FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Peer Model Based and Actor Model Based
Frameworks for Search Algorithms in Unstructured
Peer-to-Peer Networks

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering/Internet Computing
eingereicht von

Lukas Fleischhacker
Matrikelnummer 00726030

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kihn
Co-Betreuung: Dr.techn.Mag. Dipl.Math Vesna Sesum-Cavié

Wien, 05.01.2019

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Peer Model Based and Actor Model Based
Frameworks for Search Algorithms in Unstructured
Peer-to-Peer Networks

MASTER’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering/Internet Computing
by

Lukas Fleischhacker
Registration Number 00726030

to the Faculty of Informatics
at the Vienna University of Technology

Supervisor: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kihn
Co-Supervisor:Dr.techn.Mag. Dipl.Math Vesna Se$um-Cavi¢

Vienna, 05.01.2019

(Signature of Author) (Signature of Supervisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Lukas Fleischhacker
Pazmanitengasse 28, 1020 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Danksagung

Als erstes mochte ich mich bei meinen Betreuerinnen Eva Kiihn und Vesna Sesum-Cavic fiir ihre
Unterstiitzung bedanken und fiir die Moglichkeit, an diesem interessanten Thema zu arbeiten.

AuBerdem danke ich Stephan Cejka fiir seine Hilfe beim Verstehen der Peer Model APL.

Ein besonderer Dank gilt auch meinen Freunden fiir ihr Verstindnis und vor allem fiir die
wertvollen Ablenkungen in dieser anstrengenden Zeit. Weiters danke ich meinen ehemaligen
Arbeitskollegen Clemens und Oliver, die es mir ermoglicht haben, Beruf und Studium erfolgre-
ich zu vereinigen und mir immer mit wertvollem Rat zur Seite gestanden sind.

Zu guter Letzt mochte ich mich bei meiner gesamten Familie bedanken. Besonders bei meinen
Eltern fiir ihr unermiidliches Verstindnis und Vertrauen in mich. Danke, dass ihr immer fiir
mich da seid und ich mich immer auf eure Hilfe und Unterstiitzung verlassen kann, besonders
in schwierigen Zeiten! Ohne euch wire dieses Studium nicht moglich gewesen!

iii

Abstract

Through its ability to share various resources, P2P networks have been in the focus of research
for the last decades. Especially the utilization of search algorithms to retrieve the distributed
resources in unstructured P2P networks is of major importance, since no global view of the net-
work exists.

This thesis addresses the need to evaluate and compare search algorithms for unstructured P2P
networks with each other by using standard metrics. It provides two frameworks for systematic
benchmarking and comparison of search algorithms in unstructured P2P networks. The first
framework is implemented based on the Actor Model and the second one based on the Peer
Model (a coordination based programming model). Both frameworks support easy exchange-
ability of search algorithms.

The second goal of this thesis is to create a fully distributed search algorithm for unstructured
P2P networks based on the collective feeding of bark beetles. Additionally, an already existing
algorithm from a different domain based on the Physarum Polycephalum slime mold is adapted
to fully distributed search for unstructured P2P networks.

To achieve these goals the following methodological approach is applied. After an extensive
literature research, the frameworks are first designed and afterwards implemented. As the next
step, the two new search algorithms are developed and implemented into the frameworks. As
the final step, both algorithms are benchmarked, evaluated and compared to four existing search
algorithms: Gnutella Flooding, k-Walker, AntNet for P2P and SMP2P.

Overall, Bark Beetle and the adapted Physarum Polycephalum algorithm show very good scal-
ability regarding growing network size and load. In terms of absolute time, both algorithms
show very promising results with only k-Walker having slightly better results for networks with
high replication. In terms of success rate, Bark Beetle shows an almost equal good success rate
as Gnutella Flooding, without having the same major drawbacks. Although the success rate
for the Physarum Polycephalum adaption is very low for networks with small replication, it is
significantly better for networks with high replication.

Kurzfassung

Aufgrund der Fahigkeit verschiedene Ressourcen zu teilen, sind P2P Netzwerke seit Jahrzehn-
ten im Fokus der Forschung. Vor allem die Umsetzung von Suchalgorithmen, um verteilte Res-
sourcen in unstrukturierten P2P Netzwerken zu finden, ist von spezieller Wichtigkeit, da keine
zentrale Sicht auf das Netzwerk existiert.

Diese Arbeit geht der Notwendigkeit zur Evaluierung und dem Vergleichen von Suchalgorith-
men fiir unstrukturierte P2P Netzwerke, unter der Verwendung von Standardmetriken, nach. Sie
liefert zwei Umsetzungen eines Frameworks fiir systematische Benchmark-Tests von Suchalgo-
rithmen in unstrukturierten P2P Netzwerken und ermoglicht deren Vergleich. Das Framework
wird dabei einmal mit dem Actor Model und einmal mit dem auf koordinationsbasiertem Pro-
grammiermodel Peer Model umgesetzt. Beide Umsetzungen unterstiitzen dabei die leichte Aus-
tauschbarkeit von Suchalgorithmen.

Das zweite Ziel dieser Arbeit ist das Erstellen eines voll verteilten Suchalgorithmus fiir unstruk-
turierte P2P Netzwerke, basierend auf dem kollektiven Futtersuchverhalten von Borkenkifern.
Des Weiteren wird ein bereits bestehender Algorithmus basierend auf dem Physarum Polyce-
phalum Schleimpilz an die Bediirfnisse von voll verteilter Suche in unstrukturierten P2P Netz-
werken angepasst.

Um diese Ziele zu erreichen wird folgende methodische Vorgehensweise angewendet. Nach
ausfiihrlicher Literaturrecherche werden die Frameworks zunichst entworfen und anschlieend
umgesetzt. Als nichstes werden die beiden neuen Suchalgorithmen entwickelt und in die Fra-
meworks eingebunden. Abschliefend werden beide Algorithmen kompetitiv gemessen, evaluiert
und mit vier bekannten Suchalgorithmen verglichen: Gnutella Flooding, k-Walker, AntNet fiir
P2P und SMP2P.

Bark Beetle und der angepasste Physarum Polycephalum Algorithmus zeigen beide insgesamt
sehr gute Ergebnisse hinsichtlich der Skalierbarkeit in Bezug auf Netzwerkgrofe und -last. Hin-
sichtlich absoluter Zeit zeigen beide Algorithmen sehr vielversprechende Ergebnisse, wobei
lediglich k-Walker etwas bessere Ergebnisse bei Netzwerken mit vielen Replikaten erzielt. In
puncto Erfolgsrate zeigt Bark Beetle beinahe so gute Ergebnisse wie Gnutella Flooding, ohne
dessen wesentliche Mangel aufzuweisen. Obwohl die Erfolgsrate fiir die Physarum Polycepha-
lum Anpassung sehr niedrig fiir Netzwerke mit wenig Replikaten ist, wird diese signifikant
besser fiir Netzwerke mit vielen Replikaten.

vii

Contents

(I__Introduction| 1
[I.L1 Problem Statementl 1
2 Ammofthe Workl 2
[1.3 Methodological Approach| 2
(.4 Structure of the Master’s Thests| 3

[2° Technical Background |

[_and Related Work 5
2.1 Technical Background|

22 RelatedWorkl 11

3 Alg 15
3.1 P2P Resource Definition] oo 15
[3.2 Physarum Polycephalum Slime Mold for unstructured P2P search| 17
3.3 Bark Beetle for unstructured P2P searchl 19

4 Framework Design| 27
4.1 Designgoals|. 27
4.2 P2P Network Generation| 28
4.3 Resource Distribution] oL oo 33
4.4 SearchRequest| 35
BS ResetTestEnvironmentl L. 37

|5 Implementation Details| 41
[5.1 ‘Test Environment Setup|. 41
52 P2P Network Generationl 42
B3 Resource Distribution] 45
5.4 SearchRequest| 47
5.5 ResetTest Environment 49

6 Evaluation| 51
|6.1 Simulation Methodology| 51
[6.2 Sensitivity Analysis| 53
6.3 RawResultDatal 57

iX

6.4 Competitive Analysis| 64

6.5 Statistical Analysis| L 73
[6.6 Scalability Analysis| 92
Futur rk an nclusi 97
71 Future Workl e 97
[/2 Conclusion| e 98

graphyi 101

List of Listings

[5.1 Signature of the method runTest in the TestRunnery 42
[5.2 Signature of the method startPeers in the TestRunner] 42
[5.3 Signature of the method startPeers in the ClientService| 44
15.4 Signature of the method sendResources 1n the TestRunnerf. 45
[5.5 Signature of the method addResource in the ClhientService] 47
[5.6 Signature of the method sendQueries 1n the TestRunner) 47
15.7 Signature of the method sendSearchRequest in the ClientService| 48
[5.8 Signature of the method stopPeers in the TestRunner| 49
15.9 Signature of the method stopPeers in the ClientService] 49

X1

List of Algorithms

[3.1 Movementofagent|. 20
[3.2 Flooding with PheromoneMessage|. 23
3.3 Movementofbarkbeetlef. o oo 24

Xiii

List of Figures

[2.1 Graphical notatton of apeer [12]]. 7
[3.T Radial arrangement of veins in the Physarum Polycephalum slime mold [9]] 17
[3.2 Lifecycle of bark beetles [22]| o . 21
3.3 UML diagram of the BarkBeetleobject) 21
[3.4 UML diagram of the PheromoneMessage object| 22
3.5 UML diagram of the Resource object| 22
4.1 P2P Network generation| 29
42 AkkaPeern 30
B3 ClientService Structure] Lo 31
44 Client Structurel e 31
4.5 AddedClientWiring of the ClientService| 31
4.6 CreatingPeersWiringoftheClientl 32
|4.7 PeersCreatedWiring of the ClhientService| 32
4.8 AddNeighborsWiring of the Peer Nodes| 33
4.9 Resource Distribution] 34
|4.10 AddResourceWiring of the Peer Nodes|. 35
[4.11 Search Request| e 36
|4.12 AddSearchRequestWiring of the Peer Nodes|. 37
4.13 Communication of the Peer Nodes| 37
|4.14 ‘TerminatedSearchesWiring of the ClientService| 38
[4.15 Destroy P2Pnetwork| oo 38
|4.16 StoppingPeersWiringof the Client) 39
|4.17 PeersStoppedWiring of the ClhientServicel 39
[5.1 UML diagram of the StartPeersRequest message| 43
[5.2 UML diagram of the CreatePeerRequest message| 43
[5.3 UML diagram of the AddNeighborsMessage message|. 44
5.4 UML diagram of SimpleNode| 45
5.5 UML diagram of Resource| 46
5.6 UML diagram of Stmilarity|. 46
5.7 UML diagram of the AddResourceMessage message] 47
[5.8 UML diagram of the SearchRequest message| 48

XV

5.9 UML diagram of the SearchTerminateMessage message] 48
|6.1 Peer Model absolute time comparison for network sizes 50, 100, 200} 67
6.2 Akka absolute time comparison for network sizes 50, 100, 200{ 68
|6.3 Peer Model average messages per node comparison for network sizes 50, 100, 200 69
[6.4 Akka average messages per node comparison for network sizes 50, 100,200 70
|6.5 Peer Model success rate comparison for network sizes 50, 100, 200]. 71
|6.6 Akka success rate comparison for network sizes 50, 100,200 72
[6.7 Scaling Behavior [19]] 92

XVl

List of Tables

[3.1 Configurable parameters in the beetle initialization| 21
[3.2 Configurable parameters in the beetle movement|. 24
|6.1 Gnutella Flooding parameter values for the Sensitivity Analysis| 53
|6.2 Gnutella Flooding Sensitivity Analysisresults| 53
|6.3 k-Walker parameter settings for the Sensitivity Analysis|. 54
|6.4 k-Walker Sensitivity Analysisresults|. 54
[6.5 AntNet for P2P parameter values for the Sensitivity Analysis| 54
|6.6 AntNet for P2P Sensitivity Analysisresults| 55
6.7 SMP2P parameter values used for the competitive benchmarks| 55
|6.8 Physarum Polycephalum Slime Mold parameter values for the Sensitivity Analysis| 55
|6.9 Physarum Polycephalum Slime Mold Sensitivity Analysis results|. 56
|6.10 Bark Beetle parameter values for the Sensitivity Analysis| 56
|6.11 Bark Beetle Sensitivity Analysisresults| 56
58
58
59
59
60
60
61
61
62
62
63
63
|6.24 Physarum Polycephalum ANOVA results for the Peer Model. (part 1)] 76
[6.25 Physarum Polycephalum ANOVA results for the Peer Model. (part2)] 77
|6.26 Physarum Polycephalum ANOVA results for the Peer Model. (part3)] 78
|6.27 Physarum Polycephalum ANOVA results for the Peer Model. (part4)] 79
|6.28 Bark Beetle ANOVA results for the Peer Model. (part I)[. 80
[6.29 Bark Beetle ANOVA results for the Peer Model. (part2)] 81
|6.30 Bark Beetle ANOVA results for the Peer Model. (part3)[. 82
|6.31 Bark Beetle ANOVA results for the Peer Model. (part4) 83

|6.32 Physarum Polycephalum ANOVA results for Akka. (part1)|. 84
|6.33 Physarum Polycephalum ANOVA results for Akka. (part2). 85
|6.34 Physarum Polycephalum ANOVA results for Akka. (part3). 86
16.35 Physarum Polycephalum ANOVA results for Akka (part4) 87
|6.36 Bark Beetle ANOVA results for Akka (part 1)| 88
|6.37 Bark Beetle ANOVA results for Akka. (part2)|. 89
|6.38 Bark Beetle ANOVA results for Akka. (part3)]. 90
[6.39 Bark Beetle ANOVA results for Akka. (part4)]. 91
|6.40 Peer Model scalability for k=2 and k=4, 1 replica] 93
[6.41 Peer Model scalability for k=2 and k=4, 16% replication| 94
|6.42 Akka scalability for k=2 and k=4, Treplical 94
|6.43 Akka scalability for k=2 and k=4, 16% replication|. 94

XViil

List of Abbreviations

APP Application Peer

ASCII American Standard Code for Information Interchange
cAMP cyclic Adenosine Monophophate
COP Coordination Peer
EC........... Entry Collection

FID Flow Identifier

GUID Globally Unique Identifier
ID........... Identifier

P Internet Protocol

P2P Peer-to-Peer

PIC Peer Input Container

POC Peer Output Container

RTP Runtime Peer

SPA Space Peer

TTL Time-to-live

URI.......... Uniform Resource Identifier

XiX

CHAPTER

Introduction

In this chapter, the problem statement and motivation for the thesis is discussed. Additionally,
the aim of the work, the methodological approach to achieve these goals and an overview of the
structure of this thesis is provided.

1.1 Problem Statement

A P2P network is a disruptive technology for large scale distributed networking. Due to its abil-
ity to share various resources like computer resources, files and network bandwidth without help
of any central coordination, it has been in the focus of research for the last decades. One of the
main challenges in P2P networks is still the search for resources, since no global view of the
network exists and no address mapping is maintained. Thus finding specific resources is neither
guaranteed nor bound to a specific upper limit of hops. To address this problem, different non-
intelligent and intelligent search algorithms have been proposed. In contrast to non-intelligent
search algorithms, intelligent search algorithms learn through the usage of intelligent agents in-
teracting with the environments [[15]] [/13]].

Search algorithms need to be evaluated and compared with each other by using standard metrics.
Usually algorithms which find more resources in a shorter time by keeping the message load low
are rewarded. A popular approach to perform these evaluations is the practice of benchmarking,
which ensures the comparability of results in a systematic manner [13]].

Therefore, this thesis offers a generic framework that allows plugging in of different search al-
gorithms for unstructured P2P networks. Furthermore, these algorithms will be benchmarked by
the provided framework.

Additionally, a new intelligent search algorithm based on the behavior of bark beetles in nature
[22] will be created and a comparative analysis to existing fully distributed search algorithms
will be performed.

1.2

Aim of the Work

The aim of the thesis is to achieve two goals:

1.3

* Frameworks: Two frameworks should be implemented for benchmarking and compar-

ison of search algorithms for unstructured P2P networks. The first framework should
be implemented based on the Actor Model [16] and the second one based on the Peer
Model [12]. Additionally, it should be possible to plug different search algorithms into
the frameworks.

Bark Beetles and Physarum Polycephalum algorithm: A new algorithm for distributed
search in P2P networks based on the bark beetle’s collective feeding [22] should be cre-
ated. Furthermore, the already existing Physarum Polycephalum algorithm [9] should
be adapted for distributed search in P2P. Finally, the created benchmarking frameworks
should be used to evaluate the created search algorithms and to compare them to four
existing intelligent and non-intelligent search algorithms.

Methodological Approach

To achieve the defined goals of the thesis, the following approach will be applied:

1.

Literature Research: The first step is research of literature regarding the technical back-
ground and related work of the thesis.

Framework Architecture: In the next step, the architecture of the frameworks will be
designed.

. Framework Implementation: Based on the framework architecture, two frameworks

will be implemented using the Java implementation of Akka [/1]] for the first and the Java
implementation of the Peer Model [12] for the second one.

. Search Algorithm Development and Adaption: As a next step, a new search algorithm

for P2P called bark beetles for P2P will be developed and the Physarum Polycephalum
slime mold algorithm [9] will be adapted for P2P search. Additionally, both algorithms
will be implemented into the benchmarking frameworks alongside AntNet [25], SMP2P
[27], Gnutella Flooding [21]] and k-Random Walker [20].

. Benchmarking and Evaluation: As the final step, the best parameters for each imple-

mented algorithm will be determined following a competitive benchmarking using both
frameworks. Based on the results, the performance of the algorithms within and between
the two frameworks is evaluated.

1.4 Structure of the Master’s Thesis

The structure of this master is as follows:

Chapter 2 provides the technical background of the thesis and discusses the related work. Chap-
ter 3 contains the description of the contributed bark beetles algorithm with detailed imple-
mentation in a pseudo code form. Additionally, the Physarum Polycephalum algorithm with
its adaption in the context of P2P search is discussed. In Chapter 4 a detailed description of
the design and architecture of the benchmarking frameworks is presented. Chapter 5 provides
the implementation details of the Akka and Peer Model benchmarking frameworks. Chapter
6 defines the benchmark methodology and provides a performance evaluation and comparative
analysis of the presented algorithms within as well as between the two benchmarking frame-
works. Finally, Chapter 7 discusses potential improvements to the proposed frameworks and the
presented algorithms.

CHAPTER

Technical Background
and Related Work

This chapter offers the technical background of this thesis and provides an overview of its related
work.

2.1 Technical Background

The first part of this section provides a description of the Actor Model and the Peer Model. Af-
terwards, the basic concepts of P2P networks are described with the main focus on P2P overlays,
peer churn and P2P architecture. Finally, two search algorithms for unstructured P2P networks,
Gnutella Flooding and the Random walk algorithm, are presented.

2.1.1 Actor Model

The actor model of concurrency was first introduced in 1973. It is a mathematical model of
concurrent computation that treats actors as the universal primitives of concurrent digital com-
putation. Its main component is a persistent actor, that encapsulates an internal state and is able
to communicate with other actors asynchronously [24]] [16].

Actors can communicate with other actors through messages, which is called message-passing
and happens asynchronously. For the message-passing no channels or intermediaries are used.
Instead, the actor model offers the so-called best effort delivery, which trusts the underlying
protocol to deliver the message. Furthermore, it offers at-most-once delivery. Additionally,
messages can take arbitrary long to be delivered and no message ordering is guaranteed [16].

When an actor receives a message, it can change the internal state, create more actors, send
messages to other actors or respond to the sender zero or more times. Each actor has its own

5

mailbox, which is a queue of outstanding messages, that the actor processes one at a time, syn-
chronously. Additionally, each actor has an address, which identifies the actor and contains its
location and transport information to offer location transparency. An actor system is a collection
of actors, their addresses, mailboxes, and configurations. Actor systems and actors have the
following characteristics [24]] [16]:

* Communication via direct asynchronous messaging: To send messages, the sending
actor has to know the address of the target actor. The target actor then processes the
received message in a separate thread, which allows asynchronous delivery.

» State machines: Actors support finite state machines, which allow them to become an-
other kind of message handler by transitioning to another state.

» Share nothing: Actors do not share their mutable state with any other actor.

* Lock-free concurrency: Since actors never share their mutable state and they only re-
ceive one message at a time, actors have no need to be locked and thus never are.

* Parallelism: Additionally to concurrency, which describes multiple computations occur-
ring simultaneously, parallelism uses concurrency to achieve a single goal.

* Actors come in systems: Parallelism is achieved by using not one but multiple actors.

¢ Location Transparency: Actor addresses are visible to other actors as abstract references
and an actor only needs to know that reference to send a message to an actor. The underly-
ing actor system manages the delivery, whether the target actor is on the local actor system
or a remote one.

* Supervision: Fault-tolerance in the actor model is gained through supervision, where the
running state of an actor is monitored and managed by another actor called supervisor,
which can perform actions based on the state of the supervised actors. When an error is
encountered in a running actor, the default supervising behavior is to restart that actor.
Supervision offers a transparent lifecycle management, where addresses do not change
during restarts and mailboxes are persisted outside the actor instances, so that no messages
are lost during a restart of an actor. Furthermore, supervision strategies can be customized.

2.1.2 Peer Model

The Peer Model was introduced by Kiihn et al. in [[12] and is a space-based coordination mid-
dleware for distributed environments with a data-driven workflow. The strict separation of the
coordination from the application logic allows to reuse proven coordination patterns [[12].

2.1.2.1 Peer

The main component of the Peer Model is the peer, which represents a structured, reusable,
addressable component. Figure[2.T|shows the graphical notation of a peer. Each peer has a name

6

(URI), an input space called peer-in-container (PIC) and an output space peer-out-container
(POC). The peer receives requests via the PIC, takes them out of the PIC to process them and
puts the replies into the POC. The actual behavior of peers is realized through sub-peers, wirings
and services [[12].

name

P P
| behavior |0
C C

Figure 2.1: Graphical notation of a peer [[12]
The Peer Model distinguishes four peer types [12]:

* Space Peer (SPA): The SPA is a space container and stores data that is shared between
concurrent threads to support communication and synchronization.

* Coordination Peer (COP): The COP encapsulates reusable coordination logic like lookup,
routing and filtering.

* Application Peer (APP): The APP encapsulates application-specific logic in form of ser-
vice methods.

* Runtime Peer (RTP): All hosted peers form a Peer Space, which is bootstrapped via the
RTP. The name of this RTP refers to the URI of the local site.

2.1.2.2 Wiring

Wirings are the active part of the system by controlling the movement of entries between the
PIC and POC containers. They have a name and consist of three components [|12]:

* The guard defines the conditions, when the wiring should activate.
* Optional service calls.

* An action defines how to dispose the resulting entries and consists of zero or more link
operations.

The wiring sequentially reads entries via guard links from the PIC and writes them into an
entry collection (EC), which is an internal space container for the wiring. All guard links must
succeed, if only one fails, the entire guard blocks. Then the wiring performs services on the
entries and writes them to destination containers via defined Action Links. As the next step
the output links are executed, which distribute the entries of the EC to the PIC and/or POC
containers of the own peer or to PIC containers of sub-peers. In contrast to the guard links,
not all output links have to succeed. If one fails, it is simply skipped. Finally the effects of

7

the wiring are automatically committed and the remaining entries are removed from the EC. All
wirings whose guards are fulfilled run concurrently and an arbitrary number of instances of the
same wiring can run in parallel [12].

2.1.2.3 Flows

The entirety of all wirings that together constitute a business process is called the flow. A flow
is identified by a unique flow identifier (FID) and is started by emitting a first entry into the Peer
Space with an initial status active. A flow can end through an explicit success of failure result or
if it has reached a maximum time-to-live (TTL). Then all entries belonging to this flow will be
recognized by wiring and automatically removed. Flows allow architects to model concurrent
business processes with the Peer Model [[12].

2.1.3 P2P Overview

Stephanos et al. [21]] provides the following definition for P2P networks:

“Peer-to-peer systems are distributed systems consisting of interconnected nodes able to self-
organize into network topologies with the purpose of sharing resources such as content, CPU
cycles, storage and bandwidth, capable of adapting to failures and accommodating transient
populations of nodes while maintaining acceptable connectivity and performance, without re-
quiring the intermediation or support of a global centralized server or authority.”

According to this definition, the defining characteristics of a P2P network are fault-tolerance and
self-organization as well as the ability to share computer resources by directly exchanging data
between nodes without the need of a central server [21]].

2.1.3.1 Overlay. Graph Perspective

A P2P network consists of a set of interconnected nodes called peers (e.g. computers) and is built
on top of an already existing underlying physical network (e.g. IP network), which is formed
independently. Therefore, the P2P network is referred to as an overlay network [21]].

The P2P overlay can be represented by an undirected graph G= (V, E), where V is the set of
peers in the overlay and E is the set of connections between the peers. The peers are located
in a physical network, which provides mechanisms for a reliable message transport between the
peers. Each peer has a unique identification number p;4, which identifies it in the overlay net-
work, and a network address n;4, which identifies it in the physical network. In the case of an
IP network, the n;y is the peer’s IP address [[11]].

Let (p, g) be an element in E, then the following holds [11]:

*pP,qg eV

* p can send a direct message to g over the physical network using g’ s n;4 as the destina-
tion

* g can send a direct message to p over the physical network using p’ s n;4 as the destina-
tion

* p and g are called neighbors

The overlay graph G is dynamic, since peers can join or leave the overlay at any given time.
An overlay maintenance mechanism ensures that G stays connected. G is a global view of the
overlay, whereas each peer has a local view of the overlay called routing table. The routing table
of a peer p contains all peers to which it is directly connected, i.e., all edges in G containing
p. Each entry in the routing table contains both its p;; and n;4. If two peers have no direct
connection, they can still exchange messages along an existing routing path, which is a sequence
of edges from a source peer to a destination peer in G. Each edge that a message traverses is called
a hop and thus the path length from source to destination is measured in terms of number of hops.
A routing path is recursive, if each successive peer along the path forwards the message to the
next peer in the path. A routing path is iterative, if each successive peer along the path replies to
the sender with its routing table and the sender is responsible for forwarding the message to the
next peer [11]].

2.1.3.2 Peer Churn

The dynamic joining and leaving of peers in the P2P overlay networks mentioned in [2.1.3.1]is
called peer churn and is a highly significant element of the dynamic nature of P2P networks.
The time between the arrival and departure of a peer is defined as a session [10]. Peer churn is
one of the key aspects when designing a fault-tolerant and robust P2P network, that can handle
unpredictable behavior of peers [5].

2.1.3.3 P2P Architecture

There exist several approaches to classify overlay networks based on different properties. In
[21]], P2P networks are distinguished based on their centralization and structure.

According to their centralization: In a purely decentralized architecture there is no central
coordination unit and thus all peers are servers and clients at the same time and have to perform
the same tasks. The nodes in such a network are called servents [21]].

A partially centralized architecture is similar to the purely decentralized architecture, but some
servents are made supernodes by assigning them that special role based on varying criteria.
These supernodes are able to perform additional tasks to support the coordination and collabo-
ration in the P2P network and since they can be dynamically reassigned, they do not constitute
a single point of failure [21].

In a hybrid decentralized architecture, one ore more central servers store additional data (e.g.
metadata) to help with the coordination and collaboration within the P2P network [21]].

According to their structure: Structured P2P networks use global routing tables to provide a
mapping between data and peers, which enables deterministic search. Since the mapping has to
be updated whenever a peer churn occurs, the efficiency is decreased in highly dynamic envi-
ronments [[15]].

Unstructured P2P networks do not have globally maintained mappings between the peers and
data. Each peer is responsible for its own data and relies only on its adjacent peers for delivering
messages to other peers. Therefore, search has to be performed on incomplete information and
thus, the message delivery is not guaranteed. However, unstructured networks perform very
good in highly dynamic environments [15]].

2.1.4 Search in Fully Distributed P2P Networks

The following section provides an overview of two lookup mechanisms for unstructured P2P
networks, Gnutella Flooding and the Random walk algorithm.

2.1.4.1 Gnutella Flooding

Gnutella Flooding consists of a search request Query and a search response QueryHit. When a
search query is initiated, a Query message is created, which consists of a unique message 1D,
the actual search query and a positive integer time-to-live (TTL). Each peer then forwards the
Query to all its neighbors and maintains a mapping table between the message ID and the source
address of the Query. Additionally, the message ID can be used to prevent potential cycles. At
each hop the TTL field is decremented by one and the Query is discarded once TTL equals zero.
When matches are found, a QueryHit message is created, which consists of a message 1D, that
corresponds to the message ID of the Query message, the address of the peer having the match-
ing resource and a list of matching resources. The QueryHit then travels back to the originator
taking the same path back as the Query using the mapping table. The Query is still forwarded to
all its neighbors, even when a QueryHit message is created [21]].

Gnutella Flooding has some drawbacks. First, choosing the appropriate TTL is not trivial, since
the success rate drops significantly, if TTL is too low and the networks becomes overloaded, if
TTL is too high. Furthermore, duplicate messages result in a serious overhead, which makes it
unsuitable for large-scale networks [20]].

2.1.4.2 Random walk. k-Walker

The random walk algorithm is an adaption of the flooding approach with the goal to handle the
message overhead described in [2.1.4.1] In contrast to flooding, each peer forwards the search
query to only one randomly chosen neighbor. Additionally, the search terminates when a result
was found instead of forwarding it further. Choosing an appropriate heuristic for selecting the

10

next random hop is essential. An improvement of random walk is the k-Walker, which starts k
parallel search queries [20]].

2.2 Related Work

The target area of this thesis is the development and comparison of different intelligent search
algorithms for unstructured P2P networks. Therefore, this section provides the description of
two existing intelligent search algorithms, Dictyostelium discoideum Slime Mold and AntNet,
with their adaption for search in unstructured P2P networks.

2.2.1 Dictyostelium discoideum Slime Mold for P2P

In [27] Sesum-Cavi¢ et al. propose a swarm intelligent algorithm for search in a fully distributed
P2P network, which is an adaption of the Dictyostelium discoideum numerical optimization al-
gorithm described in [8]. This section describes the Slime Mold for P2P algorithm (SMP2P) in
detail.

In the vegetative stage, amoebae use their pseudopods to explore their neighborhood and move
to different positions in search for food. The pseudopods move using an adaption of k-Walker,
where the number of neighboring nodes determines the quantity of walkers [27]].

Each amoeba waits for its pseudopods to return and applies a probabilistic rule to choose its next
hop. While moving through the network, the pseudopods collect local information from each
visited node and update their personal best. The amoeba then chooses the node with the best
value as its next hop [27].

In order to find better results, amoebae switch into the aggregation stage and cooperate by ag-
gregating around a pacemaker. To ensure that an existing pacemaker can be found, it uses
the so-called cyclic Adenosine Monophophate message, which is flooded into the network in a
specific radius. When an amoeba first enters the aggregation stage, it first checks for existing
pacemakers in its neighborhood. If there is one, it moves toward it, otherwise its personal best
is evaluated. If it is greater than one the amoeba terminates its search, otherwise the amoeba is
turned into a pacemaker [27].

The aggregated amoebae and their pacemaker form a mound. Amoebae, which improve the per-
sonal best of other amoebae in the mound become the head, thus forming a number of slugs [27]].

Afterwards, the slug movement is started and the slug moves to the node, where its head found
its personal best. At each hop, the slug’s amoebae try to improve their personal best. The search
can be terminated, if no improvements are found for a certain amount of time [27]].

11

2.2.1.1 AntNet for P2P

In [25] Sesum-Cavié and Kiihn presented the AntNet for P2P algorithm, which is an adaption
for the context of P2P of the AntNet algorithm designed by Di Caro [14]. AntNet consists of
two phases, the forward phase and the backward phase. Starting with the forward phase, forward
ants are generated and are launched into the network to gather information about paths and traffic
patterns by moving from a source node s to a destination node d. Once a forward ant reaches its
destination node, it is transformed into a backward ant, which in return travels back to s along
the same path, but in the opposite direction. The backward ants update the following four data
structures at each visited node [25]]:

o Pheromone matrix T*: consists of entries 7,,4, which is the goodness of the node n for
forwarding a package from node & to node d. The following holds:

> Twa=1,d€[1,N], 2.1)
neNg

where N are the neighboring nodes of k£ and N is the network size.

» Data-routing table R*: has the same structure as 7. The entries in R* are computed from
the corresponding entries in 7% by exponential transformation, and then normalization to
1. The exponential transformation is used to avoid bad paths.

* Link queues L*: contain the packages waiting to be sent to each neighbor of % and reflect
the local network status of the neighborhood of k.

* Statistical parametric model M": is a list of N-1 triples (,ud,crczl,Wd). Lq 18 the mean
and 03 is the variance of the time required to reach node d from node k. W, is the best
traveling time to d and is computed over a system-wide time window. Similarly to L*,
MP* is a local view of the network traffic.

Each ant maintains a list of already visited nodes and a list of traveling times between the nodes
along the traveling path. At each node, the forward ant has to choose its next hop by applying a
decision rule. If the forward ant has already visited all neighbors of a node k, the next node is
chosen uniformly at random among the neighbors in Ni. To prevent cycles, all nodes involved
in a possible cycle have to be removed from the ant’s memory. If the node k has some unvisited
neighbors, the following formula is applied to choose the following hop [25]:

Tnd + alp dn

= A =1—
L+ a([Ng[-1)" " >
1€ENg

Pnd 2.2)

where ¢; represents the number of bits to be sent to node i and « € [0, 1].

Once a forward ant reaches its destination node d, it is transformed into a backward ant by only
changing its state and preserving all other data structures of the ant. Afterwards, the backward

12

ant travels back the same route to the source node and updates the statistical model M* and the
pheromone matrix 7" at each visited node k [25].

Trd = Tfd +1(1 = Tra) (2.3)

where f is the node from which the backward ant came to k. To ensure that the pheromone
values of all neighbors sum up to 1, the values of the other neighbors are decremented. The re-
inforcement r can be either a constant, or a function of the variables in the statistical model [25]].

To adapt AntNet to the context of P2P Se§um-Cavié¢ and Kiihn [26] propose the following:

* P2P nodes are mapped to IP network nodes.
* P2P resources are mapped to destination nodes in the IP network.

* Connections between peers are mapped to IP connections.

Furthermore, the search is adapted to the “not only exact matches” paradigm, by using a simi-
larity function, which describes the quality of the found data [25].

Sesum-Cavi¢ and Kiihn [26] show that the performance of AntNet for P2P is significantly better
than Gnutella Flooding. In a network of 80 nodes and increasing number of queries the response
time of flooding increases exponentially, whereas the response time in AntNet hardly increases.

An adaption for AntNet for P2P to search for similar resources in an unstructured P2P network
is presented in [7]], [27]].

Each node has a pheromone matrix 7% consisting of values 7,,4, where n are the neighbors of
the node and d is the destination. Since the forward ants carry search queries, the destinations
can be represented as query instances. But to support the “not only exact matches” paradigm,
the resource found by the forward ant is used as destination [25].

When evaluating the probability in Formula[2.2] the following similarity function compares the
destination value to the current search query [25]]:

f(Q7 d)Tnd + aln
= 24
Prd = G (ING — 1) 24

where ¢ is a query, d is a resource in the overlay, which a forward ant has found, f is a similarity
function to compare resources and the other variables have the same meaning as in Formula[2.2]

2.2.2 Bee-Intelligence Based P2P Lookup

The algorithm presented by Sesum-Cavié¢ and Kiihn [26] uses bee intelligence to search in the
P2P context. Bees are represented by software agents, which reside at P2P nodes in the overlay

13

network. Each node has exactly one hive and one flower. A hive has a number of receiver bees
called foragers and outgoing bees called followers. A flower consists of nectar units called tasks,
which represent a search task [26].

Starting with the navigation phase, bees are sent into the network to explore it in search for
a resource. As soon as the navigation is finished, the bees return to the hive. The following
stochastic state transition rule determines the next hop [26]):

[pij (£)]*[/as]°
> lpi)][Hais)P (2.5)

JEAi(t)

Pij(t) =

where p;; is the arc fitness from node i to node j at time ¢ and d;; is the heuristic distance between
i and j, v is a binary variable that turns the arc fitness influence on or off and [is the parameter
that controls the significance of a heuristic distance [[26].

Afterwards, the recruitment phase begins, in which bees share information, presented by a fit-
ness function [26]:

;= —0 2.6
fi= (2:6)
where f; is the fitness value for a particular bee i, H; is the number of hops on the tour and 9§ is
a similarity function, which describes the quality of the found data [26].

The colony’s fitness is calculated as follows [26]:

1 n
fcolony = E Z fz (27)
i=1

where 7 is the number of outgoing bees. Each bee i compares its fitness function f; with feoiony
and decides if it becomes a forager or follower [26].

The presented bee algorithm performs especially good in large networks [26].

14

CHAPTER

Algorithms

In this chapter, a definition of the P2P resources that will be used in this thesis is presented as
well as two intelligent search algorithms for fully distributed P2P networks. In[3.2]an adaption
of the routing algorithm presented by Hickey et. al in [9]] based on the Physarum Polycephalum
slime mold algorithm is discussed. In [3.3]a search algorithm based on the collective feeding
habits of bark beetles is proposed. Both algorithms are contributions to this master thesis.

3.1 P2P Resource Definition

This thesis uses a lookup mechanism for P2P proposed by Sesum-Cavi¢ et al. [27], since it pro-
vides the required mechanism to compare similar resources [27].

Let S = {Dy,Da,... Dy} be a set of k subsets, where k& € N and each set defines each ele-
ment’s data type in a resource. Each resource is an ordered n-tuple r = (r1,79,...7,), n € N,
k <mn,r € D; x Dj, X...x D, where D;; € Sandr; # nil. Search queries are defined
equally, but each r; can be nil, which is a zero element. To avoid matches for every resource
located in the network, at least one 7; must not be nil [27]]. The following example illustrates the
formalism above and is based on the examples presented in [[27]].

Example 2.1: A resource representing a movie consists of a movie name, a publishing year and
a genre. Each resource consists of the following sets:

* D; contains strings up to 255 characters.
* Dy={x € N:1890 < z < 2018}
* D3 = {“Drama”, “Fantasy”, “Science Fiction”, “Comedy”, “Action”}

The definition of a resource is r = (r1,72,73), 71 € D1, 79 € Dy, and r3 € D3. The nil element
in the search query means that any domain value matches. The following shows an example

15

resource and query:

Resource: (“There Will Be Blood”, 2007, “Drama’)
Query: (“Blood”, nil, “Drama”)

Additionally, Sesum-Cavi¢ et al. propose in [27] the usage of similarity functions to enable the
lookup mechanism to find similar objects. The example above illustrates that the meaning of
elements depends on the position of the respective element r;. Thus, different positions may
have different similarity functions [27].

Letr = (r1,72,...7), n € N, r; € D;, is a resource. 9; is a similarity function defined as
0; : Di x D; — R and (Vr;) 6;(mnil, ;) = 0. 6; is in [0,1], where lower values imply higher
similarity. The similarity function is defined as follows [27]]:

n

> 0i(gi, i)
flgr)=—— 3.1)

n

where ¢ = (q1, 42, - - - qn) represents a query, r = (r1,79,...7,) represents a resource, n € N,
d; represents a similarity function for ¢, and f € [0, 1] [27].

To determine the quality of matches, a configurable parameter € > 0, ¢ € R is introduced. It
categorizes results for a query ¢ and a resource r as follows [27]:

* nodata: f(q,r) > €

* acceptable data: 0 < f(q,r) < €

* exact data: f(q,r) =0

The result set consists of exact and acceptable resource matches [27]].

Following Example 2.1 , similarity functions for movie names (J), publishing years (d2) and
movie genres (d3) are shown below:

1 — Levenshtein(sy, s2), if so # nil
0, if 5 = nil

01(s1,52) = {

ly1 —y2| if .

J018—1s90. I Y2 # nil

82(y1,2) = { 8018 1390, L
5 2 prm—

16

0, lfjl = jQ or jQ = nil
93(j1,72) = < 0.1, if j; = “Science Fiction” and jo = “Fantasy”

1, otherwise

where 97 uses the Levenstein string metric [23]] and in 3 the movie genres “Science Fiction”,
and “Fantasy” are similar to each other.

3.2 Physarum Polycephalum Slime Mold for unstructured P2P
search

The Physarum Polycephalum slime mold consists of a network of veins, which radially arrange
from the centre of the organism as illustrated in Figure 3.1} In search for food, the veins spread
out and, if food is found, the respective veins transport the nutrients and dilate to increase their
flow. Meanwhile, veins that fail to find food contract and their flow is decreased. Initially, all
veins have the same diameter and their flow is considered as equal [9).

Figure 3.1: Radial arrangement of veins in the Physarum Polycephalum slime mold [|§|]

[9]] Hickey et. al. present a routing algorithm based on the Physarum Polycephalum slime mold.
They propose a model similar to the ant colony model [[14], since the dilation and contraction
of veins is similar to the increase and evaporation of pheromones. The algorithm has a forward
phase and a backward phase. During the forward phase nutrients called agents are periodically
spawned into the network in search for food. Once an agent finds food, it switches into the back-
ward phase and travels along the same path back, but in the opposite direction. Each node k in
the network maintains a routing table consisting of entries (); j, which represent the connecting
vein from node i to node j, i.e. the probability of node i of forwarding a data packet from node k

17

to node j. The following must hold [9]]:

» Qij=1,j€(L,N], 3.2)

1€ Ng

where IV, are the neighboring nodes of k and N is the network size [9].

Forward agents choose their next hop by applying the following rule [9]:

Qi ifje N,
pi,j = kEN; N (33)
0, otherwise

where N; is the neighborhood of i and (); ; is the flow from node i to node j [9].

Agents in the backward phase, update the routing table of each visited node using the following
delta function [9]:

Af(1Qi) < &§(Qiyz) (3.4)

where & € [0, 1] and & should be set to a small value (i.e. < 0.1) [9].

The following presents an adaption of Physarum Polycephalum to the needs of fully distributed
P2P networks using the model for a P2P lookup mechanism from 3.1}

The Physarum Polycephalum slime mold for P2P algorithm consists of two phases, the forward
phase and the backward phase. Starting with the forward phase, forward agents are launched
periodically from the source node s, which initiated the search, into the network to gather infor-
mation about paths and traffic patterns. Each agent maintains a list of already visited nodes and
the search query. Its destination is a resource, that matches the similarity constraints described in
Each node maintains a flow matrix Q¥ consisting of values (n.q> where n are the neighbors
of the node and d is the destination, which is a resource in the overlay, that matches the search
query of the forward agent. The following example illustrates this:

Example 3.1: Let the resource (“There Will Be Blood”, 2007, “Drama”) is located in the net-
work and a search query (“Blood”, nil, “Drama”) is initiated. Suppose the forward agent will
eventually find the given resource, an entry for the resource (“There Will Be Blood”, 2007,
“Drama”) is inserted in QF.

At each node the forward agent has to choose its next hop by applying a decision rule. If the
forward agent has already visited all neighbors of a node k, the next node is chosen uniformly
at random among the neighbors in Nj. To prevent cycles, all nodes involved in a possible cycle

18

have to be removed from the agent’s memory. If the node k has some unvisited neighbors, the
next hop is chosen by applying the following decision rule:

Prd = f(Qa d)Qn,d
" Z f(Q7 d)Qn,d

kENn

3.5)

where ¢ is a query, d is a resource in the overlay, which a forward agent found and f is defined
in Equation 3.1}

Once a forward agent reaches its destination, it is transformed into a backward agent by only
changing its state and preserving its other data structures. Afterwards, the backward agent trav-
els back the same route to the source node and updates the flow matrix Q¥ at each visited node
k using Equation where a constant value € [0, 1] is chosen for .

Algorithm [3.1]illustrates the pseudocode of the agent movement.

3.3 Bark Beetle for unstructured P2P search

This section proposes a search algorithm for fully distributed P2P networks based on the collec-
tive feeding habits of bark beetles. The first part provides an overview of the general biology of
bark beetles. Afterwards, a detailed description of the proposed algorithm is presented.

3.3.1 Bark Beetle in Nature

Bark beetles are a family of beetles with the distinctive characteristic that the parent beetles bore
tunnels called galleries under the bark for feeding and egg laying. As shown in Figure [3.2] the
life cycle of the bark beetle consists of three phases: reproduction, development, maturation and
dispersal [22].

The reproduction begins when mature insects arrive on their host tree, where they construct ver-
tical galleries in which they feed and the female beetle deposits eggs. As soon as the larvae
have hatched from their eggs, they start feeding and complete their development in the galleries.
Once matured, the beetles disperse to search a suitable host for reproduction. Attacking beetles
are often in danger of drowning in their galleries by tree pitch, which is used by the host tree
as a defense mechanism. Since beetles are more tolerant of pitch produced by their natural host
trees than they are of pitch from other tree species, the effect of pitch influences their choice of
a host tree. Bark beetles communicate through two kinds of pheromones, which they excrete
while feeding. The attractant pheromones attract additional beetles to the tree to overwhelm its
defenses. The anti-attractant pheromones prevent a single tree from being overpopulated [22].

In the following section an algorithm for distributed search for unstructured P2P networks based
on the bark beetle’s collective feeding, namely the dispersal and communication, is presented.

19

Algorithm 3.1: Movement of agent

1 if moving FORWARD then

2 if current node has resource matching the search query then
3 switch to BACKWARD mode;

4 if in source node then

5 ‘ terminate search;

6 else

7 ‘ move to previous node;

8 end

9 else
10 if TTL < 0 then
11 ‘ terminate search;
12 else
13 if All neighbors are already visited then
14 ‘ choose next hop uniformly at random,;
15 else
16 ‘ choose next hop by applying decision rule
17 end
18 end
19 end
20 else
21 Update pheromone concentration in current node by applying Equation
22 if in source node then
23 ‘ terminate search;
24 else
25 ‘ move to previous node;
26 end
27 end

3.3.2 Initialization

The bark beetle algorithm starts when a peer called source peer initiates a search query. The
source peer creates a configurable number of beetles (beetles_per_query) and launches them
into the network. The beetles explore the network and return to the source node carrying the
search result. Figure [3.3]shows the beetle object.

Each beetle is identified by a unique beetleld that is initialized to a randomly generated globally
unique identifier (GUID) and carries a searchQuery of type Resource. Each node in the network
has a unique peerld and the currentNodeld identifies the node where the beetle is at a given mo-
ment and the sourceNodeld is the identifier of the source peer. Additionally, the TTL variable is
the maximum number of hops a beetle can perform and is initialized to a globally configurable
beetle_ttl. Additionally, the different pheromone types attractant_pheromone and anti_attrac-

20

Maturation & Dispersal

Development Reproduction

Figure 3.2: Lifecycle of bark beetles [22].

BarkBeetle

+beetleld: String
+searchQuery: Resource
+sourceNodeld: String
+currentNodeld: String
+ttl: int

Figure 3.3: UML diagram of the BarkBeetle object

tant_pheromone shown in Table [3.2] are configurable and are initialized to values provided in
Table[6.11]in Section[6.2] After the initialization, the beetles start to move.

Table 3.1 summarizes all configurable parameters in the beetle initialization.

] Parameter Description

beetles_per_query | The number of beetles per search query

beetle_ttl The maximum number of hops a beetle can traverse the P2P graph

Table 3.1: Configurable parameters in the beetle initialization

Furthermore, each node maintains a pheromone matrix, which saves the current pheromone con-
centration for already found resources for all its neighbors. It is initialized to an empty map and
is populated during the movement of the beetles, which is described in detail in Section [3.3.3]
This pheromone concentration is manipulated by both the attractant_pheromone and anti_attrac-
tant_pheromone.

21

3.3.3 Movement

The beetles move in different directions in search for food by applying the following decision
rule. If the pheromone matrix has entries for a resource that matches the search query and the
respective pheromone concentration is greater than a configurable sufficient_pheromone_con-
centration, the node with the highest pheromone concentration is chosen. If no such node exists,
the next hop is chosen uniformly at random from its neighbors.

If a beetle finds a resource that matches its search query, it floods the network in a radius R with a
notification message called PheromoneMessage, which contains a message identifier messageld,
a TTL value ttl, a pheromone value called pheromone and a field foundResource. Figure [3.4]
illustrates the PheromoneMessage.

PheromoneMessage

+messageld: String

+ttl: int

+pheromone: double
+foundResource: Resource

Figure 3.4: UML diagram of the PheromoneMessage object

Resource

+name: String
+year: Integer
+genre: Genre

SO

«enumeration»
Genre

DRAMA

FANTASY
SCIENCE_FICTION
COMEDY

ACTION

Figure 3.5: UML diagram of the Resource object

The messageld is a randomly generated GUID and is used in the flooding algorithm to prevent
processing of already received messages. The variable TTL determines the flooding radius and

22

is initialized to a configurable pheromone_radius. The variable pheromone is used as the attrac-
tant_pheromone and is therefore set to a configurable attractant_pheromone value. Additionally,
foundResource saves the found resource illustrated in Figure [3.5] Each node maintains a pro-
cessedMessages list, which saves the identifiers of already processed notification messages. At
each node the PheromoneMessage traverses, its TTL is decreased and its messageld is added to
the node’s processedMessages list. If the processedMessages list already contains the current
messageld, the message is dropped. Otherwise the pheromone matrix of the current node, which
saves the overall pheromone concentration of the current node and is manipulated by both the at-
tractant_pheromone and the anti_attractant_pheromone, is updated as follows. If it already con-
tains an entry for foundResource, the entry’s current pheromone concentration is incremented
by the value of the attractant_pheromone. If no such entry exists, a new entry for the resource
in foundResource is created and initialized with the value of the attractant_pheromone. If the
TTL value is greater than zero, the PheromoneMessage is forwarded to all the neighbors of the
current node. Algorithm [3.2]illustrates the pseudocode of flooding with the PheromoneMessage.

Algorithm 3.2: Flooding with PheromoneMessage

1 if the PheromoneMessage was already processed by the current node then
2 Drop PheromoneMessage;

3 else

4 Decrement TTL;

5 Update pheromone matrix of the current node;

6 if TTL of the PheromoneMessage > O then

7 ‘ Flood neighbors of the current node with the PheromoneMessage;
8 else

9 ‘ Drop PheromoneMessage;

10 end

11 end

Additionally to the flooding, the beetle returns to its source node with the found resource and
terminates the search.

At each hop of the beetle, its TTL value is decremented and if it reaches zero or the current
node has no more neighbors, the beetle returns to its source node and terminates the search. Fur-
thermore, the beetle checks whether the pheromone matrix of the current node has a pheromone
concentration for a resource matching the search query that is greater than a configurable too_-
sufficient_pheromone_concentration. If such an entry exists, the beetle floods the network using
the same mechanism from above (Algorithm [3.2)), except that the pheromone value is set to a
configurable negative number anti_attractant_pheromone and foundResource is set to the search

query.
Table 3.2 summarizes all configurable parameters in the beetle movement.

23

Parameter Description

sufficient_pheromone_concentration The sufficient pheromone concentration to move
along the gradient

too_sufficient_pheromone_concentration | The pheromone concentration when the anti
attractant pheromone is emitted

pheromone_radius TTL of the pheromone message

attractant_pheromone The pheromone concentration that is emitted, if
a result is found

anti_attractant_pheromone The pheromone concentration that is emitted, if
the detected pheromone concentration is too high

Table 3.2: Configurable parameters in the beetle movement

Algorithm [3.3]illustrates the pseudocode of the bark beetle movement.

Algorithm 3.3: Movement of bark beetle
1 if TTL < 0 then

2 Return to source node and terminate search;
3 else
4 if current node has resource matching the search query then
5 Flood neighbors with attractant_pheromone (Algorithm ;
6 Return to source node with found resource;
7 else
8 if the current node has no neighbors then
9 ‘ Return to source node and terminate search;
10 else
1 if A neighbor has a pheromone concentration > too_sufficient_pheromone
then
12 ‘ Flood neighborhood with anti_attractant_pheromone (Algorithm ;
13 end
14 Choose the neighbor with highest pheromone concentration;
15 if highest pheromone concentration > sufficient_pheromone_concentration
then
16 ‘ Move to neighbor with highest pheromone concentration;
17 else
18 ‘ Choose a random neighbor and move to it;
19 end
20 end
21 end
22 end

The sufficient_pheromone_concentration parameter determines whether exploration or exploita-

24

tion of the search space is performed. At each step, the beetle checks whether a neighbor
has a pheromone concentration that is at least equal to the sufficient_pheromone_concentra-
tion. If such a pheromone concentration is found, exploitation of the search space is performed.
Otherwise the beetle moves randomly and thus is in charge of the exploration of the search
space. Additionally, the pheromone_radius determines the number of nodes, which increase
their pheromone concentration. Therefore, higher pheromone_radius values foster exploitation.
Furthermore, the anti_attractant_pheromone can be used to foster exploration as it decreases the
existing pheromone concentration.

25

CHAPTER

Framework Design

This chapter describes the design that will be applied to both frameworks implemented with
the Java implementation of Akka and the Java implementation of the Peer Model. The first
section gives an overview of the design goals and requirements for the framework. The following
sections provide a detailed description of the design of each feature.

4.1 Design goals

The main contribution of this master thesis is the development of a generic framework that
allows plugging in of different search algorithms for unstructured P2P networks to compare
their respective performance with each other. To achieve this goal, the following high level
functional requirements have to be met:

* Generation of different P2P network instances with varying number of peers. Each peer
in the resulting network must have at least one direct connection to another peer and must
be able to reach any given peer through at least one given routing path. Additionally, it
should be possible to distribute the network over different physical devices to decrease the
performance load. The number of nodes must be configurable for each test case.

* Distribution of resources among a subset of peers. To allow the “not only exact matches”
paradigm the resources should be comparable in such a way that a similarity value between
two resources can be calculated. A configurable replication ratio determines the number
of peers to which a resource is sent.

» Sending search requests for a specific resource into the network. A configurable parameter
determines the satisfying similarity value between two resources and thus, determines
when a resource is a valid hit for the issued request. The number of queries must be
configurable.

27

* The actual search is performed by different search algorithms for unstructured P2P net-
works. It must be possible to plug in different algorithms to perform the search with the
respective algorithm.

* A mechanism to determine whether all search requests have been terminated needs to be
introduced.

* Finally, the performance of the search has to be evaluated regarding the success rate, the
message load per peer and the required time.

4.2 P2P Network Generation

The goal of the P2P graph generation is to create a scale-free and unstructured P2P network.
First, a configurable number of peers has to be created. For this, each connected client repre-
senting a physical machine is requested to create a certain number of peers, which are resources
in the P2P overlay. The following example illustrates this further:

Example 4.1: When a network with 50 nodes should be created and three clients are connected,
then client one and client two create each 17 peers and client three creates 16 peers.

To support that different search algorithms can be plugged in, a different peer type for each
search algorithm is introduced. Each peer type implements a specific search algorithm, e.g.
two distinct peer types exist for Gnutella Flooding and k-Walker. Depending on the selected
algorithm, all peers are created of the respective peer type that uses this algorithm to search for
resources in the network.

As the next step the neighboring relations between the created peers have to be established. For
this the Barabasi-Albert (B-A) model is used, which proposes an algorithm to create scale-free
networks. In the following, it is used to create a graph, where each node represents a created
peer and an edge represents a neighboring relation that has to be established.

The B-A model generates a graph by initializing it with a small number mg vertices. Then new
vertices are added one by one and each new vertex is connected to m < my existing vertices. A
new vertex is connected to an already existing vertex with the following probability [4]:

bi = i
J

4.1

where k; is the degree of vertex i, k; are already existing vertices in the graph and p; is the
probability that a new vertex is connected to vertex i [4]].

Following the recommendation in [17]], each graph instance is generated with parameters m =
mo = 2.

28

Finally, the vertices in the created graph are iterated and the neighbors of each vertex are sent to
each corresponding peer, which in return establish their neighboring relations.

The network generation process is shown in detail in Figure [4.1]

Test Controller TestRunner

-4. all clients joined -1. create -5. create peers

ClientService

e el

-8. wait for peers -2. wait for clients
Test Client -6. create peers
Client
-3. join
-7. create

-9. peer created

Peer

-10. write peer configuration

Figure 4.1: P2P Network generation

The TestRunner is the main entity of the Test Controller component and therefore initiates the
network generation by creating the ClientService, which is responsible for communicating with
the Test Client components. After its creation the ClientService waits for a given number of
Clients to join. Therefore, the required Clients have to be started on different machines. After
their creation the Clients automatically join the ClientService and as soon as the required num-
ber of Clients has joined, the environment is successfully set up and the network can be created.

The TestRunner asks the ClientService to create a given number of peers for the given search
algorithm, which in return asks all its joined Clients to create an evenly distributed number of
peers on their respective machine. All peers are created of a specific peer type that uses the se-
lected algorithm to search for resources in the network, which provides the functionality to plug
in different search algorithms into the framework. Each peer notifies the ClientService about its

29

creation, which in return waits for all peers to be created. Afterwards, the ClientService is able
to directly communicate with all created peers and sends them their respective peer configura-
tion, including their neighboring relations and specific search algorithm parameters.

This approach will be used in both the Akka and Peer Model implementation, with some indi-
vidual adaptions listed in their respective Sections [d.2.Tand [4.2.2]

4.2.1 Network Generation in Akka

The ClientService, Clients and Peers are all created as actors. After the creation of a Client, it
sends a join message to the ClientService. All further communication between the ClientSer-
vice and the Clients is performed through messages. Each Client creates its peers as depicted in
Figure

Peer 1 Peer 2

SearchActor SearchActor

Figure 4.2: Akka Peer

Each peer is an actor and contains a SearchActor that is responsible for the actual search. De-
pending on the selected search algorithm, different SearchActors are selected. SearchActors
cannot communicate directly with each other, instead they send messages to a peer which for-
wards the message to its SearchActor. Each SearchActor implements the selected search algo-
rithm.

After the peer creation, the peers and ClientService communicate with each other through mes-
sages.

4.2.2 Network Generation in the Peer Model

The ClientService is a peer consisting of four sub-peers, namely AddedClients, CreatedPeers,
TerminatedSearches and StoppedPeers. Its structure is depicted in Figure 4.3]

30

ClientService
AddedClients

: e
C TerminatedSearches

O O o

StoppedPeers

Figure 4.3: ClientService Structure

As stated above the ClientService waits after its creation for a given number of Clients to join.
Clients are peers consisting of the sub-peer CreatedPeers and a sub-peer for each Node Peer, the
Client created. Its general structure is depicted in Figure [4.4]

Client

p| Lo | :
(0)
c Ltaseremy | ¢

Figure 4.4: Client Structure

-~

After its creation, each Client adds an entry CLIENT_ADDED with its address into the sub-
peer AddedClients in ClientService, which in return has a wiring AddedClientWiring depicted

in Figure 4.5}

AddedClients ‘

‘ ClientAddedService() ‘

P Tl

c »‘ AddedClientWiring >

Figure 4.5: AddedClientWiring of the ClientService

-~

o QO ©

Every time an entry CLIENT_ADDED is added to AddedClients, the ClientAddedService adds

31

the respective Client with its attached address to the joined Clients. As soon as all Clients have
joined the ClientService, it notifies the TestRunner.

Afterwards, the ClientService adds entries CREATE_PEER with the selected algorithm attached
to the respective Clients, which in return have a wiring CreatingPeersWiring depicted in Figure
4.6

Client

‘ CreatePeerService() ‘

.--> CreatingPeerWiring ---->
C

Figure 4.6: CreatingPeersWiring of the Client

O QO o

Every time an entry CREATE_PEER is added to a Client, the CreatePeerService starts an in-
stance of a new Node Peer with a node type matching the attached algorithm and adds a re-
spective sub-peer to the Client. The created Node Peer instance implements the selected search
algorithm, which is described in detail in Section [4.4]

After its creation, each Node Peer adds an entry PEER_CREATED with its address to the sub-
peer CreatedPeers in the ClientService, which in return has a wiring PeersCreatedWiring de-
picted in Figure 7]

CreatedPeers

‘ PeerCreatedService() ‘

----> PeerCreatedWiring ------->

Figure 4.7: PeersCreatedWiring of the ClientService

Every time an entry PEER_CREATED is added to CreatedPeers in the ClientService, the Peer-
CreatedService adds the respective Node Peer with its address to the ClientService. As soon
as all Node Peers are created, the ClientService adds entries ADD_NEIGHBORS to each Node
Peer to establish the neighboring relations. Each Node Peer has a wiring AddNeighborsWiring
depicted in Figure [4.8]

32

Node Peer n

‘ AddNeighborsService() ‘

- ---> AddNeighborsWiring ---->

Figure 4.8: AddNeighborsWiring of the Peer Nodes

O O o

Every time an entry ADD_NEIGHBORS is added to a Node Peer, the AddNeighborsService
adds the neighboring relations to this Node Peer according to the attached neighboring Peer
Node addresses. This concludes the P2P network generation process.

4.3 Resource Distribution

Before resources can be distributed among the peers in the created network, the respective re-
sources have to be created. Each resource consists of the following three fields:

* name
* year

* genre

A resource is only valid, if a value is assigned to every field. To make resources comparable,
each field uses the similarity functions presented in Section 3.1} The overall similarity is the
average of the three single similarities.

Afterwards, the created resources are distributed into the P2P network using the following mech-
anism. Each resource is sent to certain number of peers, which is determined by a configurable
replication ratio parameter. The replication ratio is relative to the network size and thus the num-
ber of resources increases for larger networks. The following example clarifies this concept:

Example 4.2: Let a network consisting of 50 nodes, a replication ratio of 16% and two resources
are given. Then each resource will be sent to eight peers.

The replication ratio is declared as a value between 0 and 1. Additionally, a replication ratio
value of -1 indicates that each resource must only be sent to exactly one peer no matter the size
of the network. This paradigm is introduced to simulate a worst case scenario for the search
presented in Section [4.4]

33

Furthermore, each resource is sent to randomly selected peers and one resource can only be sent
to a peer exactly once. However, different resources can be sent to the same peer. Following Ex-
ample 4.2, resource one is sent to eight different peers and resource two is sent to eight different
peers, but it is possible that resource one and two are sent the same peer.

The resource distribution process is shown in detail in Figure [4.9]

Test Controller

TestRunner

-1. add resource

ClientService

Test Client -2. add resource

Peer

Figure 4.9: Resource Distribution

As stated in Section[4.2] the ClientService is able to communicate directly with all Peers in the
created network after the network generation. Therefore, the TestRunner asks the ClientService
to push a specific resource into the network. The ClientService in return forwards the resource
to a randomly selected peer.

This approach will be used in both the Akka and Peer Model implementation, with some indi-
vidual adaptions listed in their respective Sections and

4.3.1 Resource Distribution in Akka

The actor ClientService sends the resource as a message to the randomly selected peer actor.
Since the SearchActor is responsible for the actual search for resources, the message is propa-
gated to the peer’s SearchActor, which in return saves the resource.

4.3.2 Resource Distribution in the Peer Model

The ClientService adds an entry ADD_RESOURCE to the respective Node Peer, for each new
resource. The Node Peer has a wiring AddResourceWiring depicted in Figure 4.10}

34

Node Peer n

‘ AddResourceService() ‘

- ---> AddResourceWiring ---->

Figure 4.10: AddResourceWiring of the Peer Nodes

-~

O O o

Every time an entry ADD_RESOURCE is added to a Node Peer, the AddResourceService adds
the attached resource to this Node Peer for later retrieval.

4.4 Search Request

In this step, a configurable number of queries is sent into the P2P network. Similar to the re-
source distribution in Section {f.3] the number of queries is relative to the network size and is
therefore determined through a percentage value. The following example illustrates this concept:

Example 4.3: Let a network consisting of 50 nodes and a query rate of 30% are given, then 15
queries will be issued into the network.

This mechanism ensures that the scalability of the different search algorithms can be examined,
since the number of queries grows with increasing network sizes.

Afterwards, permutations of the created query will be generated by creating groups of five in-
stances of the same query, where queries from different groups have different content. This
mechanism supports the testing of the “not only exact matches” paradigm. The following exam-
ple extends Example 4.3 and illustrates the whole concept of the query generation:

Example 4.4: Let a network consisting of 50 nodes, a query rate of 30% and a query (“Blood”,
2007, “Drama”) are given. Then three groups of queries are created. The first group contains
five instances of the query (“Blood”, 2007, “Drama”), the second group contains five instances
of the query (“Blood”, 2008, “Drama”) and the third group contains five instances of the query
(“Blood”, 2009, “Drama”). Overall 15 queries are generated, ready to be sent into the network.

After all queries have been created, each query is sent to a randomly selected peer and, like in
the query distribution in Section[4.3] all queries are sent to different peers.

The search request process is shown in detail in Figure d.TT]

35

Test Controller

TestRunner

-3. wait for terminated queries -1. send query

E ClientService

Test Client

-4. query resolved -2. send query

Peer

Figure 4.11: Search Request

Similar to the resource distribution in Section [4.3] the TestRunner asks the ClientService to is-
sue specific search requests into the network. In return the ClientService forwards each search
request to a randomly selected peer and waits until all queries are terminated.

From this point forward, only the created peers are involved in the search without the interven-
tion or help of the ClientService. Each peer maintains a log file and saves information of the
number of query processings and information, if a query can be resolved on this peer with the
respective elapsed time or if the query has to be dropped on this peer. Each peer notifies the
ClientService when a query terminates and if each query is terminated, the search is completed.

This approach will be used in both the Akka and Peer Model implementation, with some indi-
vidual adaptions listed in their respective Sections and

4.4.1 Search Request in Akka

Similar to the resource distribution in Akka in Sectiond.3.1]the actor ClientService sends search
requests as a message to randomly selected peers. The peers forward the message to their respec-
tive SearchActor, which in return uses the selected search algorithm to search for a resource in
network that matches the issued search request by communicating exclusively with other peers.
Following the peer communication depicted in Figure 4.2 SearchActors cannot communicate
directly with each other. Instead SearchActors send messages to other peers, which forward the
message to their respective SearchActor. When a SearchActor finds a matching resource or the
query is dropped, it sends a notification message to the ClientService, informing it about the
termination of the respective query.

36

4.4.2 Search Request in the Peer Model

To initiate a search request, the ClientService adds an entry SEARCH_REQUEST with the re-
spective search criteria attached to a selected Node Peer, which in return has a wiring AddSearchRe-
questWiring depicted in Figure d.12]

Node Peer n

AddSearchRequestService() ‘

P Tl
c ---> AddSearchRequestWiring ---->

Figure 4.12: AddSearchRequestWiring of the Peer Nodes

o O o

Every time an entry SEARCH_REQUEST is added to a Node Peer, the AddSearchRequestSer-
vice initiates the search according to the attached search criteria in the received entry. From this
point forward, only the Node Peers are involved in the search using the selected search algo-
rithm. Figure #.13]illustrates the communication of the Node Peers during the search.

- Node Peer 1 - - Node Peer 2 -
P P P P
/ (0] / 0 ——
C C C C

Figure 4.13: Communication of the Peer Nodes

As soon as a search request terminates, the current Node Peer adds an entry SEARCH_TER-
MINATE to TerminatedSearches in the ClientService, which in return has a wiring Terminated-
SearchesWiring depicted in Figure [d.14]

Every time an entry SEARCH_TERMINATE is added to TerminatedSearches, the Terminated-

SearchesService checks whether all search requests are terminated. If this is the case, the current
test case is finished and the test environment can be reset.

4.5 Reset Test Environment

As soon as all queries are terminated, the log files from all peers have to be retrieved by the
TestRunner and are saved for the later performance analysis. Afterwards, the original log files

37

‘ TerminatedSearches ‘

‘ TerminatedSearchesService() ‘

P Tl
c .----> TerminatedSearchesWiring ----->

Figure 4.14: TerminatedSearchesWiring of the ClientService

-~

O QO o

are deleted and the connected clients are issued to destroy their respective peers to reset the test
environment to a clean state in order to run each test under the same conditions.

The destruction of the P2P network to reset the test environment to a clean state is shown in
detail in Figure [d.15]

Test Controller

TestRunner

» -1. stop peers
+4. waiting for stopped peers

ClientService

Test Client

+5. peers stopped -2. stop peers

Client

-3.stop

Peer

Figure 4.15: Destroy P2P network

The TestRunner issues the ClientService to destroy the generated P2P network by destroying all
created peers. The ClientService forwards this request to all connected Clients which destroy
their respective peers and notify the ClientService when they are done. As soon as all Clients
have confirmed the destruction of their peers, the test environment is successfully reset and the
next test case can be executed.

38

This approach will be used in both the Akka and Peer Model implementation, with some indi-
vidual adaptions listed in their respective Sections[4.5.1]and

4.5.1 Rest Test Environment in Akka

Since each peer is an actor, it is sufficient to stop all created peers since all created sub-actors
are removed as well in the process. Afterwards each Client sends a notification message to the
ClientService, informing it about the successful destruction of its peers.

4.5.2 Reset Test Environment in the Peer Model

To reset the test environment all Node Peers in the network have to be destroyed. For this the
ClientService adds an entry STOP_PEERS to all joined Clients, which have a wiring Stopping-
PeersWiring depicted in Figure 4.16]

Client ‘

‘ StopPeerService() ‘

P Tl

Figure 4.16: StoppingPeersWiring of the Client

-

o O o

Every time an entry STOP_PEERS is added to a Client, the StopPeersService destroys all its
Node Peers by removing them from the Client’s PeerModel. Afterwards, the Client adds an en-
try PEERS_STOPPED to StoppedPeers in the ClientService, which has a wiring PeersStopped-
Wiring depicted in Figure f.17]

StoppedPeers ‘

‘ PeersStoppedService() ‘

é ---->{ PeersStoppedWiring ------>

Figure 4.17: PeersStoppedWiring of the ClientService

o O o

39

Every time an entry PEERS_STOPPED is added to StoppedPeers, the PeersStoppedService
checks whether all Node Peers are destroyed. If this is the case, the test environment is in a
clean state and thus the next test case can be peformed..

40

CHAPTER

Implementation Details

In this chapter the implementation details of the concepts from Chapter 4] are provided. Each
section first describes the common implementation followed by the individual details for the
Akka and Peer Model frameworks.

5.1 Test Environment Setup

As described in Chapter @] the TestRunner is responsible for initiating and coordinating each test
case. But before any test cases can be executed, the testing environment, that will be used for all
subsequent test cases, has to be set up. Therefore, the TestRunner creates a ClientService on its
creation, which main purpose is the establishing and maintenance of the testing environment. As
described in Chapter | the ClientService is the central component, which newly created Clients
join. It keeps track of all joined Clients and notifies the TestRunner as soon as all expected
Clients have joined. Although the general functionality of the ClientService is the same in the
Akka and Peer Model implementation, the implementation details differ and are presented in

their respective Sections and

5.1.1 Test Environment Setup in Akka

In the Akka implementation, the ClientService is an actor and thus all communication with it
is performed through messages. Furthermore, it is started on a static address, which all Clients
have to know in order to join it. Each Client is an actor as well and is provided with the address
of the ClientService as well as a directory path, where the subsequent test results should be
saved. After its creation, each Client sends an AddClientRequest to the ClientService, which
in return maintains a list of all joined Clients. Since the address of the sending actor is also
appended to the received message, the ClientService can keep track of all Clients, which already
sent an AddClientRequest. The TestRunner frequently asks the ClientService whether a certain
number of Clients have joined. If this is the case, the testing environment is successfully set up
and the TestRunner can proceed with the execution of the test cases.

41

5.1.2 Test Environment Setup in the Peer Model

In the Peer Model implementation, the ClientService starts a Peer Model instance and adds four
sub-peers to it (AddedClients, CreatedPeers, TerminatedSearches and StoppedPeers) illustrated
in Figure[4.3] Additionally, a wiring is added to each of these sub-peers. Each Client is provided
with the address of the ClientService, a client name and a directory path, where it saves all
future test results. Upon its creation, each Client creates a separate Peer Model instance, where
the provided client name is used as the instance name. Afterwards, each created Client adds
an entry CLIENT_ADDED to the sub-peer AddedClients in the ClientService and appends its
address to ensure future communication. In the ClientService the wiring AddedClientWiring
(Figure [4.3)) is triggered and calls the ClientAddedService, which extracts the address of the
joining Client and adds it to a list of joined Clients, maintained by the ClientService. As soon
as all expected Clients have joined, the ClientService notifies the TestRunner that the testing
environment is ready.

5.2 P2P Network Generation

After the testing environment was successfully established, the TestRunner can run the test cases.
For this it provides a method runTest with the following signature:

runTest (int peers, double replication, int queries, int agentsPerQuery,
ConfigurationDto configuration, String testName) ;

Listing 5.1: Signature of the method runTest in the TestRunner

For each test case a number of peers, a replication ratio of the resources and a number of queries
to be issued is provided. The agentsPerQuery parameter is important to keep track of the re-
solved queries for search algorithms, which use multiple search agents for one query. The
configuration parameter contains search specific information, like the name of the used search
algorithm, the similarity threshold parameter and individual search algorithm parameters. Addi-
tionally, the testName parameter is used to later identify the used test case. The method runTest
executes the steps from Sections 4.2]to [.5] First the P2P network needs to be created. There-
fore, runTest calls the method startPeers in the TestRunner, which has the following signature:

startPeers (String testname, ConfigurationDto configuration, int peerCount) ;

Listing 5.2: Signature of the method startPeers in the TestRunner

The testName is the name of the current test, the configuration contains the search specific
parameters and peerCount is the number of peers, which should be created. The implementation
details of Akka and the Peer Model differ and are provided in their respective Sections[5.2.1)and
5.2.2]

42

5.2.1 P2P Network Generation in Akka

In the Akka implementation, the TestRunner sends a message StartPeersRequest illustrated in
Figure[5.1]to the ClientService.

StartPeersRequest

+ConfigurationDto configuration
+int peersToCreate

Figure 5.1: UML diagram of the StartPeersRequest message

The ClientService then calculates the number of peers each Client should create. For each new
peer, the ClientService sends a message CreatePeerRequest depicted in Figure[5.2]to the respec-
tive Client, where id is a globally unique identifier for the new peer and algorithm is the name
of the search algorithm, that should be used to retrieve resources.

CreatePeerRequest

+int id
+String algorithm

Figure 5.2: UML diagram of the CreatePeerRequest message

Whenever a Client receives a CreatePeerRequest message, it creates a new actor Peer, which
is provided with the address of the ClientService, the directory path for the future test results
and the peerld and algorithm from the CreatePeerRequest. Upon its creation, the Peer creates
another actor called searchActor, which is responsible for the actual search and is provided
with the same parameters as the Peer. Depending on the selected search algorithm a different
searchActor is created. From this point forward, every message the Peer receives is forwarded
to its searchActor, which processes it accordingly. After the searchActor is successfully created
it notifies the ClientService about its creation by sending a CreatePeerResponse message. The
ClientService maintains a list of created peers and every time it receives a CreatedPeerResponse
the sending actor is added to the list. As soon as all peers are created, the ClientService sends a
message AddNeighborsMessage depicted in Figure [5.3]to each peer.

It contains an array of neighboring actors for each peer derived from a generated graph using the
B-A model and the configuration for search specific parameters. The receiving peer forwards
the message to its searchActor, which maintains its neighbors in a list of actors and saves the

43

AddNeighborsMessage

+ActorRef[] neighbors
+ConfigurationDto configuration

Figure 5.3: UML diagram of the AddNeighborsMessage message

configuration.

Afterwards, the ClientService informs the TestRunner with a list of all created peer actors about
the successful creation of the P2P network. From this point forward the TestRunner can sent
messages directly to each peer.

5.2.2 P2P Network Generation in the Peer Model

In the Peer Model implementation, the TestRunner calls startPeers in the ClientService, which
has the following signature:

startPeers (ConfigurationDto configuration, int peersToCreate) ;

Listing 5.3: Signature of the method startPeers in the ClientService

It calculates the number of peers for each Client and adds an entry CREATE_PEER for each
new Node Peer to the respective Client with the peerld and name of the algorithm attached. In
the Client the wiring CreatingPeersWiring (Figure [4.6) is triggered and calls the service Cre-
atePeerService, which extracts the peerld and algorithm name and creates a new Node Peer.
Depending on the algorithm a respective SpecialNode is created that extends from SimpleNode,
which is depicted in Figure[5.4]

The SpecialNode implements the behavior of the selected search algorithm. Additionally, the
SimpleNode adds a new sub-peer with the peerld as its name to the Client, where all future
entries for this Node Peer will be added. Additionally, all wirings for the Node Peer will be
added to this sub-peer, including AddNeighborsWiring (Figure @.8), AddResourceWiring (Fig-
ure [4.10) and AddSearchRequestWiring (Figure [4.12).

After its creation the Node Peer adds an entry PEER_CREATED with the peerld attached to
the sub-peer CreatedPeers in the ClientService, which triggers the wiring PeersCreatedWiring
(Figure £.7)). It calls the service PeerCreatedService, which extracts the peerld and adds it to
a list of created Node Peers maintained by the ClientService. The ClientService waits for all
Node Peers to be created and adds an entry ADD_NEIGHBORS to each Node Peer, with an
array of neighboring peerlds, derived from a generated graph using the B-A model, attached.
Additionally, the configuration with the search specific parameters is attached. This triggers the

44

SimpleNode

+String peerld
+ConfigurationDto configuration
+Set neighborList

+List resources

+addNeighbors(String[] neighbors): void
+addRecource(Resource resource): void

SpecialNode

Figure 5.4: UML diagram of SimpleNode

wiring AddNeighborsWiring (Figure in the respective Node Peer, which calls the service
AddNeighborsService. It extracts the neighbors and configuration and adds both to the Sim-
pleNode, which maintains this information.

Afterwards, the ClientService informs the TestRunner with a list of all created peerlds about the
successful creation of the P2P network. From this point forward the TestRunner can add entries
directly to each Node Peer.

5.3 Resource Distribution

After startPeers was successfully executed, runTest in the TestRunner calls sendResources with
the following signature to distribute a resource among the peers in the network:

sendResources (String testName, int peerCount, double replicationRatio);

Listing 5.4: Signature of the method sendResources in the TestRunner

The testName is the name of the current test, peerCount is the size of the created network and
replicationRatio is the percentage that determines to how many peers the resource should be
sent. First it creates a Resource object, shown in Figure [5.5]

The Resource consists of a name, a year and a genre. Additionally, it has a method calcu-
lateSimilarity that compares itself to another Resource and return their similarity. For this the

45

Resource

+5tring name
+Integer year
+Genre genre

+calculateSimilarity(Resource resource): double

<<~ - -~ -

«enumeration»
Genre

DRAMA

FANTASY
SCIENCE_FICTION
COMEDY

ACTION

Figure 5.5: UML diagram of Resource

calculateSimilarity method uses the Similarity class depicted in Figure [5.6]

Similarity

+getYearSimilarity(Integer y1, Integer y2): double
+getNameSimilarity(String n1, String n2): double
+getGenreSimilarity(Genre g1, Genre 2): double

Figure 5.6: UML diagram of Similarity

It has a comparison method for each of the three Resource properties, which use the mechanisms
described in Section

Afterwards, the created resource is sent to randomly selected peers. The implementation details
for Akka and the Peer Model are described their respective Sections [5.3.T|and [5.3.2]

5.3.1 Resource Distribution in Akka

In the Akka implementation sendResources sends a message AddResourceMessage depicted in
Figure[5.7)to randomly selected peer actors.

46

AddResourceMessage

+Resource resource

Figure 5.7: UML diagram of the AddResourceMessage message

Each peer forwards the message to its searchActor, which maintains a list of resources.

5.3.2 Resource Distribution in the Peer Model

In the Peer Model implementation sendResources calls the method addResource with the fol-
lowing signature for each randomly selected Node Peer:

addResource (Sring destination, Resource resource);

Listing 5.5: Signature of the method addResource in the ClientService

This method adds a new entry ADD_RESOURCE to the Node Peer destination and attaches the
resource. In the respective Node Peer the wiring AddResourceWiring (Figure [d.10) is triggered,
which calls the service AddResourceService. This service extracts the resource and adds it to a
list of resources, which is maintained by the SimpleNode.

5.4 Search Request

After the resource distribution the runTest method calls sendQueries in the TestRunner with the
following signature to issue search requests into the network:

sendQueries (Sring testName, int peerCount, int queryCount);

Listing 5.6: Signature of the method sendQueries in the TestRunner
The testName is the name of the current test, peerCount is the size of the network and queryCount
is the number of queries that should be issued. This method creates queries according to the
mechanism presented in Section 4.4 whereby each query is a Resource object.
Afterwards, a SearchRequest object is created from each query as depicted in Figure[5.8]
It contains a unique requestld and the actual request as a Resource object. Each SearchRequest
object is then sent to randomly selected peers. The implementation details for Akka and the Peer

Model are described their respective Sections [5.4.1]and [5.4.2]

47

SearchRequest

+String requestid
+Resource request

Figure 5.8: UML diagram of the SearchRequest message

5.4.1 Search Request in Akka

In the Akka implementation sendQueries sends the SearchRequest objects as messages to ran-
domly selected peer actors. Each peer forwards the message to its searchActor, which in return
applies its search algorithm to search for resources matching the issued query. When the query
is either successfully resolved or dropped, the current peer sends a SearchTerminateMessage
message depicted in Figure[5.9)to the ClientService.

SearchTerminateMessage

+Boolean queryResolved
+Long time

Figure 5.9: UML diagram of the SearchTerminateMessage message

It contains a boolean flag, whether the query was successful and a time value that saves the
elapsed time in milliseconds from issuing until termination of a query. The ClientService keeps
track of the SearchTerminateMessage messages and compares it to the issued queries to deter-
mined whether all queries are terminated.

5.4.2 Search Request in the Peer Model

In the Peer Model implementation sendQueries calls the method sendSearchRequest in the
ClientService with the following signature for each randomly selected Node Peer:

sendSearchRequest (String destination, SearchRequest searchRequest);

Listing 5.7: Signature of the method sendSearchRequest in the ClientService

This methods adds a new entry SEARCH_REQUEST to the Node Peer destination and attaches
the SearchRequest object. In the respective Node Peer the wiring AddSearchRequestWiring
(Figure [A.12) is triggered, which calls the service AddSearchRequestService. This service ex-
tracts the SearchRequest object and initiates the search on the current node. From this point

48

forward solely the Node Peers are involved in executing the selected search algorithm to find
a matching resource. When the query is either successfully resolved or dropped, the current
Node Peer adds an entry SEARCH_TERMINATE to the sub-peer TerminatedSearches in the
ClientService and attaches a boolean flag whether the query was successful and a time value with
the elapsed time in milliseconds from issuing until termination of the query. In the ClientService
the wiring TerminatedSearchesWiring (Figure d.14) is triggered, which calls the service Termi-
natedSearchesService. This service compares the terminated searches with the issued queries to
determined whether all queries are terminated.

5.5 Reset Test Environment

After all queries are terminated, the runTest method calls stopPeers in the TestRunner with the
following signature to reset the test environment:

stopPeers (String testname) ;

Listing 5.8: Signature of the method stopPeers in the TestRunner

The implementation details for Akka and the Peer Model are described in their respective Sec-

tions3.3.1land [5.5.2]

5.5.1 Rest Test Environment in Akka

In the Akka implementation the TestRunner sends a message StopPeersRequest to the ClientSer-
vice, which forwards the message to all Clients. Each Client stops all its created peers and sends
a message StopPeersResponse to the ClientService afterwards, notifying it about the success-
ful destruction of all its peer actors. As soon as all Clients have notified the ClientService, the
TestRunner is notified about the successful reset of the test environment and the next test case
can be executed.

5.5.2 Reset Test Environment in the Peer Model

In the Peer Model implementation stopPeers calls the method stopPeers in the ClientService
with the following signature:

stopPeers () ;

Listing 5.9: Signature of the method stopPeers in the ClientService

This method adds a new entry STOP_PEER to each Client, where the wiring StoppingPeer-
sWiring (Figure[4.16)) is triggered, which calls the service StopPeerService. This service iterates
over its Node Peers and removes the respective sub-peer from the Client’s Peer Model. After-
wards, an entry PEERS_STOPPED is added to the sub-peer StoppedPeers in the ClientService,

49

which triggers the wiring PeersStoppedWiring (Figure d.17)). It calls the service PeersStopped-
Service, which checks if all Clients have destroyed their respective Node Peers and notifies the
TestRunner about it. Afterwards, the test environment is successfully reset and the next test case
can be executed.

50

CHAPTER

Evaluation

In this chapter, the Physarum Polycephalum Slime Mold search algorithm adaption and the
proposed Bark Beetle for unstructured P2P search algorithm are analyzed and compared to four
existing intelligent and non-intelligent search algorithms.

6.1 Simulation Methodology

For the comparison, the search algorithms Gnutella Flooding, k-Walker, AntNet for P2P and
SMP2P are benchmarked alongside the Physarum Polycephalum Slime Mold for unstructured
P2P search and Bark Beetle for unstructured P2P search algorithms. Additionally, the perfor-
mance of the algorithms within and between the two proposed frameworks is evaluated.

The topology of the unstructured P2P network is a scale-free network that is generated using the
Barabasi-Albert (B-A) model [4]]. The B-A model initializes the network with m nodes and
each new node is connected to m < mg existing nodes. Following the recommendation in [[17],
each graph instance is generated with parameters m = mg = 2.

The following dimensions have been identified to perform the benchmarking of the respective
algorithms:

* The P2P graph follows the definition in Section|2.1.3.1} In the scope of this thesis, only
static P2P graph instances without dynamic peer churn are evaluated. Three different
network sizes will be used for the benchmarking: 50 nodes, 100 nodes and 200 nodes.

* The query distribution is defined as the number of queries that are sent into the P2P
network. To represent different load scenarios the number of queries will be distinguished
into four groups relative to the network size, covering low to very high load: 10%, 30%,
60%, 90%, i.e. in a network with 50 nodes, 10% means that 5 queries will be used. Since
the number of queries is relative to the network size, scalability can be examined.

51

* The replication defines the number of nodes in the P2P network having a specific re-
source. Similar to the query distribution, the replication ratio of a specific resource is
relative to the network size. In the benchmarking, only a single resource is used which
is distributed with two different replication strategies. Firstly, to observe the algorithm
behavior in the worst case scenario, only one node will have the resource. Secondly, to
increase the probability of success, the resource is distributed to 16% of the number of
nodes of the network, i.e. 8 replicas for 50 nodes, 16 for 100 nodes and 32 for 200 nodes.

The execution of each test case consists of the following steps:

* Network generation: An instance of a P2P network with a given number of nodes is
generated using the B-A model and neighboring relationships are established.

» Configuration: The configuration settings are sent to each peer, containing the respective
parameter settings of the used algorithm.

* Replication: An instance of a P2P resource following the definition in Section [3.1] is
created and distributed into the P2P network. Depending on the test scenario, the resource
is either sent to one node or to 16% of the nodes in the network.

* Query generation: Depending on the test scenario, a specific number of queries is cre-
ated. Additionally, the created queries are divided into groups of five instances of the
same query. For example, if 15 queries are created, three groups of five instances of the
same query are created, each group containing different content. Afterwards, the created
queries are sent to randomly selected nodes. Furthermore, the parameter € is set to a value
that the similarity between all queries and available resources results in “acceptable data”.

* Execution: Each test case is executed ten times and the recorded results are averaged and
stored for future analysis.

All benchmarks are carried out in the Google Compute Engine cloud infrastructure [2f]. For
this, a “nl-standard-16” instance is used, on which the Ubuntu 17.10 operating system is run.
The instance includes 16 vCPUs and 60GB RAM. According to [3], a vCPU equals a hardware
thread of a 2.6 GHz Intel Xeon ES, a 2.5 GHz Intel Xeon E5 v2, a 2.3 GHz Intel Xeon ES v3 or
a 2.2 GHz Intel Xeon E5 v4 CPU.

The following metrics are used for the evaluation:

* Percentage of successful queries: A query is successful, if it returns exact or acceptable
data, following the definition in Section [3.1] This metric represents the percentage of all
sent queries per test case, that were successful.

* Average messages per node: This metric represents the average message load for each
node in the network.

* Absolute time: This metric represents the elapsed time in milliseconds from sending the
queries until the queries are resolved.

52

6.2 Sensitivity Analysis

Before the competitive benchmarks for the different search algorithms can be performed, the
best parameter settings for each algorithm have to be evaluated. For this the Sensitivity Analy-
sis is performed on the value range of parameters recommended by previous research works or
determined in preliminary benchmarks. Thus, the Sensitivity Analysis is only applied on param-
eters, if no fixed parameter value is recommended by previous research works. It determines the
optimal value for each combination of the different dimensions stated in Section [6.1] based on
the metrics in Section

To perform the Sensitivity Analysis an automatic parameter tuning mechanism is chosen, specif-
ically the racing mechanism presented in [6]]. It focuses only on well performing configurations
and discards those that do not perform well enough. Initially, new configurations are run against
a small subset of the testing instances. Only the configurations, which do not perform signifi-
cantly worse than the best yet found configuration, get chosen for the subsequent runs. In each
iteration the number of testing instances is increased until only the best configuration is left or a
maximum number of test runs is reached. Thus, the more promising a configuration is, the more
tests it was run against. In order to effectively compare the candidate configurations the pairwise
t-test is used [|18]].

The Sensitivity Analysis for Gnutella Flooding is performed on its TTL parameter. The TTL
value range is shown in Table[6.1]and the analysis results are shown in Table

Parameter | Range | Source
TTL 7,8,9 | preliminary benchmarks

Table 6.1: Gnutella Flooding parameter values for the Sensitivity Analysis

nodes | queries | TTL
50 5
50 15
50 30
50 45
100 10
100 30 9
100 60
100 90
200 20
200 60
200 120
200 180

Table 6.2: Gnutella Flooding Sensitivity Analysis results

The Sensitivity Analysis for k-Walker is performed on the number of walkers and the TTL
parameter. The parameter range for the walkers is based on the recommendation in [20] and the

53

TTL parameter range is based on preliminary benchmarks. The parameter value ranges for the
Sensitivity Analysis are shown in Table [6.3]and the analysis results are shown in Table [6.4]

Parameter | Range | Source
walkers 16,32 | [20]
TTL 7,8,9 | preliminary benchmarks

Table 6.3: k-Walker parameter settings for the Sensitivity Analysis

nodes | queries | walkers | TTL
50 5
50 15
50 30
50 45
100 10
100 30
100 60 32 ?
100 90
200 20
200 60
200 120
200 180

Table 6.4: k-Walker Sensitivity Analysis results

The Sensitivity Analysis for AntNet for P2P is only performed on the TTL parameter and the
remaining parameter values are chosen based on the recommendations in [25]]. The parameter
value range for TTL is based on preliminary benchmarks. The parameter value ranges for the
Sensitivity Analysis is shown in Table[6.5|and the analysis results are shown in Table[6.6]

Parameter | Range Source
TTL 4,7,9 | preliminary benchmarks
o 0.2
) 025 Bl

Table 6.5: AntNet for P2P parameter values for the Sensitivity Analysis

All parameters for the SMP2P algorithm are chosen based on the recommendations in [27].
Since they showed good results in the preliminary benchmarks, no Sensitivity Analysis is nec-
essary. The parameter values used for the competitive benchmarks are shown in Table

The Sensitivity Analysis for Physarum Polycephalum Slime Mold for unstructured P2P search
is performed on the TTL and £ parameters. The parameter value range for both parameters is
based on preliminary benchmarks. The parameter value ranges for the Sensitivity Analysis are
shown in Table [6.8]and the analysis results are shown in Table[6.9]

54

nodes | queries | TTL
50 5
50 15
50 30
50 45
100 10
100 30 9
100 60
100 90
200 20
200 60
200 120
200 180

Table 6.6: AntNet for P2P Sensitivity Analysis results

nodes | queries | minimum slug | min aggregate pacemaker pseudopod aggregate roulette wheel

update count count notification ttl max ttl count threshold | selection prob.
50 5 60 4 7 4 16 0.2
50 15 60 4 4 4 16 0.2
50 30 15 16 7 4 4 0.2
50 45 30 16 7 4 16 0.2
100 10 60 4 2 4 4 0.8
100 30 15 4 4 4 4 0.2
100 60 15 16 7 4 16 0.2
100 90 30 16 4 4 4 0.6
200 20 60 4 7 7 4 0.8
200 60 30 16 7 7 4 0.6
200 120 60 16 2 4 4 0.2
200 180 30 16 7 4 4 0.2

Table 6.7: SMP2P parameter values used for the competitive benchmarks

Parameter | Range Source
gTL g’ 082’ 59 00501 preliminary benchmarks

Table 6.8: Physarum Polycephalum Slime Mold parameter values for the Sensitivity Analysis

55

nodes | queries | TTL | ¢
50 5
50 15
50 30
50 45
100 10
100 30
100 60 ? 01
100 90
200 20
200 60
200 120
200 180

Table 6.9: Physarum Polycephalum Slime Mold Sensitivity Analysis results

The Sensitivity Analysis for Bark Beetle for unstructured P2P search is performed on the TTL,
radius, sufficient pheromone rate, too sufficient pheromone rate, attractant pheromone and anti
attractant pheromone parameters. The parameter value ranges for those parameters are based on
preliminary benchmarks. The parameter value ranges for the Sensitivity Analysis are shown in
Table [6.10] and the analysis results are shown in Table[6.11]

Parameter Range Source
TTL 7,8,9
radius 1,2,3 ..
sufficient pheromone rate 1,5,10 preliminary benchmarks
too sufficient pheromone rate | 100, 200, 500
attractant pheromone 0.25,0.5,1
anti attractant pheromone -0.25,-0.5, -1

Table 6.10: Bark Beetle parameter values for the Sensitivity Analysis

nodes | queries | TTL | radius sufficient too sufficient attractant | anti attractant
pheromone rate | pheromone rate | pheromone pheromone
50 5 2 1 100
50 15 1 1 100
50 30 1 1 100
50 45 1 1 100
100 10 2 1 100
100 30 9 1 1 100 | 1
100 60 1 5 200
100 90 1 5 200
200 20 1 1 100
200 60 1 1 200
200 120 1 5 500
200 180 1 5 500

56

Table 6.11: Bark Beetle Sensitivity Analysis results

6.3 Raw Result Data

The results of each algorithm obtained with the Peer Model framework are shown in the Tables

[6.12] [6.13] [6.14] [6.15] [6.16] and [6.17] The results of each algorithm obtained with the Akka
framework are shown in the Tables[6.18] [6.19] [6.20] [6.21] [6.22] and [6.23] The columns in all the

tables are explained as follows:

¢ #: The row number.

¢ #nodes: The number of nodes.

queries: The number of issued queries.

* replication: The replication ratio of the resource in the P2P network.

success rate: The success rate percentage metric as defined in[6.1]

* avg message per node: The average messages per node metric as defined in

absolute time: The absolute time metric in milliseconds as defined in[6.1]

57

58

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 100 14 108
2 50 5 0.16 100 17 44
3 50 15 0.02 99 43 179
4 50 15 0.16 100 51 81
5 50 30 0.02 98 85 318
6 50 30 0.16 100 103 185
7 50 45 0.02 98 127 524
8 50 45 0.16 100 152 224
9 100 10 0.01 100 28 263
10 100 10 0.16 100 19 64
11 100 30 0.01 99 81 681
12 100 30 0.16 100 102 297
13 100 60 0.01 100 160 1237
14 100 60 0.16 100 184 592
15 100 90 0.01 99 240 1859
16 100 90 0.16 100 307 1047
17 200 20 0.005 100 53 922
18 200 20 0.16 100 30 226
19 200 60 0.005 95 151 2520
20 200 60 0.16 100 185 1086
21 200 120 0.005 95 295 5021
22 200 120 0.16 100 382 2172
23 200 180 0.005 95 438 7217
24 200 180 0.16 100 579 3753
Table 6.12: Gnutella Peer Model results

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 96 27 148
2 50 5 0.16 100 20 20
3 50 15 0.02 89 84 411
4 50 15 0.16 100 57 70
5 50 30 0.02 89 163 605
6 50 30 0.16 100 101 100
7 50 45 0.02 89 247 888
8 50 45 0.16 100 146 141
9 100 10 0.01 80 27 193
10 100 10 0.16 100 13 22
11 100 30 0.01 83 80 643
12 100 30 0.16 100 45 88
13 100 60 0.01 84 164 1037
14 100 60 0.16 100 99 176
15 100 90 0.01 83 247 1554
16 100 90 0.16 100 159 273
17 200 20 0.005 41 28 526
18 200 20 0.16 100 15 69
19 200 60 0.005 37 85 1732
20 200 60 0.16 100 51 220
21 200 120 0.005 39 171 2948
22 200 120 0.16 100 100 360
23 200 180 0.005 39 257 4192
24 200 180 0.16 100 160 582

Table 6.13: k-Walker Peer Model results

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 10 8 9
2 50 5 0.16 100 8 55
3 50 15 0.02 17 28 62
4 50 15 0.16 97 27 178
5 50 30 0.02 19 54 250
6 50 30 0.16 100 43 217
7 50 45 0.02 30 84 504
8 50 45 0.16 98 68 446
9 100 10 0.01 54 9 167
10 100 10 0.16 98 6 56
11 100 30 0.01 19 27 417
12 100 30 0.16 98 20 252
13 100 60 0.01 26 57 1045
14 100 60 0.16 96 48 676
15 100 90 0.01 13 84 748
16 100 90 0.16 97 68 885
17 200 20 0.005 5 9 221
18 200 20 0.16 99 6 147
19 200 60 0.005 4 28 604
20 200 60 0.16 92 23 728
21 200 120 0.005 4 59 1197
22 200 120 0.16 94 46 1479
23 200 180 0.005 15 86 2688
24 200 180 0.16 94 77 2488
Table 6.14: AntNet Peer Model results
| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 44 10 177
2 50 5 0.16 100 17 182
3 50 15 0.02 52 30 426
4 50 15 0.16 92 44 462
5 50 30 0.02 63 76 957
6 50 30 0.16 100 88 920
7 50 45 0.02 66 118 1454
8 50 45 0.16 100 131 1364
9 100 10 0.01 63 18 528
10 100 10 0.16 100 22 413
11 100 30 0.01 65 52 1133
12 100 30 0.16 99 78 1142
13 100 60 0.01 67 105 2243
14 100 60 0.16 95 152 2239
15 100 90 0.01 62 166 3321
16 100 90 0.16 98 218 3374
17 200 20 0.005 33 24 1153
18 200 20 0.16 75 27 1015
19 200 60 0.005 40 62 3365
20 200 60 0.16 79 76 2359
21 200 120 0.005 27 73 5098
22 200 120 0.16 81 92 4497
23 200 180 0.005 28 109 7253
24 200 180 0.16 85 159 6320
Table 6.15: SMP2P Peer Model results

59

60

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 10 9 17
2 50 5 0.16 88 9 72
3 50 15 0.02 6 28 27
4 50 15 0.16 97 23 143
5 50 30 0.02 17 54 75
6 50 30 0.16 93 45 219
7 50 45 0.02 26 84 154
8 50 45 0.16 96 60 313
9 100 10 0.01 26 9 86
10 100 10 0.16 84 6 61
11 100 30 0.01 24 29 192
12 100 30 0.16 82 19 163
13 100 60 0.01 20 59 353
14 100 60 0.16 89 42 420
15 100 90 0.01 33 91 693
16 100 90 0.16 91 73 604
17 200 20 0.005 7 9 80
18 200 20 0.16 84 6 116
19 200 60 0.005 12 29 238
20 200 60 0.16 83 22 449
21 200 120 0.005 7 59 379
22 200 120 0.16 97 46 880
23 200 180 0.005 13 91 547
24 200 180 0.16 90 70 1158
Table 6.16: Physarum Polycephalum Slime Mold Peer Model results
| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 82 8 89
2 50 5 0.16 100 17 45
3 50 15 0.02 100 22 169
4 50 15 0.16 100 15 69
5 50 30 0.02 100 42 289
6 50 30 0.16 100 28 120
7 50 45 0.02 100 63 408
8 50 45 0.16 100 40 164
9 100 10 0.01 100 10 157
10 100 10 0.16 100 7 63
11 100 30 0.01 97 22 437
12 100 30 0.16 100 14 110
13 100 60 0.01 99 45 1229
14 100 60 0.16 100 30 239
15 100 90 0.01 97 67 1399
16 100 90 0.16 100 45 350
17 200 20 0.005 67 7 370
18 200 20 0.16 100 5 115
19 200 60 0.005 78 23 1098
20 200 60 0.16 100 14 257
21 200 120 0.005 69 47 2755
22 200 120 0.16 100 30 521
23 200 180 0.005 73 70 3814
24 200 180 0.16 100 44 788

Table 6.17: Bark Beetle Peer Model results

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 100 14 13
2 50 5 0.16 100 16 4
3 50 15 0.02 100 44 6
4 50 15 0.16 100 51 3
5 50 30 0.02 100 88 11
6 50 30 0.16 100 102 5
7 50 45 0.02 100 131 53
8 50 45 0.16 100 153 20
9 100 10 0.01 100 29 11
10 100 10 0.16 100 35 12
11 100 30 0.01 100 88 81
12 100 30 0.16 100 107 29
13 100 60 0.01 100 176 54
14 100 60 0.16 100 215 137
15 100 90 0.01 100 264 242
16 100 90 0.16 100 322 77
17 200 20 0.005 100 58 42
18 200 20 0.16 100 72 5
19 200 60 0.005 100 176 377
20 200 60 0.16 100 220 85
21 200 120 0.005 100 348 441
22 200 120 0.16 100 439 182
23 200 180 0.005 99 518 466
24 200 180 0.16 100 658 177
Table 6.18: Gnutella Akka results

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 86 28 13
2 50 5 0.16 100 21 1
3 50 15 0.02 90 84 23
4 50 15 0.16 100 58 31
5 50 30 0.02 88 162 14
6 50 30 0.16 100 100 16
7 50 45 0.02 86 248 134
8 50 45 0.16 100 146 1
9 100 10 0.01 83 27 2
10 100 10 0.16 100 13 1
11 100 30 0.01 82 80 150
12 100 30 0.16 100 45 46
13 100 60 0.01 85 164 154
14 100 60 0.16 100 100 2
15 100 90 0.01 83 247 80
16 100 90 0.16 100 158 39
17 200 20 0.005 39 28 6
18 200 20 0.16 100 14 94
19 200 60 0.005 35 85 83
20 200 60 0.16 100 51 3
21 200 120 0.005 40 171 883
22 200 120 0.16 100 101 90
23 200 180 0.005 38 257 319
24 200 180 0.16 100 159 12

Table 6.19: k-Walker Akka results

61

62

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 4 9 1
2 50 5 0.16 96 9 3
3 50 15 0.02 28 29 4
4 50 15 0.16 98 23 4
5 50 30 0.02 15 57 11
6 50 30 0.16 95 46 8
7 50 45 0.02 24 89 14
8 50 45 0.16 97 63 12
9 100 10 0.01 26 9 7
10 100 10 0.16 93 5 3
11 100 30 0.01 20 28 15
12 100 30 0.16 93 21 6
13 100 60 0.01 22 61 21
14 100 60 0.16 85 48 17
15 100 90 0.01 35 89 182
16 100 90 0.16 87 74 42
17 200 20 0.005 6 9 1
18 200 20 0.16 88 6 9
19 200 60 0.005 3 29 6
20 200 60 0.16 73 23 28
21 200 120 0.005 0 59 14
22 200 120 0.16 90 46 94
23 200 180 0.005 1 89 281
24 200 180 0.16 85 74 116
Table 6.20: AntNet Akka results
| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 48 15 68
2 50 5 0.16 90 19 100
3 50 15 0.02 70 41 136
4 50 15 0.16 96 54 112
5 50 30 0.02 73 79 247
6 50 30 0.16 97 96 180
7 50 45 0.02 77 122 371
8 50 45 0.16 90 138 318
9 100 10 0.01 76 23 147
10 100 10 0.16 99 21 129
11 100 30 0.01 74 53 286
12 100 30 0.16 87 57 300
13 100 60 0.01 71 110 626
14 100 60 0.16 93 123 583
15 100 90 0.01 57 145 1156
16 100 90 0.16 91 172 824
17 200 20 0.005 43 24 215
18 200 20 0.16 89 37 244
19 200 60 0.005 47 67 464
20 200 60 0.16 84 100 480
21 200 120 0.005 37 90 684
22 200 120 0.16 85 150 757
23 200 180 0.005 22 112 839
24 200 180 0.16 68 178 765

Table 6.21: SMP2P Akka results

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 12 10 5
2 50 5 0.16 98 7 1
3 50 15 0.02 30 29 28
4 50 15 0.16 95 26 2
5 50 30 0.02 10 58 6
6 50 30 0.16 94 44 4
7 50 45 0.02 2 87 3
8 50 45 0.16 97 56 5
9 100 10 0.01 14 9 2
10 100 10 0.16 90 6 5
11 100 30 0.01 11 28 9
12 100 30 0.16 91 19 10
13 100 60 0.01 26 60 10
14 100 60 0.16 88 44 26
15 100 90 0.01 23 92 200
16 100 90 0.16 94 66 69
17 200 20 0.005 7 9 17
18 200 20 0.16 80 6 7
19 200 60 0.005 7 29 6
20 200 60 0.16 89 23 23
21 200 120 0.005 4 60 3
22 200 120 0.16 88 44 50
23 200 180 0.005 8 89 27
24 200 180 0.16 93 68 71
Table 6.22: Physarum Polycephalum Slime Mold Akka results

| #nodes | # queries | replication | success rate | avg message per node | absolute time
1 50 5 0.02 92 8 18
2 50 5 0.16 100 19 1
3 50 15 0.02 99 22 7
4 50 15 0.16 100 15 1
5 50 30 0.02 98 44 11
6 50 30 0.16 100 29 1
7 50 45 0.02 100 67 23
8 50 45 0.16 100 43 1
9 100 10 0.01 100 10 2
10 100 10 0.16 100 8 7
11 100 30 0.01 96 22 22
12 100 30 0.16 100 13 5
13 100 60 0.01 96 45 31
14 100 60 0.16 100 29 5
15 100 90 0.01 97 68 67
16 100 90 0.16 100 44 11
17 200 20 0.005 64 7 54
18 200 20 0.16 100 4 14
19 200 60 0.005 75 23 29
20 200 60 0.16 100 14 9
21 200 120 0.005 61 47 91
22 200 120 0.16 100 29 10
23 200 180 0.005 68 70 311
24 200 180 0.16 100 44 19

Table 6.23: Bark Beetle Akka results

63

6.4 Competitive Analysis

The graphical representation of the test results using the absolute time as a metric is shown in
Figure [6.1] for the Peer Model and in Figure [6.2] for Akka. In case of 1 replica, in both the Peer
Model and Akka, Bark Beetle outperforms SMP2P, Gnutella and k-Walker with much lower ab-
solute time for all network sizes. Only for network size of 100 k-Walker has a similar absolute
time to Bark Beetle. On the other hand, both AntNet and Physarum Polycephalum outperform
Bark Beetle in terms of absolute time, with Physarum Polycephalum having the lowest absolute
time out of all six algorithms for all network sizes.

In case of 16% replication, some discrepancies between the Peer Model and Akka occur. In the
Peer Model Bark Beetle outperforms SMP2P, Gnutella, AntNet and Physarum Polycephalum
for all network sizes. Only the k-Walker performs slightly better than Bark Beetle. In Akka
some fluctuations occur in the performance of k-Walker. Therefore, Bark Beetle outperforms all
other algorithms in terms of absolute time.

In the Peer Model Physarum Polycephalum outperforms SMP2P, Gnutella and AntNet for all
network sizes. On the other hand, Bark Beetle and k-Walker outperform Physarum Poly-
cephalum for all network sizes. In Akka Physarum Polycephalum performs better than SMP2P
and Gnutella in terms of absolute time, but worse than Bark Beetle for all network sizes. Except
for the network size of 100, it also outperforms AntNet. Finally, k-Walker fluctuates between
much lower and much higher absolute time than Physarum Polycephalum.

The fact that Bark Beetle performs equal or better than k-Walker and Gnutella in terms of ab-
solute time can be attributed to the fact that Bark Beetle can be considered an optimization
of k-Walker since Bark Beetle uses the same random movement as k-Walker, if no sufficient
pheromone concentration is found.

Since Physarum Polycephalum and AntNet use a similar agent based approach, their perfor-
mance in terms of absolute time is comparable.

In case of 1 replica, Physarum Polycephalum and AntNet outperform Bark Beetle in terms of
absolute time, whereas it is the other way around for 16% replication. This can be explained
with the fact, that in both Physarum Polycephalum and AntNet the ants travel back and forth,
if results are found, whereas Bark Beetle only informs the initiating node. Since more results
are expected to be found for 16% replication, the traveling of the ants increases and thus Bark
Beetle eventually outperforms both Physarum Polycephalum and AntNet.

The fact that both Bark Beetle and Physarum Polycephalum perform better than SMP2P in terms
of absolute time is mainly because SMP2P completes all of its stages entirely, following the pat-
tern from nature.

It is important to note that, although the six algorithms are very similar in relation to each other
within the Peer Model and within Akka in terms of absolute time, all algorithms perform much
better in Akka. On average the algorithms in Akka perform 27 times better than their counter-
parts in the Peer Model. It can be assumed that the communication between the nodes in the Java
implementation of the Peer Model is significantly slower than in Akka. Further investigation is

64

needed to determine why the Peer Model performs so much slower compared to Akka, however,
this is not in the scope of this thesis and is left for future research. Additionally, it has to be
noted, that the Java implementation of the Peer Model is still under development. Therefore, it
has to be observed whether this issue still remains in future releases.

The graphical representation of the test results using the average messages per node metric is
shown in Figure[6.3|for the Peer Model and in Figure[6.4|for Akka. The following is true for both
the Peer Model and Akka. Both Physarum Polycephalum and Bark Beetle outperform Gnutella,
k-Walker and SMP2P in terms of message overhead in all cases. Additionally, the scalability
issue of Gnutella can be observed, as its average message count gets much higher than the re-
maining algorithms from network size 100 and 16% replication. Due to a similar agent based
approach, AntNet and Physarum Polycephalum have an almost identical message overhead in all
cases. For all scenarios, Bark Beetle has the smallest message overhead, followed by Physarum
Polycephalum and AntNet, which perform only slightly worse. On average Physarum Poly-
cephalum produces 1.4 times more messages than Bark Beetle. This can be attributed to the fact
that, compared to Bark Beetle, the ants in both Physarum Polycephalum and AntNet travel back
and forth, which increases the message overhead.

As expected, the message overhead for each algorithm in the Peer Model is almost identical to
its counterpart in Akka since it only depends on the used search algorithm, which determines
which nodes interact with each other in which way in order to find the results. The underlying
framework, whether the Peer Model or Akka, have no influence on this mechanism.

The graphical representation of the test results using the success rate metric is shown in Figure
[6.3] for the Peer Model and in Figure [6.6| for Akka. Gnutella has a success rate close to 100%
in almost all cases. However, as mentioned above, this comes at a cost of high message overhead.

Physarum Polycephalum and AntNet have similar success rates. In case of 1 replica, in both
the Peer Model and Akka, they have the worst success rate for all network sizes with Physarum
Polycephalum having a success rate between 2% and 33%.

In case of 16% replication, in both the Peer Model and Akka, they performs significantly better,
with a success rate greater than or equal to the success rate of SMP2P. However, the remain-
ing three algorithms still outperform them. Nonetheless, the success rate of Physarum Poly-
cephalum, in case of 16% replication, varies between 80% and 98%, which can be considered
as good performance.

In case of 1 replica, in both the Peer Model and Akka, Bark Beetle performs better than k-
Walker, AntNet, SMP2P and Physarum Polycephalum. For network sizes of 50 and 100 it even
performs similarly to Gnutella with success rates between 82% and 100%. For the network size
of 200 it performs worse than Gnutella with a success rate between 61% and 78%.

In case of 16% replication, in both the Peer Model and Akka, Bark Beetle has a constant success
rate of 100% alongside Gnutella and k-Walker for all network sizes.

65

Since Bark Beetle uses the same random movement as k-Walker, if no sufficient pheromone
concentration is found, the success rate of Bark Beetle is at least as good as the success rate of
k-Walker. In case of 16% replication, their success rates are identical. In case of 1 replica, the
additional exploitation mechanism of Bark Beetle results in a constantly better success rate for
Bark Beetle compared to k-Walker.

Since Physarum Polycephalum and AntNet use a similar agent based approach, they have simi-
lar success rates.

In case of 1 replica, Physarum Polycephalum has the worst success rate. Since Bark Beetle
uses a similar initial random exploration mechanism, the bad success rate of Physarum Poly-
cephalum must be due to its exploitation mechanism. An explanation could be that the flow in
Physarum Polycephalum only increases on paths, which an ant has visited. In contrast to this, the
pheromone concentration in Bark Beetle is also increased on unvisited paths, since pheromones
are released in a specific radius from the node with the result and not only in the direction from
which the beetle came from. Thus, beetles originating from unvisited nodes are more likely to
find results in Bark Beetle.

As expected, the success rate for each algorithm in the Peer Model is almost identical to its
counterpart in Akka since it only depends on the used search algorithm, which determines which
nodes interact with each other in which way in order to find the results. The underlying frame-
work, whether the Peer Model or Akka, have no influence on this mechanism.

66

absolute time [ms]

absolute time [ms]

absolute time [ms]

1600

—— Gnutella
1400 4 —— k-Walker
—— AntNet
— SMP2P
1200 PhysarumPolycephalum
— BarkBeetle
1000
800
600
400 4
200
0 T T T T T T T
5 10 15 20 25 30 35 40
query count
(a) 50 nodes, 2% replication
3500
— Gnutella
—— k-Walker
80001 AntNet
—— SMP2P
2500 PhysarumPolycephalum
— BarkBeetle
2000

0

1500 -
1000 -
500 -
T T T T T T T

10

8000

20 30 40 50 60 70 80

query count

(c) 100 nodes, 1% replication

90

6000

Gnutella

k-Walker

AntNet

SMP2P
PhysarumPolycephalum
BarkBeetle

0
20

40

4000
2000 /

T T T T
100 120 140 160
query count

(e) 200 nodes, 0.5% replication

60 80

180

absolute time [ms]

absolute time [ms]

absolute time [ms]

1600
—— Gnutella
1400 {4 —— k-Walker
—— AntNet
— SMP2P
1200 PhysarumPolycephalum
— BarkBeetle
1000
800 4
600 4
400 /
200 4 /’,* —
0 T T T T T T T
5 10 15 20 25 30 35 40 45
query count
(b) 50 nodes, 16% replication
4000
— Gnutella
—— k-Walker
—— AntNet
—— SMP2P
3000 PhysarumPolycephalum
— BarkBeetle
2000 1
1000
0 T T T T T T T
10 20 30 40 50 60 70 80 90
query count
(d) 100 nodes, 16% replication
7000
—— Gnutella
—— k-Walker
60007 AntNet
—— SMP2P
5000 | PhysarumPolycephalum
—— BarkBeetle
4000
3000 4
2000 4
1000
0 T T T T T T T
20 40 60 80 100 120 140 160 180
query count

(f) 200 nodes, 16% replication

Figure 6.1: Peer Model absolute time comparison for network sizes 50, 100, 200

67

400 350
— Gnutella — Gnutella
—— k-Walker s0d k-Walker
—— AntNet —— AntNet
300] — SMP2P —— SMP2P
PhysarumPolycephalum 250 PhysarumPolycephalum
@ —— BarkBeetle N —— BarkBeetle
3 £
200
£ £
=200 A =
2 2
3 5 150
I=} o
1% 1723
Qo Q
© ©
100
100 4
50 4
0 T T T T T T T 0 T T T T T T T
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
query count query count
(a) 50 nodes, 2% replication (b) 50 nodes, 16% replication
1400 1000
—— Gnutella —— Gnutella
1200 4~ k-Walker — k-Walker
—— AntNet s0d AntNet
—— SMP2P —— SMP2P
1000 - PhysarumPolycephalum PhysarumPolycephalum
'g — BarkBeetle g — BarkBeetle
= = 600 4
g™ £
2 2
E 600 4 2 4004
17 17
e} o
© ©
400 4
200
200
0 T T T T T T T 0 T T T T T T T
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
query count query count
(c) 100 nodes, 1% replication (d) 100 nodes, 16% replication
1000 1000
—— Gnutella —— Gnutella
—— k-Walker —— k-Walker
— AntNet — AntNet
8001 smp2p 8001 smp2p
PhysarumPolycephalum PhysarumPolycephalum
@ —— BarkBeetle) —— BarkBeetle
6o | £ 600 |
o o
£ £
2 2
=) =3
S 400 4 S 400 4
172 [72]
o o
© ©
200 200
0 T T T T T T T 0 T T T T T T T
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180
query count query count

68

(e) 200 nodes, 0.5% replication

(f) 200 nodes, 16% replication

Figure 6.2: Akka absolute time comparison for network sizes 50, 100, 200

300 160

— Gnutella — Gnutella
—— k-Walker 140 4 —— k-Walker
250 1 —— AntNet —— AntNet
kS —— SMP2P kS 120] — SMP2P
2 PhysarumPolycephalum o PhysarumPolycephalum
% 200 { — BarkBeetle 5 — BarkBeetle
a a 100 A
1%} 0
(] (]
(2] (=)
$ 150 4 o 804
123 123
£ £
60 4
S 100 4 S
© ©
2 Q2 404
© ©
50 4
20 4
0 T T T T T T T 0 T T T T T T T
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
query count query count
(a) 50 nodes, 2% replication (b) 50 nodes, 16% replication
300 350
—— Gnutella —— Gnutella
—— k-Walker 3004 — k-Walker
250 1 —— AntNet —— AntNet
8 —— SMP2P 8 —— SMP2P
e PhysarumPolycephalum 2 2504 PhysarumPolycephalum
% 200 { — BarkBeetle 5 —— BarkBeetle
Q Q
3 8 200 4
o o
% 150 o %
g g 150+
& 100 S
5 o 100+
> >
@ @
N N —///
0 0 — "
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
query count query count
(c) 100 nodes, 1% replication (d) 100 nodes, 16% replication
500 700
— Gnutella — Gnutella
— k-Walker P k-Walker
wod T AntNet — AntNet
3 —— SMP2P 3 —— SMP2P
e PhysarumPolycephalum 2 5004 PhysarumPolycephalum
5 —— BarkBeetle 5 —— BarkBeetle
o 300 -
8 8 400 4
j=2) j=2)
© ©
173 173
o 3 300 4
£ £
() ()
g g
5 5 200 A
> >
© ©
100
-
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180
query count query count
(e) 200 nodes, 0.5% replication (f) 200 nodes, 16% replication

Figure 6.3: Peer Model average messages per node comparison for network sizes 50, 100, 200

69

average messages per node

average messages per node

average messages per node

70

300

— Gnutella
—— k-Walker
250 1 —— AntNet
—— SMP2P
PhysarumPolycephalum
200 { — BarkBeetle
150 o

5 10 15 20 25 30 35 40 45
query count
(a) 50 nodes, 2% replication

300

—— Gnutella

—— k-Walker
250 1 —— AntNet

—— SMP2P

PhysarumPolycephalum

200 1 —— BarkBeetle
150 o

query count

(c) 100 nodes, 1% replication

600
— Gnutella
— k-Walker
500 1 —— AntNet
—— SMP2P
PhysarumPolycephalum
400 { —— BarkBeetle
300

20

40 60 80 100

query count

(e) 200 nodes, 0.5% replication

120 140 160 180

average messages per node average messages per node

average messages per node

180

160

140

120

100

80

60

40

20

350

300

250

200

150

100

50

0

700

600

500

400

300

200

100

— Gnutella

1 — k-Walker

—— AntNet

4 —— SMP2P
PhysarumPolycephalum
-4 — BarkBeetle

query count

(b) 50 nodes, 16% replication

Gnutella

k-Walker

AntNet

SMP2P

4 PhysarumPolycephalum
BarkBeetle

%

10

20 30 40 50 60 70 80 90

query count

(d) 100 nodes, 16% replication

Gnutella

k-Walker

AntNet

SMP2P

4 PhysarumPolycephalum
BarkBeetle

100 120 140 160 180

query count

(f) 200 nodes, 16% replication

Figure 6.4: Akka average messages per node comparison for network sizes 50, 100, 200

success rate %

success rate %

success rate %

100
80
60
—— Gnutella
— k-Walker
—— AntNet
40 —— SMP2P
PhysarumPolycephalum
— BarkBeetle
20
0 T T T T T T T
5 10 15 20 25 30 35 40 45
query count
(a) 50 nodes, 2% replication
100
80
60 —— Gnutella
— k-Walker
— AntNet
—— SMP2P
401 PhysarumPolycephalum
—— BarkBeetle
/\
20 N —— \
0 T T T T T T T
10 20 30 40 50 60 70 80 90
query count
(c) 100 nodes, 1% replication
100
80 -
/\W
60 —— k-Walker
—— AntNet
—— SMP2P
PhysarumPolycephalun
40 A: BarkBeetle
20 +
P
0 T T T T T T T
20 40 60 80 100 120 140 160 180

query count

(e) 200 nodes, 0.5% replication

success rate %

success rate %

success rate %

100
\/
80
60
40
—— Ghnutella
—— k-Walker
| — AntNet
09 SMP2P
PhysarumPolycephalum
BarkBeetle
0 T T T T T T T
5 10 15 20 25 30 35 40 45
query count
(b) 50 nodes, 16% replication
100
80 4
60 4
40 4
— Gnutella
—— k-Walker
—— AntNet
20 4
°1— smpap
PhysarumPolycephalum
—— BarkBeetle
0 T T T T T T T
10 20 30 40 50 60 70 80 90
query count
(d) 100 nodes, 16% replication
100 \/
80 ~//
60 4
40 4
— Gnutella
—— k-Walker
—— AntNet
27 smpzp
PhysarumPolycephalum
— BarkBeetle
0 T T T T T T T
20 40 60 80 100 120 140 160 180

query count

(f) 200 nodes, 16% replication

Figure 6.5: Peer Model success rate comparison for network sizes 50, 100, 200

71

success rate %

success rate %

success rate %

72

10

0

601 —— Gnutella
— k-Walker
—— AntNet
40 4 —— SMP2P
PhysarumPolycephalum
BarkBeetle
20 /\ \/
0 T T T T T T T
5 10 15 20 25 30 35 40 45
query count
(a) 50 nodes, 2% replication
100
_— 0
80
60 Gnutella
k-Walker
AntNet
SMP2P
40 4 PhysarumPolycephalum|
BarkBeetle
\
20 T
0 T T T T T T T
10 20 30 40 50 60 70 80 90
query count
(c) 100 nodes, 1% replication
100
Gnutella
k-Walker
AntNet
80 1 SMP2P
PhysarumPolycephalumn
—— BarkBeetle
60
40 4
20 4
0 T T T 7 T T T
20 40 60 80 100 120 140 160 180

query count

(e) 200 nodes, 0.5% replication

success rate %

success rate %

success rate %

100
I e ——
/ \
80
60
40
—— Gnutella
—— k-Walker
| — AntNet
07 SMP2P
PhysarumPolycephalum
BarkBeetle
0 T T T T T T T
5 10 15 20 25 30 35 40 45
query count
(b) 50 nodes, 16% replication
100
~ -
’/\/
80 4
60 4
40
— Gnutella
—— k-Walker
—— AntNet
07 smpzp
PhysarumPolycephalum
— BarkBeetle
0 T T T T T T T
10 20 30 40 50 60 70 80 90
query count
(d) 100 nodes, 16% replication
100
\ /\\
80 4
60 4
40 4
—— Gnutella
— k-Walker
| — AntNet
27— swmpap
PhysarumPolycephalum
—— BarkBeetle
0 T T T T T T T
20 40 60 80 100 120 140 160 180

query count

(f) 200 nodes, 16% replication

Figure 6.6: Akka success rate comparison for network sizes 50, 100, 200

6.5 Statistical Analysis

To compare Physarum Polycephalum Slime Mold for P2P and Bark Beetle for P2P to the remain-
ing benchmarked search algorithms with statistical confidence an additional statistical analysis
described in [27] is performed.

To this end, one-way ANOVA tests are performed and setup as follows [27]:

When two algorithms A and B are compared the null-hypothesis H states that there is no sig-
nificant difference between the metric value M of these two algorithms. H is the corresponding
alternative-hypothesis [[27]].

The tests are carried out for all different dimensions stated in Section [6.1]and the success rate is
chosen as metric M. Additionally o = 0.05 is chosen as the significance level for the ANOVA
tests [27].

First, Physarum Polycephalum Slime Mold for P2P takes the role of algorithm A and the re-
maining benchmarked algorithms including Bark Beetle for P2P take the role of algorithm B.
The results of these tests are shown in Tables [6.24] [6.23] [6.26] and [6.27] for the Peer Model and
in Tables [6.32] [6.33] [6.34] and [6.35] for Akka. Additionally, Bark Beetle for P2P takes the role
of algorithm A and the remaining benchmarked algorithms including Physarum Polycephalum
Slime Mold for P2P take the role of algorithm B. The results of these tests are shown in Tables

[6.28] [6.29] [6.30] and [6.31] for the Peer Model and in Tables[6.36] [6.37], [6.38] and [6.39] for Akka.

For all tests the column /4 has the value 0 in the table, if Hy is concluded. If Hj is rejected and
thus the tested algorithms are significantly different, /4 has the value 1 if algorithm A performs
better than algorithm B and -1 otherwise.

Example 6.1: For the network size of 50 nodes, 5 queries and 2% replication for the Peer
Model, the mean average success rate is 82 and the standard deviation is 38.24 for Bark Beetle
for P2P. For the same configuration, the mean average is 10 and the standard deviation is 31.62
for AntNet.

The result of the one-way ANOVA test is p = 2.2795 10~%4,

Since the significance level is chosen oo = 0.05 and o > p, the null-hypothesis Hy is rejected and
the alternative-hypothesis H; concluded. Thus, it can be concluded that Bark Beetle for P2P
performs significantly better at this configuration than AntNet. Therefore the value 4 is set to 1
in the result table.

Tables[6.24][6.25] [6.26]and [6.27| show that for the Peer Model for network size 50 and 16% repli-
cation there is not enough data to conclude whether any other search algorithm performs better
than Physarum Polycephalum. Thus, Hy can not be rejected. For 2% replication Physarum
Polycephalum performs significantly worse than the remaining algorithms with the exception of
AntNet, where Hy can not be rejected.

For the network size 100 Physarum Polycephalum performs significantly worse than the remain-

73

ing algorithms. Only for 1% replication not enough data is available to conclude whether AntNet
performs better and thus Hy is rejected.

For network size 200 Physarum Polycephalum performs significantly worse than the remaining
algorithms with the exception of AntNet, where not enough data is available to conclude whether
AntNet performs better and thus Hj is rejected. Additionally, Hy is rejected for SMP2P in some
cases, mainly for higher loads.

Tables [6.32] [6.33] [6.34] and [6.35] show that for Akka for network size 50 and 16% replication
there is not enough data to conclude whether any other search algorithm performs better than
Physarum Polycephalum. Thus, Hy can not be rejected. For 2% replication Physarum Poly-
cephalum performs significantly worse than the remaining algorithms with the exception of
AntNet, where Hj can not be rejected.

For the network size 100 Physarum Polycephalum performs significantly worse than the re-
maining algorithms with the exception of AntNet, where not enough data is available to con-
clude whether it performs better than Physarum Polycephalum. Additionally, Hy is rejected for
SMP2P for 16% replication.

For network size 200 Physarum Polycephalum performs significantly worse than the remaining
algorithms with the exception of AntNet, where not enough data is available to conclude whether
it performs better than Physarum Polycephalum. Only for higher loads and 16% replication
AntNet performs worse than Physarum Polycephalum. Additionally, Hy can not be rejected for
SMP2P for 16% replication.

Tables[6.28][6.29] [6.30]and [6.31| show that for the Peer Model for network size 50 and 16% repli-
cation there is not enough data to conclude whether any other search algorithm performs better
than Bark Beetle. Thus, Hy can not be rejected. For 2% replication the remaining algorithms
perform worse than Bark Beetle with the exception of Gnutella, where Hy can not be rejected.
For network size 100 not enough data is available to conclude whether Gnutella performs better
than Bark Beetle. Additionally, Physarum Polycephalum performs significantly worse than Bark
Beetle. For 16% replication not enough data is available for k-Walker, AntNet and SMP2P in
most cases to decide whether any of them performs better than Bark Beetle. Only for high load
AntNet and SMP2P perform worse than Bark Beetle. For 1% replication k-Walker, AntNet and
SMP2P perform worse than Bark Beetle.

For network size 200 AntNet, SMP2P and Physarum Polycephalum perform significantly worse
than Bark Beetle. For 16% replication not enough data is available to decide whether Gnutella
and k-Walker perform better than Bark Beetle. For 0.5% replication k-Walker performs signifi-
cantly worse than Bark Beetle.

Tables[6.36][6.37] [6.38|and [6.39] show that for Akka for network size 50 and 16% replication not
enough data is available to decide whether any other search algorithm performs better than Bark
Beetle. Thus, Hy can not be rejected. For 2% replication Bark Beetle performs significantly
better than the remaining algorithms with the exception of Gnutella, where not enough data is
available to conclude whether it performs better.

For network size 100 AntNet and Physarum Polycephalum perform significantly worse than

74

Bark Beetle. For 16% replication not enough data is available for Gnutella, k-Walker and SMP2P
in most cases to decide whether any of them performs better than Bark Beetle. Only for high
load SMP2P performs worse than Bark Beetle. For 2% replication Gnutella performs slightly
better than Bark Beetle and k-Walker performs significantly worse than Bark Beetle.

For network size 200 AntNet and Physarum Polycephalum perform significantly worse than
Bark Beetle. For 16% replication not enough data is available for Gnutella, k-Walker and SMP2P
in most cases to decide whether any of them performs better than Bark Beetle. Only for high
load SMP2P performs worse than Bark Beetle. For 2% replication Gnutella performs slightly
better than Bark Beetle and k-Walker and SMP2P perform significantly worse than Bark Beetle.

75

76

mean = stdev p-value h
50 nodes, 5 queries, 2% replication

Gnutella 100+ 0 4.4043E-08 -1
k-Walker 96 + 8.43 1.4213E-07 -1
AntNet 10 +£31.62 1 0
SMP2P 44 £33.73 0.03194007 -1
PhysarumPolycephalum 10 £31.62 - -
BarkBeetle 82 +38.24 2.2795E-04 -1

50 nodes, 5 queries, 16 % replication
Gnutella 99.3+2.21 | 0.15095045 0
k-Walker 89.7+7.26 | 0.15095045 0
AntNet 17.2 £36.26 | 0.15095045 0
SMP2P 52.3+£21.34 | 0.15095045 0
PhysarumPolycephalum | 6.6 £20.87 - -
BarkBeetle 100£0 0.15095045 0

50 nodes, 15 queries, 2% replication
Gnutella 100£0 4.2269E-11 1
k-Walker 100£0 5.8336E-10 -1
AntNet 100 £0 0.43347491 0
SMP2P 100 £0 1.3095E-04 -1
PhysarumPolycephalum | 88 +25.30 - -
BarkBeetle 100+ 0 3.4011E-11 -1

50 nodes, 15 queries, 16 % replication
Gnutella 100+0 0.20311878 0
k-Walker 100+0 0.20311878 0
AntNet 97.9+4.72 | 0.81535969 0
SMP2P 92 +16.87 | 0.36572434 0
PhysarumPolycephalum | 97.5 + 6.46 - -
BarkBeetle 100 +0 0.20311878 0

50 nodes, 30 queries, 2% replication
Gnutella 98.8 +£1.93 | 2.9802E-07 -1
k-Walker 89.8 £5.67 1.7899E-06 -1
AntNet 19.6 £30.98 | 0.87872408 0
SMP2P 63.7 £ 18.73 | 0.00105588 -1
PhysarumPolycephalum | 17.4 + 32.57 - -
BarkBeetle 100£0 2.3610E-07 -1

50 nodes, 30 queries, 16 % replication
Gnutella 100£0 0.21934783 0
k-Walker 100£0 0.21934783 0
AntNet 100+ 0 0.21934783 0
SMP2P 100+ 0 0.21934783 0
PhysarumPolycephalum | 93.2 + 16.90 - -
BarkBeetle 100£0 0.21934783 0

Table 6.24: Physarum Polycephalum ANOVA results for the Peer Model. (part 1)

mean = stdev p-value h
50 nodes, 45 queries, 2% replication

Gnutella 98.9+1.85 | 2.8142E-05 -1
k-Walker 89.8 £5.55 1.3647E-04 -1
AntNet 30.2 £38.90 | 0.83443840 0
SMP2P 66.4 £ 15.56 | 0.01013412 -1
PhysarumPolycephalum | 26.4 +41.20 - -
BarkBeetle 100£0 2.3298E-05 -1

50 nodes, 45 queries, 16 % replication
Gnutella 100£0 0.14082450 0
k-Walker 100£0 0.14082450 0
AntNet 98.9+1.85 | 0.30097182 0
SMP2P 100+ 0 0.14082450 0
PhysarumPolycephalum | 96.2 +7.80 - -
BarkBeetle 100£0 0.14082450 0

100 nodes, 10 queries, 1% replication
Gnutella 100£0 1.0125E-06 -1
k-Walker 80+ 14.14 1.3371E-04 -1
AntNet 54 £38.06 | 0.09337904 0
SMP2P 63 +£21.11 0.00725237 -1
PhysarumPolycephalum | 26 +32.39 - -
BarkBeetle 100+0 1.0125E-06 -1

100 nodes, 10 queries, 16 % replication
Gnutella 100+0 0.02158285 -1
k-Walker 100+0 0.02158285 -1
AntNet 98 +4.22 0.04499000 -1
SMP2P 100£0 0.02158285 -1
PhysarumPolycephalum 84 £20.11 - -
BarkBeetle 100+ 0 0.02158285 -1

100 nodes, 30 queries, 1% replication
Gnutella 99.6 £ 1.26 | 2.5415E-07 -1
k-Walker 83.7+£5.14 | 7.2651E-06 -1
AntNet 19.4 +£15.86 | 0.67272763 0
SMP2P 65.4 +17.56 | 0.00139508 -1
PhysarumPolycephalum 24 +£29.93 - -
BarkBeetle 100£0 2.3277E-07 -1

100 nodes, 30 queries, 16 % replication
Gnutella 100£0 0.01616182 -1
k-Walker 100£0 0.01616182 -1
AntNet 96.8+£1.93 | 0.02395266 -1
SMP2P 99.6 £1.26 | 0.01848935 -1
PhysarumPolycephalum | 82.1 +21.33 - -
BarkBeetle 100£0 0.01616182 -1

Table 6.25: Physarum Polycephalum ANOVA results for the Peer Model. (part 2)

77

78

mean = stdev p-value h

100 nodes, 60 queries, 1% replication
Gnutella 100+0 5.8881E-08 -1
k-Walker 84.5+£3.60 | 1.4274E-06 -1
AntNet 26.6 £28.97 | 0.65118517 0
SMP2P 67.5 £9.07 1.0084E-04 -1
PhysarumPolycephalum | 20.7 +28.41 - -
BarkBeetle 99.6 +0.84 | 6.3862E-08 -1

100 nodes, 60 queries, 16 % replication
Gnutella 100£0 0.00645356 -1
k-Walker 100 £0 0.00645356 -1
AntNet 96.2 £5.20 | 0.08944444 0
SMP2P 959 +11.59 | 0.20766610 0
PhysarumPolycephalum | 89.3 +10.99 - -
BarkBeetle 100£0 0.00645356 -1

100 nodes, 90 queries, 1% replication
Gnutella 99.8 £0.63 | 7.5532E-06 -1
k-Walker 83.9+242 | 1.7783E-04 -1
AntNet 13£21.36 | 0.12466996 0
SMP2P 62.1 £9.19 | 0.01866677 -1
PhysarumPolycephalum | 33.4 +33.88 - -
BarkBeetle 94.4 +1.51 1.2039E-05 -1

100 nodes, 90 queries, 16 % replication
Gnutella 100+0 0.00583697 -1
k-Walker 100+0 0.00583697 -1
AntNet 97.5+3.24 | 0.04750452 -1
SMP2P 98.1£1.73 | 0.02617098 -1
PhysarumPolycephalum 91 +9.10 - -
BarkBeetle 100+0 0.00583697 -1

200 nodes, 20 queries, 0.5% replication
Gnutella 100+ 0 1.0246E-13 -1
k-Walker 41.5+11.56 | 1.6327E-05 -1
AntNet 5+10.80 0.73347642 0
SMP2P 33.5+12.92 | 4.5830E-04 -1
PhysarumPolycephalum 7+14.76 - -
BarkBeetle 67.5 £ 18.60 | 2.2080E-07 -1

200 nodes, 20 queries, 16 % replication
Gnutella 100£0 0.00848909 -1
k-Walker 100£0 0.00848909 -1
AntNet 99 +2.11 0.01320576 -1
SMP2P 75+30.00 | 0.42079324 -1
PhysarumPolycephalum 84 +17.13 - -
BarkBeetle 100£0 0.00848909 -1

Table 6.26: Physarum Polycephalum ANOVA results for the Peer Model. (part 3)

mean = stdev

p-value

h

200 nodes, 60 queries, 0.5% replication

Gnutella 95.7+1.25 | 2.9967E-08 -1
k-Walker 37.5+£5.84 | 0.01395918 -1
AntNet 4.1 £8.18 0.36957880 0
SMP2P 40.4£9.07 | 0.00877951 -1
PhysarumPolycephalum | 12.7 + 28.39 - -
BarkBeetle 783 +£6.04 | 1.1762E-06 -1
200 nodes, 60 queries, 16 % replication
Gnutella 100£0 0.00125692 -1
k-Walker 100£0 0.00125692 -1
AntNet 92 £ 8.78 0.11275284 0
SMP2P 79.7 £30.96 | 0.73380789 0
PhysarumPolycephalum | 83.4 + 13.75 - -
BarkBeetle 100£0 0.00125692 -1
200 nodes, 120 queries, 0.5% replication
Gnutella 95.7+2.16 1.1454E-13 -1
k-Walker 39.6 £5.95 | 2.9840E-06 -1
AntNet 4.6+13.86 | 0.61206699 0
SMP2P 27.5 £24.60 | 0.04062914 -1
PhysarumPolycephalum | 7.8 + 13.87 - -
BarkBeetle 69.8 £ 6.61 1.8688E-10 -1
200 nodes, 120 queries, 16 % replication
Gnutella 100+0 0.00519785 -1
k-Walker 100+ 0 0.00519785 -1
AntNet 943 +£6.22 | 0.21285441 0
SMP2P 81.6 £27.11 | 0.08898985 0
PhysarumPolycephalum | 97.1 +2.88 - -
BarkBeetle 100+ 0 0.00519785 -1
200 nodes, 180 queries, 0.5% replication
Gnutella 95.5+1.72 | 5.5228E-08 -1
k-Walker 39.5+£3.24 | 0.01246205 -1
AntNet 15.7+£22.11 | 0.87122999 0
SMP2P 28.8 +£20.68 | 0.20049015 0
PhysarumPolycephalum | 13.8 +29.10 - -
BarkBeetle 73.9+4.25 | 4.4279E-06 -1
200 nodes, 180 queries, 16 % replication
Gnutella 100£0 0.00248945 -1
k-Walker 100£0 0.00248945 -1
AntNet 943 +4.76 | 0.26186723 0
SMP2P 853 +17.41 | 0.37893229 0
PhysarumPolycephalum | 90.8 + 8.28 - -
BarkBeetle 100£0 0.00248945 -1

Table 6.27: Physarum Polycephalum ANOVA results for the Peer Model. (part 4)

79

80

mean = stdev p-value h
50 nodes, 5 queries, 2% replication

Gnutella 100+0 0.15391495 0
k-Walker 96 + 8.43 0.27306288 0
AntNet 10+ 31.62 2.2795E-04 1
SMP2P 44 £33.73 0.02997064 1
PhysarumPolycephalum 10 £31.62 2.2795E-04 1
BarkBeetle 82 £38.24 - -

50 nodes, 5 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100+ 0 - 0
AntNet 100+0 - 0
SMP2P 100+ 0 - 0
PhysarumPolycephalum 88 £25.30 | 0.15095045 0
BarkBeetle 100£0 - -

50 nodes, 15 queries, 2% replication
Gnutella 99.3+2.21 | 0.33056493 0
k-Walker 89.7+7.26 | 2.8462E-04 1
AntNet 17.2 £36.26 | 1.0212E-06 1
SMP2P 52.3+21.34 | 1.3622E-06 1
PhysarumPolycephalum 6.6 £20.87 3.4011E-11 1

BarkBeetle 100+0 -

50 nodes, 15 queries, 16 % replication
Gnutella 100+0 - 0
k-Walker 100+0 - 0
AntNet 97.9+4.72 | 0.17687965 0
SMP2P 92 +16.87 | 0.15095045 0
PhysarumPolycephalum | 97.5+6.46 | 0.20311878 0
BarkBeetle 100 +0 - -

50 nodes, 30 queries, 2% replication
Gnutella 98.8 +£1.93 | 0.06516949 0
k-Walker 89.8 £5.67 | 2.1565E-05 1
AntNet 19.6 +£30.98 | 1.7042E-07 1
SMP2P 63.7 £ 18.73 | 8.6813E-06 1
PhysarumPolycephalum | 17.4 +32.57 | 2.3610E-07 1
BarkBeetle 100 +0 - -

50 nodes, 30 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100+0 - 0
AntNet 100+0 - 0
SMP2P 100+ 0 - 0
PhysarumPolycephalum | 93.2 +16.90 | 0.21934783 0
BarkBeetle 100£0 - -

Table 6.28: Bark Beetle ANOVA results for the Peer Model. (part 1)

mean = stdev p-value h
50 nodes, 45 queries, 2% replication
Gnutella 98.9+1.85 | 0.07678035 0
k-Walker 89.8 £5.55 1.6746E-05 1
AntNet 30.2 £38.90 | 2.2138E-05 1
SMP2P 66.4 £ 15.56 | 2.1571E-06 1
PhysarumPolycephalum | 26.4 +41.20 | 2.3298E-05 1
BarkBeetle 100+ 0 -
50 nodes, 45 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100£0 - 0
AntNet 98.9+1.85 | 0.07678035 0
SMP2P 100+ 0 - 0
PhysarumPolycephalum | 96.2+7.80 | 0.14082450 0
BarkBeetle 100£0 - -
100 nodes, 10 queries, 1% replication
Gnutella 100£0 - 0
k-Walker 80+ 14.14 2.9456E-04 1
AntNet 54 £38.06 | 0.00124988 1
SMP2P 63 +£21.11 2.9111E-05 1
PhysarumPolycephalum 26 +32.39 1.1012E-06 1
BarkBeetle 100+ 0 -
100 nodes, 10 queries, 16 % replication
Gnutella 100+ 0 - 0
k-Walker 100+ 0 - 0
AntNet 98 +4.22 0.15095045 0
SMP2P 100£0 - 0
PhysarumPolycephalum 84 £20.11 0.02158285 1
BarkBeetle 100+ 0 - -
100 nodes, 30 queries, 1% replication
Gnutella 99.6 £1.26 | 0.33056493 0
k-Walker 83.7+5.14 | 8.6416E-09 1
AntNet 19.4 £ 15.86 | 4.0534E-12 1
SMP2P 65.4 £ 17.56 | 7.0672E-06 1
PhysarumPolycephalum 24 +£29.93 2.3277E-07 1
BarkBeetle 100+ 0 -
100 nodes, 30 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100£0 - 0
AntNet 96.8+1.93 | 0.06516949 0
SMP2P 99.6 £1.26 | 0.33056493 0
PhysarumPolycephalum | 82.1 +21.33 | 0.01616182 1
BarkBeetle 100£0 - -

Table 6.29: Bark Beetle ANOVA results for the Peer Model. (part 2)

81

82

mean = stdev p-value h

100 nodes, 60 queries, 1% replication
Gnutella 100+ 0 0.15095045 0
k-Walker 84.5+3.60 | 1.5194E-10 1
AntNet 26.6 £28.97 | 2.6107E-07 1
SMP2P 67.5 £9.07 1.6480E-09 1
PhysarumPolycephalum | 20.7 +28.41 | 6.3862E-08 1
BarkBeetle 99.6 + 0.84 - -

100 nodes, 60 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100 £0 - 0
AntNet 96.2+£5.20 | 0.03297016 1
SMP2P 959 +11.59 | 0.27797989 0
PhysarumPolycephalum | 89.3 £10.99 | 0.00645356 1
BarkBeetle 100£0 - -

100 nodes, 90 queries, 1% replication
Gnutella 99.8 £0.63 | 2.0019E-04 -1
k-Walker 83.9+242 | 1.3494E-11 1
AntNet 13 £21.36 2.7421E-10 1
SMP2P 62.1 £9.19 | 5.1780E-10 1
PhysarumPolycephalum | 33.4 +33.88 | 1.2039E-05 1

BarkBeetle 94.4 +1.51 -

100 nodes, 90 queries, 16 % replication
Gnutella 100+0 - 0
k-Walker 100+0 - 0
AntNet 97.5+3.24 | 0.02527264 1
SMP2P 98.1 £1.73 | 0.00270051 1
PhysarumPolycephalum 91 +9.10 0.00583697 1

BarkBeetle 100+0 -

200 nodes, 20 queries, 0.5% replication
Gnutella 100 +0 3.0145E-05 1
k-Walker 41.5+£11.56 | 0.00144986 1
AntNet 5+10.80 3.225E-08 1
SMP2P 33.5+12.92 | 1.6064E-04 1
PhysarumPolycephalum 7+14.76 2.2080E-07 1
BarkBeetle 67.5 +18.60 - -

200 nodes, 20 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100+0 - 0
AntNet 99 +2.11 0.15095045 0
SMP2P 75+30.00 | 0.01680490 1
PhysarumPolycephalum 84 +17.13 0.00848909 1
BarkBeetle 100£0 - -

Table 6.30: Bark Beetle ANOVA results for the Peer Model. (part 3)

mean = stdev

p-value

h

200 nodes, 60 queries, 0.5% replication

Gnutella 95.7+1.25 | 5.0010E-08 -1
k-Walker 37.5+£5.84 | 2.1587E-12 1
AntNet 4.1 £8.18 8.0781E-15 1
SMP2P 40.4£9.07 | 2.0223E-09 1
PhysarumPolycephalum | 12.7 +28.39 | 1.1762E-06 1
BarkBeetle 78.3 £6.04 -
200 nodes, 60 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100£0 - 0
AntNet 92 £ 8.78 0.00994663 1
SMP2P 79.7 £30.96 | 0.05277479 0
PhysarumPolycephalum | 83.4 +13.75 | 0.00125692 1
BarkBeetle 100£0 - -
200 nodes, 120 queries, 0.5% replication
Gnutella 95.7+2.16 | 6.9740E-10 -1
k-Walker 39.6 £595 | 2.9569E-09 1
AntNet 4.6+13.86 | 8.0979E-11 1
SMP2P 27.5 £24.60 | 5.4088E-05 1
PhysarumPolycephalum | 7.8 + 13.87 1.8688E-10 1
BarkBeetle 69.8 +6.61 -
200 nodes, 120 queries, 16 % replication
Gnutella 100+ 0 - 0
k-Walker 100+ 0 - 0
AntNet 943 +£6.22 | 0.00958040 1
SMP2P 81.6 £27.11 | 0.04572846 1
PhysarumPolycephalum | 97.1 £2.88 | 0.00519785 1
BarkBeetle 100+ 0 -
200 nodes, 180 queries, 0.5% replication
Gnutella 955+ 1.72 | 1.4584E-11 -1
k-Walker 39.5+3.24 | 7.1917E-14 1
AntNet 15.7+£22.11 | 1.7967E-07 1
SMP2P 28.8 +£20.68 | 2.4877E-06 1
PhysarumPolycephalum | 13.8 £29.10 | 4.4279E-06 1
BarkBeetle 73.9 £4.25 -
200 nodes, 180 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100£0 - 0
AntNet 943 +4.76 | 0.00135574 1
SMP2P 853 +£17.41 | 0.01561466 1
PhysarumPolycephalum | 90.8 £8.28 | 0.00248945 1
BarkBeetle 100£0 - -

Table 6.31: Bark Beetle ANOVA results for the Peer Model. (part 4)

83

84

mean = stdev

p-value

h

50 nodes, 5 queries, 2% replication

Gnutella 100+0 2.0208E-09 -1
k-Walker 86 +16.47 3.8224E-07 -1
AntNet 4+12.65 0.38289757 0
SMP2P 48 £32.93 0.01341518 -1
PhysarumPolycephalum 12 £25.30 - -
BarkBeetle 92 +13.98 6.6641E-08 -1

50 nodes, 5 queries, 16 % replication
Gnutella 100£0 0.33056493 0
k-Walker 100+ 0 0.33056493 0
AntNet 96 + 8.43 0.55598517 0
SMP2P 90 £25.39 | 0.34636414 0
PhysarumPolycephalum 98 +£6.32 - -
BarkBeetle 100£0 0.33056493 0

50 nodes, 15 queries, 2% replication
Gnutella 100£0 3.6312E-05 -1
k-Walker 90.9 +4.72 | 1.8068E-04 -1
AntNet 28.6 £46.09 | 0.92300087 0
SMP2P 70.4 £17.27 | 0.01016171 -1
PhysarumPolycephalum | 30.5 +40.41 - -
BarkBeetle 99.3+2.21 | 4.1488E-05 -1

50 nodes, 15 queries, 16 % replication
Gnutella 100+0 0.08993915 0
k-Walker 100+0 0.08993915 0
AntNet 98.6 £4.43 | 0.27535471 0
SMP2P 96.5+4.95 | 0.68012756 0
PhysarumPolycephalum | 95.2 +8.47 - -
BarkBeetle 100 +0 0.08993915 0

50 nodes, 30 queries, 2% replication
Gnutella 100+ 0 8.7240E-10 -1
k-Walker 88.7 £ 6.63 1.2689E-08 -1
AntNet 159 £29.22 | 0.67062207 0
SMP2P 73.3+11.45 | 7.9129E-07 -1
PhysarumPolycephalum | 10.7 + 24.35 - -
BarkBeetle 98.9+242 | 1.1501E-09 -1

50 nodes, 30 queries, 16 % replication
Gnutella 100£0 0.15161740 0
k-Walker 100£0 0.15161740 0
AntNet 95.6 £9.45 | 0.79130501 0
SMP2P 97.2+6.27 | 0.50780807 0
PhysarumPolycephalum | 94.3 + 12.04 - -
BarkBeetle 100£0 0.15161740 0

Table 6.32: Physarum Polycephalum ANOVA results for Akka. (part 1)

mean = stdev

p-value

h

50 nodes, 45 queries, 2% replication

Gnutella 100+ 0 - 0
k-Walker 86.6 £4.55 | 5.0073E-22 -1
AntNet 24 +30.20 | 0.03335847 -1
SMP2P 774 +£7.79 | 5.6462E-17 -1
PhysarumPolycephalum 2+0 - -
BarkBeetle 100+ 0 - 0
50 nodes, 45 queries, 16 % replication
Gnutella 100£0 0.08901177 0
k-Walker 100£0 0.08901177 0
AntNet 97.8+£4.49 | 0.91941653 0
SMP2P 90.9 £19.30 | 0.29772822 0
PhysarumPolycephalum | 97.6 +4.22 - -
BarkBeetle 100£0 0.08901177 0
100 nodes, 10 queries, 1% replication
Gnutella 100£0 1.2314E-12 -1
k-Walker 83+9.49 6.1543E-10 -1
AntNet 26 £23.66 | 0.19875772 0
SMP2P 76 £21.71 8.6912E-07 -1
PhysarumPolycephalum 14 + 15.78 - -
BarkBeetle 100+ 0 1.2314E-12 -1
100 nodes, 10 queries, 16 % replication
Gnutella 100+0 0.00353274 -1
k-Walker 100+0 0.00353274 -1
AntNet 93 +9.49 0.48722547 0
SMP2P 99 +3.16 0.01036076 -1
PhysarumPolycephalum 90 £9.43 - -
BarkBeetle 100+ 0 0.00353274 -1
100 nodes, 30 queries, 1% replication
Gnutella 100£0 4.2500E-13 -1
k-Walker 82.6+5.08 | 4.0138E-11 -1
AntNet 20.5+23.10 | 0.29287663 0
SMP2P 74.1 £20.08 | 2.9487E-07 -1
PhysarumPolycephalum 11+£15.34 - -
BarkBeetle 96.1 £5.63 | 2.6719E-12 -1
100 nodes, 30 queries, 16 % replication
Gnutella 100£0 0.01964082 -1
k-Walker 100£0 0.01964082 -1
AntNet 93.2+10.59 | 0.66865900 0
SMP2P 87.4£19.02 | 0.60081442 0
PhysarumPolycephalum | 91.1 +10.99 - -
BarkBeetle 100 £0 0.01964082 -1

Table 6.33: Physarum Polycephalum ANOVA results for Akka. (part 2)

85

86

mean = stdev p-value h

100 nodes, 60 queries, 1% replication
Gnutella 100+0 1.1865E-05 -1
k-Walker 855+£3.66 | 1.5197E-04 -1
AntNet 22 +£29.45 | 0.76880928 0
SMP2P 71.3 £10.34 | 0.00246612 -1
PhysarumPolycephalum | 26.6 + 28.85 - -
BarkBeetle 96.8 £2.62 | 2.0888E-05 -1

100 nodes, 60 queries, 16 % replication
Gnutella 100£0 0.02167527 -1
k-Walker 83.9+4.63 | 0.02167527 -1
AntNet 35.5+£37.89 | 0.66061462 0
SMP2P 57.5+11.71 | 0.52027975 0
PhysarumPolycephalum | 23.1 +24.50 - -
BarkBeetle 97.8 £1.32 0.02167527 -1

100 nodes, 90 queries, 1% replication
Gnutella 100£0 9.9979E-09 -1
k-Walker 100£0 4.1140E-07 -1
AntNet 87.7+12.10 | 0.39624010 0
SMP2P 91.7 £12.82 | 8.2808E-04 1
PhysarumPolycephalum | 94.5 +11.78 - -
BarkBeetle 100+0 1.5928E-08 -1

100 nodes, 90 queries, 16 % replication
Gnutella 100+0 0.15704017 0
k-Walker 100+0 0.15704017 0
AntNet 85+ 19.16 | 0.21908986 0
SMP2P 92.1 £10.27 | 0.61713549 0
PhysarumPolycephalum | 88.4 +14.59 - -
BarkBeetle 100+0 0.15704017 0

200 nodes, 20 queries, 0.5% replication
Gnutella 100+ 0 3.4488E-15 -1
k-Walker 39.5+£8.96 | 2.6198E-06 -1
AntNet 6+15.78 0.81399565 0
SMP2P 43.5£26.57 | 0.00104725 -1
PhysarumPolycephalum | 7.5 +12.08 - -
BarkBeetle 64 + 15.06 2.8889E-08 -1

200 nodes, 20 queries, 16 % replication
Gnutella 100£0 0.00109567 -1
k-Walker 100 £0 0.00109567 -1
AntNet 88.5+13.13 | 0.23557719 0
SMP2P 89.5+£21.27 | 0.29793374 0
PhysarumPolycephalum | 80.5 + 15.89 - -
BarkBeetle 100£0 0.00109567 -1

Table 6.34: Physarum Polycephalum ANOVA results for Akka. (part 3)

mean = stdev

p-value

h

200 nodes, 60 queries, 0.5% replication

Gnutella 100+ 0 6.0831E-13 -1
k-Walker 353+£2.79 | 4.3905E-05 -1
AntNet 3.8+ 11.00 | 0.58078163 0
SMP2P 472 £31.84 | 0.00240766 -1
PhysarumPolycephalum | 7.3 £16.32 - -
BarkBeetle 759+7.55 | 4.6180E-10 -1
200 nodes, 60 queries, 16 % replication

Gnutella 100£0 0.00110203 -1
k-Walker 100£0 0.00110203 -1
AntNet 73.6 £ 15.12 | 0.01019658 1
SMP2P 84.8 £26.19 | 0.60439182 0
PhysarumPolycephalum | 89.4 + 8.64 - -
BarkBeetle 100£0 0.00110203 -1

200 nodes, 120 queries, 0.5% replication
Gnutella 100£0 9.4876E-15 -1
k-Walker 40.8 £5.12 | 1.9405E-07 -1
AntNet 0.9 +2.85 0.45228718 0
SMP2P 37.6 £20.23 | 3.7346E-04 -1
PhysarumPolycephalum | 4.2 + 13.28 - -
BarkBeetle 61.7+9.84 | 2.0241E-09 -1

200 nodes, 120 queries, 16 % replication
Gnutella 100+0 0.00888506 -1
k-Walker 100+ 0 0.00888506 -1
AntNet 90.6 £9.59 | 0.73003719 0
SMP2P 85.7+£23.41 | 0.70482597 0
PhysarumPolycephalum | 88.9 £11.97 - -
BarkBeetle 100 £0 0.00888506 -1

200 nodes, 180 queries, 0.5% replication
Gnutella 99.8 £0.42 | 1.1949E-10 -1
k-Walker 38.7+2.54 | 4.0423E-04 -1
AntNet 1.1+£3.14 0.32043194 0
SMP2P 224 +£12.41 | 0.09512890 0
PhysarumPolycephalum | 8.3 £22.06 - -
BarkBeetle 68.7£6.40 | 1.4069E-07 -1

200 nodes, 180 queries, 16 % replication
Gnutella 100£0 4.5163E-04 -1
k-Walker 100£0 4.5163E-04 -1
AntNet 85.9+8.96 | 0.02132247 1
SMP2P 68.6 +£33.22 | 0.02821326 1
PhysarumPolycephalum | 93.9 +4.51 - -
BarkBeetle 100£0 4.5163E-04 -1

Table 6.35: Physarum Polycephalum ANOVA results for Akka (part 4)

87

88

mean = stdev p-value h
50 nodes, 5 queries, 2% replication

Gnutella 100+ 0 0.08717413 0
k-Walker 86+ 16.47 | 0.39134916 0
AntNet 4 +12.65 1.6916E-11 1
SMP2P 48 £32.93 0.00107525 1
PhysarumPolycephalum 12 £25.30 6.6641E-08 1
BarkBeetle 92 +£13.98 - -

50 nodes, 5 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100+ 0 - 0
AntNet 96 + 8.43 0.15095045 0
SMP2P 90 +25.39 | 0.22885251 0
PhysarumPolycephalum 98 +6.32 0.33056493 0
BarkBeetle 100£0 - -

50 nodes, 15 queries, 2% replication
Gnutella 100£0 0.33056493 0
k-Walker 90.9 £4.72 | 7.6248E-05 1
AntNet 28.6 £46.09 | 1.2993E-04 1
SMP2P 70.4 £17.27 | 5.4361E-05 1
PhysarumPolycephalum | 30.5 +40.41 | 4.1488E-05 1

BarkBeetle 99.3+2.21 -

50 nodes, 15 queries, 16 % replication
Gnutella 100+0 - 0
k-Walker 100+0 - 0
AntNet 98.6 £4.43 | 0.33056493 0
SMP2P 96.5 +4.95 | 0.03824961 1
PhysarumPolycephalum | 95.2+8.47 | 0.08993015 0
BarkBeetle 100 +0 - -

50 nodes, 30 queries, 2% replication
Gnutella 100+0 0.16846945 0
k-Walker 88.7+6.63 | 2.3916E-04 1
AntNet 15.9 £29.22 | 4.7646E-04 1
SMP2P 73.3+11.45 | 1.8240E-06 1
PhysarumPolycephalum | 10.7 +24.35 | 1.1501E-09 1
BarkBeetle 989 +242 - -

50 nodes, 30 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100+ 0 - 0
AntNet 95.6+9.45 | 0.15835324 0
SMP2P 97.2+6.27 | 0.17482693 0
PhysarumPolycephalum | 94.3 +12.04 | 0.15161740 0
BarkBeetle 100£0 - -

Table 6.36: Bark Beetle ANOVA results for Akka (part 1)

mean = stdev p-value h
50 nodes, 45 queries, 2% replication
Gnutella 100+ 0 - 0
k-Walker 86.6 £4.55 | 2.6476E-08 1
AntNet 24 +30.20 | 2.6357E-07 1
SMP2P 774 +£7.79 | 3.3184E-08 1
PhysarumPolycephalum 2+0 - 0
BarkBeetle 100+ 0 -
50 nodes, 45 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100£0 - 0
AntNet 97.8£4.49 | 0.13884044 0
SMP2P 90.9 £19.30 | 0.15330090 0
PhysarumPolycephalum | 97.6+4.22 | 0.08901177 0
BarkBeetle 100£0 - -
100 nodes, 10 queries, 1% replication
Gnutella 100£0 - 0
k-Walker 83+9.49 2.2463E-05 1
AntNet 26 + 23.66 1.0607E-08 1
SMP2P 76 £21.71 0.00257593 1
PhysarumPolycephalum 14 + 15.78 1.2314E-12 1
BarkBeetle 100+ 0 -
100 nodes, 10 queries, 16 % replication
Gnutella 100+ 0 - 0
k-Walker 100+ 0 - 0
AntNet 93 +9.49 0.03142916 1
SMP2P 99 +3.16 0.33056493 0
PhysarumPolycephalum 90 £9.43 0.00353274 1
BarkBeetle 100+ 0 - -
100 nodes, 30 queries, 1% replication
Gnutella 100£0 0.04176914 1
k-Walker 82.6 £5.08 | 2.4205E-05 1
AntNet 20.5+23.10 | 8.1789E-09 1
SMP2P 74.1 £20.08 | 0.00367583 1
PhysarumPolycephalum 11+£15.34 2.6719E-12 1
BarkBeetle 96.1 £5.63 -
100 nodes, 30 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100£0 - 0
AntNet 93.2+10.59 | 0.05737187 0
SMP2P 87.4 £19.02 | 0.05061243 0
PhysarumPolycephalum | 91.1 +10.99 | 0.01964082 1
BarkBeetle 100 £0 - -

Table 6.37: Bark Beetle ANOVA results for Akka. (part 2)

&9

90

mean = stdev p-value h

100 nodes, 60 queries, 1% replication
Gnutella 100+ 0 0.00112711 -1
k-Walker 855+£3.66 | 2.7077E-07 1
AntNet 22 +29.45 2.4453E-07 1
SMP2P 71.3 £10.34 | 5.4235E-07 1
PhysarumPolycephalum | 26.6 + 28.85 | 2.0888E-05 1
BarkBeetle 96.8 +2.62 - -

100 nodes, 60 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100 £0 - 0
AntNet 85+ 19.16 | 0.02346355 1
SMP2P 92.1 £10.27 | 0.02562809 1
PhysarumPolycephalum | 88.4 +14.59 | 0.02167527 1
BarkBeetle 100£0 - -

100 nodes, 90 queries, 1% replication
Gnutella 100£0 5.0394E-05 -1
k-Walker 83.9+4.63 | 3.5420E-08 1
AntNet 35.5+37.89 | 6.0803E-05 1
SMP2P 575+ 11.71 | 2.6467E-09 1
PhysarumPolycephalum | 23.1 +24.50 | 1.5928E-08 1
BarkBeetle 97.8 £1.32 -

100 nodes, 90 queries, 16 % replication
Gnutella 100+0 - 0
k-Walker 100+0 - 0
AntNet 87.7+12.10 | 0.00481155 1
SMP2P 91.7 £12.82 | 5.5427E-02 1
PhysarumPolycephalum | 94.5+11.78 | 0.15704017 0

BarkBeetle 100+0 -

200 nodes, 20 queries, 0.5% replication
Gnutella 100+ 0 5.4177E-07 -1
k-Walker 39.5+£8.96 | 3.2893E-04 1
AntNet 6+15.78 1.1928E-07 1
SMP2P 43.5£26.57 | 0.04788856 1
PhysarumPolycephalum | 7.5+ 12.08 | 2.8889E-08 1
BarkBeetle 64 +15.06 - -

200 nodes, 20 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100 =0 - 0
AntNet 88.5+13.13 | 0.01265200 1
SMP2P 89.5+£21.27 | 0.13595252 0
PhysarumPolycephalum | 80.5 +15.89 | 0.00109567 1
BarkBeetle 100£0 - -

Table 6.38: Bark Beetle ANOVA results for Akka. (part 3)

mean = stdev

p-value

h

200 nodes, 60 queries, 0.5% replication

Gnutella 100£0 7.7157E-09 -1
k-Walker 353+279 | 4.5842E-12 1
AntNet 3.8+11.00 | 1.4312E-12 1
SMP2P 472+31.84 | 0.01251720 1
PhysarumPolycephalum | 7.3 +£16.32 | 4.6180E-10 1
BarkBeetle 75.9 £7.55 -
200 nodes, 60 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100£0 - 0
AntNet 73.6 £ 15.12 | 3.0371E-05 1
SMP2P 84.8 £26.19 | 0.08309404 0
PhysarumPolycephalum | 89.4+8.64 | 0.00110203 1
BarkBeetle 100£0 - -
200 nodes, 120 queries, 0.5% replication
Gnutella 100£0 3.3711E-10 -1
k-Walker 40.8 £5.12 | 1.2299E-05 1
AntNet 0.9 +2.85 2.8906E-13 1
SMP2P 37.6 £20.23 | 0.00327889 1
PhysarumPolycephalum | 4.2 +13.28 | 2.0241E-09 1
BarkBeetle 61.7+9.84 -
200 nodes, 120 queries, 16 % replication
Gnutella 100+ 0 - 0
k-Walker 100+ 0 - 0
AntNet 90.6 £9.59 | 0.00620180 1
SMP2P 85.7+£23.41 | 0.06929435 0
PhysarumPolycephalum | 88.9 +£11.97 | 0.00888506 1
BarkBeetle 100 0 - -
200 nodes, 180 queries, 0.5% replication
Gnutella 99.8 +0.42 | 8.8089E-12 -1
k-Walker 38.7+2.54 | 5.2457E-11 1
AntNet 1.1+£3.14 8.0207E-17 1
SMP2P 224 +12.41 | 4.2792E-09 1
PhysarumPolycephalum | 8.3 £22.06 1.4064E-07 1
BarkBeetle 68.7 £ 6.40 -
200 nodes, 180 queries, 16 % replication
Gnutella 100£0 - 0
k-Walker 100£0 - 0
AntNet 85.9+8.96 | 9.7986E-05 1
SMP2P 68.6 £33.22 | 0.00787680 1
PhysarumPolycephalum | 93.9+4.51 | 0.00045163 1
BarkBeetle 100£0 - -

Table 6.39: Bark Beetle ANOVA results for Akka. (part 4)

91

6.6 Scalability Analysis

This section focuses on load scalability, since it is essential to determine whether P2P network
environments can handle network grows.

To evaluate the scalability of distributed systems, Jogalekar et al. [19]] provide the following
metric:

b= F(X2,Q053,C))
F(A1,Qo051,Ch)

where F'is a function evaluating the performance, A is the throughput, QoS are quality of service
parameters, and C' is the cost.

6.1

[19] introduces a strategy for scaling, which is defined by scaling variables to specify a scal-
ing path and a scaling factor k. (k) behaves differently in different situations as Figure

illustrates.

A superscalable
positive scalability
1 perfect scalability

threshold case

Scalability yi(k)

unscalable

>

Scale factor k

Figure 6.7: Scaling Behavior [|19].

In this thesis, Gnutella Flooding, k-Walker, AntNet for P2P, SMP2P, Physarum Polycephalum
Slime Mold for P2P and Bark Beetle for P2P have to be analyzed regarding resources, per-
formance and load. To that end, a specialization of Equation proposed by Sesum-Cavié et
al. [27] 1s used:

P=r (6.2)

where M represents the average messages for each node, and M # 0 [27]).
The performance P becomes increasingly worse, the more messages a single node has to process.

Following this, the performance decreases on an increasing demand on a node and increases on
a decreasing demand on a node [27].

92

P(L, R) defines the actual performance, where L represents the load and R represents the re-
source. The load is represented by the quantity of queries and the resource is represented by the
network size [27]]. The following example illustrates this further:

Example 6.2: In Table the first row has 50 nodes, 5 queries, and 8 messages per node on
average. Thus:

P(5,50) = %

Equation [6.3] shows the adapted version of Equation [6.1] presented in [27]] and defines the load
scalability.

_ P(KL,kR)

Y(k) = PL.ER) (6.3)

where k represents the scaling factor and P represents the performance.

To have positive scalability the performance should not decrease, if load and resources are in-
creased by factor k. Furthermore, the system does not scale, if the new performance is less than
the original one.

The scalability of Gnutella Flooding, k-Walker, AntNet for P2P, SMP2P, Physarum Polycephalum
Slime Mold for P2P and Bark Beetle for P2P is evaluated as follows. Since the test cases from
Section[6.3]are executed on a network with 50, 100 and 200 nodes, the resources R are increased
by factor 2 and 4. Additionally, for a network size of 50 the initial load L is 5, 15, 30 and 45
queries, which is increased by factor 2 and 4. Afterwards, the results for all six algorithms are
compared. The results for the Peer Model are based on Tables [6.12] [6.13] [6.14] [6.15] [6.16] and
and are shown in Tables and [6.41] where the results for 1 replica are presented in
and results for 16% replication are presented in [6.41] The results for Akka are based on Tables

6.18] [6.19] [6.20, [6.21} [6.22] and [6.23] and are shown in Tables and where the results
for 1 replica are presented in [6.42] and the results for 16% replication are presented in [6.43]

Initial Load | Gnutella k-Walker AntNet SMP2P Physarum Bark Beetle
k=1 Polycephalum

k=2 | k=4 | k=2 | k=4 | k=2 | k=4 | k=2 | k=4 | k=2 k=4 k=2 | k=4

5 0.50 | 0.27 1 1.00 | 0.90 | 0.89 | 0.89 | 0.56 | 0.42 | 1.00 1.00 0.80 | 1.14

15 0.53 1028 1 1.05] 099 | 1.04 | 1.00 | 0.58 | 0.48 | 0.97 0.91 1.00 | 0.96

30 05310431099 |095]095]|091]0.72 | 1.04 | 091 0.91 0.92 | 0.89

45 0.53 1029 | 1.00 | 0.98 | 1.00 | 0.97 | 0.71 | 1.07 | 0.92 0.92 0.94 | 0.90

Table 6.40: Peer Model scalability for k=2 and k=4, 1 replica

93

Initial Load Gnutella k-Walker AntNet SMP2P Physarum Bark Beetle
k=1 Polycephalum
k=2 | k=4 | k=2 | k=4 | k=2 | k=4 | k=2 | k=4 | k=2 k=4 k=2 | k=4
5 0.89 | 057 | 1.54 | 1,33 | 1.33 | 1.33 | 0.77 | 0.63 | 1.50 1.50 243 | 340
15 050 | 028 | 1.27 | 1.12] 1.35 | 1.18 | 0.56 | 0.58 | 1.21 1.05 1.07 | 1.07
30 0.56 | 0.27 1 1.02 | 1.01 | 0.89 | 0.93 | 0.58 | 0.96 | 1.07 0.98 0.93 | 0.93
45 0.50 | 0,26 1 0.93 | 0.93 | 1.00 | 0.92 | 0.61 | 0.83 | 0.82 0.86 0.89 | 0.91

Table 6.41: Peer Model scalability for k=2 and k=4, 16% replication

Initial Load Gnutella k-Walker AntNet SMP2P Physarum Bark Beetle
k=1 Polycephalum
k=2 | k=4 | k=2 | k=4 | k=2 | k=4 | k=2 | k=4 | k=2 k=4 k=2 | k=4
5 0.48 | 0.24 | 1.04 | 1.00 | 1.00 | 1.00 | 0.65 | 0.63 | 1.11 1.11 0.80 | 1.14
15 0.50 | 0251 1.05| 099 | 1.03 | 1.00 | 0.77 | 0.61 | 1.03 1.00 1.00 | 0.96
30 0.50 | 0.20 1 0.98 | 094 | 0.94 | 0.97 | 0.72 | 0.87 | 0.98 0.98 0.98 | 0.94
45 0.50 | 0.25 1 1.00 | 0.98 | 1.00 | 1.00 | 0.84 | 1.08 | 0.95 1.00 0.98 | 0.96

Table 6.42: Akka scalability for k=2 and k=4, 1 replica

Initial Load Gnutella k-Walker AntNet SMP2P Physarum Bark Beetle
k=1 Polycephalum
k=2 | k=4 | k=2 | k=4 | k=2 | k=4 | k=2 | k=4 | k=2 k=4 k=2 | k=4
5 046 | 022 | 1.62 | 1.50 | 1.80 | 1.50 | 0.91 | 0.51 | 1.17 1.17 2.38 | 4.75
15 047 10231129 1.14 |1 1.09 | 1.00 | 0.95 | 0.54 | 1.37 1.13 1.15 | 1.07
30 048 | 023 1 1.00 | 0.99 | 0.96 | 1.00 | 0.78 | 0.64 | 1.00 1.00 1.00 | 1.00
45 048 | 0231093093]10.85|0.85]0.81|0.78] 0.84 0.82 0.97 | 0.97

Table 6.43: Akka scalability for k=2 and k=4, 16% replication

The scalability of Bark Beetle is similar in the Peer Model and in Akka. For 1 replica, the scala-
bility is close to 1 with t/(2) for initial load 5 having the lowest value of 0.80. But for)(4) with
the same initial load of 5, the scalability is the highest with 1.14. All other values are between
0.89 and 1 with)(4) only having slightly worse values than (2).

In case of 16% replication, the scalability values are even better. The best results are achieved
for initial load 5, where ¢(2) is between 2.43 and 2.38 and v(4) is between 3.40 and 4.75. For
initial load 15, the values are slightly greater than 1. For the remaining loads, the scalability is
very close to 1 with values between 0.89 and 1, where the values for scaling factor 2 and 4 are
almost identical.

Physarum Polycephalum shows similar results to Bark Beetle in the Peer Model and in Akka. In
the case of 1, replica and initial load 5, Physarum Polycephalum has a better scaling for (2).

In the case of 16% replication and initial load 5, Physarum Polycephalum is worse than Bark
Beetle for both 1(2) and) (4), although still greater than 1. Additionally, the values for initial

94

load 45 are slightly worse in Physarum Polycephalum with values between 0.82 and 0.86 as op-
posed to Bark Beetle with values between 0.89 and 0.97. Thus, both search algorithms proposed
in this thesis show very good scalability as the initial load grows.

In comparison to Gnutella, both Bark Beetle and Physarum Polycephalum show better scalabil-
ity in all cases. Only in the Peer Model with 16% replication for initial load 5 the scalability is
good with v(2) = 0.89. Excluding the initial load 5 with 16% replication from the Peer Model
results, the highest value for ¢(2) is 0.56 and 0.43 for ¢/(4). The lowest value for both Bark
Beetle and Physarum Polycephalum is 0.80.

In case of 1 replica, the values for k-Walker are between 0.90 and 1.05. In case of 16% replica-
tion, the values are between 0.93 and 1.62. Thus, the scalability is similar to both Bark Beetle
and Physarum Polycephalum. Only for 1 replica and initial load 5 the scalability for Bark Beetle
is significantly better than k-Walker.

In comparison to AntNet, both Bark Beetle and Physarum Polycephalum have very similar scala-
bility. Only in the case of 16% replication and initial load 5, Bark Beetle is much better, although
the scalability of AntNet is also very good with values between 1.33 and 1.80.

In general, SMP2P has worse scalability than both Bark Beetle and Physarum Polycephalum,
with only some exceptions. In the Peer Model, SMP2P is slightly better in case of 1 replica and
initial load of 30 and 45 for ¢)(4). The same is true in Akka in case of 1 replica and initial load
45 for 1(4). Thus, it can be argued that SMP2P has slightly better scalability for 1 replica and
high load, although both Bark Beetle and Physarum Polycephalum achieved very good results
for 1»(4) with initial load 45 with values between 0.90 and 1.00.

95

CHAPTER

Future Work and Conclusion

This chapter discusses possible future improvements to the frameworks, the adapted search al-
gorithm Physarum Polycephalum Slime Mold for unstructured P2P and the newly created search
algorithm Bark Beetle for unstructured P2P. Afterwards, a final conclusion to the master thesis
is drawn.

7.1 Future Work

* Since Bark Beetle for unstructured P2P and Physarum Polycephalum for unstructured P2P
have only been benchmarked in a static P2P network environment, their adaptiveness to
dynamic environments with high peer churn should also be analyzed.

e The benchmarking results for Bark Beetle for unstructured P2P and Physarum Poly-
cephalum for unstructured P2P show, that both algorithms perform well as the network
size and load increases. To ensure that this trend continues as the network size and load
increases further, additional benchmarks for larger network instances should be carried
out.

* To improve the usability of the framework a graphical user interface to configure and
execute benchmarks in the framework would be helpful. Additionally, an option to auto-
matically create plots could increase the user experience significantly as it would save a
lot of time.

97

7.2 Conclusion

In this thesis the need to evaluate and compare search algorithms for unstructured P2P networks
with each other by using standard metrics is addressed. Therefore, two goals are achieved by
this thesis.

The first goal of the thesis is to implement two frameworks for benchmarking of search algo-
rithms for unstructured P2P networks. The first framework is implemented based on the Actor
Model [16] using Akka and the second one based on the Peer Model [[12]] using its Java imple-
mentation. Different search algorithms can be plugged into the frameworks.

The benchmarking frameworks show to fulfill all defined requirements. They provide a clearly
structured architecture that allows new users to understand the basic concepts very quickly. Ad-
ditionally, both frameworks offer extensive configurability with provided default values that fit
many scenarios. Furthermore, generic interfaces allow easy exchangeability of different algo-
rithms.

The second goal is to use the created frameworks to develop a new algorithm for distributed
search in P2P networks based on the collective feeding of bark beetles [22]. Additionally, an
adaption of the already existing Physarum Polycephalum algorithm [9] to search in fully dis-
tributed P2P networks is developed. Both algorithms are intelligent search algorithms that use
software agents to learn about their environment in order to resolve search requests. The re-
sulting algorithms are implemented, evaluated and compared to the non-intelligent algorithms
Gnutella Flooding and k-Walker as well as the intelligent algorithms AntNet and SMP2P using
the created frameworks.

Both Bark Beetle and Physarum Polycephalum show to have very good scalability regarding
growing network size and load. They scale equal to or better than the remaining evaluated algo-
rithms. Two strategies for replication are used to evaluate the six algorithms: for low replication
only 1 node has the required resource and for high replication 16% of the nodes in the net-
work have the required resource. In case of 1 replica, Physarum Polycephalum outperforms all
other algorithms only matched by AntNet in terms of absolute time. Bark Beetle performs only
slightly worse than Physarum Polycephalum. In case of 16% replication, Bark Beetle performs
better than most of the algorithms with only k-Walker slightly outperforming it and is closely fol-
lowed by Physarum Polycephalum. In terms of average messages per node, Bark Beetle shows
the best results closely followed by Physarum Polycephalum in all cases. In terms of success
rate, Bark Beetle shows very good results performing only slightly worse than Gnutella in case
of 1 replica and being on par with it in case of 16% replication. On the other hand, Physarum
Polycephalum has the worst success rate together with AntNet in case of 1 replica. In case of
16% replication, it performs significantly better alongside AntNet, matching SMP2P at times,
but is outperformed by the remaining algorithms non the less.

This thesis shows that it is possible to provide frameworks for benchmarking of search algo-

98

rithms for unstructured P2P networks based on the Actor Model and Peer Model. Additionally,
two new search algorithms are provided that show to perform very well.

99

(3]

[4]

Bibliography

Akka. Documentation. https://akka.io, 2017. Accessed: 2017-10-22.

Google Compute Engine. https://cloud.google.com/compute/, 2017. Ac-
cessed: 2017-07-12.

Google Compute Engine Machine Types. https://cloud.google.com/
compute/docs/machine—-types., 2017. Accessed: 2017-07-12.

A. L. Barabasi, R. Albert. Emergence of scaling in random networks. In Science, volume
286, pages 509-512. American Association for the Advancement of Science, 1999.

A. Oram. Peer-to-Peer : Harnessing the Power of Disruptive Technologies. O’Reilly
Media, 1 edition, 2001.

Mauro Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer Pub-
lishing Company, Incorporated, 1st ed. 2005. 2nd printing edition, 2009.

D. D. Kanev. Decentralized unstructured flat p2p network with streaming content delivery
method and user collaboration. Master’s thesis, Vienna University of Technology, 2015.

D. R. Monismith Jr. The uses of the slime mold lifecycle as a model for numerical opti-
mization. Stillwater, OK, USA, 2010. Oklahoma State University. AAI3422282.

D. S. Hickey, L. A. Noriega. Insights into information processing by the single cell slime
mold physarum polycephalum. In UKACC Control Conference, Manchester, UK, 2008.

D. Stutzbach, R. Rejaie. Understanding churn in peer-to-peer networks. In Proceedings of
the 6th ACM SIGCOMM Conference on Internet Measurement, IMC °06, pages 189-202,
New York, NY, USA, 2006. ACM.

E. K. Lua, H. Yu, J. Buford. P2P Networking and Applications. M. Kaufmann, 1 edition,
2008.

E. Kiihn, S. CraB, G. Joskowicz, A. Marek, T. Scheller. Peer-based programming model
for coordination patterns. In Coordination Models and Languages: 15th International
Conference, COORDINATION 2013, Held as Part of the Sth International Federated Con-

ference on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5,

2013. Proceedings, pages 121-135, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

101

https://akka.io
https://cloud.google.com/compute/
https://cloud.google.com/compute/docs/machine-types.
https://cloud.google.com/compute/docs/machine-types.

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

102

F. Sharifkhani, M. R. Pakravan. A new metric for comparison of p2p search algorithms. In
2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Com-
puting, pages 191-195. IEEE Computer Society, Nov 2012.

G. A. Di Caro. Ant Colony Optimization and its application to adaptive routing in telecom-
munication networks. PhD thesis, Faculté des Sciences Appliquées, Université Libre de
Bruxelles, Brussels, Belgium, November 2004.

J. F. Buford, H. Yu. Peer-to-peer networking and applications: Synopsis and research
directions. In Handbook of Peer-to-Peer Networking, pages 3—45, Boston, MA, 2010.
Springer US.

J. Goodwin. Learning Akka. Packt Publishing, 1 edition, 2015.

M. Casadei, R. Menezes, M. Viroli, R. Tolksdorf. A self-organizing approach to tuple
distribution in large-scale tuple-space systems. In R. H. Katz D. Hutchison, editor, Self-
Organizing Systems, volume 4725 of Lecture Notes in Computer Science, pages 146—160.
Springer Berlin Heidelberg, 2007.

M. Loépez-Ibéafiez, J. Dubois-Lacoste, T. Stiitzle, M. Birattari. The irace package: Iter-
ated racing for automatic algorithm configuration. In Operations Research Perspectives,
volume 3, pages 43 — 58. Elsevier, 01 2011.

P. Jogalekar, M. Woodside. Evaluating the scalability of distributed systems. In IEEE
Trans. Parallel Distrib. Syst., volume 11, pages 589—603, Piscataway, NJ, USA, June 2000.
IEEE Press.

Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker. Search and replication in unstructured peer-to-
peer networks. In Proceedings of the 16th International Conference on Supercomputing,
ICS °02, pages 84-95, New York, NY, USA, 2002. ACM.

S. Androutsellis-Theotokis, D. Spinellis. A survey of peer-to-peer content distribution
technologies. In ACM Comput. Surv., volume 36, pages 335-371, New York, NY, USA,
December 2004. ACM.

D. Sauvard. General Biology of Bark Beetles, pages 63—88. Springer Netherlands, Dor-
drecht, 2004.

V. 1. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
In Soviet Physics Doklady, volume 10, page 707. Elsevier, 1966.

V. Vernon. Reactive Messaging Patterns with the Actor Model: Applications and Integra-
tion in Scala and Akka. Addison-Wesley Professional, 1st edition, 2015.

V. Sesum-Cavié, E. Kiihn. A swarm intelligence appliance to the construction of an in-
telligent peer-to-peer overlay network. In 2010 International Conference on Complex, In-
telligent and Software Intensive Systems, pages 1028-1035. IEEE Computer Society, Feb
2010.

[26] V. Sesum-Cavié, E. Kiihn. Algorithms and framework for comparison of bee-intelligence
based peer-to-peer lookup. In Advances in Swarm Intelligence: 4th International Confer-
ence, ICSI 2013, Harbin, China, June 12-15, 2013, Proceedings, Part I, pages 404—413,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[27] V. Sesum-Cavié, E. Kiihn, D. Kanev. Bio-inspired search algorithms for unstructured p2p
overlay networks. volume 29, pages 73 — 93. Elsevier, 2016.

103

	Introduction
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Master's Thesis

	Technical Background and Related Work
	Technical Background
	Related Work

	Algorithms
	P2P Resource Definition
	Physarum Polycephalum Slime Mold for unstructured P2P search
	Bark Beetle for unstructured P2P search

	Framework Design
	Design goals
	P2P Network Generation
	Resource Distribution
	Search Request
	Reset Test Environment

	Implementation Details
	Test Environment Setup
	P2P Network Generation
	Resource Distribution
	Search Request
	Reset Test Environment

	Evaluation
	Simulation Methodology
	Sensitivity Analysis
	Raw Result Data
	Competitive Analysis
	Statistical Analysis
	Scalability Analysis

	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography

