
MASTER’S THESIS

Evaluation of Fault Tolerance in Networks on Chip

Fault Injection and Performance Analysis between different Fault Protection Schemes

submitted at the Faculty of Electrical Engineering and Information Technology,
Vienna University of Technology

in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur (equals Master of Science)

under supervision of

Univ.Prof. Dipl.-Ing. Dr.techn. Axel Jantsch
Dr. Junshi Wang

Dr. Nima Taherinejad

at

Institute of Computer Technology (E384)
Vienna University of Technology

by

Lukas Temmel, B.Sc.
Matr.Nr. 1328331

Templergasse 28, 2340 Mödling, Austria

10.02.2019

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

Network on Chip is a communication system used in integrated circuits as an alternative to
bus systems. Instead of all chip elements exchanging their data directly or via a bus, packets
containing the information are sent over different topologies between source and destination,
which can be for example a storage element or a processing unit. Fault tolerance of such systems
is of critical importance due to its role as communication backbone. Additionally, the increasing
number of elements on a chip and its complexity introduce more possibilities for faults in the
circuits. A common way to improve the fault tolerance is to implement additional mechanisms
like error correction code, adaptive routing algorithms, or re-transmission of packets.
However, how do these measures perform if they themselves become faulty? Furthermore, how
does this affect the performance of the Network on Chip? Here it is shown that the impact of
faults on fault tolerance in Network on Chips needs to be evaluated during the design process.
The network was evaluated by adding fault modules into the source code and triggering them to
represent certain fault patterns. The results show that the fault tolerance measurements affect
the reliability differently for certain faults and partly let the network perform worse than without
any tolerance measurements activated. This emphasizes the importance of this evaluation and
that it should be considered and applied for designing such systems.
This work is seen as a starting point to investigate if the fault injection process can be used to
improve the sturdiness of such systems. Furthermore, it is seen as a convenient way, also for
other research groups, to evaluate the behavior of a system under the effects of faults. The fault
injection methods are not bound to this project and can be used for other Verilog Code based
systems as well.

Kurzfassung

Network on Chip ist neben klassischen Bussystemen ein alternatives Kommunikationssystem für
integrierte Schaltungen. Anstatt dass alle Chip-Elemente ihre Daten direkt oder über einen
Bus austauschen, werden Pakete mit den Informationen über verschiedene Netzwerktopologien
versendet. Fehlertoleranz ist für solche Systeme von besonderer Relevanz, da sie das zentrale
Kommunikationselement schützt und es durch die steigende Dichte an Transistoren und deren
Komplexität mehr Möglichkeiten für fehlerhafte Elemente gibt. Ein gängiger Weg um die Fehler-
toleranz zu erhöhen ist zusätzliche Mechanismen zu installieren wie Error Correction Codes,
adaptive Routing Algorithmen oder das erneute Senden von Paketen.
Jedoch stellt sich die Frage wie sehr das System in Mitleidenschaft gerissen wird, wenn auch
diese Maßnahmen fehlerhaft werden? In dieser Arbeit wird gezeigt wie wichtig die Wirkung von
Fehlern auf Fehlertoleranzmechanismen in Network on Chip und die Evaluierung dieser während
des Designprozesses ist. Ein Testnetzwerk wird durch das Einfügen von Fehlermodulen evaluiert,
welche nach bestimmten Fehlermustern Störungen erzeugen. Es zeigt sich, dass die Fehlertol-
eranzmechanismen auf unterschiedliche Art die Zuverlässigkeit des Systems beeinflussen und in
manchen Kombinationen sogar schlechter als ein System ohne jegliche Fehlertoleranzmechanis-
men arbeiten.
Diese Arbeit wird als Ausgangspunkt gesehen, um zu Evaluieren ob das Einfügen von Fehlermod-
ulen es erlaubt die Robustheit von solchen Systemen zu verbessern. Weiters ist der vorgestellte
Prozess der Fehlerinjizierung nicht auf dieses Projekt limitiert und daher eine gute Methode an-
dere Systeme unter dem Effekt von Fehlern zu testen, wenn diese auf Verilog Gate Level Code
synthetisiert werden können.

II

Table of Contents

Acronyms V

1 Introduction and Motivation 1

1.1 Introduction to Network on Chip . 1

1.2 Faults in Network on Chip . 4

1.3 Introduction to Fault Tolerance Methods . 6

1.4 Goals of this Thesis . 7

1.5 Summary and Thesis Structure . 8

2 State of the Art 9

2.1 Fault Injection . 9

2.2 Fault Model . 12

2.3 Evaluation of Fault Tolerance in Networks on Chip 13

3 Target Network on Chip 15

3.1 Topology . 15

3.2 Routing . 16

3.3 Router Architecture . 18

3.4 Fault Tolerance . 19

4 Fault Injection Implementation 23

4.1 Fault Injection Flow . 23

4.2 Fault Module . 24

4.3 Fault Injection Script . 26

5 Simulation & Analysis 32

5.1 Evaluation of the Target Network on Chip . 32

5.2 Mathematical Approach . 36

5.3 Simulation Setup . 37

5.4 Simulation Results . 39

5.4.1 NoC with no active Fault Tolerance Methods 39

5.4.2 Transient Fault . 44

5.4.3 Intermittent Fault . 48

5.4.4 Permanent Fault . 51

5.4.5 Bit Flip and Stuck-At Faults . 55

III

5.5 Summary . 57

6 Conclusion 59
6.1 Results . 59
6.2 Outlook . 60

Literature 61

Internet References 64

IV

Acronyms

ACK Acknowledgement.

ALU Arithmetic Logic Unit.

ASIC Application Specific Integrated Circuit.

AST Abstract Syntax Tree.

BISD Built-In Self-Diagnosis.

BIST Built-In Self-Test.

CAD Computer Aided Design.

DUT Device Under Test.

E2E End to end.

ECC Error Correction Code.

FEC Forward Error Correction.

FIS Fault Injection Signal.

FIU Fault Injection Unit.

FLIT FLow control unIT.

FPGA Field Programmable Gate Array.

GUI Graphical User Interface.

HBH Hop By Hop.

HDL Hardware Description Language.

IC Integrated Circuit.

IDE Integrated Development Environment.

V

IP Intellectual Property.

ITRS International Technology Roadmap for Semiconductors.

LT Link Transaction.

LUT Look Up Table.

MMU Memory Management Unit.

MPSoC Multi Processor System on Chip.

NI Network Interface.

NoC Network on Chip.

OSI Open Systems Interconnection.

PCB Printed Circuit Board.

PE Processing Element.

RAM Random Access Memory.

RC Routing Calculation.

RTL Register Transfer Level.

SA Switch Allocation.

SEU Single Event Upset.

SoC System on Chip.

SPICE Simulation Program with Integrated Circuit Emphasis.

SRAM Static Random Access Memory.

ST Switch Transaction.

TMR Triple Module Redundancy.

VA Virtual Channel Allocation.

VC Virtual Channel.

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.

VM Virtual Machine.

VI

1 Introduction and Motivation

In this section we start with outlining the development of System on Chips (SoCs) and Multi
Processor System on Chips (MPSoCs), which led to an increased interest in Network on Chips
(NoCs) over commonly used bus systems. Advantages and disadvantages will be pointed out
before focusing on faults and their critical effect on such a system, followed by tolerance methods
to counter them. At the end of this chapter, the further structure and tasks of this thesis will be
laid out.

1.1 Introduction to Network on Chip

Processors have become an integral part of our world, and their influence in different application
areas is still increasing1. Their development is continually evolving to improve different aspects
of the chip like the number of I/O ports, lower power consumption or a higher frequency with
which the processor could work.

A pivotal improvement which was beneficial to all these scopes was to reduce the size of the core
elements of the processor, transistors (cf. Figure 1.1 [2]) and its connecting wires. The scien-
tific progress can be followed in the documentation of the International Technology Roadmap for
Semiconductors (ITRS). This allowed to reach higher densities of transistors on a wafer, which
increased the yield of chips per wafer by reducing the space a micro-architectural feature (e.g.
Arithmetic Logic Unit (ALU) or Memory Management Unit (MMU)) needs.

This allows that functionality which was before placed separately from the processor on the
circuit board (e.g. interface logic, MMUs) can now all be integrated into one die, a so-called SoC.
Benefits are time-saving development process, high specialization for the chips task, power saving,
shorter data path within the chip components and due to the possibility of buying Intellectual
Propertys (IPs) from different vendors a certain form of independence [NND09, p.2].

Furthermore integrating several processor cores into one die is used for performance improvements
for so-called MPSoCs [WJ08] because linking several less complex cores is preferred over further
expanding a single core due to its complexity diminishing the benefits [NND09, p. 1-2].

1E.g. Intel alone sold more than 10 million chips for media tablets in 2015 [1]

1

Introduction and Motivation

100

101

102

103

104

1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
2008
2010
2012
2014
2016
2018

T
ra

ns
is

to
r

S
iz

e
[n

m
]

Time [Year]

Transistor Size

Figure 1.1: Shrinking transistor size from 1971 until 2018.

Physical
Layer

Data-Link
Layer

Network
Layer

Transport
Layer

Higher
Layers

Layers Coverage Modules
processing Element,

IP

Network Interface

Router

Link

Buffer, Crossbar,
WireN

e
tw

o
rk

 o
n
 C

h
ip

Figure 1.2: Open Systems Interconnection (OSI) layers covered by the NoC and the resembling modules
(cf. [RFZJ13, Figured 1]).

Both techniques provide a high density of computation resources so that the limiting part of the
chip shifts towards the on-chip communication structure between these elements. Traditional bus
systems are not able to unlock the full potential of such a system [KPN+05, RFZJ13].
For instance, their structure allows only one element as a master for communication (cf. Figure
1.3 left side), which is counterproductive for a system which excels by its number of elements.
Therefore, a form of parallel communication is needed. Additionally, every added core or IP
extends the global wire length and increases by that the latency of the signals which aggravates
if the chip size further grows or if the clock frequency increases [NND09, p.2ff]. As a result, the
bandwidth will not scale with an increasing number of connected elements. Furthermore, a bus
has no form of redundancy in its base concept. If it fails the entire system will halt, making it to
a single point of failure for the communication of the chip [Ebr13].

A solution for these drawbacks is a network-like architecture, a so-called NoC, operating in the
four bottom layers of the OSI-model (cf. Figure 1.2). By design, parallel communication is

2

Introduction and Motivation

IP IP

IP

IP

IPIP

IP IP IP

IPIPIP

Multiple Data
Tranfers

BUS

NoC

NI

Router

Link

Tile
NodeSingle Data Transfer

Figure 1.3: Overview over Bus and NoC.

possible where the nodes to which the elements are connected can communicate independently
with each other (cf. Figure 1.3 right side). They scale well with additional elements by merely
increasing the network size. This does not diminish the bandwidth nor extend the wire length,
which stays the same between each node and will not grow as the network grows in size. The
redundancy within its structure provides the possibility to implement fault tolerant techniques
avoiding a single point of failure. Regardless of all these benefits, an NoC consumes a significant
part of the chip’s resources due to the additional logic. Compared to bus systems researchers
expect that it can easily become a dominant part of the power budget of the chip [NND09, MO09]
and this needs to be considered during the development [PM05]. Still, the benefits outweigh the
disadvantages and make NoCs an integral part for SoCs and other many core systems as it is
presented in Table 1.1 [FL10, BM02].

Table 1.1: Bus vs. Network Arguments (cf. Table 1 by [BM06]).

Bus Pros & Cons Network Pros & Cons

Con: Every unit attached adds parasitic
capacitance, therefore electrical performance

degrades.

Pro: Only point-to-point one-way wires are used for
all network sizes, thus local performance is not

degraded when scaling.

Con: Bus timing is difficult in a deep submicron
process.

Pro: Network wires can be pipelined because links
are point-to-point.

Con: Bus arbitration can become a bottleneck. The
arbitration delay grows with the number of masters.

Pro: Routing decisions are distributed, if the
network protocol is made non-central.

Con: The bus arbiter is instance-specific. Pro: The same router may be reinstantiated, for all
network sizes.

Con: Bus testability is problematic and slow. Pro: Locally placed dedicated BIST is fast and
offers good test coverage.

Con: Bandwidth is limited and shared by all units
attached.

Pro: Aggregated bandwidth scales with the network
size.

Pro: Bus latency is wire-speed once arbiter has
granted control.

Con: Internal network contention may cause a
latency.

Pro: Any bus is almost directly compatible with
most available IPs, including software running on

CPUs.

Con: Bus-oriented IPs need smart wrappers.
Software needs clean synchronization in

multiprocessor systems.

Pro: The concepts are simple and well understood. Con: System designers need reeducation for new
concepts.

3

Introduction and Motivation

1.2 Faults in Network on Chip

Faults can appear in any integrated circuits under ordinary conditions due to production issues
or environmental influences. This changes logic values in the circuits and influences the behavior
of the NoC. The results can manifest themselves differently for example as data loss, the transfer
of corrupted information, slowdowns (due to congestion, misrouting or retransmissions) or even
connection loss between network parts. Especially deadlocks, where packets cannot be further
propagated because they depend on another router’s resources, which this one will not release
because itself is waiting to transmit its packet to free up its resources for the next task. These
dependencies can form a circle (cf. Figure 1.4), handicap the usage of these affected routers. It
is a severe threat for the interconnection network due to the capability of blocking large parts or
even the whole network [DT03, RFZJ13].

A B C

D E F

G H I
... inactive connection

... unfulfilled request

x ... Router

Figure 1.4: Schematic representation of routers depending on another one’s resources forming a circle.

Besides the steady technology improvements, which lead to a higher integrated density, increase
the systems fault probability and shorten the lifetime [Whi10]. This particular failure behavior
of such a system can be seen through the classical bathtub diagram which is well known in the
semiconductor industry (cf. Figure 1.5). The drop at the beginning is due to production errors,
which appear as permanent faults from which the system can not recover and the affected chips
are dropped out. The middle part represents the average drop out of a well running system, so
the permanent faults are mostly filtered out and irregular occurring faults are responsible for this
constant fault rate. The rise on the end of the graph is caused by aging effects and wear-out,
which are starting to take their toll [DT03, p. 413].

Early life Middle life End of life

Fa
u
lt

 R
a
te

Time

High

Middle

Low

Figure 1.5: Common fault rate in a lifecycle of an Integrated Circuit (IC) product (cf. [DT03, p. 414]).

The type of impact that faults take on NoC can be abstracted into three groups: physical failure,

4

Introduction and Motivation

logic errors and, specifically for NoCs due to the added network theory, network misbehaviors (cf.
Figure 1.2). Physical failures represent variations in the voltage levels of the transistors and are
commonly triggered by radiation, crosstalk or aging. Logic errors are a continuation and describe
the results of physical failures to the logical layer, in the form of incorrect logic values e.g. an
AND-Gate signal having a logical high output even if one input is low. Network misbehavior
covers the resulting errors in the router behavior and packet transfer [WEH+], examples can be
found in [PPNS12].

There are several causes for physical failures in MOSFETs, which are today’s main technology
for chip transistors. The following list should provide an overview [RFZJ13, p. 6].

• Radiation: While radioactive decay in the chip’s surrounding is one possibility, in ordinary
situations cosmic radiation is the primary source for flipping a bit in memory cells. Addi-
tionally, the reduced size of the PN junction of the transistors leads to a higher sensitivity
against radiation and the increased density of these junctions on an area means that more
transistors could be affected.

• Electromagnetic Interference: Signal and impulses of nearby wires influence each other,
which can cause delays and signal-blurs due to so-called crosstalk. Design improvements
(thinning the wire) were made to reduce this failure but introduced capacitive and inductive
issues. Nowadays the wires get so thin that in combination with high frequencies the Skin-
Effect starts to become a serious issue due to increasing the wire impedance.

• Electrostatic Discharge: The current is without any doubt able to damage circuits.
Usually, external sources produce an effect via pins of the chip but also breakdowns within
the chip can lead to short-circuits.

• Aging: This term summarizes different effects which can appear during the lifetime of a
chip. Typically the source for these issues is active from day one, but it will not become
threatening for the performance until a certain level of damage is aggregated.

– Electromigration: The current moving through the wires has an abrasive effect on
them. This reduces material, especially in areas with high current density. It can lead
to delays or worse to malfunction and even new connections between separated parts
(wires) of the circuit.

– Negative Bias Temperature Instability: Temperature related behavior, where
the threshold voltage of a PMOS increases due to trapped charges in the gate oxide
layer.

– Hot Carrier Injection: The transistor’s switching behavior gets altered (without
chances of recovery), due to electrons (or holes). These electrons are accelerated by
the electric fields, penetrate the gate-dielectric and are staying there. This dulls the
reactivity of the transistor.

– Time Dependent Dielectric Breakdown: Imperfections in the dielectric material
combined with electric fields can lead to conducting paths, which break the transistor.

• Process Variability: Foundries strive for the highest quality of their ICs, but still their
output suffers from variation within their production cycle. Imperfections can be caused by

5

Introduction and Motivation

not 100% pure used materials (wafers), problems during the doping process or the lithog-
raphy procedure (the masks wear out during the usage), which in combination with the
etching process cause size variation in the structures. While impurities lead to different
threshold levels in parts of the chip and are accelerating the dielectric breakdown, geomet-
rical variation adds to the problematic of different delays, Elecotromagnetic Interference
and Electromigration.

• Dynamic Temperature Variation: Heat is produced in the IC but its intensity is de-
pending on what operation is executed, which technology is used and which part of the
chip is active. Furthermore, if it exceeds certain temperature levels the power consumption
increases with the heat of the system which causes performance drops and accelerates the
occurrence of aging issues and other wear-out connected issues.

Additionally, the appearance pattern of faults is an important classification parameter and can
be separated into three classes [RFZJ13, p. 4].

• Transient Fault: Appears spontaneously for a short duration.

• Intermittent Fault: Appears spontaneously as well but with a longer and fluctuating
appearance.

• Permanent Fault: As the name implies, a fault appears and will not recover.

While Transient Faults are commonly caused by charged particles (e.g. due to some form of
radiation), Intermittent Faults appear due to electromagnetic interference or effects of aging and
often become worse, therefore, transforming themselves into Permanent Faults, which can solidify
themselves as broken transistors or wires [RFZJ13].

To conclude, the ability to tolerate faults is important for NoCs. The general goal is to improve
its reliability, which benefits the life length of the system and its robustness. Therefore, so-called
fault tolerance methods have been developed and used.

1.3 Introduction to Fault Tolerance Methods

As shown above, it is very difficult, practically impossible, to eliminate all fault sources during the
production and even if this could be achieved, wear-out and age-induced errors can still appear
over time. Therefore, this highlights the importance of how severely a fault affects the circuit.
Will it still be able to function in a usable way or will the fault break the whole system? A part of
the errors will not impact the system because so-called masking hides them, e.g. one input of an
AND-Gate is erroneously low but paired with another low as input this leads to the correct result
of a low output signal. Consequently, techniques to improve the sturdiness against these faults
have been developed. These are called fault tolerance methods and commonly are a combination
of detection (e.g. Built-In Self-Test (BIST)) and counter-measures [WEH+].
While all of them try to improve the overall reliability of the system, their techniques can be
divided into three groups according to [RFZJ13, Chapter 2.3ff].

• Time Redundancy Techniques: By repeating the action, which has been reported to
be faulty, for a specific or infinite time, it is attempted to detect and correct the data.
Conventional methods are for example Retransmission or Multi-Sampling of data.

6

Introduction and Motivation

• Information Redundancy Techniques: These techniques add additional information to
the transferred data, which allows detecting errors and even correct faults. A prominent
example is Error Correction Code (ECC), which adds a checksum from the data to the
transferred bit vector.

• Spatial Redundancy Techniques: These methods try to minimize the fault impact by
duplicating parts of the circuit. These additional units are either used as a replacement
if a fault is detected or as rulers by evaluating what the majority of these units decide
and accepting this as the correct way. Even though the additional area consumption is
quite high, Triple Module Redundancy (TMR) is a well-known implementation and often
applied. There is a variety of implementation forms. On the one hand the whole circuit
can be copied, on the other hand, it can also only focus on critical parts. Furthermore, the
amount of duplication can vary.

These counter-measures are not equally suited against different fault appearance types. They
either fix the fault directly or try to circumvent it by reconfiguring the network. Short duration
faults (transient and short-time intermittent faults) are usually countered by correcting the fault
itself in the transferred data, instead of coping with performance loss and power consumption
through repeatedly adapting the network, which is only of temporary usefulness. However, for
long duration faults (intermittent faults and permanent faults) avoiding the defective area is
better. Otherwise, the short duration recovery mechanism to fix data would always be active,
requiring power and introducing performance loss, as well as possibly not being able to recover
the fault (e.g. Hop By Hop (HBH) retransmission will not fix a faulty wire) [WEH+].
Consequently, one tolerance method on its own will not be able to fix all reliability issues. Instead,
using combinations (especially cross-layer integration) of several fault tolerance methods can be
better for the reliability [RFZJ13].

However, this let the following question emerge: To which point are these methods feasible?
[WHL+16] has shown in his simulations for finding the best ECC locations that reliability does
not increase with the number of added ECC-units in the network. Furthermore, adding fault
protection methods also introduces the possibility of these methods being erroneously them-
selves [WHL+16].
They are after all commonly implemented with the same technique as the rest of the IC and
being close to their application field makes them vulnerable to the same reliability risk, probably
causing additional new issues within the system. This is especially concerning because valuable
space and power are invested in these protection techniques, which might be used more efficiently.
Therefore, it is mandatory that the NoC and the fault tolerance methods have to be evaluated
under the effect of faults to rate the protection strategy truly, else unexpected fault effects and
synergies can appear and will pull down the whole system. This crucial topic leads to the goal of
this thesis.

1.4 Goals of this Thesis

In this thesis, it is argued that there is a limit to the feasibility of extending systems with fault
tolerance methods as well as that some combinations are to prefer over others.

7

Introduction and Motivation

Every added piece of IC consists of elements which can become faulty as well. The more abilities
an implementation provides and the more area it uses, so much more critical the effects can be
if it fails. So faults will reduce the positive impact of the fault tolerance method and it might
become a burden, but how strong will these drawbacks be? So while other works focus on the
abilities of their fault tolerance methods in their NoCs, in this work faults are going to be injected
into the fault tolerance methods as well, to evaluate their impact on the system.

In order to achieve this, a fault injection method is developed to simulate the effects of multiple
faults on a fault tolerant system. The method should be widely applicable but still be very close
to the actual implementation of the system into the hardware. As a result, the restrictions of this
thesis are that the implementation of the injection method is focused on NoC development, but
the solution should be adaptable to other projects designed with common Hardware Description
Language (HDL)-languages like VHSIC (Very High Speed Integrated Circuit) Hardware Descrip-
tion Language (VHDL) or Verilog.

For future works, it should be possible to modify the behavior of the faults. It should allow to
further modify their behavior and the test system should also provide different types of fault
models implemented for increasing the flexibility of the evaluation.
For the whole setup, a NoC is developed in a hardware description language (Verilog) to get as
close to an actual hardware implementation as possible. For evaluation, a test environment will
be provided to test the different protection mechanisms and combinations.

1.5 Summary and Thesis Structure

To conclude, this thesis will focus on the effect of faults on different fault tolerance methods in
NoCs. It will present a method to test this ability by injecting faults into Verilog gate level code
of such a system. Selectable probabilities with which these faults appear as well as different types
of faults will be tested on NoC and its tolerance methods, which were both created for this work.
These added fault protection schemes will be evaluated during this process and it will be proven
that influence and performance of different with errors injected fault tolerance methods are so
strong that their implementation must be considered from the start of the designing process of
the chip.

The following part of the thesis is the State of Art (Chapter 2), which will provide an overview
of different fault models, already existing fault injection methods and the evaluation of faults in
NoCs. Afterward, the Target NoC (Chapter 3) will be described by giving an introduction about
NoCs and their fault tolerance methods, including the presentation of the NoC which was designed
for this thesis. The following chapter discusses Fault Injection (Chapter 4), which describes how
faults are injected and how the different fault models are designed. Chapter 5 contains the
testbench and simulation setup, and it provides insight on the results and comparison between
the different fault tolerance configurations. Last but not least, the Conclusion (Chapter 6) will
sum up the evaluation and results of this thesis and gives a small outlook for possible future
enhancements.

8

2 State of the Art

This chapter discusses how to inject and evaluate faults on chips, afterward focusing on the fault
models, which shall resemble the issues within the systems considered in this thesis. Therefore
several already existing works are compared, in particular the differences to this thesis.

2.1 Fault Injection

As mentioned in Chapter 1 there are many sources for faults in Application Specific Integrated
Circuits (ASICs), and it is important to assure that the system can cope with them to a striven
level. In this context Fault Evaluation, as the name already suggests, can be used to determine
the performance of the system under the effect of faults. While in an actual implemented system
the physical causes (cf. [RFZJ13]) for these faults are researched, it is beneficial to test the im-
pact of faults on the system beforehand. Actual tests can be done in hardware or by simulating
the system in software, whereas the latter one can be further divided into software-implemented
fault injection or simulation-based fault injection [SSM08]. It is worth mentioning that there
also exist non-fault injecting models, which send non-Bernoulli random number streams into the
input of a circuit and evaluate the reliability by decoding the output stream in perspective of
the input [HCL+]. While modeling the faults by probabilities of defect logic was an interesting
approach, the lack of being able to observe the behavior logic as well as the lack of adding design
specific code to it, reduced the usability of this approach for this thesis.

A prominent way to prove a concept for designing a system is to use high-level simulation-
frameworks. These are commonly programmed in a non hardware description language like C,
C++(SystemC) or Python. This not only allows an abstract approach to the implementation
(code written can not be directly used on a chip) but provides higher flexibility for code adapta-
tions and great possibilities to add further evaluation elements for benchmarking the performance,
latency or power consumption [CMM+15, WEH+]. For Network on Chips (NoCs) popular frame-
works are Noxim [CMM+15] [12] or POPNET [10] (used by [WEH+]), but also further develop-
ments in research are made [YA10]. These frameworks allow a wide variety of changes to set up
the system to the user’s wishes. Configuration options can support different network topologies, a
variety of packet injection patterns or customizing the data transfer format. The simulators do not
need to be built solely for NoCs, a modified communication network simulator is also a possible
way to implement a test suite but will have shortcomings due to its origin, as shown in [AWAN06].

9

State of the Art

In context with fault evaluation, simulators have the disadvantage of not being an actual design
implementation of the chip because they do not consist of gates and wires. However, there are
still ways to emulate their faults for example by injecting errors into links, router and network
interfaces or into the data packets to test different Error Correction Code (ECC)-variation on a
system [YA10]. However, this is a high-level approach and in regards to this thesis and it is not
possible to get that close to the hardware implementation. This would also require that already
existing Hardware Description Language (HDL) code needs to be reimplemented into the specific
simulator, which led to the decision to not use this concept.

The exact opposite approach for evaluation is hardware based. This method impresses by its high
speed due to the code being executed on a Field Programmable Gate Array (FPGA) [SSM08,
NPCZR15]. However, by being bound to the hardware, there are limitations, but certain so-
lutions have been developed. Fired reconfigures only selected Static Random Access Memory
(SRAM) cells of the FPGA, in which the Device Under Test (DUT) is located to enable time or
event triggered faults [NPCZR15]. The system does not need to halt for this Single Event Upset
(SEU) fault injector but the technique only works on supported FPGA-boards (Virtex-5 board,
and there are future plans for the Zynq devboard). Another method is called Fito, which also
benefits from higher simulation speed (approximately 79% more than software simulation) and
makes use of synthesizable fault modules [SSM08]. It stands out by its small area overhead and
the well-integrated control and evaluation workflow (comparison between golden run1 and faulty
trace file). For this thesis external physical effects are ruled out as the source for errors on the
chip, like forcing faults with electric fields or heat due to the possibility of destroying the chip
and the requirement of specialized equipment.
The method ARROW is a way for fault injection and implemented via VHSIC (Very High Speed
Integrated Circuit) Hardware Description Language (VHDL) [BH09]. The faults are caused by
so-called saboteur units which get placed between the modules of the DUT and can change the
values and delays of signals. These also contain a controller and a Random Access Memory
(RAM) module for correctly triggering the faults but still have a small footprint on the chip to
be able to run during the test on FPGAs. It is noteworthy that these units can be modified
during simulation via a C++ application. This ability may be interesting but is of secondary
importance. Additionally, ARROW is only able to corrupt signals between two modules (VHDL
modules or Intellectual Property (IP) cores), which would require an individual fault model for
each of these modules. However, this is not desired, a uniform fault module is preferred for this
work.
In the research of [Man13], another hardware-based approach, also FPGAs were used for the
simulation while focusing on the behavior of chips under the influence of radiation in high atmo-
spheres an automated SEU fault injection method was developed. This automated tool, called
NETFI (Netlist Fault Injection), injects a fault chance in every memory by modifying the D-
flip-flops, the RAM, the Look Up Tables (LUTs), the logic gates, and the multiplexers. This
approach is faster due to its hardware execution, but it can reach a more substantial overhead
for bigger circuits because of the extra logic and signals for reaching the fault injection units.
Neither of these approaches above was usable for this project, be it due to the missing flexibility
for the fault modules or being limited to a specific hardware.

As a result, it was decided to use a software simulation based approach for this project. Most of
the reviewed research differ on how they inject the faults, in which language they are implemented

1Fault Free Trace File

10

State of the Art

and which types of faults they support. Commonly they consist of injection tools, a simulation
setup and some observation logging function. Functionwise they modify existing HDL code (be it
VHDL or Verilog/SystemVerilog), run a so-called golden trace file (fault-free run) and compare
it to faulty ones. In the following some software simulation approaches are presented.

MEFISTO-L [BPC98], successor of MEFISTO, is a fault injection tool and has overcome the
limitation of its predecessor of being stuck to only commands which the VHDL-simulator sup-
ported. Its goal was to detect weaknesses for fault tolerance improvement by splitting the signals
and putting probes or saboteurs (units which create faults) in between the signals. A Graphical
User Interface (GUI) is used for placing these Fault Injection Units (FIUs) and the saboteurs
could be triggered by certain signal-expression from another probe or a special signal-wire, which
activates the fault for a certain time. While the method of placing these saboteurs seems to be
very good, the limitation of only supporting VHDL, as well as the expected effort for placing
these and configuring the conditions, are drawbacks to this method.

INJECT [ZME03a] [ZME03b] is able to inject faults in Verilog and in VHDL code. This is pos-
sible because the used test environment (Modelsim) supports mixed-mode simulations, so files,
which are programmed in different languages, can still be simulated together. To select Verilog
as the implementation language for the fault models also opens up the possibilities for injecting
faults into more design levels. This tool supports fault models for switch-level, gate-level, Register
Transfer Level (RTL)-level, behavioral-level and structural-level. Switch and gate-level faults are
placed by splitting the wire and inserting a FIU there, which can resemble different types of faults
(for additional information see Chapter 2.2). All of these faults are triggered by Fault Injection
Signals (FISs), which need to be placed and configured by the user.

In their research [AM10] made use of another form of mixed simulation by converting the DUT
into a circuit level netlist and simulating it via Simulation Program with Integrated Circuit Em-
phasis (SPICE). They focused on testing three typical types of faults (single event transients,
electromagnetic interference, and power disturbance faults), which were implemented in Verilog-
A, which is used for simulating analog circuits. However, as stated in the paper, the amount of
Verilog-A files should be kept to a minimum for performance reasons, which is not compatible
with placing faults in a whole NoC with thousands of gates.

There are also other concepts of software based simulation, but they turned out to be of limited
use for this thesis. For example, [AZl12] points out how important it is to evaluate the influence of
faults early on and tests this by merely forcing signals to a specific value (stuck-at-0, stuck-at-1)
with his simulation environment (Mentor Graphics Modelsim). This is only feasible for small
circuits due to manually selecting the “faulty” signals. Instead of doing an exhausting and slow
simulation on the gate-level, [TAZ03] aims to find a way to cover their faults via a RTL fault
list. For this purpose, he runs the fault injection on RTL-level, which benefits the performance.
However, only one signal/wire of the DUT will be faulty per each test run, which would be a
disadvantage for a much larger NoC circuit.

Therefore, the most promising concept for this thesis was to create its own variation of a gate-level
fault injection method, which has similarities with [ZME03a]’s work but instead of placing FIUs
in selected parts, the whole system is targeted. Furthermore, this would allow using a uniform

11

State of the Art

fault module by focusing on the gates of a design, but it could also be used for both dominant
HDL languages (VHDL can be synthesized to Verilog gate-level code).

2.2 Fault Model

As pointed out in the last section there are several ways to inject faults into a system. However,
how do they behave, when do they become faulty and what does it mean to become faulty? As
predictable they shall resemble faults in an actual Integrated Circuit (IC), without having to set
up all circumstances which create it.

As a result fault models for NoCs are developed to resemble physical failures in a system. These
models work with functions through abstractions. A simple comparison with a valve inside a
machine can be used as an example for further abstraction. This valve has an assumed maximum
count of actuation until physical failures can appear due to friction, material fatigue, and wear-
out. An abstraction for a software simulation would be that after a particular time of closing and
opening, it would be stuck and will stay that way, even if a different control signal appears. This
would avoid implementing the wear-out behavior, reducing the complexity of the fault model but
still providing its failure. In the perspective of ICs, the abstraction from physical failures is logic
errors [WEH+]. Instead of creating a fault model including voltage/current fluctuations, shortages
due to wear-out and broken delay constrains for the transistors, the result of the changed logical
value is used.
Furthermore not all physical faults create logic errors, some get masked by the system [HW16,
KH04]:

• “Electrical masking” summarizes effects where the voltage variation pulse (e.g. due to
SEUs) will be attenuated by the properties of the gates, which it passes through.

• “Logical masking” resembles the fact that the inputs of a gate are not all relevant for its
output, so for example a correct high signal in one input of an OR-gate will overrule all the
faulty inputs which are low.

• “Timing masking” masks faults which appear outside the time frame in which the gate
evaluates its inputs and will not store or process the error.

A further abstraction for NoCs is Network Misbehavior [WEH+], which resembles the faulty be-
havior of the elements inside the routers. These faults can corrupt data or mislead packets but
cannot be derived directly from logical errors because error behavior also depends on network
theory and the NoCs traffic distribution ([PPNS12] presents several of such misbehaviors).

To be able to work with faults they need to be categorized. [BH09] distinguishes physical, logical
and functional layers for faults and tries to portray these in his fault model implementation. Re-
garding the physical layer, the Printed Circuit Board (PCB) is seen as “the base of all evil” and
he states that in order to avoid the huge amount of implementation complexity it is necessary to
use a high-level abstraction [BH09, Chapter 3.1].

12

State of the Art

Therefore, he represents the physical faults in a logical fault model, “which makes it possible to
inject faults without manipulating the design physically” and leads to the logical layer [BH09,
Chapter 3.2]. Faults in the switch-level, which are often caused by manufacturing errors, can
be modeled by using the Bridging Fault (40% to 50% of all faults can be modeled by it), which
shows an incorrect connection between two or more wires.

His structural model sees the circuit as a connection of gates, where links can become faulty.
On this level stuck-at faults cover 80% - 85% of all physical faults. A modified version of the
stuck-at fault is also used to portray delay faults by keeping the signal for a longer duration before
updating it to the changed value [BH09, Chapter 3.2].

To resemble impact is one part of implementing the fault model, the other one is to recreate its
appearance pattern. In NoCs for example faults can occur due to crosstalk, thermal issues, cosmic
radiation, aging or combinations of these and often cause specific types of faults. Crosstalk com-
monly triggers transient faults due to creating temporarily electric fields/noise, which disappear
after a few cycles. Contrary heat issues result in permanent failures, from which the circuit will
not recover due to damaging the structure. Intermittent faults are often caused by aging, where
parts of the system wear-out and start repeatedly misbehaving, often transforming themselves
into permanent faults over a longer duration [WEH+, Chapter 3]. The different pattern should
be tested on a system to get valid information about its reliability.

To decide which level of detail shall be used for a fault model the advantages of each layer
were evaluated. On switch-level additional information (e.g. used transistor technique and its
placement) would be needed which is not relevant for this thesis and would add unnecessary
granularity, primarily because for this thesis no actual hardware chips will be created.
On gate-level it would be possible to have a uniform fault model for the whole NoC because every
implemented part could be broken down to gate logic, where faults are injected.
The last abstraction layer, the functional layer, has no general model for faults due to the fact
that every code module is different and would need its own fault model. There is still ongoing
research in order to find an automated method for a general model on the functional layer because
it would be a significant improvement for the performance in large system simulations compared
to an all gate-level simulation. [TAZ03] found a way to approach this goal but states that further
work is needed to have a more reliable model.

In summary, resembling logical errors as fault model on gate-level allows having a fine enough
granularity for the necessary simulations. Its usage as a uniform fault is a significant advantage
and its ability to cover a wide amount of faults resulted in using it for this thesis.

2.3 Evaluation of Fault Tolerance in Networks on Chip

A common way to evaluate a faulty system is to use Golden Trace files as shown in [AM10,
ZME03a, SSM08]’s work. These files are created by a fault-free run of the simulation and display
how the system should work if everything runs perfectly. A fault would create a diversion from
the fault-free run and compared to a tree a new branch would be followed, which can further

13

State of the Art

be split up due to additional errors. It was concluded that comparing faulty trace files with the
golden ones works better with smaller systems, where the impact of the fault and the divergence
from the Golden Trace files is somehow limited for the rest of the simulation time. On the other
hand, larger systems with a high level of interconnections will quickly differ from the perfect run,
thus making the approach for this thesis of questionable use.
[RFZJ13] points out that the fault tolerance research for NoCs becomes more goal-oriented re-
garding their functions and constraints, but their evaluation lacks comparability, suggesting that
standard scenarios with defined performance indicators would be beneficial. In [WEH+]’s paper
three metrics are defined. Firstly, the delivery time, which is the duration of the first time the
packet gets injected in the NoC until it is successfully ejected. Secondly, the retransmission time,
which is the additional duration the packet needs for retransmission. Lastly, the delivery rate,
which resembles the percentage of injected and correctly received packets. The first and last
parameter will be adopted for this thesis to test the performance.

14

3 Target Network on Chip

This chapter focuses on the target Network on Chip (NoC) used for the fault tolerance method
evaluation in this thesis. The NoC follows the popular features for NoC research and was specifi-
cally developed for this thesis. The topology, the routing behavior, the router structure as well as
the fault tolerance methods are introduced. In each aspect, the design of target Network-on-Chip
is given after reviewing published works1.

3.1 Topology

Topology defines the structure of the connections between routers and Intellectual Propertys
(IPs). The capabilities of the NoC are located in the bottom four layers of the Open Systems
Interconnection (OSI) model, and the connected IPs resemble the fifth layer (cf. Figure 1.2).
The IP is connected via a Network Interface (NI) (colored violet in Figure 3.1) to the router,
this group is also called a tile. The routers (colored yellow in Figure 3.1) are connected via links
(colored green in Figure 3.1) to exchange data packets. For different purposes the topology can
be adapted, e.g. mesh, butterfly or irregular (cf. Figure 3.1). However, the majority of scientific
works (e.g. [WHL+16, LYA16, SZBR09, GAP+, BM06]) focus on a regular network and so the
most popular design is the mesh topology.

(a) Mesh Topology. (b) Butterfly Topology. (c) Irregular Topology.

Figure 3.1: Different NoC topologies.

1The work of [DT03], Principles and Practices of Interconnection Network was the main resources for Chapter 3
except other sources are being cited.

15

Target Network on Chip

The mesh topology is a direct network. Every router has an exit to a Processing Element (PE).
Its homogeneous arrangement is not only beneficial for extending the network more efficiently,
but it also allows to keep the wires short, thus supporting a higher communication frequency. The
grid-like structure, which is used for bidirectional communication between two routers, provides
a good path diversity but adds an increased hop count, which is an accepted trade-of [DT03,
Chapter 5].
Examples of its usage can be found in CONNECT [ACM/SIGDA12][11] and [LYA16, PNK+06,
WEH+, SSM16, Ebr13], which gave convincing reasons to use this mesh topology for this thesis.
The implemented design consists of 64 nodes2 (8 x 8 grid) in a convectional two dimensional mesh
topology (cf. Figure 3.2).

Figure 3.2: Target NoC topology consisting of 64 Routers (colored blue) and their NIs (colored violet).

The routers are connected to each of their four neighbors (symbolically positioned in the hemi-
spherical directions north, east, south, west) as well as to the local interface via which data can
be transferred in or out of the network via the NI. This structure is displayed in Figure 3.3, which
resembles a router of the target NoC, which has an additional Virtual Channels (VCs) into the
north and south direction.

3.2 Routing

The routing assures that the data uses the correct path to reach its destination. This behavior
marks the significant feature compared to the common bus system and is accomplished in two
different ways within the network: packet-switching or circuit-switching [DT03]. This thesis will
concentrate on packet-switching due to its preferred usage in NoCs as the hop-wise transfer of
packets reduces the length of wires and allows to operate with higher frequency in the hardware
implementation. The routing of these packets is a crucial aspect to balance the traffic load in
order to avoid deadlocks (cf. Figure 1.4) and livelocks. Livelocks describe the situation where

2Resembling the router and its NI.

16

Target Network on Chip

Figure 3.3: An overview of the router of the target NoC.

packets are continuously forwarded but will not reach their destination.

The three main concepts are [DT03, Chapter 8]:

• Deterministic Routing, which always selects the same path between source and destination
and makes no use of path diversity.

• Oblivious Routing, which sends the data packet to a random router which will forward it to
the destination.

• Adaptive Routing, which minds the state of the network and selects the route accordingly.

The decision for route selection is controlled by either Look Up Tables (LUTs) or algorithms.
Both provide the direction depending on the packet’s destination but the former can be quickly
adapted to new topologies but has to be hardcoded into the system, or else a discovery-phase is
necessary during the startup. Algorithms, on the other hand, are defined only for a specific topol-
ogy but they have the advantage of a small footprint and high execution speed [DT03, Chapter 11].

The routing is also a part of the flow control of the packets, which covers the aspects of allocating
the necessary resources (channel, buffer, other control signals) for further propagating the packet
towards its destination. These techniques can roughly be split into bufferless and buffered flow-
control. The bufferless mechanism will not store the data so if they cannot fulfill the demands
they will misroute or drop it. In contrast the buffered flow control stores packets on their path
by using buffers. It should be mentioned that a packet is split into several parts, which are called
FLow control unITs (FLITs) and these are forwarded in the network. These FLITs are stored in
the order of their arrival. This allows a buffer to contain parts of multiple packets and improves
the utilization of the storage units. A packet commonly consists of a headflit, which contains
necessary routing data or system relevant information, zero or several bodyflits, which transport
the data, and the tailflit, which signals the end of the packet [DT03, Chapter 2]. This type of
flow control is implemented in the target NoC, avoiding data loss while waiting for the resources
to become free [DT03, Chapter 12].

The exact FLIT-structure for the target NoC can be seen in Figure 3.4, showing the name of each
FLIT and the content of their 34-bit wide payload. For the simulations, the data of the bodyflit

17

Target Network on Chip

Name Content

Headflit

Bodyflit

Tailflit

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Type

Type

Type Checksum

Data

Source Destination Reserved FlagsID

Figure 3.4: Structure of the 34 bit wide FLITs in the target NoC.

and the checksum of the tailflit were further modified for tracking purposes.

For the situations where a packet occupies a channel and blocks the system, VCs are introduced,
which are like an “additional channel” inside a router. So if for example a packet in VC A cannot
be forwarded, the channel completely blocks the switching process because VC B of the same
port can step in and prevent a possible deadlock [DT03, p. 221ff].

Bearing all this information in mind it was decided that the target NoC uses a modified DyXY-
Algorithm, which is deadlock-free, with wormhole flow control using VCs into the north and
south direction. Packets get moved first in x-direction then, when the same x-position as the
destination is reached, in y-direction using the neighboring buffer levels for flow control.

3.3 Router Architecture

The structure of the router decides how the packets are stored and forwarded and which elements
are in control of these actions. Variations of router designs can be found in [DT03, p.305ff] or
[EYPZ09, MO09, KPN+05, PNK+06] but the design presented in this section focuses on the
target NoC. In general the elements in a router, see Figure 3.5 (cf. [DT03, Figure 16.1], [PM05,
Figure 2], [BM06, Fig. 10.]) for a schematic overview, can be associated with either the Control
Path, which is responsible for handling the route calculation, allocating the necessary resources
and other logical actions, or the Data Path, whose purpose is to buffer, switch and transmit the
data [WEH+].

Crossbar

SA

Buffer

SM RC

Buffer

SM RC

...

Buffer

SM RC

OB

OB

OB

SM ... State Machine
RC ... Routing Calculation
SA ... Switch Allocation
OB ... Output Buffer

 ... Control Path
 ... Data Path

Local

North

West

Local

North

West

...

Figure 3.5: Overview over Data and Control Path of the simplified router of the target NoC.

In more detail, the procedure inside the Data Path would start with the packets arriving FLIT-
wise at the input buffer and then getting switched over the crossbar to the output registers. The
Control Path inside the router, which the packet has to pass through, can be represented by a five-
stage pipeline as it can be seen in the left side of Figure 3.6 and shows how each FLIT is processed

18

Target Network on Chip

for transmission if as in an ideal case a stage would take only one cycle. The abbreviations are
explained in Table 3.1.

Table 3.1: General states of packet transmission (cf. [DT03, Chapter 16]).

State Description

Routing Calculation (RC) Calculates which outgoing port should be selected for the next hop

Virtual Channel Allocation (VA) Selects one of the pending VAs that is trying to transmit its packet

Switch Allocation (SA) Is responsible for avoiding conflicts in the switch configuration

Switch Transaction (ST) Describes the action of forwarding the FLIT to the output buffer

Link Transaction (LT) The transferring of the FLIT into the next router

In the target system (cf. right side of Figure 3.6) the procedure starts also with the RC but the
VA is fused with the SA, due to a different implementation of VCs. These phases are handled by
a State Machine module in the code, except the LT, which is handled by the output buffers at the
exits of the router. The pipelines are finished with the arriving of the tailflit and the allocated
resources are freed up for further use [DT03, Chapter 2].

Cycle
1 2 3 4 5 6 7 8

Headflit
Bodyflit
Bodyflit
Tailflit

RC VCSA ST LT

ST LT

ST LT

ST LT

Cycle
1 2 3 4 5 6 7 8

Headflit
Bodyflit
Bodyflit
Tailflit

RC VC
SA ST LT

ST LT

ST LT

ST LT

Conservative 5-Stage Pipeline Modified Pipeline of Target NoC

SA

SA

SA

Figure 3.6: Stages of FLIT processing inside a router.

Actual implementations can differ in the number or order of the stages, and these actions can
stretch over several clock cycles until they are finished. However, in the optimal case, they would
take only as few cycles as possible thus leading to different approaches like being grouped or being
so tight designed that a FLIT can be sent out and received in one cycle [EYPZ09].

3.4 Fault Tolerance

Fault tolerance methods are used to improve the reliability of NoCs against faults and their
evaluation and the effect of different fault tolerance implementations is the main focus of this
thesis. The general approach is that an error needs to be detected, confined and if possible the
affected system should be recovered ([DT03, p.414]) for which [WEH+, Fig. 2] gives an example
of a general fault tolerance workflow. This thesis tackles the fault tolerance on a smaller scale,
providing a fault tolerance method for each OSI layer occupied by the NoC except the physical
one.

Detection can generally be achieved by Built-In Self-Test (BIST) (also known as Built-In Self-
Diagnosis (BISD)), which only detects faults by values it receives from the system or by providing
its own test pattern to check for anomalies [RFZJ13, PPNS12]. The test frequency is an impor-
tant parameter to have a good fault detection. If it is too high, it may introduce overhead in

19

Target Network on Chip

power and area consumption as well as a reduced throughput but if it is too low it can let faults
slip through. A more lightweight but limited approach is possible with Assertion Units [LYA16,
Chapter 2][PNK+06], which check for irregular conditions like if the ingoing and outgoing FLITs
of a router are in balance. Due to the overhead of BIST, Assertion Units in routers were pre-
ferred for this thesis’ target system and will be implemented in one of the fault protection schemes.

As already mentioned in Section 1.3, these fault tolerance methods can be divided into three
groups of redundancy namely spatial, time and information. Another classification, which will be
used in this thesis, is to map these solutions to the corresponding layer in the OSI-model, due to
the fact that a NoC covers the Physical Layer, Link Layer, Network Layer and Transport Layer
of the OSI-model (cf. Figure 1.2). Fault tolerance methods can occur in multiple layers but their
implementation would be different3 [RFZJ13].

The first layer of the OSI model, the Physical Layer, will not get a fault tolerance method because
Verilog which is used for the simulations, is good at describing logic circuits and is not good at
describing analog features, e.g. different voltage, influence of crosstalk. Verilog can make use
of external code modules, but this would need additional information, some only available after
the layout process, and stress the performance, which in perspective of the size of the simulation
would be a critical limit.
The next layer is the Link Layer, which has to cope with corrupted or lost packets. The fault
detection can be done by resampling or the use of data encoding. The tolerance methods on
this layer can be realized by Multisampling, Retransmission, Split Link Transfer, Encoding (e.g.
Hamming Code) or Spatial Redundancy (e.g. Triple Module Redundancy (TMR)) [RFZJ13]. For
this thesis encoding the data seems to be the most promising fault tolerance method in order to
avoid adding redundant elements (for simulation performance purposes). Hamming(7,4) linear
error correction code is used to create a checksum for every FLIT (27 bit checksum for 34 bit
FLIT), which is attached to the top of the FLIT itself [WHL+16]. The encoder is placed at the
ingoing NI and a decoder at the outgoing side as a final check. Inside every channel, a so-called
“Intercoder” is placed, which corrects errors in the FLITs.

Faults in the Network Layer can cause FLIT-loss, FLIT-duplication or misrouting. While time
redundancy is covered by the layer above (end-to-end retransmission) and/or below (hop-by-hop
retransmission), on this layer the focus is set on information and spatial redundancy. The infor-
mation technique sends the duplicated information towards its destination, which variations can
be summarized by the term flooding. The spatial one is already implemented by all the addi-
tional routers in a network and provides spare routes between the packet source and destination,
but the routing calculation must support alternative routes and needs an ability to detect defect
routers [RFZJ13, Chapter 3].
The higher packet count of flooding inside a faulty NoC increases the risk of deadlocks, so instead
of flooding a fault-tolerant routing system is added to the fault tolerance methods in this work.

To detect faulty routers the Assertion Units inside the NoC are used and if their counted signals
exceed a certain threshold an “abandon signal” warns the neighbor routers. The routing calcula-
tion then reacts to these signals and reroutes the packets to avoid such broken links, still using a
DyXY -algorithm [Ebr13].

3E.g. Retransmission can be realized on Link-Layer as hop-to-hop retransmission and on Transport-Layer as
an end-to-end retransmission

20

Target Network on Chip

Lastly, the Transport Layer is covered which assures the communication between the PEs and
NoCs over NIs. Faults on this layer can cause wrong packet addresses or even packet loss.
The fault localization inside the network is difficult because these endpoints are not able to re-
view every step of the packet but mention that techniques exist, which probe in every direction
or presume the fault position from evaluating error pattern. Generally, Error Correction Code
(ECC) and retransmission techniques are used to perform fault tolerance on this layer [RFZJ13,
Chapter 4].
While ECC was already implemented on the Link Layer, it was decided to implement a re-
transmission technique for the Transport Layer for the target system by connecting specialized
elements to the NIs.

It should be noted that retransmission alone is not able to recover from permanent faults, so the
path needs to be adapted for this problem. Also, redundancy techniques can be performed on
this layer by duplicating for example parts of the NI or by calculating alternative routes, which
is only possible if source routing is used (the packet path is completely defined at the source
router) [RFZJ13, Chapter 4].

Aside from the implemented fault tolerance additions named above, a sturdier version of the state
machine was added. This so-called Secure State Machine has additional abilities to cope with
faults. While the normal state machine can drop a faulty headflit (ECC-module required or an
Assertion Unit), the secure state machine is capable of waiting to possibly let the fault recover
(1 cycle was used in this thesis), giving the system a higher chance to transmit more packets.
Additionally, if a new headflit appears before the tailflit arrives the secure state machine reacts
by stopping the transmission of the tailflit-missing packet and continuing with the new arrived
headflit since otherwise this new packet would be lost. Furthermore, it can wait for a cycle if
an error in other elements occurs (e.g. routing calculation or switch allocation) and if it will not
recover after a predefined amount of cycles, it goes back to the IDLE+RC state. This can lead
to a loop of the state machine, but the IDLE+RC will give all the other state machines in the
router a chance to continue their work and prevents that the faulty state machine propagates its
faults.
Parts of these abilities depend on the Assertion Units of the Fault Tolerant Routing, or the error
output of the ECC tolerance method and need to be activated to work. These combinations can
and will be tested separately during the simulations to evaluate their performance.

Each of these fault protection schemes will be tested in the simulations, but as [DT03, RFZJ13]
and [WEH+, p.3] state a mix of fault tolerance methods on different layers is more capable of
countering faults than just using a single method and will be considered during the simulations
of this thesis.
Such combinations are already done, for example by [PNK+06], who proposed a system using
retransmission (Hop By Hop (HBH) with Forward Error Correction (FEC)) and specialized VAs,
which are also used to locate and break deadlocks in order to avoid resource hungry deadlock-free
algorithms.
Also [LYA16]’s work focuses on the concept of slicing the router into smaller parts, not only for
stability but also for power-saving benefits. A channel consists of three narrower channels, which
run in parallel mode for peak-throughput, single mode to recover from faults and in a TMR-mode
to cope with faulty parts. However, both examples display that one of these methods cannot be
easily deactivated without affecting the rest of the system, which makes it challenging to evaluate
also each method separately.

21

Target Network on Chip

Therefore, the target NoC is focused on simpler, but separated fault tolerance mechanisms,
which can be switched off without debilitating the rest of the system but also have synergies
if activated together (e.g. ECC signals the fault-tolerant routing that the packets from one
neighbor are always defect). The first approach to use was an auto-generated NoC from CON-
NECT [ACM/SIGDA12] as a base for the test system which failed because the code was on
gate-level, which made it practically impossible to gracefully expand the system to the simulation
requirements. This resulted in creating a NoC specifically for this thesis, but it has not been
focused on low power consumption or high latency performance and will be only used as a test
system.

22

4 Fault Injection Implementation

This chapter will describe the procedure of the fault injection, the implemented fault model design
and the fault injection process, which which includes a short description of the used framework
pyverilog.

4.1 Fault Injection Flow

The Figure 4.1 displays the fault injection flow designed for this thesis. First the Verilog [Ver06]
code of the finished target Network on Chip (NoC) is synthesized file by file to gate-level, which
provides a uniform structure of these files for the fault injection process in the next step.

Part C

Part B

Part A

Verilog Code

Synthesize Fault Injection

Part C

Part B

Part A

Verilog Code with
Fault Modules

SimulationAnalysis

Figure 4.1: The workflow of injecting the code with faults for simulation and analysis.

During the fault injection step, fault modules are placed by a script in each module of the target
system, which also includes its fault tolerance methods. After all Verilog files are ready the
simulations process starts, for which QuestaSim [3] by Mentor Graphics was used to execute the
testbench written in Systemverilog [Sys13]. In the final step, the simulation results are analyzed,
which marks the end of the fault injection flow for this thesis but the fault injection process is not
bound to this design. Other Verilog systems could be tested as well and afterwards decided to be
good enough (“smiley face”) or that rework is needed (“hammer and wrench”). The simulation
results will be shown in Chapter 5, while the following sections will focus on the fault module
followed by the fault injection script.

23

Fault Injection Implementation

4.2 Fault Module

The fault modules are coded elements in the NoC and will be used to resemble the fault model
inside the system. Letting the fault model resemble logical errors on Gate Level is seen as optimal.
Logical errors provide an abstraction from the physical faults without needing knowledge about
the structure, placing and technology used for the Integrated Circuit (IC), while they can still be
used in a uniform way for the whole system. A further abstraction would require an adapted fault
model for every logic module inside the NoC, which would be not only challenging to retrieve but
also not transferable for possible further NoCs.
For its development Verilog was chosen as the programming language. It is widely used as a
Hardware Description Language (HDL) to model chip designs and allows to describe designs
from Behavioral level over Gate Level down to Switch Level.

Common logical errors, which appear in ICs, are stuck-at-0 or stuck-at-1, which lets the output
value of the gate stay 0 or respectively 1, and in some cases also bit-flip error, practically inverting
the result of the gate. Simplified, it can be seen that every gate, to which circuits can be broken
down, has a chance to get faulty, which affects its outgoing signal. At the beginning of the de-
velopment, it was the idea to use the resolution function1 of Systemverilog [Sys13] to manipulate
the signals but not all of its necessary features were supported by simulation environments like
ISE from Xilinx Integrated Development Environment (IDE), Icarus Verilog or QuestaSim. The
thought behind this fault injection is now to place a fault module at the output of every gate
to modify with a certain probability its behavior in the system. Aside from the logical errors
named above, it should also be possible to resemble different appearance patterns, to be precise
transient, intermittent and permanent ones.

The implemented model has two input ports, named in and faultyClock, and one output port,
named out. The output signal of the selected gate will go into the in port and will exit, possibly
modified, via the out port as it is displayed as the red module in the right side of Figure 4.2.

Pre Fault Injection Post Fault Injection

IN OUT&

≥1

&

≥1

Gate A

Gate B

Gate A

Gate B
faultyClock

Wire L2
Fault Module L2

Figure 4.2: Fault Module placed between two gates.

Inside the module is a state machine witch a CORRECT and FAULTY state, which can also be
represented as Markov Chain (cf. Figure 4.3). These states decide if a specific bit is set, which
decides if the input in will be modified before it is passed to the output out or not. To change
between these states, a random number is generated every cycle, for which the faultyClock is
used as a trigger and compared with predefined probability values, which are stored in a parameter
file and are valid for all fault modules in the NoC. If the number is below the value, the module
will change its state else it stays in its current one.

1This function resolves which signal level has a wire connected to low and high signals.

24

Fault Injection Implementation

CORRECT FAULTY

prob_F2C

prob_C2F

1 - prob_C2F

1 - prob_F2C

Figure 4.3: State machine of the Transient/Permanent Fault Model.

This model allows to represent transient and permanent error, which can also be displayed in
Markov matrices, to present the probabilities of the state transfer.
In such matrices, the rows and columns are matched to individual states, in example 4.1 marked
as A, B, and C. Each column represents transfer probabilities from a state. For example column
A has a 0.3 chance to stay in state A, a 0.7 chance to switch state B and no chance to transfer
to state C. Therefore, the sum of a column must equal 1, containing all transfer possibilities.

A B C[]A 0.3 0.2 0.1
B 0.7 0.2 0.2
C 0 0.6 0.7

(4.1)

The matrix 4.2 represents the transient error and has aside from the probability to appear, named
prob C2F, a high chance to return to the CORRECT state,named prob F2C.

Ptransient =

[
1 − prob C2F prob F2C
prob C2F 1 − prob F2C

]
(4.2)

In the matrix 4.3 the permanent error is displayed, which looks quite similar to the matrix
Ptransient but has a zero probability to recover.

Ppermanent =

[
1 − prob C2F 0
prob C2F 1

]
(4.3)

For intermittent errors the state machine is extended by a third state (cf. Figure 4.4), called
GROGGY, which is positioned after the CORRECT state (leaving probability named prob C2G)
but before the FAULTY state (leaving probability named prob F2G).

In the GROGGY state, the error is not active (leaving probabilities named prob G2C and
prob G2F), but there is a certain chance that it switches to FAULTY. It can also be dis-
played as Markov matrix, represented as the matrix Pintermittent in 4.4, which is extended by
the state GROGGY. As it can be seen there, there is no direct connection between CORRECT
and FAULTY state (probability 0).

Pintermittent =

1 − prob C2G prob G2C 0
prob C2G 1 − prob G2C − prob G2F prob F2G

0 prob G2F 1 − prob F2G

 (4.4)

25

Fault Injection Implementation

GROGGY FAULTYCORRECT

prob_G2C

prob_C2G

1 - prob_C2G 1 - prob_G2C - prob_G2F

1 - prob_F2G

prob_G2F

prob_F2G

Figure 4.4: State machine of the Intermittent Fault Model.

While creating this state machine and the signal modification was straightforward, the imple-
mentation of the random number generation and passing the probability value contained certain
challenges. The used IDE (QuestaSim) supports mixed simulations, so that the random number
of the function $urandom() of Systemverilog, a successor of Verilog, was used because it returns
an unsigned 32-bit number, which seemed to be a good approach to map the probabilities on it.
However, this function, which will be triggered in the same cycle in all fault modules of the NoC,
returns during an evaluation an identical value in all instances. In other words, it is unfit for
such a simulation. In contrast the standard Verilog $random() function returns different random
32-bit signed values. This led to updating the design using this function. To cope with signed
values, the probabilities were transformed into the positive range of it (0–2147483647), and the
negative part was discarded for the state-change-evaluation. A transformation function is used
to still be able to represent numbers after the decimal point (e.g. 0.002) for the fault probability,
up to a given degree of precision, as integer values. First, the whole number is multiplied by 10x,
where x represents the number which is needed for the value to be free of digits after the decimal
point. The maximal available positive integer value (2147483647) is then divided by 10x and then
multiplied by the transformed number, e.g. to represent a probability of 0.002 % the transform
function would be MaximalV alue/Divider ∗ Factor = 2147483647/1000 ∗ 2 = 4294966.

To improve the situation the technique to fuse multiple $random() values was evaluated. However,
the text macros (‘define MACRONAME VALUE) which are used to pass the probabilities to the fault
modules threw a warning in the IDE, that only 32-bit values are supported. This resulted in
retaining the 32 bit signed random values and the fact that these values will be rounded is seen
as an acceptable trade-off.

4.3 Fault Injection Script

The fault module of the previous section needs to be placed after every gate in the code of the
NoC to run the fault simulations as displayed in Figure 4.2. However, the modules, which are used
for the NoC2 are described on the behavioral level for a more convenient development. To get a
homogeneous file format from which the injection script can work, the Design Compiler [4] from
Synopsis was used to synthesize these files to a Gate Level netlist. This required that the code
style has tighter constrains3 because in this step a netlist for actual hardware implementation

2Each module of the NoC corresponds to one Verilog text file.
3e.g. no open wires or infinite for-loops.

26

Fault Injection Implementation

is created4. This step required using a proprietary gate library named “tcbn65gplus.v”, which
contains all used gates and also defines its inputs and outputs as well as their logic behavior as
can be seen for example in Listing 4.1. A further advantage is that this library also contains
information about the direction of the ports of the gates, making it possible to attach the fault
module in the correct way.

Listing 4.1: Example for gate library notation

module AND (IN1 , IN2 , OUT);

input IN1 , IN2;

output OUT;

and (OUT , IN1 , IN2);

endmodule

This script itself is written in Python [6] (Version 3.5) and is executed from the command line.
A schematic flow diagram can be seen in Figure 4.5.

Start

Stop

Read in command line
arguments

Create AST of target file
via pyverilog

Create fault
infected Verilog file

via pyverilog

Looping over AST, storing
relevant data in
code-container

input-ports, output-ports, wires,
gates, connections of the gates

Extracts all used gate
names from code-container

Search in and out port information
for gates in library file

Store gate port direction for
each gate in gate-container

Enhance code-container
with information
of gate-container

Finalizing code-container
by splitting intern wires

for fault modules

Creating pyverilog AST
from target code container
extended by fault modules

Target Verilog file

Library , Fault Module and
Target Code Path

Gate Library File

Fault Injected Target Verilog

A

A

Figure 4.5: Simplified flow chart of the injection script.

The script starts by reading in the three mandatory arguments containing the path to the gate
library, the fault injection module, and the target code module. In the next step, the target
module gets transformed into an Abstract Syntax Tree (AST) by the parser from the framework
pyverilog [7], which was used in version 1.0.6, and this script depends on it. Pyverilog itself
depends on the open source HDL-compiler Icarus Verilog [8] for Verilog and VHSIC (Very High
Speed Integrated Circuit) Hardware Description Language (VHDL), which has to be installed as
well.
The next part of the script reads out the relevant data from the AST by looping over it and
storing the data (number and direction of ports, wires, gates, gate inputs/outputs) in an extra
“container”-class. To increase the performance, a list of all used gates is looked up and extracted
from the gate library instead of working with the whole library file. The extracted minimal in-
formation is again parsed by pyverilog to evaluate which port of the gate is an input and which

4Additionally, tests with tools from Synopsis VCS [5] were applied on the code for further timing and delay
tests but this tool was not used any further than that.

27

Fault Injection Implementation

an output. This information regarding the direction is then added to the stored gate-data in the
container from the first parsing process. Afterwards the input port for the faultyClock is added
to the topmodule and all the output signals of the gates are split into two parts, distinguishable
by the postfix “ a” and “ b”. This requires additional parsing steps for vectors (e.g. wire [3:0]

credit as an example declaration in Verilog) to select the correct bit of it (e.g. credit[2] refers
to a certain bit in Verilog). Furthermore, the input ports of the topmodules need to be excluded
from the fault injection process because there is no gate, where a fault module could be added,
before them.

In the followed action an AST is created by iterating over the container adding the appending
data and also the fault modules in a specific format. In the final step the code generator of
pyverilog is used to create the output file, named after the target file with the postfix “ faulty”
appended to the name.
In the Listing 4.2 an example of the injection script command is shown. The python3 command
is necessary to execute the faultInjectionScript.

Listing 4.2: Example for commandline usage

$python3 faultInjectionScript.py tcbn65gplus.v m_FaultInjectionUnit.sv m_Crossbar.v

To present the result of the script a DEMUX module of the NoC is transformed as an example.
In Listing 4.3 the code of the DEMUX after the transformation with Synopsis Design Compiler
can be seen. Aside from the inputs and outputs, it has two wires (n3, n1) and four modules (U4,
U5, U6, and U7) to execute its task.

Listing 4.3: Gate-Level source code before the fault injection

module m_Demux_1in2out_validIn (select , data_in , data_out_0 , data_out_1);

input [0:0] data_in;

output [0:0] data_out_0;

output [0:0] data_out_1;

input select;

wire n3, n1;

AN2D8 U4 (.A1(select), .A2(data_in [0]), .Z(data_out_1 [0]));

INVD0 U5 (.I(n3), .ZN(n1));

CKND8 U6 (.I(n1), .ZN(data_out_0 [0]));

INR2D0 U7 (.A1(data_in [0]), .B1(select), .ZN(n3));

endmodule

After the transformation, presented in Listing 4.4, the input faultClock was added and both
wires were split into an “ a” and “ b” part. Additionally, the two output ports each received an
“ a”-post-fixed wire, which is connected to their fault module. The fault module is placed after
the gates U4 and U6, else they would be directly connected to the output without any chance to
become faulty. The four modules have their signals adapted inside, and the four corresponding
fault modules were added. The fault injected module can now be further used.

Listing 4.4: Gate-Level source code (formatted) after the fault injection

module m_Demux_1in2out_validIn_faulty (data_out_0 , data_out_1 , data_in , select ,

faultClock);

input [0:0] data_in;

input select;

output [0:0] data_out_0;

output [0:0] data_out_1;

input faultClock;

28

Fault Injection Implementation

wire [0:0] data_out_0_a;

wire [0:0] data_out_1_a;

wire n3_a;

wire n3_b;

wire n1_a;

wire n1_b;

AN2D8 U4 (.A1(select), .A2(data_in [0]), .Z(data_out_1_a [0]));

INVD0 U5 (.I(n3_b), .ZN(n1_a));

CKND8 U6 (.I(n1_b), .ZN(data_out_0_a [0]));

INR2D0 U7 (.A1(data_in [0]), .B1(select), .ZN(n3_a));

m_FaultInjectionUnit #(.MODULEID("data_out_0_0"))

data_out_0_0_faulty (.CLK(faultClock), .in(data_out_0_a [0]), .out(data_out_0 [0]));

m_FaultInjectionUnit #(.MODULEID("data_out_1_0"))

data_out_1_0_faulty (.CLK(faultClock), .in(data_out_1_a [0]), .out(data_out_1 [0]));

m_FaultInjectionUnit #(.MODULEID("n3"))

n3_faulty (.CLK(faultClock), .in(n3_a), .out(n3_b));

m_FaultInjectionUnit #(.MODULEID("n1"))

n1_faulty (.CLK(faultClock), .in(n1_a), .out(n1_b));

endmodule

Due to its relevance to this thesis, it was decided to provide additional information about the
pyverilog framework. It is developed by Shinya Takamaeda-Yamazaki and was first published in
[TY15]. The goal of his work was to provide a toolkit to ease the development of new Computer
Aided Design (CAD) tools for testing and improving Verilog code, which is in a broad sense also
the intention of this thesis.
Pyverilog consists of five parts: A code parser, a data flow analyzer, a control-flow analyzer, a
visualizer and a code generator. Both of the analyzers and the visualizer were not used.

The code parser has an integral part in the fault injection script to read the Verilog files (cf.
Listing 4.5) and uses Icarus Verilog as preprocessor before its pyverilog code transfers it into an
AST.

Listing 4.5: Envoking parsing process in Python script

fileList = []

fileList.append(VerilogFile)

ast , directives = parse(fileList , preprocess_include=include , preprocess_define=define)

The returning AST can be displayed with the command ast.show, of which an extraction can
be seen in Listing 4.6.

Listing 4.6: Shortened output of ast.show

Source: (at 8)

Description: (at 8)

ModuleDef: m_Demux_1in2out_validIn (at 8)

Paramlist: (at 0)

Portlist: (at 8)

Port: select , None (at 8)

Port: data_in , None (at 8)

Port: data_out_0 , None (at 8)

Port: data_out_1 , None (at 8)

Decl: (at 9)

Input: data_in , False (at 9)

Width: (at 9)

29

Fault Injection Implementation

IntConst: 0 (at 9)

IntConst: 0 (at 9)

Decl: (at 10)

...

However, for evaluation, it is preferred to get into this tree structure itself, which differs from
Listing 4.6 as can be seen in Figure 4.6 but has a more defined structure to iterate over it.

Figure 4.6: Overview of actual AST structure.

The code generator needs a self-created version of AST to write the Verilog files. This process
demands that the values and names are appended in predefined format5 to a list, which then will
be collected in a final module definition, which is passed to the code generator. A simple working
example can be seen in Listing 4.7, in which module “m Simple” is created. The code shall show
how to use pyverilog, but the created file has no actual function.
After passing its name to a variable, the ports are defined. The lists ModulePortInput/ModulePortOut
represent the definition of the port inside the file, how wide it is and which direction it goes, while
the list portMembers assures that the port is listed between the brackets of the topmodule. A
similar procedure is executed for the wires. At this point, it should be noted that the example
only covers singular ports, not vectors. Next, a module (“m Counter”) is initialized, followed by
connecting its ports and concluding by adding its module to the “InstanceList”. After the data it
wrapped, it is passed to the ASTCodeGenerator() function which then needs to write and create
a final file. This describes the code generation process which differs from the script, in which
several nested loops, which iterated over the in- and outputs, wires, gates and fault modules with
if-conditions were used to create the output.

Listing 4.7: Example script of how to create an AST and then pass it to the Verilog code generator

Necessary variable initiation

topModuleName = "m_Simple"

emptyList = []

moduleList = []

itemMembers = []

5The preview of the function parameters of the IDE (Pycharm Community Edition [9]) was quite useful for this
task.

30

Fault Injection Implementation

portMembers = []

ModulePortInput = []

ModulePortOutput = []

Module Input Ports

portMembers.append(vast.Port(name="CLK", type=None , width=None))

ModulePortInput.append(vast.Input(name="CLK", width=None , signed=False))

Module Output Ports

portMembers.append(vast.Port(name="even", type=None , width=None))

ModulePortOutput.append(vast.Output(name="even", width=None , signed=False))

Adding a module

moduleName = "m_Counter"

moduleType = "counter_logic"

modulePortList = []

argName = vast.Identifier(name="CLK")

portArg = vast.PortArg(argname=argName , portname="clk")

modulePortList.append(portArg) # Resulting in the Verilog Code -> .clk(CLK)

argName = vast.Identifier(name="even")

portArg = vast.PortArg(argname=argName , portname="output")

modulePortList.append(portArg)

Instance Handling

moduleInstance = vast.Instance(module=moduleType , name=moduleName ,

portlist=modulePortList , parameterlist=emptyList ,

array=None)

moduleInstanceList = vast.InstanceList(module=moduleType , instances =[moduleInstance],

parameterlist=emptyList)

moduleList.append(moduleInstanceList)

Preparing the code generation

Ports

itemMembers.append(vast.Decl(list=ModulePortInput))

itemMembers.append(vast.Decl(list=ModulePortOutput))

Module Declaration

itemMembers.extend(moduleList)

portList = vast.Portlist(portMembers)

ast = vast.ModuleDef(name=topModuleName , paramlist=None , portlist=portList , items=itemMembers)

Executing the code generation

codegen = ASTCodeGenerator ()

result = codegen.visit(ast)

Writing code to file

content.outputFile = open((topModuleName + ".v"), ’w’)

outputFile.write(result)

outputFile.close ()

31

5 Simulation & Analysis

In this section, the simulations on the fault injected target Network on Chip (NoC) will be
evaluated and explained. First, the evaluation of the target NoC followed by a mathematical
approach of calculating the fault probability of the system are shown. Afterwards, the results
of the simulations will be presented, the different configurations compared and their behavior
analyzed.

5.1 Evaluation of the Target Network on Chip

The evaluation of the target system starts after the transformation of the code modules into
gate-level and the fault injection process on these modules is finished. With all its different
configurations the NoC code includes 27 modules, which ware representing the behavioral el-
ements of the system. Within the 27 modules the needed width and port adaptions are also
counted. In Figure 5.1 their connections inside one of the 64 routers of the target NoC are shown.
Each router consists of seven Channels, a Crossbar, a Switch Allocation, five Output Buffers,
two data Demuxs and two regular Muxs for the Virtual Channel Allocation (VA) as well as two
Round Robin Units for their allocations. The Channels consist of a Buffer, a State Machine and
a Routing Calculation. Table 5.1 lists their transformation results. The first column contains
the name of the module, the second one the number of gates and the third one the number of
added fault modules. In most cases, the number of gates is equal to the number of added fault
modules, but it differs for some because certain gates have multiple output ports (normal and
inverted output ports). Following its logic, the script adds a fault module to them, thus creating
this increased count.

For the simulations, different combinations of active fault tolerance methods are used, which
also affect the NoC. They can be divided into five basic configurations, which are described in
the following lines. For the bare unextended structure, therefore called blank (I), no additional
elements are activated. Activating the ECC fault tolerance method (II) adds an Encoder and a
Decoder at the Network Interface (NI) of the NoC as well as an Intercoder into every Channel.
Inside the network the logic will not be modified but the whole data path needs to be widened for
the enlarged FLow control unIT (FLIT) with its ECC checksum. The retransmissions (III) do not
modify the router but instead the testbench receives additional logic to enable the retransmission
and Acknowledgement (ACK)-logic. The Fault Tolerant Routing (IV) extends the system by
several assertion units and error counters, which are placed in the channels and the router itself.

32

Simulation & Analysis

Crossbar

Switch
Allocation

Channel L1

SM

Buffer

RC

Channel N2

Buffer

Channel N1

Buffer

Channel W1

Buffer

Channel S2

Buffer

Channel E1

Buffer

Channel S1

Buffer

D
e
m

u
x
 N

D
e
m

u
x
 S

M
u
x
 N

M
u
x
 S

Round
Robin

Output
Buffer

Output
Buffer

Output
Buffer

Output
Buffer

Output
Buffer

ECC

AU

Router AU

SM RC

ECC

AU

SM RC

ECC

AU

SM RC

ECC

AU

SM RC

ECC

AU

SM RC

ECC

AU

SM RC

ECC

AU

Local

North

East

South

West

Local

North

East

South

West

Legend: SM ... State Machine, RC ... Routing Calculation, ECC ... Error Correction Code, AU ... Assertion Unit

... replaces SM if Secure SM Mode is active

... added if ECC Mode is active

... replaces RC and adds AUs if Fault Tolerant Routing Mode is active

Figure 5.1: Overview of the target NoC with color coding for fault tolerance methods.

It also replaces the Routing Calculation with the fault tolerant version. Last but not least, for
the Secure State Machine tolerance method (V) the State Machine in every Channel is updated.
These five configurations were selected for a fault probability calculation of the network (see
Section 5.2).
Table 5.2 gives an overview over the used modules in one router for each of these five basic
configurations described above. The information of the number of gates and fault modules is
retrieved from the source code of the target NoC. Due to the design of the router the configurations
have a similar usage of the modules (e.g. four of five configuration use the normal buffer), but
differ in detail. If combinations of fault tolerance methods would be selected, their module usage
will be combined.
Table 5.3 presents for each of the basic five configurations the different amounts of gates for only
one router (Gates/Router) and the amount of fault modules for each configuration for one router
(Fault Modules/Router). For example if you take the number of modules from the column of
ECC from Table 5.2 and multiply them by their according number of gates in Table 5.1 your
result equals 21000 Gates/Router, which is the corresponding entry in Table 5.3. Furthermore,
for the amount of gates for the whole NoC (Gates/NoC) the values of Gates/Router of Table 5.3
are multiplied by 64. The amount of fault modules for the whole NoC (Fault Modules/NoC) is
calculated in the same way, except that the column of the fault modules of Table 5.1 is used. As
already explained in Section 3.4 the changes for the retransmission fault tolerance are external
to the NoC, therefore resulting in the same gate/fault module count as the blank configuration.

33

Simulation & Analysis

Table 5.1: Number of gates and fault modules in the used NoC modules.

Module Gates Fault Modules

AssertionUnit Crossbar 508 508

AssertionUnit Packet 64 64

AssertionUnit Routing Calculation (RC) 13 13

AssertionUnit Round Robin 21 21

AssertionUnit Switch Allocation 269 283

AssertionUnit State Machine 37 37

Buffer 913 919

Buffer wide1 1577 1583

Crossbar 1737 1737

Crossbar wide 2837 2837

Demux 1in2out dataIn 230 230

Demux 1in2out dataIn wide 413 413

Demux 1in2out validIn 4 4

D FF sync channel 4 4

D FF sync data 109 109

D FF sync data wide 193 193

ECC Unit Inter 305 305

Error Counter Channel 133 164

Error Counter Router 145 176

Mux 2in1out 73 73

Mux 2in1out wide 130 130

Routing Calculation 111 111

Routing Calculation fault tolerant 245 248

Round Robin EvaluationUnit 15 15

State Machine 134 136

State Machine secure 203 203

Switch Allocation 1165 1165

Switch Allocation extended2 1196 1196
1 wide . . . represents modules which have a wider data port for the addi-
tional checksum for Error Correction Code (ECC).
2 extended . . . exposes additional internal signals for the assertion unit
used by the Fault Tolerant Routing.

34

Simulation & Analysis

Table 5.2: Number of used modules in a router for the five basic fault tolerance configurations.

Module blank ECC Retransm. FT Routing Secure SM

AssertionUnit Crossbar 0 0 0 1 0

AssertionUnit Packet 0 0 0 7 0

AssertionUnit RC1 0 0 0 0 0

AssertionUnit Round Robin 0 0 0 2 0

AssertionUnit Switch Allocation 0 0 0 1 0

AssertionUnit State Machine 0 0 0 7 0

Buffer 7 0 7 7 7

Buffer wide 0 7 0 0 0

Crossbar 1 0 1 1 1

Crossbar wide 0 1 0 0 0

Demux 1in2out dataIn 2 0 2 2 2

Demux 1in2out dataIn wide 0 2 0 0 0

Demux 1in2out validIn 2 2 2 2 2

D FF sync channel 5 5 5 5 5

D FF sync data 5 0 5 5 5

D FF sync data wide 0 5 0 0 0

ECC Unit Inter 0 7 0 0 0

Error Counter Channel 0 0 0 7 0

Error Counter Router 0 0 0 1 0

Mux 2in1out 2 0 2 2 2

Mux 2in1out wide 0 2 0 0 0

RC 7 7 7 0 7

RC Fault Tolerant 0 0 0 7 0

Round Robin EvaluationUnit 2 2 2 2 2

State Machine 7 7 7 7 0

State Machine Secure 0 0 0 0 7

Switch Allocation 1 1 1 0 1

Switch Allocation extended 0 0 0 1 0

Table 5.3: Summed up number of gates and fault modules for different configurations of the whole NoC.

blank ECC Retransmission FT Routing Secure SM

Gates/Router 12217 21000 12217 15788 12700

Gates/NoC 781888 1344000 781888 1010432 812800

Fault Modules/Router 12273 21056 12273 16127 12742

Fault Modules/NoC 785472 1347584 785472 1032128 815488

35

Simulation & Analysis

5.2 Mathematical Approach

The information of the previous chapter allows calculating the fault probability of the whole NoC
for its next cycle under some assumptions. First, the NoC starts in a fault-free state and every
fault module has the same probability to switch from the CORRECT to the FAULTY state. In
this thesis faults are considered to be faults without any regard if the fault would be masked or
not.
For the calculation, a simple stochastic approach for independent events is used. As an example
two fault modules, A and B, with the same fault probability probC2F (i.e. probability to switch
from CORRECT to FAULTY) have three possible combinations of resulting in an error. Case
one and two are that either only A or only B change their state, which can be mathematically
described by Case1 = Case2 = probC2F ∗ (1 − probC2F). Or case three where both get faulty,
mathematically described by form Case3 = probC2F ∗ probC2F . Summarizing these three equa-
tions results in the fault probability of this example. However, for this large number of fault
modules of the target system it is easier to calculate the chance that the system stays correct
and subtract the result from 1 to get the fault probability. Due to the fact that all probabilities
to become faulty are the same the calculation can be reduced to 1 − (1 − probC2F)n, where n is
the number of fault modules in the system. Applied on the target NoC the results are displayed
in Table 5.4 (truncated to two decimal places). The result is under the assumption that the fault
probability value (probC2F) is 1.0e − 7. This value was chosen because several test runs with
transient faults on the target NoC showed that values above 1.0e − 7 had an impact which was
too strong on the performance. 1.0e − 7 was the first value that did not break the system and
allowed valid simulations.

Table 5.4: Fault probability of different configurations of the whole NoC.

blank ECC Retransmission FT Routing Secure SM

Fault Modules/NoC 785472 1347584 785472 1032128 815488

Fault Probability [%]/NoC 7.55 12.61 7.55 9.81 7.83

The range of the fault probability for each of the five basic configurations spans from 7.55 %
up to 12.61 %, which states that it takes stochastically about ten cycles to transfer the system
into a faulty scenario. Furthermore, it can be implied that a NoC with more elements has a
higher chance to get faulty, reducing the reliability of the whole system. Under this assumption
the ECC in Table 5.4 would have the highest probability to become faulty, concluding that
additional combinations of ECC with other configurations would add to this negative effect as
the overall number of elements would be increased. However, the impact of the additional fault
modules appearing in the ECC would mostly affect the data path by corrupting a bit in a FLIT,
which possibly will not have any further negative effect on the packet. On the other hand faults
in the fault tolerant routing calculation or the secure state machine introduce more possibilities
to extend their erroneous behavior to the rest of the router, which can possibly have a stronger
influence on the system. However, this theoretical approach will not spare evaluating the practical
efficiency of the fault tolerance methods. Therefore, it is necessary to get closer to the actual
implementation simulations.

36

Simulation & Analysis

5.3 Simulation Setup

For the simulations, the fault infected NoC is inserted in a testbench, which is equipped with
several evaluation elements to calculate the reliability and latency of the packets. A highlighted
feature is that every packet receives an unique ID during its transmission, which is used for the
tracking if the packet is injected or ejected from the network and it is reset after successfully
reaching its destination.
For the reliability the number of returned IDs, which equals the successfully ejected packets, is
divided by the number of injected packets. If the retransmission technique is active this tracking
is modified by counting a packet as injected at the moment its ID is occupied by the sender and as
ejected when the ID is returned from the same sender. This is to counteract against the distortion
of the additional number of retransmitted packets. This result is named relative reliability (cf.
Equation 5.1) in this thesis.

Reliabilityrelative =
Packetsejected
Packetsinjected

(5.1)

The absolute reliability is another metric which is the result of the ejected packets divided by
the absolute number of to-be-injected packets, which for this simulation will be 2000 packets (cf.
Equation 5.2). This calculation includes under specific circumstances information about the con-
gestion in the network by including the not injected packets, which were prevented from entering
the network due to the formerly mentioned congestion. The limitation of this measurement is
that it focuses only on heavy congestion, if it is not heavy it will not indicate significant changes.
In other words if the injected packets equal the 2000 limit, this graph will not provide further
information. But it allows a comparison with other fault tolerance methods, which have not
reached this limit of 2000 packets.

Reliabilityabsolute =
Packetsejected

PacketstoBeInjected
=

Packetsejected
2000

(5.2)

For the latency calculation, a counter variable for every occupied ID is incremented, which is
reset when the packet (with this ID) is injected into the network. When it is ejected the number
of passed cycles is added to a summation variable, which is divided by the number of ejected
packets (cf. Equation 5.3).

Latency =
TraveldurationV ariablePackets

Packetsejected
(5.3)

An active retransmission technique changes the setup, while the increment and reset of the cycle
counter processes are the same. Also, the ACK-packets latency is added to the summation vari-
able, which is then divided by the sum of the normal and ACK-packets (cf. Equation 5.4).

LatencyRetransmission =
TraveldurationV ariablePackets+ACKs

Packetsejected + ACKejected
(5.4)

37

Simulation & Analysis

Pretests showed that a simulation runtime of 20000 cycles while injecting up to 2000 packets
consisting out of two to seven FLITs was seen as the most promising test scenario for relevant
results. The packet injection chance per NI and cycle was set to 1%, which provided a usable
duration for the simulation runs.
The packet injection and the fault trigger functions were both based on random number gener-
ation, which will produce the exact same simulation result for one seed in Verilog. To achieve
an averaged result, simulations for each combination of fault pattern (transient, intermittent,
permanent) and fault tolerance methods are done with different seeds (1, 1000, 10000). The fault
probability during these simulation runs is swept from 0 up to 0.0000010 in incremental steps of
0.0000001.
Therefore, for each simulation configuration (which consists of active fault tolerance methods
+ fault pattern + seed) a block of 11 simulation runs is performed. One simulation run took
from four up to eleven hours (some even more), while a complete simulation block consisting of
11 runs was finished in about five days. Each block needs to run three times due to the three
different seeds. To increase the throughput such a block of simulations2 would be executed on one
of 11 provided computers, eight of them were Virtual Machines (VMs) and three real hardware
systems.
For switching between the fault tolerance methods, macros are used in the parameter file, which
also allow configuring the fault probability as well as the fault pattern, but the failure type (i.e.
Stuck-At-0/1, Bit-Flip) needs to be configured in the fault module itself. Incrementing the fault
probability, starting and stopping the simulation and backing up the data is automated by a
simulation script written in Python using Questasim in command line mode.

As noted above all fault patterns for the fault modules have the same probabilities of leaving
the CORRECT state, but all the other probabilities differ to resemble their appearance pattern.
The transient fault (see Markov matrix in Equation 5.5), has a high chance to recover (90%) to
resemble its short appearance, whereas the permanent fault, see Equation 5.6, has a 0 % chance
to leave the FAULTY state, slowly aggregating faults in the system.

Ptransient =

[
0.9999999 0.90
0.0000001 0.10

]
(5.5)

Ppermanent =

[
0.9999999 0
0.0000001 1

]
(5.6)

However, the intermittent fault (see Equation 5.7) is more refined. It has a fixated chance of
6.25% to recover from its GROGGY state in which it has a 50% chance to become FAULTY but
also recover quickly back to the GROGGY state (50%) to resemble its fluctuating behavior3.

Pintermittent =

0.9999999 0.0625 0
0.0000001 0.4375 0.5

0 0.5 0.5

 (5.7)

2In total 1089 simulations were executed, without counting re-runs and test-runs.
3Pre-Tests and [WEH+] were considered for these values.

38

Simulation & Analysis

Next, the different fault tolerance methods configuration will be discussed. As already mentioned
in Chapter 3.4 the fault tolerance methods implemented are ECC, End to end (E2E) retransmis-
sion, fault tolerant routing and an improved version of the state machine.

In Table 5.5 the different configurations are presented, displaying which tolerance methods are
active in it. Additionally, every combination has an abbreviation based on its configuration as a
codename for a faster recognition, which will be used during the simulation and analysis. The
only abstractly named one is blank, which resembles a NoC without any active fault tolerance
methods, while the others are self-explanatory. After the blank configuration each fault tolerance
method is evaluated on its own before being activated all together to test the combined fault
tolerance performance. The last three entries cover configurations, which are supposed to have
synergies between each other. First, ssm-ecc enables the secure state machine to check the packet
(especially the headflit) for faults. Second, the added assertion units of the fault tolerant routing
calculation enable the secure state machine to wait if a fault appears in ssm-rcTol, which might
possibly recover on its own. Third, ssm-ecc-rcTol combines both of these features.

Table 5.5: Overview of the simulated fault tolerance methods configurations.

Abbreviation ECC Retransmission FT Routing Calculation Secure SM

blank

ecc x

retr x

rcTol x

ssm x

retr-ecc-ssm-rcTol x x x x

ssm-ecc x x

ssm-rcTol x x

ssm-ecc-rcTol x x x

As the failure type, the Bit-Flip was selected because it has the most hostile effect on the system.
It will be discussed further in the Subsection 5.4.5 because it should be to be considered in
context of the simulation results. This selection is not as common as Stuck-At faults are for actual
implementations, but the goal is to push the NoC to its limit. By doing so, the importance of
evaluating fault tolerance should be emphasized aside from performance and power consumption.

5.4 Simulation Results

In this section, the simulation results are evaluated starting with a NoC configuration without
any active fault tolerance methods. Afterwards, the performance results of the different fault
appearance patterns with several fault tolerance configurations are evaluated.

5.4.1 NoC with no active Fault Tolerance Methods

As mentioned in the previous section, up to 2000 packets will be injected into the system to
measure the reliability and latency of the NoC. At first, the ideal case will be covered, presenting
the results when no fault modules are active (i.e. fault probability is 0). In this scenario it takes
the blank NoC around 3000 cycles to pass the packets through the network. As expected the

39

Simulation & Analysis

reliability is at 100 %, which can be seen in Figure 5.2a. Even when the simulation runs for 20000
cycles (x-axis) all injected packets leave the network shortly after the 3000 cycles mark and not
one packet was lost. It may seem that the lines overlap, but this illusion appears due to the
narrow gap between the injected and ejected packet line and the in comparison long range of the
x-axis. The average duration a packet stays in the network is 32 cycles as displayed in Figure 5.3a.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

0 1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000

All packets ejectedAll packets ejected

A
m

ou
nt

 o
f P

ac
ke

ts

Duration [Cycles]

Injected Packets

Ejected Packets

(a) fault free NoC.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

0 1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000

A
m

ou
nt

 o
f P

ac
ke

ts

Duration [Cycles]

Injected Packets

Ejected Packets

(b) NoC with active fault modules.

Figure 5.2: Example of a fault free vs. faulty NoC’s simulation run.

However, with active fault modules (i.e. fault probability > 0) and the associated faults the
reliability shrinks and the latency increases. This happens due to modified signals, which are
caused by the fault modules. These modified signals lead to errors in the control signals and the
transferred data. But the data corruption in bodyflits or tailflits will not be issued in this thesis
because it is assumed to be handled by the Open Systems Interconnection (OSI)-layers above.
Still, corruption in the headflits will have an impact on the system.

In the following faulty example (cf. Figure 5.2b) the network is affected by transient faults with
a fault probability of 0.0000004 and the seed 10000 is used. No fault tolerance methods are
active in this example. This is a selected run of the simulation results to explain the process of
the evaluation. Within the first 1000 cycles the simulation is similar to the fault-free run from
before, but then the curves of the injected and ejected packets start to part ways. The simulation
environment is not able to inject all 2000 packets into the network during the preset duration, but
the number of injected packets is still increasing so the possibility exists that if the simulation runs
further, it could have reached the limit (i.e. 2000 packets). Nevertheless, the behavior compared
to the fault-free run can be explained by a clogged NoC. Multiple reasons exist for this behavior,
the transfer signal or the credit feedback could be faulty as well as one or multiple deadlocks
which created themselves during the simulation by stuck or misrouted packets. If this is the case,
the network would not be able to recover, explaining why the amount of ejected packets is so low
aside from the possibility that single packets could have been lost.

For the analysis of this particular simulation run the wave data (cf. Figure 5.4) was inspected and
it turned out that there was partly any interaction after an intensive phase at the beginning of the
simulation until the 5000 cycles mark (1 cycle equals 2 us in the simulation). The credits feedback

40

Simulation & Analysis

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000

La
te

nc
y

[C
yc

le
s]

Duration [Cycles]

Average Packet Latency

(a) Average latency of fault free NoC.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000

La
te

nc
y

[C
yc

le
s]

Duration [Cycles]

Average Packet Latency

(b) Average latency with active fault models.

Figure 5.3: Fault free vs. faulty NoC latency.

signals have a low count (maximum value is 8), which suggests that their connected buffers are
not empty. Still, there is no further activity on the out data lines which points towards a deadlock
situation, where no further data transfer would be possible. This confirms the assumption above.

Figure 5.4: Snippet of wave data results of the faulty NoC simulation.

In this particular faulty run4, the number of the injected packets was 1825, and 1387 packets
were ejected. Furthermore, in this thesis, a not injected packet is not viewed as a lost packet,
so the relative reliability will be calculated by the percentage of successfully transferred packets,
which in this case would be 1386/1825 = 0.7595 = 75.95%. Still, for the evaluation of this thesis
the total amount of “to be injected packets” will also be considered because they are counted for
the calculation of the absolute reliability.

4As a reminder no fault tolerance methods are active, the simulation seed is 10000, the fault probability is
0.0000004 for each fault module, the error pattern resembles transient faults and logic errors are displayed as
Bit-Flip error.

41

Simulation & Analysis

Further test runs with the same configuration but different seeds (1 and 1000) showed that these
simulations can have a high level fluctuation in their results. As it is presented in Table 5.6, the
simulation with the seed 10000 has worse reliability than the seeds 1 and 1000, which resulted
into using the average of the three seeds, which is 86.94%. For a better interpretation of the
reliability results, the average will be used in the remaining analysis.

Table 5.6: Simulation results of different seeds presenting fluctuation.

Seed Relative Reliability [%] Latency [cycles]

1 92.48 87

1000 92.38 86

10000 75.95 133

Average 86.94 102

Further analyzing these test simulation runs, it becomes clear that (compared to the fault free
run) also the latency, the other evaluation parameter, is affected by the increased fault probability
(of 0.0000004) (cf. Figure 5.3b). The results for the latency of all three different seeds can be
viewed in Table 5.6. For the latency the mean transmission duration is 102. Thus, comparing all
the seeds, the seed of 10000 is again the worst performer.

For a better comparison of this NoC configuration, overview graphs were created, which describe
the behavior of the network during the fault probability sweep. First, in Figure 5.5a the average
relative reliability is presented, notably decreasing during the increasing fault probability because
packets are lost, corrupted or malfunctions appear in the control logic. The second Figure 5.5b
resembles the latency of this situation, which is growing due to congestion in the system or
the router not being able to allocate the necessary resources because of faults in the system.
Both figures make use of error bars, which display the minimum and maximum results of the
simulations of the different seeds.

Unfortunately, the graphs display a high level of fluctuation. Factors like the traffic level, differ-
ent fault positions in the modules and deadlocks create a complex system, which influences the
performance of the NoC. For example in Figure 5.5a the reliability of the different seeds fluctuates
at the fault probability of 0.9 ppm by about 10 %, emphasizing the sensitivity of such systems.
This variation in the results leads to the consideration that it is necessary to calculate the average
of many simulation runs to draw firm conclusions from it because each simulation could have a
different effect on the averaged results. It can be argued that the majority of the simulation re-
sults will concentrate on a certain fluctuation-region, which becomes more defined (i.e. narrower)
with the increasing number of simulation runs. Values far outside this region can be seen as a
stochastic singular event and could be excluded from the results. For simulations with a limited
number of runs, “drops” and “peaks” can affect the average calculation much stronger, therefore
giving the impression that certain fault tolerance methods are more beneficial than others by
displaying different tendencies.
However, the number of simulations for this work was greatly influenced by the target NoC’s
performance. The target NoC is focused on easily switching between different fault tolerance
methods and was designed by a novice of NoCs. Several pre-tests showed that the amount of
packets and the duration of simulations ended in an acceptable result and so the performance
was seen as sufficient in the beginning. But faulty simulations consume much more time, which

42

Simulation & Analysis

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

Average Reliability

Fluctuation Range

(a) Averaged Reliability - Configuration blank.

0

50

100

150

200

250

300

350

400

450

500

550

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

Average Latency

Fluctuation Range

(b) Averaged Latency - Configuration blank.

Figure 5.5: Transient fault simulation - Configuration blank.

is further increased by runs using different seeds. Therefore, it was necessary to make a compro-
mise. It was decided to limit the simulation runs to three different seeds for each configuration.
Additional simulation machines were used to help with the time consuming runs. So the length
of simulations of this work is shorter compared to other works which also inject more packets
during their simulation runs, which subsequently reduces the significance of each lost or delayed
packet and should improve the accuracy of the fluctuation regions.

Taking this into consideration, for this thesis the averaged line for the results in the following
graphs must be seen as a reference value, which cannot be used to argue with 100% confidence
which fault tolerance method is the best but it allows to recognize that specific fault tolerance
methods tend to perform better than others and that some fault tolerance methods have a neg-
ative impact on the system. Simulations with three different seeds can therefore indicate some
tendencies in the performance of fault tolerance methods.
The graphs in the next sections of the thesis are displaying the mean values without error-bars
to avoid visual clutter.

43

Simulation & Analysis

5.4.2 Transient Fault

First, the behavior of the transient fault will be evaluated. Compared to the other chosen faults it
has the distinction of a short appearance duration. The tested configurations and their codenames
can be viewed in Table 5.5. The results of the 297 simulation runs were used to calculate the
mean values for each configuration block (33 for each of the nine configurations e.g. blank or ecc).

For the relative reliability, Figure 5.6 shows how the increasing fault probability reduces the ability
to safely pass packets through the network whereas in Figure 5.7 the absolute reliability presents
that in perspective of the goal of injecting 2000 packets, the performance difference between each
configuration further increases and the overall performance tends to be worse. The mean values of
the absolute reliability (Figure 5.7) show a worse performance compared to the relative reliability
for transient faults (Figure 5.6). Especially the configurations ssm-rcTol, retr-ecc-ssm-rcTol, ssm
and retr are affected and show less reliability.

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

blank Mean Reliability

ecc Mean Reliability

retr Mean Reliability

rcTol Mean Reliability

ssm Mean Reliability

retr-ecc-ssm-rcTol Mean Reliability

ssm-ecc Mean Reliability

ssm-rcTol Mean Reliability

ssm-ecc-rcTol Mean Reliability

Figure 5.6: Relative reliability for transient faults.

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

blank Mean Reliability

ecc Mean Reliability

retr Mean Reliability

rcTol Mean Reliability

ssm Mean Reliability

retr-ecc-ssm-rcTol Mean Reliability

ssm-ecc Mean Reliability

ssm-rcTol Mean Reliability

ssm-ecc-rcTol Mean Reliability

Figure 5.7: Absolute reliability for transient faults.

The three best performing fault tolerance configurations are blank, ecc and ssm-ecc but due to the

44

Simulation & Analysis

overlapping graphs and the fluctuation (simulations could change their order) it is not possible
to definitely say which one is leading. Ssm-ecc-rcTol is also good at the beginning but has a
stronger downward trend later in the graph.
For the blank setup it can be assumed that with no additional elements, there is a lower overall
chance that an additional critical fault appears (cf. Table 5.4). With increasing fault probability,
tolerance methods become necessary, represented by the increasing decline of the graph.
Ecc, a proven technology for encoding, presents its good capabilities against transient faults,
even better than blank in the relative and absolute reliability graph. This technique is part of the
data path of the network, so faults which affect the packets can be fixed thus allowing a further
transmission, without adding additional traffic to the system by resending packet data. However,
the dropping of faulty packets by the state machine helps the system to run more fluently in
the beginning but if the fault probability increases, possibly due to more dropped packets, the
reliability goes down.
In combination with the secure state machine (ssm-ecc) the results show a different trend where
the reliability appears better towards the end of the graph. This suggests that the secure state
machine’s ability to wait for a predefined duration for the recovery of packets, which have been
marked as faulty by the ECC instead of dropping them, is a crucial feature to keep a NoC run-
ning. This synergy surprises in regard to the weak performance of ssm on its own. While ssm
alone is also able to wait for the recovery of faults caused by the routing calculation or able to
react to an incorrect appearing headflit, the critical function of taking the packets health into
account is missing. Evaluating the interaction between the routers inside the network showed
that there is still activity between the routers suggesting that no deadlock situation happened.
Therefore, the poor reliability of the ssm configuration can be explained by the lack of evaluating
the packets and the possibility of dropping them. This is an excellent example of the importance
of this thesis’ fault tolerance evaluation. It also points out what the method needs to additionally
cope with transient faults.
The fault tolerant routing calculation (rcTol) presents itself in the middle of the graphs of relative
and absolute reliability for transient faults (Figure 5.6 and 5.7), but in combinations with other
methods (ssm-rcTol, ssm-ecc-rcTol), it appears to have a negative impact on the reliability. One
explanation could be that the faulty routers and channels will be abandoned by this method
because it does not see a possibility for them to recover. This behavior is optimal for long-lasting
faults, where a packet should strictly avoid these elements but for short duration faults it makes
resources useless, which could be used again after the fault disappeared.
The retransmission method (retr) has the lowest average reliability of the single active fault tol-
erant methods. In other combinations it also displays a negative effect on the reliability, for
example when ssm-ecc-rcTol is compared with retr-ecc-ssm-rcTol, which can be seen in Figure
5.7. Considering the sensitivity of NoCs against congestions, the additional retransmitted ACK-
packets and the resending of packets cause problems for the network, resulting in the drop of
reliability. This activity between the routers has been detected as quite high. This indicates that
a longer retransmission window could be of advantage for future works and shows how this thesis’
evaluation can be used for optimization.
From the results above it can be expected that a combination of all available fault tolerance
methods (retr-ecc-ssm-rcTol) will not result in the best performance and this is also seen as this
configuration ranks under the lowest reliability performers in Figures 5.6 and 5.7. This solidifies
that simply adding methods, with the thought that more protection is better, will not necessarily
improve the reliability.
The combinations ssm-ecc-rcTol and ssm-rcTol should further enhance the secure state machine
through assertion units of the fault tolerant routing calculation to provide further protection

45

Simulation & Analysis

against faults, aside from the improved routing technique. However, the results lead to the
conclusion that ecc is the key feature for reliability and the assertion units are actually counter-
productive. Without it, the reliability can be increased by 10% (see relative graph Figure 5.6).

After evaluating the reliability, it is important to analyze the latency as it is another essential
characteristic of the performance of a NoC. The increasing fault probability causes congestions or
temporarily blocks a path, which the packet needs to reach its destination. Thus, it is affecting
the transfer duration of packets. Due to the system’s dependency on the congestion level inside
the router and due to the potential appearance of a deadlock, the results can have a high level of
fluctuation as it can be seen in Figure 5.8. The different configurations are crossing each other
often, making it difficult to attach a specific behavior to them, so the decision was made to make
use of linear regression as it can be seen in Figure 5.9. This is no replacement for the original
graph but more of a support for recognizing the tendency of each fault tolerance method.

0

50

100

150

200

250

300

350

400

450

500

550

600

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

blank Mean Latency

ecc Mean Latency

retr Mean Latency

rcTol Mean Latency

ssm Mean Latency

retr-ecc-ssm-rcTol Mean Latency

ssm-ecc Mean Latency

ssm-rcTol Mean Latency

ssm-ecc-rcTol Mean Latency

Figure 5.8: Latency result for transient faults.

0

50

100

150

200

250

300

350

400

450

500

550

600

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

blank Mean Latency

ecc Mean Latency

retr Mean Latency

rcTol Mean Latency

ssm Mean Latency

retr-ecc-ssm-rcTol Mean Latency

ssm-ecc Mean Latency

ssm-rcTol Mean Latency

ssm-ecc-rcTol Mean Latency

Figure 5.9: Latency results for transient faults with linear fitting.

Furthermore, these results need to be viewed in relation to the reliability graphs (Figure 5.6 and

46

Simulation & Analysis

5.7). As a reminder, the latency for a packet is calculated from the sum of the travel durations
of successfully ejected packets divided by their number. However, this means that if only a small
amount of packets are ejected early, before the network is so clogged that fewer packets reach
their destination, their average latency would be lower than in a network, which continually ejects
packets until the end of the simulation with a long travel duration. Counter-measures against
clogged networks are for example the alternative paths of rcTol, which are not optimal because a
longer travel path adds to the latency. Other reasons for a higher latency are the waiting cycle of
the ssm configuration, additional traffic of the retr due to the ACK-Signal or transmission delays
due to an increasing fault probability.
This explains why configurations with a low absolute reliability suddenly perform well in regard
to their latency, meaning a low latency. Nevertheless, each combination has its own characteris-
tics, which symbolizes how well it performs with congestions and how much overhead it adds to
the travel duration.
For the analysis, the best reliability and latency techniques against the transient fault are evalu-
ated. As it can be seen in Figure 5.9 ecc has one of the lowest latencies. In Figure 5.6 and 5.7
ecc also performs very well regarding reliability. The Hamming(7,4) based error correction of ecc
achieves a good work to keep up with the transient faults as well as adding no latency overhead
to the travel duration, making it a very good counter-measure to transient faults.
In combination with the secure state machine as ssm-ecc it also presents a good performance.
Regarding reliability it is under the top three and in the latency results it appears in the middle
field. Looking on ssm on its own it performs clearly below ssm-ecc.
Blank has presented a good reliability (cf. Figure 5.6 and 5.7). Looking at its performance re-
garding the latency it ranks in the middle field.
It is true that retr-ecc-ssm-rcTol also shows a lower latency but as stated above the number of
packets successfully transmitted by this technique is much lower (low reliability), reducing the
significance of this result.
The worst latency performer is RcTol. It has the highest latency but regarding reliability it ranks
in the middle field. This means that packets are still delivered successfully but they take their
time. The behavior can be explained because rcTol is based on rerouting packets.

To conclude, ecc shows the highest reliability and lowest latency results for transient faults and
therefore appears to be the recommended option.

47

Simulation & Analysis

5.4.3 Intermittent Fault

This section analyzes the intermittent fault, which can be characterized by a longer recovery
phase compared to transient faults. The Figures 5.10 and 5.11 present the relative and absolute
reliability of the selected configurations (cf. Table 5.4).

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

blank Mean Reliability

ecc Mean Reliability

retr Mean Reliability

rcTol Mean Reliability

ssm Mean Reliability

retr-ecc-ssm-rcTol Mean Reliability

ssm-ecc Mean Reliability

ssm-rcTol Mean Reliability

ssm-ecc-rcTol Mean Reliability

Figure 5.10: Relative reliability for intermittent faults.

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

blank Mean Reliability

ecc Mean Reliability

retr Mean Reliability

rcTol Mean Reliability

ssm Mean Reliability

retr-ecc-ssm-rcTol Mean Reliability

ssm-ecc Mean Reliability

ssm-rcTol Mean Reliability

ssm-ecc-rcTol Mean Reliability

Figure 5.11: Absolute reliability for intermittent faults.

While ecc is in the top field, rcTol and ssm-ecc present an even better reliability (cf. Figures
5.10 and 5.11). Especially rcTol displays a different behavior compared to its performance in
the transient fault simulations. Therefore, it shows that the reaction of fault tolerance method
depends on the encountered fault appearance pattern. This is valuable information and proves
the necessity of testing fault tolerance methods with different fault appearance patterns. Else a
system will only be equipped with limited protection.
For this scenario of intermittent faults ssm-ecc proves to be the best tolerance method combi-
nation as it has a high reliability. Ssm on its own does not score very well but paired with ecc
it performs exceedingly well. This points out the synergy between these techniques. However,

48

Simulation & Analysis

ssm-rcTol, another combination with ssm, presents a much lower reliability. This is interesting
because rcTol on its own could be considered the second best method in regard to reliability.
Therefore ssm has a negative impact in this combination with rcTol.
Furthermore, it can be noticed that the retr is not performing well again. While congestion is an
essential factor for this result, the difficulties of this technique to counter longer active faults is a
further reason. If a path suffers from often repeated errors, it will not help to resend the packet
over it again and again.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

blank Mean Latency

ecc Mean Latency

retr Mean Latency

rcTol Mean Latency

ssm Mean Latency

retr-ecc-ssm-rcTol Mean Latency

ssm-ecc Mean Latency

ssm-rcTol Mean Latency

ssm-ecc-rcTol Mean Latency

Figure 5.12: Latency results for intermittent faults.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850
0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

blank Mean Latency

ecc Mean Latency

retr Mean Latency

rcTol Mean Latency

ssm Mean Latency

retr-ecc-ssm-rcTol Mean Latency

ssm-ecc Mean Latency

ssm-rcTol Mean Latency

ssm-ecc-rcTol Mean Latency

Figure 5.13: Latency results for intermittent faults with linear fitting.

The latency result can be seen in Figures 5.12 and 5.13. The overall latency is increased compared
to transient faults, where it was in the range of 50 up 550 cycles. The intermittent faults cause a
latency up to 800 cycles. However, taking into account that intermittent faults have a higher toll
on the system’s performance, this is an expected behavior. The latency results also highlight the
different performance of the fault tolerance methods when encountering another fault appearance
pattern.
While for the transient fault ssm-ecc was in the middle field of fault tolerant methods, it is pre-

49

Simulation & Analysis

senting the lowest latency for intermittent faults. It also has a very good reliability, therefore
marking it as a recommendable fault tolerant method against intermittent faults.
ECC on its own (configuration ecc) has one of the top positions of the fault tolerant methods for
transient faults, meaning a high reliability and a low latency. However, for intermittent faults
it cannot maintain its leading position. Still, it is one of the better performing fault tolerant
methods against intermittent faults.
Retr-ecc-ssm-rcTol has one of the lowest latencies (cf. Figures 5.12 and 5.13) but it shows one
of the lowest reliabilities (cf. Figures 5.10 and 5.11). Looking at rcTol, which scored very well
regarding reliability, it displays a poor latency behavior.

To conclude, ssm-ecc shows the highest reliability and the lowest latency results. Therefore, it
seems to be the best choice when encountering intermittent faults.

50

Simulation & Analysis

5.4.4 Permanent Fault

Lastly, the permanent fault is evaluated. This fault pattern is characterized by its disability
to recover. As expected, the reliability is the lowest of the three tested faults. The number of
successfully transferred packets under the impact of permanent faults is low (for fault probability
1 ppm it is averaged below 200 packets) and only early injected packets are successfully delivered.
Still, some packets could be passed through as it can be seen in Figure 5.14 for the relative relia-
bility results and Figure 5.15 for the absolute reliability results. This appears reasonable because
the network is fault free at the beginning. But over time the faults will accumulate, therefore
stopping the further propagation of the packets. For the packet transfer this means that packets
which are early injected and have a short travel distance (e.g., to a near neighbor router) can
be delivered but the longer they stay in the network, due to travel distance or congested paths,
the lower are their chances of a successful delivery. With the increasing fault probability, the
accumulation of faults is speeding up, further reducing the reliability.

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

blank Mean Reliability

ecc Mean Reliability

retr Mean Reliability

rcTol Mean Reliability

ssm Mean Reliability

retr-ecc-ssm-rcTol Mean Reliability

ssm-ecc Mean Reliability

ssm-rcTol Mean Reliability

ssm-ecc-rcTol Mean Reliability

Figure 5.14: Relative reliability for permanent faults.

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

blank Mean Reliability

ecc Mean Reliability

retr Mean Reliability

rcTol Mean Reliability

ssm Mean Reliability

retr-ecc-ssm-rcTol Mean Reliability

ssm-ecc Mean Reliability

ssm-rcTol Mean Reliability

ssm-ecc-rcTol Mean Reliability

Figure 5.15: Absolute reliability for permanent faults.

51

Simulation & Analysis

Still, regarding reliability, there are some fault tolerance techniques that are better performing
than others, in particular blank, rcTol and ssm. While the relative reliability for retr is one of
the best, the absolute reliability shows that the amount of packets which it was able to inject is
less compared to the other techniques. This leads to a reduced interest in this technique.
For blank, one of the better performing techniques, the lack of additional elements is an advantage
because these elements cannot become “permanently faulty”. They will not affect the system at
the beginning of the simulation but also will not provide any fault tolerance during the rest of
the simulation.
Even though rcTol has a lot of additional elements (assertions units, error counter) which have a
chance of becoming “permanently faulty”, it performs very well regarding relative and absolute
reliability. It can be assumed that even if the additional elements become faulty, they do not
have such a negative impact on the data transfer.
The last of the top three for the absolute reliability is ssm. While its wait-function will not help
if a part is broken permanently, it can be seen as a small improvement to blank because it still
checks the routing calculation result and is therefore prolonging the chance for other channels to
succeed if their resource allocations are correct. However, this wait-function does not seem to
have improved the ssm’s ability to counter these faults. Taking a closer look at ssm-ecc, one of
the strong performing combinations against transient and intermittent faults, it cannot excel in
this scenario. Ssm-ecc is behaving similar to ecc on its own. The graphs (cf. Figure 5.14 and
5.15) suggest that the added intercoder modules signal that the packet is of poor health, which
lets the state machine drop it. In connection with permanent faults, this results in a too high toll
on the data path of the system, leading to low reliability.

0

50

100

150

200

250

300

350

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

blank Mean Latency

ecc Mean Latency

retr Mean Latency

rcTol Mean Latency

ssm Mean Latency

retr-ecc-ssm-rcTol Mean Latency

ssm-ecc Mean Latency

ssm-rcTol Mean Latency

ssm-ecc-rcTol Mean Latency

Figure 5.16: Latency results for permanent faults prior to the modification.

The first graph of the latency (cf. Figure 5.16) shows lots of peaks and drops. This seemed rather
unusual and led to further analyzing. For this analysis the wave data of some simulations are
evaluated. A first look was on the retransmission tolerance method because it had the highest
peaks in Figure 5.16. The wave data (cf. Figure 5.17) displayed that the retransmission injection
works under permanent faults and regularly injects packets inside the NoC except if the network
input is blocked (input buffer full, which equals credit level one or lower). However, evaluating the
wave data further for wrongly transmitted packets shows that a part of them were ACK-packets
which can be seen as an example in Listing 5.1. The ACK-packets contain a wrong destination

52

Simulation & Analysis

because the acknowledgment should be sent back to the source of the acknowledged packet (i.e.
the originator of the packet).

Figure 5.17: Retransmission pulses on router 21 and 22, router 23 is blocked.

Listing 5.1: Shortened and summarized log of wrongly ejected packets

$ cat sim_Server_G_SEED1000_pF_retr_Prob_2_vsim_log.txt | grep -i "Router .*56"

Cycle: 216 - Packet (ID: 49, SRC: 38, DST: 48) got ejected at the WRONG NoC Interface (Router: 56)

Cycle: 310 - Packet (ID: 163, SRC: 32, DST: 48) got ejected at the WRONG NoC Interface (Router: 56)

Cycle: 365 - Packet (ID: 211, SRC: 18, DST: 48) got ejected at the WRONG NoC Interface (Router: 56)

Cycle: 408 - Packet (ID: 231, SRC: 51, DST: 48) got ejected at the WRONG NoC Interface (Router: 56)

Cycle: 415 - Packet (ID: 256, SRC: 8, DST: 48) got ejected at the WRONG NoC Interface (Router: 56)

But the destination for sending the acknowledgment is not correct, so the originator does not
receive the ACK-packet. The returning ACKs never arrive at their source but their travel duration
is added to the latency calculation. This issue progresses until the fault is fixed or in case of
permanent faults the paths are broken. This led to a modification of the simulation environment
to counter the effect of wrongly delivered packets on the latency calculation. The modification was
installed and the simulation runs for all three fault patterns were executed again. The behavior
of transient and intermittent faults did not show a significant change. However, the graphs used
in their sections are the updated versions. But, for the permanent fault it displays some critical
changes (cf. Figure 5.18).

0

50

100

150

200

250

300

350

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

blank Mean Latency

ecc Mean Latency

retr Mean Latency

rcTol Mean Latency

ssm Mean Latency

retr-ecc-ssm-rcTol Mean Latency

ssm-ecc Mean Latency

ssm-rcTol Mean Latency

ssm-ecc-rcTol Mean Latency

Figure 5.18: New latency results for permanent faults.

This is because the system now compares if the headflit destination address matches with the
node which receives it. If it matches, it is perceived as successfully transmitted and will be used in
the latency calculation. If it does not match the packet will be dropped and will not be included
in the latency calculation. This can be seen as a compromise as some transmitted packets will
arrive at a destination, which matches their headflit but was not their original destination. This

53

Simulation & Analysis

modification changed the latency graph (cf. Figure 5.18). The latency of some fault tolerance
methods decreased (e.g. ssm-ecc) and also the amount of peaks and drops of some methods were
reduced (e.g. rcTol). Overall many configurations (e.g. blank, rcTol, ecc) have a low latency,
which goes down even further with the growing fault probability (cf. Figure 5.18). However,
some peaks are still visible. This can be explained by the fast degrading performance of the NoC
under the effect of permanent faults. It can be argued that early injected packets, which travel
only a short duration, are able to leave the network before the congestion becomes too strong.
Thus, leading to a low latency because most longer traveling packets were not able to reach their
destination but for calculating the average latency it is necessary that the packet reaches its
destination. Otherwise it will not be included in the calculation. A reason for the peaks could
be that some packets were able to arrive at their destination but it took a large amount of cycles
due to the congestion, which adds to the average latency. The configurations containing the
retransmission technique (retr, retr-ecc-ssm-rcTol) display the highest peaks. For the increased
latency of retr-ecc-ssm-rcTol it can be argued that after a blockage has been solved by one of the
fault tolerant methods, the retransmitted packets (including the ACKs) are able to reach their
destination, thus adding up their longer travel duration to the average latency. While this would
indicate that retr-ecc-ssm-rcTol is able to cope with permanent faults to a certain extent, the
actual low amount of transmitted packets weakens their performance.

0

50

100

150

200

250

300

350

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

blank Mean Latency

ecc Mean Latency

retr Mean Latency

rcTol Mean Latency

ssm Mean Latency

retr-ecc-ssm-rcTol Mean Latency

ssm-ecc Mean Latency

ssm-rcTol Mean Latency

ssm-ecc-rcTol Mean Latency

Figure 5.19: Latency results for permanent faults with linear fitting.

To gain a better visual for the latency graph, it was decided to use linear regression again
(cf. Figure 5.19). The configurations containing the retransmission technique show a growing
behavior. This distortion is caused by the fault-free first simulation and its ideal latency value.
Removing the fault free results from the linear fitting of Figure 5.19 results in the latency graph
in Figure 5.20.
There it shows that retr is actually slightly falling but the retr-ecc-ssm-rcTol is still growing,
which is caused by the peaks discussed in the paragraph before. This could be due to negative
synergies between the fault tolerant methods. Retr, ecc, ssm and rcTol show on their own a
falling behavior but together they indicate a growing latency. Considering Figure 5.18, where
retr has a general high latency, it can be argued that retr is having a negative impact on their
performance on retr-ecc-ssm-rcTol. To conclude, the rising behavior of the retr-ecc-ssm-rcTol can
be explained by the ability of this fault tolerant method to deliver some packets after a solved
blockage due to retransmission.

54

Simulation & Analysis

0

50

100

150

200

250

300

350

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

blank Mean Latency

ecc Mean Latency

retr Mean Latency

rcTol Mean Latency

ssm Mean Latency

retr-ecc-ssm-rcTol Mean Latency

ssm-ecc Mean Latency

ssm-rcTol Mean Latency

ssm-ecc-rcTol Mean Latency

Figure 5.20: Latency results for permanent faults with linear fitting with no fault free runs.

Overall, none of the fault tolerance methods presented a significant performance against perma-
nent faults. However, it should be noted that the most constant behaving latency result is shown
by the ssm-ecc technique. While its reliability is in the average field, the result of the latency
graph suggests that it is impacted less strongly by the faults (cf. Figure 5.20). The ECC is
capable of detecting faults in the packets, letting the secure state machine drop the particular
packet, which still costs cycles but allows the next packet to reach its destination as well as it
keeps other resources free for further allocation.
Blank appears to cope better regarding its reliability for permanent faults but its latency is shown
to be in the middle field compared to the other fault tolerant methods. The result in reliabil-
ity can be explained as blank is lacking any additional elements which can become permanently
faulty.
While the reliability of the fault tolerant methods under the effect of permanent faults has a
distinct result, the latency behaves differently than expected. On closer inspection, this behavior
is understandable and points out how crucial this kind of faults are for a NoC. The critical nature
of this fault pattern may create the idea that it was used too carelessly in these simulations and
the probabilities should have been reduced. However, to be able to compare the different error
types, it was necessary to give them all the same settings, which of course resulted in a more
drastic output in this situation with permanent faults.

5.4.5 Bit Flip and Stuck-At Faults

As already mentioned, the Bit-Flip failure type was selected as it arguably has the most hostile
effect on the system. However, to assure that this failure type has in fact the biggest impact,
additional simulations (198 simulation runs) were executed. Each appearance pattern (transient,
intermittent and permanent) was tested with the fault module modified to represent Stuck-At-0
and Stuck-At-1 errors. The simulation setup is the same as for Bit-Flip (2000 packets, 20000
cycles).

In Figure 5.21 the impact on the relative reliability is presented. It can be noted that as expected
the Bit-Flip fault has the worst reliability of the three faults but the distance between these faults
was expected to be larger. This foots on the reasoning that a Stuck-At error will not cause an

55

Simulation & Analysis

actual error in all of its appearances. For example if the gate output should be 1 and the Stuck-
At-0 was selected as failure type and active, it would be a logical error. However, if the gate
output is 0 and therefore equals the error output, it would be masked and thus not be seen as an
error by the system. The Bit-Flip on the other hand would cause an error in both cases because it
flips the signal both situations. So it has more possibilities to create errors in the system, which
manifests as anticipated in a lower reliability as it can be seen in Figure 5.21. It can also be
seen that while for transient faults the distance between Stuck-At and Bit-Flip errors grows with
increasing fault probability, for intermittent and especially permanent faults their lines are more
similar and the gap between them is smaller. This led to the conclusion that while Bit-Flip has a
worse effect than the other failure types, the appearance pattern has a significant influence on the
impact of the error. It showcases that how the error is created is not as important as the duration
it stays. It is also interesting that the different Stuck-At errors have a very similar reliability.
It could have been assumed that the network would suffer under one Stuck-At fault much more
than the other due to the Stuck-At characteristic of being masked if the gate output equals the
failure type output and a tendency of a system’s logic circuit to have either 0 or 1 as a more
common logic output. However, that is not the case, both Stuck-At lines in Figure 5.21 are close
together over the different appearance patterns, which leads to the realization that the difference
between these failure types is small but the appearance patterns have a strong influence on the
failure behavior of the system. Further focusing on the comparison between the Stuck-At-1 and
Bit-Flip error for the transient and intermittent fault appearance patterns, it can be recognized
that their paths are partly quite similar. This leads to the assumption that the impact of these
errors is similar or that many Bit-Flip errors inside the system are caused by gates resembling
the Stuck-At-1 error.

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

Stuck-At-0

Stuck-At-1

Bit-Flip

(a) Fault Pattern: Transient.

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

Stuck-At-0

Stuck-At-1

Bit-Flip

(b) Fault Pattern: Intermittent.

0

10

20

30

40

50

60

70

80

90

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
b

ili
ty

 [%
]

Fault Probability [ppm]

Stuck-At-0

Stuck-At-1

Bit-Flip

(c) Fault Pattern: Permanent.

Figure 5.21: Average relative reliability for different logic errors under different fault patterns.

The latency graphs (cf. Figure 5.22) show a similar result. While the Bit-Flip error has overall
a higher latency than the others, the Stuck-At errors keep close together. The low latency graph
of the permanent faults was already analyzed in Subsection 5.4.4 and can be explained by a low
number of successfully delivered packets, which only needed to pass a short distance until the
faults made the network impossible to pass through. So seeing the high latency of the Bit-Flip
error in combination with its low reliability suggests that this error has the most severe effect on
the NoC.

To conclude, the Bit-Flip error causes the lowest reliability in the NoC, which emphasizes the
decision to use it for all the simulations.

56

Simulation & Analysis

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

Stuck-At-0

Stuck-At-1

Bit-Flip

(a) Fault Pattern: Transient.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

Stuck-At-0

Stuck-At-1

Bit-Flip

(b) Fault Pattern: Intermittent.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

[C
yc

le
s]

Fault Probability [ppm]

Stuck-At-0

Stuck-At-1

Bit-Flip

(c) Fault Pattern: Permanent.

Figure 5.22: Average latency for different logic errors under different fault patterns.

5.5 Summary

In conclusion it can be noted that the fault injection process on gate level has proven to be a
convincing method to evaluate fault tolerance methods. The behavior of different fault appear-
ance patterns was represented and different logic errors were also successfully implemented, both
affecting the NoC negatively with an increasing fault probability.
The evaluation results show several findings.

1. The number of gates in a system is not directly connected to the reliability. Otherwise, the
configuration with the ECC modules (cf. Table 5.4) would have performed worse than the
other fault tolerance methods. It is more important where the additional logic circuit is
located. In the case of ecc it is placed in the data path, where faults are able to corrupt the
data of the FLITs. This becomes an issue if it affects the routing logic (headflit) or if the
faults corrupt the identification of the FLITs. However, if the additional logic is located
in the control path, it has a more severe effect. This is the case for rcTol, which does not
perform that well. So it can be resumed that while large circuits are more likely to have
more faults, the system’s reliability depends more strongly on where the logic is integrated
into the NoC and therefore where the faults can affect the system.
In Section 5.2 the configuration ecc showed the highest fault probability due to the number
of elements. However, it was assumed that it would perform well because of the position
of the fault modules, which are inside the data path. Generally, the ECC technique was a
guarantor for good reliability in the simulations without influencing the latency that much
and leading in the reliability results for transient faults. Therefore, the results solidify this
previous assumption.

2. The simulations of combined fault tolerance methods (ssm-ecc, ssm-rcTol, ssm-ecc-rcTol and
retr-ecc-ssm-rcTol) show that positive and negative synergies between mechanisms exist but
the combinations must be chosen carefully and evaluated in detail. Of the four presented
combinations only ssm-ecc had an above-average reliability. Furthermore, it showed that
the general idea of adding more fault tolerance methods (e.g. ssm-ecc-rcTol, retr-ecc-ssm-
rcTol) for better performance is not correct. The number of gates increases due to the
additional circuits, which also increases the chances that a fault can appear but the ability

57

Simulation & Analysis

to tolerate faults does not seem to add up. It is also important where the additional logic
is placed (as it is argued in point 1) and what the specific fault tolerant method’s charac-
teristic is for countering faults. Furthermore, the methods can become faulty themselves
therefore creating an unbearable amount of faults. However, if certain fault tolerance are
chosen wisely they can show positive synergies as they work together.

3. Ssm-ecc displayed the most promising fault tolerance performance in these simulations,
but is has to be considered that the fluctuation in the simulation runs could cause further
changes to this results. Under the effect of transient faults ssm-ecc maintains a good position
especially against higher fault probabilities, and during the intermittent fault simulations
it was constantly in the top position. The general performance of all methods against the
permanent faults was weak, which is understandable because of the strong impact on the
system and how these faults will be accumulated over time. A lower fault probability would
probably lead to a more realistic appearance of such errors, but the comparison with the
same values was essential and necessary for this thesis. Furthermore, the strong impact of
congestion on the NoC points out its vulnerability against any form of a stuck packet.

4. Lastly, the simulation results further demonstrate that certain methods have different relia-
bilities against different fault appearance patterns, which can be seen for rcTol in the tran-
sient and intermittent fault simulations. This emphasizes the advantage of the evaluation
environment of this thesis, which is flexible enough to include different simulation scenarios.

As a result, fault tolerance methods need to be chosen wisely and evaluated often early on in the
development process to secure a good performance. Considering to achieve this manually is an
unwieldy task for such large systems, therefore contending that the simulation approach taken in
this thesis is a right approach.

58

6 Conclusion

In this chapter, an overview of the thesis and its results is given. In addition, an outlook for
possible future enhancements is provided.

6.1 Results

The technology development allows to produce Integrated Circuit (IC) with an unprecedented
density of transistors so that more elements than ever before can be placed on one die. Especially,
the generation and development of System on Chips (SoCs) benefit from this development but
require adapted communication systems for best usage. Network on Chips (NoCs) are the most
promising solution but, as all ICs, they are prone to suffer from faults caused by environmental
issues like heat, radiation or aging. Due to that fault tolerance becomes more and more a necessary
component when developing a modern multi-core system.
Evaluating its importance, integrating it into the design process early and showing how the
different fault tolerance methods can affect the NoC’s performance is a crucial aspect to keep
future developments running stable. In this thesis, the behavior of fault tolerance of a NoC is
evaluated and faults are not only injected into the NoC but also into its fault tolerance methods.
The simulation results proved that injecting fault modules in all elements of a NoC is a working
implementation for fault tolerance evaluation and pointed out how sensitive the test NoC reacts
to different configurations.
Furthermore, the evaluation of the implemented fault-tolerant routing displayed that a fault
tolerant system needs to be tested against different error types because each technique has their
weak and strong points against them. Also, the assumption that adding more fault tolerance
techniques to a system makes it more reliable is disproven. These parts can become faulty as
well and therefore put additional stress on the system, so an optimum needs to be found. On
the other hand, not using any fault tolerance methods is not ideal either. For instance the
blank configuration performed well for transient faults but not for intermittent faults, indicating
that fault tolerance methods are needed. Analyzing the results, methods like the secure state
machine and the Error Correction Code (ECC) need to be highlighted as a great example of fault
tolerance methods. By adding the improved state machine to the overall well-working ECC it
achieves higher reliability against intermittent faults.
An overall weak performance is displayed by the re-transmission technique, making it a not
recommendable protection method in this implementation. The cause for its weak performance
can be explained by the additional traffic load. Clogging seems to be the major problem of this
implementation due to tight calculated retransmission windows and possibly due to the sensitivity
of the test NoC.

59

Despite this thesis’ focus on the fault injection and fault tolerance methods, it needs to be
mentioned that the development of the test NoC was very time consuming and needed several
iterations to work well. At first, the fault-free runs presented a satisfying system to start the fault
injection process, but under faults a better behavior than the shown results were expected. On
the other hand, the fault injection script and the fault modules were working well and allowed
an easy configuration of the system.
To conclude it can be said that the developed system is capable of injecting faults into Verilog
based Hardware Description Language (HDL) code and by doing so, the weaknesses of a system
against faults can be detected. This thesis emphasizes the importance to test systems for this
behavior. It can be seen that this research area has lots of possibilities so that this thesis presents
a successful evaluation and implementation for future projects.

6.2 Outlook

One shortcoming of this approach is the high amount of memory needed and the long duration
of the simulations. This is especially a drawback for NoCs, whose key feature is to combine lots
and lots of elements. Finding a concept to infect only certain parts/elements while keeping close
to real fault models could ease this problem. However, fault injection on this level will always
demand more resources than models on higher levels.
Also, the fault modules could be modified to resemble the fault in even more detail. While it is not
possible to know the placement of wires to get additional information to resemble crosstalk, which
is a main source for transient faults, a counter could be used to increase the fault probability
in relation to the amount of value changes of a gate, going even further and changing it to a
permanent fault after a certain limit is reached. Otherwise, it could be useful to attach individual
fault modules to specific gates, therefore allowing different fault behaviors to be evaluated within
one simulation run.
Another point which appeared during the development is that the $random() function provided
by Questasim, while it fulfills all needs for a first test, is seen as an open issue left for improvement.
Even if different seeds were used, specific patterns seem to repeat. However, modern simulation
environments allow adding own C functions to the code, which are a possible solution for this
issue by adding an own random number generator.
Furthermore, regarding the simulation aspect of this thesis, it needs to be noted that the tests
were all started on a “cold” system, so there was no warm-up phase by pre-injecting packets.
Developing and adding the necessary technical elements for this could add additional usage to
the system, resembling real systems even more. It can be expected that the results would differ,
but it would require severe modifications of packet tracking and enhancing the fault module.
Generally, the tracking of packets, would be an exciting enhancement to such a system as it would
allow following the action inside the network better without depending on wave signal diagrams.
While a tool for this purpose was tested, the issue was that it expected the network to run free
of faults. However, the simulations of this thesis included faults, which caused logic errors in the
system and led to the tool’s failure. Still, such a tracking program could provide further insight
of the causes for reliability or latency issues within a network.
Lastly, maybe the most interesting point is how other NoCs perform under the influence of
faults. With small modifications it should be possible to use this thesis’ fault injection process
for injecting fault modules in other NoCs, which are synthesizable by Synopsis Design Compiler.
This would allow to compare different systems further and find the best-suited one against a
specific fault pattern.

Literature

[ACM/SIGDA12] ACM/SIGDA (Veranst.): CONNECT: Re-Examining Conventional Wisdom
for Designing NoCs in the Context of FPGAs. 2012

[AM10] Ahmadian, S. N. ; Miremadi, S. G.: Fault injection in mixed-signal envi-
ronment using behavioral fault modeling in Verilog-A. In: Proc. IEEE Int.
Behavioral Modeling and Simulation Conf. (BMAS), 2010. – ISSN 2160–3804,
S. 69–74

[AWAN06] Ali, M. ; Welzl, M. ; Adnan, A. ; Nadeem, F.: Using the NS-2 Net-
work Simulator for Evaluating Network on Chips (NoC). In: Proc. Int. Conf.
Emerging Technologies, 2006, S. 506–512

[AZl12] Abdelmalek, G. A. ; Ziani, R. ; laghrouche, M.: Fault injection for
verifying testability of fault tolerant structures at the Verilog level. In: Proc.
24th Int. Conf. Microelectronics (ICM), 2012. – ISSN 2159–1660, S. 1–4

[BH09] Birner, M. ; Handl, T.: ARROW - A Generic Hardware Fault Injection
Tool for NoCs. In: Proc. 12th Euromicro Conf. Digital System Design, Archi-
tectures, Methods and Tools DSD ’09, 2009, S. 465–472

[BM02] Benini, Luca ; Micheli, Giovanni D.: Networks on chip: a new paradigm for
systems on chip design. In: Proceedings 2002 Design, Automation and Test in
Europe Conference and Exhibition, IEEE, März 2002

[BM06] Bjerregaard, Tobias ; Mahadevan, Shankar: A Survey of Research and
Practices of Network-on-Chip / Technical University of Denmark. 2006. –
resreport

[BPC98] Boué, Jérome ; Pétillon, Philippe ; Crouzet, Yves: MEFISTO-L: A
VHDL-Based Fault Injection Tool for the Experimental Assessment of Fault
Tolerance. (1998), S. 168–173

[CMM+15] Catania, Vincenzo ; Mineo, Andrea ; Monteleone, Salvatore ; Palesi,
Maurizio ; Patti, Davide: Noxim: An open, extensible and cycle-accurate
network on chip simulator. In: Application-specific Systems, Architectures and
Processors (ASAP), 2015 IEEE 26th International Conference on IEEE, 2015,
S. 162–163

[DT03] Dally, William J. ; Towles, Brian ; Elsevier (Hrsg.): Principles and
Practices of Interconnection Networks. Morgan Kaufmann, 2003

[Ebr13] Ebrahimi, Masoumeh: Reliable and Adaptive Routing Algorithms for 2D and
3D Networks-on-Chip. In: Routing Algorithms in Networks-on-Chip. Springer,
2013. – ISBN 978–1–4614–8273–4, Kapitel 9

[EYPZ09] Eghbal, A. ; Yaghini, P. M. ; Pedram, H. ; Zarandi, H. R.: Fault injection-

61

LITERATURE LITERATURE

based evaluation of a synchronous NoC router. In: Proc. 15th IEEE Int. On-
Line Testing Symp, 2009. – ISSN 1942–9398, S. 212–214

[FL10] Fu, Zhizhou ; Ling, Xiang: The design and implementation of arbiters for
Network-on-chips. In: Industrial and Information Systems (IIS), 2010 2nd
International Conference on Bd. 1 IEEE, 2010, S. 292–295

[GAP+] Grecu, C. ; Anghel, L. ; Pande, P. P. ; Ivanov, A. ; Saleh, R.: Essential
Fault-Tolerance Metrics for NoC Infrastructures. In: 13th IEEE International
On-Line Testing Symposium (IOLTS 2007), S. 37–42

[HCL+] Han, J. ; Chen, H. ; Liang, J. ; Zhu, P. ; Yang, Z. ; Lombardi, F.:
A Stochastic Computational Approach for Accurate and Efficient Reliability
Evaluation. 63, Nr. 6, S. 1336–1350. – ISSN 0018–9340

[HW16] Huang, H. ; Wen, C. H. ..: Layout-Based Soft Error Rate Estimation Frame-
work Considering Multiple Transient Faults—From Device to Circuit Level.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 35 (2016), April, Nr. 4, S. 586–597. – ISSN 0278–0070

[KH04] Karnik, T. ; Hazucha, P.: Characterization of soft errors caused by single
event upsets in CMOS processes. In: IEEE Transactions on Dependable and
Secure Computing 1 (2004), April, Nr. 2, S. 128–143. – ISSN 1545–5971

[KPN+05] Kim, J. ; Park, D. ; Nicopoulos, C. ; Vijaykrishnan, N. ; Das, C. R.:
Design and analysis of an NoC architecture from performance, reliability and
energy perspective. In: Proc. Symp. Architecture for networking and commu-
nications systems ANCS 2005, 2005, S. 173–182

[LYA16] Li, C. ; Yang, M. ; Ampadu, P.: An Energy-Efficient NoC Router with
Adaptive Fault-Tolerance Using Channel Slicing and On-Demand TMR. In:
IEEE Transactions on Emerging Topics in Computing PP (2016), Nr. 99, S. 1.
– ISSN 2168–6750

[Man13] Mansour, Wassim: An Automated SEU Fault-Injection Method and Tool for
HDL-Based Designs. In: IEEE Transactions on Nuclear Science 60 (2013),
Nr. 4, S. 2728 – 2733

[MO09] Marculescu, Radu ; Ogras, Umit Y.: Outstanding Research Problems in
NoC Design: System, Microarchitecture, and Circuit Perspectives / IEEE.
2009. – Forschungsbericht

[NND09] Nicopoulos, Chrysostomos ; Narayanan, Vijaykrishnan ; Das, Chita R.:
Network-on-Chip Architectures: A Holistic Design Exploration (Lecture Notes
in Electrical Engineering). Springer, 2009. – ISBN 978–90–481–3030–6

[NPCZR15] Nunes, J. L. ; Pecserke, T. ; Cunha, J. C. ; Zenha-Rela, M.: FIRED
– Fault Injector for Reconfigurable Embedded Devices. In: Proc. IEEE 21st
Pacific Rim Int Dependable Computing (PRDC) Symp, 2015, S. 1–10

[PM05] Pande, Partha P. ; Micheli, Giovanni D.: Design, Synthesis, and Test of
Networks on Chips / Washington State University. 2005. – Forschungsbericht

[PNK+06] Park, Dongkook ; Nicopoulos, C. ; Kim, Jongman ; Vijaykrishnan, N.
; Das, C. R.: Exploring Fault-Tolerant Network-on-Chip Architectures. In:
Proc. Int. Conf. Dependable Systems and Networks (DSN’06), 2006. – ISSN
1530–0889, S. 93–104

[PPNS12] Prodromou, A. ; Panteli, A. ; Nicopoulos, C. ; Sazeides, Y.: No-
CAlert: An On-Line and Real-Time Fault Detection Mechanism for Network-
on-Chip Architectures. In: 2012 45th Annual IEEE/ACM, 2012 45th Annual
IEEE/ACM, 2012, S. 60–71

62

LITERATURE LITERATURE

[RFZJ13] Radetzki, Martin ; Feng, Chaochao ; Zhao, Xueqian ; Jantsch, Axel:
Methods for Fault Tolerance in Networks-on-Chip / University of Stuttgart.
2013. – resreport

[SSM08] Shokrolah-Shirazi, Mohammad ; Miremadi, Seyed G.: FPGA-based fault
injection into synthesizable verilog HDL models. In: Secure System Integration
and Reliability Improvement, 2008. SSIRI’08. Second International Conference
on IEEE, 2008, S. 143–149

[SSM16] Suvorova, E. ; Sheynin, Y. ; Matveeva, N.: Reconfigurable NoC de-
velopment with fault mitigation. In: Proc. 18th Conf. of Open Innovations
Association and Seminar Information Security and Protection of Information
Technology (FRUCT-ISPIT) IEEE, 2016, S. 335–344

[Sys13] SystemVerilog: IEEE Standard for SystemVerilog–Unified Hardware De-
sign, Specification, and Verification Language. In: IEEE Std 1800-2012 (Re-
vision of IEEE Std 1800-2009) (2013), S. 1–1315

[SZBR09] Schonwald, T. ; Zimmermann, J. ; Bringmann, O. ; Rosenstiel, W.:
Network-on-Chip Architecture Exploration Framework. In: Proc. 12th Eu-
romicro Conf. Digital System Design, Architectures, Methods and Tools DSD
’09, 2009, S. 375–382

[TAZ03] Thaker, P. A. ; Agrawal, V. D. ; Zaghloul, M. E.: A test evaluation tech-
nique for VLSI circuits using register-transfer level fault modeling. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
22 (2003), Aug, Nr. 8, S. 1104–1113. – ISSN 0278–0070

[TY15] Takamaeda-Yamazaki, Shinya: Pyverilog: A Python-Based Hardware De-
sign Processing Toolkit for Verilog HDL. In: Applied Reconfigurable Computing
Bd. 9040, Springer International Publishing, Apr 2015, S. 451–460

[Ver06] Verilog: IEEE Standard for Verilog Hardware Description Language. In:
IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001) (2006), S. 1–560

[WEH+] Wang, J. ; Ebrahimi, M. ; Huang, L. ; Jantsch, A. ; Li, G.: Design
of Fault-Tolerant and Reliable Networks-on-Chip. In: 2015 IEEE Computer
Society Annual Symposium on VLSI, S. 545–550

[Whi10] White, Mark: Scaled cmos technology reliability users guide / Pasadena, CA:
Jet Propulsion Laboratory, National Aeronautics and Space Administration,
2010. 2010. – Forschungsbericht

[WHL+16] Wang, Junshi ; Huang, Letian ; Li, Qiang ; Li, Guangjun ; Jantsch, Axel:
Optimizing the Location of ECC Protection in Network-on-chip. In: Pro-
ceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis. New York, NY, USA : ACM,
2016 (CODES ’16). – ISBN 978–1–4503–4483–8, S. 19:1–19:10

[WJ08] Wolf, Wayne ; Jerraya, Ahmed A.: Multiprocessor System-on-Chip (MP-
SoC) Technology / IEEE. 2008. – Forschungsbericht

[YA10] Yu, Q. ; Ampadu, P.: A Flexible Parallel Simulator for Networks-on-Chip
With Error Control. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 29 (2010), Jan, Nr. 1, S. 103–116. – ISSN
0278–0070

[ZME03a] Zarandi, H. R. ; Miremadi, S. G. ; Ejlali, A.: Dependability analysis using
a fault injection tool based on synthesizability of HDL models. In: Proc. 18th
IEEE Int Defect and Fault Tolerance in VLSI Systems Symp, 2003. – ISSN
1550–5774, S. 485–492

63

LITERATURE LITERATURE

[ZME03b] Zarandi, H. R. ; Miremadi, S. G. ; Ejlali, A.: Fault injection into verilog
models for dependability evaluation of digital systems. In: Proc. Second Int
Parallel and Distributed Computing Symp IEEE Computer Society, 2003, S.
281–287

64

Internet References

[1] News: Intel Retains Its Crown For Highest Number Of CPUs Sold This Quarter - https:
//wccftech.com/intel-sells-most-cpus-this-quarter/, Last visited: 2018-07-15.

[2] Source ITRS - Shrinking transistor size from 1971 till 2018 - https://en.wikipedia.org/
wiki/International_Technology_Roadmap_for_Semiconductors, Last visited: 2018-10-
21.

[3] Mentor Graphic’s Questasim Website: https://www.mentor.com/products/fv/questa/,
Last visited: 2018-10-20.

[4] Synopsis Design Compiler Homepage: https://www.synopsys.com/support/training/

rtl-synthesis/design-compiler-rtl-synthesis.html, Last visited: 2018-10-20.
[5] Synopsis VCS Homepage: https://www.synopsys.com/verification/simulation/vcs.

html, Last visited: 2018-10-20.
[6] Python Homepage: https://www.python.org/, Last visited: 2018-10-20.
[7] pyverilog Repository: https://github.com/PyHDI/Pyverilog, Last visited: 2018-10-20.
[8] Icarus Verilog Homepage: http://iverilog.icarus.com/, Last visited: 2018-10-20.
[9] Jetbrain’s Pycharm IDE Homepage: https://www.jetbrains.com/pycharm/, Last visited:

2018-10-20.
[10] August 2010. Popnet Website: http://www.pudn.com/Download/item/id/1274390.html,

Last visited: 2018-07-13.
[11] 2012. CONNECT Homepage: https://users.ece.cmu.edu/~mpapamic/connect/, Last

visited: 2018-07-07.
[12] June 2015. Noxim Repository: https://github.com/davidepatti/noxim, Last visited:

2018-07-13.

65

https://wccftech.com/intel-sells-most-cpus-this-quarter/
https://wccftech.com/intel-sells-most-cpus-this-quarter/
https://en.wikipedia.org/wiki/International_Technology_Roadmap_for_Semiconductors
https://en.wikipedia.org/wiki/International_Technology_Roadmap_for_Semiconductors
https://www.mentor.com/products/fv/questa/
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.python.org/
https://github.com/PyHDI/Pyverilog
http://iverilog.icarus.com/
https://www.jetbrains.com/pycharm/
http://www.pudn.com/Download/item/id/1274390.html
https://users.ece.cmu.edu/~mpapamic/connect/
https://github.com/davidepatti/noxim

Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus anderen Quellen oder
indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Wien, am 10.02.2019

Lukas Temmel

	Titlepage
	Acronyms
	Introduction and Motivation
	Introduction to Network on Chip
	Faults in Network on Chip
	Introduction to Fault Tolerance Methods
	Goals of this Thesis
	Summary and Thesis Structure

	State of the Art
	Fault Injection
	Fault Model
	Evaluation of Fault Tolerance in Networks on Chip

	Target Network on Chip
	Topology
	Routing
	Router Architecture
	Fault Tolerance

	Fault Injection Implementation
	Fault Injection Flow
	Fault Module
	Fault Injection Script

	Simulation & Analysis
	Evaluation of the Target Network on Chip
	Mathematical Approach
	Simulation Setup
	Simulation Results
	NoC with no active Fault Tolerance Methods
	Transient Fault
	Intermittent Fault
	Permanent Fault
	Bit Flip and Stuck-At Faults

	Summary

	Conclusion
	Results
	Outlook

	Literature
	Internet References

