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Abstract

For a strongly inacessible cardinal κ, Saharon Shelah generalized the notion of

Lebesgue null sets on the Cantor space 2ω to the “Higher Cantor space” 2κ (Archive

for Mathematical Logic, 2017). In this thesis we investigate, for such κ, the relation-

ships between the following ideals:

1. the ideal of meager sets in the <κ-box product topology.

2. the ideal of null sets in the sense of Shelah.

3. the ideal of nowhere stationary subsets of a (naturally defined) stationary set

Sκpr ⊆ κ.

In particular, we analyse the provable inequalities between the cardinal characteris-

tics for these ideals, and we give consistency results showing that certain inequalities

are unprovable.

While some results from the classical case (κ = ω) can be easily generalized to

our setting, some key results (such as a Fubini property for the ideal of null sets) do

not hold; this leads to the surprising inequality cov(null)≤non(null). Also, concepts

that did not exist in the classical case (in particular, the notion of stationary sets)

will turn out to be relevant.

We construct several models to distinguish the various cardinal characteristics;

the main tools are iterations with <κ-support (and a strong “Knaster” version of

κ+-c.c.) and one iteration with ≤κ-support (and a version of κ-properness).
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Kurzfassung

Für eine stark unerreichbare Kardinalzahl κ hat Saharon Shelah den Begriff der

Lebesgue-Nullmengen auf dem Cantor-Raum 2ω auf den “höheren Cantor-Raum” 2κ

verallgemeinert (Archive for Mathematical Logic, 2017). In dieser Arbeit unter-

suchen wir für solches κ die Beziehungen zwischen folgenden Idealen:

1. dem Ideal der mageren Mengen in der <κ-box-Produkttopologie.

2. dem Ideal der Nullmengen im Sinne Shelahs.

3. dem Ideal der nirgends stationären Teilmengen einer (natürlich definierten)

stationären Menge Sκpr ⊆ κ.

Im Besonderen analysieren wir die beweisbaren Ungleichungen zwischen den Kar-

dinalzahlcharakteristiken dieser Ideale und beweisen Konsistenzresultate, die zeigen,

dass bestimmte Ungleichungen unbeweisbar sind.

Während manche Ergebnisse aus dem klassischen Fall (κ = ω) leicht verallgemei-

nert werden können, gelten andere Eigenschaften nicht mehr (wie zum Beispiel die

Fubini-Eigenschaft des Ideals der Nullmengen). Dies führt zu der überraschenden

Ungleichung cov(null)≤non(null). Weiters beginnen andere Konzepte, die im klassis-

chen Fall nicht existieren (im Besonderen stationäre Mengen), eine Rolle zu spielen.

Wir konstruieren mehrere Modelle, um verschiedene Kardinalzahlcharakteris-

tiken zu trennen; Die Werkzeuge hierzu sind Forcing-Iterationen mit <κ-Träger,

(und eine starke “Knaster”-Variante der κ+-c.c.), sowie eine Iteration mit ≤κ-Träger

(und eine Variante von κ-properness).
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Introduction

Set theory of the reals deals with topological, measure-theoretic and combinatorial

properties of the real line, which set theorists often do not interpret as the linear

continuum R, but (often for technical or notational convenience) as the Cantor space

2ω or the Baire space ωω.

In this thesis we will be interested in a natural generalization of such properties

to the spaces 2κ and κκ for uncountable (and in our setup: always inaccessible)

cardinals κ. This area of research has progressed quickly in recent years; (Khomskii,

Laguzzi, Löwe, and Sharankou 2016) collected many questions inspired by workshops

on generalized reals, and several recent results can be found in (Brendle, Brooke-

Taylor, Friedman, and Montoya 2018), (Friedman and Laguzzi 2017), (Shelah 2017),

(Cohen and Shelah 201x).

We will occasionally refer to results or definitions involving 2ω or ωω; to empha-

size the distinction between this framework and our setup, we will use the adjective

“classical” to refer to these concepts: the classical Cichoń diagram, classical random

reals, etc.

Concerning terminology, we suggested to use the adjective “higher” instead of

the less specific “generalized” or “generalised”. In analogy to higher Souslin trees

(Souslin trees on cardinals larger than ω1), higher recursion theory (recursion theory

on ordinals greater than ω), higher descriptive set theory we will speak of higher reals,

the higher Cantor space, higher random reals, the higher Cichoń diagram, etc.
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Higher random reals

There exists a straightforward generalization the meager ideal on 2ω (or ωω) to an

ideal on 2κ for (regular) κ > ω, using the <κ-box product topology and defining a

set as meager if it can be covered by ≤κ-many (closed) nowhere dense sets.

In (Shelah 2017) Saharon Shelah introduced a generalization Qκ of the random

forcing to 2κ for inaccessible κ. The forcing Qκ is strategically κ-closed, satisfies the

κ+-chain condition and for weakly compact κ is κκ-bounding. These are of course

three properties that are satisfied by classical random forcing (i.e., on κ = ω). The

ideal id(Qκ) generated by all κ-Borel which are forced not to contain the Qκ-generic

κ-real turns out to be orthogonal to the ideal Cohenκ of all κ-meager sets.

In (Cohen and Shelah 201x) it is shown how to replace the requirement of κ

being weakly compact by assuming the existence of a stationary set that reflects

only in inaccessibles and has a diamond sequence. A construction of a κ+-c.c. κκ-

bounding forcing notion using a different diamond is given in (Friedman and Laguzzi

2017) but it implies 2κ = κ+, so that setup does not allow us to investigate cardinal

characteristics.

A different approach can be found in (Brendle, Brooke-Taylor, Friedman, and

Montoya 2018) where the authors use the well known characterization of the addi-

tivity and cofinality of the null ideal by slaloms (in the classical case (κ = ω), see for

example (Bartoszyński and Judah 1995)) to define their versions of add(null) and

cof(null) on 2κ for inaccessible κ.

We continue the work of (Shelah 2017), and we also compare our cardinal char-

acteristics to those derived from slaloms.

Overview of the thesis

The research I did on the higher Cichoń diagram is collected in (Baumhauer, Gold-

stern, and Shelah 2018) which can be considered a sequel of (Shelah 2017). This

thesis is essentially a self-contained version of (Baumhauer, Goldstern, and Shelah

2018), including all necessary definitions and results (and in particular proofs) from

its predecessor.

xii



• In section 1 we repeat some key definitions and results from (Shelah 2017),

introduce some notations and finally define the notion of a strengthened Galois-

Tukey connection.

• In section 2 we prove preservation theorems for iterations of <κ and κ-support.

• In section 3 we introduce an ideal id−(Qκ) ⊆ id(Qκ) whose definition is slightly

simpler than the definition of id(Qκ); however, for weakly compact κ the ideals

id and id− coincide. We improve the characterizations of the additivity and

cofinality of id(Qκ) given in (Shelah 2017) and also give a new characteriza-

tion of additivity and cofinality, using the additivity of the ideal of nowhere

stationary sets on κ.

• In section 4 we generalize a theorem from (Shelah 2017) by introducing the

notion of an anti-Fubini set and showing the existence of such set implies the

result for arbitrary ideals.

• In section 5 we repeat and elaborate results from (Shelah 2017) and discuss

the Bartoszyński-Raisonnier-Stern theorem for id(Qκ). We can show it for

inaccessible κ only under additional assumptions, and we conjecture that it

does not hold in general.

• In section 6 we provide six models separating characteristics of the generalized

Cichoń diagram using the tools developed in section 2. Curiously we do exactly

all possible vertical separations.

• In section 7 we repeat some definitions and results from (Brendle, Brooke-

Taylor, Friedman, and Montoya 2018) and use a model from that paper to

show that one of the generalized slalom characterizations of the additivity of

null is not provably equal to the additivity of id(Qκ).

xiii





CHAPTER 1

Preliminaries

In this section we establish some key definitions and results from (Shelah 2017).

1.1 The Generalized Random Forcing Qκ

To motivate the main definition of this section, we first give a characterisation of

random forcing; the definition of Qκ can then be seen as a generalization.

Definition 1.1.1. A “positive tree on ω” is a set T ⊆ 2<ω with the following

properties:

• T is a tree, i.e.: T is nonempty, and for all t ∈ T and all initial segments s E t

we also have s ∈ T .

• There is a family (Nk : k ∈ ω), with Nk ⊆ 2k such that:

– The sets Nk are small, more precisely:
∑

k
|Nk|
2k

< 1.

– For all k, all s ∈ 2k: s ∈ T ⇔ ((∀n < k) s�n ∈ T and s /∈ Nk).

It is easy to see that a tree T is positive in this sense if and only if the set [T ] of

branches of T has positive Lebesgue measure in 2ω. Thus, the set of positive trees

is isomorphic to (a dense subset of) random forcing.

It is well-known and easy to see that the ideal of null sets can be defined from

the random forcing in several ways:

1



Chapter 1. Preliminaries

Fact 1.1.2. Let A ⊆ 2ω. Then each of the following properties is equivalent to the

statement “A is Lebesgue measurable with measure 0”:

• For all positive trees p there is a positive tree q ⊆ p such that [q] ∩A = ∅.

• There is a predense set C of positive trees such that A ∩
⋃
p∈C [p] = ∅.

• There is a single positive tree p such that not only [p] ∩ A = ∅, but for every

s ∈ 2<ω we also have (s+ [p]) ∩A = ∅.
Here, we write s+X for the set {s+x : x ∈ X}, where s+x ∈ 2ω is defined by

(s+ x)(i) = s(i) + x(i) for i ∈ dom(s), and (s+ x)(i) = s(i) otherwise. (s+X

is also called a “rational translate” of X.)

Definition 1.1.3. Unless stated otherwise, κ denotes an strongly inaccessible car-

dinal throughout this paper. When we write “inaccessible” we will always mean

“strongly inaccessible” and for the set of all inaccessible cardinals below κ we write

Sκinc = {λ < κ : λ is inaccessible}.

Definition 1.1.4. Let S ⊆ κ. We say that S is nowhere stationary if for every δ ≤ κ
of uncountable cofinality the set S ∩ δ is a nonstationary subset of δ. Typically we

will only care about being nonstationary in δ ∈ Sκinc ∪ {κ}.

We will now inductively define, for every inaccessible cardinal κ,

• a forcing notion Qκ (this definition uses the ideals id(Qδ) for δ < κ)

• two ideals wid(Qκ) ⊆ id(Qκ) on 2κ.

(The ideals coincide for weakly compact κ, see 3.2.3.)

Definition 1.1.5. We recall the inductively defined forcing Qκ from (Shelah 2017,

1.3). We have p ∈ Qκ if there exists (τ, S,
⇀

Λδ : δ ∈ S〉) (this tuple is called the witness

for p ∈ Qκ) where:

1. p ⊆ 2<κ is a tree, i.e. closed under initial segments.

2. τ ∈ 2<κ is the trunk of p, i.e., the least node which has two successors.

3. Above τ the tree p is fully branching, i.e. τ E η ∈ p⇒ η_0, η_1 ∈ p.

4. S ⊆ Sκinc is nowhere stationary.

2



1.1. The Generalized Random Forcing Qκ

5. For δ ∈ S the set Λδ satisfies:

(a) I ∈ Λδ ⇒ I is a predense subset of Qδ.

(b) |Λδ| ≤ δ.

6. If δ 6∈ S is a limit ordinal and η ∈ 2δ, then: η ∈ p iff (∀σ < δ) η�σ ∈ p.

7. If δ ∈ S is a limit ordinal and η ∈ 2δ, then: η ∈ p iff

(a) (∀σ < δ) η�σ ∈ p and

(b) (∀I ∈ Λδ)(∃q ∈ I) η ∈ [q].

For p, q ∈ Qκ we define q stronger than p if q ⊆ p. We write q ≤ p for “q stronger

than p” throughout this paper (and we use this convention for any forcing, not just

Qκ).

If G is a Qκ-generic filter then we call η =
⋃
p∈G tr(p) ∈ 2κ a Qκ-generic real or a

“random real”, where tr(p) is the trunk of p. Alternatively, η is the unique element

of
⋂
p∈G[p], where [p] is the set of cofinal branches of p.

Remark 1.1.6. Note that the set S ∩ lg(τ) (where lg(τ) is the order type of the

predecessors of τ) is really irrelevant; if we require min(S) > lg(τ), then p is uniquely

defined by its witness and vice versa.

So given p ∈ Qκ we may write tr(p), Sp and
⇀

Λp for the unique elements such

that (tr(p), Sp,
⇀

Λp) is a a witness for p ∈ Qκ.

Fact 1.1.7.

1. Let η ∈ 2<κ. Then (2<κ)[η] ∈ Qκ

2. 2<κ is the maximal element of Qκ.

3. Let p ∈ Qκ with witness (τ, S,
⇀

Λ) and let λ < κ be inaccessible with |τ | < λ.

Then p ∩ 2<λ ∈ Qλ.

4. Let p ∈ Qκ and let η ∈ p with witness (τ, S,
⇀

Λ). Then p[η] ∈ Qκ and p ≥ p[η].

Proof.

1. (η, ∅, 〈〉) is a witness.

3



Chapter 1. Preliminaries

2. By (1) we have 2<κ = (2<κ)[∅] ∈ Qκ. Maximality is obvious.

3. (τ, S ∩ λ,
⇀

Λ�λ) is a witness.

4. (τ ∪ η, S,
⇀

Λ) is a witness.

Remark 1.1.8. Let p, q ∈ Qκ. Then p and q are compatible in Qκ iff at least one

of the following holds:

1. tr(p) E tr(q) ∈ p

2. tr(q) E tr(p) ∈ q

In particular, two conditions with the same stem are always compatible.

Moreover, if p and q are compatible, then p ∩ q is the weakest condition in Qκ

which is stronger than both.

As a consequence, any set C ⊆ Qκ with the property

(∀η ∈ 2<κ)(∃p ∈ C) tr(p) = η

is predense in Qκ.

Lemma 1.1.9 ((Shelah 2017, 1.5)). Let
⇀
p = 〈pi : i < δ < κ〉 be a decreasing sequence

in Qκ such that

δ ≤ θ = sup
i<δ

lg(tr(pi)) 6∈ S(pα)

for all α < δ. Then pδ =
⋂
{pi : i < δ} is a lower bound for

⇀
p.

Proof. For i < δ let (τi, Si,
⇀

Λi) be a witness for pi.

Clearly 〈τi : i < δ〉 is a E-increasing sequence. Let τδ =
⋃
i<δ τi and of course

lg(τδ) = θ. By our assumption θ 6∈ S(pi) we have τδ ∈ pi for i < δ.

Let S =
⋃
i<δ Si \ (θ+ 1). Let

⇀

Λi = 〈Λi,λ : λ ∈ Si〉 and let Λλ = {Λi,λ : i < δ, λ ∈
Si} for λ ∈ S. Clearly |Λλ| ≤ δ · λ = λ.

This shows that (τδ, S, 〈Λλ : λ ∈ S〉) is a witness for pδ ∈ Qδ.

Lemma 1.1.10 ((Shelah 2017, 1.5)). Let p ∈ Qκ, let ρ ∈ p and let
⇀

J = 〈Ji : i <

δ ≤ κ〉 be a sequence of dense subsets for Qκ. Then there exists η ∈ 2κ such that

ρ E η ∈ [p] and (∀i < δ)(∃q ∈ Ji) η ∈ [q], i.e. η ∈ set1(
⇀

(J )).

Note that for δ = 0 the Lemma simply states that every ρ ∈ p is contained in a

branch of p of height κ.

4



1.1. The Generalized Random Forcing Qκ

Proof. We prove the Lemma by induction on inaccessible κ.

Let (τ, S,
⇀

Λ) be a witness for p.

Case 1: sup(Sκinc) = χ < κ.

• Case 1a: χ ∈ S. In this case χ is inaccessible. Use the induction hypothesis for

p ∩ 2<χ and Λλ to find ν ∈ p ∩ 2χ.

• Case 1b: χ 6∈ S. Remember S is not stationary in χ and work similarly to case

2 to find ν ∈ p ∩ 2χ.

Now for in both case 1a and 1b find η ∈ [p] ∩ set1(
⇀

J ) such that ν E η using the

Baire category theorem for 2κ.

Case 2: sup(Sκinc) = κ. We construct 〈pi, αi, qi : i < κ〉 such that:

1. αi < κ, increasing continuous with i.

2. pi ∈ Qκ, decreasing with i.

3. tr(pi) ∈ 2αi .

4. qi ∈ Ji

5. i = j + 1⇒ pi ≤ qj .

How can we carry out this construction? For i = j + 1 find qj ∈ Jj such that

qj 6⊥ pj so let ri ≤ qj , pj . Let E be a club disjoint from S and for k ≤ j let Ek be

a club disjoint from S(qk). Choose αi such that (αj , αi) ∩E ∩
⋂
k<j Ej 6= ∅ and use

the induction hypothesis to find νi ∈ 2αi ∩ ri. Let pi = r
[νi]
i .

For i limit use 1.1.9.

Now check that η =
⋃
i<κ tr(pi) is as required.

Corollary 1.1.11. Qκ is κ-strategically closed.

Proof. By 1.1.9.

Corollary 1.1.12. Let p, q ∈ Qκ. Then p, q are compatible iff

[p] ∩ [q] 6= ∅

Proof. By 1.1.10.

5



Chapter 1. Preliminaries

Theorem 1.1.13. Qκ is κ-linked. In particular Qκ satisfies the κ+-chain condition.

Proof. If p, q ∈ Qκ have the same trunk they are compatible (see 1.1.8). Because κ

is inaccessible we have |2<κ| = κ and hence

Qκ =
⋃

ρ∈2<κ

{p ∈ Qκ : tr(p) = ρ}

shows that Qκ is κ-linked.

Theorem 1.1.14 (κκ-bounding, (Shelah 2017, 1.9)). Let κ be weakly compact. Then

Qκ is κ-bounding, i.e. for every f ∈ κκ ∩ VQκ there exists g ∈ κκ ∩ V such that

f ≤ g, i.e. (∀i < κ) f(i) ≤ g(i).

Proof. Let p ∈ Qκ and ḟ be a Qκ-name such that p  ḟ ∈ κκ. For i < κ we construct

pi, βi, Si,
⇀

Λi, Ei such that for all i ≤ κ we have:

(1) pi ∈ Qκ witnessed by (tr(p), Si,
⇀

Λi), p0 = p, pi decreasing with i.

(2) Ei ⊆ κ is a club disjoint from Si, ⊆-decreasing with i.

(3) βi ∈ Ei, increasing continuous with i, β0 = lg(tr(p)).

(4) For j < i we have pj ∩ 2<βj = pi ∩ 2<βj .

(5) If i = j + 1 and ν ∈ pi ∩ 2βi then p
[ν]
i forces a value ḟ(j).

For i = j+ 1 let {qj,α : α < κ} be a maximal antichain of Qκ such that for every

α < κ we have:

1. qj,α forces a value γ(j, α) to ḟ(j)

2. qj,α ≤ pj ∨ [qj,α] ∩ [pj ] = ∅.

Let Ej be a club disjoint from Sj . Because κ is weakly compact there exists an

inaccessible λj > βj such that {qj,α ∩ 2<λj : α < λj} is predense in Qλj .

Let

H = {η ∈ pj ∩ 2λj : (∃α < λj) η ∈ [qj,α ∩ 2<λj ]}.

For η ∈ H find α < λj such that η ∈ [qj,α ∩ 2<λj ] and define rj,η = q
[η]
j,α. Clearly

rj,η ≤ qj,α hence rj,η forces a value to ḟ(j).

Let rj,η be witnessed by (η, Sj,η,
⇀

Λj,η) and let Ej,η be a club disjoint from Sj,η.

We define:

6



1.2. The Generalized Null Ideal

(a) pi =
⋃
η∈H rj,η

(b) Si = (Sj ∩ λj) ∪ {λj} ∪
⋃
η∈H(Sj,η\(λj + 1)).

(c)
⇀

Λi = 〈Λi,λ : λ ∈ Si〉 where

Λi,λ =


⋃
{Λj,η,λ : η ∈ H ∧ λ ∈ Sj,η} λ > λj

Λj,λ λ < λj

{{qj,α ∩ 2<λj : α < λj}} λ = λj

(d) Let Ei = Ej ∩
⋂
η∈H(Ej,η\(λj + 1)).

(e) Let βj = min(Ei\λj + 1).

For i limit let pi =
⋂
j<i pj and βi = supj<j βi. Let Si =

⋃
j<i Sj and for δ ∈ Si

let Λi,δ =
⋃
j<i Λj,δ. By construction (tr(p), Si,

⇀

Λi) is a witness for pi. In particular

note that Si ∩ βi is not stationary in βi because {βj : j < i} is a club disjoint from

Si ∩ βi.
Finally for j < κ we have by construction pκ “ḟ(j) ≤ supα<λj γ(j, α) = g(j)”.

1.2 The Generalized Null Ideal

Definition 1.2.1. For inaccessible κ we now define ideals on 2κ as follows:

• For J ⊆ Qκ we define

set1(J ) =
⋃
p∈J

[p], set0(J ) = 2κ\ set1(J ).

• For a collection Λ of subsets of Qκ we define

set1(Λ) =
⋂
J∈Λ

set1(J ), set0(Λ) = 2κ\ set1(Λ).

Definition 1.2.2. For A ⊆ 2κ:

1. A ∈ wid(Qκ) iff there is a predense set C ⊆ Qκ such that A ⊆ set0(C).
Equivalently, A ∈ wid(Qκ) iff

(∀p ∈ Qκ)(∃q ∈ Qκ) q ≤ p and [q] ∩A = ∅

(We will discuss the ideal wid(Qκ) in section 3, for “equivalently” see in par-

ticular 3.1.3.)
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2. id(Qκ) is the ≤κ-closure of wid(Qκ):

A ∈ id(Qκ) iff A can be covered by the union of at most κ many sets in

wid(Qκ).

Equivalently, A ∈ id(Qκ) iff there is a family Λ of κ many predense sets such

that A ⊆ set0(Λ).

Theorem 1.2.3 ((Shelah 2017, 3.2)). Let A ⊆ 2κ. Then A ∈ id(Qκ) iff there exists

a κ-Borel set B ⊆ 2κ such that A ⊆ B and

Qκ  η̇ 6∈ B

where η̇ is the canonical generic κ-real added by Qκ.

[More explicitly, we should say that there is a κ-Borel code c in V such that the

corresponding Borel set Bc contains A (A ⊆ Bc) and that in the Qκ-extension, η

will not be in the Borel set Bc, computed in the extension: Qκ  η̇ 6∈ Bc.]

Proof. By 1.2.4 and 1.2.5.

Lemma 1.2.4 ((Shelah 2017, 3.2)). Let A ⊆ 2κ. If there exists a κ-Borel set B such

that A ⊆ B and Qκ “η̇ 6∈ B” then A ∈ id(Qκ).

Proof. Let B ⊆ 2κ be a κ-Borel set such that Qκ “η̇ 6∈ B”. Let (T ⊆ κ<ω,
⇀

B) be a

Borel code for B (see 1.2.6 but to make the proof less stressful we allow complements

and intersections instead of complements of unions). That is:

(1) T is a subtree of κ<ω with no infinite branch.

(2) For ρ ∈ T we have either

(i) sucT (ρ) = ∅ or

(ii) sucT (ρ) = {ρ_0} or

(iii) sucT (ρ) = {ρi : i < κ}.

(3)
⇀

B = 〈Bρ : ρ ∈ T 〉 and for Bρ is a Borelset for ρ ∈ T .

(4) B〈〉 = B.

(5) If sucT (ρ) = ∅ then

Bρ = {η ∈ 2κ : η(iρ) = cρ}

for some iρ < κ, cρ < 2.
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(6) If sucT (ρ) = {ρ_0} then Bρ = 2κ\Bρ_0.

(7) If sucT (ρ) = {ρi : i < κ} then

Bρ =
⋂
i<κ

Bρ_i.

For ρ ∈ T we inductively construct Iρ, tρ such that:

(a) Iρ is a maximal antichain of Qκ.

(b) tρ : Iρ → 2.

(c) tρ(p) = 0⇒ p “η̇ 6∈ Bρ” and tρ(p) = 1⇒ p “η̇ ∈ Bρ”.

(d) If | sucT (ρ)| = 0, p ∈ Ip then lg(tr(p)) > iρ.

(e) If | sucT (ρ)| = 1 then Iρ = Iρ_0 and for p ∈ Iρ we have tρ_0(p) = 1− tρ(p).

(f) If sucT (ρ) is infinite, p ∈ Iρ, tρ(p) = 0, then p “η̇ 6∈ Bρ_i” for some i < κ.

(g) If ρ E ψ ∈ T and q ∈ Iψ then there exists a unique p ∈ Iρ such that p ≤ q.

[Note that the construction is not strictly inductive. If ρ has only one successor then

we may need to look at a successor of ρ to satisfy (f) and then use (e) to push the

work down. But it should be clear that we can easily construct Iρ, tρ as required.]

Let Y =
⋂
ρ∈T set1(Iρ) and by definition 2κ\Y ∈ id2(Qκ). We claim that for each

ρ ∈ T , ν ∈ Y we have

ν ∈ Bρ ⇔ (∃p ∈ Iρ) ν ∈ [p] ∧ tρ(p) = 1.

Proof by induction on T , starting from the leaves.

Case 1: | sucT (ρ)| = 0.

There exists a unique p ∈ Iρ such that ν ∈ [p] (remember 1.1.12). By (5) and (d)

we have

ν ∈ Bρ ⇔ tr(p)(iρ) = cρ ⇔ tρ(p) = 1.

Case 2: | sucT (ρ)| = 1.

Let p ∈ Iρ = Iρ_0 be the unique condition such that ν ∈ [p]. Then

ν ∈ Bρ ⇔ ν 6∈ Bρ_0 ⇔ tρ_0(p) = 0 ⇔ tρ(p) = 1.

Case 3: sucT (ρ) is infinite.

Let p ∈ Iρ be the unique condition such that ν ∈ [p].

9
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• Case 3a: tρ(p) = 0.

By (f) there exists ψ = ρ_i such that p ”η̇ 6∈ Bψ. Let q ∈ Iψ be the unique

condition such that ν ∈ [q]. By (g) we have q ≤ p hence tψ(q) = 0. By induction

hypothesis this implies ν 6∈ Bψ hence ν 6∈ Bρ.

• Case 3a: tρ(p) = 1.

Similarly.

Finally by our assumption Qκ  η̇ 6∈ B = B〈〉 we have t〈〉(p) = 0 for all p ∈ I〈〉.
Therefore Y ∩B = ∅ and B ∈ id2(Qκ).

Lemma 1.2.5. Let A ∈ id(Qκ). Then there exists a κ-Borel set B such that A ⊆ B

and Qκ “η̇ 6∈ B”.

Proof. Let I = {Ii : i < κ} be a family of maximal antichains of Qκ witnessing

A ∈ id(Qκ), i.e.

2κ\A ⊇ set1(I) =
⋂
i<κ

⋂
p∈Ii

[p].

It is easy to check that for any p ∈ Qκ the set [p] ⊆ 2κ is closed. Remember that

Qκ satisfies the κ+-c.c. (1.1.13) hence |Ii| ≤ κ and thus set1(I) is the intersection

of κ-many closed sets.

It remains to show that Qκ “η̇ ∈ set1(I)”. Let p ∈ Qκ be arbitrary and let i < κ.

Find p′ ∈ Ii such that p, p′ are compatible and let p′′ = p ∧ p′. Now p′′ “η̇ ∈ Ii”.

Clearly this suffices.

Definition 1.2.6. For every η ∈ 2<κ we write [η] for the set of x ∈ 2κ extending η;

these are the basic clopen sets of the box product topology (i.e., the <κ-box product

topology).

Let Borelκ be the smallest family containing all clopen sets which is closed under

complements and unions/intersections of at most κ-many sets. If B ∈ Borelκ then

we call B a κ-Borel set.

A Borel code is a well-founded tree (with a unique root) with κ many nodes

whose leaves are labeled with elements of 2<κ; this assigns basic clopen sets to every

leaf. This assignment can be naturally extended to the whole tree: if the successors

of a node ν are labeled with set (Bi : i ∈ κ), then ν is labeled with 2κ\
⋃
i<κ Bi.

(Equivalently, a Borel code is an infinitary formula in the propositional language

L<κ+ , where the propositional variables are identified with the basic clopen sets.)
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If c is a Borel code, we write Bc for the Borel set associated with it (i.e., the

value of the assignment described above on the root of the tree c).

Fact 1.2.7. Let V,W be two universes. Let η ∈ 2κ ∩V ∩W and let c be a Borel

code in V ∩W. Then it follows from an easy inductive argument on the rank of c:

V |= η ∈ Bc ⇔ W |= η ∈ Bc.

This fact will allow us to speak about Borel sets when we should officially speak

about Borel codes.

Definition 1.2.8. Let S ⊆ Sκinc be nowhere stationary. By Qκ,S we mean the forcing

that is inductively defined similarly to Qκ but additionally for δ ∈ Sκ+1
inc we require

p ∈ Qδ,S∩δ iff:

1. p ∈ Qδ.

2. p is witnessed by some (τ,W,
⇀

Λ) such that W ⊆ S ∩ δ.

Note that this definition is different from 3.3.8.

1.3 Quantifiers and Rational Translates

Definition 1.3.1. Let µ be a regular cardinal. We use the following notation:

• Let A,B ⊆ µ. We say A ⊆∗µ B if there exists ζ < µ such that A\ζ ⊆ B. If µ is

clear from the context we write A ⊆∗ B.

• “(∃µε) φ(ε)” is an abbreviation for “{ε < µ : φ(ε)} is cofinal in µ”. Similarly

“(∀µε) φ(ε)” is an abbreviation for “{ε < µ : ¬φ(ε)} is bounded in µ” If µ is

clear from the context we write ∃∞ and ∀∞.

Note that these quantifiers satisfy the usual equivalence

(∃µε) φ(ε) ⇔ ¬(∀µε) ¬φ(ε).

• For η, ν ∈ 2µ (or µµ) define

1. η =∗µ ν ⇔ (∀∞i < µ) η(i) = ν(i).

2. η ≤∗µ ν ⇔ (∀∞i < µ) η(i) ≤ ν(i).

11
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and again we may just write η =∗ ν and η ≤∗ ν.

Definition 1.3.2. We define:

1. bκ = min{|B| : B ⊆ κκ ∧ (∀η ∈ κκ)(∃ν ∈ B) ¬(ν ≤∗ η)}.

2. dκ = min{|D| : D ⊆ κκ ∧ (∀η ∈ κκ)(∃ν ∈ D) η ≤∗ ν)}.

Definition 1.3.3. • For p ∈ Qκ, α < κ, ν ∈ 2α, and η ∈ p ∩ 2α (typically

tr(p) E η) we let p[η,ν] be the condition obtained from p by first removing all

nodes not compatible with η, and then replacing η by ν:

p[η,ν] = {ρ : ρ E ν ∨
(
(∃%) η_% ∈ p ∧ ρ = ν_%

)
}

• For J ⊆ Qκ, α < κ, a permutation π of 2α let

J [α,π] = {p[η,ν] : p ∈ J , η ∈ (p ∩ 2α), ν = π(η)}

• For a collection Λ of subsets of Qκ and α < κ.

Λ[α] = {J [α,π] : J ∈ Λ, π is a permutation of 2α}

Easily |Λ[α]| ≤ κ + |Λ|. If Λα = Λ for all α < κ we say that Λ is closed under

rational translates.

1.4 The Property Pr(·) and the Nowhere Stationary Ideal

Definition 1.4.1. Pr(κ) means there exists Λ = {Λi : i < κ} where Λi ⊆ Qκ is a

maximal antichain (or predense) such that for no p ∈ Qκ we have

[p] ⊆ set1(Λ) =
⋂
i<κ

set1(Λi).

We define

Sκpr = {λ ∈ Sκinc : Pr(λ)}.

Lemma 1.4.2. Let κ be Mahlo. Then

X = {λ < κ : λ is inaccessible but not Mahlo}

is a stationary subset of κ.

12



1.4. The Property Pr(·) and the Nowhere Stationary Ideal

Proof. Towards contradiction assume X is not stationary and let E ⊆ κ be a club

disjoint from X. Note that λ ∈ E ∩ Sinc ⇒ λ is Mahlo. Let

λ = min{acc(E) ∩ Sinc}

and of course acc(E) ⊆ E hence λ is Mahlo. Clearly λ∩E is a club of λ and because λ

is Mahlo S = λ∩E∩Sinc is stationary. Consider the function f : µ ∈ S 7→ sup(E∩µ)

and note that by definition of λ we have f(µ) < µ, i.e. f is regressive. Of course λ is

regular, uncountable use Fodor’s lemma to find S′ ⊆ S such that S′ is a stationary

subset of λ and f�S ≡ γ. In particular S′ is unbounded hence (γ, λ) ∩ E = ∅.
Contradiction to λ ∈ acc(E).

Lemma 1.4.3 ((Shelah 2017, 4.4)).

1. If κ is inaccessible but not Mahlo then Pr(κ).

2. If κ is weakly compact then ¬Pr(κ).

3. If κ = sup(Sκinc) then κ = sup(Sκpr).

4. If κ is Mahlo then Sκpr is a stationary subset of κ.

Proof.

1. Let E ⊆ κ be a club disjoint from Sκinc and let 〈αi : i < κ〉 be an increasing

enumeration of E. For i < κ let

Ii = {[ν_0] : lg(ν) = αj , j > i} ⊆ Qκ

and clearly each Ii is open dense. We claim that {Ii : i < κ} witnesses Pr(κ).

Let p ∈ Qκ and find i∗ < κ such that αi∗ > lg(tr(p)). By induction on i ∈ [i∗, κ)

find νi ∈ 2αi ∩ p such that

i∗ ≤ j < i⇒ ν_j 1 E νi.

[Why possible? Trivial for successor. For limit remember the choice of E.]

Let η =
⋃
i∈[i∗,κ) νi. Clearly η ∈ [p] but η 6∈ set1({Ii : i < κ}).

2. Work as in 1.1.14.
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3. By (1).

4. By (1) and 1.4.2.

Discussion 1.4.4. A similar argument as 1.4.3 shows that for κ not Mahlo Qκ

adds a Cohen real. This gives a lower bound for the consistency strength of “Qκ is

κκ-bounding”.

Theorem 1.4.5 ((Shelah 2017, 4.7, 4.8)). Let p ∈ Qκ, lg(tr(p)) < α < β ≤ κ. Then

there exists q ≤ p such that:

(a) tr(p) = tr(q).

(b) Sp\(α, β) = Sq\(α, β) and λ ∈ Sq\(α, β)⇒ Λp,λ = Λq,λ.

(c) Sq ∩ (α, β) ⊆ Sκpr.

In particular for β = κ we get

{p ∈ Qκ : Sp ∈ nstpr
κ }

is a dense subset of Qκ.

Proof. By induction on β.

Case 1: α = β ∨ α = β + 1.

Trivial because (α, β) = ∅.
Case 2: β = sup(β ∩ Sp) + 1, sup(β ∩ Sp) 6∈ Sp\Sκpr.

Let γ = sup(β ∩Sp) and use the induction hypothesis for p and (α, γ) to get q. Now

q also satisfies the demands for (α, β) because either γ 6∈ Sp or γ ∈ Sκpr.

Case 3: β > sup(β ∩ Sp) + 1.

Let γ = sup(β ∩ Sp) + 1 and use the induction hypothesis for p and (α, γ) to get q.

Again easily q satisfies the demands for (α, β).

Case 4: β = sup(β ∩ Sp).
So β is limit and let β∗ = cf(β) and let 〈αi : i ≤ β∗〉 be an increasing, continuous

sequence such that:

1. α0 = α.

2. αβ∗ = β.
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3. For every i < β∗ we have αi 6∈ Sp. (Remember Sp is not stationary in β.)

For i ≤ β∗ find pi ∈ Qκ such that:

1. p0 = p.

2. tr(pi) = tr(p)

3. Spi\(α, αi) = Sp\(α, αi) and λ ∈ Spi\(α, αi)⇒ Λpi,λ = Λp,λ.

4. If j < i then pi ≤ pj , Spi\(αj , αi) = Spj\(αj , αi) and λ ∈ Spi\(αj , αi) ⇒
Λpi,λ = Λpj ,λ.

5. If i = j + 1 then Spi ∩ (αj , αi) ⊆ Sκpr.

[How can we carry out this construction? For i = j + 1 use the induction hy-

pothesis with pj , (αj , αi). For i limit remember that {αj : j < i} is by construction

a club disjoint from Spi .]

Now q = pκ is as required.

Case 5: β = δ + 1, δ ∈ Sp\Sκpr, δ > α.

So ¬Pr(δ). Find p∗ ∈ Qδ such that:

1. tr(p∗) = 〈〉.

2. Sp∗ ⊆ (α, δ).

3. [p] ⊆ set1(Λp,δ).

[Why possible? Use rational translates.]

Now define q ∈ Qκ by:

1. tr(q) = tr(p).

2. Sq = Sp\{δ} ∪ Sp∗ .

3. For λ ∈ Sq let

Λq,λ =


Λp,λ λ ∈ Sp\Sp∗
Λp∗,λ λ ∈ Sp∗\Sp
Λp,λ ∪ Λp∗,λ λ ∈ Sp ∩ Sp∗ .

Now because δ 6∈ Sq we can work as in case 2 or case 3.
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Definition 1.4.6. Define ideals:

nstκ = {S ⊆ Sκinc : S is nowhere stationary}

nstpr
κ = {S ⊆ Spr

κ : S is nowhere stationary}

The order on these ideals is ⊆∗, i.e. set-inclusion modulo bounded subsets. Note

that by 1.4.3(4), for every Mahlo cardinal κ the set Sκpr is stationary; so κ Mahlo is

sufficient for nstpr
κ to be proper (i.e., κ /∈ nstpr

κ ).

1.5 Ideals and Strengthened Galois-Tukey Connections

Definition 1.5.1. Let X be a set and let i ⊆ P(X) be an ideal. The equivalence

relation ∼i on P(X) is defined by A ∼i B ⇔ A4B ∈ i. We write X/∼i for the set

of equivalence classes.

If j is an ideal containing i, we write j/i for the naturally induced ideal on X/i:

j/i := {A/∼i | A ∈ j}.

Definition 1.5.2. Let X be a set and let i ⊆ P(X) be an ideal containing all

singletons. Then:

add(i) := min{|A| : A ⊆ i ∧ ∪A 6∈ i}

cov(i) := min{|A| : A ⊆ i ∧ ∪A = X}

non(i) := min{|A| : A ∈ P(X)\i}

cf(i) := min{|A| : A ⊆ i ∧ (∀B ∈ i)(∃A ∈ A) B ⊆ A}.

For two ideals i, j ⊆ P(X) let

add(i, j) := min{|A| : A ⊆ i ∧ ∪A 6∈ j}

cf(i, j) := min{|A| : A ⊆ j ∧ (∀B ∈ i)(∃A ∈ A) B ⊆ A}.

Fact 1.5.3. Let X be a set and let i ⊆ P(X) be an ideal. Then

(a) add(i) ≤ cov(i) ≤ cf(i).

(b) add(i) ≤ non(i) ≤ cf(i).

Fact 1.5.4. Let X be a set and let i− ⊆ i ⊆ P(X) be two ideals. Then:
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(a) add(i) ≤ add(i−, i).

(b) add(i−) ≤ add(i−, i).

(c) cf(i−, i) ≤ cf(i).

(d) cf(i−, i) ≤ cf(i−).

Fact 1.5.5. Let X be a set and let i− ⊆ i ⊆ P(X) be two ideals. Then:

(a) add(i) ≥ min{add(i−), add(i/i−)}.

(b) cf(i) ≤ cf(i−) + cf(i/i−).

Definition 1.5.6. Consider ideals i− ⊆ i ⊆ P(X), j ⊆ P(U) We call maps

1. φ+ : i→ j

2. φ− : j→ i−

a strengthened Galois-Tukey connection if for all A ∈ i, B ∈ j:

φ−(B) ⊆ A ⇒ B ⊆ φ+(A).

Discussion 1.5.7. Strengthened Galois-Tukey connections are a special case of

what is called a generalized Galois-Tukey connection in (Vojtáš 1993) and a mor-

phism in (Blass 2010).

Lemma 1.5.8. Consider i− ⊆ i ⊆ P(X), j ⊆ P(U) and let φ−, φ+ be a strengthened

Galois-Tukey connection between them. Then

(a) add(i−, i) ≤ add(j).

(b) cf(i−, i) ≤ cf(j).

Proof.

(a) Let 〈Bζ : ζ < µ < add(i−, i)〉 be a family of Bζ ∈ j. Find A ∈ i such that⋃
ζ<µ φ

−(B) ⊆ A thus
⋃
ζ<µBζ ⊆ φ+(A).

(b) Let 〈Aζ : ζ < µ = cf(i−, i)〉 be a family of Aζ ∈ i cofinal for i−. Then for

B ∈ j we can find ζ < µ such that φ−(B) ⊆ Aζ thus B ⊆ φ+(Aζ), i.e.

〈φ+(Aζ) : ζ < µ〉 is a cofinal family of j.
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1.6 Miscellaneous

Definition 1.6.1. Let X ⊆ κ. Then

1. acc(X) := {α < κ : (∃Y ⊆ X) sup(Y ) = α.

2. nacc(X) := X\ acc(X).

Definition 1.6.2. Let id(Cohenκ) be the ideal of meager subsets of 2κ.
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CHAPTER 2

Tools

In this section we introduce/recall several concepts and tools that will be useful

later. In particular, we give sufficent conditions for the following properties to be

preserved in iterations.

• 2.1: Closure properties, such as strategic closure.

• 2.2: Stationary Knaster, a property that is intermediate between the κ+-chain

condition and κ-centeredness; this property is preserved in <κ-support itera-

tions.

• 2.3: a version of κ-centeredness.

(Also, similarly to the classical case, sufficiently centered forcing notions will

not add random reals, and will neither decrease non(Qκ) nor increase cov(Qκ).)

• 2.4 and 2.5: A property defined by a game, which allows fusion arguments in

iterations with κ-support, and implies properness and κκ-bounding.

2.1 Closure

Definition 2.1.1. Let Q be a forcing notion. We say that Q is α-closed if for every

descending sequence 〈pi : i < i∗〉 of length i∗ < α (with all pi ∈ Q) there is a lower

bound in Q, i.e. there exists q ∈ Q such that for every i < i∗ the condition q is

stronger than pi.
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To avoid confusion we may write <α-closed.

Definition 2.1.2. Let Q be a forcing notion. We say that Q is α-directed closed if

every directed set D ⊆ Q of cardinality < α has a lower bound. (A set D is called

directed if any two elements of D are compatible and moreover have a lower bound

in D.)

To avoid confusion we may write <α-directed closed.

Remark 2.1.3. It is customary to write κ-closed and κ-c.c. for <κ-closed and <κ-

c.c., respectively.

An iteration in which the domains of the conditions have size ≤ κ should logically

be called “iterations with <κ+-supports”, or abbreviated “κ+-supports”. Conven-

tion, however, dictates that such iterations are called “iterations with κ-supports”;

we will follow this convention.

Most of our forcing iterations will have < κ-support and behave similarly to finite

support iterations in the classical case; some of our iterations will have κ-support,

in analogy to countable support iterations.

Definition 2.1.4. Let Q be a forcing notion and let q ∈ Q. Define the game Cκ(Q, q)
between two players White and Black taking turns playing conditions of Q stronger

than q, i.e. first White plays p0 ≤ q, then Black plays a condition p′0 ∈ Q, then

White plays p1 ∈ Q and so on. The game continues for κ-many turns and note that

White plays first in limit steps. The rules of the game are:

1. For i < κ we require p′i ≤ pi.

2. For i < j < κ we require pj ≤ p′i.

White wins if he can follow the rules until the end.

We say that Q is κ-strategically closed if White has a winning strategy for Cκ(Q, q)
for every q ∈ Q.

Fact 2.1.5. Let Q be a forcing notion. Consider the following statements:

(a) Q is <κ-directed closed.

(b) Q is <κ-closed.

(c) Q is κ-strategically closed.
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Then: (a) ⇒ (b) ⇒ (c).

Fact 2.1.6. Let P = 〈Pα, Q̇α : α < δ〉 be a forcing iteration with <λ-support. If for

every α < δ we have Pα  “Q̇α |= φ” then also P |= φ where φ ∈ {“<κ-directed

closed”, “<κ-closed”, “κ-strategically closed”} whenever λ ≥ κ. In particular, these

properties are preserved in <κ-support iterations and in κ-support iterations.

2.2 Stationary Knaster, preservation in <κ-support it-
erations

Discussion 2.2.1. To obtain independence results for the classical case (κ = ω) we

often use finite support iterations of c.c.c. forcing notions. Such iterations are useful

due to the well known fact that their finite support limits will again satisfy the c.c.c.

In this section we will quote a parallel for the case of uncountable κ, first ap-

pearing in (Shelah 1978).

Definition 2.2.2. Let κ be a cardinal. Let Q be a forcing notion. We say that

Q satisfies the stationary κ+-Knaster condition if for every {pi : i < κ+} ⊆ Q
there exists a club E ⊆ κ+ and a regressive function f on E ∩ Sκ+κ such that any

i, j ∈ E ∩ Sκ+κ we have that

f(i) = f(j) ⇒ pi 6⊥ pj .

Fact 2.2.3. The stationary κ+-Knaster condition implies the κ+-chain condition.

Proof. By Fodor’s pressing down lemma the stationary κ+-Knaster condition implies

that for every {pi : i < κ+} ⊆ Q there exists a stationary set S ⊆ κ+ such for that

any i, j ∈ S the conditions pi, pj are compatible.

Definition 2.2.4. Let κ be a cardinal. Let Q be a forcing notion. We say that Q
satisfies (∗κ) if the following holds:

(a) Q satisfies the stationary κ+-Knaster condition.

(b) Any decreasing sequence 〈pi : i < ω〉 of conditions of Q has a greatest lower

bound.

(c) Any compatible p, q ∈ Q have a greatest lower bound.
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(d) Q does not add elements of (κ+)<κ (e.g. Q is strategically κ-closed.)

Lemma 2.2.5. Let κ be a cardinal. Let Q be a forcing notion such that:

1. Q satisfies the stationary κ+-Knaster condition.

2. Qκ is κ-strategically closed.

Then Q does not collapse cardinals.

Lemma 2.2.6. Let Q be a forcing notion that satisfies the κ+-c.c. and let Ċ be a

Q-name for a club of κ+ in VQ. Then there exists a club D ∈ V of κ+ such that

Q  Ď ⊆ Ċ.

Proof. For every α < κ let ċα be a name for the α-th element of Ċ and let 〈pα,ζ :

ζ < κ〉 be a maximal antichain such that each ζ < κ we have pα,ζ  “ċα = cα,ζ” for

some cα,ζ < κ+. Let cα = supζ<κ(cα,ζ) and define f(α) = cα.

By induction we construct an enumeration 〈dα : α < κ+〉 of the elements of D.

For α limit simply let dα = supβ<α(dβ).

Given dα we find dα+1 > dα as follows. Let 〈αi : i < ω〉 be a sequence such that

α0 = dα and for each j = i+ 1 we have αj = f(i) + 1.

Note that

Q  α ≤ ċα ≤ cα = f(α) < f(α) + 1

and let dα+1 = supi<ω αi. Clearly dα+1 > dα and Q  “dα+1 ∈ Ċ”.

Lemma 2.2.7. Let Q be a forcing notion satisfying:

(b) Any decreasing sequence 〈pi : i < ω〉 of conditions of Q has a greatest lower

bound.

(c) Any compatible p, q ∈ Q have a greatest lower bound.

Let
⇀
r = 〈ri : i < ω〉, ⇀

s = 〈si : i < ω〉 be two decreasing sequences of conditions of Q
such that for all i < ω we have ri 6⊥ si. Let r, s be a greatest lower bounds for

⇀
r,
⇀
s

respectively. Then r 6⊥ s.

Proof. For i < ω use (c) and let ti = ri ∧ si. It is easy to see that
⇀

t = 〈ti : i < ω〉 is

decreasing. If i = j+1 then ti ≤ rj∧sj = tj . Thus use (b) and let t be a lower bound

for
⇀

t. Now check that t is a lower bound for both
⇀
r and

⇀
s. Hence t ≤ r, t ≤ s.
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Theorem 2.2.8. Let κ be a cardinal. Let 〈Pξ, Q̇ξ : ξ < δ〉 be a <κ-support iteration

such that for every ξ < δ

Pξ  Q̇ξ satisfies (∗κ) from Definition 2.2.4.

Then Pδ satisfies the stationary κ+-Knaster condition.

Proof. We follow (Shelah 1978). Let {pi : i < κ+} ⊆ Pδ and we are going to find

E, f satisfying 2.2.2.

We inductively define 〈pni : i < κ+, n < ω〉 and 〈Ėnξ , ḟnξ , anξ : ξ < δ, n < ω〉 such

that:

1. For i < κ+ we have p0
i = pi.

2. For ζ < δ, n < ω we have Pζ “Ėnζ , ḟ
n
ζ witness the stationary κ+-Knaster

condition for 〈pni (ζ) : i < κ+〉”. By 2.2.6 and an inductive argument we have

without loss of generality Ėnξ = Enξ ∈ V.

3. For i < κ+, n < ω we have pn+1
i ≤ pni .

4. For i < κ+, n < ω, ξ ∈ supp(pni ) we have pn+1
i �ζ  “ḟnξ (i) = anξ (i)” for some

anξ (i) < i. (Remember 2.2.4 (d)).

Now let Eξ =
⋃
n<ω E

n
ξ and remembering 2.2.4 (b) let pωi be the greatest lower bound

of 〈pni : n < ω〉. Let 〈ξα : α < κ+〉 be an enumeration of X =
⋃
i<κ+ supp(pωi ). Let

E = {i < κ+ : (∀α < i) i ∈ Eξα}

be the diagonal intersection “along X”. For i < κ+ let:

1. αi = min{γ ≤ i : (∀α < i) ξα ∈ supp(pωi )⇒ α ≤ γ}.

2. βi = sup(supp(pωi )).

Note that:

1. For i ∈ Sκ+κ we always have αi < i.

2. There exists a club E′ ⊆ κ+ such that for j ∈ E′ and i < j we have βi < j.
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Define

f(i) = p(αi, 〈anξα(i) : α < i, n < ω〉)q

where p·q : κ+ × (κ+)<κ×ω → κ+ is a coding function. Let E′′ ⊆ E ∩ E′ be a club

such that f is regressive on E′′∩Sκ+κ and we claim that f,E′′ witness the stationary

κ+-Knaster condition for 〈pi : i < κ+〉.
Let i, j ∈ E′′ ∩Sκ+κ , let f(i) = f(j) and i < j and we are going to show pωi 6⊥ pωj .

We claim exists r stronger than pωi and pωj with r(ξ) = pωi (ξ) ∧ pωj (ξ) for ξ < δ.

We show inductively for ξ ≤ δ that r�ξ is stronger than pωi �ξ and pωj �ξ (and that

r�ξ is well defined). For ξ limit ordinal or ξ 6∈ supp(pωi )∩ supp(pωj ) this is immediate.

For ξ ∈ supp(pωi ) ∩ supp(pωj ) there is some γ < κ+ such that ξ = ξγ . Remember

βi < j hence γ ≤ αi = αj < i. Thus aξγ(i) = aξγ(j) and by definition of E we also

have i, j ∈ Eξα. So by construction for each n < ω we have r�ξ “pni (ξ) 6⊥ pnj (ξ)”.

Thus by 2.2.7 also r�ξ “pωi (ξ) 6⊥ pωj (ξ) and let r(ξ) witness it.

Fact 2.2.9. Let κ be a cardinal. Let Q be a κ-linked forcing notion. Then Q satisfies

the stationary κ+-Knaster condition.

2.3 κ-centered<κ, preservation in <κ-support iterations

Definition 2.3.1. Let κ be a cardinal, let P be a forcing notion and let X ⊆ P.

1. We say that X is linked if for every p0, p1 ∈ X we have p0 6⊥ p1.

We say that P is κ-linked if there exist 〈Xi : i < κ〉 such that Xi ⊆ P is linked

and

P =
⋃
i<κ

Xi.

2. We say that X is centered<κ if for every Y ∈ [X]<κ there exists q such that

q ≤ p for every p ∈ Y .

We say that P is κ-centered<κ if there exist 〈Xi : i < κ〉 such that each Xi ⊆ P
is centered<κ and

P =
⋃
i<κ

Xi.

Fact 2.3.2. Let κ be a cardinal and let P be a forcing notion. Consider the following

statements:
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(a) P is κ-centered<κ.

(b) P is κ-linked.

(c) P satisfies the κ+-c.c.

Then: (a) ⇒ (b) ⇒ (c).

Definition 2.3.3. Let κ be a cardinal. We say that an iteration 〈Pα, Q̇α : α < ζ〉 is

κ-centered if it has <κ-support and

Pα  Q̇α is κ-centered<κ.

Fact 2.3.4. Let 〈Pα, Q̇α : α < ζ〉 be a κ-centered iteration. Then there exists a

sequences 〈Ċα : α < ζ〉, 〈ċα : α < ζ〉 such that for all Ċα and ċα are Pα-names such

that Pα forces:

(a) Ċα is a function κ→ P(Q̇α)

(b) ran(Ċα) = Q̇α

(c) i < κ⇒ Ċα(i) is centered<κ

(d) ċα is a function Q̇α → κ

(e) q̇ ∈ Qα ⇒ q̇ ∈ Ċα(ċα(q̇))

Without loss of generality we may also assume that each Ċα(n) is nonempty and

closed under weakening of conditions, in particular 1Qα ∈ Ċα(n) for each n.

We shall use this notation throughout this section.

Definition 2.3.5. Let P = 〈Pα, Q̇α : α < ζ〉 be a κ-centered iteration. We call a

condition p ∈ P fine if for each α ∈ supp(p) the restriction p�α decides some n < κ

such that p�α  “p(α) ∈ Ċα(n)”. Note that for α 6∈ supp(p) this is trivially true

because 1Qα is in every Ċα(n).

Definition 2.3.6. Let P = 〈Pα, Q̇α : α < ζ〉 be a κ-centered iteration. We say that

P is finely <κ-closed if for every α < ζ with cf(α) < κ there exist L1
α ∈ V and a

Pα-name L̇2
α such that:

(a) L1
α is a function κ<κ → κ
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(b) Pα “L̇2
α is a function Q̇<κ

α → Q̇α.”

(c) If
⇀
q = 〈q̇i : i < i∗〉 is a descending sequence of length i∗ < κ in Q̇α then Pα

forces:

(1) L̇2
α(

⇀
q) is a lower bound for

⇀
q.

(2) ċα(L̇2
α(

⇀
q)) = L1

α(〈ċα(q̇i) : i < i∗〉).

The typical situation here is that the coloring of the forcing is essentially some

trunk function so if we find a lower bound q for some descending sequence 〈q̇i : i < α〉
the union of the trunks of the pi will tell us the color of q.

Lemma 2.3.7. Let P = 〈Pα, Q̇α : α < ζ〉 be a κ-centered finely <κ-closed iteration

of length ζ < (2κ)+ then:

(a) P′ = {p ∈ P : p is fine} is dense in P.

(b) P is κ-centered<κ.

Discussion 2.3.8. The following proof closely follows (Blass 2011) where the result

is explained for the ω-case. The only adjustment we have to make is the demand for

fine closure (as defined in 2.3.6) to deal with the limit case that does not appear in

the ω-version of the proof.

This theorem also appears in (Brendle, Brooke-Taylor, Friedman, and Montoya

2018).

Proof.

(a) Let p ∈ P be arbitrary. We are going to find a condition p′ stronger than p

such that p′ is fine. We prove this by induction on δ ≤ ζ for Pδ, constructing a

decreasing sequence of conditions 〈pi : i ≤ δ〉 with pi ∈ Pδ such that for each

i ≤ δ the condition pi�(i+ 1) is fine:

(i) p0 = p

(ii) i = j + 1: First find q stronger than pi�i such that q decides the color

of pj(i). Then use the induction hypothesis to find q′ ≤ q such that q′

is fine and let pi = q′ ∧ p.
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(iii) i a limit ordinal, cf(i) < κ: Consider the condition

q′ = (L̇2
j (〈qk(j) : k < i〉) : j < i) ∈ Pi

and let pi = q′ ∧ p.

(iv) i a limit ordinal, cf(i) ≥ κ: Remember that P has <κ-support so this

case is trivial.

(b) By the Engelking-Kar lowicz theorem (Engelking and Kar lowicz 1965) there

exists a family of functions 〈fi : ζ → κ | i < κ〉 such that for any A ∈ [ζ]<κ

and every f : A→ κ there exists i < κ such that f ⊆ fi.

For each k < κ let

D(i) = {p ∈ Pζ : ∀α < κ : p�α  p(α) ∈ Ċα(fi(α))}.

It is easy to see that each D(k) is centered<κ and that every fine p ∈ P is

contained in some D(i). So by (a) we are done.

Lemma 2.3.9. Let κ be an inaccessible cardinal with sup(κ ∩ Sinc
κ ) = κ. Let P be a

forcing notion that does not add new subsets of δ for δ < κ (e.g. P is κ-strategically

closed). Then P does not add a Qκ-generic real if either:

(a) P is κ-centered<κ or just

(b) P is (2κ, κ)-centered<κ meaning that any set Y ⊆ P of cardinality at most 2κ

is included in the union of at most κ-many centered<κ subsets of P or just

(c) if pρ ∈ P, ρ ∈ 2κ is a family of conditions, then for some non-meager A ⊆ 2κ

we have

u ∈ [A]<κ ⇒ {pρ : ρ ∈ u} has a lower bound.

Proof. Clearly (a)⇒(b)⇒(c). The first implication is trivial. The second implication

follows from the κ+-completeness of the meager ideal. So we shall assume (c).

Let p∗  “ν̇ is a counterexample and thus ν̇�ε ∈ V for all ε < κ”. (Recall

that Qκ is strategically κ-closed.) Let 〈λε : ε < κ〉 be an increasing enumeration of

{λ ∈ Sκinc : λ > sup(λ ∩ Sκinc)}. Now for η ∈ 2κ let

Aη = {ρ ∈ 2κ : (∀∞ε < κ) (∃∞α < λε) η(α) 6= ρ(α)}.
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Clearly 2κ\Aη ∈ id−(Qκ) ⊆ id(Qκ) as defined in 3.2.1 but we may argue 2κ\Aη ∈
id(Qκ) as follows: For η ∈ 2κ and ε < κ let Bη,ε = {ρ ∈ 2λε : ρ =∗ η} and note that

|Bη,ε| = λε, hence Bη,ε ∈ id(Qλε). Let S = {λε : ε < κ} and clearly S is nowhere

stationary. So for every η ∈ 2κ the set

Jη = {p ∈ Qκ : S ⊆ Sp ∧ (∀ε < κ) [λε > lg(tr(p))⇒ Bη,ε ∈ set0(Λp,λε)]}

is dense in Qκ and p ∈ Jη ⇒ p “ν ∈ Aη”.

Now because 2κ\Aζ ∈ id(Qκ) we have p∗ “ν̇ ∈ Aζ” hence for η ∈ 2κ there are

(pη, ζη) such that pη ≤ p∗, ζη < κ, and

pη P “if ε ∈ [ζη, κ) then (∃∞α < λε)η(α) 6= ν̇(α)”.

Hence there exists a non-meager set Y ⊆ 2κ such that any set {pρ : ρ ∈ Y } of

cardinality <κ has a lower bound. Because the meager ideal is κ+-complete there

exists ζ∗ < κ such that without loss of generality η ∈ Y ⇒ ζη = ζ∗. As Y is

non-meager it is somewhere dense. So there exists %∗ ∈ 2<κ such that

(∀% ∈ 2<κ) %∗ / % ∈ 2<κ ⇒ (∃ρ ∈ Y ) % / ρ.

Without loss of generality lg(%∗) = ζ∗ (we may increase either value to match

the greater one). Choose ε < κ such λε > ζ∗. Let Γ = {% ∈ 2λε : %∗ / %} and for each

% ∈ Γ let η% ∈ Y be such that % / η%. Now {η% : % ∈ Γ} ∈ [Y ]<κ hence by the choice

of Y there exists a lower bound q of {pη% : % ∈ Γ}.
As p∗  “ν̇�ε ∈ V ” without loss of generality let q force a value to ν̇�ε, so call

this value ν. Now q is stronger than pη%∗_ν�[ε,λε)
and forces λε = sup{α < λε :

%∗_ν�[ε, λε)(α) 6= ν̇(α)}, which means λε = sup{α < κ : ν(α) 6= ν̇(α)}. Contradic-

tion to the choice of ν.

Remark 2.3.10. Lemma 2.3.9 implies that Qκ is not κ-centered<κ. However, Qκ

has, for every λ < κ, a dense subset which is κ-centered<λ, namely the set of

conditions with trunk of length > λ. This parallels the classical case of random

forcing, which is not σ-centered, but σ-n-linked for all n ∈ ω.

Discussion 2.3.11. The following theorem 2.3.12 is a straightforward generalization

of (Bartoszyński and Judah 1995, 6.5.30). We formulate it in terms of the ideal

id−(Qκ) ⊆ id(Qκ). For the definition see 3.2.1.
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Lemma 2.3.12. Let κ be weakly compact. Let P be a forcing notion such that

(a) P is κ-centered<κ.

(b) P does not add new subsets of δ for δ < κ (e.g. P is κ-strategically closed).

Let (N,∈) ≺ (H(χ),∈) for some χ large enough with Nκ ⊆ N and P ∈ N. Then for

A ∈ id−(Qκ) we have

N ∩ 2κ ⊆ A ⇒ P  “N[G] ∩ 2κ ⊆ A”

where G is the generic filter of P. (As usual, A is to be read as a definition of a null

set, to be interpreted in V and VP.)

Proof. Let A ∈ id−(Qκ) be witnessed by
⇀

A = 〈Aδ : δ ∈ S〉, i.e. A = set−0 (
⇀

A), and let

P =
⋃
α<κ Pα and each Pα is centered<κ.

Assume there exists P name of a κ real η̇ ∈ N and p∗ ∈ P such that

p∗  “η̇ 6∈ A”

and without loss of generality even

p∗  “(∀δ ≥ δ0) η̇�δ 6∈ Aδ” (2.1)

for some δ0 < κ. For α < κ, δ ∈ S we define

Tα,δ = {ν ∈ 2δ : (∀p ∈ Pα)(∃q ∈ P) q ≤ p and q  “η̇�δ = ν”}.

Note that in general we will have p∗ /∈ N. However, we will have p∗ ∈ Pα for

some α, and the partition (Pα : α < κ) is in N, as is the family (Tα,δ : α < κ, δ ∈ S).

None of the sets Tα,δ (for all α < κ, δ ∈ S) is empty. We prove this indirectly:

Assume Tα,δ = ∅. Then for every ν ∈ 2δ there exists pν ∈ Pα such that pν  ν 6= η̇�δ.

Now because Pα is centered<κ there exists a lower bound q for {pν : ν ∈ 2δ}. Thus

for all ν ∈ 2δ we have q  ν 6= η�δ, contradicting our assumption that P does not

add short sequences.

For α < κ consider the tree that is the downward closure of
⋃
δ∈S Tα,δ. Because κ

is weakly compact, κ has the tree property thus there exists a branch ηα ∈ 2κ through

this tree, i.e. for every δ ∈ S we have ηα�δ ∈ Tα,δ. Note that fα can be calculated

from η̇ hence fα ∈ N so by our assumption ηα ∈ A, i.e. (∃∞δ ∈ S) ηα ∈ Aδ. Find

α∗ < κ such that p∗ ∈ Pα∗ and find δ∗ ≥ δ0 such that ηα∗�δ∗ ∈ Aδ∗ .
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Let ν = ηα∗�δ∗ ∈ Tα∗,δ∗ so there exists q ≤ p∗ such that

q  η̇�δ∗ = ν = ηα∗�δ
∗ ∈ A∗δ .

Contradiction to (2.1).

Corollary 2.3.13. Let κ be weakly compact. Let P be a forcing notion such that

(a) P is κ-centered<κ.

(b) P does not add new subsets of δ for δ < κ (e.g. P is κ-strategically closed).

Then:

(1) P does not decrease non(Qκ), i.e. if non(Qκ) = λ then P “non(Qκ) ≥ λ”.

(2) P does not increase cov(Qκ), i.e. if cov(Qκ) = λ then P “cov(Qκ) ≤ λ”.

Proof.

1. Let µ < λ and assume P “X = {η̇i : i < µ} is a set of size µ”. Find N

as in 2.3.12 with η̇i ∈ N for each i < µ and |N| = µ. Now because κ is

weakly compact by 3.2.5 we have µ < non(id−(Qκ)) so find A ∈ id−(Qκ) such

that N ∩ 2κ ⊆ A. By 2.3.12 we have P “X ⊆ N[G] ⊆ A”. I.e.: For any set

X ∈ VP of size µ < λ we have X ∈ id−(Qκ).

2. We show: P does not add a Qκ-generic real. Assume P “η̇ is Qκ-generic”.

Find N as in 2.3.12 with η̇ ∈ N and |N| = κ. Find A ∈ id−(Qκ) be such that

N ∩ 2κ ⊆ A. Now by 2.3.12 we have P “η̇ ∈ N[G] ⊆ A ∈ id−(Qκ) ⊆ id(Qκ)”,

a contradiction to η̇ being Qκ generic.

Remark 2.3.14. So 2.3.13(2) duplicates 2.3.9 but there we do not require κ weakly

compact.

2.4 The Fusion Game, preservation in κ-support itera-
tions

The work in this subsection can be considered a generalization of (Kanamori 1980,

Section 6), where it is shown how to iterate κ-Sacks forcing for inaccessible κ. The

games defined in this subsection and the iteration theorem 2.4.8 first appeared in
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(Ros lanowski and Shelah 2006) where F∗κ, Fκ (defined below) are called arcA
⇀
µ

and

arca
⇀
µ

respectively. However F∗κ, Fκ are slightly more general in the sense that White

may freely decide the length µζ of the ζ-th round during the game (i.e. our games

do not require an additional parameter
⇀
µ).

Definition 2.4.1. Let Q be a forcing notion and let q ∈ Q. We define two (very

similar) games Fκ(Q, q),F∗κ(Q, q) between two players White and Black. A play in

either of the games consists of κ-many rounds and for each ζ < κ the ζ-th round

lasts µζ-many moves. The rules of the ζ-th round of the game Fκ(Q, q) are:

1. First White plays 0 < µζ < κ. So White decides the length of the new round.

2. On move i < µζ :

(a) White plays qζ,i ≤ q.

(b) Black responds with q′ζ,i ≤ qζ,i

The rules of the ζ-th round of the game F∗κ(Q, q) are:

1. First White plays 0 < µζ < κ. For ζ a limit ordinal we additionally require

µζ ≤ supε<ζ µε.

2. On move i < µζ :

(a) White plays qζ,i ≤ q but without looking at any q′ζ,j for j < i. (Equiva-

lently: White plays all moves of the current round at once at the start of

the round.)

(b) Black responds with q′ζ,i ≤ qζ,i

The winning condition of both games is the same:

White wins ⇔ (∃q∗ ≤ q) q∗  “(∀ζ < κ) {q′ζ,i : i < µζ} ∩ ĠQ 6= ∅”.

where ĠQ is a name for the generic filter of Q.

Discussion 2.4.2. In point (1.) of the definition of F∗κ(Q, q) we could be slightly

more general: Instead of sup any function f : κ<κ → κ that gives us an upper

bound for µζ based on upper bounds for the µε will do. (This is simply a technical

requirement for the proof of 2.4.8.) So we could define F∗κ,f (Q, q) and let F∗κ(Q, q) =

F∗κ,id(Q, q).
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Discussion 2.4.3. The typical forcing for which White has a winning strategy for

the games defined in 2.4.1 is a tree forcing permitting fusion sequences. See 6.9.6 for

an example.

Fact 2.4.4. The game F∗κ is slightly harder for White than the game Fκ hence: If

White has a winning strategy for F∗κ(Q, q) then White has a winning strategy for

Fκ(Q, q).

Definition 2.4.5. For technical reasons we define the game F∗κ(Q, q, λ) for λ < κ.

The rules are the same as for F∗κ(Q, q) except the first λ rounds are skipped and

the game starts with the λ-th round. So this is really just an index shift. Of course

F∗κ(Q, q) = F∗κ(Q, q, 0) and easily for every λ < κ White has a winning strategy for

F∗κ(Q, q) iff he has a winning strategy for F∗κ(Q, q, λ).

Fact 2.4.6. Assume White has a winning strategy for G ∈ {Fκ(Q, q),Fκ∗(Q, q)}.
Then without loss of generality during a run of G White only plays moves qζ,i such

that there exists θζ,i ∈
∏
ε<ζ µε with

1. ε < δ < ζ ⇒ q′ε,θζ,i(ε) ≤ qδ,θ(δ).

2. ε < ζ ⇒ q′ε,θζ,i(ε) ≤ qζ,i.

Consider the tree

T =
⋃
ζ<κ

⋃
i<µζ

θζ,i.

Then a condition q∗ witnesses a win for White iff q∗ “for every ζ < κ there exists

a branch θ̇ of T of length ζ such that for every ε < ζ we have q′
ε,θ̇(ε)

∈ ĠQ”.

Theorem 2.4.7. Let Q be a forcing notion. If for every q ∈ Q Black does not have

a winning strategy for the game Fκ(Q, q) then:

(a) If Ȧ is a Q-name such that q “|Ȧ| ≤ κ” then there exists B ∈ V, |B| ≤ κ

and q∗ ≤ q such that q∗  Ȧ ⊆ B.

In particular Q does not collapse κ+.

(b) Q does not increase cf(Cohenκ), and in fact: if 〈Ai : i < µ〉 are a cofinal

family of meager sets in V then this family remains cofinal in VQ.

(c) Q is κκ-bounding.

32



2.4. The Fusion Game, preservation in κ-support iterations

Proof.

(a) Like (b), just easier. But let us do it for warmup.

Let 〈ȧζ : ζ < κ〉 be such that q  {aζ : ζ < κ} = Ȧ. Now consider a

run of Fκ(Q, q) where Black’s strategy is to play in such way that for each

ζ < κ, i < µζ there is bζ,i such that q′ζ,i “ȧζ = bζ,i”. I.e., every move Black

makes during the ζ-th round decides ȧζ .

By our assumption White can beat this strategy thus there exists q∗ ≤ q such

that q∗  Ȧ ⊆ {bζ,i : ζ < κ, i < µζ < κ}.

(b) Let us show: if Ṁ is a Q-name and q “Ṁ is nowhere dense” then there

exists a nowhere dense set N ∈ V and q∗ ≤ q such that q∗  Ṁ ⊆ N . Since

meager sets are the union of κ-many nowhere dense sets, we can then use (a)

to conclude the proof.

We are going to find q∗ ≤ q such that for each s ∈ 2<κ there exists ts D s

such that q∗ ”Ṁ ∩ [t] = ∅” so

N = 2κ\
⋃

s∈2<κ

[ts]

is as desired.

Let 〈sζ : ζ < κ〉 be an enumeration of 2<κ. We will define a strategy for player

Black. In addition to his moves (q′ζ,i, he will construct elements tζ,i ∈ 2<κ

satisfying the following properties:

(a) sζ E tζ,j .

(b) (
⋃
j<i tζ,j) E tζ,i.

(c) q′ζ,i “Ṁ ∩ [tζ,i] = ∅”. (and of course q′ζ,i ≤ qζ,i, as required by the rules

of the game).

Why can Black play like that?

(a) Obvious.

(b) Obvious for i successor. For i a limit ordinal just remember i < µζ < κ.

(c) Remember q′ζ,i ≤ q “Ṁ is nowhere dense”.
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Let tζ =
⋃
i<µζ

tζ,i. Again White can beat this strategy so there exists q∗ ≤ q
as required.

(c) Like (b).

Theorem 2.4.8. Let P = 〈Pα, Q̇α : α < α∗〉 be a κ-support iteration and let p ∈ P
such that for all α < α∗:

(a) p�α “Q̇α is κ-strategically closed”.

(b) p�α “White has a winning strategy for F∗κ(Q̇α, q) for every q ≤ p(α)”.

Then:

(1) White has a winning strategy for Fκ(P, p).

(2) If White plays according to his strategy from (1) in a run 〈pζ,i, p′ζ,i : ζ <

κ, i < µζ〉 of Fκ(P, p) then there exists p∗ witnessing White’s win such that

for all α < α∗ we have p∗�α “〈pζ,i(α), p′ζ,i(α) : ζ < κ, i < µζ〉 is a run of

F∗κ(Q̇α, p(α)) won by White and White’s win is witnessed by p∗(α)”.

Discussion 2.4.9. Note that the proof of 2.4.8 also works for κ = ω.

Proof. Let p ∈ P and we are going to show how White can win Fκ(P, p) by finding

p∗ ≤ p witnessing White’s victory while also being as required by (2). We are going

to construct at sequence 〈pζ : ζ ≤ κ〉 such that

1. ζ < κ⇒ pζ ∈ P.

2. p0 = p.

3. ε < ζ ⇒ pε ≥ pζ .

of which p∗ is going to be a lower bound (but remember that under our assump-

tions the lower bound of a κ-sequence does not exist in general so we will have to

construct p∗). We are also going to construct a sequence 〈Fζ : ζ < κ〉 such that

1. F0 = ∅

2. ζ < κ⇒ Fζ ⊆ supp(pζ).

3. ζ < κ⇒ |Fζ | < κ.
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4. ε < ζ ⇒ Fε ⊆ Fζ .

and we are going to use bookkeeping to ensure F =
⋃
ζ<κ Fζ =

⋃
ζ<κ supp(pζ) which

is also going to be the support of p∗.

Furthermore we are implicitly going to construct strategies for Black in the games

F∗κ(Q̇α, p(α)) for α ∈ F . Then we will choose p∗ = 〈q̇∗α : α ∈ F 〉 where q̇∗α witnesses

that White can beat Black’s strategy.

What does White play in the ζ-th round?

Let 〈αζ,ξ : ξ < ξ∗ζ 〉 enumerate Fζ . For ξ < ξ∗ζ we want to play the ζ-th round of

the game F∗κ(Q̇αζ,ξ , p(αζ,ξ)) where White plays according to the name of a winning

strategy (White sticks to same strategy throughout the proof of course). To make

notation easier we do not want to keep track of when αζ,ξ first appeared Fε for

some ε ≤ ζ. Instead let εζ,ξ = min{ε ≤ ζ : αζ,ξ ∈ Fε} and assume we are play-

ing F∗κ(Q̇αζ,ξ , pεζ,ξ(αζ,ξ), εζ,ξ). I.e., we are playing in the ζ-th round for each αζ,ξ.

See 2.4.5.

By induction (we are going to address this further down) we assume for each

ξ < ξ∗ζ that pζ�αζ,ξ  “µ̇αζ,ξ,ζ ≤ µαζ,ξ,ζ” for some µαζ,ξ,ζ < κ where µ̇αζ,ξ,ζ is the

length of ζ-th round of F∗κ(Q̇αζ,ξ , pεζ,ξ(αζ,ξ), εζ,ξ) as decided by the name of White’s

winning strategy. Then there exist (in V where we are trying to construct a winning

strategy) not necessarily injective enumerations 〈q̇αζ,ξ,ζ,i : i < µαζ,ξ,ζ〉 of the moves

that White plays according to the name of his winning strategy in the ζ-th round

of F∗κ(Q̇αζ,ξ , pεζ,ξ(αζ,ξ), εζ,ξ). To make notation easier easier we only do the proof for

the special case where White always plays an antichain (but the proof works even if

White doesn’t).

Let µζ = |
∏
ξ<ξ∗ζ

µαζ,ξ,ζ | and this is what White decides to be the length of

the ζ-th round of Fκ(P, p). Remember that κ is inaccessible so indeed µζ < κ. Let

〈λζ,i : i < µζ〉 enumerate
∏
ξ<ξ∗ζ

µαζ,ξ,ζ . Now we construct a sequence 〈pζ,i : i < µζ〉
(of course anything that is not explicitly stated to be done by Black is part of White’s

strategy that we are currently constructing):

1. First we find pζ,0 ≤ pε for every ε < ζ as follows:

• If there is no ξ < ξ∗ζ such that α = αζ,ξ then let pζ,0(α) be such that

pζ,0�α  pζ,0(α) ≤ pε(α) according to a winning strategy for White in

C(Qα).
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• If there is ξ < ξ∗ζ such that α = αζ,ξ then let pζ,0(α) be such that

pζ,0�α “pζ0(α) =
∨
γ<µα,ζ

q̇α,ζ,γ”.

Remember 2.4.6 so without loss of generality this implies

pζ,0�α “pζ0(α) ≤ pε(α)”.

2. For the i-th move of the ζ-th round White plays p′ζ,i where

p′ζ,i(α) =

{
pζ,i(αζ,ξ) ∧ q̇αζ,ξ,ζ,λi(ξ) if α = αζ,ξ for some ξ < ξ∗ζ
pζ,i(α) otherwise.

3. Black responds with p′′ζ,i ≤ p′ζ,i.

4. Let p′′′ζ,i be such that for α < α∗ we have

p′′′ζ,i�α  “p′′′ζ,i(α) ≤ p′′ζ,i(α) and p′′′ζ,i(α) is a according to

a winning strategy for White in C(Q̇α)”.

5. Let p′′′′ζ,i be defined by

p′′′′ζ,i(α) =

{
(pζ,i(αζ,ξ)\q̇αζ,ξ,ζ,λi(ξ)l) ∨ p

′′′
ζ,i(αζ,ξ) if α = αζ,ξ for some ξ < ξ∗ζ

p′′′ζ,i(α) otherwise.

and easily check p′′′′ζ,i ≤ p.

6. If i = j + 1 then let pζ,i = p′′′ζ,j . If i is a limit ordinal, then we find pζ,i ≤ pζ,j

for every j < i as follows:

• If there is no ξ < ξ∗ζ such that α = αζ,ξ then let pζ,i(α) be such that

pζ,i�α “pζ,i(α) is according to a winning strategy for White in C(Q̇α)

for the sequence 〈pζ,j(α) : j < i〉”.

• If there is ξ < ξ∗ζ such that α = αζ,ξ then let pζ,i(α) be such that

pζ,i�α  “pζ,i(α) =
∨

γ<µα,ζ

ṙζ,i,α,γ”

where pζ,i�α “ṙζ,i,α,γ is according to a winning strategy for White in

C(Q̇α) for the sequence 〈pζ,j(α) ∧ q̇α,ζ,γ : j < i〉”.
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Finally let pζ be a lowerbound for 〈pζ,i : i < µζ〉 as in 6. (but not really, we have

to do some preparation work for the next step first, see below). Now the strategy

for Black in F∗κ(Q̇αζ,ξ , p(αζ,ξ)) is to play pζ(αζ,ξ) ∧ q̇αζ,ξ,ζ,i.
Preparation for the ζ + 1-th round.

We still have to address why the µαζ,ξ,ζ exist but having understood the proof

to this point this is now easy. Let Fζ+1 = Fζ ∪ {α} for some α ∈ supp(pζ)\Fζ , if

such α exists (and remember to use bookkeeping). Now for every α ∈ Fζ+1 work as

above on pζ�α and Fζ ∩α but instead of taking a response from Black in (3.) White

responds to himself deciding µα,ζ+1.

So we have prepared for ζ + 1. But what about limit steps? Remember that

the rules of F∗κ state that µ̇α,ζ ≤ supε<ζ µ̇α,ε. So if we let Fζ =
⋃
ε<ζ Fε all is good

because having an estimate for successor steps gives us an estimate for limit steps.

Why does White win?

Because for α ∈ F =
⋃
ζ<κ Fζ there exists a Qα-name q̇∗α such that p�α “q∗α

witnesses that White wins if Black plays as described above in F∗κ(Q̇α, p(α))”.

By construction p∗ = 〈q̇∗α : α ∈ F 〉 is as required.

2.5 Fusion and Properness

In this subsection we give a sufficient condition for a limit of a ≤κ-support iteration

to be κ-proper, namely, the existence of winning strategies for the games F∗κ(Q̇α) for

all iterands Qα encountered in the iteration.

We also show that if all iterands have cardinality ≤κ+, and the length δ of the

iteration is <κ++, then the resulting forcing Pδ has a dense set of size κ+ and in

particular will still satisfy the κ++-c.c.

Definition 2.5.1. In this section we consider an iteration P = 〈Pα,Qα : α < δ〉
with limit Pδ such that:

1. δ < κ++

2. P has κ-support.

3. White has a winning strategy for F∗κ(Q̇α, q̇) for every α < δ and q̇ ∈ Q̇α.

4. In VPα the forcing Qα has size at most κ+.
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For α < δ let ḃα be a Pα-name of a one-to-one map from κ+ onto Q̇α.

Lemma 2.5.2. Let (N,∈) a model of size κ, closed under <κ-sequences, let R be

an arbitrary forcing notion such that R ∈ N and (N,∈) ≺ (H(χ),∈) for some χ

large enough. If White has a winning strategy for Fκ(R, p) then for every p ∈ R∩N

there exists q∗ ∈ R, q∗ ≤ p such that q∗ is N-R-generic. This means:

1. For every maximal antichain A of R with A ∈ N we have

q∗  A ∩N ∩ ĠR 6= ∅.

2. Or equivalently: for every name τ̇ of an ordinal with τ̇ ∈ N we have

q∗  τ̇ ∈ N.

Proof. Note that because |N| = κ there are at most κ-many names of ordinals in N.

By our assumption White has a winning strategy for Fκ(R, p) and because N is an

elementary submodel White has a winning strategy that lies in N. Now consider a

run of the game where:

1. White plays according to his winning strategy in N. By induction all these

moves are in N by our assumption N<κ ⊆ N.

2. Black decides all ordinals of N such that they lie in N by playing p′ζ,i ∈ N for

ζ < κ, i < µζ .

Now q∗ witnessing White’s win is N-generic.

Definition 2.5.3. Let R be a forcing notion. Consider a run of the game G ∈ {Fκ,F∗κ}
where:

1. White wins.

2. Black plays
⇀
p′ = 〈p′ζ,i : ζ < κ, i < µζ〉.

Then we call q∗ witnessing White’s win a G-fusion limit of
⇀
p′.

Corollary 2.5.4. Let P be as in 2.5.1. Then:

(a) For every p ∈ P ∩N there exists a generic condition q∗ ≤ p that is a Fκ(P)-

fusion limit of
⇀
p′ with p′ζ,i ∈ N for all ζ < κ, i < µζ . (However, in general we

will have q∗ 6∈ N.)

38



2.5. Fusion and Properness

(b) Furthermore for α < δ we have q∗�α “q∗(α) is a F∗κ(Q̇α)-fusion limit”.

Proof.

(a) By 2.5.1(3) and 2.4.8(1) White has a winning strategy for Fκ(R, p) so use 2.5.1.

(b) By 2.4.8(2).

Definition 2.5.5. For α < κ a condition p ∈ Pα is called a Hκ-condition if for every

β < α the Pβ-name p(β) is a Hκ-Pβ-name.

For α < δ we inductively define the notion of a Hκ-Pα-name. On the one hand

we consider Hκ-names for elements of κ+, on the other hand for elements of Q̇α.

1. τ̇ is a Hκ-name for an element of κ+ iff ḃα(τ̇) is a Hκ-name of an element

of Q̇α. (bα was defined in 2.5.1.)

2. For every γ ∈ κ+, the standard name γ̌ is a Hκ-name.

3. For every sequence 〈(pi, τ̇i) : i < κ〉 where pi are Hκ-Pα-conditions and τ̇i are

Hκ-Pα-names there exists a Hκ-name τ̇ forced to be equal to τ̇i where i is the

least index such that pi ∈ ĠP if such i exists, 0̌ otherwise.

4. For every F∗κ(Q̇α)-fusion sequence
⇀
p ′ where p′ζ,i are Hκ-Pα-names for elements

of Q̇α there exists a Hκ-name τ̇ that is forced to be equal to the condition

witnessing White’s win. (If it exists; 0̌ otherwise.)

Remark 2.5.6. The “Hκ”-names are an easy generalization of the “hereditarily

countable” names appearing in (Shelah 1998, 4.1), see also (Goldstern and Kellner

2016).

Lemma 2.5.7. For every condition p ∈ P there exists a Hκ-condition q∗ ≤ p.

Proof. First let N be a model of size κ with p,P ∈ N and let q∗ be a Fκ(P)-fusion

limit with p′ζ,i ∈ N as in 2.5.4.

Now we will try to find a Hκ-name for p′ζ,i(α), for all ζ, α < κ, i < µζ .

For α ∈ supp(q∗) we define p′′ζ,i(α) as follows. We find (in N) a maximal antichain

A = Aζ,i,α that decides ḃ−1
α (p′ζ,i(α)), i.e. there exists a function f = fζ,i,α : A→ κ+,

such that for all r ∈ A
r  p′ζ,i(α) = ḃα(f(r)).
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Let A′ = A ∩N. Consider the sequence 〈(r, bα(f(r))) : r ∈ A′〉. This family defines

a Hκ-name p′′ζ,i(α).

Now because q∗�α is N-generic

q∗�α  p′ζ,i(α) = p′′ζ,i(α)

Hence q∗�α forces that q∗(α) is equal to a witness of White’s win against p′′ζ,i(α), i.e.

q∗(α) is a F∗κ(Qα)-fusion limit. Hence q∗(α) is a Hκ-name so q∗ is a Hκ-condition.

Corollary 2.5.8. Let Pδ be as in 2.5.1 (so in particular δ < κ++). Then there exists

D ⊆ Pδ such that

1. D is dense.

2. |D| = κ+.

3. Pδ has the κ++-c.c.

Proof. Follows immediately from 2.5.7.

Corollary 2.5.9. Assume 2κ = κ+, and let P = (Pα,Qα : α < κ++) be an iteration

with limit Pκ++ satisfying the following:

1. P has κ-support.

2. For each α < κ++ we have Pα  |Qα| = 2κ.

3. For each α < κ++ and each name q̇ ∈ Q̇α, Pα forces that White has a winning

strategy for the fusion game F∗κ(Q̇α, q̇). (Defined in 2.4.1, see 2.4.3 for which

forcings this may be the case.)

Then we have:

(a) For each α < κ++ the forcing notion Pα has a dense subset of cardinality κ+.

(b) For each α < κ++, Pα forces 2κ = κ++.

(c) For each δ ≤ κ++, Pδ has the κ++-c.c.

Proof. The κ++-c.c. of Pκ++ follows by the Solovay-Tennenbaum theorem from the

fact that P uses direct limits on a stationary set, namely, the set of ordinals of

cofinality κ+. (See (Solovay and Tennenbaum 1971).)

The rest just summarizes previous theorems.
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Smaller Ideals

In this section we first describe two ideals wid(Qκ) and id−(Qκ), both of which are

closely related (and often equal) to id(Qκ). We then give a more “combinatorial”

characterization of add(Qκ) and cof(Qκ), involving the additivity and cofinality of

the ideal nstpr
κ of nowhere stationary subsets of Sκpr ⊆ κ.

3.1 The ideal wid(Qκ)

Definition 3.1.1. For id(Qκ) we allow κ many antichains to define A ∈ id(Qκ). But

we may also consider the weak ideal wid(Qκ) of all sets A ⊆ 2κ such that for some

maximal antichain A (or equivalently: every predense set A) we have A ⊆ set0(A),

where set0(A) := 2κ\
⋃
p∈A[p].

Lemma 3.1.2.

(a) wid(Qκ) ⊆ id(Qκ).

(b) wid(Qκ) = id(Qκ) iff ¬Pr(κ).

(c) wid(Qκ) is κ-complete.

Proof.

(a) Trivial: If A witnesses A ∈ wid(Qκ) then Λ = {A} witnesses A ∈ id(Qκ).
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(b) Assume ¬Pr(κ). Let Λ be a set of at most κ-many maximal antichains of Qκ

and without loss of generality assume that Λ is closed under rational shifts,

i.e. for all η1, η2 ∈ 2κ we have

η1 =∗ η2 ⇒ [η1 ∈ set0(Λ)⇔ η2 ∈ set0(Λ)].

Let A ⊆ set0(Λ). By our assumption about κ there exists p ∈ Qκ such that

[p] ⊆ set1(Λ) and let p be witnessed by (τ, S,
⇀

Γ). Let

A = {q ∈ Qκ : q is witnessed by (ρ, S,
⇀

Γ) for some ρ ∈ 2<κ}

and check that A is predense. Now easily q ∈ A ⇒ [q] ⊆ set0(Λ) hence

set1(A) ⊆ set1(Λ) hence A ⊆ set0(A), i.e. A ∈ wid(Qκ).

Conversely assume wid(Qκ) = id(Qκ) and let Λ be a set of no more than

κ-many maximal antichains of Qκ. By our assumption there exists a maximal

antichain A of Qκ such that⋃
p∈A

[p] = set1(A) ⊆ set1(Λ).

Hence for any p ∈ A we have [p] ⊆ set1(Λ); as Λ was arbitrary, we get ¬Pr(κ).

(c) Because Qκ is strategically κ-closed.

Lemma 3.1.3. Consider the usual forcing ideal

fid(Qκ) = {A ⊆ 2κ : (∀p ∈ Qκ)(∃q ≤ p) [q] ∩A = ∅}.

Then we have fid(Qκ) = wid(Qκ).

Proof. Let A ∈ wid(Qκ) be witnessed by A. Now for any p ∈ Qκ there exists p′ ∈ A
such that p and p′ are compatible. Let q = p ∩ p′ and clearly A ∩ [q] = ∅, hence

A ∈ fid(Qκ)

Conversely if A ∈ fid(Qκ) then the set D = {q : [q] ∩ A = ∅} is dense. Choose

any maximal antichain A ⊆ D, then A will witness A ∈ wid(Qκ).

3.2 The ideal id−(Qκ)

Definition 3.2.1. The ideal id−(Qκ) consists of all sets A ⊆ 2κ for which there

exists a nowhere stationary set S ⊆ Sκinc and a sequence
⇀

Λ = 〈Λδ : δ ∈ S〉 such that
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each Λδ is a set of at most δ-many maximal antichains of Qδ such that

A ⊆ set0(
⇀

Λ) = {η ∈ 2κ : (∃∞δ ∈ S) η�δ ∈ set0(Λδ)}.

For a nowhere stationary set S ⊆ Sκinc we define id−(Qκ,S) to be the ideal of all

sets A such that:

1. A ∈ id−(Qκ).

2. A is witnessed by a sequence 〈Aδ : δ ∈W 〉 such that W ⊆ S.

Note that we are often lazy and use the notation add(Qκ). This always means

add(id(Qκ)), never add(id−(Qκ)). The same applies for cov, non and cf.

Lemma 3.2.2. id−(Qκ) ⊆ wid(Qκ).

Proof. Given S ⊆ Sκinc and
⇀

Λ = 〈Λδ : δ ∈ S〉 let pρ ∈ Qκ be the condition witnessed

by (ρ, S,
⇀

Λ) and let D = {pρ : ρ ∈ 2<κ}. It is easy to check that set−0 (
⇀

Λ) ⊆ set0(D).

Theorem 3.2.3. Let κ be a weakly compact cardinal. Then id−(Qκ) = wid(Qκ).

Lemma 3.2.4. id−(Qκ) is <κ+-complete.

Proof of Lemma 3.2.4. For i < κ let (Si,
⇀

Λi) represent Ai = set−0 (
⇀

Λi) ∈ id−(Qκ).

Let

S∗ = {δ < κ : (∃i < δ) δ ∈ Si}

be the diagonal union of Si and for δ ∈ S∗ let Λ∗δ = ∪{Λi,δ : i < δ} and easily⋃
i<κ

Ai ⊆ set−0 (
⇀

Λ∗).

Proof of Theorem 3.2.3. Let D = {pε : ε < κ} ⊆ Qκ be a maximal antichain wit-

nessing A ⊆ set0(D) ∈ wid(Qκ). For ε < κ let pε be witnessed by (τε, Sε,
⇀

Λε) Using

weak compactness we find a sequence 〈δα : α < κ〉 such that

1. δα ∈ Sκinc.

2. δα > supβ<α δα.
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3. Dα = {pε ∩ 2<δα : ε < δα} is a maximal antichain in Qδα .

Let

S∗α = (
⋃
ε<δα

Sε)\δα

and let

S∗ =
⋃
α<κ

S∗α ∪ {δα : α < κ}.

It is easy to check that S∗ is nowhere stationary. For δ ∈ S∗ we define

Λ∗δ =
⋃
ε<δ

Λε,δ ∪

{
{Dα} if δ = δα for some α < κ

∅ otherwise.

We claim that set0(D) ⊆ set−0 (
⇀

Λ∗), witnessing A ∈ id−(Qκ). Let η ∈ set0(D).

Case 1: (∃∞α < κ) η�δα ∈ set0(Dα). Thus clearly η ∈ set−0 (
⇀

Λ∗).

Case 2: (∀∞α < κ) η�δα ∈ set1(Dα). So η�δα ∈ [pεα ∩ 2<δα ] for some εα < δα

for almost all (or just infinitely many) α < κ. However η ∈ set0(Dα) implies that

η 6∈ [pεα ]. Hence there exists δ ∈ Sεα\δα such that η�δ ∈ set−0 (Λεα,δ). Recall that

Λεα,δ ⊆ Λ∗δ and thus η ∈ set−0 (
⇀

Λ∗).

Corollary 3.2.5. Let κ be a weakly compact cardinal. Then id−(Qκ) = id(Qκ).

Proof. By (Shelah 2017, Observation 4.4) κ weakly compact implies ¬Pr(κ) which

by 3.1.2(b) implies wid(Qκ) = id(Qκ). So by 3.2.3 the result follows.

Lemma 3.2.6. Let S ⊆ κ be nowhere stationary. Then we can find:

1. A regressive function f on S.

2. A family {Eα : α ≤ κ, cf(α) > ω} where Eα ⊆ α is a club disjoint from S ∩ α.

such that:

(a) (∀δ ∈ κ\ω) |{λ ∈ S\δ : f(λ) ≤ δ}| < δ.

(b) (∀α)(∀λ ∈ Eα) δ > λ⇒ f(δ) > λ.

Proof. We prove by induction on β ≤ κ that we can find a regressive function fβ on

S ∩ β and a family {Eα : α < β} with the required properties. For β = κ the result

follows.
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Case 1: β > sup(S ∩ β). Obvious.

Case 2: β = sup(S ∩ β), cf(β) > ω. Let Eβ = 〈αζ : ζ < cf(β)〉 be an increasing

continuous cofinal sequence in β, disjoint from S.

Let

Sζ = S ∩ [αζ , αζ+1)

and let fζ be a function on Sζ from the induction hypothesis. Without loss of

generality λ ∈ Sζ ⇒ fζ(λ) ≥ αζ . [Why? Just round up, i.e., replace fζ(λ) by

max(αη, fζ(λ))]. The new function is still regressive, because αζ /∈ S.) So

f =
⋃

ζ<cf(β)

fζ

is as required.

Case 3: β = sup(S ∩ β), cf(β) = ω. This is similar to Case 2: Fix an increasing

sequence (αn : n ∈ ω) cofinal in β. Define f(αn+1) := αn, and use the induction

hypothesis to get f�(αn, αn+1). This does not violate (a) because we require δ > ω

there.

By construction, the sets Eβ have the property (b).

Theorem 3.2.7. Let A ∈ id−(Qκ) be represented by
⇀

Λ = 〈Λδ : δ ∈ S〉. Then there

exists A′ ∈ id−(Qκ) represented by
⇀

Λ′ = 〈Λ′δ : δ ∈ S′〉 such that:

1. A ⊆ A′

2. S′ ∈ nstpr
κ

3. S ∩ Sκpr ⊆ S′

4. δ ∈ S ∩ S′ ⇒ Λδ ⊆ Λ′δ.

Proof. First without loss of generality we assumeA is closed under rational translates

(see 1.3.3) and in particular Λδ are closed under rational translates. For δ ∈ S\Sκpr

find pδ ∈ Qδ witnessed by (〈〉,
⇀

Γδ, Sδ) such that [pδ] ⊆ Λδ. By 1.4.5 we may assume

Sδ ⊆ Sδpr.

Now let f be a regressive function on S as in 3.2.6 and let

S′ = (S ∩ Sκpr) ∪
⋃

δ∈S\Sκpr

Sδ\(f(δ) + 1)
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and for δ ∈ S′ let

Λ′δ = ∪{Γδ∗,δ : δ∗ > δ > f(δ)} ∪

{
Λδ δ ∈ S ∩ Sκpr

∅ otherwise.

Why is S′ nowhere stationary? Let α < κ, cf(α) > ω. Why is S′ ∩ α not stationary

in α.

• α > sup(S ∩ α). Use 3.2.6(a).

• α = sup(S ∩ α). For the part of S′ ∩ α that comes from Sδ with δ < α

use 3.2.6(b) to show that the club set Eα is disjoint to Sδ\(f(δ) + 1), for all

δ < α. For the part that comes from Sδ with δ > α use (a) as above.

See 3.3.16 for the same argument carried out in more detail. Similarly argue |Λ′δ| ≤ δ
that.

Now check that S′,
⇀

Λ′ define a set A′ ∈ id− covering A.

3.3 Characterizing Additivity and Cofinality

Lemma 3.3.1 (Null set normal form theorem). Let κ = sup(Sinc ∩ κ) and let

A ∈ id(Qκ). For ε < κ let Wε ⊆ κ = sup(Wε) and otherwise arbitrary (e.g. disjoint).

Then there exist S,
⇀

Λ = 〈Λδ : δ ∈ S〉, ⇀
p,

⇀

J = 〈Jε : ε < κ〉 such that

1. S ⊆ κ is nowhere stationary.

2. S ⊆ Sκpr.

3.
⇀
p = {pρ : ρ ∈ 2<κ} where pρ ∈ Qκ is witnessed by (ρ, S,

⇀

Λ).

4. Jε ⊆ {pρ : ρ ∈ 2<κ ∧ lg(ρ) ∈ Wε} is predense in Qκ (or even a maximal

antichain).

5. A ⊆ set0(J ).

Discussion 3.3.2. So the idea is as follows: a general null set A is represented by

κ-many antichains each consisting of κ-many conditions that are all witnessed by

different nowhere stationary sets S and sequences
⇀

Λ. But using a diagonalization

argument we find a representation of the null set using only a single S and
⇀

Λ.

Lemma 3.3.1 first appears in (Shelah 2017, 3.16) but we repeat a sketch of the

proof here for the convenience of the reader.
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Proof. Let A ∈ id(Qκ) be witnessed by 〈Iε : ε < κ〉 maximal antichains of Qκ. Let

Iε = {pε,i : i < κ} and let pε,i be witnessed by (τε,i, Sε,i,
⇀

Λε,i). By 1.4.5 we may

assume without loss of generality Sε,i ⊆ Sκpr.

Let

S = {δ ∈ κ : (∃ε, i < δ) δ ∈ Sε,i}

and it is easy to see that S is nowhere stationary. For δ ∈ S let

Λδ = ∪{Λε,i,δ : ε < δ, i < δ, δ ∈ Sε,i}

and it is easy to see that |Λδ| ≤ δ. Finally let

Jε = {pρ : (∃i, ε < κ) i, ε < lg(ρ) ∈Wε ∧ ηε,i D ρ}.

Now check.

Corollary 3.3.3 (Baire’s theorem for id(Qκ)). The ideal id(Qκ) is not trivial.

Proof. If κ > sup(Sinc ∩ κ) then id(Qκ) = id(Cohenκ) so the corollary follows from

Baire’s theorem for the meager ideal on 2κ.

If κ = sup(Sinc ∩ κ) let S,
⇀
p, 〈Jε : ε < κ〉 be as in 3.3.1. Let E ⊆ κ be a club

disjoint from S. We construct an sequence 〈ρε : ε < κ〉 of ρε ∈ 2<κ such that:

1. pρε ∈ Jε.

2. ζ < ε⇒ ρζ E ρε.

3. (As a consequence:) ζ < ε⇒ pρε ≤ pρζ , and in particular ρε ∈ pρζ .

We work inductively: If ε = ζ + 1 find ρε ∈ Jε such that:

(a) pρε 6⊥ pρζ

(b) (lg(ρε), lg(ρζ)) ∩ E 6= ∅

If ε is a limit then let ρ′ε =
⋃
ζ<ε ρζ and find ρε D ρ′ε as above. (Letting δ := lg(ρ′ε)

we have δ ∈ E, so no branches die out in level δ, so ρ′ε ∈ pρζ for all ζ < ε.)

Finally let η =
⋃
ε<κ ρε and clearly η ∈ set1(J ), i.e. set0(J ) 6= 2κ.

Lemma 3.3.4. Let κ be Mahlo (or at least Sκpr stationary). Then there exist maps

1. φ+ : id(Qκ)→ nstpr
κ
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2. φ− : nstpr
κ → id−(Qκ)

such that for all S ∈ nstpr
κ , A ∈ id(Qκ):

φ−(S) ⊆ A ⇒ S ⊆∗ φ+(A).

Discussion 3.3.5. Lemma 3.3.4 first appears implicitly in (Shelah 2017) but proving

it in terms of the id−(Qκ) ideal and strengthened Galois-Tukey connections may be

more transparent.

Proof. For λ ∈ Spr
κ let Λ∗λ witness λ ∈ Spr

κ . For S ∈ nstpr
κ define

φ−(S) = {η ∈ 2<κ : (∃∞δ ∈ S) η�δ ∈ set(Λ∗δ)}

and for A ∈ id(Qκ) define φ+(A) = S where S is as in 3.3.1.

Now let A ∈ id(Qκ), S∗ ∈ nstpr
κ be such that S∗ 6⊆∗ φ+(A) and we are going to

show φ−(S∗) 6⊆ A. So let (S,
⇀

Λ,
⇀
p,

⇀

J ) be as in 3.3.1 for A (so φ+(A) = S). By our

assumption S′ = S∗\S is unbounded. Easily we can find an unbounded set S′′ ⊆ S′

with its closure E disjoint from S. (Simply take a club C disjoint from S and working

inductively for ε ∈ C take λ ∈ S′ such that ε ≤ λ.)

We are going to inductively construct a /-increasing sequence 〈ηi : i < κ〉 in

ηi ∈ 2<κ and an increasing sequence 〈δi : i < κ〉 of δi ∈ κ such that for i < κ:

(a) |ηi| = δi

(b) δi ∈ E (thus in particular δi 6∈ S)

(c) i = j + 1⇒ δi ∈ S′′ (thus in particular δi ∈ S∗)

(d) [pηi ] ⊆
⋂
j<i set1(Jj)

(e) i = j + 1⇒ ηi ∈ set0(Λ∗δi)

Now let η =
⋃
i<κ ηi and note that

• η ∈ φ−(S∗) by clause (e).

• η 6∈ A by clause (d).
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It remains to prove that we can indeed carry out this induction. The case i = 0

is trivial. For i limit let ηi =
⋃
j<i ηj . (remember (b)).

For i = j + 1 consider pηj . Because Jj is predense we find ρ ∈ 2<κ such that

pρ ∈ Jj and pηj , pρ are compatible with lower bound pν , ν = ρ ∪ ηj . Choose δi ∈ S′′

such that δi > |ν|. Now we have that [pν ∩ 2<δi ] 6⊆ set1(Λ∗δi) so choose ηi ∈ [pν ∩
2<δi ]\ set1(Λ∗δi) and note that because δi 6∈ S we have ηi ∈ pηj hence pηi ⊆ pηj .

Theorem 3.3.6. Let κ be Mahlo (or at least Sκpr stationary). Then:

1. add(id−(Qκ), id(Qκ)) ≤ add(nstpr
κ ).

2. cf(id−(Qκ), id(Qκ)) ≥ cf(nstpr
κ ).

Proof. By 3.3.4 and 1.5.8.

Corollary 3.3.7. Let κ be Mahlo (or at least Sκpr stationary). Then:

1. add(id(Qκ)) ≤ add(nstpr
κ ).

2. add(id−(Qκ)) ≤ add(nstpr
κ ).

3. cf(id(Qκ)) ≥ cf(nstpr
κ ).

4. cf(id−(Qκ)) ≥ cf(nstpr
κ ).

Definition 3.3.8. We define

Q∗κ,S = {p ∈ Qκ : Sp ⊆ S}.

Note that we have Qκ,S ⊆ Q∗κ,S but in general equality does not hold.

Theorem 3.3.9. Let κ be Mahlo (or let at least Sκpr be stationary). Then

add(id(Qκ)) = min{µ1, µ2}

where

• µ1 = add(nstpr
κ ).

• µ2 = min{add(id(Q∗κ,S), id(Qκ) : S ∈ nstpr
κ }.
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Proof. Let µ = add(Qκ). µ ≤ µ1 follows from Theorem 3.3.6 (remember 1.5.4) and

µ ≤ µ2 is trivial. So it remains to show that µ ≥ min{µ1, µ2}.
Let Ai ∈ id(Qκ) for i < i∗ < min{µ1, µ2} and let (Si,

⇀

Λi,
⇀

Ji,
⇀
pi) be as in 3.3.1.

By 1.4.5 we may assume that Si ∈ nstpr
κ and because i∗ < µ1 there is S ∈ nstpr

κ

such that i < i∗ ⇒ Si ⊆∗ S. Thus easily Ai ∈ id(Q∗κ,S) and because i∗ < µ2 we have⋃
i<i∗ Ai ∈ id(Qκ).

Theorem 3.3.10. Let κ be Mahlo (or let at least Sκpr be stationary). Then

cf(id(Qκ)) = µ1 + µ2

where

• µ1 = cf(nstpr
κ ).

• µ2 = sup{cf(id(Q∗κ,S)), id(Qκ) : S ∈ nstpr
κ }.

Proof. Let µ = cf(Qκ). µ ≥ µ1 follows from Theorem 3.3.6 (remember 1.5.4) and

µ ≥ µ2 is trivial. So it remains to show that µ ≤ µ1 + µ2.

Let 〈Sζ : ζ < µ1〉 witness µ1 and for ζ < µ let 〈Aζ,ε : ε < µ2〉 witness

cf(id(Q∗κ,Sζ )), id(Qκ) ≤ µ2. We claim that

{Aζ,ε : ζ < µ1, ε < µ2}

is a cofinal family of id(Qκ). Thus let A ∈ id(Qκ) be arbitrary and let (S,
⇀

Λ,
⇀

J ,⇀p)
be as in 3.3.1. By 1.4.5 we may assume that S ∈ nstpr

κ and find ζ < µ1, α
∗ < κ such

that S\α∗ ⊆ Sζ\α∗. For δ ∈ Sζ define

Λ′δ =

{
Λδ if δ ∈ S\α∗

∅ if δ 6∈ S or δ < α∗

Now for each i < κ correct Ji to J ′i such that it uses only trunks of length greater

than α∗. Thus we have found A′ ⊆ A and A′ ∈ id(Q∗κ,Sζ ). Hence there exists ε < µ2

such that A′ ⊆ Aζ,ε.

Definition 3.3.11. Let S ⊆ κ and we define

ΠS = (
∏
δ∈S

(id(Qδ)/ id−(Qδ)),≤∗)
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where the intended meaning of ≤∗ is pointwise set-inclusion for almost all places of

the product. Writing [Λδ] for the id−-equivalence class of Λδ, for
⇀

Λ = 〈[Λδ] : δ ∈ S〉,
⇀

Γ = 〈[Γδ] : δ ∈ S〉 ∈ ΠS we define

⇀

Λ ≤∗
⇀

Γ ⇔ (∀∞δ ∈ S) Λδ\Γδ ∈ id−(Qδ).

Lemma 3.3.12. Let S ∈ nstκ, sup(S) = κ. Then there exist maps:

1. φ+ : id(Qκ)→ ΠS

2. φ− : ΠS → id−(Qκ)

such that for all
⇀

Λ ∈ ΠS, A ∈ id(Qκ):

φ−(
⇀

Λ) ⊆ A ⇒
⇀

Λ ≤∗ φ+(A).

Proof. Then for
⇀

Λ = 〈[Λδ] : δ ∈ S〉 ∈ ΠS define φ−(
⇀

Λ) = set−0 (〈Λδ : δ ∈ S〉). Given

A ∈ id(Qκ), find any Λ as in 3.3.1 and define φ+(A) = Λ�S.

Now assume A ∈ id(Qκ), Λ∗ ∈ ΠS such that Λ∗ 6≤∗ φ+(A) and we are going to

show φ−(Λ∗) 6⊆ A. Let
⇀

Λ∗ = 〈[Λ∗δ ] : δ ∈ S〉 and for A there are (as in 3.3.1) SA,
⇀

J ,
⇀

Λ = 〈Λδ : δ ∈ SA〉 = φ+(A) (without loss of generality (SA ⊇ S) such that we have

(∃∞δ ∈ S) ¬
(

set0(Λδ) ⊇ set0(Λ∗δ)
)

mod id−(Qδ)).

Let Bδ = set1(Λδ) ∩ set0(Λ∗δ). Hence by the above we have

(∃∞δ ∈ S) Bδ 6∈ id−(Qδ).

We are going to show

(∗) there exists η ∈ (2κ\A) ∩ set−0 (
⇀

Λ∗), witnessing set−0 (
⇀

Λ∗) 6⊆ A.

Without loss of generality assume closure under rational translates, i.e. set0(Λδ)
[β] =

set0(Λδ) for β < δ ∈ S, and clearly we may assume the same for
⇀

Λ∗.

Claim: Let pρ ∈ Qκ be the condition witnessed by (ρ, SA,
⇀

Λ). Then for all ρ ∈ 2<κ,

there exists δ ∈ S\(lg(ρ) + 1) such that

(pρ ∩ 2δ) ∩ set0(Λ∗δ) 6= ∅.

To see this choose δ > lg(ρ) such that Bδ ∈ id−(Qδ) and let

Cδ = {η ∈ 2δ : (∀∞σ ∈ SA ∩ δ) η�σ ∈ set1(Λσ).}
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The idea is that Cδ is a set of candidates for elements of pρ∩2δ. Towards contradiction

assume that

Cδ ⊆ set0(Λδ) ∪ set1(Λ∗δ) = ¬Bδ

i.e. every candidate either dies out at level δ by definition of pρ or is not in set0(Λ∗δ).

But clearly Cδ = set1(
⇀

Λ�δ) i.e. is a co-id−(Qδ) set, contradicting Bδ 6∈ id−(Qδ).

Hence there exists η ∈ Cδ ∩ Bδ. Now use the closure under rational translates and

choose β ∈ (lg(tr(pρ)), δ) large enough such that for ν ∈ 2β ∩ pρ we have

ν�β_η�(β, δ) ∈ (pρ ∩ 2δ) ∩ set0(Λ∗δ).

This concludes to proof of the claim.

Now fix a club E disjoint from S and work as in 3.3.4 constructing a /-increasing

sequence 〈ηi : i < κ〉 of ηi ∈ 2<κ and an increasing sequence 〈δi : i < κ〉 of δi ∈ κ
such that for i < κ:

(a) |ηi| = δi.

(b) i = j + 1⇒ δi ∈ S.

(c) i limes ⇒ δi ∈ E.

(d) [pηi ] ⊆
⋂
j<i set1(Jj).

(e) i = j + 1⇒ ηi ∈ set0(Λ∗δi).

Finally let η =
⋃
i<κ ηi and note that

• η ∈ set0(Λ∗) = φ−(
⇀

Λ∗) by clause (e).

• η 6∈ A by clause (d).

So we have shown (∗).
It remains to check that we can carry out the induction. For i = j + 1 we

find pρ ∈ Ji such that pρ and pηj are compatible. Now let ν = ρ ∪ ηj and we

find δi > |ν| such that δi ∈ Bδ and (δj , δi) ∩ E 6= ∅. Now using the claim we find

ηi ∈ pν ∩ 2δi ∩ set0(Λ∗δi).

Theorem 3.3.13. Let S ∈ nstκ, sup(S) = κ. Then:

1. add(id−(Qκ), id(Qκ)) ≤ add(ΠS).
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2. cf(id−(Qκ), id(Qκ)) ≥ cf(ΠS).

Proof. By 3.3.12 and 1.5.8.

We will use the following definition and the revised GCH theorem from (Shelah

2000).

Definition 3.3.14. Let µ, θ be cardinals such that θ < µ and θ regular. We define

µ[θ] = min{|U | : U ⊆ P(µ) ∧ ϕ(U)}

where ϕ(U) iff:

1. All u ∈ U have size θ.

2. Every v ⊆ µ of size θ is contained in the union of fewer than θ members of U .

Theorem 3.3.15 (The revised GCH theorem). Let α be an uncountable strong limit

cardinal, i.e. β < α⇒ 2β < α. E.g. α = |Vω+ω| = iω, the first strong limit cardinal.

Then for every µ ≥ α for some ε < α we have:

θ ∈ [ε, α] ∧ θ is regular ⇒ µ[θ] = µ.

Theorem 3.3.16. Let κ be Mahlo (or at least Sκpr stationary). Then:

(a) cf(id−(Qκ)) = µ1 + µ2.

(b) cf(id(Qκ)) = µ1 + µ2 + µ3.

where

• µ1 = cf(nstκpr).

• µ2 = sup(cf(ΠS) : S ∈ nstκpr)

• µ3 = cf(id(Qκ)/ id−(Qκ)).

Proof. The inequality ≥:

(a) Let µ∗ = cf(id−(Qκ), id(Qκ)). Then remembering 1.5.4:
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(1) µ∗ ≥ µ1 by 3.3.6.

(2) µ∗ ≥ µ2 by 3.3.13.

(b) Use the same theorems. Finally cf(id(Qκ)) ≥ µ3 is trivial.

The inequality ≤: We only show (a) which using 1.5.5 easily implies (b).

1. Let 〈Sζ : ζ < µ1〉 witness µ1 = cf(nstκpr), i.e.

(a) ζ < µ1 ⇒ Sζ ∈ nstκpr.

(b) (∀S ∈ nstκpr)(∃ζ < µ1) S ⊆∗ Sζ .

2. For every ζ < µ1 let 〈
⇀

Aζ,i : i < µ2〉 witness µ2,Sζ ≤ µ2, i.e.

(a)
⇀

Aζ,i = 〈Aζ,i,δ : δ ∈ Sζ〉.

(b) Aζ,i,δ ∈ id(Qδ), representing the equivalence class [Aζ,i,δ] ∈ id(Qδ)/ id−(Qδ).

(c) for all
⇀

A ∈
∏
δ∈Sζ id(Qδ), there is some i < µ2 such that for every δ large

enough we have Aδ ⊆ Aζ,i,δ mod id−(Qδ).

(d) Changing the representative of [Aζ,i,δ] if necessary we may assume

{η ∈ 2δ : (∃∞σ ∈ Sζ ∩ δ) η�σ ∈ Aζ,i,σ} ⊆ Aζ,i,δ.

3. Let

θ = min{θ : θ = cf(θ) < |Vω+ω| ∧ (µ1 + µ2)[θ] = µ1 + µ2},

see 3.3.14 and 3.3.15 for definition of notation and existence of θ.

For u ∈ [µ1 × µ2]θ

(a) Su = ∪{Sζ : {ζ} × µ2 ∩ u 6= ∅}.

(b) For δ ∈ Su we inductively define Au,δ = ∪{Aζ,i,δ : (ζ, i) ∈ u} ∪ {η ∈ 2δ :

(∃∞σ ∈ Su ∩ δ) η�σ ∈ Au,σ}.

(c) Au = {η ∈ 2κ : (∃∞δ ∈ S) η�δ ∈ Au,δ}.

4. Note that in (3) (because for any δ ∈ Sinc we have δ > |Vω+ω| > θ).

(a) Su ∈ nstκpr.
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(b) Au,δ ∈ id(Qδ).

(c) Au ∈ id−(Qκ).

5. Remembering 3.3.14, 3.3.15 we find
⇀
u such that

(a)
⇀
u = 〈uα : α < µ1 + µ2〉.

(b) uα ∈ [µ1 × µ2]θ.

(c) If u ∈ [µ1 × µ2]θ then it is the union of fewer than θ members of {uα :

α < µ1 + µ2}.

We claim that 〈Auα : α < µ1 + µ2〉 is a cofinal family in id−(Qκ). So let A ∈
id−(Qκ) be arbitrary and for ε < θ we inductively define Aε, ζε, iε, etc. such that:

(a) A ⊆ A0.

(b) ε′ < ε⇒ Aε′ ⊆ Aε.

(c) Aε = set−0 (
⇀

Λ1
ε ) ∈ id−(Qκ) where:

(a)
⇀

Λ1
ε = 〈Λ1

ε,δ : δ ∈ S1
ε 〉.

(b) S1
ε ∈ nstκpr (remember 3.2.7)

(c) Λ1
ε,δ is a set of at most δ-many maximal antichains of Qδ.

(d) ζε < µ1 is minimal such that S1
ε ⊆∗ Sζε .

(e)
⇀

Λ2
ε = 〈Λ2

ε,δ : δ ∈ Sζε〉 is such that δ ∈ S1
ε ∩ Sζε ⇒ Λ1

ε,δ = Λ2
ε,δ. (E.g. choose

Λ2
ε,δ = ∅ for δ ∈ Sζε\S1

ε .)

(f) iε < µ2 is minimal such that for some S3
ε ⊆ Sζε , S3

ε =∗ Sζε :

(∀δ ∈ S3
ε ) (set0(Λ2

ε,δ) ⊆ Aζε,iε,δ) mod id−(Qδ).

(g)
⇀

Λ4
ε = 〈Λ4

ε,δ : δ ∈ S4
ε 〉 is such that:

(1) S3
ε ⊆ S4

ε ∈ nstκpr.

(2) If δ ∈ S3
ε then Aζε,iε,δ ⊆ set0(Λ4

ε,δ).

(3) If δ ∈ S3
ε then set0(Λ2

ε,δ) ⊆ set0(Λ4
ε,δ) ∪ set−0 (

⇀

Λ4
ε�δ). This point is the

only non-explicit step, see below for why we can do this.
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(h) If ε = ε′ + 1 then S1
ε = S4

ε′ ,
⇀

Λ1
ε =

⇀

Λ4
ε′ .

(i) If ε is a limit then S1
ε =

⋃
ε′<ε S

1
ε′ , Λ4

ε,δ =
⋃
ε′<ε Λ4

ε′,δ.

Why is carrying out the induction enough?

Note {(ζε, iε) : ε < θ} ∈ [µ1×µ2]θ so we use (5)(c) to find α < µ1 +µ2 such that

(∃∞ε < θ) (ζε, iε) ∈ uα. (3.1)

Remember θ < |Vω+ω| < cf(κ) and find ψ∗ < κ such that

(∀ε < θ) S1
ε \ψ∗ ⊆ S2

ε \ψ∗ ⊆ S3
ε \ψ∗ ⊆ S4

ε \ψ∗ ⊆ S1
ε+1\ψ∗

We plan to show A ⊆ Auα . So let η ∈ A0 be arbitrary; we will show η ∈ Auα .

Let W ⊆ S1
0\ψ∗, sup(W ) = κ be such that

(∀δ ∈W ) η�δ ∈ set0(Λ1
0,δ).

Now we claim

(∀δ ∈W )(∀∞ε < θ) η�δ ∈ Aζε,iε,δ. (3.2)

We prove this by induction on δ ∈ S1
θ\ψ∗.

• δ > sup(δ ∩ Sinc). Then id−(Qδ) trivial so in (f) we always really (i.e. not just

modulo id−(Qδ)) cover set0(Λ2
ε,δ).

• δ = sup(δ ∩ Sinc) and δ = sup(δ ∩ S1
θ ). By induction hypothesis we have

(∀σ ∈ S1
θ ∩ δ)(∃εσ < θ)(∀ε ≥ εσ) η�σ ∈ Aζε,iε,σ

δ is inaccessible so in particular regular, hence there exists ε′ such that

(∃∞σ ∈ S1
θ ∩ δ) εσ = ε′

and for such σ we have

ε ≥ ε′ ⇒ η�σ ∈ Aζε,iε,σ

and by (2)(d) this implies η�δ ∈ Aζε,iε,δ.

• δ = sup(δ ∩ Sinc) but δ > sup(δ ∩ S1
θ ). In this case always really Aζε,iε,δ ⊇

set0(Λ2
ε,δ) because otherwise δ would become a limit in S4

ε by (g)(3), see below.
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Now combine (3.1) and (3.2) to see

(∀δ ∈W )(∃∞ε < θ) η�δ ∈ Aζε,iε,δ ∧ (ζε, iε) ∈ uα.

Thus η ∈ Auα and we are done.

How can we carry out the induction?

The only non-explicit part is how to get (g). The idea here is that in (f) we make

some mistake because we only cover set0(Λ2
ε,δ) modulo id−(Qδ), i.e.

set0(Λ2
ε,δ)\Aζε,iε,δ = Xε,δ ∈ id−(Qδ).

Let Xε,δ = set0(
⇀

Γε,δ) where
⇀

Γε,δ = 〈Γε,δ,σ : σ ∈ Sε,δ ⊆ δ〉. So in (g)(3) we want to fix

this mistake by choosing some S4
ε containing both Sε,δ and Sζε and then choosing

⇀

Λ4
ε with all Γε,δ,σ added. The problem here of course is that we have to do this for

all δ ∈ S3
ε but |S3

ε | = κ so fixing the mistake in such a naive way will in general yield

a somewhere-stationary set and more than δ-many antichains at level δ. Hence we

work as follows: Choose a regressive function f on S3
ε as in 3.2.6, i.e. such that

(∀δ < κ) |{λ ∈ S3
ε \δ : f(λ) ≤ δ}| < δ

i.e. f is a regressive but in a very “lazy” way. The problem with fixing our mistakes

earlier was that we tried to do it all at once so let us instead do it lazily as dictated

by f . Thus let let

S4
ε = S3

ε ∪
⋃
δ∈S3

ε

Sε,δ\(f(δ) + 1)

and for δ ∈ S4
ε let

Λ4
ε,δ = Λ3

ε,δ ∪ {Γε,δ∗,δ : δ∗ > δ > f(δ∗)}

Now check that S4
ε is nowhere stationary.

• δ < sup(S3
ε ∩ δ). Then S3

ε ∩ δ is disjoint from Sε,δ′\(f(δ′) + 1) for every δ′ ∈ S3
ε

with f(δ′) > δ so by 3.2.6(a) the set S4
ε ∩ δ is the union of fewer than δ-many

non-stationary sets.

• δ = sup(S3
ε ∩ δ). Let

S4∗
ε,δ =

⋃
δ′∈S3

ε∩δ

Sε,δ′\(f(δ′) + 1)
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S4∗∗
ε,δ =

⋃
δ′∈S3

ε∩(κ\δ)

Sε,δ′\(f(δ′) + 1) ∩ δ

and clearly

S4
ε ∩ δ = (S3

ε ∩ δ) ∪ S4∗
ε,δ ∪ S4∗∗

ε,δ .

Let Eδ be as in 3.2.6 and it is easy to check using 3.2.6(b) that S4∗
ε,δ is disjoint

from Eδ, i.e. non-stationary.

S4∗∗
ε,δ is non-stationary by the argument from the previous point.

Similarly check |Λ4
ε,δ| ≤ δ.

Theorem 3.3.17. Let κ be Mahlo (or at least Sκpr stationary).

(a) add(id−(Qκ)) = min{µ1, µ2}.

(b) add(id(Qκ)) = min{µ1, µ2, µ3}.

where

• µ1 = add(nstκpr).

• µ2 = min(add(ΠS) : S ∈ nstκpr)

• µ3 = add(id(Qκ)/ id−(Qκ)).

Proof. The inequality ≤: Same as “≥” in 3.3.16.

The inequality ≥: We only show (a) which using 1.5.5 easily implies (b).

Let µ < µ1 + µ2 and we are going to show µ < add(id(Qκ)). So let 〈Aζ : ζ < µ〉
be a family of Aζ ∈ id−(Qκ) and we are going to find A ∈ id−(Qκ) such that⋃
ζ<µAζ ⊆ A. Let Aζ be represented by 〈A0

ζ,δ : δ ∈ S0
ζ 〉 and by 3.2.7 we may assume

Sζ ∈ nstpr
κ . Now work inductively for i < ω:

1. Let Si ∈ nstpr
κ be such that ζ < µ⇒ Siζ ⊆∗ Si. (Remember µ < µ1.)

2. Let
⇀

Ai ∈ ΠSi be such that

(∀ζ < µ)(∀∞δ ∈ Si) (Aiζ,δ ⊆ Aiδ) mod id−(Qδ).

(Remember µ < µ2.)
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3. For each ζ < µ work as in 3.3.16 using a regressive function to fix the error

Xi
ζ,δ = (Aiζ,δ\Aiδ) ∈ id−(Qδ).

for δ ∈ Siζ . I.e., we find Si+1
ζ , 〈Ai+1

ζ,δ : δ ∈ Si+1
ζ 〉 such that:

(a) Si ⊆ Si+1
ζ ∈ nstpr

κ .

(b) δ ∈ Si+1
ζ ⇒ Ai+1

ζ,δ ∈ id(Qδ).

(c) δ ∈ Siζ ⇒ Aiζ,δ ⊆ Aiδ ∪ set−0 (〈Ai+1
ζ,ε : ε ∈ Si+1

ζ ∩ δ〉).

Let

Sω =
⋃
i<ω

Si.

For δ ∈ Sω, ζ < µ let

• Aωζ,δ =
⋃
i<ω A

i
ζ,δ.

• Aωδ =
⋃
i<ω A

i
δ.

Finally let

• Aωζ = set−0 (〈Aωζ,δ : δ ∈ Sω〉).

• Aω = set−0 (〈Aωδ : δ ∈ Sω〉).

For ζ < µ we claim Aζ ⊆ Aω. Let W = Sω\α∗ with α∗ < κ large enough that in all

ω-many steps of the construction in (1.) and (2.) the “almost all” quantifiers become

“for all”.

We now claim that

(∀δ ∈W )(∀i < ω)

(
η ∈ Aiζ,δ ⇒

(
η ∈ Aωδ ∨ (∃∞ε ∈W ∩ δ) η�ε ∈ Aωε

))
(3.3)

and clearly this suffices to show Aζ ⊆ Aω. So towards contradiction assume there

exists δ∗ ∈W such that there exists i < ω, η∗ ∈ 2δ
∗

with

η∗ ∈ Aiζ,δ∗ ∧ η∗ 6∈ Aωδ∗ ∧ (∀∞ε ∈W ∩ δ∗) η∗�ε 6∈ Aωε (3.4)

and let δ∗ be minimal with this property and without loss of generality

i = min{i : δ∗ ∈ Siζ}.

Now because η∗ ∈ Aiζ,δ∗ and η∗ 6∈ Aωδ∗ (thus in particular η∗ 6∈ Aiδ∗) so we have
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(i) η∗ ∈ Xi
ζ,δ∗ .

(ii) sup(W ∩ δ∗) = δ∗.

By (3.)(c) there exists W∗ ⊆W ∩ δ∗ unbounded such that

(∀ε ∈W ∗) η∗�ε ∈ Ai+1
ζ,ε

and because W ∗ ⊆ δ∗ and we assumed δ∗ to be minimal contradicting formula (3.3)

we have

(∀ε ∈W ∗)
(
η ∈ Aωε ∨ (∃∞σ ∈W ∩ ε) η∗�σ ∈ Aωσ

)
contradicting the last conjunct of formula (3.4) so we are done.

Intuitively the proof showed: Because κ is well ordered we cannot keep pushing

our mistakes in (2.) down for ω-many steps.

Corollary 3.3.18. Let κ be Mahlo (or at least Sκpr stationary). We get a strength-

ening of the general fact about ideals from 1.5.5.

(a) cf(id(Qκ)) = cf(id−(Qκ)) + cf(id(Qκ)/ id−(Qκ))

(b) add(id(Qκ)) = min{add(id−(Qκ)), add(id(Qκ)/ id−(Qκ))}

Proof.

(a) By 3.3.16.

(b) By 3.3.17

3.4 Strong measure zero sets

Definition 3.4.1. We say X ⊆ 2κ is a strong measure zero set if for every f ∈ κκ

there exists a sequence 〈ηα : α < κ〉 such that:

1. ηα ∈ 2f(α)

2. X ⊆
⋃
α<κ[ηα].

Equivalently we may demand

2.’ X ⊆
⋂
β<κ

⋃
α>β[ηα].
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Lemma 3.4.2. Let X ⊆ 2κ be strong measure zero. Then X ∈ id−(Qκ).

Proof. Let S ⊆ κ be nowhere stationary and let f ∈ κκ be such that 〈f(α) : α < κ〉
enumerates S. Let 〈ηα : α < κ〉 be as in 3.4.1 2.’ and keep mind that {ηα} ∈ id(Qα).

Now easily

X ⊆ set0(〈{ηα} : α ∈ S〉) ∈ id−(Qκ).
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id(Qκ) in the Qκ-Extension

In this section we consider the relation between V and VQκ , and also more generally

between V and any extension via a strategically closed forcing.

In 4.1 we show that (in contrast to the classical case), the ideal id(Qκ) does

not satisfy the Fubini theorem, and in fact violates it in a strong sense. This

allows us to to show cov(Qκ) ≤ non(Qκ), in analogy to the classical inequality

cov(null)≤non(meager). Also, the old reals become a measure zero set in the Qκ-

extension.

In 4.2, we show that QV
κ is V-completely embedded into QVQκ

κ . This parallels

the classical case, but the proof is necessarily different, as we do not have a measure.

4.1 Asymmetry

In this section we elaborate on the asymmetry of id(Qκ) as promised in (Shelah

2017). Anti-Fubini sets (defined below) are called 0-1-counterexamples to the Fubini

property in (Rec law and Zakrzewski 1999)

Definition 4.1.1. Let X , Y be sets and let i ⊆ P(X ), j ⊆ P(Y) be ideals. We call

a set F ⊆ X × Y an anti-Fubini set for (i, j) if:

(a) For all η ∈ 2κ we have 2κ\Fη ∈ i.

(b) For all ν ∈ 2κ we have Fν ∈ j.
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where:

1. Fη = {ν ∈ 2κ : (ν, η) ∈ F}.

2. Fν = {η ∈ 2κ : (ν, η) ∈ F}.

If i = j then we simply call F an anti-Fubini set for i.

Lemma 4.1.2. Let X , Y be sets and let i ⊆ P(X ), j ⊆ P(Y) be ideals. Let F ⊆ X×Y
be such that:

(a) There exists E1 ∈ j such that for all η ∈ 2κ\E1 we have 2κ\Fη ∈ i.

(b) There exists E0 ∈ i such that for all ν ∈ 2κ\E0 we have Fν ∈ i.

Then there exists an anti-Fubini set F′ for (i, j).

Proof. Let

F′ =

(
F ∪

(
E0 × (2κ\E1)

))
\
(

(2κ\E0)×E1

)
and check that F′ is as required.

Lemma 4.1.3 (Folklore). Let i, j ⊆ P(X ) be ideals. If there exists an anti-Fubini

set F for (i, j) then cov(i) ≤ non(j).

Proof. Suppose Y ⊆ Y, Y 6∈ j. We claim that

∪{2κ\Fη : η ∈ Y } = X .

Let ν ∈ X be arbitrary. Now because Fν ∈ j and Y /∈ j we have Y \Fν 6= ∅, so choose

η0 ∈ Y \Fν . We conclude η0 /∈ Fν ⇒ (ν, η0) /∈ F ⇒ ν /∈ Fη0 , so ν ∈ ∪{2κ\Fη : η ∈
Y }.

Lemma 4.1.4 (Folklore). Let X be a set, let i, j ⊆ P(X ) be ideals and let ⊗ :

X × X → X be a group operation satisfying for all k ∈ {i, j} and for all X ∈ k:

• η ⊗X = {η ⊗ x : x ∈ X} ∈ k.

• X−1 = {x−1 : x ∈ X} ∈ k

where x−1 denotes the group inverse for ⊗. If there exists sets A0, A1 ⊆ 2κ such

that:
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(a) A0 ∈ i.

(b) A1 ∈ j.

(c) A0 ∩A1 = ∅.

(d) A0 ∪A1 = 2κ.

Then:

(1) There exists an anti-Fubini set for (i, j).

(2) There exists an anti-Fubini set for (j, i).

Proof.

(1) Let

F = {(ν, η) : ν ∈ η ⊗A1}.

Clearly for any η ∈ 2κ we have Fη = η ⊗ A1 hence 2κ\Fη = η ⊗ A0 ∈ i. For

ν ∈ 2κ we have Bν = {η : ν ∈ η ⊗A1} = {η : η ∈ ν ⊗A−1
1 } = ν ⊗A−1

1 ∈ j. So

F is an anti-Fubini set for (i, j).

(2) Same proof, interchanging A0 and A1.

Theorem 4.1.5. Let:

(a) i = (Q, η̇) is an ideal case, i.e.

(1) Q is a κ-strategically closed forcing notion (or at least does not add

bounded subsets of κ).

(2) η̇ is a Q-name for a κ-real.

(3) The name η̇ determines i in the following sense: A ∈ i iff there exists

a (definition of) a κ-Borel set B ⊇ A such that Q “η̇ 6∈ B”.

(b) There exists an Borel F ⊆ 2κ × 2κ that is anti-Fubini for i both in V and

VQκ.

Then:

(1) Q “(2κ)V ∈ i”.
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(2) Q is asymmetric, i.e. if η1 is Q-generic over V and η2 is QV[η1]-generic over

V[η1] then η1 is not Q-generic over V[η2].

(3) cov(i) ≤ non(i).

Proof.

(1) We want to show:

Q  V ∩ Fη̇ = ∅.

So let ν ∈ 2κ ∩V. Consider Fν = {η : ν ∈ Fη}. Now because Fν ∈ i we have

η̇ 6∈ Fν thus ν 6∈ Fη̇.

(2) By (1):

V[η1, η2] |= η1 ∈ 2κ\Fη2 .

(3) By 4.1.3.

Lemma 4.1.6. Assume κ = sup(Sκinc). Then there exists an anti-Fubini set for

(id(Qκ), id(Qκ)).

Discussion 4.1.7. This is implicitly shown in (Shelah 2017) but we repeat it here

for the convenience of the reader.

Proof. Let 〈δε : ε < κ〉 enumerate Sκinc and let S = {δε+1 : ε < κ}. For η ∈ 2κ, δ ∈ S
define

Fη,δ = {ρ ∈ 2δ : (∀∞ζ < δ) ρ(ζ) = η(δ + ζ).}

Then clearly Fη,δ ∈ id(Qδ). Let

Fη = set−1 (〈Fζ,δ : δ ∈ S〉)

so 2κ\Fη ∈ id−(Qκ) by definition. Let

F = {(ν, η) ∈ 2κ × 2κ : ν ∈ Fη}

and it remains to check Fν ∈ id(Qκ). Thus let ν ∈ 2κ and consider Fν = {η ∈ 2κ :

ν ∈ Fη} and we want to show Qκ “ν 6∈ Fη̇”. Clearly for every ζ < κ the set

{p ∈ Qκ : (∃δ ∈ S\ζ)(∀η ∈ [p]) ν�δ ∈ Fη,δ}

is a dense subset of Qκ so we are done.
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4.2 Upwards absoluteness of id(Qκ)

Lemma 4.2.1 (Mostowski absoluteness). Let P be a strategically κ-closed forcing

notion and let T ⊆ κ<κ be a tree, T ∈ V. If T has a branch of height κ in VP then

T already has a branch of height κ in V.

Proof. Assume there exists q ∈ P such that

q  T has a branch ν̇ of height κ.

Consider a run of the game Cκ(P, q) (as defined in 2.1.4) where for i < κ the

condition p′i decides ν̇�i = ρi and White plays according to a winning strategy.

Easily check:

1. i < κ⇒ ρi ∈ T .

2. lg(ρi) = i.

3. j < i < κ⇒ ρj E ρi. [Why? Because p′j ≥ p′i.]

So ρ =
⋃
i<κ ρi is a branch of height κ of T and ρ ∈ V.

Lemma 4.2.2. Let J = {qi : i < κ} ⊆ Qκ be a maximal antichain and let P be a

strategically κ-closed forcing notion satisfying the κ+-c.c. Then

P  “J̌ is a maximal antichain of Qκ”.

Proof. Towards contradiction assume there is some p∗ ∈ P such that

p∗  “q̇ ∈ Qκ, and (∀i < κ) q̇ ⊥ qi”.

Without loss of generality even

p∗  “q̇ is witnessed by (η̇, Ṡ,
⇀̇

Λ)”.

and even p∗ decides η̇ = η∗.

Consider a run of the game C(Qκ, p
∗) where White plays according to a winning

strategy and for j < κ we have

p′j  “Ṡ ∩ j = Sj ∧
⇀̇

Λ�j = Λj”.

Let q∗ ∈ Qκ be the condition witnessed by (η∗,
⋃
j<κ Sj ,

⋃
j<κ Λj). Now q∗ ∈ V

so there is i < κ such that q∗ 6⊥ qi, so one of the following holds:

67



Chapter 4. id(Qκ) in the Qκ-Extension

1. tr(qi) E η∗ ∈ qi

2. η∗ E tr(qi) ∈ q∗.

If the first case holds, then “tr(qi) E η∗ = tr(q̇) ∈ qi” is forced already by p∗; if

the second case holds, then for j large enough p′j “tr(qi) ∈ q∗ ⇒ tr(qi) ∈ q̇” hence

p′j “η∗ = tr(q̇) E tr(qi) ∈ q̇”, so in either case we have p′j  q̇ 6⊥ qi for some j < κ.

Contradiction.

Note is easily follows from 2.2.6 that
⋃
Sj is not stationary in κ so q∗ is indeed

a condition.

Corollary 4.2.3. Let P be a strategically κ-closed forcing notion satisfying the κ+-

c.c. Then for every null set of the form set−0 (〈Aδ : δ ∈ S〉) in V we also have

P “set−0 (〈Aδ : δ ∈ S〉) ∈ id(Qκ)”, or briefly: “null sets remain null in the generic

extension.”

4.3 Miscellaneous

Theorem 4.3.1. Let κ = sup(Sκinc). Then (2κ)V is a κ-meagre set in VQκ.

Proof. Let 〈λi : i < κ〉 be an increasing enumberation of Sκinc. We are going to show

that

Qκ  “For every ν ∈ (2κ)V there exists i∗ < κ such that

i > i∗ ⇒ η̇�(λi + 1, λi+1) 6⊆ ν”.

This suffices by 5.1.2.

Fix p ∈ Qκ witnessed by (τ, S1,
⇀

Λ) and ν ∈ (2κ)V. We are going to find q ≤ p

and i∗ < κ such that

q  i > i∗ ⇒ η̇�(λi + 1, λi+1) 6⊆ ν,

Choose i∗ such that λi∗ > lg(τ). Let S2 = {λi+1 : i > i∗} and for λ = λi+1 ∈ S2

and α ∈ (λi, λi+1) let

Jλ,α = {r ∈ Qλ : | tr(r)| > α, tr(r)�[α, | tr(r)|) 6⊆ η}.

Clearly Jλ,α is open dense subset of Qλ.
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Let S′ = S1 ∪ S2, let

Λ′λ =


Λλ λ ∈ S1\S2

Λλ ∪ {Jλ,α : α ∈ (λi, λi+1)} λ = λi+1 ∈ S1 ∩ S2

{Jλ,α : α ∈ (λi, λi+1)} λ = λi+1 ∈ S2\S1

and let
⇀

Λ′ = 〈Λ′λ : λ ∈ S′〉.
Finally let q ∈ Qκ be the condition witnessed by (τ, S′,

⇀

Λ′) and easily check that

q is as required.
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ZFC-Results

5.1 Cichoń’s Diagram

Discussion 5.1.1. In this subsection we establish some results about the relation

between id(Qκ) and the ideal of meager sets id(Cohenκ). These theorems are either

quotes of or promised elaborations on results first appearing in (Shelah 2017).

Lemma 5.1.2 (Meager set normal form, (Shelah 2017, 5.1)).

(1) Let X ⊆ 2κ be κ-meager and let S ⊆ κ be unbounded. Then there exists an

increasing sequence
⇀
α = 〈αi : i < κ〉 of elements of S and η ∈ 2κ such that

X ⊆ Xη,
⇀
α = {ν ∈ 2κ : (∀∞i < κ) η�[αi, αi+1) 6= ν�[αi, αi+1)}.

Additionally we may require
⇀
α continuous.

(2) If η ∈ 2κ and
⇀
α is an increasing sequence of ordinals < κ then the set Xη,

⇀
α

defined as above is κ-meager.

Proof.

(1) For i < κ let Ti ⊆ 2<κ be a nowhere dense tree such that X ⊆
⋃
i<κ[Ti]. For

α ∈ S\ω let ε∗ = |2α| and let 〈(ηα,ε, iα,ε) : ε < ε∗〉 enumerate 2α × α. Now

inductively construct a να,ε, βα,ε for ε ≤ ε∗ such that:
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κ+ add(Qκ)

cov(Qκ)

add(Cohenκ)

non(Cohenκ)

cov(Cohenκ)

cof(Cohenκ)

non(Qκ)

cof(Qκ) 2κ

bκ dκ

add(nstpr
κ )

cof(nstpr
κ )

Figure 5.1: The general diagram including nstpr
κ , showing results established in this

section. Dashed or dotted arrows have the same meaning as the solid ones but are
intended to make the crossing arrows visually less confusing. To prove the implica-
tions represented by the dashed arrows (those involving add(nstpr

κ ) and cf(nstpr
κ ))

we need to assume that κ is Mahlo (or at least Sκpr stationary).

(a) βα,ε ∈ κ.

(b) 〈βα,ε : ε < ε∗〉 is increasing continuous.

(c) να,ε ∈ 2βα,ε .

(d) ζ < ε⇒ να,ζ E να,ε.

(e) ηα,ε
_να,ε+1 6∈ Tiα,ε .

This can easily be done by starting with βα,0 = 0, να,0 = 〈〉 and for ε limit

letting να,ε =
⋃
ζ<ε να,ζ . For ε successor use that Tiα,ε is nowhere dense.

Construct αi, νi for i < κ such that:

(a) αi ∈ S\ω

(b) νi ∈ 2αi

(c) j < i⇒ νj E νi.

(d) For i = j+1 let ε∗ = |2αj | and let αi = min(S\(αj +βαj ,ε∗+1)}. Choose

νi ∈ 2αi such that νj
_ναj ,ε∗ E νi.
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Check that η =
⋃
i<κ νi and

⇀
α = 〈αi : i < κ〉 are as required.

(2) Note that

Xη,
⇀
α =

⋃
i∗<κ

{ν ∈ 2κ : (∀i ∈ [i∗, κ)) η�[αi, αi+1) 6= ν�[αi, αi+1)}.

so easily Xη,
⇀
α is the union of κ-many nowhere dense sets.

Lemma 5.1.3. Let
⇀

β,
⇀
γ be increasing sequences in κ of length κ such that for every

sufficiently large i < κ there exists j < κ such that [βj , βj+1) ⊆ [γi, γi+1). Then

X
η,
⇀
β
⊆ Xη,

⇀
γ, for any η ∈ 2κ.

Proof. Should be clear.

Lemma 5.1.4. For η ∈ κκ the set

Yη = {ν ∈ κκ : ν ≤∗ η}

is a meager subset of κκ.

Proof. Similar to 5.1.2 (2). Again easily Yη is the union of κ-many nowhere dense

sets.

Lemma 5.1.5 (Folklore?, (Shelah 2017, 5.3)).

1. cov(Cohenκ) ≤ dκ.

2. bκ ≤ non(Cohenκ).

3. add(Cohenκ) ≤ bκ.

4. dκ ≤ cf(Cohenκ).

Proof.

1. Let 〈ηi : i < dκ〉 be a dominating family. Remember 5.1.4 and easily 〈Yηi : i <

dκ〉 is a covering of κκ.

2. Let A = {ηi : i < µ < bκ} ⊆ κκ. Find η ∈ κκ such that for every i < µ we

have ηi ≤∗ η. Easily A ⊆ Yη ∈ id(Cohenκ).
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3. Let 〈fα : α < µ〉 witness bκ = µ. For α < µ let

Eα = {δ < κ : f [δ] ⊆ δ}

and let
⇀

βα = 〈βα,i : i < κ〉 enumerate Eα. Let η0 be constantly 0. Towards

contradiction assume that

A =
⋃

α<µ=

X
η0,

⇀
βα

is meager. So by 5.1.2 there exist η ∈ 2κ,
⇀

β ∈ κκ increasing continuous such

that A ⊆ X
η,
⇀
β
. Let f ∈ κκ be defined by f(j) = βj+1. Find α < µ such that

fα 6≤∗ f . Let

S = {j : (βj , βj+1] ∩ Eα} = ∅.

and we claim S is unbounded. Indeed if βj ≤ βα,i ≤ βj+1 then j ≤ βj < βα,i ∈
Eα. Hence fα(j) < βα, i ≤ βj+1 = f(j) so by our choice of α the claim follows.

Let S′ ⊆ S such that j ∈ S′ ⇒ j + 1 6∈ S′ and let ν ∈ 2κ be such that

ν�(βj , βj+1] = η�(βj , βj+1] for j ∈ S′ and constantly 1 otherwise. Easily ν ∈
X
η0,

⇀
βα
\X

η,
⇀
β
. Contradiction to A ⊆ X

η,
⇀
β
.

4. Let 〈Aα : α < µ〉 be cofinal in id(Cohenκ). For α < µ use 5.1.2 to find ηα, βα

such that Aα ⊆ Xηα,
⇀
βα

. Let

Eα = {δ : i < δ ⇒ βα,i < δ}

Towards contradiction assume that dκ > µ. Then by 5.2.4 there exists a club

E such that for every α we have Eα 6⊆∗ E. Let η0 ∈ 2κ and let
⇀

β enumerate

E. Consider X
η0,

⇀
β

and find α such that X
η0,

⇀
β
⊆ X

ηα,
⇀
βα

.

If δ ∈ Eα\E we have ε = sup(E ∩ δ) < δ because E is club. Let i = ε + 1

and note that βα,i < δ. Hence (βα,i, δ] ∩ E = ∅ so argue as in (3.) to get a

contradiction.

Fact 5.1.6 (Folklore?, (Shelah 2017, 5.3)).

1. add(Cohenκ) = min(bκ, cov(Cohenκ)).

2. cf(Cohenκ) = max(dκ,non(Cohenκ)).
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Proof.

1. By 5.1.5 2. and 3. it suffices to show

add(Cohenκ) ≥ min{bκ, cov(Cohenκ)}.

Let µ = add(Cohenκ) and towards contradiction assume µ < bκ, µ < cov(Cohenκ).

Let A = {Aγ : γ, µ} be a family of meager sets such that
⋃
A 6∈ id(Cohenκ).

For γ < µ let ηγ ,
⇀

βγ be such that Aγ ⊆ Xηγ ,
⇀
βγ

(as in 5.1.2). Let let

Eγ = {α < κ : (∀i < α) βγ,i < α}.

Use µ < bκ to find a club E ⊆ κ such that E ⊆∗ Eγ for all γ < µ (remember

5.2.3) and let
⇀

β = 〈βi : i < κ〉 enumerate E. By 5.1.3 we have Aγ ⊆ X
ηγ ,

⇀
βγ
⊆

X
η,γ,

⇀
β
.

Using µ < cov(Cohen) we find ν ∈ 2κ such that:

(∀γ < µ) Zγ = {j < κ : ηγ�[βj , βj+1) = ν[βj , βj+1)} is cofinal in κ.

Use µ < bκ to find
⇀
α such that

(∀γ < µ) (∀∗i < κ) Zγ ∩ [αi, αi+1) 6= ∅.

Let for i < κ, δi = βαi easily for each γ < µ we have X
ηγ ,

⇀
β
⊆ Xν ,

⇀

δ. Contra-

diction.

2. By 5.1.5 1. and 4. is suffices to show

cf(Cohenκ) ≤ dκ + non(Cohenκ).

Let µ = non(Cohenκ).

Let {%β : β < µ} ⊆ κκ be such that

(∀ν ∈ κκ) (∃β < µ) (∃∞i < κ) %β(i) = ν(i).

[Why possible? For ρ ∈ 2κ let νρ ∈ κκ such that for i < κ, νρ(i) is the minimal

γ < κ such that ρ(i+ γ) = 1 if such γ exists, otherwise νρ(i) = 0. Let ν0 ∈ κκ

be constantly 0. Let M ⊆ 2κ be a non-meager set of cardinality µ. Recalling

5.1.2 the set {νρ : ρ ∈ N} ∪ {ν0} is as required.]

75



Chapter 5. ZFC-Results

Let 〈Eγ : γ < dκ〉 be a sequence of clubs witnessing dκ in the sense of 5.2.4.

Let
⇀
αγ = 〈αγ,i : i < κ〉 enumerate Eγ .

Let 〈ρi : i < κ〉 enumerate
⋃
{2[j,k) : j < k < κ} For (β, γ, ξ) ∈ µ× dκ × dκ let

Aβ,γ,ξ = X%β,γ ,ξ as in 5.1.2 where for β < µ, γ < dκ we let %β,γ be such that

%β,γ�[αγ,i, αγ,i+1) is equal to ρ%β(i) if ρ%β(i) ∈ 2[αγ,i, αγ,i+1), otherwise %β,γ is

constantly 0.

Let A = {Aβ,γ,ξ : (β, γ, ξ) ∈ µ × dκ × dκ} and we claim A is cofinal in

id(Cohenκ). Clearly |A| = µ + dκ so this suffices. To prove the claim let

A ∈ id(Cohenκ) and let η ∈ 2κ,
⇀
α ∈ κκ be such that A ⊆ Xη,

⇀
α.

Find γ(1) < dκ such that

Eγ(1) ⊆ {α < κ : (∀i < α) αi < α}

and clearly A ⊆ Xη,
⇀
α ⊆ Xη,

⇀
αγ(1)

(by 5.1.3). Let % ∈ κκ be such that for i < κ,

ρ(%(i)) = η�[αγ(1),i, αγ(1),i+1). Find β < µ such that B = {i < κ : %(i) = %β(i)}
is cofinal in κ. Find γ(2) < dκ such that

Eγ(2) ⊆ {α ∈ Eγ(1) : (∀i < κ) αγ(1),i) < α}

and [αγ(2),i, αγ(2),i+1) ∩B 6= ∅. Now check that indeed A ⊆ Aβ,γ(1),γ(2).

Theorem 5.1.7 ((Shelah 2017, 3.8)). Let κ = sup(Sκinc). Then there exist sets

N,M ⊆ 2κ such that N ∈ id(Qκ), M ∈ id(Cohenκ), N ∩M = ∅ and N ∪M = 2κ.

Proof. Let 〈λi : i < κ〉 be an increasing enumberation of Sκinc. For i < λ let

Jλi+1
= {p ∈ Qλi+1

: lg(tr(p)) > λi ∧ tr(p)�[λi, lg(tr(p))) is not constantly 0}.

For η ∈ 2<κ let pη ∈ Qκ be the condition witnessed by

(η, {λi+1 : i < κ, λi+1 > lg(η)}, 〈{Dλi+1
} : i < κ, λi+1 > lg(η)〉).

It is easy to see that [pη] is a nowhere dense subset of 2κ. Hence for

M =
⋃

η∈2<κ

[pη]

we have M ∈ id(Cohenκ).

Let N = 2κ\M . It remains to check that N ∈ id(Qκ). Indeed for any p ∈ Qκ let

η = tr(p) and let q be a lower bound for p, pη. Now q “η̇ ∈ [q] ⊆ [pη] ⊆ M”, i.e.

q “η̇ 6∈ N”.
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Corollary 5.1.8. Let κ = sup(Sκinc). Then:

(1) cov(Cohenκ) ≤ non(Qκ).

(2) cov(Qκ) ≤ non(Cohenκ).

Proof. Let ⊕ be pointwise addition modulo 2. In by 5.1.7 for κ = sup(Sκinc) there

exist sets N ∈ id(Qκ), M ∈ id(Cohenκ) satisfying 4.1.4(a)–(d) so the conclusion

follows by 4.1.3.

Corollary 5.1.9. Let κ = sup(Sκinc). Then:

(1) cov(id−(Qκ)) ≤ non(id(Qκ))

(2) and in particular cov(Qκ) ≤ non(Qκ).

Proof. By 4.1.5 and 4.1.6.

Lemma 5.1.10. Let κ be inaccessible (or κ = ω). Then there exists a partition

〈Ai : i < |2κ|〉 such that each Ai is non-meager and for every η ∈ 2<κ also Ai ∩ [η]

is non-meager.

Proof. First note that because κ is inaccessible we have |2<κ| = κ. Thus let 〈ηk :

k < κ〉 be an enumeration of 2<κ. Let cκ = |2κ|. Let 〈Xj : j < cκ〉 be an enumeration

of all closed nowhere dense subsets of 2κ. Let 〈(iε, jε, kε) : ε < cκ〉 be an enumeration

of cκ × cκ × κ. Now for ε < cκ inductively choose νε ∈ 2κ such that

1. νε 6∈
⋃
ζ<ε{νζ}.

2. νε 6∈ Xjε

3. νε ∈ [ηkε ]

[Why can we carry out this construction? Because for every nowhere dense set X

and every η ∈ 2κ there exists η′ D η such that [η′] and X are disjoint and of course

|[η′]| = cκ.]

Let A0 = {νε : iε = 0} ∪ (2κ\{νε : ε < κ}). For i > 0 let Ai = {νε : iε = i}. Now

check that by construction 〈Ai : i < cκ〉 is as required.

Theorem 5.1.11 ((Shelah 2017, 5.5)). If bκ > add(Cohenκ) then cov(Qκ) ≤
add(Cohenκ).
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Proof. If κ > sup(Sκinc) then cov(Qκ) = cov(Cohenκ).

So assume κ = sup(Sκinc). Let µ = cov(Cohenκ) and assume towards contradic-

tion that µ < cov(Qκ).

Let 〈Xηε,
⇀
αε

: ε < µ〉 be a covering of 2κ (remember 5.1.2).

Our first goal is to find a single
⇀
α such that Xηε,

⇀
αε
⊆ Xηε,

⇀
α for every ε < µ. We

define fε such that fε(i) = αε(ji + 1) where ji = min{j < κ : αε(j) > i}, hence

[αε(ji), αε(ji + 1)) ⊆ [i, fε(i)). By our assumption µ < bκ we find f ≥∗ fε for every

ε < µ. So for every ε < µ and i sufficiently large we [αε(ji), αε(ji + 1)) ⊆ [i, fε(i)) ⊆
[i, f(i)). Thus define

⇀
α inductively by

1. α0 = 0

2. αi+1 = f(αi)

3. αi = supj<i αj for i limit.

Now
⇀
α is indeed as required by 5.1.3.

Our second goal is to find an increasing sequence
⇀

θ = 〈θε : ε < κ〉 such that there

is Υ ⊆
∏
ε<κ θε = Πθ, |Υ| = µ such that

(∀ν ∈ Πθ) (∃ρ ∈ Υ) (∀∞ε < κ) ν(ε) 6= ρ(ε).

Without loss of generality
⇀
α satisfies

i < j → |2[αε,αε+1)| < |2[αζ ,αζ+1)|,

otherwise inductively join sufficiently many intervals (and use 5.1.3). Let θε =

|2[αε,αε+1)| and let πε : 2[αε,αε+1) → θε be one-to-one. Now it is easy to see that

Υ = {〈πε(ηi�[αε, αε+1)) : ε < κ〉 : i < µ}

is as required.

By induction on ε < κ we choose a an increasing sequence of inaccessibles λε

such that λε ≥ θε and sup(Sλεinc) < λε.

Next for ε < κ let 〈Aε,i : i < θε〉 be a partition of 2λε as in 5.1.10.

Let ν̇ ∈ κκ be a name for the such ν(ε) is the unique i < θε such that η̇�λi ∈ Aε,i.
(As always η̇ is the name for the generic real added by Qκ). Note ν̇ is well defined

because Qκ is κ-strategically closed, hence (2λi)V = (2λi)V[Qκ].
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We claim that for ρ ∈ Πθ we have

Qκ  (∃∞ε < κ) ν̇(ε) = ρ(ε).

Let α < κ, p ∈ Qκ, τ = tr(p). We find ε < κ such that ε > α, λε > lg(τ). τ ′ ∈
2sup(Sλεinc) ∩ p. Choose τ ′′ ∈ [τ ′] ∩ Aε,ρ(ε) ∩ p. [Why does τ ′′ exist? Trivial if λε 6∈ Sp.
If λε ∈ Sp then Z = set0(Λp,λε) is λε-meager hence Z ∩ [τ ′] is λε-meager hence

Z ∩ [τ ′] 6= [τ ′] ∩Aε,ρ(ε).] Clearly p[τ ′′] ”ν̇(ε) = ρ(ε). The claim easily follows.

Thus for ρ ∈ Υ, α < κ the set

Iρ,α = {p ∈ Qκ : (∃ε < κ) α < λε ≤ lg(tr(p)) ∧ tr(p)�λε ∈ Aε,ρ(ε)}

is open dense.

By our assumption |Υ| = µ < cov(Qκ) there exists

η ∈
⋂
ρ∈Υ

set1({Iρ,α : α < κ}).

Let ν ∈ Πθ be such that for ε < κ we have η�λε ∈ Aε,ν(ε). Note by our choice of ν

and ρ ∈ Υ we have

(∃∞ε < κ) η�λε = Aε,ρ(ε)).

Thus

(∃ν ∈ Πθ)(∀ρ ∈ Υ)(∃∞ε < κ) ν(ε) = ρ(ε).

Contradiction.

κ+ add(Qκ) cov(Qκ) add(Cohenκ)

non(Cohenκ)

cov(Cohenκ)

cof(Cohenκ)

non(Qκ)

cof(Qκ) 2κ

bκ dκ

6=

Figure 5.2: The diagram for add(Cohenκ) < bκ, by 5.1.11.

Theorem 5.1.12 ((Shelah 2017, 5.7)). If dκ < cf(Cohenκ) then cf(Cohenκ) ≤
non(Qκ).
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Proof. If κ > sup(Sκinc) then non(Qκ) = non(Cohenκ).

So assume κ = sup(Sκinc). For
⇀

θ = 〈θε : ε < κ〉, θε < κ increasing with ε, find

〈λθ,ε : ε < κ〉 and 〈Aθ,ε,i : i < θε〉 as in 5.1.11.

For
⇀

θ as above, η ∈ 2κ let νθ,η ∈ Πθ be such that for every ε < κ we have

η�λθ,ε ∈ Aθ,ε,νθ,η(ε).

Let Υ ⊆ 2κ, |Υ| = non(Qκ). For any
⇀

θ as above let Υθ = {νθ,η : η ∈ Υ} ⊆ Πθ.

Clearly |Υθ| ≤ non(Qκ).

We claim that for every

(∀ρ ∈ Πθ)(∃ν ∈ Υθ)(∃∞ε < κ) ρ(ε) = ν(ε).

So fix ρ ∈ Πθ and let

Iα = {p ∈ Qκ : (∃ε < κ) α < λθ,ε ≤ lg(tr(p)) ∧ tr(p)�λθ,ε ∈ Aθ,ε,ρ(ε)}.

Because Υ 6∈ id(Qκ) we can find η ∈ Υ ∩ set1({Iα : α < κ}). Now

(∃∞ε < κ) νθ,η(ε) = ρ(ε)

which proves the claim.

Find {⇀αξ : ξ < dκ} such that:

(a) For ξ < dκ the sequence
⇀
αζ = 〈αζ,ε : ε < κ〉 is continuous increasing.

(b) If 〈αi : i < κ〉 is an increasing sequence then there is ξ < dκ such that

(∀∞ε < κ)(∃i < κ) αξ,ε < αi < αi+1 < αξ,ε+1.

For ξ < dκ let
⇀

θξ = 〈θξ,ε : ε < κ〉 be such that θξ,ε = |2[αξ,ε,αξ,ε)|. As in 5.1.11 let

πξ,ε : θξ,ε → 2[αξ,ε,αξ,ε) be one-to-one. For ν ∈ Πθξ let

xξ,ν =
⋃
ε<κ

πξ,ε(ν(ε)) ∈ 2κ.

Let

H = {xξ,ν : ξ < dκ ∧ ν ∈ Υθξ}

and we claim H 6∈ id(Cohenκ). Towards contradiction assume that there exists

η ∈ 2κ,
⇀
α = 〈αi : i < κ〉 increasing continuous such that H ⊆ Xη,

⇀
α (remember

5.1.7). Let ξ < dκ be given by (b) for
⇀
α. Let ρ ∈ Πθξ be such that πξ,ε(ρ(ε)) =
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η�[αξ,ε, αξ,ε+1). So there exists ν ∈ Υθξ such that (∃∞ε < κ) ρ(ε) = ν(ε). Thus

(∃∞ε < κ) xξ,ν�[αξ,ε, αξ,ε+1) = η�[αξ,ε, αξ,ε+1) and finally (by our choice of ξ) (∃∞ε <
κ) xξ,ν�[αξ,o, αξ,o+1) = η�[αξ,i, αξ,i+1). Contradiction to xξ,ν ∈ Xη,

⇀
α.

Thus by

dκ < non(Cohenκ) ≤ |H| ≤ non(Qκ) + dκ

we conclude non(Cohenκ) ≤ non(Qκ).

κ+ add(Qκ)

cov(Qκ)

add(Cohenκ)

non(Cohenκ)

cov(Cohenκ)

cof(Cohenκ) non(Qκ) cof(Qκ) 2κ

bκ dκ

6=

Figure 5.3: The diagram for dκ < cof(Cohen)κ, by 5.1.12.

5.2 On add(Qκ) ≤ add(Cohenκ)

Discussion 5.2.1. For the classical case (κ = ω) the Bartoszyński-Raisonnier-Stern

theorem states that add(null) ≤ add(meager). By 5.1.11 we know that add(Qκ) ≤
add(Cohenκ) for large bκ and dually cf(Cohenκ) ≤ add(Qκ) for small dκ. But what

about small bκ, i.e. add(Cohenκ) = bκ and large dκ, i.e. dκ = cf(Cohenκ)?

The original plan for this case was to first prove add(Qκ) ≤ add(nstpr
κ ) (see 3.3.6)

and show that add(nstpr
κ ) ≤ bκ. We conjecture that this second inequality does not

hold (see 5.2.13). In (Shelah 2017) it was shown that we have it at least for sufficiently

weak κ (there exists a stationary non-reflecting subset of κ) and here we elaborate

on this result as promised.

Furthermore we offer a consolation prize: we show that at least add(Qκ) ≤ dκ

for κ Mahlo and dually bκ ≤ cf(Qκ).

We begin by establishing a characterization of bκ and dκ via characteristics of

the club filter of κ.

Lemma 5.2.2. Consider A = (κκ,≤∗) and B = (clubκ,⊇∗). Then there exist maps

φ+ : κκ → clubκ and φ− : clubκ → κκ such that
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1. (φ−, φ+) is a morphism from A to B, i.e. if f ∈ κκ and E ∈ clubκ then:

φ−(E) ≤∗ f ⇒ E ⊇∗ φ+(f).

2. (φ+, φ−) is a morphism from B to A, i.e. if f ∈ κκ and E ∈ clubκ then:

φ+(f) ⊇∗ E ⇒ f ≤∗ φ−(E).

Proof. For f ∈ κκ let

φ+(f) = {δ < κ : f [δ] ⊆ δ}.

For E ∈ clubκ let

φ−(E) = i 7→ di+ 1eE = min(E\(i+ 2)).

1. Let f ∈ κκ, E′ ∈ clubκ. Let E = φ+(f), f ′ = φ−(E′). Assume E′ 6⊇∗ E.

So there exist κ-many δ ∈ E\E′. Now for any such δ: Because E′ is club

ε = sup(E′∩δ) < δ. Consider i ∈ (ε, δ). By definition of E we have f(i) < δ but

because (δ, ε] ∩ E′ = ∅ by definition of f ′ we have f ′(i) > δ. Thus f ′(i) > f(i)

and because there are unboundedly many such δ we have f ′ 6≤∗ f .

2. Let E ∈ κκ, f ′ ∈ clubκ. Let E′ = φ+(f ′), f = φ−(E). Assume E′ ⊇∗ E.

Consider i < κ large enough. Then f(i) ∈ E implies f(i) ∈ E′. By definition

of E′ we have f ′(i) < f(i). Hence f ′ ≤∗ f .

Lemma 5.2.3.

(1) Let 〈Eα : α < µ < bκ〉 be a sequence of clubs of κ. Then there exists a club E

of κ such that α < µ⇒ E ⊆∗ Eα.

(2) There exists a sequence 〈Eα : α < bκ〉 of clubs of κ such that for no club E

of κ we have α < bκ ⇒ E ⊆∗ Eα.

(3) bκ = add(NSκ), where NSκ is the ideal of non-stationary subsets of κ, ordered

by eventual containment ⊆∗.

Proof. By 5.2.2.
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Lemma 5.2.4.

(1) Let 〈Eα : α < µ < dκ〉 be a sequence of clubs of κ. Then there exists a club E

of κ such that for no α < dκ we have Eα ⊆∗ E.

(2) There exists a sequence 〈Eα : α < dκ〉 of clubs of κ such that for all clubs E

of κ there exists α < dκ such that Eα ⊆∗ E.

(3) dκ = cf(NSκ).

Proof. By 5.2.2.

Theorem 5.2.5. Let κ be Mahlo (or just Sκpr stationary, see 1.4.3). Then

bκ ≤ cf(nstpr
κ ).

Proof. Towards contradiction assume µ = cf(nstpr
κ ) < bκ and let 〈Wα : α < µ〉 be a

sequence of nowhere stationary subsets of Spr
κ witnessing µ = cf(nstpr

κ ). For α < µ

let Eα ⊆ κ be a club disjoint from Wα. Now we use 5.2.3 to find a club E such

that E ⊆∗ Eα for every α. Now because Sκpr is stationary the closure of E ∩ Sκpr is

a club too so without loss of generality W = nacc(E) ⊆ Sκpr. Clearly W is nowhere

stationary so there exists α < µ such that W ⊆∗ Wα.

Now because E ⊆∗ Eα and Wα ∩ Eα = ∅ we have Wα ∩ E is bounded. On the

other hand because W is an unbounded subset of E and W ⊆Wα we have Wα ∩E
is unbounded. Contradiction.

Corollary 5.2.6. bκ ≤ cf(Qκ).

Proof. Combine 5.2.5 and 3.3.7

Theorem 5.2.7. Let κ be Mahlo (or just Sκpr stationary). Then

add(nstpr
κ ) ≤ dκ.

Proof. Let 〈Eα : α < µ〉 witness dκ = µ in the sense of 5.2.4, i.e. for every club

E of κ there is α < µ such that Eα ⊆∗ E. If we restrict ourself to clubs E such

that nacc(E) ⊆ Sκpr then we may also assume that Wα = nacc(Eα) ⊆ Sκpr. Towards

contradiction assume add(nstpr
κ ) > µ and let W ∈ nstpr

κ such that α < µ⇒Wα ⊆∗
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W . Choose a club E disjoint from W such that nacc(E) ⊆ Sκpr. Now there exists

α < µ such that Eα ⊆∗ E hence

sup(Eα\E) < δ ∈Wα ⊆ Eα ⇒ δ ∈ E ⇒ δ 6∈Wα.

Contradiction.

Corollary 5.2.8. add(Qκ) ≤ dκ.

Proof. Combine 5.2.7 and 3.3.7

Theorem 5.2.9. Let κ be inaccessible and let S ⊆ Sκpr be stationary non-reflecting.

Then

(1) add(nstpr
κ ) ≤ bκ.

(2) add(nstpr
κ,S) = bκ.

Remark 5.2.10. Note that under these assumptions, by (Shelah 2017, Claim 6.9)

the forcing Qκ adds a κ-Cohen real.

Proof. First note that because S is not reflecting we have W ⊆ S is nowhere sta-

tionary iff W is not stationary.

Recall 5.2.3 and let 〈Eα : α < bκ〉 be set of clubs of κ such that for no club

for every club E of κ there exist α < bκ such that ¬(E ⊆∗ Eα). So the family

〈S\Eα : α < bκ〉 is a set of nowhere stationary subsets of Sκpr with no upper bound

in nstprκ,S (and in particular not in nstprκ ).

Conversely let 〈Wα : α < µ〉 witness add(nstpr
κ,S) = µ and let Eα be club disjoint

from Wα. Then 〈Eα : α < µ is an unbounded family in the sense of 5.2.3.

Theorem 5.2.11. Let κ be inaccessible and let S ⊆ Sκpr be stationary non-reflecting.

Then

(1) dκ ≤ cf(nstpr
κ ).

(2) dκ = cf(nstpr
κ,S).

Proof. Dual of 5.2.10.

We summarize the results of this section in the following corollary.

84



5.2. On add(Qκ) ≤ add(Cohenκ)

Corollary 5.2.12. If at least one of the following conditions is satisfied:

(1) κ > sup(Sκinc) or

(2) There exists a stationary non-reflecting S ⊆ Sκpr or

(3) bκ > add(Cohenκ).

Then Bartoszyński-Raisonnier-Stern theorem holds, i.e. we have

add(Qκ) ≤ add(Cohenκ).

Likewise if we let

(3’) dκ < cf(Cohenκ).

then (1) ∨ (2) ∨ (3′) implies

cf(Cohenκ) ≤ cf(Qκ)

Finally: if (1)∨(2)∨
(
(3) ∧ (3′)

)
, then the Cichoń diagram for id(Qκ) and id(Cohenκ)

looks like the classical diagram.

Conjecture 5.2.13. There exists a model V such that

V |= add(Qκ) > add(Cohenκ)

for some sufficiently strong cardinal κ. Note that by 5.1.11 we necessarily have

V |= bκ = add(Cohenκ)

so we really conjecture

CON(add(Qκ) > bκ).
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CHAPTER 6

Models

We follow the notation of (Bartoszyński and Judah 1995): Let � = κ+, � = κ++.

This will allow us to graphically represent the values of the cardinal characteristics

in Figure 5.1. E.g. � in the top left corner means cov(Qκ) = �. Note that in all

diagrams of this section we have 2κ = � = κ++.

For visual clarity we omit the diagonal arrow from cov(Qκ) to non(Qκ), see 5.1.8.

Note again that the dashed arrows representing add(Qκ) ≤ dκ and bκ ≤ cf(Qκ) need

κ is Mahlo (or at least Sκpr stationary).

If we would like Qκ to be κκ-bounding, i.e want κ weakly compact, we may use

Laver preparation to preserve supercompactness (so in particular weak compactness)

in the forcing extension, see (Laver 1978). Note that all forcing notions in this section,

with the exception of Amoeba forcing, are <κ-directed closed and Amoeba forcing

may be included in the preparation as well by 6.6.4.

6.1 The Cohen Model

Definition 6.1.1. Let

Cκ = 2<κ

and for p, q ∈ Cκ define q to be stronger than p if p E q. We call Cκ the κ-Cohen

forcing. IfG is a Cκ-generic filter then we call η =
⋃
s∈G s the generic κ-Cohen real (of

V[G]). Conversely we say ν ∈ 2κ is a κ-Cohen real (over V) if G = {s ∈ 2<κ : s / ν}
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is a Cκ-generic filter.

Fact 6.1.2. Let ν ∈ 2κ. Then ν is a κ-Cohen real over V iff it is not contained in

any meager set of V.

Lemma 6.1.3.

1. Cκ is <κ-directed closed.

2. Cκ is κ-centered<κ.

3. Cκ satisfies (∗)κ.

Proof. (1.) and (2.) are trivial. Then (3.) easily follows from 2.1.5, 2.3.2, 2.2.9.

Definition 6.1.4. Let µ be an ordinal. Let Cκ,µ be the limit of the <κ-support

iteration 〈Cκ,α, Ṙα : α < µ〉 where Cκ,α “Ṙα = Cκ” for every α < µ.

It is easy to check that
∏
i<µCκ can be canonically embedded as a dense subset

into Cκ,µ.

Lemma 6.1.5. Let µ be an ordinal. Then Cκ,µ satisfies the stationary κ+-Knaster

condition and in particular Cκ,µ satisfies the κ+-c.c.

Proof. By 6.1.3, 2.2.8, 2.2.3.

Figure 6.1: Cohen model

Theorem 6.1.6. Let V |= 2κ = κ+. Then VCκ,κ++ satisfies:

1. non(Cohenκ) = κ+.

88



6.2. The Hechler Model

2. cov(Cohenκ) = κ++.

3. 2κ = κ++.

We call VCκ,κ++ the κ-Cohen model.

Proof.

1. This is a standard argument from the classical case but we give details.

Let Ṁ = {η̇α : α < κ+} where η̇α is a name for the κ-Cohen real added by

Ṙα. We claim Cκ,κ++ “Ṁ is a nonmeager set”. Towards contradiction assume

that there are 〈Ȧi : i < κ〉 where Ȧi is a Cκ,κ++-name for a closed, nowhere

dense set and there exists p ∈ Cκ,κ++ such that p “Ṁ ⊆
⋃
i<κAi”. It is easy

to see that any closed nowhere dense set Ai ∈ VCκ,κ++ is decided by |2<κ| = κ-

many antichains 〈Ji,s : s ∈ 2<κ〉 where Ji,s decides the hole of Ai above s, i.e.

decides ṫi,s D s such that [ti,s] ∩Ai = ∅. Remember 6.1.5 and let

α ∈ κ+\
( ⋃
i<κ

⋃
s∈2<κ

supp(ps,i)
)
.

Remember 6.1.4 and let Π be the range of the dense embedding of
∏
i<κ++ Cκ

into Cκ,κ++ . Without loss of generality Ji,s ⊆ Π for all i < κ and all s ∈ 2<κ

and also p ∈ Π. Find p′ ≤ p such that p′ ∈ Π and let s = p(α). Now for

arbitrary i < κ we can find r ∈ Ji,s, r 6⊥ p′ and let p′′ = r ∧ p′. Now because

p′, r ∈ Π we have p′′(α) = s and p′′ decides ts D s to be missing from Ai. Thus

define p′′′ ≤ p′′ such that p′′′(α) = ts and p′′′(β) = p′′(β) for β ∈ κ++\{α}.
Clearly η̇α D ts thus p′′′ “η̇α 6∈ Ȧi”. Clearly p′′′ ≤ p hence contradicting

p “Ṁ ⊆
⋃
i<κAi”.

2. Same argument as in 6.2.7.

3. Should be clear using nice names.

6.2 The Hechler Model

Definition 6.2.1. Let

Hκ = κ<κ × [κκ]<κ

and for p1 = (ρ1, X1), p2 = (ρ2, X2) ∈ Hκ define p2 to be stronger than p1 if:
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1. ρ2 D ρ1.

2. X2 ⊇ X1.

3. For all i ∈ dom(ρ2)\dom(ρ1) and for all f ∈ X1 we have ρ2(i) > f(i).

We call Hκ the κ-Hechler forcing. If G is a Hκ-generic filter then we call η =⋃
(ρ,X)∈G ρ the generic κ-Hechler real.

The intended meaning of a condition (ρ,X) is the promise that the κ-Hechler real

will start with ρ and from now on (i.e. past the length of ρ) dominate all functions

in X.

Fact 6.2.2. Let η a κ-Hechler real over V. Then for every ν ∈ κκ ∩ V we have

ν ≤∗ η.

Fact 6.2.3. Let η a κ-Hechler real over V. Let ν ∈ 2κ be such that for all i < κ

ν(i) ≡ η(i) mod 2.

Then ν is a κ-Cohen real over V.

Lemma 6.2.4.

1. Hκ is <κ-directed closed.

2. Hκ is κ-centered<κ.

3. Hκ satisfies (∗)κ.

Proof.

1. Let D ⊆ Hκ, |D| < κ, p, q ∈ D ⇒ p 6⊥ q. If p = (ρ1, X1), q = (ρ2, X2) ∈ D
then because p, q are compatible we have ρ1 E ρ2 ∨ ρ2 E ρ1. Hence (ρ∗, X∗) is

a lower bound for D where ρ∗ =
⋃

(ρ,X)∈D ρ, X∗ =
⋃

(ρ,X)∈DX.

2. Hκ =
⋃
ρ∈κ<κ({ρ} × [κκ]<κ).

3. By (1.), (2.), 2.1.5, 2.3.2, 2.2.9.

Definition 6.2.5. Let µ be an ordinal. Let Hκ,µ be the limit of the <κ-support

iteration 〈Hκ,α, Ṙα : α < µ〉 where Hκ,α “Ṙα = Hκ” for every α < µ.
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Lemma 6.2.6. . Let µ be an ordinal. Then:

1. Hκ,µ satisfies the stationary κ+-Knaster condition and in particular Hκ,µ sat-

isfies the κ+-c.c.

2. If µ < (2κ)+ then Hκ,µ is κ-centered<κ.

Proof.

1. By 6.2.4, 2.2.8, 2.2.3.

2. Remember 6.2.4(2.). Easily check that Hκ,µ is finely <κ-closed so use 2.3.7.

Figure 6.2: Hechler model

Theorem 6.2.7. Let V |= 2κ = κ+. Then VHκ,κ++ satisfies:

1. cov(Qκ) = κ+.

2. bκ = κ++.

3. cov(Cohenκ) = κ++.

4. add(Cohenκ) = κ++.

5. 2κ = κ++.

We call VHκ,κ++ the κ-Hechler model.

Proof. We use the iteration theorems from section 2 so the following proofs become

standard arguments from the classical case.
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1. We claim that Hκ,κ++ does not add Qκ-generic reals. Remember 6.2.6(1.) so if

we have a nice Hκ,κ++-name η̇ for a κ-real the antichains deciding η̇ are already

antichains of Hκ,α for some α < κ. Note that if we show that Hκ,α does not

add Qκ-generic reals for any α < κ++ we are done:

If η ∈ VHκ,α is not Qκ-generic over V then there is a Borel code c ∈ V of an

id(Qκ)-set Bc such that η ∈ Bc. The same is still true in VHκ,κ++ , see 1.2.7.

By 6.2.6 (2.) Hκ,α is a κ-centered<κ forcing notion for each α < κ++ and thus

by 2.3.9 does not add a Qκ-generic real. In V there exists a covering of id(Qκ)

of size κ+ and because Hκ,κ++ does not add Qκ-generic reals this covering

remains a covering in VHκ,κ++ .

2. Assume there exists an unbounded family of size κ+ in VHκ,κ++ . Argue as

above to see that this family already appears in some VHκ,α . But by 6.2.2 Rα
adds a bound. Contradiction.

3. Assume there exists an covering of id(Cohenκ) of size κ+ in VHκ,κ++ . Again

this family already appears in some VHκ,α . But by 6.2.3 Ṙα adds a κ-Cohen

real hence the covering is destroyed. Contradiction.

4. Remember 5.1.6 so this follows from (2.) and (3.).

5. Should be clear.

6.3 The Short Hechler Model

Figure 6.3: Short Hechler model
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Theorem 6.3.1. Let V |= κ is weakly compact. Let V |= non(Qκ) = κ++ (e.g.

V = V
Hκ,κ++

0 ).

Let Hκ,κ+ be the <κ-support iteration of length κ+ of Hechler reals (see 6.2.5).

Then VHκ,κ+ satisfies:

1. non(Qκ) = κ++.

2. dκ = κ+.

3. non(Cohenκ) = κ+.

4. cf(Cohenκ) = κ+.

5. 2κ = κ++.

Proof.

1. Follows by 2.3.7 and 2.3.13.

2. Remember 6.2.2 so {ηε : ε < κ+} is a dominating family where ηε is the

κ-Hechler real added by Rε.

3. We claim {νε : ε < κ+} 6∈ id(Cohenκ) were νε ∈ 2κ is the canonical κ-Cohen

real added by Rε (see 6.2.3). Argue as in 6.1.6 but instead of using the product

we find α greater than the support of all antichains.

4. Remember 5.1.6 so this follows from (2.) and (3.).

5. Should be clear.

6.4 Amoeba forcing, part 1

Definition 6.4.1. Let Qam1
κ be the forcing consisting of tuples (ε, S,E) where:

1. ε ∈ Sκinc.

2. S ⊆ Sκinc is nowhere stationary.

3. E ⊆ κ is a club disjoint from S.

For p ∈ Qam,1
κ we will write εp, Sp, Ep for the respective components of p.

For p = (εp, Sp, Ep), q = (εq, Sq, Eq) we define q ≤ p (q stronger than p) iff

either q = p, or:
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1. εp < εq, and moreover the set Eq meets the interval (εp, εq).

2. Sp ∩ εp = Sq ∩ εp

3. Sp\εp ⊆ Sq\εp.

4. Ep ∩ εp = Eq ∩ εp.

5. Ep ⊇ Eq.

The intended meaning of a condition (ε, S,E) is the promise to cover S from now on

above ε but not tamper with it below ε (to preserve the fact that S ∩ ε is nowhere

stationary in ε). The purpose of E is to ensure that the generic set will not be

stationary in κ.

Lemma 6.4.2. Let G be a Qam1
κ -generic filter and let

S∗ = ∪{S : (∃p ∈ G) S = Sp},

E∗ = ∩{E : (∃p ∈ G) E = Ep}.

Then:

1. E∗ is a club of κ disjoint from S∗.

2. S∗ is a nowhere stationary subset of κ.

3. For any nowhere stationary set S ⊆ κ, S ∈ V we have VQam1
κ |= S ⊆∗ S∗ (i.e.,

the set S\S∗ is bounded.

We call S∗ the generic nowhere stationary set.

Proof.

1. Assume that (ε, S,E) “E∗ ⊆ α < κ”. Find β ∈ E, γ ∈ Sκinc with α < β < γ.

Then (γ, S,E) ≤ (α, S,E) and (γ, S,E)  β ∈ E∗, contradicting what (ε, S, S)

forced. So E∗ is unbounded.

As an intersection of closed sets, E∗ must be closed. E∗ is disjoint from S∗ by

definition.

2. To see S∗ ∩ α is non-stationary for α ∈ Sκinc argue as in (1.). To see S∗ is

non-stationary in κ, remember that E∗ is a club disjoint from S∗ by (1.).
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3. Let p = (ε, S,E) ∈ Qam1
κ and let S′ ∈ V be nowhere stationary and let E′ be

a club disjoint from S′. Then (ε, S ∪ (S′\ε), E ∩ (E′ ∪ ε)) ≤ p forces S ⊆ S∗ ∪ ε,
hence also S ⊆∗ S∗. As p was arbitrary we are done.

Lemma 6.4.3.

1. Qam1
κ is <κ-closed.

2. Qam1
κ is κ-linked.

3. Qam1
κ satisfies (∗)κ.

Proof.

1. Let 〈pi : i < δ〉 be a strictly decreasing sequence, δ < κ a limit ordinal, and

let pi = (εi, Si, Ei). Hence the sequence 〈εi : i < δ〉 is strictly increasing, so in

particular εi ≥ i:

We define a condition p∗ = (ε∗, S∗, E∗) as follows:

(a) ε∗ = supj<δ εj . (So ε∗ ≥ δ)

(b) S∗ =
⋃
j<δ Sj .

(c) E∗ =
⋂
j<δ Ej .

Clearly E∗ is club in κ and disjoint to S∗, so S∗ is nonstationary.

For δ′ < δ the sequence 〈Si ∩ δ′ : i < δ〉 is eventually constant with value

Sδ′ ∩ δ′, so S∗ ∩ δ′ is nonstationary in δ′.

For δ′ > δ the set S∗ ∩ δ′ is the union of a small number of nonstationary sets,

hence is nonstationary.

We have to check that S∗ ∩ δ is nonstationary in δ (if δ is inaccessible).

Case 1 ε∗ = δ. Then E∗ ∩ (εi, εi+1) = Ei+1 ∩ (εi, εi+1) is nonempty for all i < δ,

so E is unbounded (hence club) in ε∗. Hence S is nonstationary in ε∗.

Case 2 ε∗ > δ. Then we can find i < δ with εi > δ, and we see that S∗∩εi = Si∩εi,
so also S∗ ∩ δ = Si ∩ δ is nonstationary.

Finally we show that p∗ ≤ p: The main point is that (∀j ≥ i) Sj ∩ δi = Si ∩ δi,
so also S∗ ∩ δi = Si ∩ δi.
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2. Consider f : Qam1
κ → κ × 2<κ × 2<κ where f(ε, S,E) = (ε, S ∩ ε, E ∩ ε). Now

check that for p, q ∈ Qam1
κ we have f(p) = f(q)⇒ p 6⊥ q.

3. By (1.), (2.) and 2.2.9.

We want to iterate Amoeba forcing (together with the forcing in the next sub-

section, and possibly other forcings) and not lose the weak compactness of κ. So we

will start in a model where κ is supercompact, and this supercompactness is not

destroyed by <κ-directed closed forcing, and also not by our Amoeba forcings.

As Amoeba forcing is not <κ-directed closed, we cannot use Laver’s theorem

directly. However, it is well known that a slightly weaker property is also sufficient.

The following definition is copied from (König 2006).

Definition 6.4.4. If P is a partial ordering then we always let θ = θP be the least

regular cardinal such that P ∈ Hθ. Say that a set X ∈ Pκ(Hθ) is P -complete if

every (X,P )-generic filter has a lower bound in P .

Define H(P ) := {X ∈ Pκ(Hθ) | X is P -complete}.
Then a partial ordering P is called almost κ-directed-closed if P is strategically

κ-closed and H(P ) is in every supercompact ultrafilter on Pκ(Hθ).

We will show that for the forcings P we consider, the set H(P ) contains all

small elementary submodels of Hθ, is therefore closed unbounded, hence an element

of every (fine) normal ultrafilter on Pκ(Hθ). (See (Kanamori 1994, chap. 22 and

25.4).)

Definition 6.4.5. Let G1 ⊆ Qam,1
κ . We call a triple (δ1, S1, E1) a pivot for G1 if the

following hold (where we write δ2 for the first inaccessible above δ1):

• δ1 < κ (usually a limit ordinal).

• S1, E1 are disjoint subsets of δ1, E1 is club in δ1, S1 is nowhere stationary in

δ1.

• G1 ⊆ Qam,1
κ , |G1| < δ2, G1 is a filter.

• For all p = (ε, S,E) ∈ G1, (S1, E1) is “stronger” than p in the following sense:

– ε < δ1.
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– S ∩ ε = S1 ∩ ε, E ∩ ε = E1 ∩ ε.

– S ∩ δ1 ⊆ S1.

– E ∩ δ1 ⊇ E1.

Note: When we say that G1 has a pivot, it is implied that G1 is a filter of small

cardinality.

Lemma 6.4.6 (Master conditions in Qam,1
κ ). Assume that G1 ⊆ Qam,1

κ has a pivot.

Then G1 has a lower bound in Qam,1
κ , i.e., (∃p∗ ∈ Qam,1

κ ) (∀p ∈ G1) p∗ ≤ p.

Proof. Let (δ1, S1, E1) be a pivot for G1.

We let p∗ := (δ1, S
∗, E∗), where

• S∗ ∩ δ1 := S1 ∩ δ1.

• E∗ ∩ δ1 := E1 ∩ δ1.

• S∗\δ1 :=
⋃

(ε,S,E)∈G1
S\δ1.

• E∗\δ1 :=
⋂

(ε,S,E)∈G1
E\δ1.

Note that the ideal of nowhere stationary subsets of [δ1, κ) is δ2-closed, so S∗ is

indeed nowhere stationary above δ1. (Also nowhere stationary below and up to δ1,

because S1 had this property.)

Hence p∗ is indeed a condition. It is clear that p∗ is stronger than all p ∈ G1.

Corollary 6.4.7. Let N ≺ Hθ, N ∈ Pκ(Hθ), Qam,1
κ ∈ N , N ∩ κ ∈ κ.

Then N ∈ H(Qam,1
κ ) (see Definition 6.4.4).

Proof. Let G ⊆ Qam,1
κ ∩N be (N,Qam,1

κ )-generic. Let δ1 := N ∩ κ, and let (S1, E1)

be the generic object determined by G as in 6.4.2. Then (δ1, S1, E1) is a pivot for G,

so by 6.4.6 we can find a lower bound for G in Qam,1
κ .

6.5 Amoeba forcing, part 2

Definition 6.5.1. Let S ⊆ Sκinc. Let Qam2
κ,S to be the forcing consisting of pairs (ε, ~A)

where:

1. ε < κ
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2. ~A = (Aδ : δ ∈ S) ∈
∏
δ∈S id(Qδ).

For p = (εp, ~Ap), q = (εq, ~Aq) we define q ≤ p iff either q = p or:

1. εp < εq.

2. ~Ap�(S ∩ εp) = ~Aq�(S ∩ εp)

3. For all δ ∈ S Ap(δ) ⊆ Aq(δ).

Lemma 6.5.2. Let G be a Qam2
κ,S -generic filter, let

~A∗ = (A∗δ : δ ∈ S) =
⋃

(ε, ~A)∈G

~A�ε ∈
∏
δ∈S

id(Qδ)

Then:

1. For all (Bδ : δ ∈ S), where each Bδ ⊆ 2δ is in id(Qδ), we have  (∀∞δ) Bδ ⊆
A∗δ.

2. For all B ∈ id−0 (Qκ,S) we have B ⊆ set−0 ( ~A∗).

Proof. 1. Let p = (ε, ~A) ∈ Qam2
κ,S . Find (ε, ~A′) ∈ Qam2

κ,S be such that:

(a) ~A�(S ∩ ε) = ~A′�(S ∩ ε).

(b) For all δ ∈ S with δ ≥ ε let A′δ = Aδ ∪Bδ.

Now check that A ⊆ set−0 ( ~A′) ⊆ set−0 ( ~A∗)

Because p was arbitrary we are done.

2. Follows from 1.

Lemma 6.5.3. Let S ⊆ Sκinc. Then:

1. Qam2
κ is κ-strategically closed.

2. Qam2
κ is κ-linked.

3. Qam2
κ satisfies (∗)κ.

Proof. Similar to 6.4.3.
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Definition 6.5.4. Let Qam
κ := Qam1

κ ∗Qam2
κ,S∗ where S∗ is the generic object from Qam,1

κ

as in 6.4.2.

Discussion 6.5.5. Note that Qam
κ here is not the same as the amoeba forcing Qam

κ

defined in (Shelah 2017). But as we see in 6.5.6 it is a modularized variant.

Lemma 6.5.6. There exists A∗ ∈ id−(Q) ∩VQam
κ such that:

1. For every A ∈ V ∩ id−(Qκ) we have A ⊆ A∗.

2. If κ is weakly compact then for every A ∈ V ∩ id(Qκ) we have A ⊆ A∗.

Proof.

1. Combine 6.4.2 and 6.5.2 and check that A∗ = set−0 (〈A∗δ : δ ∈ S∗〉) is as required.

2. By (1.) and 3.2.5.

The generic null set added by Amoeba forcing will cover all ground model sets

sets in id−. If κ is weakly compact, then we also cover all id sets. So we are interested

in keeping κ weakly compact after our Amoeba iteration.

Definition 6.5.7. Let S ⊆ Sκinc be nowhere stationary, and let G1 ⊆ Qam,2
κ,S .

We call a pair (δ1, ~A1) a pivot for G1 if the following hold

• δ1 ∈ Sκinc\S.

• ~A1 = (A1,δ : δ ∈ S ∩ δ1) ∈
∏
δ∈S∩δ1 id(Qδ)

• G1 ⊆ Qam,2
κ,S , |G1| < δ2, G1 is a filter (where again δ2 is the smallest inaccessible

> δ1).

• For all p := (ε, ~B) ∈ G1:

ε < δ1, and (δ1, ~A1) is “stronger” than p in the sense that:

– (∀δ < δ1) Bδ ⊆ A1,δ.

– (∀δ < ε) Bδ = A1,δ.

Lemma 6.5.8 (Master conditions in Qam,2
κ,S ). Assume that S is nowhere stationary,

and G1 ⊆ Qam,2
κ,S has a pivot. Then the set G1 has a lower bound in Qam,2

κ,S , i.e.,

(∃p∗ ∈ Qam,2
κ,S ) (∀p ∈ G1) p∗ ≤ p.
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Proof. Similar to the proof of Lemma 6.4.6.

Let (δ1, ~A1) be a pivot. We define a condition p∗ = (δ1, ~A
∗) as follows:

• (∀δ ∈ S ∩ δ1) A∗δ := A1,δ.

• (∀δ ∈ S\δ1) A∗δ :=
⋃

(ε, ~A)∈G1
Aδ.

Why is p condition? Because for all δ ∈ κ\δ1, the ideal id(Qδ) is δ1-complete, so the

set
⋃

(ε,ν)∈G1
ν(δ) is in the ideal.

It is clear that p∗ ≤ p for all p ∈ G1.

Corollary 6.5.9. Let N ≺ Hθ, N ∈ Pκ(Hθ), Q ∈ N , N ∩ κ ∈ κ.

Then N ∈ H(Q) (see Definition 6.4.4).

6.6 Iterated Amoeba Forcing

Notation 6.6.1. For every forcing notion P we write ΓP for the canonical name of

the generic filter on P.

Definition 6.6.2.

1. Let µ be an ordinal and let P be the limit of a <κ-support iteration ~P =

〈Pα, Ṙα : α < µ〉.

We call the iteration ~P and its limit P relevant, if the following hold: For every

α < µ we have either

(a) Pα “Ṙα = Qam,1
κ ” or

(b) Pα “Ṙα = Qam,2
κ,S for some nowhere stationary S ⊆ Sκinc” or

(c) Pα “Ṙα is <κ-directed closed”.

(In particular, any <κ-directed closed forcing is an example of a relevant iter-

ation.)

2. Let G0 ⊆ P be a filter. For α < µ we will write G0�α for the set {p�α : p ∈ G0},
and G0(α) will be a Pα-name for the set {p(α) : p ∈ G0}.

We remark that G0�(α + 1) is a subset of Pα ∗ Rα, so the empty condition of

Pα forces “If G0�α ⊆ ΓPα , then G0(α) ⊆ Rα.”
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3. Let G0 ⊆ P be a filter. A sequence 〈ηα : α < µ〉 (where each ηα is a Pα-name)

is called a pivot for G0 if for all α < µ the following statement is forced:

If G0�Pα ⊆ ΓPα , then:

• Rα is <κ-directed closed, η(α) = 0.

• or: η(α) is a pivot (in the sense of Definitions 6.4.5 or 6.5.7,

respectively) for G0(α) ⊆ Rα.

Lemma 6.6.3 (Existence of master conditions in iterations). Assume that P is the

limit of a relevant iteration. Let G0 ⊆ P be a filter, and assume that there is a pivot

for G0.

Then there exist p∗ ∈ P such that

(∀p ∈ G0) p∗ ≤ p.

Proof. We will define p∗ by induction, in each coordinate appealing to Lemma 6.4.6

or 6.5.8, as appropriate. (Note that fewer than κ coordinates appear in the conditions

in G0, so the resulting condition will have support of size < κ.)

Corollary 6.6.4. Let N ≺ Hθ, N ∈ Pκ(Hθ), N ∩ κ ∈ κ. Let P ∈ N be a relevant

iteration.

Then N ∈ H(P ) (see Definition 6.4.4).

Hence by (König 2006, Theorem 9): If κ is supercompact, then after forcing with

a modified Laver preparation we obtain a model in which κ is not only supercompact,

but moreover this supercompactness cannot be destroyed by almost κ-directed closed

forcing, so in particular not by relevant iterations.

Definition 6.6.5. Let µ be an ordinal. Let Aκ,µ be the limit of the <κ-support

iteration 〈Aκ,α, Ṙα : α < µ〉 where for every α < µ we have:

Aκ,α  Ṙα =

{
Qam
κ α even

Hκ α odd.

Fact 6.6.6. Aκ,µ is an iteration satisfying the requirements of 6.6.3.

Lemma 6.6.7. Let µ be an ordinal. Then Aκ,µ satisfies the stationary κ+-Knaster

condition and in particular Aκ,µ satisfies the κ+-c.c.

Proof. By 6.4.3, 6.5.3, 2.2.8, 2.2.3.

101



Chapter 6. Models

Figure 6.4: Amoeba model

Theorem 6.6.8. Let V |= 2κ = κ+ and let κ be supercompact, indestructible in the

sense of 6.4.4. Then VAκ,κ++ satisfies:

1. 2κ = κ++

2. add(Qκ) = κ++

3. add(Cohenκ) = κ++.

Proof.

1. Should be clear.

2. By (1.) is suffices to show add(Qκ) ≥ κ++. So towards contradiction assume

add(Qκ) = κ+ and let 〈Bi : i < κ+〉 witness it. Remember Aκ,κ++ satisfies

the κ+-c.c. by 6.6.7. So there exists α < κ++ such that Bi ∈ VPα for every

i < κ+. But by 6.5.6 there exists A ∈ V Pα+2 ∩ id(Qκ) such that Bi ⊆ A for

every i < κ+. By 4.2.2 also VAκ,κ++ |= A ∈ id(Qκ). Contradiction.

3. Argue as in 6.2.7.

6.7 The Short Amoeba Model

Theorem 6.7.1. Let V |= 2κ = κ+ and let κ be supercompact, indestructible in the

sense of 6.4.4. Let µ = κ++ · κ+. Then VAκ,µ satisfies:

1. 2κ = κ++
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6.8. Cohen-Amoeba Forcing

Figure 6.5: Short Amoeba model

2. cf(Qκ) = κ+.

3. dκ = κ+.

4. cf(Cohenκ) = κ+.

Proof.

1. Should be clear.

2. Let 〈µi : i < κ+〉 be a cofinal sequence in µ such that for each i < κ+ we have

µi is even. Let Ai be the null set added by Ṙµi . Easily by 6.5.6 the sequence

〈Ai : i < κ+〉 is cofinal in id(Qκ).

3. Let ηi be the Hechler real added by Ṙµi+1. Easily by 6.2.2 the sequence 〈ηi :

i < κ+〉 is dominating.

4. Assume cf(Cohenκ) > κ+. Then by (3.) and 5.1.12 and (2.) cf(Cohenκ) ≤
non(Qκ) ≤ cf(Qκ) = κ+. Contradiction.

6.8 Cohen-Amoeba Forcing

Definition 6.8.1. Let Cam
κ be the set of all pairs (α,A) such that:

1. α < κ.

2. A ⊆ 2<κ is a tree.

3. [A] ⊆ 2κ is non-empty nowhere dense.
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For p = (αp, Ap), q = (αq, Aq), p, q ∈ Cam
κ we define q stronger than p if:

1. αq ≥ αp.

2. Aq ⊇ Ap.

3. Aq�αp = Ap�αp.

We call Cam
κ the Cohen-Amoeba forcing.

Note that Cam
κ is a straightforward generalization of the universal meager forcing

defined in (Bartoszyński and Judah 1995, 3.1.9).

Lemma 6.8.2. Let 〈Ai : i < i∗ < κ〉 be a family of nowhere dense subsets of 2κ.

Then A =
⋃
i<i∗ Ai is nowhere dense.

Proof. For i < i∗, s ∈ 2<κ let t(i, s) ∈ 2<κ be such that

1. s E t(i, s).

2. Ai ∩ [t(i, s)] = ∅.

Let s ∈ A and we define an increasing sequence 〈ηi : i < i∗〉 as such that:

1. η0 = s.

2. i = j + 1⇒ ηi = t(j, ηj).

3. If i is a limit ordinal then ηi =
⋃
j<i ηj .

Let η =
⋃
i<i∗ ηi and check:

1. s E η.

2. A ∩ [η] = ∅.

Because s was arbitrary we are done.

Lemma 6.8.3.

1. Cam
κ is <κ-directed closed.

2. Cam
κ is κ-linked.

3. Cam
κ satisfies (∗)κ.
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Proof.

1. Easy using 6.8.2.

2. Should be clear.

3. By (1), (2), and 2.2.9.

Lemma 6.8.4. Let G be generic for Cam
κ and let N =

⋃
(α,A)∈GA. Then for the set

M = {η ∈ 2κ : (∃ν ∈ N) ν =∗ η}

we have:

1. M is meager.

2. M covers every meager set X ∈ V.

More precisely: for every family (Xi : i < κ) ∈ V of nowhere dense trees it is

forced that (∀i < κ) [Xi] ⊆M holds.

Proof.

1. It suffices to show that M is nowhere dense. We check that for each s ∈ 2<κ

the set

Ds = {q ∈ Cam
κ : (∃t D s) q  “N ∩ [t] = ∅”}

is dense in Cam
κ . Indeed for any (α,A) ∈ Cam

κ there exists t D s such that

A ∩ [t] = ∅. Now easily (max(α, |t|), A) ∈ Ds.

2. Let X ⊆ 2<κ such that [X] is nowhere dense and let (α,A) ∈ Cam
κ . Without

loss of generality we may assume |X ∩ 2α| = 1 (otherwise we just split up X).

Now find ρ ∈ A ∩ 2α and let

X ′ = {η ∈ 2κ : (∃ν ∈ X) η =∗ ν, η�α = ρ}.

Easily q = (α,A ∪X ′) ∈ Cam
κ and q forces X to be covered by M .

Theorem 6.8.5. . Let V |= 2κ = κ+. Let P = {Pi, Ṙi : i < µ〉 be the limit of

a <κ-support iteration such that that Pi “Ṙi = Cam
κ ” for each i < µ. Then VP

satisfies:

1. If µ = κ++ then add(Cohenκ) = κ++.
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2. If cf(µ) = κ+ then cf(Cohenκ) = κ+.

Proof.

1. Use 6.8.4 and argue as in 6.6.8(2.).

2. Use 6.8.4 and argue as in 6.7.1(2.).

Corollary 6.8.6. We could use Cam
κ instead of Hκ for odd iterants in the definition

of Aκ,µ in 6.6.5 to achieve the same results in 6.6.8 and 6.7.1 in regard to the

characteristics of the diagram.

6.9 Bounded Perfect Tree Forcing

We give a κ-support alternative to the short Hechler model.

Figure 6.6: Bounded perfect tree model

Definition 6.9.1. Let:

1. S ⊆ κ ∩ Sinc, sup(S) = κ, ∂ ∈ S ⇒ ∂ > sup(∂ ∩ Sinc)

2. 〈∂ε : ε < κ〉 enumerates S in increasing order.

3. θε = 2∂ε for ε < κ.

4. T =
⋃
ζ<κ Tζ where Tζ =

∏
ε<ζ θε.

We define TSκ to be the set of all p ⊆ T such that:

(a) For all η ∈ p we have ν E η ⇒ ν ∈ p.
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(b) There exists a club E ⊆ κ such that for all η ∈ p:

sucp(η) = {i < θlg(η) : η_i ∈ p} =

{
θlg(η) if lg(η) ∈ E
{p_i∗} if lg(η) 6∈ E, for some i∗ < θlg(η)

(c) No branches die out in p. I.e. If ζ is a limit ordinal and η ∈ Tζ then:

η ∈ p⇔ (∀ε < ζ) η�ε ∈ p.

So TSκ is the forcing of all subtrees of T that split fully on a club E ⊆ κ of levels and

otherwise do not split. The order is defined the usual way, i.e. for p, q ∈ TSκ we have

q stronger than p iff q ⊆ p. Because for our purposes every S works we will simply

write Tκ instead of TSκ .

Definition 6.9.2. Let Tκ,µ be the limit of the κ-support iteration 〈Tκ,α, Ṙα : α < µ〉
where Tκ,α “Ṙα = Tκ” for every α < µ.

Lemma 6.9.3.

1. Tκ is <κ-directed closed.

2. Tκ,κ++ is <κ-directed closed.

Proof.

1. Let D be a directed subset of Tκ of size < κ. Intersecting the club sets asso-

ciated with each p ∈ D will give us a club set E. Letting q be the intersection

of all p ∈ D, we claim that q is a condition. It is then clear that q is a lower

bound for D.

Clearly q is nonempty and satisfies condition 6.9.1 (a), (c). It remains to verify

(b). Let η ∈ q.

Case 1: lg(η) ∈ E. So lg(η) ∈ Ep for all p ∈ D, hence sucq(η) =
⋂
p∈D sucp(η) =

θlg(η).

Case 2: lg(η) /∈ E. So there is some p∗ ∈ D and some i∗ such that sucp∗(η) =

{i∗}. As D is directed, and η ∈ p for all p ∈ D, we also have η_i∗ ∈ p for all

p ∈ D. Hence sucq(η) =
⋂
p∈D sucp(η) = {i∗}, as required.

2. By 2.1.6.
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Definition 6.9.4. Let α < κ, p, q ∈ Tκ and let 〈ei : i < κ〉 be an enumeration of

the club of splitting levels of p. We define

q ≤α p iff q ≤ p ∧ q ∩ 2≤eα = p ∩ 2≤eα .

Lemma 6.9.5. Let
⇀
p = 〈pi : i < κ〉 be a sequence of conditions in Tκ such that

i < j < κ⇒ pj ≤i pi. Then
⇀
p has a lower bound q ∈ Tκ.

Proof. It is easy to check that q =
⋂
i<κ pi is a condition in Tκ and a lower bound

for
⇀
p.

Definition 6.9.6. We refer to sequences as in 6.9.5 as fusion sequences.

Lemma 6.9.7.

(a) White has a winning strategy for F∗κ(Tκ, p) for every p ∈ Tκ.

(b) White has winning strategy for Fκ(Tκ,κ++ , p) for every p ∈ Tκ,κ++.

Proof.

(a) We are going to construct a fusion sequence 〈pζ : ζ < κ〉 and a winning

strategy for White such that

(1) p0 = p.

(2) In the ζ-round White plays µζ = |pζ ∩ Tβ| and pζ,i = p[ηζ,i] where

〈ηζ,i : i < µζ〉 enumerates pζ ∩ Tβ and β is the ζ-th splitting level of pζ .

(3) pζ+1 =
⋃
i<µζ

p′ζ,i where p′ζ,i are the moves played by Black.

(4) For δ a limit ordinal pδ =
⋂
ζ<δ pζ .

Now use 6.9.5 and check that q =
⋂
ζ<κ pζ witnesses that White wins.

(b) By 2.4.8.

Lemma 6.9.8.

(a) Tκ,κ++ does not collapse κ+

(b) Let N be a κ-meager set in VTκ,κ++ . Then there exists a κ-meager set M ∈ V

such that N ⊆M .
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(c) In particular: If V |= 2κ = κ+ then VTκ,κ++ |= cov(Cohenκ) = κ+.

Proof. By 6.9.7, 2.4.7.

Lemma 6.9.9. If V |= 2κ = κ+ then:

(a) Tκ satisfies the κ++-c.c.

(b) Tκ,κ++ satisfies the κ++-c.c.

Proof.

(a) By our assumption: |Tκ| = κ+.

(b) By 6.9.7, 2.5.9.

Lemma 6.9.10.

(a) Tκ  (2κ)V ∈ id−(Qκ).

(b) VTκ,κ++ |= non(id−(Qκ)) ≥ κ++.

(c) VTκ,κ++ |= non(id(Qκ)) ≥ κ++.

Proof.

(a) Let 〈Aε,i : i < θε〉 be a covering sequence in id(Q∂ε). Let ν̇ be a name for

the generic κ-real added by Tκ and define
⇀

Λ = 〈Λ∂ : ∂ ∈ S〉 such that

set0(Λ∂ε) = Aε,ν̇(ε). Now Λ witnesses (2κ)V ∈ id−(Qκ) in VTκ .

(b) Remember that by 6.9.9 all Borel sets appear in VTκ,α for some α < κ++. So

(b) follows from (a), remembering 6.9.3, 2.1.5, 4.2.2.

(c) Remember id−(Qκ) ⊆ id(Qκ) hence non(id−(Qκ)) ≤ non(id(Qκ)). So this

follows from (b).

Discussion 6.9.11. The coverings in 6.9.10 could be just be sequences of singletons.

So we could say that the lemma speaks on some ideal id−− that is defined similar

to id− just with singletons (or maybe sets of size at most κ) instead of id(Qδ)-sets

on each level. So we really show non(id−−(Qκ)) ≥ κ++.

Theorem 6.9.12. If V |= 2κ = κ+ then VTκ,κ++ |= 2κ = κ++.
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CHAPTER 7

Slaloms

It is well known that slaloms can be used to characterize the additivity and cofinality

of measure in the classical case, see for example (Bartoszyński and Judah 1995).

In (Brendle, Brooke-Taylor, Friedman, and Montoya 2018) this result motivates a

definition: The cardinals add(null) and cof(null) are replaced by the appropriate

additivity and covering numbers for slaloms.

This raises the question how the characteristics introduced there related to the

characteristics of id(Qκ) discussed here. In particular one might wonder if the gener-

alized characterization of the additivity of null by slaloms is equal to the additivity

of id(Qκ). It turns out that for partial slaloms the answer is negative. We conjecture

that for total slaloms the answer is negative too, see 7.2.4 and 7.3.1 respectively.

7.1 Recapitulation

Let us start with some results and definitions from (Brendle, Brooke-Taylor, Fried-

man, and Montoya 2018) (for more details and proofs see there). Since there also

successor cardinals κ are considered, let us remind the reader of that in this paper

the cardinal κ is always (at least) inaccessible.

Definition 7.1.1. Let h ∈ κκ be an unbounded function. We define

Ch = {φ ∈ ([κ]<κ)κ : (∀i < κ) φ(i) ∈ [κ]|h(i)|}.
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For φ ∈ Ch, f ∈ κκ we define

f ∈∗ φ ⇔ (∀∞i < κ) f(i) ∈ φ(i).

Finally let:

1. add(h-slalom) = min{|F| : F ⊆ κκ, (∀φ ∈ Ch)(∃f ∈ F) f 6∈∗ φ}.

2. cf(h-slalom) = min{|Φ| : Φ ⊆ Ch, (∀f ∈ κκ)(∃φ ∈ Φ) f ∈∗ φ}.

Definition 7.1.2. We may also consider partial slaloms. Let h ∈ κκ be unbounded

and define

pCh = {φ : (∃ψ ∈ Ch) φ ⊆ ψ, |dom(φ)| = κ}.

Again for φ ∈ pCh, f ∈ κκ we define

f p∈* φ ⇔ (∀∞i ∈ dom(φ)) f(i) ∈ φ(i).

Finally let:

1. addpartial(h-slalom) = min{|F| : F ⊆ κκ, (∀φ ∈ pCh)(∃f ∈ F) fp 6∈∗φ}.

2. cfpartial(h-slalom) = min{|Φ| : Φ ⊆ pCh, (∀f ∈ κκ)(∃φ ∈ Φ) f p∈* φ}.

Discussion 7.1.3. Note that in (Brendle, Brooke-Taylor, Friedman, and Montoya

2018) the notation add(h-slalom) = bh(∈*), cf(h-slalom) = dh(∈*) and similarly

addpartial(h-slalom) = bh(p∈*), cfpartial(h-slalom) = dh(p∈*) is used.

Lemma 7.1.4. Let h ∈ κκ be unbounded. Then:

• add(h-slalom) ≤ addpartial(h-slalom) ≤ add(Cohenκ).

• cf(h-slalom) ≥ cfpartial(h-slalom) ≥ cf(Cohenκ).

Lemma 7.1.5. Let h, g ∈ κκ be unbounded. Then:

• addpartial(h-slalom) = addpartial(g-slalom).

• cfpartial(-slalom) = cfpartial(g-slalom).

Discussion 7.1.6. So for partial slaloms we may ignore h and write addpartial(κ)

instead of addpartial(h-slalom) and similarly cfpartial(κ) instead of cfpartial(h-slalom).
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κ+

add(Qκ)

cov(Qκ)

add(Cohenκ)

non(Cohenκ)

cov(Cohenκ)

cof(Cohenκ)

non(Qκ)

cof(Qκ)

2κ

bκ dκ

addpartial(κ)

add(h-slalom)

cfpartial(κ)

cf(h-slalom)

Figure 7.1: The combined diagram: characteristics related to slaloms and id(Qκ).
Remember that the dashed lines connected to bκ, dκ require κ Mahlo (or at least
Sκpr stationary).
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7.2 Separating Partial Slaloms from id(Qκ)

The following forcing is used in (Brendle, Brooke-Taylor, Friedman, and Montoya

2018) to show CON(add(h-slalom) < addpartial(κ)). We are going to investigate its

effect on id(Qκ).

Definition 7.2.1. Consider the forcing pLκ consisting of all pairs (φ,A) such that

1. φ ∈ pCκid.

2. A ⊆ κκ, |A| < κ.

For p = (φp, Ap), q = (φq, Aq), p, q ∈ pLκ we define q stronger than p if:

1. φq ⊇ φp.

2.
(

supp(φq)\ supp(φp)
)
∩ sup(supp(φp)) = ∅.

3. Aq ⊇ Ap.

4. i ∈
(

supp(φq)\ supp(φp)
)
, f ∈ Ap ⇒ f(i) ∈ φq(i).

If G is a pLκ generic filter then

φ∗ =
⋃

(φ,A)∈G

φ

is a partial slalom and we call φ a generic partial slalom. So the intended meaning

of (φ,A) ∈ pLκ is the promise that the generic partial slalom φ∗ will satisfy:

1. φ E φ∗.

2. f p∈* φ∗ for every f ∈ A.

Lemma 7.2.2. Let P be the limit of the <κ-support iteration 〈Pi, Ṙi : i < κ++〉
where for each i < κ we have:

Pi  Ṙi = pLκ.

Then:

1. P satisfies (∗)κ.
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2. For each i < κ++ the forcing Pi is κ-centered<κ

Proof.

1. Check that pLκ satisfies (∗)κ and use 2.2.8.

2. Check that

pLκ =
⋃

φ∈pCκ
{(φ,A) : A ∈ [κ]<κ}

and use 2.3.7.

Figure 7.2: Partial slalom model

Theorem 7.2.3. Let V |= 2κ = κ+. Then VP satisfies:

1. cov(Qκ) = κ+

2. addpartial(κ) = κ++

3. add(h-slalom) = κ+
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4. add(Cohenκ) = κ++

5. 2κ = κ++.

Proof.

1. Argue as in 6.2.7.

2. Assume |F| witnesses addpartial(κ) = κ+. Then by the κ+-c.c. F already ap-

pears in some Vα and the generic partial slalom added by Rα covers every

f ∈ F . Contradiction.

3. This is shown in (Brendle, Brooke-Taylor, Friedman, and Montoya 2018). The

argument there is similar to (1.) in the sense that it is shown that κ-centered<κ

forcings do not increase add(h-slalom) = κ+.

4. By (3.) and 7.1.4.

5. Should be clear.

Corollary 7.2.4.

1. CON
(

add(Qκ) < addpartial(κ)
)
.

2. add(Qκ) = addpartial(κ) is not a ZFC-theorem.

7.3 On Total Slaloms and id(Qκ)

The next conjecture follows from conjecture 5.2.13 (and may be easier to prove):

Conjecture 7.3.1.

1. CON
(

add(Qκ) > addpartial(κ)
)
.

2. In particular also CON
(

(∀h ∈ κκ) add(Qκ) > add(h-slalom)
)
.

3. (∃h ∈ κκ) add(Qκ) = add(h-slalom) is not a ZFC-theorem.

Question 7.3.2. Is add(Qκ) < add(h-slalom)
)

consistent? For a very partial answer

see 7.3.4.

Lemma 7.3.3. Let S ⊆ Sκinc be nowhere stationary. Then we have add(h-slalom) ≤
add(id−(Qκ,S)) if:
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1. ε < κ⇒ h(ε) ≤ min(S\(ε+ 1))

2. or at least the above holds on club E ⊆ κ\S.

Proof. Let

A ⊆ {〈Aδ : δ ∈ S〉 : Aδ ∈ id(Qδ)}

and such that |A| < add(h-slalom). We are going to find an upper bound for A. Let

〈εi : i < κ〉, ε0 = 0, increasingly enumerate a club disjoint from S.

For A ∈ A we define fA : κ → κ such that f(ε) codes A�(εi, εi+1). Now by our

assumption there exists a slalom φ such that covers all fA i.e.

(∀∞i < κ) fA(εi) ∈ φ(εi).

For δ ∈ (εi, εi+1) define

A∗δ = ∪{X : a code of a sequence 〈Aσ : σ ∈ S ∩ (εi, εi+1)〉

such that X = Aδ appears in φ(εi)}.

By our assumption on h we have εi < min(S\(εi + 1)) ≤ δ so A∗δ is the union of at

most δ-many elements of id(Qδ) hence A∗δ ∈ id(Qδ) and 〈A∗δ : δ ∈ S〉 is an upper

bound for A.

Corollary 7.3.4. If all of the following holds:

1. κ is weakly compact.

2. add(nstpr
κ ) > add(Qκ).

3. h is as in 7.3.3.

Then add(Qκ) ≤ add(h-slalom).

Proof. By 7.3.3, 3.2.5 and 3.3.9.
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