co–Sb system are shown in color. The colored area in
the stable domain shows the competing phases of Sn with the corresponding colorbar on the left. The inset in the top right shows the
competing phases of Fe with the colorbar on the right. All chemical potentials are shown in the mD Co and mD Ti plane, thus mD Sb is given
implicitly. (right) Defect formation energies with respect to me. According to the chosen sets of chemical potentials (p1–p4) the defect
formation energies take different values. The positive slope results from a positively charged state of the defects and vice versa.

4
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dome like shape of the lines, meaning that positive defects
dominate close to the valence band whereas negative defects
dominate close to the conduction band. A further result of the
multivalent character is that both the TiSb and SbTi will be
negatively charged close to the conduction band.

No negatively charged intrinsic defects are low in energy
at the VBM, figure 3(right), and a low carrier concentration of
undoped TiCoSb can be expected. However, it is also seen
that positively charged defects are relatively high in energy at
the VBM, figure 3(right), which makes it possible to extrin-
sically dope the system. The obvious choices are the sub-
stitutional defects with one lesser valence electron such as
ScTi, YTi, LaTi, FeTi, GeSb or SnSb. We have tested all of
these, but find that only the substitutions from the same
period, i.e. ScTi, FeTi and SnSb, have low formation energies.
These are plotted in figure 3. It is clear that in the Sb-poorest
point, the SnSb defect is low in energy. However an inter-
esting point is that especially the ScTi defect looks very
favorable.

Scandium as a favorable dopant can be further underlined
by calculating the charge carrier concentration due to the
defects. The chemical potential dependence of the defect
formation energies, equation (1), means that also the con-
centrations of the defects change with respect to the chosen
set of chemical potentials. Furthermore, for charged defects,
the formation energy depends on the electron chemical
potential me, which has to be determined self-consistently for
each temperature to satisfy the charge neutrality condition
equation (12). The resulting carrier concentration is shown in
figure 4. It is seen that Sn doping in Sb-poor growth condi-
tions would indeed lead to a significant increase in carriers in
agreement with experiment [7]. However, it is also clear that
in the Ti-poor and the Ni-poor limits, the ScTi and FeNi
defects respectively are more efficient dopants. This is
somewhat surprising considering that the bulk of exper-
imental work is on Sn doping. It is however in reasonable
agreement with the findings of Ouardi et al [13]. Here it was
found that a strong doping of TiCoSb with Sc can lead to an

almost metallic state with a very low Seebeck coefficient [13].
While this sample was clearly not of TE interest, the present
results could indicate that a systematic study of Sc or Fe
doped TiCoSb, in combination with a carefully controlled
nano-structure [5–7], could be worth further investigation.
We also want to underline that even though they were found
to be less favorable than Sc for doping TiCoSb, Y and La
doping could be interesting for the phase-separated samples
where also Zr and Hf rich phases are present.

4. Conclusion

In summary, we calculated the formation energies of intrinsic
and extrinsic defects in TiNiSn and TiCoSb under various
growth conditions.

We have shown that positively charged Ni and Ti
interstitials dominate among the intrinsic defects in TiNiSn,
especially under Ti- and Ni-rich conditions. Among the
extrinsic defects only the experimentally known SbSn defect
has a sufficiently low formation energy suitable for n-doping
TiNiSn.

In contrast to TiNiSn TiCoSb is not intrinsically
n-dopable, due to the larger band gap and stability region in
TiCoSb. This leads to high formation energies of the posi-
tively charged intrinsic defects in the band gap. As extrinsic
dopants we found ScTi, FeCo and SnSb as possible p-type
dopants, thus enabling to dope TiCoSb on all three lattice
sites.
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Exceptionally Strong Phonon Scattering by B Substitution in Cubic SiC
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We use ab initio calculations to predict the thermal conductivity of cubic SiC with different types of
defects. An excellent quantitative agreement with previous experimental measurements is found. The
results unveil that BC substitution has a much stronger effect than any of the other defect types in 3C-SiC,
including vacancies. This finding contradicts the prediction of the classical mass-difference model of
impurity scattering, according to which the effects of BC and NC would be similar and much smaller than
that of the C vacancy. The strikingly different behavior of the BC defect arises from a unique pattern of
resonant phonon scattering caused by the broken structural symmetry around the B impurity.

DOI: 10.1103/PhysRevLett.119.075902

Silicon carbide (SiC) plays a fundamental role in many
emerging technologies, ranging from biomedical sensors to
optoelectronics, power electronics, and photovoltaics [1–9].
Most notably, this material has been termed the “linchpin to
green energy” that may replace Si-based technology in
power electronics [1], owing partly to its large lattice thermal
conductivity κ. From the many stable polytypes of SiC [10],
two of the hexagonal ones, 6H-SiC and 4H-SiC, have been
extensively studied and widely used [10–12]. In contrast,
the structurally less complex cubic polytype of SiC with the
zinc-blende structure (3C-SiC) is much less well under-
stood, despite presumably having the best electronic proper-
ties [13], and, as we will see, possibly a higher κ than the
other polytypes. This is partly due to the difficulty in
synthesizing high quality crystals, although recent improve-
ments in 3C-SiC growth techniques have prompted a
renewed interest in it [13].
Surprisingly, the reference measurements of κ on pure

undoped 3C-SiC are over 20 years old and little detail is
known about the quality of the samples [10,14]. The
reference value of κ for the 3C phase is perplexingly lower
than that for the structurally more complex 6H phase,
raising doubts about whether this is truly an intrinsic
property or just a consequence of the defective, poly-
crystalline quality of the 3C-SiC samples. A very recent
study [15] has shown that structural complexity and
thermal conductivity are inversely correlated in the series
of hexagonal phases of SiC, contrary to historical mea-
surements, which could be afflicted with similar problems
[10,14]. It is then clear that to understand the conduction
properties of 3C-SiC, and to harness its full potential, one
must first comprehend the way defects affect it. As we
show here, by comparing predictive ab initio calculations
with experiments on defective samples, a richer physical
picture emerges, unveiling striking differences in the way
different dopants affect κ. It also indirectly suggests that
the intrinsic κ of defect-free 3C-SiC should be much

higher than previously reported and surpass that of the
6H phase.
In this Letter, we compare our theoretical results to the

measured κðTÞ curves for doped samples of 3C-SiC [16].
We use an ab initio approach to quantify the phonon
scattering rates of NC substitutional defects. The predicted
κ is in excellent agreement with the experimental results.
This then allows us to explain the effect of codoping with
N and B, and shows that B impurities scatter phonons 2
orders of magnitude more strongly overall than N or Al
impurities, and as strongly as C vacancies. We identify
resonant phonon scattering as the reason for this behavior,
resulting from distortion and broken symmetry around the B
atom.We then show this resonant scattering behavior to be a
general phenomenon that can take place for strong enough
perturbations.
κ for cubic structures can be obtained from a complete

phonon picture as explained in Refs. [17,18]. We use an
iterative scheme to solve the full linearized Boltzmann
transport equation (BTE) and calculate κ of 3C-SiC as
implemented in the ALMABTE code [19]. Details about the
calculations are presented in the Supplemental Material
[20], which includes Refs. [17–19,21–30].
The calculated κ for defect-free single-crystal 3C-SiC is

shown as the brown dashed line in Fig. 1 and is in good
agreement with earlier calculations [31]. The value of κ at
300 K is 552 W=mK, which is about ∼70% higher than the
experimentally reported κ (320 W=mK) [14,32]. It also
surpasses the experimental κ at 300 K for the 6H-SiC phase
by ∼10% [32]. Inclusion of Si and C isotope scattering
slightly lowers the calculated κ (orange dashed line in Fig. 1),
but thevalues remainmuch larger than the experimental ones.
The calculated κ for the defective structures of 3C-SiC are

comparedwith experiments on polycrystalline samples from
Ref. [16] in Fig. 1. The additional contribution of the grain
boundaries to the scattering rate is included in the standard
way as τ−1jq;grain ¼ jvjqj=Lgrain, where jvjqj is the norm of the
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phonon group velocity vector for a phonon mode jq
(j represents the phonon branch and q the wave vector)
and Lgrain is the grain size. Employing Lgrain ¼ 0.8 μm for
all the samples yields good agreement with experiment.
The black filled triangles in Fig. 1 are the experimental

measurements on the polycrystalline bulk sample without
any dopant [16]. The other experimental results are for
the N-doped, and N- and B-codoped n-type samples in
Ref. [16]. The case of N-only doping demonstrates the
predictive power of the ab initio approach. As N in SiC can
be considered as a shallow donor [33–35] and each dopant
contributes one electron per defect atom, the concentrations
of NC defects can be expected to be the same as the carrier
concentration. Using the carrier concentrations for different
N-doped 3C-SiC samples reported in Ref. [16] yields
excellent agreement between the calculated and the exper-
imental κ for the whole temperature range in Fig. 1 (blue
lines and symbols). This confirms the reliability of the
ab initio approach.
The case of B and N codoping is considered next. B

substitutes for C in 3C-SiC when it is grown in Si-rich
conditions [36–38]. The fact that the undoped samples in
Ref. [16] are n type with a reasonably high carrier concen-
tration (≈1017 cm−3) would indicate the formation of
vacancies at C sites and in turn Si-rich growth conditions
[39]. Because of codoping, the carrier concentrations given
in Ref. [16] correspond to the difference between the
donor and acceptor concentrations, and thus they do not
uniquely determine the defect densities. In this case, we
determine the individual defect densities by keeping the
difference in concentrations equal to the experimental
carrier concentration. The calculation matches the whole

temperature dependent experimental curve only if the
individual concentrations are 1.3% and 0.5% for NC and
BC, respectively (Fig. 1, upper green line and circles). The
relative concentrations of the other codoped sample were
similarly derived yielding 2.7% and 2.5% of NC and BC
defects, respectively (lower green line and circle in Fig. 1).
Our calculations capture the correct experimental trend of a
big reduction in κ seen when BC defects, even in smaller
concentrations than NC, are introduced in the samples
(Fig. 1). This evidences themuch stronger phonon scattering
strength induced by BC defects. Furthermore, Fig. 2 shows
the dependence of κ on impurity concentration, and confirms
the anomalously large scattering from BC defects. This
behavior of the BC defects seems the only possible explan-
ation of the very low κ (42 and 19 W=mK at 300 K)
measured for the codoped samples. Otherwise, to achieve
the same low thermal conductivities by N doping alone
would require the NC concentrations in excess of 20%,
which are obviously unrealistic.
A look at the phonon scattering rates in Fig. 3(b)

provides more clues about boron’s atypical behavior.
Scattering by substitutional impurities comes from two
sources: the mass difference between the impurity atom and
the one it replaces, and the local change in the interatomic
force constants (IFCs) around the impurity in response to
structural relaxation and a modified chemical environment.
In cases like Ge impurities in Si, the mass term dominates
because Si and Ge have similar chemical bonding proper-
ties but very different masses [40,41]. The other extreme
is the case of vacancies, where the host atom is absent
and the only contribution comes from IFC differences. The
B-induced scattering rates in Fig. 3(b) are a striking 2
orders of magnitude larger than the N-induced ones, and
they are comparable to those of the C vacancy. This is

FIG. 2. 3C-SiC κ variation with defect concentration for AlSi,
NC, VacC, and BC defects. The low value of κ associated with the
BC defect is related to its anisotropic lattice relaxation seen in
the inset (and in the Supplemental Material [20]). The changes in
the nearest-neighbour interatomic distances are directly propor-
tional to the bond-width variations shown in the inset.

FIG. 1. Calculated κ of 3C-SiC including, progressively, anhar-
monic phonon scattering, isotope scattering, grain boundary
scattering ( Lgrain ¼ 0.8 μm), and different concentrations of
defects [ 2.2 × 1020 cm−3 NC (0.45%), 8 × 1020 cm−3 NC

(1.63%), 6.6 × 1020 cm−3 NC (1.3%), 2.6 × 1020 cm−3 BC

(0.5%), and 1.32 × 1021 cm−3 NC (2.7%), 1.23 × 1021 cm−3

BC (2.5%)]. The experiments are from Morelli et al. [14] and
Ivanova et al. [16].
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surprising because the absolute value of the mass difference
between B and C is nearly the same as between N and
C. A calculation including only mass differences, and
neglecting IFC differences does indeed predict very similar
scattering rates for B and N impurities (see Fig. S1 of the
Supplemental Material [20]). Therefore, the large scattering
rates for B must come from the different changes in IFCs.
However, scattering by Al substitutionals is not nearly as
large as that of B, despite both species belonging to the
same column in the periodic table, which might lead one to
expect similar chemical bonding properties.
Figure 4 shows the norm of the changes in the on-site

IFC submatrices. Since translation symmetry imposes a set

of linear constraints on each row of the IFC matrix, the
change in the on-site terms probes the overall change in the
IFCs related to each atom. The results shown in the figure
confirm that the largest changes happen in the case of the
vacancy. On the other hand, the BC defect shows a rather
large asymmetry in the first-neighbor shell, which may
explain the increased scattering. To be able to analyze the
contribution to scattering from this asymmetry, we define a
symmetric perturbation matrix Vsym containing only the
part of the total perturbation matrix V (see details in the
Supplemental Material [20]) calculated by averaging V
over the four space-group operations that just permute the
four nearest neighbors of the defect center. Hence, V can be
split as a sum of this symmetric term plus an asymmetric
term containing the remainder of the total perturbation:
V ¼ Vsym þ Vasym. Figures 2 and 3 show the variation of κ
with defect concentration and the phonon-defect scattering
rates induced by the artificial defect represented by Vsym.
Likewise, the norm of the changes in the on-site IFC
submatrices due to Vsym is shown in Fig. 4. It can be
seen that the symmetrization process does indeed bring
the values more in line with those corresponding to the
symmetric perturbations NC and AlSi. Accordingly, the
symmetrized BC perturbation yields thermal conductivities
very similar to those from AlSi impurities, and much larger
than those for the same concentration of true BC impurities,
as shown in Fig. 2.
The asymmetry in IFCs is caused by an asymmetry in the

relaxed structure of the BC defect. While both N and Al lead
to relaxations around the impurity maintaining tetrahedral
(Td) symmetry, the relaxation around B breaks the sym-
metry and the impurity gets closer to three of its four nearest
neighbors showing threefold (C3v) symmetry [Fig. 2 (inset);
see alsoRef. [38]]. The asymmetrical relaxed structure of the
BC defect is a manifestation of the complex chemistry of
boron [42]. Some insight into the different chemical behav-
iors ofN andBwith respect to Si can begained froma look at
their binary compounds. While the most stable silicon
nitride is Si3N4, with a relatively simple structure, silicon
borides have stoichiometries from SiB3 to SiB40 and very
complex unit cells with hundreds of atoms [43,44]. The
stoichiometry and the structure of silicon borides suggest an
affinity of B for low coordination with Si. Thus, the
relaxation of the B defect atom away from one of its four
neighboring atoms in 3C-SiC can be interpreted as a
movement towards lower coordination. This type of relax-
ation is however not uncommon for an extrinsic defect in
tetrahedral semiconductors, and can arise in the context of
DX centers.
Although the above reasoning shows that symmetry

breaking affects the perturbation for BC impurities, this
does not yet explain its exceptionally large effect on κ. To
understand it, let us take another look at the scattering rates
and the phonon density of states (DOS) of SiC in Fig. 3.
The scattering rates for BC display a prominent peak at

FIG. 4. Frobenius norm of the changes in the on-site IFC
submatrices of the atoms (i) around the defects with respect to the
perfect 3C-SiC structure as a function of the distance of the atoms
from the defect center (d).

FIG. 3. (a) Phonon DOS of SiC and (b) scattering rates of
phonons by different defects (with a concentration of 1020 cm−3),
isotopes, and phonon-phonon interactions at 300 K.
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about 33 rad=ps. A similarly large peak is observed for the
vacancy at a slightly higher frequency. Such a peak is
notably smaller or almost absent for the AlSi andNC defects.
The rates for the symmetrized BC impurity are also shown
(BC sym), displayingmuch smaller values and amuch lower
peak than the original BC perturbation. This peak is the
signature of resonant scattering. Resonances are quasibound
states in the continuum of propagating states. They are
infinitely extended, but have a large probability around the
localized perturbation that causes them. They manifest
themselves as peaks in the phonon scattering cross section
σ of the scatterer near the frequency of the resonance. The
Green’s function approach that we use to compute defect
scattering rates accounts for the full scattering to all orders,
so it perfectly captures the effect of resonances, whichwould
not appear in truncated perturbative approaches.
A direct way to identify resonant scattering is via the

scattering T matrix (see the expression in the Supplemental
Material [20]), which is fundamentally related to the cross
section [24,45]. Prominent peaks in the imaginary part of
the trace of the scattering T matrix, shown in Fig. 5(a),
correspond to resonances. In Fig. 5(a), these resonances are
much easier to identify than from the cloud of scattering
rate points in Fig. 3. The figure clearly displays large
resonances for BC and C vacancies (VacC), but not for the
symmetrized BC, NC and AlSi.
According to scattering theory, as the intensity of the

localized perturbation grows stronger, increasingly sharper
resonances start to develop at the lower frequency spectrum
[46]. In the present case, this would imply that resonances
might show up for impurities other than BC or C vacancies,
if only their perturbations were stronger. To verify this, we
have artificially multiplied the perturbation by a constant
factor α, and have recalculated σ for a longitudinal-acoustic
phonon of frequency 33 rad=ps (the resonant frequency
for the BC defect), as a function of α. The value α ¼ 1
corresponds to the true perturbation. Figure 5(b) confirms
that for sufficiently large α, every impurity is able to
develop resonant scattering. Figure 5(b) suggests the
qualitative concept of an effective native “strength” of
the defect: the BC and C vacancy defects are associated
with a larger strength, manifested as a larger cross section at
small α and an earlier onset of the resonance with an
increase in α. This strength is the result of a complex
interplay involving the magnitude of the different changes
in the IFCs and their symmetry. In the BC case, the broken
symmetry due to the Td to C3v transition leads to a visibly
enhanced strength with respect to the symmetrized case,
seen in Fig. 5(b), despite the overall change in the
perturbation matrices in Fig. 4 not being drastic. Similar
strong effects of the Td to C3v symmetry transition for
extrinsic defects in tetrahedral semiconductors are also seen
for charge carrier scattering [47,48].
These results have significant implications for the SiC

industry. B-doped SiC has shown promising results in

photovoltaics, power electronics, and many more applica-
tions [49–53]. However, the drastic thermal conductivity
reduction associated with B doping can affect device
efficiency and lifetime. Thus, balancing the improvement
of electronic and luminescent properties with the detri-
mental effects on thermal conductivity is an important
factor to consider when selecting the right dopants for these
applications.
In conclusion, BC substitutional impurities in cubic SiC

scatter phonons much more strongly than NC or AlSi
impurities, and comparably to C vacancies. For N impu-
rities to reduce κ as much as B impurities do, the
concentration of the former has to be roughly 30 times
larger than that of the latter. This could not have been
guessed from mass difference considerations. It emerges
from ab initio calculations, which are clearly supported
by previous experimental measurements. This striking
behavior is caused by the symmetry transition from Td

FIG. 5. (a) Trace of the imaginary part of the scattering T
matrix for different impurities, showing a resonance for B and a
vacancy. (b) Scattering cross section σ for the longitudinal-
acoustic mode at an angular frequency of 33 rad=ps, as a function
of scattering strength for different impurities. Similar resonance
peaks for the BC defect are also seen for transverse-acoustic
phonon modes at ∼33 rad=ps (see Fig. S4 in the Supplemental
Material [20]).
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to C3v around the B impurity upon relaxation, which leads
to strong resonant scattering of acoustic phonons in the
angular frequency range between 33 and 50 rad=ps. If only
the symmetric part of the perturbation is kept, the resonance
disappears and the calculated effect becomes similar to that
of Al substitutionals, thus showing a significant impact of
defect-induced symmetry breaking on the thermal conduc-
tivity of SiC. However, symmetry breaking by itself is not a
sufficient condition, as seen in the case of N defects in
diamond [45], where lattice distortions do not lead to
resonant scattering. Furthermore, the calculations presented
suggest that single-crystalline, defect-free cubic SiC can
achieve a thermal conductivity about 1.7 times higher than
the largest reported measured value on this polytype, and
above those of other polytypes.
The results shown here point to a general phenomenon,

whereby lattice distortions induced by defects showing a
Td to C3v transition in different tetrahedrally bonded
semiconductors [47,54] may develop into a phonon reso-
nance and lead to enhanced scattering. This should be
relevant to many rapidly evolving technologies. In complex
semiconductors there will usually be several possible
doping scenarios for reaching a desired carrier concen-
tration, and the sensitivity of the phonon scattering to the
specific defect thus opens up an important new route in
semiconductor design.
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2

I. COMPUTATIONAL DETAILS

A. Lattice thermal conductivity

The lattice thermal conductivity κ for isotropic compounds can be expressed as [1, 2]

κ =
1

3

∑

j

∫
dq

(2π)3
Cjqv

2
jqτjq (1)

where vjq, Cjq and τjq represent the group velocity, contribution to the specific heat, and relaxation time for phonons
in mode jq. Here, j stands for the phonon branch index and q for the wave vector. The inverse of the phonon relaxation
time, τ−1jq , is the phonon scattaring rate. This expression holds as long as none of the scattering mechanisms breaks
the isotropy of the crystal. This can be true even for anisotropic defects, as long as their orientations are randomly
and uniformly distributed.

B. Total scattering rate

For the system under study in this work, the total phonon scattering rate τ−1jq can be written as the sum of four
contributions from different scattering mechanisms:

τ−1jq = τ−1jq,anh + τ−1jq,iso + τ−1jq,def + τ−1jq,grain. (2)

where τ−1anh is due to the intrinsic anharmonicity of the crystal that enables three-phonon processes, τ−1iso to isotopic

mass disorder, τ−1def to crystallographic defects and τ−1grain to the presence of grain boundaries. Anharmonic scattering is
characterized using the method described in Refs. 1 and 2, based on ab-initio calculations of the third-order interatomic
force constants (IFCs) of the perfect 3C-SiC crystal. τ−1iso is obtained using the scheme developed by Tamura et al.
in Refs. 3 and 4, which only requires knowledge of the phonon spectrum and the natural isotopic abundances. The
expression for τ−1grain is given in the main text. The next section is devoted to τ−1jq,def .

C. Phonon scattering by defects

An expression for τ−1def can be obtained by adding up the scattering rates due to all possible elastic phonon scattering
processes |jq〉 → |j′q′〉 as [5],

τ−1jq,def = πχdef
Ω

Vdef

1

ωjq

∑

j′q′

|〈j′q′ |T | jq〉|2 δ
(
ω2
j′q′ − ω2

jq

)
, (3)

where χdef is the number fraction of defects, Vdef the volume of a defect, Ω the volume which is used to normalize
|jq〉, and ω the angular frequency of phonons. The T matrix is given as,

T =
(
I−Vg+

)−1
V (4)

where g+ is the causal Green’s function for the perfect structure, V the perturbation matrix connecting the perfect
and defective systems, and I the identity matrix. However, it is more convenient to dispense with the sum over
outgoing phonon modes by using the optical theorem [6]:

τ−1jq,def = −χdef
Ω

Vdef

1

ωjq
={〈jq |T | jq〉} . (5)

V can be decomposed as a sum of contributions from the changes in mass (VM ) and in force constants (VK)
between the perfect and defective structures:

V = VK + VM (6)
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3

More specifically, the mass term VM is diagonal and its only nonzero elements correspond to onsite terms for the

defect. Their values are −M
′
i−Mi

Mi
ω2, where M ′ and M are the masses of the defect and of the original atom at the

i-th site, respectively, and ω is the angular frequency of the incoming phonon. Hence, VM is independent of the
structural distortions around the defect. Those effects are included in the VK matrix, which is computed from the

differences between the IFCs for defective (K′) and perfect (K) structures as VK,iα,kβ =
K′
iα,kβ−Kiα,kβ√

MiMk
. Here i, k are

atom indices and α, β represent Cartesian axes.
Since the perturbations are represented in real space, the need arises to impose a cutoff radius rcut for structural

distortions. The changes in IFCs are taken into account up to second nearest-neighbours of all the atoms within this
rcut. A large rcut = 5.5 Å (corresponding to the sixth neighbour shell in 3C-SiC) is chosen for all the defects. Changes
beyond this cutoff are found to be very small. Nevertheless, it is necessary to apply a numerical correction to the
“raw” VK to make this cutoff strict. In particular, this ensures that all sets of IFCs fulfil the so called “sum rules”
expressing the conservation of momentum or, in other words, the homogeneity of space. In practice, this is achieved
by restricting VK to a subspace of atomic displacements from which rigid translations have been removed. Let uα
be the vector with component (i, β) equal to δβα, representing a rigid displacement of all atoms along Cartesian axis
α. The restriction operator is defined as:

P = I−
∑

α

vα ⊗ vα, (7)

where vα = uα/ |uα|. This operator is applied on ṼK = K′ −K simply as

Ṽcut
K = PṼKP, (8)

after which Vcut
K is trivially obtained from Ṽcut

K . As a matter of fact, we use an iterative scheme, looping over Eq. 8

with ṼK = Ṽcut
K , until the final Vcut

K components beyond the rcut are negligible. This ensures that no corrections to
the force constants for atoms beyond rcut are made.

D. Parameters for ab-initio calculations

The harmonic and anharmonic IFCs for 3C-SiC are calculated with a finite displacement scheme for a 5 × 5 × 5
supercell of the rhombohedral primitive cell (spacegroup F-43m). The supercell contains 250 atoms. As a check, the
harmonic IFCs are also obtained for a 4 × 4 × 4 supercell. The maximum difference in angular frequency ω at the
Γ-point is a mere 0.3 rad/ps.

All ab-initio calculations, including both the structural relaxation and the force calculations needed for computing
the IFCs, are carried out using the projector-augmented-wave method [7] as implemented in the density functional
theory package VASP [8], with the local density approximation to exchange and correlation [9]. The equilibrium
lattice parameter obtained for perfect 3C-SiC is a = 4.33 Å.

Force constants for the BC, NC and AlSi substitutional defects are calculated using 5× 5× 5 containing one defect
atom. A 4× 4× 4 supercell is used for the carbon vacancy.

The atomic coordinates of the defective supercell are relaxed keeping the cell volume fixed before calculating the
IFCs. The relaxation is iterated to avoid any imaginary phonon frequencies at the Γ-point of the Brillouin zone for
the supercell. A small displacement of the defect atom or its nearest-neighbors is introduced before the start of the
relaxation so as to avoid the system getting trapped in a saddle point of the energy surface.

To extract the second- and third-order IFCs from the ab-initio calculated forces, we use the Phonopy [10] package
and our own thirdorder.py code [1] respectively.

The Born effective charges and the dielectric tensor calculated with VASP are also included to account for the
non-analytical correction to the dynamical matrix for a correct reproduction of LO-TO phonon splitting in 3C-SiC
[11].

To compute the defect scattering, the Green’s functions are calculated on a 18× 18× 18 grid using the tetrahedron
method to integrate over the Brillouin-zone [12]. All the scattering rates are calculated on a 24×24×24 q-point mesh.
The calculations of the Green’s functions, the scattering rates τ−1anh, τ−1iso , τ−1def , τ

−1
grain and the final κ are performed

using the almaBTE code, developed in house [13].
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II. DEFECTS AS MASS PERTURBATIONS

FIG. 1: Phonon scattering rates from BC, NC, and AlSi substitutional defects (in concentration of 1020 cm−3) with
only mass perturbation contributions, from isotopes and from phonon-phonon interaction at 300 K.

Fig. 1 shows the defect scattering rates from BC, NC, and AlSi taking into account only the contribution from VM

in Eq. (6). Slightly stronger scattering rates are obtained for the NC defect than for BC and AlSi. However, it is clear
that the contributions from all these defects are extremely weak when compared to mass-disorder and anharmonic
scattering if the VK term is neglected in Eq. (6).

III. ANHARMONIC SCATTERING OF ACOUSTIC PHONONS

FIG. 2: Anharmonic scattering rates of SiC at 300K for each acoustic branch (two transverse-acoustic: TA1 and
TA2, and one longitudinal-acoustic: LA). To avoid the overlap in the plots, we have scaled TA1 and LA mode by
102 and 10−2 respectively.

The anharmonic scattering contribution from the transverse-acoustic and longitudinal-acoustic phonon modes of
SiC as a function of phonon frequencies are shown in Fig. 2. It can be seen that all the acoustic phonon modes follow
an ω2 behaviour with a slight spread which is expected due to dependence of phonon scattering rates on wave-vector
and polarization along with frequencies.
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FIG. 3: Visual representation of the changes in the interatomic distances for defective supercells containing a single
(a) AlSi, (b) NC, (c) VacC, or (d) BC defect in 3C-SiC. The changes in the nearest-neighbour interatomic distances
are directly proportional to the bond width variations seen in the figure. The colour gradient from red to blue is
used to show the depth of the bond cage structure (front to back).

IV. STRUCTURAL DISTORTION WITH DEFECTS

Fig. 3 shows a 3D representation of the bond length variations in defective 3C-SiC supercells. The defect is located
in the centre of the structure. The lines represent the bonds between the nearest neighbour atoms in 3C-SiC, and
their thicknesses are directly proportional to the variations in the bond lengths. Thus, lines are thicker near the defect
centre and become thinner with increasing distance from the defect centre, Fig. 3. The colour gradient (red to blue)
provides depth perspective to help discriminate between the bonds at the front and back in this 3D structure.

The BC defect, unlike the others, shows a surprising anisotropic behaviour of the bond length variation after the
structural relaxation as seen in Fig. 3(d). Furthermore, the perturbations near the defect centre are larger than for
the other two defects at C site, NC and VacC, Fig. 3(b) and (c).
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V. SCATTERING CROSS-SECTION FOR BC DEFECT

10−1 100 101

α

10−2

10−1

100

101

102

103

104

σ
(n

m
2
)

TA1
TA2
LA

FIG. 4: Scattering cross-section (σ) as a function of scattering strength factor (α) for BC defect in 3C-SiC. The
resonance is seen for both transverse-acoustic and longitudinal-acoustic modes.

Fig. 4 shows the scattering cross-section for BC defect as a function of scattering strength factor (α). Similar to
the LA mode seen in Fig.5(b) in the main text, TA modes at ∼33 rad/ps also exhibits resonance peak at α = 1.
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Resonant phonon scattering in semiconductors

Bonny Dongre, a Jesús Carrete, a Ankita Katre, b Natalio Mingob and
Georg K. H. Madsen *a

Boron impurities have recently been shown to induce resonant phonon scattering in 3C-SiC, dramatically

lowering its thermal conductivity. The B-doped 3C-SiC is associated with an off-center relaxation of the B

atom, inducing a local transition from Td to C3v symmetry. Similar relaxations in B and N-doped diamond, with

a similarly large effect on the interatomic force constants (IFCs), fail to produce resonances. Here we develop

an intuitive understanding of such dopant-induced resonant phonon scattering in semiconductors with the help

of a 1D monoatomic chain model. We find that the phenomenon is connected to a slight asymmetry in the

relaxed position of the defect, with its origin in two or more minima of the potential energy surface in close

proximity. The large perturbation they introduce in the IFCs is the essential ingredient of a resonance.

1 Introduction

Extrinsic doping of semiconductors dates back to the mid-twentieth
century and has found uses in such important technologies as
power electronics, optoelectronics, photovoltaics, thermoelectrics,
and bio-sensors to cite a few.1,2 The need to identify the effect of a
single dopant on the properties of a semiconductor has acquired a
paramount importance today, to the extent of opening a new field,
solotronics.3 The effect of defect induced lattice distortions on
various physical properties like charge carrier scattering4 or thermal
conductivity5,6 has been studied. In our previous work, we showed
the presence of exceptionally strong phonon scattering in cubic SiC
containing boron substitutions on carbon sites (BC substitutions).6

The phonon scattering leads to a drastically reduced thermal
conductivity, k, for boron-doped 3C-SiC. This can have detrimental
effects on device efficiency and lifetime, and have serious
implications for the usage of particular dopants in semiconductor
materials.

On a more fundamental level, the BC results also point to a
general phenomenon whereby lattice distortions induced by
substitutions can cause resonant scattering of phonons in
semiconductors. In ref. 6, we found that the unusually high
scattering was related to a symmetry breakdown around the B
atom. The atomic environment of the dopant B atom experiences
a transition from Td to C3v symmetry after atomic relaxation. This
transition is connected to a large change in interatomic force
constants (IFCs). However, no detailed connection between the
structural transition and the large IFC perturbation has been
established. This is underlined by the fact that in an earlier study

of nitrogen doping of diamond no resonant scattering was
observed, despite the symmetry breaking transition of the dopant
nitrogen being associated with a larger relaxation than that of boron
in 3C-SiC.5 Therefore, understanding the detailed mechanism is
essential to help identify other potential superscatterers and to
guide the choice of dopants during device design.

In the present work we fill this gap by first exploring the
influence of charge on the relaxation and phonon scattering of
the BC and NC defects in 3C-SiC and diamond. We confirm the
previous reports5,6 that a large asymmetric distortion around
N(0)

C in diamond fails to show any resonant scattering whereas a
small distortion around B(0)

C does produce resonant scattering
in 3C-SiC. A review of the studies of intrinsic and extrinsic point
defects in 3C-SiC shows that even though there have been some
experimental and computational works on doping 3C-SiC with
boron7–9 and nitrogen,10–12 stability of the charged states of
these defects is not fully understood. Furthermore, nothing is
known about the influence of the charged state of the defect on
its phonon scattering properties. Therefore we calculate the
defect formation energies (DFEs) of the charged defects in
3C-SiC and diamond, and find that the �1 and +1 charge states
of the BC and NC defects respectively are stable in the band gap
along with their neutral charge states. This suggests that all the
respective defects are present in 3C-SiC and diamond according
to the Boltzmann distribution.

The study of phonon scattering from an atomistic Green’s
function perspective revolves around the T matrix, which connects
the Green’s functions of the perturbed and unperturbed lattices.
The T matrix combines the effect of the perturbation itself –
caused by differences in mass and force constants – with the
properties of the host lattice. We speak of resonant phonon scatter-
ing when significant peaks appear in T and in the scattering
rates as functions of phonon frequency. Resonances can occur
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at any frequency, but they matter the most when they occur at
relatively low frequencies in the dispersion relation, because the
scattering of the low-frequency acoustic phonons is otherwise
described by a Rayleigh like behavior. As the acoustic phonons
typically carry most of the heat in semiconductors and insulators,
the experimental signature of a resonance at low frequencies is a
drastic reduction of lattice thermal conductivity even at moderate
defect concentrations.

In order to develop an intuitive understanding of resonant
phonon scattering, here we reproduce the effect in a simple 1D
monoatomic chain, where the shape of the energy landscape
can be easily controlled. By using a Tersoff-like potential on
three contiguous atoms of the chain we obtain a double well
potential energy landscape. Then, by progressively increasing
bond-strength parameter of the potential, we systematically
reduce the distance between the two minima thereby reducing
the energy barrier between them. We find that in the case of the
1D chain a large IFC perturbation arises when the two minima
in the potential energy landscape are so close to each other that
their curvatures are modified. Resonant phonon scattering at
low frequencies is clearly observed when the minima are very
close. This phenomenon is characterized by a phonon reflectivity
approaching unity and prominent peaks in the trace of the
imaginary part of the T matrix, also at low frequencies.

Considering the original case of BC and NC in 3C-SiC and
diamond in light of our analysis of the 1D model, we establish
that a rather small lattice distortion associated with two or
more close energy minima in the potential energy landscape is
a necessary condition for having resonant phonon scattering.
In addition, a low slope of the acoustic phonon bands, and
consequently a large density of states, of the unperturbed host
is identified as a necessary condition.

2 Methodology
2.1 Scattering rates

Within the atomistic Green’s function formalism, the retarded
phonon Green’s function of the unperturbed host lattice (g+) is
used to calculate the T matrix given the perturbation matrix V as:13

T = (I � Vg+)�1V, (1)

where I is the identity matrix. Hence, once the Green’s function
of the unperturbed host lattice and the T matrix are known, the
Green’s functions of the perturbed lattice can be calculated
according to the Dyson equation:

G+ = g+(I + Tg+). (2)

The elastic scattering rate due to defect–phonon inter-
actions, t�1, is frequency and wave-vector dependent. It can
be calculated for a particular phonon branch index i and a
given wave vector q by adding up the scattering rates due all
possible elastic phonon scattering processes |iqi- |i0q0i as:14

1

tiq
¼ pndefVuc

1

oiq

X
i0q0

i0q0 Tj jiqh ij j2d oi0q0
2 � oiq

2
� �

; (3)

where ndef is the volumetric concentration of the point defects,
Vuc the volume of the unit cell, and o the angular frequency of
phonons. Eqn (3) is the rigorous equivalent of Fermi’s golden
rule in exact time-independent perturbation theory. It is
obtained from the Lippmann–Schwinger equation, which uses
the perturbation to establish a connection between the unperturbed
and perturbed phonon wave functions. Eqn (3) can be reduced to a
more convenient form using the optical theorem:13

1

tiq
¼ �ndefVuc

1

oiq
= iq Tj jiqh if g: (4)

Eqn (4) removes the need to sum over outgoing phonon modes
as well as the problem of satisfying the energy conservation,
represented by the Dirac delta function in eqn (3), when
sampling the phonon frequencies on a finite grid.

V is defined as:

V = VM + VK. (5)

VM and VK account for changes in mass and force constants
between the perfect and defective structures, respectively.

VM ¼ �
Mj

0 �Mj

Mj
o2 is diagonal and is nonzero only for the

onsite terms of the defect. Mj
0 and Mj are the masses of the

defect and the original atom at the j-th site, respectively,
and o is the angular frequency of the incoming phonon.

VK; ja;kb ¼
K 0ja;kb � Kja;kbffiffiffiffiffiffiffiffiffiffiffiffiffi

MjMk

p where K0 and K are the IFCs for defective

and perfect structures respectively. j, k are atom indices and a, b
represent Cartesian axes.

2.2 Defect thermochemistry

The structures and potential energy surfaces of the defects
depend on a range of factors like the number and charge states
of the defects as well as the chemical potentials of the atoms
exchanged with the reservoir and the electrons in the system.
The presence of the defects in thermodynamic equilibrium will
be determined by the DFE:

EDðqÞ með Þ ¼ Ef ;DðqÞ �
X
a

naDma þ qme; (6)

where Ef,D(q) is the defect formation energy with respect to the
reference states, given as:

Ef ;DðqÞ ¼ E
ðqÞ
D � Ebulk �

X
a

naEa; (7)

na is the number of atoms of kind a that are exchanged with the
reservoirs at chemical potentials Dma. E(q)

D are calculated using a
supercell approach. The following section gives the computational
details and ref. 15 the details of the applied corrections due to the
compensating jellium background charge and the interactions
between the periodic arrangement of charged defects.

In a binary system like SiC the formation energies are
defined with respect to the chemical potentials corresponding
to Si- and C-rich growth conditions. The allowed respective
chemical potentials are calculated by carefully restricting the
formation of different intrinsic competing phases like SiC2,
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SiC3 in the system. Similar conditions have to be obeyed if
impurities are added. In case of boron doping this includes
restricting the formation of competing phases like BC, B4C, SiB,
SiB3. In case of nitrogen doping the competing phases include
binaries like CN, C2N, Si3N4 and ternaries like SiCN, SiC2N4.

2.3 Computational details

The total energy as well as the force calculations are done using
the projector-augmented-wave method16 as implemented in the
VASP code,17 with the Perdew–Burke–Ernzerhof (PBE) exchange
and correlation functional.18 The calculated equilibrium lattice
parameter for perfect 3C-SiC is a = 4.37 Å and for diamond is
a = 3.57 Å. We calculate the DFEs and IFCs using a 5 � 5 �
5 supercell, containing 250 atoms of the rhombohedral primitive
cell (space group F%43m) to avoid defect–defect interactions.
For the DFEs a 4 � 4 � 4 k-point mesh and for the IFCs a single
G-point are used.

Structural relaxations for the defective structures are carried
out iteratively, allowing the atomic coordinates to relax and
keeping the cell volume fixed such that there is no imaginary
frequency at the G-point of the Brillouin zone of the supercell.
To this end, the defect atom is given a small initial displacement
before the start of the relaxation in order to avoid the system
getting trapped in a saddle point of the potential energy land-
scape. The harmonic IFCs for the bulk and defect-containing
3C-SiC and diamond are calculated with a finite displacement
scheme. We use the Phonopy19 package to extract the second-
order IFCs from the ab initio calculated forces.

To compute the defect scattering for 3C-SiC and diamond,
the Green’s functions are calculated on a 27 � 27� 27 and 29�
29 � 29 grid, respectively, using the linear tetrahedron method
for integration over the Brillouin zone.20 The scattering rates
are then calculated on 24 � 24 � 24 and 26 � 26 � 26 q-point
meshes for 3C-SiC and diamond, respectively. In the case of
3C-SiC a non-analytical correction is added to the dynamical
matrix to correctly reproduce the LO–TO splitting.21 The
non-analytical correction to the dynamical matrix is not
required for the defect–laden systems, as we only need the
perturbation matrix, eqn (5), for which no correction is
required. All these calculations are performed using our in-house
almaBTE code.22

3 Results and discussion

The scattering rates for all the defects are shown in Fig. 1. For
the two non-charged substitutional defects, B(0)

C and N(0)
C ,

our results agree with the ones in ref. 6, which were obtained
using the local density approximation, thereby validating the
presence of a resonance in case of the B(0)

C defect in 3C-SiC. The
resonant scattering is two to three orders of magnitude higher
than the other defects. The increased scattering is key to
explaining the very low thermal conductivity experimentally
observed for boron-doped 3C-SiC.6,9 In this respect, it is surprising
that the negatively charged defect, B(�1)

C , does not exhibit resonant
scattering, Fig. 1. One would typically think of the substitutional

boron on a carbon position as a hole-donating (negatively charged)
defect. This apparent contradiction can be understood in terms of
the defect formation energies shown in Fig. 2. It can be seen that
both the neutral and respective charged states,�1 for the BC defect
and +1 for the NC defect, are present in the band-gap. The B(0)

C and
N(+1)

C defects are more stable near the valence band maximum
whereas the B(�1)

C and N(0)
C defects are more stable near the

conduction band minimum. In a p-doped sample, as the
experimentally investigated boron-doped SiC,9 one would thus
expect both B(0)

C and B(�1)
C to be present according to a Boltzmann

distribution.
Despite all the defects introducing a similar mass perturbation,

there is a stark difference in phonon scattering caused by each
defect. This underlines the fact that the underlying contribution to

Fig. 1 Scattering rates for 3C-SiC (circles) and diamond (plus signs) for
different dopants with their respective charge states at a concentration of
1021 defects per cm3.

Fig. 2 Defect formation energies vs. electronic chemical potential (me) for
3C-SiC using the experimental bandgap.23 me = 0 corresponds to the
valence band maximum (VBM) and me = 2.4 is the conduction band
minimum (CBM). (a and b) Correspond to Si and C rich growth conditions
respectively.
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phonon scattering from factors like Green’s functions of the host,
the lattice relaxation around the defect, and resultant force
constant perturbation all play an important role. The effect of
Green’s functions on phonon scattering can be understood
with the help of Fig. 1 and 3. Fig. 1 illustrates how the scattering
rates of defects in diamond tend to be lower than those in
3C-SiC. This is in direct relation with Fig. 3 which shows the
real and imaginary parts of the trace of the Green’s functions
for 3C-SiC and diamond with their respective phonon band
structures. The negative trace of the imaginary part of the
Green’s function corresponds to the density of states (DOS) of
the system. As would be expected from the high phonon
velocities in diamond, it can be seen that the magnitude of the
DOS for diamond is considerably smaller than that of 3C-SiC.

A large DOS in combination with a large force constant
perturbation are required to have eigenvalues of the Vg+ matrix
approach unity resulting in a resonance, eqn (1). Intuitively,
this implies that a low DOS in diamond, seen in Fig. 3, inhibits
the phonon scattering as there are not enough phonon modes
available for scattering, at small frequencies in particular.

In addition to a ‘‘large’’ Green’s function, the Vg+ matrix can
approach unity due to a ‘‘large’’ perturbation matrix, V. Taking
the Frobenius norm of the IFC perturbation matrices, Table 1,
as a gauge for the magnitude of the IFC perturbation, we obtain
the largest perturbations for B(0)

C and N(0)
C defects in diamond,

and B(0)
C in 3C-SiC. The resonance for the B(0)

C and N(0)
C defects in

diamond are suppressed by the low DOS, Fig. 3. In agreement
with the analysis in our earlier paper,6 the perturbations with a
large 8V8F are associated with a structural transition from Td to
C3v symmetry around the defect. Interestingly, the magnitude
of the perturbation caused by the B0

C defect in diamond, where
the bond lengths differ by only 0.025 Å, is larger than that
caused by the N0

C defect in diamond, where the bond lengths
differ by 0.509 Å, Table 1. Similarly, the B0

C in SiC, which causes
the resonance, is associated with a small structural asymmetry
of 0.047 Å. The distortions around these defects are illustrated

in Fig. 4. The results would thus indicate that a symmetry
breaking structural transition is necessary for a large IFC
perturbation, but that the magnitude of the perturbation has
an inverse relation with the magnitude of the asymmetry.

To understand this somewhat counter-intuitive relation, we
introduce a simple infinite 1D monoatomic chain. The unperturbed
chain has only one degree of freedom per atom. The atoms in the
chain have mass m = 1 and are bonded by simple harmonic
potentials with force constants k = 1 in an arbitrary system of units.
Fig. 5(a) shows the characteristic phonon dispersion. The trace of
the imaginary and real parts of the Green’s function, calculated

Fig. 3 The phonon band structure of 3C-SiC (blue) and diamond (red)
along with the absolute values of the real (right) and imaginary (middle)
parts of the Green’s function.

Table 1 Frobenius norm of the IFC perturbation matrices V, Vk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

Vij
2

p
,

for the eight charged and non-charged defects studied here. The nearest
neighbor distances are also listed where d1 is the shortest and d2 the longest
distance. For the three asymmetric cases, B(0)

C and N(0)
C in diamond and B(0)

C in
SiC, where d1 a d2, there are three short distances, d1, and one long, d2

SiC Diamond

8V8F (eV Å�2) d1 (Å) d2 (Å) 8V8F (eV Å�2) d1 (Å) d2 (Å)

B(0)
C 41.7 1.923 1.970 54.0 1.582 1.607

B(�1)
C 20.4 1.911 1.911 18.6 1.586 1.586

N(0)
C 35.8 1.923 1.923 48.6 1.484 1.993

N(+1)
C 28.8 1.918 1.918 37.6 1.563 1.563

Fig. 4 Displacement of atoms around defect in the asymmetrically relax-
ing defects. The length of the red arrows indicate the magnitude and
direction of the displacement vectors. (a) The B atom in SiC moves away
from one of the four Si neighbors towards the plane of the other three.
(b) One of the four C atoms in diamond moves further away from the
B atom as compared to the other three. (c) N moves away from one of the
C atoms towards the plane of the other three causing the highest asymmetry.
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using a decimation technique,24 are shown in Fig. 5(b and c),
respectively.

To explore the effect of symmetry lowering relaxations on
the IFCs and phonon scattering we then introduce a defect in
the 1D-chain by replacing the k = 1 interactions between three
contiguous atoms by a simple bond order potential. We label
these three atoms L, D and R, Fig. 6 (top). The unperturbed
symmetric situation can be thought of as corresponding to the
minima of the overlap of the L–D and R–D interatomic
potential curves. A small geometric distortion from the high
symmetry (non-perturbed) structure results in two competing
minima. In this situation the R–D interatomic potential will
strongly perturb that of the L–D and vice versa. A large geometric
distortion means that the potential energy surface around one
minimum is only weakly perturbed.

Similar ideas have a long history in chemistry. The Bell–
Evans–Polanyi principle (see discussion in ref. 25) for example,
can be interpreted such that when the potential energy is
described by two parabolas, the transition state is the intersection
of both parabolas and it is lowered if the local minimum of the
higher energy minimum parabola is lowered and vice versa.
Similarly, the Lippincott–Schroeder potential explains the hydro-
gen bond in terms of overlapping Morse like potentials.26 It gives
a simple and intuitive explanation of the strong hydrogen bond27

where the potential energy surface changes from a hydrogen
localized at one oxygen atom, over a low barrier hydrogen bond,
where localization can depend on whether the bond is hydro-
genated or deuteronated,28 to a centered situation, where the
hydrogen is situated approximately midway between the two
oxygen atoms.

To quantify this interpretation we make a model where the
defect is introduced by modifying the interactions among three
particular contiguous atoms of the chain. These three atoms
behave according to a bond-order potential, Vij, described by a
modified Tersoff form29 given as:

Vij = fC(rij)[ fR(rij) + bij fA(rij)], (8)

where fR is the repulsive pair potential, fA is the attractive pair
potential associated with bonding, and fC is a cutoff function
chosen to include only the first nearest neighbors. rij is the
distance between atoms i and j. The attractive and repulsive
part of the potential are simple exponential functions:

fRðrÞ ¼ A exp �l1rð Þ;

fAðrÞ ¼ �B exp �l2rð Þ;
(9)

where A, B, l1, and l2 are constants. We choose A = 1, l1 = 1.0
and l2 = 0.2. B is systematically varied to control the bond
strength. bij in eqn (8) represents a measure of the bond
order and is a function of the local environment. We use an
expression like that of the Tersoff potential with b = 40, n = 23
and l3 = l2. As the chain is always linear, the bond-order
contribution is independent of the bond angle term that is
present in the original Tersoff potential.29 The IFCs required to

Fig. 5 Phonon dispersion curve, and trace of the imaginary and real part
of the retarded Green’s function, g+, for the 1D chain as the black line. Also
shown as colored lines are the trace of the real and imaginary parts of
the perturbed Green’s functions, G+, pertaining to the three defect atoms.
The color coding follows that of different potentials shown in Fig. 6. The
negative trace of the imaginary part of Green’s function corresponds to the
DOS. While the DOS is usually calculated as a function of the frequency
(o), the Green’s function is calculated as a function of frequency squared.
However, since the phonon dispersion is plotted as frequency vs. the wave
vector, the Green’s function is also plotted here as a function of frequency. Fig. 6 The potential energy curves of the defect-containing 1D chain as a

function of the displacement of the central defect atom from the central
position. Curves are shown for increasing B values of 0.26 (blue), 0.30
(orange), 0.34 (green) and 0.38 (red). The potential curves are labeled with
the Frobenius norm of the V matrix in arbitrary units. The potential energy
curves are obtained by relaxing the system and then calculating its energy
when moving the defect atom D (central atom in the three Tersoff-bonded
atoms) towards its right R and left L neighbors. d is the distance between
the defect atom and the center of the two neighbor atoms.
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calculate the V matrix for the 1D chain are obtained by relaxing
the atomic positions and evaluating

Kij ¼
1ffiffiffiffiffiffiffiffiffiffi
mimj
p

@2U

@ui@uj
; (10)

where mi is the mass and ui is the displacement of atom i, using
automatic differentiation.

The Tersoff potential for the 1D chain is tweaked in such a
fashion that it produces degenerate double well minima in the
potential energy surface as shown in Fig. 6. This means that the
central atom D prefers to sit more closer to either of the identical
nearest neighbors, L and R, than in the central position. This
behavior mimics the one observed with the Td to C3v symmetry-
breaking relaxation around the B(0)

C defect in 3C-SiC, where the B
atom relaxes slightly off center and closer to one of the Si atoms in
the first nearest neighbor Si atom tetrahedron around it, see
Fig. 4a. Keeping all other parameters fixed, we change the value
of B to get different atomic relaxations as shown in Fig. 6. As can
be seen in Fig. 6, successive increases in the value of bond-strength
parameter, B, result in the two minima of the double well potential
moving closer and the barrier decreasing, in agreement with the
Bell–Evans–Polanyi principle. The perturbation matrix with
the largest norm is found at B = 0.34 (green line) after which the
potential energy landscape reduces to a single well minimum.

The lowering of the transition barriers in Fig. 6 with increas-
ing B strongly modifies the curvature of the potential energy
landscape. This corresponds to an increase in perturbation
of the force constants as compared to the perfect system, shown as
the Frobenius norm of the V matrix (8V8F). 8V8F is maximum for
the green curve, after which it falls down again as there is a single
minima in the potential energy surface. This is reflected in the
presence of resonant scattering in the 1D chain, Fig. 7a for the
green line which represents the potential with an almost negligible
transition barrier. Also shown in Fig. 7b is a distinct peak in the
imaginary part of the trace of the T matrix at near zero frequency.

An alternative measure of phonon scattering in the 1D chain
is the phonon reflectivity (R),30 i.e., the fraction of the energy
carried by phonons that is reflected at a given frequency. For a
system with only one phonon branch it is expressed as

Rq ¼
cq
� Tq

�� ��cq

D E���
���
2

2oqvq
�� ��2 ; (11)

where cq and vq are the wave function and group velocity for a
particular wave vector q, respectively. Fig. 7c can be understood
with the help of the perturbed Green’s functions, calculated
according to eqn (2), and shown in Fig. 5. Just like the imaginary part
of the trace of the unperturbed Green’s function, g+, corresponds to
the DOS of the unperturbed system, Fig. 5b, the imaginary part of
the trace of the block of G+ pertaining to the defect atoms gives us
the projected density of states (pDOS) of the perturbed system. As
expected the peak in G+ aligns well with peak in the trace of the
T matrix, Fig. 7b.

Availability of phonon modes around the defect atoms is a
necessary but not sufficient condition for them to couple with
the incoming phonons from the bulk. A low projected DOS
around the defect atoms in the perturbed system will thus lead
to a higher reflectivity of the incoming phonons. Fig. 5(b) shows
how the peak of the projected DOS moves to lower frequencies
as the perturbation increases in Fig. 6 and only phonon modes
which are close to a rigid translation can pass through the
defective segment. The same kind of correlation between pDOS
and reflectivity can be observed in the non-resonant cases by
comparing Fig. 5(b) with Fig. 7c: the increased density of states
in the range o A [0.5, 0.7] leads to a steep fall in the reflectivity
in that regime. In contrast, the exceptionally high reflectivity of
the green curve in Fig. 7c at very low frequencies is caused by
the corresponding peak in the T matrix and unavailability of
phonon modes at higher frequencies, see Fig. 5(b) green line.

4 Conclusion

The phonon scattering due to the B(�1)
C , B(0)

C , N(0)
C and N(+1)

C point
defects in tetrahedrally bonded diamond and 3C-SiC is calculated
using a T-matrix formalism. With the help of a simple 1D
monoatomic chain we show that a resonance occurs when
the defect relaxes in a way that produces a very small lattice
distortion. Such a small lattice distortion leads to a strong
perturbation of the potential energy surface surrounding the
defect. The consequent strong IFC perturbation results in
resonant scattering. This behavior is observed for the B(0)

C defect
in 3C-SiC which undergoes a small lattice distortion during the
Td to C3v transition upon relaxation. A similar distortion by the
B(0)

C defect in diamond fails to cause any resonance, due to low
density of states in diamond.

Fig. 7 All figures show data for the 1D chain. (a) Scattering rates vs. o. (b) The imaginary part of the trace of the T matrix vs. o. (c) Reflectivity vs. o.
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We conclude that in tetrahedrally bonded semiconductors,
dopants which cause a rather small lattice distortion due the Td

to C3v transition might result in significantly higher phonon
scattering as compared to the ones that undergo large lattice
distortions or relax symmetrically. The intuitive picture of IFC
perturbations developed with the help of the 1D chain could
help understand how the dopants effect the local bonding
environment in other systems. The insight developed into the
fundamentals of resonant phonon scattering by point defects
with the help of the 1D-chain model can also help in identifying
superscatterers so that their presence in the system could be
controlled more effectively. More generally, this could enhance
our understanding of the use of dopants to achieve desired
properties in device design.
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Abstract
The thermal conductivities (κ) of bulk and thin-film α-Al2O3 are calculated from first principles using both the local density approximation
(LDA) and the generalized gradient approximation (GGA) to exchange and correlation. The room temperature single-crystal LDA value
∼39 W/m K agrees well with the experimental values ∼35–39 W/m K, whereas the GGA values are much smaller ∼26 W/m K. Throughout
the temperature range, LDA is found to slightly overestimate κ, whereas GGA strongly underestimates it. We calculate the κ of crystalline
α-Al2O3 thin films and observe a maximum of 79% reduction for 10 nm thickness.

Corundum (α-Al2O3) is a material of high technological impor-
tance due to its varied applications such as dielectric insulators
in complementary metal-oxide semiconductor (CMOS)
devices, substrate for growing silicon and gallium nitride, high-
temperature structural ceramics, anti-corrosive coatings, and
optical devices. This can be attributed to its excellent mechan-
ical strength, high-temperature thermal stability, large band gap
(8.8 eV), and high dielectric constant (9.0).[1,2] In spite of its
widespread usage, most research has focused on its electri-
cal[3,4] and chemical[5,6] interface properties.

Thermal device design, on the other hand, is of utmost
importance as the CMOS transistor gate lengths are scaled
below 45 nm.[7] InGaAs-based MOS stacks supported on
Al2O3 have recently been shown to present better breakdown
characteristics due to the high thermal conductivity of Al2O3.

[8]

Nevertheless, the latest measurements on the thermal conductiv-
ity of single-crystal[2] and amorphous thin films[9,10] of Al2O3

are almost two decades old and are in contradiction with earlier
results.[11] Effect of grain size and impurity phonon scattering
on κ in polycrystalline α-Al2O3 has also been studied.[12]

There are some recent studies on thermal transport in polycrys-
talline porous alumina, porous alumina layers, and mem-
branes.[13–15] However, there are no computational studies of
the thermal conductivities of bulk and thin-film Al2O3, and in
this study we fill this gap.

We report the calculated bulk, and the in-plane and cross-
plane thin-film lattice thermal conductivities (κl) of α-Al2O3

with varying cross-sections. κl calculated using the full iterative
solution to the Boltzmann transport equation (BTE) and the relax-
ation time approximation (RTA) agree well with each other. From
now on κl is simply referred as κ. For the bulk single crystals, we
find a value of∼39 W/mK for LDA at 300 K, which is consistent

with the experimental values of ∼35[2] and ∼39 W/m K,[11]

whereas the GGA value ∼26 W/m K is considerably smaller.
For the thin films, it is found that the reduction in κ already
sets in around 40 µm and for a 10 nm film thickness∼79% reduc-
tion is observed.

The thermal conductivity tensor, καβ, is calculated by carry-
ing out the full BTE computations, i.e., solving the linearized
BTE while accounting for all scattering terms as[16]:

kab =
∑

l

Clv
a
lF

b
l , (1)

where α and β are the Cartesian coordinates and λ comprises of
both the phonon branch index j and wave vector q. Cλ is the
mode λ contribution to the specific heat, v the group velocity
and F is the solution of the linearized BTE written in the form:

Fl = tl(vl + Dl). (2)

In Equation (2), τλ is the lifetime of mode λ. tlvl is the RTA
phonon mean free path and Dl accounts for the deviation of the
population of a specific phonon mode from the RTA prediction.
The detailed expression for Dl and the full iterative solution to
the BTE can be found in Ref. 17.

Considering the Taylor series of the potential energy up to
the third-order term, the total scattering rate τ−1 is calculated
as a sum of the contributions from inelastic three-phonon and
elastic two-phonon scattering processes as:

t−1 = t−1
3ph + t−1

2ph. (3)

The expressions for the three-phonon scattering rates as well
as the isotopic contribution to the two-phonon scattering can be

MRS Communications (2018), 8, 1119–1123
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found in Refs. 17 and 18, respectively. In the present work,
only isotope scattering is considered, but in a more general sce-
nario, other contributions to the two-phonon elastic scattering
can come from, for example, point defects,[19,20] nanoparti-
cles,[21] and dislocations.[22]

The in-plane (‖) and cross-plane (⊥) effective thin-film RTA
thermal conductivities are calculated according to the method-
ology developed in Ref. 16, as:

keff (I) =
∑

l

Sl(I)Cl |vl|Ll cos
2 Ql. (4)

Here I is the film thickness, L(T ) = |v|t(T ) the mean free path,
and Θ is the angle between the group velocity and the transport
axis. The suppression function, S, accounts for the additional
phonon scattering induced by the film boundaries. We account
for the crystal anisotropy by evaluating the wavevector-
resolved S on a mode-by-mode basis, as discussed in Ref. 16.
For the in-plane transport, the Cartesian vector n, which
denotes the film normal, is perpendicular to the vector u
along which the thermal transport is to be evaluated (see
inset Fig. 4), whereas for the cross-plane transport, the two
are parallel to each other.

For the in-plane transport, S is defined according to the
Fuchs–Sondheimer formalism as[16]:

S‖ = 1− p exp(−1/K‖) − (1− p)K‖[1− exp(−1/K‖)]
1− p exp(−1/K‖) , (5)

whereK‖ = L̂ẑ/I is the effective Knudsen number and 0≤ p≤ 1
the specularity, meaning that for p = 0 the film boundaries act as
perfectly absorbing black bodies, whereas p = 1 would denote
perfectly reflective boundaries. The calculations are carried out
in a transformed coordinate system as explained in Ref. 16 and
the symbol ^ corresponds to quantities expressed in transformed
coordinates. Similarly, for the cross-plane transport where the
film boundaries are considered to act as perfectly absorbing
black bodies, the suppression function takes the form:

S⊥ = 1

1+ 2K⊥
(6)

and the Knudsen number is simply evaluated without the need
for coordinate transforms as, K⊥ =Λ|cosΘ |/I.

The total energy as well as the force calculations are done
using the projector-augmented-wave method[23] as imple-
mented in the VASP code,[24] with both the local density
approximation (LDA)[25] and the generalized gradient approx-
imation (GGA) to exchange and correlation. For GGA the
Perdew–Burke–Ernzerhof exchange and correlation func-
tional[26] is used. The experimental and calculated equilibrium
lattice parameters for α-Al2O3 are shown in Table I.

The atomic positions and the volume of the unit cell for both
LDA and GGA structures are relaxed until the energy and the
forces are converged up to 10−8 eV and 10−7eV/Å, respectively.
The second- and third-order interatomic force constants (IFCs)

are extracted using 4 × 4 × 4 and 3 × 3 × 3 supercells, containing
640 and 270 atoms, respectively, of the rhombohedral primitive
cell, using just the Γ-point. For the second-order IFC calculations,
we use the Phonopy[28] software package, and for the third-order
IFCs, we use our in-house code thirdorder.py.[17] The bulk
thermal conductivity is calculated using a 18 × 18 × 18 q-point
mesh for both LDA and GGA calculations using our in-house
code ALMABTE.[16] As α-Al2O3 is polar, a non-analytical correc-
tion is added to the dynamical matrix to correctly reproduce the
LO–TO splitting (see Fig. 2).[29]

α-Al2O3 belongs to the trigonal crystal system and has space
group R�3c [167]. In the conventional description, its crystal
structure is composed of six molecular units (30 atoms) and
can be described as a nearly close-packed ABAB stacking of
oxygen ions. The aluminium ions occupy two-thirds of the
octahedral interstitial sites along the c-axis (ac3) of the hexago-
nal coordinate system, i.e., the [0001] direction. The primitive
unit cell is composed of two molecular units of Al2O3 (ten
atoms). The relationship between the two lattices can be seen
in Fig. 1. The lattices are oriented in such a fashion that the
[0001] direction of the conventional lattice and the [111] direc-
tion of the primitive lattice are both parallel to the z direction in
the Cartesian coordinate system.

The calculated LDA and GGA phonon band structures and
the corresponding density of states of α-Al2O3 are shown in
Fig. 2. We get an excellent agreement of the LDA dispersion
with the inelastic neutron scattering dispersion, as also obtained
earlier by Heid et al.[30] The LDA frequencies are significantly
higher than the GGA values at the Brillouin zone boundaries.
This agrees with the fact that the LDA relaxed structure volume
is ∼5% smaller than GGA (Table I). It is also seen that the slope
of the graphs along the Γ-Z and Γ-X directions which corre-
spond to the group velocities along the ac3 and the ac1 axes,
respectively, are only slightly different. This small difference
in the group velocities is also reflected in a small anisotropy in
the thermal conductivity values along the respective directions,
as we will see later.

Figure 3 shows the calculated BTE and experimental ther-
mal conductivities of α-Al2O3. Our values are in very good
agreement with the single-crystal experimental values in the lit-
erature.[2,11] The relatively more recent single-crystal values by
Cahill et al.[2] are found to be in better agreement to the LDA
values than GGA. Whereas, for the earlier results compiled
by Slack,[11] a good agreement with LDA is found up till

Table I. Lattice parameters for α-Al2O3. The LDA and GGA values are from
this work.

a (Å) α Vol (Å3)

Exp[27] 5.13 55.28° 84.89

LDA 5.10 55.36° 83.50

GGA 5.18 55.31° 87.52
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room temperature. For higher temperatures, the Slack data fall
off more rapidly than both the LDA and the more recent exper-
imental results. This high-temperature deviation can be seen as
a difference in the experimental techniques used for different
temperature regimes in the results compiled by Slack.[11] It
should also be noted that some of these high-temperature val-
ues are even lower than the κ of 90% dense polycrystalline
samples measured by Smith et al.,[13] which is unrealistic.
Williams et al.[12] measured the κ for a sample of 99.3%
dense polycrystalline α-Al2O3 with a grain size of 7.2 µm and
obtained a value of 31.7 W/m K at 303 K, Fig. 3. However,
with our LDA calculations, this reduction is only observed for
a grain size of 0.5 µm. The agreement of the experimental ther-
mal conductivity values with the LDA results is also in line with
the excellent agreement of the LDA and experimental phonon
dispersions (Fig. 2). Earlier calculations by some of us have
also shown better agreement of LDA thermal conductivities
with the experimental ones as compared with those obtained
with GGA.[32]

Throughout the temperature range, the experimental values
lie between the LDA and GGA values. As can be seen in
Table I, the LDA lattice volume is smaller than the experimen-
tal one which is again smaller than that obtained with GGA.
This translates to LDA having stronger interatomic interactions
and larger second- and third-order IFCs. The influence on κ
will thus be a competition between the increased group veloc-
ities and third-order scattering rates. In the present case, we do
indeed find a lower thermal conductivity with phonon softening
(Fig. 2) whereas, in other cases, even a slight increase in κ has
been found in connection with phonon softening.[33]

Figure 2. LDA and GGA phonon bandstructure and density of states (DOS) of α-Al2O3. The black dots are the data from the inelastic neutron scattering
experiments from Ref. 31.

Figure 1. Crystal structure of α-Al2O3 in the conventional (black) and
primitive (blue) lattices, with ap1 , a

p
2 , and a

p
3 being the primitive lattice vectors

and ac1, a
c
2 , and ac3 being the conventional lattice vectors.
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The room temperature LDA in-plane and cross-plane ther-
mal conductivities of α-Al2O3 for thicknesses varying from
10 nm to 100 µm are shown in Fig. 4. We find that for cross-
plane transport along the ac3 axis (green curve with plus
signs) reduction in κ starts already around 20–30 µm film thick-
ness. A 50% reduction is observed at ∼80 nm, where as ∼80%
is observed at 10 nm film thickness. It can be observed that the
cross-plane reduction in κ is much higher than the in-plane
reduction. This is a direct consequence of the fact that the sup-
pression function (S ), by its construction, contributes more to

the scattering in the cross-plane direction than the in-plane
direction.

The bulk values for transport along both the ac3 axis and the
basal plane are recovered for ∼40 µm film thickness.We observe
that the ratio of thermal conductivity along the ac3 axis to the one
in the basal ac1 − ac2 plane is 1.1 which agrees well with the
experimental value at 300 K.[11] This slight anisotropy in the κ
values is related to the aforementioned small difference in the
group velocities along the ac1 and ac3 axes.

In conclusion, we have reported the first-principles calcula-
tions of the bulk, and in-plane and cross-plane lattice thermal
conductivities of α-Al2O3 for varying film thicknesses. The
LDA values are 1.5–1.8 times higher than GGA values
throughout the temperature range. A very good agreement
between the LDA values and the recent experimental values
by Cahill et al.[2] was found. We have calculated the thin-film
thermal conductivities of crystalline α-Al2O3 for thicknesses
varying from 100 µm to 10 nm. A maximum of ∼79% reduc-
tion was observed in κ for 10 nm film thickness.
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Abstract
Different molecular dynamics methods like the direct method, the Green–Kubo
(GK) method and homogeneous non-equilibrium molecular dynamics
(HNEMD) method have been widely used to calculate lattice thermal con-
ductivity ( ℓk ). While the first two methods have been used and compared quite
extensively, there is a lack of comparison of these methods with the HNEMD
method. Focusing on the underlying computational parameters, we present a
detailed comparison of the GK and HNEMD methods for both bulk and
vacancy Si using the Stillinger–Weber potential. For the bulk calculations, we
find both methods to perform well and yield ℓk within acceptable uncertainties.
In case of the vacancy calculations, HNEMD method has a slight advantage
over the GK method as it becomes computationally cheaper for lower ℓk values.
This study could promote the application of HNEMD method in ℓk calculations
involving other lattice defects like nanovoids, dislocations, interfaces.

Keywords: Green–Kubo, HNEMD, Stillinger–Weber, thermal conductivity,
vacancies

(Some figures may appear in colour only in the online journal)

1. Introduction

Due to miniaturization of devices, increasing thermal loads and higher efficiency demands
there is an ever-growing demand for materials with tailored thermal conductivities (κ) [1]. On
one hand, devices like high power semiconductor electronic devices and lasers require high κ
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for efficient heat removal which is critical to their performance. On the other hand, very low κ

is required in thermoelectric devices whose performance is inversely proportional to κ.
In semiconductors and insulators κ is dominated by the lattice part ℓk . Classical mole-

cular dynamics (MDs) simulations are a powerful tool for calculating ℓk due to their atomic
resolution that helps to understand the underlying mechanisms leading to a specific ℓk . The
conceptually simplest MD method for calculating ℓk is the direct method [2–6] where a
temperature gradient is applied over a simulation box and the thermal conductivity is
extracted from Fourier’s law. However, the temperature gradients that must be applied are
orders of magnitude larger than in experiments. Furthermore, the long mean free paths of the
low frequency phonons make it difficult to converge the results [7].

An alternate MD method for calculating ℓk is the Green–Kubo (GK) method [8]. The GK
method applies linear response theory to the fluctuations of the heat current in a homogeneous
equilibrium system. It requires integration of the auto-correlation function, which makes the
method numerically challenging to apply. Another technique called homogeneous non-equilibrium
molecular dynamics (HNEMD) circumvents the calculation of the auto-correlation function. The
HNEMD method was initially proposed by Evans to calculate ℓk [9], who applied it to systems
with pairwise interactions. The technique was subsequently applied to study systems with higher-
order interactions among the particles [10–12].

To design materials with desired thermal conductivities, understanding the effects of
defects is of prime importance. Defects like vacancies, dislocations, interfaces etc are
inevitably present in materials of technological interest. Such defects break the symmetry of
the crystal structures and scatter the phonons thereby affecting the energy transported by
phonons in solids. Vacancies in particular are very important because of their high con-
centrations at elevated temperatures. They act both as a large mass perturbation and perturb
the bonding in the lattice and therefore strongly effect ℓk [13–16].

There has not been a systematic comparison of HNEMD with other methods in lit-
erature. In this work we fill this gap by doing a systematic comparison of the GK and
HNEMD methods in terms of their computational efficiencies and statistical errors when
calculating ℓk . We perform calculations on both bulk-Si and Si with varying concentrations
of vacancies using the Stillinger–Weber (SW) potential [17].

2. Background

In order to calculate ℓk with the GK and HNEMD methods, calculation of the heat current is
essential. The heat current J is a vector quantity that characterizes the change with time of the
spatial average of the local energy and is given as

J r
t

t t
1 d

d
, 1

i
i iå=

W
( ) ( ) ( )

where Ω is the volume of the system and i and ri are the total energy [2] and coordinate
vector of atom i.

2.1. The GK method

The GK method [18, 19] is an equilibrium MDs approach that relates J to ℓk via the
fluctuation–dissipation theorem,
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where, kB is the Boltzmann constant, V the volume of the system, T the temperature and
J J t0 Ä⟨ ( ) ( )⟩ the heat current auto-correlation function (HCACF). In general, ℓk is a second-
order tensor but in a material with cubic symmetry it reduces to a scalar. The discretized form
of the HCACF, equation (2), is given as
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where tD is the length of a single MD timestep andM determines the length of the correlation
time given by M tD over which the integration is done. J m n+( ) is the heat current at MD
timestep m+n. It should be noted that the number of integration steps M must be less than
the total number of simulation steps N.

Two potential errors can arise while calculating ℓk via equation (3). First of all, the
correlation function J J t0 Ä⟨ ( ) ( )⟩ is usually calculated as a time-average from the data of a
single simulation and using a finite averaging time N tNt = D in equation (3) which leads to
an averaging error. Secondly, there is a truncation error related to M. Ideally M should be so
that the HCACF has decayed to zero [2]. Too small M would underestimate ℓk and a too large
value would lead to large statistical errors as the heat current is dominated by noise after a
certain correlation time [20].

2.2. Homogeneous non-equilibrium MDs

In HNEMD a fictitious force field is used to mimic the effect of a thermal gradient. It uses the
linear response theory to calculate the transport coefficients in which the long-time ensemble
average of the heat current vector, J t⟨ ( )⟩, for the resulting non-equilibrium system can be
shown to be proportional to the external force field, Fe, when the latter is sufficiently
small [9, 21].

The detailed implementation of the HNEMD method for systems governed by three-body
potentials can be found in [12]. The equation to consider is,

J
J J F F
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It shows a linear relationship between the external perturbation field Fe and the induced heat
current J t( ). The constant of proportionality ( ℓk ) is the GK formula for the heat transport
coefficient tensor, equation (2). In this way, the thermal conductivity can be obtained without
explicitly calculating the auto-correlation functions. Hence, one can circumvent the problems
related to the calculation and integration of autocorrelation functions associated with the GK
method described above.

3. Results and discussion

We carried out all the simulations in silicon system on a 6×6×6 supercell containing 1728
atoms and with a lattice parameter of 5.431Åusing the SW potential [17] and the LAMMPS
package [22]. The choice of the parameters was based on previous finite size dependence
studies done on silicon using MD techniques [2, 20, 23]. In each simulation, after the velocity
initialization the system was equilibrated under zero pressure at 1000K (NPT ensemble).
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3.1. Bulk conductivity

From the GK method the thermal conductivity was obtained through equation (3). The
HCACF was sampled at every timestep for better accuracy of the correlation integral. The
simulations were then run in the NVE ensemble for the calculation and sampling of the
HCACF. A time step of t 1.0D = fs was chosen to ensure long-time stability of the HCACF.

The averaging error can be minimized either by performing one simulation for a very
large number of time steps or by carrying out multiple independent simulations for smaller
time durations. We have applied the latter technique in which the simulations can be run in
parallel and we collected a total of 60ns of data comprising of 5 independent simulations of
N=12ns (12×106 timesteps) each. These independent simulations vary only with respect
to the random seed provided for generating the initial atomic velocities [2, 20]. The total
correlation length for a single simulation was 300 ps (3×105 timesteps).

In order to minimize the truncation error, we employed the idea of a maximum significant
correlation time ct( ) [24] to determine an optimum M. Figure 1(a) shows the ensemble
averaged HCACF together with the noise (green line) which is estimated as the root mean
square of the heat current cross-correlation functions [20],

J t J J t J J t J0 0 0

3
. 5

x y y z z x
2 2 2

z =
+ +⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩ ( )

ct is the time after which the noise crosses and becomes larger than the HCACF and is shown
as a red line in figure 1(a). The HCACF can be seen to decay and at 65M ct tº  ps (red
line) the noise overtakes the HCACF.

Next, ℓk was calculated by direct integration of the HCACF. Figure 1(b) shows the value
of ℓk versus the correlation time. The integration till 65ct = ps gives a value of
49.6±1.5W (mK)−1. This value is in good agreement to the other GK calculations
53.3±5.2 W (mK)−1 [4, 24], lower than but consistent with 66±16 W (mK)−1 [2]. It is
also slightly lower than 53±3 W (mK)−1 reported by Howell et al [20] because they

Figure 1. (a) Representative HCACF for Si (SW potential) as a function of M tMt = D ,
normalized to the value at t=0 (Blue line). (b) Thermal conductivity of Si calculated
by the direct integration of the HCACF, with the redline showing ct . The blue line
depicts the averaged thermal conductivity over 5 independent simulations (green lines).
Also shown in the inset is ℓk calculated for the total correlation time of 300 ps and error
bars can be seen growing rapidly after 65 ps (red line) because of the calculations being
dominated by noise.
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calculated ℓk by integrating till¥ an exponential function fitted to the values of ℓk averaged
over five independent samples. They mentioned that the contribution to the total value of ℓk
by correlation times greater than ct is 5%< . Recently, Jones et al [24] proved that the relative
error in the estimate of ℓk is bounded by the ratio of maximum significant correlation time ct( )
and the total simulation time K as K2 ct , which in our case reduces to M N» . This limits
the relative error to be less than 6.5%, which is consistent with our results.

From the HNEMD method the thermal conductivity was obtained through equation (4).
A time-independent external perturbation field Fe was applied in the x direction. The calcu-
lations were carried out for a total of 22 Fe values ranging from 1×10−5 to 3×10−4 (Å−1)
at 1000K for 5×106 time steps each of duration of 0.55fs and running averages of the heat
currents were collected for each simulation. Figure 2 shows the behavior of the running
average of the heat current with the external perturbation field, F 8 10e

5 1= ´ - -Å . As can be
seen in the figure, the initial fluctuations of heat current are very high and they stabilize at

2000» ps. Consequently, we choose to cut off sampling J⟨ ⟩ at t=2750 ps. This lead to a
bulk thermal conductivity of 53.4W (mK)−1 at 1000K, see figure 3(a). Cutting the sampling
at t=2400 ps lead to 52.6ℓk = W (mK)−1, underlining that the results are well converged.

We have considered two methods for calculating ℓk from J t⟨ ( )⟩. In the gradient method
the slope of a least-squares fit of J t VTx⟨ ( )⟩ versus Fe is identified as the thermal con-
ductivity, equation (4). We assume that the intercept is zero. In the mean method ℓk is
calculated by averaging the ℓk ʼs obtained from several individual runs with varying Fe. For
bulk-Si, the values of thermal conductivity calculated by the gradient and mean methods are

ℓk =53.4±1.9 W (m K)−1
figure 3(a) and 53.2±6.7 W (m K)−1

figure 3(b), respectively.
The values are in good internal agreement the GK calculations as well as the earlier HNEMD
calculations [12].

One observation is that the determination of the range where ℓk depends linearly on Fe is
important. For the bulk-Si runs, it can be seen in figure 3(a) that the values of ℓk deviate
strongly from a linear behavior for F 2 10e

5> ´ - Å−1. The other possible shortcoming of
the HNEMD method is that it is inefficient for very small values of Fe. At very small values of
Fe all the three components of J are almost equal suggesting that the system is still in
equilibrium. Due to this, the estimation of the ratio J t TFe⟨ ( )⟩ becomes very difficult, as
J tx⟨ ( )⟩ approaches zero for these values. Hence, it is crucial to determine a range of Fe that is
large enough to obtain reasonable values of J t TFx e⟨ ( )⟩ and small enough for the system to be

Figure 2. The running average of components of the heat current J in the x, y and z
directions for Si with F 8 10e

5 1= ´ - -Å applied in the x direction.
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in the linear non-equilibrium range [12]. A fine scan over different values of Fe is required to
correctly estimate ℓk .

3.2. Influence of vacancies on κℓ of Si

In order to compare the performance of GK and HNEMD methods in defected structures, we
carried out ℓk calculations for 1 to 10 (0.06–0.57 atomic %) randomly distributed vacancies in
the 6 6 6´ ´ Si supercell (1728 atoms in bulk) at 1000K. To minimize the interaction of
vacancies among themselves, the vacancies were distributed in such a manner that no two
vacancies were within the second nearest neighbor distance of one another.

Although, both the methods agree well in terms of thermal conductivity predictions for
defect structures, figure 4(a), we would like to point out that for the defected structures the
calculation of ℓk becomes easier with HNEMD method. This is illustrated as follows. In
section 3.1 we saw that one of the shortcomings of the HNEMD method is the difficulty in
determining the linear range of J t VTx⟨ ( )⟩ versus Fe. However, in our calculations for
defected Si, we observed that as the vacancy concentration increases J t VTx⟨ ( )⟩ versus Fe

remains linear for higher and higher values of Fe. This can be observed in figure 3(a) which
shows a comparison of the linear regimes in bulk and defected Si. It can be clearly seen in
figure 3(a) that one has to do a fine scan over Fe values in case of bulk to find out the exact
linear range. The relation between J t VTx⟨ ( )⟩ and Fe becomes nonlinear already around
F 2 10e

5= ´ - Å−1, whereas in case of defect structure the plot is still linear for values as
high as 40 10 5 1´ - -Å . This behavior is also illustrated in figure 3(b) where, for bulk the ℓk
values deviate for higher Fe whereas for the defected structure they are stable. Hence, in case
of defected structures one can obtain the linear range and therefore ℓk using fewer values of Fe

thereby reducing the computational cost.
We found an inverse power-law like decay of ℓk against the vacancy concentration, c, for

both GK and HNEMD methods confirming a good agreement between the two methods,
figure 4(a). Following the discussion above, we performed ℓk calculations at 700K using
only HNEMD method. An inverse power-law decay for ℓk versus c was also observed at
700K, as shown in figure 4(b). We also tried to fit exponential functions to ℓk ʼs but the
standard deviation for the fit values was orders of magnitude higher than the power-law fit.

Figure 3. (a) Running average of heat current J as a function of Fe in bulk (red) and
defected Si with five randomly distributed vacancies (green). The thermal conductivity
is obtained via the gradient method. (b) ℓk as a function of Fe used to obtain the thermal
conductivity via the mean method for both bulk and vacancy Si.
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Hence we can establish that the thermal conductivity falls according to inverse power-law
with increasing vacancy concentration in crystalline Si. Our results agree well the literature
[14, 16, 25].

4. Conclusions

We have done a detailed study of the GK and HNEMD methods for calculating ℓk in bulk and
defected Si and highlighted the advantages and disadvantages of each method. We have
discussed the underlying parameters of the two methods and shown that by a judicious choice
both the methods performed equally well for ℓk calculations in bulk Si. The GK method in the
above fashion produces very accurate values of thermal conductivity within statistical
uncertainties. With the GK method the entire lattice thermal conductivity tensor can be
calculated from one simulation, unlike the HNEMD method which necessitates several
simulations in each direction to achieve the same. At the same time the GK method can suffer
from averaging and truncation errors which makes it more cumbersome than the HNEMD
method. Both the GK and the HNEMD method require several independent simulations to get
a ℓk with a low uncertainty. These simulations in the respective methods are not inter-
dependent and can be run in parallel. The HNEMD method has an advantage over the GK
method as it generates lesser statistical errors and reduces the necessary computation time by
combining the elements of both equilibrium and non-equilibrium MD simulations. Specially
in case of defect structures HNEMD can be advantageous.
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