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Abstract

The derivation of e�ective light-matter Hamiltonians in the context of cavity QED is revis-

ited and the importance of making the correct choice of gauge is demonstrated. Controver-

sies surrounding the quantum Rabi model as to whether the ultrastrong coupling regime

can be reached are resolved and the adequacy of the e�ective models when applied to a su-

perconducting circuit setup is shown. The e�ects of �nite temperatures on the superradiant

phase transition and the crossover to the subradiant phase in the extended Dicke model are

exhibited. Applicability and limitations of the Holstein-Primako� approximation as well as

a mean �eld approach to the extended Dicke model are investigated. The heat capacity of

the extended Dicke model is examined for a broad range of parameters.
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Overview

The extended Dicke model (EDM) [1, 2] is a quantum-optical model that describes the

interaction between N two-level atoms, or qubits, and one bosonic �eld mode. As the

name suggests, it is a generalized version of the Dicke model [3, 4] that includes additional

qubit-qubit interactions. These interactions can give rise to very di�erent system properties,

as is exempli�ed by the prediction of a superradiant phase transition (SRT) [5, 6, 7] for

ferromagnetic interactions and that of a crossover to a subradiant phase [8] otherwise.

Many di�erent physical platforms exist that can be accurately described by the EDM,

e.g., atoms in a cavity [9, 10], superconducting circuits [11, 12, 13] or quantum dots [14, 15]

to name just a few. Experimental methods are improving quickly, allowing for the imple-

mentation of stronger couplings between qubits and photons. In many of these settings,

it has recently become possible to enter the so-called ultrastrong coupling regime [16, 17],

where this coupling becomes the dominant energy scale of the system. In this regime the

EDM predicts exciting new phenomenology, e.g., the aforementioned superradiant phase

transition. There are, however, some controversies as to whether actual physical systems

will yield parameters allowing for such a phase transition. In particular, so-called `no-go

theorems' have been discussed in the literature, claiming that it is impossible to reach this

phase transition point, while in other works it is argued that such theorems do not hold

[18, 19, 20].

The �rst part of this master thesis revisits the derivation of e�ective cavity QED models,

starting from dipole-�eld interaction Hamiltonian expressed in di�erent gauges. This anal-

ysis clearly shows that in the ultrastrong coupling regime, the validity of the usual two-level

approximation depends crucially on the choice of gauge. This �nding applies to both real

dipoles as well as superconducting circuits and resolves the aforementioned controversies in

both settings.

Having veri�ed the validity of the extended Dicke model as an accurate description of
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cavity QED systems in the ultrastrong coupling regime, the second part of this thesis then

discusses the thermal equilibrium states of this model. Here I have used two approxima-

tions to gain some analytic results and to determine their range of validity: �rstly, the

Holstein-Primako� approximation is employed to derive exactly solvable bilinear bosonic

Hamiltonians and derive an expression for the electromagnetic energy of the system. Sec-

ondly, I use a mean �eld approach and compare the results. Furthermore, I calculate

the speci�c heat of the EDM and investigate how the coupling between cavity and qubits

impacts this quantity.

Finally, in the third part of the thesis, I brie�y review the methods I used in the numer-

ical simulations. Some analytic transformations which allow for more e�cient numerical

implementations of the EDM are presented. Furthermore, I explain how one can accurately

estimate cuto�s for the photon number or the number of states to be taken into account.
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Part I

Breakdown of gauge invariance in

ultrastrong-coupling cavity QED
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Introduction

In this part of the work we investigate the derivation of e�ective cavity-QED Hamiltonians

and we point out the importance of making the correct choice of gauge when performing

a 2-level approximation. In particular, we consider the derivation of the quantum Rabi

model (QRM) [21] and the (extended) Dicke model (DM) [3, 4, 1], both of which are widely

used as approximate descriptions of various quantum mechanical systems, like atoms in

a cavity, certain superconducting circuits, or any other system which can e�ectively be

described as a set of qubits interacting with a single oscillator. In spite of their common

usage, controversies still surround these models in form of a `no-go theorem' [18] and a

`counter no-go theorem' [19], claiming that the so-called (collective) ultrastrong coupling

(USC) regime either cannot be reached or can be reached, respectively. USC occurs when

the coupling strength between dipoles and oscillator becomes the dominating energy scale

of the system, making it energetically favorable for excitations of the atomic system to be

present in the ground state; in the many-dipole case, USC is a prerequisite for a superradiant

phase transition to take place. We will show that a careful choice of gauge in the derivation

of these models can resolve the aforementioned contradictory claims. Here it is important to

properly take into account properties of the atomic potential, the most important qualitative

factor being its anharmonicity. Finally, we are going to investigate the applicability of the

correct e�ective model to a realistic physical setup in form of a superconducting circuit

with �ux-qubits.

The results discussed in this part of the work have been obtained in collaboration with

Daniele de Bernardis in the group of Peter Rabl and have been published in Physical

Review A [20]. For this publication I contributed most of the numerical calculations and

the analysis of the circuit QED implementations.
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Chapter 1

Breakdown of gauge invariance in

ultrastrong-coupling cavity QED

1.1 The QRM in the Coulomb gauge

We begin our investigations with a very simple cavity-QED setup (see Fig. 1.1): a single-

mode cavity containing one dipole. The dipole can be thought of as being an approximate

description of an atom in the cavity. The dipole is described as an e�ective particle of mass

m moving in a potential V (x), where x is the separation of the two dipole charges.

Following the usual QED-procedure of minimal coupling, the Hamiltonian of this system

can be written as

HC =
(p− qA)2

2m
+ V (x) + ~ωca†a =

p2

2m
+ V (x)− qpA

m
+
q2A2

2m
+ ~ωca†a

= Hd(x) +Hint(x) +Hc, (1.1)

where A = A0(a + a†) is the electromagnetic vector potential. As implied in the above

formula this Hamiltonian essentially consists of 3 di�erent contributions: Hd(x) = p2

2m +

V (x) describes the internal dynamics of the dipole whereasHc = ~ωca†a+ q2

2mA
2 corresponds

to the cavity mode and Hint(x) = − qpA
m to the interaction between cavity and dipole.

We can simplify Hc by performing a Bogoliubov transformation (note that Hc is a

special case of a bilinear bosonic Hamiltonian; general methods on how to diagonalize such

Hamiltonians are discussed in section 4.2) on the bosonic operators: we de�ne new creation

17



1.1. THE QRM IN THE COULOMB GAUGE

(a)

(b) (c)

Figure 1.1: (a) The cavity-QED setup under consideration: a single-mode cavity containing
a dipole consisting of two electric charges, +q and -q, seperated by a distance x. The dipole
can be interpreted as a simpli�ed representation of an underlying atomic system. Using the
dipole separation x as a spatial coordinate we can model the dipole as an e�ective particle
moving in a potential V(x), since the potential energy depends on the charge separation.
In our analysis we are going to focus on the two potentials depicted in the �gure: (b)
a slightly anharmonic square-well potential and (c) a double-well potential with very high
anharmonicity.

and annihilation operators c, c† via

c =µa− νa†, (1.2)

c† =µ?a† − ν?a. (1.3)

The parameters µ and ν must be chosen in a way such as to reproduce the cavity Hamil-

tonian

Hc =

(
~ωc + 2

q2

2m

)
a†a+

q2

2m

(
a2 + a†

2
+ 1
)

!
= ~ω̃cc†c+ C (1.4)

and such that the new operators c, c† ful�ll the bosonic commutation relations

[c, c†] = 1. (1.5)

18



CHAPTER 1. BREAKDOWN OF GAUGE INVARIANCE IN

ULTRASTRONG-COUPLING CAVITY QED

Relation (1.5) yields the requirement |µ|2 − |ν|2 = 1 which suggests the ansatz

µ = eiθ1 cosh(r), (1.6)

ν = eiθ2 sinh(r). (1.7)

Plugging

c†c = |µ|2a†a+ |ν|2aa† − ν?µa2 − µ?νa†2 (1.8)

into equation (1.4), choosing θ1 = 0, θ2 = π and comparing coe�cients on both sides yields

the required parameters

ω̃c =

√
ω2
c + 2ωc

q2A2
0

~m
:=
√
ω2
c +D2, (1.9)

r =
1

2
arcosh

(
~ωc +

q2A2
0

m

~ω̃c

)
, (1.10)

µ =

√
ωc +

q2A2
0

m + ω̃c

2ω̃c
, (1.11)

ν =

√
ωc +

q2A2
0

m − ω̃c
2ω̃c

, (1.12)

C = −~ωc − ~ω̃c
2

. (1.13)

Using the relation

a+ a† = (µ+ ν)(c+ c†) =

√
ωc
ω̃c

(c+ c†), (1.14)

which follows from (1.2), the interaction part of the Hamiltonian can also be expressed in

terms of c, c† as

Hint = −qpA0

m

√
ωc
ω̃c

(c+ c†). (1.15)

The entire Hamiltonian then reads

HC = ~ω̃cc†c+
p2

2m
+ V (x)− qpA0

m

√
ωc
ω̃c

(c+ c†)− ~ωc − ~ω̃c
2

. (1.16)

In the following, when demonstrating the results of our analysis by means of concrete

atomic potentials, we are going to consider two di�erent cases: a square-well potential of

19



1.1. THE QRM IN THE COULOMB GAUGE

rather low anharmonicity and a highly anharmonic double-well potential. Here we have

de�ned the anharmonicity, or non-linearity, of a potential as the ratio

∆nl =
ω2 − ω0

ω1 − ω0
=
ω20

ω10
, (1.17)

where ~ωn is the energy of the n-th energy level. High anharmonicity as per our de�nition

is therefore equivalent to the existence of an energetically well isolated qubit-subspace,

consisting of ground state and �rst excited state of the atomic system.

As mentioned in the introduction we want to derive approximate light-matter Hamilto-

nians in di�erent gauges and investigate the validity of the resulting models. The minimal

coupling Hamiltonian (1.1), which we have written down at the beginning of this section,

is in the so-called Coulomb gauge. The next step on our way to an e�ective Hamiltonian

is to perform a two-level approximation (TLA). At this point we would expect the approx-

imation to yield reasonable results for potentials with high anharmonicity due to energetic

suppression of higher lying states. The procedure of performing a TLA goes as follows: cal-

culate both eigenspectrum and eigenstates of the dipole Hamiltonian Hd(x), write operators

acting non-trivially in the dipole-space in the dipole eigenbasis via O =
∑

ij Oij |φi〉 〈φj |
where Oij = 〈φi|O|φj〉 and then truncate the Hilbert space such that only the ground state

and the �rst excited state remain. We can then write HC as

HC =
~ω01

2
σz −

~gC
2
σy(c+ c†) + ~ω̃c†c− ~ωc − ~ω̃c

2
(1.18)

= ~ω01σz + ~gCσx(c+ c†) + ~ω̃c†c− ~ωc − ~ω̃c
2

, (1.19)

where the σi are Pauli matrices and gC = 2qA0|p01|
~m

√
ωc
ω̃c

=
√

2
~mω̃cD|p01|; in the last step we

have performed a rotation in spin space to receive the quantum Rabi model in its common

form. In the next section we are going to investigate whether the parameters derived in

this section allow for the QRM to enter the ultrastrong coupling regime.

1.1.1 No-go theorem

While in order for a superradiant phase transition to take place multiple dipoles would be

required, a qualitative change of the ground state can also be observed in the QRM [22],

when the dimensionless coupling parameter ζC takes on values larger than one, i.e. when

ζC =
g2C

ω̃cω10
> 1. As the coupling strength approaches gc an exponential decrease of the
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CHAPTER 1. BREAKDOWN OF GAUGE INVARIANCE IN

ULTRASTRONG-COUPLING CAVITY QED

energy gap between ground state and �rst excited state sets in, leading to a near-degenerate

ground-state manifold.

To check whether this condition can be ful�lled in case of the Coulomb gauge QRM

we are going to derive a bound for ζC . To this end we will need the Thomas-Reiche-Kuhn

(TRK) sum rule, which can be derived as follows: consider the commutator [x, [x,H(x)]],

where H(x) is is a Hamiltonian of the general form H(x) = p2

2m + V (x). Making use of

[x, p] = i~ and hence [x,H(x)] = i~p
m allows us to write the commutator as

[x, [x,H]] = x(xH −Hx)− (xH −Hx)x =

[
x,
i~p
m

]
= −~2

m
. (1.20)

Calculating the ground state expectation value of this expression delivers

〈φ0|[x, [x,H]]|φ0〉 = 2
∑
n

(〈φ0|x|φn〉 〈φn|x|φ0〉 ~ω0 − 〈φ0|x|φn〉 〈φn|x|φ0〉 ~ωn) (1.21)

= 2
∑
n

~(ω0 − ωn)| 〈φn|x|φ0〉 |2 = −~2

m
. (1.22)

Equation (1.22) is called the TRK sum rule. Using ωn > ω0 and | 〈φn|x|φ0〉 |2 > 0 we can

derive the following inequality for the absolute value of the x01 matrix element:

|x01|2 <
~

2mω10
. (1.23)

Using the relation pij = imxij(ωj − ωi) between position and momentum matrix elements

we see that the bound for the x matrix element also implies a bound for the p matrix

element. Using this bound we can show that

ζC =
g2
C

ω̃cω10
=

2ωc|p01|2D2

~mω̃2
cω10

=
D2

ω2
c +D2

f ≤ 1, (1.24)

where f = 2mω10|x01|2
~ is the so-called oscillator strength. In general, the oscillator strength

characterizes how strongly a transition between two states of a quantum system couples to

the electromagnetic �eld. The TRK sum rule can be used to show that f ≤ 1 and since
D2

ω2
c+D2 < 1 inequality (1.24) immediately follows. When dealing with arti�cial atoms it is

important to keep in mind that a commutation relation of the form [x, p] = i~ is required

for this argument to work.
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1.2. THE QRM IN THE ELECTRIC DIPOLE GAUGE

Thus we have shown that a transition to the USC regime cannot take place in the

Coulomb gauge QRM. Essentially, the renormalization of the cavity frequency due to the

A2-term suppresses the transition. This result is known as the no-go theorem.

1.2 The QRM in the electric dipole gauge

Let us now re-derive the QRM in a di�erent gauge, the so-called electric dipole gauge.

Using the unitary transformation T = e−
i
~xA0(a†+a) under which p → p + qA and a†a →

a†a+ix′(a†−a)+x′2, where x′ = qA0

~ x, we can transform the minimal-coupling Hamiltonian

via HD = THCT
† and receive the corresponding Hamiltonian in the dipole gauge:

HD =
p2

2m
+ V (x) + ~ωcx′2 + i~ωcx′(a† − a) + ~ωca†a. (1.25)

Essentially, the gauge transformation has e�ected two changes: the A2-term has been ex-

changed for an x2-term and the coupling between cavity and dipole is now mediated by

the position instead of the momentum operator. The x2-term can be treated in two ways:

either, we can add it to the potential to get Ṽ (x) = V (x) +~ωx′2 or we can leave it outside

(after the TLA this term would be ∝ σ2
x and therefore constant). In the following we are

going to include it in the potential since, intuitively, on might expect that this will lead to

more accurate results than e�ectively neglecting it. The modi�ed potential results in di�er-

ent eigenstates and eigenvalues which we will denote as |ϕ̃〉. Following the same procedure

as previously in the Coulomb picture we can again perform a 2-state approximation and

arrive at

HD = ~
ω̃01

2
σz + i~

gD
2
σx(a† − a) + ~ωca†a (1.26)

= ~
ω̃01

2
σz + ~

gD
2
σx(a† + a) + ~ωca†a (1.27)

with gD = 2ωqA0|x̃01|
~ ; in the last step we have rotated our photon operators as a → ia.

Hence we receive again the QRM Hamiltonian, albeit with di�erent parameters. In the next

section we are going to �nd out whether these di�erent parameters also lead to qualitatively

di�erent predictions.
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Figure 1.2: The dimensionless coupling parameters ζC and ζD of the Coulomb and the
dipole picture respectively are plotted as a function of the coupling strength g0, as de�ned in
equation (1.29). In case of (a) a square well potential and (b) a double well potential with
β = 2.4 have been assumed. See the de�nition in Hamiltonian (1.30). While ζC remains
below one for both potentials, consistent with the no-go theorem, ζD can exceed this threshold
in case of the double-well potential, hence the quantum Rabi model enters the USC.

1.2.1 Counter no-go theorem

Analogous to the derivation of the bound for the dimensionless coupling parameter in the

Coulomb picture we can also derive a bound in the dipole picture and �nd

ζD =
g2
D

ωcω̃01
=

4ωqA0|x̃01|
~ω̃01

=
D2

ω̃2
01

f̃ ≤ D2

ω̃2
01

. (1.28)

Like before, we have used the TRK sum rule to show that the oscillator strength f̃ =
2mω̃01|x̃10|2

~ ≤ 1. This time, however, there is no general constraint for the �rst factor D2

ω̃2
01

and the USC regime can in principle be reached. The quantities ω̃01 and D required to

determine its existence can be derived from the modi�ed atomic potential Ṽ (x) and by

taking into account the remaining parameters of the QRM.

1.3 Validity of the two-level approximation

Having derived contradictory results for the two di�erent gauges in the previous sections

we would now like to investigate in which gauge the QRM makes accurate predictions and

up to what coupling strengths the two-state approximation holds. To this end we simulate

the QRM for the case of a resonant oscillator and qubit, i.e. where ωc = ω10, and compare
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1.3. VALIDITY OF THE TWO-LEVEL APPROXIMATION

the results to those received by simulating the full minimal coupling Hamiltonian (where we

take into account all dipole states). As mentioned previously, we are going to do this for two

di�erent dipole potentials, the only slightly anharmonic in�nite square-well potential and

a highly anharmonic double-well potential. We will plot our �ndings against the coupling

strength
g0

ωc
=
gD
ωc

x01

x̃01
, (1.29)

which basically is the coupling strength in the dipole picture but with the in�uence of the

x2-term on the x01 matrix-element factored out.

Concerning the possibility or impossibility of USC, we now take a look at Fig. 1.2

where ζC and ζD are plotted for both potentials. As predicted, in the Coulomb-picture

a transition to the USC regime occurs for neither of the potentials, in the dipole gauge,

however, the coupling parameter crosses the threshold of one indicating the occurence of

USC over a certain range of coupling-strengths. It remains to be shown which of the two

is correct.

1.3.1 Double-well potential

Our double-well potential is of the form

V (x) = −µ
2
x2 +

λ

4
x4 = Ed

(
−β

2
ξ2 +

ξ4

4

)
, (1.30)

where Ed = ~2/(mx2
0), ξ = x/x0, x0 = 6

√
~2/(mλ) and β = µx2

0/Ed. Now, the shape of

the double well can be controlled by tuning β; a value of β = 0 would mean a quartic

potential, increasing it leads to a double well with increasing depth and hence increasing

non-linearity.

In Fig. 1.3 results for a double-well with β = 3.8 are plotted. For this value of β the

potential has a very high non-linearity of ∆nl > 100. In sub�gure 1.3 (a) the spectrum of

the full model as well as those of the corresponding QRM Hamiltonians in the Coulomb

and dipole picture are depicted. Whereas the dipole-QRM shows excellent agreement with

the exact model, even deep into the ultrastrong coupling regime, the approximation in the

Coulomb picture breaks down rather early at coupling strengths g0 & 0.1. Sub�gures (b)

and (c) clarify the origins of this discrepancy. In these plots the magnitude of the matrix

elements of both the position and momentum operator are depicted. The position operator

exhibits a well isolated qubit-subspace with only weak couplings to higher lying states. For
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Figure 1.3: Double-well potential (β = 3.8): (a) The spectrum of the full minimal coupling
Hamiltonian (solid blue line) and the spectra of the approximate two-state quantum Rabi
Hamiltonians in the Coulomb gauge (red dotted line) and in the dipole gauge (green dashed
line) are depicted for coupling strengths up to the USC, as well as a close-up of the weak
coupling regime. It is immediately obvious that the approximation in the Coulomb picture
is totally wrong for coupling strengths g & 0.1. The QRM in the dipole picture, on the other
hand, shows excellent agreement up to coupling strengths deep in the ultrastrong coupling
regime. (b) Matrix elements of the position operator: the qubit-subspace is well isolated
from the remaining Hilbert space in terms of matrix transition elements; apart from the
high anharmonicity of the potential this is the main reason for the validity of the 2-state
approximation in the dipole gauge. (c) Matrix elements of the momentum operator: the
qubit subspace is not well isolated, on the contrary, coupling to higher states is stronger
than the coupling between the qubit-states. Hence transitions to higher states will often
occur, invalidating the 2-state approximation. Values of the matrix elements have been
normalized to the largest one still visible in each plot.
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Figure 1.4: Square-well potential: (a) The spectrum of the full minimal coupling Hamilto-
nian (solid blue line) and the spectra of the approximate two-state quantum Rabi Hamilto-
nians in the Coulomb gauge (red dotted line) and in the dipole gauge (green dashed line)
are depicted for coupling strengths up to the USC, as well as a close-up of the weak coupling
regime. While the dipole-QRM still produces better results, the 2-state approximation breaks
down in the USC (or earlier in case of the Coulomb picture) in both Coulomb and dipole
gauge. Note that for this less non-linear potential the Coulomb-gauge actually works bet-
ter for weak coupling strengths than before in case of the double-well. (b) Matrix elements
of the position operator: the qubit-subspace is less isolated than before, this fact together
with a low non-linearity leads to the early breakdown of the 2-state approximation at values
of g0

ωc
∼ 1 in case of the dipole picture. (c) Matrix elements of the momentum operator:

the qubit-subspace is still not isolated. Matrix-elements of both position- and momentum-
operator now resemble those of the harmonic oscillator. Values of the matrix elements have
been normalized to the largest one still visible in each plot.

the momentum operator, however, there exists no such subspace, in fact the qubit states

are coupled more strongly to higher lying states than to each other. As the spectrum

demonstrates, even in case of a highly non-linear potential the energy gap does not su�ce

to con�ne excitations to the qubit-subspace.

These results clearly demonstrate that the dipole gauge is the correct gauge to perform

the two-level approximation in.

1.3.2 Square-well potential

Next, we would like to investigate an in�nite square well potential which corresponds to a

potential V (x) = 0 for |x| < L/2 and V (x) =∞ everywhere else. The energy levels of the

in�nite box are given by En = n2π2~2
2mL2 and we �nd a non-linearity of ∆nl = 8

3 , irrespective of
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the width, which is considerably less than in the previous case of the double-well potential.

Fig. 1.4 depicts the resulting energy spectra: in sub�gure (a) the spectrum is depicted

and this time, while the dipole gauge is still the better choice with good agreement up to
g0
ωc
≈ 0.3, the di�erences between Coulomb and dipole picture in the 2-state approximation

are far less pronounced. Interestingly, for small coupling strengths, the Coulomb gauge

QRM actually delivers better results than previously for the more non-linear potential.

Sub�gures (b) and (c) show again the matrix elements of position and momentum operator.

Note, that the qubit-subspace in the dipole picture is now signi�cantly less isolated than

before; in fact, the matrix elements now closely resemble those of the harmonic oscillator.

This di�erent structure of the Hilbert space aswell as the small energy gap are the main

reason why the two-state approximation in the dipole-QRM doesn't work so well anymore

in case of the square-well potential.

1.4 Many-dipole cavity QED

Having so far considered a setup with only one dipole we are now going to extend our

discussion to the many-dipole case, i.e. the limit N →∞, q → 0, N
√
q = const, where we

have N dipoles in a cavity. In this limit the derivation of analytic results is possible which,

while interesting in their own right, are useful as a crosscheck for simulations of systems

with large but �nite N .

We start again with the minimal coupling Hamiltonian in the Coulomb gauge

HC =
N∑
i=1

[
(pi − qA)2

2m
+ V (xi)

]
+ ~ωca†a, (1.31)

or, utilizing the gauge transformation U = exp (−i qA~
∑

i xi(a+ a†)), the equivalent Hamil-

tonian in the dipole gauge

HD =
∑
i

[
p2
i

2m
+ Ṽ (xi)

]
+
mD2

2

∑
i 6=j

xixj + ~ωca†a+ iωcqA0(a† − a)
∑
i

xi. (1.32)

The most notable di�erence to the single-dipole case is the additional all-to-all coupling

term that is now present in the dipole gauge. Note however, that this term does not

correspond to any actual direct interactions between the dipoles, which we have not taken

into account in our derivation, but is merely a result of the choice of gauge. Taking the
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same steps as in the single dipole case to make a two-level approximation for each dipole

leads to the Dicke model (DM) in case of the Coulomb gauge

HDM = ~ω̃cc†c+ ~ω10Sz + ~gC(c+ c†)Sx −
~ωc − ~ω̃c

2
, (1.33)

where ω̃c = ω̃c(N) =
√
ω2
c +ND2 now depends on the number of dipoles, or the extended

Dicke model (EDM) in case of the dipole gauge

HEDM = ~ωca†a+ ~ω̃01Sz + ~gDSx(a† + a) +
g2
D

ω
S2
x. (1.34)

In the above equations the Sj = 1
2

∑
i σ

i
j denote collective spin matrices. The additional

S2
x term in the EDM arises due to the aforementioned all-to-all coupling term and is also

referred to as the P 2-term [23], in reference to the polarization operator. Making use of the

Holstein-Primako� approximation (see section 4.1 ) we can transform these Hamiltonians

to exactly diagonalizable bilinear bosonic Hamiltonians ( see section 4.2 ) and calculate the

eigenmodes of the collective system, so-called polariton frequencies; in the Coulomb picture

we obtain

ω2
C± =

1

2

[
ω2

10 + ω̃2
c ±

√
(ω̃2
c − ω2

10)2 + 4Ng2
C ω̃cω10

]
, (1.35)

whereas in the dipole picture the frequencies are

ω2
D± =

1

2

[
Ω2

10 + ω2
c ±

√(
Ω2

10 − ω2
c

)2
+ 4Ng2

Dω̃10ωc

]
, (1.36)

with Ω10 =
√
ω̃10(ω̃10 +Ng2

D/ωc).

Apart from the immediate question as to which model yields the correct polariton

frequencies we would also like to resolve the existence of a superradiant phase transition.

A phase transition will occur when one of the polariton modes becomes unstable, i.e. when

the lower frequency hits zero. Moving on from this point to higher coupling strengths would

lead to imaginary frequencies which is a clear indication of the inadequacy of the current

description and hints at a new phase with a di�erent ground state con�guration. In the
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two gauges the lower frequency hits zero when

Ng2
C =ω̃c(N)ω10, (1.37)

Ng2
D =Ω2

10

ωc
ω̃10

. (1.38)

With an argumentation analogous to the one we used to derive bounds for the dimensionless

coupling parameters ζC and ζD it can be shown that

Ng2
C

ω̃c(N)ω10
≤ ND2

ω2
c +ND2

< 1, (1.39)

Ng2
D

Ω2
10(ωc/ω̃10)

≤ ND2

ω̃2
10 +ND2

< 1. (1.40)

However, values larger than 1 would be required for the lower polariton mode to become un-

stable. Hence the superradiant phase transition takes place in neither the Coulomb picture

nor the dipole picture. Or does it? Taking into account direct dipole-dipole interactions

will lead to an additional term in both Hamiltonians,
g2D
ωc
εS2

x, and, as is shown in [8], a

suitable geometry can lead to values of ε smaller than zero for which a superradiant phase

transition does occur in the dipole picture.

This still leaves the question which gauge is correct in the many-dipole case; of course,

having done the analysis in the single-dipole case, we would expect the electric dipole gauge

to be correct also in the case of many dipoles. There is, however, a way to check agreement

explicitly in the case of N → ∞, which is detailed in the full paper [20]. Here we will

just give the overall idea: when a very large number of dipoles is coupled to the same

oscillator each dipole has the same chance to absorb a given photon and the probability of

the same dipole absorbing two photons goes to zero. This means that transitions between

higher-lying dipole states can be neglected. Hence we can replace the dipoles with a set

of harmonic oscillators, one for each excited state. The excitation number of each of these

oscillators then corresponds to the number of dipoles in the respective state. This procedure

is also known as N -level Holstein-Primako� approximation [24, 25] and it leads again to a

bilinear bosonic Hamiltonian which can be diagonalized. Unsurprisingly, the dipole gauge

turns out to work better also in the many-dipole case.
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Figure 1.5: Comparison of polariton eigenmodes of the full model (blue line), the Dicke
model in the Coulomb gauge (red line) and the extended Dicke model in the dipole gauge
(green line) for (a) the square-well and (b) the double-well potential. In both cases the
EDM provides better results although in case of the double-well the di�erences between DM
and EDM are much more pronounced. (c) Illustration of possible transitions in case of a
large array of dipoles; since it is very unlikely for the same dipole to absorb two photons
transitions between higher lying levels can be neglected and a multi-level Holstein-Primako�
approximation can be made, allowing for the derviation of the polariton eigenmodes in the
full model.
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Chapter 2

Circuit-QED and the few dipole case

After having investigated the single-dipole case and the many-dipole case, both of which

allow for the derivation of some analytic results, we would now like to turn our attention

to the few-dipole case, which ultimately is the most relevant situation when it comes to

experimental realizations and consequently tests of the theory. The more qubits one wants

to control the more di�cult a given setup will become to realize, hence the implementation of

the many-qubit case will very likely be di�cult. Although it would pose no bigger challenge

to create a setup with a single qubit than to create one with a few qubits, the few-qubit

case would allow for the observation of richer phenomenology; in particular it might be

possible to observe the superradiant phase, given suitable inter-dipole interactions. While

many physical systems exist which would in principle allow for an implementation of the

quantum-optical models under consideration, superconducting circuits probably constitute

the experimental platform where they can most readily be implemented with coupling

strengths up to the USC regime. Whereas the considerations so far have been rather

abstract, especially with the somewhat idealized double-well potential, in this section we are

going to use realistic parameters for the constituents of our circuit. Predictions concerning

the range of applicability of the two-state models will therefore be more meaningful.

2.0.1 Circuit-QED Hamiltonians

We are going to examine the superconducting circuit depicted in Fig.2.1 which comprises

an LC-circuit and two �ux qubits arranged in series. The circuit parameters (see below

for de�nitions of the energies) are ELq/h = 7 GHz, ECq/h = 12 GHz and EJ/h = 50

GHz while ECr and ELr are chosen according to coupling strength in order to satisfy the
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Figure 2.1: Circuit QED with �ux qubits. (a) Sketch of a multi-qubit circuit QED system,
where two �ux qubits are coupled to a lumped-element LC resonator with inductance Lr
and capacitance Cr. In the simplest case, each �ux qubit is realized by an rf-SQUID circuit
and can be modeled as an e�ective particle with a dimensionless coordinate φ = ∆Φ/Φ0

moving in an e�ective potential V (φ). (b) Typical shape of the potential V (φ) for a generic
�ux-qubit where the two lowest tunnel-coupled states form an isolated two-level subspace.
(c) Shape of the potential V (φ) and the lowest eigenstates |ϕn〉 for a speci�c �ux qubit with
parameters ELq/h = 7 GHz, ECq/h = 12 GHz and EJ/h = 50 GHz.
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resonance-condition ωc = ω10. In the �gure simple rf-SQUID circuits serve as our �ux

qubits, note, however, that this kind of circuit can also be used as an approximate model

of e.g. the more elaborate Fluxonium qubit [26]. This is by no means the only setup that

can (as we will show) be modeled by the (extended) Dicke model, see e.g. [1] for a circuit

with charge instead of �ux qubits.

A standard procedure on how to quantize superconducting circuits is given by Vool and

Devoret in [27, 28] and we are going to illustrate the method for the example of our circuit:

�rst, identify all nodes of the circuit, then introduce a set of generalized �ux variables,

so-called node �uxes, as

Φη(t) =

∫ t

−∞
ds Vη(s), η ∈ {r, 1, 2}, (2.1)

where Vη is the voltage at the respective node. Remembering the well known classical

equations, contributions to the overall energy of the system can be written in terms of

the node �uxes: in case of capacitors the contribution is CU2/2 → C∆Φ̇2/2, in case of

inductances we get φ2/2L→ ∆Φ2/2L, or, for the Josephson junction, which can be thought

of as a nonlinear inductance, the relation is −EJ cos
(

∆Φi+Φext
Φ0

)
(where Φ0 = ~/2e is the

reduced �ux quantum). The kinetic, or capacitive, energy of the system then becomes

T =
CrΦ̇

2
r

2
+

N∑
i=1

Cq(∆Φ̇i)
2

2
, (2.2)

whereas the potential, or inductive, energy is given by

Vtot =
(Φr − Φ2)2

2Lr
+

N∑
i=1

[
(∆Φi)

2

2Lq
− EJ cos

(
∆Φi + Φext

Φ0

)]
. (2.3)

The ∆Φ denote phase jumps across the corresponding circuit element. From this we can

easily write down the Lagrangian of the system, L = T − Vtot, and calculate the corre-

sponding canonical momenta, to be interpreted as charges, via Qr = ∂L/∂Φ̇r = CrΦ̇r, and

Qi = ∂L/∂∆Φ̇i = Cq∆Φ̇i. Now, following the common procedure of canonical quantiza-

tion and after introducing new, dimensionless variables φr = Φr/Φ0, φi = ∆Φi/Φ0 and

Qη = Qη/(2e), we promote them to quantum mechanical operators by imposing commu-

tation relations [φη,Qη′ ] = iδη,η′ . Switching from Lagrangian to Hamiltonian picture then
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yields the circuit Hamiltonian

HΦ = 4ECrQ2
r +

ELr
2

(
φr −

N∑
i=1

φi

)2

+
N∑
i=1

[
4ECqQ2

i + EJ cos (φi) +
ELq

2
φ2
i

]
, (2.4)

where we have de�ned the inductive energies ELη = Φ2
0/Lη and, following the usual

convention, the capacitive energies ECη = e2/(2Cη). Introducing creation and annihi-

lation operators to simplify the description of the LC-part of the circuit we can write

φr = 4
√

2ECr/ELr(a
† + a) and Qr = i 4

√
ELr/32ECr(a

† − a). Identifying φi and Qi with
the coordinate and momentum of an e�ective particle moving in a potential V (φi) =

EJ cos (φi) + ELqφ
2
i /2 we see that the circuit elements constituting our �ux qubits can

indeed be seen as arti�cial atoms and we recognize that Hamiltonian HΦ is identical to

Hamiltonian HD in the dipole gauge. After making a two-level approximation we obtain

the extended Dicke model

HΦ
EDM = ~ωca†a+ ~ω̃01Sz + ~gDSx(a† + a) +

g2
D

ωc
S2
x, (2.5)

with ωc =
√

8ECrELr/~ and gD = ωc

(
ELr
2ECr

) 1
4 |〈ϕ̃0|φ|ϕ̃1〉|.

To get the circuit-QED equivalent of the Coulomb picture we can utilize the unitary

transformation U = e−iQr
∑
i φi to calculate HQ = UHΦU

† and obtain

HQ = 4ECrQ2
r +

ELr
2
φ2
r +

∑
i

[
4ECq (Qi −Qr)2 + V (φi)

]
, (2.6)

or, after performing the TLA, the Dicke model

HQ
DM = ~ω̃cc†c+ ~ω10Sz + ~gC(c+ c†)Sx −

~ωc − ~ω̃c
2

, (2.7)

where ω̃c =
√

8(ECr +NECq)ELr/~ and gC =
8ECq

~

√
ωc
ω̃c

(
ELr
2ECr

) 1
4 |〈ϕ0|Q|ϕ1〉|. Hence we

have shown that the circuit-QED setup presented in this section is formally equivalent to

the cavity-QED setup considered before.
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Figure 2.2: (a) Energy spectrum of a superconducting circuit containting two �ux-qubits
(see Fig. 2.1 ) where the blue line corresponds to the full Hamiltonian, the green one
to the Φ-interaction/dipole EDM and the red line to the Q-interaction/Coulomb DM. We
observe that in the dipole gauge we obtain very good results up to coupling strengts g0/ωc ≈
3, especially for the lower energy levels. (b) The single-qubit entanglement entropy and
expectation value of the photon number in the ground state are depicted; this shows that
characteristic USC e�ects like decoupling between cavity and qubits or the transition to an
entangled subradiant ground state are also captured by the two-state model. (c) Alternative
treatment of the x2 (Φ2) term by simply omitting it instead of including it in the atomic
Hamiltonian. Qualitative features of the spectrum for large g0 are captured better that way.

2.0.2 Comparison

Finally, we can again compare the predictions of the 2-state Hamiltonians to those of the

full model; since, this time, the parameters of our approximate models are derived from a

rather realistic setup, more weight can be given to the apparent range of validity of the

TLA.

As can be seen from the spectrum depicted in Fig. 2.2 (a) results are very similar to

those received in section 1.3 for the highly anharmonic double-well: the Coulomb gauge fails

early at coupling strengths of g0/ωc ≈ 0.1, whereas the dipole gauge provides much better

results and remains valid up to g0/ωc ≈ 3, where deviations from the full model become

more pronounced. The smaller range of agreement in the dipole picture follows from the fact

that the double-well potential at hand has an anharmonicity of just ∆nl ≈ 15, much lower

than that of the double-well considered previously. Fig. 2.2 (b) shows that magnitudes like

the single-qubit entanglement entropy and the photon number in the ground state also show

the behaviour typical of USC: the single-qubit entanglement entropy approaches the value of

two-maximally entangled qubits demonstrating decoupling between cavity and the collective
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qubit-subsystem whereas the expectation value of the photon number reapproaches zero

after an inital ascent, indicating the transition to a subradiant ground state [8]. Finally,

in Fig. 2.2 (c) we investigate how to best deal with the x2 term which we have, so far,

included in the atomic potential; if we keep it outside where (in the TLA) the term becomes

constant (since σ2
x = 1) we observe that, while there is no signi�cant change in the range of

agreement, the qualitative features of the spectrum like the emergence of 2N -fold degenerate

manifolds are captured much better that way.
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Conclusions

We have demonstrated the importance of carefully choosing the correct gauge when de-

riving e�ective light-matter Hamiltonians. We have compared the results obtained in the

Coulomb gauge and those obtained in the electric dipole gauge and shown that the dipole

gauge provides more accurate results. The main reason for the validity of the two-level ap-

proximation in the dipole gauge and its invalidity in the Coulomb gauge is to be found in the

di�erent matrix transition elements of the operators involved in the coupling. These results

also resolve the controversies about the Dicke model in form of the contradictory no-go-

and counter no-go-theorem. Finally, we have shown that the correct e�ective Hamiltonian

is suitable to describe a realistic superconducting-circuit setup in the USC regime.
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Part II

Thermodynamics of cavity QED
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Chapter 3

Phase transitions in the EDM

In this chapter we are going to review the various phase transitions that are known to occur

in the extended Dicke model for ε ∈ [−1, 1] and for coupling strengths g ∈ [0,∞). From now

on we will set ~ = 1; nevertheless, for the sake of clarity, we are still going to write down

the ~ explicitly in some expressions like e.g. the labels of plots or expressions containing

other physical constants. First, let us write down the Hamiltonian of the full EDM:

HEDM = ωca
†a+ ωqbSz + g(a† + a)Sx +

g2

ωc
(1 + ε)S2

x. (3.1)

Note, that unlike in the previous part, where we neglected direct dipole-dipole interactions,

we have now included these interactions in an approximate way, by replacing the real

interactions by a corresponding all-to-all coupling.

The groundstate of the extended Dicke model is known to exhibit three di�erent phases

in di�erent parameter regimes; see e.g. [8] for the ground state phase diagram. For weak

coupling strengths g the system is in the normal phase. The characteristics of this phase

can easily be seen by considering the EDM Hamiltonian in the limit g → 0:

lim
g→0

HEDM = ωca
†a+ ωqbSz. (3.2)

In order to minimize the ground state energy there cannot be any photons and all spins

must be aligned in negative z-direction, hence we �nd 〈Sz〉 = −Nqb/2.

As the coupling strength increases a transition to two other phases is possible: in case

of ε < 0 a second order phase transition to the superradiant phase occurs. In this phase
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the expectation values of the photonic annihilation operator a and the spin-x component

Sx exhibit non-zero values. In case of ε > 0 a cross-over to the so-called subradiant phase

takes place. The spins anti-align, leading to spin-expectation values 〈Sk〉 = 0 and cavity

excitations disappear from the ground state. In addition to these two phase transitions a

third one exists, namely a �rst-order transition between subradiant and superradiant phase.

In this section we are going to investigate how the sub- and superradiant phase transitions

change at �nite temperatures.

3.1 The canonical ensemble

First, we would like to clarify what exactly we mean when we are talking about the thermal

state of the system and how we calculate expectation values at �nite temperatures. We

assume that our system, which is described by the extended Dicke model, is in contact with

a much larger heat bath. Our system and the bath can exchange energy and since the bath

is much larger the system will equilibrate with the temperature of the bath. No particles

can be exchanged. Therefore, we can use the canonical ensemble to describe the thermal

properties of our system.

To calculate thermal expectation values we proceed by �rst calculating the partition

function of the system

ZK =
n∑
k=0

mεke
−βεk (3.3)

by adding up the Boltzmann factors of all energy levels where mεk is the degeneracy of a

given state and β = 1/kBT ; kB denotes the Boltzmann constant and n + 1 refers to the

number of di�erent states. In the DM and the EDM n becomes in�nite. In section 7.2 we

are going to detail how the EDM-Hamiltonian can be split up into smaller blocks and how

the degeneracy of the resulting eigenstates can be determined. Next, we form the density

matrix

ρth =
1

ZK

n∑
k=0

mεke
−βεk |ψεk〉 〈ψεk | , (3.4)

which we can utilize to calculate expectation values of operators

〈Ô〉 = Tr{ρthÔ} =
1

ZK

n∑
k=0

mεke
−βεk 〈ψεk |Ô|ψεk〉 . (3.5)

42



CHAPTER 3. PHASE TRANSITIONS IN THE EDM

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

5

10

15

20

25

30

35

40

45

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) (b) (c)

Figure 3.1: Superradiant phase transition (ε = −1, Nqb = 10): The thermal average
of the absolute value of the expectation values of (a) the annihilation operator and (b)
the x-component of the collective spin as well as (c) the expectation value of the U2-term
are depicted for temperatures kT between 0.01 and 10 and for coupling strengths ranging
from weak coupling to USC. The U2 values are normalized to their respective maximum
value at a given temperature. For low temperatures, the onset of the superradiant phase
transition, characterized by non-zero expectation values of the operators under consideration,
is clearly visible. As we move to higher temperatures we observe that the onset of the phase
transition is delayed to higher coupling strengths and that the transition itself is smeared over
a wider range of coupling strengths; in case of the U2-operator the transition becomes almost
unidenti�able. The red line indicates the critical temperature at which the superradiant
phase vanishes as predicted by mean �eld theory. Despite the rather crude nature of the
approximation as well as a qubit number of only Nqb = 10 the mean �eld approximation
provides very accurate results. The green line corresponds to the critical coupling strength
as predicted by the Holstein Primako� approximation; in contrast to MFT it is independent
of temperature.

Hence, given the eigenenergies and the eigenstates of the extended Dicke model, we can

calculate thermal properties.

3.2 Superradiant phase transition for ε < 0

First, we are going to take a look at the superradiant phase transition. In the ground

state it is most easily characterized by the non-vanishing expectation values of the a- and

Sx-operators. For �nite temperatures, however, things get a bit more tricky. For each state

with expectation values 〈a〉, 〈Sx〉 a state of (almost) equal energy but expectation values of

opposite sign exists; this means, that the thermal average of these expectation values will

always be zero. One way to circumvent this problem is to take a look a the thermal average
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3.2. SUPERRADIANT PHASE TRANSITION FOR ε < 0

over the absolute value of these expectation values, i.e. we calculate

〈|Ô|〉 :=
1

ZK

n∑
k=0

mεke
−βεk | 〈ψεk |Ô|ψεk〉 |. (3.6)

While these expectation values are not directly measurable, they provide a useful means

of visualizing the phase transition. In our numerical simulations we have added a small

symmetry-breaking bias �eld in order to be able to reliably address states with expectation

values of the same sign.

In �gure 3.1 (a) and (b) we have plotted the expectation values of these operators for

coupling strengths ranging from weak coupling to ultrastrong coupling and for a range of

temperatures corresponding to thermal energies from well below the cavity/qubit frequency

to well above. The onset of the superradiant phase transition is clearly identi�able in both

cases, although the Sx-expectation values provide a more precise understanding; while 〈a〉
is going to rise inde�nitely 〈Sx〉 will approach its maximum value Nqb/2, hence the phase

transition can be taken as completed once the expectation value is su�ciently close to the

maximal value. Hence, judging by the Sx-plot, we observe a very sharp transition at low

temperatures, whereas at high temperatures it takes higher couplings strengths for the SRT

to start and the transition itself is smeared out over a broader range of coupling strengths.

The red line, which is visible in the plots, depicts the critical coupling strength as

calculated by mean �eld theory. The green line corresponds to the prediction made by

Holstein Primako�, which remains constant for all temperatures; it is in agreement with

MFT for low temperatures. The MFT prediction captures the overall characteristics very

well: the critical coupling strength doesn't change much at low temperatures but as soon as

the thermal energy becomes comparable to the frequencies involved in the EDM it bends to

the right, in agreement with the expectation values. For low temperatures, MFT predicts

a smaller value for gc than the expectation values would imply, for higher temperatures

the di�erence becomes less and in case of the Sx-expectation value the line appears to be

located very nicely in the middle of the transition.

Furthermore, we have plotted a third quantity in �gure 3.1 (c), the �uctuations of the

operator

U =
1√
2

(
a+ a† +

2g

ωc
Sx

)
. (3.7)

Depending on which setup the EDM refers to, this operator can have di�erent interpre-
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CHAPTER 3. PHASE TRANSITIONS IN THE EDM

tations. In case of the circuit in �gure 2.1 it is proportional to the current through the

upper part of the circuit whereas in the setup considered in [8], where dipoles are inside

of a capacitor, it refers to the voltage across the capacitor. At a given temperature, val-

ues are normalized to the respective maximum. At low temperatures, the peak is clearly

visible and starts to bend towards higher coupling strengths for higher temperatures. As

we approach higher temperatures, the peak becomes less and less pronounced, due to the

fact that �uctuations induced by the coupling between cavity and qubits now constitute

only a minor contribution to the U2-expectation value and thus the overall energy of the

system. It is remarkable that the MFT prediction of the critical coupling strength very

closely follows the peak of this observable, for both low and high temperatures.

3.3 Subradiant phase for ε > 0

For values ε > 0 a crossover to the subradiant state takes place, which is best charac-

terized by the number of photons present in the system. Figure 3.2 depicts the photon

number expectation value, in the same range of coupling strengths and temperatures as

before; the expectation values are again normalized to their respective maximum at a given

temperature. We can clearly observe an initial increase of the photon number followed by

a subsequent decrease to the inital value, which is zero in case of zero temperature. For

higher temperatures we observe a 'background'-photon number due to the non-zero thermal

energy but on top of this the characteristics of the subradiant phase transition can still be

observed. Like before in the SRT, as we approach higher temperatures, the phase transition

moves towards higher coupling strengths. This time, however, a broadening of the phase

transition cannot be observed, at least not from the parameters under consideration.
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3.3. SUBRADIANT PHASE FOR ε > 0

Figure 3.2: Subradiant phase (ε = 1, Nqb = 10): A decline of the mean photon number
at large coupling strengths, following an inital rise, is characteristic of the crossover to a
subradiant phase which takes place for ε > 0. Here we have depicted this expectation value
for temperatures between 0.01 and 10, where, at a given temperature, we have normalized
the values to their respective maximum in order to highlight the main features of the plot
(otherwise, high values at higher temperatures would make features in the low-temperature
regime unrecognizable). At low temperatures, the emergence of the subradiant phase is
clearly visible, from the maximum of the photon number 〈Na〉. As the temperature increases
we �nd a certain amount of 'background-photons' that are always there, irrespective of
coupling; the phase transition still exists but it starts at higher coupling strengths.
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Chapter 4

The EDM in the Holstein - Primako�

approximation

Let us, for the sake of clarity, write down again the Hamiltonian of the full extended Dicke

model:

HEDM = ωca
†a+ ωqbSz + g(a† + a)Sx +

g2

ωc
(1 + ε)S2

x. (4.1)

In this section we are going to bosonize the spin part of the extended Dicke model by em-

ploying the well-known Holstein-Primako� approximation; this procedure yields a bilinear

bosonic Hamiltonian which is exactly diagonalizable (see section 4.2) and therefore allows

for the derivation of analytic results. Emary and Brandes have used the HP approximation

in their study of 'Chaos and the Quantum Phase Transition in the Dicke Model' [7] and

here we will extend their derivation of the Dicke model Holstein-Primako� Hamiltonian to

the extended Dicke model. Furthermore, we are going to calculate expectation values of

the HP model and compare them to those of the full model to assess the validity of the

approximation.

4.1 The Holstein - Primako� transformation

Holstein and Primako� �rst introduced the eponymous transformation in their 1940 paper

'Field Dependence of the Intrinsic Domain Magnetiaztion of a Ferromagnet' [29]. It is a

method to express spin operators in terms of bosonic creation and annihilation operators.

The �rst hint on how such a transformation might look like is given by the action of spin
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4.1. THE HOLSTEIN - PRIMAKOFF TRANSFORMATION

operators on the corresponding quantum states:

S2 |S,m〉 = S(S + 1) |S,m〉 , (4.2)

Sz |S,m〉 = m |S,m〉 , (4.3)

S± |S,m〉 =
√
S(S + 1)−m(m± 1) |S,m± 1〉 . (4.4)

These relations, as well as the commutation relations

[Si, Sj ] = iεijkSk (4.5)

and

[S+, S−] = 2Sz, (4.6)

have to be reproduced by the new operators. Taking the state |S,−S〉 := |0〉 as the bosonic
vacuum state, such that |S,−S + n〉 = 1√

n!
(a†)n |0〉, we can write the spin operators as

S+ = a†
√

2S

√
1− a†a

2S
, (4.7)

S− =
√

2S

√
1− a†a

2S
a, (4.8)

Sz = (a†a− S). (4.9)

Inserting these operators into the above relations and making use of the bosonic commu-

tation relation [a, a†] = 1 as well as the action of the number operator a†a |n〉 = n |n〉 the
correctness of this ansatz can readily be shown.

The main reason for the usefulness of this transformation lies in the fact that when

the bosonic excitation number is small when compared to the total spin, i.e. when the

magnetic quantum number is near its minimum or 〈a†a〉 � S, the square root
√

1− a†a
2S can

conveniently be approximated as 1. Therefore, in the Holstein-Primako� approximation,

the spin-operators can be written as
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CHAPTER 4. THE EDM IN THE HOLSTEIN - PRIMAKOFF APPROXIMATION

S+ ≈
√

2Sa†, (4.10)

S− ≈
√

2Sa, (4.11)

Sx ≈
√

2S

2
(a+ a†), (4.12)

Sy ≈ i
√

2S

2
(a− a†). (4.13)

These operators are much less unwieldy than the full spin operators and, when inserted

into the Hamiltonian of the extended Dicke model, lead to a bilinear bosonic Hamiltonian.

It is important to keep in mind that 〈a†a〉 � S must be ful�lled in order for this method

to work; this will be important when the EDM enters the superradiant phase and will force

us to shift our bosonic operators when performing the HP approximation.

4.2 On the diagonalization of a general bilinear bosonic Hamil-

tonian

Before turning our attention to the actual bosonization of the EDM Hamiltonian, let us

quickly review two di�erent methods of diagonalizing a bilinear bosonic Hamiltonian. Re-

sults derived in this section will be directly applicable to the HP Hamiltonians derived in

succeeding sections.

4.2.1 Method of Tsallis

First, we are going to brie�y summarize a method which was introduced by Tsallis in his

paper `Diagonalization methods for the general bilinear Hamiltonian of an assembly of

bosons' [30] and which is equivalent to the so-called equation of motion (EOM) approach

(see e.g. [31]). We start out with the general bilinear Hamiltonian of N bosonic modes

(with [bi, b
†
i ] = 1, . . . ) and, neglecting constant contributions, we can write
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4.2. ON THE DIAGONALIZATION OF A GENERAL BILINEAR BOSONIC

HAMILTONIAN

H =
N∑
i=1

N∑
j=1

2ωijb
†
ibj + νijb

†
ib
†
j + ν?ijbibj =

N∑
i=1

N∑
j=1

ωijb
†
ibj + ω?ijbib

†
j + νijb

†
ib
†
j + ν?ijbibj

(4.14)

= ~bH~bT
!

= ~BHD
~BT =

N∑
j=1

2ΩjB
†
jBj ,

where ~b = [b†1 . . . b
†
Nb1 . . . bN ] and

H =

[
ω ν

ν? ω?

]
, (4.15)

HD =

[
Ω 0N

0N Ω,

]
, (4.16)

where Ω contains the Ωj as diagonal elements. The goal is to �nd a transformation matrix

T that lets us switch between the two pictures; this transformation has to deliver both a

diagonal HD and keep the bosonic commutation relations intact. De�ning T via

~BT =T †~bT , (4.17)

~B =~bT, (4.18)

we can write

H = ~b(TT−1)H(J(T (JJ)T−1)J)~bT , (4.19)

where

J =

[
1N 0N

0N −1N

]
. (4.20)

Tsallis shows that the matrix T must have the properties

T †JTJ = 12N , (4.21)

T−1HJT = HDJ. (4.22)

The additional matrix J is necessary to account for the bosonic commutation relations.
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Hence T can be found by taking the following steps: �nd the matrix T0 that diagonalizes

HJ to ful�ll (4.22); then the columns of T0 (i.e. the eigenvectors) can be normalized

seperately to satisfy (4.21):

~T0
†
jJ ~T0j = Jjj . (4.23)

Attention must be paid to the ordering of the eigenvectors, i.e. j ∈ {1, . . . , N} correspond to
the new annihilation operators bj whereas j ∈ {n+1, . . . , 2N} correspond to the respective

creation operators b†j .

Although we will use a di�erent method to derive analytic results we have used this

approach to cross-check our results numerically. As we shall see, one advantage of the

diagonalization scheme discussed in the next section lies in the facts that new quantities,

the use of which greatly simpli�es the resulting formulas, naturally arise in the course of the

derivation. Furthermore, it will be possible to simply read energies o� an equation instead

of having to solve an eigenvalue problem.

4.2.2 Diagonalization in the position-momentum picture

While the above method already is general it can often be easier to switch to a position-

momentum picture via the harmonic oscillator relations

x =

√
1

2ω
(a† + a), (4.24)

p = i

√
ω

2
(a† − a). (4.25)

Inverting these relations we can �nd expressions for a† and a in terms of x and p. The

number operator a†a can then be expressed as

ωa†a =
1

2
(ω2x2 + p2 − ω) (4.26)

and inserting the relations into a bilinear bosonic Hamiltonian will lead to an expression of

the form

H =
∑
i

∑
j

aijxixj + bijpipj + cijxipj + const. (4.27)

Now, the idea is to rotate the coordinate system in a way such that terms with i 6= j and

cross-terms between position and momentum operators vanish. Of course this approach
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HAMILTONIAN

is not necessarily easier than the previous method but as we will see it works well for the

Hamiltonians that we are going to consider.

We will now demonstrate this method using the example of a Hamiltonian which has the

same overall form as the HP-Hamiltonians we are going to derive in the following sections.

We consider the Hamiltonian

H = ω0c
†c+ ω1d

†d+ (κ+ fε)(d
† + d)2 + h(c† + c)(d† + d) (4.28)

which can be rewritten in the position-momentum picture as

H =
1

2

(
ω2

0x
2 + p2

x + ω2
1y

2 + p2
y + 4ω1(κ+ fε)y

2 + 4h
√
ω0ω1xy − ω0 − ω1

)
, (4.29)

where we have introduced the new position and momentum operators

x =
1

2ε+
(c† + c), px = i

ε+
2

(c† − c), (4.30)

y =
1

2ε−
(d† + d), py = i

ε−
2

(d† − d).

Next, we rotate our coordinate system by an angle γ such that the old coordinates x and

y can be expressed in terms of the new coordinates X and Y as

x = X cos(γ) + Y sin(γ), px = PX cos(γ) + PY sin(γ), (4.31)

y = −X sin(γ) + Y cos(γ), py = −PX sin(γ) + PY cos(γ).

Any arbitrary 2D-rotation can be e�ected that way by choosing γ accordingly. The Hamil-

tonian in terms of the rotated coordinates becomes

H =
1

2

[
X2
(
ω2

0 cos2(γ) + ω2
1 sin2(γ) + 4ω1(κ+ fε) sin2(γ)− 2h

√
ω0ω1 sin(2γ)

)
+ P 2

X

(4.32)

+Y 2
(
ω2

0 sin2(γ) + ω2
1 cos2(γ) + 4ω1(κ+ fε) cos2(γ) + 2h

√
ω0ω1 sin(2γ)

)
+ P 2

Y

+XY
(
ω2

0 sin(2γ)− ω2
1 sin(2γ)− 4ω1(κ+ fε) sin 2γ + 4h

√
ω0ω1 cos(2γ)

)
− ω0 − ω1

]
.
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Requiring that the XY term vanish delivers an equation allowing us to determine γ:

tan(2γ) =
4h
√
ω0ω1

ω2
1 + 4ω1(κ+ fε)− ω2

0

. (4.33)

Comparing this Hamiltonian to the expression (4.26) we can read o� the new oscillator

frequencies and by using the relation derived for γ as well as some trigonometric identities,

the resulting expressions can be simpli�ed to

ε2± =
1

2

[
ω2

0 + ω2
1 + 4ω1(κ+ fε)±

√
(ω2

0 − ω2
1 − 4ω1(κ+ fε))2 + 16h2ω0ω1

]
. (4.34)

Switching again to creation and annihilation operators via

X =
1

2ε+
(c†+ + c+), PX = i

ε+
2

(c†+ − c+), (4.35)

Y =
1

2ε−
(c†− + c−), PY = i

ε−
2

(c†− − c−),

H can be written in terms of the bosonic operators corresponding to the eigenenergies

H = ε+c
†
+c+ + ε−c

†
−c− +

1

2
(ε+ + ε− − ω − ω1). (4.36)

Note, that by utilizing (4.30), (4.31) and (4.35) the coe�cients to express c, d in terms of

c+, c− and vice versa can easily be determined.

4.3 Normal phase

Having reviewed the underlying techniques we can now start with the bosonization of the

EDM. For weak coupling strengths the system is in the normal phase, where the spins are

all aligned in negative z-direction to result in the minimal magnetic quantum number and

where 〈a〉 and 〈Sx〉 are still 0. Hence the bosonization procedure is straightforward and we

can replace the spin operators in HEDM with the expressions derived in section 4.1:

Sx =

√
2S

2
(b† + b), (4.37)

Sz = (b†b− S). (4.38)
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Plugging these equations into HEDM yields

Hn
HP = ωqb(b

†b− S) + g′(b† + b)(a† + a) +
g′2

ωc
(1 + ε)(b+ b†)2 + ωca

†a, (4.39)

where g′ = g
√

2S
2 . Comparing Hn

HP to Hamiltonian (4.28), which we explicitly diagonalized

in section 4.2.2, we can identify the correspondences ω0 ↔ ωc, ω1 ↔ ωqb, h↔ g′, κ↔ g′2/ωc

and fεε↔ g′2/ωc. Therefore, we can rewrite Hn
HP as

Hn
HP = ω+c

†
+c+ + ω−c

†
−c− + C, (4.40)

with

C = −ωqbS −
ωqb − ω̃qb

2
+

1

2
(ω+ + ω− − ωc − ω̃qb), (4.41)

ω2
± =

1

2

[
ω2
c + Ω2 ±

√
(ω2
c − Ω2)2 + 16g2ωcωqb

]
, (4.42)

where Ω2 = ω2
qb +

4ωqbg
′2

ωc
(1 + ε). Hence we have found a way to approximately describe the

extended Dicke model in the normal phase in terms of two decoupled harmonic oscillators.

Being aware of the fact that in the EDM, depending on the value of ε, two di�erent phase

transitions are possible we are now going to investigate whether these phase transitions are

part of the approximate model as well. A way to identify a phase transition is to look at

the eigenmode ω− and determine whether a ground state-instability occurs, i.e. whether

a gc exists for which ω− becomes zero; this would imply unphysical imaginary frequencies

for coupling strengths g > gc and hence a breakdown of our model. The condition ω− = 0

leads to the equation

ω2
c + Ω2 =

√
(ω2
c − Ω2)2 + 16g2

cωcωqb (4.43)

and solving for gc we obtain

gc =

√
ωcωqb
−Nε

. (4.44)

Hence for values of ε < 0 a (real) gc can be found and it should be possible to the accurately

describe the superradiant phase transition in the Holstein Primako� approximation (of

course a di�erent HP-Hamiltonian has to be found for the superradiant phase, see next

section). In case of ε > 0, however, no real gc exists and the subradiant phase transition is

not reproduced. Whereas, in case of �nite temperatures, �uctuations of observables have
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to be considered in order to identify a phase transitions, the fact that ω− and hence gc do

not change in the HP-model implies that rising temperature will not change the coupling

strength at which the phase transition occurs.

4.4 Superradiant phase

We have seen that for coupling strengths g > gc the oscillator frequency ω− becomes

imaginary and hence Hamiltonian (4.39) no longer accurately describes the system at hand.

The main features of the superradiant phase in the extended Dicke model are non-zero

expectation values of the photonic creation and annihilation operators 〈a〉 =
√
α aswell

as of the spin operator Sx. In the Holstein-Primako� approximation this means that also

〈b〉 =
√
β 6= 0, 〈b†b〉 = β and hence

√
1− b†b

2S can no longer be approximated as 1. To

circumvent this problem we introduce displaced operators c and d via a → c +
√
α and

b→ d−
√
β. Written in terms of the new operators we can then expand the square root in

powers of S ( where k = 2S − β ∼ O(S) and assuming that α, β ∼ O(S), g ∼ O( 1√
S

), see

[7])

x :=

√
2S

2

√
1− b†b

2S
=

√
k

2

√
1− d†d−

√
β(d+ d†)

k
(4.45)

≈
√
k

2

(
1 +

√
β

2k
(d+ d†)− d†d

2k
− β

8k2
(d+ d†)2

)
+O(

1

S
), (4.46)

where we have introduced the new quantity x for convenience. Inserting this relation into

Sx we can also write Sx and S2
x in terms of powers of

√
S as

Sx =
S+ + S−

2
≈ d†x+ xd− 2

√
βx = (4.47)

=−
√
βk +

(√
k

2
− β

2
√
k

)
(d+ d†) +

(
1

4

√
β

k
+

1

8

(
β

k

) 3
2

)
(d+ d†)2 (4.48)

+
1

2

√
β

k
d†d− 1

4

√
β

k
+O(

1√
S

) (4.49)

S2
x =βk +

(
β

3
2 −

√
βk
)

(d+ d†) +

(
k

4
− β

)
(d+ d†)2 − βd†d+

β

2
+O(

√
S). (4.50)
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Sz can be expressed in terms of the new bosonic operators c and d in a straightforward

way, since the problematic square root is not present, as

Sz = ωqbb
†b = ωqb

(
d†d−

√
β(d† + d) + β

)
. (4.51)

Inserting all these relations into HEDM and neglecting terms of O( 1√
S

) or smaller leads to

HSR
HP = ωcc

†c+

(
ω0 + g

√
αβ

k
− g2

ωc
(1 + ε)β

)
d†d+ (

√
αωc − g

√
βk)(c+ c†) (4.52)

+g

(√
k

2
− β

2
√
k

)
(c+ c†)(d+ d†)

+

(
−ω0

√
β + g

√
αk − gβ

√
α

k
− g2

ωc
(1 + ε)

(√
βk − β

3
2

))
(d+ d†)

+

(
g
√
α

4

(
β

k

)3/2

+
g

2

√
αβ

k
+
g2

ωc
(1 + ε)

(
k

4
− β

))
(d+ d†)2

+αω + ω0(β − S)− g

2

√
αβ

k
− 2g

√
αβk +

g2

ω
(1 + ε)

(
βk +

β

2

)
,

which now contains the unknown quantities α and β as well as terms linear in bosonic

operators. Demanding that the Hamiltonian should be bilinear, i.e. requiring that linear

terms vanish, yields two equations which we can use to determine α and β:

√
α =

gS

ωc

√
1−

(
ωcω0

2Sεg2

)2

=
g

ω

√
βk, (4.53)

√
β =

√
S

(
1 +

ωcω0

2Sεg2

)
. (4.54)

It is useful to introduce the new parameter

µ = − ωcω0

2Sεg2
= −ωcω0

4εg′2
, (4.55)
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where g′ = 2g√
2S
; α, β and k (and in succession the Hamiltonian HSR

HP ) can then be written

more compactly as

√
α = g′

√
S

2
(1− µ2), (4.56)√

β =
√
S(1− µ), (4.57)

√
k =

√
S(1 + µ). (4.58)

Finally, plugging in the above relations, the Holstein-Primako� Hamiltonian in the super-

radiant phase can be written as

HSR
HP =ωcc

†c+
ω0

2µ
(1 + µ)d†d+ g′µ

√
2

1 + µ
(c+ c†)(d+ d†) (4.59)

+

(
ω0(1− µ)(1 + 3µ)

8µ(1 + µ)
+ fε

)
(d+ d†)2 + C,

where

C =− S
(

2g′2

ω
+ ω0µ(1 +

1

2ε
)

)
− g′2

ω
(1− µ) +

g′2

ω
(1 + ε)

(
2S(1− µ2) + 1− µ

)
(4.60)

and fε = −ω0(1+ε)
2ε

µ
1+µ . A short comparison with (4.28) yields the remaining correspon-

dences: ω0 ↔ ωc, ω1 ↔ ω0
2µ(1+µ) and κ↔ ω0(1−µ)(1+3µ)

8µ(1+µ) . Like before, the fully diagonalized

Hamiltonian then reads

HHP = ε+e
†
+e+ + ε−e

†
−e− +

1

2
(ε+ + ε− − ω − ω1) + C, (4.61)

with polariton frequencies

ε2± =
1

2

ω2
c +

ω2
qb

µ2
−
ω2
qb(1 + ε)

ε
±

√√√√(ω2
c −

ω2
qb

µ2
+
ω2
qb(1 + ε)

ε

)2

−
4ω2

cω
2
qb

ε

 . (4.62)

This Hamiltonian also exhibits a ground state-instability for g = gc, this time, however

ε− is real for coupling strengths larger than gc and becomes imaginary for g < gc. Hence

we have found the corresponding Holstein-Primako� Hamiltonian for the extended Dicke

model in the superradiant phase. Now it remains to be seen how well the approximate
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HP-Hamiltonians reproduce the characteristics of the full EDM. We are going to do this in

the next sections by comparing spectra as well as expectation values.

4.5 Expectation value of the electromagnetic energy

First, we have to derive the corresponding HP-expressions for the expectation values of the

operators of interest. We will focus our e�orts on the electromagnetic energy of the system,

which is the part of the total energy given rise to by the cavity - the energy contained in

cavity-excitations as well as interactions between cavity and dipoles. The operator can be

read o� HEDM and is given by

HEM = ωca
†a+ g(a† + a)Sx +

g2

ωc
S2
x (4.63)

= ωc

(
a† +

g

ωc
Sx

)(
a+

g

ωc
Sx

)
. (4.64)

By inserting the relations for Sx and S2
x derived in the preceding sections we can �nd the

corresponding HP-operator in terms of a, a† and b, b† or c, c† and d, d† in the normal

phase or the superradiant phase respectively. These operators can, in turn, be replaced

by the operators c+, c
†
+, c−, c

†
− and e+, e

†
+, e−, e

†
− of the corresponding polariton modes.

Next, we normal order the resulting expressions. Thermal expectation values can then be

calculated by taking the trace in the Fock base and since we are dealing with a bilinear,

normal ordered expression only constants and terms proportional to the number operators

will yield a non-zero contribution. To facilitate this straightforward, yet tedious calculation

we resort to the use of the SNEG-package for MATHEMATICA (see [32]) which allows for

analytic second-quantization calculations.

4.5.1 Normal phase

Following the described procedure we derive both ground state and thermal expectation

value of the electromagnetic energy in the normal phase

〈HEM (0)〉 =− ωc
2

+
1

4
(ω− cos2 γ + ω+ sin2 γ) +

1

4ω+

(
2g′ cos(γ) + ωc sin γ

)2
+

1

4ω−

(
2g′ sin γ − ωc cos γ

)2
, (4.65)
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〈HEM (T )〉 = 〈HEM (0)〉+
cN+

eβω+ − 1
+

cN−
eβω− − 1

, (4.66)

cN+ =
ω+ sin2 γ

2
+

1

2ω+

(
2g′ cos γ + ωc sin γ

)2
, (4.67)

cN− =
ω− cos2 γ

2
+

1

2ω−

(
2g′ sin γ − ωc cos γ

)2
. (4.68)

4.5.2 Superradiant phase

Equally, in the superradiant phase:

〈HEM (0)〉 =

[
ε−
4

+
ω2
c

4ε−
+

g2ω1

4ε+ωc

(
β2

k
− 2β + k

)]
cos2 γ2 +

[
ε− ⇔ ε+

]
sin2 γ2 (4.69)

+
g
√
ωcω1

4

(
1

ε+
− 1

ε−

)(√
k − β√

k

)
sin(2γ2),

〈HEM (T )〉 = 〈HEM (0)〉+
cN+

eβε+ − 1
+

cN−
eβε− − 1

, (4.70)

cN+ =
g2ω1

ε+ωc

[
β2

2k
− β +

k

2

]
cos2(γ2) +

g
√
ωcω1

2ε+

[√
k − β√

k

]
sin(2γ2) (4.71)

+

[
ε+
2

+
ω2
c

2ε+

]
sin2 γ2,

cN− =

[
ε− ⇔ ε+, cos(γ2)⇒ sin(γ2), sin(γ2)⇒ − cos(γ2)

]
. (4.72)

4.5.3 Transition point

Having derived the analytic formulas for the electromagnetic energy in both the normal

and the superradiant phase, we notice that they comprise terms involving divisions by ω−

or ε− respectively. Because these energies go to zero at the critical coupling strength gc

the questions as to the convergence of these terms arise; we will now show that they do, in

fact, converge. To this end we write g′ = g′c − δ and caculate the limit δ → 0 of the terms
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in question. In the normal phase we �nd

lim
δ→0

ω− = 2
√
ω
|ε|

3
4

1 + |ε|
√
δ +O(δ), (4.73)

lim
δ→0

(
g′ sin γ − ωc cos γ

2

)2
=

4|ε|3

(1 + |ε|)3
δ2 +O(δ3), (4.74)

lim
δ→0

(eβω− − 1) = β lim
δ→0

ω− = 2β
√
ω
|ε|

3
4

1 + |ε|
√
δ +O(δ), (4.75)

lim
δ→0

ω−
eβω− − 1

=
1

β
, (4.76)

lim
δ→0

(
g′ sin γ − ωc cos γ

2

)2
ω−(eβω− − 1)

= 0. (4.77)

Hence, there are no divergences and the electromagnetic energy stays �nite at g = gc. Note,

that in case of ε = −1 equations (4.73) and (4.74) are exact for arbitrary δ. Of course,

starting in the superradiant phase, de�ning g′ = g′c + δ and taking the limit δ → 0 must

deliver the same results; we have checked numerically that the limits in both phases are

consistent.

4.6 Comparison HP - full EDM

Having derived analytic results for the extended Dicke model in the Holstein Primako�

approximation, we are now going to investigate how the approximation holds up to the

full model for various numbers of qubits and for di�erent values of ε. The results for the

full model have been acquired by means of a numerical simulation. Given the nature of

the approximation, we expect agreement to be good for a large number of qubits and only

rather crude for few qubits. In the following, we will compare the results for 4, 20 and 100

qubits.

4.6.1 ε = 0.5

We have already found that for ε ≥ 0 HP does not predict a phase transition so we expect

the approximation to fail for larger values of g, after the crossover to the subradiant phase

has taken place in the full model. In �gure 4.1 we compare the HP-spectrum to the full

spectrum in case of 4 and 20 qubits. The results are as expected: for low coupling strengths

the system is still in the normal phase and the approximation works well, especially in case of
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Figure 4.1: Comparison of the spectra of the full EDM (blue dashed) and the HP approxi-
mation (red dotted) for 4 and 20 qubits at ε = 0.5. At low coupling strengths the spectrum
is nicely approximated even in case of just 4 qubits, although deviations become visible ear-
lier than in the 20 qubit case. For 20 qubits agreement is very good up to g ≈ 1, where
discrepancies between the two models suddenly arise; for large coupling strengths HP does
not reproduce the correct spectrum at all. These di�erences are due to the subradiant phase,
which is not reproduced by the Holstein-Primako� approximation.

many qubits. At coupling strengths of g ≈ 1, however, agreement abruptly stops, indicating

the onset of the subradiant phase in the full model.

In addition to the spectrum we compare the ground state expectation values of the

number operator a†a and the electromagnetic energy HEM in �gure 4.2. For values g < 1

it is clearly visible that a higher number of qubits (20 instead of 4, in case of this �gure)

leads to a better approximation. In case of 20 qubits the approximation works well up to

g ≈ 1 where the subradiant phase transition takes place. In the full model, both photon

number and electromagnetic energy return again to their initial values; in the Holstein-

Primako� approximation, however, the photon number remains near its maximum and the

electromagnetic energy keeps rising inde�nitely.

4.6.2 ε = −0.5

For values of ε < 0 HP predicts a phase transition, insofar we would expect the approxi-

mation to work well for both small and large coupling strengths g; in this section we are

going to compare results for ε = −0.5.

Fig. 4.3 depicts the spectrum of the HP spectrum together with the exact EDM spec-

trum. For small and large coupling strengths the approximation works well, independent

of the number of qubits; in the intermediate regime, however, where the phase transition

takes place, increasing the number of qubits clearly leads to much better results. There
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Figure 4.2: Comparison of the ground state expectation values 〈a†a〉 and 〈HEM 〉 in the
full model (full) and the HP approximation (dashed) for 4 and 20 qubits at ε = 0.5. In
the full model both expectation values show similar behaviour - an inital ascent followed by
a subsequent descent back to their initial values, where the peak of the number operator-
expectation value signi�es the onset of the subradiant phase transition. In the HP model
the expectation values are reasonably well reproduced for g < 1, especially in case of more
qubits; as soon as the phase transition takes place in the full model, however, the predictions
are in strong disagreement with the full model, as the electromagnetic energy keeps rising
and the photon number does not descend rapidly.

are lines in the EDM spectrum to which no equivalent exists in the HP spectrum; this is

because in the Holstein-Primako� approximation we only take the maximal spin-multiplet

into account, whereas in the EDM, in order to get results that are as accurate as possible,

we have included the contributions of all multiplets.

Next, we examine the results for the electromagnetic energy. In Fig. 4.4 the results for

temperaturs kBT/~ωc = 0, 0.5 and 1 are shown. The outcome is unsurprising: in case of

just 4 qubits deviations are visible not just in the area of the phase transition but throughout

the ultrastrong coupling regime. In case of 20 qubits the approximation already delivers

very reasonable results, only close to the peak of the curve, where the phase transition

takes place, the two models deliver visibly distinct results. Finally, for 100 qubits, the

Holstein Primako� approximation is barely distinguishable from the exact model; only at

higher temperatures a slight deviation around the peak becomes visible. The general trend,

irrespective of qubit-number, as we go from low to high temperatures seems to be that

disagreements between the models become more pronounced but the qualitative picture

doesn't change.
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Figure 4.3: Comparison of the Holstein-Primako� spectrum (red dotted) to the exact spec-
trum of the extended Dicke model (blue dashed) at ε = −0.5 for various numbers of qubits.
In the limit of small or large coupling overall agreement is very good. In the area of the
phase transition, however, it becomes apparent that the approximation works better for a
higher number of qubits. Energy levels from the exact spectrum which are missing in the
HP-spectrum belong to spin multiplets with S < Nqb

2 ; in the HP-approximation only the
maximal spin-multiplet is taken into account.
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Figure 4.4: Expectation value of HEM in the Holstein-Primako� approximation (purple)
compared to the expectation value in the full extended Dicke model (yellow) for various
numbers of qubits Nqb and temperatures kBT at ε = −0.5. We see that for 4 qubits Holstein
Primako�, unsurprisingly, is only a very rough approximation. For 20 qubits deviations are
only visible near the superradiant phase transition whereas for 100 qubits there is almost no
di�erence. Going from temperature 0 to 1, we observe that agreement decreases with rising
temperature but is still very good in case of a large number of qubits.
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4.7. HOLSTEIN-PRIMAKOFF - SUMMARY

4.7 Holstein-Primako� - Summary

The Holstein-Primako� approximation can be used to linearize the spin-part of the extended

Dicke model and transform the EDM-Hamiltonian to an exactly solvable bilinear bosonic

Hamiltonian. The diagonalization procedure and the calculation of expectation values is

straightforward and can be facilitated by use of computer algebra environments like e.g.

Mathematica together with the SNEG-package. Hence, a main advantage of using HP lies

in the fact that in this model analytic expressions can be derived eliminating the need for

possibly resource-intensive simulations.

The approximation is valid in case of ε < 0 and a large number of qubits (Nqb &

20). The spectrum as well as expectation values are reproduced very accurately from

small coupling strengths across the superradiant phase transition. For a smaller number of

qubits predictions are only very rough and for ε > 0 the linearized model fails to capture

the crossover to a subradiant phase and can therefore only be applied in case of small

coupling strengths, where the system is still in the normal phase. The success of the

Holstein-Primako� approximation, in its respective range of validity, is due to the fact

that the maximal spin multiplet constitutes the main contribution to observables like the

electromagnetic energy.
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Chapter 5

The EDM in the mean �eld

approximation

5.1 The mean �eld approximation

An alternate method of deriving approximate results for the EDM can be found in mean

�eld theory. In this approach interactions between di�erent subsystems are not taken

into account exactly, instead each component moves in an e�ective �eld caused by the

other components. More formally, we demand that �uctuations of di�erent subsystems be

independent of each other:

((a+ a†)− 〈a+ a†〉)(σix − 〈σix〉) = 0, (5.1)

(σix − 〈σix〉)(σjx − 〈σjx〉) = 0. (5.2)

These relations can be manipulated to give expressions for the interaction terms (a+a†)σix

and σixσ
j
x which depend on operators of only one subsystem. Inserting them into the DM

(where only the �rst relation is of importance) or EDM Hamiltonian yields

HMF
DM = ωca

†a+
∑
i

[
ωqb
2
σiz +

g

2
(〈a+ a†〉σix + 〈σix〉 (a+ a†)− 〈a+ a†〉 〈σix〉)

]
, (5.3)
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in case of the Dicke model or

HMF
EDM = HMF

DM +
g2

ωc
(1 + ε)

N 〈σ〉
2

∑
i

σix −
g2N2 〈σ〉2 (1 + ε)

4ωc
, (5.4)

in case of the extended Dicke model. These Hamiltonians are now of the form H = Hqb+Hc

which means that the partition function Z = Tr(e−βH) factorizes into two parts which can

be calculated analytically. After abbreviating the expectation values via α = 〈a〉 = 〈a†〉
(where the last equality is equivalent to requiring α to be real), Sx = 1

2

∑
i 〈σ

i
x〉 we obtain

ZDM =

(
2 cosh

(
β

√(ωqb
2

)2
+ (gα)2

))N
eβ(

(gSx)
2

4ωc
+gαSx)

1− e−βωc
(5.5)

and

ZEDM = exp

(
β

(
(gSx)2

4ωc
+ αgSx +

g2S2
x(1 + ε)

4ωc

))

×

(
2 cosh

(
β

√(ωqb
2

)2
+
(
gα+ g2

ωc

(1+ε)
2 Sx

)2
))N

1− e−βωc
. (5.6)

Given Z, the free energy

F = −kBT lnZ (5.7)

can be calculated and using the fact that in thermal equilibrium α and Sx must take

on values such that F is minimal. Therefore we can �nd equations to determine these

parameters via

∂F

∂α
= 0, (5.8)

∂F

∂Sx
= 0. (5.9)
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Inserting F yields the two equations

∂F

∂α
=−N tanh(ξ)

β

ξ

(
gα+

g2(1 + ε)Sx
2ωc

)
g − gSx = 0, (5.10)

∂F

∂Sx
=−N tanh(ξ)

β

ξ

(
gα+

g2(1 + ε)Sx
2ωc

)
g2(1 + ε)

2ωc
− gα (5.11)

− g2Sx(1 + ε)

2ωc
− g2Sx

2ωc
= 0, (5.12)

with

ξ = β

√
ω2
qb

4
+

(
gα+

g2(1 + ε)Sx
2ωc

)2

. (5.13)

This leads to the relation between Sx and α

Sx =
2αωcωqb

g
κ, (5.14)

where κ = ((1 + ε)(ωc − ωqb)− ωqb))−1 and subsequently, by inserting Sx into one of the

initial equations, to an equation for α:

−N tanh(ξ) (1 + ωcκ(1 + ε))αg2 = 2ωcωqbακβξ. (5.15)

α = 0 is the obvious solution and corresponds to the normal phase. If we require that

α 6= 0 we can divide by α and obtain a transcendental equation for α which has to be solved

numerically. We can, however, �nd an analytic result for the critical coupling strength gc

at which α is exactly zero. In case of T = 0 the hyperbolic tangent becomes 1 and we �nd

gc(0) =

√
ωcωqb
N

√
−ωqbκ

1 + (1 + ε)ωcκ
=

√
ωcωqb
N

√
−ωqb

2ωc(1 + ε)− (2 + ε)ωqb
(5.16)

wich reduces to

gc(0) =

√
−ω2

c

Nε
(5.17)

in case of ωc = ωqb. For �nite temperatures we get the equation

gc(T )

gc(0)
= tanh

(
~ωqb
2kBT

)− 1
2

. (5.18)
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Figure 5.1: Comparison of the expectation values of the operators a and Sx in the full model,
in the Holstein-Primako� approximation and in mean �eld theory. At zero temperature HP
and MFT predict the same results. As we go to higher temperatures, the predictions of HP
don't change much whereas the results of MFT seemingly become more accurate. Nqb = 10,
ε = −1

Hence, the mean �eld approach predicts a temperature-dependent critical coupling strength.

Vice versa, at a given g/gc(0), we can �nd the critical temperature Tc at which the super-

radiant phase vanishes by inverting relation (5.18).

5.2 Results and limitations

In �gure 5.1 we compare predictions for the expectation values of the operators a and

Sx in all three models: the full model, the HP approximation and in mean �eld theory.

At temperature zero both HP and MFT predict the same results but as we go to higher

temperatures the results of HP don't change signi�cantly whereas MFT seemingly becomes

more accurate. This is most likely due to the fact that with rising temperature quantum

�uctuations are suppressed and the underlying assumption of mean �eld theory is more

justi�ed.

It is important, however, to keep in mind the limitations of the mean �eld approach;

since we have assumed that �uctuations of the subsystems of the EDM are independet

of each other expectation values of the electromagnetic energy or the U2-term cannot be

reproduced accurately. In the end, the mean �eld approach is suitable to estimate the

temperature-dependent critical coupling strength gc(T ) (see �gure 3.1) of the SRT and to

calculate expectation values that do not depend on quantum �uctuations.
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Chapter 6

Heat capacity of cavity QED systems

In this section we will investigate the thermal behaviour of the extended Dicke model by

calculating the heat capacity of the system. In particular, we are interested to �nd out how

the coupling between cavity mode and atoms alters the heat capacity when compared to

the uncoupled systems. Starting out with the extended Dicke model Hamiltonian (where

cavity and qubits are in resonance)

HEDM = ωa†a+ ωSz + g(a† + a)Sx +
g2

ω
(1 + ε)S2

x, (6.1)

we introduce two modi�cations: �rstly, we add a parameter v which allows us to tune the

coupling between cavity and dipoles, without a�ecting the dipole-dipole term, secondly we

express the dipole-dipole interaction term di�erently in terms of the inter-dipole coupling

strength J = g2

ω ε. This highlights the fact that the pure inter-dipole coupling is independent

of the cavity-dipole coupling; only the ε is changed by it. Now we can write our Hamiltonian

as

H = ωa†a+ ωSz + g
√
v(a† + a)Sx +

g2

ω
vS2

x + JS2
x. (6.2)

Setting v = 0 turns o� the coupling between cavity and atoms and leads to the Lipkin-

Meshkov-Glick (LMG) model [33]; note, that here we use a version of the LMG model that

contains both the spins and the cavity mode. In case of v = 1 the coupling is present and

we recover the EDM.

According to HP, the EDM (v = 1) undergoes the transition to the superradiant phase

69
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Figure 6.1: (a) Heat capacity of a harmonic oscillator. (b) Heat capacity of N =
4, 10 and 20 spins for di�erent values of J . For values of J < Jc position and shape of
the curve are very sensitive to J , whereas in case of J > Jc the curve remains almost
unchanged. An explanation for this behaviour can be found in the low-energy part of the
spectrum: if it is dominated by the JS2

x-term, the dependency of the heat capacity on J will
be large. (c) Heat capacity of a 10 qubit system as a function of the inter-qubit coupling J
at di�erent temperatures. The phase transition taking place at J ≈ Jc is clearly discernible.

at an inter-dipole coupling strength of

Jc = −ω/N, (6.3)

which translates again into the critical coupling strength derived before in section 4.1,

gc =

√
−ω2

Nε
. (6.4)

6.1 Heat capacity of uncoupled systems

First, in order to be able to better interpret the subsequent results, we are going to set v = 0

to take a look at the heat capacity of the uncoupled constituents of the whole system, i.e.

the bare oscillator and the spins. Adding both together leads to the heat capacity of the

LMG model, which according to our de�nition includes the decoupled cavity mode.

In �gure 6.1 we have depicted the heat capacity of the harmonic oscillator as well as

that of the spin system for di�erent values of the total spin and di�erent values of inter-spin

coupling. The heat capacity of the harmonic oscillator is, of course, the same as usual: it

starts rising at temperatures kBT ≈ ~ω/10 and at kBT = ~ω it has almost reached its

maximum value of C/kB = 1.
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The spin case is more interesting, since di�erent values of J can result in qualitatively

di�erent eigentstates; for J < Jc alignment of the spins (in the ground state) in x-direction

is energetically favorable, whereas otherwise the z-direction is preferred. In our plots we

are going to consider a variety of values for the inter-spin coupling strength, both above

and below this threshold.

As can be seen from �gure 6.1 (b), where C/kB is depicted for 4, 10 and 20 qubits, the

heat capacity of the pure spin system is very sensitive to the inter-spin coupling strength

in case of J < Jc; both the temperature at which it starts to rise as well as the location of

it's maximum and the maximum value itself are clearly distinguishable. In case of J > Jc,

however, it barely changes. This can be attributed to the fact that the heat capacity is

most sensitive to the exact distribution of the energy levels at low temperatures; at higher

temperatures slight alterations are averaged over. In case of J < Jc the low energy behavior

of the system is dominated by the JS2
x-term, hence the sensitivity of the heat capacity with

respect to J . For values of J > Jc, on the other hand, the ωSz-term constitutes the major

contribution to the heat capacity and changing J does not have much of an e�ect.

Figure 6.1 (c) depicts the heat capacity as a function of J at various temperatures in

case of 10 qubits. The aforementioned phase transition taking place at J ≈ Jc is clearly

discernible.

6.2 Heat capacity of composite system

Having taken a look at the seperate systems in the previous section, we are now going

to investigate the in�uence of coupling between cavity and spins on the heat capacity of

the composite system. As we have seen previously, the extended Dicke model undergoes a

phase transition/a crossover as the coupling strength enters the ultrastrong coupling regime;

accordingly, we expect the heat capacity to undergo signi�cant changes as well.

In the subsequent �gures we are going to plot both the heat capacity of the EDM and

the contribution of the cavity-dipole coupling to it. We calculate the latter by subtracting

the heat capacity of the LMG model from that of the EDM, that is

Cint := CEDM − CLMG. (6.5)

In �gure 6.2 the heat capacity is plotted against the coupling strength g. Comparing

both the full heat capacity of the EDM as well as the contribution due to the coupling, it
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EDM EDM - LMG(a) (b)

Figure 6.2: Nqb = 10: Heat capacity of (a) the extended Dicke model and (b) the con-
tribution e�ected by the cavity-dipole coupling as a function of g for di�erent values of J
and at various temperatures. The overall contribution of the coupling to CEDM keeps rising
up to intermediate temperatures but eventually goes to zero again for temperatures above
the cavity frequency; at such temperatures variations in the spectrum are no longer resolved
by the heat capacity. Since the LMG model does not depend on g, all changes of the heat
capacity in this plot originate in the cavity-dipole coupling.

becomes apparent that all observable changes are due to the coupling term; this makes sense,

since the LMG model does not depend on the coupling strength. With rising temperature,

overall contributions to CEDM due to the coupling increase at �rst, up to intermediate

temperatures of kBT ≈ 0.5~ω. Subsequently, Cint decreases again and at kBT = 5~ω it is

practically zero. This last observation can be understood as follows: at high temperatures,

many states are in reach of thermal excitations and contribute to the speci�c heat; the ups

and downs of the various energies in the eigenspectrum are therefore averaged over and

their overall contribution no longer changes notably with g.

Figure 6.3 shows the heat capacity as a function of the inter-qubit coupling strength

J at various temperatures and for di�erent values of g. For low enough temperatures, an

abrupt change, due to the transition from the superradiant to the subradiant phase, is

observable for values of J/ω near Jc/ω = 0.1. The bulk of these changes is contained in

the contribution of the interaction part of the heat capacity; after all, it is the coupling

between cavity and qubits that gives rise to the di�erent phases.

Finally, in �gure 6.4, we compare the magnitude of the contribution of the cavity-dipole

coupling to the overall heat capacity for various numbers of qubits at small and large

coupling strengths. Additionally, we have plotted the heat capacity of the pure spin system,
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EDM EDM - LMG(a) (b)

Figure 6.3: Nqb = 10: Heat capacity of (a) the extended Dicke model and (b) the contribution
e�ected by the cavity-dipole coupling as a function of J for di�erent values of g and at
various temperatures. Rapid changes that are visible at J/ω ≈ −0.1 hint at the transition
between sub- and superradiant phase.

to be able to better compare the relative strength of the contributions. Unsurprisingly, for

a given number of qubits and for increasing coupling strengths, Cint increases as well. From

the plot with g/ω = 5 we see that, in case of J = 0, Cint can reach and even surpass in

magnitude the heat capacity of the pure spin system; most notably, Cint apparently scales

with the number of qubits. This observation can be traced back to the 2N -fold (nearly)

degenerate manifolds in the spectrum of the EDM for J = 0 (or, in this case, equivalently

ε = 0).

6.3 Heat capacity - summary

We have investigated the contribution Cint to the heat capacity CEDM of the entire EDM

due to the cavity-dipole coupling. As is to be expected from the signi�cant qualitative

changes which the eigenspectrum of the EDM undergoes with rising coupling strength, Cint

can constitute a major contribution to the overall heat capacity and re�ects transitions

between the di�erent phases. In case of J = 0 and for large coupling strengths g, Cint

reaches values similar or even larger in magnitude than the heat capacity of the pure spin

system and scales with the number of qubits.
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(a) (b)

Figure 6.4: (a) Heat capacity of the uncoupled spin system and (b) contribution of cavity-
spin coupling to CEDM as a function of temperature, for di�erent values of g and J and
multiple numbers of qubits. At high coupling strengths and for J = 0, Cint can reach and
even surpass the magnitude of the heat capacity of the pure spin system and scales visibly
with the number of qubits.
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Chapter 7

Numerics

In this part we are going to give a brief overview of the techniques employed to obtain the

numerical results discussed throughout the work. This includes both analytic transforma-

tions of the Hamiltonian which allow for resource-intensive calculations to be split up into

many parts as well as some heuristic measures that were taken to estimate the convergence

of the results.

7.1 Block-diagonal structure of the EDM-Hamiltonian

In earlier parts of the work we have introduced the extended Dicke model in the form

HEDM = ωca
†a+ ω0Sz + g(a† + a)Sx +

g2

ωc
(1 + ε)S2

x, (7.1)

where the Si = 1
2

∑
i
σi are total spin matrices which contain the contribution of each

individual spin. Using the relation [S2, Sj ] = 0 it can readily be shown that the EDM-

Hamiltonian commutes with the square of the total spin operator S2, [HEDM, S
2] = 0. This

means that HEDM can be brought into block-diagonal form, with each block corresponding

to one eigenvalue of the total spin operator, i.e. the di�erent spin-multiplets that can be

formed by the individual spins.

Considering each possible spin-multiplet individually greatly reduces the resources that

are required in our calculations. Initially, dealing with non-collective spins, there are 2N

spin-states to be taken into account simultaneously; switching to the collective picture and

treating each subspace separately breaks this number down to 2S + 1 states, where S is
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the collective spin of the multiplet. For the biggest possible subspace with S = N
2 , we

have N + 1 states, a tremendous improvement compared to 2N for large N . Naturally, the

total number of states has to remain unchanged but summing over the states provided by

each S-subspace only results in
∑

S 2S + 1 = N
2 (N2 + 1) + N

2 + 1 = (N2 + 1)2 states; this

discrepancy can be resolved by taking into account the multiplicity of the di�erent spin

multiplets.

7.2 Multiplicity of spin multiplets

In order to be able to calculate expectation values for temperatures above absolute zero

we must know the degeneracy of each state and hence the multiplicity of the various spin

multiplets that can be formed out of N coupled spin-1/2 systems. This can be achieved

by considering the Clebsch-Gordan fusion rule (or, more generally, the Clebsch-Gordan

decomposition, see e.g. [34]), which describes the coupling of a doublet to an N -multiplet,

a multiplet with N possible orientations:

2⊗N = N + 1⊕N − 1. (7.2)

Mathematically speaking, we �nd the direct sum decomposition of the tensor product space

in which the two multiplets live. Formula (7.2) can be understood as follows: take a spin-S

and couple to it a spin-1/2; the spin-1/2 can either align itself or anti-align itself to the

spin-S, thereby increasing or decreasing the total spin by 1/2. A spin-S corresponds to a

(2S + 1)-multiplet, hence the formula. Starting with one spin-1/2 and repeatedly coupling

additional ones to it we can �nd the multiplicity for ever higher numbers of spins by using

the Clebsch Gordan fusion rule:

N = 1 : 2 (7.3)

N = 2 : 2⊗ 2 = 3⊕ 1 (7.4)

N = 3 : 2⊗ 2⊗ 2 = 2⊗ (3⊕ 1) = 4⊕ 2⊕ 2 = 4⊕ 22 (7.5)

N = 4 : 2⊗4 = · · · = 5⊕ 33⊕ 21 (7.6)

... (7.7)
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Using this scheme a general formula on how N spins can be arranged into multiplets can

be derived:

2⊗N =
bN2 c
⊕
k=0

mN,kN + 1− 2k, (7.8)

with

mN,k =
N !(N + 1− 2k)

k!(N + 1− k)!
. (7.9)

Using k = N−2S
2 , we can also write the multiplicity directly in terms of S as

mN,S =
N !(2S + 1)

(N2 − S)!(N2 + S + 1)!
. (7.10)

This result is in agreement with other methods of obtaining the multiplet-multiplicity.

7.3 The EDM in the polaron frame

One problem, when it comes to numerical simulations of the EDM as given in (7.1), even

after taking into account the block-diagonal structure, is the high number of photon states

that has to be taken into account in order to get accurate results at high coupling strengths

and temperatures. In the superradiant phase this number quickly reaches the hundreds.

This number does not correspond to the actual number of cavity photons but arises due

to the fact that in the dipole picture this number corresponds to excitations of the electric

displacement �eld. One way to circumvent this problem is to switch to the polaron frame

where the photon number again corresponds to the actual number of photons, which remains

much smaller, via H ′ = UHU † where U = e
g
ωc
Sx(a†−a) [1, 35]. This can also be thought of

as transforming back to the Coulomb picture after having made the 2-state approximation

in the dipole picture.

We can make use of Hadamard's Lemma,

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . (7.11)

= ead(A)B, (7.12)
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to calculate how the relevent operators change under the polaron transformation:

UaU † = a+
g

ωc
Sx, (7.13)

Ua†U † = a† +
g

ωc
Sx, (7.14)

USzU
† =

1

2

[
e
g
ωc

(a†−a)(Sz − iSy) + e−
g
ωc

(a†−a)(Sz + iSy)
]
. (7.15)

The transformed Hamiltonian is then given by

H ′EDM = UHEDMU
† = ωca

†a+
g2

ωc
(1 + ε)S2

x +
ω0

2

(
e−

g
ωc

(a†−a)S̃− + e
g
ωc

(a†−a)S̃+

)
, (7.16)

where the exponentials just correspond to the displacement operator D(α) = eα(a†−a) and

S̃± = Sz ± iSy are the ladder operators with respect to Sx. A formula for the matrix

elements of D(α) in the Fock basis is given in [36],

〈m|D(ξ) |n〉 =

(
n!

m!

) 1
2

ξm−ne−
|ξ|2
2 Lm−nn (|ξ|2), (7.17)

where the Lm−nn denote associated Laguerre polynomials.

7.4 Number of states to consider in simulations

Since the system at hand is described by an in�nite-dimensional Hilbert-space it is impos-

sible to include all states. Firstly, this issue arises when deciding how many Fock-states to

include when calculating the eigenstates of the system. Secondly, we must determine states

up to what energy have to be included to yield accurate thermal expectation values.

7.4.1 Determine the maximum photon-number Na

In order to determine the number of Fock states, Na + 1, to include in our calculations, it

has proven useful to think of the maximum photon number in terms of the maximum energy

Emax; states with energies up to Emax are included when calculating thermal expectation

values. Arguing, simply, that the higher the energy of the system the more photons it can

80



CHAPTER 7. NUMERICS

10-1 100
1

1.2

1.4

1.6

1.8

2

10-1 100
1

1.5

2

2.5

3

x=2
x=4
x=8
x=16
x=24

Figure 7.1: Comparison of the values received for the expectation value 〈U2〉 when taking
into account states up to higher and higher energies, i.e. for various ratios x = (Emax −
E0)/kBT . It is apparent that in case of a temperature of kBT/~ωc = 0.5 a value of x = 4
is su�cient, whereas for kBT/~ωc = 1 a choice of x = 16 seems to be ideal. (N = 50,
ε = −1)

contain, suggests making the ansatz

Na = a

⌈
Emax − E0

~ωc

⌉
, a ∈ N, (7.18)

for our photon number, where the rounding brackets, d e, are required to ensure an integer

result.

Empirically, we �nd that a = 1 works very well in case of ε < 0, whereas for values

ε > 0 a value of a = 8 is required to go up to g/ωc ≈ 10.

7.4.2 Determine the maximum energy Emax

Next, we would like to get an estimate on how many states must be taken into account

in order to get reliable thermal expectation values for �nite temperatures. We introduce

the new parameter x and de�ne the cut-o� energy as a multiple of the thermal energy via

Emax − E0 := xkBT ; eigenstates with energy εk ≤ Emax are taken into account. In Fig.

7.1 we have plotted the expectation value 〈U2〉 for various values of x. As can be seen

from the graph, one has to go up to at least x = 8, or ideally x = 16 for temperatures up

to kBT . ~ωc. The higher the temperature, the higher x has to be and when calculating

expectation values up to kBT/~ωc = 10 we have chosen x = 20.

The U2-operator has been chosen as reference since, with U being given by U = 1√
2
(a+

a† + 2g
ωc
Sx), it comprises most of the operators of interest.
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Figure 7.2: Plot of the spectrum of the extended Dicke model for di�erent values of ε.
(N = 4)

Having determined heuristically a cuto� energy, we now would like to take a look at

the energy spectrum of the EDM to �nd out the relationship between the value of x and

the number of states to take into account. Fig. (7.2) shows the characteristics of the

spectrum for ε = −1, 0, 1. As can be seen from the �gure, di�erent values of ε can lead to

qualitatively di�erent spectra. In the weak coupling regime, where g ≈ 0, the spectrum is

still independent of ε and we observe nearly degenerate subspaces. Here, where the coupling

is still small, the degeneracy is given by the number of ways in which excitations of the

cavity mode and the spin system can be combined to result in the energy at hand.

For a given spin-multiplet, the degeneracy is one in case of the ground state. The

degeneracy then increases by one for each subsequent manifold, e.g. in case of the �rst

excited manifold we can either have one photon and a multiplet orientation resulting in the

magnetic quantum number mS = −S or no photon and mS = −S + 1, whereas in case

of the second excited manifold three possibilities exist: zero photons and mS = −S + 2,

one photon and mS = −S + 1 and two photons together with mS = −S. This scheme can

be continued up to the energy at which all possible multiplet orientations, together with a

suitable number of photons, can result in a state of the given energy. In other words, at

g = 0, states with energy (E − E0)/~ωc = 2S and above will have a degeneracy of 2S + 1.

7.4.3 Number of states up to Emax

In case of ε = 0 and in the limit g � ω the spectrum consists of 2N -fold (nearly) degenerate

manifolds (see [1]). Each such manifold contains states of di�erent spin manifolds as 2N =∑
S

mN,S(2S+1). Hence, for a given spin multiplet S we have to calculate nS = bxkBT/~ωc+

1c(2S+1) states. This number can quickly become quite large, e.g. for x = 16, kBT/~ωc = 1
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we �nd n50 = 1717. Hence, for ε ≈ 0 a compromise of some sort will be required, be it a

smaller factor x or a lower temperature.

For ε > 0 and large g, each manifold of nearly degenerate states contains
∑
S

mN,S states;

each multiplet contributes one state.

Hence, for low and large coupling strengths and arbitrary ε we can count the number

of states below a certain energy. Knowing these limits also allows us to estimate for the

coupling strengths in-between; when in doubt, a number of state that su�ces in case of

ε = 0 and large g will also be enough elsewhere. When calculating spectra, it is most

convenient to start with the result for low coupling strengths and then dynamically adjust

the number of states. At each step we calculate a few states more than required and check

if the maximal energy is still above or below a certain threshold; if not, the number of states

will be increased or reduced accordingly.
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Conclusions and outlook

In part I of my thesis we revisited the derivation of e�ective cavity-QED models and demon-

strated the importance of making the correct choice of gauge when performing the two-level

approximation. Controversies surrouding the quantum Rabi model in form of a `no-go the-

orem' and a `counter no-go theorem' have been resolved. The electric dipole gauge has

been shown to be clearly superior to the Coulomb gauge when truncating the Hilbert space

to derive the QRM in the single-dipole case or the (extended) Dicke model in the multi-

dipole case. We have used a superconducting circuit to demonstrate our �ndings using the

example of a realistic setup. Overall, it has been shown that the two-state model in the

electric dipole gauge and in case of su�ciently nonlinear atoms delivers accurate results up

to coupling strengths well within the ultrastrong coupling regime.

In part II, the thermodynamics of the extended Dicke model have been investigated.

I examined the e�ect of non-zero temperatures on the superradiant phase transition and

on the crossover to the subradiant phase; with increasing temperature, both the phase

transition and the crossover are smeared out over a larger interval of coupling strengths.

Once the thermal energy kBT surpasses the energy of the bare cavity mode ~ωc, changes
in observables due to the transitions can no longer be discerned from the background noise

due to thermal �uctuations, which are now present in the system.

Two di�erent approximations have been employed to enable the derivation of analytic

results for the extended Dicke model. Firstly, the spin-part of the EDM has been bosonized

via the Holstein-Primako� approximation. For a number of qubits larger than 20 this

approximation describes the SRT very well and deviations from the full model are only

visible nearby the phase transition; both eigenspectrum and expectation values can be

calculated. Secondly, I applied mean �eld theory to the EDM by neglecting correlations

between the �uctuations of di�erent constituents of the system. While this approach cannot

be used to calculate the eigenspectrum it predicts the onset of the superradiant phase
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transition more accurately than HP. Neither of the two approximations reproduces the

crossover to the subradiant phase for ε > 0.

Furthermore, the heat capacity of the extended Dicke model as well as that of its

constituents has been calculated; in particular, I investigated the in�uence of the cavity-

dipole coupling on this quantity. The maximum value of the heat capacity of the pure spin

system depends on the number of individual spins; an analogous scaling with the number

of qubits has been observed for the contribution to the heat capacity by the coupling term

in case of ε = 0.

In part III I elaborated on mathematical methods and properties of the EDM that

can be used to simplify numerical simulations. Firstly, considering di�erent spin-multiplets

separately greatly reduces the size of the Hilbert space at hand. Secondly, switching to the

polaron frame reduces the required number of Fock states to be included in the simulations.

Furthermore, the heuristics were detailed, which I used to estimate proper cuto� energies

as well as suitable numbers of states to take into account.

One possible avenue of future research would be to use the extended Dicke model to

calculate the quantum capacity of an LC-resonator, where atoms have been placed between

the plates of the capacitor. Results obtained here could then be compared to a classical

model where the atoms are treated collectively as a dielectric material �lling the capacitor.

It would also be interesting to compile a phase diagram of the EDM depending on J

instead of ε; since J is the more natural quantity to consider, such a diagram could facilitate

an intuitive understanding of the di�erent phases of the extended Dicke model.
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