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Abstract

This thesis considers communication over various types of Gaussian channels with quan-

tized channel output feedback. Here, the received signals are quantized and then di-

rectly fed back to one or multiple transmitters. We study point-to-point and multiuser

communication scenarios. In the case of multiple users we consider the multiple access

channel, i.e., two users communicating data to one single receiver, and the broadcast

channel where one transmitter sends data to two receivers.

A key performance indicator in such communication scenarios is the channel capa-

city, which characterizes the maximum rates achievable with infinite blocklengths. It is

known that even perfect feedback does not increase the channel capacity for point-to-

point communication. By contrast, feedback can actually increase the channel capacity

for multiuser communication. Since a perfect feedback link is a rather unrealistic as-

sumption we consider the more realistic scenario of quantized feedback. This is justified

by the fact that in modern digital communication systems each signal has to be quan-

tized with some fidelity.

We use the Gaussian information bottleneck method to model the channel out-

put compression of Gaussian vector channels and to characterize the optimal tradeoff

between quantization rate and preserved transmit information. Traditionally, when

designing quantization the source is considered to be fixed. We restrict to Gaussian

source distributions and include the variable transmit power allocation as an additional

parameter. We characterize the tradeoff between preserved transmit information, quan-

tization rate allocation, and transmit power allocation. The optimal tradeoff amounts

to a difference of convex functions program. We solve this optimization problem and

demonstrate that this approach generally yields superior results.

For the actual feedback communication scheme, we propose a superposition coding

method that superimposes a conventional coding component (which ignores the feed-

back link) and a feedback-based coding scheme in the spirit of Schalkwijk-Kailath and

Ozarow. Optimizing the performance of the proposed scheme amounts to a resource

allocation problem which again results in a difference of convex functions program.

We solve this problem, discuss its performance, and show that this scheme achieves
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higher rates than communication without feedback at a wide range of parameters. We

show that the penalty due to limited feedback accuracy is outweighed by the increased

feedback-capacity.

In addition to the rate constraint on the feedback link, practical scenarios impose

constraints on the blocklength. Therefore, we adapt and study the proposed superpo-

sition coding scheme in the finite-blocklength regime. We here have to jointly optimize

the transmit power and blocklength allocation. We propose a procedure that approx-

imately solves this resource allocation problem. Numerical results show that due to

the faster error probability decay of the feedback-based code component the proposed

coding scheme demonstrates its strengths especially in the finite-blocklength region.



Kurzfassung

Diese Dissertation untersucht verschiedene Typen von Gauß’schen Kanälen mit quan-

tisiertem Feedback des Kanalausgangs. Das heißt, die Empfangssignale werden quanti-

siert und dann direkt zu einem oder mehreren Sendern zurückgeführt. Wir beschäftigen

uns mit Punkt-zu-Punkt-Kommunikation und Mehrbenutzerkommunikation. Im Fall

von mehreren Benutzern untersuchen wir den Mehrfachzugriffskanal über welchen zwei

Benutzer Daten zu einem Empfänger übertragen und den Broadcastkanal über welchen

ein Sender Daten an zwei Empfänger sendet.

Eine Leistungskennzahl solcher Kommunikationssysteme ist die Kanalkapazität,

welche die maximal erzielbare Datenrate für unendliche Blocklängen angibt. Es ist

bekannt, dass sogar perfektes Feedback die Kanalkapazität von Punkt-zu-Punkt-Ver-

bindungen nicht erhöhen kann; die Kanalkapazität von Mehrbenutzerkommunikation

kann durch Feedback hingegen tatsächlich erhöht werden. Da eine perfekte Feedback-

Verbindung eine sehr idealisierte Annahme darstellt, untersuchen wir das realistischere

Szenario mit quantisiertem Feedback. Gerechtfertigt ist diese Verallgemeinerung auf-

grund des Umstandes, dass in modernen digitalen Kommunikationssystemen jedes Si-

gnal mit einer gewissen Genauigkeit quantisiert werden muss.

Wir verwenden die Gauß’sche Information-Bottleneck-Methode um die Kanalaus-

gangskompression von Gauß’schen Vektorkanälen zu beschreiben und um den optimalen

Tradeoff zwischen Quantisierungsrate und erhaltener Transinformation zu charakteri-

sieren. Bei dem Design von Quantisierern wird die Quelle üblicherweise als gegeben

angenommen. Wir hingegen beschränken uns zwar auf Gauß’sche Quellverteilungen,

inkludieren die variable Sendeleistungszuteilung aber als weiteren Parameter. Dement-

sprechend untersuchen wir den Tradeoff zwischen erhaltener Transinformation, Quan-

tisierungsratenzuteilung und Sendeleistungszuteilung. Wir zeigen, dass der optimale

Tradeoff die Lösung eines Optimierungsproblems mit Differenzen konvexer Funktionen

erfordert. Wir lösen dieses Problem und demonstrieren, dass dieser Ansatz im Allge-

meinen bessere Ergebnisse liefert.

Für das eigentliche Feedback-Kommunikationssystem entwickeln wir eine Super-

positions-Kodierungsmethode, welche eine konventionelle Kodierungskomponente (die
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die Feedbackverbindung ignoriert) mit einem feedback-basierten System nach Schalk-

wijk-Kailath und Ozarow überlagert. Die Optimierung dieses Kommunikationssystems

ist ein Ressourcenzuteilungsproblem, welches wiederum in einem Optimierungsproblem

mit Differenzen konvexer Funktionen resultiert. Wir lösen dieses Optimierungsproblem,

diskutieren seine Leistungsfähigkeit und zeigen, dass dieses Kommunikationssystem

höhere Raten als Kommunikation ohne Feedback über eine großen Bereich an Parame-

tern erreicht. Wir zeigen, dass die Einbußen aufgrund limitierter Feedbackgenauigkeit

durch eine erhöhte Feedbackkapazität kompensiert werden.

Zusätzlich zur Ratenbeschränkung der Feedbackverbindung ergeben sich in prakti-

schen Szenarien auch Beschränkungen der Blocklänge. Wir adaptieren daher das entwi-

ckelte Superpositions-Kodierungssystem und untersuchen seine Leistungsfähigkeit bei

endlichen Blocklängen. Dies erfordert die gemeinsame Optimierung der Sendeleistungs-

und Blocklängenzuteilung. Wir schlagen eine Methode zur näherungsweisen Lösung die-

ses Ressourcenzuteilungsproblems vor. Numerische Ergebnisse belegen, dass das entwi-

ckelte Kodierungssystem aufgrund des schnelleren Abklingens der Fehlerwahrscheinlich-

keit der feedback-basierten Kodierungskomponente seine Stärken vor allem im Bereich

endlicher Blocklängen zeigt.
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1
Introduction

1.1 Motivation and Scope of Work

In our more and more connected world the amount of communicated data constantly

increases each year and there is no end in sight. On the one hand there is an ever

increasing demand of internet bandwidth especially from private users. One driving

factor here is the popularity of high-definition video streaming services. On the other

hand professional services that demand high reliability and low latency are currently

developed and are now the main selling point for future mobile networks, such as the

soon to be rolled out fifth generation mobile network 5G.

The main limiting factors for the performance of wireless communication systems

are the available bandwidth, the available or legally allowed transmit power, and the

number of users that simultaneously use the shared medium. In the last three deca-

des there was tremendous effort in research and development to efficiently use these

resources. High signal processing power in combination with modern coding such as

low-density parity-check (LDPC) coding or polar coding allows operation very close to

the theoretical channel capacity if the blocklength is sufficiently large.

In multiuser scenarios, where either more transmitters communicate with one single

receiver or one single transmitter communicates with more receivers, today’s commu-

nication standards rely on establishing largely non-interfering logical communication

links. The user separation is either in the frequency domain (frequency division multi-

ple access), time domain (time division multiple access) or logical code domain (code

division multiple access). In contrast to this separation approach it is known since

the 1970s that user collision can increase the channel capacity of multiple access sce-

narios [31]. To allow user coordination the transmitters need additional information

through a feedback link. Practical communication standards already use a low rate

1
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feedback link, e.g., to inform the transmitters about the channel state, transmit and

receive power control, and other control signals. By contrast, a lot of research conside-

red an unrealistic perfect feedback link since this assumption simplified the analysis of

such systems. In the last years research shifted to noisy feedback links or rate-limited

feedback links to incorporate more realistic models.

Since the beginning of communication theory it was of great interest how well com-

munication systems could possibly perform under low latency requirements [74,78,79],

or in other words, in the finite blocklength regime. However, due to the great success

of asymptotic performance analysis research early shifted to studying such ultimate

limits. Especially in the early days of wireless communication the contrast between

practice and theoretical research could not have been larger: practical analog commu-

nication or later relatively short blocklengths in the first digital communication devices

on the one hand, and asymptotic channel capacity research results on the other hand.

Over the years industry pretty much closed this gap using modern coding such as the

already mentioned low-density parity-check (LDPC) codes with extremely large block-

lengths. These excellent achievable rates very close to channel capacity are favoured for

applications where high latency is no problem, e.g., digital video broadcasting (DVB).

In real-time applications high latencies due to coding delays cannot be tolerated

and one has to use substantially shorter blocklengths. In this regime there is signi-

ficant capacity backoff. Recent breakthroughs in finite blocklength analysis [65–67]

characterized and quantified this backoff. Intuitive expressions analogous to the chan-

nel capacity in the asymptotic regime were derived. This resulted in an increasing

focus on this research area. Instead of only having the capacity as the only value that

characterizes the ultimate performance limit, in the finite-blocklength regime there are

the error probability and blocklength as additional parameters. Generally, tolerating

higher error probabilities (for a specific blocklength) or increasing the blocklength (for

a specific error probability) reduces the backoff from channel capacity. For code desig-

ners it is of central importance to be able to quantify and distinguish the portion of

the gap between channel capacity due to the code itself and due to the fundamental

finite-blocklength limits.

In the finite-blocklength regime the potential gain due to channel output feedback

is twofold: In multiuser communication scenarios the channel capacity can be increased

[31] and thus the ultimate finite-blocklength limit with zero backoff is also increased.

Furthermore, feedback coding schemes (such as [60,61,69,70]) can drastically simplify

the coding and decoding complexity. And most importantly, the error decay behaviour

as a function of the blocklength is much faster (at least doubly exponential versus

exponentially without feedback). This is well known for perfect feedback, that is, if

the transmitter(s) are provided with the exact channel output signal. For imperfect

feedback many of the benefits still hold and were widely studied [1, 3–5, 10, 11, 13–15,

33–35,42,43,46,47,51,54,55,63,75,76,89,90].
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Although direct channel output feedback is still mainly of theoretical interest (with

some exceptions, such as [44]), commercial communication standards already rely on

low-rate feedback links.

• 3G cellular networks (3GPP Release - 99) use feedback for exchanging control

information. It implements fast power control feedback on uplink and downlink.

In addition it was the first standard with codebook based beamforming that

required codebook based feedback [50].

• Long-Term Evolution (LTE) cellular networks support broad feedback such as

feedback of channel quality, choice of frequency bands, or channel spatial infor-

mation via a codebook; however LTE is still designed to yield a feedback overhead

of one percent or less [36].

• Feedback will be a key ingredient for future 5G cellular networks with coordinated

multipoint transmission [21].

• In WLAN (IEEE 802.11n) feedback is used to establish reciprocity in the transmit

directions; two users exchange training data and afterwards each user sends its

quantized channel estimate to the other user [50].

Motivated by these practically available low-rate feedback links we investigate whet-

her coordinated communication with low-rate quantized channel output feedback can

still be beneficial depending on the amount of quantization rate. We are interested

in quantized feedback because this is the most general reasonably realistic assumption

since due to digital signal processing the feedback is at least quantized. On the other

end there are scenarios with almost perfect feedback such as the communication of a

satellite with a ground station. The satellite is highly limited in transmit power whereas

the ground station has almost unbounded available transmit power for feedback. Here

the ground station could drastically help the satellite to efficiently use the available

transmit power.

Although recent communication standards rely on side-information for the transmit-

ter(s) to establish coordination between them, none of the above exemplarily mentioned

standards uses feedback at a rate near that of the forward channel. The feedback is

still considered ”necessary evil” and limited to the absolute minimum due to the large

overhead.

However, new requirements for future cellular networks, most importantly high re-

liability and low latency, that is, low blocklength, might eventually enforce providing a

relatively high-rate feedback link to comply with those contradictory requirements. At

this stage, state-of-the-art coding schemes already narrow the space for future impro-

vements to a gap where half the backoff from capacity is already due to the fundamental

finite-blocklength limit [66].
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Motivated by these disillusioning results we study if quantized feedback could possi-

bly be a last resort to overcome these problems in the regime of ever decreasing latency

requirements and hence decreasing blocklengths.

1.2 Outline and Contributions

We next briefly summarize our contributions and outline each remaining chapter of this

thesis.

Chapter 2: Preliminaries

In this chapter we introduce the relevant concepts and summarize previous research that

serve as a basis throughout this thesis. We review the channel models for the Gaussian

channel without and with feedback, Gaussian multiple access channel without and

with feedback, and Gaussian broadcast channel without and with feedback, including

channel capacity and finite-blocklength achievability results. Then, we briefly discuss

convex optimization and difference of convex programming together with the efficient

concave-convex procedure algorithm.

Chapter 3: MIMO Gaussian Information Bottleneck with Optimal Power

Allocation

The focus of this thesis is on quantized feedback. In Chapter 3 we use the information

bottleneck method to abstractly model the channel output compression as a Gaus-

sian information bottleneck. We derive the information-rate function for the Gaussian

MIMO channel that characterizes the maximum mutual information between source

and compressed signal under a rate constraint. This rate constraint represents the

quantization rate. We then give an equivalent representation of the channel output

compression where in addition to the channel noise we have additive quantization noise.

We thus show how to represent the overall system as an equivalent Gaussian channel.

Furthermore, we broaden the scenario of interest to the case where the transmit

power allocation is variable as well. Hence, we introduce the information-rate-power

function that jointly characterizes the maximum mutual information between source

and compressed signal under a quantization rate and transmit power constraint. We

then show that solving the information-rate-power function means solving a difference

of convex functions program. Eventually, we discuss the properties of the information-

rate-power function.

This chapter builds on the following publications: Parts of this chapter, especially

the formulation of the Gaussian information bottleneck for the Gaussian vector channel,

have been originally published in [24] and [86].
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Chapter 4: Feedback Model

Throughout this thesis we study communication over Gaussian channels in conjunction

with GIB-modelled channel output compression. This analysis strictly holds only for

Gaussian source distributions. In Chapter 4 we thus start by defining a discrete source

model that asymptotically converges to a Gaussian distribution.

We next formulate the algebraic feedback coding structure for the AWGN channel,

the Gaussian multiple access channel, and the Gaussian broadcast channel. Following

this algebraic coding structure we propose a superposition coding scheme that supe-

rimposes a feedback-based coding component with a conventional coding component

that completely ignores the feedback. We further describe how the receiver is aware of

the quantization noise and how this side-information positively affects the performance

of the proposed superposition scheme.

Specifically, we propose a block-structure for the superposition that allows to decode

the conventional component first and second the feedback coding component without

any interference due to the superposition.

This chapter builds on the following publications: The source signal model has been

originally published in [24] and the idea of the superposition coding scheme has been

previously published in [25].

Chapter 5: Asymptotic Superposition Coding

In Chapter 5 we extensively study the proposed superposition coding scheme for various

Gaussian channel scenarios in the asymptotic regime. We start with superposition

coding for the AWGN channel and confirm that a superposition is not beneficial in this

scenario, since feedback cannot increase the channel capacity for the AWGN channel.

The AWGN channel setting is then extended to the symmetric Gaussian multi-

ple access channel and the symmetric Gaussian broadcast channel. We formulate the

achievable sum rates and work out how to maximize the achievable sum rates. To

this end, we show how to split the maximization problems into concave and convex

components such that the resulting problem can be solved using difference of convex

functions programming. We give adapted convex-concave procedure algorithms that

solve each optimization problem. Then, we numerically discuss the performance of

these solutions.

Next, we extend the previous symmetric discussions to asymmetric settings and

propose a necessary symmetrization procedure for the Gaussian broadcast channel to

be able to optimize its performance using the same tool set. We again show how to split

the problem into concave and convex components and give adapted convex-concave pro-

cedure algorithms that solve each optimization problem. Subsequently, we numerically

discuss the performance of these asymmetric solutions and especially concentrate on



6 Chapter 1. Introduction

the influence of the channel asymmetry.

This chapter builds on the following publications: Superposition coding for the

symmetric MAC has been previously published in [25], the asymmetric MAC has been

published in [26] and the symmetric BC has been published in [27].

Chapter 6: Finite Blocklength Superposition Coding

In Chapter 6 we use recent findings of achievable rates for non-vanishing error proba-

bilities in the finite-blocklength regime to specialize our proposed suerposition coding

scheme to this regime. We thus derive error probability expressions for each component

of the superposition coding scheme for the AWGN channel, the Gaussian MAC, and

the Gaussian BC. Next, we show that due to imperfect decoding the error probabili-

ties are coupled and we propose regions where the approximation of decoupled error

probabilities is sufficiently accurate.

We then formulate a partly combinatorial optimization problem that jointly finds

the optimal power allocation (as in the asymptotic regime) and blocklength allocation.

We propose an approximate solving procedure that successively finds the asymptotic

power allocation and blocklength allocation. Eventually, we numerically assess the per-

formance of this successive optimization procedure.

This chapter builds on the following publications: A first analysis of the error pro-

bability for the AWGN channel with quantized feedback has been previously published

in [29]. Superposition coding for the symmetric MAC has been previously published

in [28].

Chapter 7: Conclusion and Outlook

Lastly, we conclude this thesis with a summary and we give an outlook where we discuss

open problems for potential future research.
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1.3 Notation

N Natural numbers

R Real numbers

M Cardinality of a set (calligraphic letters)

x Deterministic scalar (lowercase italic serif letters)

x Deterministic column vector (lowercase bold italic serif letters)

xᵀ Deterministic row vector (lowercase bold italic serif letters)

X Deterministic matrix (capital bold italic serif letters)

x Random scalar (lowercase sans-serif letters)

x Random column vector (lowercase bold sans-serif letters)

xᵀ Random row vector (lowercase bold sans-serif letters)

X Random matrix (capital bold sans-serif letters)

fx(x) Probability density function; alternatively with a slight abuse of notation just f(x)

Fx(x) Cumulative distribution function; alternatively with a slight abuse of notation just F (x)

px(x) Probability mass function; alternatively with a slight abuse of notation just p(x)

P{·} Probability

E{·} Expectation

h(·) Differential entropy

H(·) Entropy

I(·; ·) Mutual information

Xᵀ Transpose of matrix X

|X| Determinant of matrix X

[X]i,j Element in row i and column j of matrix X

1 All-one vector

I Identity matrix

diag{xn}Nn=1 N ×N Diagonal matrix with diagonal entries xn

log Natural logarithm or any other base that is clear in the used context

log2 Binary logarithm

logc Logarithm to base c
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1.4 Acronyms

AWGN Additive white Gaussian noise

BC Broadcast channel

CCP, CCCP Concave-convex procedure or convex-concave procedure

cdf Cumulative distribution function

DC Difference of convex

GIB Gaussian information bottleneck

IB Information bottleneck

IBM Information bottleneck method

i.i.d. Independent and identically distributed

LDPC Low density parity check

LTE Long-Term Evolution

MAC Multiple access channel

MMSE Minimum mean square error

MIMO Multiple-input and multiple-output

MSE Mean squared error

pdf Probability density function

pmf Probability mass function

RD Rate-distortion

SK Schalkwijk-Kailath (coding scheme)

SNR Signal-to-noise ratio

w.l.o.g. Without loss of generality

WLAN Wireless local area network

3G Third generation cellular network

4G Fourth generation cellular network

5G Fifth generation cellular network



2

Preliminaries

In this chapter we introduce the relevant concepts and summarize previous research

that serve as a basis throughout this thesis. We review the channel models for the

Gaussian channel without feedback in Section 2.1 and with feedback in Section 2.2, the

Gaussian multiple access channel without feedback in Section 2.3 and with feedback in

Section 2.4, and Gaussian broadcast channel without feedback in Section 2.5 and with

feedback in Section 2.6, including channel capacity and finite-blocklength achievability

results. Then, we briefly introduce the technique of convex optimization in Section 2.7

and difference of convex programming in Section 2.8 together with the efficient concave-

convex procedure algorithm.

2.1 Additive White Gaussian Noise Channel

We consider the classical additive white Gaussian noise scenario where one transmitter

wants to send information to one single receiver (see Figure 2.1). The transmitter sends

the signal x[k] with transmit power P . The transmitter should be able to communicate

messages at rate R over the channel y[k] = hx[k]+z[k]. The receiver faces the Gaussian

channel noise z[k] ∼ N (0, σ2). The channel gain h is assumed fixed.

9
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Transmitter

h

z[k] ∼ N (0, σ2)

Receiver
x[k] y[k]

Channel

Figure 2.1: AWGN channel.

2.1.1 Capacity

The famous Shannon capacity is named after Claude Shannon, who first proved it in

1948 in his original paper [72, 73]. Capacity is the largest rate that permits reliable

decoding.

Theorem 2.1 ( [72]). The channel capacity for the additive white Gaussian noise

channel with total available transmit power P , channel noise variance σ2, and fixed

channel gain h is given as

R ≤ 1

2
log

(
1 +

h2P

σ2

)
. (2.1)

For what follows it is often convenient to use the shorthand notation

C(γ) ,
1

2
log(1 + γ). (2.2)

The achievable rate region R is then bounded as

R ≤ C(h2P/σ2). (2.3)

Here, with a slight abuse of notation, the number of arguments indicates that C(·) is

the AWGN capacity. The meaning is made clear in the used context or explicitly with

indexing, if needed.

2.1.2 Finite Blocklength Performance

In the finite-blocklength regime there is a substantial backoff from the asymptotic

channel capacity. The signal-to-noise ratio (SNR) is compactly denoted by γ = h2P/σ2.

Polyanskiy et al. found following theorem [66, Thm. 54].

Theorem 2.2 ( [66]). For the AWGN channel with SNR γ and error probability 0 <
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ε < 1, the maximum number of messages M∗(n, ε) is given by1

logM∗(n, ε) = nC −Q−1(ε)
√
nV +O(log n) (2.4)

where C is the classical AWGN channel capacity (2.3) and V is the channel dispersion

given by

V =
γ

2

γ + 2

(γ + 1)2
log2 e. (2.5)

The channel dispersion, which basically characterizes the variability of the channel

for finite blocklength, now strictly bounds away the performance from the channel

capacity. Formally defined, M∗(n, ε) is the maximum number of messages that we

could possibly transmit with blocklength n and error probability ε using a (n,M, ε)-

code, that is,

M∗(n, ε) = max{M : ∃(n,M, ε)-code}. (2.6)

Thus, 1
n logM∗ can be interpreted as a communication rate. For blocklengths n→∞

and error probabilities ε→ 0, Theorem 2.2 becomes equivalent to Theorem 2.1.

2.2 Additive White Gaussian Noise Channel with Feedback

Like for the AWGN channel without feedback (see Section 2.1) a single transmitter

sends the signal x[k] with transmit power P to communicate information with rate

R to one single receiver that receives the signal y[k] = hx[k] + z[k] (see Figure 2.2).

The receiver faces the Gaussian channel noise z[k] ∼ N (0, σ2). The channel gain h

is assumed fixed. Now, the receiver feeds back the signal w[k] to the transmitter.

Classically, the feedback was assumed to be exact [69, 70], that is, w[k] = y[k], also

termed perfect channel output feedback. The transmitter then uses this additional

side information to communicate more efficiently. Later research studied more realistic

scenarios such as the presence of a noisy feedback link [11,13,84], rate-limited feedback

[54,55] and quantized feedback [11,13,51].

2.2.1 Capacity

One might be tempted to think that a perfect feedback link from receiver to transmitter

could increase the channel capacity. Surprisingly, this is not the case and was already

shown by Shannon in 1956 [71]; Schalkwijk and Kailath proposed a remarkably simple

iterative scheme that achieves the AWGN feedback capacity [69, 70] which equals the

Shannon AWGN capacity [71, Thm. 6].

1with the Q-function Q(x) = 1
2π

∫∞
x

exp(−u2/2)du.
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Transmitter

h

z[k] ∼ N (0, σ2)

Receiver
x[k] y[k]

Channel

w[k]

Figure 2.2: AWGN channel with feedback.

Theorem 2.3 ( [71]). The channel capacity for the additive white Gaussian noise chan-

nel with perfect feedback with total available transmit power P , channel noise variance

σ2, and fixed channel gain h is given as

R ≤ 1

2
log

(
1 +

h2P

σ2

)
. (2.7)

2.2.2 Error Probability Decay

The celebrated Schalkwijk-Kailath (SK) scheme uses the initial time slot to send the

pure message with rate nR to the receiver. The receiver calculates the minimum mean

squared error (MMSE) estimate of the message or equivalently of the channel noise.

Since the transmitter has the same information due to its causal access via the per-

fect feedback link it can calculate the MMSE estimates as well and then transmit a

correction term in the following time slot. The receiver then incorporates the received

(perturbated) correction term to calculate a better estimate. Repeating this procedure

for the remaining iterations yields a doubly exponentially decreasing error probability.

The original idea of such iterative coding even dates back on Elias in 1956 [23].

Theorem 2.4 ( [32]). The error probability of the SK linear feedback scheme decreases

doubly exponentially as

Pe ≤ 2Q
(

2n(C(γ)−R)
)

(2.8)

if R < C(γ).

The message transmitted in the initial timeslot comes from an alphabet of size

M = 2nR, where R is the transmission rate and n the number of iterations. For

n→∞ this procedure yields to a performance formulated in Theorem 2.3.

More advanced schemes that even show super-exponentially decreasing error proba-

bilities were developed. As a drawback these schemes are non-linear such as the partial
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Transmitter 1

Transmitter 2

h1

h2

z[k] ∼ N (0, σ2)

Receiver

x1[k]

x2[k]

y[k]

Channel

Figure 2.3: Gaussian MAC.

sequential feedback scheme in [1]. Other schemes even show error probabilities that

decrease in any exponential order [22,45,64]. In [32,55] the error probability is even of

the form Pe = exp(− exp(. . . exp(O(1)) . . . ))2 with n repetitions of exp(·).

2.3 Gaussian Multiple Access Channel

Here, we consider the classical multiple access scenario where two transmitters want

to send information to a single receiver (see Figure 2.3). The transmitters send the

signals x1[k] and x2[k] and have available transmit powers P1 and P2, respectively.

Each transmitter should be able to communicate the independent messages with rates

R1 and R2 over the channel y[k] = h1x1[k] + h2x2[k] + z[k]. The receiver faces the

Gaussian channel noise z[k] ∼ N (0, σ2). The channel gains h1 and h2 are assumed

fixed, where without loss of generality h2 ≤ h1.

2.3.1 Capacity

Intuitively, each transmitter cannot convey more information as in the point-to-point

scenario where only this transmitter and the receiver are present. Thus, both achievable

rates are definitely limited by R1 ≤ C(h21P1/σ
2) and R2 ≤ C(h22P2/σ

2). On the other

hand, if one transmitter sends with maximum power, e.g., let us assume that trans-

mitter 1 sends with power P1. This signal interferes at the receiver and results in an

effective point-to-point channel with reduced SNR for transmitter 2. As a consequence,

the achievable rate is reduced in this scenario and is then given by R2 ≤ C
(

h22P2

σ2+h21P1

)
.

First decoding the message from transmitter 2 and subtracting out this component

enables the remaining component from transmitter 1 to be decoded without any inter-

ference. This approach is usually termed onion-peeling. The rates of transmitter 2 and

transmitter 1 can be interchanged in this reasoning. In combination with time-sharing

the whole achievable rate region can be found and yields to following statement in the

2f(n) = O(n) implies that lim supn→∞
|f(n)|
n

<∞.
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form as in [20] that was formally proved by Ahlswede in 1973 [2]. Instead of time-

sharing a rate-splitting approach yields the same achievable rate region that requires

only single-user coding without any synchronization among users [68].

Theorem 2.5 ( [19]). The capacity region of the Gaussian multiple-access channel

with available transmit powers P1 and P2, channel noise variance σ2, and fixed channel

gains h1 and h2 is given as

R1 ≤ C
(
h21P1

σ2

)
, (2.9)

R2 ≤ C
(
h22P2

σ2

)
, (2.10)

R1 +R2 ≤ C
(
h21P1 + h22P2

σ2

)
. (2.11)

For what follows it is often convenient to give a parameterized notation of the

achievable sum rate region R1 +R2 as

R1 +R2 ≤ min

(
C

(
h21P1

σ2

)
+ C

(
h22P2

σ2

)
, C

(
h21P1 + h22P2

σ2

))
= C

(
h21P1 + h22P2

σ2

)
, C(h21P1, h

2
2P2, σ

2), (2.12)

since it always holds that (2.9) + (2.10) > (2.11).

Here, with a slight abuse of notation, the number of arguments indicates that

C(·, ·, ·) is the MAC capacity and C(·) is the AWGN capacity. The meaning is clear

from in the context or stated, if necessary.

Especially in the symmetric case it might desired that both receivers can achieve

the same rates R1 = R2, that is,

R1 = R2 ≤ min

(
1

2
C

(
h21P1 + h22P2

σ2

)
, C

(
h21P1

σ2

)
, C

(
h22P2

σ2

))
. (2.13)

2.3.2 Finite Blocklength Performance

In the asymptotic case all messages can be decoded error free if the rates fulfil The-

orem 2.5 and especially the onion peeling approach does not cause any error concate-

nation. In the finite blocklength regime we cannot be certain about correct decoding

at any point and therefore we have to account for possible decoding errors and re-

sulting error propagation. This makes the analysis inherently difficult. MolavianJazi

and Laneman proved following inner bound for the achievable rates using independent

codebooks in 2015 [57, Thm. 1].
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Theorem 2.6 ( [57]). For the Gaussian MAC with with available transmit powers

P1 and P2, channel noise variance σ2, and fixed channel gains h1 and h2, and error

probability 0 < ε < 1,3

logM∗1 (n, ε) = nC1 −
√
n[Q−1 (ε,V (γ1, γ2))]1 +O(n1/4), (2.14)

logM∗2 (n, ε) = nC2 −
√
n[Q−1 (ε,V (γ1, γ2))]2 +O(n1/4), (2.15)

logM∗1 (n, ε) + logM∗2 (n, ε) = nC1,2 −
√
n[Q−1 (ε,V (γ1, γ2))]3 +O(n1/4), (2.16)

where C1 = C(γ1), C2 = C(γ2), and C1,2 = C(γ1 +γ2) are the classical AWGN channel

capacities (2.3) with partial SNRs γ1 = h21P1/σ
2 and γ2 = h22P2/σ

2 and V (γ1, γ2) is

the channel dispersion matrix

V (γ1, γ2) =

 V (γ1) V1,2(γ1, γ2) V1,3(γ1, γ2)

V1,2(γ1, γ2) V (γ2) V2,3(γ1, γ2)

V1,3(γ1, γ2) V2,3(γ1, γ2) V (γ1 + γ2) + V3(γ1, γ2)

 , (2.17)

with the point-to-point AWGN channel dispersion V as in (2.5) and

V1,2(γ1, γ2) =
γ1
2

γ2
(γ1 + 1)(γ2 + 1)

log2 e, (2.18)

Vi,3(γ1, γ2) =
γi
2

γ1 + γ2 + 2

(γ1 + 1)(γ1 + γ2 + 1)
log2 e, i ∈ {1, 2}, (2.19)

V3(γ1, γ2) =
γ1γ2

(γ1 + γ2 + 1)2
log2 e. (2.20)

If we relax the problem to the generally highly suboptimal assumption that leads

to a tractable analysis is that we do not study the onion peeling approach that possibly

yields to error propagation. Instead, for decoding each transmitted signal we consider

the signals from the other transmitter as noise, that is, the effective SNR for decoding

the signal from transmitter 1 now is h21P1/(σ
2+h22P2) and for the signal from transmitter

2 it is h22P2/(σ
2 + h21P1). This then reduces to two separate Gaussian point-to-point

channels and adapting Theorem 2.2 yields following Corollary.

Corollary 2.7. For the Gaussian multiple-access channel with available transmit po-

wers P1 and P2, fixed channel gains h1 and h2, channel noise variance σ2, and error

probabilities 0 < ε1 < 1 and 0 < ε2 < 1,

logM∗1 (n, ε1) = nC1 −Q−1(ε1)
√
nV1 +O(log n), (2.21)

logM∗2 (n, ε2) = nC2 −Q−1(ε2)
√
nV2 +O(log n), (2.22)

where C1 = C(γ1) and C2 = C(γ2) are the classical AWGN channel capacities (2.3)

with effective SNRs γ1 = h21P1/(σ
2 + h22P2) and γ2 = h22P2/(σ

2 + h21P1) and V1 and V2

3with the multi-dimensional Q-function Q(x,Σ) = P{x ≥ x}, where x ∼ N (0,Σ).
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are the channel dispersions given by

V1 =
γ1
2

γ1 + 2

(γ1 + 1)2
log2 e, (2.23)

V2 =
γ2
2

γ2 + 2

(γ2 + 1)2
log2 e. (2.24)

For the interesting scenario where we want to maximize the achievable sum rate in

the all symmetric case with the same channel gains h1 = h2 = h and symmetric power

constraints P1 = P2 = P Theorem 2.6 drastically simplifies. In the point of maximum

sum rate the sum (2.14)+(2.15) is strictly larger than (2.16). Thus, Theorem 2.6

reduces to the following Corollary [56, eqn. (53)].

Corollary 2.8. For the symmetric Gaussian multiple-access channel with available

transmit powers P1 = P2 = P , fixed channel gains h1 = h2 = h, channel noise variance

σ2, and error probability 0 < ε < 1 the achievable sum rate is

2 logM∗(n, ε) < nC(2γ)−Q−1(ε)
√
nV (2γ) +O(n) (2.25)

with effective SNRs γ = h2P/σ2 and V (γ) are the channel dispersions given by

V (γ) =
γ

2

γ + 2

(γ + 1)2
log2 e. (2.26)

2.4 Gaussian Multiple Access Channel with Feedback

Like for the MAC without feedback (see Section 2.3), two transmitters send the signals

x1[k] and x2[k] with transmit powers P1 and P2 to communicate information with

rates R1 and R2, respectively, to one single receiver that receives the signal y[k] =

h1x1[k] + h2x2[k] + z[k] (see Figure 2.4). The receiver faces the Gaussian channel noise

z[k] ∼ N (0, σ2). The channel gains h1 and h2 are assumed fixed, where without loss of

generality h2 ≤ h1. Classically, the feedback was assumed to be perfect, that is, w[k] =

y[k], where the same feedback is provided for both transmitters [60]. The transmitters

then use this additional side information to communicate more efficiently and can thus

especially for the MAC establish some user coordination. Later research studied more

realistic scenarios such as the presence of a noisy feedback link [33, 34, 46, 47] or rate-

limited feedback [75,76].

2.4.1 Capacity

Based on the Schalkwijk-Kailath coding scheme (see Section 2.2) Ozarow proposed a

similar scheme for the two-user Gaussian MAC with perfect feedback [60]. The key

concept of this scheme still is the iterative refinement of the message estimate. In the
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Figure 2.4: Gaussian MAC with feedback.

first two time slots, both transmitters alternately send their raw messages. The remai-

ning time slots are used to transmit updates of the message estimates at the receiver.

For infinite blocklength, this simple linear scheme is capacity-achieving. Surprisingly,

and in sharp contrast to the point-to-point case, in this multiple user scenario the pre-

sence of a perfect feedback link actually increases the channel capacity. Ozarow showed

that the full capacity region of the Gaussian MAC with perfect feedback is given by

following theorem [60, eqn. (3)].

Theorem 2.9 ( [60]). The capacity region of the two-user Gaussian MAC with perfect

channel output feedback with available transmit powers P1 and P2, channel noise va-

riance σ2, and fixed channel gains h1 and h2 is the union over 0 ≤ ρ ≤ 1 of the rate

pairs (R1, R2) satisfying

R1 ≤ C
(
h21P1

σ2
(1− ρ2)

)
, (2.27)

R2 ≤ C
(
h22P2

σ2
(1− ρ2)

)
, (2.28)

R1 +R2 ≤ C
(
h21P1 + h22P2 + 2

√
h21P1h22P2ρ

σ2

)
. (2.29)

If we compare (2.27)–(2.29) with (2.9)–(2.11) we see that the achievable rate region

with feedback is strictly larger than without feedback; only for ρ = 0 the two regions

coincide. Here, ρ can be interpreted as a correlation coefficient that defines the amount

of coordination of the two transmitters. The coordination of the transmitters is not

explicit via a direct link where they can exchange information but rather implicit as they

share some common information due to the same perfect feedback to each transmitter.

In what follows, it is often convenient to give a parameterized notation of the
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achievable sum rate region R1 +R2 as

R1 +R2 ≤ max
0≤ρ≤1

min

(
C

(
h21P1

σ2
(1− ρ2)

)
+ C

(
h22P2

σ2
(1− ρ2)

)
, C

(
h21P1 + h22P2 + 2

√
h21P1h21P2ρ

σ2

))
, CFB(h21P1, h

2
2P2, σ

2). (2.30)

Here, with a slight abuse of notation, the number of arguments indicates that CFB(·, ·, ·)
is the MAC capacity with perfect feedback and CFB(·) = C(·) is the AWGN capacity

with perfect feedback.

Since (2.27) and (2.28) are decreasing in ρ so is the first argument in the min(·, ·) in

(2.30), whereas the second argument (2.29) in the min(·, ·) in (2.30) is strictly increasing.

Consequently, there is one single value ρ∗ where both arguments are equal and thus

maximizes the achievable sum rate (2.30). Thus, ρ∗ is the solution of the quartic

equation

(
σ2 + h21P1(1− ρ2)

) (
σ2 + h22P2(1− ρ2)

)
= σ2

(
σ2 + h21P1 + h22P2 + 2

√
h21P1h21P2ρ

)
.

(2.31)

2.4.2 Error Probability Decay

As in the original SK scheme the receiver calculates the MMSE estimate for each

message. Via the feedback link both transmitters share the same information about

the current estimate of the receiver about its messages. Now, the transmitters cannot

only send correction terms for a better estimate at the receiver in the following time

slots, but can coordinate and send a correlated common signal. The receiver then again

incorporates the received (perturbed) correction terms to calculate better estimates.

Repeating this procedure for the remaining iterations yields a doubly exponentially

decreasing error probability for each message estimate [60, eqn. (13)].

Theorem 2.10 ( [60]). The error probabilities of the Ozarow linear feedback scheme

decrease doubly exponentially as

Pe1 ≤ 2Q

(
σ2

2
√
σ2/12h21P1(σ2 + h21P1(1− ρ∗2))

e
n

(
C

(
h21P1
σ2

(1−ρ∗2)
)
−R1

))
, (2.32)

Pe2 ≤ 2Q

(
σ2

2
√
σ2/12h22P2(σ2 + h22P2(1− ρ∗2))

e
n

(
C

(
h22P2
σ2

(1−ρ∗2)
)
−R2

))
, (2.33)

if

R1 < C

(
h21P1

σ2
(1− ρ∗2)

)
, (2.34)
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Figure 2.5: Gaussian BC.

R2 < C

(
h22P2

σ2
(1− ρ∗2)

)
. (2.35)

The messages transmitted in the initial times lots have an alphabet sizeM1 = 2nR1

andM2 = 2nR2 , where R1 and R2 are the transmission rates of each transmitter and n

the number of iterations. For n→∞ this procedure yields the performance formulated

in Theorem 2.9.

2.5 Gaussian Broadcast Channel

Here, we consider the classical broadcast scenario where a single transmitter wants to

send information to two receivers (see Figure 2.5). The transmitter sends the signal

x[k] and has a total available transmit power P . Each receiver should be supplied with

independent messages with rates R1 and R2 over the channel y1[k] = h1x[k] + z1[k]

and y2[k] = h2x[k] + z2[k], respectively. The receivers face the Gaussian channel noises

z1[k] ∼ N (0, σ21) and z2[k] ∼ N (0, σ22). The channel gains h1 and h2 are assumed fixed,

where without loss of generality h22/σ
2
2 ≤ h21/σ21.

2.5.1 Capacity

The transmitter uses two separate codebooks for conveying information to receiver 1

and receiver 2. Thus, communication to receiver 1 with rate R1 uses a fraction αP

(0 ≤ α ≤ 1) of the transmit power and communication to receiver 2 with rate R2

with the remaining transmit power (1 − α)P . Since we assumed h22/σ
2
2 ≤ h21/σ

2
1, the

weaker receiver 2 is additionally interfered by the signal for the stronger receiver 1.

Therefore, receiver 2 has an even worse effective SNR of h22(1− α)P/(σ22 + h22αP ). On

the contrary, the stronger receiver 1 can first decode the interference caused by the
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signal for the weaker receiver 2 in the same way as receiver 2 itself, that is, it first

considers its designated information as interference noise and decodes the message for

the other receiver. Then, the stronger receiver 1 can subtract the decoded codeword

for receiver 2 and thus sees the non-interfered SNR h21αP/σ
2
1.

The capacity region for this classical setup was proven by Thomas Cover in 1972 [19]

and is given by following theorem.

Theorem 2.11 ( [19]). The capacity region of the Gaussian broadcast channel with

total available transmit power P , channel noise variances σ21 and σ22, and fixed channel

gains h1 and h2 is given by the union over 0 ≤ α ≤ 1 of

R1 ≤ C
(
h21αP

σ21

)
, (2.36)

R2 ≤ C
(
h22(1− α)P

σ22 + h22αP

)
, . (2.37)

For what follows it is often convenient to give a parameterized notation of the

achievable sum rate region R1 +R2 as

R1 +R2 ≤ C
(
h21αP

σ21

)
+ C

(
h22(1− α)P

σ22 + h22αP

)
, C(h21αP, h

2
2(1− α)P, σ21, σ

2
2). (2.38)

Here, with a slight abuse of notation, the number of arguments indicates that C(·, ·, ·, ·)
is the BC capacity and C(·) is the AWGN capacity.

Note that in the symmetric case, where h21/σ
2
1 = h22/σ

2
2 = h2/σ2 the achievable sum

rate (2.38) reduces to

R1 +R2 ≤ C
(
h21αP

σ21

)
+ C

(
h22(1− α)P

σ22 + h22αP

)
= C(h2P/σ2), (2.39)

that does not depend on the actual value α. Especially in the symmetric case it might

be desired that both receivers can achieve the same rates R1 = R2, that is,

C

(
h21αP

σ21

)
= C

(
h22(1− α)P

σ22 + h22αP

)
, (2.40)

which is equivalent to

h21αP

σ21
=
h22(1− α)P

σ22 + h22αP
. (2.41)

This condition is fulfilled if α satisfies the following equation,

α2 + α
σ21/h

2
1 + σ22/h

2
2

P
− σ21/h

2
1

P
= 0, (2.42)
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which is solved by

α = −σ
2
1/h

2
1 + σ22/h

2
2

2P
+

√(
σ21/h

2
1 + σ22/h

2
2

2P

)2

+
σ21/h

2
1

P
. (2.43)

While in the symmetric case the achievable sum rate does not change for such power

choices it clearly does in the asymmetric case.

2.5.2 Finite Blocklength Performance

In the asymptotic case the receiver with higher SNR was able to decode both its de-

signated message as well as the message for the weaker receiver. This only applies for

infinite blocklengths where no decoding errors occur. For finite blocklength, even the

receiver with higher SNR might decode the message for the weaker receiver erroneous

and thus introduces additional degradation before decoding its designated message.

This very fact complicates the finite blocklength treatment of the broadcast channel.

There is some effort to overcome this problem, e.g., via a specialization of superpo-

sition coding [58], but the general problem of finding an expression analogous to the

AWGN channel (2.4) remains open.

A simplification occurs if the transmitter does not need to communicate independent

messages to each transmitter, but only broadcasts one common message to all trans-

mitters. As a consequence, error propagation cannot happen and the performance is

equal to point-to-point AWGN channels as in Theorem 2.2. The SNRs are γ1 = h21P/σ
2
1

and γ2 = h22P/σ
2
2. Even though the transmit power is not split as αP and (1 − α)P

as in Theorem 2.11 both receivers still have different SNRs and therefore also different

performance.

Corollary 2.12. For the common message Gaussian broadcast channel with SNRs

γ1 = h21P/σ
2
1 and γ2 = h22P/σ

2
2, and error probabilities 0 < ε1 < 1 and 0 < ε2 < 1,

logM∗1 (n, ε1) = nC1 −Q−1(ε1)
√
nV1 +O(log n), (2.44)

logM∗2 (n, ε2) = nC2 −Q−1(ε2)
√
nV2 +O(log n) (2.45)

where C1 and C2 are the classical AWGN channel capacities (2.3) and V1 and V2 are

the channel dispersions given by

V1 =
γ1
2

γ1 + 2

(γ1 + 1)2
log2 e, (2.46)

V2 =
γ2
2

γ2 + 2

(γ2 + 1)2
log2 e. (2.47)

As we communicate one common message, M∗1 (n, ε1) = M∗2 (n, ε2) since both alp-

habets are the same. However, the different point-to-point capacities result in different

decoding error probabilities. Due to h22/σ
2
2 ≤ h21/σ21 it follows that ε2 ≥ ε1.
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If both receivers should be supplied with independent messages an exact classifi-

cation would have to account for the possible error propagation. A generally highly

suboptimal assumption that leads to a tractable analysis is that for both receivers we

consider the signals from the other receiver as noise, that is, instead of the achievable

rate of the stronger receiver being of the form (2.36) both achievable rates now have

the form (2.37). Note that in contrast to Theorem 2.12 where all the power is used to

transmit the common message we now still split the power as αP and (1 − α)P as in

Theorem 2.11. Adapting Corollary 2.12 then yields the following related Corollary.

Corollary 2.13. For the Gaussian broadcast channel with total available transmit po-

wer P , fixed channel gains h1 and h2, channel noise variances σ21 and σ22, and error

probabilities 0 < ε1 < 1 and 0 < ε2 < 1,

logM∗1 (n, ε1) = nC1 −Q−1(ε1)
√
nV1 +O(log n), (2.48)

logM∗2 (n, ε2) = nC2 −Q−1(ε2)
√
nV2 +O(log n) (2.49)

where C1 = C(γ1) and C2 = C(γ2) are the classical AWGN channel capacities (2.3)

and V1 and V2 are the channel dispersions given by

V1 =
γ1
2

γ1 + 2

(γ1 + 1)2
log2 e, (2.50)

V2 =
γ2
2

γ2 + 2

(γ2 + 1)2
log2 e, (2.51)

where the tradeoff parameter α is in [0, 1] that defines the effective SNRs

γ1 =
αh21P

σ21 + (1− α)h21P
, (2.52)

γ2 =
(1− α)h22P

σ21 + αh22P
. (2.53)

2.6 Gaussian Broadcast Channel with Feedback

As for the BC without feedback (see Section 2.5), a single transmitter sends the signal

x[k] with transmit power P to communicate information with rates R1 and R2 to two

receivers that receive the signals y1[k] = h1x[k] + z1[k] and y2[k] = h2x[k] + z2[k],

respectively (see Figure 2.6). The receivers face the Gaussian channel noises z1[k] ∼
N (0, σ21) and z2[k] ∼ N (0, σ22). The channel gains h1 and h2 are assumed fixed, where

without loss of generality h22/σ
2
2 ≤ h21/σ21. Classically, the feedback was assumed to be

perfect [61], that is, w1[k] = y1[k] and w2[k] = y2[k]. The transmitter then uses this

additional side information to communicate more efficiently. Later research studied

more realistic scenarios such as the presence of a noisy feedback link [63] or rate-limited

feedback [89,90].
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Figure 2.6: Gaussian BC with feedback.

2.6.1 Capacity – Duality

The capacity of the Gaussian broadcast channel with perfect feedback is still unknown

[5]. Similar as for the MAC with perfect feedback Ozarow and Leung proposed a SK-

inspired coding scheme for the BC with perfect feedback that shows increased achievable

rates [61]. Amor et al. showed that there is a duality between the Gaussian multiple

access channel with perfect feedback and the Gaussian broadcast channel with perfect

feedback: the linear feedback Ozarow scheme (see Section 2.4.1), which achieves ca-

pacity for the MAC, adapted to the BC is sum-rate optimal over all linear feedback

schemes [4,5]. Linear feedback is shown to be strictly suboptimal only for common mes-

sage transmission [88]. Theorem 2.9 thus results in the linear-feedback sum-capacity

for the BC with perfect feedback [5, eqn. (107)].

Theorem 2.14 ( [60]). The linear-feedback sum-capacity region of the two-user Gaus-

sian BC with perfect channel output feedback, transmit power P = P1 + P2, channel

noise variances σ21 and σ22, and fixed channel gains h1 and h2 is the union of the rate

pairs (R1, R2) satisfying

R1 ≤ C
(
γ1(1− ρ∗2)

)
, (2.54)

R2 ≤ C
(
γ2(1− ρ∗2)

)
, (2.55)

where ρ∗ is chosen to maximize the sum-capacity of the dual MAC with perfect feedback

with SNR components γ1 = h21P1/σ
2
1 and γ2 = h22P2/σ

2
2.
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2.6.2 Error Probability Decay

As in the original SK scheme the receivers calculate the MMSE estimate for its desig-

nated message. Note that this is a single-user approach since each receiver only decodes

its designated message while treating the message component for the other receiver as

noise. Via the feedback link the transmitter has access to the current message estimates

of the receivers. This is essentially the same situation as in the MAC case. Now, the

transmitter cannot only send correction terms for a better estimate at the receivers in

the following timeslots, but can cooperatively send some correlated common signal for

both receivers. The receivers then again incorporate the received (perturbated) cor-

rection terms to calculate better estimates. Repeating this procedure for the remaining

iterations yields a doubly exponentially decreasing error probability for each message

estimate as for the MAC [60, (13)].

Theorem 2.15. The error probabilities of the equivalent Ozarow linear feedback scheme

for Gaussian broadcast channels with perfect feedback decrease doubly exponentially as

Pe1 ≤ 2Q

(
σ21

2
√
σ21/12h21P1(σ21 + h21P1(1− ρ∗2))

e
n

(
C

(
h21P1

σ21
(1−ρ∗2)

)
−R1

))
, (2.56)

Pe2 ≤ 2Q

(
σ22

2
√
σ22/12h22P2(σ22 + h22P2(1− ρ∗2))

e
n

(
C

(
h22P2

σ22
(1−ρ∗2)

)
−R2

))
, (2.57)

if

R1 < C

(
h21P1

σ21
(1− ρ∗2)

)
, (2.58)

R2 < C

(
h22P2

σ22
(1− ρ∗2)

)
. (2.59)

The messages transmitted in the initial timeslots have an alphabet sizeM1 = 2nR1

and M2 = 2nR2 , where R1 and R2 are the transmission rates of each transmitter

and n the number of iterations. For n → ∞ this procedure leads to the performance

formulated in Theorem 2.14.

2.7 Convex Optimization

A set X is convex if for all x1 and x2 in the set, it holds that

θx1 + (1− θ)x2 ∈ X ∀x1,x2 ∈ X (2.60)

for all 0 ≤ θ ≤ 1.

A function f : Rn → R is convex if its domain is a convex set and if for all x1 and
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x2 in its domain, we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), (2.61)

for all 0 ≤ θ ≤ 1.

An equivalent condition that suffices to characterize a differentiable function f :

Rn → R as convex is as follows. If its domain is a convex set and it holds that

f(x0 + ∆x) ≥ f(x0) + ∆xᵀ∇f(x0) (2.62)

for all x0 and x0 + ∆x in its domain, then f is convex. Geometrically speaking, the

tangent at any point of a convex function lies below the function.

Another equivalent condition that suffices to characterize a twice differentiable

function f : Rn → R as convex is as follows. f is convex if its domain is a convex

set and

∇2f(x) � 0 (2.63)

for all x in its domain.

We follow Boyd [7] and define a standard convex optimization problem as

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m, (2.64)

hi(x) = 0, i = 1, . . . , p,

where x ∈ Rn is the optimization variable, f0 : Rn → R is the convex objective function

to be minimized, and the inequality constraint functions fi : Rn → R, i = 1, . . . ,m

have to be convex, and equality constraint functions hi : Rn → R, i = 1, . . . , p have to

be affine.

The convex minimization (2.64) can be replaced by

maximize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m, (2.65)

hi(x) = 0, i = 1, . . . , p,

where f0(x) is a concave objective. Solving (2.65) is equivalent to solving (2.64) with

the convex objective function −f0(x).

Problems of the form (2.65) and (2.64) can solved efficiently and a wide variety of

algorithms, solvers, and software for such tasks exist - probably most prominently by

the CVX software developed by Grant and Boyd [39,40] .
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Algorithm 1 Basic CCP algorithm [49, Alg. 1.1]

Require: Initial feasible point x0

1: k := 0
2: while stopping criterion not satisfied do

3: Form ĝ
(k)
i (x) = gi(xk) + (x− xk)ᵀ∇gi(xk) for i = 0, . . . ,m

4: Determine pk+1 by solving the convex problem

minimize f0(x)− ĝ(k)0 (x)

subject to fi(x)− ĝ(k)i (x) ≤ 0, i = 0, . . . ,m
5: k := k + 1
6: end while
7: return xk

2.8 Difference of Convex Functions Programming

The difference of convex functions (DC) programming problem in standard form is

given by [49]

minimize
x

f0(x)− g0(x)

subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m, (2.66)

where x ∈ Rn is the optimization variable and the functions fi : Rn → R, i = 0, . . . ,m,

and gi : Rn → R, i = 0, . . . ,m, have to be convex. If the functions gi(x) are affine (2.66)

reduces to the convex optimization problem (2.64). But in general, a DC program is

harder to solve. Often, the partitioning of the original optimization problem into the

differences of convex functions is obvious and can be directly deduced from the structure

of the original problem. In fact, any twice continuously differentiable function can be

expressed as a difference of convex functions [41].

2.8.1 Convex-Concave Procedure

The convex-concave procedure (CCP), introduced as concave-convex procedure [91],

is a practically feasible heuristic that finds a local optimum of (2.66). Thus, the point

where the algorithm converges to generally depends on the initial point x0. Typically

one runs the algorithm with many different feasible initial x0 and determines the final

solution as the best intermediate solution. The basic idea of the iterative CCP algorithm

is to find a point where the gradient of the convex part f0(x) in the next iteration

equals the negative gradient of the concave part −g0(x) of the previous iteration (if it

exists) [91],

∇f0(xk+1) = ∇g0(xk) (2.67)

which itself is a convex optimization problem. The solution to this auxiliary problem
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Algorithm 2 Line search for CCP (see Alg. 1) [49, Alg. 1.2]

Require: A solution xk+1 and α > 1
1: t := 1
2: while f0(xk + αt(xk+1 − xk)) − g0(xk + αt(xk+1 − xk)) ≤ f0(xk) − g0(xk) and
fi(xk + αt(xk+1 − xk))− gi(xk + αt(xk+1 − xk)) ≤ 0, for i = 1, . . . ,m do

3: t := αt
4: end while
5: xk+1 = xk + t(xk+1 − xk)
6: return xk+1

decreases monotonically with increasing k and thus converges to a minimum (or saddle

point).

One advantage of the CCP is that it only linearizes the concave component, but

keeps the information from the convex component over each iteration. Additionally, due

to the globality of the inequalities for convex and concave functions the over estimators

fi(x)− ĝ(k)i (x) are global as well. Thus, line search (see Alg. 2) is not compulsive, but

still can of course accelerate convergence.

Applications where CCP is already used are, for instance, sparse principal compo-

nent analysis [77], support vector machines [81], image reconstruction [9], or recently

in the field of communications for power allocation optimization [48].
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3
MIMO Gaussian

Information Bottleneck with

Optimal Power Allocation

The emphasis of this thesis is on quantized feedback. In Section 3.2 we use the in-

formation bottleneck method to model the channel output compression as a Gaussian

information bottleneck (GIB). We solve this variational problem for the scalar channel

in Section 3.3 and then we extend it in Section 3.4 for the MIMO channel. In both

cases we derive the information-rate function that characterizes the maximum mutual

information between source and compressed signal under a rate constraint. This rate

constraint represents the quantization rate. We then give an equivalent representation

of the channel output compression where in addition to the channel noise we have an

additive quantization noise. We thus show how to represent the overall system as an

equivalent sole Gaussian channel.

Furthermore, in Section 3.5 we broaden the scenario of interest to the case where the

transmit power allocation is variable as well. Hence, we introduce the information-rate-

power function that jointly characterizes the maximum mutual information between

source and compressed signal under a quantization rate and transmit power constraint.

We then show that solving the information-rate-power function means solving a diffe-

rence of convex functions (DC) program. Eventually, we discuss the properties of the

information-rate-power function.

29
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θ
Transmitter Channel Quantizer Receiver

θ̂

f(y|x) f(w|y)

x y w

Figure 3.1: Basic communication system with quantizer.

3.1 Introduction

Throughout this thesis we study Gaussian channels where the input of the receiver, the

signal y, is continuous-valued, even if the transmit signal x has a finite alphabet. This

is because the channel, in general notated as f(y|x), introduces continuous-valued noise

and especially in the additive white Gaussian noise (AWGN) case as z ∼ N (0, σ2). The

performance of such systems was thoroughly studied and is well understood. Anot-

her practically important aspect, in order to digitally process the received signal, is

the compression (or quantization) of the received signal. This quantization process

introduces additional distortion and can be described in the most general way as a

probabilistic quantizer with conditional pdf f(w|y) (cf. Figure 3.1).

Often the quantizer is assumed to have high quantization rate. Thus, the quantized

signal w ≈ y for further processing. If the high-rate assumption is dropped, f(w|y)

has to be optimized in some way. Usually this is done via minimizing the mean-square

error (MSE) of the quantizer. Rate distortion (RD) theory provides the mathematical

framework for such problems [6]. However, our goal is not to minimize the MSE, but

rather to maximize the mutual information of source and quantized signal. This leads

to the information bottleneck (IB) method [80], which is supposed to perform better.

Thus, the next sections focus on the analysis of the Gaussian vector channel with IB

compression and we will quantify the performance improvement. For this purpose, we

will formulate, derive and discuss the information-rate function (termed IB-function

in [37]) as an analogon to the distortion-rate function in rate-distortion theory.

3.2 Gaussian Information Bottleneck

In communications, we are not really interested in quantizing the received signal with

minimum distortion. What we actually want is to preserve the information about the

transmit signal x carried by the receive signal y. This is exactly what the information

bottleneck method [80] provides: relevance through another variable. The problem of

choosing the “right” distortion measure is replaced by relevant information. Similar

to rate-distortion theory the quantization should compress y as much as possible while

preserving as much information about x as possible.
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Definition 3.1. Let x − y − w be a Markov chain. The information-rate function

I : R+ → [0, I(x; y)] is defined by

I(R) , max
p(w|y)

I(x;w) subject to I(y;w) ≤ R. (3.1)

Furthermore, similar to the rate-distortion function we define the inverse function.

Definition 3.2. Let x − y − w be a Markov chain. The rate-information function

R : [0, I(x; y)]→ R+ is defined by

R(I) , min
p(w|y)

I(y;w) subject to I(w; x) ≥ I. (3.2)

3.2.1 Derivation of the GIB Information-Rate Function for Gaussian
Channels

In general it is hard if at all possible to find analytical expressions for the information-

rate functions and only few cases can be solved explicitly. A solution for the case

of jointly Gaussian x and y has been found in [16], with the problem formulated in

variational form

min
p(w|y)

I(y;w)− βI(w; x), (3.3)

where the parameter β describes the trade-off between compression and preserved re-

levant information.

Because of the additive structure of the AWGN channel x and y are jointly Gaussian

and in the vector case jointly multivariate Gaussian. It was shown in [38] that for

jointly Gaussian x and y the optimal w is also jointly Gaussian with y. Thus, w can

be described using the linear transformation

w = Ay + ξ, ξ ∼ N (0,Σξ). (3.4)

The problem in (3.3) can then be reformulated as

min
A,Σξ

I(y;w)− βI(x;w). (3.5)

The following theorem gives explicit expressions for the optimal A and Σξ.

Theorem 3.1 ( [16], Thm. 3.1). The optimal projection w = Ay + ξ for a given
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tradeoff parameter β is given by Σξ = Ix and

A =



(
0 . . . 0

)ᵀ
, 0 ≤ β ≤ βc1(

α1v1 0 . . . 0
)ᵀ
, βc1 ≤ β ≤ βc2(

α1v1 α2v2 0 . . . 0
)ᵀ
, βc2 ≤ β ≤ βc3

...

(3.6)

where {vᵀ1,vᵀ2, . . . ,vᵀnx} are left eigenvectors of Σx|yΣ
−1
x sorted by their corresponding

ascending eigenvalues λ1, λ2, . . . , λnx, βci = 1
1−λi are critical β values, αi are coefficients

defined by αi =
√

β(1−λi)−1
λiri

and ri = vi
TΣyvi, 0T .

Using the explicit tradeoff parameter β, Iβ(y;w) and Iβ(x;w) are derived in [16]

yielding

Iβ(y;w) =
1

2

n(β)∑
i=1

log2

(
(β − 1)

1− λi
λi

)
, (3.7)

where

n(β) = max{n : β ≥ βcn}. (3.8)

The mutual information between x and w is

Iβ(x;w) = I(y;w)− 1

2

n(β)∑
i=1

log2 (β(1− λi)) . (3.9)

3.3 Scalar Gaussian Information Bottleneck

Since x and y are jointly Gaussian and following the lines of Section 3.2.1 the optimum

w is also jointly Gaussian with y. They therefore indeed form the Markov chain

x− y − w, (3.10)

where y = h · x + z. This is the AWGN channel with transmit signal x ∼ N (0, P ),

fixed channel gain h and noise z ∼ N (0, σ2) (cf. Figure 3.2). In the scalar case the

covariance matrices simplify to

Σx = P, (3.11)

Σz = σ2, (3.12)

Σy = HΣxH
ᵀ + Σz = h2 · P + σ2, (3.13)

Σy|x = Σz = σ2. (3.14)



3.3 Scalar Gaussian Information Bottleneck 33

h · x ∼ N (0, h2 · P )

z ∼ N (0, σ2)

A
w

ξ ∼ N (0, 1)

y

Figure 3.2: GIB equivalent scalar system.

The desired eigenvalues from Theorem 3.1 therefore collapse to one single eigenvalue,

Σy|xΣ
−1
y =

σ2

σ2 + h2P
=

1

1 + h2P/σ2
= λ. (3.15)

In the scalar case there is only one critical βc, because there is only one eigenvalue λ.

The only interesting case is β ≥ βc, otherwise Iβ(y; w) = 0. Therefore n(β) = 1 and as

a consequence (3.7) reduces to

Iβ(y; w) =
1

2
log2

(
(β − 1)

1− λ
λ

)
, R. (3.16)

Since the mutual information of y and w is a measure for the compression, it can also

be seen as the rate of the quantization R. Making β explicit yields

β = 22R
λ

1− λ + 1. (3.17)

Substituting I(y; w) with (3.16), β with (3.17) and λ with (3.15) yields for (3.9)

Iβ(x; w) = R− 1

2
log2(β(1− λ)) (3.18)

= R− 1

2
log2

(
22Rλ+ 1− λ

)
(3.19)

=
1

2
log2

(
22R

22Rλ+ 1− λ

)
(3.20)

=
1

2
log2

(
22R

22R 1
1+h2P/σ2 + 1− 1

1+h2P/σ2

)
(3.21)

=
1

2
log2

(
22R(1 + h2P/σ2)

22R + h2P/σ2

)
, I(R). (3.22)

This can also be directly obtained, without using Iβ(y; w) and Iβ(x; w) from [16]. We

just need the identity w = Ay + ξ = A(hx + z) + ξ. As a consequence, these random

variables are all Gaussian distributed as follows:

w ∼ N (0, A2(h2P + σ2) + 1), (3.23)
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w|y ∼ N (0, 1), (3.24)

w|x ∼ N (0, A2σ2 + 1). (3.25)

The rate and the mutual information are again defined as

R , I(y; w) = h(w)− h(w|y), (3.26)

I , I(y; w) = h(w)− h(w|x). (3.27)

Using (3.23)–(3.25) to express R and I yields

R =
1

2
log2

(
A2(h2P + σ2) + 1

)
, (3.28)

I =
1

2
log2

(
A2(h2P + σ2) + 1

A2σ2 + 1

)
. (3.29)

Making A2 explicit in (3.28) yields

A2 =
22R − 1

h2P + σ2
. (3.30)

Substituting A2 in (3.29) with (3.30) yields the information-rate function in terms of

the rate R and the SNR h2P
σ2 .

Corollary 3.2. The scalar information-rate function with GIB-optimal channel output

compression is given by

I(R) =
1

2
log2

(
1 + h2P/σ2

1 + 2−2Rh2P/σ2

)
. (3.31)

The inverse of the information-rate function is called the rate-information function

and is given by the following corollary.

Corollary 3.3. The scalar rate-information function with GIB-optimal channel output

compression is given by

R(I) =
1

2
log2

(
h2P/σ2

2−2I(1 + h2P/σ2)− 1

)
. (3.32)

3.3.1 Equivalent Gaussian Channel

The combined original AWGN channel with GIB channel output compression can be

equivalently rewritten as a pure AWGN channel with modified channel noise [87]. First

we define the equivalence as

I(R) , C

(
P

σ2 + σ2q

)
, (3.33)
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x ∼ N (0, Pn I)
H

z ∼ N (0, σ2I)

y

Figure 3.3: Vector system model.

where σ2q is the additional noise due to the GIB compression. Rewriting (3.31) then

yields the following statement.

Corollary 3.4. The rate R channel output compression of an AWGN channel with

transmit power P , channel gain h, and channel noise variance σ2 can be equivalently

modelled by an additional additive Gaussian noise term with variance

σ2q = σ2
1 + h2P/σ2

22R − 1
. (3.34)

3.4 MIMO Gaussian Information Bottleneck

3.4.1 System Model

Now we consider the vector case with some restrictions for the sake of simplicity. These

restrictions are dropped in the next subsection and can be generalized using algebraic

transformations on source and channel. Let the random vector source be Gaussian

distributed as x =
(

x1 x2 . . . xn

)ᵀ
∼ N (0,D), where D is a diagonal matrix. In

the simplest case the available transmit power is evenly distributed on the independent

x1 . . . xn. Therefore, the elements of x are i.i.d. and x has the covariance matrix

Σx =D =
P

n
I. (3.35)

The noise is again additive and independent of x, thus the input-output relation reads

y = Hx + z, (3.36)

where H ∈ Rn×n is deterministic (cf. Figure 3.3).

In this model the noise is also modeled to be i.i.d., i.e., z ∼ N (0, σ2I). The covariance

matrices are then

Σz = σ2I, (3.37)

Σy = HΣxH
ᵀ + Σz =

P

n
HHᵀ + σ2I, (3.38)
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since x and z are assumed to be independent.

3.4.2 Generalization of the System

In Section 3.4.1 the system was restricted to an i.i.d. source x ∼ N (0, Pn I) and noise

z ∼ N (0, σ2I). Then y = Hx+ z ∼ N (0, PnHH
ᵀ +σ2I). Now we drop this restriction

and let x and z be independent Gaussian random vectors with full-rank covariance

matrices. We therefore have

x ∼ N (0,Σx), (3.39)

z ∼ N (0,Σz). (3.40)

The resulting powers P and σ2 are then be defined as

P = E{xᵀx}, (3.41)

σ2 =
1

n
E{zᵀz}. (3.42)

Then the covariance matrix of y is

Σy = HΣxH
ᵀ + Σz. (3.43)

Whitening the noise in y and decorrelating the signal yields

ỹ =
√
σ2UTΣ

−1/2
z y, (3.44)

where UΛUT is the eigen decomposition of
√

nσ2

P Σ
−1/2
z HΣxH

ᵀΣ
−1/2
z

√
nσ2

P . Hence,

ỹ ∼ N
(

0,
P

n
Λ + σ2I

)
. (3.45)

The previous transformations are all invertible and, hence, do not change the mutual

information. Therefore, we can write an equivalent system as

ỹ = H̃ x̃ + z̃. (3.46)

This equivalent system has a diagonal channel H̃ and i.i.d. signal x̃ and noise z̃, which

are given as

H̃ = Λ1/2, (3.47)

z̃ ∼ N (0, σ2I), (3.48)

x̃ ∼ N
(

0,
P

n
I

)
. (3.49)
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x ∼ N (0, Pn I)
H

z ∼ N (0, σ2I)

A
w

ξ ∼ N (0, I)

y

Figure 3.4: GIB equivalent vector system.

Since the channel is diagonal, the eigenvalues of H̃H̃
ᵀ

are the diagonal elements of Λ,

λH̃i
= [Λ]ii. (3.50)

To simplify the calculations in the next sections we will work with the system model

defined in the previous section which is equivalent to (3.46) with (3.47)–(3.49).

3.4.3 Information Bottleneck

Now we consider jointly Gaussian random vectors x, y,w, that form a Markov chain

x− y −w, (3.51)

where y = Hx+ z , x ∼ N (0, P/n · I) and z ∼ N (0, σ2I), H ∈ Rn×n (cf. Figure 3.4).

Recall the covariance matrices, where in the simplest case it is assumed that the trans-

mit power is evenly distributed among the uncorrelated x1 . . . xn,

Σx = D =
P

n
I, (3.52)

Σz = σ2I, (3.53)

Σy = HΣxH
ᵀ + Σz =

P

n
HHᵀ + σ2I. (3.54)

The conditional covariance matrix Σy|x, which is needed to calculate the necessary

eigenvalues from Theorem 3.1, can be calculated by the Schur complement as

Σy|x = Σy −Σy,xΣ
−1
x Σᵀ

y,x = Σz = σ2I. (3.55)

Using these covariance matrices to calculate the eigenvalues from Theorem 3.1 then

yields

Σy|xΣ
−1
y =σ2I

(
P

n
HHᵀ + σ2I

)−1
(3.56)

=

(
P

nσ2
HHᵀ + I

)−1
(3.57)
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=

(
P

nσ2
UΛUᵀ + I

)−1
, B−1, (3.58)

where the channel matrix is diagonalized as HHᵀ = UΛUᵀ. The resulting eigenvalue

problem is

vB−1 =λv (3.59)

⇒ v =λvB (3.60)

⇒ 1

λ
v =vB (3.61)

⇒ λBv =vB (3.62)

⇒ λ =
1

λB
. (3.63)

The characteristic equation for λB (λB 6= 1) is

det(B − λBI) = det

(
P

nσ2
UΛUᵀ − (λB − 1)I

)
(3.64)

= det

(
P

nσ2(1− λB)
UΛUT + I

)
(3.65)

=
r∏
i=1

(
P

nσ2(1− λB)
λHi + 1

)
= 0, (3.66)

where r is the rank of the channel and λHi are the eigenvalues of HHᵀ. Since (3.66)

must be fulfilled for all λBi , one can simplify this to

⇒ nσ2(1− λBi) + PλHi = 0 (3.67)

λBi = 1 +
P

nσ2
λHi (3.68)

λi =
1

λBi
=

1
P
nσ2λHi + 1

. (3.69)

In the case λB = 1, (3.64) reduces to det(HHᵀ) = 0. As a consequence λHi = 0 and

therefore (3.68) and (3.69) are still fulfilled.

The Information-Rate Function

The mutual information between y and w is again a measure for the compression and

can be interpreted as a compression rate R. This yields

Iβ(y;w) =
1

2

n(β)∑
i=1

log2

(
(β − 1)

1− λi
λi

)

)
(3.70)

=
1

2
log2

(β − 1)n(β)
n(β)∏
i=1

1− λi
λi

 , R. (3.71)
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Then making β explicit yields following expression

⇒ β = 2
2R
n(β)

n(β)∏
i=1

(
λi

1− λi

) 1
n(β)

+ 1. (3.72)

Using the expression for the mutual information between x and w as in the scalar case

and substituting β with (3.72) reads

Iβ(x;w) = I(y;w)− 1

2

n(β)∑
i=1

log2 (β(1− λi)) (3.73)

= R− 1

2
log2

βn(β) n(β)∏
i=1

(1− λi)

 (3.74)

= R− 1

2
log2


2

2R
n(β)

n(β)∏
i=1

(
λi

1− λi

) 1
n(β)

+ 1

n(β)
n(β)∏
i=1

(1− λi)

 (3.75)

= R− 1

2
n(β) log2

2
2R
n(β)

n(β)∏
i=1

λ
1

n(β)

i +

n(β)∏
i=1

(1− λi)
1

n(β)

 (3.76)

=
1

2
n(β) log2

 2
2R
n(β)

2
2R
n(β)

∏n(β)
i=1 λ

1
n(β)

i +
∏n(β)
i=1 (1− λi)

1
n(β)

 . (3.77)

Now substituting λi with (3.69) yields

Iβ(x;w) =
1

2
n(β) log2


2

2R
n(β)

2
2R
n(β)+ P

nσ2
λHn∏n(β)

i=1

(
1+ P

nσ2
λHi

)1/n(β)

 (3.78)

=
1

2
n(β) log2

2
2R
n(β)

∏n(β)
i=1

(
1 + h2P

nσ2 λHi

)1/n(β)
2

2R
n(β) + P

nσ2λHn

 (3.79)

=
1

2
log2

n(β)∏
i=1

2
2R
n(β) (1 + P

nσ2λHi)

2
2R
n(β) + P

nσ2λHn

 (3.80)

=
1

2

n(β)∑
i=1

log2

2
2R
n(β) (1 + P

nσ2λHi)

2
2R
n(β) + P

nσ2λHn

 , I(R), (3.81)

where λHn = λHn(R)
is the geometric mean

∏n(β)
i=1 λ

1/n(β)
Hi

. Again substituting λi with

(3.69) and inserting the critical β values βc = 1/(1− λn) yields critical rates Rc when
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using (3.70):

Rc(n) =
1

2

n∑
i=1

log2

(
λn

1− λn
1− λi
λi

)
(3.82)

=
1

2

n∑
i=1

log2

(
λHi
λHn

)
(3.83)

=
1

2
n log2

(
λHn
λHn

)
. (3.84)

The eigenvalues λi are sorted in ascending order and since λHi ∝ 1/λi, the λHi are in

descending order.

At the critical rates new modes are added to I(R) (3.81). This means n(β) is

incremented at each Rc and is therefore a function explicitly in R (n(β)⇒ n(R)):

n(R) = max{n : R ≥ Rc(n)}. (3.85)

Or in other words, at rate R there are n(R) active modes. These are the modes with

the n(R) largest eigenvalues λHi . The following corollary gives an explicit expression

for the information-rate function.

Corollary 3.5. The information-rate function with GIB-optimal channel output com-

pression is given by

I(R) =
1

2

n(R)∑
i=1

log2

 1 + P
nσ2λHi

1 + 2
− 2R
n(R) P

nσ2λHn

 , (3.86)

where the number of active modes n(R) is given by

n(R) = max{n : R ≥ Rc(n)}, (3.87)

and the critical rates Rc(n) are given by

Rc(n) =
1

2
n log2

(
λHn
λHn

)
. (3.88)

We identify (3.86) as the sum of n(R) scalar information-rate functions, i.e., we

have

I(R) =

n(R)∑
i=1

Ii(R) (3.89)

=
1

2

n(R)∑
i=1

log2

(
1 + P

nσ2λHi

1 + 2−2Ri(R) P
nσ2λHi

)
. (3.90)
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Comparing (3.86) with (3.90), yields the rate allocation

Ri(R) = max

{
0,

R

n(R)
+

1

2
log2

λHi
λHn

}
. (3.91)

This is essentially the same way of rate allocation as in the RD case, where the rate

R is evenly distributed among all n(R) active modes up to a correction term. It

can be shown that there is an even more direct connection between RD and GIB

as the RD compression of the Wiener filtered channel output is equivalent to the GIB

compression [52,53,85] and [62] shows that the GIB is indeed the solution of a Shannon-

theoretic problem. Depending on whether the eigenvalue of the mode is greater or

smaller than λHn the rate R/n(R) is increased or decreased by log2(λHi/λHn). All

rates of the scalar modes have the same slope

∂Ri(R)

∂R
=

1

n(R)
, (3.92)

where n(R) is constant. As before, Ri(R) is not differentiable on the critical rates.

This means that a differential increase dR is evenly distributed among all n(R) active

modes. Of course the scalar rates again have to sum up to the total rate

R =

n(R)∑
i=1

Ri(R). (3.93)

Rewriting (3.86) in the form I(R) = 1
2

∑n(R)
i=1 log2(1 + SNRi) yields the “mode”

SNRs

SNRi =
P

nσ2
2

2R
n(R)λHi − λHn

2
2R
n(R) + P

nσ2λHn

. (3.94)

As in the scalar case, the information-rate function can also be directly obtained,

without using Iβ(y;w) and Iβ(x;w) from [16]. Again we just need the identity w =

Ay + ξ = A(Hx + z) + ξ. As presented in Subsection 3.4.2 an equivalent diagonalized

system can be given with the diagonal channel H = diag
{√

λHi
}n
i=1

. The problem

reduces then to n scalar information-rate functions with wi = Aiyi + ξi, where we still

have to find the optimal rate allocation. The resulting information-rate function is the

sum of the individual scalar information-rate functions (3.90)

I(R) =
1

2

n∑
i=1

log2

(
1 + P

nσ2λHi

1 + 2−2Ri P
nσ2λHi

)
, (3.95)

with the rate constraint R =
∑n

i=1Ri. The optimal rate allocation can then be obtained

using Lagrange multipliers.
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Figure 3.5: I(R)/C (top) and IR(SNR) (bottom).

The Rate-Information Function

Next we calculate the inverse to the information-rate function, the rate-information

function. Rewriting (3.73) as

R(I) = I − 1

2

n(β)∑
i=1

log2 (β(1− λi)) , (3.96)

then using (3.70) to substitute R(I) and making I explicit yields

I(β) =
1

2

n(β)∑
i=1

log2

(
β − 1

β

1

λi

)
(3.97)

=
1

2
n(β) log2

(
β − 1

β

)
− 1

2
log2 (λi) . (3.98)
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The above equation can be rewritten as

log2

(
β − 1

β

)
=

2I

n(β)
+

1

n(β)

n(β)∑
i=1

log2 (λi) (3.99)

=
2I

n(β)
+ log2

(
λ̄n
)
. (3.100)

Making β explicit yields

β =
1

1− 2
2I
n(β) λ̄n

. (3.101)

Inserting the expression for β in (3.101) into (3.70) yields

R(I) =
1

2

n(β)∑
i=1

log2

 2
2I(R)
n(β) λ̄n

1− 2
2I
n(β) λ̄n

1− λi
λi

 . (3.102)

The last step is to substitute λi with (3.69) and rearrange the equation to

R(I) =
1

2

n(β)∑
i=1

log2

 P
nσ2λHi(

2
2I
n(β) λ̄n

)−1
− 1

 . (3.103)

However, R(I) still depends on β through n(β). Analog to the critical rates we can

calculate critical mutual information values from (3.97) if we use the critical beta values

βc = 1/(1− λn):

Ic(n) =
1

2

n∑
i=1

log2

(
λn
λi

)
(3.104)

=
1

2
n log2

(
λn
λ̄n

)
. (3.105)

At these critical information values Ic new modes are added to R(I) (3.103). This

means n(β) is incremented at each Ic and is therefore a function of I (n(β)⇒ n(I)):

n(I) = max{n : I ≥ Ic(n)}. (3.106)

Or in other words, at mutual information I there are n(I) active modes. These are the

modes with the n(I) smallest eigenvalues λi. The following corollary gives an explicit

expression for the rate-information function.

Corollary 3.6. The rate-information function with GIB optimal channel output com-
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pression is given by

R(I) =
1

2

n(I)∑
i=1

log2

 P
nσ2λHi(

2
2I
n(I) λ̄n

)−1
− 1

 , (3.107)

where the number of active modes n(I) is given by

n(I) = max{n : I ≥ Ic(n)}, (3.108)

and the critical mutual information values Ic(n) are given by

Ic(n) =
1

2
n log2

(
λn
λ̄n

)
. (3.109)

We identify (3.107) as the sum of n(I) scalar rate-information functions, i.e., we

have

R(I) =

n(I)∑
i=1

Ri(I) (3.110)

=
1

2

n(I)∑
i=1

log2

(
P
nσ2λHi

2−2Ii(I)
(
1 + P

nσ2λHi
)
− 1

)
. (3.111)

Comparing (3.107) with (3.111) yields

Ii(I) =
I

n(I)
+

1

2
log2

(
λ̄n
λi

)
(3.112)

and

I =

n(I)∑
i=1

Ii(I). (3.113)

3.4.4 Equivalent Gaussian Channel

As for the scalar channel in Section 3.3.1 the combined original Gaussian vector channel

with GIB channel output compression can be equivalently rewritten as a pure Gaussian

vector channel with modified channel noise [86]. First we define the equivalence as

I(R) ,
n∑
i=1

C

(
Pi

σ2i + σ2iq

)
, (3.114)

where σ2iq is the additional noise due to the GIB compression. We identify that the

equivalence in (3.114) even holds for each summand separately. Rewriting (3.81) then

yields the following statement.
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Corollary 3.7. The rate R =
∑n

i=1Ri channel output compression of a Gaussian

vector channel with transmit power P =
∑n

i=1 Pi, equivalent diagonalized channel gains

hi, i = 1, . . . , n, and channel noise variances σ2i , i = 1, . . . , n, can be equivalently

modelled by additional additive Gaussian noise terms with variance

σ2iq = σ2
1 + h2iPi/σ

2
i

22Ri − 1
, i = 1, . . . , n. (3.115)

3.4.5 MISO Gaussian Information Bottleneck

Transmission over the multiple access channel as studied in the following chapters is

equivalent to the MISO case, i.e., H = hᵀ ∈ R1×n. Hence, HHᵀ is a scalar and

due to 3.66 we only have one single mode. The resulting system is then in principle

equivalent to the scalar case (Section 3.3). Again, we consider an independent source

x ∼ N (0,diag(P1, P2, . . . , Pn)) with total transmit power P =
∑n

i=1 Pi and i.i.d. noise

z ∼ N (0, σ2). Then y = hᵀx + z ∼ N (0,
∑n

i=1 h
2
iPi + σ2). Analogously following the

lines of Section 3.3 we get following information-rate relations for the MISO channel.

Corollary 3.8. The MISO information-rate function with GIB-optimal channel output

compression is given by

I(R) =
1

2
log2

(
1 +

∑n
i=1 h

2
iPi/σ

2

1 + 2−2R
∑n

i=1 h
2
iPi/σ

2

)
. (3.116)

The inverse of the information-rate function is called the rate-information function

and is given by the following corollary.

Corollary 3.9. The MISO rate-information function with GIB-optimal channel output

compression is given by

R(I) =
1

2
log2

( ∑n
i=1 h

2
iPi/σ

2

2−2I(1 +
∑n

i=1 h
2
iPi/σ

2)− 1

)
. (3.117)

Since we only have one single mode, the sums in Section 3.4.4 reduce to one active

term and the equivalent Gaussian channel is given as follows.

Corollary 3.10. The rate R channel output compression of a Gaussian vector channel

with transmit power P =
∑n

i=1 Pi, channel gains hi, i = 1, . . . , n, and channel noise

variance σ2, can be equivalently modelled by an additional additive Gaussian noise term

with variance

σ2q = σ2
1 +

∑n
i=1 h

2
iPi/σ

2

22R − 1
. (3.118)
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Figure 3.6: Waterfilling power allocation.

3.5 Gaussian Information Bottleneck with Optimal Power Al-
location

Until here we considered a fixed transmit power allocation. Next we show that if we

include the optimization of the power allocation as an additional degree of freedom we

generally achieve higher rates than solely optimizing over the rate allocation.

3.5.1 Introduction

Consider a general Gaussian vector channel with full rank channel matrix H̃. We

can diagonalize the channel using an unitary precoding and decoding matrix, i.e.,

H = UH̃V > (see Section 3.4.2). Thus, for what follows we work with the equiva-

lent diagonalized channel matrix H ∈ Rn×n.

As a result we have n parallel Gaussian channels with signal to noise ratio Pi/σ
2
i .

It is well known that for a total transmit power constraint P =
∑n

i=1 Pi the optimal

power allocation that maximizes the sum capacity

C(P ) =
n∑
i=1

C0(Pi/σ
2
i ) =

n∑
i=1

1

2
log2

(
1 +

Pi
σ2i

)
(3.119)

is according to Pi = max{λ − σ2i , 0} [20]. Usually this kind of resource allocation is

termed water-filling with the water level λ (Figure 3.6). Writing this problem explicitly
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1/2 log2 Pi/σ
2
i

i

ν

Ri

Figure 3.7: Reverse waterfilling rate allocation.

as a concave maximization problem yields

maximize

n∑
i=1

1

2
log2

(
1 +

Pi
σ2i

)

subject to

n∑
i=1

Pi ≤ P.
(3.120)

Similarly for a given parallel Gaussian channel with fixed power allocations Pi we

find the optimal compression rate allocation with rate constraint R =
∑n

i=1Ri which

maximizes the mutual information

I(R) =
n∑
i=1

Ii(Ri) =
n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)
(3.121)

as Ri = max{1/2 log2 Pi/σ
2
i − ν, 0} (see Section 3.4.3). This type of resource allocation

is a variant of a scheme termed reverse water-filling with the water level ν (Figure 3.7).

Again, we write this problem explicitly as a concave maximization problem,

maximize
n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)

subject to
n∑
i=1

Ri ≤ R.
(3.122)

Indeed the solution of the optimization (3.120) maximizes the channel capacity and

the solution of the optimization (3.122) maximizes the mutual information of a given

channel with fixed power allocation. However, applying both optimizations sequentially

does not yield the maximum mutual information for all possible combinations of rate
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and power allocations. This becomes obvious giving a simple example: Say, we have

enough transmit power that all modes of the vector channel get a positive power Pi >

0, i = 1, . . . , n. On the other hand we assume that we have that little rate that at

least the weakest mode gets zero rate. As a consequence, the weakest mode does not

contribute any mutual information at all. But then it would have been better to not

allocate any transmit power to this mode at all at first place and distribute the extra

available transmit power to the remaining modes.

To get the maximum mutual information for given transmit power P and compres-

sion rate R we have to jointly optimize over power allocation and rate allocation,

maximize
n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)

subject to

n∑
i=1

Pi ≤ P (3.123)

n∑
i=1

Ri ≤ R.

Convexification Approach

To solve (3.124) efficiently we have to show that this is again a concave maximization

problem. Obviously, the constraint functions are affine functions and therefore convex

as well. The objective function is concave if the individual summands are concave,

since the sum of concave functions is again concave. Using concave composition rules

we identify each summand as concave if the argument in the logarithm is concave.

Indeed, direct calculation of the Hessian determinant of

h(Pi, Ri) =
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i
(3.124)

yields

detH(h(Pi, Ri)) = −22Ri22σ2i log2 2
(
2P 2

i (22Ri − 1) + Pi(2
2Ri2− 1)σ2i + 22Riσ4i

)
(Pi + 22Riσ2i )

5
≤ 0.

(3.125)

In contrast, the principal minors are negative as well. As a consequence, the Jacobian

is not negative definite and thus the objective function is not concave.

It can be easily seen that there is a strictly feasible set, i.e. the constraint functions

are fulfilled with strict inequality. Thus, Slater’s condition would guarantee strong du-

ality with duality gap zero if the objective function was concave and we could solve the

optimization problem (3.124) using Lagrange multipliers. If we convexify the problem
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the Lagrange function reads

L(P1, . . . , Pn, R1, . . . , Rn, λ, ν) =
n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)

+ λ

(
n∑
i=1

Pi − P
)

+ ν

(
n∑
i=1

Ri −R
)
. (3.126)

Then, the optimality condition ∇L(P1, . . . , Pn, R1, . . . , Rn, λ, ν) = 0 gives us the equa-

tions

∂

∂Pi

1

2
log2

(
1 + Pi/σ

2
i

1 + 22RiPi/σ2i

)
+ λ =

1

eRiσ2i + Pi
− 1

σ2i + Pi
+ λ = 0, i = 1, . . . , n

(3.127)

∂

∂Ri

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)
+ ν = − Pi

eRiσ2i + Pi
+ ν = 0, i = 1, . . . , n,

(3.128)

where we used the natural logarithm and powers to e instead of the respective operations

to base 2 to avoid additional constants for further calculations, i.e., rates are now given

in nats instead of bits. Solving (3.128) yields

Ri = max

{
log

(
Pi
σ2i

1− ν
ν

)
, 0

}
. (3.129)

Using this result allows us to explicitly solve (3.127) and formulate it solely as a function

of the Lagrange multipliers

Pi = min

λσ
2
i + ν − 1±

√
λ2σ4i + 2λσ3i (3ν − 1) + (ν − 1)2

2λ


+

, (3.130)

with min{·}+ returning the smallest positive argument or 0 if all arguments are smaller

than 0.

This yields an implicit formulation of the convexified information-rate-power function

I(R,P ). The levels ν and λ are chosen such that the rate constraint R =
∑

iRi and

transmit power constraint P =
∑

i Pi are fulfilled.

Difference of convex function programming approach

The parametrized solution of the convexified problem of the last section generally does

not coincide with the solution of the original problem. Formulating the problem as

a difference of convex functions or equivalently as the sum of a convex and a con-

cave function enables us to efficiently solve the problem via DC programming (see

Section 2.8). Algorithms such as the CCP (see Section 2.8.1) transform this optimiza-
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tion problem into a series of convex optimization problems. Generally, every function

can be split into infinitely many different compositions of convex and concave functions.

One straight-forward splitting of (3.124) is

n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)
=

n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

)
︸ ︷︷ ︸

concave

+

[
−

n∑
i=1

1

2
log2

(
1 + 2−2RiPi/σ

2
i

)]
︸ ︷︷ ︸

convex

. (3.131)

The first sum is a sum of concave functions and thus itself concave. This follows by the

fact that the logarithm is concave and the arguments 1 + Pi/σ
2
i are affine. The second

sum is a sum of concave functions as well (therefore the negative sum is convex). To

see this, we expand the sum to

n∑
i=1

1

2
log2

(
1 + 2−2RiPi/σ

2
i

)
=

n∑
i=1

1

2
log2

(
22Ri + Pi/σ

2
i

)
−

n∑
i=1

Ri log2 (2) . (3.132)

Here, the second sum is affine since it is the sum of affine functions. The first sum is

concave since it is the sum of concave functions. We obtain that each summand of the

first sum is concave by following reasoning: First, we notice that the argument of the

logarithm 22Ri + Pi/σ
2
i is convex. Although being convex each of the terms are log-

concave. Log-concave means that the logarithm of a log-concave function is concave [7].

It is ”most” convex in the direction Pi = 0 and ”least” convex (in fact affine) in the

direction Ri = 0. Due to monotonicity it is in between this two extrema in all other

directions. But even in the ”most” convex direction of Pi = 0, the resulting function is

affine, that is, log2(2
2Ri) = Ri log2(2), and as a consequence in all other ”less” convex

directions it has to be concave.

Now we reformulate the maximization problem as a minimization problem,

minimize −
n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)

subject to

n∑
i=1

Pi ≤ P (3.133)

n∑
i=1

Ri ≤ R

and use the partitioning into a concave and a convex part as in (3.131),

C∩ =

n∑
i=1

1

2
log2

(
1 + 2−2RiPi/σ

2
i

)
, (3.134)
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C∪ = −
n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

)
, (3.135)

which yields following DC problem

minimize C∩ + C∪

subject to

n∑
i=1

Pi ≤ P (3.136)

n∑
i=1

Ri ≤ R.

For what follows we use compact vector notations for transmit powers p = (P1, P2, . . . , Pn)ᵀ

and quantization rates r = (R1, R2, . . . , Rn)ᵀ in this section. Rewriting our optimiza-

tion problem (3.136) in standard form (2.66) yields the following result.

Corollary 3.11. The problem of jointly finding the optimal transmit power allocation

and quantization rate allocation for a Gaussian vector channel with GIB channel output

compression is solved by finding the solution of the DC problem

minimize
p,r

− C∩(p, r)− C∪(p, r)

subject to 1>p− P ≤ 0,

− p � 0, (3.137)

1>r −R ≤ 0,

− r � 0.

The basic idea of the iterative CCP algorithm [91] is to find a point where the

gradient of the convex part in the next iteration equals the negative gradient of the

concave part of the previous iteration

∇C∪(pk+1, rk+1) = −∇C∩(pk, rk) (3.138)

which itself is a convex optimization problem. Here, the gradient is with respect to

(pᵀ, rᵀ)ᵀ. The solution to this auxiliary problem decreases monotonically with increa-

sing k and thus converges to a minimum (or saddle point). Lipp and Boyd [49] give a

basic CCP algorithm which requires initial feasible points p0 and r0, which in our case

can be any points in the interval 0 ≤ 1>p0 ≤ P and 0 ≤ 1>r0 ≤ R. Following [49], the

CCP approach leads to Algorithm 3 for power allocation.
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Algorithm 3 Joint transmit power and quantization rate allocation for the Gaussian
vector channel with GIB channel output compression via CCP

Require: Initial feasible points p0, r0
1: k := 0
2: while stopping criterion not satisfied do

3: Form Ĉk(p, r) = C∪(pk, rk) +
(

(p− pk)> , (r − rk)>
)
∇C∪(pk, rk)

4: Determine pk+1, rk+1 by solving the convex problem

minimize −C∩(p, r)− Ĉk(p, r)
subject to 1>p− P ≤ 0,

−p � 0,
1>r −R ≤ 0,

−r � 0
5: k := k + 1
6: end while
7: return pk, rk

3.5.2 Properties of the Information-Rate-Power Function I(R,P )

As introduced in the previous section, the information-rate-power function yields the

maximum achievable mutual information and thus jointly finds the optimum rate and

power allocation. Although the resulting problem is DC, numerical simulations indi-

cate that optimization using Lagrange multipliers provide acceptable results for the

information-rate-power function. For constant power and fixed power allocation or

constant rate and fixed rate allocation the following statements about concavity hold.

Properties of the Information-Rate Function IP0(R)

For constant transmit power P0 and fixed power allocation, the information-rate function

is concave in the rate R [86]. Thus, the information-rate-power function is concave in

R as well. The joint optimization problem thus reduces to the convex optimization

problem of finding the optimum rate allocation,

maximize

n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)

subject to

n∑
i=1

Ri ≤ R.
(3.139)

Note that in contrast to the joint optimization problem (3.124) here the constraint

is only regarding the rate R since the transmit power allocation (P1, P2, . . . , Pn) with

P0 =
∑

i Pi is considered fixed. With a slight abuse of notation the index P0 not only

refers to the transmit power but also implicitly reflects a specific power allocation. In

general, the same specific power allocation for all rates R is suboptimal, that is, it does

not maximize the achievable mutual information.



3.5 Gaussian Information Bottleneck with Optimal Power Allocation 53

The inverse function, the rate-information function RP0(I) finds the minimum rate

R that achieves the mutual information I for fixed power allocation P0 =
∑

i Pi,

minimize

n∑
i=1

1

2
log2

(
Pi/σ

2
i

2−2Ii(1 + Pi/σ2i )− 1

)

subject to

n∑
i=1

Ii ≥ I.
(3.140)

Clearly, for some mutual information allocations Ii some arguments of the log2(·) terms

would become negative if Ii > 1/2 log2(1 +Pi/σ
2
i ) = C(Pi/σ

2
i ). As a result each ”mode

information” Ii is at most C(Pi/σ
2
i ) what is also an implication of the data processing

inequality. Therefore, in contrast to the information-rate function, the inverse is not

defined for C(P0) < I and asymptotic R→∞ if C(P0) = I.

Properties of the Information-Power Function IR0(P )

For constant rate R0 and fixed rate allocation, the information-power function is con-

cave in the transmit power P . The Gaussian channel including information-optimal

output compression can be equivalently modelled as a Gaussian channel with increased

channel noise. As a consequence, for constant R0 the information-power function redu-

ces to finding the optimal power allocation which is solved by classical water-filling [20].

Thus, the information-power function is concave in P as well,

maximize
n∑
i=1

1

2
log2

(
1 + Pi/σ

2
i

1 + 2−2RiPi/σ2i

)

subject to

n∑
i=1

Pi ≤ P.
(3.141)

Note that in contrast to the joint optimization problem (3.124) here the constraint is

only regarding the transmit power P since the rate allocation (R1, R2, . . . , Rn) with

R0 =
∑

iRi is considered fixed. Again, with a slight abuse of notation here the index

R0 not only refers to the rate but also implicitly reflects a specific rate allocation. In

general, the same specific rate allocation for all transmit powers R is suboptimal, that

is, it does not maximize the achievable mutual information.

The inverse function, the power-information function PR0(I) finds the minimum

power P that achieves the mutual information I for fixed rate allocation R0 =
∑

iRi,

minimize
n∑
i=1

[
σ2i

22Ii − 1

1− 22(Ii−Ri)

]+
subject to

n∑
i=1

Ii ≥ I.
(3.142)
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Clearly if the mutual information allocated to one mode would be Ii > Ri, the respective

mode power would be negative in consequence. Thus, we need the [·]+ that indicates we

only take positive summands, since negative transmit powers are physically impossible.

As a result each ”mode information” Ii is at most Ri, which is also an implication of the

data processing inequality. Therefore, in contrast to the information-power function,

the inverse is not defined for R0 < I and asymptotic P →∞ if R0 = I.

Recursive Optimization

The question arises whether recursive optimization of the information-rate function and

the information-power function converges to a (local) optimum. If this was the case

the resulting optimization problem would be a series of convex optimization problems

and thus practically solvable.

There are two possible recursions. We can either initialize the optimization on a

specific transmit power allocation or quantization rate allocation. For a specific initial

transmit power allocation we first calculate the information-rate function IP0(R) by

solving the optimization problem (3.139) that delivers a rate allocation and then use

this rate allocation to calculate the information-power function IR0(P ) by solving the

optimization problem (3.141) that delivers again a power allocation. Then this recursion

starts all over. Or we can optimize the other way around by starting with a specific

initial quantization rate allocation and the recursively solve (3.141) and then (3.139).

These two recursions do not necessarily converge to the same value. This opti-

mization strategy strongly depends on the initialization and unfortunately, for bad

initialization values such consecutive optimization is highly suboptimal. This beco-

mes obvious if we consider the optimization step where the optimum power allocation

is found for the optimum rate allocation of the previous step. If then the power al-

location procedure allocates zero power to the weakest mode due to its water-filling

behaviour, the weakest mode stays inactive in the next step of optimal rate allocation

because it has zero capacity. This zero rate and power allocation repeats for all follo-

wing iterations. Thus, if at one point of the iterative optimization zero power or zero

rate is allocated to one mode, this mode will stay inactive until convergence.

3.5.3 Discussion

Simulations showed that joint optimization is relatively sensitive regarding initializa-

tion. Therefore, we used various random initializations and picked the best solutions in

an evolutionary way. This strategy yields the highest achievable rates. Consecutive op-

timizations, where we first maximize the ”raw” channel capacity without quantization

and then maximize the achievable rates using the GIB, delivers inferior performance if

not all modes are active. Surprisingly, if the water-filling algorithm allocates power to

all modes this sequential optimization performs nearly optimal. We observed a similar
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behaviour for the recursive optimization. The reason for this is the discussed ”cut-off”

behaviour during the consecutive iterations. In terms of computational complexity the

consecutive approach is most preferable since it basically consists of two convex opti-

mizations problems whereas joint optimization and recursive optimization are each a

series of convex optimizations problems.

Figure 3.8 and Figure 3.9 illustrate the different optimization approaches for vari-

ous transmit powers P and various rates R, respectively. Obviously, there are sharp

transitions in power and rate allocation over transmit power and rate. This behaviour

is due to the joint optimization and in contrast to the smooth mode transitions for plain

GIB rate allocation optimization (cf. Section 3.4.3, [86]). In Figure 3.8 we observe the

biggest benefit of the true joint optimization over sequential and recursive optimization

for moderate transmit powers. But due to the relatively even allocation of the transmit

power in the high power regime it is sufficient to just sequentially optimize power allo-

cation and rate allocation. Recursive optimization shows a slightly poorer performance

due to the previously discussed potential ”cut-off” behaviour. In Figure 3.9 we observe

a similar behaviour. For high rates all three optimization approaches perform nearly

identical. Only the recursive optimization shows some numerical instabilities.
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Figure 3.8: Exemplary optimization of information-rate-power function with fixed
quantization rate R = 3 plotted over transmit power with n = 3, hᵀ = (0.9, 0.95, 1),
σ2 = 1. Optimal power allocation with joint optimization (top); optimal rate allo-
cation with joint optimization (middle); optimal achievable rates with joint optimiza-
tion, sequential optimization, and recursive optimization and plain channel capacity C0

(bottom). Same legend applies for all plots.
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Figure 3.9: Exemplary optimization of information-rate-power function with fixed
transmit power P = 10 plotted over quantization rate R with n = 3, hᵀ = (0.8, 0.9, 1),
σ2 = 1. Optimal power allocation with joint optimization (top); optimal rate allo-
cation with joint optimization (middle); optimal achievable rates with joint optimiza-
tion, sequential optimization, and recursive optimization and plain channel capacity C0

(bottom). Same legend applies for all plots.



58Chapter 3. MIMO Gaussian Information Bottleneck with Optimal Power Allocation



4
Feedback Model

Throughout this thesis we study communication over Gaussian channels in conjunction

with GIB-modelled channel output compression. For this reason we start by defining

a discrete source model that asymptotically converges to a Gaussian distribution in

Section 4.2.

In Section 4.3 we next formulate the algebraic feedback coding structure for the

AWGN channel, the Gaussian multiple access channel, and the Gaussian broadcast

channel. Following this algebraic coding structure we propose a superposition coding

scheme for said channels that superimposes a feedback based coding component with a

conventional coding component that completely ignores the feedback in Section 4.5. We

further describe how the receiver is aware of the quantization noise and how this side-

information positively affects the performance of the proposed superposition scheme.

4.1 Introduction

Commonly, when studying the theoretical performance of communication scenarios

such as channel capacity this is accomplished in the context of information theory,

more specifically Shannon theory. This approach benefits from very general results

but may lack specific solutions for practical coding schemes. It becomes evident when

moving from the asymptotic performance regime to finite blocklengths. Here, it is often

practical to explicitly define the algebraic coding structure. We therefore formulate

our feedback model in the following chapter based on the feedback scheme proposed

by Chance and Love [11, 12, 14, 15] where the original idea dates back to Butman in

1969 [8]. Then, we develop it further to the proposed superposition coding scheme.

59
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4.2 Source Signal Model

The optimal channel output compression developed in Chapter 3 results in the Gaussian

Information Bottleneck which relies on Gaussian sources. If we want to measure the

performance of systems, we usually want to give error probabilities, i.e., symbol error

probability or bit error probability. Therefore, we have to discretize the source. In order

to reconcile the contradictory requirements of the Gaussian source and the discrete

source we approximate the Gaussian source by a discrete source.

The desired discrete approximation p(x) of our Gaussian distribution f(x) should

ideally fulfil ∫ b

a
f(x)dx =

n∑
k=1

p(xk) a, b ∈ R. (4.1)

We define the approximation as (Figure 4.1)

p(xk) ≈ ∆f(xk). (4.2)

The relation of differential entropy and the entropy of the discretized version is

derived in [18]. The differential entropy of the original Gaussian source is denoted as

h(x). The source should have the rate R, which is the discrete entropy H(x)

R = H(x) = −
∑
x

p(xk) log2 p(xk). (4.3)

Now substituting p(xk) with (4.2) yields

R = −
∞∑
−∞

∆f(xk) log2(∆f(xk)) (4.4)

= −
∞∑
−∞

∆f(xk) log2 f(xk)−
∞∑
−∞

∆f(xk) log2 ∆ (4.5)

≈ −
∫ ∞
−∞

f(xk) log2 f(xk)dx︸ ︷︷ ︸
=h(x)

−
∫ ∞
−∞

f(xk)dx︸ ︷︷ ︸
=1

log2 ∆ (4.6)

= h(x)− log2 ∆. (4.7)

This approximation gets tight for high rates and is exactly fulfilled as R → ∞. The

differential entropy of a Gaussian source is

h(x) =
1

2
log2(2πeσ

2). (4.8)
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f(x)

xx−4 x−3 x−2 x−1 x0 x1 x2 x3 x4 . . .. . .

∆

p(x)

xx−4 x−3 x−2 x−1 x0 x1 x2 x3 x4 . . .. . .

∆

p(x1) ≈ f(x1)∆

Figure 4.1: Gaussian distribution (top) and resulting discrete approximation (bottom).

Inserting (4.8) into (4.7) and making ∆ explicit then yields

⇒ ∆2 =
σ2

22R
2πe. (4.9)

A uniform distribution would result in

∆2
U =

σ2

22R
1

12
. (4.10)

The ratio of (4.9) and (4.10) is called the ultimate shaping gain [30] and formulates as

c20 =
∆2

∆2
U

=
πe

6
, 1.53dB. (4.11)

So the discrete approximation of the Gaussian source with the differential entropy h(x)

goes to an entropy H(x) → ∞ if ∆ → 0. From a mathematical point of view, every
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θ
Transmitter

h

z[k] ∼ N (0, σ2)

Receiver
θ̂x[k] y[k]

w[k]

Figure 4.2: AWGN channel with feedback link.

continous source has to have infinite entropy, since the realization is chosen from a set

of real numbers, which are innumerable, even if the set is bounded.

4.3 Feedback Coding

4.3.1 AWGN Channel Transceiver Scheme

We start with the simple one transmitter scenario where the transmit message θ is

directly modeled by a Gaussian distribution,

θ ∼ N (0, 1). (4.12)

The transmit vector x consist of the message part and the feedback part w, given

by

x = gθ +Bw̃, (4.13)

where w̃ is the modified feedback signal to be defined, g is the transmit vector and B

is termed encoding matrix [12]. The fixed channel gain h is known to both transmitter

and receiver and is incorporated in the construction of both g and B. The scheme is

shown in Figure 4.2. The AWGN channel then adds the noise z, which is iid according

to a Gaussian distribution

z ∼ N (0, σ2zI). (4.14)

The channel output signal y is then given by

y = hx + z. (4.15)

The channel output is directly fed back to the transmitter, with additive iid Gaussian

noise

n ∼ N (0, σ2nI). (4.16)
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Thus, the feedback signal w is given by

w = y + n (4.17)

= hx + z + n. (4.18)

Let us temporarily assume that w = w̃, i.e., the feedback signal is not modified. Then

by using (4.18) in (4.13) we get

x = gθ +B (hx + z + n) . (4.19)

Since the feedback is strictly causal, Bhx is known at transmitter and therefore can be

subtracted from the feedback, i.e., w̃ = w − hx, where w̃ is provided to the encoding

matrix B. The receive signal is then

y = hx + z (4.20)

= hgθ + hB (z + n) + z (4.21)

= hgθ + (I + hB)z + hBn︸ ︷︷ ︸
z′

. (4.22)

Thus, the resulting system is equivalent to a non-feedback coding scheme with modified

channel noise z′.

4.3.2 MAC Transceiver Scheme

This thesis studies the multiple access channel and the broadcast channel. Results for

the broadcast channel are mostly obtained by applying duality (see Section 2.6.1) where

we can directly use statements that hold for the multiple access channel. Therefore,

here we restrict to the explicit definition of the multiple access channel. The broadcast

channel is fully analogous. First, we formulate the problem for the K-transmitter case

to give a general insight on the problem. All messages θi are modeled as i.i.d. Gaussian,

θi ∼ N (0, 1) i = 1, 2, . . . ,K. (4.23)

The transmit vectors xi consist of the message part and the feedback part wi, given

by

xi = giθi +Biw̃i, (4.24)

where w̃i is the modified feedback signal to be defined, gi are the transmit vectors and

Bi are the encoding matrices [12]. The fixed channel gains hi are known to transmitters

and receiver and are incorporated in the construction of both gi and Bi. For K = 2

the scheme is shown in Figure 4.3. The MAC then combines the transmit vectors and
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Figure 4.3: Two-user Gaussian MAC with common feedback link.

adds the noise z, which is iid according to a Gaussian distribution

z ∼ N (0, σ2zI). (4.25)

The channel output signal y is then given by

y =
K∑
i=1

hixi + z. (4.26)

The channel output is directly fed back to each transmitter with additive i.i.d. Gaussian

noise

ni ∼ N (0, σ2niI), i = 1, 2, . . . , N. (4.27)

Therefore, the feedback signal wi is given by

wi = y + ni (4.28)

=

N∑
i=1

hixi + z + ni (4.29)

Let us again temporarily assume that wi = w̃i, i.e. the feedback signal is not modified.

Then by using (4.29) in (4.24) we get

xi = giθi +Bi

 K∑
j=1

hjxj + z + nj

 . (4.30)

Since the feedback is strictly causal, we can compute w̃i = wi − hixi and define the
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transmit signal as

xi = giθi +Bi

 K∑
j=1
j 6=i

hjxj + z + ni

 . (4.31)

Now we specialize (4.31) to the case of two transmitters (K = 2). We then get

x1 = g1θ1 +B1 (h2x2 + z + n1) , (4.32)

x2 = g2θ2 +B2 (h1x1 + z + n2) . (4.33)

Using (4.33) in (4.32) yields

x1 = g1θ1 +B1 (h2g2θ2 + h2B2 (h1x1 + z + n2) + z + n1) . (4.34)

Again exploiting the strictly causal nature of the feedback, B1h2B2h1x1 is known at

transmitter 1 and therefore can be subtracted. Then, we get

x1 = g1θ1 +B1 (h2g2θ2 + (B2h2 + I)z +B2h2n2 + n1)︸ ︷︷ ︸
w̃1

. (4.35)

Analogously we get the transmit signal of transmitter 2,

x2 = g2θ2 +B2 (h1g1θ1 + (B1h1 + I)z +B1h1n1 + n2)︸ ︷︷ ︸
w̃2

. (4.36)

The receive signal is then

y = h1x1 + h2x2 + z (4.37)

= h1(I +B2h2)g1︸ ︷︷ ︸
g̃1

θ1 + h2(I +B1h1)g2︸ ︷︷ ︸
g̃2

θ2

+ (h1B1B2h2 + h2B2B1h1 + h1B1 + h2B2 + I)︸ ︷︷ ︸
Ã

z

+ h1(B1 + h2B2B1)︸ ︷︷ ︸
Ã1

n1 + h2(B2 + h1B1B2)︸ ︷︷ ︸
Ã2

n2 (4.38)

= g̃1θ1 + g̃2θ2 + Ãz + Ã1n1 + Ã2n2︸ ︷︷ ︸
z′′︸ ︷︷ ︸

z′

. (4.39)

Thus, the resulting system is equivalent to a multi-user non-feedback coding scheme

with modified channel noise z′′.
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4.3.3 Sum Capacity

The sum capacity is then given by [20]

C =
1

2
log2

( |Ry|
|Rz′ |

)
+

1

2
log2

( |Ry−g̃1θ1 |
|Rz′′ |

)
. (4.40)

This can be interpreted as an iterative decoding; for decoding θ1, θ2 is considered as

noise, while for decoding θ2, θ1 is assumed to be known. The message with higher SNR

is decoded first. To maximize 4.40 we have to find the optimum g1, g2, B1, B2 and

the corresponding decoding functions. Due to its ill-defined structure this optimization

problem is in general hard to solve. To overcome this problem we perform the transition

from matrix to superposition coding in Section 4.4.

4.4 Transition from Matrix to Superposition Coding

In Section 4.3.2 the transmit signal (4.24) explicitly consists of the message component

and the feedback component. Both are linear functions of the transmit message and

the feedback, respectively; the message is ”smeared” via a transmit vector and the

feedback is transmitted via the feedback matrix. Both are hard to jointly optimize in

the multiuser scenario.

Section 4.3.2 defines the conventional encoder ϕi(θi) and the feedback based encoder

ϕ̃i(θi,w) as

xi = giθi︸︷︷︸
ϕi(θi)

+ Biw̃i︸ ︷︷ ︸
ϕ̃i(θi,w)

, i = 1, 2. (4.41)

Here, both encoders are functions of the same transmit message θi, which prevents

us from attaining a superposition gain; these encoders could be simple added to one

single linear encoder. Instead we now propose a superposition coding scheme that

superimposes a feedback-based coding scheme ϕ̃i(θ̃i,w) with a conventional coding

scheme ϕi(θi) that completely ignores the feedback,

xi = ϕi(θi) + ϕ̃i(θ̃i,w), i = 1, 2. (4.42)

We now have two independent messages θi and θ̃i for each transmitter. This allows us

to achieve a variety of improvements due to this additional degree of freedom. Most

importantly, we achieve a superposition gain and a gain in capacity due to the multiuser

scenario as we show later.
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X=


x[1] x[2] . . . x[N ]

x[N + 1] x[N + 2] . . . x[2N ]
x[2N + 1] x[2N + 2] . . . x[3N ]

...
...

. . .
...

x[(Ñ−1)N + 1] x[(Ñ−1)N + 2] . . . x[ÑN ]

 (4.43)

=


ϕ1(θ1) ϕ2(θ1) . . . ϕN (θ1)

ϕ1(θ2) ϕ2(θ2) . . . ϕN (θ2)
...

...
. . .

...
ϕ1(θÑ ) ϕ2(θÑ ) . . . ϕN (θÑ )


︸ ︷︷ ︸

message θj is conventionally encoded in row (subblock) j

(4.44a)

+


ϕ̃1

(
θ̃1, 0

)
ϕ̃1

(
θ̃2, 0

)
. . . ϕ̃1

(
θ̃N , 0

)
ϕ̃2

(
θ̃1,w

(1)
1

)
ϕ̃2

(
θ̃2,w

(1)
2

)
. . . ϕ̃2

(
θ̃N ,w

(1)
N

)
...

...
. . .

...

ϕ̃Ñ
(
θ̃1,w

(Ñ−1)
1

)
ϕ̃Ñ
(
θ̃2,w

(Ñ−1)
2

)
. . . ϕ̃Ñ

(
θ̃N ,w

(Ñ−1)
N

)


︸ ︷︷ ︸

message θ̃l is feedback-based encoded in column l

(4.44b)

4.5 Superposition Feedback Coding

4.5.1 AWGN Channel Model

We study the AWGN channel with quantized feedback (see Figure 4.4) in the finite

blocklength regime as well as in the asymptotic regime. Here, the transmitter sends

independent length-n Gaussian signals x[k] and the receiver observes the signal

y[k] = hx[k] + z[k], (4.45)

where z[k] ∼ N (0, σ2) is i.i.d. additive Gaussian noise. The channel gain h is assumed

to be known by both transmitter and receiver. We impose the average transmit power

constraint (here, expectation is with respect to the messages and the channel noise)

1

n

n∑
k=1

E
{

x2[k]
}
≤ P. (4.46)

In order to enable successive cancellation decoding, the overall transmission block of

length n is split into Ñ subblocks of length N each, i.e.,

n = ÑN. (4.47)
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z[k] ∼ N (0, σ2)
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θx[k] y[k]

w[k]

Figure 4.4: AWGN channel with feedback link and superposition coding.

We rearrange the transmit signal x[k] into a Ñ × N matrix X (see (4.43)) to fit into

this block structure,

[X]j,l = x[(j − 1)N + l], j = 1, . . . , Ñ , l = 1, . . . , N. (4.48)

Each row of X represents one subblock that encodes one conventional codeword. By

contrast, the feedback-based codewords are encoded in the columns of X, i.e., over

corresponding time slots in all subblocks.

The noise is rearranged in the same way as

[Z]j,l = z[(j − 1)N + l]. (4.49)

The received signal in matrix form reads

Y = hX +Z. (4.50)

The concrete functionality of the encoders and superposition coding are developed in

Section 5.2 for the asymptotic case and Section 6.2 for the finite blocklength regime.

4.5.2 MAC Model

We study the two-user asymmetric Gaussian MAC with quantized feedback (see Fi-

gure 4.5) in the finite blocklength regime as well as in the asymptotic regime. Here,

the two transmitters send independent length-n Gaussian signals xi[k], i = 1, 2, and

the receiver observes the signal

y[k] = h1x1[k] + h2x2[k] + z[k], (4.51)

where z[k] ∼ N (0, σ2) is i.i.d. additive Gaussian noise. The channel gains h1 and h2 are

assumed to be known by both transmitters and by the receiver. We impose the average

transmit sum-power constraint (here, expectation is with respect to the messages and
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Figure 4.5: Two-user Gaussian MAC with common feedback link and superposition
coding.

the channel noise)

1

n

n∑
k=1

E
{

x21[k] + x22[k]
}
≤ P. (4.52)

In order to enable successive cancellation decoding, the overall transmission block of

length n is split into Ñ subblocks of length N each, i.e.,

n = ÑN. (4.53)

We rearrange each transmit signal xi[k] into a Ñ × N matrix X(i) (see (4.57)) to fit

into this block structure,

[X(i)]j,l = xi[(j − 1)N + l], j = 1, . . . , Ñ , l = 1, . . . , N. (4.54)

Each row of X(i) represents one subblock that encodes one conventional codeword. By

contrast, the feedback-based codewords are encoded in the columns of X(i), i.e., over

corresponding time slots in all subblocks.

The noise is rearranged in the same way as

[Z]j,l = z[(j − 1)N + l], j = 1, . . . , Ñ , l = 1, . . . , N. (4.55)

The received signal in matrix form reads

Y = h1X
(1) + h2X

(2) +Z. (4.56)

The concrete functionality of the encoders and superposition coding are developed

in Section 5.3 and Section 5.4 for the asymptotic case and Section 6.3 for the finite

blocklength regime.
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X(i)=


xi[1] xi[2] . . . xi[N ]

xi[N + 1] xi[N + 2] . . . xi[2N ]
xi[2N + 1] xi[2N + 2] . . . xi[3N ]

...
...

. . .
...

xi[(Ñ−1)N + 1] xi[(Ñ−1)N + 2] . . . xi[ÑN ]

 (4.57)

=


ϕi,1(θi,1) ϕi,2(θi,1) . . . ϕi,N (θi,1)

ϕi,1(θi,2) ϕi,2(θi,2) . . . ϕi,N (θi,2)
...

...
. . .

...
ϕi,1(θi,Ñ ) ϕi,2(θi,Ñ ) . . . ϕi,N (θi,Ñ )


︸ ︷︷ ︸

message θi,j is conventionally encoded in row (subblock) j

(4.58a)

+


ϕ̃i,1
(
θ̃i,1, 0

)
ϕ̃i,1
(
θ̃i,2, 0

)
. . . ϕ̃i,1

(
θ̃i,N , 0

)
ϕ̃i,2
(
θ̃i,1,w

(1)
1

)
ϕ̃i,2
(
θ̃i,2,w

(1)
2

)
. . . ϕ̃i,2

(
θ̃i,N ,w

(1)
N

)
...

...
. . .

...

ϕ̃i,Ñ
(
θ̃i,1,w

(Ñ−1)
1

)
ϕ̃i,Ñ

(
θ̃i,2,w

(Ñ−1)
2

)
. . . ϕ̃i,Ñ

(
θ̃i,N ,w

(Ñ−1)
N

)


︸ ︷︷ ︸

message θ̃i,l is feedback-based encoded in column l

(4.58b)

4.5.3 BC Model

We study the two-user asymmetric Gaussian BC with quantized feedback (see Fi-

gure 4.6) in the finite blocklength regime as well as in the asymptotic regime. Here, in

contrast to the MAC in the previous section, one single transmitter sends independent

length-n Gaussian signal components xi[k], i = 1, 2, where

x[k] = x1[k] + x2[k]. (4.59)

The two receivers observe the signals

y1[k] = h1x1[k] + h1x2[k] + z1[k], (4.60)

y2[k] = h2x1[k] + h2x2[k] + z2[k], (4.61)

where zi[k] ∼ N (0, σ2), i = 1, 2, is i.i.d. additive Gaussian noise. The channel gains

h1 and h2 are assumed to be known by transmitter and by both receivers. Due to

this component-wise encoding the BC model is conceptionally closely connected to the

MAC model. We impose the average transmit power constraint (here, expectation is

with respect to the messages and the channel noise)

1

n

n∑
k=1

E
{

x21[k] + x22[k]
}
≤ P. (4.62)
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Figure 4.6: Two-user Gaussian BC with feedback link and superposition coding.

In order to enable successive cancellation decoding, the overall transmission block of

length n is again split into Ñ subblocks of length N each, i.e.,

n = ÑN. (4.63)

Similarly as for the MAC, we rearrange each transmit signal component xi[k] into a

Ñ ×N matrix X(i) (see (4.68)) to fit into this block structure,

[X(i)]j,l = xi[(j − 1)N + l], j = 1, . . . , Ñ , l = 1, . . . , N. (4.64)

Each row of X(i) represents one subblock that encodes one conventional codeword. By

contrast, the feedback-based codewords are encoded in the columns of X(i), i.e., over

corresponding time slots in all subblocks.

The noise is rearranged in the same way as

[Z(i)]j,l = z[(j − 1)N + l], j = 1, . . . , Ñ , l = 1, . . . , N. (4.65)

The received signals in matrix form read

Y (1) = h1X
(1) + h1X

(2) +Z(1), (4.66)

Y (2) = h2X
(1) + h2X

(2) +Z(2). (4.67)

The concrete functionality of the encoders and superposition coding are developed

in Section 5.5 and Section 5.6 for the asymptotic case and Section 6.4 for the finite

blocklength regime.
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X(i)=


xi[1] xi[2] . . . xi[N ]

xi[N + 1] xi[N + 2] . . . xi[2N ]
xi[2N + 1] xi[2N + 2] . . . xi[3N ]

...
...

. . .
...

xi[(Ñ−1)N + 1] xi[(Ñ−1)N + 2] . . . xi[ÑN ]

 (4.68)

=


ϕi,1(θi,1) ϕi,2(θi,1) . . . ϕi,N (θi,1)

ϕi,1(θi,2) ϕi,2(θi,2) . . . ϕi,N (θi,2)
...

...
. . .

...
ϕi,1(θi,Ñ ) ϕi,2(θi,Ñ ) . . . ϕi,N (θi,Ñ )


︸ ︷︷ ︸

message θi,j is conventionally encoded in row (subblock) j

(4.69a)

+


ϕ̃i,1
(
θ̃i,1, 0

)
ϕ̃i,1
(
θ̃i,2, 0

)
. . . ϕ̃i,1

(
θ̃i,N , 0

)
ϕ̃i,2
(
θ̃i,1,w

(1)
i,1

)
ϕ̃i,2
(
θ̃i,2,w

(1)
i,2

)
. . . ϕ̃i,2

(
θ̃i,N ,w

(1)
i,N

)
...

...
. . .

...

ϕ̃i,Ñ
(
θ̃i,1,w

(Ñ−1)
i,1

)
ϕ̃i,Ñ

(
θ̃i,2,w

(Ñ−1)
i,2

)
. . . ϕ̃i,Ñ

(
θ̃i,N ,w

(Ñ−1)
i,N

)


︸ ︷︷ ︸

message θ̃i,l is feedback-based encoded in column l

(4.69b)

4.5.4 Proposed Coding Scheme

The proposed coding scheme superimposes a feedback-based coding scheme with a

conventional coding scheme that completely ignores the feedback. The original idea

of such a splitting for similar schemes dates back to the fundamental contributions of

Carleial [10] and Ozarow [60]. Throughout this thesis we assume that we can perfectly

separate these superimposed codes. The receiver first decodes the conventional code

and then cancels it from the receive signal. This type of decoding is usually referred

to as successive cancellation and requires that the conventional codeword is completely

received before it can be cancelled. At first glance, this seems to contradict the as-

sumption that the received signal is fed back to the transmitters in each time instance.

This seeming contradiction can be resolved using the subblock structure introduced

above along with per subblock feedback. This subblock structure allows us to supe-

rimpose the conventional coding with the feedback-based coding acting as additional

noise. Before feeding back the feedback components the signal from the conventional

coding can be fully subtracted and thus what remains is solely the Ozarow feedback

coding scheme without any interference. This particular order of decoding that is made

possible due to the block structure is the main difference to similar splitting schemes

as in [46,47,60,83].

Next, we briefly outline the proposed coding scheme for the MAC; for the AWGN

channel and BC this subsection is fully analogous. More specifically, let w
(j−1)
l =
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(w[1] . . . w[(j−1)N+l])> denote the past quantized feedback up to time k = (j−1)N+l

(i.e., the lth time slot in subblock j). The linear superposition codewords are obtained

as (see (4.58))

[X(i)]j,l = ϕi,l(θi,j) + ϕ̃i,j
(
θ̃i,l,w

(j−1)
l

)
. (4.70)

Here, θi,j , j = 1, . . . , Ñ and θ̃i,l, l = 1, . . . , N are independent messages of user i.

Throughout the thesis, superscript tilde indicates quantities based on the exploitation

of the channel output feedback. The messages are uniformly drawn from finite sets

with cardinalities Mi = 2NRi , M̃i = 2ÑR̃i , i = 1, 2. Furthermore, ϕi,l : Mi → R
denotes a conventional encoder with power constraint

1

N

N∑
l=1

E
{
ϕ2
i,l(θi,j)

}
≤ Pi, (4.71)

where the expectation is over all possible transmit messages. The conventional encoder

completely ignores the feedback signal. Similarly, ϕ̃i,j : M̃i × Rk−1 → R is the

feedback-based encoder with power constraint

1

Ñ

Ñ∑
j=1

E
{
ϕ̃2
i,j

(
θ̃i,l,w

(j−1)
l

)}
≤ P̃i, (4.72)

with the expectation being over all possible transmit messages and channel realizations.

This encoder has causal access to the quantized feedback and works as in the original

Ozarow scheme (see Section 2.4.1).

The above (sub)block encoding and feedback scheme enables us to decode a conven-

tional codeword after each subblock and to cancel this component in order to decode

the feedback-based components, like in standard successive cancellation. Each conven-

tional codeword is decoded after N time slots whereas the feedback-based codewords

are spread over Ñ blocks and decoded after N(Ñ − 1) time slots. Thus, the coding

scheme with blocklength n = ÑN has an effective average blocklength of

(R1 +R2)N + (R̃1 + R̃2)N(Ñ − 1)

R1 +R2 + R̃1 + R̃2

< n. (4.73)

4.5.5 Feedback Quantization

In our model, the channel output at the receiver is quantized before being fed back to

the transmitters. More specifically, the receiver performs successive cancellation, i.e., it

subtracts the estimates ϕi,l(θ̂i,j) of the conventional codewords in subblock j from the

received signal (i.e., from the jth row of Y in (4.56)) and then quantizes the residual,

ỹj,l = y[(j−1)N + l]− h1 ϕ1,l(θ̂1,j)− h2 ϕ2,l(θ̂2,j), (4.74a)
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w[(j−1)N + l] = Q
(
ỹj,l
)
. (4.74b)

The quantization Q(·) is modeled as an information bottleneck, i.e., the mutual in-

formation between compressed received signal and transmit signal is maximized under a

rate constraint (cf. Chapter 3). Rate-information optimal channel output compression

amounts to additive Gaussian quantization noise (see Corollary 3.10). For the MAC

with noisy feedback the extra noise on the feedback channel is detrimental since it is

not known by any node. In our model the transmitters also receive degraded versions

of the channel output, but the receiver knows the quantization error of the feedback

signal (having itself performed the quantization). With this observation, our scheme

can be reduced to an equivalent MAC with perfect feedback in which the quantization

error represents additional channel noise. The knowledge of this extra noise is exploited

at the receiver.



5
Asymptotic Superposition

Coding

5.1 Introduction

In this chapter we apply the feedback model that we introduced in Chapter 4 in the

asymptotic regime. That is, we optimize the trade offbetween the conventional compo-

nent and the feedback component in the superposition scheme to gain the achievable

rate regions for various channel types. This yields a difference of convex functions (DC)

problem (see Section 2.8) what we solve using the simple yet efficient convex-concave

procedure (CCP) algorithm. We start with studying the scheme for the AWGN channel

and then generalize it to the symmetric Gaussian multiple access channel (MAC) and

the symmetric Gaussian broadcast channel (BC). As a last step we drop the symmetry

condition and give results for the asymmetric case.

5.2 Asymptotic Superpostion Performance - Gaussian Chan-
nel

It is known that feedback cannot increase the capacity for point-to-point channels (see

Section 2.2.1). As a consequence, intuitively superposition should be of no benefit, at

least in the asymptotic region since conventional coding without any feedback already

achieves capacity. However feedback can drastically help to reduce the error rates for

specific blocklengths in the finite blocklength regime (see Section 2.2.2). Thus, super-

position may be beneficial in the finite blocklength regime in Chapter 6. Nevertheless,

for didactic purposes we introduce the superposition coding for the AWGN channel

already here in the asymptotic regime. This then serves as a basis and is extended to

multiuser scenarios in the following sections.

75
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5.2.1 Power Constraints

We study the AWGN channel with (quantized) feedback (see Figure 4.4). Here, the

transmitter sends the independent length-n Gaussian user signal x[k] and the receiver

observes the signal

y[k] = hx[k] + z[k]. (5.1)

The channel gain h is assumed to be known by both transmitter and receiver and the

channel introduces i.i.d. additive Gaussian noise z ∼ N (0, σ2I). We impose the average

transmit power constraint (here, expectation is with respect to the messages and the

channel noise)

1

n

n∑
k=1

E
{

x2[k]
}
≤ PT . (5.2)

The transmitter communicates the independent messages θj , j = 1, . . . , Ñ , θ̃l, l =

1, . . . , N , to a single receiver. The messages are uniformly drawn from finite sets with

cardinalities M = 2NR, M̃ = 2ÑR̃, and mapped to the transmit signal according to

the superposition (see Section 4.5.1) with block structure (cf. (4.44))

x[(j − 1)N + l] = ϕl(θj) + ϕ̃j
(
θ̃l,w

(j−1)
l

)
, j = 1, . . . , Ñ , l = 1, . . . , N, (5.3)

k = (j − 1)N + l = 1, . . . , n. Here, ϕl : M→ R denotes a conventional encoder with

power constraint

1

N

N∑
l=1

E
{
ϕ2
l (θj)

}
≤ P, j = 1, . . . , Ñ , (5.4)

with expectation over all possible transmit messages θj . The conventional encoder

completely ignores the feedback signal. Furthermore, w
(j−1)
l = (w[1] . . . w[(j−1)N+l])>

denotes the past quantized feedback and ϕ̃j : M̃ × Rj−1 → R is the feedback-based

encoder with power constraint

1

Ñ

Ñ∑
j=1

E
{
ϕ̃2
j

(
θ̃l,w

(j−1)
l

)}
≤ P̃ , l = 1, . . . , N, (5.5)

with expectation over all possible transmit messages θ̃l and channel realizations. This

encoder has causal access to the quantized feedback and works as in the original

Schalkwijk-Kailath scheme (see Section 2.2). Due to the superimposed block struc-

ture the constraints on the transmit powers sum up to

P + P̃ = PT . (5.6)
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5.2.2 Achievable Sum Rate

Our proposed scheme is a superposition of a conventional encoder and a feedback-

based encoder (cf. (5.3)). Thus, we can maximize the sum rate by finding the optimum

power (equivalently, rate) splitting between the two encodings. The conventionally

encoded signal is cancelled at the receiver before quantization such that the quantization

only captures the feedback encoding in the forward path. This is possible since the

receiver has the quantization noise as side-information (see Section 4.5.5). The sum

rate of the conventional coding scheme is thus given by the classical AWGN capacity

C0 (see Section 2.1.1) with noise power σ2 +hP̃ , since the independent feedback-based

codewords (cf. (4.44b)) that are each superimposed in specific time instances of the

conventional coding (cf. (4.44a)) act as additional interference. Then, the achievable

rate for fixed feedback transmit power P̃ and given total transmit power PT is

R ≤ C0(h
2P, σ2 + h2P̃ )

, C. (5.7)

The sum rate of the feedback coding scheme is given by the SK capacity CFB (see

Section 2.2.1) with noise power σ2 + σ2q (due to the additional quantization noise).

Then, the achievable rate for fixed transmit power P and given total transmit power

PT is

R̃ ≤ CFB(h2P̃ , σ2 + σ2q )

, C̃. (5.8)

Thus, the total achievable sum rate of our proposed scheme with given total transmit

power PT yields

R1 + R̃ ≤ max
P+P̃≤PT

C + C̃

, CS . (5.9)

Expanding the maximizations (implicitly contained in the expressions for C and C̃) to

one single maximization yields

CS = max
P+P̃≤PT

C0(h
2P, σ2 + h2P̃ ) + CFB(h2P̃ , σ2 + σ2q ). (5.10)

Although high feedback transmit power P̃ has a negative impact on the capacity of the

conventional scheme due to the additional interference noise it is clearly still optimal

to use all the available transmit power. Therefore, the optimal solution of (5.10) has

to lie on the boundary P + P̃ = PT . Reformulating this problem solely as a function
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of P̃ then yields

CS = max
P̃

C0(h
2(PT − P̃ , σ2 + h2P̃ )︸ ︷︷ ︸

C(P̃ )

+CFB(h2P̃ , σ2 + σ2q )︸ ︷︷ ︸
C̃(P̃ )

s.t. 0 ≤ P̃ ≤ PT .

(5.11)

Clearly, C(P̃ ) is a strictly decreasing function in P̃ and C̃(P̃ ) is strictly increasing in P̃ .

As a consequence there is a tradeoff between conventional coding and feedback-based

coding. The optimum is either the extreme case where all transmit power is allocated

to the conventional coding scheme (P̃ = 0) or to the feedback coding (P̃ = PT ), or

the optimum is in fact a true superposition of both coding schemes depending on the

quantization rate RQ.

5.2.3 Concave and Convex Component

Next, we prove that CS can be split into a concave part C∩(P̃ ) and a convex part C∪(P̃ )

in the feedback transmit power P̃ ,

CS = max
P̃

C∩(P̃ ) + C∪(P̃ ) s.t. 0 ≤ P̃ ≤ PT . (5.12)

Then, this sum rate maximization problem can be solved by DC programming (see

Section 2.8). It can be shown that C̃(P̃ ) is a concave function and C(P̃ ) is a convex

function in P̃ . Indeed, by direct calculation we obtain the second-order derivative of

C(P̃ ) as

C ′′(P̃ ) =
h4

(h2P̃ + σ2)2
≥ 0, (5.13)

which proves convexity. The concavity of C̃(P̃ ) can be analogously proved by showing

that the second derivative is non-positive. In summary, the sum capacity CS is the

sum of a convex and a concave function, or equivalently the difference of two convex

functions.

5.2.4 Difference of Convex Functions Programming Solution

Splitting the objective function and our already affine constraints into concave and

convex functions allows us to solve the optimization problem via DC programming (see

Section 2.8) and the practically efficient CCP algorithm (see Section 2.8.1). Rewriting

our maximization problem (5.11) in standard form (2.66) yields the following result.

Corollary 5.1. The problem of maximizing the achievable sum rate of the AWGN

channel with quantized feedback and a superposition of feedback coding with capcity C̃

and conventional coding with capacity C is solved by finding the solution of the DC
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Algorithm 4 Transmit power allocation for AWGN channel with feedback via CCP

Require: Initial feasible point P̃(0)

1: k := 0
2: while stopping criterion not satisfied do

3: Convexify. Form Ĉ(k)

(
P̃
)

= C
(
P̃(k)

)
+ C ′

(
P̃(k)

)(
P̃ − P̃(k)

)
4: Solve. Determine P̃(k+1) as solution of the convex problem

minimize −C̃(P̃ )− Ĉ(k)(P̃ )

subject to P̃ − PT ≤ 0
−P̃ ≤ 0

5: k := k + 1
6: end while
7: return P̃(k)

problem

minimize
P̃

− C̃(P̃ )− C(P̃ )

subject to P̃ − PT ≤ 0 (5.14)

− P̃ ≤ 0.

The basic idea of the iterative CCP algorithm [91] is to find a point where the

gradient of the convex part in the next iteration equals the negative gradient of the

concave part of the previous iteration

∂

∂P̃
C̃
(
P̃(k+1)

)
= − ∂

∂P̃
C
(
P̃(k)

)
, (5.15)

which itself is a convex optimization problem. The solution to this auxiliary problem

decreases monotonically with increasing k and thus converges to a minimum (or saddle

point). Lipp and Boyd [49] give a basic CCP algorithm (see Section 2.8.1) that requires

an initial feasible point P̃(0), which in our case can be any point in the interval [0, PT ].

Following [49], the CCP approach leads to Algorithm 4 for power allocation.

Figure 5.2 and Figure 5.1 illustrate the optima which are the maxima of the sum

capacities in the various achievable rate regions.

The Suboptimality of Superposition

Figure 5.1 shows the achievable rate region for fixed quantization rate RQ and variable

transmit power PT . We see that it is optimal to allocate all the available transmit

power only to non-feedback coding regardless of the total available transmit power.

The optimum is the point with maximum achievable sum rate. This becomes obvious

if we look at C̃(P̃ ) and C(P ) in more detail. In the scalar case the SK-capacity

equals the standard AWGN channel capacity. But due to the quantization the total
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Figure 5.1: AWGN channel achievable rate region (C̃(P̃ ), C(P̃ )) for fixed RQ = 2 and
PT = 0.1PRQ . . . 2PRQ where PRQ is such that C0(PRQ) = RQ.

noise is increased. In Figure 5.2 we can observe that for high quantization rates this

penalty almost vanishes. Then, we almost achieve the same sum rate on (P̃ , P ) where

P̃ + P = PT . Note that this suboptimality only holds in the asymptotic regime,

whereas in the finite blocklength regime true superposition is optimal (for suitably

high quantization rates) due to the higher error decay of the feedback coding (see

Section 6.2).
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Figure 5.2: AWGN channel achievable rate region (C̃(P̃ ), C(P̃ )) for fixed C0 = 3 and
RQ = 0.2C0 . . . 2.4C0.
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5.3 Asymptotic Superposition Performance - Symmetric Mul-
tiple Access Channel

Next, we study the symmetric MAC with equal channel gains which is a straightforward

extension of the AWGN channel in Section 5.3. The most important difference is that

for the MAC true superposition coding indeed achieves higher rates than exclusive

conventional or feedback coding.

5.3.1 Power Constraints

We study the two-user symmetric Gaussian MAC with (quantized) feedback (see Fi-

gure 4.5). In this section we consider normalized channel gains h1 = h2 = 1. Here, the

transmitters send the independent length-n Gaussian user signals xi[k], i = 1, 2, and

the receiver observes the signal

y[k] = x1[k] + x2[k] + z[k]. (5.16)

The channel introduces i.i.d. additive Gaussian noise z ∼ N (0, σ2I). We impose the

average transmit sum-power constraint (here, expectation is with respect to the mes-

sages and the channel noise)

1

n

n∑
k=1

E
{

x21[k] + x22[k]
}
≤ PT . (5.17)

The transmitters communicate independent messages θ1,j , θ̃1,l and θ2,j , θ̃2,l, j = 1, . . . , Ñ ,

l = 1, . . . , N , to a single receiver. The messages are uniformly drawn from finite sets

with cardinalitiesM1 = 2NR, M̃1 = 2ÑR̃,M2 = 2NR, M̃2 = 2ÑR̃, and mapped to the

transmit signals according to the superposition (see Section 4.5.2) with block structure

(cf. (4.58))

xi[(j − 1)N + l] = ϕi,l(θi,j) + ϕ̃i,j
(
θ̃i,l,w

(j−1)
l

)
, j = 1, . . . , Ñ , l = 1, . . . , N, i = 1, 2,

(5.18)

k = (j − 1)N + l = 1, . . . , n. Here, ϕi,l : Mi → R denotes a conventional encoder with

power constraint

1

N

N∑
l=1

E
{
ϕ2
i,l(θi,j)

}
≤ P, j = 1, . . . , Ñ , i = 1, 2, (5.19)

with expectation over all possible transmit messages θi,j . The conventional encoder

completely ignores the feedback signal. Furthermore, w
(j−1)
l = (w[1] . . . w[(j−1)N+l])>

denotes the past quantized feedback and ϕ̃i,j : M̃i × Rj−1 → R is the feedback-based
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encoder with power constraint

1

n

Ñ∑
j=1

E
{
ϕ̃2
i,j

(
θ̃i,l,w

(j−1)
l

)}
≤ P̃ , l = 1, . . . , N, i = 1, 2, (5.20)

with expectation over all possible transmit messages θ̃i,l and channel realizations. This

encoder has causal access to the quantized feedback and works as in the original Ozarow

scheme (see Section 2.4.1). Due to the superimposed block structure the constraints

on the transmit powers sum up to

2(P + P̃ ) = PT . (5.21)

5.3.2 Achievable Sum Rate

Our proposed scheme is a superposition of a conventional encoder and a feedback-based

encoder (cf. (5.18)). Thus, we can maximize the sum rate by finding the optimum power

(equivalently, rate) splitting between the two encodings jointly for both transmitters.

The conventionally encoded signals are cancelled at the receiver before quantization

such that the quantization only captures the feedback encoding in the forward path.

This is possible since the receiver has the quantization noise as side-information (see

Section 4.5.5). The sum rate of the conventional coding scheme is thus given by the

classical Gaussian MAC capacity C0 (see Section 2.3.1) with noise power σ2 +2P̃ , since

the independent feedback-based codewords (cf. (4.58b)) that are each superimposed

in specific time instances of the conventional coding (cf. (4.58a)) act as additional

interference. Then, the achievable sum rate for fixed feedback transmit power P̃ and

given total transmit power PT is

2R ≤ C0(P, P, σ
2 + 2P̃ )

, C. (5.22)

The factor 2 before rate and feedback power is due to the symmetry of the MAC;

both transmitters have equal channel gains and as a consequence equal transmit power

and achievable rate. The sum rate of the feedback coding scheme is given by the

Ozarow capacity (see Section 2.4.1) with noise power σ2 + σ2q (due to the additional

quantization noise). Then, the achievable sum rate for fixed transmit power P and

given total transmit power PT is

2R̃ ≤ CFB(P̃ , P̃ , σ2 + σ2q )

, C̃. (5.23)
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Figure 5.3: Sum rate for quantized feedback versus quantization rate RQ for several
SNRs corresponding to no-feedback sum capacities C0 = 1 . . . 5 (all quantities in bit).

While this rate is smaller than that achievable with perfect feedback, it can still sur-

pass the MAC capacity without feedback for large enough quantization rate RQ (see

Figure 5.3).

Thus, the total achievable sum rate of our proposed scheme with given total transmit

power PT yields

2(R+ R̃) ≤ max
2(P+P̃ )≤PT

C + C̃

, CS . (5.24)

Expanding the maximizations (implicitly contained in the expressions for C and C̃) to

one single maximization yields

CS = max
2(P+P̃ )≤PT

C0(P, P, σ
2 + 2P̃ ) + CFB(P̃ , P̃ , σ2 + σ2q ). (5.25)

Although high feedback transmit power P̃ has a negative impact on the capacity of the

conventional scheme due to the additional interference noise it is clearly still optimal

to use all the available transmit power. Therefore, the optimal solution of (5.25) has

to lie on the boundary 2(P + P̃ ) = PT . Reformulating this problem solely as a function
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of P̃ then yields

CS = max
P̃

C0

(
PT
2
− P̃ , PT

2
− P̃ , σ2 + 2P̃

)
︸ ︷︷ ︸

C(P̃ )

+CFB(P̃ , P̃ , σ2 + σ2q )︸ ︷︷ ︸
C̃(P̃ )

s.t. 0 ≤ 2P̃ ≤ PT .

(5.26)

Clearly, C(P̃ ) is a strictly decreasing function in P̃ and C̃(P̃ ) is strictly increasing in P̃ .

As a consequence, there is a tradeoff between feedback-based coding and conventional

coding. The optimum is either the extreme case where all transmit power is allocated

to the feedback coding scheme (2P̃ = PT ) or to the conventional coding (P̃ = 0), or

the optimum is in fact a true superposition of both coding schemes depending on the

quantization rate R. The tradeoff for this three cases is illustrated in Figure 5.4.

5.3.3 Concave and Convex Component

Next, we prove that CS can be split into a concave part C∩(P̃ ) and a convex part C∪(P̃ )

in the feedback transmit power P̃ ,

CS = max
P̃

C∩(P̃ ) + C∪(P̃ ) s.t. 0 ≤ 2P̃ ≤ PT . (5.27)

Then, this sum rate maximization problem can be solved by DC programming (see

Section 2.8). Fully analogous to the AWGN channel in the previous section it can be

shown that C̃(P̃ ) is a concave function and C(P̃ ) is a convex function in P̃ . Indeed,

by direct calculation we obtain the second-order derivative of C(P̃ ) as

C ′′(P̃ ) =
2

(2P̃ + σ2)2
≥ 0, (5.28)

which proves convexity. The concavity of C̃(P̃ ) can proved by following reasoning: The

capacity of the MAC with perfect feedback, i.e., without quantization, is given by the

Ozarov-capacity (see Section 2.4.1) which is concave in the transmit power allocation

or equivalently in the SNR. The quantization can be modelled by an additional noise

term (see Corollary 3.10) and thus the resulting reduced SNR is given by

P̃

σ2 + σ2q
=
P̃

σ2
· 1− 2−2R

1 + 2−2RP̃ /σ2
. (5.29)

By direct calculation, we can easily show that this is a concave and strictly increasing

function. The concavity of C̃(P̃ ) is then obtained by the composition of the perfect

feedback Ozarov-capacity with the reduced SNR expression since by composition rules

[7] the composition of a concave function and a concave nondecreasing function is

again concave. In summary, the sum capacity CS is the sum of a convex and a concave
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function, or equivalently the difference of two convex functions.

5.3.4 Difference of Convex Functions Programming Solution

Splitting the objective function and our already affine constraints into concave and

convex functions allows us to solve the optimization problem via DC programming (see

Section 2.8) and the practically efficient CCP algorithm (see Section 2.8.1). Rewriting

our maximization problem (5.27) in standard form (2.66) yields the following result.

Corollary 5.2. The problem of maximizing the achievable sum rate of the Gaussian

MAC with quantized feedback and a superposition of feedback coding with capacity C̃

and conventional coding with capacity C is solved by finding the solution of the DC

problem

minimize
P̃

− C̃(P̃ )− C(P̃ )

subject to 2P̃ − PT ≤ 0 (5.30)

− P̃ ≤ 0.

Like in the previous section we have to find a point where the gradient of the

convex part in the next iteration equals the negative gradient of the concave part of

the previous iteration

∂

∂P̃
C̃
(
P̃(k+1)

)
= − ∂

∂P̃
C
(
P̃(k)

)
, (5.31)

which again itself is a convex optimization problem. The solution to this auxiliary

problem decreases monotonically with increasing k and thus converges to a minimum

(or saddle point). Lipp and Boyd [49] give a basic CCP algorithm (see Section 2.8.1)

that requires an initial feasible point P̃(0), which in our case can be any point in the

interval [0, PT /2]. Following [49], the CCP approach leads to Algorithm 5 for power

allocation.

Figure 5.5 and Figure 5.6 illustrate the optima which are the maxima of the sum

capacities in the various achievable rate regions.

The Non-Trivial Region where Superposition is Optimal

Figure 5.6 shows the achievable rate region for fixed quantization rate RQ and variable

transmit power PT . We see that up to a specific transmit power it is optimum to allocate

all transmit power to the feedback-coding scheme and from a non-trivial threshold a

superposition is optimum. Note that the power allocated to the feedback scheme stays

constant while only the power allocated to the non-feedback scheme increases with

increasing total transmit power. Intuitively this can be explained by studying the

behaviour of the iteration (5.31) which characterizes a fixed point for the optimal P̃(k).
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Algorithm 5 Transmit power allocation for symmetric MAC with feedback via CCP

Require: Initial feasible point P̃(0)

1: k := 0
2: while stopping criterion not satisfied do

3: Convexify. Form Ĉ(k)

(
P̃
)

= C
(
P̃(k)

)
+ C ′

(
P̃(k)

)(
P̃ − P̃(k)

)
4: Solve. Determine P̃(k+1) as solution of the convex problem

minimize −C̃(P̃ )− Ĉ(k)(P̃ )

subject to 2P̃ − PT ≤ 0
−P̃ ≤ 0

5: k := k + 1
6: end while
7: return P̃(k)

In the optimum point the negative gradient of C̃ equals the gradient of C, which can

be calculated as

∂

∂P̃
C̃
(
P̃
)

=
∂

∂P̃
C

(
2(PT − P̃ )

σ2 + 2P̃

)
= − 1

2P̃ + σ2
. (5.32)

Obviously, this gradient is independent of the total available transmit power and the

equation for C̃ does not contain the total transmit power at all. Therefore, the optimum

must also be independent of the actual value of the total transmit power if the total

transmit power is at least PT ≥ 2P̃ and is limited by the quantization rate RQ.
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Figure 5.5: Symmetric MAC achievable rate region (C̃(P̃ ), C(P̃ )) for fixed C0 = 3 and
RQ = 0.2C0 . . . 2.4C0.
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Figure 5.6: Symmetric MAC achievable rate region (C̃(P̃ ), C̃(P )) for fixed RQ = 2 and
PT = 0.1PRQ . . . 2PRQ where PRQ is such that C0(PRQ) = RQ.
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5.4 Asymptotic Superposition Performance - Asymmetric Mul-
tiple Access Channel

5.4.1 Power Constraints

We study the two-user asymmetric Gaussian MAC with (quantized) feedback (see Fi-

gure 4.5). Here, the transmitters send the independent length-n Gaussian user signals

xi[k], i = 1, 2, and the receiver observes the signal

y[k] = h1x1[k] + h2x2[k] + z[k]. (5.33)

The channel gains h1 and h2 are assumed to be known by both transmitters and receiver

and the channel introduces i.i.d. additive Gaussian noise z ∼ N (0, σ2I). We impose

the average transmit sum-power constraint (here, expectation is with respect to the

messages and the channel noise)

1

n

n∑
k=1

E
{

x21[k] + x22[k]
}
≤ PT . (5.34)

As in the symmetric case the transmitters communicate independent messages θ1,j , θ̃1,l

and θ2,j , θ̃2,l, j = 1, . . . , Ñ , l = 1, . . . , N , to a single receiver. But now the messages are

uniformly drawn from finite sets with different cardinalities M1 = 2NR1 , M̃1 = 2ÑR̃1 ,

M2 = 2NR2 , M̃2 = 2ÑR̃2 , and again mapped to the transmit signals according to the

superposition (see Section 4.5.2) with block structure (cf. (4.58))

xi[(j − 1)N + l] = ϕi,l(θi,j) + ϕ̃i,j
(
θ̃i,l,w

(j−1)
l

)
, j = 1, . . . , Ñ , l = 1, . . . , N, i = 1, 2,

(5.35)

k = (j − 1)N + l = 1, . . . , n. Due to the asymmetry of the channel we now have

asymmetric power constraints as well. Here, ϕi,l : Mi → R denotes a conventional

encoder with power constraint

1

N

N∑
l=1

E
{
ϕ2
i,l(θi,j)

}
≤ Pi, j = 1, . . . , Ñ , i = 1, 2, (5.36)

with expectation over all possible transmit messages θi,j . The conventional encoder

completely ignores the feedback signal. Furthermore, w
(j−1)
l = (w[1] . . . w[(j−1)N+l])>

again denotes the past quantized feedback as in the symmetric case and ϕ̃i,j : M̃i ×
Rj−1 → R is the feedback-based encoder with power constraint

1

n

Ñ∑
j=1

E
{
ϕ̃2
i,j

(
θ̃i,l,w

(j−1)
l

)}
≤ P̃i, l = 1, . . . , N, i = 1, 2, (5.37)
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with expectation over all possible transmit messages θ̃i,l and channel realizations. This

encoder has causal access to the quantized feedback and works as in the original Ozarow

scheme (see Section 2.4.1). Due to the superimposed block structure the constraints

on the transmit powers sum up to

P1 + P2 = P, (5.38)

P̃1 + P̃2 = P̃ , (5.39)

P + P̃ = PT . (5.40)

5.4.2 Achievable Sum Rate

Our proposed scheme is a superposition of a conventional encoder and a feedback-based

encoder (cf. (5.35)). Thus, we can maximize the sum rate by finding the optimum power

(equivalently, rate) splitting between the two encodings jointly for both transmitters.

The conventionally encoded signals are cancelled at the receiver before quantization

such that the quantization only captures the feedback encoding in the forward path.

This is possible since the receiver has the quantization noise as side-information (see

Section 4.5.5). The sum rate of the conventional coding scheme is thus given by the clas-

sical Gaussian MAC capacity C0 (see Section 2.3.1) with noise power σ2 +h21P̃1 +h22P̃2,

since the independent feedback-based codewords (cf. (4.58b)) that are each superimpo-

sed in specific time instances of the conventional coding (cf. (4.58a)) act as additional

interference. Then, the achievable sum rate for fixed feedback transmit powers P̃1 and

P̃2 and given total transmit power PT is

R1 +R2 ≤ max
P1+P2≤PT−P̃1−P̃2

C0(h
2
1P1, h

2
2P2, σ

2 + h21P̃1 + h22P̃2)

, C. (5.41)

The sum rate of the feedback coding scheme is given by the Ozarow capacity CFB

(see Section 2.4.1) with noise power σ2 +σ2q (due to the additional quantization noise).

Then, the achievable sum rate for fixed transmit powers P1 and P2 and given total

transmit power PT is

R̃1 + R̃2 ≤ max
P̃1+P̃2≤PT−P1−P2

CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q )

, C̃. (5.42)

Thus, the total achievable sum rate of our proposed scheme with given total transmit

power PT yields

R1 +R2 + R̃1 + R̃2 ≤ max
P1+P2+P̃1+P̃2≤PT

C + C̃
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, CS . (5.43)

Finally, simplifying the nested maximizations (implicitly contained in the expressions

for C and C̃) to one single maximization yields

CS = max
P1+P2+P̃1+P̃2≤PT

C0(h
2
1P1, h

2
2P2, σ

2 + h21P̃1 + h22P̃2)

+CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q ). (5.44)

In the previous section on the symmetric MAC this was the basis of a one-dimensional

optimization problem, since the capacity expressions directly yielded the convex part

and the concave part. In the asymmetric case however, (5.44) results in a multi-

dimensional optimization problem where the individual capacity expressions do not

directly correspond to the convex part and the concave part.

Expanding the expressions of the capacities in (5.44) gives

CS = max
P1+P2+P̃1+P̃2≤P

C

(
h21P1

σ2 + h21P̃1 + h22P̃2

)

+C

(
h22P2

σ2 + h21P1 + h21P̃1 + h22P̃2

)
+CFB(h21P̃1, h

2
2P̃2, σ

2 + σ2q ), (5.45)

where the signal of transmitter 2 is decoded before the signal of transmitter 1. Then, the

first two terms reflect the classical Gaussian MAC capacity with successive cancellation.

Note that the decoding order of the successive cancellation operation is irrelevant and

independent of the actual values of the channel gains h1 and h2. Throughout this

thesis we keep this order of decoding. Changing the order of decoding simply amounts

to swapping the indices.

5.4.3 Concave and Convex Component

Next, we prove that CS can be split into a concave part C∩(p) and a convex part C∪(p)

in the power allocation vector p = (P1, P2, P̃1, P̃2)
>,

CS = max
1>p≤P

C∩(p) + C∪(p). (5.46)

Then, this sum rate maximization problem can be solved by DC programming [49].

Following the lines of the symmetric case (see Section 5.3.3) and due to the fact

that the pointwise minimum of two concave functions (the logarithm is concave and

especially the sum (2.27)+(2.28) and (2.29) are concave [60]) preserves concavity [7] we

directly identify CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q ) as concave in p.
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Furthermore, we expand C0(h
2
1P1, h

2
2P2, σ

2 + h21P̃1 + h22P̃2) to

C0(h
2
1P1, h

2
2P2, σ

2 + h21P̃1 + h22P̃2) =

1

2
log(h21P1 + σ2 + h21P̃1 + h22P̃2)

+
1

2
log(h22P2 + σ2 + h21P1 + h21P̃1 + h22P̃2)

−1

2
log(σ2 + h21P̃1 + h22P̃2)

−1

2
log(σ2 + h21P1 + h21P̃1 + h22P̃2). (5.47)

The concave part C′∩(p) is given by

C′
∩

(p) =
1

2
log(h21P1 + σ2 + h21P̃1 + h22P̃2)

+
1

2
log(h22P2 + σ2 + h21P1 + h21P̃1 + h22P̃2) (5.48)

Since the concavity is also preserved when summing concave functions [7] the overall

concave component equals

C∩(p) = CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q ) + C′
∩

(p) (5.49)

= CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q )

+
1

2
log(h21P1 + σ2 + h21P̃1 + h22P̃2)

+
1

2
log(h22P2 + σ2 + h21P̃1 + h22P̃2) (5.50)

The convexity of the overall convex component C∪(p),

C∪(p) = −1

2
log(σ2 + h21P̃1 + h22P̃2)

−1

2
log(σ2 + h21P1 + h21P̃1 + h22P̃2), (5.51)

can be easily shown by direct calculation.

5.4.4 Difference of Convex Functions Programming Solution

Splitting the objective function and our already affine constraints into concave and

convex functions allows us to solve the optimization problem via DC programming (see

Section 2.8) and the practically efficient CCP algorithm (see Section 2.8.1). Rewriting

our maximization problem (5.46) in standard form (2.66) yields the following result.

Corollary 5.3. The problem of maximizing the achievable sum rate of the asymmetric

Gaussian MAC with quantized feedback and a superposition of feedback coding with

capacity C̃ and conventional coding with capacity C is solved by finding the solution of
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the DC problem

minimize
p

− C∩(p)− C∪(p)

subject to 1>p− P ≤ 0, (5.52)

− p � 0.

Like in the previous sections we have to find a point where the gradient of the

convex part in the next iteration equals the negative gradient of the concave part of

the previous iteration

∇C∪(pk+1) = −∇C∩(pk) (5.53)

which again itself is a convex optimization problem. The solution to this auxiliary

problem decreases monotonically with increasing k and thus converges to a minimum

(or saddle point). Lipp and Boyd [49] give a basic CCP algorithm (see Section 2.8.1)

that requires an initial feasible point p0, which in our case can be any point in the

interval 0 ≤ 1>p0 ≤ P . Following [49], the CCP approach leads to Algorithm 6 for

power allocation.

In step 3 Algorithm 6 uses a linearization Ĉk(p) of the convex component C∪(p).

The gradient ∇C∪(p) contained in the linearization can be directly calculated as

∇C∪(p) = −1

2



h21
σ2+h21P1+h21P̃1+h22P̃2

0
h21

σ2+h21P̃1+h22P̃2
+

h21
σ2+h21P1+h21P̃1+h22P̃2

h22
σ2+h21P̃1+h22P̃2

+
h22

σ2+h21P1+h21P̃1+h22P̃2

 . (5.54)

If we were able to find the gradient ∇C∩(p) as well and solve the iteration (5.53) for

pk+1 we could avoid the auxiliary convex optimization problem. Unfortunately, this

seems not feasible.

5.4.5 Numerical Solution

Figure 5.7 shows the rates (top) and power allocations (middle and bottom) obtained by

solving (5.52) versus the feedback quantization rate RQ for various levels of asymmetry.

The linear-feedback capacity of the proposed superposition coding scheme is normalized

by the no-feedback MAC capacity C0. Clearly, when RQ is too small the feedback is not

beneficial at all and the whole transmit power is allocated to the conventional encoding

(see middle and bottom part of Figure 5.7). Above a certain threshold for RQ, true

superposition is optimal and a capacity gain is achieved. In contrast to the symmetric

case where eventually pure feedback coding becomes optimal for very large RQ (almost
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Algorithm 6 Transmit power allocation for asymmetric MAC with feedback via CCP

Require: Initial feasible point p0
1: k := 0
2: while stopping criterion not satisfied do
3: Form Ĉk(p) = C∪(pk) + (p− pk)>∇C∪(pk)
4: Determine pk+1 by solving the convex problem

minimize −C∩(p)− Ĉk(p)
subject to 1>p− P ≤ 0,

−p � 0
5: k := k + 1
6: end while
7: return pk

perfect feedback), in the asymmetric case (in Figure 5.7 for h2 > 1.1) we can observe

that true superposition stays optimal even for very large RQ and converges to a non-

trivial power splitting for R → ∞ (perfect feedback). The highest gain in capacity is

achieved in the fully symmetric case and strictly decreases with increasing asymmetry

of the channel gains.

Figure 5.8 again shows the rates (top) and power allocations (middle and bottom)

obtained by solving (5.52) versus the feedback quantization rateRQ for fixed (moderate)

level of asymmetry but various channel noise levels. Again, when RQ is too small

the feedback is not beneficial at all and the whole transmit power is allocated to the

conventional encoding (see middle and bottom part of Figure 5.8). Above a certain

threshold for RQ, true superposition is optimal and a capacity gain is achieved. Except

for really low SNR (in Figure 5.8 for σ2 = 10−1), here true superposition is optimal

only in a small quantization rate window until eventually pure feedback coding becomes

optimal. The highest gain in capacity is achieved for low SNR and strictly decreases

with increasing SNR of the channel gains.



96 Chapter 5. Asymptotic Superposition Coding

h2 = 1

h2 = 1.1

h2 = 1.2

h2 = 1.5

h2 = 2

h2 = 5

RQ

P
2
,
P̃
2

RQ

P
1
,
P̃
1

RQ

C
S
/C

0

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0

0.5

1

0

0.2

0.4

0.6

1

1.05

1.1

1.15

1.2

Figure 5.7: Top: Normalized achievable rates (in bit) with superposition coding. Middle
and Bottom: Power splitting (decreasing lines for Pi, increasing lines for P̃i) for various
channel gains h2. h1 = 1, PT = 1, σ2 = 10−2 fixed. Horizontal axis in all plots is the
feedback quantization rate RQ.
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Figure 5.8: Top: Normalized achievable rates (in bit) with superposition coding. Middle
and Bottom: Power splitting (decreasing lines for Pi, increasing lines for P̃i) for various
channel noise levels σ2. h1 = 1, h2 = 1.1, PT = 1 fixed. Horizontal axis in all plots is
the feedback quantization rate RQ.
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5.5 Asymptotic Superposition Performance - Symmetric Bro-
adcast Channel

5.5.1 Power Constraints

The transmitter communicates independent messages θ1,j , θ̃1,l and θ2,j , θ̃2,l, j = 1, . . . , Ñ ,

l = 1, . . . , N , to the two users (receivers). The messages are uniformly drawn from fi-

nite sets with cardinalities M1 = 2nR1 , M̃1 = 2nR̃1 , M2 = 2nR2 , M̃2 = 2nR̃2 and

mapped to the transmit signal components xi, i = 1, 2, according to the superposition

(see Section 4.5.3) with block structure (cf. (4.69))

xi[(j − 1)N + l] = ϕi,l(θi,j) + ϕ̃i,j
(
θ̃i,l,w

(j−1)
i,l

)
, j = 1, . . . , Ñ , l = 1, . . . , N, i = 1, 2,

(5.55)

k = (j − 1)N + l = 1, . . . , n. Here, ϕi,l : Mi → R denotes a conventional encoder

that ignores the feedback signal. Furthermore, in contrast to the MAC, here w
(j−1)
i,l =

(wi[1] . . . wi[(j−1)N + l])> denotes the past quantized feedback from receiver i and

ϕ̃i,j : M̃i × Rj−1 → R is the feedback-based encoder that has causal access to the

quantized feedback and due to MAC-BC duality works as in the original Ozarow scheme

(see Section 2.6.1). Note that here we only have one single transmitter (see Figure 4.6)

that composes the transmit signal components (5.55) to the total transmit signal

x[k] = x1[k] + x2[k]. (5.56)

The encoder splits the total power P by allocating a fraction α ∈ [0, 1] of that power

to the feedback-based codewords and the rest to the non-feedback part, i.e.,

1

N

2∑
i=1

N∑
l=1

E
{
ϕ2
i,l(θi,j)

}
= (1−α)P, j = 1, . . . , Ñ , (5.57)

1

Ñ

2∑
i=1

Ñ∑
j=1

E
{
ϕ̃2
i,j

(
θ̃i,l,w

(j−1)
i,l

)}
= αP, l = 1, . . . , N. (5.58)

5.5.2 Achievable Sum Rate

Our proposed scheme is a superposition of a conventional encoder and a feedback-

based encoder (cf. (5.55)). Pure conventional encoding and pure feedback encoding are

special cases obtained with α = 0 and α = 1, respectively. Thus, we can maximize the

sum rate by finding the optimum power (equivalently, rate) splitting between the two

encodings.

The conventionally encoded signals are cancelled at the receivers before quantization

such that the quantization only captures the feedback encoding in the forward path.

This is possible since each receiver has the quantization noise as side-information (see
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Section 4.5.5). The sum rate of the conventional coding scheme is thus given by the

classical Gaussian BC capacity (see Section 2.5.1) with signal power (1−α)P and noise

power σ2 + αP , since the independent feedback-based codewords (cf. (4.69b)) that are

each superimposed in specific time instances of the conventional coding (cf. (4.69a))

act as additional interference. The effective SNR thus equals (1−α)P
σ2+αP

= (1−α)γ
1+αγ (recall

γ = P/σ2) and the achievable sum rate is

R1 +R2 ≤ C0

(
(1−α)γ

1 + αγ

)
, C(α), (5.59)

where C0 is the capacity of the BC without feedback (see Section 2.5.1).

The sum rate achievable with the feedback-based code follows by exploiting the du-

ality between the linear-feedback MAC and the linear-feedback BC (see Section 2.6.1)

and using the Ozarow scheme for perfect feedback (see Section 2.4.1). The effective

SNR in the Ozarow scheme is reduced due to feedback quantization. Specifically,

the feedback compression can be seen as additional i.i.d. quantization noise σ2q (see

Section 4.5.5). This decreases the SNR for the linear-feedback code according to

γ̃ =
αP

σ2 + σ2q
= αγ

1

1 + σ2q/σ
2
. (5.60)

The achievable sum rate for the feedback code then yields

R̃1 + R̃2 ≤ CFB

(
αγ

1

1 + σ2q/σ
2

)
, C̃(α), (5.61)

where CFB is the Ozarow capacity (see Section 2.6.1). While this rate is smaller than

that achievable with perfect feedback, it can still surpass the BC capacity without

feedback for large enough quantization rate RQ (see Figure 5.9).

The overall sum rate for the Gaussian BC with quantized feedback and a super-

position of conventional and linear-feedback encoding is finally obtained by optimizing

the power allocation (rate splitting) parameter α for the conventional encoding and the

feedback-based encoding, i.e., R1 +R2 + R̃1 + R̃2 ≤ CS with

CS = max
0≤α≤1

C(α) + C̃(α). (5.62)



100 Chapter 5. Asymptotic Superposition Coding

C̃(1) = C0

RQ

C̃
(1
)

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 5.9: Sum rate C̃(1) for quantized feedback-based code versus quantization rate
RQ for several SNRs corresponding to no-feedback sum capacities C0 = 1 . . . 5.

5.5.3 Difference of Convex Functions Programming

Reformulation of the Sum Rate Maximization

To maximize the sum rate we have to find the optimal power allocation parameter α by

solving (5.62). It can be shown that C̃(α) is a concave function and C(α) is a convex

function in α. Indeed, by direct calculation, we obtain the second-order derivative of

C(α) as

d2

dα2
C(α) =

γ2

(1 + αγ)2
≥ 0, (5.63)

which proves convexity. Due to the MAC-BC duality the concavity of C̃(α) can be

proved fully analogously to the MAC in Section 5.3.3. It follows that the sum capacity

CS is the maximum of the sum of a convex and a concave function, or equivalently, of

the difference of two convex functions. Thus, the sum rate maximization problem can

be again solved by DC programming (see Section 2.8) and the practically efficient CCP

algorithm (see Section 2.8.1). The maximization problem (5.62) can be reformulated

in standard form (2.66), i.e., involving differences of convex functions in the objective

and in the constraints.

Corollary 5.4. The problem of maximizing the achievable sum rate of the Gaussian

BC with quantized feedback and a superposition of feedback coding with capacity C̃ and
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Algorithm 7 Transmit power allocation for symmetric BC with feedback via CCP

Require: Initial feasible point α0

1: k := 0
2: while stopping criterion not satisfied do
3: Form Ĉk(α) = C(αk) + C ′(αk) (α− αk)
4: Determine αk+1 by solving the convex problem

minimize −C̃(α)− Ĉk(α)
subject to α− 1 ≤ 0,

−α ≤ 0
5: k := k + 1
6: end while
7: return αk

conventional coding with capacity C is solved by finding the solution of the DC problem

minimize
α

− C̃(α)− C(α)

subject to α− 1 ≤ 0, (5.64)

− α ≤ 0.

5.5.4 Numerical Solution

Like in the previous sections we have to find a point where the gradient of the convex

part in the next iteration equals the negative gradient of the concave part of the previous

iteration. Intuitively, consider the boundary
(
C̃(α), C(α)

)
of the power splitting rate

region; maximizing sum rate is then equivalent to finding the point
(
C̃(α), C(α)

)
whose

tangent has slope −1,

dC(α)

dC̃(α)
=

dC(α)/dα

dC̃(α)/dα
= −1, (5.65)

Using a superscript prime to denote the first-order derivative, CCP thus aims at

C̃ ′(αk+1) = −C ′(αk), (5.66)

which itself amounts to a convex optimization problem. The solution to this auxiliary

problem decreases monotonically with increasing k and thus converges to a minimum

(or to saddle point). Lipp and Boyd [49] give a basic CCP algorithm (see Section 2.8.1)

which requires an initial feasible point α0, which in our case can be any point in

the interval [0, 1]. Following [49], the CCP approach leads to Algorithm 7 for power

allocation. The derivative required in step 3 can explicitly be computed as

C ′(α) = −1

2

γ

1 + αγ
. (5.67)
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Figure 5.10 shows the rates (top) and power allocations (bottom) obtained by sol-

ving (5.64) versus the feedback quantization rate RQ. The linear-feedback capacity of

the proposed superposition coding scheme is normalized by the no-feedback BC capa-

city C0. Clearly, when the feedback quantization rate RQ is too small the feedback

is not beneficial at all and the whole transmit power is allocated to the conventional

encoding (see bottom part of Figure 5.10). Above a certain threshold for R, true su-

perposition is optimal until eventually pure feedback coding becomes optimal for very

large quantization rates RQ (almost perfect feedback). Figure 5.11 and Figure 5.12

shows the achievable power splitting rate region (C(α), C̃(α)) and the maximum sum

rate CS.

Optimality of Superposition

Figure 5.12 shows the achievable power splitting rate region
(
C̃(α), C(α)

)
for fixed

quantization rate RQ and variable transmit power P . We see that below a non-trivial

power threshold it is optimum to allocate all transmit power to the feedback-coding

scheme and above that threshold superposition is optimum. Note that the power al-

located to the feedback scheme stays constant while only the power allocated to the

non-feedback scheme increases with increasing total transmit power. This can be ex-

plained by studying the behavior of the iteration (5.66), which characterizes a fixed

point for the optimal α. In the optimal point the negative gradient of C̃(α) equals the

gradient of C(α) (cf. (5.65)). While the optimal α depends on the total power P , it can

be shown that the amount of power αP in the feedback-based code remains constant

above a certain power threshold (see discussion in Section 5.3.4 and Figure 5.12).
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Figure 5.10: Top: Normalized achievable rates with superposition coding (solid lines)
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5.6 Asymptotic Superposition Performance - Asymmetric Bro-
adcast Channel

5.6.1 Power Constraints

We study the two-user asymmetric Gaussian BC with (quantized) feedback (see Fi-

gure 4.5). Here, one single transmitter sends the sum of the independent length-n

Gaussian user signals xi[k], i = 1, 2 (cf. (5.56)), and the receivers observe the signals

y1[k] = h1(x1[k] + x2[k]) + z1[k], (5.68)

y2[k] = h2(x1[k] + x2[k]) + z2[k]. (5.69)

The channel gains h1 and h2 are assumed to be known by both transmitter and both

receivers and the channel introduces i.i.d. additive Gaussian noise zi ∼ N (0, σ2I),

i = 1, 2. We impose the average transmit power constraint (here, expectation is with

respect to the messages and the channel noise)

1

n

n∑
k=1

E
{

x21[k] + x22[k]
}
≤ PT . (5.70)

The transmitter communicates independent messages θ1,j , θ̃1,l and θ2,j , θ̃2,l, j = 1, . . . , Ñ ,

l = 1, . . . , N , to two users (receivers). The messages are uniformly drawn from finite

sets with cardinalities M1, M̃1 = 2ÑR̃1 , M2 = 2NR2 , M̃2 = 2ÑR̃2 , and mapped to

the transmit signal components according to the superposition (see Section 4.5.3) with

block structure (cf. (4.69))

xi[(j − 1)N + l] = ϕi,l(θi,j) + ϕ̃i,j
(
θ̃i,l,w

(j−1)
i,l

)
, j = 1, . . . , Ñ , l = 1, . . . , N, i = 1, 2,

(5.71)

k = (j − 1)N + l = 1, . . . , n. Like for the asymmetric MAC, here, ϕi,l : Mi → R
denotes a conventional encoder with power constraint

1

N

N∑
l=1

E
{
ϕ2
i,l(θi,j)

}
≤ Pi, j = 1, . . . , Ñ , i = 1, 2, (5.72)

with expectation over all possible transmit messages θi, j. The conventional encoder

completely ignores the feedback signal. Note that here we only have one single trans-

mitter that composes the transmit signal components (5.71) to the total transmit signal

x[k] = x1[k] + x2[k]. (5.73)

Furthermore, in contrast to the MAC, here w
(j−1)
i,l = (wi[1] . . . wi[(j−1)N+ l])> denotes

the past quantized feedback and ϕ̃i,j : M̃i × Rj−1 → R is the feedback-based encoder
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with power constraint

1

n

Ñ∑
j=1

E
{
ϕ̃2
i,j

(
θ̃i,l,w

(j−1)
i,l

)}
≤ P̃i, l = 1, . . . , N, i = 1, 2, (5.74)

with expectation over all possible transmit messages θ̃i,l and channel realizations. This

encoder has causal access to the quantized feedback and works as in the original Ozarow

scheme (see Section 2.4.1) due to the MAC-BC duality (see Section 2.6.1). Note that in

contrast to the MAC here we have two different feedback signals w
(j−1)
1,l and w

(j−1)
2,l due

to the independent noise realizations z1[k] and z2[k]. Due to the superimposed block

structure the constraints on the transmit powers sum up to

P1 + P2 = P, (5.75)

P̃1 + P̃2 = P̃ , (5.76)

P + P̃ = PT . (5.77)

5.6.2 Achievable Sum Rate

Like for the MAC our proposed scheme is a superposition of a conventional encoder

and a feedback-based encoder (cf. (5.71)). Thus, we can maximize the sum rate by

finding the optimum power (equivalently, rate) splitting between the two encodings

jointly for both receivers. In the symmetric case the conventionally encoded signals are

cancelled at the receivers before quantization such that the quantization only captures

the feedback encoding in the forward path. This was possible since the receiver has

the quantization noise as side-information (see Section 4.5.5). Unfortunately, in the

asymmetric case, in contrast to the symmetric case, the conventionally encoded signals

can only be decoded and cancelled at the receiver with higher SNR [20]. The weaker

receiver is only able to decode its dedicated conventionally encoded message, whereas

the other conventionally encoded message remains acting as additional interference

noise. The sum rate of the conventional coding scheme is thus given by the classical

Gaussian BC capacity C0 (see Section 2.5.1) with noise power σ2 + h2i (P̃1 + P̃2), since

the independent feedback-based codewords (cf. (4.69b)) that are each superimposed

in specific time instances of the conventional coding (cf. (4.69a)) act as additional

interference. Then, the achievable sum rate for fixed feedback transmit powers P̃1 and

P̃2 and given total transmit power PT is

R1 +R2 ≤ max
P1+P2≤PT−P̃1−P̃2

C0(h
2
1P1, h

2
2P2, σ

2 + h21(P̃1 + P̃2), σ
2 + h22(P̃1 + P̃2))

, C. (5.78)



5.6 Asymptotic Superposition Performance - Asymmetric Broadcast Channel 107

Due to the MAC-BC duality the sum rate of the feedback coding scheme is given by

the Ozarow capacity CFB (see Section 2.6.1) with asymmetric channel noises. Without

loss of generality we assume that receiver 1 has higher SNR than receiver 2. Then, the

noise power of receiver 1 is σ2 + σ2q1 (due to the additional quantization noise) and the

noise power of receiver 2 is σ2 + σ2q2 + h22P1 (due to the additional quantization noise

and the remaining additional interference of the conventional codeword for receiver 1).

Then, the achievable sum rate for fixed transmit powers P1 and P2 and given total

transmit power PT is

R̃1 + R̃2 ≤ max
P̃1+P̃2≤PT−P1−P2

CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q1 , σ
2 + σ2q2 + h22P1)

, C̃. (5.79)

The total achievable sum rate of our proposed scheme with given total transmit

power PT yields

R1 +R2 + R̃1 + R̃2 ≤ max
P1+P2+P̃1+P̃2≤PT

C + C̃

, CS . (5.80)

Finally, simplifying the nested maximizations (implicitly contained in the expressions

for C and C̃) to one single maximization yields

CS = max
P1+P2+P̃1+P̃2≤PT

C0(h
2
1P1, h

2
2P2, σ

2 + h21(P̃1 + P̃2), σ
2 + h22(P̃1 + P̃2))

+CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q1 , σ
2 + σ2q2 + h22P1). (5.81)

Previously, for the symmetric MAC and BC this was the basis of a one-dimensional

optimization problem, since the individual capacity expressions directly yielded the

convex part and the concave part. In the asymmetric BC case, (5.81) results in a

multi-dimensional optimization problem where the individual capacity expressions do

not directly yield the convex part and the concave part.

Expanding the expressions of the capacities in (5.81) gives

CS = max
P1+P2+P̃1+P̃2≤PT

C

(
h21P1

σ2 + h21(P̃1 + P̃2)

)

+C

(
h22P2

σ2 + h22P1 + h22(P̃1 + P̃2)

)
+CFB(h21P̃1, h

2
2P̃2, σ

2 + σ2q1 , σ
2 + σ2q2 + h22P1), (5.82)

where receiver 1 decodes both conventional encoded messages and receiver 2 decodes

only its dedicated conventionally encoded message. Then, the first two terms reflect
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the classical Gaussian BC capacity. Unfortunately, the asymmetry in the ability of

decoding renders the problem hard to split into a concave and a convex part. In the

symmetric case only the feedback signal with total power P̃1 + P̃2 acts as interference

for the conventional coding, whereas now in addition to this interference the feedback

signal itself is still also interfered by the remaining (undecoded) conventional signal

with power P1.

5.6.3 Partly Symmetrized Solution

Due to the asymmetry the non-feedback component cannot be fully cancelled before

quantizing and feeding back the feedback component. Specifically, this adds additional

interference at the weaker receiver. One possible solution is to make the problem

quasi-symmetric again. Therefore, we reduce the power (or equivalent the rate) of the

non-feedback component at an amount that both messages for receiver 1 and receiver

2 can be decoded at both receivers. As a consequence, the total achievable rate of the

non-feedback component reduces to the point-to-point AWGN channel capacity and is

equivalent to the ”onion peeling” approach,

R1 +R2 ≤ C0

(
h22(P1 + P2)

σ2 + h22(P̃1 + P̃2)

)
, C. (5.83)

where again without loss of generality we assume that receiver 1 has higher SNR than

receiver 2.

Similar as in the previous section, due to the MAC-BC duality the sum rate of

the feedback coding scheme is given by the Ozarow capacity CFB (see Section 2.6.1)

with asymmetric channel noises. Then, the noise power of receiver 1 again is σ2 + σ2q1
(due to the additional quantization noise) and the noise power of receiver 2 is σ2 + σ2q2
(due to the additional quantization noise). Now both receivers can fully decode and

cancel the non-feedback components at the cost of reduced achievable rate of the total

non-feedback component. On the other side this reduced achievable rate allows the

feedback component higher transmit powers and as a consequence higher achievable

rates and eliminated interference from the previously undecoded conventional compo-

nent. Thus, the reduced achievable rate of the non-feedback component is at least

partly compensated. Now, the achievable sum rate of the feedback component for fixed

transmit powers P1 and P2 and given total transmit power PT is

R̃1 + R̃2 ≤ max
P̃1+P̃2≤PT−P1−P2

CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q1 , σ
2 + σ2q2)

, C̃. (5.84)

The total achievable sum rate of our proposed scheme with given total transmit
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power PT yields

R1 +R2 + R̃1 + R̃2 ≤ max
P1+P2+P̃1+P̃2≤PT

C + C̃

, CS . (5.85)

Finally, simplifying the nested maximizations (implicitly contained in the expressions

for C and C̃) to one single maximization yields

CS = max
P1+P2+P̃1+P̃2≤PT

C0

(
h22(P1 + P2)

σ2 + h22(P̃1 + P̃2)

)
+CFB(h21P̃1, h

2
2P̃2, σ

2 + σ2q1 , σ
2 + σ2q2). (5.86)

Previously, for the symmetric MAC and BC this was the basis of a one-dimensional

optimization problem, since the capacity expressions directly yielded the convex part

and the concave part. In the asymmetric but symmetrized BC case, (5.86) again directly

yields the convex part and the concave part as follows.

5.6.4 Concave and Convex Component

Next, we prove that CS can be split into a concave part C∩(p) and a convex part C∪(p)

in the power allocation vector p = (P1, P2, P̃1, P̃2)
>,

CS = max
1>p≤P

C∩(p) + C∪(p). (5.87)

Then, this sum rate maximization problem can be solved by DC programming [49].

We expand the respective equivalent AWGN capacity C0(h
2
2(P1 +P2), σ

2 +h22(P̃1 +

P̃2)) to

C0(h
2
2(P1 + P2), σ

2 + h22(P̃1 + P̃2)) =
1

2
log(σ2 + h22(P1 + P2 + P̃1 + P̃2))

− 1

2
log(σ2 + h22(P̃1 + P̃2)). (5.88)

The first term is constant and the second term is easily identified as convex since the

logarithm is a concave function. Thus, the CFB is not affected by the symmetrization

and therefore due to MAC-BC duality solely yields the convex part (see Section 5.4.3).

(5.87) can then be rewritten as

CS = max
1>p≤PT

CFB(h21P̃1, h
2
2P̃2, σ

2 + σ2q1 , σ
2 + σ2q2)︸ ︷︷ ︸

C∩(p),C̃(p)

+C0(h
2
2(P1 + P2), σ

2 + h22(P̃1 + P̃2))︸ ︷︷ ︸
C∪(p),C(p)

(5.89)
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5.6.5 Difference of Convex Functions Programming Solution

Splitting the objective function and our already affine constraints into concave and

convex functions allows us to solve the optimization problem via DC programming (see

Section 2.8) and the practically efficient CCP algorithm (see Section 2.8.1). Reformu-

lating the maximization problem (5.87) in standard form (2.66) yields the following

result.

Corollary 5.5. The problem of maximizing the achievable sum rate of the asymmetric

Gaussian BC with quantized feedback and a superposition of feedback coding with capa-

city C̃ and conventional coding with capacity C is solved by finding the solution of the

DC problem

minimize
p

− C̃(p)− C(p)

subject to 1>p− PT ≤ 0, (5.90)

− p � 0.

Like in the previous sections we have to find a point where the gradient of the

convex part in the next iteration equals the negative gradient of the concave part of

the previous iteration

∇C(pk+1) = −∇C̃(pk) (5.91)

which itself is a convex optimization problem. The solution to this auxiliary problem

decreases monotonically with increasing k and thus converges to a minimum (or saddle

point). Lipp and Boyd [49] give a basic CCP algorithm (see Section 2.8.1) which

requires an initial feasible point p0, which in our case can be any point in the interval

0 ≤ 1>p0 ≤ PT . Following [49], the CCP approach leads to Algorithm 8 for power

allocation.

In step 3 Algorithm 8 uses a linearization Ĉk(p) of the convex component C(p).

The gradient ∇C(p) contained in the linearization can be directly calculated as

∇C(p) =
1

2

h22
σ2 + h22(P1 + P2 + P̃1 + P̃2)

− 1

2


0

0
h22

σ2+h22(P̃1+P̃2)
h22

σ2+h22(P̃1+P̃2)

 . (5.92)

If we were able to find the gradient ∇C∩(p) as well and solve the iteration (5.91) for

pk+1 we could avoid the auxiliary convex optimization problem. Unfortunately, this

seems not feasible.
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Algorithm 8 Transmit power allocation for asymmetric BC with feedback via CCP

Require: Initial feasible point p0
1: k := 0
2: while stopping criterion not satisfied do
3: Form Ĉk(p) = C(pk) + (p− pk)>∇C(pk)
4: Determine pk+1 by solving the convex problem

minimize −C̃(p)− Ĉk(p)
subject to 1>p− PT ≤ 0,

−p � 0
5: k := k + 1
6: end while
7: return pk

5.6.6 Numerical Solution

Figure 5.13 shows the achievable rates (top) and power allocations (middle and bottom)

obtained by solving (5.90) versus the feedback quantization rate RQ. The linear-

feedback capacity of the proposed superposition coding scheme is normalized by the

no-feedback BC sum capacity C0. Clearly, when RQ is too small the feedback is not

beneficial at all and the whole transmit power is allocated to the conventional encoding

(see middle and bottom part of Figure 5.13). Above a certain threshold for RQ, true

superposition is optimal and a capacity gain is achieved. In contrast to the asymmetric

MAC case where true superposition stays optimal even for very large RQ (almost per-

fect feedback), in the asymmetric BC case (in Figure 5.13 for h2 > 1.1) we can observe

that eventually pure feedback coding becomes optimal. This is similar behaviour as

we observed for the symmetric MAC and BC and is caused by the symmetrization of

the non-feedback component. A consequence of the symmetrization is that this scheme

performs highly suboptimal (region where CS/C0 < 1 in Figure 5.13) for low quantiza-

tion rates. Nevertheless, if the asymmetry is not to big we still observe a gain (region

where CS/C0 > 1 in Figure 5.13) due to the superposition coding. The highest gain in

capacity is achieved in the fully symmetric case and strictly decreases with increasing

asymmetry of the channel gains.

Figure 5.14 again shows the rates (top) and power allocations (middle and bottom)

obtained by solving (5.90) versus the feedback quantization rateRQ for fixed (moderate)

level of asymmetry but various channel noise levels. Again, when RQ is too small

the feedback is not beneficial at all and the whole transmit power is allocated to the

conventional encoding (see middle and bottom part of Figure 5.14). Above a certain

threshold (solely determined by the channel gains and independent of the actual channel

noise levels) for RQ, true superposition is optimal in a specific quantization rate window

until eventually pure feedback coding becomes optimal. The size of these quantization

rate windows decrease with increasing noise, i.e., the transition to pure feedback coding

becomes shorter. Interestingly, the quantization rate value where the capacity reduction
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due to the symmetrization is compensated is again solely determined by the channel

gains and independent of the actual channel noise levels. The highest gain in capacity is

achieved for low SNR and strictly decreases with increasing SNR of the channel gains.
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Figure 5.13: Top: Normalized achievable rates (in bit) with superposition coding.
Middle and bottom: Power splitting (decreasing solid lines for Pi, increasing dashed
lines for P̃i) for various channel gains h2 (h1 = 1, PT = 1, σ2 = 10−2). Horizontal axis
in all plots is the feedback quantization rate RQ.
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Figure 5.14: Top: Normalized achievable rates (in bit) with superposition coding.
Middle and bottom: Power splitting (decreasing solid lines for Pi, increasing dashed
lines for P̃i) for various channel noise levels σ2 (h1 = 1, h2 = 1.1, PT = 1). Horizontal
axis in all plots is the feedback quantization rate RQ.
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Finite Blocklength

Superposition Coding

In this Chapter we use recent findings of achievable rates for non-vanishing error proba-

bilities in the finite-blocklength regime to specialize our proposed suerposition coding

scheme to this regime. We thus derive error probability expressions for each component

of the superposition coding scheme for various channel models. Next, we show that

due to imperfect decoding the error probabilities are coupled and we propose regions

where the approximation of decoupled error probabilities is sufficiently accurate. We

then formulate a partly combinatorial optimization problem that jointly finds the opti-

mal power allocation (as in the asymptotic regime) and blocklength allocation for each

channel model. We propose an approximate solving procedure that successively finds

the asymptotic power allocation and blocklength allocation.

In Section 6.2 we start with the analysis of the AWGN channel and further extend

this treatment to the MAC in Section 6.3 and to the BC in Section 6.4. Finally, we

conclude this chapter with a discussion of the studied schemes in Section 6.5.

115
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6.1 Introduction

The main contributions in this chapter pertain to adaptations of the linear superpo-

sition coding scheme developed in Chapter 4, which address two important real-world

constraints:

• Practical restrictions regarding latency and complexity necessitate a finite block-

length for real-world coding schemes. We thus propose a block feedback scheme

that superimposes feedback-based encoding and conventional (non-feedback) co-

ding. In contrast to other block feedback schemes (e.g., [59, 82]), our approach

involves a systematic combination of the two constituent codes that allows their

separation via successive cancellation in finite time.

• The feedback link in real communication systems can hardly be assumed to be

perfect; at least it is quantized (rate-limited). As with the asymptotic regime in

Chapter 5 we model the feedback quantization in terms of channel output com-

pression via the information bottleneck principle [17, 80, 86, 87] (see Chapter 3),

which allows the receiver to use the quantization noise as side-information.

In the asymptotic regime we found that allocating the powers to maximize the

achievable rates amounts to a difference of convex functions (DC) problem [91]. Here

we show that in the finite blocklength regime the maximization of the achievable rates

(for a prescribed blocklength and error probability) involves an additional combinatorial

optimization problem to find the optimal splitting of the overall block between the two

constituent codes. We solve this optimization problem numerically and show that

superposition is beneficial.

6.2 Finite Blocklength Superposition Performance – Gaussian
Channel

6.2.1 Error Probabilities

The error probability P̃e of the feedback based scheme is known to decrease doubly

exponentially in the blocklength Ñ [69], whereas the error probability Pe of the con-

ventional coding scheme decreases only exponentially in the blocklength N [65,66]. Due

to the monotonicity of P̃e(Ñ) and Pe(N) and the relation n = ÑN , decreasing the error

probability of one component (via larger blocklength) increases the error probability of

the other component (due to shorter blocklength).

The block structure of the superposition coding couples the error probabilities; if

the conventional codeword is decoded incorrectly, it cannot be cancelled successively

from the superposition and therefore negatively affects the decoding of the feedback

based codeword.
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Error probability of feedback based coding component

The error probability expression of the feedback based coding was bounded by Gallager

[32] for perfect feedback (see Section 2.2.2). Adapted to our superposition scheme with

quantized feedback we have

P̃e(R̃, Ñ) ≤ 2Q
(

2Ñ(CFB(h2P̃ ,σ2
s)−R̃)

)
, (6.1)

with the resulting (interference) noise variance σ2s , which is given by

σ2s = σ2 + σ2q + h2PPe (6.2)

in this superposition configuration. Pe is the error probability of the conventional

coding scheme and the h2PPe term is due to the decoding errors of the conventional

coding scheme that cause additional interference. Due to the block coding structure

this additional interference is i.i.d. and can be modeled to be Gaussian as well if Ñ is

not too small.

Due to the block structure each initial time slot is used to transmit the messages

θ̃l, l = 1, . . . , N

x̃[l] =
√
P̃ θl, l = 1, . . . , N, (6.3)

such that the transmit signal meets the transmit power constraint. The current message

estimation errors εj,l in iteration j are given by

εj,l = θ̃l − ˆ̃
θl(ỹ

((j−1)N+l)), , j = 1, . . . , Ñ , l = 1, . . . , N. (6.4)

Then, the initial estimation error simply yields

ε2,l = θ̃l − ˆ̃
θl(ỹ

(N+l)) = θ̃l −
ỹ[l]√
h2P̃

, l = 1, . . . , N, (6.5)

since the first timeslot (of the feedback scheme) is exclusively used to transmit the

message,

ỹ[l] =
√
h2P̃ θ̃l + zs[l], l = 1, . . . , N. (6.6)

The estimation errors εj,l geometrically decrease and thus a simple nearest neighbour

decoding yields the doubly exponential decreasing error probability for each θ̃l, l =

1, . . . , N [69].
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Error probability of conventional coding component

The error probability expression of the conventional coding scheme can be obtained by

adapting the results for the AWGN channel in the finite blocklength regime obtained

by Polyanskiy in [66, Theorem 54] (see Section 2.1.2). In our superposition scenario we

have

Pe(R,N) ≤ 2Q

{
1√
V

[√
N(C −R) +

1√
N

1

2
logN

]}
, (6.7)

with channel dispersion

V =
h2P

2

h2P + 2(σ2 + h2P̃ )

(h2P + σ2 + h2P̃ )2
log2 e. (6.8)

Note that here the capacity of the conventional coding scheme is affected by the

interference of the feedback based coding and results in a reduced capacity C =

C
(
h2P/(σ2 + h2P̃ )

)
. In our AWGN scenario the power allocation procedure ensu-

res that the additional sum rate constraint holds.

Error probability approximations

For the remainder of Section 6.2 we work with the approximation σ2s ≈ σ2 + σ2q , i.e.,

Pe � (σ2 + σ2q )/h
2P . In the regime of interest this approximation is sufficiently accu-

rate. This simplifies the numerical evaluation since it allows us to independently analyze

the decoupled error probability expressions.

6.2.2 Achievable Rates versus Blocklength and Error Probability

Instead of investigating the error probability as a function of the blocklength we are

now interested in the achievable rates versus blocklength and error probability. This is a

more practical approach, since usually applications require a specific rate and maximal

error probability.

The achievable rate of the feedback based code is found by solving (6.1) for R̃,

R̃(P̃e, Ñ) ≤ 1

2
log

(
σ2s + h2P̃

σ2s

)
− 1

Ñ
log

(
Q−1

{
P̃e
2

})
, (6.9)

and the achievable rate of the conventional code is found by solving (6.7) for R,

Ri(Pe, N) ≤ C − 1√
N

√
V Q−1

{
Pe
2

}
+

1

2
log

N
√
N. (6.10)
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6.2.3 Optimization Problem

Optimization in the context of finite blocklength means finding the optimum subblock

splitting (N, Ñ) that maximizes the achievable rates under the constraint n = ÑN for

prescribed blocklength n and error probability.

We want to find the blocklength allocation that maximizes the achievable sum rate

Rs = R(Pe, N) + R̃(P̃e, Ñ), (6.11)

while keeping the effective average error probability

P̄e =
1

Rs

(
R(Pe, N)Pe + R̃(P̃e, Ñ)P̃e

)
(6.12)

below a certain value ε. R̃(P̃e, Ñ) and R(Pe, N) are given by (6.9) and (6.10), respecti-

vely. Generally, this leads to the non-convex and partly combinatorial optimization

problem

maximize
N,Ñ,P,P̃

Rs

subject to P̄e,≤ ε
ÑN = n,

P + P̃ ≤ PT .

(6.13)

A simpler approach is to restrict each of the individual error probabilities to be

smaller than ε. This is indeed more reasonable, since the data from the conventio-

nal coding component and from the feedback coding component encode independent

information and thus require certain error rates. Thus, the optimization simplifies to

maximize
N,Ñ,P,P̃

R(Pe, N) + R̃(P̃e, Ñ)

subject to Pe ≤ ε,
P̃e ≤ ε,
ÑN = n,

P + P̃ ≤ PT ,

(6.14)

which is still a non-convex and partly combinatorial optimization problem.

We tackle both optimizations by initially finding reasonable transmit power alloca-

tion and then optimize the blocklength allocation. On the one hand, the performance

of the feedback coding component is limited by the channel capacity and thus by the

allocated transmit power itself and on the other hand it is limited by the quantization

rate. Due to the data processing inequality the achievable rate cannot exceed either of

this two. For this reason, we allocate that much transmit power that both the capacity
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R [bit] P P̃

1 0.987 0.013
2 0.933 0.067
3 0.717 0.283
4 0.1 0.9
5 0.1 0.9
6 0.1 0.9

Table 6.1: Balanced power allocation according to P̃ = 0.9 max(PT , PR) with PR such
that C(PR) = R (parameters as in Figure 6.1 and Figure 6.2).

and the quantization rate are of similar scale (if there is enough total transmit power

available), that is,

P̃ = 0.9 max(PT , PR), (6.15)

where PR is chosen such that C(PR) = R. Thus,

PR = σ2(22RQ − 1). (6.16)

The 0.9 factor is a pragmatic choice for the demonstration of the superposition beha-

viour. Otherwise, for large enough quantization rates, all the available transmit power

would be allocated to the feedback coding component. Now, at least 0.1PT is allocated

to the conventional coding component. We then use this balanced power allocation (see

Table 6.1) to find the optimal blocklength allocation. Generally, this approach might

not be equivalent to the global optimization since this asymptotically justified power

allocation is not necessarily optimal for finite blocklengths. This is due to the fact that

both constituent schemes do not show the same error decay behaviour. The feedback

coding scheme has a doubly exponentially decreasing error probability, whereas the

conventional coding scheme only decreases exponentially in blocklength. Thus, one has

to take this into account when optimizing the power allocation. Unfortunately, joint

optimization of power allocation and blocklength allocation seems intractable.

6.2.4 Impact of Blocklength Allocation

In this section we start with the balanced power allocations (Table 6.1).

It turns out that such power allocation does not yield higher achievable sum rates for

moderate blocklength and moderate quantization rates. In the example in Figure 6.1

with blocklength n = 210 = 1024 only feedback quantization rates R > 5 result in better

performance than coding without any feedback. Even in this case the optimal region

allocates no blocklength to the conventional coding component. Note that n = NÑ .

Thus, N = 1 if the optimum allocates the total blocklength to the feedback based
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coding component, i.e., Ñ = n. For larger blocklength the power allocation procedure

delivers suboptimal results. In the example with blocklength n = 217 = 131072 shown

in Figure 6.2 although superposition yields higher achievable sum rates for a wide region

of blocklength allocation, this is only a consequence of the power allocation. The red

dashed line indicates the ultimate performance limit for pure conventional coding. We

see that there is almost no gap between the achievable rate of the conventional coding

and feedback based coding. We observe that the fraction of blocklength allocated to

each component is primarily determined by the channel itself and only weakly depends

on the actual power allocations, feedback rates or quantization rates. The next section

also confirms this insight.

6.2.5 Impact of Blocklength

Again, we start with balanced power allocations. We observe that even if the balanced

power allocation splits the power to both constituent schemes, the blocklength might

not be allocated in the same proportions. There are essentially three different scenarios.

Very low feedback quantization rates

The quantization rate is too low to be beneficial for small blocklength. Thus, pure

conventional coding is optimal. For larger blocklengths eventually superposition coding

becomes optimal. In Figure 6.3 we can observe this behaviour e.g. for R = 1 (circle

marker).

Low feedback quantization rates

In this case pure feedback coding is optimal only for very small blocklengths and then

suddenly switches to superposition coding. In Figure 6.3 we can observe this behaviour

e.g. for R = 2 (square marker) or R = 3 (diamond marker).

Medium to high feedback quantization rates

Here, pure feedback coding is optimal for the complete blocklength region. In Figure 6.3

we can observe this behaviour e.g. for R = 6 (asterisks marker).

Figure 6.3 (bottom) shows the optimal blocklength allocations. Note that in the

region of superposition the growth rates of blocklength are identical and independent

of the quantization rates and thus the curves highly overlap. As a consequence, Ñ/N

is almost independent of the quantization rates in this region.
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Figure 6.1: Achievable rates of conventional coding component (top, decreasing cur-
ves) and feedback coding component (top, increasing curves) and achievable sum rates
(bottom, maxima marked with ’x’) versus the blocklength allocation Ñ/N for n = 210.
All plots pertain to the symmetric AWGN channel with PT = 2, h = 1, σ2 = 0.01,
ε ≤ 10−6, and power allocation according to Table 6.1. The dashed and dotted line
show the Polyanskiy limit Cε and C̃0, respectively.
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Figure 6.2: Achievable rates of conventional coding component (top, decreasing cur-
ves) and feedback coding component (top, increasing curves) and achievable sum rates
(bottom, maxima marked with ’x’) versus the blocklength allocation Ñ/N for n = 217.
All plots pertain to the symmetric AWGN channel with PT = 2, h = 1, σ2 = 0.01,
ε ≤ 10−6, and power allocation according to Table 6.1. The dashed and dotted line
show the Polyanskiy limit Cε and C̃0, respectively.
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Figure 6.3: Achievable rates (top) of conventional coding component (top and bottom,
dashed curves) and feedback coding component (top and bottom, dotted curves) and
achievable sum rates (top, solid curves) with optimal blocklength allocation versus the
blocklength n. Optimal blocklength allocations (bottom). All plots pertain to the
symmetric AWGN channel with PT = 2, h = 1, σ2 = 0.01, ε ≤ 10−6, and power
allocation according to Table 6.1.
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6.3 Finite Blocklength Superposition Performance – Gaussian
Multiple Access Channel

6.3.1 Error Probabilities

Like for the AWGN channel, the error probabilities P̃ei , i = 1, 2 of the feedback-based

scheme are known to decrease doubly exponentially in the blocklength Ñ [60], whereas

the error probabilities Pei , i = 1, 2 of the conventional coding scheme decrease only

exponentially in the blocklength N [65, 66]. Due to the monotonicity of P̃ei(Ñ) and

Pei(N) and the relation n = ÑN , decreasing the error probability of one component

(via larger blocklength) increases the error probability of the other component (due to

shorter blocklength).

The block structure of the superposition coding couples the error probabilities; if

the conventional codeword is decoded incorrectly, it cannot be cancelled successively

from the superposition and therefore negatively affects the decoding of the feedback

based codeword.

Error probability of feedback based coding component

The error probability expression of the feedback based coding was bounded by Ozarow

[60] for perfect feedback. Adapted to our superposition scheme with quantized feedback

we have

P̃ei(R̃i, Ñ) ≤ 2Q

{
σ2s

2
√
αi,2(σ2s + h2i P̃i(1− ρ∗

2))

× exp

[
Ñ

(
1

2
log

(
σ2s + h2i P̃i(1− ρ∗

2
)

σ2s

)
− R̃i

)]}
, (6.17)

i = 1, 2, with appropriately chosen αi,2. ρ
∗ is the optimal correlation that maximizes the

achievable sum rate which is found by solving (2.31). σ2s is the resulting (interference)

noise variance, which is given by

σ2s = σ2 + σ2q + h21P1Pe1 + h22P2Pe2 (6.18)

in this superposition configuration. Pei are the error probabilities of the conventional

coding scheme and the h2iPiPei terms are due to the decoding errors of the conventional

coding scheme that cause additional interference. Due to the block coding structure

this additional interference is i.i.d. and can be modeled to be Gaussian as well if Ñ is

not too small. We choose αi,2 as in [60]

αi,2 =
σ2s + σ2v
h2i P̃i

, (6.19)
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where σ2v is the variance of an initial common randomness v known to all users. σ2v is

chosen such that the correlation remains constant over time,

ρ2 =
E{ε1,2,lε2,2,l}√

α1,2α2,2
=

σ2v
σ2s + σ2v

, ρ∗. (6.20)

Here, αi,j are the variances of the current message estimation errors εi,j,l,

εi,j,l = θ̃i,l − ˆ̃
θi,l(ỹ

((j−1)N+l)). (6.21)

Note that αi,j is identical for all l because θ̃i,l, l = 1, . . . , N are i.i.d.. The initial

estimation errors simply yield

ε1,2,l = θ̃1,l − ˆ̃
θ1,l(ỹ

(N+l)) = θ̃1,l −
ỹ[l]√
h21P̃1

, (6.22)

ε2,2,l = θ̃2,l − ˆ̃
θ2,l(ỹ

(N+l)) = θ̃2,l −
ỹ[N + l]√
h22P̃2

, (6.23)

since the first two timeslots (of the feedback scheme) are exclusively used to transmit

the messages from both transmitters alternately,

ỹ[l] =

√
h21P̃1θ̃1,l + zs[l] + v, (6.24)

ỹ[N + l] =

√
h22P̃2θ̃2,l + zs[N + l] + v (6.25)

Using these relations we directly get the second equality in (6.20) and then solving

(6.20) for σ2v yields

σ2v = σ2s
ρ∗

1− ρ∗ . (6.26)

Finally,

αi,2 =
σ2s

h2i P̃i(1− ρ∗)
. (6.27)

Error probability of conventional coding component

The error probability expression of the conventional coding scheme can be obtained by

adapting the results for the AWGN channel in the finite blocklength regime obtained

by Polyanskiy in [66, Theorem 54] (see Section 2.3.2). In our superposition scenario we

have

Pei(Ri, N) ≤ 2Q

{
1√
Vi

[√
N(Ci −Ri) +

1√
N

1

2
logN

]}
, (6.28)
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i = 1, 2, with modified channel dispersion

Vi =
h2iPi

2

h2iPi + 2(σ2 + h21P̃1 + h22P̃2)

(h2iPi + σ2 + h21P̃1 + h22P̃2)2
log2 e. (6.29)

Note that here the capacity of the conventional coding scheme is affected by the

interference of the feedback-based coding and results in a reduced capacity Ci =

C
(
h2iPi/(σ

2 + h21P̃1 + h22P̃2)
)

. This approximation holds for sufficiently low error pro-

babilities, where we can neglect the potential error propagation due to successive de-

coding. In our MAC scenario the optimal power allocation ensures that the additional

sum rate constraint holds (analogous to Corollary 2.8).

Error probability approximations

For the remainder of Section 6.3 we work with the approximation σ2s ≈ σ2 + σ2q , i.e.,

Pei � (σ2 + σ2q )/h
2
iPi. In the regime of interest this approximation is sufficiently

accurate. This simplifies the numerical evaluation since it allows us to independently

analyze the practically decoupled error probability expressions.

6.3.2 Achievable Rates versus Blocklength and Error Probability

Like for the AWGN channel, instead of investigating the error probability as a function

of the blocklength we are now interested in the achievable rates versus blocklength and

error probability. This is a more practical approach, since usually applications require

a specific rate and maximal error probability.

The achievable rate of the feedback based code is found by solving (6.17) for R̃i,

R̃i(P̃ei , Ñ) ≤ 1

2
log

(
σ2s + h2i P̃i(1− ρ∗

2
)

σ2s

)

− 1

Ñ
log

[
Q−1

{
P̃ei
2

}
2
√
αi,2(σ

2
s + h2i P̃i(1− ρ∗

2
))

σ2s

]
, (6.30)

i = 1, 2, and the achievable rate of the conventional code is found by solving (6.28) for

Ri, i = 1, 2,

Ri(Pei , N) ≤ Ci −
1√
N

√
ViQ

−1
{
Pei
2

}
+

1

2
log

N
√
N. (6.31)

6.3.3 Optimization Problem

Optimization in the context of finite blocklength means finding the optimum subblock

splitting (N, Ñ) that maximizes the achievable rates under the constraint n = ÑN for

prescribed blocklength n and error probability.
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We want to find the blocklength allocation that maximizes the achievable sum rate

Rs =
2∑
i=1

(
Ri(Pei , N) + R̃i(P̃ei , Ñ)

)
, (6.32)

while keeping the effective average error probability

P̄e =
1

Rs

2∑
i=1

(
Ri(Pei , N)Pei + R̃i(P̃ei , Ñ)P̃ei

)
(6.33)

below a certain value ε. R̃i(P̃ei , Ñ) and Ri(Pei , N) are given by (6.30) and (6.31),

respectively. Generally, this leads to the non-convex and partly combinatorial optimi-

zation problem

maximize
N,Ñ,p

Rs

subject to P̄e ≤ ε
ÑN = n,

1ᵀp ≤ PT .

(6.34)

A simpler approach is to restrict each of the individual error probabilities to be

smaller than ε. This is indeed more reasonable, since the data from the two transmitters

usually carries independent information and thus requires certain error rates. Thus,

the optimization simplifies to

maximize
N,Ñ,p

2∑
i=1

(
Ri(Pei , N) + R̃i(P̃ei , Ñ)

)
subject to Pei ≤ ε, i = 1, 2

P̃ei ≤ ε, i = 1, 2

ÑN = n,

1ᵀp ≤ PT ,

(6.35)

which is still a non-convex and partly combinatorial optimization problem.

We tackle both optimizations by initially finding the optimal transmit power allo-

cation and then optimizing the blocklength allocation. The optimal power allocation is

found by maximizing the achievable sum rate, i.e. finding the capacity of our linear su-

perposition coding scheme (see Section 5.3). We then use this (asymptotically) optimal

power allocation (see Table 6.2) to find the optimal blocklength allocation. Generally,

this approach might not be equivalent to the global optimization since the asymptoti-

cally optimal power allocation is not necessarily optimal for finite blocklengths. This

is due to the fact that both constituent schemes do not show the same error decay
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R [bit] Pi P̃i
1 0.999 0.001
2 0.987 0.013
3 0.954 0.045
4 0.884 0.115
5 0.717 0.282
6 0.309 0.691

Table 6.2: Asymptotically optimal power allocation (parameters as in Figure 6.4 and
Figure 6.5). Details on how to determine this optimal power allocation can be found
in Section 5.3.

behaviour. The feedback coding scheme has a doubly exponentially decreasing error

probability, whereas the conventional coding scheme only decreases exponentially in

blocklength. Thus, one has to take this into account when optimizing the power alloca-

tion. Unfortunately, joint optimization of power allocation and blocklength allocation

seems intractable. Nevertheless, numerical results show that this consecutive optimi-

zation outperforms pure conventional or feedback coding in most regions.

6.3.4 Impact of Blocklength Allocation

In this section we start with (asymptotically) optimal power allocations (Table 6.2)

and assume a symmetric channel, i.e., identical channel gains. A similar analysis for

asymmetric channels is feasible but less intuitive.

It turns out that asymptotically optimal power allocation does not yield higher

achievable sum rates for moderate blocklength and moderate quantization rates. In

the example in Figure 6.4 with blocklength n = 210 = 1024 only feedback quantization

rates R > 5 result in better performance than coding without any feedback. Even in this

case the optimal region allocates no blocklength to the conventional coding component.

Note that n = NÑ . Thus, N = 1 if the optimum allocates the total blocklength

to the feedback based coding component, i.e., Ñ = n. For larger blocklength the

situation drastically changes. In the example in Figure 6.5 with blocklength n = 217 =

131072 superposition yields higher achievable sum rates for a wide region of blocklength

allocation. Indeed superposition is optimal, except for very low quantization rates, and

clearly outperforms pure conventional or feedback coding. We observe that the fraction

of blocklength allocated to each component is primarily determined by the channel itself

and only weakly depends on the actual power allocations, feedback rates or quantization

rates. The next section also confirms this insight.

6.3.5 Impact of Blocklength

Again, we start with (asymptotically) optimal power allocations and assume a sym-

metric channel. We observe that even if the asymptotically optimal power allocation
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splits the power to both constituent schemes, the blocklength might not be allocated

in the same proportions. There are essentially three different scenarios.

Very low feedback quantization rates

The quantization rate is too low to become beneficial at all. Thus, pure conventional

coding is optimal. In Figure 6.6 we can observe this behaviour e.g. for R = 1 (circle

marker).

Low feedback quantization rates

In this case only for very small blocklengths pure feedback coding is optimal and then

suddenly switches to pure conventional coding. Eventually for large blocklengths su-

perposition is optimal. In Figure 6.6 we can observe this behaviour e.g. for R = 2

(square marker).

Medium to high feedback quantization rates

Here, at first pure feedback coding is optimal and then directly switches to superposition

coding. In Figure 6.6 we can observe this behaviour e.g. for R = 3 (diamond marker).

Figure 6.6 (bottom) shows the optimal blocklength allocations. Note that in the

region of superposition the growth rates of blocklength are identical and independent

of the quantization rates and thus the curves highly overlap. As a consequence, Ñ/N

is almost independent of the quantization rates in this region.
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Figure 6.4: Achievable rates of conventional coding component (top, decreasing cur-
ves) and feedback coding component (top, increasing curves) and achievable sum rates
(bottom, maxima marked with ’x’) versus the blocklength allocation Ñ/N for n = 210.
All plots pertain to the symmetric MAC with PT = 2, h1 = h2 = 1, σ2 = 0.01,
ε ≤ 10−6, and power allocation according to Table 6.2. The dashed and dotted line
show the Polyanskiy limit Cε and C̃0, respectively.
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Ñ/N

R
i/
C
0
,
R̃

i/
C
0

10−5 100 105

10−5 100 105

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.5: Achievable rates of conventional coding component (top, decreasing cur-
ves) and feedback coding component (top, increasing curves) and achievable sum rates
(bottom, maxima marked with ’x’) versus the blocklength allocation Ñ/N for n = 217.
All plots pertain to the symmetric MAC with PT = 2, h1 = h2 = 1, σ2 = 0.01,
ε ≤ 10−6, and power allocation according to Table 6.2. The dashed and dotted line
show the Polyanskiy limit Cε and C̃0, respectively.
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Figure 6.6: Achievable rates (top) of conventional coding component (top and bottom,
dashed curves) and feedback coding component (top and bottom, dotted curves) and
achievable sum rates (top, solid curves) with optimal blocklength allocation versus the
blocklength n. Optimal blocklength allocations (bottom). All plots pertain to the
symmetric MAC with PT = 2, h1 = h2 = 1, σ2 = 0.01, ε ≤ 10−6, and power allocation
according to Table 6.2.
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6.4 Finite Blocklength Superposition Performance – Gaussian
Broadcast Channel

6.4.1 Error Probabilities

Due to MAC-BC duality (see Section 2.6.1) the same tradeoff as with MAC (see

Section 6.3.1) applies: By the monotonicity of P̃ei(Ñ) and Pei(N) and the relation

n = ÑN , decreasing the error probability of one component (via larger blocklength)

increases the error probability of the other component (due to shorter blocklength).

The block structure of the superposition coding couples the error probabilities; if

the conventional codeword is decoded incorrectly, it cannot be cancelled successively

from the superposition and therefore negatively affects the decoding of the feedback

based codeword.

Error probability of feedback based coding component

The error probability expression of the feedback based coding was bounded by Ozarow

[60] for the MAC with perfect feedback. Adapted to our BC superposition scheme with

quantized feedback we have

P̃ei(R̃i, Ñ) ≤ 2Q

{
σ2si

2
√
αi,2(σ2si + h2i P̃i(1− ρ∗

2))

× exp

[
Ñ

(
1

2
log

(
σ2si + h2i P̃i(1− ρ∗

2
)

σ2si

)
− R̃i

)]}
, (6.36)

i = 1, 2, with appropriately chosen αi,2; ρ
∗ is the optimal correlation that maximizes the

achievable sum rate which is found by solving (2.31); σ2s1 and σ2s2 are the (interference)

noise variances, which are given by

σ2s1 = σ21 + σ2q1 + h21P1Pe1,1 + h21P2Pe1,2 , (6.37)

σ2s2 = σ22 + σ2q2 + h22P1 + h22P2Pe2,2 , (6.38)

in this superposition configuration. As always, w.l.o.g. we assume that h21/σ
2
1 ≥ h22/σ22.

Pei,j are the error probabilities of the conventional coding scheme and the h2iPjPei,j
terms are due to the decoding errors of the conventional coding scheme that cause

additional interference. In contrast to the analogous MAC scheme (see Section 6.3)

we now have two receivers that cannot both fully decode the conventional component.

The stronger receiver 1 tries to decode the conventional components designated for

both receivers and hence suffers from the additional interference noises h21P1Pe1,1 and

h21P2Pe1,2 . The weaker receiver 2 does not even try to decode the conventional compo-

nent for receiver 1, that is, its additional interference noises equal h22P2 (equivalent to

Pe2,1 = 1) and h22P2Pe2,2 . Due to the block coding structure this additional interference
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is i.i.d. and can be modeled to be Gaussian if Ñ is not too small.

We choose αi,2 as in [60]

αi,2 =
σ2si + σ2v

h2i P̃i
, (6.39)

where σ2v is the variance of an initial common randomness v known to all users, chosen

such that the correlation remains constant over time,

ρ2 =
E{ε1,2,lε2,2,l}√

α1,2α2,2
=

σ2v√
(σ2s1 + σ2v)(σ

2
s2 + σ2v)

, ρ∗. (6.40)

Here, αi,j are the variances of the current message estimation errors εi,j,l,

εi,j,l = θ̃i,l − ˆ̃
θi,l

(
ỹ
((j−1)N+l)
i

)
. (6.41)

Note that αi,j is identical for all l because θ̃i,l, l = 1, . . . , N are i.i.d.. The initial

estimation errors simply are

ε1,2,l = θ̃1,l − ˆ̃
θ1,l(ỹ

(N+l)
1 ) = θ̃1,l −

ỹ1[l]√
h21P̃1

, (6.42)

ε2,2,l = θ̃2,l − ˆ̃
θ2,l(ỹ

(N+l)
2 ) = θ̃2,l −

ỹ2[N + l]√
h22P̃2

, (6.43)

since the first two timeslots (of the feedback scheme) are exclusively used to transmit

the messages from both transmitters alternately,

ỹ1[l] =

√
h21P̃1θ̃1,l + zs1 [l] + v, (6.44)

ỹ2[N + l] =

√
h22P̃2θ̃2,l + zs2 [N + l] + v. (6.45)

Using these relations we directly get the second equality in (6.40) and then solving

(6.40) for σ2v yields

σ2v =

√√√√− ρ∗2

ρ∗2 − 1

σ2s1 + σ2s2
2

+

√
ρ∗4

(ρ∗2 − 1)2
(σ2s1 + σ2s2)2

4
− ρ∗2

ρ∗2 − 1
σ2s1σ

2
s2 . (6.46)

This rather complicated expression drastically simplifies for the symmetric case h21/σ
2
1 =

h22/σ
2
2 in the low error probability region, where the approximations σ2s1 ≈ σ21 +σ2q1 and

σ2s2 ≈ σ22 + σ2q2 hold, to the same expression as for the MAC (6.26),

σ2v = σ2s
ρ∗

1− ρ∗ . (6.47)
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Then (6.39) simplifies to

αi,2 =
σ2s

h2i P̃i(1− ρ∗)
. (6.48)

Error probability of conventional coding component

The error probability expression of the conventional coding scheme can be obtained by

adapting the results for the AWGN channel in the finite blocklength regime obtained

by Polyanskiy in [66, Theorem 54] (see Section 2.5.2). In our superposition scenario we

have

Pei(Ri, N) ≤ 2Q

{
1√
Vi

[√
N(Ci −Ri) +

1√
N

1

2
logN

]}
, (6.49)

i = 1, 2, with modified channel dispersions

V1 =
h21P1

2

h21P1 + 2(σ21 + h21P̃1 + h21P̃2)

(h21P1 + σ21 + h21P̃1 + h21P̃2)2
log2 e, (6.50)

V2 =
h22P2

2

h22P2 + 2(σ22 + h22P̃1 + h22P̃2 + h22P1)

(h22P2 + σ22 + h22P̃1 + h22P̃2 + h22P1)2
log2 e. (6.51)

Note that here the conventional coding scheme is affected by the interference of the feed-

back based coding and results in reduced capacities C1 = C
(
h21P1/(σ

2
1 + h21P̃1 + h21P̃2)

)
and C2 = C

(
h22P2/(σ

2
2 + h22P̃1 + h22P̃2 + h22P1)

)
. This approximation holds for suffi-

ciently low error probability Pe2 , where we can neglect the potential error propagation

due to successive decoding at the stronger receiver 1.

Error probability approximations

For the remainder of Section 6.4 we work with the approximations σ2s1 ≈ σ21 + σ2q1 and

σ2s2 ≈ σ22 +σ2q2 , i.e., Pei � (σ2i +σ2qi)/h
2
iPi. In the regime of interest this approximation

is sufficiently accurate. This simplifies the numerical evaluation since it allows us to

independently analyze the practically decoupled error probability expressions.

6.4.2 Achievable Rates versus Blocklength and Error Probability

Like in the previous sections, instead of investigating the error probability as a function

of the blocklength we are now interested in the achievable rates versus blocklength and

error probability. This is a more practical approach, since usually applications require

a specific rate and maximal error probability.
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R [bit] Pi P̃i
1 1 0
2 1 0
3 1 0
4 1 0
5 0.717 0.282
6 0.309 0.691

Table 6.3: Asymptotically optimal power allocation (parameters as in Figure 6.7 and
Figure 6.8). Details on how to determine this optimal power allocation can be found
in Section 5.5.

The achievable rate of the feedback based code is found by solving (6.36) for R̃i,

R̃i(P̃ei , Ñ) ≤ 1

2
log

(
σ2si + h2i P̃i(1− ρ∗

2
)

σ2si

)
−

1

Ñ
log

[
Q−1

{
P̃ei
2

}
2
√
αi,2(σ

2
si + h2i P̃i(1− ρ∗

2
))

σ2si

]
, (6.52)

i = 1, 2, and the achievable rate of the conventional code is found by solving (6.49) for

Ri, i = 1, 2,

Ri(Pei , N) ≤ Ci −
1√
N

√
ViQ

−1
{
Pei
2

}
+

1

2
log

N
√
N. (6.53)

6.4.3 Optimization Problem

Like for the MAC, optimization in the context of finite blocklength means finding

the optimum subblock splitting (N, Ñ) that maximizes the achievable rates under the

constraint n = ÑN for prescribed blocklength n and error probability.

Again, we want to find the blocklength allocation that maximizes the achievable

sum rate

Rs =
2∑
i=1

(
Ri(Pei , N) + R̃i(P̃ei , Ñ)

)
, (6.54)

while keeping the error probabilities below ε. This yields the structural identical
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(cf. (6.35)) optimization problem

maximize
N,Ñ,p

2∑
i=1

(
Ri(Pei , N) + R̃i(P̃ei , Ñ)

)
subject to Pei ≤ ε, i = 1, 2

P̃ei ≤ ε, i = 1, 2

ÑN = n,

1ᵀp ≤ PT ,

(6.55)

with R̃i(P̃ei , Ñ) and Ri(Pei , N) are now given by (6.52) and (6.53), respectively.

Like for the MAC, we tackle the optimization by initially finding the optimal trans-

mit power allocation and then optimizing the blocklength allocation. The optimal

power allocation is found by maximizing the achievable sum rate, i.e. finding the ca-

pacity of our linear superposition coding scheme (see Section 5.5). We then use this

(asymptotically) optimal power allocation (see Table 6.3) to find the optimal block-

length allocation. Generally, this approach might not be equivalent to the global op-

timization (see Section 6.3.3). Nevertheless, as for the MAC numerical results again

show that this consecutive optimization outperforms pure conventional or feedback co-

ding in many regions. However, following sections show the negative impact of the

symmetrization (see Section 5.6.3) that is needed for our BC optimization strategy.

6.4.4 Impact of Blocklength Allocation

In this section we start with (asymptotically) optimal power allocations (Table 6.3)

and assume a symmetric channel, i.e., identical channel gains. A similar analysis for

asymmetric channels is feasible but less intuitive.

It turns out that asymptotically optimal power allocation does not yield higher

achievable sum rates for moderate blocklength and moderate quantization rates. In

the example in Figure 6.7 with blocklength n = 210 = 1024 only feedback quantization

rates R > 5 result in better performance than coding without any feedback. Even

in this case the optimal region allocates no blocklength to the conventional coding

component (N = 1 and hence Ñ = n). For larger blocklength the situation changes.

In the example in Figure 6.8 with blocklength n = 217 = 131072 superposition is

optimal and yields higher achievable sum rates for R ≥ 5 where it clearly outperforms

pure conventional or feedback coding. However for quantization rates R < 5 it is

optimal to only use the conventional coding component. We observe that the fraction

of blocklength allocated to each component is primarily determined by the channel itself

and only weakly depends on the actual power allocations, feedback rates or quantization

rates. The next section also confirms this insight.
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6.4.5 Impact of Blocklength

Again, we start with (asymptotically) optimal power allocations and assume a sym-

metric channel. We observe that even if the asymptotically optimal power allocation

splits the power to both constituent schemes, the blocklength might not be allocated

in the same proportions. There are essentially two different scenarios.

Low to medium feedback quantization rates

The quantization rate is too low to become beneficial at all. Thus, pure conventional

coding is optimal. In Figure 6.9 we can observe this behaviour, e.g., for R = 1, . . . , 4

(overlying markers).

High feedback quantization rates

Here, for small n pure feedback coding is optimal and then switches to superposition

coding. In Figure 6.9 we can observe this behaviour, e.g., for R = 5 (downward-pointing

triangle marker) and R = 6 (diamond marker).

Figure 6.9 (bottom) shows the optimal blocklength allocations. Note that in the

region of superposition the growth rates of blocklength are identical and independent

of the quantization rates and thus the curves highly overlap. As a consequence, Ñ/N

is almost independent of the quantization rates in this region.
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Figure 6.7: Achievable rates of conventional coding component (top, decreasing cur-
ves) and feedback coding component (top, increasing curves) and achievable sum rates
(bottom, maxima marked with ’x’) versus the blocklength allocation Ñ/N for n = 210.
All plots pertain to the symmetric BC with PT = 2, h1 = h2 = 1, σ21 = σ22 = 0.01,
ε ≤ 10−6, and power allocation according to Table 6.3. The dashed and dotted line
show the Polyanskiy limit Cε and C̃0, respectively.
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Figure 6.8: Achievable rates of conventional coding component (top, decreasing cur-
ves) and feedback coding component (top, increasing curves) and achievable sum rates
(bottom, maxima marked with ’x’) versus the blocklength allocation Ñ/N for n = 217.
All plots pertain to the symmetric BC with PT = 2, h1 = h2 = 1, σ21 = σ22 = 0.01,
ε ≤ 10−6, and power allocation according to Table 6.3. The dashed and dotted line
show the Polyanskiy limit Cε and C̃0, respectively.
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Figure 6.9: Achievable rates (top) of conventional coding component (top and bottom,
dashed curves) and feedback coding component (top and bottom, dotted curves) and
achievable sum rates (top, solid curves) with optimal blocklength allocation versus the
blocklength n. Optimal blocklength allocations (bottom). All plots pertain to the
symmetric BC with PT = 2, h1 = h2 = 1, σ21 = σ22 = 0.01, ε ≤ 10−6, and power
allocation according to Table 6.3.
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6.5 Discussion

Shifting the focus from the asymptotic regime to finite blocklength introduced several

practical problems. The striking problem is that the superimposed components cannot

be decoded perfectly anymore. Instead decoding errors may occur, which then interfere

with the decoding of the other components. Due to the superposition arrangement in

the AWGN channel scenario in Section 6.2 decoding errors of the conventional coding

component negatively affect the decoding of the feedback coding component. This is

caused by the successive cancellation decoding procedure. In addition to the coupling

between the two components, in the MAC scenario in Section 6.3 and in the BC scenario

in Section 6.4 the error probabilities of the conventional codings of the two transmitters

or receivers, respectively, are coupled them self. In the MAC scenario the single receiver

has to decode the conventionally encoded messages from both transmitters in an onion

peeling approach; if the decoding of the first message fails, its effect cannot be cancelled

and thus negatively affects the decoding of the other message. In the BC scenario there

is a similar behaviour. Although the weaker receiver treats the component for the

stronger receiver as noise, the stronger receiver has to decode both messages just like

the single receiver in the MAC scenario has to.

However, in many practical scenarios the error probabilities are sufficiently small so

that their additional interference is masked by the channel noise. In this case, we can

neglect the coupling of the error probabilities and analyze them separately. It is clear

that there is a tradeoff in the error probabilities of the conventional encoded component

and the feedback based component that can be controlled by the blocklength allocation

and power allocation. Therefore, in addition to the optimization of the power allocation

in the asymptotic regime, here we have the blocklength allocation as an additional

optimization parameter. Since the optimal power allocation is itself a DC problem, the

additional combinatorial blocklength optimization renders the resulting problem hard

to solve.

For perfect feedback the solution would be trivial. Not only does the error proba-

bility of the feedback component decrease faster (doubly exponential versus exponen-

tially), for the MAC and BC we even have a higher channel capacity. It would thus

be optimal to allocate all available transmit power to the feedback component and as

a consequence evidently all blocklength is allocated to it as well. If the feedback is

quantized the achievable rate of the feedback component is decreased. It thus might

be optimal to allocate only a fraction of the transmit power to the feedback coding. As

a consequence, the non-trivial optimal blocklength allocation has to be found as well.

Due to the rate limitation on the common feedback link this superposition was useful

in the asymptotic regime and we showed that this holds for finite blocklengths as well.

Thus, using the asymptotically optimal power allocations on the Gaussian MAC

and BC in the asymptotic regime from Chapter 5 we showed that the optimization of
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blocklength allocation generally still yields larger achievable sum rates than any of the

two constituent schemes alone. Finally, we numerically assessed the impact of the size

of the blocklength on the optimality of the superposition.



7
Conclusion and Outlook

This thesis studies point-to-point and multi-terminal communication with a quanti-

zed feedback link that provides the transmitters with additional side-information. We

abstractly model the quantizer via the information bottleneck method.

Since we study communication over Gaussian channels, we specialized the channel

output compression to form a Gaussian information bottleneck. We explicitly formula-

ted the information-rate function for Gaussian MIMO channels, which is a key quantity

for characterizing the quantization as a function of the quantization rate. Using the

findings for the Gaussian MIMO channel we specialized the results for the later stu-

died MAC. Subsequently, we found an equivalent Gaussian channel that incorporates

the Gaussian quantization noise, that is, we have an additional noise term where the

variance depends on the quantization rate. This quantity was later used to explicitly

parametrize the performance of the proposed coding schemes on the quantization rate.

We then extended the formulation of the information-rate function to the information-

rate-power function. For the information-rate function the power allocation is a fixed

precondition. However, in this thesis the goal was not to compress a given signal (and

thus fixed source) as efficiently as possible but to compress a signal with given avai-

lable transmit power as efficiently as possible. Thus, we formulated the optimization

problem that incorporates the additional degree of freedom which finds the maximal

mutual information subject to constraints on the quantization rate and available trans-

mit power. We showed that this problem is a DC program and efficiently solved it

using the convex-concave procedure.

Based on the necessity of Gaussian input distributions if the quantizer is model-

led as a Gaussian information bottleneck we described an discrete source model that

asymptotically converges to a Gaussian distribution.

145
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We then explicitly formulated the AWGN channel, MAC, and BC algebraic transcei-

ver schemes and performed the transition to our proposed superposition coding scheme.

We introduced a superposition coding scheme that superimposes a conventional coding

component that completely ignores the feedback with a feedback coding component in

a block structure. This block structure was then used to be able to first decode the

conventional coding component while treating the feedback component as noise and

then subtract its effect. The feedback coding component could thus be decoded using

the remaining non-interfered signal.

The GIB-modelled quantization noise was assumed to be known to the receiver,

which itself performed the quantization. With this observation we could reduce the

feedback scheme to equivalent channels with perfect feedback but additional channel

noise due to the quantization. The knowledge of this extra noise can then be exploited

at the receiver.

We performed an extensive study on the performance of the proposed superposition

coding for various scenarios: for the AWGN channel, for the symmetric Gaussian MAC,

for the asymmetric Gaussian MAC, for the symmetric Gaussian BC, and for the asym-

metric Gaussian BC. To this end we formulated the achievable (sum) rate expressions

as optimization problems. We showed how to split these optimization problems into

concave and convex components.

Then, we used these splittings to shape solvable DC programs and adapted the

convex-concave procedure to efficiently solve the optimization problems. The solution

includes finding the optimal power allocations to the conventional and feedback coding

components.

We confirmed that for the AWGN channel superposition is suboptimal, since in this

scenario the channel capacity is unchanged even for perfect feedback. For the MAC

and BC, feedback is known to increase the channel capacity and so do the proposed

superposition schemes. To this end, we studied the parameter regions where true super-

position is optimal. We found that there is a non-trivial region: for fixed quantization

rates and increasing transmit powers it is optimum to allocate all transmit power to

the feedback-coding scheme and above a non-trivial power threshold superposition is

optimal.

However, we found that the superposition gain decreases for increasing asymmetry

of the channels. MAC and BC qualitatively show the same behaviour, but due to the

performed symmetrization we found that the gains for the BC are generally smaller

than for the MAC.

Based on recent findings concerning performance in the finite-blocklength regime,

we extended our proposed superposition coding scheme for finite blocklengths. We

derived expressions for the error probabilities of the feedback based coding components
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and conventional coding components for the AWGN channel, MAC, and BC. We showed

that in contrast to the asymptotic regime, the error probabilities are coupled in the

finite-blocklength regime; changing the error probability of one component affects the

error probability of the other component. We proposed approximations that practically

decouple the error probabilities.

We showed that maximizing the achievable sum rates result in partly combinatorial

optimization problems since we have to find the discrete optimal blocklength allocations

jointly with the optimal power allocations. We approximately solved this hard problem

via asymptotically optimal power allocations and then used these power allocations

as a basis of the purely combinatorial optimization problem of finding the optimal

blocklength allocation.

Finally, we numerically assessed the performance as functions of the blocklength

allocation and as functions of the absolute blocklength. We found that even this ap-

proximate optimization procedures yield performance gains over pure conventional or

pure feedback coding in many parameter regions.

7.1 Outlook

We next summarize the open problems and give an outlook for possible future research.

• In Chapter 3 we studied the Gaussian Information Bottleneck (GIB) for Gaus-

sian MIMO channels. Although it is clear that the GIB finds the optimal rate-

information tradeoff for a Gaussian channel and the classical water filling power

allocation maximizes the capacity of a Gaussian vector channel and that the joint

optimization finds the optimal rate-power-information tradeoff, this procedure is

still not equivalent to finding the channel capacity of the Gaussian channel under

channel output quantization.

For finding the capacity one has to optimize over all input distributions as well;

we, however, have fixed the input distribution to be jointly Gaussian, since this

distribution maximizes the capacity of the unquantized channel and allows an

analysis using the GIB.

Determining the channel capacity under general output compression is thus still

an open problem.

• In Chapter 4 we proposed a superposition coding scheme that superimposes a

conventional encoding component that completely ignores the feedback and a

feedback based encoding component in a block structure. Throughout this thesis

we assume that the conventional component is decoded first (with the feedback

component as additional interference noise) and then cancelled; in a second step

the feedback component can be decoded without interference.
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Other schemes [46, 47, 60, 83] use a similar successive decoding (but without the

block structure) with interchanged decoding order in a different setting. We justi-

fied our choice of decoding order by the fact that the channel capacity is generally

increased if (quantized) feedback is available compared to the non-feedback sce-

nario. Hence, allowing the feedback component to transmit without interference

results in higher achievable rates.

However, it still remains open to show in what regions of available transmit power,

quantization rate, and blocklength this coding scheme and decoding order is in

fact better.

• In contrast to the asymmetric MAC in Section 5.4, where the single receiver has

to be able to decode the complete superposition signal, in the BC scenario in

Section 5.6 the weaker receiver is only able to decode its designated conventional

coding component. The stronger receiver is still able to decode both components.

This asymmetry rendered the resulting problem hard to solve. Hence, we propo-

sed a generally suboptimal procedure to partly symmetrize the problem to be able

to solve it as a DC program. However, in principle the original fully asymmetric

problem could be split into a concave and convex component as well.

It remains open to find such a splitting and solve the original problem.

• In Chapter 6 we studied the performance of the proposed scheme in the finite

blocklength region. Here the superposition of the different encodings causes a

coupling of the error probabilities; if one component is decoded incorrectly it

cannot be cancelled and thus interferes with the remaining components. This

coupling renders the joint power and blocklength allocation problem hard to solve.

Therefore, we studied only the practically interesting region where the interference

due to decoding errors is small compared to the channel noise, which effectively

decouples the error probabilities.

Although practically not that important it might be interesting to solve the op-

timization problem for coupled error probabilities.

• In Chapter 6 the joint power and blocklength allocation problem is a partly

combinatorial optimization problem since we have to find the discrete optimal

blocklength allocation jointly with the optimal power allocation. In contrast to

the asymptotic regime in Chapter 5 where the power allocation problem could be

solved as a DC program this joint optimization problem is hard to solve. Instead

we followed an iterative approach where we first (asymptotically) optimized the

power allocation and then used this power allocation as a basis for the now pure

combinatorial optimization problem.

However, especially for small blocklength this approach is suboptimal and it would

be interesting to directly solve the joint optimization problem.
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• Throughout this thesis the basis for our feedback coding scheme was the Schalkwjik-

Kailath scheme [69] for the AWGN channel and the Ozarow scheme [60] for the

MAC and the BC. Although both schemes achieve the channel capacity (for the

BC the linear-feedback capacity) they are in general not optimal for the finite

blocklength regime considered in Chapter 6.

One could explicitly construct algebraic coding structures that perform better for

the designed blocklength in our superposition scenario.
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