
Enabling Scalable Collaboration
by Introducing Platform-

Independent Communication for
the Peer Model

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Mag.iur. Stephan Cejka, BSc
Matrikelnummer 00925492

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: ao. Univ. Prof. Dipl.-Ing. Dr. Eva Kühn
Mitwirkung: Projektass. Dipl.-Ing. Stefan Craß

Wien, 29. Jänner 2019
Stephan Cejka Eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Enabling Scalable Collaboration
by Introducing Platform-

Independent Communication for
the Peer Model

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Mag.iur. Stephan Cejka, BSc
Registration Number 00925492

to the Faculty of Informatics

at the TU Wien

Advisor: ao. Univ. Prof. Dipl.-Ing. Dr. Eva Kühn
Assistance: Projektass. Dipl.-Ing. Stefan Craß

Vienna, 29th January, 2019
Stephan Cejka Eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Mag.iur. Stephan Cejka, BSc
Ostmarkgasse 31/8, 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. Jänner 2019
Stephan Cejka

v

Acknowledgements

First, I want to thank Eva Kühn for the supervision of this thesis and for letting me
work on interesting projects in her team. For the co-supervision, as well as for numerous
helpful discussions on the implementation, I want to thank Stefan Craß. As the Java
implementation was already used by other students for their theses during its finalization,
I want to thank Stefan Zischka for his helpful comments and improvement suggestions.

I want to thank my parents Amanda and Theodor for making my studies possible, and
my brothers Julian and Benjamin for accompanying me on my way.

Special thanks need to be addressed to Matthias for our collaborations during nearly our
whole studies. Representing all my colleagues from Siemens, I want to thank Albin, also
for bringing me into Siemens.

I want to thank Alexander Hanzlik, who was the first one, who read parts of this thesis.
Furthermore, I want to thank Magdalena for the joint diploma thesis writing sessions.
Finally, I want to thank Saskia for motivating me near the end of writing the thesis.

Without all of them, the thesis would never have been finished.

vii

Kurzfassung

Trotz der enormen technischen Entwicklungen der Computerhardware und den dadurch
ermöglichten Fähigkeiten in den letzten Jahrzehnten werden auch weiterhin viele Aufgaben
nicht von einer Maschine alleine bewältigbar sein. Die Integration von Systemen zu einem
verteilten System zur kooperativen Bewältigung einer Aufgabe ist jedoch durch die
Heterogenität der Maschinen, beispielsweise bei Hardware oder Betriebssystem, eine
komplexe Angelegenheit.

Diese Diplomarbeit stellt die Enterprise-Java-Implementierung des Peer Models vor,
das von der Space Based Computing Group am Institut für Computersprachen an der
Technischen Universität Wien erfunden und spezifiziert wurde. Das Peer Model ist ein
datengetriebenes Modell für die Koordination von heterogenen Systemen, welches auf den
Konzepten der Timed und Colored Petri-Netzen basiert. Eine der wichtigsten Anforde-
rungen für die Kollaboration zwischen Maschinen ist die Kommunikation zwischen diesen.
Die Diplomarbeit evaluiert daher einige Serialisierungs- und Kommunikationsformate, um
plattformunabhängige Mechanismen für das Auffinden von Peer-Model-Instanzen im Netz-
werk, sowie den Datenaustausch mit diesen zu ermöglichen. Dies erlaubt die Entwicklung
von skalierbaren und verteilten Lösungen, wobei die involvierten Peer-Model-Instanzen
nicht notwendigerweise in der selben Programmiersprache entwickelt sein müssen. Zusätz-
lich können mit dieser Implementierung während der Laufzeit der Peer-Model-Instanz
dynamisch Komponenten hinzugefügt und entfernt werden. Die Implementierung wird in
eine – im Aufbau befindliche – Toolchain integriert, die verschiedene Werkzeuge und Sys-
teme im Peer-Model-Kontext bereitstellt. Mehrere Diplomarbeiten und eine Dissertation
verwenden oder erweitern diese Implementierung bereits für deren Anwendungsfälle.

ix

Abstract

Despite enormous technical developments on computer hardware and the resulting abilities
in the last decades, many applications are still not and will never be computable by one
machine alone. For collaboration, various machines are thus assembled to distributed
systems; however, as these machines may be heterogeneous in hardware and operating
systems, this integration shows to be a challenging task.

The contribution of this diploma thesis is an enterprise Java implementation of the Peer
Model, a data-driven model for collaboration of heterogeneous systems based on the
concepts of Timed and Colored Petri Nets, introduced and specified by the Space Based
Computing Group of the Institute for Computer Languages, TUWien. One of the primary
requirements of collaboration between machines is to enable communication between
them. To that end, the thesis evaluates several serialization and communication formats
and defines a platform-independent mechanism of instance discovery and data exchange
between Peer Model instances. Thus, it allows to build up scalable and distributed
solutions while not requiring the Peer Model instances executed on the collaborating
machines being implemented in the same programming language. Furthermore, the
implementation allows to add and remove entities during the runtime of the Peer Model
instance and thus enables dynamic adaptions while being executed. The implementation
is integrated into a developing toolchain composed of various tools and systems in the
Peer Model context. Furthermore, a few diploma theses and one PhD thesis are already
using or extending this implementation for their use cases.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 The Peer Model . 1
1.2 Contributions and Tasks . 3

1.2.1 Dynamic adding/removing of entities during runtime 3
1.2.2 Language-independent remoting 3

1.3 Methodology . 4
1.4 Expected Results . 4
1.5 Outline . 5

2 Related Work 7
2.1 Peer Model . 7
2.2 Actor Model . 10
2.3 Vert.x and Gridlink . 15
2.4 WS-BPEL . 18
2.5 GigaSpaces XAP . 19
2.6 Evaluation . 20

2.6.1 Acting on messages . 20
2.6.2 Interoperability . 21
2.6.3 Discovery . 22
2.6.4 Dynamic exchange of logics . 22
2.6.5 Remote component creation and termination 23
2.6.6 Exceptions . 23
2.6.7 Results and Todos . 24

3 Peer Model In-Depth 25
3.1 Entries . 25

3.1.1 Basic Elements . 26
3.1.2 Coordination Data . 27

xiii

3.1.3 Application Data . 27
3.2 Peers and Containers . 28
3.3 Wirings . 28
3.4 Services . 29
3.5 Links . 30

3.5.1 Link Operation Type . 31
3.5.2 Count Specification . 33
3.5.3 Query Selection . 33
3.5.4 Flow Dependent Links . 33

3.6 Distribution . 37
3.7 Dynamics . 37
3.8 Tracing . 38

3.8.1 Visualisation Intermediate Language 39
3.8.2 Trace Intermediate Language 40

4 Requirements 43
4.1 Functional requirements . 43
4.2 Non-functional requirements . 44

5 Communication and Serialization 47
5.1 Remoting Overview . 47

5.1.1 URI Addressing Approach . 48
5.1.2 Naming Approach . 49
5.1.3 Results . 50

5.2 Peer Model Addressing . 51
5.2.1 Addressing of a Peer . 51
5.2.2 Addressing of Sub-Components 51

5.3 Peer Model Instance Discovery in Local Networks 52
5.3.1 Internet Group Management Protocol (IGMP) 52
5.3.2 Peer Model Discovery Protocol (PMDP) 53

5.4 Serialization formats . 58
5.4.1 Text-based formats . 58
5.4.2 Binary formats . 64
5.4.3 Schema Evolution . 71

5.5 Communication formats . 72
5.6 Serialization and remoting mechanisms in related frameworks 74
5.7 Format evaluation . 75
5.8 Apache Thrift in detail . 77

5.8.1 Type System . 78
5.8.2 Services . 79
5.8.3 Thrift Network Stack . 80
5.8.4 Code generation and inclusion 84

6 Implementation 87

6.1 Peer Model . 89
6.2 Peer Model API . 91

6.2.1 Initialization of the Peer Model 91
6.2.2 State Summary . 92
6.2.3 Adding entries . 93
6.2.4 Adding sub-peers . 95
6.2.5 Adding wirings . 96
6.2.6 Exceptions . 101

6.3 Container Implementation . 103
6.3.1 Link implementation and entry retrieval 104
6.3.2 Handling of TTS and TTL . 107
6.3.3 Special handling of entries in PSC and WSC 107

6.4 Communication . 108
6.4.1 Instance Discovery and List . 108
6.4.2 Remote instance registry . 111
6.4.3 Remote entry transmission . 112

6.5 Tracing . 116

7 Evaluation 119
7.1 Comparison with related work . 119

7.1.1 Acting on messages . 119
7.1.2 Interoperability . 122
7.1.3 Discovery . 122
7.1.4 Dynamic exchange of logics . 122
7.1.5 Remote component creation and termination 123
7.1.6 Exceptions . 123

7.2 Benchmarks . 123
7.2.1 General benchmarks . 123
7.2.2 Communication benchmarks 124

7.3 Fulfillment of requirements . 125
7.3.1 Functional requirements . 125
7.3.2 Non-functional requirements 126

8 Conclusion 129
8.1 Future Work . 129

8.1.1 Peer Model toolchain . 129
8.1.2 Integration issues . 129
8.1.3 Implementation-specific improvements 130

8.2 Summary . 131

A Benchmark settings 133
A.1 General benchmarks . 134

A.1.1 Benchmark 1: First triggering of a wiring 136
A.1.2 Benchmark 2: Processing n entries 137

A.2 Communication benchmarks . 138
A.2.1 Local instance . 138
A.2.2 Remote instance . 141

Listings 143

List of Figures 145

List of Tables 147

Glossary 149

Bibliography 153

CHAPTER 1
Introduction

Technical revolutions in the last decades led to increasing processor capabilities and
available space on one machine. Along with these comes an enormous decrease of costs
of systems in comparison to their technical possibilities. In 2007, Tanenbaum/Van Steen
showed a performance per price gain of machines of 1013 in the past half-century [57].
Technical evolutions have not stopped since, now focusing not on the further increase
of one processor’s capabilities but on the use of multicore systems. Furthermore, today
mobile devices can handle tasks for which a few years ago a high-end desktop system
was required. Their processor capabilities are not far behind desktop computers, some of
them already including octa-core processors.

Despite these revolutions, many applications are not and will never be computable
by just one machine. The collaboration of hundreds of systems may be required to
accomplish a joint task; hence those distributed systems have gained high importance
over the last decades. One requirement to foster the composition of various systems is
to use high-speed communication between machines – both in local and in wide area
networks. The collaboration of such heterogeneous systems, following different design
decisions and using uncountable different implementations, is a challenging task. Thus, a
middleware layer (Figure 1.1) between the local (operating) system and the application
was introduced [57] that allows different applications on higher layers to communicate
over a distributed system and hides heterogeneous lower layers that differ in hardware
and/or operating system. Furthermore, it provides an abstraction layer for coordination
logic.

1.1 The Peer Model
The Peer Model [38, 39] is a data-driven model based on the concepts of Timed [12]
and Colored [51] Petri Nets. As being located on the middleware layer, it can be used
for the collaboration of various heterogeneous systems. While components of the Peer

1

1. Introduction

Figure 1.1: Middleware layer [57]

Model handle the coordination logic, the application logic is strictly separated and
implemented by the developer itself using so-called services. They are written in the
respective programming language of the implementation and executed by the Peer Model
once the defined preconditions are met.

The Peer Model was invented and specified by the Space Based Computing Group of the
Institute of Computer Languages at TU Wien. Several diploma theses that are already
finished or are currently in progress specialize on one component of the system. These
components will eventually form a toolchain pictured as a honeycomb (introduced in
[29]) in Figure 1.2.

PM-DSL

Enterprise
Implementation

Embedded
Implementation

Documentation

Simulation

Graphical
Modelling

Verification

Figure 1.2: Overview of the Peer Model Toolchain [29]. Blue parts are covered in this
thesis.

For understanding the concept of the Peer Model, some basic terms need to be introduced
briefly: The peer is the central and eponymous component of the Peer Model. Peers are

2

1.2. Contributions and Tasks

running on a Runtime Peer (RTP), in context of this work also called the PM Instance.
Each peer provides containers that serve as a temporary store for entries. An entry
encapsulates information and as such is transferred between peers. A peer consists of
wirings that are executed if the specified pre-conditions are met and that move entries
between peers and/or containers. Wirings contain services that encapsulate business
logic to process entries or create new ones. A more detailed description of the Peer Model
will be provided in Chapter 3.

1.2 Contributions and Tasks
Some implementations of the Peer Model with different focuses had already been intro-
duced by other students in previous theses [29, 31, 52, 54, 58]. The Java implementation
developed in hand with this thesis is an enterprise implementation of the specification (cf.
Figure 1.2) using a multi-threaded runtime, allowing extendability by using a modular
architecture and providing a user-friendly API. In contrast to the mentioned earlier
implementations, the Java implementation for the first time allows the features described
in the following subsections.

1.2.1 Dynamic adding/removing of entities during runtime

One goal is to enable adding and removing of resources without restricting functionality.
Concerning the Peer Model, it shall be allowed to add and remove services, wirings, peers
and even whole instances.

The Java implementation allows the dynamic adding and removal of those resources
during its runtime and an unlimited number of containers in peers. It thus supports the
proposed meta-model [20] as both wirings and (sub-)peers are treated as special entry
types utilizing special containers.

1.2.2 Language-independent remoting

Distributed system components can only collaborate if they know each other; they need
to communicate with each other by use of a network. Figure 1.1 shows that the systems
required to communicate may be heterogeneous; they may differ in hardware and software
components. In the Peer Model context, it shall thus be supported to communicate
with remote Peer Model instances that may be implemented in another programming
language.

The requirement introduces restrictions on the use of the serialization and message
exchange formats, limiting those to platform-independent options. Therefore, this thesis
first evaluates several possible serialization and communication formats. It specifies a
method for discovery of other instances and the following communication between these
instances, i.e., the exchange of entries. This communication protocol is used in the Java
implementation such that collaboration with instances on other platforms – implementing
the specification – is not restricted.

3

1. Introduction

1.3 Methodology
In a first step, existing literature concerning the Peer Model including previous diploma
theses have been evaluated. This included a literature research on models that are
comparable to the Peer Model.

As the Peer Model specification has evolved during the time this thesis was written, it
was required to decide which features are to be implemented and which ones will be part
of future work. In that way, the functional and non-functional requirements have been
defined next.

The primary focus of this thesis is the introduction of a platform-independent collaboration
method between Peer Model implementations to allow building a distributed system and
use cases requiring a horizontally scalable solution. Thus, communication options and
serialization formats that seem to be suitable for this use case were then evaluated, and
a decision on the communication method was made based on the results.

Next, the enterprise Java version of the Peer Model was implemented including the use
of the decided platform-independent formats for the discovery of and communication
with other instances.

A continuous evaluation of the implementation was possible due to various diploma theses
and one PhD thesis already using this implementation for their use cases. Therefore,
several helpful comments and feature requests could successfully influence this work
during the implementation phase.

1.4 Expected Results
The expected outcome of this work is an enterprise implementation of the Peer Model in
Java that allows the development of use cases requiring communication between various
instances.It supports the features introduced in [38, 39], such as sub-peers, flows, and
timing properties (TTS, TTL). Furthermore, this implementation is the first one that
supports the Peer Model meta-model [20], i.e., all wirings and peers are particular kinds
of entries. As such, dynamic changes of the model are possible as entries of these types
come and go during the runtime.

It was defined that Peer Model instances running on different machines shall be able to
collaborate on a common task. For such functionality, these instances are required to
communicate with each other either over a local network or the Internet. The thesis does
not deal with any networking issues; thus for simplification, all Peer Model instances are
running in the same subnet.

As mentioned before, some diploma theses and one PhD thesis are using this imple-
mentation for their use cases, including the implementation of security concepts using
the meta-model [20]. Therefore, it is expected that the implementation will be ad-
justed and extended based on future use cases’ needs. It thus requires extensibility and
maintainability by using modules that can easily be exchanged.

4

1.5. Outline

1.5 Outline
The remainder of the thesis roughly follows the structure that was given when discussing
the methodology (Section 1.3). It is organized as follows:

In Chapter 2, related work is presented. The findings of previous diploma theses
concerning the Peer Model are summarized first. Then the Peer Model is compared with
a few frameworks using comparable concepts.

The introduction included only a brief description of the Peer Model. Chapter 3 deals
in-depth with the Peer Model concepts as specified in previous scientific contributions.

Afterward, Chapter 4 introduces the functional and non-functional requirements.

In Chapter 5, design decisions for enabling remoting such as addressing and discovery
are made. One of the primary goals of the thesis is to enable the communication between
Peer Model instances that may be implemented in different programming languages. Thus,
options for a suitable serialization format to enable language-independent collaboration
are evaluated.

The Java implementation for enterprise use cases that was developed in hand with this
thesis and follows the evaluated approaches is described in Chapter 6.

The implementation is then evaluated by comparing it with related work in Chapter 7.
Furthermore, the fulfillment of the functional and non-functional requirements is de-
scribed, including benchmarks for performance and scalability – generally and concerning
communication.

Chapter 8 shows proposals for future work and concludes this thesis with a summary
of the results.

5

CHAPTER 2
Related Work

As the central part of this thesis is the platform-independent communication between
Peer Model instances, the evaluation with related work frameworks will be focused on
coordination and remote communication.

First, Section 2.1 shows related work in the Peer Model area, i.e., it shows the contributions
of previous theses and publications.

Four frameworks have been identified for comparison: The Actor Model was identified by
previous diploma theses [52, 53] as being best comparable to the Peer Model approach. It
is described in Section 2.2, including its Java implementation Akka. Sharing a high level
of similiarities with it and also with the Peer Model, vert.x and Gridlink are introduced
in Section 2.3. Next, WS-BPEL is described in Section 2.4 due to its wide spread in
distributed coordination. Furthermore, Gigaspaces XAP is introduced in Section 2.5 as a
representative of space based computing products due to their similarities with the Peer
Model and its high number of features.

Finally, the chapter is concluded with Section 2.6, where the chosen frameworks are
evaluated and the missing features to be handled in this thesis are identified.

2.1 Peer Model
The Peer Model is a novel approach for modeling concurrent activities and coordination
developed and published by the Space Based Computing Group at the Institute of Com-
puter Languages, TU Wien [38]. It provides a higher-level programming abstraction than
Petri nets, on which the Peer Model is based on, inspired by asynchronous message queue
or tuple space communication, event-driven architecture and data-driven workflow [38].
Further publications that extend the abilities of the original publication are [39] and [37].

Kühn et al. [38] compare the Peer Model with Colored Petri Nets (CPN) and Reo
regarding the scalability of modeling. It shows that while quite powerful, high-level

7

2. Related Work

abstractions are missing in CPN and they do not scale. The Peer Model is neither
domain-specific nor intended for a specific use case only. The initial leading use case
for the team was the wireless propagation of events about approaching trains at railway
crossings [39, 37]. A visual simulation of the use case showed a train moving and a visual
representation of messages transmitted during the scenario [19]. This simulation was
developed in Java, initially without using a Peer Model implementation, but stating its
use as future work.

The implementation delivered with and described in this thesis is an entirely novel
and general purpose implementation in Java, focusing on the communication between
instances, including the ability to communicate with instances that may run on another
platform. In the future, a toolchain, which can be imaged as a honeycomb picture
(Figure 2.1), will be formed by the shown tools in the Peer Model environment. The
figure extends the introductory figure in Section 1.1 by providing more details as well
as references to other parts of the toolchain. Some of these tools are already finished
by other diploma theses (colored in grey), some tools are currently in work (colored in
green), and some are still in the planning phase (colored in white).

This thesis introduces the Java implementation, one kind of an enterprise Peer Model
implementation. In the same category falls the C# implementation of the Peer Model
(PeerSpace.NET) that was earlier finished by Rauch [52]. This implementation was the
first general purpose implementation of the Peer Model; however, as the specification
had not been finished at that point, the implementation most probably is not entirely
inline with it. Thus, Rauch’s implementation does not allow interoperability between
different programming languages, and the afterward introduced dynamics in [20].

PM-DSL
[29]

Enterprise
Implementation

Java
Implementation

C# / .net
Implementation

[52]

Embedded
Implementation

ANSI C
Implementation

[29]

Dynamic C
Implementation

[31]

LATEX
Documentation

[29]

Simulation

Graphical
Modelling

Pattern
Composition

[53]

Visualisation
[21]

Verification

Figure 2.1: Extended Peer Model Toolchain [29]. Blue parts are covered in this work,
green parts are work in progress, grey parts are already available from other works, and
white ones are planned.

Various already finished and current diploma theses aim at implementations with dif-
ferent focuses. Hamböck’s thesis [29] defines the first toolchain components: (1) the

8

2.1. Peer Model

domain-specific language to describe a Peer Model use case (PM-DSL), (2) an embedded
implementation in ANSI C for heterogeneous wireless sensor network nodes as needed by
the requirements of the motivating use case and (3) automatic LATEX documentation
generation. Naturally, the embedded version has some restrictions and assumptions that
are the result of limits in these platforms. Hamböck’s proposed domain-specific language
(PM-DSL) is primarily intended for his embedded implementation of the Peer Model;
however, enhancements to enterprise versions were planned. Therefore the PM-DSL is
designed to be extensible for features that are either not required or restricted in the em-
bedded C version. The PM-DSL allows the automatic generation of the source for different
embedded platforms by translation of the declarative model to source code [37] as well
as the generation of the human-readable documentation in LATEX. Those components are
the foundations for an embedded development toolchain [37]; thus the PM-DSL holds the
central point in the honeycomb picture on purpose. Another embedded implementation
was done by Holasek in dynamic C [31].

Schermann [53] compared Reo, the Actor Model, Petri Nets, UPPAAL, WS-BPEL,
BPMN and the Peer Model in his diploma thesis with a focus on flexibility, scalability,
and the ability to reuse components. His thesis focused on the extension of the Peer Model
with composable design patterns. A visual monitoring tool was created by Csuk [21]
including a definition of a logging format to allow post-mortem monitoring of a Peer Model
run. Csuk also compared the same mentioned modeling tools regarding an interactive,
visual monitoring tool. Schermann [53] concluded that the Actor Model is the one
modeling tool most comparable to the Peer Model. As there also exists a well-known Java
implementation of this model (Akka), the thesis at hand will compare its communication
features with the ones of the Peer Model. Rauch [52] focused on the evaluation of API
usability and used the Xcoordination Application Space1 for communication. Another
current diploma thesis focuses on a graphical modeler for automatic code generation.

A specification for communication between Peer Model instances in the same or in
different languages will be part of the thesis at hand; it will however not be possible to
communicate with Rauch’s implementation without an extension that complies with the
communication format. Communication to Hamböck’s implementation in C is expected
to be not reasonable because of different use cases in mind. As the specification of
the Peer Model has evolved (and is still evolving), a collaboration with these earlier
implementations cannot be supported. A reduced implementation of the Peer Model
specification for mobile devices was developed for the Android operating system by
Schoba [54] and Tillian [58]. It aims for limited system ressources, especially for running
in the background as Android service. They designed their implementation in a way that
communication method can easily be exchanged as at the time of writing their theses,
the preliminary decision for a format was already made, and a draft of the according
chapter of this thesis was already available.

Latest contributions in the Peer Model area are the inclusion of a security concept using
the techniques the Peer Model offers itself [20]. To that end, a meta-model is introduced,

1http://www.xcoordination.org/application_space

9

http://www.xcoordination.org/application_space

2. Related Work

treating wirings and (sub-)peers as regular Peer Model entries. The handling of these
entries is achieved by introducing new types of containers that allow a specific behavior
for these entry types. The Java implementation was designed to support these entry
types as well as the specific containers; Craß thus implemented the security concept
in the context of his PhD thesis using this implementation. This Secure Peer Space
implementation has already been extended by Lettmayer [43] for using a Public Key
Infrastructure (PKI) in a Public Resource Computing use case. Furthermore, Zischka [60]
already used the Java implementation for his use case of evaluating routing algorithms in
unstructured peer-to-peer networks.

During the last years, the Peer Model specification has further evolved [35, 36, 40]. New
concepts, such as variables and transactions, have been introduced that are out-of-scope
of this thesis. Further work will be required to extend the Java implementation to address
these concepts.

2.2 Actor Model

The Actor Model aims to provide a higher level of abstraction for concurrent and
distributed systems to ease the writing of correct distributed, concurrent, fault-tolerant
and scalable applications [44]. Thus, it avoids the necessity for the developer to deal
with locking and thread management as far as possible.

Actors were first defined by Hewitt et al. in 1973 [30]. Subsequently, the Actor Model
gained popularity with the growth of parallel and distributed computing platforms,
such as multicore architectures and cloud computers [33]. Various actor languages and
frameworks have been developed in the last decades, among them the Erlang language [44].
Famous examples nowadays using actor systems are the Facebook chat system, Twitter
and WhatsApp [8], all having in common being systems coping with a high number of
concurrent transactions and thus requiring a scalable system.

The definition from the Encyclopedia of Parallel Computing [33] describes the Actor
Model by defining actors as

“a model of concurrent computation for developing parallel, distributed,
and mobile systems. Each actor is an autonomous object that operates
concurrently and asynchronously, receiving and sending messages to other
actors, creating new actors, and updating its own local state. An actor system
consists of a collection of actors, some of whom may send messages to, or
receive messages from, actors outside the system.”

Programs are decomposed in smaller components called actors, which are autonomous,
interactive, asynchronously operating components [33] having their own memory and
communicating with other actors by exchanging messages [8]. Each actor contains its
state and particular behavior. Messages are put into the receiver’s mail queue, specified

10

2.2. Actor Model

by its unique mail address. If the mailbox is empty, the actor blocks and waits for the
next message to process [33].

Figure 2.2: Actor behavior at message processing [6]

Figure 2.2 shows the fundamental behavior of an actor. At process step xn the nth

message of the mail queue is handled. In reaction to the message, the process uses the
following three primitives [9]:

1. create
creates a new actor.

2. send to
transmits a message to another actor. This message will eventually be delivered,
and appended to the receiver’s mail queue until processed. Since everything works
asynchronously, the call of this primitive returns immediately, i.e., the actor is not
blocked by waiting for a response.

3. become
alters the state and/or behavior of the actor for step xn+1 that will process the
next message n + 1.

A possible timeline of events is shown in Figure 2.3, where some (child) actors are created
at certain points in time and communication between the actor and other actors is shown.

Location transparency is supported in the Actor Model. Actors can run on the same core,
on the same CPU, or on another node in the network, while the actual location of the actor
does not affect its naming [33]. The mentioned concepts are not tied to any programming
language, they have however been directly integrated into some languages like Erlang
and Scala. The next section will deal with Akka, a Java/Scala implementation of the

11

2. Related Work

Figure 2.3: Actor timeline [7]

Actor Model’s concepts. As just mentioned, Scala previously included actors directly in
the language; however, with Scala 2.11.0, the Scala Actors library was deprecated [32]
and replaced by Akka.

Akka

Akka2 is an open source Java/Scala implementation of the Actor Model concepts us-
ing an asynchronous, non-blocking, highly performant message-driven programming
model [44]. As the primary focus of this diploma thesis is the communication between
peers on different Peer Model instances, this brief introduction to Akka will only describe
functionalities within the Akka framework that are relevant for comparison. Extended
functionalities, e.g., Akka TCP, Akka I/O, the event bus or streams were intentionally
left out as not relevant for this purpose. Further details can be found in the detailed
Akka documentation [44].

Each actor encapsulates a state and a defined behavior, defining the actions to be taken
in reaction to a received message. Actors are hierarchically structured, such that each
actor has one root actor and may create child actors that it will supervise. Supervision is
most relevant whenever a failure in the child actor occurs. In such cases, the child actor
suspends itself and all of its own child actors. It then notifies the parent actor which
may either

1. resume the child actor, keeping its internal state.
2http://akka.io

12

http://akka.io

2.2. Actor Model

2. restart the child actor, resetting its internal state.

3. stop the child actor permanently.

4. escalate the failure to its own supervising actor and hence, fail itself.

Actor Reference Types

Actors are referenced using the following types:

• Purely local actor references, used by actor systems not configured for being
used in a network. Thus, these actor references will not work if sent across a
network connection to a remote JVM.

• Local actor references, used when remoting is enabled. Those references repre-
sent actors within the same JVM; it is – however – possible to send them to other
network nodes by including protocol and remote addressing information.

• Remote actor references represent actors reachable by remote communication.
On the transmission of messages to these actors, they get serialized and sent to the
remote JVM. Internally, Akka utilizes the netty server3 for remoting.

• Special types of actor references include the DeadLetterActorRef, where mes-
sages are routed to whose destination is not or no longer existent (hence they are
called dead letters).

Actor Reference Naming

As mentioned, actors are created hierarchically. For the naming of actors, the parent-child
links give a sequence of names forming a URI. The actor path consists of the address
component, describing the protocol and location by which the corresponding actor is
reachable, followed by the names of the actors in the hierarchy:

• akka://my-sys/user/service-a/worker1
represents a purely local reference

• akka.tcp://my-sys@host.example.com:5678/user/service-b
represents a remote reference. Remote hosts are obtained by the naming pattern:
akka.<protocol>://<system>@<host>:<port>/<actorpath>

Akka also allows to create child actors on a remote node. The remote system places the
new actor on a special path for this purpose. The supervising actor will be the remote
actor reference to the actor that triggered the creation, which is shown in Figure 2.4.

3https://netty.io

13

https://netty.io

2. Related Work

Figure 2.4: Remote child actors in Akka [44]

Communication between actors

The interaction of actors is achieved by exchanging messages. Communication between
actors works the same way whether they are on the same local JVM or remote communi-
cation is involved. Consequently, location transparency is provided. The latency and
reliability, however, cannot be guaranteed to be equal in both cases due to dependencies
on the underlying network. Entirely reliable networks cannot exist, and latency cannot
be zero whenever communication over a network is involved (cf. one of the eight pitfalls
in developing distributed systems described by Peter Deutsch [57]).

Messages are delivered in an at-most-once kind, such that no guaranteed delivery can be
assumed. If they cannot be delivered, they are put to the previously mentioned dead
letter actor reference "/deadLetters" – actors can subscribe to this special address
to get informed on failed message deliveries. Such dead letters are generated at the node
determining that the send operation has failed, which can either be the local system
(e.g., if no network connection can be established) or the remote one (e.g., if the actor
the message is being sent to does not exist).

Send messages Messages can be sent to another actor by one of two possible methods:

1. tell
sends a message asynchronously and returns immediately. As such it implements a
fire-and-forget manner of message transmission.

14

2.3. Vert.x and Gridlink

2. ask
sends a message asynchronously and returns a Future for a possible reply message
by the recipient.

Serialization Akka uses two built-in serializers, the Java default serializer and the
Google Protocol Buffers serializer. Furthermore, it is possible to develop an own serial-
ization implementation.

Receive messages Each actor possesses exactly one mailbox, in which messages des-
tined for that actor are transmitted to and enqueued. The default mailbox implementation
uses an unbounded queue; therefore it introduces FIFO behavior for message processing.
Different implementations of mailboxes allow altering this behavior, e.g. by utilizing a
prioritization of messages. At each time, the thus defined next message in the queue is
processed; Akka does neither allow to scan through the mailbox nor to process more
than one message at once. When a message is received, the onReceive method of the
actor is called with this message. As described before, the recipient can reply (answer)
to a message if the message issuer used the ask method.

Life cycle of an actor

There are various methods to terminate an actor, which are also performed asynchronously.
An actor may decide to stop itself. It is also possible to stop its child actors or send
special types of messages to other actors to request (graceful stop message) or force them
to stop themselves (PoisonPill message, Kill message).

2.3 Vert.x and Gridlink

Vert.x4, hosted by the Eclipse Foundation, provides a distributed message bus using
Hazelcast5 for clustering. Applications – in vert.x terms called Verticles – within one
subnet form a cluster of known instances during their execution, by default being
discovered using multicast messaging [4]. These verticles communicate over the event bus
by either using direct addressing (i.e., request-response pattern) or a publish/subscribe
mechanism. One of its main features is its polyglot design, i.e., it allows cross-platform
applications with current support for Java, JavaScript, Groovy, Ruby, Ceylon, Scala, and
Kotlin languages.

It shares some similarities with the Actor Model in concurrency, scaling and deployment;
vert.x does, however, not claim to be a strict implementation of the Actor Model [2].
A verticle is thus comparable to an actor; there are, however, neither hierarchies in
naming nor parent-child relations between verticles. Similar to Akka, everything in vert.x
is executed asynchronously and developed using its non-blocking API. Vert.x’s API is

4http://vertx.io
5http://hazelcast.org

15

http://vertx.io
http://hazelcast.org

2. Related Work

mainly event-driven; handlers are registered to get informed whenever an event occurs,
e.g., on receiving a message. One designated thread – the event loop – delivers events
to registered handlers as they arrive [2]. By this, vert.x shows to be scalable, allowing
several verticles to run concurrently on one node. Vert.x extensions, including numerous
additional libraries to create web services, servers, or connections to various databases
shall not be covered here.

Based on vert.x, the Gridlink [17, 27, 16], which provides an extended API for Java for
service-based environments, was developed. It improves modularity by introducing new
features like a service registry and application provisioning, such that applications can
be managed (deployed/updated/removed) during runtime.

A node is a bundle of modules running on a JVM (Java Virtual Machine). A module
is a Java program that (1) implements a dedicated functionality, (2) takes over one or
more roles, (3) is addressable and reachable over the event bus via one (or more) role
address(es), and (4) provides functions to other modules [17]. Figure 2.5 shows some
modules running concurrently on one node, using a NodeManager module to dynamically
load applications within one JVM. It manages multiple other Gridlink modules within
its JVM even though these modules may be installed, updated, and uninstalled during
the runtime of the node and other modules.

Figure 2.5: Nodes and modules in Gridlink [16]

Referring to the vert.x terminology, a Gridlink module is a verticle. A module registers
itself for roles, where it is then accessible via the communication network, i.e., where it
can receive and handle messages. Thus, the receiver of a message is not determined by
its module address, but by the role address. Modules serving as message producers only
(i.e., they are not intended to receive any requests from other modules) do not need to
have any role assigned. They are not addressable and thus cannot receive or react to
any messages from other modules. Roles are claimed by an intended receiver module, as
shown in Figure 2.6, where a storage module takes over – beside others – the role storage,
by which it is reachable by other modules.

Services are addressed by roles and service names. A role provides handlers for serving
one or more services (e.g., a service handler for adding a measurement to the data
storage) and can hence be seen as a container grouping related services. Figure 2.6
shows a module StorageModule registered for role storage, providing several services (e.g.,
createDataPoint).

16

2.3. Vert.x and Gridlink

StorageModule

storage

. . .

createDataPoint
addMeasurement
getMostRecentValue. . .

Figure 2.6: Modules, roles, and services in Gridlink [17]

In mapping the concepts to the Actor Model, it can be seen that a role is comparable
to an actor. In Gridlink, a module is a vert.x verticle grouping various roles. Gridlink
thus shifts the compatibility of concepts, as in vert.x the verticles were described as
comparable to actors.

Communication between modules

The communication between modules is handled by messages that are transmitted over
the vert.x bus. Three types of message transmission are supported:

• send
The message is transmitted to one module which holds the role specified in the
request/event.

• sendWithTimeout
The message is transmitted to one module which holds the role specified in the
request/event. On the reception of a reply within a maximum specified time, the
reply handler is called asynchronously at the sender of the original message.

• publish
The message is transmitted to all modules which hold the role (topic) specified in
the request/event.

If more than one module is registered for the same role, only one of them is chosen for
delivery using round-robin fashion when using send or sendWithTimeout.

vert.x and Gridlink do not require specific message formats, as implementations of
requests, replies and events are use-case-specific. Messages in Gridlink consist of a type
and an optional payload (e.g., the data point) and are transmitted (per default) as
JSON messages to the specified recipient. Before a message is transmitted, it can be
modified using configured proxies to do additional message processing steps, including the
modification of a message (e.g., for encryption) [27, 16]. Respective proxies are executed
at the message’s recipient. Afterward, the registered service handler for the received
message type is called to process the message, which includes issuing a reply message
when using sendWithTimeout.

17

2. Related Work

2.4 WS-BPEL
WS-BPEL (OASIS Web Services Business Process Execution Language) is a standardized
XML-based language for connecting business processes implemented as web services [47].
It contains a model and a grammar for describing the behavior of business processes
and the interactions between them. Processes can either be described as abstract or as
executable – the latter ones are fully specified and thus can be executed. The core of
WS-BPEL is the peer-to-peer interaction between services described in the Web Services
Description Language (WSDL). A process definition defines PartnerLink relations for
incoming and outgoing messages (Figure 2.7). Messages between interacting parties are
exchanged by use of the exposed web services, and serialized into the WSDL message
format in XML.

Figure 2.7: WS-BPEL PartnerLink overview [47]

Processes are exposed as WSDL services and written in XML. They consist of activities,
that are divided into basic activites describing elemental steps of the process behavior, and
structured activities for control-flow logic containing basic and/or structured activities.
Examples for basic activities include

• the <receive> activity waiting for a matching message to arrive,

• the <assign> activity to update values of variables,

• the <reply> activity to send a message in reply to a received message,

Examples for structured activities are

• the <sequence> activity defining a collection of activities to be executed sequen-
tially,

• the <flow> activity defining a collection of activities to be executed concurrently,

18

2.5. GigaSpaces XAP

• the <if> activity to choose one of the children activities to be executed,

• the <while> activity to repeat the child activity,

• the <pick> activity to wait for one of a set of possible messages to arrive,

Services are addressed and called by use of their WSDL service name. Processes are
instantiated when one of the start activities (e.g., receive, pick – they are also known
as inbound message activities) are triggered.

2.5 GigaSpaces XAP
Due to sharing some similarities with the Peer Model, from a high number of tuple space
implementations6, GigaSpaces eXtreme Application Platform (XAP)7 was chosen for the
evaluation. It is a commercial project, where an – although feature-limited – open source
variant is also available. It provides a high-end, scalable, high-performance application
server where applications can either be written in Java, .NET, or C++. Thus GigaSpaces
XAP allows limited language interoperability; however, it is one of the features not
included in the open source version.

Messages can be retrieved from the space by using either a READ query (non-consuming),
a TAKE query (consuming), or a CLEAR query (deletes the entry but does not return it).
There are three types how queries can be built:

• Query by ID

• Query by Template

• Query by SQL

It is possible to request either one (e.g., take) or multiple (e.g., takeMultiple)
entries, in the latter case the number of entries can be limited to a maximum number.
All operations usually block until they can be successfully executed, but there are also
methods (e.g., takeIfExists) that are non-blocking and methods that are executed
asynchronously (e.g., asyncTake). In summary, the main supported operations of the
space are:

• Write objects into the space (writeXXX)

• Change objects in the space (changeXXX)

• Reading objects from the space (readXXX)
6e.g., as listed by example in http://procol.sourceforge.net/dokuwiki/doku.php?id=

list-tuplespaces
7https://www.gigaspaces.com/product/xap

19

http://procol.sourceforge.net/dokuwiki/doku.php?id=list-tuplespaces
http://procol.sourceforge.net/dokuwiki/doku.php?id=list-tuplespaces
https://www.gigaspaces.com/product/xap

2. Related Work

• Removing objects from the space (takeXXX)

Objects can have a Time-To-Live (TTL) set. Some of the space operations can generate
notifications (e.g., write, take) when they are executed to inform other entities attached
to the space. Supported features for SQL queries are limited, for example, neither multiple
tables select nor joins are possible.

Gigaspaces XAP uses Jini for addressing, lookup, and discovery8; the general for-
mat of the space URL is <protocol>://<lookup_service_hostname>:<port>
/<space_container_name>/<space_name>?<properties>. For serialization in
GigaSpaces XAP, by default the integrated serializer of Java is used. This can be changed
by declaring the class of the objects that are written into the space as Externalizable.
By implementing its methods writeExternal and readExternal an own serializa-
tion mechanism can be integrated (for example, the GigaSpaces documentation9 shows
how to integrate the Kryo serializer10). Limited platform interoperability betweeen .NET
and Java is briefly described in the documentation11, though rules need to be followed
and additional steps are required for the serialization of user-defined objects on the .NET
side. Various remoting technologies can be used that are yielded by Spring’s remoting12.

2.6 Evaluation
A comparison between the introduced frameworks and the various already existing Peer
Model implementations shall be given here. The main focus of comparison – according
to the focus of this thesis – shall naturally be laid on the communication features. In
consequence, by finding missing features the requirements for this thesis and the Java
implementation shall be laid out.

2.6.1 Acting on messages

The most significant difference to the Peer Model is that Akka, Vert.x, and WS-BPEL
act on one and only one individual received message. By using pick, in WS-BPEL
various possible message types to act on can be specified but still it acts on one message.
Besides the already existing Peer Model implementations, only GigaSpaces XAP can act
on more than one message.

For the comparison, three sample use cases shall be introduced:

Use Case 1: A function shall be executed every time five messages of type A have been
received.

8https://docs.gigaspaces.com/xap/14.0/overview/about-jini.html
9https://docs.gigaspaces.com/xap/14.0/dev-java/custom-serialization.html

10https://github.com/EsotericSoftware/kryo
11https://docs.gigaspaces.com/xap/14.0/dev-dotnet/interoperability.html
12https://docs.gigaspaces.com/xap/14.0/dev-java/space-based-remoting-overview.

html

20

https://docs.gigaspaces.com/xap/14.0/overview/about-jini.html
https://docs.gigaspaces.com/xap/14.0/dev-java/custom-serialization.html
https://github.com/EsotericSoftware/kryo
https://docs.gigaspaces.com/xap/14.0/dev-dotnet/interoperability.html
https://docs.gigaspaces.com/xap/14.0/dev-java/space-based-remoting- overview.html
https://docs.gigaspaces.com/xap/14.0/dev-java/space-based-remoting- overview.html

2.6. Evaluation

Use Case 2: A function shall be executed if one message of type A and one message of
type B have been received. The message of type A, however, shall not be removed after
it has been processed, i.e., as long as the message of type A is still available, the function
shall be executed each time a message of type B arrives.

Use Case 3: A function shall be executed whenever no entry of type C is available.

All of these use cases are complicated or even impossible to be implemented using Akka,
vert.x, and WS-BPEL. It is neither possible to process more than one message at once
nor to process the same message more than once nor to act anyhow if no message is
pending. Furthermore, the frameworks do not support multiple preconditions. As each
actor only has exactly one mailbox in Akka, no different behavior can be registered for
different types of messages. Once a message in Akka is delivered to the mailbox, the
actor implementation acts on this one message. A conditional execution is required to be
implemented within the actor itself.

GigaSpaces XAP allows to process more than one message at once; however, multiple
takes can act on only on message type. Furthermore, only a maximum number of entries
to be taken can be specified, but not a minimum number. That renders all of the
mentioned use cases to be impossible there. The Peer Model is more powerful in these
scenarios: all of the use cases are easily possible to be implemented.

In result, the following enumeration summarizes the possibilities:

take (i.e., consuming read) exactly one entry:
Akka �3 vert.x/Gridlink �3 WS-BPEL �3 GigaSpaces XAP �3 Peer Model �3

read (i.e., non-consuming) exactly one entry:
Akka � vert.x/Gridlink � WS-BPEL � GigaSpaces XAP �3 Peer Model �3

act on non-available entry:
Akka � vert.x/Gridlink � WS-BPEL � GigaSpaces XAP � Peer Model �3

take more than one entry of the same type:
Akka � vert.x/Gridlink � WS-BPEL � GigaSpaces XAP �3 Peer Model �3

take more than one entry of different types:
Akka � vert.x/Gridlink � WS-BPEL � GigaSpaces XAP � Peer Model �3

2.6.2 Interoperability

While communication with instances using the same implementation is possible in all
evaluated frameworks (note that this is a central requirement for any distributed system),
communication with instances using other implementations are rarely supported. Of all
evaluated frameworks, only vert.x can convince with platform-independent communication
to instances in Java, JavaScript, Groovy, Ruby, Ceylon, Scala, and Kotlin. Note that the
Gridlink extension – however – is restricted to Java. Gigaspaces XAP at least allows

21

2. Related Work

communication between instances in Java, .NET, and C++; however, additional effort
for coding is necessary for serialization. Earlier Peer Model implementations do not allow
any communication with instances in other languages.

Communication with implementations in another language
Akka � vert.x/Gridlink �3 WS-BPEL � GigaSpaces XAP �~
Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �

2.6.3 Discovery

Most of the compared frameworks do not include any discovery mechanism; they require
remote instances to be known and addressable. Vert.x and GigaSpaces XAP use multi-
casting for discovery; vert.x by using Hazelcast for building a cluster of all known and
reachable instances. In Gigaspaces XAP, a lookup service provides a mechanism for
services to discover each other, by default using multicasting. Services register themselves
in the lookup service such that they can be found by other services. The client gets
a service proxy for the requested server; subsequently a direct connection between the
parties is used. Earlier Peer Model implementations do not implement any discovery
mechanism.

Akka � vert.x/Gridlink �3 WS-BPEL � GigaSpaces XAP �3

Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �

2.6.4 Dynamic exchange of logics

Naturally, the Peer Model meta-model introduced in [20] cannot be evaluated with the
other frameworks in related work. However, in other frameworks there might be other
mechanisms to dynamically replace logics during execution of the system.

Though hardly comparable to the Peer Model approach, Akka, vert.x and Gridlink
include such a concept. In Akka, there is a parent-child relation between actors; they
can start child actors and terminate them during the system’s runtime. Vert.x allows to
execute several verticles concurrently within one JVM. One of the major added features of
Gridlink is provisioning, i.e., the ability to install, update, configure, etc, modules during
the runtime and issued from the remote site [17]. The AppManager module is responsible
for receiving provisioning requests and their handling; e.g., for the installation of another
module, the AppManager downloads the module archive, extracts it and launches it.
Using the same mechanism, Gridlink proxies can be added and removed dynamically
during the runtime of a module [27]. Using node management (cf. Figure 2.5), multiple
Gridlink modules can be managed within one JVM without influencing installation,
update and uninstallation during the runtime of the node and other modules [16].

22

2.6. Evaluation

There is currently not yet an implementation of the Peer Model that supports the meta-
model. All previous implementations neither have a special entry type for wirings and
peers, nor include special containers for their handling.

Akka �~ vert.x/Gridlink �~ WS-BPEL � GigaSpaces XAP �
Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �

2.6.5 Remote component creation and termination

For scalability use cases it is of interest whether components on other components could
easily be created and terminated again. In Akka, child actors can be created on remote
nodes, while in vert.x no such mechanism exists – there are no parent-child relations
in vert.x. However, the provisioning features of Gridlink (cf. Section 2.6.4) introduce a
mechanism to install, update, and configure modules from the remote (operator) side.
Such an mechanism is also neither available in WS-BPEL nor in GigaSpaces XAP.

For the Peer Model implementations, the remote component creation and termination
functionality is tightly connected with the meta-model. As described, there is currently
not yet an implementation of the Peer Model that supports the meta-model.

Akka �3 vert.x/Gridlink �~ WS-BPEL � GigaSpaces XAP �
Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �

2.6.6 Exceptions

Communication failures and expiration of messages shall be properly handled. In vert.x,
when using sendWithTimeout an exception is generated if no reply was received
within the timeout [27]. Comparable to exception entries, Gridlink implements the
ErrorReply type that can be used as reply type. In either case, Gridlink executes
an ErrorReplyHandler to react on a communication exception or on receiving the
ErrorReply from the recipient. As the concept of TTL does not exist, there are no
exception types for handling of expired messages. Akka uses a comparable concept with
the message type ReceiveTimeout [44]. The recipient can also reply with the status
class Status.Failure. WS-BPEL defines the section faultHandlers to define
activities to be performed in response to faults resulting from invocation of services [47].
They can be generated by using the activity throw. In Gigaspaces XAP, a lease time
can be defined when writing entries into the space13. By using a listener, the sender can
get notified on the expiration of the lease.

13https://docs.gigaspaces.com/xap/14.0/dev-java/leases-automatic-expiration.
html

23

https://docs.gigaspaces.com/xap/14.0/dev-java/leases-automatic-expiration.html
https://docs.gigaspaces.com/xap/14.0/dev-java/leases-automatic-expiration.html

2. Related Work

In the Peer Model, exceptions form a special type of entries that are currently implemented
only in the Mobile Peer Model. They are generated on an expired TTL as well as
on transmission failures. Furthermore, the Mobile Peer Model includes a pattern for
automatically resending entries on failures. In the PeerSpace.NET, no exception entry
type exists but the developer can add an error callback method to be executed on
transmission failures, while in the Embedded PeerSpace no such concept is implemented.

Akka �3 vert.x/Gridlink �3 WS-BPEL �3 GigaSpaces XAP �3

Embedded PeerSpace � PeerSpace.NET �~ Mobile Peer Model �3

2.6.7 Results and Todos

The previous subsections defined the features that were identified as missing in the
evaluated frameworks as well as in the previous Peer Model implementations. The thesis
and the Java enterprise implementation that shall be delivered with this thesis shall thus
address these missing features.

• The thesis shall define a platform-independent communication format to let in-
stances implemented in different languages communicate with each other. The
implementation is required to implement that format (Section 2.6.2).

• Furthermore, the thesis shall define a platform-independent discovery mechanism
to let instances implemented in different languages find each other. The implemen-
tation is required to implement that protocol (Section 2.6.3).

• The implementation shall include the proposed meta-model and thus shall handle
wirings and peers as special types of entries (Section 2.6.4).

• The implementation shall allow peer and wiring entries to be transmitted to remote
instances like any other entry. These wirings and peers shall be added to the remote
instance and work as intended; wirings shall also be able to remove those entries –
and thus the components – later on (Section 2.6.5).

• Furthermore, the implementation shall introduce exception entries as additional
entry type, especially to handle expired entries and communication failures properly
(Section 2.6.6).

24

CHAPTER 3
Peer Model In-Depth

The concepts of the Peer Model can be understood best by giving a stepwise introduction.
Section 3.1 introduces the concept of entries to encapsulate information. In Section 3.2
the eponymous component, the peer, is introduced as well as the peer’s containers.
Section 3.3 defines wirings to transport entries between containers, and Section 3.4
handles services that implement user-defined application logic. In Section 3.5, links
that are used to specify wirings’ and services’ invocations and implications are covered
in more detail. Section 3.6 briefly introduces the distribution of entries, which will be
described in more detail in Chapter 5. In Section 3.7, the dynamic concepts of the Peer
Model are introduced. Section 3.8 summarizes the generation of traces in a Peer Model
run.

3.1 Entries
An entry encapsulates information by representing – for example – events, requests,
answers, exceptions, or data [39]. It is created, modified and transmitted by other
components that will be described later. As the example in Figure 3.1 shows, elements
of an entry can be divided into three categories:

• the required basic elements

• generally optional co-data,
however, they contain properties that are usually required even for the simplest
examples

• optional app-data

25

3. Peer Model In-Depth

Entry

Type Request
ID A123456

Co-Data
FLOW 123
DEST POC
TTS 0
TTL 10
.

App-Data
.

Figure 3.1: An entry of type Request

For the rest of this thesis, examples will show entries in a simplified way as a circle
containing the type as shown in Figure 3.2.

E

Figure 3.2: A simplified entry of type E

3.1.1 Basic Elements

An entry consists of two required fields of information:

• the Type, used to distinguish different types of entries for a proper selection in
links (Section 3.5) to control the coordination flow in the system. Multiple entries
may share the same entry type.

• the ID, which is a unique identifier for an entry. The ID is set by the Peer Model
implementation when creating an entry and cannot be controlled by the developer.
As the type may be shared between more entries, the ID is primarily used for
logging purposes, i.e., to see which of the entries was affected.
When using communication with remote instances, it would not be possible to
guarantee the uniqueness of the id when using an integer sequence. However, an
entry’s ID can be set to the next value of the instance-specific integer sequence
when receiving an entry from a remote location. Another option would be the use
of a randomly generated 128 bit long Universally Unique Identifier (UUID) [42].

26

3.1. Entries

Although not guaranteed to get really unique IDs this option is considered to be
acceptable as the probability of generating two identical UUIDs is very low.

3.1.2 Coordination Data (co-data)

These kinds of data are used for system-internal mechanisms like the entry selection [38].
Basic (optional) co-data properties (system co-data) are specified as follows:

• FLOW
While the entry’s ID is unique, several entries may share the same flow id to mark
data that belongs together. The entries’ flow ids can then be used for a correlation
of these entries.

• DEST
The destination property represents the address to which the entry shall be trans-
mitted to. It may either be a container of the same peer, a sub-peer, a peer in
the same instance, or a peer of another runtime which requires the transport of
the entry over the network. An entry dispatcher or I/O peer is responsible for the
transmission of the entry to the correct destination.

• TTS
The time-to-start property represents the time until which the entry must not
be read or taken from a container. Until this point in time is reached, the entry
remains invisible to the container. It is accessible only after the TTS is expired. If
no TTS is set, the entry is immediately valid once created and can be taken.

• TTL
The time-to-live property represents the lifetime of an entry, i.e., for which time it
stays valid. If this time is exceeded and it was not yet taken, the entry becomes
invalid and is removed from the container. The handling of expired entries is an
implementation issue and can either result in a timeout exception [38, 39] or simply
the removal of the entry as in the embedded implementation [37]. If no TTL is set,
the entry may stay valid forever if it is never taken.

The user may specify additional coordination data (user co-data) that are queryable in
guard links (described in Section 3.3 and 3.5).

3.1.3 Application Data (app-data)

These kinds of data are used for the designated functionalities of the application. There-
fore, it remains entirely user-specified what is transported in this section. The existence
of app-data in an entry is transparent to the Peer Model coordination; consequently, they
are not queryable in guard links (described in Section 3.3 and 3.5).

27

3. Peer Model In-Depth

3.2 Peers and Containers
The peer is the eponymous component of the Peer Model. It has a name by which it
is addressable, called the Peer Address. A peer may itself include sub-peers as child
components addressable by their name in conjunction with the parent’s peer address.
The behavior of a peer is specified by its nested components, namely the sub-peers, the
wirings and their associated services.

Each peer consists of one or more containers that serve as temporary storage for entries.
A container has a name (Container Address) under which – in conjunction with the peer
address – it is addressable. As specified in [38], a (default) peer contains two containers:

• a peer-in-container (PIC), intended mainly for entries that are input parameters of
the internal components.

• a peer-out-container (POC), intended mainly to store entries that are the outcome
of the peer’s internal components.

Figure 3.3 shows a default peer having the described containers and integrating one
sub-peer.

P

P
I
C

P
O
C

SP

Figure 3.3: A peer having two containers PIC and POC and a sub-peer SP

The basic model was extended in [20] by introducing additional containers for a meta-
model that allows to dynamically add and remove peers’ sub-components during the
instance’s runtime. A detailed view on these concepts needs to be postponed to Section 3.7
to allow the introduction of the missing components first.

3.3 Wirings
A wiring is an internal component of a peer intended to transport entries between
containers of its peer and direct sub-peers, belonging to exactly one peer and having a
name. It extends the concept of Petri net transitions [37].

Guard links (input links) specify which entries are required for the execution of a wiring
(pre-conditions). A wiring is only activated if the conditions of all guard links are fulfilled.

28

3.4. Services

The selected entries are (depending on the guard link’s type) copied or moved to the
entry collection, which is the wiring’s internal container. The internal logic executes
the wiring’s nested components, the services, described further in Section 3.4. After
their execution, entries of the entry collection are eventually moved back to the peer’s
containers or another specified location by use of Action Links (output links). Not all
actions need to succeed, action links that cannot be successfully executed are ignored.
Entries that would remain in the entry collection after completion of the wiring are
discarded [38].

Figure 3.4 shows a wiring with its guard and action links, which will be covered in more
detail in Section 3.5.

P

P
I
C

P
O
CW

G A

Figure 3.4: A peer P having a wiring W with one guard G and one action A

3.4 Services

A wiring incorporates zero or more services that are sequentially executed in order of
their specification. Services are the only place for business logic provided by programmers
while wirings model the coordination logic [39]. Services are called by a wiring to execute
user-defined code.

Comparable to wiring guard links, a service guard link defines the entries that are required
by the service. The wiring tests whether these entries are contained in the entry collection
and moves these entries to the service before its execution. The service can be defined as
either required or optional. It is only executed if all service guard links’ conditions are
fulfilled; in cases of a required execution with at least one service guard’s condition not
being fulfilled, an exception is thrown. Inside the service code, the user can process these
“parameter” entries and may create new entries. Entries may eventually be returned to
the wiring’s entry collection after the service’s execution by use of a service action link.
The described link specifications are introduced in more depth in Section 3.5.

Figure 3.5 shows a wiring that incorporates one service, showing the service’s guard and
action links. Service Guard and Service Action Links will be covered in more detail in
Section 3.5.

29

3. Peer Model In-Depth

P

P
I
C

P
O
CW

S

SG SA

Figure 3.5: A peer P with a wiring W that incorporates a service S with one service
guard SG and one service action SA

3.5 Links

We introduced Wiring Guards and Wiring Actions in Section 3.3; and Service Guards
and Service Actions in Section 3.4, respectively. All these components are types of links
that are covered in depth in this section.

AWiring Guard connects one peer container with the wiring’s entry collection determining
the conditions in which the wiring can be executed and moving the according entries
if all guards are fulfilled. A Service Guard works likewise between entry collection and
service; entries can then be used in the service in the called user-defined code. After the
service’s execution, a Service Action moves entries back to the wiring’s entry collection.
Once all services are executed, Wiring Actions define which entries are moved to the
according peer containers.

A selection of entries is specified on the link in a template-like form. It contains

• an entry type (mandatory)
Entry types were already covered in Section 3.1.1.

• a link operation (mandatory)
Link operations will be further covered in Section 3.5.1.

• a count specification (optional)
The count specification determines the number of entries that are required. It is
covered in Section 3.5.2.

• a query (optional)
This concept further restricts the entries that fulfill the requirements as it allows
optional queries on entries’ coordination properties. It is covered in Section 3.5.3.

• a selection whether entries should be handled in a flow-dependent or in a flow-
independent (default) way, covered in Section 3.5.4.

30

3.5. Links

3.5.1 Link Operation Type

The link operation specifies in which mode entries are retrieved from the source container.
They are conceptually based on operations in space-based middleware like Linda [15]. In
Linda, operations are basically “in” for a blocking consuming read, “rd” for a blocking
non-consuming read, and “out” for a non-blocking write operation on the shared space.
The eXtensible Virtual Shared Memory (XVSM) [41] extended the tuple space approach
of Linda by introducing containers as a store for entries. Operations are “take” for a
blocking consuming read operation, “read” for a blocking non-consuming read operation,
and “write” for a non-blocking write operation. The nomenclature is taken over for
link operations in the Peer Model, which however provides extensions to the described
operations. According to [38] at least one of the guards needs to specify a consuming get
operation (take).

To illustrate the different link operation types, consider the examples shown in the
according figures. For all examples in this paragraph, Figure 3.6 shows the states of two
containers before the firing of the guard. The left container is termed source container,
the right container destination container, respectively. The enumerated link operation
types refer to the operation made on the source container; at the destination container, a
write operation is performed in all cases except for TEST and DELETE guards.

SOURCE

E

DESTINATION

Figure 3.6: Contents of the containers before the guard execution

TAKE The effects of the take operation on the container’s states in Figure 3.6 are
shown in Figure 3.7. It takes (i.e., removes) the entry from the source container and
transmits it to the destination container.

SOURCE

E

DESTINATION

TAKE

Figure 3.7: Contents of containers after the take guard execution

READ The effects of the read operation on the container’s states in Figure 3.6 are
shown in Figure 3.8. It leaves the entry in the source container, copies it and transmits
the copy to the destination container.

31

3. Peer Model In-Depth

SOURCE

E E

DESTINATION

READ

Figure 3.8: Contents of containers after the read guard execution

DELETE The effects of the delete operation on the container’s states in Figure 3.6 are
shown in Figure 3.9. It is a specialization of the take operation. The entry is removed
from the source container, however not transmitted to the destination container.

SOURCE DESTINATION

DELETE

Figure 3.9: Contents of containers after the delete guard execution

TEST The effects of the test operation on the container’s states in Figure 3.6 are
shown in Figure 3.10. It is a specialization of the read operation. As the figure shows, it
may seem that this operation is not meaningful at all as it shows no consequences on the
source and destination containers; however, a wiring having a test guard (especially next
to others) will fire only if the according entries are available at the source container.

SOURCE

E

DESTINATION

TEST

Figure 3.10: Contents of containers after the test guard execution

NONE The none operation is a specialization of the test operation and works differently
than the operations described so far. The guard is only satisfied if no according entry
fulfills the selection in the container.

CREATE The create operation works contrary to the delete operation. It does not
take any entries from the source container, but generates new entries to be moved to the
destination container. Accordingly, this operation cannot be unsatisfied in any link.

32

3.5. Links

3.5.2 Count Specification

The count selection specifies the number of required entries of this type to be fetched. It
can be specified to either return a defined number of entries or any number of entries in
an interval between a given minimum and a maximum count. In this interval, as many
entries as possible are taken. Simplified notations are < n, ≤ n, = n, ≥ n and > n, all
having the common meaning. Furthermore, ALL is a defined simplification for ≥ 0 and is
therefore always fulfilled. Evidently, a NONE operation returns exactly zero entries in
case of success.

If no count is specified, per default exactly one available entry that fulfills the query is
fetched. Examples are shown in Figures 3.11, 3.12 and 3.13.

3.5.3 Query Selection

Entries can also be selected by specifying a query using properties defined in user co-data.
Queries can also be combined by using AND, OR, XOR or NOT operators. Data in app-data
are not queryable.

Example. Assuming two entries

E(codata : value = 0), E(codata : value = 1),

a wiring having the link

TAKE E(ALL, codata : value > 0)

would take only the latter one of the entries.

3.5.4 Flow Dependent Links

As defined in system co-data, the FLOW property can be set to an ID. If the link is
flow-dependent, only entries sharing the same flow ID or entries that have none set are
retrieved.

Example. Assuming four entries

E(flow = 1), E(flow = 1), E(flow = null), E(flow = 2),

a wiring having the flow-dependent link

TAKE E(ALL, flow)

would (depending on the container implementation) only take either the first three
or the last two entries.

33

3. Peer Model In-Depth

SOURCE

before operation operation

DESTINATION

after operation

NONE

SOURCE DESTINATION

TAKE ALL

SOURCE

does not fireTAKE ≥1

SOURCE

does not fireTAKE [2;3]

SOURCE DESTINATION

TAKE ≤2

Figure 3.11: Some examples with no entries in the source container

34

3.5. Links

SOURCE

before operation operation

does not fire

after operation

NONEE

SOURCE DESTINATION

TAKE ALLE E

SOURCE DESTINATION

TAKE ≥1E E

SOURCE

does not fireTAKE [2;3]E

SOURCE DESTINATION

TAKE ≤2E E

Figure 3.12: Some examples with one entry in the source container

35

3. Peer Model In-Depth

SOURCE

before operation operation

does not fire

after operation

NONEE E E E

SOURCE DESTINATION

TAKE ALLE E E E E E E E

SOURCE DESTINATION

TAKE ≥1E E E E E E E E

SOURCE DESTINATION

TAKE [2;3]E E E E E E E

SOURCE DESTINATION

TAKE ≤2E E E E E E

Figure 3.13: Some examples with four entries in the source container

36

3.6. Distribution

Note, that the FLOW property is evaluated over all links. The first evaluated link
specifies which FLOW is tested among all following links.

Example. Assuming two entries

E(flow = 1), F (flow = 2),

a wiring having the two flow-dependent links

TAKE E(≥ 1 , flow), TAKE F (≥ 1 , flow)

would not fire.

3.6 Distribution
Links handle the delivery of entries from one source to one destination container. The
source container can either be a container of the own peer or of its direct sub-peers.
Containers of other peers including sub-peers of an own sub-peer are not accessible for
selection as source container. The destination container of a link may be any container
of the own peer or its direct sub-peers.

It is thus required to allow a transmission of entries over the barriers of one peer. As
such, the DEST property of the entry’s co-data is used that may contain a local container
address, a peer address of another peer or even a remote address, requiring naming
specifications that will be introduced in Section 5.2. Transmission of these entries to
local or remote destinations is achieved by the concept of an I/O peer. The I/O peer is a
black box component that sends entries to and receives entries from other destinations.
The implementation of this I/O peer will naturally be different for local and remote
destinations. While at this point the introduction of the concept is sufficient, a decision
for the type and format of this communication will be made in Section 5.7.

3.7 Dynamics
In a dynamic Peer Model implementation, it shall be allowed to add and remove com-
ponents while the Peer Model instance is running. Craß et al. [20] thus introduced a
meta-model in which wirings and (sub-)peers are represented as special entry types.
The basic model was extended by defining additional containers, of which the Wiring
Specification Container (WSC) and the Peer Specification Container (PSC) are of interest
in the context of this thesis. These two containers should serve as the store for these
entry types, including particular behavior.

The Peer Model Instance can be seen as a Runtime Peer (RTP) that contains all peers on
this runtime as its sub-peers. Each peer in term can contain sub-peers. These sub-peers
are represented by the entries in the PSC and thus can be written into and taken from

37

3. Peer Model In-Depth

this container like any other entry. Entries representing sub-peers however naturally
need to be of a defined form as well as modifications of the PSC’s contents need to be
adequately represented in the instance.

Wirings of peers are represented by entries in the WSC and can be accessed like any
other entry, respectively. Like sub-peer entries, those entries representing wirings need to
have a defined form and modifications of contents in the WSC need to be adequately
represented likewise.

Figure 3.14: Extended meta-model example [20]

Figure 3.14 shows the mutual appearance of entries in the peer’s containers and according
sub-components in the peer. As such, the figure shows the entry P2 in the PSC and
accordingly the sub-peer P2 ; respectively the wiring W1 corresponds to entry W1 in
the WSC. Like any other entry, defined operations like TAKE can also be used on PSC
and WSC. In result, the entry is transmitted as usual together with the removal of the
sub-peer or wiring in the peer itself. The handling of wirings and peers as a (special)
entry indeed allow the transmission of peers and wirings to other instances. In result,
this technique may allow a more straightforward implementation of a scalable solution
for use cases such as load balancing.

3.8 Tracing

In a highly concurrent system like the Peer Model, debugging and monitoring is a
complicated task. The identification of a bug, like a race condition, is difficult. Csuk’s
diploma thesis [21] introduced a visual tool that allows a post-mortem analysis of a
recorded Peer Model run to support developers in debugging processes. This tool enables
developers to gain insight into the working of a Peer Model [21]. To that end, Peer
Model implementations are urged to generate a log of events in a defined common tracing
format based on JSON which is loaded into the visual monitoring tool afterward to allow

38

3.8. Tracing

a stepwise analysis of the run. The Java implementation of the Peer Model is designed
to be able to generate such event logs.

A common logging format was specified in [21], consisting of two files:

• a VIL (Visualisation Intermediate Language) file that contains the static structure
of the Peer Model. All peers, wirings, and services are listed in this file.

• a TIL (Trace Intermediate Language) file that contains the chain of logged events
being occured during a Peer Model run (trace). The flow of entries is shown in the
visualizer by linking the events with the VIL structure.

Naturally, a one-to-many relation between a VIL file and TIL files can be presumed, as a
given Peer Model structure can be reused in many different recorded event logs. The
toolchain for logging in Figure 3.15 shows the steps for generating the files that are then
fed into the monitoring tool to allow a visual representation of a run.

Figure 3.15: Workflow for post-mortem visual monitoring of a run intended by [21]

3.8.1 Visualisation Intermediate Language (VIL)

The VIL is a snapshot of the current structure of the local Peer Model. Figure 3.15 shows
that it was initially intended to generate the VIL file from the PM-DSL by the Peer Model
compiler [21]. However, while this is practicable in static environments, in a dynamic

39

3. Peer Model In-Depth

Peer Model implementation, the current structure is not given by the PM-DSL per se.
Peers, wirings, and services may be added and removed while the Peer Model is running.
Following these considerations, it may be necessary to generate a VIL file not only from
the PM-DSL but also to generate this file from a running Peer Model implementation,
containing the current structure. Later changes of the structure, for example adding a
peer during logging, would remove the relation between TIL and VIL; furthermore, it
is not supported by the visual monitoring tool and would require additional work on
that tool. The other (current) option (i.e., a modification of the structure is forbidden
during the logging) limits the functionality of the dynamic Peer Model and is thus not
the optimal solution. However, the generation of the VIL file by the Java implementation
remains open as possible future work. For the time being, the term “static representation”
used for the VIL file in [21] has to be relaxed such that the structure must be static only
while recording a trace.

3.8.2 Trace Intermediate Language (TIL)

The trace consists of a collection of consecutive events that occurred during monitoring
of a run or a part of a run. As the TIL file is intended to be generated by a Peer Model
implementation, the format was specified in collaboration of the authors of the monitoring
tool, the visualizer tool and the Peer Model implementations in active development at
that time (C [29], Java). The TIL file contains two parts:

• an initial state
It is not necessary to start the logging procedure at the same time when starting
the Peer Model instances. At the start of the logging, the Peer Model may already
contain some entries. To support such an initially non-empty Peer Model in the
visual monitoring tool, the initial state part defines the entries that are currently
located in every container of a peer when logging starts.

• the log event list
The list contains an ordered sequence of events. Each event contains a timestamp
when it has happened and information about the entry or entries it is related
to. Csuk intended to include both entry’s co-data and app-data; however, app-
data of some entries may require much space and may also be binary, thus not
human-readable. The inclusion of app-data in the log is therefore avoided in
this implementation. Eight different event types are briefly described in the next
subsection. For a more detailed description refer to [21].

Event types

Wiring events The four event types regarding wirings and service invocation are:

• the guard link event, indicating the firing of one or more (wiring) guards on a
container, leading to an execution of a wiring

40

3.8. Tracing

• the service input event, indicating the firing of one or more (service) guards on the
entry collection, leading to an execution of a service

• the service output event, corresponding to the return after the execution of a service
including entries that are created in the service and put into the wiring’s entry
collection

• the action link event, corresponding to the activation of an action link after execution
of a wiring

Transmission events The two types of events regarding transmission are:

• the destination send event, indicating the sending of an entry to another local or
remote peer by use of the destination property functionality

• the destination receive event, indicating the reception of an entry from another
local or remote peer

Time-lapse events The two types of events regarding timing properties are:

• the TTS event, indicating the expiration of the time specified by the TTS property
of an entry in a container

• the TTL event, indicating the expiration of the time specified by the TTL property
of an entry in a container

41

CHAPTER 4
Requirements

Requirements are separated into functional (Section 4.1) and non-functional (Section 4.2)
requirements. While functional requirements describe what the system shall be able to,
the non-functional requirements describe how the system shall work regarding quality
aspects.

4.1 Functional requirements
The functional requirements describe the particular functions the implementation will be
required to include. They mainly stem from the aspects discussed in Section 1.2.

Limited feature completeness (FR1). The implementation shall support the con-
cepts of the Peer Model that were introduced in [38, 37, 39], including the ability to have
sub-peers, the specified wiring and service logic, and co-data such as flows, the destination
and timing properties (TTS and TTL). As the Peer Model specification has evolved
during the writing of this thesis and the development of the Java implementation, some
newer features (e.g., transactions, variables, etc.; cf. [35, 36, 40]) will not be supported
immediately; their implementation remains open as future work.

Support for the meta-model (FR2). The meta-model was introduced in [20], adopt-
ing wirings and peers as particular entry types and further introducing special containers
to handle these types of entries. In preparation for the Secure Peer Space that will extend
this enterprise implementation with security features, the implementation will be the
first one that supports this meta-model. As such, incoming entries of the special types
WIRING and PEER need to be appropriately handled and reflected in the Peer Model
runtime. Entries of those types also can be short-living by having a TTL set, and they
can be taken just like any other entry. The removal of those entries thus needs to be
adequately reflected in the Peer Model runtime, respectively.

43

4. Requirements

Language-independent remoting (FR3). In support of scalable enterprise solu-
tions, a Peer Model instance is required to be able to communicate with other instances.
It is defined that those instances are not necessarily required to be written in the same pro-
gramming language. Thus the implementation needs to support a language-independent
mechanism for discovery of instances, as well as the following communication between
those instances. Like wirings and peers may come and go during the runtime of an
individual instance, remote instances will as well come online and go offline; furthermore,
the unreliable network channel between the instances needs to be taken into account.

Execution of user-defined service code (FR4). The implementation of application
logic is strictly decoupled from the coordination logic, which is implemented by the
components of the Peer Model that were described in Chapter 3 (separation of concerns).
The developer is responsible for the appropriate definition of services and their use-
case specific implementation (i.e., business logic). Thus, the interfaces for the use-case
developer to be able to develop services need to be defined.

4.2 Non-functional requirements
Non-functional requirements describe the quality criteria of the system. They extend
the functional requirements to describe how the system shall operate and hence describe
criteria for the evaluation (Section 7.3).

Interoperability (NFR1). Directly resulting from the functional requirement of
language-independent remoting (cf. FR3) is the requirement for interoperability. The
implementation thus needs to use mechanisms for discovery and remote communication
that do not improperly restrict the number of supported languages and platforms.

Extensibility / Maintainability (NFR2). The concepts that were later introduced
into the Peer Model specification and that were defined to be not yet included into the
Java implementation require for extensibility (cf. FR1). Thus, the implementation shall
easily be able to be extended such that future work can include those and additional
features. Furthermore, the source code of the Java implementation needs to be easy to
understand to simplify the development of the future work extensions.

Modularity / Exchangeability (NFR3). To keep components exchangeable, Java
implementation classes shall be adequately separated into packages and particular modules
where appropriate (cf. NFR2). Interfaces between the modules shall be defined to
keep cohesion high and coupling low. Furthermore, the platform-independent remoting
mechanism, including its protocols (cf. FR3), shall be exchangeable, such that it can be
adjusted for remote instance developments in future work.

Scalability (NFR4). As the enterprise implementation specifies the platform-inde-
pendent remoting mechanisms between Peer Model instances (cf. FR3), it shall allow

44

4.2. Non-functional requirements

the development of use cases requiring scalability, i.e., the collaboration of two or more
instances (cf. NFR1). Nevertheless, the solution also needs to scale regarding resource
consumption within one instance.

Simple API / Usability (NFR5). To allow a smooth development of use cases (cf.
FR4), especially the API for services and entries needs to be kept simple. Furthermore,
the developers of future work extensions (cf. FR1) shall be able to understand the whole
API, not limited to the interfaces between the modules (cf. NFR2, NFR3).

Performance (NFR6). While the primary focus of the implementation will be on en-
abling remoting (cf. FR3), reasonable performance of the implementation will nevertheless
be expected.

45

CHAPTER 5
Communication and Serialization

Distributed systems, like the Peer Model, necessarily require the ability to communicate
between two instances/runtimes running either on the same host, in the same network
or in another network. Furthermore, it should not be relevant whether the remote Peer
Model instance is developed in the same programming language or a different one.

Section 5.1 gives an introduction to Peer Model Remoting by evaluating possible op-
tions for addressing and discovery. The used addressing mechanisms are described in
Section 5.2. Next, in Section 5.3, the used discovery mechanism is described. Both
decisions are based on the evaluation results. Section 5.4 proceeds with introducing
possible serialization formats, while Section 5.5 handles communication formats. Based
on these two enumerations, Section 5.7 decides on the serialization and communication
formats to be used by evaluating them in respect of the requirements on the formats.
Apache Thrift, which is the format to be used, is described in depth in Section 5.8.

5.1 Remoting Overview

The primal step to allow any communication between Peer Model instances is to achieve
knowledge of other instances. Addressing can be implemented in two forms: Peer Model
instances may either be addressed by using a name or may be addressed by the IP address
and port on which the Peer Model is running. Earlier diploma theses have not been
consistent at that point: Csuk [21] used a naming scheme for addressing instances, which
is basically taken over in this thesis. Rauch [52] and Schermann [53] – on the other hand
– used a URI to address remote Peer Model instances. Both options have their benefits
and disadvantages.

In the next subsections, a sample network is shown, where the reachable hosts are colored
according to the legend shown in Figure 5.1.

47

5. Communication and Serialization

Figure 5.1: Network Legend

5.1.1 URI Addressing Approach

Figure 5.2 shows that URI addressing allows the origin instance in the rightmost network
to reach all hosts. The main advantage is that URI addressing enables enterprise (inter-
network) communication; thus Peer Model instances in the WAN could be reached, too.
On the contrary, knowledge of the IP address and the port on which each Peer Model
instance is running and reachable is required.

Figure 5.2: Reachable hosts by using URI addressing

48

5.1. Remoting Overview

5.1.2 Naming Approach

By using the naming approach, the Peer Model instance is addressed by a (in the best case
unique) name. Basically, there are four options to acquire knowledge of other instances:

• Local list of known instances

• Centralized server

• Broadcast discovery

• Multicast discovery

Local list of known instances

In this option, the instance holds a list of instances to communicate with. It thus shows
no benefits to URI addressing, as the instances to communicate with are required to
be known in advance. As such it provides a mapping to URI only, making the solution
obsolete. Scalability would be limited.

Central server

Using this option, each instance that comes online connects to a central server on start-
up. A login on this server would be sufficient for proper functionality; however, the
dependency of all instances on one system limits scalability. The centralized server may
not be able to answer a high number of requests once the number of instances in the
system becomes high; hence it could become a bottleneck in the system. Geographically
scaled systems may be slowed down when requiring a long distance request. Furthermore,
if a non-replicated server fails the whole system will not be working properly anymore;
thus making the server a single point of failure.

Broadcast discovery

As Figure 5.3 shows, only hosts in the local network can be reached by using broadcast
discovery. Broadcast messages are delivered to all hosts in the network, including the
ones where no instance is running. However, by using this technique, all instances in the
reachable network could be found.

Multicast discovery

Multicast discovery is an extension of the broadcast discovery approach. Using this
technique, interested hosts can join a multicast group having a particular IP address in
(former) class D networks. In this case, all hosts running a Peer Model instance register
themselves to a defined multicast address, where discovery messages are transmitted.
This approach is for example used by Hazelcast for the discovery of nodes [4] and thus
also within vert.x/Gridlink [17]. As Figure 5.4 shows, basically only hosts in the local

49

5. Communication and Serialization

Figure 5.3: Reachable Hosts by using Naming and Broadcast Discovery

network can be reached by using multicast discovery. While broadcast messages will not
be transmitted over a router into another network, local routers may be configured to
transmit multicast messages into other networks. This configuration is out of scope of
this thesis; thus it is assumed that all instances are part of the same network segment.
As with broadcast discovery, all instances in the reachable network can be found by using
this technique. As only the machines hosting an instance have joined the multicast group,
hosts in the reachable network where no instance is running do not receive the message.

Figure 5.4: Reachable Hosts by using Naming and Multicast Discovery

The main advantage of the naming approach is that prior knowledge of the location
(i.e., the URI) where an instance is running is not necessary, the instance’s name is
sufficient. On the contrary, a discovery mechanism for Peer Model instances is required,
but achievable only in local networks.

5.1.3 Results

In result, naming is the best solution for a local network. However, for enterprise solutions
the communication may exceed the local network barriers which necessarily requires

50

5.2. Peer Model Addressing

URI addressing (cf. Akka reference naming of actors). In consequence, the best suitable
solution would combine both options for addressing a Peer Model instance.

This work will follow the multicast approach only. An extension to use URI addressing
for remote networks remains as future work.

5.2 Peer Model Addressing
This section first introduces addressing of a peer (Section 5.2.1), and next extends the
naming to peer’s sub-components (Section 5.2.2).

5.2.1 Addressing of a Peer

In all previous Peer Model implementations, addresses are built by combining the in-
stance address with the peer name. For the Mobile Peer Model [54, 58], for example,
the address is build as <protocol>://<host-name>/<peer-name>. This address-
ing schema needs to be mapped manually to a valid Jabber ID (JID) of the form
name@domain/resource by use of a registration service. This JID is used for ad-
dressing in XMPP (eXtensible Message and Presence Protocol), which is the remoting
mechanism in the Mobile Peer Model implementation.

Each Peer Model instance has a name, used as destination address for the transmission of
entries to the intended target instance. Csuk introduced a naming schema for referencing
peers and their containers in his thesis [21]. The approach used in this thesis stays very
similar to the well-known URI addressing scheme; thus it differs slightly regarding the
delimiters between the components in contrast to the invented addressing schema in
Csuk’s work.

At first, it is required to address the instance’s name. The syntax for a (remote)
PeerReference is as shown in Listing 5.1. Providing a significant name for an instance is
among the duties of the developer who is also responsible for providing unique names
among running instances.

<PeerReference >::=<InstanceName>/<PeerName>

Listing 5.1: Peer Reference

A special case of a peer is the runtime peer, referenced to (e.g., in logging messages)
as “∼”. It is automatically available when an instance is started and is the parent peer
of all “first-level” peers.

5.2.2 Addressing of Sub-Components

References to peers’ sub-components are achieved by using their name in conjunction
with the peer’s name. Sub-components in this sense are limited to those that require to
be addressable, which are the sub-peers and the containers.

51

5. Communication and Serialization

Sub-Peers. The conjunction of a (parent) peer reference with a sub peer name con-
structs another peer reference. References to sub-peers are built as shown in Listing 5.2.
It is evident that the levels of sub-peers are therefore not restricted to one, i.e., a sub-peer,
in turn, can contain its own sub-peers.

<PeerReference >::=<PeerReference>/<SubPeerName>

Listing 5.2: Sub-Peer Reference

Containers. A reference to a container is shown in Listing 5.3.

<ContainerReference >::=<PeerReference >:<ContainerName>

Listing 5.3: Container Reference

5.3 Peer Model Instance Discovery in Local Networks

The discovery of other Peer Model instances is achieved by using multicasting. Neverthe-
less, each instance holds a list of all other instances it currently knows.

5.3.1 Internet Group Management Protocol (IGMP)

When starting a new Peer Model instance, the host will join a multicast group. In
Figure 5.5 a part of a Wireshark sniffing analysis is printed in which an instance is started
and terminated shortly after. It shows that there are IGMP messages transmitted in the
network to inform others about hosts joining and leaving the group.

Figure 5.5: IGMPv3 Multicast messages

For IPv4 systems (hosts and routers), the Internet Group Management Protocol (IGMP)
is used to report IP multicast group membership, the most recent version IGMPv3 being
defined in RFC 3376 [14]. RFC 1112, which specified the first version of IGMP, assigned
IP addresses with “1110” as their high-order four bits (formerly called class D IP addresses)
to host groups [23], i.e., IP addresses in the range of 224.0.0.0 to 239.255.255.255 are used.
IPv6’s equivalent is Multicast Listener Discovery (MLD) embedded in ICMPv6 [22]; its
second version is specified in RFC 3810 [59], which implements comparable functionality
to IGMPv3.

It is a straightforward question why these messages cannot directly be used for the
discovery of other Peer Model instances, which would make a (more complicated) discovery
protocol unnecessary. However, these messages are intended for routers only; they may

52

5.3. Peer Model Instance Discovery in Local Networks

not be transmitted to the local host. Even if they are received at the local host, they
can neither be received in Java code nor can Java be informed of the reception of such
messages. This results from the position in the IP stack as shown in Figure 5.6, where
IGMP is located on the network layer, while the Peer Model Discovery Protocol (PMDP;
see next subsection) is located on the application layer.

Application

Transport

Network

Link

PMDP

TCP/UDP

IP/IGMP

Ethernet

Figure 5.6: IP Stack

5.3.2 Peer Model Discovery Protocol (PMDP)

This subsection describes the basics of the discovery protocol. The Peer Model Discovery
Protocol (PMDP) allows the discovery of instances in all languages that will eventually
implement this protocol. It follows the multicast approach that was introduced in
Section 5.1.2.

Instance Join

Peer Model instances that come online join the multicast group via IGMP Join on an
IPv4 multicast address. Over this channel, the joining instance sends a message to all
group members containing the name of the instance, its IP address and the TCP port
on which it is reachable. Conceptually, there is no difference between this join message
and a heartbeat message that will be required at a later point in the protocol. Therefore
we will term those PMHeartbeat messages. The result of this step is that all instances
that were able to receive this message know the new instance. This procedure allows the
detection of all instances that come online after the current instance. To simplify the
further description, an instance that is already up and running is termed A, while we
call the new joining instance B. For simplification, we assume that A is the only instance
that is up and B is the second instance joining. Figure 5.7 shows the detection of a new
instance at other instances.

Instance List Initialization

There are three options to consider regarding the reply to B’s initial PMHeartbeat message
to allow detection of instances that have already been online before. This message, in
turn, contains the instance’s name, IP address, and port.

53

5. Communication and Serialization

A

B

PMHeartbeat

A knows B now

Figure 5.7: Detection of a joining instance

1. A replies with a PMHeartbeat message to the multicast group. B itself does not
yet know A and will thus reply with an own PMHeartbeat message to the multicast
channel. This message, however, is not necessary as B is already known to the
others since they have already received and replied to B. This procedure is shown
in Figure 5.8.

A B

PMHeartbeat

A knows B now

PMHeartbeat

B knows A now

PMHeartbeat

Figure 5.8: Option 1 for the detection of an existing instance

2. A replies with a PMWelcome message to the multicast group. This message is
received at every multicast’s member and is basically the same as the PMHeartbeat
message. The difference to option 1 is that B is not required to reply with another
message. Due to receiving the PMWelcome message, it is obvious for B that it is
already known there. This procedure is shown in Figure 5.9.
Problems could arise if two instances C and D join approximately at the same time.
In this case, a PMWelcome message from A, actually replying to C, is received
by D on the multicast address. In that case, D would wrongfully expect to be
already known at instance A. However, every new joining instance always sends
a PMHeartbeat message on its join, therefore eventually D will be known to the
other instances.

3. A replies with a PMHeartbeat message directly per unicast to B. In this case, a
PMWelcome message type is not necessary. B receives the message on its individual

54

5.3. Peer Model Instance Discovery in Local Networks

A B

PMHeartbeat

A knows B now

PMWelcome

B knows A now

Figure 5.9: Option 2 for the detection of an existing instance

address and must hence already be known to A. Therefore, it is evident which
instance was meant; thus it is also not necessary to reply with any further message.
This procedure is shown in Figure 5.10.

A B

PMHeartbeat

A knows B now

PMHeartbeat
(unicast to B’s own IP/port)

B knows A now

Figure 5.10: Option 3 for the detection of an existing instance

Option 3 requires a second channel (for unicast messaging) for discovery, so option 2 was
chosen for the implementation.

Heartbeat

PMHeartbeat messages are sent to the multicast group periodically as long as the instance
stays alive. The name of the instance is contained in the PMHeartbeat message together
with the port where this instance is running, having the host IP address as the source
address of the UDP packet.

Instance leave

Instances may leave at a later time, requiring their removal from the list of instances.
It is unnecessary that they are saved once they are no longer reachable due to two
considerations: First, all instances require a certain albeit small amount of storage;
however, the effort required to find an instance in the cache would increase unnecessarily.
Second, those instances would remain as orphans in the cache; hence the Peer Model
instance would still believe that they are reachable and would try to deliver entries to
the assigned destination. Therefore, instances are only temporarily saved in a cache.

55

5. Communication and Serialization

Planned leave An instance intending to leave (i.e., planned shutdown) sends a PM-
Leave message on the multicast channel, informing that it is about to retire such that
the other instances can react appropriately. In result, they remove the instance from
their cache. The described procedure is accomplished before the instance’s host leaves
the multicast group by use of an IGMP Leave command. This procedure is shown in
Figure 5.11.

A B

PMLeave

A removes B B decides to leave

Figure 5.11: Planned leave of an instance

Unplanned leave If the instance fails to unsubscribe either because the instance left
silently (e.g., is killed) or the host is no longer reachable, neither the PMLeave nor the
IGMP Leave messages are sent. Such an orphan instance needs to be removed from
the cache after some time. This method requires, however, to periodically inform other
instances as long as the instance is still alive. Therefore, each instance periodically sends
the PMHeartbeat message on the multicast channel, allowing all attached instances to
renew the entry in their cache. After a given time interval in which PMHeartbeat messages
are no longer received, each instance removes the information of the left instance in its
cache. The procedure is shown in Figure 5.12.

A B

PMHeartbeat

B leaves
unplanned

heartbeat period

PMHeartbeat
expected

A removes B

Figure 5.12: Unplanned leave of an instance

Instances could be only temporarily unreachable. In that case, the following three options
are possible when the instance reappears:

56

5.3. Peer Model Instance Discovery in Local Networks

1. If the remote instance reappears while the threshold time has not yet expired, it is
still contained in the local instance’s cache. The procedure follows as usual with a
PMHeartbeat message.

2. If the remote instance reappears while the threshold time has not yet expired, but
its IP address and/or port have changed, it is still contained in the local instance’s
cache. This procedure will be described in the next paragraph (Instance Information
Change).

3. If the remote instance reappears after the threshold time has expired, it is no longer
contained in the local instance’s cache. Therefore, the remote instance is considered
to be a new joining instance and added to the cache as usual.

Instance Information Change

If the IP address or the port of a named instance changes, the following PMHeartbeat
message will contain the new information. Thus, all instances will update the information
in their caches. As the new instance sends new information then, consequently no
heartbeat messages containing the old information will occur later on in this case.

The requirement of a unique instance name

Problems occur if the same name is used for multiple instances. As described, an
instance that is already known is temporarily saved in the other instances’ caches as
long as heartbeat messages are received periodically. If a new instance appears online,
while another instance sharing the name is online, both instances periodically send their
PMHeartbeat messages. For all other instances, this seems like one instance constantly
changing its location. Therefore, if an entry has the ambiguous destination set, it will be
transmitted to the instance currently saved in the sender instance’s cache. Note that the
implementation of one of the following addressed solutions remains as future work.

1. One possible solution to the addressed problem is the temporary removal of the
instance on the reception of a heartbeat message containing data that do not
conform to already known instance data. The new data is remembered and changed
at the cache at the next heartbeat that contains the same data. If the old data is
received again between the first and the second heartbeat, it is detected that the
instance name is ambiguous, which would require to take further actions.

2. A similar approach is to request data from the changed source instance once the first
heartbeat message was received. If only one instance replies it can be considered
to be the instance; otherwise, it is detected that the instance name is ambiguous,
which would require to take further actions.

3. Another solution would be that the one instance that receives a message containing
its own name sends a denial message on the multicast channel. Other instances are

57

5. Communication and Serialization

required to take further actions. In consequence, it would be required to extend
the discovery protocol.

Other approaches

The task of discovering other instances is not unique to the Peer Model but required in
almost every kind of distributed system. Indeed, there exist other similar or completely
different approaches to identify other instances in a network.

A similar approach is for example used by Hazelcast for forming a cluster [4]. While the
described procedure uses UDP multicast connections only, a primary difference is that
Hazelcast switches to TCP/IP communication for heartbeat messages after the instances
have discovered each other. As TCP provides point-to-point connections, no multicast
messages are possible. Naturally, heartbeat messages are required to be sent by unicast
to each instance individually using this approach.

5.4 Serialization formats

This section describes the decision for a proper and efficient format to serialize data for
communication between Peer Model instances. It is of high relevance that communication
between Peer model instances is possible regardless of the programming language the
instance is developed in. Required is, therefore, a format that neither restricts the
instances to be in the same programming language nor improperly restricts the supported
programming languages. Peer Model implementations already exist in C [29] and C# [52];
however, it will not be possible to communicate with them using the developed technique
without additional implementation effort in these implementations.

Serialization is the term for the process of encoding an object to a stream, which can then
be sent through a socket or stored in a file; the reverse process is known as deserialization.
In the use case, entries that should be transmitted to another instance need to be
translated from object representation to a serialization format. We enumerate possible
formats for serialization and communication, which are either text-based or a binary
format. For each format in question, samples that are equivalent in respect of data
that are to be persisted are provided. Due to the broad knowledge of the enumerated
text-based formats, they are not required to be introduced in depth. A basic comparison
between text-based and binary-based formats can be found in Table 5.1.

5.4.1 Text-based formats

The advantage of text-based formats is their human readability. They also tend to be
more platform-independent than binary formats. However, the documents’ size is much
larger, and the serialization/deserialization procedure usually takes more time, making
text-based formats less efficient than binary formats. XML and JSON are formats which
are used most and supported best. YAML as a third representative will be described

58

5.4. Serialization formats

Text-based Binary-based
Human-readable yes no
Size bigger smaller
Performance usually slower usually faster
Platform-independent usually depends on format
Examples JSON Java Serialization
considered XML Protocol Buffers

YAML Apache Thrift
Apache Avro

Table 5.1: Comparison of formats

only briefly due to little tool support. Discussions whether XML or JSON is better span
across the Internet, often biased by use case requirements and personal favor.

XML

XML (eXtensible Markup Language) is not just a format to exchange data, but as the
name says a markup language. As such it is more versatile than JSON, whose only purpose
is to exchange data. It additionally provides the ability to specify a domain-specific XML
Schema (XSD) [26] to tell valid and invalid XML files apart. XML, currently in version
1.1, is a W3C specification [55]. The tag set is not predefined by XML itself but specified
by the user or the XSD if available.

Design goals include [55]:

• XML shall be straightforwardly usable over the Internet.
• XML shall support a wide variety of applications.
• It shall be easy to write programs which process XML documents.
• XML documents should be human-legible and reasonably clear.
• XML documents shall be easy to create.

Several methods for processing and writing XML are directly included into the Java
Standard Edition (Java SE). In earlier versions, only the tree-based DOM API (Document
Object Model) and the event-based SAX API (Simple API for XML) were supported.
DOM, where accesses to the XML document happen over an object tree, can write and
read XML files. SAX is suitable for the sequential reading of XML documents only.
Since Java 6, cursor-based StAX (Streaming API for XML) is included that handles the
disadvantages of both above mentioned options. Thus it neither requires to hold the
whole document in the storage like DOM nor is it only able to parse the XML document
sequentially like SAX. Java Architecture for XML Binding (JAXB) 2.0 (JSR 2221) goes

1http://www.jcp.org/en/jsr/detail?id=222

59

http://www.jcp.org/en/jsr/detail?id=222

5. Communication and Serialization

one step further by defining the mapping of Java objects to XML and vice versa. It is
also included in the JDK since Java 6. An example XML representation of a Peer Model
entry is shown in Listing 5.4, the according XML Schema (XSD) is printed in Listing 5.5.
<entry type="E" id ="1" t t s ="1000" t t l ="5000" d e s t i n a t i on="P1 : PIC" f l owId="1">

<coData>
<coDataEntry key="coKey1 " va lue="coVal1 " />
<coDataEntry key="coKey2 " va lue="coVal2 " />
. . .

</coData>
<appData>

<appDataEntry key="appKey1 " value="appVal1 " />
<appDataEntry key="appKey2 " value="appVal2 " />
. . .

</appData>
</entry>

Listing 5.4: Example Entry in XML

<xs : schema attr ibuteFormDefau l t=" unqua l i f i e d " elementFormDefault=" q u a l i f i e d "
xmlns : xs="http ://www.w3 . org /2001/XMLSchema">

<xs : element name="entry " type="entryType"/>
<xs : complexType name="entryType">

<xs : a t t r i b u t e type="xs : s t r i n g " name="type " use=" r equ i r ed "/>
<xs : a t t r i b u t e type="xs : s t r i n g " name=" id " use=" r equ i r ed "/>
<xs : a t t r i b u t e type="xs : shor t " name=" t t s " use=" op t i ona l "/>
<xs : a t t r i b u t e type="xs : shor t " name=" t t l " use=" op t i ona l "/>
<xs : a t t r i b u t e type="xs : s t r i n g " name="de s t i n a t i on " use=" r equ i r ed "/>
<xs : a t t r i b u t e type="xs : s t r i n g " name=" f lowId " use=" op t i ona l "/>
<xs : sequence>

<xs : element type="coDataType " name="coData"/>
<xs : element type="appDataType " name="appData"/>

</xs : sequence>
</xs : complexType>
<xs : complexType name="coDataType">

<xs : sequence>
<xs : element type="coDataEntryType " name="coDataEntry "

maxOccurs="unbounded " minOccurs="0"/>
</xs : sequence>

</xs : complexType>
<xs : complexType name="coDataEntryType">

<xs : simpleContent>
<xs : ex tens i on base="xs : s t r i n g ">

<xs : a t t r i b u t e type="xs : s t r i n g " name="key " use=" r equ i r ed "/>
<xs : a t t r i b u t e type="xs : s t r i n g " name="value " use=" r equ i r ed "/>

</xs : extens ion>
</xs : simpleContent>

</xs : complexType>
<xs : complexType name="appDataType">

<xs : sequence>
<xs : element type="appDataEntryType " name="appDataEntry "

maxOccurs="unbounded " minOccurs="0"/>
</xs : sequence>

</xs : complexType>
<xs : complexType name="appDataEntryType">

<xs : simpleContent>
<xs : ex tens i on base="xs : s t r i n g ">

<xs : a t t r i b u t e type="xs : s t r i n g " name="key " use=" r equ i r ed "/>
<xs : a t t r i b u t e type="xs : s t r i n g " name="value " use=" r equ i r ed "/>

</xs : extens ion>
</xs : simpleContent>

60

5.4. Serialization formats

</xs : complexType>
</xs : schema>

Listing 5.5: According XML Schema

JSON

JSON, short for JavaScript Object Notation, is a human-readable text-based format for
data exchange between applications. Essentially, it is language-independently writable
and parsable; however, it has always been neglected by Java’s official API. Even the
current Java 10 release does not include a JSON API. This currently leads to support in
Java via third-party libraries only (e.g., Jackson parser2). The importance of (first-level)
JSON support is addressed by the motivation statement in JEP 198 that was earlier
scheduled to include JSON support into Java 9 SE3:

JSON has become the lingua franca for web services and it is time for Java
SE to adopt functionality for interacting with and utilizing JSON documents
and data streams.

Nevertheless, Mark Reinhold, chief architect of the Java Platform Group at Oracle
confirmed in December 2014 to the Java mailing group that JSON support in Java 9 was
dropped4:

This JEP would be a useful addition to the platform but, in the grand scheme
of things, it’s not as important as the other features that Oracle is funding, or
considering funding, for JDK 9. [...] We may reconsider this JEP for JDK
10 or a later release [...]

A Java Specification Request (JSR 353: Java API for JSON Processing, known as
JSON-P5) with a reference implementation6 is available. It defines a standard API for
parsing and generating JSON data7. The intended tasks are to

1. produce and consume JSON text in a streaming fashion (i.e., similar to
StAX API for XML)

2. build a Java object model for JSON text using API classes (i.e., similar
to DOM API for XML)

2https://github.com/FasterXML/jackson
3http://openjdk.java.net/jeps/198
4http://mail.openjdk.java.net/pipermail/jdk9-dev/2014-December/001670.html
5http://www.jcp.org/en/jsr/detail?id=353
6https://jsonp.java.net/
7http://www.oracle.com/technetwork/articles/java/json-1973242.html

61

https://github.com/FasterXML/jackson
http://openjdk.java.net/jeps/198
http://mail.openjdk.java.net/pipermail/jdk9-dev/2014-December/001670.html
http://www.jcp.org/en/jsr/detail?id=353
https://jsonp.java.net/
http://www.oracle.com/technetwork/articles/java/json-1973242.html

5. Communication and Serialization

Besides this, there is also a Java Specification Request (JSR 367: Java API for JSON
Binding (JSON-B)8) for a standardized way to convert JSON into Java objects and vice
versa.

JSON is now standardized by the Internet Engineering Task Force (IETF) in RFC
7159 [13] and ECMA-404 [3]. Comparable to XML Schema, there also exists a draft
for JSON schema by the IETF [25], providing the schema as valid JSON. In contrast
to XML, JSON is more compact and often considered to be more readable due to its
simpler syntax. Evaluations showed that JSON is faster than XML concerning parsing.
An example JSON representation of a Peer Model entry is shown in Listing 5.6, the
according JSON Schema is printed in Listing 5.7.
{

" entryType " : "E" ,
" entryId " : " 1 " ,
" t t s " : 1000 ,
" t t l " : 5000 ,
" d e s t i n a t i on " : "P1 : PIC " ,
" f l owId " : " 1 " ,
" coData " : [

{" key " : " coKey1 " , " va lue " : " coVal1 "} ,
{" key " : " coKey2 " , " va lue " : " coVal2 "} ,
. . .

] ,
" appData " : [

{" key " : " appKey1 " , " va lue " : " appVal1 "} ,
{" key " : " appKey2 " , " va lue " : " appVal2 "} ,
. . .

]
}

Listing 5.6: Example Entry in JSON

{
" $ id " : " http :// example . com/example . j son " ,
" type " : " ob j e c t " ,
" d e f i n i t i o n s " : {} ,
" $schema " : " http :// json−schema . org / dra f t −07/schema#" ,
" p r op e r t i e s " : {

" entryType " : {
" $ id " : "/ p r op e r t i e s / entryType " ,
" type " : " s t r i n g " ,
" t i t l e " : "The Entrytype Schema "

} ,
" entryId " : {

" $ id " : "/ p r op e r t i e s / entryId " ,
" type " : " s t r i n g " ,
" t i t l e " : "The Entryid Schema "

} ,
" t t s " : {

" $ id " : "/ p r op e r t i e s / t t s " ,
" type " : " i n t e g e r " ,
" t i t l e " : "The Tts Schema "

} ,
" t t l " : {

" $ id " : "/ p r op e r t i e s / t t l " ,

8http://www.jcp.org/en/jsr/detail?id=367

62

http://www.jcp.org/en/jsr/detail?id=367

5.4. Serialization formats

" type " : " i n t e g e r " ,
" t i t l e " : "The Ttl Schema "

} ,
" d e s t i n a t i on " : {

" $ id " : "/ p r op e r t i e s / d e s t i n a t i on " ,
" type " : " s t r i n g " ,
" t i t l e " : "The Des t inat i on Schema "

} ,
" f l owId " : {

" $ id " : "/ p r op e r t i e s / f l owId " ,
" type " : " s t r i n g " ,
" t i t l e " : "The Flowid Schema "

} ,
" coData " : {

" $ id " : "/ p r op e r t i e s /coData " ,
" type " : " array " ,
" i tems " : {

" $ id " : "/ p r op e r t i e s /coData/ items " ,
" type " : " ob j e c t " ,
" p r op e r t i e s " : {

" key " : {
" $ id " : "/ p r op e r t i e s /coData/ items / p r op e r t i e s /key " ,
" type " : " s t r i n g " ,
" t i t l e " : "The Key Schema "

} ,
" va lue " : {

" $ id " : "/ p r op e r t i e s /coData/ items / p r op e r t i e s / va lue " ,
" type " : " s t r i n g " ,
" t i t l e " : "The Value Schema "

}
} ,
" r equ i r ed " : [

" key " ,
" va lue "

]
}

} ,
" appData " : {

" $ id " : "/ p r op e r t i e s /appData " ,
" type " : " array " ,
" i tems " : {

" $ id " : "/ p r op e r t i e s /appData/ items " ,
" type " : " ob j e c t " ,
" p r op e r t i e s " : {

" key " : {
" $ id " : "/ p r op e r t i e s /appData/ items / p r op e r t i e s /key " ,
" type " : " s t r i n g " ,
" t i t l e " : "The Key Schema "

} ,
" va lue " : {

" $ id " : "/ p r op e r t i e s /appData/ items / p r op e r t i e s / va lue " ,
" type " : " s t r i n g " ,
" t i t l e " : "The Value Schema "

}
} ,
" r equ i r ed " : [

" key " ,
" va lue "

]
}

}
} ,

63

5. Communication and Serialization

" r equ i r ed " : [
" entryType " ,
" entryId " ,
" d e s t i n a t i on "

]
}

Listing 5.7: According JSON Schema

YAML

YAML originally stands for “Yet Another Markup Language”, but now serves as the
recursive acronym “YAML Ain’t Markup Language”. As the example in Listing 5.8
shows, its simplicity excels even JSON. However, it suffers from small tool support and
is also less known than XML and JSON. In Java environments, YAML can be parsed by
use of an additional library to the well-known JSON parser Jackson. An example YAML
representation of a Peer Model entry is shown in Listing 5.8; a schema is not available.
−−−
entryType : "E"
entryId : " 1 "
t t s : 1000
t t l : 5000
d e s t i n a t i on : "P1 : PIC"
f l owId : " 1 "
coData :
− key : " coKey1 "

va lue : " coVal1 "
− key : " coKey2 "

va lue : " coVal2 "
. . .
appData :
− key : " appKey1 "

value : " appVal1 "
− key : " appKey2 "

value : " appVal2 "
. . .

Listing 5.8: Example Entry in YAML

5.4.2 Binary formats

Binary formats tend to be more efficient than text-based formats; they are however not
human-readable. In this section, we evaluate the built-in Java serialization, Protocol
Buffers, Apache Thrift and Apache Avro regarding the use case’s requirements. It is
shown that not all binary formats in question are platform-independent and thus cannot
fulfill an essential requirement.

For most of the evaluated binary formats, a language-independent schema file needs to be
provided of which classes are generated by the compiler. These generated classes can then
be used within the application for population, serialization (marshaling), deserialization
(unmarshaling), and access of messages. Serialized data can be written to a file or

64

5.4. Serialization formats

transmitted over the network, and received at or read in by a program written in
another language; thus allowing platform independency. While text-based formats are
self-describing, these binary formats stay meaningful only when having the message
definition (schema) available.

Java Serialization

Java Serialization is the built-in ability of Java to persist its objects, reload and reuse
them again. It is read- and writable by Java only, thus no platform independency is
possible by using this format. Essentially, a Java object is serialized into a byte array
that may either be persisted to disk or sent via the network. On the recipient side or
when reading the persisted file on the disk, it is deserialized again to a Java object. Steps
like reading all members of the object, persisting them as text in the output format, as
well as creating a new object based on what is read in are not required by the developer.
Thus, this procedure is by far the most convenient method as the programmer usually
does not need much effort to achieve serialization/deserialization functionality.

To define Java objects as being serializable, they are required to implement the Seriali-
zable interface. All (non-transient) fields of the class in turn have to be serializable.
In essence, the intention is to freeze the object graph, persist it or move the representa-
tion across the network and then restore the graph back into usable Java objects [46].
Primitives and most heavily used members of the Java API are serializable, as for ex-
ample strings, numbers or collections. It is possible to extend standard serialization or
implement a custom serialized form in places where the standard serialization algorithm
would fail due to non-serializable members or where the use of the standard algorithm
is inappropriate [11]. Fields that should not be serialized need to be marked with the
transient keyword. At deserialization these fields get initialized with their default
value (e.g. null for object references), therefore it may be required to provide a custom
implementation to initialize these fields.

The example result for Java Serialization is binary, thus not human-readable. The
according example schema for a Peer Model entry is printed in Listing 5.9.
c l a s s Entry implements S e r i a l i z a b l e {

St r ing type ; // r equ i r ed
St r ing id ; // r equ i r ed
In t eg e r t t s ; // op t i ona l
In t eg e r t t l ; // op t i ona l
S t r ing d e s t i n a t i on ; // r equ i r ed
St r ing f l owId ; // op t i ona l
CoData [] coData ;
AppData [] appData ;

// s e t t e r / g e t t e r methods
}

c l a s s CoData implements S e r i a l i z a b l e {
St r ing key ; // r equ i r ed
St r ing value ; // r equ i r ed

// s e t t e r / g e t t e r methods

65

5. Communication and Serialization

}

c l a s s AppData implements S e r i a l i z a b l e {
St r ing key ; // r equ i r ed
St r ing value ; // r equ i r ed

// s e t t e r / g e t t e r methods
}

Listing 5.9: Example with Java Serializable

Protocol Buffers

Protocol Buffers9 were initially developed by Google to be used among programs developed
in different languages offering a language-neutral, platform-neutral, and extensible mech-
anism for serializing structured data [48]. Protocol Buffers claim [1] that in comparison
to XML they

1. are simpler.

2. are 3 to 10 times smaller.

3. are 20 to 100 times faster.

4. are less ambiguous.

5. generate data access classes that are easier to use programmatically.

Protocol Buffers are heavily used by its inventor [1]:

Protocol buffers are now Google’s lingua franca for data —at time of writing,
there are 48,162 different message types defined in the Google code tree across
12,183 .proto files. They’re used both in RPC systems and for persistent
storage of data in a variety of storage systems.

Fields are uniquely identified by their tag. In the message definition they may either be
specified as required, optional or repeated, which allows array- or list-like fields. Official
support by Google is provided for Objective C, C++, C#, Go, Java, Python and Ruby.
Furthermore, a large number of third-party libraries exist for other languages, currently
listing about 30 additional languages10. The target language is specified by a flag
at execution of the Protocol Buffers compiler. Protocol Buffers are released under a
BSD-style license.

The sequence steps to use Protocol Buffers within a project are shown in Figure 5.13;
they are similar to the steps that need to be taken in Thrift and Avro. In step 1,

9https://developers.google.com/protocol-buffers/
10https://github.com/google/protobuf/wiki/Third-Party-Add-ons

66

https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf/wiki/Third-Party-Add-ons

5.4. Serialization formats

a language-independent schema file for a Peer Model entry is written using a data
description language (DDL), which is printed in Listing 5.10. This file is compiled by the
protoc compiler in step 2 to generate the language-specific code. The generated code is
included to the application’s code in step 3, making it possible to use it like every other
Java code. The example result for a transmitted entry in Protocol Buffers is binary, thus
not human-readable.

example.proto
schema file

protoc
compiler

example.cpp example.java example.py

Create application and
include generated file

Figure 5.13: Protocol Buffers implementation steps

message Entry {
r equ i r ed s t r i n g type = 1 ;
r equ i r ed s t r i n g id = 2 ;
op t i ona l in t64 t t s = 3 ;
op t i ona l in t64 t t l = 4 ;
r equ i r ed s t r i n g d e s t i n a t i on = 5 ;
op t i ona l s t r i n g f l owId = 6 ;
repeated CoData coData = 7 ;
repeated AppData appData = 8 ;

message CoData {
r equ i r ed s t r i n g key = 1 ;
r equ i r ed s t r i n g value = 2 ;

}

message AppData {
r equ i r ed s t r i n g key = 1 ;
r equ i r ed s t r i n g value = 2 ;

}
}

Listing 5.10: Example in Protocol Buffers schema

67

5. Communication and Serialization

Apache Thrift

Apache Thrift11 is another option for a binary format with similarities to Protocol Buffers
and also having the demand for efficient cross-language data serialization. Its goal is to
enable efficient and reliable communication across programming languages [5]. Thrift
was initially developed at Facebook in 2006, as they required to integrate functionalities
of programs written in different languages. Facebook’s culture was to choose the best
tools and implementations over standardizing on one programming language [5]. While
initially hosted as open-source software directly at Facebook, the project later moved to
Apache to foster greater use [49]. It is released under the Apache 2 license. The list of
supported target languages is comparable to Protocol Buffers, listing 26 languages12.

The sequence steps to use Thrift within a project are shown in Figure 5.14; they are
similar to the steps that need to be taken in Protocol Buffers and Avro. In step 1, a
language-independent schema file for a Peer Model entry is written using a language-
neutral Interface Definition Language (IDL), which is printed in Listing 5.11. This file is
compiled by the thrift compiler in step 2 to generate the language-specific code. The
generated code is included to the application’s code in step 3, making it possible to use
it like every other Java code. Thrift offers not only one protocol as Protocol Buffers and
Avro. Among them are also human-readable text-based protocols if required, e.g. for
debugging purposes. A list of the supported protocols can be found in Section 5.8.

example.thrift
schema file

thrift
compiler

example.cpp example.java example.py

Create application and
include generated file

Figure 5.14: Thrift implementation steps

s t r u c t Entry {
1 : r equ i r ed s t r i n g type ,
2 : r equ i r ed s t r i n g id ,
3 : op t i ona l i 64 t t s ,
4 : op t i ona l i 64 t t l ,

11https://thrift.apache.org
12https://thrift.apache.org/docs/Languages

68

https://thrift.apache.org
https://thrift.apache.org/docs/Languages

5.4. Serialization formats

5 : r equ i r ed s t r i n g de s t i na t i on ,
6 : op t i ona l s t r i n g f lowId ,
7 : op t i ona l l i s t <CoData> coData ,
8 : op t i ona l l i s t <AppData> appData

}

s t r u c t CoData {
1 : r equ i r ed s t r i n g key ,
2 : r equ i r ed s t r i n g value

}

s t r u c t AppData {
1 : r equ i r ed s t r i n g key ,
2 : r equ i r ed s t r i n g value

}

Listing 5.11: Example in Thrift schema

Apache Avro

Apache Avro13 is another option that provides a binary format for efficient, cross-language
serialization and code generation developed within Apache’s Hadoop program. The Avro
schema may either be specified in a JSON format or using an IDL. The schema is
integrated in the beginning of the stream, which makes sense for a big number of elements
following that schema. If only a small amount of data is transmitted with an attached
schema, the size to be transmitted is unnecessarily increased. As another option, client
and server can thus negotiate on a schema at handshake that is used for the rest of a
session. Optional fields are not available in Avro, but they can be substituted by use
of a union type with null. Supported languages are C, C++, C#, Java, Perl, Python,
Ruby and PHP14; thus the list is significantly shorter than in Protocol Buffers and Thrift.
Avro is mainly used in Apache Hadoop and is released under the Apache 2 license.

The sequence steps to use Avro within a project are shown in Figure 5.15; they are
similar to the steps that need to be taken in Protocol Buffers and Thrift. In step 1, a
language-independent schema file for a Peer Model entry is written using the IDL, which
is printed in Listing 5.12. This file is compiled by the avro compiler in step 2 to generate
the language-specific code. The generated code is included to the application’s code in
step 3, making it possible to use it like every other Java code. The example result for a
transmitted entry in Avro is binary, thus not human-readable.
{

" namespace " : " avro " ,
" type " : " r ecord " ,
"name " : " Entry " ,
" f i e l d s " : [

{"name " : " type " , " type " : " s t r i n g "} ,
{"name " : " id " , " type " : " s t r i n g "} ,
{"name " : " t t s " , " type " : [" nu l l " , " long "] } ,
{"name " : " t t l " , " type " : [" nu l l " , " long "] } ,

13https://avro.apache.org
14https://cwiki.apache.org/confluence/display/AVRO/Supported+Languages

69

https://avro.apache.org
https://cwiki.apache.org/confluence/display/AVRO/Supported+Languages

5. Communication and Serialization

example.asvc
schema file

avro
compiler

example.cpp example.java example.py

Create application and
include generated file

Figure 5.15: Avro implementation steps

{"name " : " d e s t i n a t i on " , " type " : " s t r i n g "} ,
{"name " : " f l owId " , " type " : [" nu l l " , " s t r i n g "] } ,
{"name " : " coData " ,

" type " : {
" type " : " array " ,
" i tems " : {

"name " : " CoDataEntry " ,
" type " : " r ecord " ,
" f i e l d s " : [

{"name " : " key " , " type " : " s t r i n g "} ,
{"name " : " va lue " , " type " : " s t r i n g "}

]
}

}
} ,
{"name " : " appData " ,

" type " : {
" type " : " array " ,
" i tems " : {

"name " : "AppDataEntry " ,
" type " : " r ecord " ,
" f i e l d s " : [

{"name " : " key " , " type " : " s t r i n g "} ,
{"name " : " va lue " , " type " : " s t r i n g "}

]
}

}
}

]
}

Listing 5.12: Example in Avro schema

70

5.4. Serialization formats

Other formats

The evaluated formats are only a small fraction of available formats, however the most
common and most suitable formats were listed. Some other formats combine JSON with
the advantages of binary formats (e.g. BSON, MessagePack, Smile etc.) and provide
support in a majority of current languages. It would have been possible to define an own
format, which would be a simple and flexible approach and, as it would be requirement-
driven, best suited for the use case. However, it would require to write own encoding
and parsing algorithms, although the described more general approaches exist.

5.4.3 Schema Evolution

The effect of an addition or removal of parameters often results in incompatibility of
remote interfaces. Schema evolution or versioning is the term for changes in the schema
when already in use, i.e. either the adding or the removal of a field in the schema, and
how the generated code deals with it. This is important, as it is problematic to change a
field in the schema to an optional field later. Readers with knowledge of the old version
will consider messages without this field as incomplete and throw an exception in that
case. We cannot rule out that in our use case the schema will be changed at a later time.

A blog entry by Kleppmann [34] compares the binary formats of Protocol Buffer, Apache
Thrift and Apache Avro regarding the support for schema evolution by showing how
data is encoded into bytes. In Protocol Buffers, fields are represented by their ordinal
number in the schema and not by their name. Thus, field names can be changed without
any consequences; but the occurence of the field in the schema (i.e. its tag number)
cannot. There is no difference in the encoding whether fields are marked as optional,
required, or repeated; for the latter one the number of times the tag number appears in
the encoding is simply higher. From the encoding point of view, this aspect can thus
be changed without consequences. However, runtime errors will occur if an unavailable
field is expected at the receiver. An optional field that has not been set is omitted from
the encoded data, thus those fields could safely be removed. Fields can also be added
to the schema, but this field should get a tag number that has not been used before.
Apache Thrift’s schema evolution is likewise, with the exception of repeated fields that
are represented by lists there. Encodings of records in Apache Thrift will be shown later
on in Figures 5.17 and 5.18. In Apache Avro, the encoding is different as it contains
no tag numbers in its schema. By providing Avro the schema with which the data was
written (the writer’s schema) and the schema the consumer is expecting (the reader’s
schema), resolution rules are used to translate data from the writer schema into the
reader schema. Details can be found in the mentioned blog entry, but will not be given
in depth in this thesis.

Thus, five cases can be distinguished [5]:

• Case 1: Added field, old client, new server
In this case the old client does not send a field that was added with a new schema

71

5. Communication and Serialization

version. This case is unproblematic if the new field is marked as optional.
A default value can be chosen that will be used if a value is not provided at
transmission. If it is possible that an old client connects to the new server, new
fields should always be marked as optional.

• Case 2: Removed field, old client, new server
In this case the old client sends a field that was removed in the new schema version.
This case is unproblematic, an unknown field received at the server is ignored.

• Case 3: Added field, new client, old server
In this case the new client sends a field added in the new schema version that
cannot be recognized at the server using the old schema version. This case is
unproblematic, as the server ignores fields that it does not know.

• Case 4: Removed field, new client, old server
In this case the new client does not send a field that was removed in the new schema
version to the server using the old schema version. This case is problematic if the
field was required in the old version. This is the reason why it is sometimes
discouraged to use required fields at all [28].

• Case 5: Data type changed for field
The most problematic case is the one where the data type of an existing field
is changed. Deserializationg will always fail as another encoding of the field is
expected. Therefore, the ordinal number of a field in the struct shall never be
reused. Those numbers can also be omitted in the schema; thus the solution is to
use a new ordinal number for the changed field.

5.5 Communication formats
One of the most important goals of distributed systems is openness [57], i.e., services
of a system are offered according to a standardized interface that describes syntax and
semantics. Tanenbaum/Van Steen state that a properly specified interface allows two
independent parties to build completely different implementations leading to two separate
implementations that operate in exactly the same way [57].

Remote Procedure Calls (RPC) are a well known and heavily used technique to achieve
inter-process communication first introduced by Birrell and Nelson in 1984 [10]. An RPC
consists of a client program (caller) and a server program (callee). The client sends a
call to the server, which replies. Data that was serialized by using one of the methods
described in the previous section are transmitted over the network on this call. They
are received by a program executed either as another process on the same machine or
on another computer. At the recipient, the data is deserialized, the proper procedure is
executed, and data are replied to the original sender, if applicable. In the Peer Model
context, the terms client and server only apply to a particular transaction; therefore,
it is possible that in the next transmission the roles are inverted. The exchange of

72

5.5. Communication formats

entries is the only service required to be offered by the callee. For the required platform
independence, it is equally crucial as with serialization formats that the communication
formats are supported by as many different programming languages as possible.

The binary formats that were enumerated in the previous section have the handy
advantage that they are either already intertwined with an RPC implementation or that
an RPC system exists that is suitable for those formats. Consequently, it was concluded
to use such an RPC implementation and not consider other possible communication
formats such as REST.

Java RMI

Java provides functionality for RPC by Remote Method Invocation (RMI), but commu-
nication with programs developed in other languages is not easy to achieve. As RMI can
transmit serializable objects only, this option is not usable in any other languages.

gRPC

Protocol Buffers were initially developed to define messages for communication between
servers [48]. However, while Google made their Protocol Buffers publicly available already
in 2008, they did not provide their internally used RPC system. RPC stubs could
automatically be generated if the schema contains a service definition, but for years real
RPC functionality could be achieved with third-party libraries only.

During the implementation of the Java Peer Model version, Google launched gRPC
(gRPC Remote Procedure Calls)15. It is available under Apache 2.0 license. Both
synchronous and asynchronous communication is allowed.

Using the protoc compiler with a gRPC plugin generates client and server code in the
target language as well as the regular Protocol Buffer code. At the moment the supported
languages are C++, Java, Objective-C, Python, Ruby, Go, C# and Node.js. An example
service definition is printed in Listing 5.13.

s e r v i c e He l l oS e rv i c e {
rpc SayHel lo (Hel loRequest) r e tu rn s (Hel loResponse) ;

}

message Hel loRequest {
s t r i n g g r e e t i n g = 1 ;

}

message Hel loResponse {
s t r i n g r ep ly = 1 ;

}

Listing 5.13: gRPC service example16

15http://grpc.io

73

http://grpc.io

5. Communication and Serialization

Apache Thrift

In contrast to the other evaluated binary formats, Apache Thrift includes its own RPC
framework. Data types and RPC service interfaces are defined in the same language-
neutral Interface Definition Language (IDL) schema file. Thrift provides RPC imple-
mentations for both client and server across multiple languages, including asynchronous
variants in many languages. The RPC services are generated for the target language by
the thrift compiler. An example service definition is printed in Listing 5.16 on page 80.

Apache Avro

Comparable to Protocol Buffers, Apache Avro does also not include its own RPC
framework but uses the netty server instead.

5.6 Serialization and remoting mechanisms in related
frameworks

As serialization and remoting is required in every distributed system to transmit messages
between its actors, first the mechanisms used by the frameworks and earlier Peer Model
implementations of the related work (Chapter 2) shall briefly be mentioned. In Akka,
for serialization either Java’s built-in serialization or Protocol Buffers can be used [44].
vert.x does not specify any serialization format to use, in Gridlink by default JSON is
used [16]. WS-BPEL transmits all messages in the WSDL format in XML. In Gigaspaces
XAP, by default the Java serialization is used; other serialization mechanisms such
as the Kryo serializer17 can be plugged in. The Embedded PeerSpace uses an own
binary stream implementation [29], for the PeerSpace.NET the internal format of its
remoting mechanism Xcoordination Application Space is used [52]. The Mobile Peer
Model allows to either use a human-readable JSON, or a non-readable binary Protocol
Buffers format [54]. It is – however – explicitly mentioned that it would be easy to
exchange the format to use Apache Thrift.

For remoting, both Akka and vert.x use the netty server, while Gigaspaces XAP uses
EJB (Enterprise Java Beans) or Spring remoting. For the already available Peer Model
implementations, the embedded version uses a low-level mechanism for the abstraction
of several wireless radio transmission interface types [29]. The PeerSpace.NET uses the
Xcoordination Application Space, which is in principle comparable to XVSM but does
not fully follow its concepts [52]. The Mobile Peer Model uses the eXtensible Message
and Presence Protocol (XMPP) [54, 58], where XML messages called XML stanzas are
transmitted between the instances. XMPP necessarily requires a server component, which
in their case is Openfire18 hosted in the AWS cloud19.

17https://github.com/EsotericSoftware/kryo
18https://www.igniterealtime.org/projects/openfire/
19https://aws.amazon.com/

74

https://github.com/EsotericSoftware/kryo
https://www.igniterealtime.org/projects/openfire/
https://aws.amazon.com/

5.7. Format evaluation

5.7 Format evaluation

The choice of an adequate data exchange format has significant consequences on data
transmission rates and performance, hence an efficient format is required. Plenty of
evaluations between different formats are available on the Internet, many of them being
use case driven. Objective evaluations do not put one option in favor of another but
conclude that the best format depends on the requirements. The main difference between
Protocol Buffers, Thrift, and Avro according to Kleppmann [34] is that

Thrift favours the “one-stop shop” style that gives you an entire integrated
RPC framework and many choices (with varying cross-language support),
whereas Protocol Buffers and Avro appear to follow much more of a “do one
thing and do it well” style.

In [18], for evaluation, a file of 2592000 measurement values (i.e., one month of records
having one entry each second) containing a timestamp and a float value was written
to the disk and read in again. The time required for persisting the data and the time
required for reading the data back in, as well as the generated file size, were evaluated;
results are shown in Table 5.2. Note, that the final version of [18] did not include the
results for the text-based protocols.

X
M
L

JS
O
N

YA
M
L

Ja
va

Se
ria

liz
at
io
n

Pr
ot
oc
ol

B
uff

er
s

A
pa

ch
e
T
hr
ift

A
pa

ch
e
Av

ro

write time (ms) 3257 1607 8144 8082 238 552 1079
read time (ms) 4915 1818 9237 20694 1314 1665 668

size (MB) 192 121 120 54 38 36 29

Table 5.2: Evaluation Results [18]

A significant overhead in all competitions were observed for the text-based formats.
However, the worst results were not achieved by any text-based format, but by the Java
Serialization, which on the one hand requires more time (by a factor of 10) than the other
options and on the other hand can also not convince regarding file size. In contrast to
the other evaluated formats, it even requires more time than JSON and XML; however,
as expected the file size is less than half of the text-based formats’ sizes. Protocol Buffers
and Apache Thrift show comparable results in the benchmarks, with Protocol Buffers
leading in write and read speed. The claim [1], however, that Protocol Buffers are 20 to
100 times faster than XML does not hold in this example, where only a factor of ∼5 has
been observed. Apache Avro is much slower in writing, however much faster in reading.

75

5. Communication and Serialization

Regarding file size, Avro excels the other options, with Thrift (or to be more precise its
compact protocol) being better than Protocol Buffers. This result was not expected, as
sources (e.g., [50]) claim that Protocol Buffers’ file size is smaller than Thrift’s. The
claim [1] that Protocol Buffers is 3 to 10 times smaller than XML holds. Compression in
Apache Avro is best, although only in Avro the schema is persisted together with the file.

In result, we concluded in [18] that a winner of the three binary options is hard to
determine and subject to a weighting of the results. In the Peer Model use case, the
entries will be significantly smaller than the files that were persisted in the use case of
[18]. Data transmitted between the Peer Model instances are usually very small in size
depending mainly on the entry’s user co-data and app-data. All fields that are specified
by the Peer Model itself can be expected to require a (nearly) constant size. It can be
expected that the size and the time for serialization/deserialization will not differ much
between the formats. Thus, the evaluated criteria shall not have the primary influence on
the format decision. Table 5.3 lists possible functional and non-functional requirements
on the serialization formats and evaluates them for the formats in question.

X
M
L

JS
O
N

YA
M
L

Ja
va

Se
ria

liz
at
io
n

Pr
ot
oc
ol

B
uff

er
s

A
pa

ch
e
T
hr
ift

A
pa

ch
e
Av

ro
platform-independent + + + – + + +
RPC functionality – – – � � + �
human-readable + + + – – • –

additional libraries – + + – + + +
tools required – – – – + + +

Table 5.3: Evaluation Results
�: RPC functionality is not directly included in Java Serialization, Protocol Buffers, and Apache
Avro, but there are RPC implementations tightly connected to them.
•: Human-readability in Apache Thrift depends on the protocol in use.

The main criteria for the format decision are the first two entries listed in Table 5.3.
It is shown that all of the formats except for the Java serialization allow a platform-
independent exchange of data with varying degrees of languages supported between the
binary formats. Thrift is the only format that directly includes an RPC framework. Java
includes RMI for sending serialized Java objects to other Java programs; Protocol Buffers
and Avro use an external RPC framework. As mentioned, in Avro the used schema
accompanies the data. In the Peer Model use case, it would be fatal regarding data size
to append the schema to each entry that is submitted. For such cases it is possible to
reach a consensus on the schema at handshake; that would however require to keep the
connection between the instances open.

76

5.8. Apache Thrift in detail

Human readability may ease debugging but is not required for the productive system.
Furthermore, it can already be concluded from Table 5.2 that serialization and deserial-
ization of these formats require more resources than by using binary formats. As Java
includes XML parsing functionalities and serialization is an integral part of the language,
these are the only formats that do not require additional libraries for execution. The
binary formats furthermore require additional tools for generating Java classes from their
platform-independent schema file.

When deciding on a platform-independent communication format between Peer Model
instances, it was planned that an implementation in Go would follow. Thus, it was crucial
to use a communication format that supports Go, which is not the case for Avro. While
Protocol Buffers have (at least third party) support for more languages than Thrift,
gRPC would significantly reduce the number of possible languages. In result, Thrift
excels the other options considered by including RPC functionality and supporting the
highest number of platforms.

In the Android implementation that was written concurrently by Schoba [54] and
Tillian [58], Protocol Buffers were chosen as their serialization format mainly due to not re-
quiring RPC functionality in their solution and Protocol Buffers performing slightly better
at their benchmarks. However, they designed their system such that the communication
system could easily be exchanged to use Apache Thrift later on.

It is significant, that all of the described options have their justification and lead to
different decisions when having different requirements. The text-based formats, for
example, would be the best option if human-readability is a requirement or in case of
communication with web services.

5.8 Apache Thrift in detail

The evaluation of formats in the previous section led to the result that Apache Thrift is
the best option for the implementation of communication between Peer Model instances.
The Peer Model is in good company with some popular services that also use Thrift,
such as the inventor Facebook, hadoop, and last.fm. It allows platform independence and
efficiency in data size as well as in serialization and deserialization speed. Furthermore, it
already includes an RPC stack, simplifying the necessary network communication. The
basics of Apache Thrift were already described in the previous section.

Deeper views inside Apache Thrift that were out of scope in the basic evaluation are
given in this section. We show the types that are offered by Apache Thrift and its IDL,
and introduce the concept of services used for RPC functionality. The Thrift Network
Stack is shown and its layers are described. As Apache Thrift — in contrast to Protocol
Buffers and Apache Avro — allows not only one serialization format, a list of possible
formats with a comparison is given.

77

5. Communication and Serialization

5.8.1 Type System

For the schema definition by use of the IDL, Thrift allows several types. A universal type
system requires that respective types in all target languages exist. That is the reason why
for instance unsigned integer types are not supported, as they have no representation in
all target languages [28]. The limitation of allowing natively defined types only leads to
never requiring the developer to write any code for serialization or transport of special
types [5]. Types get translated by the compiler to their respective member in the target
language.

There are

• eight base types (bool, binary, byte, i16, i32, i64, double and
string). In Java, they are mapped to the corresponding primitive types, strings
to objects of type java.lang.String, and binarys to byte[].

• container types (list<t>, set<t> and map<t1,t2>) . The type t may
be any Thrift type except for services. In Java they are mapped to a generic
ArrayList<T>, HashSet<T> or HashMap<T1,T2> types.

• Structs, defining common objects to be used across languages [5]. They are
composed of various fields of any Thrift type, conceptually similar to a C struct
and mapped in Java to a class.
The following rules need to be considered:

1. Fields need to be marked as either required or optional
2. Every field is required to have a unique, positive integer identifier. This tag is

used to identify the field in the wire format.
3. Structs are normal Thrift types. Therefore, it is possible to use a struct type

in another struct.
4. It is possible to specify a default value for optional fields.
5. Values for required fields always need to be provided, otherwise an error is

thrown.

An example for an optional field with a default value is printed in Listing 5.14.
1 : op t i ona l i 32 number = 0

Listing 5.14: Optional field with default value

There is also a union type similar to those in C and C++ providing a set of
possible fields of which only one can be used.

• Services, semantically equivalent to defining an interface in an object-oriented
programming language [5]. They are used for RPC, for which the Thrift compiler
generates stub classes for the server and the client that implement the interface.
Further details can be found in Section 5.8.2.

78

5.8. Apache Thrift in detail

• Exception types, syntactically and functionally equivalent to struct types [5],
which are used to declare exceptions in RPC services. The compiler generates
classes accordingly to the target language’s exception handling, e.g. exception
classes extending org.apache.thrift.TException in Java.

An example showing base types, container types and structs was printed in Listing 5.11.
This example did not include RPC calls and therefore did not show any services and
exceptions types. An example showing these latter mentioned types is printed in List-
ing 5.16. The full Thrift file in use for the Peer Model implementation, including all of
the type classes, is printed in Listing 6.29.

Thrift also allows C/C++ style typedefs and enums. In Java, typedefs are not included;
therefore, the Thrift compiler generates Java code that uses the base type. Enums are
mapped to Java enum types. If a namespace is specified in the schema file as printed in
Listing 5.15, the generated classes will be filed in the specified Java package. A Thrift
file may also include other Thrift files. The Thrift compiler generates one Java class file
per struct, enum and service [28].

namespace java peermodel . communication . t h r i f t g e n e r a t e d

Listing 5.15: Namespace definition

5.8.2 Services

Services were introduced as a type in the section before. They group one or more related
functions, comparable to object-oriented languages. The definition of a service including
two functions is somewhat intuitive as shown by example in Listing 5.16. Function
calls may have parameters of any Thrift type, they may also declare a return type and
exception types that may be thrown.

Communication in a distributed system is unreliable. Thrift allows three ways to call
functions:

• Functions that have any return type declared naturally wait for a reply message to
be received (i.e. synchronous communication).

• Functions that are marked only with the keyword void at least wait for a response
from the callee that guarantees that the message was received and the operation
has completed on the server’s side [5] (i.e., synchronous communication).

• Functions that are marked with the keyword oneway indicate that the client only
makes a request and does not wait for any response (fire-and-forget) [28]. Obviously,
they must not declare a return type (i.e., asynchronous communication).

Whether it is acceptable that an entry may not be received at the server without any
notice to the caller shall not be decided here. The general decision is to allow both

79

5. Communication and Serialization

methods, such that the I/O peer should decide which form of transmission is to be used.
Listing 5.16 shows a Thrift service definition that includes both methods. Note that in
this example it is also shown that an exception may be thrown in the RPC call.
s e r v i c e ExampleService {

oneway void tryAddEntry (1 : Entry entry) ;
void addEntry (1 : Entry entry) throws (1 : NotAccepted exc) ;

}

except ion NotAccepted {
1 : s t r i n g message

}

Listing 5.16: Thrift service definition

The actual Thrift file that is in use in the implementation, including all types and the
service, is shown in Listing 6.29.

5.8.3 Thrift Network Stack

Figure 5.16: Thrift Network Stack [28]

The Thrift Network Stack as shown in Figure 5.16 consists of four layers. Each of
those layers provides several exchangeable implementations of a specific interface. Thus,
functionalities of different layers are decoupled of each other and can be combined
according to particular requirements. Application developers should not be concerned
about the transport and protocol layers [5]. Decoupling of these layers allows that
generated Thrift code only needs to know how to read and write data; the origin and
destination of the data are not relevant [5]. As mentioned, Thrift supports a majority
of the currently most used programming languages, however in varying degrees. It may
be required to switch to another protocol, as not every implementation implements all
protocols. Allowing a configuration for the proper protocols to be used is therefore

80

5.8. Apache Thrift in detail

essential not just for evaluation purposes, but may also be required to allow changes in
the settings when communicating with implementations in other languages that do not
(yet) support the intended protocols.

This section will introduce a selection of implementations at the four layers that are
available in Java and may be suitable for the Peer Model use case. In Section 6.4.3 the
layer implementations that are used in the Peer Model implementation are shown.

Transport layer. The Transport layer as the lowest layer encapsulates I/O function-
ality. In short, this layer defines how messages are transmitted between client and server.
It provides a simple abstraction for writing to the network and reading from it [28].
Methods of the TTransport interface on the client’s side (sender) include open, close,
read, write. On the server’s side (receiver), methods of TServerTransport include
open, listen, accept, close.

The choice of the transport layer implementation to be used is dictated by the architecture
of the solution [50]. Transmission of data is possible over various channels such as HTTP,
sockets or files. The available implementations of TTransport differ between the various
languages; among available implementations in Java are:

• TFileTransport, used to read from and write to files.

• TIOStreamTransport with its subclass implementation TSocket, providing a
wrapper around a standard blocking socket (e.g. java.io.Socket), thus only
one connection can be active at a time.

• TNonblockingTransport with its subclass implementation TNonblocking-
Socket providing an asynchronous non-blocking socket transport.

• TSaslTransport, wrapping another transport implementation for using the
Simple Authentication and Security Layer (SASL).

Among the available implementations of TServerTransport in Java are:

• TServerSocket, providing a wrapper around a ServerSocket for a blocking
server transport.

• TNonblockingServerTransport with its subclass implementation
TNonblockingServerSocket, providing a wrapper around a ServerSocket-
Channel for a non-blocking server transport.

Protocol layer. The Protocol layer defines the mechanisms for encoding in-memory
data structures to a wire format and the decoding at the receiver [28]. In short, this
layer defines what is transmitted [49], including how messages are serialized. As such,
methods of the TProtocol interface include writeMessageBegin, writeString,

81

5. Communication and Serialization

readMessageBegin, readString. Examples include binary and text protocols, the
latter ones useful for debugging purposes as they are human-readable. The choice of
a proper protocol format is crucial to enable efficient data sizes in the transmission.
However, at this layer, various implementations are not able to understand all protocols,
which may require to switch to another, less efficient format to enable communication
with them.

Among the available implementations of TProtocol in Java are:

• TJSONProtocol, a human-readable protocol, e.g., for debugging purposes.

• TBinaryProtocol, a non-human-readable, simple and universal binary protocol
(Figure 5.17).

• TCompactProtocol, an optimized binary protocol such that the payload is as
small as possible (Figure 5.18).

Kleppmann [34] compared the two binary protocols by serializing the struct in List-
ing 5.17. Results are shown in Figures 5.17 and 5.18. For this simple example, the
TBinaryProtocol requires 59 bytes by using a straightforward encoding, while the
TCompactProtocol requires only 34 bytes by using variable-length integers and bit
packing.

s t r u c t Person {
1 : s t r i n g userName ,
2 : op t i ona l i 64 favouriteNumber ,
3 : l i s t <s t r i ng> i n t e r e s t s

}

Listing 5.17: Struct for binary format comparison [34]

Figure 5.17: Binary Protocol Encoding [34]

82

5.8. Apache Thrift in detail

Figure 5.18: Compact Protocol Encoding [34]

Processor layer. The Processor layer reads data from an input stream from the
network using the input protocol, delegates processing to a handler implemented by the
user and writes the response into an output stream to the network using the output
protocol [28]. Service-specific processor implementations are generated by the Thrift
compiler.

Server layer. The Server layer finally puts the features described before together [28].
It

• creates a transport.

• creates input/output protocols for the transport.

• creates a processor based on the input/output protocols.

• waits for incoming connections and hands them to the processor.

Various blocking, non-blocking, single and multithreaded server implementations of
TServer are available, among them:

• TSimpleServer, a simple single-threaded server with blocking I/O for testing
purposes only.

• TNonblockingServer, a server having one I/O thread and one worker thread
for fairness amongst all connected clients regarding invocations, but still being able
to process only one request at a time.

• TThreadPoolServer, a server which uses Java’s built-in ThreadPool management
for a worker pool. It creates dedicated threads for all incoming connections and
thus provides better throughput than the other options while consuming a lot of
resources.

83

5. Communication and Serialization

Dhanushka [24] concludes that the TThreadPoolServer shall be used for a peer-to-peer
(P2P) architecture, while the TNonblockingServer is best suited for client-server
architectures.

Layer implementations Table 5.4 shows the varying support of different layer imple-
mentations at the various programming languages supported in Apache Thrift.

Low-Level
Transports

Transport
Wrappers Protocols Servers

D
om

ai
n

F
ile

M
em

or
y

P
ip
e

So
ck
et

T
LS

Fr
am

ed

ht
tp

zl
ib

B
in
ar
y

C
om

pa
ct

JS
O
N

M
ul
ti
pl
ex

Fo
rk
in
g

N
on

bl
oc
ki
ng

Si
m
pl
e

T
hr
ea
de
d

T
hr
ea
dP

oo
l

ActionScript X X X
C X X X X X X X X X
C++ X X X X X X X X X X X X X X X X X
C# X X X X X X X X X X X X X
Cocoa X X X X X X X X X X
Common Lisp X X X X X
Dlang X X X X X X X X X X X X X X X
Dart X X X X X X X
Delphi X X X X X X X X
.NET Core X X X X X X X X X X X
Erlang X X X X X X X X X X X
Go X X X X X X X X X X X
Haskell X X X X X X X X X X X
Haxe X X X X X X X X X
Java (SE) X X X X X X X X X X X X X X X
Java (ME) X X X X X X
Javascript X X X X X
Lua X X X X X X X X
node.js X X X X X X X X X X
node.ts X X X X
OCaml X X X X X
Perl X X X X X X X X X X X
PHP X X X X X X X X X X X
Python X X X X X X X X X X X
Ruby X X X X X X X X X X X X X X
Rust X X X X X X X
Smalltalk X X
Swift X X X X X X X X X X

Table 5.4: Protocol support in different languages (based on [56])

5.8.4 Code generation and inclusion

The Thrift compiler generates code for the services when calling the Thrift compiler
using the command in Listing 5.18.

t h r i f t −−gen java example . t h r i f t

Listing 5.18: Thrift compiler call

84

5.8. Apache Thrift in detail

For the example in Listing 5.16 an ExampleService class is generated (limited to
the tryAddEntry function), including an inner class ExampleService.Client for
the client side (cf. Listing 5.19) and an inner class ExampleService.Processor for
the server side (cf. Listing 5.20). The ExampleService.Iface shown in Listing 5.21
contains the generated interface. This interface needs to be implemented by the developer;
the class needs to be provided to the ExampleService.Processor as shown in
Listing 5.20 and its methods get executed on a received call. The example uses a
TJSONProtocol at the protocol layer, TSocket/TServerSocket for transport and
a blocking TSimpleServer. This combination is feasible for testing purposes only due
to the single-threaded server and a non-efficient, text-based, human-readable protocol
format.
private ExampleService . C l i en t c l i e n t ;

public Cl i en t () {
TTransport t ranspo r t = new TSocket (/∗ java . io . Socket ∗/) ;
TProtocol p ro to co l = new TJSONProtocol (t r anspo r t) ;
c l i e n t = new ExampleService . C l i en t (p ro to co l) ;

}

public void tryAddEntry (Entry entry) throws TException {
c l i e n t . tryAddEntry (entry) ;

}

Listing 5.19: Client

public Server (ExampleService . I f a c e handler) {
ExampleService . Processor <? extends ExampleService . I f a c e> proc e s s o r =

new ExampleService . Processor <>(handler) ;
TServerTransport se rverTranspor t = new TServerSocket (/∗ java . io . ServerSocke t ∗/) ;
TServer s e r v e r = new TSimpleServer (

new Args (se rverTransport) .
p r o c e s s o r (p ro c e s s o r) .
p rotoco lFactory (new TJSONProtocol . Factory ())) ;

s e r v e r . s e rve () ;
}

Listing 5.20: Server

public interface I f a c e {
public void tryAddEntry (Entry entry) throws TException ;

}

Listing 5.21: Interface

85

CHAPTER 6
Implementation

To ease extensibility/maintainability (NFR2) and modularity/exchangeability (NFR3),
the Peer Model implementation at hand was divided into several sub-modules. The used
implementation of containers as well as the remote communication can thus easily be
replaced.

• peermodel module
including the basic functionality, basic interfaces, and classes (Sections 6.1 and 6.2).

• containerimpl module
including an implementation for containers based on the standard Java Communica-
tion Framework JCF (Section 6.3). Earlier it was planned that for Craß’ PhD thesis
another implementation based on XVSM spaces [41] would be used. This decision
was later changed; however, it remains easy to substitute the container implemen-
tation by replacing this package. The before mentioned peermodel sub-project,
therefore, contains the interfaces to a container only.

• communication module
including classes for communication between Peer Model instances based on Apache
Thrift (Section 6.4). The before mentioned peermodel sub-project contains the
interfaces for remote communication only.

• tracing module
including classes for logging a Peer Model run to be used in a visual monitoring
tool [21] for post-mortem analysis (Section 6.5).

Figure 6.1 shows the relations between the four modules, and the most important classes
within them. The depicted classes, as well as the interfaces and enums (printed in italic
font) are distributed into several packages within the modules; arrows show inheritance

87

6. Implementation

Figure 6.1: Modules and their relations within the Java implementation

88

6.1. Peer Model

relations of classes and implementations of interfaces. They are described in their
respective section.

6.1 Peer Model
This section deals with the peermodel sub-project within the implementation. It
contains the basic classes and functionality, such as peers, wirings, services, and entries.
For containers and remote communication, it contains the basic interfaces only. The
use-case developer will mainly interact with this sub-project; therefore a brief description
of this API will be given in Section 6.2.

A default peer consists of four containers:

• PIC, the peer in container

• POC, the peer out container

• WSC, the wiring specification container

• PSC, the peer specification container

While the implementation does not specify any individual behavior on entries put to the
first two of the containers mentioned, entries of type WIRING_TYPE in the WSC and
entries of type PEER_TYPE in the PSC need to be specially treated as they reflect the
peer’s wirings and sub-peers. However, the Java implementation does not bound the
number of containers in one peer; therefore, it is possible to create peers with more than
the described four containers.

The crucial component of the Peer Model implementation is the following procedure that
evaluates for each peer whether a wiring can be executed at that time (i.e., all of its
guards can be fulfilled), and in that case executes the wiring. The run of the procedure
is initiated

• on start-up of the instance,

• on adding an entry to a container of the peer,

• on adding an entry to a container of a sub-peer,

• on adding a wiring or sub-peer to the peer,

• on remove of a wiring or sub-peer from the peer,

• on remove of an entry from a container of the peer, and

• on remove of an entry from a container of a sub-peer.

89

6. Implementation

Each run of this thread consists of the following steps:

1. Execution Phase
All wirings, which are currently not locked, are tested whether they can be
executed. Note that there is no defined ordering of the wirings’ execution.

a) The wiring is locked.

b) Wiring Guards
i. The concerned sub-peers are locked.
ii. Guards concerning sub-peers are tested whether they can be fulfilled.
iii. Guards concerning the own peer’s containers are tested whether they

can be fulfilled and the entries are retrieved if so.
iv. Entries that are determined by the guards are retrieved from the

sub-peers.
v. The sub-peers are unlocked.

c) Wiring Execution
All specified services are executed in order.

i. Service Guards
A. The service guards specify which entries are to be retrieved from

the wiring’s entry collection.
B. If the service execution is specified as REQUIRED and a service

guard fails, an exception is thrown.
ii. Service Execution

The service is executed.
iii. Service Actions

Entries returned by the service and specified in the service’s action
section are put to the wiring’s entry collection.

d) Wiring Actions
The wiring’s action section defines which entries are taken from the entry
collection and dispatched to the action’s destination container or to the
entry’s destination as defined by the DEST property. If both options are
set, the DEST property overrules the action destination.

e) Entries that remain in the entry collection are dismissed.

f) The wiring is unlocked.

2. Entry Dispatching Phase
The transmission of entries is transparent whether the recipient is located on
the same instance or on another one.

90

6.2. Peer Model API

a) If the entry’s destination is not located on the current instance (i.e., the
target instance name is not equal to the current one), the entry dispatcher
calls the I/O peer to transmit the entry to the designated receiver instance.

b) Otherwise, the entry dispatcher adds the entry to the local runtime peer,
which in turn adds it (recursively) to the correct local sub-peer.

The procedure is executed single-threaded for every peer. If one of the events that trigger
the run occurs while active, the procedure gets executed immediately again after it has
finished. As soon as the guards are successfully evaluated, and the entries are composed
for the wiring execution (1.c), another thread of a thread pool takes over responsibility
for the wiring’s (and its services’) execution. Thus, the testing thread can not be blocked
by a long-running service. The thread pool can be limited according to the available
resources on the machine. Entry dispatching (2) is equally handled by particular threads
tied to the local dispatcher.

6.2 Peer Model API

This section shall briefly describe the Peer Model API, with which the use-case developer
will mainly interact. Figure 6.2 shows the package diagram with the most important
classes and interfaces of this module.

6.2.1 Initialization of the Peer Model

Listing 6.1 shows the first steps to be undertaken (e.g., within the application’s main
method) to create a Peer Model instance. Initialization requires an instance name under
which the instance is reachable for remote instances and a configuration file.
PeerModelInstance . in i tPeerModel (

" Test−P−1" , " c on f i g . p r op e r t i e s ") ;
PeerModel model = PeerModelInstance . g e t In s tance () ;

Listing 6.1: Peer Model initialization

Configurable properties are read in by the ConfigProvider class. If a value is not
specified in the config.properties file, the default value is used:

• maxThreads=16
specifies the maximum number of threads concurrently executing a wiring (i.e.,
wiring executor thread pool).

• multicastGroupId=234.56.78.90
specifies the address that is used for multicast discovery.

91

6. Implementation

Figure 6.2: Package diagram of the peermodel module

• multicastGroupPort=5123
specifies the port that is used for multicast discovery.

Each Peer Model instance consists of a runtime peer that is automatically available and
is referenced to as “∼”. Listing 6.2 shows the most important methods of the PeerModel
class.

public void s t a r t () ;
public void pause () ;
public void s tep () ;
public void resume () ;
public void c l o s e () ;

public void addEntry (Entry entry) ;

public void s ta r tLogg ing () ;
public void endLogging () ;

Listing 6.2: PeerModel class

6.2.2 State Summary

For testing purposes, the StateSummary class can be used. Listing 6.3 shows its
functions, basically comparable to assertions of unit test frameworks.

92

6.2. Peer Model API

1 StateSummary summary = new StateSummary (model) ;
2 summary . expectEmptyModel () ;
3 . . .
4 summary . update () ;
5 summary . expect (" ~ :POC" , 0) ;
6 summary . expect (" ~ :WSC" , 0) ;
7 summary . expect (" ~ :PIC" , 0) ;
8 summary . expect (" ~ :PSC" , 1) ;
9 summary . expect (" ~/P2 :POC" , 0) ;
10 summary . expect (" ~/P2 :WSC" , 0) ;
11 summary . expect (" ~/P2 : PIC" , 1) ;
12 summary . expect (" ~/P2 :PSC" , 0) ;

Listing 6.3: State summary

Lines 5-8 expect the POC, WSC and PIC containers of the runtime peer (~) to be
empty, i.e., they must not contain any entry. The PSC container contains one entry; the
following lines in the listing indeed show that the runtime peer contains one sub-peer P2.
The method expectEmptyModel in line 2 of the listing is a simplification for expecting
every container in the model to be empty.

6.2.3 Adding entries

Listing 6.4 shows how to add an entry to the Peer Model. It creates an entry of type E
with no further co-data or app-data. This entry will eventually be put into the instance’s
runtime peer (i.e., per default in its PIC).

model . addEntry (
new EntryBui lder ("E") .

des t (Address .RUNTIME_PEER_ADDRESS) .
bu i ld ()

) ;

Listing 6.4: Adding an entry

The destination address allows various options. Listing 6.5 shows constants defined in
the peermodel.Address class:

public stat ic f i n a l Address . PeerAddress RUNTIME_PEER_ADDRESS
public stat ic f i n a l Address . ContainerAddress PICAddress
public stat ic f i n a l Address . ContainerAddress POCAddress
public stat ic f i n a l Address . ContainerAddress WSCAddress
public stat ic f i n a l Address . ContainerAddress PSCAddress

Listing 6.5: Address constants

The constructors of an Address allows to specify the instance address (for remote
destinations), the peer address and the container address. There are default values
provided if a part of the address is not set. The available options are printed in
Listing 6.6. Note that in this implementation only absolute paths can be used.

93

6. Implementation

public PeerAddress (S t r ing name)
public ContainerAddress (S t r ing name)

public Address (ContainerAddress conta inerAddress)
// e v a l u a t e s to the prov ided conta iner address in the current peer

public Address (PeerAddress peerAddress)
// e v a l u a t e s to the d e f a u l t conta iner in the g iven peer

public Address (PeerAddress peerAddress , ContainerAddress conta inerAddress) {
public Address (S t r ing instanceAddress , PeerAddress peerAddress)
public Address (S t r ing instanceAddress , PeerAddress peerAddress ,

ContainerAddress conta inerAddress)

Listing 6.6: peermodel.Address class

EntryBuilder class

The EntryBuilder class creates entries using the entry’s type as constructor parameter
and the following methods for further specification:

• newFlow()
creates a new flow and sets the entry’s flow to the created one. In this implementa-
tion, the flow id is a UUID [42] by default.

• flowId(Id<?> flowId)
sets the entry’s flow to the given one. This id can be generated by subclasses of
IdGenerator, which are either LongEntryIdGenerator or UUIDEntryId-
Generator.

• copyFlowId(Entry entry)
set the flow to the one that the given entry is of.

• tts(Time tts)
defining a time-to-start (TTS property), which can either be an instance of class
AbsoluteTime specifying a Unix timestamp after which the entry is valid or an
instance of class RelativeTime specifying the time in milliseconds to pass until
the entry becomes valid.

• ttl(Time ttl)
defining a time-to-live (TTL property), either as AbsoluteTime or as Relative-
Time specifying when the entry becomes invalid.

• dest(Address dest)
specifying a remote instance, a peer, and/or a container where the entry should
eventually be put in (DEST property).

• coData(String key, Serializable value)
specifying use-case-specific co-data (i.e. user co-data)

94

6.2. Peer Model API

• appData(String key, Serializable value)
specifying use-case-specific app-data

The TTS, TTL and DEST properties are per default set to null. The event dispatcher
throws an exception if an entry with no destination is added to the model; however, if
such an entry is created in a service, the entry is dispatched to the destination container
of the wiring action link. Further methods are available to copy an entry and to retrieve
the mentioned values.

EntryType class

The EntryType contains the type of the entry. In normal entries, the type is built using
an arbitrary string. Special entry type constants exist for

• EntryType.WIRING_TYPE

• EntryType.PEER_TYPE

• EntryType.EXCEPTION_TYPE

These three special entry types are specifically handled at some occasions in the Peer
Model. For example, an entry of type WIRING_TYPE that is added at some point to a
peer’s WSC needs to be reflected properly as a wiring in the meta-model.

Entry interface and EntryImpl class

The build() method of the EntryBuilder class is called to finally create the entry
itself. It returns an object of type EntryImpl which implements the Entry interface.
The Entry interface only contains the public API for an entry, its methods are shown in
Listing 6.7.

S e r i a l i z a b l e getUserCoData (St r ing key) ;
S e r i a l i z a b l e getAppData (St r ing key) ;
EntryType getEntryType () ;

Listing 6.7: Entry interface

The EntryImpl contains additional methods for retrieving system co-data, i.e. TTS,
TTL, DEST, FLOW, and the entry’s id. As the parameters of most methods, especially
the ones in a user’s service implementation, are of type Entry, methods for system
co-data can remain hidden.

6.2.4 Adding sub-peers

Listing 6.8 shows how to add a sub-peer to a peer in the Peer Model. In this example, a
peer P2 is added as the runtime peer’s sub-peer; thus the hierarchically created address
of the new peer will be “~/P2”.

95

6. Implementation

model . addEntry (
new PeerEntryBui lder ("P2") .

des t (new Address (
Address .RUNTIME_PEER_ADDRESS,
Address . PSCAddress))

. bu i ld ()
) ;

Listing 6.8: Adding a sub-peer

The PeerEntryBuilder class creates sub-peer entries using the sub-peer’s name as
constructor parameter and the methods shown in Listing 6.9 for further specification.

public PeerEntryBui lder t t s (Time t t s) ;
public PeerEntryBui lder t t l (Time t t l) ;
public PeerEntryBui lder des t (Address des t) ;

public Entry bu i ld () ;

Listing 6.9: PeerEntryBuilder class

The entries created by the build method use EntryType.PEER_TYPE as entry type.
They need to be added to a peer’s PSC such that they are properly reflected as the peer’s
sub-peer in the meta-model. Further methods are available to copy an entry and to get
the mentioned values.

6.2.5 Adding wirings

Listing 6.10 shows how to add a wiring to a peer in the Peer Model. In this example, a
wiring W1 is added to the runtime peer. The part concerning services is postponed to
Listing 6.13 for providing better readability.
Se rv i c eBu i l d e r s e r v i c e = . . . ;

model . addEntry (
new WiringEntryBui lder ("W1") .

guard (
EntryType . getEntryType ("E") ,
Address . PICAddress ,
LinkOperation .TAKE,
LinkQuery .ALL,
LinkCount .EXACTLY_ONE,
fa l se

) .
s e r v i c e (

s e r v i c e
) .
a c t i on (

EntryType . getEntryType ("E") ,
Address . POCAddress ,
LinkOperation .TAKE,
LinkQuery .ALL,
LinkCount .EXACTLY_ONE

) .
des t (new Address (

Address .RUNTIME_PEER_ADDRESS,

96

6.2. Peer Model API

Address .WSCAddress)
) .

bu i ld ()
) ;

Listing 6.10: Adding a wiring

The WiringEntryBuilder class creates wiring entries using the wiring’s name as con-
structor parameter. All entries created by the WiringEntryBuilder use EntryType.
WIRING_TYPE as entry type. They need to be added to a peer’s WSC such that they are
properly represented as the peer’s wiring in the meta-model. Further methods (e.g., tts)
are available like in the PeerEntryBuilder. This example shows some complexity,
therefore the most relevant methods should be mentioned here:

Listing 6.11 shows the signature of the guard method, defining the type of the entry to
be taken, the source container, the link operation (TAKE, READ, NONE, TEST, DELETE,
CREATE), the link query (ALL, NONE or a filter as defined later in this section), the link
count (as defined later in this section), and whether the guard should act flow-dependently.
The affected entries are put into the wiring’s entry collection and can then be used by
the wiring’s services.

guard (
EntryType entryType ,
Address . ContainerAddress source ,
LinkOperation l inkOperat ion ,
LinkQuery linkQuery ,
LinkCount linkCount ,
boolean f lowDependent

)

Listing 6.11: Guards

Wiring W1 in Listing 6.10 thus has exactly one flow-independent guard that shall take
exactly one entry of type E from the PIC without a link query set that would limit the
appropriate entries.

The service method defines the service to be executed once the guards fire. It uses
the ServiceBuilder class that will be described later in this section.

Listing 6.12 shows the signature of the action method, defining the action to be executed
after the service has been executed. Method parameters are comparable to the ones in
the guard method. The affected entries are taken from the wiring’s entry collection
and put into the destination container. Entries left in the entry collection after the
wiring execution has been concluded (i.e., after executing the actions) are discarded.

97

6. Implementation

ac t i on (
EntryType entryType ,
Address . ContainerAddress de s t i na t i on ,
LinkOperation l inkOperat ion ,
LinkQuery linkQuery ,
LinkCount l inkCount

)

Listing 6.12: Actions

Wiring W1 in Listing 6.10 thus takes exactly one entry of type E from the entry collection
and puts it into the POC without a link query set that would limit the appropriate
entries.

ServiceBuilder class

Listing 6.13 shows the omitted parts of Listing 6.10 concerning the service definition.

Se rv i c eBu i l d e r s e r v i c e = new Se rv i c eBu i l d e r (
" S1 " ,
Se rv i ceExecut ion .REQUIRED,
Test_P_2_ServiceClass . class ,
. . . // parameters f o r s e r v i c e c l a s s c o ns t r u c t o r

) .
guard (

EntryType . getEntryType ("E") ,
LinkOperation .TAKE,
LinkQuery .ALL,
LinkCount .EXACTLY_ONE

) .
ac t i on (

EntryType . getEntryType ("E")
) ;

Listing 6.13: Adding a service

Methods of the ServiceBuilder class are comparable to the ones described for the
WiringEntryBuilder and will therefore not be described in detail. Constructor pa-
rameters are the name of the service, whether the service necessarily needs to be executed
(ServiceExecution.REQUIRED) or not (ServiceExecution.OPTIONAL), a class
defining the service method and optional user-specified constructor parameters for the
service class.

It may be the case that a wiring is executed due to its guards being fulfilled, while the
service’s guards are not. Services may thus be defined as either required or optional. If
the service execution is only optional and the requirements of the service are not fulfilled
at that point, the service is skipped, and the execution of the wiring is continued. If the
service execution is required and the requirements of the service are not fulfilled at that
point, an exception is thrown, logged in the console, and the execution of the wiring is
aborted.

98

6.2. Peer Model API

Service definition

As shown in Listing 6.13, a class implementation of the service needs to be provided by
the use case developer. Such an example service implementation is printed in Listing 6.14.
public class Test_P_2_ServiceClass implements Serv iceExe {

public Test_P_2_ServiceClass (L i s t<S e r i a l i z a b l e > parameters) {
. . .

}

@Override
public Co l l e c t i on<Entry> execute (

Co l l e c t i on<Entry> en t r i e s
) {

System . out . p r i n t l n (" s e r v i c e ") ;
return Co l l e c t i o n s . s i n g l e t o nL i s t (

EntryBui lder . s imple ("E")
) ;

}
}

Listing 6.14: Service implementation example

Once execute is called (i.e. the guards have fired), the entries for the service are given
as the method’s parameters. This example service just prints service on the console
output and returns an entry of type E to be delivered by the action section.

Link Operation

The LinkOperation class defines the operation type in which entries are retrieved by
the guard. The following constants are defined (see Section 3.5.1):

• TAKE

• READ

• NONE

• TEST

• DELETE

• CREATE

Link Query

The LinkQuery class defines which entries should be retrieved by the guard (see
Section 3.5.3), the signature of the filter method that needs to be implemented is
shown in Listing 6.15.

99

6. Implementation

public abstract class LinkQuery {
abstract boolean f i l t e r (Map<Str ing , S e r i a l i z a b l e > coData) ;

}

Listing 6.15: LinkQuery class

An example of a query is shown in Listing 6.16. In Figure 6.3 (in graphical representation
and using the Peer Model syntax) a guard using the example link query is shown.
new LinkQuery () {

@Override
protected boolean f i l t e r (Map<Str ing , S e r i a l i z a b l e > coData) {

return coData . containsKey (" answer ") && coData . get (" answer ") . equa l s (" 42 ") ;
}

}

Listing 6.16: LinkQuery example

P

P
I
C

P
O
C

WE[[answer=42]]

Figure 6.3: The according link query in the graphical representation

For simplification, LinkQuery.ALL is predefined; this filter returns true on all entries
and thus does not filter any entry.

Link Count

The LinkCount class defines how many entries should be retrieved by the guard (see
Section 3.5.2), its methods that need to be implemented are shown in Listing 6.17.
public abstract class LinkCount {

abstract int getMinimumEntries () ;
abstract int getMaximumEntries () ;

}

Listing 6.17: LinkCount class

For simplification, the following most common link counts are predefined:

• EXACTLY_ONE
returns exactly one entry.

• ALL
returns all available entries, including the possibility that zero entries are returned.

100

6.2. Peer Model API

• AT_LEAST_ONE
returns all available entries, but at least one.

• EXACTLY(n)
returns exactly n entries.

• NONE
returns exactly zero entries. As each guard requires the specification of a link count,
this predefined link count shall be used for all guards of LinkOperation.NONE.

Other link counts can be defined by use of the LinkCountBuilder and the Default-
LinkCount classes.

Wiring and WiringRuntime classes

Whenever an entry of type EntryType.WIRING_TYPE enters the WSC, an object of
class Wiring is created that serves as the representation of the wiring (cf. Section 6.3.3).
Once the procedure described in Section 6.1 determines that the wiring is executable, an
object of type WiringRuntime is created. It encapsulates the execution of the wiring,
including the service calls. It gets executed by a thread of the wiring executor thread
pool configured in Section 6.2.1.

6.2.6 Exceptions

Exceptions are another type of entries using EntryType.EXCEPTION_TYPE as entry
type. The exceptions are build using the ExceptionEntryBuilder class; a part of
this class is printed in Listing 6.18.
private stat ic f i n a l long DEFAULT_TTL = 2500L ;
private stat ic f i n a l Address DEFAULT_DEST =

new Address (Address .RUNTIME_PEER_ADDRESS, Address . PICAddress) ;

. . .

Entry except ionEntry = new EntryBui lder (EntryType .EXCEPTION_TYPE) .
coData (" entry " , entry) .
coData (" reason " , reason) .
t t l (exceptionTTL) .
des t (except ionDest) .
bu i ld () ;

Listing 6.18: Building exceptions

On three occasions, the Peer Model implementation generates exceptions:

1. on the expiration of an entry’s TTL [36, 40],

2. on an error at transmission to remote instances, or

3. if the destination of an entry is invalid.

101

6. Implementation

Exceptions have a TTL set, hence they are expected to be short-living and get removed
after some time from the model if not handled (i.e., taken by a proper wiring). They
contain the original entry, as well as a reason why this exception was generated. The
exception’s TTL and destination can be set at the original entry as shown in Listing 6.19.
They define how long the exception will be valid and where the exception shall be
delivered to.

Expired TTL handling Exceptions are generated if the TTL of an entry expires
while it has not been taken. Note that exceptions themselves have a TTL set, but no
further exception on an expired exception entry is generated.

Example. The example in Listing 6.19 adds three entries to the Peer Model (A, B,
C), each having a TTL of 1000 milliseconds set. Note that for simplification, additional
co-data like the DEST property are omitted.
model . addEntry (new EntryBui lder ("A") .

t t l (new RelativeTime (1000L)) .
bu i ld ()) ;

model . addEntry (new EntryBui lder ("B") .
t t l (new RelativeTime (1000L)) .
except ionDest (des t) .
bu i ld ()) ;

model . addEntry (new EntryBui lder ("C") .
t t l (new RelativeTime (1000L)) .
except ionDest (des t) .
exceptionTTL (new RelativeTime (5000L)) .
bu i ld ()) ;

Listing 6.19: Exception Handling Example

A has no exception-related co-data set.

B has an exception destination set.

C has exception destination and exception TTL set.

After 2000 ms, the entries A, B, and C have already been removed due to their expired
TTL. Instead of them, entries excB and excC are now in the container; there is no excA
entry as there were no exception-related properties set.

After further 2000 ms, entry excB has been removed due to its expired default TTL. For
expired exceptions, no new exception is generated; thus only excC is left.

102

6.3. Container Implementation

6.3 Container Implementation
This section deals with the containerimpl sub-project of the implementation, which
is outsourced to provide exchangeability. The interfaces are defined directly in the
peermodel module, which can in turn be implemented by different concrete implemen-
tations, for example by using a database, a space, or an in-memory data structure. The
container implementation is chosen by an entry in a property file stating a factory class
name. This class is instantiated using Java’s reflection API. Thus, it is easy to replace
the current implementation with another, perhaps more efficient one in future work.
Figure 6.4 shows the package diagram with the most important classes and interfaces of
this module.

Figure 6.4: Package diagram of the containerimpl module

The current implementation uses the in-memory standard collections of the Java Collection
Framework (JCF). This implementation mainly consists of a map having an entry type
as key and a set containing all entries of this type as the value (such a map is also known
as a multi-map). According to the set definition, it is not guaranteed that entries are
retrieved in any specific or fair order. Selectors (e.g., FIFO, priority, etc.) that would
determine a particular order of the entries to be taken (cf. [36, 40]) are not available in
this implementation.

Containers (in the broader sense) are used for

1. the peer’s containers (i.e., containers in the narrower sense), and

2. the wiring’s entry collection.

While the first type requires proper handling of TTS and TTL properties, the entry
collection must not take these into account.

For a peer’s container, an entry is not yet available for guards if their TTS has not been
reached. They are therefore for the time being put into a temporary store. An entry will
no longer be available for any guard if its TTL is expired. The proper handling of peer
containers is implemented by the DefaultContainerWithTimeProperties class.

103

6. Implementation

In the entry collection, entries with a TTS set, nevertheless, need to be handled imme-
diately. The implementation thus ignores these time properties; in effect, entries are
delivered to the destination container immediately. The receiver has to prohibit access
to the received entries as long as the entry’s TTS is not reached. The proper handling of
the entry collection container is implemented by the DefaultContainer class.

6.3.1 Link implementation and entry retrieval

The testing whether all requirements are fulfilled and the subsequent retrieval of these
entries need to take place in an atomic manner. Therefore, no other operations are
possible during that time. As the requirements may address not only one container of a
peer, during the described procedure, all other accesses to any of the peer’s containers as
well as affected sub-peers are suspended.

The basic methods, specified by the Container interface in the peermodel sub-project
are:

• boolean isAvailable(List<? extends Link> requirements)
This method tests whether all requirements can be fulfilled by (some of) the current
elements in this container. It returns false if any requirement could not be fulfilled.

• Collection<Entry> get(List<? extends Link> requirements)
This method returns elements from this container according to the requirements. If
the conditions cannot be fulfilled, an exception is thrown. Flow-dependent guards
restrict the entries retrieved to those specified by the first entry’s flow ID and to
those entries not having any flow ID set.

• Collection<Entry> testAndGet(List<? extends Link> reqs)
This method returns elements from this container according to the requirements.
The method first calls the isAvailable method and returns null if any require-
ment cannot be fulfilled.

Depending on the link operation, entries are taken (removed) or copied from the container.
For a successful execution, all requirements need to be fulfilled. Efficiency requires further
requirements to be no longer tested if any requirement is already known to be unsatisfiable.
Thus, it is suitable to use Java’s functional programming features, i.e., the Stream API
and lambda expressions [45], for the evaluation of the eligible entries. As the operation
needs to be atomic, it is not possible that any additional entries are added, or any entries
are removed while the testing takes place. If at least one of the requirements cannot be
fulfilled, no entries are read or taken from the container nor are any entries returned to
the caller.

Testing for available entries

The isAvailable method calls the EntryTester class, which evaluates whether the
conditions can be fulfilled.

104

6.3. Container Implementation

• For a TAKE, READ, TEST or DELETE link, it returns true if the number of
available entries (of the defined type) that fulfill the specified condition (i.e. link
query) is at least the minimum required number of entries. A simplification of the
procedure for the TAKE operation is shown in Listing 6.20. Note that the testing
procedure is equivalent for the READ, TEST, and DELETE operations.

1 public boolean i sAva i l a b l e (
2 Link l ink , Id<?> flowId , Map<EntryType , Set<Entry>> en t r i e s) {
3 Set<Entry> entr iesForThisType = en t r i e s . get (l i n k . getEntryType ()) ;
4 Stream<Entry> entryStream = entr iesForThisType . stream () ;
5
6 LinkQuery query = l i n k . getLinkQuery () ;
7 entryStream = entryStream . f i l t e r (query) ;
8
9 i f (l i n k . isFlowDependant ()) {
10 entryStream = entryStream . f i l t e r (entry −>
11 entry . getFlowId () == null | |
12 entry . getFlowId () . equa l s (f l owId)) ;
13 }
14
15 LinkCount count = l i n k . getLinkCount () ;
16 int minimumEntries = count . getMinimumEntries () ;
17 return entryStream . count () >= minimumEntries ;
18 }

Listing 6.20: Simplified entry testing example for the TAKE operation
(EntryTestable.Take)

A high level description of the entry testing example follows: In lines 3-4, the stream
of entries of the requested entry type is retrieved from the container. In lines 6-7,
these entries are filtered according to the link query. If the link is flow-dependent,
the entries that do not share the evaluated flow ID are filtered out (except for
entries that have no flow ID set) in lines 9-13. Finally, in lines 15-17 it is evaluated
whether the remaining entries in the stream obey the desired number of entries.
Thus, this method returns true, if the number of entries is at least as high as the
number of minimum required entries.

• For a NONE link, it returns true if the number of available entries that fulfill the
specified condition is zero.

• For a CREATE link, it always returns true.

Retrieving entries

The get method calls the EntryRetriever class, which returns entries from the
container that fulfill the conditions.

• For a TAKE link, it returns the maximum number of entries that are required,
available in the source container, and that fulfill the condition. Furthermore, they
get removed from the source container. A simplification of this procedure is shown
in Listing 6.21.

105

6. Implementation

1 public Co l l e c t i on<Entry> get (
2 Link l ink , Id<?> flowId , Map<EntryType , Set<Entry>> en t r i e s) {
3 Set<Entry> entr iesForThisType = en t r i e s . get (l i n k . getEntryType ()) ;
4 Stream<Entry> entryStream = entr iesForThisType . stream () ;
5
6 LinkQuery query = l i n k . getLinkQuery () ;
7 entryStream = entryStream . f i l t e r (query) ;
8
9 i f (l i n k . isFlowDependant ()) {
10 entryStream = entryStream . f i l t e r (entry −>
11 entry . getFlowId () == null | |
12 entry . getFlowId () . equa l s (f l owId)) ;
13 }
14
15 LinkCount count = l i n k . getLinkCount () ;
16 int minimumEntries = count . getMinimumEntries () ;
17 int maximumEntries = count . getMaximumEntries () ;
18 Lis t<Entry> gotten = entryStream . l im i t (maximumEntries) .
19 c o l l e c t (Co l l e c t o r s . t oL i s t ()) ;
20 i f (gotten . s i z e () < minimumEntries) {
21 throw new UnexpectedContainerException () ;
22 }
23
24 gotten . forEach (entr iesForThisType : : remove) ;
25
26 return gotten ;
27 }

Listing 6.21: Simplified entry retrieval example for the TAKE operation
(EntryRetrievable.Take)

A high level description of the entry testing example follows: Lines 3-13 are
equivalent to Listing 6.20 and the description given there. In lines 15-22 it is
evaluated whether the remaining entries in the stream obey the desired number of
entries. If the number of entries underrun the minimum number of required entries,
an exception is thrown. Otherwise, the stream is cut at the maximum number
of entries, such that the number of entries will be between the minimum and the
maximum requested count. Finally, just before the return of the method, in line 24
all entries that are taken from the container are indeed removed there.

• For a READ link, it returns copies of the maximum number of entries that are
required, available in the source container, and that fulfill the condition. The
original entries are kept in the source container.

• For a TEST or NONE link, it returns no elements and keeps the source container
unchanged.

• For a DELETE link, it returns no elements but removes the maximum number of
available entries that fulfill the condition from the source container.

• For a CREATE link, it creates and returns new entries keeping the contents of
the source container unchanged. The number of generated entries is the maximum

106

6.3. Container Implementation

link count, and if the link is defined as flow dependent the current flow under
observation is used for the generated entries. Other co-data are not set.

Several events triggered by the entry retrieval were described in the procedure in Sec-
tion 6.1. Thus on added or removed entries of a container, the container’s observer is
called to initiate another run of the procedure of the affected peer and of its parent peer.
Depending on the requirement guards, it may be the case that after a get operation,
the observer gets notified that zero entries were removed. This is a normal case if only
read, test or none operations were executed. Respectively, it may be the case that after
a get operation, the observer gets notified that some entries were removed, but the get
operation does not return any elements. This is a normal case if only delete operations
were executed. A guarantee that elements were removed from the container and were
also returned to the caller can only be given if at least one take operation is part of the
requirements.

6.3.2 Handling of TTS and TTL

TTS and TTL handling are achieved by using delayed executions provided by the java.
util.concurrent.Delayed interface. The java.util.concurrent.Delay-
Queue is an unbounded BlockingQueue of Delayed elements, in which an element
can only be taken when its delay has expired. Elements in this queue are ordered
according to the expiration of the Delayed element. Expiration occurs when an element’s
getDelay() method returns a value less than or equal to zero. Accesses to elements
that are not yet expired via the queue’s interface are not possible.

If an entry is transmitted to a remote instance, an absolute time (i.e., Unix timestamp)
is used for the TTS and TTL. Depending on the remote system clock it could be the
case that an entry with a TTS set becomes immediately valid; an entry with a TTL set,
however, could have already been expired, respectively.

6.3.3 Special handling of entries in PSC and WSC

Entries of type PEER_TYPE or WIRING_TYPE added to the PSC or WSC need to be
appropriately reflected in the Peer Model, as they represent sub-peers and wirings.

Wiring handling If a wiring entry is added to the WSC, this entry is transformed
into an object of class Wiring as represented by the entry’s co-data. As there is a thread
pool providing the threads for wirings’ execution (cf. Section 6.2.1), there is no need to
create wiring-specific threads at the time of the wiring’s creation. The wiring is then
added to the intended peer.

If a wiring entry is taken (removed) from the WSC, this needs to be also represented
by the meta-model. In that case, the wiring is removed from the peer; however, it if is
currently executed the execution will be completed.

107

6. Implementation

This described behavior is implemented by the WiringSpecificationContainer-
DataImpl class.

Sub-Peer handling Likewise to wiring handling, peer entries added or removed from
the PSC need to be reflected in the meta-model. On the creation of a new sub-peer, the
according threads for the peer are created (e.g., for the procedure described in Section 6.1)
and the peer is added to the sub-peer list of the parent.

On shutdown, the peer is removed from the sub-peer list of the parent and the threads
are stopped. However, the execution of wirings that are currently running is completed.
Furthermore, this shutdown procedure is done for all of the peer’s own sub-peers.

This behavior is implemented by the PeerSpecificationContainerDataImpl
class.

Example. The example code in Listing 6.22 adds a wiring W2 to the WSC of the
runtime peer that will take one entry of the PEER_TYPE (i.e., sub-peers) from the PSC.
Thus, adding this entry to the WSC needs to be reflected as a new wiring of the peer.
Furthermore, once the guard fires and the wiring gets executed, the removal of the
sub-peer needs to be reflected in the model, too.

model . addEntry (
new WiringEntryBui lder ("W2") .

guard (EntryType .PEER_TYPE, Address . PSCAddress , Link . LinkOperation .TAKE,
LinkQuery .ALL, LinkCount .EXACTLY_ONE, fa l se) .

des t (new Address (Address .RUNTIME_PEER_ADDRESS, Address .WSCAddress)) .
bu i ld ()

) ;

Listing 6.22: Example for PSC and WSC handling

6.4 Communication
This section deals with the communication sub-project of the implementation. To
allow remote communication to be replaceable, it is outsourced to this package. This
implementation uses Apache Thrift (cf. Section 5.8) for remoting. Figure 6.5 shows the
package diagram with the most important classes and interfaces of this module.

6.4.1 Instance Discovery and List

Concept

The discovery of other Peer Model instances is achieved by using multicast messaging
over UDP as described in Section 5.3.2. To simplify the further description, an instance
that is already up and running is termed A, while we call the newly joining instance B.
For simplification we assume that A is the only instance that is up and B is the second
instance joining.

108

6.4. Communication

Figure 6.5: Package diagram of the communication module

Once B comes online, it joins a multicast group (configurable via the config file, cf.
Section 6.2.1); thus it can receive messages that are sent to this group by other instances.
B sends a PMHeartbeat message to the multicast group containing the instance’s name,
address and port where the instance is running and able to receive messages. A receives
that message and temporarily saves the new instance in its cache table. As the cache
by design drops entries after a specified hold time, it is required to send a PMHeartbeat
message in a specified interval. These messages are sent to the multicast address, such
that all instances that are still part of the group receive this message. In that way, the
entry in the cache is renewed on reception of the heartbeat. If the source address or the
port contained in the message changes, the old values in the cache are replaced.

On the planned leave of an instance, a PMLeave message is sent to the multicast address
informing all members of the group of its leave. On reception of this message, the instance
is immediately removed from the cache. If an instance retires silently or the network
connection to the instance gets lost, no such message is sent. No PMHeartbeat messages
will be received any longer, eventually resulting in a drop of this instance in the cache.
Entries that are sent during that time span to an instance that is no longer reachable
may get lost if the IOPeer employs a fire-and-forget manner. In that case, the sending
instance does not get informed whether the transmission of an entry to another instance
failed or of the successful reception of the entry at the other instance.

Implementation

As the discovery protocol is required to be used among implementations in other pro-
gramming languages, it is required to describe the format of such messages more in-depth.
All of these messages are sent per UDP to the configured multicast address.

PMHeartbeat message Heartbeat messages are sent on the join of a new instance
as well as in a specified interval to inform other instances that this instance is still alive.
The period in which these messages are sent is currently defined to be 15 seconds. The
Java implementation drops all instances of which no heartbeat was received within two
periods. A simplified PMHeartbeat message originating from an instance named PM123

109

6. Implementation

running on TCP port 54321 is shown in Listing 6.23. The host of the instance can easily
be identified as the UDP packet’s sender IP address.

H PM123 54321

Listing 6.23: PMHeartbeat message

PMWelcome message Welcome messages are sent as the reply to a join of an up to
now unknown instance. A simplified PMWelcome message originating from an instance
named PM456 running on TCP port 56789 is shown in Listing 6.24. The host of the
instance can easily be identified as the UDP packet’s sender IP address.

W PM456 56789

Listing 6.24: PMWelcome message

PMLeave message Leave messages are sent on the planned discharge of an instance.
A PMLeave message originating from an instance named PM123 running on TCP port
54321 is shown in Listing 6.25. The host of the instance can easily be identified as the
UDP packet’s sender IP address. Only the instance’s name would be required for the
leave message, but in that way the same message structure is kept.

L PM123 54321

Listing 6.25: PMLeave message

Cache

We require a cache for temporarily holding the remote instances. A cache is a collection
that saves entries for a defined time and removes those entries afterward. Such a cache
collection implementation is missing in the JDK. To avoid including unnecessary big
packages such as Google Guava or Apache Commons, an own implementation was created.
Instances of a cache are constructed as shown in Listing 6.26.

Cache.<MapKey ,MapValue>createCache (
Exp i ra t i onPo l i cy po l i cy , long time , TimeUnit un i t)

Listing 6.26: Creating the cache

MapKey is the type of the key of the cache’s entries, MapValue the type of the value of
the cache’s entries. The time and the time unit specify how long an entry should be held
in the cache before it is removed again. Which elements are removed is based on the
expiration policy, which is one of the following two:

1. CREATED policy: This expiration policy specifies that entries expire – hence
get removed – the defined time after their creation.

110

6.4. Communication

2. ACCESSED policy: This expiration policy specifies that entries expire – hence
get removed – the defined time after the entry has been last accessed.

In the Peer Model implementation, we use the CREATED policy only. Once a heartbeat
message is received, the instance’s information is put into the cache. Whenever a new
heartbeat message is received from that instance, the instance entry is renewed. If no
heartbeat message is received within the defined hold time, the entry is automatically
dismissed from the cache. Any read access – i.e., when trying to find the instance to send
a Peer Model entry to – is not relevant for the expiration of the instance entry in the
cache.

The cache naturally contains methods for putting an entry to the cache, retrieving an entry
with and without the subsequent removal of this entry, the number of current elements
and the boolean query whether an element is contained in the cache. It follows as much
as possible the method names and behavior that is specified by Java’s java.util.Map
interface. All possible API calls are shown in Listing 6.27; methods behavior should be
self-explanatory except for the renewCreate method. This method is used for renewing
the entry when using the CREATED expiration policy. The expiration time will no
longer be based on the entry’s creation time but on the time of the call of this method.

public interface Cache<MapKey , MapValue> {
Exp i ra t i onPo l i cy ge tExp i ra t i onPo l i cy () ;
long getHoldTime (TimeUnit un i t) ;
void put (MapKey key , MapValue value) ;
void addCacheListener (

CacheListener<MapKey , MapValue> l i s t e n e r) ;
void removeCacheListener (

CacheListener<MapKey , MapValue> l i s t e n e r) ;
MapValue get (MapKey key) ;
MapValue remove (MapKey key) ;
int s i z e () ;
boolean conta in s (MapKey key) ;
void renewCreate (MapKey key) ;

}

Listing 6.27: Cache interface

6.4.2 Remote instance registry

In the Peer Model implementation, whenever an entry in the cache is removed due to
the expiration of its time, a listener interface (CacheListener) updates the instance
registry that holds all currently known remote instances. Listing 6.28 shows the methods
of the PMInstanceRegistry class that get executed whenever an instance joins or
retires. The remote instances are obtained by the IOPeer whenever a Peer Model entry
is going to be transmitted.

111

6. Implementation

void i n s tanceJo ined (RemoteInstance in s t ance) ;
void i n s t anceRe t i r ed (RemoteInstance in s t ance) ;
RemoteInstance ge t In s tance (S t r ing name) ;

Listing 6.28: PMInstanceRegistry class

6.4.3 Remote entry transmission

As described in Section 5.8, Thrift’s network stack consists of four layers. On these four
layers, different possible protocols and implementations can be used. For this chapter, it
remains to decide which implementation to use.

• Transport layer: In the Peer Model implementation, TSocket, which provides a
wrapper to standard sockets, is used. On the recipient side, the TServerSocket
provides a wrapper to standard server sockets.

• Protocol layer: In the Peer Model implementation, the binary TCompact-
Protocol is used. As described, not all protocols may be available in all languages
(cf. Figure 5.4). Therefore, another protocol needs to be chosen if communica-
tion with future Peer Model implementations that do not support this protocol is
necessary.

• Processor layer: As described in Section 5.8, this layer is always generated by
the compiler.

• Server layer: In the Peer Model implementation, the TThreadPoolServer is
used (cf. [24]).

The basic interface of the communication API is PMIO in the peermodel module. The
following methods are available and need to be implemented by classes:

• void entryIn(Entry)
for the local add of an entry that is received from a remote location.

• void entryOut(Entry)
for the transmission of an entry to a remote instance.

The IOPeer class implements this interface and encapsulates instance discovery, the
instance registry, the server and the client for RPC calls. Classes for the communication
are generated by the Thrift compiler from the Thrift file, shown in Listing 6.29. It extends
the basic type definitions printed in Listing 5.11 as well as the basic service definitions
printed in Listing 5.16 and combines them. For an acknowledged delivery of an entry (as
defined next in this section) a struct AckEntry is introduced, as well as an exception
type ErrorEntry generated on delivery failures.

112

6.4. Communication

namespace java peermodel . communication . t h r i f t g e n e r a t e d

s t r u c t Entry {
1 : r equ i r ed s t r i n g entryType ;
2 : r equ i r ed s t r i n g entryId ;
3 : op t i ona l i 64 t t s ;
4 : op t i ona l i 64 t t l ;
5 : op t i ona l s t r i n g f l owId ;
6 : r equ i r ed s t r i n g d e s t i n a t i on ;

7 : op t i ona l map<st r i ng , CoData> coData ;
8 : op t i ona l map<st r i ng , AppData> appData ;

9 : op t i ona l b inary sub jec tTree ; // used f o r Secure PM extens i on
10 : op t i ona l b inary c r e d e n t i a l s ; // used f o r Secure PM extens i on

}

union CoData {
1 : s t r i n g coDataString ,
2 : b inary coDataBinary ,
3 : map<st r i ng , CoData> coDataMap ,
4 : l i s t <CoData> coDataList

}

union AppData {
1 : s t r i n g appDataString ,
2 : b inary appDataBinary ,
3 : map<st r i ng , AppData> appDataMap ,
4 : l i s t <AppData> appDataList

}

s t r u c t AckEntry {
1 : r equ i r ed Entry entry ;

}

except ion ErrorEntry {
1 : r equ i r ed Entry entry ;
2 : op t i ona l s t r i n g message ;

}

s e r v i c e PMCommunication {
oneway void tryAddEntry (1 : Entry entry) ;
void addEntry (1 : Entry entry) ;
AckEntry ackAddEntry (1 : Entry entry)

throws (1 : ErrorEntry e r r o r) ;
}

Listing 6.29: Thrift file

The Thrift compiler (cf. Section 5.8.4) generates classes for AckEntry, AppData,
CoData, Entry, and ErrorEntry for the struct types as well as the class
PMCommunication for the service. The classes that are generated by the Thrift
compiler are used for communication only and are different to the ones that are used in
the Peer Model implementation. The EntryTranslator class thus provides transla-
tion of entries in both directions. Generated classes are very long, e.g. the generated
PMCommunication consists of over 2300 lines of code. In the Java implementation, the
ErrorEntry struct is mapped to a normal Java exception class.

113

6. Implementation

Remote entry delivery failure detection and handling

Messages are delivered in an at-most-once kind such that no guaranteed delivery can be
assumed. This means that a message can get lost, it is either delivered once or not at
all. It shows the highest performance with the least implementation overhead because a
fire-and-forget fashion does not need to keep track of messages. In comparison, an at-
least-once delivery or an exactly-once delivery are much more complicated to implement,
as they require keeping a state and necessarily need to provide an acknowledgment
mechanism. Problems can arise during various steps of the transmission procedure [44]:

1. Is the message sent out on the network?

2. Is the message received by the other host?

3. Is the message put into the target’s mailbox?

4. Is the message processed (in any kind) by the target?

5. Is the message processed successfully by the target?

Three types of errors can be distinguished for the transmission of entries:

• Recipient unknown (type a failure)
The transmission of the entry fails due to the recipient being unknown at the sender
side (e.g., the receiver was not detected by the discovery mechanism or has left
since).

• Transmission failed (type b failure)
The transmission of the entry fails due to a transmission error (e.g., the recipient –
although known – was not available).

• Remote Not Delivered to Recipient (type c failure) The transmission of
the entry fails due to an unknown destination on the recipient side (e.g., the peer
to which the message should be delivered to is not available).

Generally, entries could be sent to remote instances using one of the four enumerated
message delivery types (Table 6.1). Based on the delivery option, exception entries –
introduced in Section 6.2.6 – are generated on a detected delivery failure either at the
sender or the recipient instance.

1. fire and forget
When using this delivery type, it remains unknown whether the message was even
sent. It corresponds to the tryAddEntry option of the Thrift file (Listing 6.29),
which is marked with the keyword oneway. Thus there will not be any response
from a receiver, and no exception entry will be generated ever.

114

6.4. Communication

D
et
ec
t
ty
pe

a
fa
ilu

re
s

D
et
ec
t
ty
pe

b
fa
ilu

re
s

D
et
ec
t
ty
pe

c
fa
ilu

re
s

1 fire and forget no no no
2 acknowledge send yes no no
3 acknowledge transmission yes yes no
4 acknowledge delivery yes yes yes

Table 6.1: Transmission error detection

2. acknowledge send
When using this delivery type, it is guaranteed on success that the message was
sent, but not if it has successfully been transmitted or received at the recipient.
This option, however, cannot be represented by the Thrift RPC functionality.

3. acknowledge transmission
When using this delivery type, it can be guaranteed that the message has successfully
been transmitted to and received on the recipient Peer Model instance. It cannot
be guaranteed that the message was delivered to the correct peer or container at
this instance (i.e., if the recipient peer is unknown, the delivery would be successful
for the sender instance). It corresponds to the addEntry option of the Thrift file
(Listing 6.29), which is marked with the keyword void. Thus the only response
from the receiver is the successful return of the call; otherwise an exception entry
would be generated on the sender side (e.g., on timeout).

4. acknowledge delivery
Using this delivery type on each transmission either an AckEntry or an Error-
Entry is returned; guaranteeing on reception of the AckEntry that the entry was
transmitted to the correct peer receiver in the remote instance. It corresponds
to the ackAddEntry option of the Thrift file (Listing 6.29), which has a defined
return type (AckEntry) and a defined exception type that is thrown on an error
(ErrorEntry). In that case, an exception entry is generated on the recipient side.

Server

The server provides the handler for messages that reach the recipient. It is called by
Thrift once a message was received. Note, that the implementations for tryAddEntry
and addEntry are identical on this level – Thrift has already confirmed the successful
delivery in the second case, while there is no confirmation in the first case.

115

6. Implementation

@Override
public void tryAddEntry (

peermodel . communication . t h r i f t g e n e r a t e d . Entry entry)
throws TException {

IOPeer . this . addEntry (EntryTrans lator . toPMEntry (entry)) ;
}

@Override
public void addEntry (

peermodel . communication . t h r i f t g e n e r a t e d . Entry entry)
throws TException {

IOPeer . this . addEntry (EntryTrans lator . toPMEntry (entry)) ;
}

@Override
public AckEntry ackAddEntry (

peermodel . communication . t h r i f t g e n e r a t e d . Entry entry)
throws TException {

IOPeer . this . addEntry (EntryTrans lator . toPMEntry (entry)) ;
return new AckEntry (entry) ;

}

Listing 6.30: Thrift Server

Client

Whenever an entry needs to be transmitted to a remote location, the IOPeer’s transmit
method is called. Based on the destination’s instance address, the registry either returns
the remote instance information saved in the cache or cancels the operation with an
exception that the instance is unknown. Lookup errors (i.e. type a errors) can thus be
detected by using the Peer Model’s internal lookup mechanism (PMInstanceRegistry
class), even when using fire and forget in Thrift. Sub-peer entries and wiring entries can be
transmitted like other entries; note – however – that the service execution implementation
class cannot be serialized and transmitted. The service class thus needs to be within the
remote instance’s classpath to work.

6.5 Tracing
This section deals with the tracing module of the implementation. Figure 6.6 shows
the package diagram with the most important classes and interfaces of this module.

The tracing format was defined by the diploma and PhD students within the Space Based
Computing group in 2014 (see Section 3.8). Results of this workshop were included in
[21]; however, Csuk’s visualizer implementation does not run on logs following this format.
In future work, it will be necessary to update the visualizer to follow the specification and
thus be able to visualize the generated traces by the Java Peer Model implementation
following the specification.

The methods to start and stop the logging procedure were already shown in Listing 6.2.
As specified, the tracing is split into a VIL and a TIL file, which are both represented in

116

6.5. Tracing

Figure 6.6: Package diagram of the tracing module

JSON format. As described in Section 5.4.1, first-level support of JSON is still missing
in Java. In this case, we only require to generate a JSON file, not to parse one. Complex
big implementations like Jackson are therefore not required here; to provide all necessary
functionality we use the minimal-json package1, requiring only 33 kB in the current
version 0.9.5.

Visualisation Intermediate Language (VIL) file

The VIL file is generated at the end of the logging procedure, as at that time all
components that were used are known. It should be avoided to create and remove wirings
and sub-peers while tracing is active as the format does not allow any changes in the
structure during the log run. The VIL file defines the used entryTypes, services,
wirings and peers that are referenced in the TIL file. Although the visualizer does not
allow to review distributed runs over more than one instance, the VIL file also contains a
processors section defining the Peer Model instance (cf. Section 5.2).

Trace Intermediate Language (TIL) file

The TIL file contains the initial state and the events that occurred during the run. The
possible types of logged events are according to the eight enumerated event types in
Section 3.8.2.

1https://github.com/ralfstx/minimal-json

117

https://github.com/ralfstx/minimal-json

CHAPTER 7
Evaluation

This chapter first compares the Java implementation with the related work for evaluation
(Section 7.1). Section 7.2 benchmarks the implementation to show its performance
and scalability. Finally, the chapter is concluded with a description of the fulfilled
requirements introduced in Chapter 4 (Section 7.3).

7.1 Comparison with related work

A first comparison between related work was already made in Section 2.6. It evaluated
which features are missing in the evaluated frameworks, as well as in the earlier Peer Model
implementations, and thus raised related functional and non-functional requirements (cf.
FR2, FR3, NFR1). In this section, the Java implementation is compared with the related
work frameworks using the criteria that were defined there.

7.1.1 Acting on messages

In Section 2.6.1, three use cases were introduced that were complicated or even impossible
to be implemented in the evaluated frameworks. Only the Peer Model is able to act on
more than one message of various types at once, and to act when no message of a certain
type is available.

Use Case 1: A function shall be executed every time five messages of type A have been
received. Using the Peer Model, this use case only requires to define a certain link count
for the guard (Figure 7.1 and Listing 7.1; note that the call to the service is simplified).

119

7. Evaluation

P1
PIC POC

PSC WSC

W1take A [5]

S1

W1

Figure 7.1: Use case 1 in PM graphical representation

model . addEntry (
new WiringEntryBui lder ("W1") .

guard (
EntryType . getEntryType ("A") , Address . PICAddress , Link . LinkOperation .TAKE,
LinkQuery .ALL, new LinkCount .EXACTLY(5) , fa l se) .

s e r v i c e (
new WiringEntryBui lder . S e rv i c eBu i l d e r (" S1 " , . . .) .
. . .) .

des t (new Address (new Address . PeerAddress ("P1") , Address .WSCAddress)) .
bu i ld ()

) ;

Listing 7.1: Use Case 1 implementation

Use Case 2: A function shall be executed if one message of type A and one message of
type B have been received. The message of type A, however, shall not be removed after it
has been processed, i.e., as long as the message of type A is still available, the function
shall be executed each time a message of type B arrives. Using the Peer Model, this use
case only requires to utilize a READ guard for type A and a TAKE guard for type B
(Figure 7.2 and Listing 7.2; note that the call to the service is simplified).

P2
PIC POC

PSC WSC

W2
read A [1]

take B [1]

S2

W2

Figure 7.2: Use case 2 in PM graphical representation

120

7.1. Comparison with related work

model . addEntry (
new WiringEntryBui lder ("W2") .

guard (
EntryType . getEntryType ("A") , Address . PICAddress , Link . LinkOperation .READ,
LinkQuery .ALL, LinkCount .EXACTLY_ONE, fa l se) .

guard (
EntryType . getEntryType ("B") , Address . PICAddress , Link . LinkOperation .TAKE,
LinkQuery .ALL, LinkCount .EXACTLY_ONE, fa l se) .

s e r v i c e (
new WiringEntryBui lder . S e rv i c eBu i l d e r (" S2 " , . . .) .
. . .) .

des t (new Address (new Address . PeerAddress ("P2") , Address .WSCAddress)) .
bu i ld ()

) ;

Listing 7.2: Use Case 2 implementation

Use Case 3: A function shall be executed whenever no entry of type C is available.
Using the Peer Model, this use case only requires to utilize a NONE guard for type C
(Figure 7.3 and Listing 7.3; note that the call to the service is simplified). Note that
using the NONE guard alone, the framework could run into an endless loop; thus, it is
advised that at least one consuming guard is defined for every wiring.

P3
PIC POC

PSC WSC

W3
take . . .

test C [none]

S3

W3

Figure 7.3: Use case 3 in PM graphical representation

model . addEntry (
new WiringEntryBui lder ("W3") .

guard (. . . , Link . LinkOperation .TAKE, . . .) .
guard (

EntryType . getEntryType ("C") , Address . PICAddress , Link . LinkOperation .NONE,
LinkQuery .ALL, LinkCount .NONE, fa l se) .

s e r v i c e (
new WiringEntryBui lder . S e rv i c eBu i l d e r (" S3 " , . . .) .
. . .) .

des t (new Address (new Address . PeerAddress ("P3") , Address .WSCAddress)) .
bu i ld ()

) ;

Listing 7.3: Use Case 3 implementation

121

7. Evaluation

7.1.2 Interoperability

In Section 2.6.2 it was described that a central requirement of any distributed systems is
a communication mechanism. However, most of the evaluated frameworks, including the
previous Peer Model implementations, do not allow communication with instances using
other implementations. The thesis thus defined a platform-independent communication
format to allow communication between instances implemented in different languages. By
using a framework that is supported in the majority of current programming languages,
succeeding Peer Model implementations in other programming languages can thus com-
municate with each other; the Java implementation being the first one implementing the
format.

Communication with implementations in another language
Akka � vert.x/Gridlink �3 WS-BPEL � GigaSpaces XAP �~
Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �
Java implementation �3

7.1.3 Discovery

In Section 2.6.3 it was described that additionally to the communication format, there
needs to be a platform-independent way of discovery of other instances. However, not
all of the evaluated frameworks, including previous Peer Model implementations, have
included a discovery mechanism. The thesis thus defined a platform-independent protocol
for discovery of instances implemented in different languages. Succeeding Peer Model
implementations in other programming languages can thus discover each other; the Java
implementation being the first one implementing the protocol.

Akka � vert.x/Gridlink �3 WS-BPEL � GigaSpaces XAP �3

Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �
Java implementation �3

7.1.4 Dynamic exchange of logics

In Section 2.6.4 it was described that the Peer Model meta-model was not yet implemented
in any of the previous Peer Model implementations. Thus, the Java implementation is
the first implementation that includes the meta-model and thus the handling of wirings
and peers as special types of entries.

Akka �~ vert.x/Gridlink �~ WS-BPEL � GigaSpaces XAP �
Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �
Java implementation �3

122

7.2. Benchmarks

7.1.5 Remote component creation and termination

In Section 2.6.5 it was described that components (i.e., wirings and peers) cannot be
created and terminated on a remote instance in previous Peer Model implementations
due to their tight connection with the meta-model. Thus, the Java implementation is the
first implementation that allows to transmit peer and wiring entries to remote instances
like any other entry; note, however, that the service implementation needs to be available
in the classpath of the receiving instance as the service implementation is not serializable.

Akka �3 vert.x/Gridlink �~ WS-BPEL � GigaSpaces XAP �
Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �
Java implementation �3

7.1.6 Exceptions

In Section 2.6.6 it was described that exception entries shall be introduced as additonal
types of entries, especially to handle expired entries and communication failures properly.
This entry type was already supported by the Mobile Peer Model implementation.
Depending on the transmission mode (cf. Section 6.4.3), exceptions are generated at the
Java Peer Model implementation on transmission failures. The use case developer thus
needs to react adequately for exceptions to issue retries. Furthermore, exception entries
are generated on an expired TTL.

Akka �3 vert.x/Gridlink �3 WS-BPEL �3 GigaSpaces XAP �
Embedded PeerSpace � PeerSpace.NET � Mobile Peer Model �3
Java implementation �3

7.2 Benchmarks
This section presents benchmarks to show the performance and scalability of the imple-
mentation. First, a general benchmark is shown in Section 7.2.1, afterwards a benchmark
involving communication with a remote instance is shown in Section 7.2.2.

7.2.1 General benchmarks

This benchmark evaluates how fast wirings are triggered and thus shall prove scalability.
The detailed setting is described in Appendix A.1.

Tests were made for 100, 1000, and 10000 entries to be processed, i.e., the time required
from starting to add entries until the last entry had been processed by the service. In
the first benchmark, only one processing wiring was added to the Peer Model instance.
As a wiring cannot be executed again concurrently while it is already running, it was

123

7. Evaluation

furthermore tested how it influences the results if a second (identical) wiring is added.
As the current implementation tests all wirings on each incoming entry (cf. Section 6.1),
it was also tested how the results are influenced when additional 20 wirings are added to
the peer.

The results shown in Figure 7.4 are as expected. When using a second wiring, the
required time is reduced by a bit, while the additional wirings introduce some – although
no significant – penalty. By using a logarithmic scale it is clearly shown that the solution
scales.

Figure 7.4: General benchmark results

Furthermore, it was tested how long it takes until a service is first executed for a wiring
requiring only one entry. Thus the time between adding this entry to the instance until
the service execution was measured – it took around 15 ms.

7.2.2 Communication benchmarks

In extension to the first benchmark, the communication benchmarks test how fast wirings
are triggered using collaboration with a remote instance. The detailed setting is described
in Appendix A.2.

Again, tests were made for 100, 1000, and 10000 entries to be processed. They were
added on the local instance having a remote destination set, transmitted to that instance,
and processed there. The remote service generates a response entry on each processed
original entry. Its destination is set to the original instance, where it is again transmitted
to and processed there in a local responder service.

124

7.3. Fulfillment of requirements

The time that was required from starting to add entries until the last entry had been
processed by the local responder service is shown in Figure 7.5. The benchmarks were
made with two settings: on one hand using the TSimpleServer with a human-readable
TJSONProtocol, and on the other hand using the TThreadPoolServer with the
TCompactProtocol. It is shown that the latter option saves approximately 10 % of
the time. Once again, by using a logarithmic scale it is shown that the solution scales.

Figure 7.5: Communication benchmark results

7.3 Fulfillment of requirements

This section shall evaluate whether the functional and non-functional requirements as
defined in Chapter 4 are reasonably fulfilled by the Java implementation.

7.3.1 Functional requirements

Limited feature completeness (FR1): As initially defined, the Java implementation
supports the initially introduced concepts of the Peer Model as specified (cf. [38, 37, 39])
and keeps subsequently introduced concepts (e.g., variables, transactions; cf. [35, 36, 40])
open for future work.

Support for the meta-model (FR2): As the meta-model [20] already introduced new
containers (especially WSC and PSC), the specification of containers was extended to
theoretically allowing an arbitrary number of containers. Wirings and peers are treated
as special entry types on which the two mentioned designated containers react adequately,

125

7. Evaluation

such that adding and removing entries of those types are adequately reflected in the Peer
Model runtime.

Language-independent remoting (FR3): As the primary task of this thesis and the
implementation was to enable collaboration with remote instances, an appropriate format
for discovery and remoting that would even support to communicate with instances in a
vast number of other programming languages was introduced and implemented.

Execution of user-defined service code (FR4): The seperation of concern leads to
a strict decoupling of coordination logic and application logic. While the responsibility
for coordination logic lies in the Peer Model components, the use-case developer is free
and solely responsible for the application logic (i.e., business logic) by implementing
use-case-specific services.

7.3.2 Non-functional requirements

Interoperability (NFR1): Language-independent remoting requires for a interoperable
solution. The thesis evaluated several mechanisms for discovery of other instances and
the subsequent communication with them. The solution described in this thesis and
implemented in the Java implementation allows interoperability for discovery with all
platforms that support multicast addressing. For communication, Apache Thrift as the
chosen solution currently supports more than 25 different languages at various maturity
levels (cf. Figure 5.4), among them the currently most used languages. Thus, the
requirement for interoperability is fulfilled, although additional implementation effort
is required to allow communication with the earlier Peer Model implementations in
C [29, 31], C# [52], and Android [54, 58].

Extensibility / Maintainability (NFR2): The later introduced concepts (variables,
transactions, etc.; cf. [35, 36, 40]) were intentionally not included into the Java implemen-
tation for now. As described, an inclusion of these and further components to a following
version requires an extensible solution. Its extensibility and maintainability, however,
was proven as security concepts have already been included into the implementation in
the context of a PhD thesis at work. This inclusion had been further extended using a
Public Key Infrastructure (PKI) in a Public Resource Computing use case in Lettmayer ’s
diploma thesis [43]. As the mentioned PhD thesis and the diploma thesis were in work
concurrently to this diploma thesis, it was possible to influence the development of
the Java implementation based on their comments and experiences. Consequently, the
requirement for extensibility and maintainability is sufficiently fulfilled.

Modularity / Exchangeability (NFR3): As shown in Figure 6.1, components in-
tended to be replacable or that seemed suitable (i.e., communication module, container
implementation, tracing) were outsourced into their own module with interfaces defined
between the modules. This aspect simplifies their replacement, for example, for using a
database or a space as the container implementation instead. In result, the requirement
for modularity and exchangeability is reasonably fulfilled.

126

7.3. Fulfillment of requirements

Scalability (NFR4): The scalability of the solution was shown in the benchmarks. By
implementing the meta-model and enabling remote communication in the implemen-
tation, entities (i.e., wirings, peers, and whole instances) can come and go during the
instance’s runtime. Thus, the collaboration of two or more instances is feasible using this
implementation. Consequently, the solution allows for developing scalable use cases.

Simple API / Usability (NFR5): A full example for a simple use case involving
remote communication is printed in Appendix A.2. While it might seem complicated at
first glance, it has a straightforward API for coordination logic as well as for application
logic. Already during development of the Java implementation it had been used for
the implementation of a use case concerning routing mechanisms by Zischka [60] in the
context of his diploma thesis. Just like with the extending use cases (cf. NFR2), it
was thus possible to let the user’s perspective influence the development of the Java
implementation based on his comments and experiences with it.

Performance (NFR6): Reasonable performance of the Java implementation was shown
in the benchmarks. However, the primary focus was not laid on performance; evidently,
there is room for improvements at this point as has been pointed out especially at the
container implementation for entry testing and their subsequent retrieval.

127

CHAPTER 8
Conclusion

In this last chapter of the thesis, it remains open to point out possible future work
(Section 8.1) and to conclude the thesis with a summary of the work done (Section 8.2).

8.1 Future Work
The future work can be divided into three categories:

• first, the general future work in the Peer Model toolchain (Section 8.1.1),

• second, issues remaining open for this thesis to smoothly integrate with the tools
of the toolchain that are already available (Section 8.1.2), and

• finally, improvements in the implementation itself (Section 8.1.3).

8.1.1 Peer Model toolchain

Some years have passed since the original publication of the Peer Model in [38], and
the Peer Model kept evolving during this time span. Referring to the honeycomb image
introduced in [37], it can be seen which tools are planned but not yet implemented for the
Peer Model toolchain. General future work in the Peer Model area includes the missing
tools shown in white in the honeycomb picture in Figure 2.1. These are the (formal)
verification of a Peer Model, a graphical modeling tool and a simulation tool. Other tools
are currently in development or have been finished during the writing of this thesis.

8.1.2 Integration issues

For smooth integration of the implementation into the toolchain, some issues arise. The
visual monitoring software developed by Csuk [21] is currently able to provide post-
mortem analysis of one instance’s trace only. With the introduction of dynamics and

129

8. Conclusion

the Peer Model’s meta-model, the VIL file structure needs refinement, and the visualizer
needs to correctly treat wirings and peers that come and go during runtime. As now
communication between different instances is defined and possible, the tool needs to be
extended to allow the inclusion of traces of more than one instance. Furthermore, it
would ease debugging if it would be possible to include not only post-mortem analysis
but also enable live monitoring.

Further open issues are the integration of this implementation with other tools, e.g.,
the code generator and the PM-DSL. Those two tools have been developed quite some
time before this thesis; thus they need to be enabled to generate sources for the Java
implementation.

8.1.3 Implementation-specific improvements

Since the thesis and the implementation focused on enabling communication between Peer
Model instances, the implementation is not as performant as it could be. Improvements
on these aspects, for example, the implementation of a more performant container
API or using a database, or a space instead, remain as future work. For this reason,
extendability and exchangeability were one of the requirements; especially with containers,
communication and tracing having been outsourced to their own modules. Currently,
each operation that affects any entry in any container of a peer leads to testing of all of
its wirings whether they can be executed now or not (depending on whether the guards
are fulfilled). A suggested improvement would be an intelligent algorithm that decides
which wirings are going to be tested by taking into account that the ability to fulfill
most of the wirings will probably not be affected by the insertion of an additional entry
in a container. A solution to this issue could be the use of a tree. As a result of the
general benchmarks (cf. Figure 7.4), the wiring execution could be extended to allow
concurrent executions of the same wiring. Furthermore, an improved version could a
priori exclude flows to be evaluated depending on the known current availability of entries
in the containers.

As the time in which this thesis and the implementation were written was longer than
usual diploma theses require, the Peer Model has further evolved. New components,
such as transactions, variables, and assertions [35, 36, 40], were newly introduced but
have not been considered in this work. Further work will be required to extend the Java
implementation to address these concepts.

Exception handling has been introduced in this thesis for TTL handling and communica-
tion failures; still missing is the fail-safe handling of those exception entries including the
development of patterns to handle them.

Addressing has been introduced in two forms – URI addressing and naming. While the
naming approach that was followed is sufficient for local networks, WAN support will
necessarily require URI addressing. Therefore, remoting and the I/O peer will require
additional work to allow enterprise use cases in the WAN.

130

8.2. Summary

The Secure Peer Space, implementing the features that were introduced in [20] only by
means of original Peer Model concepts, is already in development. Furthermore, the Java
implementation has already been extended by Lettmayer [43] to use a secured protocol
between the instances. To be able to change the Thrift protocols on demand, they shall
be configurable – also when keeping in mind that some protocols may not be available in
various Thrift implementations.

Further improvements may stem from future use cases that will utilize this implementa-
tion.

8.2 Summary
This thesis introduced the enterprise implementation of the Peer Model in Java. It
enables scalable collaboration by introducing platform-independent communication for
the Peer Model. Thus, this thesis evaluated different approaches for the naming and
addressing of instances. It introduced a particular discovery mechanism for Peer Model
instances in the local network. Further networking with instances outside the local
network was intentionally left out and remains as future work. Several serialization and
communication formats were evaluated to find suitable ones that support a vast number
of different programming languages and still show proper performance.

With the introduced discovery mechanism and the communication format decided, this
implementation now allows for building scalable solutions where the involved Peer Model
instances do not necessarily need to use this Java implementation. While other imple-
mentations of the Peer Model already exist in C, C#, and Android, this implementation
is also the first one that supports the meta-model. Thus, the implementation allows
to dynamically add and remove entities during runtime (i.e., wirings, peers) without
consequences on the functionality. Furthermore, by utilizing the Peer Model’s discovery
mechanism, instances can join and leave during the runtime of a system of connected Peer
Model instances. As the specification of the Peer Model has continually evolved during
the last few years, some of the later introduced concepts, such as variables, assertions,
and transactions [35, 36, 40], have not yet been considered for the Java implementation.
Their inclusion into this implementation remains open as future work.

Previous theses in the Peer Model area compared the model with similar approaches (e.g.,
the Actor Model) as suitable for their use cases. Thus, this thesis puts the primary focus
of evaluation on communication. As just mentioned, various tools and implementations
in the Peer Model environment have already been finished, are currently in work, or are
planned. They will all integrate eventually into a toolchain. Continuous evaluation of the
implementation was possible due to various diploma theses and one PhD thesis already
using this implementation for their use cases. Therefore, several helpful comments and
feature requests could successfully influence this work during the implementation phase.

131

APPENDIX A
Benchmark settings

In this appendix, details about the benchmarks in Section 7.2 are shown. The classification
made there is kept, thus the general benchmarks’ settings can be found in Section A.1,
while the communication benchmarks are covered in Section A.2.

For each benchmark, 10 test rounds were executed. Since the variances of the results
were not significant, the mean value was calculated and used for the comparison charts.
The following test environment was used:

CPU: Intel Core i7-7500U Dual Core 2.7-3.5 GHz
RAM: 8 GB
OS: Windows 10
Java 8

First of all, the ServiceHelper class that is used throughout the benchmarks needs
to be introduced (Listing A.1). Its startXXX methods are called on the start of the
according benchmark to set the start time stamp. The other methods are called from
the service implementations on processing an entry. Once the last entry to be processed
is handled, the deviation of the current time to the start time stamp determines the
required time for that benchmark.

1 public class Serv i c eHe lpe r implements S e r i a l i z a b l e {
2
3 private long f i r s tT r i g g e r i n gS t a r t e dAt ;
4
5 private long bulkTr igger ingStar tedAt ;
6 private int expec tedEntr i e s ;
7 private f i n a l AtomicInteger s e enEnt r i e s ;
8 private f i n a l AtomicInteger t r i g g e r e d ;
9
10 Se rv i c eHe lpe r () {

133

A. Benchmark settings

11 this . s e enEnt r i e s = new AtomicInteger (0) ;
12 this . t r i g g e r e d = new AtomicInteger (0) ;
13 }
14
15 public void s t a r tF i r s tT r i g g e r i n g () {
16 this . f i r s tT r i g g e r i n gS t a r t e dAt = System . nanoTime () ;
17 }
18
19 public void endF i r s tTr i gge r ing () {
20 long r equ i r ed = System . nanoTime () − f i r s tT r i g g e r i n gS t a r t e dAt ;
21 System . out . p r i n t l n (" r equ i r ed ␣ time : " + requ i r ed / 1000000) ;
22 }
23
24 public void s t a r tBu lkTr i gge r ing (int expec tedEntr i e s) {
25 this . expec tedEntr i e s = expec tedEntr i e s ;
26 this . bu lkTr igger ingStar tedAt = System . nanoTime () ;
27 }
28
29 public void updateBulkTrigger ing (int s i z e) {
30 t r i g g e r e d . incrementAndGet () ;
31 int cu r r en tEnt r i e s = seenEnt r i e s . addAndGet (s i z e) ;
32 i f (cu r r en tEnt r i e s == expectedEntr i e s) {
33 long r equ i r ed = System . nanoTime () − bulkTr igger ingStar tedAt ;
34 System . out . p r i n t l n (" r equ i r ed ␣ time : ␣ " + requ i r ed / 1000000) ;
35 System . out . p r i n t l n (" s e r v i c e ␣ t r i g g e r e d : ␣ " + t r i g g e r e d . get ()) ;
36 }
37 }
38 }

Listing A.1: ServiceHelper class

A.1 General benchmarks
For the general benchmarks, the setting is shown in Figure A.1. W1 and S1 are used
for the first benchmark that evaluates how long it takes until the service is executed
(Section A.1.1). W2 and S2 are used for the second benchmark that evaluates how long
it takes until n entries of type request were processed (Section A.1.2).

Both benchmarks use the class Benchmark1 that is printed in Listing A.2. It prepares
the structure that was shown in Figure A.1. It thus adds P1 to the instance’s PSC and
afterwards the wirings W1 and W2 to P1 ’s WSC. Additional (benchmark-specific) code
that is inserted in this class as well as the services’ implementations are printed at the
according benchmark.

1 public class Benchmark1 {
2
3 private stat ic f i n a l int N = . . . ;
4
5 public stat ic void main (St r ing [] a rgs) throws Inte r ruptedExcept ion {
6 PeerModelInstance . in i tPeerModel ("Benchmark1 " , " c on f i g . p r op e r t i e s ") ;
7 PeerModel model = PeerModelInstance . g e t In s tance () ;
8 model . s t a r t () ;
9
10 model . addEntry (
11 new PeerEntryBui lder ("P1") .
12 dest (new Address (Address .RUNTIME_PEER_ADDRESS, Address . PSCAddress)) .

134

A.1. General benchmarks

Figure A.1: General benchmarks setting

13 bu i ld ()
14) ;
15
16 Se rv i c eHe lpe r s e r v i c eHe l p e r = new Serv i c eHe lpe r () ;
17 List<S e r i a l i z a b l e > se rv i c eArg s = Co l l e c t i o n s . s i n g l e t o nL i s t (s e r v i c eHe l p e r) ;
18
19 model . addEntry (
20 new WiringEntryBui lder ("W1") .
21 guard (EntryType . getEntryType (" startToken ") , Address . PICAddress ,
22 Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .AT_LEAST_ONE, fa l se) .
23 s e r v i c e (
24 new WiringEntryBui lder . S e rv i c eBu i l d e r (" S1 " , Se rv i c e1 . class , s e rv i c eArg s) .
25 guard (EntryType . getEntryType (" startToken ") , Link . LinkOperation .TAKE,
26 LinkQuery .ALL, LinkCount .AT_LEAST_ONE)
27) .
28 dest (new Address (new Address . PeerAddress ("P1") , Address .WSCAddress)) .
29 bu i ld ()
30) ;
31
32 model . addEntry (
33 new WiringEntryBui lder ("W2") .
34 guard (EntryType . getEntryType (" r eque s t ") , Address . PICAddress ,
35 Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .EXACTLY_ONE, fa l se) .
36 s e r v i c e (
37 new WiringEntryBui lder . S e rv i c eBu i l d e r (" S2 " , Se rv i c e2 . class , s e rv i c eArg s) .

135

A. Benchmark settings

38 guard (EntryType . getEntryType (" r eque s t ") , Link . LinkOperation .TAKE,
39 LinkQuery .ALL, LinkCount .EXACTLY_ONE)
40) .
41 dest (new Address (new Address . PeerAddress ("P1") , Address .WSCAddress)) .
42 bu i ld ()
43) ;
44
45 // see next s e c t i o n s
46
47 }
48 }

Listing A.2: Benchmark1 class

A.1.1 Benchmark 1: First triggering of a wiring

The first benchmark (implemented by use of W1 and S1) evaluates how long it takes
until the service has processed an entry.

Coordination logic

The code section of Listing A.3 is inserted into line 45 of Listing A.2. Before the entry is
added to the instance, the service helper is called to save the start time stamp.

1 s e r v i c eHe l p e r . s t a r tF i r s tT r i g g e r i n g () ;
2 model . addEntry (
3 new EntryBui lder (" startToken ") .
4 des t (new Address . PeerAddress ("P1")) .
5 bu i ld ()
6) ;

Listing A.3: Additional source code for benchmark 1 in Benchmark1 class

Application logic

Listing A.4 shows the implementation of S1. As soon as the service is called, the service
helper is called to determine the end time stamp, and thus to calculate the time that
was required until the service had been called.

1 public class Se rv i c e1 implements Serv iceExe {
2
3 private f i n a l Serv i c eHe lpe r s e r v i c eHe l p e r ;
4
5 public Se rv i c e1 (Lis t<S e r i a l i z a b l e > se rv i c eArg s) {
6 this . s e r v i c eHe l p e r = (Se rv i c eHe lpe r) s e rv i c eArg s . get (0) ;
7 }
8
9 @Override
10 public Co l l e c t i on<Entry> execute (Co l l e c t i on<Entry> en t r i e s) {
11 s e r v i c eHe l p e r . endF i r s tTr i gge r i ng () ;
12 return null ;
13 }
14 }

Listing A.4: Service1 class

136

A.1. General benchmarks

A.1.2 Benchmark 2: Processing n entries

The second benchmark (implemented by use of W2 and S2) evaluates how long it takes
until n entries have been processed by the service, i.e., how long it takes until the wiring
is executed n times for the entries.

Coordination logic

Benchmark 2a. This benchmark evaluates the processing of n entries using one wiring.
The code section of Listing A.5 is inserted into line 45 of Listing A.2. Before the entries
are added to the instance, the service helper is called to save the start time stamp.

1 s e r v i c eHe l p e r . s t a r tBu lkTr i gge r ing (N) ;
2 for (int i = 0 ; i < N; i++) {
3 model . addEntry (
4 new EntryBui lder (" r eque s t ") .
5 des t (new Address . PeerAddress ("P1")) .
6 bu i ld ()
7) ;
8 }

Listing A.5: Additional source code for benchmark 2a–2c in Benchmark1 class

Benchmark 2b. This benchmark evaluates the processing of n entries using two
identical wirings. The code section of Listing A.6 adds another adequate wiring; it
is inserted into line 45 of Listing A.2. Furthermore, the original Listing A.5 is added
afterwards.

1 model . addEntry (
2 new WiringEntryBui lder ("W3") .
3 guard (EntryType . getEntryType (" r eque s t ") , Address . PICAddress ,
4 Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .EXACTLY_ONE, fa l se) .
5 s e r v i c e (
6 new WiringEntryBui lder . S e rv i c eBu i l d e r (" S3 " , Se rv i c e2 . class , s e rv i c eArg s) .
7 guard (EntryType . getEntryType (" r eque s t ") , Link . LinkOperation .TAKE,
8 LinkQuery .ALL, LinkCount .EXACTLY_ONE)
9) .
10 dest (new Address (new Address . PeerAddress ("P1") , Address .WSCAddress)) .
11 bu i ld ()
12) ;

Listing A.6: Additional source code for benchmark 2b in Benchmark1 class

Benchmark 2c. This benchmark evaluates the processing of n entries using one wiring
while 20 other wirings are active on the peer. The code section of Listing A.7 adds the
additional wirings; it is inserted into line 45 of Listing A.2. Furthermore, the original
Listing A.5 is added afterwards.

1 for (int i = 0 ; i < 20 ; i++) {
2 model . addEntry (
3 new WiringEntryBui lder ("V" + i) .
4 guard (EntryType . getEntryType ("A") , Address . PICAddress ,
5 Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .EXACTLY_ONE, fa l se) .

137

A. Benchmark settings

6 dest (new Address (new Address . PeerAddress ("P1") , Address .WSCAddress)) .
7 bu i ld ()
8) ;
9 }

Listing A.7: Additional source code for benchmark 2c in Benchmark1 class

Application logic

Listing A.8 shows the implementation of S2 (and S3 for benchmark 2b). For each
processed entry, the service helper is called to increment the number of processed entries.
Once the number of processed entries reaches n, the service helper determines the end
time stamp and calculates the time since the start (cf. lines 32ff of Listing A.1).

1 public class Se rv i c e2 implements Serv iceExe {
2
3 private f i n a l Serv i c eHe lpe r s e r v i c eHe l p e r ;
4
5 public Se rv i c e2 (Lis t<S e r i a l i z a b l e > se rv i c eArg s) {
6 this . s e r v i c eHe l p e r = (Se rv i c eHe lpe r) s e rv i c eArg s . get (0) ;
7 }
8
9 @Override
10 public Co l l e c t i on<Entry> execute (Co l l e c t i on<Entry> en t r i e s) {
11 s e r v i c eHe l p e r . updateBulkTrigger ing (e n t r i e s . s i z e ()) ;
12 return null ;
13 }
14 }

Listing A.8: Service2 class

A.2 Communication benchmarks
For the communication benchmarks, the setting is shown in Figure A.2. Both instances
are executed on the same machine, thus typical issues in networking such as latencies
do not need to be taken into account. It utilizes the communication mechanisms by
sending entries of type request to a remote instance, processing them there and
replying with entries of type response to the original instance. Section A.2.1 shows the
implementation of the local instance; Section A.2.2 the remote instance, respectively. The
benchmark evaluates how long it takes until n entries of type response were received
and processed at the sender instance.

A.2.1 Local instance

This section shows coordination and application logic of the local instance.

Coordination logic

Listing A.9 shows the coordination logic implementation of the local instance. It thus
adds P3 to the instance’s PSC and afterwards the wiring W3 to P3 ’s WSC. Before the

138

A.2. Communication benchmarks

Figure A.2: Communication benchmarks setting

139

A. Benchmark settings

entries are added to the instance, the service helper is called to save the start time stamp
(line 33). Subsequently, n entries are added to be transmitted to the remote instance
(line 35ff).

1 public class Benchmark3A {
2 private stat ic f i n a l int N = . . . ;
3
4 public stat ic void main (St r ing [] a rgs) throws Inte r ruptedExcept ion {
5 PeerModelInstance . in i tPeerModel (" l o c a l " , " c on f i g . p r op e r t i e s ") ;
6 PeerModel model = PeerModelInstance . g e t In s tance () ;
7 model . s t a r t () ;
8
9 model . addEntry (
10 new PeerEntryBui lder ("P3") .
11 dest (new Address (Address .RUNTIME_PEER_ADDRESS, Address . PSCAddress)) .
12 bu i ld ()
13) ;
14
15 Se rv i c eHe lpe r s e r v i c eHe l p e r = new Serv i c eHe lpe r () ;
16 Lis t<S e r i a l i z a b l e > se rv i c eArg s = Co l l e c t i o n s . s i n g l e t o nL i s t (s e r v i c eHe l p e r) ;
17
18 model . addEntry (
19 new WiringEntryBui lder ("W3") .
20 guard (EntryType . getEntryType (" re sponse ") , Address . PICAddress ,
21 Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .AT_LEAST_ONE, fa l se) .
22 s e r v i c e (
23 new WiringEntryBui lder . S e rv i c eBu i l d e r (" S3 " , Se rv i c e2 . class , s e rv i c eArg s) .
24 guard (EntryType . getEntryType (" re sponse ") , Link . LinkOperation .TAKE,
25 LinkQuery .ALL, LinkCount .AT_LEAST_ONE)
26) .
27 dest (new Address (new Address . PeerAddress ("P3") , Address .WSCAddress)) .
28 bu i ld ()
29) ;
30
31 Thread . s l e e p (2000) ;
32
33 s e r v i c eHe l p e r . s t a r tBu lkTr i gge r ing (N) ;
34 for (int i = 0 ; i < N; i++) {
35 model . addEntry (
36 new EntryBui lder (" r eque s t ") .
37 dest (new Address (" remote " , new Address . PeerAddress ("P4") ,
38 Address . PICAddress)) .
39 bu i ld ()) ;
40 }
41 }
42 }

Listing A.9: Benchmark3A class – representing the local instance

In contrast to the guard of W2 (TAKE 1 request, cf. Figure A.1), the guard of W3
was changed (TAKE ≥ 1 response, cf. Figure A.2) to test how often the wiring is
triggered. It was shown that for 100, 1000, and 10000 entries in evaluation, the service is
executed for ~ 80 % times of the entry count, i.e., that sometimes indeed W3 is executed
with more than one entry. These results are, however, not significant and were thus not
included in the main text.

140

A.2. Communication benchmarks

Application logic

The service implementation S3 is reused from the general benchmark’s Service2 class
(Listing A.8). There is no difference in its implementation except for working on entries
of type response instead of request. However, the actual entry is not used in the
service itself as it just counts the processed entries.

A.2.2 Remote instance

This section shows coordination and application logic of the remote instance.

Coordination logic

Listing A.10 shows the coordination logic implementation of the remote instance. It thus
adds P4 to the instance’s PSC and afterwards the wiring W4 to P4 ’s WSC.

1 public class Benchmark3B {
2
3 public stat ic void main (St r ing [] a rgs) throws Inte r ruptedExcept ion {
4 PeerModelInstance . in i tPeerModel (" remote " , " c on f i g . p r op e r t i e s ") ;
5 PeerModel model = PeerModelInstance . g e t In s tance () ;
6 model . s t a r t () ;
7
8 model . addEntry (
9 new PeerEntryBui lder ("P4") .
10 dest (new Address (Address .RUNTIME_PEER_ADDRESS, Address . PSCAddress)) .
11 bu i ld ()
12) ;
13
14 model . addEntry (
15 new WiringEntryBui lder ("W4") .
16 guard (EntryType . getEntryType (" r eque s t ") , Address . PICAddress ,
17 Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .EXACTLY_ONE, fa l se) .
18 s e r v i c e (
19 new WiringEntryBui lder . S e rv i c eBu i l d e r (" S4 " , Se rv i c e4 . class) .
20 guard (EntryType . getEntryType (" r eque s t ") ,
21 Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .EXACTLY_ONE) .
22 ac t i on (EntryType . getEntryType (" re sponse "))
23) .
24 ac t i on (EntryType . getEntryType (" re sponse ") , Address . POCAddress ,
25 Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .ALL) .
26 dest (new Address (new Address . PeerAddress ("P4") , Address .WSCAddress)) .
27 bu i ld ()
28) ;
29 }
30 }

Listing A.10: Benchmark3B class – representing the remote instance

Application logic

Listing A.11 shows the implementation of S4. For each call, an entry of type response
is created and its destination set to the local instance.

141

A. Benchmark settings

1 public class Se rv i c e4 implements Serv iceExe {
2 @Override
3 public Co l l e c t i on<Entry> execute (Co l l e c t i on<Entry> en t r i e s) {
4 return Co l l e c t i o n s . s i n g l e t on (
5 new EntryBui lder (" re sponse ") .
6 des t (new Address (" l o c a l " , new Address . PeerAddress ("P3") ,
7 Address . PICAddress)) .
8 bu i ld ()) ;
9 }
10 }

Listing A.11: Service4 class

142

Listings

5.1 Peer Reference . 51
5.2 Sub-Peer Reference . 52
5.3 Container Reference . 52
5.4 XML: Example Entry . 60
5.5 XML: According Schema . 60
5.6 JSON: Example Entry . 62
5.7 JSON: According Schema . 62
5.8 YAML: Example Entry . 64
5.9 Java Serializable: Example . 65
5.10 Protocol Buffers: Schema Example . 67
5.11 Thrift: Schema Example . 68
5.12 Avro: Schema Example . 69
5.13 gRPC service example . 73
5.14 Thrift: Optional field with default value 78
5.15 Thrift: Namespace definition . 79
5.16 Thrift: Service definition . 80
5.17 Thrift: Struct for binary format comparison 82
5.18 Thrift: Compiler call . 84
5.19 Thrift: Client . 85
5.20 Thrift: Server . 85
5.21 Thrift: Interface . 85
6.1 Peer Model initialization . 91
6.2 PeerModel class . 92
6.3 State summary . 93
6.4 Adding an entry . 93
6.5 Address constants . 93
6.6 Address class . 94
6.7 Entry interface . 95
6.8 Adding a sub-peer . 96
6.9 PeerEntryBuilder class . 96
6.10 Adding a wiring . 96
6.11 Guards . 97
6.12 Actions . 98

143

6.13 Adding a service . 98
6.14 Service implementation example . 99
6.15 LinkQuery class . 100
6.16 LinkQuery example . 100
6.17 LinkCount class . 100
6.18 Building exceptions . 101
6.19 Exception Handling Example . 102
6.20 Entry testing example . 105
6.21 Entry retrieval example . 106
6.22 PSC and WSC handling . 108
6.23 PMHeartbeat message . 110
6.24 PMWelcome message . 110
6.25 PMLeave message . 110
6.26 Creating the cache . 110
6.27 Cache interface . 111
6.28 PMInstanceRegistry class . 112
6.29 Thrift file . 113
6.30 Thrift Server . 116
7.1 Use Case 1 implementation . 120
7.2 Use Case 2 implementation . 121
7.3 Use Case 3 implementation . 121
A.1 ServiceHelper class . 133
A.2 Benchmark1 class . 134
A.3 Benchmark1 class . 136
A.4 Service1 class . 136
A.5 Benchmark1 class . 137
A.6 Benchmark1 class . 137
A.7 Benchmark1 class . 137
A.8 Service2 class . 138
A.9 Benchmark3A class . 140
A.10 Benchmark3B class . 141
A.11 Service4 class . 142

144

List of Figures

1.1 Middleware layer . 2
1.2 Overview of the Peer Model Toolchain. 2

2.1 Extended Peer Model Toolchain . 8
2.2 Actor Model: Actor behavior at message processing 11
2.3 Actor Model: Actor timeline . 12
2.4 Akka: Remote child actors . 14
2.5 Gridlink: Nodes and modules . 16
2.6 Gridlink: Modules, roles, and services . 17
2.7 WS-BPEL PartnerLink overview . 18

3.1 An entry . 26
3.2 A simplified entry . 26
3.3 A peer having two containers an a sub-peer 28
3.4 A peer having a wiring . 29
3.5 A peer with a wiring that incorporates a service 30
3.6 Contents of the containers before the guard execution 31
3.7 Contents of the containers after the take guard execution 31
3.8 Contents of the containers after the read guard execution 32
3.9 Contents of the containers after the delete guard execution 32
3.10 Contents of the containers after the test guard execution 32
3.11 Some examples with no entries in the source container 34
3.12 Some examples with one entry in the source container 35
3.13 Some examples with four entries in the source container 36
3.14 Extended meta-model example . 38
3.15 Workflow for post-mortem visual monitoring of a run 39

5.1 Network Legend . 48
5.2 Reachable hosts by using URI addressing 48
5.3 Reachable Hosts by using Naming and Broadcast Discovery 50
5.4 Reachable Hosts by using Naming and Multicast Discovery 50
5.5 IGMPv3 Multicast messages . 52
5.6 IP Stack . 53
5.7 Detection of a joining instance . 54

145

5.8 Option 1 for the detection of an existing instance 54
5.9 Option 2 for the detection of an existing instance 55
5.10 Option 3 for the detection of an existing instance 55
5.11 Planned leave of an instance . 56
5.12 Unplanned leave of an instance . 56
5.13 Protocol Buffers implementation steps . 67
5.14 Thrift implementation steps . 68
5.15 Avro implementation steps . 70
5.16 Thrift Network Stack . 80
5.17 Thrift: Binary Protocol Encoding . 82
5.18 Thrift: Compact Protocol Encoding . 83

6.1 Modules and their relations within the Java implementation 88
6.2 Package diagram of the peermodel module 92
6.3 The according link query in the graphical representation 100
6.4 Package diagram of the containerimpl module 103
6.5 Package diagram of the communication module 109
6.6 Package diagram of the tracing module 117

7.1 Use case 1 in PM graphical representation 120
7.2 Use case 2 in PM graphical representation 120
7.3 Use case 3 in PM graphical representation 121
7.4 General benchmark results . 124
7.5 Communication benchmark results . 125

A.1 General benchmarks setting . 135
A.2 Communication benchmarks setting . 139

146

List of Tables

5.1 Comparison of formats . 59
5.2 Evaluation Results . 75
5.3 Evaluation Results . 76
5.4 Thrift: Protocol support . 84

6.1 Transmission error detection . 115

147

Glossary

API Application Programming Interface. 3, 9, 15, 16, 45, 59, 61, 62, 65, 89, 91, 95, 103,
112, 127, 150

App-Data Application Data. 25, 27, 33, 76, 93, 95

Co-Data Coordination Data. 25, 27, 33, 37, 76, 93–95, 102, 107, 149, 150

CPN Colored Petri Nets. 7, 8

CPU Central Processing Unit. 11

DEST Destination Property (co-data). 27, 37, 90, 94, 95, 102

DOM Document Object Model. 59, 61

FIFO First In First Out. 15

FLOW Flow Property (co-data). 27, 33, 37, 95

ICMP Internet Control Message Protocol. 52

IDL Interface Description Language. 68, 69, 74, 77, 78

IETF Internet Engineering Task Force. 62

IGMP Internet Group Management Protocol. 52, 53, 56

IP Internet Protocol. 47–49, 52, 53, 55, 57, 58, 110

JAXB Java Architecture for XML Binding. 59

JCF Java Collection Framework. 87, 103

JDK Java Development Kit. 60, 110, 149

JEP JDK Enhancement Proposal. 61

149

JSON JavaScript Object Notation. 17, 38, 58, 59, 61, 62, 64, 69, 74, 75, 117

JSR Java Specification Request. 59, 61, 62

JVM Java Virtual Machine. 13, 14, 16

MLD Multicast Listener Discovery. 52

PIC Peer In Container. 28, 89, 93, 97

PKI Public Key Infrastructure. 10

PM-DSL Peer Model - Domain Specific Language. 2, 9, 39, 40, 130

PMDP Peer Model Discovery Protocol. 53

POC Peer Out Container. 28, 89, 93, 98

PSC Peer Specification Container. 37, 38, 89, 93, 96, 107, 108, 125

REST Representational State Transfer. 73

RFC Request for Comments. 52, 62

RMI Remote Method Invocation. 73, 76

RPC Remote Procedure Call. 66, 72–74, 76, 77, 112, 115

RTP Runtime Peer. 3, 37

SAX Simple API for XML. 59

StAX Streaming API for XML. 59, 61

TCP Transmission Control Protocol. 12, 53, 58, 110

TIL Trace Intermediate Language. 39, 40, 116, 117

TTL Time To Live Property (co-data). 4, 20, 23, 24, 27, 41, 43, 94, 95, 101–103, 107,
123, 130

TTS Time To Start Property (co-data). 4, 27, 41, 43, 94, 95, 103, 104, 107

UDP User Datagram Protocol. 55, 108–110

URI Uniform Resource Identifier. 13, 47, 49–51, 130

UUID Universally Unique Identifier. 26, 27, 94

150

VIL Visualisation Intermediate Language. 39, 40, 116, 117, 130

W3C World Wide Web Consortium. 59

WAN Wide Area Network. 48, 130

WSC Wiring Specification Container. 37, 38, 89, 93, 95, 97, 101, 107, 108, 125

WSDL Web Services Description Language. 18, 19, 74

XML Extensible Markup Language. 18, 58–62, 64, 74–76, 149–151

XSD XML Schema. 59, 60

XVSM eXtensible Virtual Shared Memory. 31, 74, 87

YAML YAML Ain’t Markup Language (originally ”Yet Another Markup Language“).
58, 64

151

Bibliography

[1] Protocol Buffers Documentation. https://developers.google.com/
protocol-buffers/. [online, last accessed on 2019-01-29].

[2] vert.x Core Manual. http://vertx.io/docs/vertx-core/java/. [online,
last accessed on 2019-01-29].

[3] The JSON Data Interchange Format. Technical report, ECMA Interna-
tional, 2013. http://www.ecma-international.org/publications/
files/ECMA-ST/ECMA-404.pdf. [online, last accessed on 2019-01-29].

[4] Hazelcast IMDG Reference Manual. Technical report, Hazelcast, Inc., 2018. http:
//docs.hazelcast.org/docs/3.10/manual/pdf/index.pdf. [online, last
accessed on 2019-01-29].

[5] Aditya Agarwal, Mark Slee, and Marc Kwiatkowski. Thrift: Scalable Cross-Language
Services Implementation. Technical report, Facebook, 2007. http://thrift.
apache.org/static/files/thrift-20070401.pdf. [online, last accessed
on 2019-01-29].

[6] Gul Agha. An overview of actor languages. ACM SIGPLAN Notices, 21(10):58–67,
1986.

[7] Gul Agha. Concurrent object-oriented programming. Communications of the ACM,
33(9):125–141, 1990.

[8] Gul Agha. Abstractions, Semantic Models and Analysis Tools for Concurrent Systems:
Progress and Open Problems, pages 3–8. 2016.

[9] Gul Agha and Christian J. Callsen. Actorspace: An open distributed programming
paradigm. ACM SIGPLAN Notices, 28(7):23–32, 1993.

[10] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39–59, 1984.

[11] Joshua Bloch. Effective Java. Prentice Hall, 2 edition, 2008.

153

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://vertx.io/docs/vertx-core/java/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://docs.hazelcast.org/docs/3.10/manual/pdf/index.pdf
http://docs.hazelcast.org/docs/3.10/manual/pdf/index.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf

[12] F. D. J Bowden. A brief survey and synthesis of the roles of time in petri nets.
Mathematical and Computer Modelling, 31(10-12):55–68, 2000.

[13] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC
7159, 2014.

[14] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. Internet Group
Management Protocol (IGMP), Version 3. RFC 3376, 2002.

[15] Nicholas Carriero and David Gelernter. Linda in context. Communications of the
ACM, 32(4):444–458, 1989.

[16] Stephan Cejka, Albin Frischenschlager, Mario Faschang, Mark Stefan, and Kon-
rad Diwold. Operation of modular smart grid applications interacting through a
distributed middleware. Open Journal of Big Data, 4(1):14–29, 2018.

[17] Stephan Cejka, Alexander Hanzlik, and Andreas Plank. A framework for commu-
nication and provisioning in an intelligent secondary substation. In 2016 IEEE
21st International Conference on Emerging Technologies and Factory Automation
(ETFA), 2016.

[18] Stephan Cejka, Ralf Mosshammer, and Alfred Einfalt. Java embedded storage for
time series and meta data in Smart Grids. In 2015 IEEE International Conference
on Smart Grid Communications (SmartGridComm), pages 434–439, 2015.

[19] Stephan Cejka and Matthias Schwayer. Visualization and Simulation of Wireless
Sensor Networks in a Railway Crossing Use Case. Bachelor thesis, Space Based
Computing Group, Institute of Computer Languages, TU Wien, 2013.

[20] Stefan Craß, Gerson Joskowicz, and Eva Kühn. A decentralized access control
model for dynamic collaboration of autonomous peers. In Security and Privacy in
Communication Networks, pages 519–537, 2015.

[21] Maximilian Alexander Csuk. Developing an Interactive, Visual Monitoring Software
for the Peer Model Approach. Diploma thesis, Space Based Computing Group,
Institute of Computer Languages, TU Wien, 2014.

[22] S. Deering, W. Fenner, and B. Haberman. Multicast Listener Discovery (MLD) for
IPv6. RFC 2710, 1999.

[23] S.E. Deering. Host extensions for IP multicasting. RFC 1112, 1989.

[24] Malith Dhanushka. Comparison of Apache Thrift Java
Servers, 2012. http://mmalithh.blogspot.com/2012/10/
comparison-of-apache-thrift-java-servers.html [blog entry, last
accessed on 2019-01-29].

154

http://mmalithh.blogspot.com/2012/10/comparison-of-apache-thrift-java-servers.html
http://mmalithh.blogspot.com/2012/10/comparison-of-apache-thrift-java-servers.html

[25] K. Zyp F. Galiegue. JSON Schema: core definitions and terminology. (Draft), 2013.
http://tools.ietf.org/html/draft-zyp-json-schema-04.

[26] David C. Fallside and Priscilla Walmsley. XML Schema part 0: Primer. Technical
report, W3C, 2004. http://www.w3.org/TR/xmlschema-0/.

[27] Mario Faschang, Stephan Cejka, Mark Stefan, Albin Frischenschlager, Alfred Einfalt,
Konrad Diwold, Filip Pröstl Andrén, Thomas Strasser, and Friederich Kupzog.
Provisioning, deployment, and operation of smart grid applications on substation
level. Computer Science - Research and Development, 2016.

[28] Diwaker Gupta. Thrift: The Missing Guide. Technical report. http://
diwakergupta.github.io/thrift-missing-guide/thrift.pdf [online,
last accessed on 2019-01-29].

[29] Thomas Hamböck. Towards a Toolchain for Asynchronous Embedded Programming
based on the Peer-Model. Diploma thesis, Space Based Computing Group, Institute
of Computer Languages, TU Wien, 2015.

[30] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for artificial intelligence. In Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI’73, pages 235–245, 1973.

[31] Georg Holasek. Evaluation of the Peer Model Framework on a RCM4300 Evaluation
Board. Bachelor thesis, Space Based Computing Group, Institute of Computer
Languages, TU Wien, 2014.

[32] Vojin Jovanovic and Philipp Haller. The scala actors migration guide.
http://docs.scala-lang.org/overviews/core/
actors-migration-guide.html. [online, last accessed on 2019-01-29].

[33] Rajesh K. Karmani and Gul Agha. Actors, pages 1–11. 2011.

[34] Martin Kleppmann. Schema evolution in Avro, Protocol Buffers
and Thrift, 2012. http://martin.kleppmann.com/2012/12/05/
schema-evolution-in-avro-protocol-buffers-thrift.html [blog
entry, last accessed on 2019-01-29].

[35] Eva Kühn. Reusable coordination components: Reliable development of cooperative
information systems. International Journal of Cooperative Information Systems,
25(04):1740001, 2016.

[36] eva Kühn. Flexible transactional coordination in the peer model. In Fundamentals
of Software Engineering, pages 116–131, 2017.

[37] eva Kühn, Stefan Craß, and Thomas Hambock. Approaching Coordination in
Distributed Embedded Applications with the Peer Model DSL. In 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA), pages 64–68, 2014.

155

http://tools.ietf.org/html/draft-zyp-json-schema-04
http://www.w3.org/TR/xmlschema-0/
http://diwakergupta.github.io/thrift-missing-guide/thrift.pdf
http://diwakergupta.github.io/thrift-missing-guide/thrift.pdf
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html

[38] eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and Thomas Scheller.
Peer-Based Programming Model for Coordination Patterns. In Coordination Models
and Languages, volume 7890 of Lecture Notes in Computer Science, pages 121–135.
2013.

[39] eva Kühn, Stefan Craß, Gerson Joskowicz, and Martin Novak. Flexible Modeling of
Policy-driven Upstream Notification Strategies. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, SAC ’14, pages 1352–1354, 2014.

[40] eva Kühn, Sophie Therese Radschek, and Nahla Elaraby. Distributed coordination
runtime assertions for the peer model. In Coordination Models and Languages, pages
200–219, 2018.

[41] eva Kühn, Johannes Riemer, and Gerson Joskowicz. XVSM (eXtensible Virtual
Shared Memory) architecture and application. Technical report, Space Based
Computing Group, Institute of Computer Languages, TU Wien, 2005.

[42] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN
Namespace. RFC 4122, 2005.

[43] Matthias Lettmayer. A Public Resource Computing Application based on the Secure
Peer Model. Diploma thesis, Space Based Computing Group, Institute of Information
Systems Engineering, TU Wien, 2018.

[44] Lightbend Inc. Documentation for akka 2.4.20.
http://doc.akka.io/docs/akka/2.4/AkkaJava.pdf. [online, last ac-
cessed on 2019-01-29].

[45] Maurice Naftalin. Mastering Lambdas: Java Programming in a Multicore World.
Oracle Press, 2015.

[46] Ted Neward. 5 things you didn’t know about ... Java ObjectSerializa-
tion. https://www.ibm.com/developerworks/library/j-5things1/
j-5things1-pdf.pdf [online, last accessed on 2019-01-29].

[47] OASIS. Web services business process execution language version 2.0, 2007.

[48] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the Data:
Parallel Analysis with Sawzall. Scientific Programming, 13(4):277–298, October
2005.

[49] Andrew Prunicki. Apache thrift. Technical report, 2009.
https://objectcomputing.com/resources/publications/sett/
june-2009-apache-thrift/ [online, last accessed on 2019-01-29].

[50] Krzysztof Rakowski. Learning Apache Thrift. Packt Publishing, 2015.

156

http://doc.akka.io/docs/akka/2.4/AkkaJava.pdf
https://www.ibm.com/developerworks/library/j-5things1/j-5things1-pdf.pdf
https://www.ibm.com/developerworks/library/j-5things1/j-5things1-pdf.pdf
https://objectcomputing.com/resources/publications/sett/june-2009-apache-thrift/
https://objectcomputing.com/resources/publications/sett/june-2009-apache-thrift/

[51] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob Frank
Qvortrup, Martin Stig Stissing, Michael Westergaard, Søren Christensen, and Kurt
Jensen. Cpn tools for editing, simulating, and analysing coloured petri nets. In
Proceedings of the 24th International Conference on Applications and Theory of
Petri Nets, ICATPN’03, pages 450–462, 2003.

[52] Dominik Rauch. Implementing and Evaluating the Peer Model with Focus on API
Usability. Master’s thesis, Space Based Computing Group, Institute of Computer
Languages, TU Wien, 2014.

[53] Gerald Schermann. Extending the Peer Model with Compositional Design Patterns.
Diploma thesis, Space Based Computing Group, Institute of Computer Languages,
TU Wien, 2014.

[54] Jörg Schoba. Mobile Peer Model – A mobile peer-to-peer communication and
coordination framework - with focus on scalability and security. Diploma thesis,
Space Based Computing Group, Institute of Computer Languages, TU Wien, 2017.

[55] Michael Sperberg-McQueen, Eve Maler, Tim Bray, François Yergeau, Jean Paoli,
and John Cowan. Extensible Markup Language (XML) 1.1 (Second Edition). W3C
recommendation, W3C, 2006. http://www.w3.org/TR/xml11/.

[56] Apache Thrift Language Support. Comparison of Apache Thrift Java Servers,
2018. https://thrift.apache.org/docs/Languages [online, last accessed
on 2019-01-29].

[57] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms (2nd Edition). 2006.

[58] Peter Tillian. Mobile Peer Model – A mobile peer-to-peer communication and
coordination framework - with focus on mobile design constraints. Diploma thesis,
Space Based Computing Group, Institute of Computer Languages, TU Wien, 2017.

[59] R. Vida and L. Costa. Multicast Listener Discovery Version 2 (MLDv2) for IPv6.
RFC 3810, 2004.

[60] Stefan Zischka. A Coordination-Based Framework for Routing Algorithms in Un-
structured Peer-to-Peer Networks. Diploma thesis, Space Based Computing Group,
Institute of Computer Languages, TU Wien, 2017.

157

http://www.w3.org/TR/xml11/
https://thrift.apache.org/docs/Languages

	Kurzfassung
	Abstract
	Contents
	Introduction
	The Peer Model
	Contributions and Tasks
	Dynamic adding/removing of entities during runtime
	Language-independent remoting

	Methodology
	Expected Results
	Outline

	Related Work
	Peer Model
	Actor Model
	Vert.x and Gridlink
	WS-BPEL
	GigaSpaces XAP
	Evaluation
	Acting on messages
	Interoperability
	Discovery
	Dynamic exchange of logics
	Remote component creation and termination
	Exceptions
	Results and Todos

	Peer Model In-Depth
	Entries
	Basic Elements
	Coordination Data
	Application Data

	Peers and Containers
	Wirings
	Services
	Links
	Link Operation Type
	Count Specification
	Query Selection
	Flow Dependent Links

	Distribution
	Dynamics
	Tracing
	Visualisation Intermediate Language
	Trace Intermediate Language

	Requirements
	Functional requirements
	Non-functional requirements

	Communication and Serialization
	Remoting Overview
	URI Addressing Approach
	Naming Approach
	Results

	Peer Model Addressing
	Addressing of a Peer
	Addressing of Sub-Components

	Peer Model Instance Discovery in Local Networks
	Internet Group Management Protocol (IGMP)
	Peer Model Discovery Protocol (PMDP)

	Serialization formats
	Text-based formats
	Binary formats
	Schema Evolution

	Communication formats
	Serialization and remoting mechanisms in related frameworks
	Format evaluation
	Apache Thrift in detail
	Type System
	Services
	Thrift Network Stack
	Code generation and inclusion

	Implementation
	Peer Model
	Peer Model API
	Initialization of the Peer Model
	State Summary
	Adding entries
	Adding sub-peers
	Adding wirings
	Exceptions

	Container Implementation
	Link implementation and entry retrieval
	Handling of TTS and TTL
	Special handling of entries in PSC and WSC

	Communication
	Instance Discovery and List
	Remote instance registry
	Remote entry transmission

	Tracing

	Evaluation
	Comparison with related work
	Acting on messages
	Interoperability
	Discovery
	Dynamic exchange of logics
	Remote component creation and termination
	Exceptions

	Benchmarks
	General benchmarks
	Communication benchmarks

	Fulfillment of requirements
	Functional requirements
	Non-functional requirements

	Conclusion
	Future Work
	Peer Model toolchain
	Integration issues
	Implementation-specific improvements

	Summary

	Benchmark settings
	General benchmarks
	Benchmark 1: First triggering of a wiring
	Benchmark 2: Processing n entries

	Communication benchmarks
	Local instance
	Remote instance

	Listings
	List of Figures
	List of Tables
	Glossary
	Bibliography

