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This thesis is about a linear stability analysis for the lid driven cavity problem.
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clination angle α with respect to the x−axis in the z−direction. In this thesis
a Python program using the FEniCS library is written to simulate the flow
and perform a stability analysis. The lid driven cavity is a benchmark system
due to the simple rectangular geometry and therefore much theoretical work
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correctness of the results. A linear stability analysis is carried out and the crit-
ical Reynolds numbers are determined as functoins of the cross-sectional aspect
ration and the direction of lid motion. The energy budget of critical modes is
analyzed using the Reynolds-Orr equation. For some parameter combinations,
new modes are found at lower Reynolds numbers than already published re-
sults. The correctness of the present results is verified by full 3-dimensional
flow simulations.
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1

Chapter 1

Introduction to the problem

This work is concerned with a stability analysis of a famous and simple system
in fluid dynamics, the lid-driven cavity. The first chapter is meant as a small
general introduction to the topic, while the theoretical framework is postponed
to chapter 2. To stress the importance and applications of stability and turbu-
lence in fluids, an introduction to the topic is given in section 1.1. The lid-driven
cavity as the test system of this study is presented in section 1.2.

1.1 The importance of hydrodynamic stability

If a fluid is flowing at a low speed, quantified by the dimensionless Reynolds
number, the behaviour of its flow is determined, once the boundary conditions
are given. Increasing the velocity of the fluid may result in multiple solutions of
the problem, which tend to preserve the symmetries of the underlying equations
and boundary conditions. However, the existence of mulitple solutions may lead
to a spontaneous symmetry breaking, which results in a bifurcation to other so-
lutions. In order to be observed in experiment, the mathematical solution of
the problem has to be stable, as it would decay otherwise. If the conditions of
a basic flow are altered by the application of a disturbance, this disturbance
may either decrease or increase in time. If the latter is the case, the underlying
basic flow is said to be unstable. Finding the critical point, where the symmetry
changes, is the goal of this thesis. An example for such a breaking of symmetry
could be the transition from a two-dimensional to a three-dimensional flow. We
will find these critical points, by performing a linear stability analysis, which
will be introduced in chapter 2.
Instabilities also pave the way towards turbulences, which are a nuisance from
a mathematical point of view because of the chaotic nature of the flow, which
forbids to accurately predict the future state thereof, if the initial conditions are
not given to infinite precision. The transition towards turbulence is dependent
on the particular flow and may be accompanied by a sequence of bifurcations
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Figure 1.1: The lid driven cavity. The origin of the coordinate
system will be chosen to be the center of the rectangular cross

section in the x-y plane.

(for example in a Taylor-Couette or Benard system) or by a complete breaking
of all symmetries (for example in a pipe flow). From the point of view of appli-
cations turbulences are unwanted when fluids are transported because they are
accompanied by the evolution of interacting eddies, which causes drag and thus
needs more energy for transport. However, there are cases, where turbulence is
helpful in applications, e.g. when fluids are to be mixed. The transition towards
turbulence is of utmost importance in understanding the physics of the atmo-
sphere, in aircraft and in industrial applications. The importance of turbulence
is reflected by Richard Feynman saying that "Turbulence is the most important
unsolved problem of classical physics"1.

1.2 The lid-driven cavity problem

In this work, we will be concerned with a very simple geometry and study
the onset of instability in an infinitely extended (in z-direction) rectangular
container with width d and height h and an aspect ratio Γ = h/d, where the
top lid is moving at a given velocity V and a drive angle α, that measures
the inclination in the x-z-plane. The cavity with the moving lid is depicted in
Figure 1.1. This kind of flow was heavily studied in literature for the case of
α = 0, but for α 6= 0 only the standard cavity with Γ = 1 was considered up
to now. This thesis is about the expansion of the parameter space, as we will

1Feynman R. 1964.
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vary the angles and the aspect ratios to determine the stability boundary of
the basic flow. We will write a program to calculate a basic flow and perform
a linear stability analysis by applying a small perturbation to the basic flow.
To verify the results, we will be concerned with a comparison to the already
published work in chapter 3, where the basic flows are calculated and their
properties discussed. Before we deal with the technical implementation of the
program, we will derive the mathematical foundation, necessary to tackle the
stability problem of the lid driven cavity in chapter 2, where we will see that
the determining parameters of the flow are the aspect ratio Γ, the drive angle
α and the Reynolds number Re, which is a dimensionless parameter, given by
Re = V d/ν, where ν is the kinematic viscosity of the fluid inside the cavity.
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Chapter 2

Mathematical formulation of the
problem

This chapter is concerned with the theoretical foundations of the descriptions of
fluids, which will be used to model the turbulence in the lid-driven cavity prob-
lem. First, a short motivation of the Navier-Stokes equations will be given in
section 2.1. The following section 2.2 introduces, how the equations are rewrit-
ten in dimensionless notation to extract the physically most relevant figures
that describe the fluid. The apparatus of linear stability analysis is presented
in section 2.3. Section 2.4 provides a structural quantification of critical modes,
based on an energy-analysis, where the Reynolds-Orr equation is derived. The
last section 2.5 deals with the numerical implementation of the dimensionless
Navier-Stokes equations as implemented in the simulation programs used in this
work.

2.1 Derivation of the Navier–Stokes equation 1

To derive the Navier–Stokes equations, which are essentially a reformulation of
Newtons second law of motion, a preliminary necessity is to clarify the frame
of reference, i.e. the way we observe the flow. There exist two different specifi-
cations for describing the behaviour of a flow:

• In the Eulerian specification the flow field is in the center of the descrip-
tion. Each quantity b is represented on a fixed point in space ~x.

• In the Lagrangian specification the individual particles are considered.
They are labelled according to their position ~X at some fixed time t0,
which is usually chosen to be t0 = 0.

1This derivation follows the introduction to fluid dynamics of the scriptum "Strö-
mungslehre für TPh" by Prof. Braun (Braun (2001))
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These specifications come with two types of time derivatives

∂b

∂t
=
∂b(~x, t)

∂t
(2.1a)

Db

Dt
=
∂b( ~X, t)

∂t
, (2.1b)

where the first one is in the Eulerian specification and therefore accounts for
the change of the quantity b at a certain position ~x in space, whereas the second
derivative describes the change of the quantity while following the particle which
started at t0 at ~X and is therefore called the material derivative. The vector field
~v(~x, t) allows to obtain the position of a fluid particle by solving the equation

D~x

Dt
= ~v (~x, t) =

uv
w

 . (2.2)

Following the particle, gives a general relation between the time derivatives in
the Lagrangian and Eulerian specifications:

Db

Dt
= lim

∆t→0

b (~x+ ∆~x, t+ ∆t)− b (~x, t)

∆t

= lim
∆t→0

b (~x+ ~v∆t, t+ ∆t)− b (~x, t)

∆t

= lim
∆t→0

b (~x, t) + ~∇b (~x, t)~v∆t+ ∂b(~x,t)
∂t

∆t− b (~x, t)

∆t

=
(
~v · ~∇

)
b (~x, t) +

∂b (~x, t)

∂t
.

(2.3)

If a calculation of the change of an integral quantity, such as mass, momentum
or energy, is required, Reynold’s transport theorem, whose derivation is given
in Appendix A is used:

D

Dt

∫
V

b dV =

∫
V

(
∂b

∂t
+ ~∇ · (b~v)

)
dV =

∫
V

∂b

∂t
dV +

∮
b(~v · ~n)dO . (2.4)

The conservation of mass leads to the continuity equation

0 =
D

Dt

∫
V

ρ dV =

∫
V

∂ρ
∂t

+ ~∇ (ρ~v)︸︷︷︸
~j

 dV (2.5)
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and since this holds for any arbitrary volume, the differential form also holds

∂ρ

∂t
+ ~∇ ·~j = 0 , (2.6)

where ρ is the density and ~j the mass flux density. Newton’s second law reads

D

Dt

∫
V

ρ~v dV =

∮
∂V

↔
σ~n dO +

∫
V

ρ~g dV, (2.7)

with ↔
σ being the stress tensor, accounting for forces on the surface and ρ~g

accounting for volume forces (e.g. gravity). Using Gauss’ divergence theorem
and equation (2.5) this may be rewritten as∫

V

ρ
D~v

Dt
dV =

∫
V

(
~∇↔σ + ρ~g

)
dV (2.8)

and since the volume is arbitrary again Newton’s second law for infinitesimal
quantities, expressed in the index notation (and assuming the Einstein notation
for sums), gives

∂tvi + vj∂jvi =
1

ρ
∂jσij + gi . (2.9)

The last ingredient to obtain a closed set of equations for the velocity ~v is a
closed expression for ↔σ:
The easiest approach is to neglect the viscous terms (=̂ off-diagonal terms) in
↔
σ, which gives the stress-tensor of a perfect fluid, with the pressure p in the
diagonal :

σij = −p δij . (2.10)

If a linear dependence of the stress-tensor on the strain-rate tensor Dij ≡
1/2(∂ivj + ∂jvi) is assumed, one obtains the stress-tensor of a Newtonian fluid

σij = (−p+ µ̄
∂

∂xk
vk) δij + 2µDij, (2.11)

where µ̄ and µ are two material parameters, known as volume viscosity and
shear viscosity, respectively. This expression is used in equation (2.9) to obtain
the Navier-Stokes equations:

ρ
Dvi
Dt

= − ∂p

∂xi
+

∂

∂xi
(µ̄

∂

∂xk
vk) +

∂

∂xj
(2µDij) + ρgi. (2.12)
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If an incompressible fluid (∂ivi = 0) with constant material parameters ρ, µ is
assumed2 , the Navier-Stokes equations simplify drastically, giving

Dvi
Dt

= −1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

+ gi , (2.13)

where the kinematic viscosity ν = µ/ρ is introduced. This form of the Navier-
Stokes equations will be used in this work to model the instability in the lid-
driven cavity problem and in addition the gravitational force gi will be neglected.

2.2 Dimensionless formulation of the Navier-Stokes

equations

The incompressible Navier-Stokes equations in (2.13) contain many quantities,
which come with dimensions. Getting rid of the dimensions by a suitable choice
of units allows to extract the physical relevant figures.
The path towards a dimensionless equation is paved by introducing the dimen-
sionless quantities

x = x̃/x̃r t = t̃/t̃r v = ṽ/ṽr (2.14)

ρ = ρ̃/ρ̃r p = p̃/p̃r ν = ν̃/ν̃r . (2.15)

Here all the quantities with a tilde have dimensions and the quantities in the
enumerator are the ones that appear in equation 2.13, whereas the denominators
are reference values that define a certain scale. The purpose of this procedure
is to replace the dimensionful quantities by their dimensionless relatives and to
identify the remaining prefactors as the physical relevant parameters, allowing
to reduce the parameter space drastically:

∂ṽi

∂t̃
+ ṽj

∂ṽi
∂x̃j

= −1

ρ̃

∂p̃

∂x̃i
+ ν̃

∂2ṽi
∂x̃j∂x̃j

(2.16)

⇒ ṽr

t̃r

∂vi
∂t

+
ṽ2
r

x̃r
vj
∂vi
∂xj

= − p̃r
ρ̃rx̃r

1

ρ

∂p

∂xi
+
ν̃rṽ

2
r

x̃2
r

ν
∂2vi
∂xj∂xj

. (2.17)

For the lid-driven cavity problem, two sets of units are common in literature:

2An incompressible fluid is defined as having no materials derivative of the volume, which
is proportional to the divergence of ~v as derived in equation (A.6) in Appendix A
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x̃r ṽr t̃r ρ̃r p̃r ν̃r

a) d V d/V ρ ρV 2 ν

b) d ν/d h2/ν ρ ρν2/d2 ν

The two formulations use the material parameters of the fluid ρ and ν, which
are constant in our formulation, resulting in ρ = 1 and ν = 1. With these for-
mulations the dimensionless Navier-Stokes equations and boundary conditions
read:

∂vi
∂t

+ vj
∂vi
∂xj

= − ∂p

∂xi
+

1

Re

∂2vi
∂xj∂xj

V = 1 (2.18a)

∂vi
∂t

+ vj
∂vi
∂xj

= − ∂p

∂xi
+

∂2vi
∂xj∂xj

V = Re (2.18b)

where we introduced the crucial dimensionless paramater Re = V d/ν, the
Reynold’s number. Taking a look at the equations (2.18a) and (2.18b), one
can conlude that flows with similar Re will behave the same, so a huge dimen-
sional parameter space has been reduced to one single variable, which we will
have to scan in order to obtain insight in the stability of the lid driven cavity
problem. In the formulation of the lid driven cavity problem V denotes the
magnitude of the moving lid, which may have nonzero components in x- and z-
direction. The inclination angle is the second parameter of the given problem.
The no-slip no-penetration boundary conditions are applied for the non-moving
walls. The third parameter of the given problem is of geometrical origin and
is the aspect ratio of the cavity, Γ ≡ h/d. Note that for unsteady problems,
the initial state of the velocity field would have to be given for a solution of
the problem. The three parameters will be of big concern in this work and all
the various types of cavities may be simulated by looping over these parame-
ters. Here, the formulation in equation (2.18b) will be used, in accordance with
Albensoeder, Kuhlmann, and Rath (2001).

2.3 Linear Stability Analysis

When we are interested in the stability of a flow, we consider what happens
to a solution of the Navier-Stokes equations V 0(~x, t) = (~v0, p0), if we apply a
small perturbation Ṽ (~x, t) = (~̃v, p̃). We will then analyze, how the resulting
flow fields V p(~x, t) = (~vp, pp) = V + Ṽ evolve in time. According to Lyapunov,
there exist three possibilities that could arise in such a situation3:

3These definitions are taken from www.wikipedia.org



10 Chapter 2. Mathematical formulation of the problem

• The system is called Lyapunov stable, if, for every ε > 0 there exists
a δ > 0 s.t. if ‖ Ṽ (0) − x‖ < δ, then for every t ≥ 0 we have
‖V p(t)− x‖ < ε .

• The system is called asymptotically stable if it is Lyapunov stable and
there exists δ > 0 s.t. if ‖Ṽ (0)− x‖ < δ, then lim

t→∞
‖V p(t)− x‖ = 0 .

• The system is called exponentially stable if it is asymptotically stable
and there exist α > 0, β > 0, δ > 0 s.t. if ‖V p(0) − V ‖ < δ then
‖V p(t)− V ‖ ≤ α‖V p(t)− V ‖e−βt .

In our case, we will start from the stationary quasi two-dimensional state with
∂v0i/∂t = ∂v0i/∂z = ∂p0/∂z = ∂p0/∂t = 0 for a given Reynolds number, drive
angle and aspect ratio. Thus, we solve the stationary equations

u0∂xu0 + v0∂yu0 = −∂xp0 + (∂x∂x + ∂y∂y)u0 (2.19)

u0∂xv0 + v0∂yv0 = −∂yp0 + (∂x∂x + ∂y∂y)v0 (2.20)

u0∂xw0 + v0∂yw0 = (∂x∂x + ∂y∂y)w0 (2.21)

∂xu0 + ∂yv0 = 0 (2.22)

subject to the boundary conditions

u0 = Re · cos(α), w0 = Re · sin(α) at y = Γ/2 (2.23)

u0 = v0 = w0 = 0 at x = ±1/2 or y = −Γ/2 , (2.24)

where u0, v0, w0 denote the x-,y- and z-component of the velocity vector ~v0.
Once, equations (2.19) - (2.22) subject to the boundary conditions (2.23) and (2.24)
have been solved, we may use the solution as a starting guess for the unsteady
flow and insert V p in the full Navier-Stokes equations, resulting in

∂tṽi + v0j∂j ṽi + ṽj∂jv0i + ṽj∂j ṽi = −∂ip̃+ ∂j∂j ṽ . (2.25)

If we assume the perturbation to be small, we may neglect the term ṽj∂j ṽi,
which is nonlinear in the perturbation and employ the normal mode Ansatz

Ṽ =
∑
k,ω

(
~̃v(x, y)

p̃(x, y)

)
ei(kz−ωt)e−σt k, ω, σ ∈ R , (2.26)

which is promising due to the homogeneity of the basic flow in z-direction. De-
pending on the sign of σ, we can deduce, whether a given mode is exponentially
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stable or not. If we insert the resulting V p in the Navier-Stokes equations, we
arrive at the generalized eigenvalue problem:

i) ũ∂xu0 + ṽ∂yu0 + u0∂xũ+ v0∂yũ+ w0ikũ+ ∂xp̃− (∂x∂x + ∂y∂y)ũ

= (σ + iω)ũ

ii) ũ∂xv0 + ṽ∂yv0 + u0∂xṽ + v0∂yṽ + w0ikṽ + ∂yp̃− (∂x∂x + ∂y∂y)ṽ

= (σ + iω)ṽ

iii) ũ∂xw0 + ṽ∂yw0 + u0∂xw̃ + v0∂yw̃ + w0ikw̃ + ikp̃− (∂x∂x + ∂y∂y)w̃ + k2w̃

= (σ + iω)w̃

iv) ∂xũ+ ∂yṽ + ikw̃ = 0 (2.27)

subject to the boundary conditions:

~̃v = 0 at all boundaries . (2.28)

Solving this generalized eigenvalue problem for different values of Γ, α, Re, k

allows to investigate the stability for this parameter space. In particular impor-
tant are the points, where a flow starts to evolve instabilities of the basic flow,
which corresponds to negative decay rates σ. The Reynolds numbers for which
σ = 0 are called neutral Reynolds numbers Ren. The lowest neutral Reynolds
number for a given Γ, α is called critical Reynolds number Rec. This thesis
will be mainly concerned with finding Ren and Rec for a given aspect ratio and
drive angle.

2.4 Energy analysis – the Reynolds-Orr equation

When the critical modes are calculated, we can also take a look at where the
energy that enhances the perturbation comes from. For this reason we consider
the change of the mean kinetic energy per unit mass of the perturbation with
time4

dEkin
dt

=
d

dt

∫
V

~̃v2

2
dV =

∫
V

~̃v · d
~̃v

dt
dV =

∫
V

~̃v · ∂
~̃v

∂t
dV , (2.29)

where we assumed that the volume V is time independent and we made use of
the fact that the nonlinear term with ~̃v · ~∇~̃v is energy conserving. This term
may be rewritten by inserting the linearized Navier-Stokes equations (2.27) to

4This derivation of the Reynolds-Orr equation follows the treatment in Kuhlmann (2012).
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give

dEkin
dt

=

∫
V

−ṽiṽj∂jv0j︸ ︷︷ ︸
I

−ṽiv0j∂j ṽi︸ ︷︷ ︸
II

−ṽiṽj∂j ṽi︸ ︷︷ ︸
III

−ṽi∂ip︸ ︷︷ ︸
IV

+ ṽi∂j∂j ṽi︸ ︷︷ ︸
V

 dV . (2.30)

The terms II and III in this equation vanish because we get the same ex-
pressions with a different sign by an integration by parts, using the boundary
conditions and the fact that we deal with an incompressible fluid:∫

V

dV ṽiv0j∂j ṽi =

∫
V

dV ∂j (ṽiv0j ṽi)−
∫
V

dV ṽi(∂j ṽiv0j) (2.31)

=

∫
∂V

dAj (ṽiv0j ṽi)︸ ︷︷ ︸
=0

−
∫
V

dV ṽiv0j∂j ṽi (2.32)

and ∫
V

dV ṽiṽj∂j ṽi =

∫
V

dV ∂j (ṽiṽj ṽi)−
∫
V

dV ṽi(∂j ṽiṽj) (2.33)

=

∫
∂V

dAj (ṽiṽj ṽi)︸ ︷︷ ︸
=0

−
∫
V

dV ṽiṽj∂j ṽi . (2.34)

The term IV also vanishes due to incompressibility and the boundary condi-
tions for ṽ and term V may be integrated by parts, such that we arrive at the
Reynolds-Orr equation:

dEkin
dt

=

∫
V

(
−ṽiṽj∂jv0i − (∂j ṽi)

2
)
dV . (2.35)

The second term in this equation is always negative and called the dissipation
rate. The only term which may be responsible for a production of kinetic energy
in the perturbation mode is the first term which is called the production rate
even though it may also cause energy loss. To understand the mechanism of
the local production of kinetic energy it is convenient to split the perturbation
in contributions parallel and orthogonal to the basic flow

~̃v‖ =

(
~̃v · ~v0

)
~v0

~v2
0

and ~̃v⊥ = ~̃v − ~̃v‖ . (2.36)
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Figure 2.1: Energy production rate. a) the gradient of the
basic flow is positive and thus the direction of the first and third
quadrants are dissipating energy (red regions) and the second

and fourth are producing.

This allows to interpret the sign of the production rate, as shown in Figure 2.15.
For a comparison with literature, we will decompose the change of the kinetic
energy in so called normalized energy transfer terms

D =
1

D∗

[
~∇× (~̃v⊥ + ~̃v‖)

]2

(2.37)

I1 = − 1

D∗
~̃v⊥ · (~̃v⊥ · ~∇~v0) (2.38)

I2 = − 1

D∗
~̃v‖ · (~̃v⊥ · ~∇~v0) (2.39)

I3 = − 1

D∗
~̃v⊥ · (~̃v‖ · ~∇~v0) (2.40)

I4 = − 1

D∗
~̃v‖ · (~̃v‖ · ~∇~v0) , (2.41)

where all quantities are normalized by the volume integral of the dissipation
rate D∗ =

∫
V

DdV . This decomposition allows to understand the mechanism,

which is responsible for the energy production by considering the gradients of
the basic flow and the projections on the parallel and orthogonal components
of the perturbation. Normalizing the change in kinetic energy, we obtain

1

D∗
dEkin
dt

= −1 +
4∑
i=1

∫
V

IidV , (2.42)

5This Figure is taken from Kuhlmann (2012)
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which allows for the characterization of a neutral mode, for which the produc-
tion and dissipation rate are of the same magnitude, s.t.

∑
i

∫
V

IidV = 1. In

this thesis will use the notation Ii both for the local as well as the integrated
value of each energy contribution. No confusion should arise because the actual
meaning is usually deducible from the context. In chapter 4, we will analyze
the perturbation modes from the point of view of the Reynolds–Orr equation.

2.5 Numerical implementation 6

In the previous sections, the Navier–Stokes equations were derived and a dimen-
sional analysis for the special case of an incompressible fluid was performed in
order to obtain the physical relevant parameters of the problem. This section is
concerned with the numerical solution of the problem, where general Galerkin
methods are introduced and the specialization of two approaches taken in this
work, the finite element and spectral element methods will briefly be explained.

2.5.1 Galerkin methods

In this section, we will derive an approach to obtain the solutions of the differ-
ential equation

L f(~x, t) = 0 , (2.43)

where L denotes a differential operator. Such a differential equation may be
solved numerically by expanding the unknown solution in a set of Ansatz func-
tions 7

f̄(~x, t) =
N∑
n=1

an(t)φn(~x) . (2.44)

In this equation the bar above the function f emphazises that the true solution
will only be approximated by the finite set of Ansatz functions. The an are the
expansion coefficients and the φn denote the Ansatz functions8. The insertion
of the numerical Ansatz (2.44) in the differential equation (2.43) will not solve

6The treatment of this section follows the script "Grundlagen der numerischen Methoden
der Strömungs- und Wärmetechnik" (Kuhlmann 2010)

7For completeness, the function space would in general have to be infinite N → ∞, so
completeness will only be fulfilled approximately and the convergence with respect to the
number of test functions will always have to be tested.

8The choice of Ansatz function is crucial and should correspond to the given problem since
a proper set of Ansatz functions reduces the number of necessary coefficients drastically, e.g.
in quantum mechanical problems, the hydrogen orbitals are proper basis functions whereas
in periodic systems plane waves are common Ansatz functions.
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it exactly but leave some rest R, called the residue

L f̄(~x, t) = R(~x, t) . (2.45)

Minimization of the residue will give the best agreement between the approx-
imate function f̄ and the exact solution f . To determine the an, which give
the minimal residue, a set of N equations is needed. This set of equations is
obtained by weighing the residue with N different weighing functions Wm and
demanding the weighted residues to be zero∫

V

Wm(~x)R(x, t) dV = 0 , m = 1, . . . , N . (2.46)

Depending on the choice of the weighing functions, we get different methods
for the solution of the differential equation. If the Ansatz functions form an or-
thogonal basis, a practical choice for the weighing functions Wm are the Ansatz
functions themselves

Wm(~x) = φm(~x). (2.47)

Methods with this choice of weighing functions are called Galerkin methods and
will be used in this work.

The finite element method

In the finite element method the Ansatz functions are chosen to have only finite
values at certain regions in space, therefore partitioning the problem in many
small ones. In this method, space is partitioned in small divisions, called ele-
ments, which supply grid points, called nodes, where the value of the Ansatz
function is to be evaluated and supposed to have the same value as the solution
function f(~x, t), s.t. the problem resembles an interpolation of this function in
the interstitial region between nodes. The Ansatz functions are chosen to have
finite values only in the element, where the node is located and the neighbouring
elements. This choice of Ansatz functions will yield block-tridiagonal matrices
for the coefficients an in equation (2.44), when inserted in equation (2.46). The
numerical advantage is that block-tridiagonal matrices may be solved very fast
by exploiting the sparsity of the matrices. A one-dimensional example would
consist of elements, which are represented by lines, and the number of neces-
sary nodes is dependent on the degree of the interpolating Ansatz function, as
may be seen in Figure 2.2. For linear interpolation, two nodes per element are
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xj-2 xj-1 xj xj+1

φ

1.0

A B

a) b)

Figure 2.2: a) The structure of a block-tridiagonal matrix,
which is easily diagonalized due to its structured sparsity. b)A
sketch of two elements in 1d and two linear Ansatz functions
φj−1(red line) and φj(blue line). The solution will be exactly
represented at the nodes and the functional representation of
the solution in element A is given by: f(x) = aj−1φj−1(x) +

ajφj(x) .

sufficient to obtain an accuracy of O(∆x2)9, quadratic interpolation needs three
points with an improved accuracy of O(∆x3). A physicists induction yields that
the number of nodes for an interpolation polynomial of order N is N + 1. The
accuracy increases with the order of the interpolation polynomial, however if
too many calculations per element have to be performed, it might be advan-
tageous to use a finer mesh and a lower order of interpolation. If convergence
is obtained with increasing order of interpolation polynomials the method is
called p-FEM, if we converge by increasing the mesh size, we are talking about
h-FEM. In this thesis, we will use low order polynomials and check convergence
with respect to mesh densities.
For the finite element method we use the code FEniCS (written by Alnæs et al.
(2015)), which is a Python/C hybrid, combining the syntax strength of Python
with the speed of C, where meshing is already implemented. In the case of the
lid-driven cavity, we fill the two-dimensional space with triangular elements.
The meshing is already implemented in the program and since the boundaries
of the cavity are important to be properly resolved, we use a mesh with a higher

9∆x denotes the grid spacing
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a) b)

Figure 2.3: a) An example for the used meshes for the solution
of the Navier-Stokes equations. For illustrational purposes the
grid is chosen to be coarse, starting with 20x20 vertex points and
after a refinement on the boundary we end up with 576 vertices.
b) The Taylor-Hood element: The blue dots denote the nodes
for the velocity field and the red dots the ones for pressure.

resolution at the boundaries, as may be seen in Figure 2.3a. Due to conver-
gence reasons we define our functions on a mixed-element space, which is called
the Taylor-Hood element. This element implements a quadratic interpolation
for the velocity fields, whereas the pressure field is linearly interpolated (see
Figure 2.3b). The finite element method will be used in this work for the lin-
ear stability study because of the flexibility of the FEniCS program but for
comparison, we will also use a different method to crosscheck our results. The
workhorse for crosschecking will be the spectral element method.

The spectral element method

The spectral element method, which we will use to check for convergence with
respect to the basis functions, is a hybrid of a spectral method and the finite
element method. In the original spectral element methods, the basis functions
used in equation (2.44) are usually nonzero over the whole domain and more
complex than the simple piecewise polynomials of the FEM, e.g. trigoniometric
functions (that is, where the name stems from), Chebyshev polynomials or
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high order polynomials. If we merge the local approach from the FEM and
use these basis functions inside a given element, we end up with the spectral
element method. In general, a more complicated basis function makes the
method numerically more time consuming, as the number of evaluation points
per element increases. Depending on the basis functions, integrals may be
computed faster and more accurately by using special points and weights for
their evaluation, similar to Gaussian quadrature. In our case, we can consider
the use of the spectral elements as a convergence study with respect to basis
functions. Again, we will make use of an already developed open-source code, in
this case called NEK5000 (Paul F. Fischer and Kerkemeier (2008)). With these
theoretical tools in our hand, we can start to analyze the lid-driven cavities.
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Chapter 3

Determining the basic flow –
convergence studies

Before we start to analyze the stability of a given lid-driven cavity, we have to
carefully determine the two-dimensional basic flow of the problem. First, we
will consider the drive angle α = 0 in order to compare the flows, obtained with
finite elements using FEniCS, with spectral elements using NEK5000 and with
lid-driven cavity flows reported in literature. This step is very crucial, because a
wrong basic flow will inevitably yield a wrong stability analysis. In this chapter,
we will converge the basic flows with respect to mesh sizes, mesh shapes and
basis functions. The convergence study will be performed for different Reynolds
numbers and aspect ratios Γ. The plots for Γ 6= 1 are found in Appendix B.

3.1 Γ = 1 Basic flows

3.1.1 Basic flow computed with finite elements

Low Reynolds numbers

In order to converge the results more easily, we start our convergence study
with low Reynolds numbers. For this purpose, we consider the case Re = 10.
The first simulations are performed on a regular mesh and the Taylor-Hood
element 1. A calculation for a very fine grid with 200 grid points in x- and
y-direction results in the basic flow shown in Figure 3.1. Since we will want
to compare the resulting critical Reynolds numbers with published results, we
consider the grid spacing used in the literature to obtain an estimate for the
necessary grid density: Albensoeder, Kuhlmann, and Rath (2001) used a finite-
volume formulation with a grid of 141x141 grid points, but to obtain a finer
resolution at the boundaries, they compressed the last 35 cells in each direction

1this will be the case for all finite element calculations, unless mentioned otherwise
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Figure 3.1: Basics flow for Re = 10: top, The stationary flow
for a regular grid with nx = ny = 200 grid points in each di-
rection. The arrows denote the velocity field and the colour the
magnitude of the arrows. The white curves show the streamlines
of the flow. bottom, A zoom in the right top edge of the cavity

shows the structure of the underlying mesh.



3.1. Γ = 1 Basic flows 21

Figure 3.2: Grid comparison 200 × 200 versus 250 × 250 ,
Re = 10, the left plot shows the difference in the magnitude of
the velocity fields, if the higher resolution grid is interpolated on
the coarser grid and the right plot the vice versa interpolation.

The lid is located at the top and moves to the right.

by a factor of 0.95 from cell to cell. The second reference (Theofilis, Duck, and
Owen 2004) used a spectral method with 128 collocation points.
Our first approach is a regular grid without mesh refinement towards the bound-
aries. We compare the difference in the resulting magnitude of the velocities and
pressures for the case of the highest tractable mesh resolution with 250x250 grid
points2. For a graphical comparison, we first use the plotting program VisIt3 to
interpolate between the mesh points. For a comparison between the data on the
two meshes, we can either interpolate the resulting magnitudes of the velocity
field from the coarse grid to the fine one or vice versa. Comparing the two
variants, we see that the only non-negligible difference of velocity magnitudes
is present at the top edges of the cavity (see Figure 3.2). The argument here,
however, is to be taken on a qualitative level, because the interpolation from
one mesh to the other will give an additional source of error, due to the fact that
VisIt does not know about the coefficients of the function in equation (2.44).
In addition to this comparison, we calculate the velocities directly in FEniCS
along three lines (the two diagonals and the vertical line in the center) using
the calculated coefficients for the evaluation of the function values. The results
for one diagonal are shown in Figure 3.3, whereas the other two lines are pre-
sented in the Appendix (Figure B.2 and Figure B.3). The convergence studies

2This thesis is mainly computed on a laptop, so the available RAM is low.
3Childs et al. 2012.
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Figure 3.3: Grid convergence along the diagonal y = −x+ 0.5
from the top left to the right bottom of the cavity. The lines

show the interpolated data along the calculated points.

reveal that the edges are the most crucial regions. This is owed to the circum-
stance that we have a singularity in the boundary conditions at the positions
P1 = (−0.5,Γ/2) and P2 = (0.5,Γ/2). This situation was analyzed by Hancock,
Lewis, and Moffatt (1981) and Gupta, Manohar, and Noble (1981), where the
streamlines were calculated. There is an interesting feature present in the bot-
tom corners: As Moffatt (1964) has shown , the singular geometry results in
progressively weaker counter rotating eddies, which means that the resolution
towards the boundary is never able to resolve the correct behavior of the flow
in this region. For the case of the stability analysis, we always have to consider
this fact and check for the influence of the boundary region on the stability.
The difference of the velocities decays very fast towards the center of the cavity,
as may be seen in Figure B.1. The conclusion of this is that the mesh resolution
is fine in the center of the cavity but needs to be refined towards the boundary.
We do this by a refinement procedure, where we first double the mesh resolution
for all elements that are less than 30% of the cavity extensions apart from the
borders. The second refinement is done for each element in a vicinity of 15%

and a last refinement for each point within the closest 5% of the border points.
These refinements are done subsequently, such that the mesh density close to
the boundary has increased by a factor of 8. The results of these calculations
are visualized in Fig. 3.4 and we see that we can indeed improve convergence in
the critical region. The simulations show that a mesh with 60× 60 grid points
might be sufficient to obtain proper results. The comparison with VisIt and
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Figure 3.4: Grid convergence of the x-component of the veloc-
ity along the diagonal y = −x+ 0.5 from the top left to the right

bottom of the cavity.

the improvement with refinement over the equally spaced grids are shown in
the Appendix (Fig. B.4,). Whether the mesh is sufficiently dense will be double
checked in the actual calculations of critical Re - k combinations by a subse-
quent mesh refinement in the vicinity of critical values. Also we will repeat our
convergence study for the more interesting cases of higher Re, where critical
modes are likely to appear.

High Reynolds numbers

Since the critical modes arise in a regime of Re ≈ 800 for the standard cavity
with Γ = 1, we will take a look at how the basic flows behave, if the Reynolds
numbers are increased. The behaviour of the basic flow with increasing Reynolds
numbers is depicted in Appendix B, where a gallery of the basic flows for the
Reynolds numbers between 100 and 1000 is given. Since we are only interested
in the convergence behaviour with respect to grid size, we will only deal with
Re = 800 here. First, comparing Fig. 3.1 with Fig. 3.5 we see that the relative
magnitude of the velocity compared to the lid velocity intrudes deeper into the
cavity. Taking a look at the resulting lines with mesh refinement in Fig. 3.6,
we can deduce that a 70 × 70 mesh looks quite well converged, compared to a
90×90 mesh, except for the very close vicinity to the boundary. The refinement
procedure described in the previous section seems to give a sufficiently converged
result also in the case of higher Reynolds numbers. For the stability study,
we will therefore start with meshes of 70 × 70 to get an estimate for critical
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Figure 3.5: Re = 800 flow. The arrows denote the velocity field
and the contour plot its magnitude with the respective legend.

The white lines show the streamlines.

wavenumbers, which will be analyzed by a subsequent mesh refinement, to
check for convergence of the generalized eigenvalue with mesh size.

Intermediate Reynolds numbers

The previous calculations have shown, which mesh resolution is necessary in
order to obtain an accurate result. Here we will use sufficiently dense meshes
to discuss the impact of the Reynolds number on the basic flow for Γ = 1.
Increasing the Reynolds number results in a larger vertical penetration depth
of the magnitude of the flow velocity inside the cavity, which is shown in Fig-
ure 3.7. Comparing the behaviour of the components of the velocity field for
different Reynolds numbers along the diagonals of the cavity, we also see that
the extrema of u and v shift more towards the boundaries of the cavity, the
higher the Reynolds number. The corresponding Figures B.6 and B.7 are pre-
sented in Appendix B. Up to now, we obtained an estimate for the necessary
mesh density within the method of finite elements. In the next sections, we will
take a look at the impact of the computational method in use and whether the
calculated results are reproducible with another method.
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Figure 3.6: Grid convergence. The two plots depict the x- and
y-components of the velocity field along the line y = x− 0.5 with

refinement towards the boundary.
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(a) Re = 100 (b) Re = 500

(c) Re = 1000 (d) Difference between
Re = 1000 and Re = 100

Figure 3.7: Basic flows. The stationary flows for three
Reynolds numbers (A-C) and the comparison between two flows
(D, normalized with respect to the lid velocities). In (A-C) the
colors denote the magnitude of the velocity field, where red cor-
responds to big and blue to small values. In (D) red depicts
positive and blue negative differences in the velocities, where the
maximal relative difference is 0.3649 and the minimal is -0.38 .
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Figure 3.8: Re = 10 differences SEM-FEM. The difference of
the magnitude of the velocities on the right top corner of the
cavity is shown (

√
~vSEM0 · ~vSEM0 −

√
~vFEM0 · ~vFEM0 ). We see the

top right element and 5 Legendre-Gauss-Lobatto points in each
direction.

3.1.2 Comparison with spectral elements

In order to show the independence of the obtained results on the chosen method,
we consider the flows of the previous sections and compare them with results
from a spectral element method using the code NEK5000. For the calculations
of the flows, we use 9th order polynomials inside the elements on Legendre-
Gauss-Lobatto points. The comparison between the flows using a 20× 20 and
a 50 × 50 element cavity shows, that convergence is obtained for the case of
20× 20 elements. Choosing this resolution, we see that the difference between
the finite element approach and the spectral element method is negligible inside
the cavity. The biggest difference is visible on the top corners, shown in Fig. 3.8
and may as well be a consequence of the interpolation algorithm used by VisIt
similar to the case of in previous section. Also in the case of higher Reynolds
numbers, we only encounter a difference in the magnitude of the velocity in the
corners of the cavity, as depicted in Figure 3.9.
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Figure 3.9: Re = 800 differences SEM-FEM, The difference
of the magnitude of the velocities on the right top corner of the
cavity is shown. We see the top right element and 4 Legendre-

Gauss-Lobatto points in each direction.
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Figure 3.10: Literature comparison u on the vertical center
line, the solid green, blue and red line show the calculated com-
ponent of the u velocity component at the vertical center line.
Green crosses mark the minimum of u along the line. The red
dots are the results given in Ghia, Ghia, and Shin (1982), the
blue horizontal lines mark the minimum of u for Re = 400 and
Re = 1000 and the blue cross gives the position and minimal
value as calculated by Botella and Peyret (1998) and Deng et al.

(1994)

Basic flows - comparison with literature

To triple-check our results, we compare the calculated flows with some already
published results. For the case of Re = 100, Re = 400 and Re = 1000, Botella
and Peyret (1998) and Deng et al. (1994) gave a number of values for the
magnitude of the stream function and the vorticity 4. We will only compare
the stream function, since we have chosen a formulation of the equations, where
velocity components are most easy to evaluate. The results in Figure 3.10 and
Figure 3.11 show that the agreement with previous studies is given to graphical
accuracy, because all the literature values lie on the calculated lines.

3.2 Γ = 2 Basic flows

To shorten the lengthy convergence studies, we will present only the most rel-
evant facts here and the interested reader is provided with additional plots in
Appendix B. First, we state that the results of the convergence study show, that

4The vorticity ~ω is given by the curl of the flow velocity: ~ω = ~∇× ~u. It is a measure for
the local rotation of a fluid.
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Figure 3.11: Literature comparison v on the horizontal center
line, the solid green, blue and red line show the calculated com-
ponent of the v velocity component at the horizontal center line.
Green crosses mark the calculated extrema of v along the line.
The blue horizontal lines mark the minima and maxima of v for
Re = 400 and Re = 1000 and the blue crosses give the position
and minimal value as calculated by Botella and Peyret (1998)

and Deng et al. (1994)

a mesh of 70× 70 grid points before the refinement procedure gives converged
results for the velocity components along the diagonals and center lines. The
refinement is again performed in a threefold way, s.t. that the points which
are 0.6, 0.3 and 0.1 away from the boundary are doubled in the first, second
and third refinement, respectively. This shows, that a proper resolution at the
boundary allows for a quite coarse grid in the center. With the converged re-
sults, we obtain flows for the Γ = 2 case, which are shown in Figure 3.12 and
we see that the deeper cavity has enough space to allow for a second counter-
rotating vortex, whose size and center is dependent on the Re-number and
marches towards the boundary for higher Reynolds numbers as the line-plots in
Appendix B.2.1 illustrate.

3.3 Γ = 3 Basic flows

As physicists’ induction would suggest, the cavity with an aspect ratio Γ = 3

consists of three vortices, counter-rotating from top to bottom, whose sizes are
given by the Reynolds numbers. The flows and the change of the flow pattern
with increasing Reynolds number is given in Figure 3.13. The mesh convergence
shows, that we need to be careful, when it comes to deeper cavities because a
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Figure 3.12: Re comparison for Γ = 2
top left: Re = 100
top right: Re = 400

bottom left: Re = 1000
bottom right:(Re = 100)− (Re = 1000)

The colours denote the magnitude of the velocity and the arrows
the direction. The size of the arrows does not represent the

magnitude of the velocity but only its direction.



32 Chapter 3. Determining the basic flow – convergence studies

Figure 3.13: Re comparison for Γ = 3
top left: Re = 100
top right: Re = 400

bottom left: Re = 1000
bottom right:(Re = 100)− (Re = 1000)

The colours denote the magnitude of the velocity and the arrows
the direction. The size of the arrows does not represent the

magnitude of the velocity but only its direction.
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mesh of 70× 70 grid points is not converged up to graphical accuracy and may
therefore yield wrong results for the stability analysis. When we compare a
grid with 70× 140 grid points before refinement, with a 100× 100 grid, we see
that convergence is obtained, when the number of grid points in y-direction is
doubled. The corresponding plots are shown in Appendix B.3.1.

3.4 Γ = 0.5 basic flows

The last cavity we investigate has an aspect ratio Γ = 0.5. The convergence
study in Appendix B.4.1 shows, that a 70 × 70 starting mesh results in well
converged results, which are in agreement with the spectral element method.
This aspect ratio cavity is interesting because of the evolution of a second vortex
on the left side of the cavity for higher Reynolds numbers as Figure 3.14 reveals.

3.5 Conclusion – convergence studies

The convergence studies have shown that the basic flows are properly resolved
by a refinement of the mesh towards the boundary, where a starting mesh of
70×70 grid points seems to be sufficient to get an estimate for critical Reynolds
numbers. Care has to be taken when the aspect ratio is increased above Γ = 2,
where a larger number of elements in y-direction seems to be appropriate to
keep the resolution constant and obtain converged results. We saw that the
numerical code developed is able to reproduce published results to graphical
precision and can therefore be confident that the basic flows we calculate are
correct. For the actual calculations we obtained an impression on how dense
the mesh has to be. We will, however, always double check if the obtained
result for critical Reynolds numbers and wave vectors is correct, by doing a
mesh refinement to investigate the change in the eigenvalues of the generalized
eigenvalue equation (2.27).
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Figure 3.14: Re comparison for Γ = 0.5
top left: Re = 100
top right: Re = 400

bottom left: Re = 1000
bottom right: (Re = 100)− (Re = 1000)

The colours denote the magnitude of the velocity and the arrows
the direction. The size of the arrows does not represent the

magnitude of the velocity but only its direction.
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Chapter 4

Stability analysis

In this chapter, we will use the knowledge of the previous convergence studies
and basic flow calculations to disturb the basic flows and obtain the critical
modes and Reynolds numbers of the flow. First, we will start to reproduce
already published results for Γ = 1 and α = 0 from Albensoeder, Kuhlmann,
and Rath (2001), to check, if the linear stability code works correctly and then
we will start to produce new results for different aspect ratios and drive angles.
For this purpose a Python class has been developed (the source code is given
in Appendix D ), where the necessary functions are implemented to

• find Rec for a given aspect ratio and drive angle by subsequent bisectioning
of a given interval of Reynolds numbers. The borders of the input interval
Relow and Rehigh should span a region, where critical modes are expected.
The resolution of the mesh is adapted, such that we verify the values,
where the critical values are arising by a second calculation with a refined
mesh (function: findRe_c)

• perform a stability analysis for an array of Reynolds numbers at a given
aspect ratio to extract the functional dependence of σ on the wavenumber.
If a sign change occurs, a subsequent mesh refinement for the wavenumber
interval of interest is also implemented in this function (function: analyze).

In order to call these functions in a more user friendly way, a bash script was
written, which allows for a hybrid of the previously mentioned functions by a
manual change of the wavenumbers of interest in an input file, such that the
Python code does not have to be modified for each particular cavity.
These tools allow us to find the critical Reynolds numbers and the values of
k, where the real part of the growth rate σ changes its sign. The size of the
parameter space we will investigate in this thesis depends on the computation
time of the calculations. If all the calculations converge at the first trial, which
is usually not the case, the calculation of 4 angles for a single aspect ratio takes
about 3 days on a single core with a very coarse grid in the wavenumber range.
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4.1 Orthogonal lid motion for Γ = 1

The linear stability analysis of this standard cavity was performed by Alben-
soeder, Kuhlmann, and Rath (2001), using finite volumes, and by Ding and
Kawahara (1999), using finite elements. A comparison between our minimum
damping rates σ and angular frequencies ω and theirs are provided in Figure 4.1
and Figure 4.2. The energy transfer rates also agree well with the results ob-
tained in Albensoeder, Kuhlmann, and Rath (2001), both in the magnitude as
well as in the localization (see Figure 4.3). The comparison reveals that our
code is working well and is able to reproduce published results.

4.2 Stability of oblique cavity flow

The flows corresponding to lid motions with inclination angles α = 22.5◦, 45.0◦

and 67.5◦ in the x-z plane were analyzed by Theofilis, Duck, and Owen (2004).
In their paper, they did not find any critical mode below Re = 800 for these
drive angles, which is in disagreement with this study. As Figure 4.4 reveals,
we find critical modes below Re = 800 for the drive angles 22.5◦ and 67.5◦.
Due to this discrepancy with published results, we also perform an independent
three-dimensional non-linear flow simulation of the full Navier–Stokes equation
in NEK5000 for the drive angle of 22.5◦. From Figure 4.5 we can extract that
indeed the velocity at a fixed position starts oscillating 2. The use of the second
method clearly confirms our result by showing that for the Re = 630.7 flow
oscillations arise and grow in time. In addition, the energy analysis suggests,
that the production rate exceeds the dissipation rate for the mode of interest,
which is another hint for the correctness of the calculation. We also see in
Figure 4.4, that the behaviour of the critical parameters follows a non-trivial
curve: Increasing the angle from α = 0◦ to α = 7◦ does not induce a big change
in the critical parameters. This plateau is followed by a decrease in Rec, which
reaches a minimum at an angle of α ≈ 22.5◦. The subsequent rise towards a
maximal value of Rec ≈ 880 at an angle of α = 32◦ is followed by a decrease
towards Rec ≈ 640 for an angle of α = 55◦. There is another plateau between
α = 55◦ and α = 75◦, where there is no rapid change in Rec, followed by a small
jump at a value of α = 80◦.
The limit of an angle of α = 90◦ corresponds to a wall bounded Couette flow.

2The preliminary three-dimensional simulations were performed for an increased Reynolds
number than the predicted critical one to assure the appearance of the instability. The
simulations. For Re = 750 and k = 7.24 the three-dimensional simulation gives ω = 586.8±
8.2, which is reproduced by our calculation for this setting, yielding ω = 579.18.
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(a) Re = 200

(b) Re = 1000

Figure 4.1: σ comparison with literature, the calculated damp-
ing rate σ as a function of the wavenumber k is compared
with the results of Ding and Kawahara (1999) and Albensoeder,
Kuhlmann, and Rath (2001). We see that our calculations are
closer to the results of Ding and seem to be converged for a

starting mesh of 70× 70 grid points before refinement.
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(a) Re = 200

(b) Re = 1000

Figure 4.2: ω comparison with literature. The calculated cir-
cular frequency is plotted versus k and compared with Ding and
Kawahara (1999) and Albensoeder, Kuhlmann, and Rath (2001)
for two different Reynolds numbers. All results agree within a

few percent.
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(a) Integral energy contributions
for the critical mode.

(b) The total energy production rate for
the critical mode at Rec = 793.5 and
k = 15.5117. Shown is the isosurface cor-
responding to 1/5 of the maximal value.
The overall maximum of the energy pro-
duction is located near the moving lid
and the isosurfaces agree with Albensoeder,

Kuhlmann, and Rath (2001).

Figure 4.3: Energy analysis for the critical mode.

Figure 4.4: Critical Reynolds numbers and wavenumbers as
a function of α for Γ = 1. The red crosses mark the critical
wavenumbers and the blue dots the critical Reynolds numbers.
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Figure 4.5: Three-dimensional simulation results with
NEK5000 for the drive angle α = 22.5◦ with Γ = 1 and Re = 750.
The plot shows the simulation box of the three-dimensional cal-
culations with the lid velocity as an orange arrow. An isosurface
of the magnitude of the perturbation velocity is presented. The
line plot shows the rising velocity at a fixed position in the cavity
and confirms the results obtained with the linear stability anal-
ysis. The x-axis corresponds to the time and the y-axis to the

magnitude of the velocity field 1.

This flow was analyzed by Theofilis, Duck, and Owen (2004), where they did
not find any criticality. We also performed a stability analysis for this angle
and were likewise unable to find any critical modes for Re < 3000.
An analysis of all the critical modes for such a large parameter space is impos-
sible and therefore we will focus on the main features apparent, when the angle
is varied. Apart from the already clarified discrepancy with Theofilis, Duck,
and Owen (2004), there are two interesting jumps occurring in the behaviour
of Rec(α) for Γ = 1, which shall be analyzed in the following: One jump is
occurring in the behaviour of the critical wavenumbers: We see a change in the
critical wavenumber arising in the small angle regime: For angles α < 7◦, the
critical mode is around k = 15, whereas the spatial periodicity for larger angles
is given by wavenumbers with kc < 5. Taking a look at the k-σ curves we real-
ize, that there are two minima of σ, which are close to criticality and the change
of the critical mode is arising between these two angles (Figure 4.6). Since the
plot in Figure 4.6 includes points, where the eigenvalue changes rapidly, when
k is increased, we will check for this behaviour by a refinement of these critical
regions: this is done exemplary for the jump of the second eigenvalue of the
α = 7◦ case in the regime between k = 9.3 and k = 9.46, because we want to
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Figure 4.6: α = 6◦ and α = 7◦, the k - σ plots for the analysis
of the jump in critical wavenumbers.

see, if our eigenvalue solver is working correctly: We compare the two lowest
eigenvalues for eight wavenumbers in this region in Table 4.1 and deduce that
the jump is an abrupt change of σ with k, which means that the eigenvalue
solver suddenly finds a new mode. Whether this is of physical origin or owed
to the numerics can not be answered at this point.
Due to the fact, that the periodicity of the modes differs a lot, we are also

interested in the energy transfer terms and a localization of the energy gain.
Figure 4.7 shows the isosurfaces of the production rate in three dimensions. The
shapes of the isosurfaces look different: As in the case of α = 0 in Figure 4.3,

k σ1 σ2 ω1 ω2

9.33 50.618 139.72 2.41 232.60
9.37 53.64 142.62 53.82 283.68
9.39 54.40 141.93 53.18 283.07
9.41 55.16 141.24 52.56 280.47
9.43 55.93 140.55 51.95 278.88
9.44 54.81 137.04 1.24 223.67
9.45 55.21 136.79 1.57 222.84
9.46 35.86 55.81 674.42 2.05

Table 4.1: Jumps in eigenvalues. The table depicts the be-
haviour of the eigenvalues for α = 7◦ and Re = 784.922 and

corresponds to a section of the turquoise line in Figure 4.6.
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there is a banana shaped isosurface at the left side of the cavity. Due to the
oblique lid motion these bananas are altered according to the periodicity, given
by the wavenumber. The main difference between the two modes are arising in
the top right corner. If we take a closer look at the slice y = 0, as shown in
Figure 4.8, we can learn about the mechanism that drives the instability and
see the different locations of the production rate between the two modes: The
energy production is dominated by the term I2. There are two vortices in the
surrounding of positive energy production. This may be understood from the
energy analysis: Due to the boundary conditions, we have a shear layer with
big velocity gradients in x-direction and a basic flow in y-direction which gives
gives a big contribution to I2 because the perturbation between the vortices
is orthogonal to the basic flow and we see in Figure 4.8 that also the parallel
contribution is significant at this location, as the maximal isosurfaces of v are
in the vicinity of the maximal production rate. The effect of the different lo-
calization on the energy production rate contribution is very small, as depicted
in Figure 4.9, which means that the above mentioned mechanism is dominant
in both flows. There is only a small shift of weight from I1 to I3, going from
α = 6◦ to α = 7◦, but the most prominent contribution still comes from I2,
which resembles the behaviour that was analyzed in Albensoeder, Kuhlmann,
and Rath (2001). There is a second interesting slice to look at for the critical
mode of α = 7, which is at an height of y = 0.2, where the nose shaped fea-
ture is located. As we show in Appendix C, this feature stems from the energy
transfer rate I3.
The second drastic change in the behaviour of the flow is arising between the
angles of α = 22.5◦ and α = 30◦, where Rec is changing from 631 to 862 with-
out a big change in kc. As illustrated in Figure 4.10, the energy transfer term
distribution is similar for the two observed modes. The critical wavenumber for
α = 22.5◦ is kc ≈ 7, whereas the critical mode for α = 30◦ is arising at k ≈ 5

(see Figure 4.11 and Figure 4.12). The spatial localization of the energy gain
for the modes is clarified in Figure 4.12. There we show that the energy gain is
again along the bananas, as in the case of α = 0◦, but at the angle of α = 30◦,
the energy production at y = 0 decreases and is shifted to the right side of
the cavity (towards x = 0.5, downstream). Taking a closer look at the slice
y = 0 allows to deduce that the vortex structure of the perturbation changes
significantly going from α = 22.5◦ to α = 30◦. The vortices at x = −0.5 vanish
for α = 30◦. The corresponding Figure 4.13 shows, that the absence of these
vortices is accompanied by a reduction of I2. This behaviour is explained by a
reduced shear as the moving lid induces a flow, whose contribution in z-direction
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Figure 4.7: Energy productions of the critical modes for
α = 6◦ (top) and α = 7◦ (bottom). An isosurface for a constant

value of
∑
i
Ii/max(

∑
i
Ii) is shown.
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Figure 4.8: Energy productions of the critical modes for
α = 6◦ (top) and α = 7◦ (bottom) at y = 0. The color denotes
the production rate, the arrows denote the u and w components
of the velocity and the isolines show the value of v, whose ex-

trema are located at the maxima of the production rate.
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Figure 4.9: Energy contributions of the critical modes for
α = 6◦ (left) and α = 7◦ (right).

Figure 4.10: Energy contributions of the critical modes for
α = 22.5◦ (left) and α = 30.0◦ (right)
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Figure 4.11: σ versus k for α = 22.5◦ and α = 30◦. We see that
the eigenvalues show jumps, where the eigenvalue solver goes to
the next eigenvalue, if k is increased. The red line shows, that
there is a second mode, where we nearly obtain instability at

k ≈ 13.

increases.
As the shear layer in the x− y plane is diminished are reduced for an angle of
α = 30◦, we are interested in flows with a very large drive angle. So the next
cavity flow we analyze is the one with α = 60◦: The energy contributions show
that I2 is even more dominant than for smaller angles and the energy produc-
tion is happening solely in the vicinity of the upstream wall of the cavity, in
contrast to the cavity flows analyzed so far.
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Figure 4.12: Energy productions of the crit-
ical modes for α = 22.5◦ with k = 6.83 (top) and
α = 30.0◦ with k = 5 (bottom). An isosurface for a constant

value of
∑
i
Ii/max(

∑
i
Ii) = 1/10 is shown.
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Figure 4.13: Energy productions of the critical modes for
α = 22.5◦ (top) and α = 30.0◦ (bottom) for y = 0.0. The ar-
rows denote the two-dimensional projection of the perturbation
velocity. The colours represent the total local energy production

and the isolines ṽ.
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Figure 4.14: Energy production rate of the critical mode for
α = 60◦: The contributions (top left), the sum of the production
rates in three dimensions (top right) and on the slice with y = 0.0
(bottom). The arrows denote the two-dimensional projection of
the perturbation velocity. The colours represent the total local

energy production and the isolines ṽ.
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After the detailed analysis of the stability for Γ = 1, we now turn to the
parameter dependence of the stability boundary by a variation of Γ.
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Figure 4.15: Variation of Γ. The critical Reynolds numbers
are depicted by circles and the critical k values are plotted as
crosses. For the cavity α = 0 and Γ = 0.88 we see an interesting

behaviour, as a new critical mode starts to arise.

4.3 Variation of Γ between 0.88 and 1.11

Before we start to investigate the criticality in cavities with a completely dif-
ferent aspect ratio, we will vary Γ only in a small range around Γ = 1, to
investigate the effect of a change in geometry. For this purpose, we consider the
same angles as Theofilis, Duck, and Owen (2004), because a denser sampling of
α would drastically prolong the computation time. The result of the calculation
is shown in Figure 4.15, where we see, that Rec has an interesting behaviour in
the Γ, α)-plane: For α = 0◦, α = 45◦ and α = 67.5◦ , Rec decreases for larger
aspect ratios and increases for smaller values (with the exception of α = 67.5

and Γ = 1.06). For the case of a drive angle α = 22.5◦, a maximum of Rec is
found for Γ = 1. The exact quantities are provided in Table C.1 in Appendix C.
The order of kc stays the same over the calculated range of angles, with an in-
teresting exception for the case of Γ = 0.88, where kc of α = 0◦ goes down to
kc ≈ 6.5 from a value kc ≈ 16.2 for Γ = 0.90. This is explained by taking a
look at Figure 4.16: At an aspect ratio of Γ = 0.88, the mode at k ≈ 6.5 starts
to govern the criticality of the cavity. Our findings are in agreement with Al-
bensoeder, Kuhlmann, and Rath (2001), where the critical mode for Γ = 0.888

was calculated to be the stationary one we obtain in our regime of aspect ratios
for the angle α = 0◦. If this oscillatory mode is the critical also for the small
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Figure 4.16: k - σ for Γ = 0.88, α = 0.0 and Γ = 0.90, α = 0.0.
The first and second eigenvalue of each cavity is shown for the
k-values of interest. In the lower k-regime, the first and second

eigenvalues are indistinguishable.

aspect ratio cavities is an interesting question, which we will answer in the next
section.
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4.4 Γ = 0.5

The cavity with Γ = 0.5 is of special interest, because the literature shows strong
deviations in the arising critical modes: Theofilis, Duck, and Owen (2004) ob-
tained values for 4 neutral modes for the α = 0 case, where the lowest Ren was
calculated to be 1467 for a mode with kc = 13.33, which is in big contrast with
the calculations of Albensoeder, Kuhlmann, and Rath (2001), who obtained
the value Rec = 706.1 for kc = 10.63. Our first approach did not find the crit-
ical mode of Albensoeder, Kuhlmann, and Rath (2001) because our variation
steps of Re were too large and we skipped the region of interest, so without
the knowledge about the existence of the mode, we would have missed it. This
finding creates the need for a very proper search of the Reynolds numbers in
order to find the lowest neutral mode.
Taking a look at Figure 4.17, we see that we can reproduce the published re-
sults of Albensoeder, Kuhlmann, and Rath (2001). We obtain the criticality for
kc = 10.6 and Rec = 712, which is a transient mode with ω = 819. Thus, the
critical mode from the previous section is not responsible for critical one for the
aspect ratio of Γ = 0.5. An analysis of the aforementioned mode at k ≈ 6.5,
which was important in the Γ = 0.88 cavity, yields an eigenvalue of σ = 97,
far away from being critical. As we have a lot of interesting modes arising for
this new geometry, we will not focus on the presence of the k ≈ 6.5 mode, even
though it would be interesting, where the transition from this mode toward ours
for Γ = 0.5 occurs. A comparison between Figure 4.17 and Figure 4.4 reveals
that the behaviour of the critical Reynolds numbers and wavenumbers with
increasing angles shows similarities with the results for Γ = 1, as kc and Rec

lower, if we go from α = 0◦ to α = 22.5◦. The jump of Rec between α = 22.5◦

and α = 30◦ is also present, whereas the rest of the plot of Rec(α) does not
resemble the Γ = 1 case: First, there is no drop in Rec, when the drive angle
grows from α = 30◦ to α = 60◦ and the small enhancement of Rec at α = 67.5◦

for Γ = 1 is more pronounced for the geometry with Γ = 0.5. As there are three
regions of interest, we will analyze one representative of each:
For the analysis we choose the angles α = 0◦, α = 30◦ and α = 67.5◦. Compar-
ing the Figures 4.18 , 4.19 and 4.20, we learn, that the bigger the angle, the more
production rate shifts towards I2 and the energy production is more localized.
While the lid-driven cavity flow for an angle of 0◦ has a contribution I4, which
accounts for approximately 20% of the production rate, this value decreases for
higher angles, such that I3 has a bigger contribution for the α = 30◦ flow. The
influence of the shear layer on the right side of the cavity (x ≈ 0.5, downstream)
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Figure 4.17: Γ = 0.5 – Rec and kc versus α. The calculated
results for the cavities with the given aspect ratio show higher
critical Reynolds numbers than the standard cavity with Γ = 1.

is diminished and the vortices in the x− y-plane, which are responsible for the
energy production mechanism discussed above, vanish for the angle α = 67.5◦.
The loss of this energy production results in a much higher Rec for the large
angle. This completes the treatment of the Γ = 0.5 lid-driven cavity flows and
we focus our attention to geometries with bigger aspect ratios and investigate
on the stability behaviour also for geometries with Γ > 1.
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Figure 4.18: Energy production rate of the critical mode for
Γ = 0.5 and α = 0◦: The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.0 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0 the arrows

denote the two-dimensional projection of the perturbation veloc-
ity. The colours represent the total local energy production and

the isolines ṽ.
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Figure 4.19: Energy production rate of the critical mode for
Γ = 0.5 and α = 30◦: The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.0 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0 the arrows

denote the two-dimensional projection of the perturbation veloc-
ity. The colours represent the total local energy production and

the isolines ṽ.
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Figure 4.20: Energy production rate of the critical mode for
Γ = 0.5 and α = 67.5◦: The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.0 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0 the arrows

denote the two-dimensional projection of the perturbation veloc-
ity. The colours represent the total local energy production and

the isolines ṽ.



58 Chapter 4. Stability analysis

Figure 4.21: Γ = 2.0 – Rec and kc versus α. The blue dots
denote the critical Reynolds numbers (scale on the left) and the

red crosses the critical wavenumbers (scale on the right).

4.5 Γ = 2

We start the analysis for the lid-driven cavity flow with Γ = 2 by looking at Fig-
ure 4.21: First, we notice that the critical Reynolds numbers are lower than for
the quadratic cavity with Γ = 1. In contrast to the Γ = 0.5 aspect ratio case, the
critical Reynolds numbers decrease, if the drive angles are increased as long as
α < 55◦. For the largest drive angles analyzed, the critical Reynolds numbers in-
crease, as has been the case for all the aspect ratios we have analyzed up to now.
The calculated values for α = 0 (Rec = 458 , kc = 1.7) are in good agreement
with Albensoeder, Kuhlmann, and Rath (2001) [Rec = 446.3 ± 10 , kc = 1.71].
Again, we take three candidates for a graphical representation of the flow and
an analysis of the corresponding energy production mechanism. We consider
the angles α = 0◦, α = 45◦ and α = 67.5◦.
For the angle α = 0, the analysis is presented in Figure 4.22: The main energy
production contribution stems again from I2 and the mechanism for energy gain
is governed by the existence of two counter-rotating vortices, where the velocity
field of the perturbation has the biggest magnitude in the intermediate region.
When the fast perturbation reaches the walls, where the shear layer causes a big
change of v0 with respect to x, a negative orthogonal gradient and the parallel
ṽ are responsible for a large energy production due to I2. This mechanism is
the same as in the cavity flow for Γ = 1 and we see that the lower half of the
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cavity flow does not give a significant contribution to the energy budget.
The cavity flow for α = 45◦ is summarized in Figure 4.23: It has a much lower
Rec = 275 and the vortex structure at y = 0.5 is removed. The negative energy
production at the left (upstream) side of the cavity has diminished in compar-
ison with the flow for the inclination angle α = 0◦. The positive and negative
extrema of the energy production rates exhibit little spacial separation. The
energy production is again strongly correlated with the velocity contribution ṽ,
orthogonal to the shown plane. The energy contributions I1, I3 and I4 for the
critical mode differ strongly from the α = 0◦ critical flow, since most of the
weight of I4 shifts to I1 and I3. In contrast to the Γ = 0.5 cavity flows, we do
not find the strong decrease of the energy production on the right side (down-
stream), when the drive angle is increased. This difference in the behaviour of
critical flows with increasing angles is manifested when looking at the critical
cavity flow for the drive angle α = 67.5◦, whose properties are presented in
Figure 4.24: We observe, that again the upper vortex (closest to the lid) is
mainly responsible for the energy production and that the contribution I2 is
dominating for large angles, as was the case for all the cavity flows analyzed up
to now. The slice at y = 0.5 reveals another property of the large angle cavity
flows for Γ = 2: While the spots with a positive energy production on the slice
located at the vertical center of the upper basic flow vortex have approximately
the same size for all the cavity flows, the negative production rate emerges over
an increased area, which may explain the higher Rec for the large angle flows.
We saw in this section, that the flows for cavities with an aspect ratio Γ = 2

have a much lower Rec than the smaller aspect ratio flows and that the energy
production takes place mainly in the upper half of the cavity. The dependence
on the angle turns out to be similar to the Γ = 1 cavity flows, with the difference
that the rise of Rec for angles α < 5◦ is less pronounced and the lowering of Rec
for the angle α = 45◦ is 1/3 of Rec(α = 0◦). The large angle regime behaviour
differs, as there is a continuous rise in Rec as the angle is increased. The curves
for kc are similar in the high angle regime, where we obtained a decrease of kc
with increasing α for all the aspect ratios.
We continue our analysis by further increasing the aspect ratio and since Fig-
ure 4.25 reveals, that the behaviour for Γ = 2.5 resembles the curve of Γ = 2,
we will finish our investigations with the cavity flow for an aspect ratio Γ = 3.
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Figure 4.22: Energy production rate of the critical mode for
Γ = 2.0 and α = 0◦: The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.5 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0.5 the ar-

rows denote the two-dimensional projection of the perturbation
velocity. The colours represent the total local energy production

and the isolines ṽ.
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Figure 4.23: Energy production rate of the critical mode for
Γ = 2.0 and α = 45◦: The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.5 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0.5 the ar-

rows denote the two-dimensional projection of the perturbation
velocity. The colours represent the total local energy production

and the isolines ṽ.
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Figure 4.24: Energy production rate of the critical mode for
Γ = 2.0 and α = 67.5◦: The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.5 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0.5 the ar-

rows denote the two-dimensional projection of the perturbation
velocity. The colours represent the total local energy production

and the isolines ṽ.
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Figure 4.25: Γ = 2.5 – Rec and kc versus α. The blue dots
denote the critical Reynolds numbers (scale on the left) and the

red crosses the critical wavenumbers (scale on the right).

4.6 Γ = 3

For the aspect ratio Γ = 3, we obtain a higher Rec = 442 for α = 0 than
Albensoeder, Kuhlmann, and Rath (2001) (Rec = 424.869) but the trend of
decreasing critical Reynolds numbers with increased aspect ratios is continued
in accordance with their study. The results differ by 4%, which is not a dramatic
difference. This critical perturbation flow is shown in Figure 4.26, where we see
that I2 is again the biggest energy transfer term and that the energy production
is located at the upper basic flow vortex closest to the moving lid. The presented
slice at y = 0.75 on the bottom of Figure 4.26 reveals that the vortex structure
of the perturbation in this high energy production surface looks different from
the one obtained for the Γ = 2 case in Figure 4.22 as the vortices in the center
have vanished. However, this may also be owed to the particular choice of the
projection slice at y = 0.75.
The influence of an increasing drive angle on the critical Reynolds numbers

for Γ = 3 cavities was investigated for six angles. The results resemble the
behaviour of the Γ = 2 and Γ = 2.5 cavities, with an interesting difference
of the critical Reynolds numbers for large angles: As we see in Figure 4.27,
there is a very big change in Rec going from α = 50◦ to α = 67.5◦ (Rec(α =

67.5◦) − Rec(α = 50◦) = 666) and a significant reduction of Rec going from
α = 67.5◦ to α = 70◦ (Rec(α = 67.5◦)−Rec(α = 70◦) = 181). A more profound
analysis of the critical modes for the critical flows at these two angles is presented



64 Chapter 4. Stability analysis

Figure 4.26: Energy production rate of the critical mode for
Γ = 3.0 and α = 0.0◦. The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.75 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0.75 the

arrows denote the two-dimensional projection of the perturbation
velocity. The colours represent the total local energy production

and the isolines ṽ.
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Figure 4.27: Γ = 3.0 - Rec and kc versus α. The blue dots
denote the critical Reynolds numbers (scale on the left) and the

red crosses the critical wavenumbers (scale on the right).

in Figure 4.28 and Figure 4.29, where we extract that they seem to differ only
in Rec, since the energy production localizations as well as the energy transfer
term contributions are similar. Due to this strange behaviour, these calculations
were redone with a finer mesh and different parameters for the eigenvalue solver,
which did not change the result. If there is physics involved has to be clarified
by a three-dimensional simulation, solving the full Navier–Stokes equations.

4.7 Overview of the results of the linear stability

analysis

We finish our analysis with three-dimensional illustrations of the dependence
of the critical values of all the calculated cavity flows on the aspect ratio and
drive angle. The results are shown in Figure 4.30. However, it has to be
mentioned that some cavity flows were not analyzed as deeply as the ones
described above and we may have missed criticality for lower Reynolds numbers,
if our Re sampling was not dense enough.
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Figure 4.28: Energy production rate of the critical mode for
Γ = 3.0 and α = 67.5◦: The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.75 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0.75 the

arrows denote the two-dimensional projection of the perturbation
velocity. The colours represent the total local energy production

and the isolines ṽ.
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Figure 4.29: Energy production rate of the critical mode for
Γ = 3.0 and α = 70.0◦: The contributions (top left), the sum
of the production rates in three dimensions (top right) and on
the slice with y = 0.75 (bottom). The isosurface for the 3-
dimensional plot of the energy production corresponds to the
value

∑
i
Ii/max(

∑
i
Ii) = 1/10. For the slice at y = 0.75 the

arrows denote the two-dimensional projection of the perturbation
velocity. The colours represent the total local energy production

and the isolines ṽ.
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Figure 4.30: Results overview. The plots show a three-
dimensional representation of Rec (top) and kc (bottom) as func-
tions of Γ and α. The colors of the dots denote the value [blue-
low , red-high] and are scaled logarithmically for the upper and

linearly for the lower plot.
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Chapter 5

Summary and Outlook

In this thesis, we introduced the lid-driven cavity problem as an important
benchmark system for stability analysis. We presented the mathematical de-
scription of the linear stability analysis and the numerical implementation thereof.
Subsequently, we developed a code, which is able to accurately determine the
properties of the lid driven cavity flows and capable to deal with a change of the
geometrical parameter Γ and the drive angle α of the moving lid. We showed,
that the output of the calculations is comparable with published results for
α = 0◦ and for the discrepancy with Theofilis, Duck, and Owen (2004) for
Γ = 1 and α = 22.5◦, we verified our results with a three-dimensional simula-
tion. Thus, we are therefore confident, that the prediction of new critical modes
is correct. Whether we always found the lowest Reynolds number, where the
transition towards instability occurs can not be guaranteed, because there ap-
peared delicate situations, where our code overlooked modes. This happened,
if the criticality of a mode only occurs in a small Re regime, where the search
for critical modes by a subsequent bisectioning of the Re interval misses modes,
if the guesses for Rec span a big interval.
We found the critical modes, reported in literature and predicted new modes
for an expanded parameter space in Γ and α. For a prediction of the lowest
Reynolds numbers, a very profound search was performed to assure that indeed
the lowest neutral Reynolds numbers were found. In addition, we were able
to analyze the modes of interest with respect to their energy production, both
in integral form as well as in local form, where the critical parameters of the
flow could be determined and the mechanism that drives the instability could
be described. The most prominent mechanism leading to a positive energy
production was explained by the effect of a shear layer. For angles α < 45◦,
counter rotating vortices develop and the intermediate region between the vor-
tices turned out to be the main source for a positive energy production. When
the angle was further increased, the vortex structure in the x − z plane was
lifted, but the big gradients of the velocities in the shear layer still were the
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main sources of positive energy production. The most prominent transfer term
was I2 for all the analyzed cavity flows.
A further investigation of other neutral modes in the higher Re regime would
be of great interest and the change of the critical mode upon a variation of
the governing parameters to another might as well be calculated. It would be
interesting to see, whether the predicted instabilities can be observed exper-
imentally and in three-dimensional simulations, where the full Navier–Stokes
equations are solved. This work provides a search direction for critical modes
in such simulations, as guesses for the onset of instability were calculated with
the linear stability analysis. This has already enabled us to find new modes,
occurring for lower Reynolds numbers as reported by Theofilis, Duck, and Owen
(2004).
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Appendix A

Derivation of Reynold’s transport
theorem 1

In this Appendix, Reynold’s transport theorem from chapter 2 is derived. As
shown there, it is needed to calculate the time derivative in the Lagrangian spec-
ification for an integral quantity. For this purpose we need to transform volume
elements in the Lagrangian specification (the starting point of the particle is
denoted as ~X = (X, Y, Z) to the Eulerian specification (the points in space are
denoted as ~x = (x, y, z). This is achieved with the help of the determinant of
the Jacobian

det J =
∂ (x, y, z)

∂ (X, Y, Z)
=

∣∣∣∣∣∣∣
∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

∣∣∣∣∣∣∣ , (A.1)

in index notation J is given by Jij = (∂xi/∂Xj). The transformation of the
volume element from the Eulerian (dV ) to the Lagrangian (dV0) specification
reads

dV = dV0 |det J | (A.2)

This determinant may be calculated by the Laplacian expansion

det J =
3∑

k=1

Jik αik with αik = (−1)i+k
(
det J̃

)
ik
, (A.3)

where (det J̃)ik is the minor, which is the subdeterminant resulting by the dele-
tion of the i-th row and the k-th column. Due to the antisymmetry of the
determinant, the following relation holds

3∑
k=1

Jik αjk = δij det J, (A.4)

1This derivatoin also follows the treatment given in (Braun 2001)
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with δij being the Kronecker-delta. The last needed ingredient for the time
derivative of integral quantities, is the material derivative of the Jacobian de-
terminant itself. Starting from the differential of the Laplacian expansion (A.3)

d (det J) =
∑
i

∑
j

∂ (det J)

∂Jij︸ ︷︷ ︸
αij

dJij (A.5)

the material derivative reads

D (det J)

Dt
=
∑
i

∑
j

αij︸ ︷︷ ︸
δkidet J

DJij
Dt

=
∑
i

∑
k

∑
j

Jkjαij
∂vi
∂xk

= det J
∑
i

∂vi
∂xi︸︷︷︸
~∇·~v

, (A.6)

where the material derivative of the matrix elements was used

DJij
Dt

=
D

Dt

(
∂xi
∂Xj

)
=

∂vi
∂Xj

=
∑
k

∂vi
∂xk

∂xk
∂Xj

. (A.7)

Now there is enough equipment to transform the volume integrals and derive
Reynold’s transport theorem:

D

Dt

∫
V

b(~x, t) dV =
D

Dt

∫
V0

b( ~X, t) |det J | dV0︸ ︷︷ ︸
dV

(A.8)

=

∫
V0

b D |det J |Dt︸ ︷︷ ︸
|det J |~∇·~v

+ |det J | Db
Dt

 dV0 (A.9)

=

∫
V0

(
Db

Dt
+ b~∇ · ~v

)
|det J | dV0 (A.10)

=

∫
V

(
Db

Dt
+ b~∇ · ~v

)
dV (A.11)

=

∫
V

(
∂b

∂t
+ ~∇(b~v)

)
dV (A.12)

q.e.d.
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Appendix B

Convergence Plots

This appendix is meant to be a placeholder for the convergence plots, which did
not fit in the main text for readability reasons.

B.1 Γ = 1
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Figure B.1: The decay of the difference of the velocity magni-
tude between a 250× 250 grid and a 200× 200 grid from the top
left edge (x = −0.5, y = 0.5) towards the center (x = 0, y = 0).
The parameters of the compared data are Γ = 1 and Re = 10
and the values on the finer grid were interpolated on the coarser

one.

Figure B.2: Grid convergence along the diagonal y = x− 0.5
from the bottom left to the top right of the cavity.(Re = 10,

Γ = 1)
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Figure B.3: Grid convergence along a vertical line in the center
from the top lid to the bottom. (Re = 10, Γ = 1)
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Figure B.4: Refined mesh comparison for the velocity field.
Top: The difference in magnitude of the velocity between a start-
ing mesh of 160 × 160 grid points and 150 × 150 grid points,
which are refined 3 times as described in the main text.Bottom,
The difference divided by the value of the magnitude of the ve-
locity. We see that the maximal difference is about 1% of the

value.(Re = 10, Γ = 1)
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Figure B.5: Γ = 1, Re = 800, grid convergence. The two plots
depict the x- and y-components of the velocity field along the
line y = x− 0.5 without any refinement towards the boundary.
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Figure B.6: Γ = 1, u along the diagonals of the cavity. The
top graph shows u along the diagonal from the top left to the
bottom right and the bottom graph depicts the values of u along
the other diagonal. We see that the minimum of u shifts towards

the boundary with higher Reynolds numbers.
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Figure B.7: Γ = 1, v along the diagonals of the cavity, The
top graph shows v along the diagonal from the top left to the
bottom right and the bottom graph depicts the values of v along
the other diagonal. We see that the minimum of v shifts towards

the boundary with higher Reynolds numbers.
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B.2 Γ = 2

This section shows selected plots for the velocity components along the diagonals
and center lines of the cavity for Re = 100, 400 and 1000. The selection is
chosen as diverse is possible, s.t. the reader gets an impression for crucial
regions and components. From now on we will denote the lines according to
their direction, i.e. ↘ and ↙ for the diagonals and ↓ and → for the two
centerlines. We see that a mesh of 70 × 70 grid points before the refinement
procedure is sufficient to grasp the features of the flow. Convergence up to
graphical precision is reached in most of the cases. The only region, where the
flows differ slightly is the top left corner but this difference does not have an
influence on the flow in the center and may therefore yield good results also for
the stability analysis.
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Figure B.8: Γ = 2, Re = 100 u. The three plots show the
u-component of the velocity field along the lines ↘, ↙ and ↓,

from top to bottom.
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Figure B.9: Γ = 2, Re = 400 v, the three plots show the v-
component of the velocity field along the lines ↘, ↙ and →,

from top to bottom.
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Figure B.10: Γ = 2, Re = 1000, the top panel shows the u
component along ↘, in the center v along ↘ is shown and on

the bottom v along ↙ is presented.



84 Appendix B. Convergence Plots

B.2.1 Re comparison

This section is meant to illustrate the two effects of an increasing Reynolds
number on the flow for the Γ = 2 cavity: The first Figure B.11 shows that the
penetration depth of the magnitude of the velocity increases if the Reynolds
number is increased from 100 to 800 and the second Figure B.12 allows to
emphasize the growth of the second vortex with increased Re.
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Figure B.11: u and v along the diagonal ↘. We see that, as
in the case of Γ = 1, the penetration into the cavity is enhanced,

if the Reynolds number is increased.
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Figure B.12: u and v along the central line ↓. The second
effect of an increased Reynolds number is visible in this plot: the
evolution of a second vortex and its growth with higher Reynolds

numbers.
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B.3 Γ = 3

B.3.1 Grid convergence studies

This section is a repetition of the previous one for the case of Γ = 3. The
convergence studies reveal, that a proper mesh needs at least 70×140 grid points
in order to arrive at results, which are converged up to graphical accuracy.
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Figure B.13: Γ = 3, Re = 100 u. The three plots show the
u-component of the velocity field along the lines ↘, ↙ and ↓,

from top to bottom.
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Figure B.14: Γ = 3, Re = 400 v. The three plots show the
v-component of the velocity field along the lines ↘, ↙ and →,

from top to bottom.
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Figure B.15: Γ = 3, Re = 1000. The top panel shows the u
component along ↘, in the center v along ↘ is shown and on

the bottom v along ↙ is presented.
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B.3.2 Re comparison

This section is meant to illustrate the two effects of an increasing Reynolds
number on the flow for the Γ = 3 cavity: The first Figure B.16 indicates the
penetration depth of the velocity magnitude with higher Reynolds numbers and
the second Figure B.17 allows to emphasize the growth of the second and third
vortices with increased Re.
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Figure B.16: u and v along the diagonal ↘, we see that, as in
the case of Γ = 1, the penetration into the cavity is enhanced, if

the Reynolds number is increased.
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Figure B.17: u and v along the central line ↓. The second
effect of an increased Reynolds number is visible in this plot: the
evolution of a second vortex and its growth with higher Reynolds

numbers.
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B.4 Γ = 0.5

B.4.1 Grid convergence studies

This section provides the convergence studies for Γ = 0.5. It is seen that the
quantities are converged for a 70x70 grid. Only small differences are encountered
in the very close vicinity of the boundary.
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Figure B.18: Γ = 0.5, Re = 100 u. The three plots show the
u-component of the velocity field along the lines ↘, ↙ and ↓,

from top to bottom.
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Figure B.19: Γ = 3, Re = 400 v. The three plots show the
v-component of the velocity field along the lines ↘, ↙ and →,

from top to bottom.
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Figure B.20: Γ = 3, Re = 1000. The top panel shows the u
component along ↘, in the center v along ↘ is shown and on

the bottom v along ↙ is presented.
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Figure B.21: u and v along the central line →.

B.4.2 Re comparison

In Figure B.21 we see that for higher Re a second vortex is arising in the Γ = 0.5

cavity.
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Appendix C

Additional data for Chapter 4

This Appendix holds data and explanations from Chapter 4, which did not fit
in the main text.

C.1 Table of Rec and kc for the variation of Γ

C.2 Critical mode analysis Γ = 1, α = 7◦

Since there is an interesting feature in the localization of the energy production
rate for the critical mode for Γ = 1 and α = 7◦, we elaborate on the mechanism
of energy production for this mode in this section. The production rate was
shown in Figure 4.7, where we explained the mechanism for the main energy
gain, stemming from the contribution I2 = − 1

D∗
~̃v‖ · (~̃v⊥ · ~∇~v0). Here, we present

the most important contributions for the energy production at the slice with
y = 0.2, where we find an explanation for arising contributions from the term
I3 = − 1

D∗
~̃v⊥ · (~̃v‖ · ~∇~v0). The Figures C.1, C.2 and C.3 show the basic flow, the

total energy production rate and the separate contributions (the plots are not
normalized with D∗). The Figures illustrate that a big contribution of I2 may
be seen in this slice with an energy production mechanism that was explained in
the main text. However, there are also big regions, where I2 is negative and these
coincide with the observed nose in the production rate, where the mechanism of
energy production is different, as the main contribution at this location comes
from I3, which means that there has to be a gradient of the basic flow parallel
to the velocity field for components which are orthogonal to the flow: The
magnitude of the basic flow at the nose position (x ≈ 0.2) is approximately given
by (+200,−100,+50), the perturbation velocity is ≈ (+3, 0.1, 0), resulting in
~̃v‖ = (0.84, 1.29,−0.54) and ~̃v‖ = (+3, 0.1, 0). The gradients of the basic flow for
u and v are shown in Figure C.4, where we see that the gradients have the form
∇vi = (−,+, 0) and thus the projection along the parallel perturbation gives a
big negative value, which results in a positive production rate, as the contraction



100 Appendix C. Additional data for Chapter 4

α Γ Rec kc α Γ Rec kc
0.000 0.880 801.172 6.538 45.000 0.880 803.613 5.789
0.000 0.900 810.156 16.237 45.000 0.900 795.557 5.789
0.000 0.920 806.641 16.070 45.000 0.920 786.523 5.735
0.000 0.940 802.734 15.819 45.000 0.940 775.781 5.682
0.000 0.960 798.828 15.652 45.000 0.960 764.795 5.682
0.000 0.980 794.531 15.485 45.000 0.980 753.809 5.629
0.000 1.000 790.312 15.266 45.000 1.000 741.875 5.621
0.000 1.020 785.938 15.150 45.000 1.020 730.127 5.576
0.000 1.040 781.250 14.983 45.000 1.040 719.141 5.576
0.000 1.060 775.781 14.816 45.000 1.060 708.887 5.576
0.000 1.080 770.312 14.649 45.000 1.080 699.609 5.576
0.000 1.100 764.453 14.565 45.000 1.100 659.570 3.130
22.500 0.880 600.391 7.350 67.500 0.880 682.031 4.101
22.500 0.900 608.301 7.250 67.500 0.900 676.660 4.101
22.500 0.920 615.918 7.200 67.500 0.920 671.533 4.039
22.500 0.940 622.070 7.150 67.500 0.940 667.139 3.977
22.500 0.960 627.344 7.100 67.500 0.960 663.477 3.915
22.500 0.980 629.980 7.050 67.500 0.980 660.303 3.853
22.500 1.000 630.703 7.035 67.500 1.000 659.688 3.775
22.500 1.020 628.809 6.950 67.500 1.020 656.641 3.728
22.500 1.040 624.121 6.950 67.500 1.040 656.152 3.666
22.500 1.060 616.211 6.850 67.500 1.060 662.744 3.542
22.500 1.080 605.957 6.800 67.500 1.080 637.842 1.930
22.500 1.100 593.359 6.750 67.500 1.100 600.244 1.961

Table C.1: Variation of Γ - calculated values



C.2. Critical mode analysis Γ = 1, α = 7◦ , y = 0.2 101

Figure C.1: Top: the basic flow with arrows for the u- and
v-components of basic flow and the color denotes the magnitude
of the w-component. Bottom:

∑
i
Ii for the slice at y = 0.2 for

Γ = 1 and α = 7◦ for the critical mode. The color denotes the
energy production rate, the arrows the u- and w-components
of the velocity of the perturbation and the isolines denote the

v−component of the perturbation.
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Figure C.2: Energy transfer terms for y = 0.2 for the
critical mode for Γ = 1 and α = 7◦, the colors denote the
energy production rate, the arrows the u− and w−components
of the velocity of the perturbation and the isolines denote the
v−component of the perturbation. The shown energy transfer

terms are I1 (top) and I2 (bottom).
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Figure C.3: Energy transfer terms for y = 0.2 for the
critical mode for Γ = 1 and α = 7◦, the colors denote the
energy production rate, the arrows the u− and w−components
of the velocity of the perturbation and the isolines denote the
v−component of the perturbation. The shown energy transfer

terms are I3 (top) and I4 (bottom).
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with the orthogonal perturbation does not result in a sign change. The most
general thing to extract here is, that the gradients of the basic flow with respect
to the z−coordinates vanish, which means that for a fixed magnitude of the
perturbation vector, the largest possibility for an energy gain is at positions,
where w̃ = 0, which was the case for the mechanisms described in the main text
as well as the mechanism for I3.
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Figure C.4: Basic flow gradients at y = 0.2, x = 0.2 (Γ =
1, α = 7◦,top: u, bottom: v. The background is colored with the
magnitude of the velocity component and the arrows denote the

respective gradients.
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Appendix D

Scripts

D.1 Python - FENICS control

D.1.1 Calculation script

1 from f e n i c s import ∗
2 import matp lo t l i b
3 matp lo t l i b . use ( ’ pdf ’ )
4 import matp lo t l i b . pyplot as p l t
5 import s c ipy . spa r s e as sp
6 from s c ipy . spa r s e . l i n a l g import e i g s
7 import numpy as np
8 import os
9 import sys

10
11 class mycav :
12 def __init__( s e l f ,Gamma, alpha , c a l c d i r=None ) :
13 s e l f .Gamma=Gamma
14 s e l f . alpha=alpha
15 i f ( c a l c d i r !=None ) :
16 s e l f . c a l c d i r=c a l c d i r
17 i f not os . path . e x i s t s ( c a l c d i r ) :
18 os . mkdir ( c a l c d i r )
19 def analyze ( s e l f , Re , relax_param , l p l o t=False ) :
20 s e l f . relax_param=relax_param
21 print ( ’RUNNING ANALYZE WITH REYNOLDS: {} ’ . format (Re) )
22 print ( ’ 1 s t RUN −−> coar s e GRID ’ )
23 f i l ename=s e l f . c a l c d i r+’ / ’+’Re ’+’_{ : 0 8 . 3 f } ’ . format (Re)
24 R e f i l e=open( f i l ename , ’w ’ )
25 karr=np . l i n s p a c e (0 . 001 , 30 , 30 )
26 nx=90 #70
27 ny=90 #70
28 s e l f . g e tbase f l ow (Re , nx , ny )
29 sigma , omega=s e l f . l i n e a r s t a b (Re , karr , l p l o t )
30 for l i n e in range ( len ( sigma ) ) :
31 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( karr [ l i n e ] , sigma [ l i n e

] , omega [ l i n e ] ) )
32 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma )
33 print ( ’FOUND {} SIGN CHANGES’ . format ( nr ) )
34 #1 s t REFINEMENT OF THE MESH FOR THE CRITICAL k−VALUES
35 i f ( nr>0) :
36 nx=100 #80
37 ny=100 #80
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38 s e l f . g e tbase f l ow (Re , nx , ny )
39 for i in i n d i c e s :
40 k1=karr [ i ] ; k2=karr [ i +1]
41 conv=100
42 k d i f f =10
43 run=0
44 found=True
45 while ( conv>1e−3 and k d i f f > 0 . 1 ) :
46 run+=1
47 print ( ’LOOKING IN THE VICINITY OF k= {} ’ . format ( k1 ) )
48 k_re f ine=np . l i n s p a c e ( k1 , k2 , 5 )
49 sigma2 , omega2=s e l f . l i n e a r s t a b (Re , k_ref ine , l p l o t )
50 nr2 , changearr2 , i n d i c e s 2=s e l f . ge t s ignchange ( sigma2 )
51 i f ( nr2==0 and run==1) :
52 k1=karr [ i −1]
53 k2=karr [ i +2]
54 continue
55 i f ( nr==2 and run>1) :
56 found=False
57 break
58 else :
59 k1=k_re f ine [ i n d i c e s 2 [ 0 ] ]
60 k2=k_re f ine [ i n d i c e s 2 [ 0 ]+1 ]
61 found=True
62 k d i f f=abs ( k2−k1 )
63 conv=abs ( s e l f . f ind_neares t ( sigma2 , 0 ) [ 1 ] )
64 for l i n e in range ( len ( sigma2 ) ) :
65 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( k_re f ine [ l i n e ] ,

sigma2 [ l i n e ] , omega2 [ l i n e ] ) )
66 i f found :
67 print ( ’SIGMA( k_cr it ) b e f o r e 2nd REFINEMENT: {} ’ . format ( sigma2 [ i n d i c e s 2

[ 0 ] ] ) )
68 #EXTRACT THE VALUE CLOSEST TO 0
69 kchoose=k_re f ine [ s e l f . f ind_neares t ( sigma2 , 0 ) [ 0 ] ]
70 #2nd REFINEMENT TO CHECK FOR CONVERGENCE
71 nx=110 #90
72 ny=110 #90
73 s e l f . g e tbase f l ow (Re , nx , ny )
74 sigma2 , omega2=s e l f . l i n e a r s t a b (Re , np . asar ray ( [ kchoose ] ) , l p l o t )
75 print ( ’SIGMA( k_cr it ) a f t e r 2nd REFINEMENT: {} ’ . format ( sigma2 [ 0 ] ) )
76 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( kchoose , sigma2 [ 0 ] ,

omega2 [ 0 ] ) )
77 else :
78 print ( ’WARNING: DID NOT FIND ZERO AFTER 1 s t REFINEMENT FOR k = {} ’ . format (

karr [ i ] ) )
79 R e f i l e . c l o s e ( )
80 s e l f . plot_k_sigma (Re , f i l ename )
81
82 def findRe_c ( s e l f , Re_low , Re_high , l p l o t=False ) :
83 resultname=s e l f . c a l c d i r+’ / ’+’REc_Gamma_{ : 5 . 2 f }_alpha_ { : 5 . 2 f } ’ . format ( s e l f .

Gamma, s e l f . alpha )
84 R e s u l t f i l e=open( resultname , ’w ’ )
85 karr=np . l i n s p a c e (0 . 001 , 30 , 60 )
86 nx=120 #75
87 ny=120 #75
88 Rearr=np . array ( [ Re_low , Re_high ] )
89 Remid=(Re_low+Re_high ) /2 .
90 while (np .min(abs ( Rearr−Remid) ) >1.) :
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91 print ( ’RUNNING findRe_c WITH REYNOLDS: {} ’ . format (Remid) )
92 f i l ename=s e l f . c a l c d i r+’ / ’+’ Re_crit ’+ ’_{ : 0 8 . 3 f } ’ . format (Remid)
93 R e f i l e=open( f i l ename , ’w ’ )
94 i f (Remid<500) :
95 s e l f . relax_param=0.5
96 e l i f (Remid>=500 and Remid<1200) :
97 s e l f . relax_param=0.3
98 else :
99 s e l f . relax_param=0.1

100 s e l f . g e tbase f l ow (Remid , nx , ny )
101 sigma , omega=s e l f . l i n e a r s t a b (Remid , karr , l p l o t )
102 for l i n e in range ( len ( sigma ) ) :
103 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( karr [ l i n e ] , sigma [

l i n e ] , omega [ l i n e ] ) )
104 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma )
105 R e s u l t f i l e . wr i t e ( ’ { : 7 . 2 f } { : 2 d} \n ’ . format (Remid , nr ) )
106 print ( ’FOUND {} SIGN CHANGES’ . format ( nr ) )
107 i f ( nr>0) :
108 Rearr [1 ]=Remid
109 e l i f ( nr==0) :
110 Rearr [0 ]=Remid
111 Remid=(Rearr [0 ]+ Rearr [ 1 ] ) /2 .
112 R e f i l e . c l o s e ( )
113 R e s u l t f i l e . c l o s e ( )
114 def findRe_c_MORE_EV( s e l f , Re_low , Re_high ,nr_EV, kmin , kmax , nr_k , l p l o t=False ) :
115 resultname=s e l f . c a l c d i r+’ / ’+’REc_Gamma_{ : 5 . 2 f }_alpha_ { : 5 . 2 f } ’ . format ( s e l f .

Gamma, s e l f . alpha )
116 R e s u l t f i l e=open( resultname , ’w ’ )
117 karr=np . l i n s p a c e (kmin , kmax , nr_k)
118 nx=120 #75
119 ny=120 #75
120 Rearr=np . array ( [ Re_low , Re_high ] )
121 Remid=(Re_low+Re_high ) /2 .
122 while (np .min(abs ( Rearr−Remid) ) >0.2) :
123 print ( ’RUNNING findRe_c WITH REYNOLDS: {} ’ . format (Remid) )
124 f i l ename=s e l f . c a l c d i r+’ / ’+’ Re_crit ’+ ’_{ : 0 8 . 3 f } ’ . format (Remid)
125 R e f i l e=open( f i l ename , ’w ’ )
126 i f (Remid<500) :
127 s e l f . relax_param=0.5
128 e l i f (Remid>=500 and Remid<1200) :
129 s e l f . relax_param=0.3
130 else :
131 s e l f . relax_param=0.1
132 s e l f . g e tbase f l ow (Remid , nx , ny )
133 sigma_low , omega_low , sigma , omega=s e l f . linearstab_MORE_EV(Remid , karr , nr_EV,

l p l o t )
134 for l i n e in range ( len ( sigma ) ) :
135 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( karr [ l i n e ] , sigma_low [

l i n e ] , omega_low [ l i n e ] ) )
136 R e f i l e . wr i t e ( ’OTHER EIGENVALS FOR THIS K−VECTOR: \n ’ )
137 for i j in range (nr_EV) :
138 R e f i l e . wr i t e ( ’ sigma = {} , omega = {} \n ’ . format ( sigma [ l i n e , i j ] , omega [

l i n e , i j ] ) )
139 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma_low )
140 i f ( len ( i n d i c e s )==0) :
141 R e s u l t f i l e . wr i t e ( ’ { : 7 . 2 f } { : 2 d} \n ’ . format (Remid , nr ) )
142 else :
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143 R e s u l t f i l e . wr i t e ( ’ { : 7 . 2 f } { : 2 d} { :10 g} \n ’ . format (Remid , nr , karr [ i n d i c e s
[ 0 ] ] ) )

144 print ( ’FOUND {} SIGN CHANGES’ . format ( nr ) )
145 i f ( nr>0) :
146 Rearr [1 ]=Remid
147 e l i f ( nr==0) :
148 Rearr [0 ]=Remid
149 Remid=(Rearr [0 ]+ Rearr [ 1 ] ) /2 .
150 R e f i l e . c l o s e ( )
151 R e s u l t f i l e . c l o s e ( )
152
153 def s i n g l e s c an ( s e l f , Gammaarr , a lphaarr , Rearr , karr , nx , ny ) :
154 nx=100 #75
155 ny=100 #75
156 for Gamma in Gammaarr :
157 for alpha in a lphaarr :
158 for Re in Rearr :
159 resultname=’ . / ’+’SCAN_Gamma_{ : 5 . 2 f }_alpha_ { : 5 . 2 f } ’ . format (Gamma, alpha )
160 print ( ’ ’ ’
161 PARAMETERS
162 Gamma = {}
163 alpha = {}
164 Re = {}
165 k = {}
166 ’ ’ ’ . format (Gamma, alpha , Re) )
167 a n a f i l e=open( resultname , ’ a ’ )
168 i f (Re<500) :
169 s e l f . relax_param=0.5
170 e l i f (Re>=500 and Remid<1200) :
171 s e l f . relax_param=0.3
172 else :
173 s e l f . relax_param=0.1
174 s e l f . g e tbase f l ow (Re , nx , ny )
175 sigma , omega=s e l f . l i n e a r s t a b (Re , karr , l p l o t )
176 for l i n e in range ( len ( sigma ) ) :
177 a n a f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( karr [ l i n e ] , sigma

[ l i n e ] , omega [ l i n e ] ) )
178 a n a f i l e . c l o s e ( )
179
180 def ge tbase f l ow ( s e l f , Re , nx , ny ) :
181 parameters [ "mesh_part i t ioner "]= ’ParMETIS ’
182 #parameters [" num_threads " ] = 1
183 #CREATE THE MESH
184 s e l f . mesh=RectangleMesh ( Point (−1./2. ,− s e l f .Gamma/2 . ) , Point ( 1 . / 2 . , s e l f .Gamma

/2 . ) , nx , ny )
185 #REFINE THE MESH HERE
186 s e l f . mymeshrefine ( )
187 #DEFINE TRIAL AND TEST FUNCTIONS
188 s e l f . P2 = VectorElement ( ’P ’ , t r i a ng l e , degree=2,dim=3)
189 s e l f . P1 = FiniteElement ( ’P ’ , t r i a ng l e , degree=1)
190 s e l f . e lement = MixedElement ( [ s e l f . P2 , s e l f . P1 ] )
191 s e l f .W = FunctionSpace ( s e l f . mesh , s e l f . e lement )
192 s e l f . duvw , s e l f . dp = TestFunct ions ( s e l f .W)
193 s e l f . du , s e l f . dv , s e l f . dw = s p l i t ( s e l f . duvw)
194 #THE FUNCTIONS FOR THE FORMULATION
195 uvwp = Function ( s e l f .W)
196 uvw , p = s p l i t (uvwp)
197 u , v ,w = s p l i t (uvw)
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198 #THE FUNCTIONS FOR THE STEADY STATE SOLUTION
199 s e l f . uvwp0 = Function ( s e l f .W)
200 s e l f . uvw0 , p0 = s p l i t ( s e l f . uvwp0)
201 s e l f . u0 , s e l f . v0 , s e l f . w0 = s p l i t ( s e l f . uvw0)
202 Gamma=s e l f .Gamma
203 t o l=1e−14
204 #DEFINE THE BOUNDARIES
205 class BoundN(SubDomain ) :
206 def i n s i d e ( s e l f , x , on_boundary ) :
207 return on_boundary and near (x [ 1 ] ,Gamma/2 . , t o l )
208 class BoundSEW(SubDomain ) :
209 def i n s i d e ( s e l f , x , on_boundary ) :
210 return on_boundary and ( near ( x [1 ] ,−Gamma/2 . , t o l ) or near (x [ 0 ] , −1 . / 2 . , t o l )
211 or near (x [ 0 ] , 1 . / 2 . , t o l ) )
212 s e l f . bcN=BoundN( )
213 s e l f .bcSEW=BoundSEW()
214 ubcN = Dir ichletBC ( s e l f .W. sub (0) , Constant ( (Re∗np . cos ( s e l f . a lpha /180 .∗np . p i )

, 0 . , Re∗np . s i n ( s e l f . a lpha /180 .∗np . p i ) ) ) , s e l f . bcN)
215 ubcSEW= Dir ichletBC ( s e l f .W. sub (0 ) , Constant ( ( 0 . , 0 . , 0 . ) ) , s e l f .bcSEW)
216 bcs=[ubcSEW, ubcN ]
217
218 ###NS−equat ion
219 F = s e l f . du∗u∗u . dx (0 ) ∗dx+s e l f . du∗v∗u . dx (1 ) ∗dx+inner ( grad ( s e l f . du ) , grad (u) ) ∗dx

+s e l f . du∗p . dx (0 ) ∗dx +\
220 s e l f . dv∗u∗v . dx (0 ) ∗dx+s e l f . dv∗v∗v . dx (1 ) ∗dx+inner ( grad ( s e l f . dv ) , grad (v ) ) ∗dx

+s e l f . dv∗p . dx (1 ) ∗dx +\
221 s e l f . dw∗u∗w. dx (0) ∗dx+s e l f . dw∗v∗w. dx (1) ∗dx+inner ( grad ( s e l f . dw) , grad (w) ) ∗dx

+\
222 s e l f . dp∗u . dx (0 ) ∗dx+s e l f . dp∗v . dx (1 ) ∗dx
223
224 J=de r i v a t i v e (F , uvwp)
225 M=u . dx (0 ) ∗dx+v . dx (1 ) ∗dx
226 problem = Nonl inearVar iat iona lProb lem (F, uvwp , bcs , J=J )
227 s o l v e r = Adapt iveNon l inea rVar ia t i ona lSo lve r ( problem ,M)
228 #so l v e r = Non l inearVar ia t iona lSo l ver ( problem )
229 prm = so l v e r . parameters
230 prm_nonlin=prm [ " non l i n ea r_var i a t i ona l_so lv e r " ]
231 prm_nonlin [ "newton_solver " ] [ " abso lu te_to l e rance "]= 1E−8
232 prm_nonlin [ "newton_solver " ] [ " r e l a t i v e_to l e r an c e "]= 1E−8
233 prm_nonlin [ "newton_solver " ] [ " re laxat ion_parameter "]= s e l f . relax_param
234 i f ( s e l f . relax_param < 0 . 2 ) :
235 prm_nonlin [ "newton_solver " ] [ "maximum_iterations" ] = 400
236 else :
237 prm_nonlin [ "newton_solver " ] [ "maximum_iterations" ] = 200
238 prm_nonlin [ "newton_solver " ] [ " error_on_nonconvergence"]=True
239 #prm[" newton_solver " ] [ " abso lu t e_to l e rance "]= 1E−8
240 #prm[" newton_solver " ] [ " r e l a t i v e_ to l e r anc e "]= 1E−8
241 #prm[" newton_solver " ] [ " maximum_iterations " ] = 350
242 #prm[" newton_solver " ] [ " re laxat ion_parameter "]=relax_param
243 #prm[" newton_solver " ] [ " error_on_nonconvergence"]=False
244 so l v e r_to l e r ance=1E−8
245 so lved=False
246 while not so lved :
247 i f ( prm_nonlin [ "newton_solver " ] [ " re laxat ion_parameter " ] <0.05) :
248 print ( ’ ’ ’
249 DID NOT CONVERGE !
250 PARAMETERS:
251 Re : { :08 .4 f }
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252 Gamma : { :08 .4 f }
253 alpha : { :08 .4 f }
254 ’ ’ ’ . format (Re , s e l f .Gamma, s e l f . alpha ) )
255 sys . e x i t ( )
256 uvwp . a s s i gn ( s e l f . uvwp0)
257 try :
258 s o l v e r . s o l v e ( s o l v e r_to l e r ance )
259 except :
260 prm_nonlin [ "newton_solver " ] [ " re laxat ion_parameter " ]∗=0.8
261 s e l f . relax_param∗=0.8
262 s = ">>> WARNING: newton r e l a x a t i o n parameter lowered to %g <<<"
263 print ( s % prm_nonlin [ "newton_solver " ] [ " re laxat ion_parameter " ] )
264 continue
265 so lved=True
266 s e l f . uvwp0 . a s s i gn (uvwp)
267 return
268
269
270 def l i n e a r s t a b ( s e l f , Re , karr , l p l o t=Fal se ) :
271 #THE PERTURBATION−FUNCTIONS
272 uvwp_p = Tria lFunct ion ( s e l f .W)
273 uvec_p ,p_p = s p l i t (uvwp_p)
274 u_p, v_p ,w_p = s p l i t ( uvec_p )
275 #THE BOUNDARY CONDITIONS FOR THE PERTURBATION
276 ubcN_p = Dir ichletBC ( s e l f .W. sub (0 ) , Constant ( ( 0 . , 0 . , 0 . ) ) , s e l f . bcN)
277 ubcSEW_p= Dir ichletBC ( s e l f .W. sub (0) , Constant ( ( 0 . , 0 . , 0 . ) ) , s e l f .bcSEW)
278 bcs_p=[ubcSEW_p, ubcN_p ]
279 k=Constant ( 0 . 1 )
280 sigma=np . z e r o s (np . s i z e ( karr ) )
281 omega=np . z e r o s (np . s i z e ( karr ) )
282 for i , ck in enumerate( karr ) :
283 k . a s s i gn ( ck )
284 Fp_real= \
285 s e l f . du∗ s e l f . u0∗u_p . dx (0 ) ∗dx+s e l f . du∗ s e l f . v0∗u_p . dx (1 ) ∗dx+s e l f . du∗u_p∗

s e l f . u0 . dx (0 ) ∗dx+s e l f . du∗v_p∗ s e l f . u0 . dx (1 ) ∗dx+\
286 s e l f . du∗p_p . dx (0 ) ∗dx+s e l f . du . dx (0 ) ∗u_p . dx (0 ) ∗dx+s e l f . du . dx (1 ) ∗u_p . dx (1 ) ∗

dx+s e l f . du∗k ∗∗2 .∗u_p∗dx+\
287 s e l f . dv∗ s e l f . u0∗v_p . dx (0 ) ∗dx+s e l f . dv∗ s e l f . v0∗v_p . dx (1 ) ∗dx+s e l f . dv∗u_p∗

s e l f . v0 . dx (0 ) ∗dx+s e l f . dv∗v_p∗ s e l f . v0 . dx (1 ) ∗dx+\
288 s e l f . dv∗p_p . dx (1 ) ∗dx+s e l f . dv . dx (0 ) ∗v_p . dx (0 ) ∗dx+s e l f . dv . dx (1 ) ∗v_p . dx (1 ) ∗

dx+s e l f . dv∗k ∗∗2 .∗v_p∗dx+\
289 s e l f . dw∗ s e l f . u0∗w_p. dx (0 ) ∗dx+s e l f . dw∗ s e l f . v0∗w_p. dx (1 ) ∗dx+s e l f . dw∗u_p∗

s e l f .w0 . dx (0 ) ∗dx+s e l f . dw∗v_p∗ s e l f .w0 . dx (1 ) ∗dx+\
290 s e l f . dw . dx (0 ) ∗w_p. dx (0 ) ∗dx+s e l f . dw . dx (1 ) ∗w_p. dx (1 ) ∗dx+s e l f . dw∗k ∗∗2 .∗w_p∗

dx+\
291 s e l f . dp∗u_p . dx (0 ) ∗dx+s e l f . dp∗v_p . dx (1 ) ∗dx
292 #
293 #
294 #
295 Fp_imag= \
296 s e l f . du∗ s e l f .w0∗k∗u_p∗dx+s e l f . dv∗ s e l f .w0∗k∗v_p∗dx+s e l f . dw∗ s e l f .w0∗k∗

w_p∗dx+s e l f . dw∗k∗p_p∗dx+s e l f . dp∗k∗w_p∗dx
297 B_MAT = \
298 s e l f . du∗u_p∗dx+s e l f . dv∗v_p∗dx+s e l f . dw∗w_p∗dx
299 #
300 Ar = PETScMatrix ( )
301 assemble ( Fp_real , t en so r=Ar)
302 [ bc . apply (Ar) for bc in bcs_p ]
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303 Ai = PETScMatrix ( )
304 assemble (Fp_imag , t en so r=Ai )
305 [ bc . apply (Ai ) for bc in bcs_p ]
306 M = PETScMatrix ( )
307 assemble (B_MAT, tenso r=M)
308 #[ bc . app ly (M) fo r bc in bcs_p ]
309 #
310 bc inds = [ ]
311 for bc in bcs_p :
312 bcd i c t = bc . get_boundary_values ( )
313 bc inds . extend ( bcd i c t . keys ( ) )
314 # This j u s t conver t s PETSc to CSR
315 Ar = sp . csr_matrix (Ar . mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
316 Ai = sp . csr_matrix (Ai . mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
317 M = sp . csr_matrix (M. mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
318 # Create s h i f t matrix
319 #s h i f t = 1.2345 e10∗np . ones ( l en ( bc inds ) )
320 #S = sp . csr_matrix ( ( s h i f t , ( bcinds , bc inds ) ) , shape=Ar . shape )
321 v , V = e i g s (Ar+1. j ∗Ai , 10 , M, sigma=−1.)
322 sigma [ i ] , omega [ i ]=np . s o r t ( v ) [ 0 ] . r ea l , np . s o r t ( v ) [ 0 ] . imag
323 print ( ’Re = {} , k = {} lowest_sigma = {} , omega = {} ’ . format (Re , ck , sigma [ i ] ,

omega [ i ] ) )
324 ##SAVE THE RESULTING FLOW FUNCTIONS
325 egv = Function ( s e l f .W)
326 egv_dz = Function ( s e l f .W)
327
328 ##index o f l owes t sigma
329 indx = np . argmin (v )
330 #STORE REAL AND IMAGINARY PART OF THE EIGENVECTOR
331 i n t s t e p s =100
332 za r r = np . l i n s p a c e ( 0 . , 2 . ∗ np . p i /ck , i n t s t e p s )
333 delta_z = zar r [1]− za r r [ 0 ]
334 D_int=0.
335 I1_int=0.
336 I2_int=0.
337 I3_int=0.
338 I4_int=0.
339 Isum_int=0.
340 Imax = −1. e99
341 iwhere=−10 #index with maximum Isum
342 for i , z in enumerate( za r r ) :
343 u_vec = np . r e a l (V[ : , indx ]∗ np . exp (1 j ∗( ck∗z ) )+np . conjugate (V[ : , indx ] ) ∗np . exp

(−1 j ∗( ck∗z ) ) )
344 egv . vec to r ( ) . s e t_ l o ca l ( u_vec )
345 euvw , ep = s p l i t ( egv )
346 eu , ev , ew = s p l i t ( euvw)
347 u_vec_dz = np . r e a l ( (1 j ∗ck ) ∗(V[ : , indx ]∗ np . exp (1 j ∗( ck∗z ) )−np . conjugate (V[ : ,

indx ] ) ∗np . exp(−1 j ∗( ck∗z ) ) ) )
348 egv_dz . vec to r ( ) . s e t_ lo ca l (u_vec_dz)
349 euvw_dz , ep_dz = s p l i t ( egv_dz )
350 eu_dz , ev_dz , ew_dz = s p l i t ( euvw_dz)
351 euvw_par = dot (euvw , s e l f . uvw0) ∗ s e l f . uvw0 /( dot ( s e l f . uvw0 , s e l f . uvw0) )
352 eu_par , ev_par , ew_par = euvw_par
353 euvw_orth = euvw − euvw_par
354 eu_orth , ev_orth , ew_orth = euvw_orth
355 D = ( ( ew . dx (1 )−ev_dz ) ∗∗2 + (eu_dz−ew . dx (0 ) ) ∗∗2 . + ( ev . dx (0 )−eu . dx (1 ) ) ∗∗2) ∗

dx
356 D = assemble (D)
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357 I1 = − eu_orth ∗ ( eu_orth ∗ s e l f . u0 . dx (0 ) + ev_orth ∗ s e l f . u0 . dx (1 ) ) \
358 − ev_orth ∗ ( eu_orth ∗ s e l f . v0 . dx (0 ) + ev_orth ∗ s e l f . v0 . dx (1 ) ) \
359 − ew_orth ∗ ( eu_orth ∗ s e l f .w0 . dx (0 ) + ev_orth ∗ s e l f .w0 . dx (1 ) )
360 I1 = assemble ( I1 ∗dx )
361 I2 = − eu_par ∗ ( eu_orth ∗ s e l f . u0 . dx (0 ) + ev_orth ∗ s e l f . u0 . dx (1 ) ) \
362 − ev_par ∗ ( eu_orth ∗ s e l f . v0 . dx (0 ) + ev_orth ∗ s e l f . v0 . dx (1 ) ) \
363 − ew_par ∗ ( eu_orth ∗ s e l f .w0 . dx (0 ) + ev_orth ∗ s e l f .w0 . dx (1 ) )
364 I2 = assemble ( I2 ∗dx )
365 I3 = − eu_orth ∗ ( eu_par ∗ s e l f . u0 . dx (0 ) + ev_par ∗ s e l f . u0 . dx (1 ) ) \
366 − ev_orth ∗ ( eu_par ∗ s e l f . v0 . dx (0 ) + ev_par ∗ s e l f . v0 . dx (1 ) ) \
367 − ew_orth ∗ ( eu_par ∗ s e l f .w0 . dx (0 ) + ev_par ∗ s e l f .w0 . dx (1 ) )
368 I3 = assemble ( I3 ∗dx )
369 I4 = − eu_par ∗ ( eu_par ∗ s e l f . u0 . dx (0 ) + ev_par ∗ s e l f . u0 . dx (1 ) ) \
370 − ev_par ∗ ( eu_par ∗ s e l f . v0 . dx (0 ) + ev_par ∗ s e l f . v0 . dx (1 ) ) \
371 − ew_par ∗ ( eu_par ∗ s e l f .w0 . dx (0 ) + ev_par ∗ s e l f .w0 . dx (1 ) )
372 I4 = assemble ( I4 ∗dx )
373 Isum = I1+I2+I3+I4
374 i f ( Isum>Imax) :
375 Imax = Isum
376 iwhere = i
377 D_int += D∗delta_z
378 I1_int += I1 ∗delta_z
379 I2_int += I2 ∗delta_z
380 I3_int += I3 ∗delta_z
381 I4_int += I4 ∗delta_z
382 egv f o l d e r = s e l f . c a l c d i r+"/EGV_Re_{ : 0 8 . 4 f }_k_{ : 0 8 . 4 f }" . format (Re , ck )
383 i f not os . path . e x i s t s ( e gv f o l d e r ) :
384 os . mkdir ( e gv f o l d e r )
385 f2=open( e gv f o l d e r+"/ENERGIES" , ’w ’ )
386 f2 . wr i t e ( ’# D I1 I2 I3 I4 \n ’ )
387 f2 . wr i t e ( ’ { : . 6 e} { : . 6 e} { : . 6 e} { : . 6 e} { : . 6 e} ’ . format (D_int , I1_int , I2_int ,

I3_int , I4_int ) )
388 f2 . c l o s e ( )
389 i f ( l p l o t ) :
390 #PLOT THE FLOW WITH THE MAXIMAL ENERGY GAIN AND THE ENERGY CONTRIBUTIONS
391 z=zar r [ iwhere ]
392 u_vec = np . r e a l (V[ : , indx ]∗ np . exp (1 j ∗( ck∗z ) )+np . conjugate (V[ : , indx ] ) ∗np . exp

(−1 j ∗( ck∗z ) ) )
393 egv . vec to r ( ) . s e t_ l o ca l ( u_vec )
394 euvw , ep = s p l i t ( egv )
395 eu , ev , ew = s p l i t ( euvw)
396 euvw_par = dot (euvw , s e l f . uvw0) ∗ s e l f . uvw0 /( dot ( s e l f . uvw0 , s e l f . uvw0) )
397 eu_par , ev_par , ew_par = euvw_par
398 euvw_orth = euvw − euvw_par
399 eu_orth , ev_orth , ew_orth = euvw_orth
400 u_vec_dz = np . r e a l ( (1 j ∗ck ) ∗(V[ : , indx ]∗ np . exp (1 j ∗( ck∗z ) )−np . conjugate (V[ : ,

indx ] ) ∗np . exp(−1 j ∗( ck∗z ) ) ) )
401 egv_dz . vec to r ( ) . s e t_ lo ca l (u_vec_dz)
402 euvw_dz , ep_dz = s p l i t ( egv_dz )
403 eu_dz , ev_dz , ew_dz = s p l i t ( euvw_dz)
404 euvw_par = dot (euvw , s e l f . uvw0) ∗ s e l f . uvw0 /( dot ( s e l f . uvw0 , s e l f . uvw0) )
405 eu_par , ev_par , ew_par = euvw_par
406 euvw_orth = euvw − euvw_par
407 eu_orth , ev_orth , ew_orth = euvw_orth
408 D = (ew . dx (1 )−ev_dz ) ∗∗2 + (eu_dz−ew . dx (0 ) ) ∗∗2 . + ( ev . dx (0 )−eu . dx (1 ) ) ∗∗2
409 I1 = − eu_orth ∗ ( eu_orth ∗ s e l f . u0 . dx (0 ) + ev_orth ∗ s e l f . u0 . dx (1 ) ) \
410 − ev_orth ∗ ( eu_orth ∗ s e l f . v0 . dx (0 ) + ev_orth ∗ s e l f . v0 . dx (1 ) ) \
411 − ew_orth ∗ ( eu_orth ∗ s e l f .w0 . dx (0 ) + ev_orth ∗ s e l f .w0 . dx (1 ) )
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412 I2 = − eu_par ∗ ( eu_orth ∗ s e l f . u0 . dx (0 ) + ev_orth ∗ s e l f . u0 . dx (1 ) ) \
413 − ev_par ∗ ( eu_orth ∗ s e l f . v0 . dx (0 ) + ev_orth ∗ s e l f . v0 . dx (1 ) ) \
414 − ew_par ∗ ( eu_orth ∗ s e l f .w0 . dx (0 ) + ev_orth ∗ s e l f .w0 . dx (1 ) )
415 I3 = − eu_orth ∗ ( eu_par ∗ s e l f . u0 . dx (0 ) + ev_par ∗ s e l f . u0 . dx (1 ) ) \
416 − ev_orth ∗ ( eu_par ∗ s e l f . v0 . dx (0 ) + ev_par ∗ s e l f . v0 . dx (1 ) ) \
417 − ew_orth ∗ ( eu_par ∗ s e l f .w0 . dx (0 ) + ev_par ∗ s e l f .w0 . dx (1 ) )
418 I4 = − eu_par ∗ ( eu_par ∗ s e l f . u0 . dx (0 ) + ev_par ∗ s e l f . u0 . dx (1 ) ) \
419 − ev_par ∗ ( eu_par ∗ s e l f . v0 . dx (0 ) + ev_par ∗ s e l f . v0 . dx (1 ) ) \
420 − ew_par ∗ ( eu_par ∗ s e l f .w0 . dx (0 ) + ev_par ∗ s e l f .w0 . dx (1 ) )
421 Isum = I1+I2+I3+I4
422 IDsum = Isum + D
423 ####Create f i l e s f o r s t o r i n g s o l u t i on
424 V2 = FunctionSpace ( s e l f . mesh , s e l f . P1)
425 for i , en in zip ( [ ’D ’ , ’ I1 ’ , ’ I2 ’ , ’ I3 ’ , ’ I4 ’ , ’ Isum ’ , ’ IDsum ’ ] , [D, I1 , I2 , I3 , I4 ,

Isum , IDsum ] ) :
426 f i l ename=egv f o l d e r+"/"+i+" . pvd"
427 I f i l e=F i l e ( f i l ename )
428 temp = pro j e c t ( en ,V2)
429 temp . rename ( i , "" )
430 I f i l e << temp
431 ###RENAME THE FIELD TO BE BE NAMED ve l AND p
432 uf i l ename = egv f o l d e r+"/u . pvd"
433 u f i l e = F i l e ( u f i l ename )
434 egv . rename ( " ve l " , "" )
435 u f i l e << egv . sub (0 )
436 pf i l ename=egv f o l d e r+"/p . pvd"
437 p f i l e = F i l e ( p f i l ename )
438 egv . rename ( " p r e s su r e " , "" )
439 p f i l e << egv . sub (1 )
440 #########SAVING DONE
441 return sigma , omega
442
443 def linearstab_MORE_EV( s e l f , Re , karr , nr_EV, l p l o t=False , e nana l y s i s=False ) :
444 #THE PERTURBATION−FUNCTIONS
445 uvwp_p = Tria lFunct ion ( s e l f .W)
446 uvec_p ,p_p = s p l i t (uvwp_p)
447 u_p, v_p ,w_p = s p l i t ( uvec_p )
448 #THE BOUNDARY CONDITIONS FOR THE PERTURBATION
449 ubcN_p = Dir ichletBC ( s e l f .W. sub (0 ) , Constant ( ( 0 . , 0 . , 0 . ) ) , s e l f . bcN)
450 ubcSEW_p= Dir ichletBC ( s e l f .W. sub (0) , Constant ( ( 0 . , 0 . , 0 . ) ) , s e l f .bcSEW)
451 bcs_p=[ubcSEW_p, ubcN_p ]
452 k=Constant ( 0 . 1 )
453 sigma_low=np . z e r o s (np . s i z e ( karr ) )
454 omega_low=np . z e r o s (np . s i z e ( karr ) )
455 sigma=np . z e r o s ( [ np . s i z e ( karr ) ,nr_EV ] )
456 omega=np . z e r o s ( [ np . s i z e ( karr ) ,nr_EV ] )
457 for i , ck in enumerate( karr ) :
458 k . a s s i gn ( ck )
459 Fp_real= \
460 s e l f . du∗ s e l f . u0∗u_p . dx (0 ) ∗dx+s e l f . du∗ s e l f . v0∗u_p . dx (1 ) ∗dx+s e l f . du∗u_p∗

s e l f . u0 . dx (0 ) ∗dx+s e l f . du∗v_p∗ s e l f . u0 . dx (1 ) ∗dx+\
461 s e l f . du∗p_p . dx (0 ) ∗dx+s e l f . du . dx (0 ) ∗u_p . dx (0 ) ∗dx+s e l f . du . dx (1 ) ∗u_p . dx (1 ) ∗

dx+s e l f . du∗k ∗∗2 .∗u_p∗dx+\
462 s e l f . dv∗ s e l f . u0∗v_p . dx (0 ) ∗dx+s e l f . dv∗ s e l f . v0∗v_p . dx (1 ) ∗dx+s e l f . dv∗u_p∗

s e l f . v0 . dx (0 ) ∗dx+s e l f . dv∗v_p∗ s e l f . v0 . dx (1 ) ∗dx+\
463 s e l f . dv∗p_p . dx (1 ) ∗dx+s e l f . dv . dx (0 ) ∗v_p . dx (0 ) ∗dx+s e l f . dv . dx (1 ) ∗v_p . dx (1 ) ∗

dx+s e l f . dv∗k ∗∗2 .∗v_p∗dx+\
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464 s e l f . dw∗ s e l f . u0∗w_p. dx (0 ) ∗dx+s e l f . dw∗ s e l f . v0∗w_p. dx (1 ) ∗dx+s e l f . dw∗u_p∗
s e l f .w0 . dx (0 ) ∗dx+s e l f . dw∗v_p∗ s e l f .w0 . dx (1 ) ∗dx+\

465 s e l f . dw . dx (0 ) ∗w_p. dx (0 ) ∗dx+s e l f . dw . dx (1 ) ∗w_p. dx (1 ) ∗dx+s e l f . dw∗k ∗∗2 .∗w_p∗
dx+\

466 s e l f . dp∗u_p . dx (0 ) ∗dx+s e l f . dp∗v_p . dx (1 ) ∗dx
467 #
468 #
469 #
470 Fp_imag= \
471 s e l f . du∗ s e l f .w0∗k∗u_p∗dx+s e l f . dv∗ s e l f .w0∗k∗v_p∗dx+s e l f . dw∗ s e l f .w0∗k∗

w_p∗dx+s e l f . dw∗k∗p_p∗dx+s e l f . dp∗k∗w_p∗dx
472 B_MAT = \
473 s e l f . du∗u_p∗dx+s e l f . dv∗v_p∗dx+s e l f . dw∗w_p∗dx
474 #
475 Ar = PETScMatrix ( )
476 assemble ( Fp_real , t en so r=Ar)
477 [ bc . apply (Ar) for bc in bcs_p ]
478 Ai = PETScMatrix ( )
479 assemble (Fp_imag , t en so r=Ai )
480 [ bc . apply (Ai ) for bc in bcs_p ]
481 M = PETScMatrix ( )
482 assemble (B_MAT, tenso r=M)
483 #[ bc . app ly (M) fo r bc in bcs_p ]
484 #
485 bc inds = [ ]
486 for bc in bcs_p :
487 bcd i c t = bc . get_boundary_values ( )
488 bc inds . extend ( bcd i c t . keys ( ) )
489 # This j u s t conver t s PETSc to CSR
490 Ar = sp . csr_matrix (Ar . mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
491 Ai = sp . csr_matrix (Ai . mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
492 M = sp . csr_matrix (M. mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
493 # Create s h i f t matrix
494 #s h i f t = 1.2345 e10∗np . ones ( l en ( bc inds ) )
495 #S = sp . csr_matrix ( ( s h i f t , ( bcinds , bc inds ) ) , shape=Ar . shape )
496 i f (nr_EV<10) :
497 v , V = e i g s (Ar+1. j ∗Ai , 10 , M, sigma=−10)
498 else :
499 v , V = e i g s (Ar+1. j ∗Ai , 10 , M, sigma=−10)
500 sigma_low [ i ] , omega_low [ i ]=np . s o r t ( v ) [ 0 ] . r ea l , np . s o r t ( v ) [ 0 ] . imag
501 print ( ’Re = {} , k = {} lowest_sigma = {} , omega = {} ’ . format (Re , ck , sigma_low

[ i ] , omega_low [ i ] ) )
502 print ( ’OTHER EIGENVALS : \n ’ )
503 #ARRAY FOR A MAPPING OF SIGMA
504 maparr=np . a r g s o r t ( v )
505 for i j in range (nr_EV) :
506 sigma [ i , i j ] , omega [ i , i j ]=np . s o r t ( v ) [ i j ] . r ea l , np . s o r t ( v ) [ i j ] . imag
507 print ( ’ sigma = {} , omega = {} \n ’ . format ( sigma [ i , i j ] , omega [ i , i j ] ) )
508 i f ( enana l y s i s ) :
509 ##SAVE THE RESULTING FLOW FUNCTIONS
510 egv = Function ( s e l f .W)
511 egv_dz = Function ( s e l f .W)
512
513 ##index o f l owes t sigma
514 for i s igma in range (nr_EV) :
515 indx = maparr [ i s igma ]
516 #STORE REAL AND IMAGINARY PART OF THE EIGENVECTOR
517 i n t s t e p s =100
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518 za r r = np . l i n s p a c e ( 0 . , 2 . ∗ np . p i /ck , i n t s t e p s )
519 delta_z = zar r [1]− za r r [ 0 ]
520 D_int=0.
521 I1_int=0.
522 I2_int=0.
523 I3_int=0.
524 I4_int=0.
525 Isum_int=0.
526 Imax = −1. e99
527 iwhere=−10 #index with maximum Isum
528 for i , z in enumerate( za r r ) :
529 u_vec = np . r e a l (V[ : , indx ]∗ np . exp (1 j ∗( ck∗z ) )+np . conjugate (V[ : , indx ] ) ∗np .

exp(−1 j ∗( ck∗z ) ) )
530 egv . vec to r ( ) . s e t_ lo ca l ( u_vec )
531 euvw , ep = s p l i t ( egv )
532 eu , ev , ew = s p l i t ( euvw)
533 u_vec_dz = np . r e a l ( (1 j ∗ck ) ∗(V[ : , indx ]∗ np . exp (1 j ∗( ck∗z ) )−np . conjugate (V[ : ,

indx ] ) ∗np . exp(−1 j ∗( ck∗z ) ) ) )
534 egv_dz . vec to r ( ) . s e t_ lo ca l (u_vec_dz)
535 euvw_dz , ep_dz = s p l i t ( egv_dz )
536 eu_dz , ev_dz , ew_dz = s p l i t ( euvw_dz)
537 euvw_par = dot (euvw , s e l f . uvw0) ∗ s e l f . uvw0 /( dot ( s e l f . uvw0 , s e l f . uvw0) )
538 eu_par , ev_par , ew_par = euvw_par
539 euvw_orth = euvw − euvw_par
540 eu_orth , ev_orth , ew_orth = euvw_orth
541 D = ( ( ew . dx (1 )−ev_dz ) ∗∗2 + (eu_dz−ew . dx (0 ) ) ∗∗2 . + ( ev . dx (0 )−eu . dx (1 ) ) ∗∗2)

∗dx
542 D = assemble (D)
543 I1 = − eu_orth ∗ ( eu_orth ∗ s e l f . u0 . dx (0 ) + ev_orth ∗ s e l f . u0 . dx (1 ) ) \
544 − ev_orth ∗ ( eu_orth ∗ s e l f . v0 . dx (0 ) + ev_orth ∗ s e l f . v0 . dx (1 ) ) \
545 − ew_orth ∗ ( eu_orth ∗ s e l f .w0 . dx (0 ) + ev_orth ∗ s e l f .w0 . dx (1 ) )
546 I1 = assemble ( I1 ∗dx )
547 I2 = − eu_par ∗ ( eu_orth ∗ s e l f . u0 . dx (0 ) + ev_orth ∗ s e l f . u0 . dx (1 ) ) \
548 − ev_par ∗ ( eu_orth ∗ s e l f . v0 . dx (0 ) + ev_orth ∗ s e l f . v0 . dx (1 ) ) \
549 − ew_par ∗ ( eu_orth ∗ s e l f .w0 . dx (0 ) + ev_orth ∗ s e l f .w0 . dx (1 ) )
550 I2 = assemble ( I2 ∗dx )
551 I3 = − eu_orth ∗ ( eu_par ∗ s e l f . u0 . dx (0 ) + ev_par ∗ s e l f . u0 . dx (1 ) ) \
552 − ev_orth ∗ ( eu_par ∗ s e l f . v0 . dx (0 ) + ev_par ∗ s e l f . v0 . dx (1 ) ) \
553 − ew_orth ∗ ( eu_par ∗ s e l f .w0 . dx (0 ) + ev_par ∗ s e l f .w0 . dx (1 ) )
554 I3 = assemble ( I3 ∗dx )
555 I4 = − eu_par ∗ ( eu_par ∗ s e l f . u0 . dx (0 ) + ev_par ∗ s e l f . u0 . dx (1 ) ) \
556 − ev_par ∗ ( eu_par ∗ s e l f . v0 . dx (0 ) + ev_par ∗ s e l f . v0 . dx (1 ) ) \
557 − ew_par ∗ ( eu_par ∗ s e l f .w0 . dx (0 ) + ev_par ∗ s e l f .w0 . dx (1 ) )
558 I4 = assemble ( I4 ∗dx )
559 Isum = I1+I2+I3+I4
560 i f ( Isum>Imax) :
561 Imax = Isum
562 iwhere = i
563 D_int += D∗delta_z
564 I1_int += I1 ∗delta_z
565 I2_int += I2 ∗delta_z
566 I3_int += I3 ∗delta_z
567 I4_int += I4 ∗delta_z
568 egv f o l d e r = s e l f . c a l c d i r+"/EGV_Re_{ : 0 8 . 4 f }_k_{ : 0 8 . 4 f }_EV_{:03d}" . format (Re

, ck , i s igma )
569 i f not os . path . e x i s t s ( e gv f o l d e r ) :
570 os . mkdir ( e gv f o l d e r )
571 f2=open( e gv f o l d e r+"/ENERGIES" . format ( i s igma ) , ’w ’ )
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572 f2 . wr i t e ( ’# D I1 I2 I3 I4 \n ’ )
573 f2 . wr i t e ( ’ { : . 6 e} { : . 6 e} { : . 6 e} { : . 6 e} { : . 6 e} ’ . format (D_int , I1_int , I2_int ,

I3_int , I4_int ) )
574 f2 . c l o s e ( )
575 i f ( l p l o t ) :
576 #PLOT THE FLOW WITH THE MAXIMAL ENERGY GAIN AND THE ENERGY CONTRIBUTIONS
577 z=zar r [ iwhere ]
578 u_vec = np . r e a l (V[ : , indx ]∗ np . exp (1 j ∗( ck∗z ) )+np . conjugate (V[ : , indx ] ) ∗np .

exp(−1 j ∗( ck∗z ) ) )
579 egv . vec to r ( ) . s e t_ lo ca l ( u_vec )
580 euvw , ep = s p l i t ( egv )
581 eu , ev , ew = s p l i t ( euvw)
582 euvw_par = dot (euvw , s e l f . uvw0) ∗ s e l f . uvw0 /( dot ( s e l f . uvw0 , s e l f . uvw0) )
583 eu_par , ev_par , ew_par = euvw_par
584 euvw_orth = euvw − euvw_par
585 eu_orth , ev_orth , ew_orth = euvw_orth
586 u_vec_dz = np . r e a l ( (1 j ∗ck ) ∗(V[ : , indx ]∗ np . exp (1 j ∗( ck∗z ) )−np . conjugate (V[ : ,

indx ] ) ∗np . exp(−1 j ∗( ck∗z ) ) ) )
587 egv_dz . vec to r ( ) . s e t_ lo ca l (u_vec_dz)
588 euvw_dz , ep_dz = s p l i t ( egv_dz )
589 eu_dz , ev_dz , ew_dz = s p l i t ( euvw_dz)
590 euvw_par = dot (euvw , s e l f . uvw0) ∗ s e l f . uvw0 /( dot ( s e l f . uvw0 , s e l f . uvw0) )
591 eu_par , ev_par , ew_par = euvw_par
592 euvw_orth = euvw − euvw_par
593 eu_orth , ev_orth , ew_orth = euvw_orth
594 D = (ew . dx (1 )−ev_dz ) ∗∗2 + (eu_dz−ew . dx (0 ) ) ∗∗2 . + ( ev . dx (0 )−eu . dx (1 ) ) ∗∗2
595 I1 = − eu_orth ∗ ( eu_orth ∗ s e l f . u0 . dx (0 ) + ev_orth ∗ s e l f . u0 . dx (1 ) ) \
596 − ev_orth ∗ ( eu_orth ∗ s e l f . v0 . dx (0 ) + ev_orth ∗ s e l f . v0 . dx (1 ) ) \
597 − ew_orth ∗ ( eu_orth ∗ s e l f .w0 . dx (0 ) + ev_orth ∗ s e l f .w0 . dx (1 ) )
598 I2 = − eu_par ∗ ( eu_orth ∗ s e l f . u0 . dx (0 ) + ev_orth ∗ s e l f . u0 . dx (1 ) ) \
599 − ev_par ∗ ( eu_orth ∗ s e l f . v0 . dx (0 ) + ev_orth ∗ s e l f . v0 . dx (1 ) ) \
600 − ew_par ∗ ( eu_orth ∗ s e l f .w0 . dx (0 ) + ev_orth ∗ s e l f .w0 . dx (1 ) )
601 I3 = − eu_orth ∗ ( eu_par ∗ s e l f . u0 . dx (0 ) + ev_par ∗ s e l f . u0 . dx (1 ) ) \
602 − ev_orth ∗ ( eu_par ∗ s e l f . v0 . dx (0 ) + ev_par ∗ s e l f . v0 . dx (1 ) ) \
603 − ew_orth ∗ ( eu_par ∗ s e l f .w0 . dx (0 ) + ev_par ∗ s e l f .w0 . dx (1 ) )
604 I4 = − eu_par ∗ ( eu_par ∗ s e l f . u0 . dx (0 ) + ev_par ∗ s e l f . u0 . dx (1 ) ) \
605 − ev_par ∗ ( eu_par ∗ s e l f . v0 . dx (0 ) + ev_par ∗ s e l f . v0 . dx (1 ) ) \
606 − ew_par ∗ ( eu_par ∗ s e l f .w0 . dx (0 ) + ev_par ∗ s e l f .w0 . dx (1 ) )
607 Isum = I1+I2+I3+I4
608 IDsum = Isum + D
609 ####Create f i l e s f o r s t o r i n g s o l u t i on
610 V2 = FunctionSpace ( s e l f . mesh , s e l f . P1)
611 for i , en in zip ( [ ’D ’ , ’ I1 ’ , ’ I2 ’ , ’ I3 ’ , ’ I4 ’ , ’ Isum ’ , ’ IDsum ’ ] , [D, I1 , I2 , I3 , I4 ,

Isum , IDsum ] ) :
612 f i l ename=egv f o l d e r+"/"+i+" . pvd"
613 I f i l e=F i l e ( f i l ename )
614 temp = pro j e c t ( en ,V2)
615 temp . rename ( i , "" )
616 I f i l e << temp
617 ###RENAME THE FIELD TO BE BE NAMED ve l AND p
618 uf i l ename = egv f o l d e r+"/u . pvd"
619 u f i l e = F i l e ( u f i l ename )
620 egv . rename ( " ve l " , "" )
621 u f i l e << egv . sub (0 )
622 pf i l ename=egv f o l d e r+"/p . pvd"
623 p f i l e = F i l e ( p f i l ename )
624 egv . rename ( " pr e s su r e " , "" )
625 p f i l e << egv . sub (1 )
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626 #########SAVING DONE
627 return sigma_low , omega_low , sigma , omega
628
629
630
631 def mymeshrefine ( s e l f ) :
632 #parameters [" num_threads " ] = 1
633 parameters [ "mesh_part i t ioner "]= ’ParMETIS ’
634 #REFINE CLOSE TO THE BORDER
635 #TRY 3 REFINEMENTS IN THE BEGINNING
636 #@30% 15% 5% of the box
637 dist_pc=np . array ( [ 0 . 3 , 0 . 1 5 , 0 . 0 5 ] )
638 d i s t x_ l e f t = −1./2.+dist_pc ∗1 .
639 d i s tx_r ight = 1./2.− dist_pc ∗1 .
640 disty_bottom = − s e l f .Gamma/2.+ dist_pc ∗ s e l f .Gamma
641 disty_top = s e l f .Gamma/2.−dist_pc ∗ s e l f .Gamma
642 for i in range ( len ( dist_pc ) ) :
643 ce l l_markers = Cel lFunct ion ( " bool " , s e l f . mesh )
644 ce l l_markers . s e t_a l l ( Fa l se )
645 for c e l l in c e l l s ( s e l f . mesh ) :
646 p = c e l l . midpoint ( )
647 i f ( ( p . x ( )<d i s t x_ l e f t [ i ] ) or
648 (p . x ( )>d i s tx_r ight [ i ] ) or
649 (p . y ( )<disty_bottom [ i ] ) or
650 (p . y ( )>disty_top [ i ] ) ) :
651 ce l l_markers [ c e l l ]=True
652 s e l f . mesh=r e f i n e ( s e l f . mesh , ce l l_markers )
653 def get s ignchange ( s e l f , i n a r r ) :
654 nr=0
655 change =[ ]
656 i n d i c e s =[ ]
657 for i in range (np . s i z e ( i n a r r )−1) :
658 i f ( i n a r r [ i ]>=0 and i n a r r [ i +1]<0) :
659 nr+=1
660 change . append (1 )
661 i n d i c e s . append ( i )
662 e l i f ( i n a r r [ i ]<=0 and i n a r r [ i +1]>0) :
663 nr+=1
664 change . append(−1)
665 i n d i c e s . append ( i )
666 return nr , np . array ( change ) , np . array ( i n d i c e s )
667 def f ind_neares t ( s e l f , array , va lue ) :
668 array = np . asar ray ( array )
669 idx = (np . abs ( array − value ) ) . argmin ( )
670 return idx , array [ idx ]
671 def plot_k_sigma ( s e l f , Re , f i l ename ) :
672 p l o t f i l e=open( f i l ename , ’ r ’ )
673 data=p l o t f i l e . r e a d l i n e s ( )
674 data_arr=np . z e r o s ( [ len ( data ) , 2 ] )
675 for i , l i n e in enumerate( data ) :
676 data_arr [ i , 0 ] , data_arr [ i ,1 ]= f loat ( l i n e . s p l i t ( ) [ 0 ] ) , f loat ( l i n e . s p l i t ( ) [ 1 ] )
677 #sor t the array
678 temp = np . a r g s o r t ( data_arr , 0 ) [ : , 0 ]
679 sorted_arr=data_arr [ temp ]
680 #SET MATPLOTLIB TeX
681 p l t . r c ( ’ f ont ’ ,∗∗{ ’ fami ly ’ : ’ s e r i f ’ , ’ s e r i f ’ : [ ’ Times ’ ] } )
682 p l t . r c ( ’ t ex t ’ , usetex=True )
683 def cm2inch ( value ) :
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684 return value /2 .54
685 f i g , ax = p l t . subp lo t s (1 , f i g s i z e =(cm2inch ( 1 3 . 8 ) , cm2inch ( 7 . 0 ) ) )
686 ax . p l o t ( sorted_arr [ : , 0 ] , sorted_arr [ : , 1 ] , c=’ r ’ , l i n e s t y l e=’− ’ )
687 ax . g r i d (True , which=’ both ’ , l s="−−" , lw=0.15)
688 ax . s e t_ t i t l e ( ’ S t a b i l i t y f o r Re = {} ’ . format (Re) )
689 ax . t i t l e . set_weight ( ’ bold ’ )
690 ax . set_xlim ( [ 0 , 1 0 . ] )
691 ax . s e t_x labe l ( r "k" , l abe lpad =1.)
692 ax . s e t_y labe l ( r "$\ sigma$" , l abe lpad =1.)
693 savename=s e l f . c a l c d i r+’ / ’+’Re_{ : 0 7 . 1 f } . pdf ’ . format (Re)
694 p l t . s a v e f i g ( savename , format=’ pdf ’ , dpi=f i g . dpi )
695
696 def r eaddatase t ( s e l f ,Gamma, angle , Re) :
697 f o l d e r=’Gamma_{ : 0 7 . 3 f }_alpha_ { : 0 5 . 1 f } ’ . format (Gamma, ang le )
698 f i l ename=f o l d e r+’ / ’+’Re ’+’_{ : 0 8 . 3 f } ’ . format (Re)
699 R e f i l e=open( f i l ename , ’ r ’ )
700 l i n e s=Re f i l e . r e a d l i n e s ( )
701 karr=np . z e r o s ( len ( l i n e s ) )
702 sigma_arr=np . z e r o s ( len ( l i n e s ) )
703 omega_arr=np . z e r o s ( len ( l i n e s ) )
704 for i , l i n e in enumerate( l i n e s ) :
705 karr [ i ] = f loat ( l i n e . s p l i t ( ) [ 0 ] )
706 sigma_arr [ i ] = f loat ( l i n e . s p l i t ( ) [ 1 ] )
707 omega_arr [ i ] = f loat ( l i n e . s p l i t ( ) [ 2 ] )
708 return karr , sigma_arr , omega_arr
709
710 def get_kneutra l ( s e l f ,Gamma, alpha , Re) :
711 karr , sigma_arr , omega_arr=s e l f . r eaddatase t (Gamma, alpha , Re)
712 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma_arr )
713 i f ( nr == 0) :
714 return 0
715 else :
716 return karr [ i n d i c e s ] , sigma_arr [ i n d i c e s ] , omega_arr [ i n d i c e s ]
717 #A FUNCTION WHERE WE COMPARE DIFFERENT CURVES
718 #p l o t a r r has to be a d i c t i o n a i r y t ha t prov ide s the Gamma,Re , ang le va lue s
719 def compareplot ( s e l f , p l o ta r r , show=True ) :
720 #SET MATPLOTLIB TeX
721 p l t . r c ( ’ f ont ’ ,∗∗{ ’ fami ly ’ : ’ s e r i f ’ , ’ s e r i f ’ : [ ’ Times ’ ] } )
722 p l t . r c ( ’ t ex t ’ , usetex=True )
723 def cm2inch ( value ) :
724 return value /2 .54
725 f i g , ax = p l t . subp lo t s (1 , f i g s i z e =(cm2inch ( 1 3 . 8 ) , cm2inch ( 7 . 0 ) ) )
726 ax . g r i d (True , which=’ both ’ , l s="−−" , lw=0.15)
727 c o l o r s = [ ’#0000 f f ’ , ’#f f 0 000 ’ , ’#009933 ’ , ’#cc0099 ’ , ’#f f 9 900 ’ , ’#0099cc ’ ,\
728 ’#009999 ’ ]
729 for i in range ( len ( p l o t a r r ) ) :
730 Gamma=p l o t a r r [ i ] [ ’Gamma ’ ]
731 Re = p l o t a r r [ i ] [ ’Re ’ ]
732 ang le = p l o t a r r [ i ] [ ’ ang le ’ ]
733 l a b e l = r ’ $\ alpha ={:5.2 f } \Gamma={:5.2 f } Re={:8.2 f }$ ’ . format ( angle ,Gamma, Re)
734 karr , sigma_arr , omega_arr=s e l f . r eaddatase t (Gamma, angle , Re)
735 #SORT THE ARRAYS
736 sigma_arr=sigma_arr [ np . a r g s o r t ( karr ) ]
737 omega_arr=omega_arr [ np . a r g s o r t ( karr ) ]
738 karr = np . s o r t ( karr )
739 ax . p l o t ( karr , sigma_arr , c=c o l o r s [ i ] , l i n e s t y l e=’− ’ , l a b e l=l a b e l )
740 ax . s e t_x labe l ( r "k" , l abe lpad =1.)
741 ax . s e t_y labe l ( r "$\ sigma$" , l abe lpad =1.)
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742 ax . l egend ( )
743 i f ( show ) :
744 p l t . show ( )
745 else :
746 p l t . s a v e f i g ( ’TEMPPLOT. pdf ’ , format=’ pdf ’ , dpi=f i g . dpi )
747 def analyze_k_n ( s e l f , Re , relax_param , k1 , k2 , ngr id ) :
748 print ( ’RUNNING ANALYZE_K WITH REYNOLDS: {} \n k1 = {} k2 = {} ’ . format (Re , k1 ,

k2 ) )
749 f i l ename=s e l f . c a l c d i r+’ / ’+’Re_k ’+’_{ : 0 8 . 3 f } ’ . format (Re)
750 R e f i l e=open( f i l ename , ’w ’ )
751 karr=np . l i n s p a c e ( k1 , k2 , 3 )
752 nx=ngr id
753 ny=ngr id
754 s e l f . g e tbase f l ow (Re , nx , ny )
755 sigma , omega=s e l f . l i n e a r s t a b (Re , karr )
756 for l i n e in range ( len ( sigma ) ) :
757 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( karr [ l i n e ] , sigma [ l i n e ] ,

omega [ l i n e ] ) )
758 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma )
759 Re f i l e . c l o s e ( )
760
761 def gamma_angle_Re(gammaarr , ang lear r , Rearr , relax_param_arr ) :
762 for Gamma in gammaarr :
763 for ang le in ang l ea r r :
764 print ( ’ ’ ’
765 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
766 CALCULATING GAMMA = {:07 .3 f } AND ANGLE = {:05 .1 f }
767 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%’ ’ ’ . format (Gamma, ang le ) )
768 f o l d e r=’Gamma_{ : 0 7 . 3 f }_alpha_ { : 0 5 . 1 f } ’ . format (Gamma, ang le )
769 cav=mycav(Gamma, angle , c a l c d i r=f o l d e r )
770 for Re , relax_param in zip ( Rearr , relax_param_arr ) :
771 cav . ana lyze (Re , relax_param )
772
773 def RcAnalysis ( gammaarr , ang lear r , Reminarr , Remaxarr ) :
774 for Gamma in gammaarr :
775 for ang le in ang l ea r r :
776 print ( ’ ’ ’
777 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
778 ReC ana l y s i s : GAMMA = {:07 .3 f } AND ANGLE = {:05 .1 f }
779 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%’ ’ ’ . format (Gamma, ang le ) )
780 f o l d e r=’Gamma_{ : 0 7 . 3 f }_alpha_ { : 0 5 . 1 f } ’ . format (Gamma, ang le )
781 cav=mycav(Gamma, angle , c a l c d i r=f o l d e r )
782 Re_low=Reminarr [ 0 ]
783 Re_high=Remaxarr [ 0 ]
784 cav . findRe_c (Re_low , Re_high )
785 def RcAnalysis_MORE_EV(gammaarr , ang lear r , Reminarr , Remaxarr , nr_EV_arr , kmin , kmax ,

nr_k) :
786 for Gamma in gammaarr :
787 for ang le in ang l ea r r :
788 print ( ’ ’ ’
789 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
790 ReC ana l y s i s : GAMMA = {:07 .3 f } AND ANGLE = {:05 .1 f }
791 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%’ ’ ’ . format (Gamma, ang le ) )
792 f o l d e r=’Gamma_{ : 0 7 . 3 f }_alpha_ { : 0 5 . 1 f } ’ . format (Gamma, ang le )
793 cav=mycav(Gamma, angle , c a l c d i r=f o l d e r )
794 Re_low=Reminarr [ 0 ]
795 Re_high=Remaxarr [ 0 ]
796 nr_EV=nr_EV_arr [ 0 ]
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797 cav . findRe_c_MORE_EV(Re_low , Re_high ,nr_EV, kmin , kmax , nr_k)
798
799 i f __name__==’__main__ ’ :
800 print ( ’HELLO’ )

D.1.2 Plotting script

1 from f e n i c s import ∗
2 import matp lo t l i b . pyplot as p l t
3 import s c ipy . spa r s e as sp
4 from s c ipy . spa r s e . l i n a l g import e i g s
5 import numpy as np
6 import os
7 import sys
8
9 class mycav :

10 def __init__( s e l f ,Gamma, alpha , c a l c d i r=None ) :
11 s e l f .Gamma=Gamma
12 s e l f . alpha=alpha
13 i f ( c a l c d i r !=None ) :
14 s e l f . c a l c d i r=c a l c d i r
15 i f not os . path . e x i s t s ( c a l c d i r ) :
16 os . mkdir ( c a l c d i r )
17 def ana lyze ( s e l f , Re , relax_param ) :
18 print ( ’RUNNING ANALYZE WITH REYNOLDS: {} ’ . format (Re) )
19 print ( ’ 1 s t RUN −−> coar s e GRID ’ )
20 f i l ename=s e l f . c a l c d i r+’ / ’+’Re ’+’_{ : 0 8 . 3 f } ’ . format (Re)
21 R e f i l e=open( f i l ename , ’w ’ )
22 karr=np . l i n s p a c e (0 . 001 , 30 , 30 )
23 nx=70
24 ny=70
25 s e l f . g e tbase f l ow (Re , nx , ny , relax_param )
26 sigma , omega=s e l f . l i n e a r s t a b (Re , karr )
27 for l i n e in range ( len ( sigma ) ) :
28 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( karr [ l i n e ] ,

sigma [ l i n e ] , omega [ l i n e ] ) )
29 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma )
30 print ( ’FOUND {} SIGN CHANGES’ . format ( nr ) )
31 #1 s t REFINEMENT OF THE MESH FOR THE CRITICAL k−VALUES
32 i f ( nr>0) :
33 nx=75
34 ny=75
35 s e l f . g e tbase f l ow (Re , nx , ny , relax_param )
36 for i in i n d i c e s :
37 k1=karr [ i ] ; k2=karr [ i +1]
38 conv=100
39 k d i f f =10
40 run=0
41 while ( conv>1e−3 and k d i f f > 0 . 1 ) :
42 run+=1
43 print ( ’LOOKING IN THE VICINITY OF k= {} ’ . format ( k1 ) )
44 k_re f ine=np . l i n s p a c e ( k1 , k2 , 5 )
45 sigma2 , omega2=s e l f . l i n e a r s t a b (Re , k_re f ine )
46 nr2 , changearr2 , i n d i c e s 2=s e l f . ge t s ignchange ( sigma2 )
47 i f ( nr2==0 and run>1) :
48 k1=karr [ i −1]
49 k2=karr [ i +2]
50 e l i f ( nr2==0 and run==1) :
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51 break
52 else :
53 k1=k_re f ine [ i n d i c e s 2 [ 0 ] ]
54 k2=k_re f ine [ i n d i c e s 2 [ 0 ]+1 ]
55 k d i f f=abs ( k2−k1 )
56 conv=abs ( s e l f . f ind_neares t ( sigma2 , 0 ) [ 1 ] )
57 for l i n e in range ( len ( sigma2 ) ) :
58 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format (

k_re f ine [ l i n e ] , sigma2 [ l i n e ] , omega2 [ l i n e ] ) )
59 print ( ’SIGMA( k_cr it ) b e f o r e 2nd REFINEMENT: {} ’ . format ( sigma2 [

i n d i c e s 2 [ 0 ] ] ) )
60 #EXTRACT THE VALUE CLOSEST TO 0
61 kchoose=k_re f ine [ s e l f . f ind_neares t ( sigma2 , 0 ) [ 0 ] ]
62 #2nd REFINEMENT TO CHECK FOR CONVERGENCE
63 nx=85
64 ny=85
65 s e l f . g e tbase f l ow (Re , nx , ny , relax_param )
66 sigma2 , omega2=s e l f . l i n e a r s t a b (Re , np . asar ray ( [ kchoose ] ) )
67 print ( ’SIGMA( k_cr it ) a f t e r 2nd REFINEMENT: {} ’ . format ( sigma2

[ 0 ] ) )
68 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( kchoose ,

sigma2 [ 0 ] , omega2 [ 0 ] ) )
69 R e f i l e . c l o s e ( )
70 s e l f . plot_k_sigma (Re , f i l ename )
71
72 def findRe_c ( s e l f , Re_low , Re_high ) :
73 resultname=s e l f . c a l c d i r+’ / ’+’REc_Gamma_{ : 5 . 2 f }_alpha_ { : 5 . 2 f } ’ . format (

s e l f .Gamma, s e l f . a lpha )
74 R e s u l t f i l e=open( resultname , ’w ’ )
75 karr=np . l i n s p a c e (0 . 001 , 30 , 30 )
76 nx=75
77 ny=75
78 Rearr=np . array ( [ Re_low , Re_high ] )
79 Remid=(Re_low+Re_high ) /2 .
80 while (np .min(abs ( Rearr−Remid) ) >1.) :
81 print ( ’RUNNING findRe_c WITH REYNOLDS: {} ’ . format (Remid) )
82 f i l ename=s e l f . c a l c d i r+’ / ’+’ Re_crit ’+ ’_{ : 0 8 . 3 f } ’ . format (Remid)
83 R e f i l e=open( f i l ename , ’w ’ )
84 i f (Remid<500) :
85 relax_param=0.5
86 e l i f (Remid>=500 and Remid<1200) :
87 relax_param=0.3
88 else :
89 relax_param=0.1
90 s e l f . g e tbase f l ow (Remid , nx , ny , relax_param )
91 sigma , omega=s e l f . l i n e a r s t a b (Remid , karr )
92 for l i n e in range ( len ( sigma ) ) :
93 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( karr [ l i n e ] ,

sigma [ l i n e ] , omega [ l i n e ] ) )
94 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma )
95 R e s u l t f i l e . wr i t e ( ’ { : 7 . 2 f } { : 2 d} \n ’ . format (Remid , nr ) )
96 print ( ’FOUND {} SIGN CHANGES’ . format ( nr ) )
97 i f ( nr>0) :
98 Rearr [1 ]=Remid
99 e l i f ( nr==0) :

100 Rearr [0 ]=Remid
101 Remid=(Rearr [0 ]+ Rearr [ 1 ] ) /2 .
102 R e f i l e . c l o s e ( )
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103 R e s u l t f i l e . c l o s e ( )
104 def ge tbase f l ow ( s e l f , Re , nx , ny , relax_param ) :
105 #CREATE THE MESH
106 s e l f . mesh=RectangleMesh ( Point(− s e l f .Gamma/2. , −0 .5) , Point ( s e l f .Gamma

/2 . , 0 . 5 ) , nx , ny )
107 #REFINE THE MESH HERE
108 s e l f . mymeshrefine ( )
109 #DEFINE TRIAL AND TEST FUNCTIONS
110 s e l f . P2 = VectorElement ( ’P ’ , t r i a ng l e , degree=2,dim=3)
111 s e l f . P1 = FiniteElement ( ’P ’ , t r i a ng l e , degree=1)
112 s e l f . e lement = MixedElement ( [ s e l f . P2 , s e l f . P1 ] )
113 s e l f .W = FunctionSpace ( s e l f . mesh , s e l f . e lement )
114 s e l f . duvw , s e l f . dp = TestFunct ions ( s e l f .W)
115 s e l f . du , s e l f . dv , s e l f . dw = s p l i t ( s e l f . duvw)
116 #THE FUNCTIONS FOR THE FORMULATION
117 uvwp = Function ( s e l f .W)
118 uvw , p = s p l i t (uvwp)
119 u , v ,w = s p l i t (uvw)
120 #THE FUNCTIONS FOR THE STEADY STATE SOLUTION
121 s e l f . uvwp0 = Function ( s e l f .W)
122 s e l f . uvw0 , p0 = s p l i t ( s e l f . uvwp0)
123 s e l f . u0 , s e l f . v0 , s e l f . w0 = s p l i t ( s e l f . uvw0)
124 Gamma=s e l f .Gamma
125 t o l=1e−14
126 #DEFINE THE BOUNDARIES
127 class BoundN(SubDomain ) :
128 def i n s i d e ( s e l f , x , on_boundary ) :
129 return on_boundary and near (x [ 1 ] , 0 . 5 , t o l )
130 class BoundSEW(SubDomain ) :
131 def i n s i d e ( s e l f , x , on_boundary ) :
132 return on_boundary and ( near ( x [ 1 ] , −0 .5 , t o l ) or
133 near ( x [0 ] ,−Gamma/2 . , t o l )
134 or near (x [ 0 ] ,Gamma/2 . , t o l ) )
135 s e l f . bcN=BoundN( )
136 s e l f .bcSEW=BoundSEW()
137 ubcN = Dir ichletBC ( s e l f .W. sub (0) , Constant ( (Re∗np . cos ( s e l f . a lpha /180 .∗np

. p i ) , 0 . , Re∗np . s i n ( s e l f . a lpha /180 .∗np . p i ) ) ) , s e l f . bcN)
138 ubcSEW= Dir ichletBC ( s e l f .W. sub (0 ) , Constant ( ( 0 . , 0 . , 0 . ) ) , s e l f .bcSEW)
139 bcs=[ubcSEW, ubcN ]
140
141 ###NS−equat ion
142 F = s e l f . du∗u∗u . dx (0 ) ∗dx+s e l f . du∗v∗u . dx (1 ) ∗dx+inner ( grad ( s e l f . du ) , grad (

u) ) ∗dx+s e l f . du∗p . dx (0 ) ∗dx +\
143 s e l f . dv∗u∗v . dx (0 ) ∗dx+s e l f . dv∗v∗v . dx (1 ) ∗dx+inner ( grad ( s e l f . dv ) , grad (

v ) ) ∗dx+s e l f . dv∗p . dx (1 ) ∗dx +\
144 s e l f . dw∗u∗w. dx (0) ∗dx+s e l f . dw∗v∗w. dx (1) ∗dx+inner ( grad ( s e l f . dw) , grad (

w) ) ∗dx +\
145 s e l f . dp∗u . dx (0 ) ∗dx+s e l f . dp∗v . dx (1 ) ∗dx
146
147
148 J=de r i v a t i v e (F , uvwp)
149 M=u . dx (0 ) ∗dx+v . dx (1 ) ∗dx
150
151 problem = Nonl inearVar iat iona lProb lem (F, uvwp , bcs , J=J )
152 s o l v e r = Adapt iveNon l inea rVar ia t i ona lSo lve r ( problem ,M)
153 #so l v e r = Non l inearVar ia t iona lSo l ver ( problem )
154 prm = so l v e r . parameters
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155 prm [ " non l i n ea r_var i a t i ona l_so lv e r " ] [ "newton_solver " ] [ "
abso lu te_to l e rance "]= 1E−8

156 prm [ " non l i n ea r_var i a t i ona l_so lv e r " ] [ "newton_solver " ] [ "
r e l a t i v e_to l e r an c e "]= 1E−8

157 prm [ " non l i n ea r_var i a t i ona l_so lv e r " ] [ "newton_solver " ] [ "
maximum_iterations" ] = 350

158 prm [ " non l i n ea r_var i a t i ona l_so lv e r " ] [ "newton_solver " ] [ "
re laxat ion_parameter "]=relax_param

159 so l v e r_to l e r ance=1E−8
160 s o l v e r . s o l v e ( s o l v e r_to l e r anc e )
161 s e l f . uvwp0 . a s s i gn (uvwp)
162
163
164
165 def l i n e a r s t a b ( s e l f , Re , karr ) :
166 #THE PERTURBATION−FUNCTIONS
167 uvwp_p = Tria lFunct ion ( s e l f .W)
168 uvec_p ,p_p = s p l i t (uvwp_p)
169 u_p, v_p ,w_p = s p l i t ( uvec_p )
170 #THE BOUNDARY CONDITIONS FOR THE PERTURBATION
171 ubcN_p = Dir ichletBC ( s e l f .W. sub (0 ) , Constant ( ( 0 . , 0 . , 0 . ) ) , s e l f . bcN)
172 ubcSEW_p= Dir ichletBC ( s e l f .W. sub (0) , Constant ( ( 0 . , 0 . , 0 . ) ) , s e l f .bcSEW)
173 bcs_p=[ubcSEW_p, ubcN_p ]
174 k=Constant ( 0 . 1 )
175 sigma=np . z e r o s (np . s i z e ( karr ) )
176 omega=np . z e r o s (np . s i z e ( karr ) )
177 for i , ck in enumerate( karr ) :
178 k . a s s i gn ( ck )
179 Fp_real= \
180 s e l f . du∗ s e l f . u0∗u_p . dx (0 ) ∗dx+s e l f . du∗ s e l f . v0∗u_p . dx (1 ) ∗dx+s e l f .

du∗u_p∗ s e l f . u0 . dx (0 ) ∗dx+s e l f . du∗v_p∗ s e l f . u0 . dx (1 ) ∗dx+\
181 s e l f . du∗p_p . dx (0 ) ∗dx+s e l f . du . dx (0 ) ∗u_p . dx (0 ) ∗dx+s e l f . du . dx (1 ) ∗

u_p . dx (1 ) ∗dx+s e l f . du∗k ∗∗2 .∗u_p∗dx+\
182 s e l f . dv∗ s e l f . u0∗v_p . dx (0 ) ∗dx+s e l f . dv∗ s e l f . v0∗v_p . dx (1 ) ∗dx+s e l f .

dv∗u_p∗ s e l f . v0 . dx (0 ) ∗dx+s e l f . dv∗v_p∗ s e l f . v0 . dx (1 ) ∗dx+\
183 s e l f . dv∗p_p . dx (1 ) ∗dx+s e l f . dv . dx (0 ) ∗v_p . dx (0 ) ∗dx+s e l f . dv . dx (1 ) ∗

v_p . dx (1 ) ∗dx+s e l f . dv∗k ∗∗2 .∗v_p∗dx+\
184 s e l f . dw∗ s e l f . u0∗w_p. dx (0 ) ∗dx+s e l f . dw∗ s e l f . v0∗w_p. dx (1 ) ∗dx+s e l f .

dw∗u_p∗ s e l f .w0 . dx (0 ) ∗dx+s e l f . dw∗v_p∗ s e l f .w0 . dx (1 ) ∗dx+\
185 s e l f . dw . dx (0 ) ∗w_p. dx (0 ) ∗dx+s e l f . dw . dx (1 ) ∗w_p. dx (1 ) ∗dx+s e l f . dw∗k

∗∗2 .∗w_p∗dx+\
186 s e l f . dp∗u_p . dx (0 ) ∗dx+s e l f . dp∗v_p . dx (1 ) ∗dx
187 #
188 #
189 #
190 Fp_imag= \
191 s e l f . du∗ s e l f .w0∗k∗u_p∗dx+s e l f . dv∗ s e l f .w0∗k∗v_p∗dx+s e l f . dw∗

s e l f .w0∗k∗w_p∗dx+s e l f . dw∗k∗p_p∗dx+s e l f . dp∗k∗w_p∗dx
192 B_MAT = \
193 s e l f . du∗u_p∗dx+s e l f . dv∗v_p∗dx+s e l f . dw∗w_p∗dx
194 #
195 Ar = PETScMatrix ( )
196 assemble ( Fp_real , t en so r=Ar)
197 [ bc . apply (Ar) for bc in bcs_p ]
198 Ai = PETScMatrix ( )
199 assemble (Fp_imag , t en so r=Ai )
200 [ bc . apply (Ai ) for bc in bcs_p ]
201 M = PETScMatrix ( )
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202 assemble (B_MAT, tenso r=M)
203 #[ bc . app ly (M) fo r bc in bcs_p ]
204 #
205 bc inds = [ ]
206 for bc in bcs_p :
207 bcd i c t = bc . get_boundary_values ( )
208 bc inds . extend ( bcd i c t . keys ( ) )
209 # This j u s t conver t s PETSc to CSR
210 Ar = sp . csr_matrix (Ar . mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
211 Ai = sp . csr_matrix (Ai . mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
212 M = sp . csr_matrix (M. mat ( ) . getValuesCSR ( ) [ : : − 1 ] )
213 # Create s h i f t matrix
214 #s h i f t = 1.2345 e10∗np . ones ( l en ( bc inds ) )
215 #S = sp . csr_matrix ( ( s h i f t , ( bcinds , bc inds ) ) , shape=Ar . shape )
216 v , V = e i g s (Ar+1. j ∗Ai , 10 , M, sigma=−1.)
217 sigma [ i ] , omega [ i ]=np . s o r t ( v ) [ 0 ] . r ea l , np . s o r t ( v ) [ 0 ] . imag
218 print ( ’Re = {} , k = {} lowest_sigma = {} , omega = {} ’ . format (Re , ck ,

sigma [ i ] , omega [ i ] ) )
219 return sigma , omega
220 def mymeshrefine ( s e l f ) :
221 #REFINE CLOSE TO THE BORDER
222 #TRY 3 REFINEMENTS IN THE BEGINNING
223 #@30% 15% 5% of the box
224 dist_pc=np . array ( [ 0 . 1 , 0 . 0 1 ] )
225 d i s t x_ l e f t = − s e l f .Gamma/2.+ dist_pc ∗ s e l f .Gamma
226 d i s tx_r ight = s e l f .Gamma/2.−dist_pc ∗ s e l f .Gamma
227 disty_bottom = −1./2.+dist_pc ∗1 .
228 disty_top = 1./2.− dist_pc ∗1
229 for i in range ( len ( dist_pc ) ) :
230 ce l l_markers = Cel lFunct ion ( " bool " , s e l f . mesh )
231 ce l l_markers . s e t_a l l ( Fa l se )
232 for c e l l in c e l l s ( s e l f . mesh ) :
233 p = c e l l . midpoint ( )
234 i f ( ( p . x ( )<d i s t x_ l e f t [ i ] ) or
235 (p . x ( )>d i s tx_r ight [ i ] ) or
236 (p . y ( )<disty_bottom [ i ] ) or
237 (p . y ( )>disty_top [ i ] ) ) :
238 ce l l_markers [ c e l l ]=True
239 s e l f . mesh=r e f i n e ( s e l f . mesh , ce l l_markers )
240 def get s ignchange ( s e l f , i n a r r ) :
241 nr=0
242 change =[ ]
243 i n d i c e s =[ ]
244 for i in range (np . s i z e ( i n a r r )−1) :
245 i f ( i n a r r [ i ]>=0 and i n a r r [ i +1]<0) :
246 nr+=1
247 change . append (1 )
248 i n d i c e s . append ( i )
249 e l i f ( i n a r r [ i ]<=0 and i n a r r [ i +1]>0) :
250 nr+=1
251 change . append(−1)
252 i n d i c e s . append ( i )
253 return nr , np . array ( change ) , np . array ( i n d i c e s )
254 def f ind_neares t ( s e l f , array , va lue ) :
255 array = np . asar ray ( array )
256 idx = (np . abs ( array − value ) ) . argmin ( )
257 return idx , array [ idx ]
258 def plot_k_sigma ( s e l f , Re , f i l ename ) :
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259 p l o t f i l e=open( f i l ename , ’ r ’ )
260 data=p l o t f i l e . r e a d l i n e s ( )
261 data_arr=np . z e r o s ( [ len ( data ) , 2 ] )
262 for i , l i n e in enumerate( data ) :
263 data_arr [ i , 0 ] , data_arr [ i ,1 ]= f loat ( l i n e . s p l i t ( ) [ 0 ] ) , f loat ( l i n e . s p l i t

( ) [ 1 ] )
264 #sor t the array
265 temp = np . a r g s o r t ( data_arr , 0 ) [ : , 0 ]
266 sorted_arr=data_arr [ temp ]
267 #SET MATPLOTLIB TeX
268 p l t . r c ( ’ f ont ’ ,∗∗{ ’ fami ly ’ : ’ s e r i f ’ , ’ s e r i f ’ : [ ’ Times ’ ] } )
269 p l t . r c ( ’ t ex t ’ , usetex=True )
270 def cm2inch ( value ) :
271 return value /2 .54
272 f i g , ax = p l t . subp lo t s (1 , f i g s i z e =(cm2inch ( 1 3 . 8 ) , cm2inch ( 7 . 0 ) ) )
273 ax . p l o t ( sorted_arr [ : , 0 ] , sorted_arr [ : , 1 ] , c=’ r ’ , l i n e s t y l e=’− ’ )
274 ax . g r id (True , which=’ both ’ , l s="−−" , lw=0.15)
275 ax . s e t_ t i t l e ( ’ S t a b i l i t y f o r Re = {} ’ . format (Re) )
276 ax . t i t l e . set_weight ( ’ bold ’ )
277 ax . set_xlim ( [ 0 , 1 0 . ] )
278 ax . s e t_x labe l ( r "k" , l abe lpad =1.)
279 ax . s e t_y labe l ( r "$\ sigma$" , l abe lpad =1.)
280 savename=s e l f . c a l c d i r+’ / ’+’Re_{ : 0 7 . 1 f } . pdf ’ . format (Re)
281 p l t . s a v e f i g ( savename , format=’ pdf ’ , dpi=f i g . dpi )
282
283 def r eaddatase t ( s e l f ,Gamma, angle , Re) :
284 f o l d e r=’Gamma_{ : 0 7 . 3 f }_alpha_ { : 0 5 . 1 f } ’ . format (Gamma, ang le )
285 f i l ename=f o l d e r+’ / ’+’Re ’+’_{ : 0 8 . 3 f } ’ . format (Re)
286 R e f i l e=open( f i l ename , ’ r ’ )
287 l i n e s=Re f i l e . r e a d l i n e s ( )
288 karr=np . z e r o s ( len ( l i n e s ) )
289 sigma_arr=np . z e r o s ( len ( l i n e s ) )
290 omega_arr=np . z e r o s ( len ( l i n e s ) )
291 for i , l i n e in enumerate( l i n e s ) :
292 karr [ i ] = f loat ( l i n e . s p l i t ( ) [ 0 ] )
293 sigma_arr [ i ] = f loat ( l i n e . s p l i t ( ) [ 1 ] )
294 omega_arr [ i ] = f loat ( l i n e . s p l i t ( ) [ 2 ] )
295 return karr , sigma_arr , omega_arr
296
297 def get_kneutra l ( s e l f ,Gamma, alpha , Re) :
298 karr , sigma_arr , omega_arr=s e l f . r eaddatase t (Gamma, alpha , Re)
299 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma_arr )
300 i f ( nr == 0) :
301 return 0
302 else :
303 return karr [ i n d i c e s ] , sigma_arr [ i n d i c e s ] , omega_arr [ i n d i c e s ]
304 #A FUNCTION WHERE WE COMPARE DIFFERENT CURVES
305 #p l o t a r r has to be a d i c t i o n a i r y t ha t prov ide s the Gamma,Re , ang le va lue s
306 def compareplot ( s e l f , p l o ta r r , show=True ) :
307 #SET MATPLOTLIB TeX
308 p l t . r c ( ’ f ont ’ ,∗∗{ ’ fami ly ’ : ’ s e r i f ’ , ’ s e r i f ’ : [ ’ Times ’ ] } )
309 p l t . r c ( ’ t ex t ’ , usetex=True )
310 def cm2inch ( value ) :
311 return value /2 .54
312 f i g , ax = p l t . subp lo t s (1 , f i g s i z e =(cm2inch ( 1 3 . 8 ) , cm2inch ( 7 . 0 ) ) )
313 ax . g r id (True , which=’ both ’ , l s="−−" , lw=0.15)
314 c o l o r s = [ ’#0000 f f ’ , ’#f f 0 000 ’ , ’#009933 ’ , ’#cc0099 ’ , ’#f f 9 900 ’ , ’#0099cc ’ ,\
315 ’#009999 ’ ]
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316 for i in range ( len ( p l o t a r r ) ) :
317 Gamma=p l o t a r r [ i ] [ ’Gamma ’ ]
318 Re = p l o t a r r [ i ] [ ’Re ’ ]
319 ang le = p l o t a r r [ i ] [ ’ ang le ’ ]
320 l a b e l = r ’ $\ alpha ={:5.2 f } \Gamma={:5.2 f } Re={:8.2 f }$ ’ . format ( angle ,

Gamma, Re)
321 karr , sigma_arr , omega_arr=s e l f . r eaddatase t (Gamma, angle , Re)
322 #SORT THE ARRAYS
323 sigma_arr=sigma_arr [ np . a r g s o r t ( karr ) ]
324 omega_arr=omega_arr [ np . a r g s o r t ( karr ) ]
325 karr = np . s o r t ( karr )
326 ax . p l o t ( karr , sigma_arr , c=c o l o r s [ i ] , l i n e s t y l e=’− ’ , l a b e l=l a b e l )
327 ax . s e t_x labe l ( r "k" , l abe lpad =1.)
328 ax . s e t_y labe l ( r "$\ sigma$" , l abe lpad =1.)
329 ax . l egend ( )
330 i f ( show ) :
331 p l t . show ( )
332 else :
333 p l t . s a v e f i g ( ’TEMPPLOT. pdf ’ , format=’ pdf ’ , dpi=f i g . dpi )
334 def analyze_k_n ( s e l f , Re , relax_param , k1 , k2 , ngr id ) :
335 print ( ’RUNNING ANALYZE_K WITH REYNOLDS: {} \n k1 = {} k2 = {} ’ . format (

Re , k1 , k2 ) )
336 f i l ename=s e l f . c a l c d i r+’ / ’+’Re_k ’+’_{ : 0 8 . 3 f } ’ . format (Re)
337 R e f i l e=open( f i l ename , ’w ’ )
338 karr=np . l i n s p a c e ( k1 , k2 , 3 )
339 nx=ngr id
340 ny=ngr id
341 s e l f . g e tbase f l ow (Re , nx , ny , relax_param )
342 sigma , omega=s e l f . l i n e a r s t a b (Re , karr )
343 for l i n e in range ( len ( sigma ) ) :
344 R e f i l e . wr i t e ( ’ { :10 g} { :10 g} { :10 g} \n ’ . format ( karr [ l i n e ] ,

sigma [ l i n e ] , omega [ l i n e ] ) )
345 nr , changearr , i n d i c e s=s e l f . ge t s ignchange ( sigma )
346 Re f i l e . c l o s e ( )
347
348 def gamma_angle_Re(gammaarr , ang lear r , Rearr , relax_param_arr ) :
349 for Gamma in gammaarr :
350 for ang le in ang l ea r r :
351 print ( ’ ’ ’
352 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
353 CALCULATING GAMMA = {:07 .3 f } AND ANGLE = {:05 .1 f }
354 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%’ ’ ’ . format (Gamma, ang le )

)
355 f o l d e r=’Gamma_{ : 0 7 . 3 f }_alpha_ { : 0 5 . 1 f } ’ . format (Gamma, ang le )
356 cav=mycav(Gamma, angle , c a l c d i r=f o l d e r )
357 for Re , relax_param in zip ( Rearr , relax_param_arr ) :
358 cav . ana lyze (Re , relax_param )
359
360 def RcAnalysis ( gammaarr , ang l e a r r ) :
361 for Gamma in gammaarr :
362 for ang le in ang l ea r r :
363 print ( ’ ’ ’
364 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
365 ReC ana l y s i s : GAMMA = {:07 .3 f } AND ANGLE = {:05 .1 f }
366 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%’ ’ ’ . format (Gamma, ang le )

)
367 f o l d e r=’Gamma_{ : 0 7 . 3 f }_alpha_ { : 0 5 . 1 f } ’ . format (Gamma, ang le )
368 cav=mycav(Gamma, angle , c a l c d i r=f o l d e r )
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369 Re_low=300
370 Re_high=900
371 cav . findRe_c (Re_low , Re_high )
372
373 #TODO: WRITE A FUNCTION TO SAVE THE VELOCITY−FIELD
374
375 i f __name__==’__main__ ’ :
376 #Gammaarr=np . array ( [ 1 . , 0 . 5 , 2 . , 3 . ] )
377 #ang learr=np . array ( [ 0 . , 2 2 . 5 , 4 5 , 6 7 . 5 ] )
378 #Rearr = [700 ,750 ,800 ,850 ,900 ,950 ,1000]
379 #Rearr2 = [710 ,720 ,730 ,740 ,760 ,770 ,780 ,790 ,810 ,820 ,830 ,840]
380 ##gamma_angle_Re(Gammaarr , ang learr , Rearr2 )
381 RcAnalysis (Gammaarr , ang l e a r r )
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