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Abstract

MedAustron is an ion therapy and research center situated in Wr. Neustadt, Lower
Austria. The facility features a synchrotron based accelerator, which allows to
provide proton beams in the range of 62-800 MeV and carbon ion beams in the range
of 120-400 MeV/n. As of 2018 the commissioning of three horizontal beam lines (two
for treatment, one for research) and the vertical beam line is finished for protons
while the commissioning process for carbon ions is ongoing.

The volume a beam of charged particles occupies in the phase space can be described
by its emittance. Measurement and control of the beam emittance is crucial for
successful particle therapy, since the emittance is a major defining parameter for
the spot size of the beam at the isocenter. By defining the betatron amplitudes of
the particles, it also plays an important role in the setup of the third order resonant
extraction used at MedAustron. Additionally the emittance needs to be matched
between the different parts of the accelerator and the transfer lines. It therefore has
a strong influence on the transmission efficiency of the charged particles which in
turn plays an important role in the efficiency of the dose delivery to the patient.

In this thesis multiple measurement and analysis procedures to obtain the emittance
and transmission through the various stages of the accelerator have been imple-
mented. The specialized analysis tools were written in Python and developed inside
MedAustron’s dedicated measurement analysis framework. A special focus has been
set on the characterization of the developed analysis tools to understand the achiev-
able accuracy in emittance reconstruction. The used procedures for the emittance
measurement are: slit-grid method in the Injector, quadrupole tuning in the medium
and high energy beam transfer lines and emittance reconstruction via the insertion of
copper scraper plates in the synchrotron. The transmission is measured via several
current transformers for pulsed and continuous beam. The usability of the developed
tools has been proven during the commissioning of the carbon ion beam, as well as
for repetitive beam parameter measurements of the proton beam.
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Introduction
The goal of this thesis was the implementation of measurement and analysis proce-
dures to reconstruct the particle beam emittance in the MedAustron synchrotron and
the transfer lines, as well as to obtain the transmission of the beam intensity, which
is closely related to the emittance, through the different sections of the accelerator.
Since the emittance is decisive for the spot size of the beam at the isocenter and the
transmission has a direct impact on the delivered dose and therefore also treatment
times, the measurement and control of these beam properties is of utmost importance
for the successful treatment of patients with ion therapy. The measurement analysis
tools have been developed alongside the ongoing commissioning of the carbon ion
beam and were extensively used during this whole time. The analysis procedures
were also thoroughly tested and characterized with simulated data.

The thesis is structured as follows: in chapter 1 selected topics of accelerator physics,
which were relevant to this thesis, will be presented including an introduction into
the concept of the particle phase space and emittance. Chapter 2 will give an
overview over the MedAustron facility, including design beam properties followed
by a description of the used beam diagnostic devices and monitors in chapter 3.
In chapter 4 the ideas and physics behind the used emittance and transmission
measurement concepts will be presented. Chapter 5 covers the description of the
developed analysis tools and algorithms, as well as testing of the tools with simulated
data. In chapter 6 the main measurement analysis results will be presented.

1



1 Accelerator Physics
In this chapter some basics of accelerator physics will be presented. This should
in no means represent a complete derivation of the topics presented here. Much
more in-depth information can be found in the books of Wiedemann [1], Lee [2] and
Bryant and Johnsen [3], out of which most information in this chapter is taken.

1.1 Introduction

A synchrotron is a ring-shaped accelerator, comprised of magnetic and electric
components, which guide a beam of charged particles within a vacuum chamber. A
particle trajectory in a synchrotron that closes on itself after a complete revolution
is called a closed orbit. The orbit of the particles, defined by the elements of the
synchrotron lattice (dipoles, quadrupoles, sextupoles, ...) is called the reference orbit
and a particle following the reference orbit is referred to as the reference particle.

The design of a synchrotron can be such, that the particles should follow a different
closed orbit, referred to as the design orbit. The particle following this defined path
is referred to as the design particle.

At MedAustron the particles follow a trajectory which is closer to the center of the
synchrotron than the center of the vacuum pipe. This means that the particles have
a lower energy than the reference particle and therefore this mode of operation is
referred to as off-momentum operation. The reason for this chosen mode of operation
lies in the used extraction method explained in Sec. 1.3.2.

In a synchrotron a charged particle is subject to the Lorentz force:

~F = q ·
(
~E + ~v × ~B

)
with the charge of the particle q (in the following always assumed to be positive),
the velocity v, electrical field ~E and the magnetic field ~B. On the reference orbit
there is an equilibrium between Lorentz (without acceleration only contribution from
magnetic fields) and centrifugal force:

qvB = −γrelm0v
2

ρ
(1.1)

with the Lorentz factor γrel, the rest mass of the particle m0 and the radius of
curvature of the reference orbit ρ. Rearranging this equation with the definition of
the relativistic momentum p = γm0v one obtains the definition of the so called beam
rigidity Bρ:

Bρ =
p

|q|
(1.2)

From this equation the name-giving property of the synchrotron can be seen, namely
that in order to keep the orbit radius stable, the B-field needs to be increased
synchronously with increasing particle momentum.

2



ACCELERATOR PHYSICS

1.1.1 Coordinate system and magnetic field sign conventions
[4]

The MedAustron accelerator complex uses the MAD-X1 coordinate system. It is a
local curvilinear right handed coordinate system (x, y, s) where the local s-axis is
the tangent to the reference orbit. The other two axes are normal to the reference
orbit and are labelled x (in the bending plane) and y (perpendicular to the bending
plane). The used coordinate system is shown in Fig. 1.1.

Chapter 1. Conventions

1.1 Reference System

The accelerator and/or beam line to be studied is described as a sequence of beam elements
placed sequentially along a reference orbit. The reference orbit is the path of a charged
particle having the central design momentum of the accelerator through idealised magnets
with no fringe fields (see Figure 1.1).

y

x

z

ρ

ρ

centre of
curvature

actual
orbit

d~r

s

reference
orbit

Figure 1.1: Local Reference System

The reference orbit consists of a series of straight line segments and circular arcs. It is defined
under the assumption that all elements are perfectly aligned. The accompanying tripod of
the reference orbit spans a local curvilinear right handed coordinate system (x,y,s) The local
s-axis is the tangent to the reference orbit. The two other axes are perpendicular to the
reference orbit and are labelled x (in the bend plane) and y (perpendicular to the bend
plane).

1.2 Closed Orbit

Due to various errors like misalignment errors, field errors, fringe fields etc., the closed orbit
does not coincide with the reference orbit. The closed orbit also changes with the momentum
error. The closed orbit is described with respect to the reference orbit, using the local reference
system (x, y, s). It is evaluated including any nonlinear effects.

11

Figure 1.1: MAD-X coordinate system. Source: Grote and Schmidt [4] page
11.

A dipole field B0 with a positive value in the positive y direction bends a positively
charged particle to the right. A positive value of the quadrupole coefficient B1 =
(∂By/∂x) corresponds to horizontal focusing of a positively charged particle.

1.2 Transverse beam dynamics

This section is besides the books of Wiedemann [1], Lee [2] and Bryant and Johnsen
[3] also based on the works of Holzer [5].

While dipole magnets keep the beam on its closed orbit, quadrupole magnets are
used to exert focusing forces on the particles to keep their trajectories close to the
ideal orbit. This can be achieved by the linearly, with distance from the center,
increasing field of the quadrupoles:

By = gx and Bx = gy

1The MAD (Methodical Accelerator Design) program is a general-purpose tool for charged-
particle optics design and studies in alternating-gradient accelerators and beam lines [4].

3



ACCELERATOR PHYSICS

where g is the gradient of the quadrupole magnet.

Figure 1.2: Field lines of a quadrupole magnet showing the focusing and
defocusing forces. Source: Andre Holzner, Wikipedia

In contrast to optical lenses, quadrupole magnets act as a focusing lense for one
plane while defocusing the other one, as can be seen by the force vectors in Fig. 1.2.

1.2.1 Equations of motion

A Taylor expansion of the magnetic field up to the linear term (examplary for one
plane) yields:

By(x) = By0 +
dBy

dx
x

4



ACCELERATOR PHYSICS

And with normalization to the particle momentum (see eq. 1.2):

B(x)

p/q
=

B0

B0ρ
+

g

p/q
x

B(x)

p/q
=

1

ρ
+ kx

with the normalized quadrupole strength k = g
p/q

.

Looking at a particle with a general trajectory ρ→ ρ+ x one obtains the following
equation of motion (see the force equilibrium in eq. 1.1):

F = m
d2

dt2
(ρ+ x)︸ ︷︷ ︸

1

= qByv︸ ︷︷ ︸
2

+
mv2

ρ+ x︸ ︷︷ ︸
3

| : m

1 : as ρ = const. ⇒ d2

dt2
(ρ+ x) =

d2x

dt2

2 : qByv = qv(B0 + gx)

3 : develop for small x as x� ρ⇒ 1

ρ+ x
=

1

ρ

(
1− x

ρ

)

d2x

dt2
− v2

ρ

(
1− x

ρ

)
=
qvB0

m
+
qvxg

m
| : v2

Change the independent variable from t to the coordinate along the circumference s:

d2x

dt2
=
d2x

ds2

d2s

dt2
= x′′v2

x′′ − 1

ρ

(
1− x

ρ

)
=
qB0

mv
+
qxg

mv
| mv = p,

B0

p/q
= −1

ρ
,
g

p/q
= k (1.3)

x′′ − 1

ρ
+
x

ρ2
=

1

ρ
+ kx

Thus one obtains the equation of motion in the horizontal plane:

x′′ +

(
1

ρ2
− k
)
x = 0 (1.4)

And for the vertical plane with 1
ρ2

= 0 due to no dipoles being present in general
and the quadrupole fields changing sign k → −k:

y′′ + ky = 0 (1.5)

5



ACCELERATOR PHYSICS

1.2.2 Matrix solutions for the equations of motion

The equations of motion eq. 1.4 and eq. 1.5 can be transformed into differential
equations of an harmonic oscillator with a spring constant K, with the definitions:

K(hor) =
1

ρ2
− k

K(ver) = k

For a horizontally focusing quadrupole with K > 0 the solutions are:

x(s) = x0 cos
(√
|K|s

)
+ x′0

1√
|K|

sin
(√
|K|s

)
x′(s) = −x0

√
|K| sin

(√
|K|s

)
+ x′0 cos

(√
|K|s

)
or in matrix notation:(

x
x′

)
s=l

=

 cos
(√
|K|l

)
1√
|K|

sin
(√
|K|l

)
−
√
|K| sin

(√
|K|l

)
cos
(√
|K|l

)


︸ ︷︷ ︸
Mfoc

(
x
x′

)
s=0

(1.6)

Similarly for a defocusing quadrupole with K < 0 one obtains:(
x
x′

)
s=l

=

 cosh
(√
|K|l

)
1√
|K|

sinh
(√
|K|l

)
√
|K| sinh

(√
|K|l

)
cosh

(√
|K|l

)


︸ ︷︷ ︸
Mdefoc

(
x
x′

)
s=0

(1.7)

The transfer matrix for a field-free drift space (K = 0) is:

Mdrift =

(
1 l
0 1

)
(1.8)

1.2.2.1 Thin lens approximation

Often the focal length of the quadrupole is much bigger than the length of the
magnet itself:

f =
1

kl
� l

Therefore if one does the lim
l→0

while kl = const. one obtains the thin lens approxima-
tion matrices:

M =

(
1 0
± 1
f

1

)
(1.9)

1.2.3 Hill’s equation

In a synchrotron the lattice of the magnets defines periodic focusing properties as a
function of s. Therefore the equation of motion is a Hill-type differential equation:

x′′(s)− k(s)x(s) = 0 with k(s+ L) = k(s)

6



ACCELERATOR PHYSICS

with the circumference of the synchrotron L. The general solution of Hill’s equation
is:

x(s) =
√
ε
√
β(s) cos(Ψ(s) + Φ) (1.10)

x′(s) = −
√
ε√
β(s)

(α(s) cos(Ψ(s) + Φ) + sin(Ψ(s) + Φ))

where ε (emittance, see also sec. 1.4) and Φ (initial phase) are integration constants
determined by initial conditions, β(s) a periodic function given by the focusing
properties of the lattice (i.e. quadrupoles), α(s) = −1

2
β′(s) and Ψ(s) =

∫ s
0

ds
β(s)

the
so called phase advance of the oscillation between two points in the lattice.

Another important property of a synchrotron is the so called Tune which is equal to
the number of oscillations per turn of a particle (i.e. the total phase advance during
one turn around the ring normalized to 360 degrees):

Q =
1

2π

∮
ds

β(s)

The periodic oscillations of the particles around the equilibrium orbit are also called
betatron motion and their amplitude in phase space (see Sec. 1.4.2 for a description
of the phase space) is then called betatron amplitude, which is directly related to the
emittance ε.

1.2.4 The Beta function

From the solution of Hill’s equation, eq. 1.10, one can immediately see that the
maximum amplitude of a particle is:

xmax(s) =
√
ε
√
β(s)

Therefore the β-function is an important property of an accelerator, determining the
beam size and reflecting the periodicity of the magnet structure.

1.2.5 The Dispersion function

If we go back to Eq. 1.3 on page 5:

x′′ − 1

ρ

(
1− x

ρ

)
=
qB0

mv
+
qxg

mv

and we assume that the particles have a small momentum error

mv = p = p0 + ∆p

Developing for small momentum errors ∆p yields:

1

p0 + ∆p
≈ 1

p0

− ∆p

p2
0
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And we obtain:

x′′ − 1

ρ
+
x

ρ2
=
qB0

p0︸︷︷︸
− 1
ρ

−∆p

p0

qB0

p0︸︷︷︸
− 1
ρ

+
qxg

p0︸︷︷︸
kx

−x qg∆p

p2
0︸ ︷︷ ︸

≈0

Rearranging leads to the new equation of motion:

x′′ +

(
1

ρ2
− k
)
x =

∆p

p0

1

ρ
(1.11)

Comparing Eq. 1.11 to the equation of motion without momentum error in Eq. 1.4
one can immediately see, that the momentum spread of the beam adds a term on
the right hand side of the equation of motion transforming it into an inhomogeneous
differential equation.

The general solution looks like:

x(s) = xh(s) + xi(s)

with

x′′h(s) +K(s)xh(s) = 0

x′′i (s) +K(s)xi(s) =
∆p

p0

1

ρ

The so called dispersion function is the normalization of the inhomogeneous part of
the solution with respect to the momentum spread:

D(s) =
xi(s)

∆p
p

(1.12)

The orbit of any particle is the sum of the homogeneous solution of the equation of
motion and the dispersion. Since the dispersion is just another orbit, it is as well
subject to the focusing and defocusing properties of the magnetic lattice.

1.3 Third order resonant extraction

The currently used extraction scheme at MedAustron will be explained here, because
it has significant influence on the horizontal emittance of the extracted beam (see
Sec. 1.4.6). This section is based on the description in the PIMMS study by Bryant
et al. [6].

1.3.1 General Resonance Condition

Hill’s equation is quasi-harmonic and therefore the danger of exciting resonances
exists. In particle accelerators multiple possible resonance exciting sources exists, for
example: magnet imperfections, time varying fields, non-linear magnets, collective
effects, etc.

8



ACCELERATOR PHYSICS

The general resonance condition for the tunes in both planes can be written as:

kQx + lQy = m (1.13)

where k, l and m are integers. The order of resonances can be categorized by the
value of k or l. For k = 3 the driving field is a sextupole field and the resonance is
called third order resonance.

1.3.2 Extraction at MedAustron

At MedAustron the beam extraction from the synchrotron is performed via a so
called betatron core driven third order resonance extraction. In this extraction scheme
a betatron core sextupole magnet slowly pushes the particles into the horizontal
resonant tune of Qx = 1.666. This divides the phase space into a stable and an
unstable region (see Fig. 1.3a)

(a) Normalized phase space under reso-
nant conditions. Source: Bryant et al. [6]
page 14.

(b) Phase space coordinates for a parti-
cle during the last three turns before ex-
traction, starting just inwards of the elec-
trostatic extraction septum (vertical line).
Source: Bryant et al. [6] page 31.

As soon as the particles reach the border of the stable region they start to move along
the outward facing lines. As soon as they reach the electrostatic extraction septum
they are separated from the particles in the ring and get extracted (see Fig. 1.3b).
The emittance of the beam plays an important role in the setup of the extraction,
since it defines the betatron amplitude of the particles and therefore the crossing of
the resonance.

1.4 Emittance of a particle beam

The following sections shall give an overview over the concept of the emittance of a
particle beam. An in-depth derivation of the topics presented here can be found in
Wiedemann [1], Buon [7], Bryant and Johnsen [3] and Lee [2] on which this section
is based.
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1.4.1 The canonical phase space

Just like many other physical systems, a beam of particles can be described by its
Hamilton function H(pi, qi, t), with the time t, coordinates qi and the conjugate
momenta pi, where i = (1, . . . , f) with f degrees of freedom of the system. If the
Hamiltonian does not explicitly depend on the time, H is the invariant total energy
of the system.

The canonical phase space is the 2f -dimensional space with the conjugate coordinates
qi and pi. The state of the system at a time t is represented by a pointM(t) with the
respective canonical coordinates in the canonical phase space. As the time increases
the representative points M(t) generate a curve, called phase trajectory. When the
Hamiltonian is time-independent, there is only one single phase trajectory originating
from any point in the phase space and trajectories originating from different points
can not cross each other.

Periodic motions (like they happen in a synchrotron) create closed trajectories. For
a two-dimensional phase space the existing closed trajectories, combined with the
forbidden crossing of trajectories, result in the circumstance, that all trajectories
originating from points in a region encompassed by a closed trajectory, are bounded
by that trajectory.

1.4.2 Phase space of a particle beam

A beam of N particles is a physical system with 3N degrees of freedom2 and the
corresponding canonical phase space therefore is 6N -dimensional. In the case of
identical particles and under the assumption, that they do not interact with each
other, the whole problem can be reduced to the 6-dimensional canonical phase space
of one particle. Therefore the beam can be represented as N 6-dimensional points
instead of one 6N -dimensional one.

If the longitudinal motion of the beam is decoupled from the motion in the transversal
plane (which is usually the case) the phase space can be split into a 2-dimensional lon-
gitudinal and a 4-dimensional transverse phase space. If furthermore the transverse
motion can be split into two independent motions along two orthogonal directions
(usually the horizontal and vertical plane are chosen) the transverse phase space can
be split again into two 2-dimensional phase spaces.

1.4.2.1 Trace space

When the transverse momenta px and py are small compared to the longitudinal
momentum pz the paraxial approximation can be applied relating the transverse
angles with respect to the reference orbit x′, y′ to the transverse momenta according
to [7] (for the horizontal momentum):

px = mvx + qAx = mocβγx
′ + qAx

with the rest mass m0 and the charge q of the particle, x′ = dx
dz

and Ax the horizontal
component of the magnetic vector potential. For entirely transversal magnetic fields

2If internal degrees of freedom, like the spin, can be neglected.
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the transversal magnetic vector potential vanishes and the momentum can be written
as:

px = mocβγx
′ (1.14)

allowing the transformation from the (x, px, y, py) phase space to the so called
(x, x′, y, y′) trace space. The coordinates and angles are usually given relative to the
reference orbit.

1.4.3 Liouville’s theorem

Liouville’s theorem [1, 7] states, that volumes in the canonical phase space are
invariant along the trajectories of a system. From this follows directly3 that also the
phase density in the 6-dimensional phase space is constant.

However, the hypersurface limiting the invariant volume is in general not an invariant
and can change its shape along the trajectory. Additionaly, volumes (areas) in a sub
phase space are only invariant if their degrees of freedom are uncoupled from the
other ones.

1.4.4 Beam emittance

The emittance ε of a particle beam is generally defined as the 6-dimensional hy-
pervolume in phase space which is occupied by the beam particles. If the three
directions of motion are decoupled (see sec. 1.4.2) the emittance can be defined for
each sub-space (e.g. εx) as the area which is covered by the beam, when projecting
the phase space onto the respective phase plane.

Emittance volumes/areas containing all particles are of little practical use, since their
values can be dominated by a few particles with extreme angles or positions and
therefore become fairly large. Therefore it has become customary to either define
the emittance based on the standard deviation, the so called RMS-emittance εrms, or
on an ellipse containing an arbitrarily chosen percentage of all particles4. Assuming
a Gaussian distribution of the beam in both x and x′, the RMS-emittance contains
40% of all particles [2].

The ellipse representing the phase space trajectory of the RMS particle5 in horizontal
(vertical) trace space can be described by the equation [1]:

γx2 + 2αxx′ + βx′2 = εx (1.15)

with the so called Twiss parameters α(s), β(s) and γ(s), with the coordinate along
the beam trajectory s. Those are the same ε, α and β as already encountered in the
solution to Hill’s equation in eq. 1.10. From the geometric properties of an ellipse it
can be derived that they follow γ = 1+α2

β
.

The emittance εx defined in eq. 1.15 is the aforementioned RMS emittance [πmrad].

3When neglecting possible particle losses.
4This value is usually chosen to be 90% or 95%.
5Or the particle representing the border of whatever fraction is chosen to limit the emittance.
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The area of the ellipse A = πε [m rad] is sometimes also referred to as the emittance.
In this thesis the emittance definition resulting in a unit of πmrad will be used.

Figure 1.4: Phase space ellipse in the x-x′-plane. Source: Wiedemann [1]

In Fig. 1.4 the dependence of the ellipse shape on the Twiss parameters can be seen:
α defines the orientation of the ellipse and therefore whether the beam is divergent
or convergent, β [m] is a measure for the beam size and γ for the beams angle spread.

1.4.4.1 Normalized emittance

From eq. 1.14 it can be seen, that the trace space emittance is only invariant
as long as the relativistic properties β and γ do not change. For example during
acceleration however, the beam angle spread is reduced and therefore the transverse
emittance gets smaller. This effect is called adiabatic damping and can easily be
understood, when considering that during acceleration the longitudinal momentum
pz is increased, while the transverse momenta stay the same. And since x′ ∝ px

pz
the

transverse emittance decreases.

To compensate this, one can introduce the so called normalized emittance6

εx,norm = βγεx

which is an invariant if particle acceleration is the only non-linear effect. The
emittance εx is also referred to as the geometric emittance.

6Here β and γ refer to the relativistic properties and not to the Twiss parameters.
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1.4.5 The σ-matrix [2]

The σ-matrix of a beam distribution is defined as

σ =

(
σ11 σ12

σ12 σ22

)
=

(
σ2
x σxx′

σxx′ σ2
x′

)
where σx and σx′ are the rms beam widths and σxx′ is the correlation. The σ-matrix
transforms from a point s1 to a point s2 according to:

σ(s2) = R(s2|s1)σ(s1)R(s2|s1)> (1.16)

where R(s2|s1) is the transfer matrix between points s1 and s2 (see sec. 1.2.2 for
the transfer matrices). For a normalized particle distribution function ρ(x, x′) the
rms beam widths can be calculated as:

σ2
x =

∫
(x− 〈x〉)2ρ(x, x′)dxdx′

σ2
x′ =

∫
(x′ − 〈x′〉)2ρ(x, x′)dxdx′

σxx′ =

∫
(x− 〈x〉)(x′ − 〈x′〉)ρ(x, x′)dxdx′

with the first moments of the beam distribution:

〈x〉 =

∫
xρ(x, x′)dxdx′

〈x′〉 =

∫
x′ρ(x, x′)dxdx′

The rms emittance can then be expressed as the determinant of the σ-matrix:

εrms =
√

detσ =
√
σ2
xσ

2
x′ − σ2

xx′ (1.17)

1.4.5.1 σ-matrix and Twiss parameters [1]

The relationships between the Twiss-parameters and the σ-matrix are:

εβ = σ11 (1.18)
εα = −σ12 (1.19)

εγ = σ22 =
ε2 + σ2

12

σ11

(1.20)

Let R be the transfer matrix between points s1 and s2, then the Twiss-parameters
transform according to:

β(s2)
α(s2)
γ(s2)

 =

 R2
11 −2R11R12 R2

12

−R11R21 R11R22 +R21R12 −R12R22

R2
21 −2R21R22 R2

22

β(s1)
α(s1)
γ(s1)

 (1.21)
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1.4.6 Emittance in the extraction line

This section is based on the description in the PIMMS study by Bryant et al. [6].

The emittance of the beam after the extraction (see Sec. 1.3.2 for a description of
the extraction mechanism) differs substantially from the one in the ring. The beam
is not only asymmetric in terms of emittance but also asymmetric in its shape in
phase space. The vertical emittance in the synchrotron is more or less untouched by
the extraction mechanism and will translate directly into the extraction line. While
in the vertical plane the beam still occupies the usual elliptical area, in the horizontal
plane it looks like a narrow bar, the so called bar of charge (see Fig. 1.5). The
orientation of this bar is critical since its projection onto the positional coordinate
axis determines the spot size for the horizontal plane (see. Fig. 1.6). Therefore the
bar of charge must arrive at the patient with a known and controllable orientation.

The set-up of the extraction process therefore defines the horizontal emittance in
the extraction line. In return, the horizontal emittance in the ring has a significant
influence on the set-up of the extraction, since the emittance defines the betatron
amplitudes of the particles and the third order resonant extraction relies on an
increase of the amplitudes to cross the resonance lines dividing the stable from the
unstable part of the phase space.

Figure 1.5: Shown are phase space coordinates of particles during the ex-
traction. What can be seen is, that the extracted beam covers only a very
narrow bar-shaped area in the phase space. Source: Bryant et al. [6] page
164.
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Figure 1.6: Left: bar of charge and impact of the orientation on the beam
width. Right: constant beam width for an elliptically shaped beam. Source:
Bryant et al. [6] page 169.
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2 The MedAustron accelerator and
design beam properties
In this chapter a basic overview over the MedAustron accelerator complex and
relevant naming conventions and encoding schemes shall be given. Subsequently the
clinical requirements on the beam and the design beam properties will be presented.

2.1 The MedAustron facility

MedAustron is a synchrotron based ion therapy and research center located in Wr.
Neustadt, Austria. Its design is based on PIMMS1[6] and CNAO2[8]. When the
commissioning is completely finished it will provide proton and carbon ion beams in
the energy ranges of 60MeV to 250MeV and 120MeV/n to 400MeV/n respectively for
clinical treatment and non-clinical research, as well as proton beams up to 800MeV
for non-clinical research.

The facility features four irradiation rooms, three of which are dedicated to clinical
operation and a fourth one to non-clinical research (IR1). The three clinical rooms
contain two fixed horizontal (IR2&IR3) and a fixed vertical beam line (IR2) as well
as a proton gantry (IR4). Commissioning of all fixed lines has been completed for
protons, while the commissioning for carbon ions and a proton gantry is ongoing.

The MedAustron accelerator complex features three ECR ion sources, a 400 keV/n
RFQ3 and a 7MeV/n IH drift tube LINAC feeding the beam into a synchrotron
with 77m circumference.

Figure 2.1: Layout of the MedAustron accelerator complex. Source:
MedAustron and own annotations.

1Proton Ion Medical Machine Study
2Centro Nazionale di Adroterapia Oncologica
3A radio-frequency quadrupole (RFQ) is a linear accelerator component usually used at low

beam energies that both accelerates and focuses the beam of charged particles.
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2.1.1 Naming convention for accelerator components

All the accelerator components follow a certain naming convention outlined in Fig.
2.2.

Figure 2.2: Example of the applied naming convention on a scintillating
fiber hodoscope beam profile monitor in the transfer line to IR3.

The first two characters describe the beam line in which the component is situated.
The beam line names are: Sx (for the source branches with x being the number of the
source), LE (LEBT), LI (LINAC), ME (MEBT), MR (Main Ring), EX (extraction
line), T1 (IR1), T2 (common branch of IR2), H2 (IR2 horizontal beam line), V2 (IR2
vertical beam line), T3 (IR3) and T4 (IR4). Next are two integers specifying the
section of the beam line followed by three integers which comprise a running number
for all components in the section and lastly three characters specifying which class
of component it is.

2.1.2 Cycle Codes

When beam of a certain property is requested to a beam target (in most cases an
irradiation room) the request of the beam properties is handed to the accelerator
control system via a so called cycle code. This is a 16 digit hexadecimal string
encoding all necessary information about the: beam line, degrader setting, energy,
extraction method, gantry angle, beam size, operational mode, particle type, used
source, spill length, variant and version.

2.2 Clinical requirements

From a clinical perspective there are certain requirements on the particle beam, which
partly differ between protons and carbon ions. In Table 2.1 the clinical requirements
on the energy, number of particles and spot size are presented4. The spot size is
closely related to the emittance of the beam, while the intensity in the irradiation
room depends on the transmission through the individual sections of the accelerator,
which in turn is related to the emittance. The requirements have all been taken from
[9] (state as of 28th March, 2018).

4The dose requirement is formulated such, that it should be possible to deliver 2Gy in less than
120 s to a 2 l tumor volume.
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Requirement p+ C6+

Range in water [mm] 30-370 36-270
Energy range corresponding to range in water [MeV] 60-250 120-400
Dose requirement 2Gy/120 s 2Gy/120 s
Number of particles/spill to fulfill dose requirement 1 · 1010 4 · 108

Nominal spot size (FWHM) [mm] 6 (-0/+4) 6 (-0/+4)

Table 2.1: Overview over the clinical requirements

2.3 Design beam properties

2.3.1 Sources

The sources installed in the MedAustron Injector are so called Supernanogan ECR
ion sources, capable of producing both hydrogen and carbon ions. At the moment
three identical sources are installed: S1 for the proton beam, S2 for the carbon ion
beam and S3 which is currently a standby source with an envisioned future use for
the production of other light ion beams.

The ionization is produced by heating electrons via microwave power on a surface
defined by the ECR resonance condition

ωRF =
eB

me

where e is the charge of the electron, B the magnetic field, and me the electron mass.
The ionization is produced via stepwise electron impact resulting in the production
of various high charge states [10].

To fulfill the acceptance of the LINAC, ions with a charge to mass ratio of 1/3 are
extracted for both the proton and the carbon ion beam. From the wide array of
extracted particles and charge states the H+

3 and the C4+ species are selected via a
spectrometer dipole magnet.

To obtain the different ion species, S1 is filled with a H2 gas, while S2 is filled with
a mix of CO2 and He which acts as a support gas.

The design beam properties for the beam exiting the sources are shown in Table 2.2.

Requirement p+ C6+

Current from source [µA] 500 200
≥ 90% beam emittance [πmmmrad] 180 180

Table 2.2: Overview over the extracted beam design parameters. Source: Sargsyan
[11]
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2.3.2 RFQ and LINAC

The acceleration of the 8 keV/n extracted beam to 400 keV/n is performed by a
radio frequency quadrupole (RFQ) which is situated inside the LINAC bunker. The
relevant design beam properties for the RFQ are summarized in Table 2.3.

Requirement Value

Transmission > 95%
Reference input emittance 0.75πmmmrad (total, normalized)
Maximum output emittance 1.15πmmmrad (99% beam, normalized)

Table 2.3: Overview over the RFQ beam requirements. Source: Sargsyan [11]

The linear accelerator used at MedAustron is a so called Interdigital H-mode Drift
Tube Linac. Accelerators of this type consist of small conducting, and therefore
field-free, tubes with drift space in between. The charged particles are accelerated
between the tubes and as soon as they enter the field-free region the polarity of
the accelerating field changes its sign to allow further acceleration at the exit of
the tube [12]. The LINAC accelerates the particles from 400 keV/n to 7MeV/n and
is designed for a charge to mass ratio of 1/3. The design beam properties of the
LINAC are shown in Table 2.4.

Requirement Value

Transmission > 80%
Reference input emittance 0.115πmmmrad (rms, normalized)

Table 2.4: Overview over the LINAC beam requirements. Source: Sargsyan [11]

After the acceleration through the LINAC the 7MeV/n beam is focused on a thin
carbon stripping foil, where the H+

3 and C4+ are stripped into three H+ or one
C6+ respectively. The injection energy of 7MeV/n has been selected, because at
this energy the stripping efficiency for carbon ions is the highest. Overall a beam
stripping efficiency over 90% is to be expected [11].

2.3.3 MEBT

The medium energy beam transfer line (MEBT) starts after the stripping foil and is
an approximately 41m long section which transports the beam to the synchrotron
for the injection process. The MEBT houses the so called degrader, a pepper-pot like
device which is used to reduce the injected number of particles. The degrader allows
four settings: 10%, 20%, 50% and 100% where the value of the setting indicates
the remaining percentage of the beam current (a degrader setting of 100% therefore
means no degradation). Only degrader settings 10% and 20% are currently used
for clinical operation.

The design RMS emittance in the MEBT is 1.7πmmmrad [13].
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2.3.4 Synchrotron

The beam is injected into the synchrotron over multiple turns, gradually filling
the available phase space. This technique partially decouples the MEBT from the
ring, with the advantage that small changes in the MEBT emittance only affect the
injected beam current but not the synchrotron emittance and thus the spot size at
the patient.

The design values for the synchrotron emittances are shown in Table 2.5. During
the design the emittances were chosen according to the following considerations [14]:

• The normalized vertical emittance for protons and carbon ions is chosen such,
that the two species have approximately equal geometrical emittances over
the full range of available extraction energies, to have as similar as possible
extraction conditions.

• The numerical values for the emittances are chosen to achieve the specified
beam spot sizes at the irradiation rooms focal point:

√
5σ = 4 to 10mm.

• Transverse linac emittances are typically small and can be diluted in a flexible
and controllable way to meet the above requirements.

Protons 60MeV/n 250MeV/n

RMS norm. emittance 0.519 0.519
RMS geom. emittance 1.4286 0.6679

Carbon ions 120MeV/n 400MeV/n

RMS norm. emittance 0.7482 0.7482
RMS geom. emittance 1.4286 0.7324

Table 2.5: Design emittances of the MedAustron synchrotron in πmmmrad
for the bottom and top medically used extraction energies. Source: Dorda
and Bryant [14]

In the high energy beam transfer line (HEBT) the vertical emittance is directly
defined by the vertical emittance in the synchrotron, because it maps approximately
one to one, whereas the horizontal emittance is the so called bar of charge and is
defined by the extraction set-up.
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3 Beam diagnostics devices
The MedAustron beam diagnostics system is based on sixteen different monitor types
(153 devices in total) which allow the measuring of all relevant beam parameters
from the sources to the irradiation rooms. Table 3.1 gives an overview over the
different types of monitors, where they are located and in which number [15]:

Beam Monitor Beam Line Number

Wire Scanners LEBT 28
Slit Plates LEBT, MEBT 40
Faraday Cups LEBT, MEBT 11
Cylindrical Faraday Cups LEBT 1
Current Transformers LEBT, MEBT, MR 5
Profile Grid Monitors LEBT, MEBT 7
Position Pick-ups MEBT, MR 21
Stripping Foils MEBT 1
Degraders MEBT 3
Schottky Pick-ups MR 2
Scintillating Plates MR 2
Septum Shadow Monitor MR 1
Silicon Diode MR 1
Scintillating Fibre Hodoscopes HEBT 29
Qualification Monitor HEBT 1

Table 3.1: Overview beam monitors

The following sections shall give an overview over the working principles of the
different monitor types. Only those beam diagnostic devices which were relevant
during this thesis will be covered. The description for the different monitor types is
based on Forck [16], if not cited differently.

3.1 Beam current and number of particles

The beam current and accordingly the number of particles is a very important
parameter for the successful operation of a particle accelerator, especially for the use
in particle therapy. To effectively treat tumors, the number of extracted particles
from the accelerator needs to be within certain limits to ensure patient safety and
guarantee a successful treatment.

In the following sections some of the diagnostics devices used to determine the beam
current and number of particles at MedAustron will be presented. Although the
ionization chambers are mentioned in this section their form of implementation at
MedAustron not only allows the measurement of the beam intensity but also of the
beam profile and position.
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3.1.1 Current transformers for pulsed beams

The particles in an accelerator form a current which is defined by the number of
particles N , with charge q per unit of time t:

I =
qN

t

This relation can also be expressed over a length l with a particle velocity of v as:

I =
qNv

l

The magnetic field of this current can be calculated according to the Biot-Savart law

d ~B = µ0I ·
d~l × ~r

4

where µ0 is the vacuum permeability, d~l the length in direction of the beam and
~r the distance between the beam central point and the point at which the field is
measured. For the cylindrical symmetry of the beam only the azimuthal component
of the field has to be considered:

~B = µ0
I

2πr
· ~eφ

Via monitoring the field one can therefore determine the beam current. One way
to accomplish this is via a current transformer: the beam passes through a torus
and serves as the primary winding and a wire wound around the torus serves as
the secondary winding (see Fig. 3.1). The reason for choosing a torus geometry
for the transformer core, is that this geometry guides the field-lines in a way which
enables to only measure the azimuthal component of the ~B-field and makes the
signal strength nearly independent from the beam position inside the torus.

Figure 3.1: Sketch of a torus current transformer (left) and the corresponding
simplified equivalent circuit (right). Source: Forck [16], p. 11

A remark which should be made is, that to shield the transformer against external
magnetic fields, a metal housing is installed (see Fig. 3.2 left). In combination with
an interruption of the electrical conductivity of the beam pipe, for example through
an insulator like ceramics or plastic, the flow of image current inside the transformer
torus is avoided. This current would have the opposite sign and its field would
therefore cancel out the magnetic field created by the beam leading to zero signal in
the transformer.
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From the current the number of particles can easily be calculated as:

N =
It

q

with the beam current I, the charge per particle q and the time t during which the
beam was inside the current transformer.

At MedAustron there are four current transformers for pulsed beams (CTAs) installed.
They are located at the end of the LEBT, after the LINAC, in the MEBT and in
the main ring.

Figure 3.2: Sketch of the transformer shielding (left) and of a torus DC-
transformer (right). Source: Forck [16] p. 15 (left) and p. 19 (right)

3.1.2 DC current transformers

The transformer design described in the previous section can, of course, only be used
for short times (short bunches) due to the required change in current for induction
to occur. If one desires to measure DC-beam current, for example in a synchrotron
with longer storage or extraction times in the order of seconds or longer, a DC
current transformer needs to be used. The principle of such a transformer is shown
in Fig. 3.2 (right). It consists of two tori with opposite modulation windings. The
modulation winding is used to drive the torus into magnetic saturation two times per
modulation period. The sensing winding acts as a detector for the modulated signal.
Due to the opposite modulation winding, the detector signal should be exactly zero
if there is no beam current inside the tori (see Fig. 3.3 upper). If a beam (DC) is
flowing through the transformer, the hysteresis curve gets asymmetrically shifted
due to the additional magnetic field from the beam, which results in the sum signal
being different from zero with a modulation twice as high as the applied modulation
frequency (see Fig. 3.3 lower). In practice this DC-current is measured via the
compensation circuit, which applies a feedback current through the third winding
of the tori to keep the detector current Isense at zero.

At MedAustron there is one DC current transformer (CTS) installed in the main
ring.

23



BEAM DIAGNOSTICS DEVICES

Figure 3.3: Signal of the two tori without beam (upper) and with beam
(lower). Source: Forck [16] p. 20

3.1.3 Ionization Chamber

The set up of an ionization chamber resembles that of a capacitor. The beam
passes a gas volume confined between two metalized plastic foils which act as the
electrodes. Inside the gas, the beam particles produce electron-ion pairs, which
are separated via a high voltage applied to the electrodes. At one electrode the
amount of secondary charge is measured with a sensitive current amplifier. From
this secondary current Isec the beam current Ibeam and therefore also the number of
particles can be calculated according to:

Isec =
1

W
· dE
dx

∆x · Ibeam

where W is the average energy for the production of an electron-ion pair (which is
a well known quantity for many gases) and the calculated energy loss of the beam
particles dE

dx
over the length of the ionization chamber ∆x. Therefore the precision of

the measurement is mainly dependent on the accuracy of the energy loss calculation.
To reach higher precision a calibration can be done, for example with respect to a
scintillator, where absolute measurements can be performed.

At MedAustron each irradiation room is equipped with several ionization chambers
which are all part of the so called Dose Delivery System (DDS) which was developed
by the Italian National Center of Oncological Hadron-therapy (CNAO). Each of the
irradiation rooms DDSs consists of two independent detectors in separate boxes.

The first box contains an integral chamber which has a large area anode to measure
the overall beam current and two additional anodes (one for horizontal and one for
vertical measurement). They are each divided into 128 strips, 1.55mm wide and
with a gap of 1.65mm which allow for a position and profile measurement of the
beam. The second box contains an integral chamber as well and instead of the strip
anodes it contains a chamber with an anode divided into 32 x 32 pixels, for positional
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and profile measurement. The area of each pixel is 6.5 x 6.5mm2 and the pitch is
6.6mm. [17]

3.2 Beam profile and position

The measurement and control of the beam profile and position is not only important
for the production and delivery of the beam but also for the treatment of the patients.
In ion therapy it is of utmost importance to have the ability to deliver a beam of a
certain dimension to an exact location.

Before diving into the details of the different beam position monitoring devices the
distinction between destructive and non-destructive devices should be emphasized.
Destructive devices are called that way because they directly interact with the
beam and need to be placed into the beam path, or excite the beam to acquire
data, whereas non-destructive devices can measure parasitically. Of the monitoring
devices mentioned in this section, at MedAustron1 the wire scanners, scintillating
fibre hodoscopes and secondary electron emission grids are all destructive, whereas
the pick-ups are non-destructive.

3.2.1 Wire scanners

The functional principle of a wire scanner is simple: a single wire is swept through
the beam and the emitted secondary particles are measured. The advantage of this
setup, compared to an array of multiple spaced wires, is that the resolution can be
much higher, since it is not limited by the wire spacing. But this also comes with a
great disadvantage: since only a single wire is used, only a part of the beam can be
observed at any instant and not the whole profile.

For low energy proton and ion beams, the beam intensity at a given position can be
calculated from the current of the emitted secondary electrons, whereas for beam
energies higher than ∼150MeV/n the secondary particles can be measured outside
of the vacuum chamber, for example by a scintillator. In this case the secondary
particles might be hadrons created by the interaction of the protons or ions with the
wire material, which have enough kinetic energy to leave the beam pipe.

A schematic set up of wire scanners can be seen in Fig. 3.4. A rotating wire scanner,
as seen in Fig. 3.4 (a), can be used with high wire speeds of up to several m/s with
the advantage of short sweeping times (which are necessary for some applications
to avoid melting of the wire by the beam) but the disadvantage of worse spatial
resolution due to vibrations of the wire. Fig. 3.4 (b) shows the use of two wires in a
fork which allows the simultaneous measurement of both transverse beam profiles.

At MedAustron there are 14 wire scanners installed in the Source branches (10)
and LEBT (4), each of them containing one wire for horizontal and one for vertical
profile measurement.

1The wire scanners and scintillating fiber hodoscopes find non-destructive uses in other acceler-
ators.
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(a) Working principle of a (rotating) wire
scanner with secondary particle detection out-
side of the vacuum chamber. Source: http:
//vibrationacoustics.asmedigitalcollection.
asme.org/article.aspx?articleid=2522108

(b) Linear feed-through wire
scanner showing the simul-
taneous use of two wires
for measuring the horizon-
tal and the vertical profile
within one sweep. Source:
Forck [16] p. 48.

Figure 3.4: Wire scanners.

3.2.2 Pick-ups

The position of the beam within the synchrotron can be determined via pick-up
plates. The working principle of the pick-up measurement is, that the electric field
of the charged beam particles can induce image charges of the same magnitude as
the beam charges (but reversed polarity) in an insulated plate.

A capacitive beam position pick-up consists of four isolated plates inserted into the
vacuum chamber (two for horizontal and two for vertical beam position determina-
tion). The deviation of the beam from the center of the beam pipe can be determined
via the induced voltage difference between the two corresponding plates. If the beam
is exactly in the middle of the vacuum chamber, the induced voltages in both plates
are the same. Should the beam deviate from the center, the induced voltage in the
closer pick-up plate will be higher and therefore the position can be determined (see
Fig. 3.5 (a) for reference of the corresponding variables) according to:

y =
1

Sy
· Uup − Udown
Uup + Udown

(3.1)

with the so called position sensitivity Sy. This sensitivity can itself be dependent
on the beam position, leading to a non-linear voltage response for larger beam
displacements. To circumvent this, one can use so called Shoe box pick-ups, which
consist of a box-like device through which the beam passes. They are particularly
well applicable in proton and ion synchrotrons due to the long bunches, which allow
long plates and therefore high signal strength.

While the signal in the conventional pick-ups is dependent on the proximity to the
plates, in the shoe box pick-ups it is proportional to the path length of the beam
through each electrode (see Fig. 3.5 (b) for reference). For a displacement of the
beam x the image voltage is proportional to the length l of the beam projected onto
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the electrodes surface. Therefore:

lright = (a+ x) · tanα and lleft = (a− x) · tanα⇒ x = a · lright − lleft
lright + lleft

due to the dependence of the image voltage on the position the displacement is:

x = a · Uright − Uleft
Uright + Uleft

⇒ (compare eq. 3.1)⇒ Sx =
1

a
(3.2)

as one can see in eq. 3.2 the sensitivity is (for this ideal case) constant. This also
holds true for the real case, where the shoe box pick-up sensitivity is constant for
almost the full range of displacements.

(a) Layout of a plain electrode pick-up. (b) Layout of a linear cut shoe box
pick-up showing the different path
lengths of the beam through the elec-
trodes if it deviates from the center.

Figure 3.5: Position pick-ups. Source: Forck [16] p. 84 (a) and p. 88 (b).

At MedAustron there are 21 shoe box pick-ups (12 horizontal and 9 vertical) installed
in the main ring.

3.2.3 Scintillating fiber hodoscopes

When a particle hits a scintillating material, the energy loss by the collision with
the target electrons can lead to the emission of fluorescence photons. These photons
can then be detected by a camera or some other form of detector, amplified by a
photo-multiplier and finally counted to get a signal proportional to the number of
incident particles.

In the case of scintillating fiber hodoscopes the beam diagnostic device does not
consist of one continuous scintillation screen as in the case of classical scintillation
detectors, but of an array of scintillating fibers. There are two sets of fibers spanning
the whole vacuum chamber: one for the horizontal and one for the vertical direction.
The fibers do not emit the fluorescence light but instead they act as optical wave
guides, leading the emitted light directly onto the photosensitive part of a CCD
camera.
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By knowing which fiber connects to which array of pixels on the camera, the overall
profile of the beam can be reconstructed allowing for a calculation of the beam
position and beam width.

At MedAustron there are 29 scintillating fiber hodoscopes (SFX) installed in the
HEBT.

3.2.4 Secondary electron emission (SEM) grid

These beam monitoring devices work quite similar to the wire scanner described
in section 3.2.1 on page 25. The most distinct difference is that in the case of a
wire scanner one single wire is swept through the beam and the current generated
by the secondary particles is measured, whereas a SEM grid consists of an array of
stationary wires covering the whole vacuum chamber. Each wire is equipped with
its own amplifier.

This setup has the advantage over the wire scanner that it can be used for pulsed
beams as well, but with the disadvantage of a worse spatial resolution due to the
gaps between the wires.

At MedAustron there are 7 secondary electron emission grids (here called Profile
Grid Monitors - PGX) installed in the MEBT and LEBT.
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4 Description of relevant beam prop-
erty measurement concepts

4.1 Beam emittance

Measurement and control of the emittance of a particle beam is of utmost importance
for the commissioning and operation of a particle accelerator. Not only does the
emittance tell if the beam will fit in the vacuum chamber or not, it is also one of
the key parameters to control when matching individual parts of the accelerator
together. In the end by defining the beam size, the emittance also defines the spot
size of the particle beam in the irradiation room, which is especially important for
the treatment of patients.

The following sections shall give an overview over the different measurement proce-
dures to obtain the emittance in the injector (Source branches, LEBT, MEBT) the
synchrotron and the transfer lines (mainly HEBT but also MEBT).

4.1.1 Injector

To measure the emittance after the sources, in the LEBT (Low Energy Beam Trans-
fer) and MEBT (Medium Energy Beam Transfer) lines at MedAustron, the slit-grid
method is used. It uses a combination of a slit and a wire scanner (see Sec. 3.2.1 on
page 25 for information on the wire scanners) in the source branches and the LEBT
and a combination of a slit and a secondary electron emission grid (see Sec. 3.2.4
on page 28 for information on the profile grids) in the MEBT. The slit-grid method
is especially useful for low energy beams, because it is a direct measurement of the
x and x′ distribution and can therefore be used to show aberrations in the beam
distribution.

The basic principle of this method is to determine the trace space of the particle
beam by artificially restricting its spatial extension and measuring the corresponding
beam angles. For this, a small gap in the beam pipe is formed by two slit plates,
letting only a small portion of the beam pass. A beam profile monitor is positioned
a certain distance ds downstream of the slits to measure the change of the particle
position dx (this of course also works the same way for the vertical plane) after the
particles traveled ds. Using the paraxial approximation the beam angle x′ = dx

ds

can be determined. Subsequently the slits are moved to slice the beam at the next
position and this whole process is repeated until the whole beam has been covered.
Fig. 4.1 illustrates the process.

The resolution of this method is limited by the width of the chosen slit gap, the
length of the drift space between the slit and the beam profile monitor, and the
resolution of the beam profile monitor itself. Especially the noise on the monitor
is a limiting factor due to the circumstance, that the use of the slits reduces the
beam current measured by the profile monitor to an order of magnitude of 10−2 of
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Figure 4.1: Illustration of the process of the slit-grid method. A range in
position is selected by a slit from the phase space distribution. The angle
spread in this range translates over a drift space into an increase in beam
size at a position monitor downstream of the slit.

the overall beam current, which is especially problematic in the regions of the beam
halo where it drops to an order of magnitude of 10−4.

4.1.2 Main Ring

In Fig. 1.4 it can be seen, that the maximum positional amplitude of a particle corre-
sponds to

√
εβ. Hence if the β-function is known, the emittance can be determined

by measuring the beam width in the synchrotron. Emittance ε and beam width σ
are related according to [18]:

εx =
1

βx(s)

[
σ2
x −

(
D(s)

∆p

p

)2
]

and εy =
σ2
y

βy(s)
(4.1)

with the dispersion function D (see Sec. 1.2.5) and the particle momentum spread
∆p
p
.

To determine the beam width, a so called scraper plate is moved through the beam
pipe while the beam current signal is continuously observed. As the scraper moves
through the beam path, the particles hit the plate and get lost, thereby reducing
the overall beam current. Two vertical and two horizontal copper scraper plates
are installed in dispersion free regions of the ring. Both plates of each pair are on
opposite sides of the vacuum chamber while being at the same longitudinal position.
The scraper plates are moved one by one into the path of the circulating beam while
measuring the beam intensity losses with a current transformer (CTS, see Sec. 3.1.2
for a description of the current transformer for a DC beam), as can be seen in Fig.
4.2 top.

The numerical derivative of this decreasing beam current (see Fig. 4.2 bottom) is the
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Figure 4.2: Example of a beam current signal (top) and its derivative
(bottom) over the position of the scraper. The derivative of the beam current
signal represents the betatron amplitude distribution of the particles. The
measurement was taken for a 400MeV carbon ion beam.

distribution of the betatron amplitudes (see Sec. 1.2.3) of the particles. According
to [19] the RMS of the betatron amplitude distribution is related to the RMS width
of the beam like:

σ2
betatron

σ2
beam

= 2 (4.2)

Therefore by computing the width of the beatron amplitude distribution and taking
into account the fact that the scrapers are in a non-dispersive region of the ring
(therefore the second part in the horizontal emittance in eq. 4.1 vanishes) one can
immediately obtain the beam emittance in the synchrotron.

4.1.2.1 Intrinsic resolution

Measurements of the transverse beam size by scraping suffer from intrinsic resolution
limits related to the speed of the scraping plate, due to the fact that even at irrational
fractional tunes the scraping takes a certain number of turns. Due to the movement
of the scraper during this time, the particles appear smeared out over a certain
fraction of their amplitude. According to Schönauer [20] the scraper advance xmax
over the maximum number of turns needed for full scraping, relative to the betatron
amplitude r can be written as:

xmax
r

=
1

2

(
3πd

r

)2/3

with the advance d of the scraper plate per beam revolution period. This holds true,
if the tune difference δ of the fractional part of the tune from the closest resonance
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M/N fulfills the following inequality:

δ >

(
3π d

r

)1/3

πN

where N is the order of the resonance. This is fulfilled for all used tune set-points,
therefore the above formula is valid.

The results of this resolution limit for several key energies and a scraper speed of
0.02m/s are summarized in table 4.1. For all possible settings the intrinsic resolution
limit is below 0.1% and is therefore negligible in the analysis of the measurements.
Only in larger machines with significantly larger revolution periods this could become
a limiting factor, making a limitation of the scraper speed necessary, which would
result in higher measurement times. In Sec. A.1 in the appendix, an illustration of
the derivation of the intrinsic scraping resolution is shown.

energy [MeV/n] rev. period [µs] xRMS [mm] relative resolution [%]
horizontal vertical horizontal vertical

400 0.36 2.53 3.18 0.045 0.038
120 0.56 3.53 4.44 0.048 0.041
252 0.42 2.42 3.04 0.051 0.044
62 0.75 3.54 4.44 0.058 0.05
7 2.13 5.75 7.46 0.085 0.071

Table 4.1: Revolution period, design RMS betatron amplitude and relative
intrinsic scraping resolution limit for the top and bottom medically used
extraction energies for carbon ions (400 and 120MeV/n) and protons (252
and 62MeV), and at the injection energy (7MeV/n). The speed of the
scraper used for this calculations was assumed to be 0.02m/s.

4.1.3 Transfer lines

As already mentioned in Sec. 1.4.6 the shape of the horizontal emittance in the
extraction line differs substantially from the one in the synchrotron. This is due
to the fact that the extraction mechanism creates a so called bar-of-charge instead
of the classical elliptical shape. Due to this fact the physical interpretation of the
value which one obtains for the geometric beam emittance is less straight forward,
but since the RMS emittance does not explicitly depend on the shape of the particle
distribution the same formalism as for approximately Gaussian beam distributions
can still be applied.

In the following, two common methods to determine the emittance in transfer lines
shall be presented. Of those two, only the quadrupole tuning method has been imple-
mented and used during this thesis, due to the significant advantage of determining
besides the emittance and the Twiss parameters also the offset of the beam.

4.1.3.1 Three profiles [2]

To obtain the rms beam emittance in a transfer line (HEBT or MEBT) one has to
determine the three unknowns in eq. 1.17.
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One way to achieve this is to measure the beam size at three different spots (with
three individual monitors, or a single movable monitor). If one inserts into eq. 1.16
the transformation matrix of a drift space (see eq. 1.8) one obtains the following set
of equations for the three monitor positions:

r2
1 = σ11

r2
2 = σ11 + 2L1σ12 + L2

1σ22

r2
3 = σ11 + 2(L1 + L2)σ12 + (L1 + L2)2σ22

With r2
x being the beam radius at the x-th position, and L1 and L2 being the drift

distances between monitor positions 1 and 2 respectively 2 and 3, as well as σij being
the elements of the σ-matrix at the first monitor position.

Upon solving this set of equations one can obtain all elements of the σ-matrix at
the position of the first monitor and therefore calculate the RMS-emittance at that
position.

The difficulty of that approach is to find a set of three monitors which are only
separated by drift-space, since additional quadrupoles in between the monitors would
make the calculations more difficult and error prone. One reason for that is for
example, that the possible misalignment of the quadrupoles would lead to additional
dipole kicks which would need to be considered as well in the transfer matrices.

4.1.3.2 Quadrupole tuning [1]

A second way which only relies on a single beam profile monitor is the so called
quadrupole tuning method (also referred to as quadrupole scan).

Using the transfer matrix Q of a quadrupole under thin lens approximation (see sec.
1.2.2.1) and a transfer matrix S of an arbitrary beam line to a beam profile monitor,
then the whole transfer matrix R from the entrance of the quadrupole (subscript 1)
to the monitor (subscript 2) is:

R = SQ =

(
S11 S12

S21 S22

)(
1 0
−kl 1

)
=

(
S11 − klS12 S12

S21 − klS22 S22

)
The beam size at the monitor location can be expressed in terms of the transfer
matrix R when using the transformation properties of the Twiss-parameters (eq.
1.21):

σ2
2 = εβ2 = ε(R2

11β1 − 2R11R12α1 +R2
12γ1) (4.3)

With the relationships between the Twiss-parameters and the σ-matrix (eqs. 1.18-
1.20) this can also be written as:

σ2
2 = R2

11σ11 + 2R11R12σ12 +R2
12

ε2 + σ2
12

σ11

After substituting the matrix elements of R one arrives at:

σ2
2 = (S11 − klS12)2σ11 + 2(S11 − klS12)S12σ12 + S2

12

ε2 + σ2
12

σ11
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This can be rearranged to:

σ2
2 = σ11S

2
12

[(
S11

S12

− kl
)

+
σ12

σ11

]2

+ S2
12

ε2

σ11

Which can be written as:
σ2

2 = A(B − kl)2 + C (4.4)

with

A = σ11S
2
12

B =
S11

S12

+
σ12

σ11

C = S2
12

ε2

σ11

From this it can be seen that the beam emittance can be calculated as:

ε =

√
AC

S2
12

The other Twiss parameters can of course be calculated as well:

β =

√
A

C

α = −β
(
B − S11

S12

)
To obtain the RMS-emittance one therefore has to do a measurement series of the
RMS-beam width σ2 on the beam profile monitor as a function of varying quadrupole
strength k. To this data a function of the form seen in eq. 4.4 can be fitted to obtain
A and C. The only thing left is the S12 element of the transfer matrix which in the
case of a drift space is simply the length of that space.

To obtain good measurement results, the quadrupole scan should be performed in
a way that the beam waist can be measured. This means, that the focal point of
the quadrupole is moved from one side of the beam profile monitor to the other
side during the scan, resulting in a parabolic shape of the squared beam size as a
function of the quadrupole strength. Additionally the best results are to be expected
for beams which are broad (large β) and divergent (negative α) at the position of
the quadrupole.

An additional advantage of this method is, that with the same set of measurements
the centering of the beam, compared to the magnetic center of the quadrupole, can
be determined as well. The beam property of interest is in this case not the beam
size but rather the position of the beam center.

If we assume that the beam is perfectly centered in the quadrupole, a scan of the
quadrupole strength (as performed for the emittance measurement) should only affect
the beam size. Should however the beam be slightly misaligned in the quadrupole, it
will experience a dipole-kick leading to a linear change of the beam position on the
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beam profile monitor as a function of the quadrupole strength, with a slope directly
proportional to the offset. Fitting a linear curve of the form x = a · kl + b to the
beam position as a function of the normalized quadrupole strength kl, allows the
computation of the beam offset in the quadrupole according to:

∆x = − ax
S12

(4.5)

∆y =
ay
S12

(4.6)

The negative sign in eq. 4.5 is to get the offset of the beam in the quadrupole and
not the offset of the monitor. The inverted sign in eq. 4.6 is due to the fact that per
convention a positive quadrupole strength means focusing in horizontal plane and
therefore the quadrupole acts as defocusing in the vertical plane, inverting the sign
of the slope of the linear fit.

4.2 Transmission

The transmission of the number of particles through the individual subparts of the
accelerator is an important figure of merit during the commissioning and operation,
to judge how well set-up the machine is and if any corrections are needed. Since the
transmitted intensity defines the dose delivered to the patient, it is also an important
factor in determining the treatment duration.

To measure the number of particles, current transformers for pulsed beam (CTA,
see Sec. 3.1.1) are installed in the LEBT, after the LINAC, in the MEBT and in
the MR and a current transformer for continuous beam (CTS, see Sec. 3.1.2) in the
MR.

The CTAs measure an average current I over a certain pulse time t. From this the
number of particles can be calculated via

N =
Itn

e

with the elementary charge e and the number of particles per elementary charge n.
Table 4.2 shows the number of particles per elementary charge at the different current
transformers. The H+

3 molecule is considered as three protons. If this was not the
case, one would observe an increase in the number of particles at the stripping foil,
where the H+

3 splits into 3 H+, which would make the calculation of a transmission
rather unintuitive.

The determination of the number of particles in the CTS is made difficult by the
changing velocity (and therefore current) of the particles during the acceleration.
The current I of N particles with a revolution period of τrev and a charge per particle
q is

I =
qN

τrev
=
qNβc

L
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n

CTA hydrogen carbon ions

LE 3 1/4
LI 3 1/4
ME 1 1/6
MR 1 1/6

Table 4.2: Number of elementary charges per particle for hydrogen and
carbon ions in the different current transformers.

with the relativistic β, the speed of light c and the circumference of the accelerator
L

⇒ N =
IL

qc

1

β
(4.7)

The difficulty is to obtain the changing β throughout the whole acceleration cycle.
The implemented system to achieve this uses the so called B-train. It consists of an
additional synchrotron dipole which is connected to the same power supply as the
real ones and equipped with magnetic field probes to measure the magnetic field B
during the acceleration. The relativistic β can then be obtained starting with the
definition of the magnetic rigidity Bρ:

Bρ =
p

q
=
γm0βc

q

and with γ = 1√
1−β2

this can be rearranged to:

β =
1√

1 +
(
m0c
Bρq

)2
(4.8)

so when inserting eq. 4.8 into eq. 4.7 we arrive at:

N =
IL

qc

√
1 +

(
m0c

Bρq

)2

(4.9)

therefore by measuring the B-field of the synchrotron dipoles, the number of particles
can be directly calculated from the measured CTS current since all other variables
in eq. 4.9 are constant.

In the last step the transmission of the number of particles Ni between a point 1 in
the accelerator and a later point 2 is calculated as:

T1,2 =
N2

N1
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4.2.1 RF-train

The analysis of the transmission for the pulsed beam current transformers (CTAs)
uses the PACMAN level two CTA module. Per design the CTS uses the B-train to
calculate the number of particles from the measured current as shown in eq. 4.9. At
the moment the B-train unfortunately does not work reliably. To still get reliable
particle counts over the whole acceleration cycle, the PACMAN CTS module has
been upgraded during this thesis, with the implementation of the so called RF-train.

The basic idea behind this concept is, that the velocity of the particles can not
only be determined by the strength of the B-field needed to keep them on a closed
orbit but also by their revolution frequency. The number of particles can then be
calculated via:

N =
I

qfrev

When performing the analysis of a CTS measurement, the implemented RFtrain
function automatically looks for the corresponding SLC1 measurement and then
performs analysis on the measured frequency channels to obtain a matching of the
measured CTS current to the measured RF frequency.

In Fig. 4.3 the result of this calculation is shown for a proton beam. It can be
clearly seen, that while the current increases during the acceleration, the number of
particles stays constant (apart from losses).
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Figure 4.3: Measured CTS current (top), measured SLC frequency (middle)
and computed number of particles (bottom) for a 252.7MeV proton beam.

1Synchrotron Low level RF Cavity
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5 Measurement analysis procedures
In this chapter the analysis tools developed and used during this thesis will be
presented. For the developed tools, simulations were performed to test the accuracy
and estimate the errors in the analysis.

5.1 PACMAN - The MedAustron measurement data
analysis framework

Since the measurement analysis tools developed and used over the course of this
work are implemented as part of MedAustron’s PACMAN framework, the following
section shall give an overview over the structure of this whole framework [21].

During the commissioning and the operation of the accelerator, various digital signals
from the different beam monitors and other accelerator components need to be
analyzed. To streamline this process and provide a standardized implementation of
complex analysis procedures, a dedicated analysis framework has been developed
at MedAustron: PACMAN - Python Algorithms Coded for Measurement data
ANalysis.

All modules in the PACMAN framework follow a common level structure consisting
of four levels (outlined below) and a common support modules library. The support
modules provide functionality like a logger, specific error handling, helper functions
for file filtering and decryption of control system codes as well as various other
functionality for curve fitting, fast Fourier transformation or implementation of
external code such as MAD-X.

Level one
This level handles the reading of different input file formats. Most of the data
acquired by the beam diagnostics measurement devices follow the MedAustron
Exchange File Format (.msr-files). It defines the file structure including header,
meta data and measurement data to be stored in a human readable style.

Level two
Modules of this level analyze the data of a single measurement. For each mea-
surement device (beam diagnostic monitor) there is a specific module. All level
two measurement device classes follow a standardized analysis workflow to ease the
combination of measurements from different device types.

Level three
Modules of this level process and analyze the data of multiple single measurements.
Typically they also follow the standardized structure of the level two tools, albeit
not necessarily as strictly.

Level four
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This level presents the functionality of some PACMAN modules in the frame of a
graphical user interface to the users. It acts as an application launcher for PACMAN
modules.

5.2 Injector emittance analysis

The development of the analysis tool for slit-grid measurements as described in Sec.
4.1.1 has not been part of this thesis. The used tool InjectorEmittance.py is a
level three tool in the PACMAN framework developed at MedAustron. Over the
course of this thesis only minor adaptations to the analysis code and measurement
procedure were performed. A detailed description of the analysis tool can be found
in Kerschbaum [22], the basic principles will however be summarized in the following.

The analysis procedure is based on so called self-consistent unbiased elliptical exclu-
sion analysis (SCUBEEx). This method reduces the data used for the computation
of the emittance by creating a so called exclusion ellipse and ignoring all data outside
of the ellipse for the RMS emittance calculation. The data outside of the exclusion
ellipse is used to estimate the offset of the profile monitor measurement.

Since the slit-grid method directly measures the trace-space, the σ-matrix of the
beam distribution (see Sec. 1.4.5) can be calculated directly from the data inside
of the exclusion ellipse. The RMS emittance is equal to the square root of the
determinant of the σ-matrix (see eq. 1.17). The Twiss parameters α, β, γ can be
calculated as well with their relationships to the σ-matrix as seen in eqs. 1.18 - 1.20.

5.3 Main Ring emittance analysis procedure

The analysis tool for the synchrotron emittance measurements developed over the
course of this thesis, has been implemented as a level three module in the PACMAN
framework named MRemittance.py. Additionally level two functionality for some
of the used measurement devices (scraper plates - SCX) has been implemented as
well, since the PACMAN framework did not contain classes to handle measurement
data from these devices. One goal of this analysis tool was, to be able to obtain the
transverse synchrotron emittance from a single sided scraping measurement1. This
allows the use of only partially complete data and has the advantage of reducing
the influence of cycle-to-cycle variations due to being only dependent on a single
acceleration cycle.

Part of this work has been presented at the 7th International Beam Instrumentation
Conference in Shanghai in Adler et al. [23].

1This means that the analysis can be performed independently for each scraper plate (which
move in from opposite directions) and allows the use of measurements even if only one of the two
scraper plates produced a valid measurement.
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5.3.1 Analysis outline

In section 4.1.2 on page 30 the basic measurement procedure to obtain the trans-
verse synchrotron emittance via scraping has been described. To recapitulate, the
emittance can be calculated as

ε =
σ2
beam

β

and with the relationship between the RMS of the betatron amplitude distribution
and the beam size

σ2
betatron

σ2
beam

= 2

this becomes

ε =
σ2
betatron

2β
(5.1)

To obtain the synchrotron emittance the analysis work flow therefore follows these
steps:

1. Map the beam current signal from the CTS to the corresponding position of
the scraper plate.

2. Process the obtained signal to make it usable.

3. Estimate the center of the beam from the signal curve.

4. Calculate the numerical derivative of the signal.

5. Compute the RMS of the obtained betatron amplitude distribution.

6. Calculate the geometric and normalized emittance from the betatron amplitude
RMS.

5.3.2 Simulation procedure

In the following the accuracy and the errors introduced by the different analysis steps
shall be investigated. This has been done by simulating a beam current signal while
scraping from an assumed Gaussian particle distribution (Gaussian both in x and x′).
Therefore before diving deeper into the analysis procedure the basic algorithm for
carrying out these simulations shall be presented, while specific simulation constraints
will be discussed in the respective sections.

All simulations were completely done in Python 3.4[24] and since they do not rely
on any external particle tracking code the simulation code was built directly into
the MRemittance.py module, to also serve as a unit testing tool for future releases.

The simulation algorithm takes the following input parameters:
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• Geometric emittance ε [m rad]

• Twiss α-function

• Twiss β-function [m]

• Number of simulated particles

• Movement range of the scraper [m]

• Speed of the scraper [m/s]

• Whether noise on the signal should be simulated as well [True/False]

• Magnitude of the noise [standard deviation relative to signal height]

The beam parameters used for the simulations were the design values of α = −0.13
and β = 8.76m, and geometric emittance values between 0.66 and 1.43πmmmrad
representing the highest and lowest design emittances.

At first the particle distribution is created using ε, α and β and the number of
particles, assuming a Gaussian distribution in both the x and x′ plane. Then the
scraper plate is moved through its specified movement range with the specified
speed. All particles which have a betatron amplitude larger than the aperture
limitation given by the scraper blade are assumed to be scraped. This is a reasonable
assumption, since the particles have a revolution period in the order of µs and the
scraper and CTS have a sampling rate of 1ms, therefore allowing the particles to
at least make a few hundred turns, after which it is almost certain that the particle
on its trajectory along the phase space ellipse will have hit the scraping plate. The
estimation of the error made by this assumption has already been covered in Sec.
4.1.2.1 on page 31 and is below 0.1%.

Fig. 5.1 shows an example of this simulated scraping with 105 simulated particles.

Figure 5.1: Example of a simulated particle distribution (blue dots) and a
scraper (red line) moving through it from the left. The red dots show the
particles which have been scraped.
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5.3.2.1 Number of simulated particles

All simulations in the following sections were carried out using 105 particles. The
reasoning for this decision can be seen in Fig. 5.2. A simulated particle count of 105

shows a reconstruction reliability comparable to higher particle numbers while still
having a relatively short simulation time with just over 4 s.
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Figure 5.2: The value plotted in the top graph shows the standard deviation
of the relative error (εout − εin)/εin for 10 simulation runs. It represents
a figure of merit for how different the reconstructed emittance results are
between individual simulation runs and should be as small as reasonably
achievable. On the bottom the needed time for one single simulation run is
shown as a function of the number of simulated particles.

5.3.3 Mapping of the signal to the scraper position

The mapping of the CTS signal to the position of the scraper is straight-forward, since
the accelerator control system broadcasts all timing events (including the starting
of the scraper movement). Since the CTS and the scraper have a sampling rate of
1ms, the mapping of the two signals is just a matter of synchronization, which can
easily be done via the timing events which both components receive and report.

The timing events can also be used to extract from the measurement data directly
whether the scraping was performed at flatbottom or at flattop2. If the StartScraping

2The names flatbottom and flattop refer to the beginning and end of the acceleration cycle
respectively. The frequency of the circulating particles is kept constant during and shortly after the
injection (flatbottom) and between the end of the acceleration and the beginning of the extraction
from the synchrotron (flattop). Therefore the emittance at flatbottom is interesting with regards
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timing event arrives before the StartAcceleration timing event, a flatbottom mea-
surement was performed and therefore different β-functions and a different beam
energy need to be taken into account for the further analysis.

5.3.4 Signal processing

Before being able to calculate the numerical derivative of the CTS current signal
to obtain the betatron amplitude distribution, the signal needs to be smoothed via
a moving average filter to suppress the influence of the noise. The use of a high
frequency filter was also tested, but led to less favorable results than the moving
average smoothing.

The need for this smoothing can be immediately seen in Fig. 5.3, where the obtained
derivative is shown with and without moving average smoothing of the CTS signal.
Even in the case of a measurement with a degrader setting of 100% (no degradation),
representing the best possible signal to noise ratio, the derivative is completely
dominated by the noise, leading to the betatron amplitude distribution being hardly
detectable.
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Figure 5.3: Raw CTS signal for a DEG100 400MeV/n carbon ion beam (top).
Numerical derivative of the signal (bottom left) and numerical derivative
with a moving average filter with an averaging window of 50 applied to the
signal before derivation (bottom right).

5.3.4.1 Systematic error introduced by moving average

Introducing a moving average smoothing will introduce a systematic error in the
emittance reconstruction as well. The effect is two-fold: Firstly the edge of the beam
is smoothed out and therefore the point where the CTS signal drops to zero is shifted

to the injection setup, while a deviation of the flattop emittance can hint at problems during the
acceleration
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to a later scraper position, introducing an error in the estimation of the beam center
(this will be covered in Sec. 5.3.5.3 where the different methods to estimate the
beam center are investigated). Secondly the smoothing alters the signal and could
therefore introduce an error in the reconstruction.

To separate the two factors and determine solely the influence of the second effect,
the error of the emittance reconstruction has been determined as a function of the
moving average window as seen in Fig. 5.4. For these simulations the real beam
center is assumed to be known and therefore the systematic error introduced by the
"smearing out" of the beam edge should have no influence.
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Figure 5.4: Relative error in emittance reconstruction for simulated data as
a function of the moving average window showing only the influence of the
signal alteration. The beam center is assumed to be known to separate the
effect of the shifting of the beam center from the effect of the signal alteration.
Each datapoint represents the average of ten individual simulation runs.

It can be seen that, as expected the reconstruction error increases with more ag-
gressive smoothing of the signal. The introduced error is also larger, the smaller
the emittance which can be intuitively understood: the smaller the emittance (i.e.
the smaller the beam), the shorter the time during which the scraper is inside the
beam and therefore the less relevant signal is obtained. The shorter the signal, the
stronger the influence of the smoothing.

For typical moving average windows of 30 to 70 (the choice for these values will be
explained in Sec. 5.3.8) the error introduced by this effect is fairly small, staying
below 2.5%.
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5.3.4.2 Simulation of the noise

In Fig. 5.5 a zoomed section of the CTS signal shown in Fig. 5.3 is depicted along
with its Fourier transform and the distribution of the current. From the Fourier
transform and the histogram it can be seen, that the noise on the CTS signal is
Gaussian white noise. Based on this, for simulations including the signal noise it was
simulated as additive normally distributed noise with a mean of 0 and a standard
deviation depending on the to be simulated degrader setting.
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Figure 5.5: CTS signal at flattop (top), Fast Fourier Transform (FFT) of
the signal (bottom left) and histogram of the CTS current (bottom right).

The magnitude of the signal noise does not depend on the strength of the signal,
therefore yielding higher signal to noise ratios for higher CTS current, as can be
seen in Fig. 5.6. Since the simulations for different degrader settings yield the same
"signal strength" (due to the constant number of particles used for the simulations),
the distinction between the different degrader settings has to be introduced via the
standard deviation of the added Gaussian noise. Table 5.1 summarizes the chosen
noise standard deviations used for the different degrader settings.

5.3.5 Estimation of the beam center

The emittance of the beam is according to eq. 5.1 on p. 40 directly dependent on
the variance of the betatron amplitude distribution, which due to its asymmetric
shape is strongly influenced by the estimated center of the beam.

In Fig. 5.7 the significant influence of the accuracy of the beam center estimation
on the emittance reconstruction is shown. For example for an acceptable error in
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Figure 5.6: Relative standard deviation of the signal as a function of the
signal strength for protons and carbon ions of the respective top and bottom
clinically used extraction energies and all degrader settings.

Degrader rel. noise stdev

100% 0.005
50% 0.01
20% 0.025
10% 0.05

Table 5.1: Relative noise standard deviation used for the different degrader
settings.

the emittance reconstruction of 10%, the beam center must be estimated with an
accuracy below 0.15mm.

To guarantee a good and robust estimation of the beam center, multiple algorithms
have been implemented which will be presented in the following:

• Position measurement with pick-up

• First negative

• Curve fit

• Flank detection

• Manual modes
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Figure 5.7: Impact of the accuracy of the beam center estimation on the
emittance reconstruction. For this simulation the beam center has been
hardcoded into the analysis algorithm. Each datapoint is an average of ten
individual simulation runs.

5.3.5.1 Position measurement with pick-up

In the synchrotron there are shoebox pick-ups installed close to the scraping plates
(see Sec. 3.2.2 on page 26 for a description of the pick-ups). They record the
mean position of the particles (and therefore the beam center) as long as the beam
is bunched (i.e. captured by the synchrotron RF cavity). Unfortunately during
the scraping measurement the RF cavity is turned off so the particles can move
freely longitudinally and therefore no position signal during the scraping process is
recorded. However, the last position before the shut off of the cavity can be taken as
an estimation of the beam center. The beam center obtained with this method can
also be used as a starting parameter input for a curve fit described in Sec. 5.3.5.3.

5.3.5.2 First negative

The simplest implemented algorithm for the estimation of the beam center searches
for the first scraper position where the CTS signal is negative. The reasoning behind
that is, that the signal can only get negative due to the noise and only when there
are almost no particles left. Since this method gives surprisingly unreliable results in
the emittance reconstruction, it is only used as an input for the starting parameter
for the curve fit described in Sec. 5.3.5.3 if the pick-up signal is not available.

5.3.5.3 Curve fit

If one assumes the beam profile to be Gaussian and includes the fact that the
measurement is done in a non-dispersive region of the ring, the beam current signal
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can be analytically described by a function of the form

I(x)

I0

=

(
1− exp

(
−(x− x0)2

2βε

))
Θ (x− x0) (5.2)

with the Heavyside-function Θ and the center of the beam x0. The idea of describing
the CTS signal by this curve is basically to approximate the beam by a Gaussian
distribution with a standard deviation of

√
βε. Since β and the order of magnitude

of ε are assumed to be known, fitting eq. 5.2 to the beam current signal gives quite
reliable estimations of the beam center, as can be seen for a real measurement in
Fig. 5.8 where eq. 5.2 is fitted to the signal shown in Fig. 5.3 (top).

For measurements at flatbottom where the beam is not yet captured by the syn-
chrotron RF cavity, the problem of natural beam losses has to be taken into account.
The circulating beam loses particles approximately linearly over time even without
scraping. To still allow a meaningful curve fit, the curve shown in eq. 5.2 is extended
by an additional linear term with a slope k, which is 1 at the starting position of
the scraper xStart. The curve used for flatbottom measurements is shown in eq. 5.3.

I(x)

I0

=

(
1− exp

(
−(x− x0)2

2βε

))
(1− k(x− xStart))Θ (x− x0) (5.3)
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Figure 5.8: Eq. 5.2 fitted to a real measured CTS signal of a 400MeV/n
carbon ion beam at 100% degrader setting. Especially in the most relevant
region of the beam center the curve fits very well.

For simulations without any noise, this method gives excellent reconstruction accu-
racy with relative errors below 1%, as can be seen in Table 5.2.
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ε reconstructed ε relative error [%]

0.66 0.662± 0.005 0.35± 0.71
1.045 1.049± 0.009 0.47± 0.85
1.43 1.435± 0.009 0.38± 0.63

Table 5.2: Relative errors in reconstruction for the ideal case simulation
with no noise. Geometric emittances given in πmmmrad.

As mentioned in Sec. 5.3.4.1 the systematic error introduced by the moving average
smoothing is also influenced by the fact that the beam center is smeared out to later
scraping positions. The combined effect of the signal alteration (see Fig. 5.4) and
the shifting of the beam center can be seen in Fig. 5.9. It can be seen that it should
be desirable to choose a moving average window as small as possible to reduce the
systematic error.

0 20 40 60 80 100
Moving average window

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

re
la

ti
v
e
 e

rr
o
r

0.66  mm mrad

1.05  mm mrad

1.43  mm mrad

Figure 5.9: Relative error in emittance reconstruction for simulated data as
a function of the moving average window showing the combined effect of
the shifting of the beam center and the signal alteration as described in Sec.
5.3.4.1. The beam center is computed via the curve fit algorithm. Each
datapoint represents the average of ten individual simulation runs.

5.3.5.4 Flank detection

A basic algorithm to compute the beam center was also implemented. It "walks"
through the CTS signal from the scraped (i.e. zero signal) end and checks whether a
number of consecutive points are above a threshold defined by the standard deviation
of the signal noise. If that is the case, the rising flank of the signal has been detected,
which should coincide with the beam center.
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Naturally this method becomes less reliable the lower the signal to noise ratio on the
CTS, a circumstance which can be seen in Fig. 5.10, where the relative emittance
reconstruction error gets very large for lower degrader settings.
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Figure 5.10: Comparison of the curve fit (’FIT’) and flank detection
(’FLANKWINDOW’) beam center estimation methods. What can be seen
directly is, that the curve fit gives much more reliable results, especially for
lower degrader settings.

5.3.5.5 Manual modes

Should none of the above methods give satisfying results, two ways to get the beam
center via user input have been implemented: the first one allows a simple input
of the beam center as an analysis parameter and the second one presents the user
with a plot of the raw signal with the possibility to manually select the estimated
position of the beam center.

5.3.5.6 Conclusion

The curve fit and flank detection algorithms are on average approximately equal
for low noise measurements, with the curve fit offering higher reliability in the
reconstruction (see the smaller errorbars in Fig. 5.10). For lower degrader settings
(higher relative noise) however, the accuracy of the flank detection dramatically
drops, while the curve fit does not worsen as much on average. The reliability of
the curve fit, also gets worse the lower the degrader setting. This fact may be seen
much clearer, by the large error bars for low degrader settings in Fig. 5.11.

Therefore to obtain the best emittance reconstruction results, the usage of the curve
fit method in conjunction with the fit input of the pick-up signal is recommended.
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Figure 5.11: Accuracy of the emittance reconstruction of the curve fit method
for different degrader settings.

5.3.6 Computation of the emittance

After calculating the numerical derivative of the CTS signal (which can be done
directly using Python’s numpy module), the only thing missing before being able
to compute the geometric emittance is the calculation of the RMS of the betatron
amplitude distribution.

For this computation, only the part of the distribution between the estimated beam
center and the beginning of the falling flank of the CTS signal is considered. All
values which have a probability smaller than zero are set to zero since they are only
an effect of the noise.

After obtaining the geometric emittance by dividing the RMS by two times the
assumed β-function, the normalized emittance (see Sec. 1.4.4.1 on p. 12) has to
be calculated to make measurements taken at different beam energies comparable.
Since the cycle code encodes the beam energy per nucleon and is included in the
measurement data files the relativistic β and γ can be calculated easily via:

γrel =
Etot
Erest

βrel =

√
1− 1

γ2
rel

εnorm = βrelγrelεgeo
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5.3.7 Reconstruction of the positional distribution

The result of the scraping measurement is the distribution of the betatron amplitude
of the particles. But if we go back to the solution of Hill’s equation of motion (eq.
1.10 on p. 7):

x(s) =
√
ε
√
β(s) cos(Ψ(s) + Φ)

one can see, that the position of the particles x(s) varies in a cosine like motion
dependent on the betatron phase advance Ψ(s) with an amplitude equal to their
betatron amplitude

√
εβ(s).

So in order to obtain the average positional distribution of the particles, one has to
modulate the betatron amplitude distribution with the spectrum of a cosine distribu-
tion of equally distributed angles (phase advances). This is shown graphically in Fig.
5.12. The way this is done computationally is by creating a uniform distribution
of angles in [0; 2π] and assigning the angles to each betatron amplitude, by relative
weight. The product of the cosine of the so assigned angles with their respective
amplitude results in the average positional distribution of the particles.

This has no impact on the computation of the emittance, but the beam shape can
still be a factor of interest. Especially for measurement which are difficult to analyze,
the shape of the resulting positional distribution can serve as a quick feedback to
the user, since artifacts of a wrong beam center estimation can be immediately seen.

Figure 5.12: Basic principle of the reconstruction of the positional particle
distribution (right) from their betatron amplitude distribution (left) by
modulating with a cosine spectrum (center) for a simulated Gaussian particle
distribution.

5.3.8 Optimal analysis parameters

In Sec. 5.3.5.6 we already found, that the best analysis mode is using the curve fit
method with an input of the pick-up signal. The other significant analysis parameter
left to determine is the window of the moving average which should be used for
the different degrader settings. As shown above, the moving average introduces a
systematic emittance reconstruction error while also reducing the disturbing effects
of the noise. Therefore the goal should be to find a good compromise between these
two effects, which is expected to be different for varying noise levels.
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Fig. 5.13 shows the relative error in emittance reconstruction as a function of the
moving average window for different simulated degrader settings. The proposed
moving average windows were chosen in order to give comparable results for all
emittances and to be consistent over as many degrader settings as possible. The
results are summarized in table 5.3.
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Figure 5.13: Relative emittance reconstruction error for different simulated
degrader settings as a function of the moving average window to determine
the optimum trade-off point between the systematic error of the smoothing
and the effect of the noise.

Degrader mov. avg. window

100% 30
50% 30
20% 50
10% 50-70

Table 5.3: Proposed optimal moving average window sizes for the four
degrader settings.

5.3.9 Visualization

After the analysis is finished, the results as well as the raw data are presented to the
user in a combined plot. An example for such a plot can be seen in Fig. 5.14. The
figure is separated into three subplots and a table containing the analysis results
and beam parameters.

The top subplot shows the CTS current over the scraper position for both scraper
plates (in this case h1 and h2). If the curve-fit analysis method has been selected,
the result of the analytic fit is also shown. Two colored boxes show the region
of interest for the computation of the betatron amplitude RMS. Only data points
within these regions are considered. Ideally the distance between the inner edges of
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the two boxes should be as small as possible, indicating a good agreement between
the two individual scraping measurements.

The middle subplot shows the numerical derivative of the CTS signal, the regions of
interest, as well as the derivative of the analytic curve-fit (if this method has been
selected). The derivative of the curve-fit has no influence on the analysis result and
merely acts as a visual feedback to the user how well the curve fits the data.

The bottom subplot shows the computed positional distribution of the particles.
Any potential error in the beam center estimation can be immediately spotted
here, due to the curves visibly deviating from an approximately Gaussian shaped
distribution. An underestimation of the beam center would lead to a central spike
and an overestimation to two symmetric spikes in the distribution.

The table on the right side shows information about the measured particle beam by
displaying the cycle code (CC), energy, degrader setting and particle type. This is
followed by three analysis parameters, namely the assumed horizontal and vertical
β-functions and the selected analysis mode. The last three rows show the computed
geometric and normalized emittances per scraper plate as well as the estimated
beam center. Behind the brackets the method which was used to find the center is
displayed. In most cases this should coincide with the selected analysis method, but
if for whatever reason one of the methods fails, the tool automatically defaults to
the next one in order of accuracy.
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Figure 5.14: Example of a summary plot produced by the MRemittance.py tool.
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5.4 Transfer line emittance analysis procedure

As part of this thesis, a new python module for the analysis of quadrupole scan
data has been developed, named QuadScan.py. Due to the fact that it also relies
substantially on MAD-X python implementations, it has not been incorporated into
the PACMAN framework. The tool is still structured like any level three PACMAN
module as well as being version controlled.

The reliable analysis of quadrupole scan data is very important during the commis-
sioning of the transfer lines to obtain the Twiss parameters and center the beam in
the quadrupole. It is also very useful for quality assurance purposes, especially since
the offset of the beam in the quadrupoles can be determined as well, which might
change over time.

The used monitors for this type of measurement are scintillating fiber hodoscopes
(SFX, see Sec. 3.2.3 on page 27) in the HEBT and secondary electron emission grids
(PGX, see Sec. 3.2.4 on page 28) in the MEBT. Both of these monitor types have a
wire spacing of 1mm in both planes.

5.4.1 Analysis outline

To obtain the Twiss parameters and especially the emittance, a function of the form:

σ2
2 = A(B − kl)2 + C

as derived in eq. 4.4 has to be fitted to the squared RMS beam sizes (which are equal
to the variance of the beam profile distribution) as a function of the quadrupole
strength k. The fit parameters together with the transfer matrix between the
quadrupole and the monitor are sufficient to calculate α, β and ε. Additionally the
offset of the beam in the quadrupole can be estimated by applying a linear fit to the
beam center positions as a function of the quadrupole strength as outline in eqs. 4.5
and 4.6.

To summarize, the necessary steps to obtain the analysis results are:

1. Correlate the measured quadrupole strengths with the individual beam profile
measurements.

2. Obtain the beam distribution for each quadrupole strength by summing up all
individually measured single frames.

3. Calculate the mean and variance of the distributions and their uncertainties
using Gaussian error propagation.

4. Calculate the transfer matrix using MAD-X and lattice files.

5. Fit the quadratic and linear functions to their respective quantities and calcu-
late the Twiss parameters and the offset from the fit results.
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The above outlined steps shall now be explained in further detail:

1. The first step can be achieved with the use of the so called loopfile. This file serves
as an input to the Operational Application3 providing the quadrupole strengths which
are to be measured and their order. The analysis tool subsequently needs to perform
a mapping of this strength order to the order in which the individual measurements
were taken.

2. The second step can be carried out directly with the use of the respective PGX
or SFX PACMAN modules which can return the summed up counts per fiber for
each plane.

3. The mean and the variance can be calculated with the standard formulas for
weighted measurements:

m =
1∑
iwi

∑
i

wixi

v =
1∑
iwi

∑
i

wi(xi −m)2

where xi are the positions of the individual fibers and wi their respective weights
(counts). To estimate the standard error on the mean and variance, the uncertainty
introduced by the binning due to the wire spacing has to be propagated using
Gaussian error propagation. The complete derivation of the following formulas has
been carried out in the appendix in Sec. A.2.

The uncertainty of the position on each single fiber is equal for all fibers and with a
wire spacing of 1mm amounts to (see eq. A.2):

σx =
1√
12

mm

Using this and neglecting any uncertainty in the counts, the standard error on the
mean can be calculated as (see eq. A.3):

σm = σx

√ ∑
iw

2
i

(
∑

iwi)
2

And following that, the standard error on the variance (see eq. A.4):

σv =
2∑
iwi

√√√√σ2
x

∑
i

w2
i (xi −m)2 + σ2

m

(
m
∑
i

wi −
∑
i

wixi

)2

The curve fit is later performed using the scipy[25] package. This package allows
the propagation of error on the data and returns the standard uncertainties on the
fit parameters.

3The Operational Applications are a software framework developed at MedAustron to automat-
ically perform repetitive beam measurements, e.g. changing a quadrupole strength and measuring
a beam profile.
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4. The calculation of transfer matrices is a standard procedure of MAD-X. The
position of elements in the MedAustron accelerator are specified in so called lattice
files. A python wrapper for MAD-X exists, using the cpymad[26] library. Loading
the correct lattice file and finding the quadrupole and beam monitor allows the
calculation of the transfer matrix. This loading of the correct files and locating of
the elements is done completely automatic and does not require any input from the
user.

5. Fitting the function from eq. 4.4 to the beam variance and a linear function to
the beam position is done using the scipy package. Special care has to be taken to
invert the strength for the vertical plane due to the sign convention of the quadrupole
strength being positive for a horizontally focusing quadrupole.

The scipy package returns the standard errors on the fit parameters, which are then
translated into the standard errors on the Twiss parameters as well as the offset
using Gaussian error propagation.

The normalized emittance can be calculated from the geometrical emittance as
already shown for the synchrotron emittance analysis in Sec. 5.3.6.

5.4.2 Simulation procedure

To test the accuracy of the developed analysis tool, varying beam distributions
created with python were tracked through a basic beam line using MAD-X. The
beam line was kept as simple as possible to speed up the particle tracking, while
still resembling a realistic set-up. The beam line consists of a single quadrupole of
length l = 0.25m at position x = 0 and a beam profile monitor with a wire spacing
of 1mm at position x = 3m, leaving a drift space of 2.75m between the exit of the
quadrupole and the monitor. The monitor was simulated to resemble a scintillating
fiber hodoscope as installed in MedAustron’s HEBT, meaning 64 fibers with a wire
spacing of 1mm resulting in a coverage of the profile monitor of ±32mm. The layout
of the simulated beam line can be seen in Fig. 5.15.

All simulations using particle tracking were carried out with 104 particles per beam
distribution.

5.4.3 Accuracy of the beam offset reconstruction

To simulate how accurate the analysis procedure can reconstruct an offset of the
beam from the quadrupole optical axis, a series of simulations were run, adding a
flat offset in the range of ±10mm to the beam distribution. The Twiss parameters
for the used beam distribution were: α = 0, β = 5m and ε = 1 πmmmrad. The
results of these simulations can be seen in Fig. 5.16, where the absolute error of the
offset reconstruction is shown as a function of the offset. For expected offsets from
the optical axis in the range of ±5mm the error is reasonably small, being in the
order of 0.2mm for higher offsets.

For a normal distribution with a standard deviation of
√
βε ≈ 2.2mm the standard
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Figure 5.15: Layout of the simulated beam line showing the positions of the
quadrupole and the beam profile monitor as well as an example of a beam
envelope for three different quadrupole strengths, showing the varying beam
width at the profile monitor.

error on the beam center (with a wire spacing of 1mm) is according to eq. A.3
≈ 0.11mm. Therefore the error in the offset reconstruction is of this order of
magnitude and only marginally larger than the possible achievable accuracy of the
beam center measurement.
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Figure 5.16: Absolute error in the offset reconstruction as a function of the
offset.

59



MEASUREMENT ANALYSIS PROCEDURES

5.4.4 Accuracy of the Twiss parameter reconstruction

To test how reliable the developed analysis tool can reconstruct the Twiss parameters,
25 Gaussian beam distributions with Twiss parameters of ε = 1πmmmrad, β =
[1, 2, 5, 8, 10]m and α = [-1, -0.5, 0, 0.5, 1] were tracked. The initial distributions
can be seen in Fig. 5.17. The quadrupole scan was simulated using 15 different
normalized quadrupole strengths k ranging from -2m−2 to 3.6m−2.

Figure 5.17: Different tracked beam distributions to cover all cases of small
to large beam sizes and converging as well as diverging beams.

5.4.4.1 Accuracy of the fitting

The error in the reconstruction can have two sources: errors stemming from the
measurement acquisition (i.e. resolution limit of the monitor, parts of the beam not
covered by monitor, ...) and errors stemming from the analysis procedure itself (i.e.
errors in the fitting or applied formulas). To separate these two sources, we should
go back to the derivation of the fit function of the quadrupole scan, where it was
shown in eq. 4.3 on page 33, that the beam size at the monitor σ2 can be expressed
in terms of Twiss parameters at the quadrupole (subscript 1) and the transfermatrix
R as:

σ2
2 = ε(R2

11β1 − 2R11R12α1 +R2
12γ1)
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Using this expression one can calculate the theoretical beam size σ2 at the monitor
analytically without tracking any particles and free of measurement errors, to test
the accuracy of the analysis procedure alone.

The relative error in the Twiss parameter reconstruction for all distributions shown
in Fig. 5.17 is in the order of 10−14 and therefore completely negligible (as was to
be expected).

5.4.4.2 Twiss parameter reconstruction accuracy for a centered beam

In Figs. 5.18-5.20 the relative (or absolute) error of the Twiss parameter reconstruc-
tion is shown as a 2D map of the beam distribution parameters shown in Fig. 5.17.
The top left and right corner fields show cases where the scan could not be performed
around the beam waist, resulting in much higher errors than for any other cases.

As mentioned in Sec. 4.1.3.2 on page 33, the best results can be obtained for high
β and negative α (large and divergent beam). For these cases the relative error
in emittance reconstruction is at or below 3%. In general it can be said, that the
relative error in the Twiss parameter reconstruction for relatively large and diverging
beams is around 10%.
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Figure 5.18: Absolute error of the reconstructed Twiss α depending on the
input beam distribution parameters. The definition of a relative error does
not make sense in this case, since α is also zero. The uncertainty shown is
the result of the error propagation.

5.4.4.3 Twiss parameter reconstruction accuracy for an off-centered beam

If the beam has an offset from the optical axis of the quadrupole, the particles will
experience a dipole-kick depending on their distance from the axis. To test how
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Figure 5.19: Relative error of the reconstructed Twiss β depending on the
input beam distribution parameters. The uncertainty shown is the result of
the error propagation.
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Figure 5.20: Relative error of the reconstructed Twiss ε depending on the
input beam distribution parameters. The uncertainty shown is the result of
the error propagation.
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this offset influences the Twiss parameter reconstruction, the same data set used for
the beam offset reconstruction accuracy in the previous subsection was used. The
results are shown in Fig. 5.21. For an expected offset in the range of ±5mm there
does not seem to be a significant dependency on the beam offset.
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Figure 5.21: Error in the reconstruction of the Twiss parameters as a function
of the offset of the beam from the quadrupole axis. The input parameters
of the distribution were: α = 0, β = 5m and ε = 1πmmmrad. The
uncertainty shown is the result of the error propagation.

5.4.5 Radiation damage

The scintillating fibers in the SFXs installed in the HEBT experience damage of
their optical properties due to the ion beams. The overall effect of the damage is
proportional to the exposure dose. It leads to a loss in light yield and a reduction of
the fluorescence. At higher dose exposures, it was shown that the radiation damage
can lead to discoloration of the plastic, shifting of absorbing components and an
increasing loss of light yield [27]. For the scintillating fibers in the extraction line
this causes a significant problem: the central fibers are irradiated much stronger,
leading to a non-uniform decrease in sensitivity over the range of the monitor. This
subsequently leads to a distortion of the measured beam profile.

In this section the effect of the uncorrected radiation damage on the reconstruction
accuracy shall be investigated. The simulations were done using the radiation damage
curves for two scintillating fiber hodoscopes, namely the EX-00-000-SFX, which
shows the most severe radiation damage and is therefore a worst case estimation,
and the EX-01-001-SFX which is essential to the commissioning of the extraction
line and therefore of special interest. The radiation damage curves for these two
monitors are shown in Fig. 5.22. In the last simulation step when binning the tracked
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particle positions to the fiber positions, the obtained histogram was multiplied with
this curve.

40 30 20 10 0 10 20 30 40
Fiber position [mm]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
la

ti
v
e
 s

e
n
si

ti
v
it

y

EX-00-000-SFX Hor

EX-01-001-SFX Hor

EX-01-001-SFX Ver

Figure 5.22: Relative fiber sensitivity of the EX-00-000-SFX and EX-01-001-
SFX. The curves were obtained by scanning a beam over the monitor and
normalizing the obtained intensity with the extracted current from the ring
(measured by the CTS). For the EX-00-000-SFX a vertical scan can not be
performed easily, due to the lack of a corrector magnet.

In Figs. 5.23-5.25 the effect of the EX-00-000-SFX radiation damage curve being
applied to the 2D-scan data from Fig. 5.17 is shown. The maximum error in the
reconstruction of α and β for the valid scans shows a doubling of the error to the
range of 10-20%. For the reconstruction of the emittance however, the radiation
damage increases the error to up to 40%. The reason for that is, that the decrease
of the sensitivity in the central fibers gives higher weight to the external fibers,
leading to a consistent increase of the beam size over the whole scan range. Since the
emittance is directly proportional to the square root of the offset of the fitted parabola
C, an overall increase in measured beam size leads to an increase in reconstructed
emittance.

The effect of the radiation damage can also be clearly observed when looking on
the error in Twiss parameter reconstruction as a function of the beam offset from
the quadrupole axis as shown in Fig. 5.26. While the beam is in the center of the
radiation damaged part, the already observed increase of the measured emittance
can be clearly seen. When the beam is a little off-center, one edge gets higher weight
than the other one, leading to an artificial angle in the beam which leads to a higher
error in the α reconstruction while also underestimating the β function. As soon
as the beam gets out of the most damaged part there is again a good agreement
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Figure 5.23: Absolute error of the reconstructed Twiss α depending on the
input beam distribution parameters, with radiation damage curve included.
The definition of a relative error does not make sense in this case, since α is
also zero. The uncertainty shown is the result of the error propagation.
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Figure 5.24: Relative error of the reconstructed Twiss β depending on the
input beam distribution parameters, with radiation damage curve included.
The uncertainty shown is the result of the error propagation.
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Figure 5.25: Relative error of the reconstructed Twiss ε depending on the
input beam distribution parameters, with radiation damage curve included.
The uncertainty shown is the result of the error propagation.

between the damaged and non-damaged curves.

The distortion of the beam profile also has an effect on the measured center of the
beam, if the beam has an offset from the optical axis. Due to the offset the beam is
moved across the monitor during the quad scan and the beam profile is distorted as
a function of the quadrupole strength. The effect this has on the error of the beam
offset reconstruction can be seen in Fig. 5.27.

5.4.6 Bar of charge

The horizontal beam in the extraction line does not resemble a Gaussian distribution,
but the aforementioned bar of charge. To test the accuracy of the analysis tool for
bar of charge like beams, the same distribution input parameters as already shown
for the Gaussian case in Fig. 5.17 were used. The bar of charge was simulated as
a uniform distribution in both x and x′. Since there is no standard definition of
the emittance for such a beam distribution, the same properties as for the Gaussian
beam were used, namely that the RMS particles have a position of

√
βε. In Fig.

5.28 the used beam distributions are shown.

The results of this tracking are shown as 2D maps in Figs. 5.29 - 5.31. Overall
the difference in accuracy between the Gaussian and bar of charge distributions is
fairly small, with the biggest absolute difference in error being 4%. The accuracy
in the α and β reconstruction is sometimes even better for the bar of charge case,
while the emittance reconstruction is on average marginally worse and consistently
over-estimating the emittance. This shows, that the analysis tool can also reliably
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Figure 5.26: Error in the Twiss parameter reconstruction with and with-
out radiation damage. The uncertainty shown is the result of the error
propagation.
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Figure 5.27: Absolute error in the beam offset reconstruction with and
without radiation damage.
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Figure 5.28: Tracked beam distributions for the bar of charge tests.

reconstruct the Twiss parameters for non-Gaussian distributions.
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Figure 5.29: Absolute error of the reconstructed Twiss α depending on the
input beam distribution parameters, for bar of charge like distributions. The
definition of a relative error does not make sense in this case, since α is also
zero. The uncertainty shown is the result of the error propagation.

The real bar of charge distribution as it would be found in the extraction line does
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Figure 5.30: Relative error of the reconstructed Twiss β depending on the
input beam distribution parameters, for bar of charge like distributions. The
uncertainty shown is the result of the error propagation.
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input beam distribution parameters, for bar of charge like distributions. The
uncertainty shown is the result of the error propagation.

69



MEASUREMENT ANALYSIS PROCEDURES

however not really represent a 2D-uniform distribution. A more realistic bar of
charge is shown in Fig. 5.32 (special thanks to Alexander Wastl for providing the
distribution!) alongside with its reconstructed phase space ellipse. The computed
ellipse fits the data quite well. Since there does not exist a definition of the emittance
of the bar of charge (and therefore no real Twiss parameters of the distribution), no
assessment of the reconstruction errors can be made.
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Figure 5.32: More realistic bar of charge distribution (result of a complete
extraction particle tracking simulation) and the resulting phase space ellipse
after simulating a quadrupole scan.

5.4.7 Visualization

After the analysis is performed by the tool, the raw data as well as the analysis result
are presented to the user in an overview plot (an example of a 120MeV/n carbon
ion scan is shown in Fig. 5.33). The overview plot is divided into four subplots and
an overview table.

The upper two subplots show the variance of the measured beam distributions as
a function of the normalized quadrupole strength kl for the horizontal and vertical
plane. The errorbars show the standard error calculated by the error propagation.
If the curve fit worked, the resulting parabola is shown as well. The user can
immediately judge if the scan was performed around the beam waist.

In the bottom two subplots the measured beam center is shown as a function of the
normalized quadrupole strength, for both planes. Additionally the linear fit curve is
shown as well.

The table on the right side shows information about the beam (the cycle code, energy
and degrader), followed by the scanned quadrupole and the used beam monitor.
Since the correct detection of the used quadrupole and monitor is essential for the
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calculation of the transfer matrix, this serves as a confirmation to the user, that the
right elements were found. Underneath the results of the analysis are shown for both
planes: geometric and normalized emittances, α, β and the offset of the beam from
the quadrupole axis.

A second plot can also be produced which serves as an indication, how well the
results fit to the measurements. It shows the phase space ellipse constructed with
the analyzed Twiss parameters, as well as lines representing the width measurements.

Each beam size measurement can be represented as two vertical lines in the phase
space at ±σ, since it represents the projection of the beam distribution in phase
space onto the position axis. A transformation of these lines back to the start of
the quadrupole, using the inverted transfer matrix, results in the lines as depicted
in Fig. 5.34.

If analysis results and measurement data fit perfectly (as shown with analytically
simulated data in the left subplot of Fig. 5.34), all lines should be tangents to the
reconstructed phase space ellipse. How well the Ellipse and the lines match, can
serve as feedback to the user how well the scan was set-up and how accurate the
analysis worked.
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Figure 5.33: Example of a summary plot produced by the QuadScan.py tool.
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Figure 5.34: Example of a reconstructed RMS ellipse plot produced by the QuadScan.py tool. The horizontal plane depicts
analytically simulated data with perfect matching and the vertical plane particles tracked with MADX.
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5.5 Transmission analysis tool

To facilitate the easy transmission calculation of large amounts of beam current
measurements, the PACMAN level three tool Transmission.py was developed dur-
ing this thesis. Additionally, code for transmission analysis was also built into the
analysis tool for daily quality assurance data, to allow the user to observe changes
of the transmission values over time.

The transmission analysis tool automatically collects all current transformer data
(CTA and CTS), analyzes the single measurements using the PACMAN level two
CTA.py and CTS.py modules and groups the data according to the measured particle
type, energy and degrader setting. Subsequently the average intensities as well as
the single beam transmissions are calculated. The correlation which measurements
are taken during the same accelerator cycle can be either done using the time stamp
of the measurements or the unique beamstamp identifier.

An example of an output plot produced by the transmission analysis tool is shown
in Fig. 5.35 for two degrader/particle/energy combinations. The tool can show
an arbitrary number of combinations. The top subplot shows the average intensity
through the LEBT, LINAC and MEBT current transformers as well as at the MR
CTS at injection, flatbottom, flattop and the overall extracted intensity, calculated
with the implemented RF train. The bottom subplot shows the average transmission
between two consecutive intensity monitors. If the user is not interested in the
transmissions between some of the monitors, or would for example rather have an
overall transmission through several stages, the monitors can also be selectively
added and removed.
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Figure 5.35: Example of the output plot produced by the Transmission.py module for a 252.7MeV proton beam and a
120MeV/n carbon ion beam, both at degrader setting 100%.
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6 Measurement results and conclu-
sion
In this chapter the measurement analysis results obtained by the developed analysis
tools and the InjectorEmittance.py module shall be presented, together with
conclusions for the different developed tools and ideas for further improvement.

6.1 Injector emittance

The emittance of the two used sources (S1 and S2) was measured with the slit-grid
method. Into the obtained phase-space distributions, the RMS ellipse was fitted using
the InjectorEmittance.py module. The 90% ellipse was calculated by enlarging
the RMS ellipse by a factor of

√
−2 ln(0.1) ≈ 2.15 (see eq. A.5). This is the number

of standard deviations which would cover 90% of the probability distribution when
assuming a 2D Gaussian distribution. The complete derivation of this factor has
been carried out in the appendix in Sec. A.3.
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Figure 6.1: Phase space diagrams for Source 1 and Source 2 measured with
the slit-grid method. The fitted RMS ellipse as well as the extrapolated
90% ellipse are also shown.

In Table 6.1 the result for the 90% geometric emittance are summarized. The
requirement, as stated in Table 2.2, that more than 90% of the beam fits within
180πmmmrad is fulfilled for both sources in both planes.
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Source 90% emittance [πmmmrad]
H V

S1 47.67 88.54
S2 83.29 71.89

Table 6.1: Slit-grid source emittance measurement results.

6.2 Synchrotron emittance

The developed analysis tool for the synchrotron emittance was used extensively
during the commissioning of the carbon ion beam, as well as for repetitive quality
assurance measurements of the proton beam.

All measurements presented in this section were taken with a scraper speed of
0.02m/s, a scraping duration of 10 s and a manually set scraper plate start position
of ±45mm. The timing events used for the insertion of the scraper plates were
StartEVS 1 for flattop measurements and StopMultiturn2 for flatbottom measure-
ments.

6.2.1 Protons

In Table 6.2 the results of the measurement analysis for the proton beam are shown.
The measurements were performed for all degrader settings at the highest and
lowest clinically used extraction energy as well as for flatbottom (7MeV) with the
exception of degrader 100%, where the currently restricted range of the scraper
was not sufficient for a proper measurement. The comparison to the design was
performed against the normalized design emittance value of 0.519πmmmrad.

When discussing the results, it should be noted that the machine settings differ
between the clinically used degrader settings 10% and 20% and the two higher
settings 50% and 100%.

For degrader 100 the horizontal emittance is significantly larger than for the other
degrader settings which could be due to space charge effects: at higher intensities
the repulsive forces that the particles exert on each other can lead to an increase of
the emittance. Especially for the (compared to carbon ions) light protons this could
play a significant role.

When we compare the change of the emittance from flatbottom to flattop between
the horizontal and vertical plane, it can be seen that while the vertical flatbottom
emittance is usually smaller, the vertical flattop emittance is overall considerably
larger than the horizontal one. Additionally the vertical emittance increases from

1The EVS (energy verification system) is activated after the acceleration is finished and is
therefore a suitable timing event for flattop measurements.

2This timing event marks the end of the multiturn injection procedure and is therefore a suitable
timing event for flatbottom measurements. At this stage the beam has not yet been captured by
the synchrotron RF cavity.
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geometric normalized % of design
degrader energy [MeV] H V H V H V

100%
62 2.08 2.11 0.77 0.78 148 150
252 1.57 1.40 1.23 1.09 236 210

50%
7 12.98 7.22 1.59 0.88 - -
62 1.25 2.34 0.46 0.86 89 167
252 0.85 1.25 0.66 0.97 128 188

20%
7 13.96 5.88 1.71 0.72 - -
62 1.19 3.24 0.44 1.20 85 231
252 0.65 1.35 0.51 1.05 98 203

10%
7 12.86 7.90 1.57 0.97 - -
62 1.00 2.71 0.37 1.00 71 193
252 0.60 1.62 0.47 1.27 90 244

Table 6.2: Synchrotron emittance measurement results (in πmmmrad) for
the proton beam taken during extended quality assurance measurement
sessions. The 7MeV values represent flatbottom measurements.

flatbottom to flattop, which is counter intuitive since the emittance should actually
decrease due to losses associated with the RF capture and the acceleration. In
general, this hints at either a vertical instability or the crossing of a vertical tune
resonance when going from injection to extraction tunes. For the proton beam it
was confirmed to be a vertical instability due to measured vertical oscillations of the
beam during the whole cycle.

6.2.2 Carbon ions

The measurements for the carbon ion beam, as summarized in Table 6.3, were taken
during the commissioning phase. As for the proton beam, flatbottom measurements
for degrader 100% were not possible. The comparison to the design was performed
against the normalized design emittance value of 0.7482πmmmrad.

geometric normalized % of design
degrader energy [MeV/n] H V H V H V

100%
120 1.36 4.29 0.71 2.25 95 300
400 0.56 2.08 0.57 2.13 76 284

20%
7 16.11 5.82 1.97 0.71 - -
120 1.15 4.93 0.60 2.59 80 345
400 0.53 2.29 0.54 2.34 72 313

Table 6.3: Synchrotron emittance measurement results (in πmmmrad) for
the carbon ion beam taken during the commissioning phase.

After the commissioning of the multiturn injection for the carbon ion beam, the
precise measurements of the synchrotron flattop emittance lead to the identification
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of unacceptable results in the vertical plane. This resulted in a recommissioning
phase of the synchrotron setpoints to identify more suitable machine parameters.

If one compares the degrader 20 proton and carbon measurements, it can be seen
that the normalized emittances at flatbottom and the horizontal emittance at flattop
are very comparable between the two particle types. For the carbon beam however,
the vertical emittance increases drastically during the acceleration. This hints again
either at an instability, the crossing of a tune resonance line or a mismatch between
the injector and the synchrotron during the multi-turn injection. An instability can
be ruled out, since vertical oscillations of the beam could not be measured.

Scans of the injection and extraction tune settings were performed and a good new
set point was found which leads to a decrease in the vertical emittance at the cost of
a slight increase in horizontal emittance and a decrease in the flattop intensity in the
synchrotron. The new measured emittances are shown in Table 6.4. The increase in
the horizontal emittance actually led to the favorable situation that the emittance
is approximately equal in both planes.

geometric normalized % of design
degrader energy [MeV/n] H V H V H V

20%
120 1.78 1.83 0.93 0.96 125 128
400 0.80 0.88 0.82 0.90 109 120

Table 6.4: Synchrotron emittance measurement results (in πmmmrad) for
the carbon ion beam after adapting the tune set-points.

6.2.3 Conclusion

The development of the synchrotron emittance measurement analysis module resulted
in a very reliable tool, which allows the analysis of complex data with minimal
required user input while still providing a lot of flexibility in the choice of analysis
modes and parameters. Especially the choice to make the analysis not dependent
on double-sided scraping, enables the use of partially incomplete data sets. It also
allows the accumulation of a higher amount of measurement results, because the
emittance value can be reconstructed from each single scraper sweep. The user-
friendly analysis as well as the higher possible analysis yield make the analysis tool,
besides it’s use for commissioning tasks, also very attractive for repetitive quality
assurance measurements to observe trends in the synchrotron emittance.

Extensive simulations led to a profound understanding of the behavior of the different
analysis algorithms. It could be shown that the analysis tool can theoretically
(without noise on the measured signal) reconstruct the emittance with relative
errors of less than 0.5%. These errors are very good also when compared to other
synchrotron accelerators: comparison to the literature (Hunt et al. [28]) shows, that
in other centers relative errors within 1% for simulated data could be achieved.
The presentation of the obtained results at the International Beam Instrumentation
Conference 2018 in Shanghai to experts in the field generated very positive feedback
and acknowledgement.
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6.2.4 Outlook

The biggest room for improvement lies not in the analysis but rather in the measure-
ment procedure itself. Especially the noise on the CTS signal leads to less reliable
analysis results and reducing it could benefit the emittance reconstruction signifi-
cantly. Additionally in the current set-up, the scraper plates do not move farther
than the 0mm mark (from their respective side). This results in the two obtained
signals (as a function of the scraper position) having almost no overlap. Further-
more if the beam is considerably off-center one of the two scraping sweeps becomes
unusable, because it does not cover the whole range. Upgrading the scrapers to
extend over the 0mm mark (for example to ±10mm) would eliminate this problem
and open new possibilities to upgrade the analysis tool. For example a combination
of the two-sided and one-sided scraping analysis could be implemented, to perform
a sanity check of the reconstructed emittance result directly inside the analysis tool.

The currently used values of the β-function to compute the emittance are the result
of optics calculations. A measurement of the real β-function could be used to further
increase the absolute accuracy of the emittance reconstruction, albeit not being
necessary for comparative measurements.

To allow the complete automation of the analysis of repetitive measurements, ad-
ditional functionality could be implemented into the PACMAN framework, to au-
tomatically detect that the given data stems from an emittance measurement and
directly call the corresponding analysis tool.

6.3 HEBT emittance

The analysis tool for the quadrupole scans was extensively used during the carbon
ion beam commissioning of the extraction line. The goal was to obtain the vertical
Twiss parameters at certain locations of the transfer line and at a later stage based
on those results calculate the necessary quadrupole strengths to achieve the desired
spotsize of 6mm at the isocenter.

The results are summarized in Tables 6.5 and 6.6. The huge uncertainty in the
horizontal plane is due to the extremely small horizontal beam size at the monitor
positions. Since this spotsize adjustment concept is anyway only used for the vertical
plane, this large uncertainty is not at all concerning.

Before trying to adjust the spotsize, the obtained vertical Twiss parameters were
tested for plausibility. This was done by calculating the expected beam sizes at
several monitor positions with MADX, using the Twiss parameter results from the
quadrupole scan as starting conditions and comparing them to actual measurements.
The comparison is shown in Table 6.7 and shows an extremely good agreement
between measured and calculated beam sizes. This confirms the accuracy of the
analysis tool and the validity of the measurement results.
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parameter value unit

εgeo,x 0.48 ± 0.48 πmmmrad
βx 13.4 ± 8.6 m
αx 6 ± 3.1

εgeo,y 0.57 ± 0.29 πmmmrad
βy 3.41 ± 0.87 m
αy -1.15 ± 0.23

Table 6.5: Reconstructed Twiss parameters at the T2-01-000-MQZ for a
402.6MeV/n carbon ion beam.

parameter value unit

εgeo,x 0.124 ± 0.055 πmmmrad
βx 66 ± 30 m
αx 26 ± 12

εgeo,y 0.79 ± 0.11 πmmmrad
βy 26.3 ± 4.2 m
αy -7.2 ± 1.1

Table 6.6: Reconstructed Twiss parameters at the H2-00-001-MQZ for a
402.6MeV/n carbon ion beam.

6.3.1 Conclusion

The developed QuadScan.py module provides a very robust tool for the analysis of
quadrupole scans at any position of the transfer lines. The inclusion of a detailed
error propagation calculation as well as direct visual feedback on how well the
results fit the data, provide the user with all necessary tools to judge if the scan was
performed in a proper manner and if the data can be trusted. The tool has already
proven its usability, during the carbon ion beam commissioning of the extraction
line, as well as in the analysis of repetitive quality assurance tests to measure the
offset of the beam in the quadrupoles.

6.3.2 Outlook

A general improvement which could be made would be to implement the calculation
of the transfer matrices into the PACMAN framework directly, to remove the need
to use the cpymad package. The reason for that would be, that the installation of
cpymad for new users usually proves very difficult and cumbersome. Since the gain
of this would just be the removal of a one-time inconvenience, the necessity of this
change is of low priority.

To give additional feedback about the set-up of the scan to the user, a test could
be implemented, which checks if the scan was performed around the waist and
throws a warning if not. Additionally an estimation on how the scanned quadrupole
strength range should be adapted to cover the waist in both planes could be added
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monitor measured FWHM [mm] expected FWHM [mm]

EX-02-001-SFX 6.4 6.42
T2-01-000-SFX 6.6 6.85
H2-00-000-SFX 9 9.12
H2-00-001-SFX 3.6 3.48
MF-03-200-DDM 4.8 4.87

Table 6.7: Measured vertical beam size (FWHM) at several key monitors
in the IR2-H line compared to the expected result when propagating the
Twiss parameters obtained by the quadrupole scans, showing very good
agreement.

and presented to the user. The gain would be relatively minor, since the user can
immediately see if the scan was performed around the waist and the estimation how
to adapt the scan ranges can easily be performed by eye.

6.4 Transmission

The result for the transmission through the acceleration cycle, analyzed with the
developed transmission analysis module are shown in Table 6.8. It can be seen,
that for the carbon ions the transmission through the LINAC is approximately 50%
higher. Additionally the carbon ions show almost no losses during acceleration with
transmission values consistently higher than 90%.

particle energy LINAC deg. 20% inj. capt. accel. extr.

H+
62

40 25 28 67
58 89

148 65 93
252 71 85

C6+
120

61 26 45 64
95 86

268 95 89
400 91 88

Table 6.8: Transmission values (in %) for protons and carbon ions of different
extraction energies (in MeV/n). Shown are the transmission from the source
through the LINAC, through the 20% degrader and the fraction of injected,
captured, accelerated and extracted beam intensity.

The transmission tool can also be used to determine the effective reduction in beam
intensity by the different degrader settings. These values are important during the
treatment planning. The results are summarized in Tables 6.9 and 6.10. At the
MEBT CTA (which is the first current transformer after the degrader) there is no
difference between protons and carbon ions. The effective degradation is consistently
weaker than the nominal design setting. The clinically and patient safety relevant
effective degradation at the CTS flattop level differs substantially between the two
particle types. This is however not due to a fundamental difference at the degrader
level but just a result of the different transmissions as shown in Table 6.8.
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nominal setting Proton Carbon

50 65 66
20 25 26
10 14 15

Table 6.9: Effective degrader settings [%] for the proton and carbon ion
beam at the MEBT CTA.

nominal setting Proton Carbon

50 41 64
20 27 34
10 9 18

Table 6.10: Effective degrader settings [%] for the proton and carbon ion
beam at the MR CTS at flattop.

6.4.1 Conclusion

The developed Transmission.py module offers fast, reliable and easily accessible
functionality to analyze the transmission for various data sets. It does not rely on all
measurements being present, can deal with an arbitrary amount of measured beam
configurations (cycle codes) and enables the user to freely combine various data sets
to display them in one combined overview panel.

6.4.2 Outlook

The tool could be further improved by implementing higher level cycle code grouping
options. Right now the data is grouped by degrader setting, particle type and energy.
It could be beneficial to allow the user to freely choose by which cycle code parameters
to group the data. Ideally this should be implemented generically at an underlying
level in PACMAN to provide this functionality to multiple modules.

Furthermore, with the implementation of the SQL database for daily quality assur-
ance data, additional methods could be implemented to calculate the transmission
directly and store it in the database to save repetitive computation time further
down the line.
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Appendix A

A.1 Intrinsic resolution of a scraping measurement

When a scraper starts slicing the beam distribution, it takes several turns for all
particles to hit the plate. Due to the scraper plate moving during that time, the
betatron amplitudes of the particles appear to be "smeared out" over the distance
xmax the scraper moves during the maximum number of needed turns for complete
scraping nmax.

For a fractional tune of q = 1
3
(which would be unstable in reality) this leads to

the unfortunate situation depicted in Fig. A.1, where the particles return to the
same position in phase space every three turns. For the angle after n turns φn the
following applies:

cos(φn) =
r − nd
r

= 1− x

r

with the betatron amplitude r and the advance of the scraper per turn d. For the
case of fractional tunes the maximum angle until all particles have been scraped is:

2φmax = 2πq =
2π

3

and from that follows:

1− xmax
r

= cos(φmax) = cos(π/3) =
1

2
xmax
r

=
1

2

This would result in a position uncertainty of the betatron amplitude of 50%.

For non-resonant tunes, where the scraped parts do not overlap, it can be derived
(please refer to the appendix of Schönauer [20] for the very lengthy derivation) that
the uncertainty can be expressed as

xmax
r

=
1

2

(
3πd

r

)2/3

For this formula to be valid, the fractional part of the tune must be sufficiently far
away from any resonance M/N (where N < 10). This is expressed as an inequality
for the difference δ of the tune from the closest resonance:

δ >

(
3π d

r

)1/3

πN
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Figure A.1: The colored areas show the portion of the phase space that
is scraped after 1, 2, 3 and 4 turns, with a scraper advance of d/turn.
The scraper advance per turn is depicted unrealistically large for better
illustration.

A.2 Error propagation for profile measurements

To estimate the uncertainty (standard error) σf of a function f(x1, x2, ..., xN) which
is a function of variables xi with their individual uncertainties σi, Gaussian error
propagation can be used. In the case of independent variables (no correlation)
and small errors σi (the linear approximation of f has to be close to f inside a
neighborhood of radius σ1, σ2, ..., σN) the standard error of f can be calculated as:

σf =

√√√√∑
i

(
∂f

∂xi

)2

σ2
i (A.1)

A.2.1 Uncertainty of a binned measurement

A measurement with a profile monitor (such as an SFX) is equal to a binning (with
a bin width h equal to the wire spacing of the monitor) of the continuous positional
distribution of the beam. To estimate the uncertainty of the measured position
introduced by the non-continuous binning the following estimation can be used: the
binning introduces a position uncertainty in the interval of [−h/2; +h/2] around the
center of the bin. If one assumes that the real position is uniformly distributed on
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that interval with a probability function of the form:

p(x) =


0, if x < −h

2
1
h
, if − h

2
≤ x ≤ h

2

0, if x > −h
2

Then the uncertainty on each bin is equal to the standard deviation of this distribu-
tion:

σ2
x =

∫ +∞

−∞
(x− µ)2f(x)dx =

∫ +h/2

−h/2

x2

h
dx =

h2

12

σx =
h√
12

(A.2)

A.2.2 Error on the mean

Let xi be the wire positions of the profile monitor and wi the measured counts on
each wire with uncertainties in the position σxi and in intensity σwi . The weighted
mean is calculated as:

m =
1∑
iwi

∑
i

wixi

According to Eq. A.1 the standard error can be calculated as:

σm =

√√√√√√∑
i

∂m
∂xi

σxi︸︷︷︸
Eq. A.2

2

+

�
���

���
����∑

i

 ∂m

∂wi
σwi︸︷︷︸

negligible

2

σm = σx

√√√√∑
i

(
∂f

∂xi

)2

σ2
m =

σ2
x

(
∑

iwi)
2

∑
j

(
∂ (
∑

iwixi)

∂xj

)2

σ2
m = σ2

x

∑
iw

2
i

(
∑

iwi)
2

σm = σx

√ ∑
iw

2
i

(
∑

iwi)
2 (A.3)
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A.2.3 Error on the variance

The variance and the error on the variance of the measured beam distribution can
be calculated as:

v =
1∑
iwi

∑
i

wi(xi −m)2

σv =

√√√√√√∑i
(
∂v

∂xi
σxi

)2

︸ ︷︷ ︸
1

+

(
∂v

∂m
σm

)2

︸ ︷︷ ︸
2

+

�
���

���
��∑

i

(
∂v

∂wi
σwi

)2

1:
∑
i

(
∂v

∂xi
σxi

)2

=
4σ2

x

(
∑

iwi)
2

∑
i

w2
i (xi −m)2

2:
(
∂v

∂m
σm

)2

=
4σ2

m

(
∑

iwi)
2

(
m
∑
i

wi −
∑
i

wixi

)2

σv =
2∑
iwi

√√√√σ2
x

∑
i

w2
i (xi −m)2 + σ2

m

(
m
∑
i

wi −
∑
i

wixi

)2

(A.4)

A.3 2D-Gauss encircling radius

In this section the derivation of the radius, which covers a fraction p of the probability
of a 2D Gaussian beam distribution, shall be presented.

A 2D Gaussian probability density function is defined as:

f(x, y) =
1

2πσ2
e−

x2+y2

2σ2 dxdy

Transformation to polar coordinates:

f(r, φ) =
1

2πσ2
e−

r2

2σ2 rdrdφ

Integrate over φ:

f(r) =

∫ φ=2π

φ=0

1

2πσ2
e−

r2

2σ2 rdrdφ =
r

σ2
e−

r2

2σ2 dr

The covered fraction p is the integral over the probability density up to the corre-
sponding radius rp:

p =

∫ rp

0

r

σ2
e−

r2

2σ2 dr = 1− e−
r2p

2σ2

And finally we arrive at the radius rp which covers the fraction p of the whole
distribution:

rp =
√
−2 ln(1− p)σ (A.5)

89


	Introduction
	Accelerator Physics
	Introduction
	Coordinate system and magnetic field sign conventions

	Transverse beam dynamics
	Equations of motion
	Matrix solutions for the equations of motion
	Thin lens approximation

	Hill's equation
	The Beta function
	The Dispersion function

	Third order resonant extraction
	General Resonance Condition
	Extraction at MedAustron

	Emittance of a particle beam
	The canonical phase space
	Phase space of a particle beam
	Trace space

	Liouville's theorem
	Beam emittance
	Normalized emittance

	The -matrix
	-matrix and Twiss parameters

	Emittance in the extraction line


	The MedAustron accelerator and design beam properties
	The MedAustron facility
	Naming convention for accelerator components
	Cycle Codes

	Clinical requirements
	Design beam properties
	Sources
	RFQ and LINAC
	MEBT
	Synchrotron


	Beam diagnostics devices
	Beam current and number of particles
	Current transformers for pulsed beams
	DC current transformers
	Ionization Chamber

	Beam profile and position
	Wire scanners
	Pick-ups
	Scintillating fiber hodoscopes
	Secondary electron emission (SEM) grid


	Description of relevant beam property measurement concepts
	Beam emittance
	Injector
	Main Ring
	Intrinsic resolution

	Transfer lines
	Three profiles
	Quadrupole tuning


	Transmission
	RF-train


	Measurement analysis procedures
	PACMAN - The MedAustron measurement data analysis framework
	Injector emittance analysis
	Main Ring emittance analysis procedure
	Analysis outline
	Simulation procedure
	Number of simulated particles

	Mapping of the signal to the scraper position
	Signal processing
	Systematic error introduced by moving average
	Simulation of the noise

	Estimation of the beam center
	Position measurement with pick-up
	First negative
	Curve fit
	Flank detection
	Manual modes
	Conclusion

	Computation of the emittance
	Reconstruction of the positional distribution
	Optimal analysis parameters
	Visualization

	Transfer line emittance analysis procedure
	Analysis outline
	Simulation procedure
	Accuracy of the beam offset reconstruction
	Accuracy of the Twiss parameter reconstruction
	Accuracy of the fitting
	Twiss parameter reconstruction accuracy for a centered beam
	Twiss parameter reconstruction accuracy for an off-centered beam

	Radiation damage
	Bar of charge
	Visualization

	Transmission analysis tool

	Measurement results and conclusion
	Injector emittance
	Synchrotron emittance
	Protons
	Carbon ions
	Conclusion
	Outlook

	HEBT emittance
	Conclusion
	Outlook

	Transmission
	Conclusion
	Outlook


	References
	Appendix 
	Intrinsic resolution of a scraping measurement
	Error propagation for profile measurements
	Uncertainty of a binned measurement
	Error on the mean
	Error on the variance

	2D-Gauss encircling radius


