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Abstract

Waveguide quantum electrodynamics (QED) refers to a scenario where single or mul-
tiple atoms or solid-state emitters are coupled to a one dimensional optical channel.
The e�cient interaction between individual quantum systems with photons that
are confined along a single direction makes this setting particularly interesting for
investigating quantum optical phenomena and for future quantum networking ap-
plications.

In this thesis, we go beyond the standard scenario and address the new regime
of “slow-light waveguide QED”, where due to a narrow photonic bandwidth the
maximal photonic group velocity inside the waveguide is significantly reduced com-
pared to free space. We first discuss the properties of atom-photon bound states,
which emerge as the new elementary excitations of the system when the atom-field
coupling strength becomes comparable to the photonic bandwidth. Such bound
states are formed by an atom and a localized photonic excitation and represent the
continuum analog of the familiar dressed states in single-mode cavity QED. In this
thesis we analyze the linear and nonlinear spectral features associated with single-
and multi-photon dressed states and we describe how the formation of bound states
a↵ects the waveguide-mediated dipole-dipole interactions between separated atoms.

We then consider a narrow-bandwidth waveguide coupled to atoms that are mov-
ing with velocities comparable to the reduced speed of light. Under these conditions,
we observe a velocity-induced directionality and the emergence of e↵ective divergen-
cies in the photonic density of states. This anomalous interaction between atoms
and co-propagating Cherenkov photons gives rise to a range of novel phenomena
and non-perturbative e↵ects in the emission of photons and the resulting photon-
mediated interactions between moving atoms.

Finally, we consider the coupling of multiple emitters to a slow-light waveguide in
the presence of propagating acoustic waves. In this case, the strong index modula-
tions induced by such waves can substantially modify the e↵ective photonic density
of states and thereby influence the strength, the directionality, as well as the overall
characteristic of photon emission and absorption processes. The generalization of
these control techniques to two dimensional photonic lattices creates a new scenario
for chiral quantum optics, where non- reciprocal light-matter interactions are estab-
lished along a single direction and with an extremely slow radial decay. These e↵ect
provide a versatile tool for implementing various quantum communication protocol
in large-scale photonic networks.
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Zusammenfassung

Das Gebiet der Wellenleiterquantenelektrodynamik (QED) befasst sich mit der Kop-
plung von Atomen oder Emittern in Festkörpern an das Lichtfeld in einem eindi-
mensionalen optischen Leiter. Durch den transversalen Einschluss der emittierten
Photonen können diese langreichweitige Wechselwirkungen zwischen den einzelnen
Quantensystemen vermitteln, was diese Architektur für die Untersuchung quan-
tenoptischer Phänomene und für die Realisierung zukünftiger Quantennetzwerke
besonders interessant macht.

In dieser Doktorarbeit werden verschiedene neue Aspekte der Wechselwirkung
zwischen Licht und Atomen in nanophotonischen Wellenleitern theoretisch unter-
sucht. Diese Arbeiten adressieren dabei vor allem ein neues Regime der “Wellenleiter-
QED mit langsamen Photonen”, in dem die maximale Gruppengeschwindigkeit im
Inneren des Wellenleiters, im Vergleich zum freien Raum, erheblich reduziert ist.
Solche Bedingungen ergebenen sich, z.B., in der Nähe von Bandkanten in pho-
tonischen Kristallen und führen zu einer extremen Verstärkung der Atom-Licht-
Kopplung. In dieser Dissertation werden zunächst die Eigenschaften gebundener
Zustände zwischen Atomen und Photonen, die die neuen Elementaranregungen
dieses Systems darstellen, untersucht. Dabei werden zum ersten Mal auch die
Bindung von mehreren Photonen an ein einzelnes Atom analysiert und die sich da-
raus ergebenden linearen und nichtlinearen spektralen Charakteristika dieser “mul-
tiphoton dressed states” beschrieben.

Des Weiteren wird der interessante Fall betrachtet, in dem sich die Atome mit
einer Geschwindigkeit bewegen, die mit der reduzierten Lichtgeschwindigkeit der
Photonen vergleichbar ist. Unter diesen Vorraussetzungen beobachtet man eine
von der Bewegung induzierten Richtungsabhängigkeit der emittierten Photonen und
das Auftreten von nicht-perturbativen E↵ekten in der Atom-Licht-Kopplung. Diese
Anomalien ergeben sich aus der lang anhaltenden Wechselwirkung mit den emit-
tierten Cherenkov-Photonen, welche sich mit gleicher Geschwindigkeit wie die Atom
entlang des Wellenleiters bewegen. Als Gegenstück dazu werden in einem weit-
erem Projekt dann die Auswirkungen von starken akustischen Wellen auf die Emis-
sionseigenschaften von statischen Atomen analysiert. Dabei findet man, dass, im
Regime des langsamen Lichts, diese akustische Wellen die Photon im Wellenleiter
“mitziehen” können und damit sowohl die Richtung als auch die Form der emit-
tierten Lichtpakete beeinflussen. Diese E↵ekte können direkt für die Übertragung
von Quantenzuständen in photonischen Netzwerken ausgenützte werden.
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Introduction

Reaching a detailed understanding of the interaction between atoms and light at
the quantum level is of fundamental importance to be able, one day, to implement
quantum information processing on a large scale. The nature of this interaction
depends strongly on the detailed structure of the electromagnetic environment and
can result in drastically di↵erent physical phenomena. In this thesis we analyse the
coupling of atoms or other emitters to the radiation field confined in low dimen-
sional photonic structures, where the reduced speed of propagation gives rise to new
interesting scenarios for light-matter interactions.

From free space to waveguide QED

The necessity of structured photonic environments arises from the intrinsically weak
nature of light-matter interactions. Indeed, in free space, the radiative properties
of few emitters are characterized by a small atomic dipole moment and by the
large extension of the unconfined field. This results, for example, in the case of
spontaneous emission, in an irreversible decay to a lower energy state and an emission
of photons propagating into random direction [1, 2]. Obviously, such a process
constitutes a major limitation, if the final goal is to implement e�cient atom-atom
interactions mediated by the field.

This natural “deficiency” of light-matter interactions in free space has motivated
a lot of e↵orts to modify the electromagnetic environment by changing the geometry
of the considered systems. Indeed, by confining the optical field to a small region in
space the light-matter interaction strength can be drastically increased. This has led
to the development of the field of cavity-QED (CQED) [3, 4], where in recent years
the fabrication of optical cavities with high quality factors has enabled the control
of the radiative properties of small matter systems in a way that was unthinkable
before. The e↵ect of the field confinement is not only limited to the enhancement or
the inhibition of spontaneous emission [91], but can also lead to a coherent emission
and reabsorption of photons. This feature, combined with atom-atom interactions
makes cavity QED a promising platform for processing quantum information. On
the other hand, for the final goal of building a complex quantum network [5], cavity
QED systems are not enough. Indeed, due to their limited extension, they cannot
provide the distribution of such information on a large scale. This task can instead be
successfully accomplished by optical waveguides where, due to the one dimensional
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confinement, photons can carry quantum information over a long distance.
For this reason and also due to the experimental developments in nanophotonics

and superconducting circuits, there has been a lot of interest over the past years
on interfacing two-level emitters with 1D waveguides. This new scenario for light-
matter interactions is known as “waveguide QED” [6, 7, 8, 9, 10, 11]. Here the 1D
confinement of light does not only allow e�cient transport of information, but can
also mediate long-range interactions between consecutive atoms along the waveguide.
This e↵ect can lead to new types of many-body physics and quantum information
applications, such as correlated photon scattering [11, 12, 13, 14], self-organized
atomic lattices [15, 16, 17], generation of long-distance entanglement [18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29] and new realizations of quantum gates [30, 31, 32].

Slow-light waveguide QED

A major limitation to build an emitter-waveguide interface relies on the fact that
the system is still embedded into a 3D environment and the atom can also emit into
other radiative and non-radiative decay channels. A solution for this problem can
be found again by engineering the electromagnetic environment. In particular, in
photonic crystal waveguides [33, 34, 35, 36, 37, 38, 39, 40], the periodic modulation of
the refractive index generates a photonic band structure, where, due to the presence
of divergencies in the photonic density of states, the atomic emission into the guided
modes can be significantly enhanced. On the other hand, this increase of the decay
rate combined with a reduction of the photon group velocity leads to a new non-
perturbative regime for atom-light interactions. In particular, such conditions can
lead to the formation of so-called “atom-photon bound states” [34, 41, 42, 43, 44,
45, 46], which appear as additional discrete energy levels inside the photonic gap.
The existence of such bound states leads to interesting new e↵ects such as light
localization and re-absorption of emitted photons, excitation trapping and coherent
dipole-dipole long-range interactions [47, 48, 49] and many new possibilities for
quantum simulation of many-body physics [49, 50, 51].

In photonic crystal waveguides usually the width of the photonic band is much
larger than the atom-field coupling. This makes, in most of cases, the atom-photon
bound states weakly hybridized. In this thesis we focus on new physical phenomena
that arise in the opposite regime, namely when the bandwidth of the waveguide is
extremely narrow and comparable to typical atomic decay rates. This does not only
have an impact on the nature of the atom-photon bound states, but also significantly
a↵ects the propagation of photons inside the structure, which leads to a strong
reduction of the maximal group velocity of the photons. Therefore, this regime of
light-matter interactions is then referred to as “slow-light waveguide QED” [52],
which is the central topic of this PhD thesis. As we will see, the small bandwidth of
these waveguides leads to many interesting e↵ects that will be discussed in chapters
4 − 6.

A simple way to capture the main features of slow-light waveguides is to consider
a tight binding model for an array of coupled cavities [53, 54, 55, 56, 57, 58, 59, 60,
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52, 61, 62]. The atom-photon bound states of this model are discussed in detail in
chapter 4. Compared to usual photonic crystal waveguides, the narrow width of
the band gives rise to states with strongly hybridized atomic and photonic compo-
nents. This hybridization makes it possible, for a single emitter, to localize more
than one excitation, leading to the formation of multi-photon bound states [52, 61].
The dressed nature of these states manifests itself in an intrinsic non-linear energy
spectrum that could be used to achieve the regime of quantum non-linear optics
in a waveguide. Another e↵ect related to the bound states is the modification of
the usual long-range dipole-dipole interactions between multiple emitters obtained
in broadband waveguides. Indeed, the bound-state localization leads to modified
short-range dipole-dipole interactions where the polaritonic (not just atomic) na-
ture of the states cannot be neglected.

A di↵erent feature of slow-light waveguides that we address in chapter 5 is related
to the strong reduction of the maximum photonic group velocity, which can become
comparable to typical atomic velocities, i.e. v ∼ 104m�s. This slow-light propagation
combined with the strong atom-light interactions discussed in the previous chapter,
leads to an unconventional Cherenkov physics for atoms moving close to the waveg-
uide and coupled to the confined field. Indeed, the atomic motion does not only
induce a directional emission, but also gives rise to the formation of divergencies in
the photonic density of states. Due to such divergencies we find a non-perturbative
directional emission of the atom that can enhance the excitation transfer between
multiple emitters [63].

The reduced group velocity in slow-light waveguides can be comparable not only
to atomic velocities, but also to the speed of sound. In chapter 6, we consider a
scenario where propagating acoustic waves induce, through the acousto-optic e↵ect,
a deformation of the photonic band structure. This e↵ect goes beyond conventional
Brillouin scattering and leads to a strong and controllable directional emission. This
tunability enables the control of emitter-emitter interactions in an extended quan-
tum network and to generate stationary entangled states. When generalized to two
dimensional photonic lattices we find that the acoustic waves induce a strongly fo-
cused, directional emission with a slow radial decay. This property can be exploit for
realizing an almost chiral interaction between emitters in 2D. Therefore, these find-
ings can have a significant impact on future implementations of extended quantum
networks.

Outline of the thesis

This thesis summarizes my scientific contributions achieved during the four years
of my PhD and is divided into three main parts. The first three chapters (chapters
1 − 3) provide an introduction to the thesis, starting from the general framework
of light-matter interactions in free space and cavity QED (chapter 1), passing to a
basic overview of waveguide QED (chapter 2) and concluding with an introduction
to slow-light waveguide QED (chapter 3).

The central part of the thesis (chapters 4−6) then summarizes the results of my
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main research projects. Chapter 4 presents the properties of atom-photon bound
states in a slow-light waveguide and the generalization thereof to the multi-photon
and multi-atom scenarios. Chapter 5 describes the emission and the interaction
of atoms moving close to a slow-light waveguide. In chapter 6 an acousto-optic
waveguide is analyzed where a propagating modulation of the structure induced by
an acoustic wave can be used to control atom-light interactions.

The last part of the thesis (chapter 7 − 8) contains the results of two additional
side projects that are not connected to slow-light waveguides. In chapter 7 a setup
is considered where a single emitter is coupled to a semi-infinite waveguide. In this
configuration some of the eigenstates of the system are so-called bound states in
the continuum (BIC) [64, 65, 66, 67, 68, 19, 27]. In this project it is shown how
these states can be prepared via multi-photon scattering processes [69]. Chapter 8
presents another side project of my PhD, where a circuit QED [70, 71] setup with
multiple superconducting qubits coupled to a microwave resonator is considered. In
this system it has been shown that, in the ultra-strong coupling regime [72, 73],
the low-energy states have a high degree of multi-qubit entanglement [74]. In this
project a protocol has been developed that exploits a time-dependent control of some
system parameters to be able to extract and energetically isolate these states [75].

List of publications

Part of the results described in this thesis (chapters 4, 5 and 8) have been pub-
lished in peer-review journals. The work presented in chapter 7 has been posted on
arxiv [69] and has been submitted to a peer-review journal. An other publications
regarding the work presented in chapters 6 is currently in preparation.
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In this article we discuss the properties of atom-photon bound states in waveg-
uide QED systems consisting of single or multiple atoms coupled strongly to a finite-
bandwidth photonic channel. Such bound states are formed by an atom and a local-
ized photonic excitation and represent the continuum analog of the familiar dressed
states in single-mode cavity QED. Here we present a detailed analysis of the lin-
ear and nonlinear spectral features associated with single- and multi-photon dressed
states and show how the formation of bound states a↵ects the waveguide-mediated
dipole-dipole interactions between separated atoms. Our results provide a both
qualitative and quantitative description of the essential strong-coupling processes
in waveguide QED systems, which are currently being developed in the optical and
the microwave regime. For this work, I performed all the analytical and numerical
calculation described in the paper under the supervision of P. Rabl.
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PHYSICAL REVIEW A 95,043824 (2017) [63]

Strong coupling between moving atoms and slow-light Cherenkov photons

G. Calajó and P. Rabl

In this article we describe the coupling of moving atoms to a one dimensional
photonic waveguide in the regime where the atomic velocities are comparable to the
e↵ective speed of light. Such conditions could be achieved, for example, in photonic
crystals or coupled resonator arrays, where the maximal photonic group velocity is
significantly reduced compared to free space. In this case the interplay between a
velocity-induced directionality and the emergence of new divergencies in the pho-
tonic density of states gives rise to a range of novel phenomena and non-perturbative
e↵ects in the emission of photons and the resulting photon-mediated interactions
between moving atoms. We show that apart from potential implementations with
optical waveguides, Rydberg atoms flying above a coupled array of superconducting
microwave resonators provide a versatile platform for exploring this new regime of
atom-light interactions under experimentally accessible conditions. For this work, I
performed all the analytical and numerical calculation described in the paper under
the supervision of P. Rabl.

PHYSICAL REVIEW LETTERS 119,183602 (2017) [75]

Harvesting Multiqubit Entanglement from
Ultrastrong Interactions in Circuit Quantum Electrodynamics

F.Armata, G. Calajó, T. Jaako, M. S. Kim, P. Rabl

In this article we analyze a multiqubit circuit QED system in the regime where
the qubit-photon coupling dominates over the system’s bare energy scales. Under
such conditions a manifold of low-energy states with a high degree of entangle-
ment emerges. Here we describe a time-dependent protocol for extracting these
quantum correlations and converting them into well-defined multipartite entangled
states of noninteracting qubits. Based on a combination of various ultrastrong-
coupling e↵ects, the protocol can be operated in a fast and robust manner, while
still being consistent with experimental constraints on switching times and typical
energy scales encountered in superconducting circuits. Therefore, our scheme can
serve as a probe for otherwise inaccessible correlations in strongly coupled circuit
QED systems. It also shows how such correlations can potentially be exploited as
a resource for entanglement-based applications. For this work, I contributed as a
second author and I supported F. Armata (first author) performing parts of the an-
alytic and numerical calculations regarding the entanglement harvesting protocol.
The circuit implementation of the protocol was developed by T. Jaako. The work
was done under the supervision of P. Rabl.

11



Chapter 1

Atom-light interactions in structured
environments

In this first chapter we briefly review the main features regarding the interaction of
one or multiple two-level atoms (TLA or sometimes we will refer to them as qubits)
with localized modes of the electromagnetic field. Throughout this thesis (with the
exception of the project discussed in chapter 8) we will focus on the limit where
the atom-field coupling strength is much smaller than the bare atomic and photonic
frequencies involved in the dynamics. In this limit is possible to apply the rotating
wave approximation (RWA) and neglect the fast rotating terms that appear in the
atom-light interaction Hamiltonian [3, 4].

In section 1.1 we will briefly introduce the QED Hamiltonian that describes this
atom-light system under the RWA and along the rest of chapter we will show how
it is drastically a↵ected by the confinement of the light. In the first section 1.2, we
consider the field in free space and we focus on the single and collective behaviour
of an atomic ensemble coupled to it. In section 1.3 we show how the confinement of
the field in an optical cavity can drastically a↵ect the radiation properties of single
and multiple emitters. Finally, in section 1.4 we introduce the field confinement in
a one dimensional waveguide, a topic that we will then discuss more extensively in
chapter 2.

1.1 QED Hamiltonian in RWA

Let us consider a setup where Na two-level atoms (TLA) are located at positions
�xi and coupled to the electromagnetic field in a non-specified geometry. The atoms
have a ground state �g� and an excited state �e�, which are separated in frequency
by !i. The electromagnetic field in second quantization is described by a collection
of quantized modes indexed by the wavevector �k and described in terms of the
annihilation and creation operators a�k and a†�k , respectively. The a†�k define the field
vacuum state: ak�0� = 0, while annihliation operators create excitations from the
vacuum: (a†�k)n�0� =

√
n!�n�k�. They both obey the commutation relations [a�k, a†�k′] =
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��k,�k′ , where ��k′,�k is the Kronecker delta. If we work under the dipole and the RWA
the Hamiltonian describing the system reads

H =
N

a

�
i=1
�h!i�e�i�e� +��k

�h!�ka†�ka�k + �h
N

a

�
i=1��k

�g∗�k( �xi)a†�k�i− + g�k( �xi)a�k�i+� , (1.1)

where g�k( �xi) is the atom-field coupling strength and �i− = (�i+)† = �g�i�e� is the atomic
annihilation operator. Here !�k are the field angular frequencies, which are obtained
form the solutions of the Helmholtz equation:

�∇2 + n2(�x)
!2�k
c2
� ���k(��x) = 0, (1.2)

where c is the speed of light, n(�x) is the refractive index of the medium and ���k(��x)
are the mode functions of the field. Equation (1.2) is of fundamental importance
not only because it provides the eigenfrequencies of the field, but also because it
gives the mode functions that determine the atom-field coupling

g�k( �xi) =
�

!�k
2�h✏

0

�dieg ⋅ ���k( �xi) (1.3)

where ✏
0

is the vacuum permittivity and �dieg = �e� �di�g� is the atomic transition dipole
moment of the i-th atom. The mode functions are normalized as:

� d3 �x��∗�k′(��x) ⋅ ���k(��x) = ��k′,�k. (1.4)

This last condition depends crucially on the boundary conditions for the field and
thus on the system geometry. In the next section we will show how considering
di↵erent geometries leads to completely di↵erent types of atom-light interactions.

1.2 Free field in three dimension

In free space (n(�x) = 1) the field is infinitely extended such that the spacing of the
wave-vectors approaches zero and the index �k spans an unbounded continuum of
modes. In this case the mode functions of the electromagnetic field are plane waves
of the form:

���k,�(��x) = �e�(�k)
1�
(2⇡)3

ei
�k⋅�x, (1.5)

where �e�(�k) are the polarization unit vectors that satisfy �k ⋅�e�(�k) = 0. This condition
follows from the Coulomb gauge and indicates that there are two possible indepen-
dent perpendicular components for the field, labelled by the index � = 1,2, both in
the plane orthogonal to the propagation direction. By plugging the ansatz (1.5) into
the Helmholtz equation leads to the usual linear dispersion relation !k = ck, where
k = ��k� and the speed of light c coincides with the group velocity.

13



It is important to observe that in free space the atom-light coupling strength
is inherently weak compare to all the other energy scales. This feature, combined
with the huge amount of photonic degrees of freedom, allows one to treat atom-light
interactions with perturbation theory techniques. This can be done not only at the
Hamiltonian level, with the already mentioned RAW approximation, but also in the
dynamics, for example, by making a Born-Markov approximation to adiabatically
eliminate the field degrees of freedom. In the following we will show how such
techniques can still lead to interesting e↵ects for the collective emission of TLA
ensembles.

1.2.1 Collective emission of Na atoms

The full dynamics described by Hamiltonian (1.1) is in general a complex many-
body problem. Nevertheless, it is possible to get an e↵ective description by just
writing down a master equation for the reduced atomic dynamics. Throughout this
thesis we will make use of this technique many times so in this section we will briefly
review the main steps of its derivation for the specific case of an ensemble of Na

atoms interacting with the free space electromagnetic field. This problem both in
free space and in cavity QED has been studied for decades [76, 77]. To further
simplify the calculation we will assume that all the atoms have the same frequency
!i = !a and that they are located inside a small volume as shown in Fig. 1.1(a).

Let us define by ⇢
tot

the total density operator for the atoms and the field, which
evolves in interaction picture according to the Von Neumann equation:

⇢̇
tot

(t) = − i�h[HI(t),⇢tot(t)]. (1.6)

Here we took the continuum limit to rewrite Hamiltonian (1.1) in the interaction
picture:

HI(t) = �h
N

a

�
i=1�� �

d3�k �g∗�k,�( �xi)a†�k,��i−e−i�
i�
k

t + g�k,
�

( �xi)a�k,��i+ei�
i�
k

t� , (1.7)

where we denoted by ��k = !a − !�k the atom-field detuning. We are interested in
deriving an e↵ective description for the reduced atomic system operator ⇢(t) =
Trf{⇢tot(t)}, where the index f refers to the field degrees of freedom. By formally
integrating the Von Neumann equation (1.6) and after tracing over the bath degrees
of freedom we get:

⇢(t) =⇢(0) − i
�h �

t

0

dt′Trf{[HI(t′),⇢tot(0)]}

− 1
�h2

�
t

0

dt′�
t′

0

dt′′Trf{[HI(t′), [HI(t′′),⇢tot(t′′)]]}.
(1.8)

This expression, which is still exact, can be simplified by applying two widely used
approximations in quantum optics: the Born and the Markov approximation [78,
79, 80]. The first approximation assumes that the atomic system does not a↵ect
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the state of the electromagnetic environment. This assumption is always true in
free space, where the atom-field strength is weak enough and does not considerably
alter the infinite amount of degrees of freedom associated to the field. As we will see
below, this approximation can fail in structured environments. When valid, the Born
approximation allows to decouple the atomic and field dynamics as ⇢

tot

� ⇢�⇢f ,
where � indicates the tensor product. The second approximation assumes that the
atom-field correlations decay in a time ⌧c negligibly small compared to the evolution
time of the atomic system. In free space the correlation time is basically given by the
inverse of the atomic frequency ⌧c ∼ 1�!a and the atomic evolution (in the interaction
picture) happens on a time scale much bigger than ⌧c. Under this condition we can
apply the Markov approximation and for t� ⌧c approximate ⇢(t′) � ⇢(t). Note that
for Na > 1, it is necessary to add another requirement, namely we must assume that
the interaction between the atoms is instantaneous on the timescale of the atomic
evolution. Physically, this means that the time needed for the photons to travel
from one side to the other of the ensemble, ⌧R, i.e the retardation time, should be
much smaller than the remaining timescales of the system dynamics.

Under all these approximations and after rearranging (1.8) we end up with the
master equation:

⇢̇(t) = −�
∞

0

d⌧ Trf{[HI(t), [HI(t − ⌧),⇢(t)⊗ ⇢f(0)]]} (1.9)

where, consistently with the previous assumptions, we replaced the upper limit of
the integration by infinity. If we assume that the electromagnetic field is initially
in the vacuum, a situation that will consider throughout this thesis, and we change
back into the Schrödinger picture, the master equation (1.9) can be written as:

⇢̇(t) = − i�h[HS,⇢(t)] +�
ij

�ij

2
�2�j−⇢�i+ − �i+�j−⇢ − ⇢�i+�j−� . (1.10)

Here

HS =�
i

�h!i�e�i�e� +
�h
2
�
ij

�ij�
i+�j− (1.11)

describes the coherent dynamics of the atomic system and we defined the coe�cients
�ij�2 = Re{Aij} and �ij = Im{Aij} that depend on the correlation function:

Aij = �
∞

0

d⌧ � d3�k g∗�k,�( �xj)g�k,�( �xi)ei��k⌧ �a�k,�a†�k,��, (1.12)

where the expectation value of the bosonic operators in vacuum is �a�k,�a†�k,�� = 1.

The real part of Aij describes the irreversible radiative decay of the atomic system.
The imaginary part of the correlation function (1.12) instead provides the Lamb
shift [81, 2, 77] (i = j), that can be absorbed in the atomic frequencies, and the
strength of the coherent dipole-dipole interactions (i ≠ j).
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The correlation function (1.12) can be evaluated by using spherical coordinates
and by performing an angular integration. We thus get the following expression:

Aij =
c� �deg �2
4⇡�h✏

0

⇡2

�
∞

0

d⌧ � dk I(k� �xij �)k3ei��k⌧ , (1.13)

where we defined the function:

I(k� �xij �) = �1 −
( �deg ⋅ �xij)2
��xij �2

� sin (k��xij �)
k��xij �

+ �1 − 3(
�deg ⋅ �xij)2
��xij �2

� �cos (k��xij �)
(k��xij �)2

− sin (k��xij �)
(k��xij �)3

� .
(1.14)

Within the Markov approximation it is easy to perform the time integration in (1.13),
which is nothing else than the Fourier transform of the Heaviside function. We thus
end up with the following expression for the atomic decay rates:

�ij =
� �deg �2!3

a

4⇡�h✏
0

⇡c3
I �!a

c
��xij �� . (1.15)

The terms �i=j correspond to to the well known atomic spontaneous emission rate
given by:

� = �
�deg �2!3

a

3⇡�h✏
0

c3
(1.16)

that predicts an exponential decay for an isolated atom in free space. All the other
terms �i≠j describe instead the collective radiative behaviour of the ensemble. The
dependence of these rates on the function I(!a

c ��xij �) underlines the crucial role played
by the arrangement of the atoms in space. By considering di↵erent geometries the
radiative behaviour of the ensemble can be dramatically a↵ected. The study of the
collective emission of many atoms in di↵erent geometries such as one dimensional
(1D) linear chains or two (2D) and three (3D) dimensional lattices in free space and
in cavities is an active field of research [82, 83, 84, 85]. In the next section, restricting
the discussion to the simple case of two atoms in free space, we will briefly present
the most important consequence of collective emission: super- and subradiance.

1.2.2 Two atoms in free space: super- and sub-radiant states

Here we want to describes the dynamics of two atoms interacting with the electro-
magnetic vacuum in free space. The bare basis set given by the tensor product of
the two atomic eigenstates �ei��gi� is not the best choice because these states are not
eigenvectors of the modified Hamiltonian (1.11). It is more convenient to work with
the new basis defined by �e

1

e
2

� = �e
1

e
2

�, �g
1

g
2

� = �g
1

g
2

�, �±� = 1�
√
2(�e

1

g
2

� ± �g
1

e
2

�),
which are the angular momentum eigenstates of two spins. Working in this basis
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(a) (b)

Figure 1.1: (a) Sketch of an ensemble of two level atoms that are located in a infinite region
in space and interact with the EM field. (b) Level structure of two atoms interacting with
the free space electromagnetic field. The colored arrows indicate the transition between
the levels.

we can use (1.10) to get the following coupled equation for the diagonal elements of
the reduced density operator:

d⇢ee
dt
= −2�⇢ee,

d⇢+
dt
= (� + �

12

)⇢ee − (� + �12

)⇢+,
d⇢−
dt
= (� − �

12

)⇢ee − (� − �12

)⇢−,
d⇢gg
dt
= (� + �

12

)⇢+ + (� − �12

)⇢−.

(1.17)

These equations show how the cross decay rates combine together with the single
atomic emission a↵ecting the radiative behaviour. In particular, if � ± �

12

> �,
the collective contribution enhances the emission and leads to a so-called super-
radiant decay. On contrary, if � ± �

12

< �, the correlation e↵ects can decrease the
spontaneous emission decay rate leading to a phenomena known as sub-radiance. In
the limit of small atomic distances, k��xij � � 0, �

12

→ � [see (1.13) and (1.15)] and
the state �+� decays at a maximum rate of ∼ 2� while the antisymmetric state �−�
becomes completely decoupled from the electromagnetic field and cannot radiate at
all: it becomes a dark state. In Fig. 1.1(b) we show a sketch of the level structure
and the corresponding decay rates. The same physic shown here for two atoms can
be generalized to Na atoms, where the collective decay rate in the single excitation
subspace can reach a maximum value of ∼ Na�.

As we discussed in this section, the light-matter interaction in free space is in
general weak and allows to use the Born-Markov approximation to describe the
reduced system dynamics. One of the main achievement of quantum optics was
the ability to increase the atom-light interaction coupling strength by confining
the electromagnetic field inside photonic structures such as cavities, waveguides or
photonic crystals. In the next section we will make a short overview of some of these
systems.
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1.3 Cavity QED

Let us consider a Fabry-Perot cavity consisting of two mirrors of area A separated
by a distance L along the z axis. The field, confined inside a volume V = AL, has to
be zero at the mirror positions. Such a boundary condition leads to a discrete set
of mode functions, labelled by the index n:

��n(z) = �e
�

2

V
sin (knz), (1.18)

where the wavevectors kn = n⇡�L are now discretized and �e indicates again the
polarization of the field. Eq. (1.18) shows clearly that the field modes are no longer
associated with a propagating field, but are now stationary waves localized between
the mirrors. The resulting coupling strength between the n-th mode and the i-th
atom reads:

gn(zi) = �dieg ⋅ �e
��h!n

✏
0

V
sin (knzi). (1.19)

It is important to notice that now the coupling (1.19) scales as ∼ V −1�2. This
shows that, by confining the field in small volumes, it is possible to increase the
atom-field interaction strength. This is not the only advantage of considering small
confinements for the field. Indeed the eigenfrequencies of the field are now also
discretized according to !n = knc and the spacing between neighbouring modes
depends inversely on the mirror distance �! = ⇡c�L. This means that, in many
cases, it is possible to individually address and resolve a single cavity mode and to
adopt a single mode approximation. Note that this is not always the case and multi-
mode cavity QED is an active theoretical and experimental field of research [86, 87].
For our discussion regarding cavity QED we will consider only the case where the
atoms interact with a single mode of the confined electromagnetic field. From now
on we will assume that this mode is described by the bosonic operators a with
momenta k

0

and frequency !c = ck0.

1.3.1 Single atom

Jaynes-Cumming model

The well known Jaynes-Cumming (JC) model describes the interaction between a
single atom Na = 1 and a single quantized cavity mode [3]. If we assume that the
atom is at rest and located at position za we can set g ∶= g(za) and the system
Hamiltonian reads:

HJC = �h!a�e��e� + �h!ca
†a + �hg(�+a + �−a†). (1.20)

While the first term in the Hamiltonian describes the unperturbed energies of the
atom and photonic states, the second term instead describes the coherent exchange
of excitations between the atom and the cavity. The operator N̂ = �e��e� + a†a, that
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(a) (b) (c)

Figure 1.2: (a) Sketch of a two-level atom coupled to a single cavity mode with strength
g. Both the atom and the cavity mode can also decay into the external environment with
decay rates �a and �c, respectively. (c) Jaynes-Cumming energy ladder. The blue and red
arrow highlight the nonlinearity of the spectrum. (c) Sketch of the Rabi oscillation for the
spontaneous emission of an atom inside a cavity in the resonant, � = 0, and the detuned
case, � ≠ 0.
provides the total number of excitations, commutes with the Hamiltonian. This
means that there is a conserved quantity and that HJC can be block-diagonalized.
Each block, indicated by the number of excitations n, consists of a two dimensional
subspace spanned by the bare atom-cavity basis {�g, n�, �e, n−1�}. The only exception
is the unique vacuum state �g,0�. The eigenstates of each excitation subspace are
known as atom-field dressed state and consist of a superposition of photonic and
atomic excitations. They have energies

En,± = n�h!c + �h
�

2
±
�h
2

�
�2 + 4g2n, (1.21)

with � = !a − !0

being the atom-cavity detuning, and they can be written as

�+, n� = cos ✓
2
�g, n� + sin ✓

2
�e, n − 1�,

�−, n� = − sin ✓
2
�g, n� + cos ✓

2
�e, n − 1�,

(1.22)

where tan ✓ = 2g
√
n�� is the mixing angle. While for large detuning, � � g the

dressed energies almost coincide with the uncoupled states, for small detuning,
� � g, the degeneracy of the bare states is broken by the interaction and the two
states are split into two levels separated by 2g

√
n, as shown in Fig. 1.2(b). The

dependence of the splitting on the number of photons makes the spectrum highly
non-linear and this is one of the main features of the Jaynes-Cumming model. The
blue and red arrows in Fig. 1.2(b) schematically illustrate this feature. If a photon
resonantly excites one of the eigenstates, a second photon, arriving with the same
frequency just after the first, will be o↵-resonant and it will be hardly absorbed by
the system. This photon number dependent transmission in cavity QED is know as
photon blockade and enables the implementation of e↵ective photon-photon inter-
actions [88] and generation of non-classical states of light [89, 90].
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Another important feature of the Jaynes-Cumming model arises when the time
evolution of the system is considered. In particular, let us consider the simple case
of an atom initially excited in resonance (� = 0) with a cavity containing n photons.
If we work in interaction picture respect to the first term in Hamiltonian (1.20), the
initial state of the system ��(0)� = �e, n�, will evolve in time according to:

��(t)� = 1√
2
�e−ignt�+, n� + eignt� − n�� , (1.23)

where we defined gn = g
√
n + 1. From this expression it is easy to compute the prob-

ability of finding the atom in the excited state that is given by pa(t) = ��e��(t)��2 =
cos2 (gnt). This reversible energy exchange between the atom and the cavity at fre-
quency gn is known as quantum Rabi oscillations. In Fig. 1.2(c) this probability is
shown as function of time for both the resonant and the detuned case, where also
in the latter case an oscillating behaviour with smaller amplitude is observed. This
time evolution is drastically di↵erent from the free space case discussed in Sec. 1.2,
where the spontaneous emission is intrinsically irreversible and once a photon is
emitted by the atom it never goes back. On the contrary, when the field is con-
fined in a cavity not only the atomic emission is enhanced, but also the emitted
photon can be reabsorbed by the atom leading to multiple interactions. Within the
open system language this behaviour that keeps track of all the system evolution
and correlations is often referred as non-Markovian in contrast to the memoryless
Markovian dynamics.

Dissipative cavity

In the previous section we described an ideal situation where the atom and the cav-
ity were perfectly isolated from the outside world. In realistic situation the system
is not closed and can loose excitations in the environment trough the lossy cavity
mirrors and trough spontaneous emission of the atom into free space. To account
for these e↵ects it is necessarily to use some of the open system techniques such
as quantum Langevin equations or the master equation formalism. In particular,
similarly as done in Sec 1.2.1, we will adopt the latter by modelling the environ-
ment as a one-dimensional continuum of modes bk with linear dispersion relation
!k = c�k�. Having chosen a one-dimensional bath instead of a three-dimensional one
simplifies the discussion without a↵ecting the physical interpretation of the system.
We further assume that both the atom and the cavity mode are coupled linearly
to the external bosonic field with a coupling almost frequency independent (white
noise environment). The total Hamiltonian reads

HJC−E =HJC +HE +
gc√
2⇡
� dk(a†bk +H.c) +

ga√
2⇡
� dk(�+bk +H.c), (1.24)

where HE is the environment Hamiltonian. Applying again the Born-Markov ap-
proximation and assuming the environment to be in the vacuum state is possible
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(c)(a) (b)

Figure 1.3: (a) and (b) Real and imaginary part of (1.28) in the limit �c � �a. (c) Time
evolution of the excited state population of an atom inside a dissipative cavity. In all the
plots the atom and the cavity are assumed to be on resonance, � = 0.
to obtain a master equation describing the time evolution of the reduced density
operator for the atom-cavity system ⇢(t):

d

dt
⇢(t) = −i[H

e↵

⇢ − ⇢H†
e↵

] + �a�−⇢�+ + �ca⇢a†, (1.25)

where the last two terms assure the trace conservation of the density operator while
the first presents the non-hermitian e↵ective Hamiltonian:

H
e↵

=HJC − i
�a
2
�+�− − i�c

2
a†a. (1.26)

The decay rates were obtained after evaluation of the field correlation functions:

�⌘ =
g2⌘
⇡ �

∞
0

d⌧ � dkei(!a

−!
k

)⌧ �bb†� = g2⌘
c
, (1.27)

where we assigned ⌘ = a, c. This last expression is true under the assumption that
the dynamics of the environment field is much faster compared to the slow system
dynamics: !k � g or, in other words, that the interaction between the atom and
the cavity does not a↵ect their dissipation mechanism. Equation (1.26) shows that
one can account for the dissipation by introducing imaginary terms in the atomic
and cavity frequencies: !a → !a − i�a

2

!c → !c − i�c
2

making the Jaynes-Cumming
spectrum complex. In the simple resonant case, �JC = 0, the eigenvalues of (1.26)
are given by:

Ẽn,± = n�h!c − i�h
�a + �c

4
± �h
�

g2n − �
�a − �c

4
�
2

. (1.28)

The real part of the eigenvalues describes the coherent dynamics and oscillatory
behaviour while the imaginary part describes the damping of the atom-cavity system
[see Fig. 1.3(a)-(b)]. In most of the Cavity QED implementations the main source of
dissipation arises from the cavity damping �a � �c. In this limit we can distinguish
between two qualitatively di↵erent regimes.

21



• For 4gn < �c the Rabi splitting does not arise anymore and the two eigenvalues
of (1.28) have the same real parts, i.e, Ẽa � n�h!c − i�h(�a�2 + 2g2��c) and Ẽc �
n�h!c − i�h�c�2. The first eigenvalue can be associated with the atomic degree
of freedom while the second corresponds to the cavity mode. In Fig. 1.3(c)
we can see how the oscillatory behaviour in the excited state population is
suppressed and an exponential decay is instead observed. In this limit of
strong damping, the atom-cavity interaction still plays a role by introducing
an additional damping rate ∼ g2��c. This e↵ect is known as Purcell e↵ect [91]
and, which for not too small cavity loss can lead to an atomic damping that
exceed the free space spontaneous emission decay rate given in (1.16).

• If the cavity damping is weak,

4gn > �c, (1.29)

the Rabi splitting occurs and the two eigenvalues given in Eq. (1.28),

En,± � n�h!c ± �h
�
g2n − �2c �16 − −i�h�c�4, (1.30)

are still associated with the atom-cavity dressed states. In Fig. 1.3(c) we
can see that when condition (1.29) is satisfied the excited state population
presents a damped oscillatory behaviour given by: pa(t) � cos2 (gnt)e−�c�2. This
means that the atom is able to reabsorb the photon multiples times before the
excitation decays completely. The condition (1.29) not only rules the dynamics,
but can also be considered as the minimal requirement to achieve a nonlinear
spectrum. The regime when such condition is satisfied is referred in literature
as “strong-coupling regime”.

1.3.2 Multiple atoms

Let us now consider the case of Na identical atoms interacting with the same cavity
mode. For simplicity we can further assume that the atoms are located at anti-nodes
of the electromagnetic field where the coupling is maximum g ∶= g(zi). The physics
of the system is described by the Tavis-Cumming Hamiltonian [92]:

HTC =
N

a

�
i=1
�h��e�i�e� + �h

N
a

�
i=1

g(�i+a + �i−a†). (1.31)

In the single excitation subspace and for Na = 2 atoms Hamiltonian (1.31) gives the
following eigenvalue equation:

(� −E)[E(� −E) + 2g2] = 0. (1.32)

When the interaction is on resonance, � = 0, the eigenstates of the system consist
of two states �2±,1� = 1�

√
2�g, g,1� ± 1�2(�e, g,0� + �g, e,0�) separated by 2

√
2g, and

a singlet state �2d,1� = 1�
√
2(�e, g,0� − �g, e,0�) on resonance with the bare cavity
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(a)
degenerate dark subspace

(b) (c)

Figure 1.4: (a) Level structure of multiple atoms in a cavity. For Na > 1 a Na−1 degenerate
dark subspace is formed. (b)-(c) Evolution of the population of the excited state of two
atoms, p

1

and p

2

, and of the cavity photon, pc, as function of time. The plot in (b) shows
the resonant case, � = 0, while (c) shows the case the atoms are far detuned, � � g.

frequency at !
0

. The first two states present both a photonic and an atomic com-
ponent and they are referred to as bright states because they radiate into the cavity
field. The third state instead is purely atomic and is completely decoupled from
the cavity mode. This means that this state cannot emit or absorb photons: it is
a dark state. The same reasoning can be extended to the Na atom case where the
eigenstates consists always of two bright states separated by g

√
Na and a Na − 1

fold degenerate subspace of dark states. A sketch of the eingevalues structure is
shown in Fig. (1.4)(a). The splitting of the dark states suggest that the atomic
ensemble, similarly to the free space case, reacts collectively to the field with an
e↵ective coupling G = g

√
Na. This scaling was observed in both optical and mi-

crowave cavities and is largely used to explore strong light-matter interactions in
cavity QED [93, 94, 95, 96].

Let us now focus our attention on the dynamics described by (1.31) and in
particular on the exchange of excitations between the atoms. On resonance an atom
can emit a real photon in the cavity that can be subsequently coherently re-absorbed
by another atom, as shown in Fig. (1.4)(b) for Na = 2. An interesting regime is when
the atoms are o↵ resonance, i.e., � � g. In this limit the atom-cavity eigenstates are
weakly dressed by the photons that can be adiabatically eliminated. This leads to
an e↵ective Hamiltonian [97] for the atoms:

H
e↵

=
�hg2
�
�
ij

�i+�j−. (1.33)

Here the exchange of excitation occurs at the second order in the coupling strength
g and it is associated with a longer time-scale compared to the resonant case, as
shown in Fig. (1.4)(c). Note that the interaction does not depend on the atomic
distances because and it is mediated by virtual photons that are extend over the
entire cavity.
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(b)(a)

GAP

Figure 1.5: (a) Sketch of a rectangular metallic waveguide. (b) Dispersion relation for a
metallic waveguide. The linear and the quadratic regime are highlighted.

1.4 QED in one dimension

Let us now consider the most relevant scenario for this thesis: the confinement of
the electromagnetic field in one dimension. In this case the field modes are infinitely
extended along the z direction, but strongly confined in the transversal xy plane to a
cross section A. The free space linear dispersion relation can be rewritten separating
the transversal and the longitudinal components as:

!k =
c

n

�
k2

T + k2

z , (1.34)

where n is the refractive index of the confining medium. While along the z-axis the
field modes are plane waves and form a mode continuum, the transverse modes are
quantized, due to the confinement.

To simplify the discussion let us assume that the field is confined inside a rect-
angular metallic waveguide with sides lx and ly as sketched in Fig. 1.5(a). This
waveguide implementation is for waves in the microwave domain, but captures also
the essential physics of optical waveguides. The perfectly reflecting boundary con-
ditions for the field in the transverse directions lead to transverse wavevectors with
discrete values kT (n,m) = n⇡�lx+m⇡�ly. For each of these transverse modes there is
a branch of frequencies continuously spanned by the longitudinal wavevector k ∶= kz.
In the limit of strong confinement the transversal modes !n,m = c

nkT (n,m) are well
separated from each other and we can assume to address only one of them with
frequency !e. The dispersion relation associated with this specific transverse mode
is given by:

!k = !e

�
1 + � c

n!e

�
2

k2, (1.35)

and the transverse mode frequency !e plays the role of a low frequency cut-o↵ as
sketched in Fig. (1.5)(b). In order to characterize the propagation of the photons
inside the waveguide we can use the group velocity vg(k) = @!k�@k, which usually
depends on the wave vector k. The dispersion relation can be separated in three
di↵erent regimes depending on their propagation properties.

• For frequencies far above !e the dispersion relation is almost linear and can be
approximated as: !k � (c�n)�k�. In this regime the photons propagate with a
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finite group velocity, vg(k) � c�n, which is just given by the speed of light in
vacuum divided by the refractive index of the waveguide medium.

• For frequencies close to the cut-o↵ frequency the dispersion becomes flatter
and approximately quadratic

!k � !e +
�hk2

2m∗ . (1.36)

Here we introduced the e↵ective photon mass m∗ = !en2�h�c2. In this regime
the photons behave as e↵ective massive particles and their propagation speed
slows down, i.e., vg(k) � (�h�m∗)k for k → 0.

• For frequencies below the cut-o↵ frequency, there are no solutions of the
Helmholtz equation with real eigenvalues. Note that here equation (1.35) does
no provides the full dispersion of the waveguide but only one specific transver-
sal branch so we cannot properly refer to this range of frequencies as photonic
gap. This is because in general the full dispersion presents also other transver-
sal branches that lie below the cut-o↵. Proper band gaps can be realized in
photonic structures such as photonic crystal and coupled cavity arrays and will
be discussed in chapter 3.

In the first two cases the mode functions of the electromagnetic field have the
form

��k(x, y, z) = �e
1√
2⇡
�T (x, y)eikz, (1.37)

where as before �e indicates the polarization of the field and

�T (x, y) =
�

4

A
sin�n⇡

lx
x� sin�m⇡

ly
y� (1.38)

is the normalized transverse mode function. If we now consider the coupling of TLA
to the waveguide, the coupling strength of the k-th mode to the i-th atom is

gk(zi) =
gi√
2⇡

eikzi . (1.39)

where gi = �dieg ⋅ �e
� �h!

e

2✏0
�T (xi, yi). The coupling strength depends inversely on the

cross section. Thus by considering small confinement it is possible to achieve strong
light-matter interaction. The essential di↵erence compare to the cavity QED setup is
that in this waveguide configuration the field is not trapped inside a limited region of
space. Instead, it can propagate away leading to the possibility of carry information
over long distances and to achieve long-range interactions among the atoms.

The light-matter coupling (1.39) was presented for the simple example of a
metallic waveguide but it can be used in most of the waveguide implementations
when the dispersion relation is approximately linear in the ranges of frequencies
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under interest. In these cases the only parameter that is a↵ected by the specific
setup is the strength gi that in any case does not a↵ect the full model itself.

A di↵erence arises in the quadratic regime that, as we previously mentioned,
can be properly realized in periodic photonic structure. In such structures the
coupling (1.39) is not complete because the model function of the field are not
anymore plane waves but Bloch functions and an additional modulation along z
should be taken into account.
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Chapter 2

Waveguide QED

The realization of cavity QED experiments [98, 99, 100, 101, 102] in the strong
coupling regime was an important milestone for the field of quantum optics. For the
first time it was possible to achieve coherent interactions between individual atoms
and photons and to realize basic quantum gates and quantum information protocols.
These experiments are now the basis for building larger quantum networks.

A quantum network is composed of many nodes and channels and has the goal
of generating, processing and distributing quantum information. In this sense the
atom-cavity systems could play the role of the nodes where the quantum states
are processed and stored. The distribution instead requires flying qubits that can
transfer quantum states between distant nodes with high fidelity. A natural choice
for flying qubits are optical photons, which can travel over long distances without
loosing their coherence. However, photons emitted into in free space quickly spread
into all directions and for two nodes separated by only several wavelengths, the
ability to deterministically exchange photons becomes vanishingly small. An optimal
choice for the quantum channels are 1D waveguides where photons can connect
separated nodes over very large distances, limited only by photon absorption.

With this idea in mind, there has been a lot of interest over the past years on
studying the interface between emitters (the nodes) and photons in optical waveg-
uides (the channels). This field is now commonly known as “waveguide QED”.
Besides the final goal of implementing large quantum network, many intriguing
phenomena and applications have been discovered along the way such as single pho-
ton switches and mirrors [6, 7, 8], single and correlated photon scattering [9, 10,
11, 12, 13, 14], self-organized atomic lattices [15, 16, 17], or the dissipative gener-
ation of long-distance entanglement [18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and new
realizations of quantum gates [30, 31, 32].

Today there are already many experimental platforms where such a 1D configu-
ration can be realized to a very good approximation. In Fig. 2.1 we illustrate a few
of the most relevant implementations.

• In the optical domain an interesting and successful implementation are opti-
cal nanofibers [103, 104, 105, 106, 107, 108]. These are silica fibers that are
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(a) (b) (c) (d)

Figure 2.1: Waveguide QED platforms. (a) Ensembles of cold atoms coupled to the
evanescent field of a nanofiber. [103]. (b) Qunatum dots coupled to waveguides embedded
into 2-dimensional photonic crystal slab [110]. (c) Superconducting qubits coupled to
transmission lines [113] and rectangular waveguides [115] are a promising implementation
for the microwave regime. (d) Diamond defects coupled to phononic waveguide are an
alternative route to the photonic implementations [116].

pulled to reach a diameter smaller or comparable to the optical wavelength
as shown in Fig. 2.1(a). In this regime there is still a considerable evanescent
electromagnetic field that surrounds the fiber. Ensembles of atoms can then
be coupled via this evanescent component to the propagating guided modes.

• An other exciting optical platform is shown in Fig. 2.1(b) and it consists of
quantum dots e�ciently coupled to a line defect embedded in a 2 dimensional
photonic crystal slab [109, 110, 40]. As we will discuss in more detail in chap-
ter 3 the periodicity in the photonic structure creates band gaps that allow to
isolate the guided modes and to suppress emission into non-guided modes.

• The optical domain is not the only regime where waveguide QED system can
be implemented. With the developments of circuit QED it has become possible
to exploit the microwave regime and to couple superconducting qubits to open
transmission lines or to rectangular waveguides as shown in Fig. 2.1(c) [111,
112, 113, 114, 115].

• Finally, a di↵erent but complementary route consists in not consider the pho-
tonic degree of freedoms as flying qubits but phonons [116]. In Fig. 2.1(d) is
shown an example of a phononic waveguide made out of diamond that is a con-
venient material choice due to its high speed of sound vg ∼ 104. In this context
there are several well studied candidates for the emitters, like the nitrogen-
vacancy (NV) or the silicon-vacancy (SiV) centers, which are ideally suited for
quantum information processing applications [117, 118, 119, 122, 121, 122, 123].

An extremely interesting feature of the two optical implementations mentioned
above is that in such nanostructures the light confinement creates a link between
the polarization and propagation direction of the field. Such polarization-direction
connection can be exploited to achieve a directional emission. In particular, by
coupling the field to a specific polarized dipole transition of a quantum emitter,
photons can be emitted into one or the other direction of the waveguide. In the
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waveguide

TLA

(a) (b)

Figure 2.2: (a) A typical waveguide QED setup. (b) Linear dispersion relation for a
waveguide.

ideal case the emission and absorption process can become unidirectional. This chiral
coupling has been experimentally observed in several setting [124, 125, 126, 127].

In the remainder of this chapter we will provide an overview about the theoret-
ical framework and a few of the basic properties of waveguide QED systems. The
formalism developed here will be used in the remainder of the thesis. In section 2.1
we briefly introduce the Hamiltonian that describes the atom-light interaction in a
waveguide. In section 2.2 we use the Born-Markov approximation to derive a master
equation for an ensemble of atoms that interact trough the waveguide. In particular
we will show that this tool can describe the system both in the bidirectional and
unidirectional case. In the last section section 2.3 we exactly solve the waveguide
QED Hamiltonian in the single excitation sector. The advantage of the exact so-
lution is the possibility to describe scattering process and to explore the limits of
validity of the Born-Markov approximation.

2.1 Model

Let us consider a setup where Na two level atoms are coupled to the electromagnetic
field confined inside a one dimensional photonic structure and located at positions
zi along the longitudinal direction. In particular, in this chapter we will concentrate
on the case where the photonic structure is invariant for any translation along the
z axis and we will refer to it as a waveguide. A sketch of the setup is shown in
Fig. 2.2(a).

As we discussed in Sec. 1.4, when the light is confined in one dimension the dis-
persion relation can in principle become non-linear. Nevertheless, in many relevant
cases it can be simplified. Let us assume that the dispersion relation of the waveg-
uide is approximate linear within a frequency region [!

0

−�!,!
0

+�!]. If ���!,
with � being the decay rate of a two level system in the waveguide, the atom will
just experience a linear dispersion relation simply given by !k = vg(k0)�k�, with k

0

being the positive resonant wavevector associated with !
0

[see Fig. 2.2(b)].
In the continuum limit we can write down the Hamiltonian describing the inter-

action between the atoms and field confined in the waveguide:

H =
N

a

�
i=1
�h!i�e�i�e� +� dk �h!ka

†
kak + �h

N
a

�
i=1

gi√
2⇡
� dk �e−ikzia†

k�
i− + eikziak�i+� . (2.1)
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2.2 Waveguide QED master equation

The interaction of many atoms with the waveguide field is a complex problem and
in general can be exactly solved only in the few-excitation subspaces. Nevertheless,
similarly as in Sec. 1.2.1, it is still possible to get an e↵ective description for the re-
duced atomic system. Among all the di↵erent possible techniques we will focus here
on the master equation approach to describe the waveguide mediated interaction
between the atoms.

In many waveguide QED implementations, it is possible to couple the atoms to
the left (L) and to the right (R) propagating modes with di↵erent strengths [124,
125, 126, 127]. In order to take this asymmetry into account, we separate the left
and the right contributions by introducing two di↵erent coupling constant for the
i-th atom: giR and giL. We will further assume that all the atoms are coupled to
the left and to the right modes with the same strength giR = gR and giL = gL. By
changing into the interaction picture, Hamiltonian (2.1) can then be rewritten as

HI(t) = �h
N

a

�
i=1
��gRF †

R(zi, t) + gLF
†
L(zi, t)��i−e−i!i

t +H.c.� , (2.2)

where we defined the field operators for the right- and left-propagating fields,

F⌘(z, t) =
1√
2⇡
�k>0
k<0

dk ei(kz−!k

t)ak. (2.3)

Here the sum over the positive and negative wavevectors is for the right and left
propagating modes, respectively. By proceeding as in Sec. 1.2.1 we end up with a
master equation governing the time evolution of the atom’s reduced density operator
⇢(t):

⇢̇ =�
ij

(AR
ij +AL

ij) ��j−⇢�i+ − �i+�j−⇢� ei(!i

−!
j

)t + (BR
ij +BL

ij) ��i−⇢�j+ − ⇢�j+�i−� e−i(!i

−!
j

)t,
(2.4)

where we introduced the correlation functions:

A⌘
ij = g2⌘ �

∞
0

d⌧ �F⌘(zi, t)F †
⌘ (zj, t − ⌧)�ei!j

⌧ (2.5)

and
B⌘

ij = g2⌘ �
∞

0

d⌧ �F⌘(zj, t − ⌧)F †
⌘ (zi, t)�e−i!j

⌧ . (2.6)

Note that here we assumed the field to be in initially in the vacuum state, i.e.,
�a†

kak� = 0 and �aka†
k� = 1. Let us start evaluating the term AR

ij:

AR
ij =

g2R
2⇡ �

∞
0

d⌧ �
k>0 dk e

ik(z
i

−z
j

)ei(!j

−!
k

)⌧

� g2R
2⇡

eik0(zi−zj)�
∞

0

d⌧ �
k>0 dk e

−iv
g

(k0)(k−k0)[⌧− (zi−zj)�v
g

(k0)� ],
(2.7)
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where between the first and the second line we expanded the dispersion relation
around the positive resonant solution of !j = !k given by k = k

0

. The previous
expression can be computed using a Markov approximation

AR
ij �

g2R
�vg(k0)�

eik0(zi−zj)�
∞

0

d⌧� �⌧ − (zi − zj)�vg(k0)�
�

� �Re
ik0(z

i

−z
j

)✓[zi − zj],
(2.8)

where we defined the decay rate

�R =
g2R

�vg(k0)�
(2.9)

associated with the exponential spontaneous emission of right propagating photons.
Similarly we get for the other coe�cients:

AL
ij = �Le

−ik0(z
i

−z
j

)✓[zj − zi], (2.10)

with �L = g2L��vg(k0)� determining the emission of left propagating photons, and
BR

ij = (AR
ij)∗, BL

ij = (AL
ij)∗. As we already discussed in Sec. 1.2.1 the coe�cients

A⌘
ij contain information about correlated decay and photon-mediated interaction

processes. It is important to note that in contrast to the free space case these
coe�cients do not decay with the distance. This is a peculiar situation that depends
crucially on the one dimensional confinement of the light and has the great advantage
to allow e↵ectively “infinite long range interactions” between the atoms. This feature
can be qualitatively explained by keeping in mind that when a photon is emitted
by one atom it propagates only along one direction without any attenuation until it
reaches a second atom, leading to an interaction that depends only on the relative
phases between the emitters.

The derivation of A⌘
ij relies on the validity of the Born-Markov approximation

that requires two di↵erent conditions. For a single atom the main requirement is
that the correlation time of the field, given essentially by ⌧c ∼ 1��!, is much shorter
than the relevant time scales of the atomic dynamics. This condition is satisfied as
long as ���! where � = �R + �L is the total decay rate.

For multiple atoms there is an additional requirement to consider that relies
on the collective behaviour of the emitters. In particular, the single atom dynamics
should occur on a time scale, which is longer than the minimal time it takes a photon
to propagate between the atoms. This is evident for the validity of equation (2.8)
that holds as long as ⌧ ≥ �zj − zi���vg(k0)�. More generally, for the validity of a time-
local master equation for Na-atoms with spacing d we must ensure that the maximal
retardation time ⌧R ∼ (Na − 1)d��vg(k0)� is short compared to the system evolution
determined by the single-atom spontaneous-emission time �−1. This yields

g � �vg(k0)��
(Na−1)d

(2.11)
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as a slightly more stringent condition for large systems. Under this requirement the
system can be described in terms of atomic excitations, which interact via a quasi-
instantaneous exchange of photons. The breaking of this condition and its physical
meaning will be addressed in more detail in Sec. 2.3.4 and is extensively discussed
in Ref. [14, 19].

Coming back to the master equation (2.4), we can now extend it to a more
general case assuming to drive each of the qubits with a laser at frequency !i

L and
with strength Ei. Going back to the Schrödinger picture with respect to the atomic
frequencies we get the generic waveguide QED master equation [26]:

⇢̇ = − i�h[HS,⇢] +�
ij

�AR
ij +AL

ij� ��j−⇢�i+ − �i+�j−⇢� + �(AR
ij)∗ + (AL

ij)∗� ��i−⇢�j+ − ⇢�j+�i−� ,
(2.12)

where
HS =�

i

�h!i�e�i�e� +�
i

�h(Eiei!
i

L

t +H.c.). (2.13)

In this general form, the master equation describes waveguides with an arbitrary
degree of chirality. In the following we will present the two limiting cases of a
bidirectional waveguide, gR = gL, and a fully unidirectional one where gL = 0 and
gR ≠ 0.

2.2.1 Bidirectional waveguide

When the symmetry between the left and the right emission is not broken, i.e.
gR = gL = g we can rewrite (2.12) in the usual form [18, 15, 20]:

⇢̇ = − i�h[HS +�
i,j

Uij

2
�i+�j−,⇢] +�

ij

�ij

2
�2�i−⇢�j+ − �i+�j−⇢ − ⇢�i+�j−� , (2.14)

where

Uij =
2g2

�vg(k0)�
sin (k�zi − zj �),

�ij =
2g2

�vg(k0)�
cos (k�zi − zj �).

(2.15)

The coe�cients Uij and �ij describe the collective coherent and dissipative dipole-
dipole interaction between the atoms, respectively. This exchange of excitation is
infinite in range and depends sinusoidally on the atom-atom distance. We observe
that, due to the reflection symmetry of the system, the order of the qubits does not
matter in contrast with the more general chiral situation.

In order to understand the e↵ect of this collective behaviour let us first concen-
trate on the case of Na = 2 atoms. In particular, let us assume that the external
driving, Ei = 0, is turned o↵ and that one of the atoms is prepared in the excited
state. Given the out-of-phase variation of the coe�cients Uij and �ij we can distin-
guish between two di↵erent cases.
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Figure 2.3: Excited state populations p
1,2(t) and concurrence C(t) as a function of time

for the case where the first atom is initially prepared in the excited state. Di↵erent atomic
distances are considered, as shown in the plot.

• For atomic distances k
0

d = (2n + 1)⇡�2 with n ∈ N the dissipative interaction
between the atoms is suppressed, i.e. �ij = 0, and only the Uij term persist. In
this case there is a damped coherent exchange of excitation between the two
atoms as shown in Fig. 2.3(a). This interaction is reminiscent of the case of a
dissipative cavity where each atom decays independently with the rate

� = 2g2��vg(k0)�. (2.16)

• When the atoms are placed at distances commensurate with the resonant
wavelength, k

0

d = n⇡ with n ∈ N, the coherent contribution vanishes and
only a dissipative coupling between the qubits is allowed. In this limit the
master equation (2.14) describes the Dicke model of super-radiance [76] pre-
sented in Sec.1.2.1. In this limit the adequate basis to represent the dynam-
ics is the one depicted in Fig.1.1(b) where the super- and sub-radiant states
�±� = 1�

√
2(�e

1

g
2

� ± �g
1

e
2

�) play a crucial role. When the first atom decays
the system relax with probability P− = 1�2 to the dark state �−� as shown in
Fig. 2.3 (b). Another way to explain this behaviour comes from the fact that
the two qubits, when on resonance, behave as a Fabry-Perot-like cavity where
the photon can be trapped forming a standing wave between the two atoms.
We will discuss this interpretation again in the next sections where we will take
into account also the photonic degree of freedom.

The state �−� is an entangled state. To better quantify the entanglement produced
in the spontaneous emission process we introduce an entanglement measurement
that will be useful for our later discussion: the Wootters concurrence [128]. The
concurrence for the density operator of a two qubits system is defined as:

C(⇢) =max(0,�
1

− �
2

− �
3

− �
4

) (2.17)

where �i are the eigenvalues in decreasing order of the operator: R =
�√

⇢⇢̃
√
⇢ with

⇢̃ = (�y ⊗ �y)⇢∗(�y ⊗ �y). This measurement ranges from 0 for non-entangled states
to 1 for maximally entangled configurations.
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For the spontaneous emission case the concurrence expression is really simple.
If we decompose the two-atoms density matrix in the bare basis �1� = �e

1

, e
2

�, �2� =
�e

1

, g
2

�, �3� = �g
1

, e
2

�, �4� = �g
1

, g
2

�, the concurrence is just given by twice the atomic
coherences C(t) = 2�⇢

23

(t)�. In Fig. 2.3 (c) we plotted C(t) as function of time for
di↵erent atomic distances. We can see that when the qubits separation approaches
the superradiant one, a steady state concurrence of 0.5 is achieved [18, 27]. The
upper bound of the concurrence is an unavoidable in the bidirectional waveguide
where only half of the photons emitted by the first atom reach the second allowing to
build quantum correlation among them [see Fig. 2.2(a)]. The same steady subradiant
state can also be reached in a configuration where both the atoms are initially in
the ground state and only one of them is continuously pumped by an external laser
(see [18]).

Finally, let us mention that for the case of Na � 1 equally driven atoms in the
Dicke super-radiant configuration the competition between the collective dissipation
and the driving leads to a non-equilibrium phase transition in the steady-state at
the critical driving Ec = N��2. Above this threshold the Na qubits behave as a
collective spin and switch their orientation from �Sz�N� = −0.5 to �Sz�N�→ 0 where
Sz = ∑i �

i
z is the collective spin operator [20].

2.2.2 Unidirectional waveguide

An interesting situation occurs when the waveguide is fully chiral and the atoms are
coupled only to the right propagating mode gL = 0 (the opposite case with gR = 0 is
equivalent). In this case each atom can only interact with other atoms to the right
without receiving any back action from them. Systems of that type are known as
cascaded quantum systems [129, 21, 25, 26]. The master equation (2.12) can then
be rewritten as:

⇢̇(t) = − i�h[He↵

⇢ − ⇢H†
e↵

] + J(⇢), (2.18)

where the e↵ective Hamiltonian reads:

H
e↵

=HS − i
�h�R

2
�
j

�†
j�j − i�h�R�

j>i
�†
j�i (2.19)

and the recycling term that assures the conservation of the density operator trace
is given by:

J(⇢) = �R�
ij

�i−⇢�j+. (2.20)

Note that in Eq. (2.18) only the spatial order of the atoms and not the specific
positions matters. This is true only in the strict case where the waveguide is fully
chiral. Indeed, in such situations it is is possible, without loss of generality, to
absorb the position dependent phases in the qubit operators, �j → �jeikzj , and in
the driving amplitudes Ej → Eje−ikzj . Equation (2.19) describes a unidirectional
interaction where the excitation is transferred only to the right without any back
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Figure 2.4: (a)-(b) Excited state population and concurrence as function of time when just
one of the two qubits is initially excited. For the unidirectional waveguide the transfer is
independent of the distance between the atoms. (c) Steady-state concurrence as a function
of the driving strength. A maximum value is reached in the limit of E��R � 1.

action. The theoretical framework and the consequent experimental implementation
developed to describe this kind of physics is know as “Chiral waveguide QED”[127].

To understand the main features of the system, it is convenient to start by
considering two atoms in the absence of external driving and with only one of the two
initially excited. As shown in Fig. 2.4(a) the population transfer is bigger compare
to the bidirectional case where half of the emission is always lost. On the other
hand, even in this unidirectional case, the exchange of excitations is not complete.
A perfect transfer could be achieved if the photon emitted from the first atom and
received by the second would have been the same of the time reversal packet emitted
by the second atom. This is never the case without including additional dynamical
control [130, 131].

The increase in the excitation transfer is reflected as well in the spontaneously
generated concurrence where, as shown in Fig. 2.4(b), an enhanced concurrence
(C ∼ 0.7) compare to the bidirectional case is achieved. We remark again that in the
unidirectional waveguide, compare to the bidirectional case, there is not an optimal
separation for the excitation transfer because the master equation (2.18) does not
depend on the distance.

The concurrence and transferred excitation shown in Fig. 2.4(a)-(b) both decay in
the long time limit in contrast with the resonant case of the bidirectional waveguide
where a steady subradiant state is achieved. One could ask, if it is possible to obtain
a dark steady state also for the unidirectional configuration. The answer is positive
if a driving of the qubits is taken into account. The requirements to observe such
a state are the following. It should be an eigenstate of the coherent part of the
driven-dissipative dynamics described by Hamiltonian (2.19) that reads:

H
cas

=HS − i�h�R ��
j>i
�†
j�j − �

†
i�i� (2.21)

and should be annihilated by the collective jump operator S− = (�1− + �2−). It is
possible to show that both these conditions are satisfied if the two qubits are driven
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with the same strength E
1

= E
2

= E and if they have opposite detuning from the laser
frequency: �1L = −�2L = �L with �iL = !i −!L. Under these conditions there is a unique
pure steady state �D� given by [21, 25, 26]:

�D� = 1�
1 + �↵�2

(�g
1

, g
2

� + ↵�−�) , (2.22)

where ↵ =
√
2E�(�L−i�R). This means that for strong driving (↵� 1) the dark state

�D� approaches the antisymmetric state �−� that is a pure entangled state as we have
shown in the previous sections. This is clearly shown in Fig. 2.4(c) where we plotted
the steady-state concurrence as function of the driving strength. We can see that
in the strong driving limit it approaches its maximum value meaning that a dark
entangled state can be prepared. Note that this preparation scheme is very sensitive
to imperfections such as o↵sets in the detuning or additional dissipation channels.
We will briefly mention these e↵ects in Sec. 2.3.5 and we refer to [21, 25, 26] for a
more extensive discussion.

Finally, it is worth mentioning that in the case of an arbitrary even number of
atoms Na, it is still possible to find pure dark steady states of the driven-dissipative
dynamics. The conditions are similar to that one for the two atoms case with
the di↵erence that by choosing di↵erent detunings is possible to achieve di↵erent
multipartite entanglement patterns such as dimers, tetramers or octamers [21, 25,
26]. Such many body dark states are of crucial importance to implement quantum
communication protocol or to perform quantum simulation of many-body systems.

2.3 Exact solutions: position space description

The master equation description adapted in the previous section is a powerful tool to
describe the multi-qubit dynamics. On the other hand, besides being limited only to
the markovian evolution, it also does not provide any insight on the photonic degrees
of freedom. Indeed the scattering problem of one or multiple photons impinging on
an atomic ensemble can be really interesting in the context of quantum nonlinear
optics [88]. To achieve this goal we need to solve exactly the model given in Eq. (2.1).
This can be done in both momentum and position space. Here we will present the
latter that is more common in the literature.

Let us first rewrite (2.1) separating the right- and left-propagating contributions:

H =
N

a

�
i=1
�h!i�e�i�e� +� dkR �h!k

R

a†
k
R

ak
R

+� dkL �h!k
L

a†
k
L

ak
L

+ �h
N

a

�
i=1

gi√
2⇡
��� dkR e−ikRz

ia†
k
R

�i− +H.c.� + �� dkL e
−ik

L

z
ia†

kL�
i− +H.c.�� ,

(2.23)

where the operators a†
k⌘ create a right or left propagating photon, respectively. To
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represent (2.23) in position space we can perform the Fourier transform:

ak⌘ =
1√
2⇡
� dz eikza⌘(z), (2.24)

where a†
⌘(z) creates a left/right propagating photon at position z. Using these

transformations we end up with the “waveguide QED” Hamiltonian in real space [6,
7, 9, 11]:

H =
N

a

�
i=1
�h!i�e�i�e� + i�hvg(k0)� dz �a†

L(z)
@

@z
aL(z) − a†

R(z)
@

@z
aR(z)�

+ �h
N

a

�
i=1

gi� dz ��a†
L(z) + a

†
R(z)��i− +H.c.� �(z − zi).

(2.25)

Hamiltonian (2.25) conserves the total number of atomic and photonic excitations

N̂e = � dz �a†
L(z)aL(z) + a

†
R(z)aR(z)� +�

i

�e�i�e�. (2.26)

Therefore, the eigenstates can be evaluated in each excitation subspace separately.

2.3.1 Single excitation subspace with a single atom

Let us start with the single excitation subspace and Na = 1 atom. A generic eigen-
state in this sector is a dressed state of the atom with the field and has the form
(we set �1± ∶= �±):

��� = �b�+ +� dz ��k
R

(z)a†
R(z) + �k

L

(z)a†
L(z)�� �0, g�, (2.27)

where �0, g� is the vacuum state with the atom in the ground and no photons in
the waveguide. We denote by b the excited state amplitude of the atom while by
�k

⌘

(z) the amplitude of left- and right-propagating photons. Having assumed for a
waveguide an infinite dispersion relation implies, for a single atom, the existence of
only scattering states. The photonic wavefunctions for these states are plane waves
associated with the propagation of photons in the waveguide. In particular, if we
consider a photon incident from the left, we can make the following ansatz for the
scattering wave function [6]:

�k
R

(z) = �eikz✓(−z) + teikz✓(z)� ,
�k

L

(z) = re−ikz✓(−z), (2.28)

where t and r are the transmission and reflection amplitudes. Note that for a
waveguide with finite bandwidth another class of states should be taken into account,
i.e. the bound states, that we will discuss in chapter 3.
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Figure 2.5: (a) Transmission and reflection coe�cients for the case of a single TLA in
a waveguide. (b) Color map of the transmission coe�cient as function of the atom-field
detuning and the wavevector for the case of two atoms in a waveguide.

Plugging the ansatz (2.27) into the stationary Schrödinger equation H ��� = �h!���
yields the following set of equations:

± ivg
@

@z
�k

⌘

(z) + bg�(z) = !�k
⌘

(z)

g [�k
R

(0) + �k
L

(0)] = (! − !a)b
(2.29)

where ± corresponds to ⌘ = L and ⌘ = R, respectively. From Eq.(2.29) it is easy to
compute the expression for the amplitudes:

bk = −
vg
g
sin (')ei', r = i sin (')ei', t = cos (')ei' (2.30)

where

' = arctan � �

2(!a − !)
� (2.31)

is the phase shift and � is the single atom decay rate given in (2.16). The reflection
(R) and transmission (T) coe�cients, plotted in Fig. 2.5(a), are then simply given
by

R = �r�2 =
��
2

�2

(!a − !)2 + ��
2

�2
T = �t�2 = (!a − !)2

(!a − !)2 + ��
2

�2
. (2.32)

We observe that when the photon is in resonance with the atomic frequency it is
completely reflected with no loss by the TLA that acts as a perfect mirror. This
property is a peculiarity of the one-dimensional confinement and disappears in higher
dimensions.

2.3.2 Single excitation subspace with two atoms

Let us now consider the case of two identical atoms with frequencies !i = !a and
coupling strengths gi = g located at positions z

1

= −d�2 and z
2

= d�2. Under these
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conditions the system is symmetric with respect to the middle point z = 0 and can
be described in terms of even (s = e) and odd (s = o) symmetry operators:

as =
1√
2
(aR(z) ± aL(−z)), �s− = 1√

2
(�1− ± �2−). (2.33)

Using this basis we can rewrite Hamiltonian (2.25) as a sum of two uncoupled
contributions H =He +Ho where:

Hs =�h!a�
s+�s− − i�hvg(k0)� dz a†

s(z)
@

@z
as(z)

+ �hg� dz �a†
s(z)�s− + as(z)�s+� [�(z + d�2) ± �(z − d�2)] ,

(2.34)

where ± is associated to s = e and s = o, respectively. Proceeding as before in the
single excitation subspace we can find the eigenstates of the system by using an
ansatz similar to (2.27):

��s� = �b�s+ +� dz�k
s

(z)a†
s(z)� �0, g�, (2.35)

where now the photonic wave function is defined in three separated sectors according:

�k
s

(z) = eikz
�����������

,↵s for z < −d�2
t
1,s for − d�2 < z < d�2,
t
2,s for z > d�2.

(2.36)

This ansatz yields to the following set of equations for the atomic and photonic
amplitudes:

(! − !a)bs =
g

2
�±(t

2,s + t1,s)eikd�2 + (↵s + t1,s)e−ikd�2� ,
ivg(t2,s − t1,s)eikd�2 = gbs,
ivg(t1,s − ↵s)e−ikd�2 = ±gbs.

(2.37)

The solutions of this system can be classified by the value of the coe�cient ↵s. When
↵s ≠ 0 the complete set of solutions is given by scattering states extended over the
whole waveguide. The amplitudes in this case read [22, 19]:

t
1,s =

E − !a

E − !a + i��2(1 ± eikd)
,

t
2,s =

E − !a − i��2(1 ± eikd)
E − !a + i��2(1 ± eikd)

,

bs = g e−ikd�2 ± eikd�2
E − !a + i��2(1 ± eikd)

.

(2.38)

From these amplitudes it is possible to evaluate the photon transmission, which is
plotted in Fig. 2.5(b). Compare to the single atom case, where a perfect transmission
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is reached only for far o↵-resonant photons, in the two atom case there are frequency
windows with large transmission, T ∼ 1, even for frequencies detuned by just the
resonance linewidth (∼ �). This e↵ect is caused by the destructive interference of
the photons reflected by the two atoms. Furthermore, the transmitted photon can
acquire, for frequencies always within the resonance linewidth, a considerable phase
shift. This feature can be used to implement photon-atom and photon-photon phase
gates and open the possibility to waveguide QED based quantum computation [22].

2.3.3 Bound states in the continuum

If we set ↵s = 0 in (2.37) the scattering solutions do not form a complete basis
set and an additional class of states should be taken into account. These states
have eigenvalues in resonance with the atomic frequencies ! = !a and exist only for
specific atom-atom distances

k
0

d = n⇡, (2.39)

where n ∈ N and k
0

= !a�vg is the resonant wave vector. From the system of equa-
tions (2.37) it is possible to derive an expression that relates the atomic amplitude
with the coe�cient t

1,s:

t
1,s = ∓i bs

�
�

2vg
eik0d�2, (2.40)

while the transmission coe�cient t
2,s turns out to be always zero. This is related

to the fact that on resonance a photon is perfectly reflected by a TLA, as shown
in Fig. 2.5(a), so the regions inside and outside the two emitters are completely
decoupled. This means that, while incident photons cannot enter in the inter-atomic
region, photons on resonance that are already between the two atoms cannot escape.
For each specific system configuration that respects condition (2.39), there exists
only one of these states. In particular, for even resonant separations, d = 2n⇡�k

0

, this
bound state has odd symmetry while for odd resonant separations, d = (2n+1)⇡�k

0

,
it exists only in the even subspace. It can be explicitly written as

��b� = b�
1√
2
[�1+ ± �2+] +

�
�

vg
�

d�2
−d�2 dz sin (k

0

(z + d�2))a†(z)� �0, g�, (2.41)

where the atomic amplitude is defined up to a global phase factor, �b�2 = 1�(1+�⌧�4),
and the photonic wavefunction corresponds to a stationary wave localized between
the atoms. The delay time ⌧ = 2d�vg corresponds to the time that a photon takes
to make the round-trip between the two atoms. These localized states are known
as bound states in the continuum (BIC) [19, 27, 28, 29, 64, 65, 66, 68] due to
the fact that they have energies that lie inside the photonic spectrum in contrast
with the most common bound states that have energies inside a gap. Instead, the
existence of a BIC is a consequence of the “colored” atom-field interaction. Due to
the orthogonality of the unbound states and the BIC subspaces the latter states do
not play any role in scattering processes where the atoms are initially in the ground
state. On the other hand, if some of the atoms are initially excited, the BIC can have
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an important role in the dynamics. The importance of these states can be easily
visualized in the case in which one of the two atoms is initially excited. During
the spontaneous emission the amount of population that relaxes into the bound
state can be easily evaluated from (2.41) and is also given by p

BIC

= 1(1+�⌧�4) . This
equation shows that the BIC population becomes significant in the limit of small
couplings and short distances and implies that these states play a fundamental role
in the Markovian regime. Indeed condition (2.39) is the same as the one obtained
in Sec. 2.2.1 and these states correspond basically to the sub-radiant states of the
bidirectional waveguide master equation. If bigger couplings or longer distances are
considered, the Markov approximation breaks down and the contribution of these
states decreases. What happens is that retardation e↵ects start to play an important
role in the dynamics as we will see in the next section.

Before we proceed we point out that a BIC can also occur for a single atom
placed in front of a mirror. In this case the resulting BIC is equivalent to the two
atoms case with the only di↵erence that the photonic population is twice as big.
This case will be considered in chapter ??.

2.3.4 E↵ects of retardation

One of the advantages of having found exact analytic solutions for the scattering
states is the possibility to go beyond the Markov approximation and to study in more
detail the e↵ect of time delay on the atom dynamics. To have a comparison with the
previous results, let us consider again a spontaneous emission process where the first
atom is initially excited ��(0)� = �eg0�. The evolution of the state can be computed
as usual and it is given by the sum of the scattering states and BIC contributions:

��(t)� =�
s

1

2⇡ � dk e−i!k

t��s,k���s,k��(0)� + e−i!b

t��BIC���b��(0)�, (2.42)

where the index s runs over the even and odd subspaces. Using equation (2.42) it is
possible to evaluate the exact evolution of the excited state population of the first
qubit for di↵erent atomic distances as plotted in Fig. 2.6(a). We observe that when
the atom-atom distance increases the exact results deviate more and more from
the predictions obtained from the master equation. For short distances the qubit
decays in a time �−1 much longer than the time required by the photon to travel
from one atom to the other. This allows to build rapidly the BIC standing wave that
mediates an instantaneous e↵ective interaction between the atoms. In this regime
the exact solution is perfectly described by the master equation in which the BIC
contributions are implicitly considered.

If we increase the atom-atom distance we gradually enter in a regime where
the first atom decay faster than the photon travel time. This means that the first
atom decays as a single emitter (with decay rate �) for a time ∼ ⌧ until it receives
back the photon reflected by the second atom that restores the collective emission
[14, 19, 68]. This e↵ect can be even better visualized in Fig. 2.6(b) where we plotted
the concurrence to quantify the entanglement between the atoms. We observe that

41



(a)

1050

1

0.25

(b)

1050

0.5
0.5

0 1050

(c)

Figure 2.6: (a)-(b) Excited state population and concurrence as function of time for dif-
ferent atom-atom distances. As the atom-atom distance becomes larger and larger the
predictions based on the Markov approximation (black dashed line) deviate more and
more from the exact results. (c) Concurrence as a function of time for di↵erent atomic
decay rates. The photonic decay enters in only for stronger values and is not plotted here.
In this the atom-atom distance is fixed to k

0

d = 2⇡.
an increase of the distance a↵ects the concurrence in two di↵erent way. First, it raises
up at a retarded time as a consequence of the delayed activation of the collective
emission. Second, it reaches a lower value due to the fact that a considerable part
of the excitation is lost during the single emission of the first atom. In the limit
of very large distances, ⌧ � �−1, the first atom decays completely before receiving
feedback from the second atom and there is no entanglement formation at all. Note
that the same behaviour is observed if the distance is kept fixed and the atom-field
coupling is instead increased. In this case we reach the counter-intuitive result that
a strong atom-field coupling leads to a smaller amount of entanglement than what
can be established in the weak-coupling limit.

2.3.5 E↵ect of dissipation

So far we have considered the ideal situation where the photonic modes of the con-
fined field are the only bosonic degrees of freedom in the system. In real implemen-
tations the waveguide and atoms are embedded in a 3D environment, which provides
additional decay channels. The loss of excitations can occur through spontaneous
emission of the atoms into the environment or through losses in the waveguide. In
both cases the loss can significantly a↵ect the dynamics. To account for these ef-
fects we can proceed as in Sec. 1.3.1 and model the environment as a Markovian
bath. For most purposes, it is enough to account for the losses into other modes by
considering an e↵ective non-Hermitian Hamiltonian [7, 22, 132]:

H
diss

=H − i�h�a
2

N
a

�
i=1
�i+�i− − i�h�c2 � dk a†

kak, (2.43)

where �a and �c are the atomic and photonic decay rates. In the case of a single atom
this allows us to evaluate how the dissipation a↵ects the transmission coe�cient,
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which is now given by:

T =
(!a − !)2 + � (�a−�c)

2

�
2

(!a − !)2 + ��+(�a−�c)
2

�
2

. (2.44)

We observe that, if the photonic leakage rate is equal to the atomic decay rate, the
two dissipation mechanisms combine together (see also the case of the dissipative
cavity treated in Sec. 1.3.1) and the photon transmission is still suppressed on res-
onance. Note that, compared to the non-dissipative case, even on resonance the
reflection is not perfect because part of the reflected field gets lost in the environ-
ment.

For more than one atom the e↵ective Hamiltonian (2.43) still describes very well
scattering process, but it is not enough to correctly treat the behaviour of the BIC
in presence of external dissipation. By doing a more careful analysis that explicitly
includes the interaction with the environment [19], it turns out that there still exists
a subspace of localized eigenstates orthogonal to the scattering states. Compared to
the non-dissipative case for a given system configuration this subspace is spanned by
a continuum of states. These states are still localized within the two atoms but they
are not anymore bound. Indeed they decay into the reservoir loosing completely
their localization in the long-time limit. Therefore, they are known as quasi-bound
or quasi-localized states. This loss of excitations manifests itself in the plot of the
concurrence that, as shown in Fig. 2.6(c), does not reach a steady-state, but decays
in time.

Finally, it is worth mentioning an important figure of merit largely used in the
waveguide community to quantify the e↵ects of dissipation on the system: the � fac-
tor [133, 33]. The � factor quantifies the fraction of radiation that is spontaneously
emitted into the waveguide modes and is defined as:

� = �

� + �a + �nr
. (2.45)

Here we also included the decay rate �nr associated with coupling to non-guided or
non-radiative modes. This factor clearly shows that, in order to avoid loss of excita-
tion into undesired decay channels, it is fundamental to enhance the emission in the
guided modes, or in other words, it is necessary to reach the regime �� �a,�nr. The
atomic emission rate into the waveguide � is given in (2.16) and depends directly on
the coupling strength and inversely on the photonic group velocity. While increas-
ing the coupling is often more challenging and strongly depends on the particular
implementation, decreasing the group velocity is something that is achievable by
properly engineering the photonic waveguide. Indeed, following this route a beta
factor of � ∼ 0.98 was reached in a photonic crystal waveguide [109].

On the other hand when the decay rate is enhanced we start to enter in a regime
where non-Markovian e↵ects should be considered. In the last section we discussed
the retardation e↵ects that can be often avoided by taking distances short enough.
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When waveguides with slow-light propagation are considered a new plethora of non-
Markovian e↵ects arises. This is the regime of “slow-light waveguide QED” that we
will discuss in the next chapter.

44



Chapter 3

Slow-light waveguide QED

In the previous chapter we introduced the field of waveguide QED, discussing how
the nature of atom-light interactions changes when the field is confined to one di-
mension. For this discussion we had focused on a purely linear dispersion relation
and on the resulting Markovian dynamics. However, there are other interesting
regimes to explore where the dispersion can be non-linear or can exhibit photonic
band gaps.

In this chapter we will show how non-trivial band structures can arise by properly
engineering the photonic medium. In particular, by applying a periodic modulation
to the waveguide it is possible to generate a finite bandwidth for the light and highly
decrease the group velocity of the propagating photons. This gives rise to an exciting
new regime for atom-light interactions, which we refer to as “slow-light waveguide
QED”.

In section 3.1 we review the concept of photonic crystals focussing on the one-
dimensional case. Here the presence of photonic gaps leads to the existence of
localized atom-photon bound states that can mediate coherent atom-atom interac-
tions.

In section 3.2 we will then show with a simple model that it is possible to decrease
even further the width of the photonic band. This small finite bandwidth definitively
promotes the bound states as elementary excitations of the system and imposes an
upper bound for the photons group velocity that can become comparable to the
speed of moving atoms or acoustic waves. This is the exactly the scenario, which is
considered in the first three project of this thesis discussed in chapters 4-6.

3.1 Photonic crystal waveguides

The theoretical and experimental basis for photonic crystals (PC) were laid at the
end of the 80s and the beginning of the 90s [34, 33, 41, 42, 44] with the purpose
of achieving an higher level of control for light. The basic idea behind a PC comes
from usual crystals in condensed matter physics. In solids, a periodic structure of
atoms yields a periodic potential for the electrons, which leads to a modification of
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Figure 3.1: (a) Sketch of a 1D photonic crystal waveguide where the refractive index is
spatially modulated with lattice constant a

0

. (b) Example of a band structure induced
by the periodic modulation. On the right side a zoom of a specific band and the adjacent
gaps is shown. The black circles represent the frequencies ranges where the dispersion
can be approximated as quadratic. (c) High Q-factor nanocavities fabricated in photonic
crystal waveguides [36]. (d) Alligator photonic crystal waveguides [38].

the dispersion relation, of the density of states, and to the formation of forbidden
energy gaps for the electrons.

Similarly, a photonic crystal is a material characterized by a spatially peri-
odic modulation of some structure parameter, usually the refractive index [see
Fig. 3.1(a)], where the length of the modulation is comparable to the wavelength
of the light. The wave nature of the electromagnetic field and the periodicity of
the medium leads to the formation of a photonic band structure as sketched in
Fig. 3.1(b). In particular, this results in frequency ranges, the bands, where the
field can propagate and frequency ranges, the gaps, where photons cannot propa-
gate. This means that, for example, a light beam incident on a photonic crystal,
with a frequency inside the band gap region, will be backscattered from the mate-
rial. Even if at the beginning many papers were published trying to investigate the
atom-light interaction in this kind of structures [42, 43, 45, 44, 46, 134] with the time
the research on PC has been focussing mainly on controlling the light propagation
in 3 and 2 dimensional media [135]. Recently, the success achieved in waveguide
QED in interfacing ensembles of atoms with confined light has stimulated again a
lot of interest on PC structures, in particular also in the quantum optics community.
Indeed the physics of light-matter interactions in 1D becomes even more involved
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when the waveguide is engineered to have non-trivial dispersion relations, such as
band edges and band gaps. This has led to the development of experiments where
ensembles of real or artificial atoms can be coupled to photonic crystal waveguides.

Besides the use of 2 dimensional photonic crystal slabs to protect a one-dimensional
waveguide embedded between them [see Fig. 2.1], one dimensional PC waveguides
have been implemented. Nowdays such structures are used to realized optical cavi-
ties with extremely high Q-factor [122, 117, 36, 35, 136, 137], as shown in Fig. 3.1(c),
or to investigate long-range coherent atom-atom interactions mediated by the PC
waveguide. In particular, with this purpose the group of Je↵ Kimble at Caltech
has developed a new platform called alligator photonic crystal waveguides (APCW)
illustrated in Fig. 3.1(d) [37, 38, 39]. It consists of two parallel SiN nanobeams mod-
ulated periodically at the outer edges. This peculiar design allows to trap atoms
along the longitudinal direction and at the same time to couple them to the photonic
band structure generated by the periodicity.

These experimental activities have also renewed the theoretical interest in study-
ing atom-light interaction in confined band gap media, in particular with the final
purpose of studying many-body physics [49, 48, 50, 51]. In the following we are
going to present the main features of photonic crystal waveguides and we will show
how they can lead to new forms of atom-atom interactions mediated by atom-photon
bound states.

3.1.1 Dispersion relation

A simple photonic crystal model was introduced by John and Wang [41, 42, 43]
and assumes a 3D isotropic and non-dissipative media. The isotropy assumption
makes this model basically equivalent to a one dimensional one. In our case we
are interested in confined structures so here we will review directly the simpler 1D
version of this model.

Let us a consider a waveguide of length L with a longitudinal spatial modulation
of its dielectric constant ✏(z) = n2(z) given by:

✏(z) = ✏
0

+ �✏(z), (3.1)

where the dielectric constant was separated into an average value ✏
0

and a spatial
dependent part �✏(z). A similar treatment can be applied also for other kinds of
modulations. The Helmholtz equation given in (1.2) for the longitudinal field �(z)
reads:

�− @
2

@z2
− ✏f(z)

!2

c2
��(z) = ✏

0

!2

c2
�(z). (3.2)

Equation (1.2) is formally equivalent to the Schrödinger equation for an electron in
a spatially varying potential. Therefore, the term ✏f(z)!

2

c2 plays the of role of an
e↵ective potential for the photons.

Let us assume the potential to be periodic with lattice constant a
0

. The periodic
potential slows down the photons by Bragg-reflection [34, 33, 41, 42, 43, 45, 44,
46, 134] and separates the spectrum into individual bands !n

k , where n is the band

47



index. Each of these bands can be described within the first Brillouin zone, k ∈
(−⇡�a

0

,⇡�a
0

], as sketched in Fig. 3.1(b). In most of the cases the system dynamics
is governed by frequencies scales that are small compared to the width of individual
bands and gaps. In optical implementations these bandwidths have usually widths
on the order of several THz. This is much bigger than the typical atom-field coupling
strengths achievable in these kind of systems, which are in the MHz-GHz scale. With
this argument it is often possible to restrict the analysis to a single band. If we focus
on frequencies in the proximity of one of the band edges, it is possible to approximate
the dispersion relation as quadratic

!k = !e ± ↵(k − k0)2, (3.3)

where !e is the frequency at the band edge and k
0

the wavenumber at which the
gap occurs [see right side of Fig. 3.1(b)]. The quantity ↵ is a positive constant that
characterizes the band curvature and the sign plus or minus refers to frequencies
close to the lower or upper edge, respectively. The assumption (3.3) is known as
e↵ective mass approximation because it allows to associate a “mass” m∗ = �h�(2↵) to
the photons. For optical implementations this mass is on the order of m∗ � 10−36kg.
Note that with this approximation we recover the same dispersion obtained for the
metallic waveguide in (1.35). The main di↵erence compared to the previous case
is that in a photonic crystal there are no modes that lie in the frequency gaps.
In a metallic waveguide instead there can be propagating modes below a cut o↵
associated to the other transversal branches.

An important consequence of the quadratic dispersion is that the group velocity
of the photons vg(k) approaches zero when k → k

0

. When a photon propagates in
the photonic crystal it is continuously reflected back and forth by the dielectric array,
which e↵ectively reduces its group velocity. This slowing down of the photons, which
is most e↵ective near the band edges, can dramatically a↵ect the emission behaviour.
Indeed, the atomic decay rate given in Eq. (2.16) is inversely proportional to the
group velocity and could be infinitely enhanced at the edges. Such divergence of
the decay rate is of course not physical and the explanation for this prediction relies
on the approximations assumed for the decay rate derivation. To better understand
this point let us look at the photonic density of states that is given by:

⇢(!) = L

2⇡

dk

d!
✓(! − !e) =

L

2⇡

✓(! − !e)
2
√
↵
√
! − !e

, (3.4)

where the Heaviside function ✓(! − !e) indicates the presence of a gap below !e.
From (3.4) we observe that the density of states has a divergence at the band edge,
due to the existence of many photonics modes at this frequency. Such a divergence
implies that it is not possible anymore use the Born-Markov approximation to de-
scribe the atom-light interaction. This means that the expression for the decay rate
derived in (2.16) does not hold anymore for frequencies close to the band edge and
an exact treatment of the problem is necessary.
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3.1.2 Spontaneous emisssion

In this section we will investigate in more detail the nature of the atom-light inter-
action in a photonic crystal. With this goal in mind it is important to note that the
refractive index modulation not only a↵ects the dispersion relation but also changes
the shape of the electric field. Indeed, the periodicity of the system implies that
the longitudinal electric field, solution of Eq. (3.2), is a Bloch wave of the form
�(z) = eikzunk(z), where unk(z + a0) = unk(z) are the Bloch functions of the n-th
band. This also changes the form of the interaction term of Hamiltonian (2.1) de-
scribing the coupling between one or multiple emitters and the field. Nevertheless,
in most of the cases, the Bloch functions can be approximated by their value at the
resonant wavevector, unk(z) � un0k0(z). This means that the model given in (2.1)
can still be used by just rescaling the coupling strength: gi ∶= giun0k0(zi). With this
assumption the main di↵erence with respect to the waveguide case relies only on
the dispersion relation.

Let us a first consider the simple case of a spontaneous emission process for a
single atom. A perturbative solution of the problem can capture some features and
gives some intuition about the process. However, such an approximation is not able
to fully and correctly describe the atomic emission close to the band edge or inside
the band gap. The reason was previously mentioned and relies on the rapid change
of the density of states when the atomic transition frequency is close to the band
edge. In this regime the atom-light interaction becomes too strong for applying
perturbation theory and we need to look for the exact solutions of the problem.

To evaluate the dynamics we use the Hamiltonian (2.1) in interaction picture
and we solve the time-dependent Schrödinger equation using the ansatz:

��(t)� = �b(t)�+ +� dk �k(t)a†
k� �0, g�. (3.5)

This leads to the following coupled di↵erential equations:

db(t)
dt
= −i g√

2⇡
� dk �k(t)ei(!a

−!
k

)t,
d�k(t)
dt

= −i g√
2⇡

b(t)e−i(!a

−!
k

)t.
(3.6)

By formally integrating the second term we get the integro-di↵erential equation for
the atomic excitation amplitude:

db(t)
dt
= − g

2

2⇡ � dk � dt′ei(!a

−!
k

)(t−t′)b(t′). (3.7)

Under e↵ective mass approximation the momentum integral can be performed in
the frequency range [k

0

,∞] and gives the kernel:

K(t − t′) = g2

2⇡ �
∞

k0
dkei(!a

−!
k

)(t−t′) = �3�2e−i⇡�4 e
i(!

a

−!
g

(t−t′))
�
⇡(t − t′) , t > t′, (3.8)
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where �3�2 = g2�(4√↵) is the � factor [43] (note that it should not be confused
with the � factor of waveguide QED given in Eq. (2.45)). This kernel shows the
non-Markovian character of the reservoir. Indeed, there are contributions to the
dynamic of the system not only from the state at the current time, but also from
states at earlier times. In order to solve the integro-di↵erential equation (3.7) we
can perform the Laplace transform on both sides

sb̄(s) − 1 = �3�2e−i⇡�4�
∞

0

e−stdt�
t

0

dt′ b(t
′)ei�e(t−t′)�
⇡(t − t′) , (3.9)

where �e = !a − !e. After performing the time integral

�
∞

t′
e−(s−i�e)t�
⇡(t − t′)dt =

e−(s−i�e)t′√
s − i�e

(3.10)

and by changing the order of the integrations, we obtain the Laplace transform of
the excited state amplitude,

b̄(s) = (s − i�e)1�2
s(s − i�e)1�2 − (i�)3�2 . (3.11)

The atomic amplitude is obtained by the inverse Laplace transformation

b(t) = 1

2⇡i �
✏+i∞

✏−i∞ estb̄(s)ds. (3.12)

The integration domain of this integral is parallel to the imaginary axis and passes
through the point s = ✏. The real number ✏ is such that the integration domain is
at the right of the poles and of the branch cut due to the square root in b̄(s). The
inverse Laplace transform yields [41, 42, 43, 45, 44, 46]:

b(t) = 2a
1

x
1

e�x
2
1t+i�et + a

2

(x
2

+ y
2

)e�x2
2t+i�et −

3

�
j=1

ajyj[1 −�(
�
�x2

j t)]e�x
2
j

t+i�
e

t, (3.13)

where
x
1

= (A+ +A−)ei⇡�4, (3.14)

x
2

= (A+e−i⇡�6 −A−ei⇡�6)e−i⇡�4, (3.15)

x
3

= (A+ei⇡�6 −A−e−i⇡�6)ei3⇡�4, (3.16)

A± = �1
2
± 1

2
�1 + 4�3e

27�3

�
1�2
�
1�3

, (3.17)

aj = x
j(x

j

−x
i

)(x
j

−x
k

) (j ≠ i ≠ k; j, i, k = 1,2,3), (3.18)

yj =
�
x2

j (j = 1,2,3), (3.19)
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and �(x) is the error function defined by:

�(x) = 2√
⇡
�

x

0

e−t2dt. (3.20)

The squared modulus of the amplitude b(t) gives the probability of finding the atom
in the excited state. In Fig. 3.2(a) this probability is shown as a function of time for
di↵erent values of �e. We see that, while for atomic frequencies near the middle of
the band an exponential Markovian decay is still obtained, the spontaneous emission
gets strongly modified when the atomic frequency is close to the edge or in the gap.

• First we observe that there is no divergence of the decay rate at the edge
frequency as predicted by the Markov approximation. Nevertheless, the atom
indeed experiences a big enhancement of the spontaneous emission rate. This
decay takes place on time scales of the order of 1��,which are much shorter
than the corresponding decay time that occurs for frequencies in the band.

• For frequencies close to the edge or inside the gap the excited state popula-
tion does not decay exponentially but exhibits an oscillator behaviour. The
frequency of these oscillations is given by �, which plays a role similar to the
Rabi frequency in cavity QED. This is a manifestation of the non-Markovian
character of the reservoir and in particular of the non-linearity of the disper-
sion relation. It can be interpreted as a consequence of the low group velocity
of the emitted photon, which that can be reabsorbed by the atom before it
propagates away.

• Finally, we note that, while for atomic frequencies inside the band the prob-
ability of finding the atom in the excited state is vanishing at long times, for
frequencies close to the edge or in the gap a substantial fraction of the atomic
population remains trapped in the excited state even at t → ∞. This e↵ect
relies on the existence of a photonic band gap and on the localization of the
emitted photon around the atomic position. This trapping can be analytically
estimated for the case of �e = 0 where the steady-state population of the excited
state can be obtained by taking the t→∞ limit:

P = lim
t→∞ �b(t)�

2 = 4�a
1

x
1

�2 = 4

9
. (3.21)

A deeper understanding of this localization phenomenon can be obtained in
terms of the atom-photon bound states, which will be discussed in the next
section.

3.1.3 Atom-photon bound states

The trapping of atomic excitation and the localization of photons presented in the
previous section originate from the existence of atom-photon bound states. This is
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Figure 3.2: (a) Population of the excited state as a function of time for di↵erent values
of the atom edge detuning. (b) Atomic (pa) and photonic population (pp) of the atom-
photon bound state as function of the atom-edge detuning �e. (c) Localization length in
logarithmic scale as function of �e. For this plot we assumed a band edge frequency of
!e�(2⇡) ∼ 300THz, an atom field coupling strength of g�(√�

0

2⇡) = 10GHz with �

0

being
the optical wavelength at the edge, and a band edge curvature of ↵ = 400 Hz m

2.

not surprising because, similarly to what happen in solid-state physics, the atom acts
as a defect for the photonic crystal breaking the spatial periodicity of the refractive
index and causes a discrete energy level in the photonic gap. When the atom decays,
part of its excitation relaxes to this state that, being decoupled from the propagating
band, traps the excitation forever (assuming and ideal situation without additional
decay channels).

To better discuss this kind of states, let us look for the solutions of the stationary
Schrödinger equation H ��� = E���, with H given in (2.1). If we use the ansatz:

��� = �b�+ +� dk �ka
†
k� �0, g� (3.22)

and concentrate only on the solutions with an energy below the band edge, E = �h! <
�h!e (the other solutions are scattering states similar to that one shown in chapter 2),
we end up with the following eigenvalue equation:

! − !a = ⌃(!), (3.23)

where

⌃(!) = g2

2⇡ � dk
1

! − !k

(3.24)

is the self energy. To prove that equation (3.23) admits a solution that lies below
the bath spectrum we can define the function F (!) = ! − !a −⌃(!). This function
is monotonically increasing and F (!) → −∞ as ! → −∞. Thus, if F (!e) > 0 there
must be only one solution with ! < !e. This means that, if the self energy evaluated
at the band edge i.e. ⌃(!e) is negatively divergent, a unique bound state exists.
This is indeed always the case for a quadratic dispersion relation in one and two
dimensions while in three dimensions a bound state exists only under more specific
conditions involving the system parameters [66, 61]. In our case the self energy can
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be computed exactly, ⌃(!) = �3�2√
!
e

−! , and the real negative solution of equation (3.23)

can be explicitly written as [41, 42, 43, 45, 46, 49]:

�! =
2

3
�e −

�

22�3 �a
1�3+ + a1�3− � , a± =

�
�
�
1 ±

�
���1 + 22�3 � �e

3�
�
3�
�
�

2

, (3.25)

where �! = ! − !e. The corresponding eigenstate is given by:

��� = b(!)��+ + g√
2⇡
� dk

eikxa

�! − ↵k2

a†
k� �0, g�, (3.26)

where

b(E) = �1 + 1

2
�− �
�!
�
3�2
�
−1�2

, (3.27)

is the excited state amplitude. The excited state population, pa = �b(!)�2, and the
photonic population, pp = 1−pa, are shown in Fig 3.2(b) as function of the atom-edge
detuning. We can identify three di↵erent regimes.

• For atomic frequencies in the band the bound state is mainly composed by a
photonic excitation and its eigenfrequency is tangent to the band edge.

• For atomic frequencies in the gap the bound state energy moves away from the
band edge and the atom becomes weakly dressed by the photon.

• For frequencies close to the edge the state is highly hybridized between the
atomic and the photonic component.

It is also interesting have a look at the spatial distribution of the photonic wave-
function. An expression for the bound state in position space can be obtained by
making a Fourier transform of equation (3.26):

��� = b(!)
�
�
�+ + g� dz

e− �z−za ��

e

√
−4�!↵

a†
z

�
�
�0, g�. (3.28)

We immediately see that in real space the photon is exponentially localized around
the atomic position with a localization length given by �e =

�
−↵��!. This localiza-

tion can be interpreted as an evanescent electromagnetic field inside the gap that
does not propagate in the crystal.

It is instructive to estimate the behaviour of this localization length using some
typical parameters in optical photonic crystal implementations [49, 37, 38]. In
Fig 3.2(c) we plotted the localization length as function of �e for a band edge fre-
quency of !e�(2⇡) ∼ 300THz, an atom field coupling strength of g�(

√
�
0

2⇡) ∼ 10
GHz with �

0

being the optical wavelength at the edge, and a bandedge curvature
of ↵ ∼ 400 Hz×m2. We first observe that the photonic cloud is more localized for
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atomic frequency in the gap while it becomes more and more extended for atomic
frequency closer or inside the band. For the parameters considered here the cloud
is extended over a millimetre scale, which is comparable with the length of typi-
cal photonic crystal waveguides. This explains why these state were never directly
observed so far in optical photonic crystal implementations. Nevertheless, when
the atomic frequency is deep in the gap, the localization length can be decreased
down to a micrometre scale. In this regime the bound state basically consists of
an atomic excitation weakly dressed by the photons and the remaining field can be
adiabatically eliminated.

3.1.4 Atom-atom interactions in a photonic crystal

The long-term interest in interfacing nanophotonics structures with quantum emit-
ters goes beyond simple spontaneous emission. Indeed, the final goal is to engineer
interactions between multiple emitters trough the photonic structure. The photonic
crystal waveguides in this sense have recently attracted a lot of interest for the pur-
pose of controlling and simulating many-body physics [49, 37, 38]. In this section we
show how the atom-atom interactions are a↵ected by the photonic band structure
and that in certain limits an e↵ective spin model can be derived. In the rest of this
section we will just consider a resonant interaction where all the atomic frequencies
are the same, i.e. !i = !a.

Excitation transfer

Let us consider a simple excitation transfer process between two atoms embedded
in a photonic crystal waveguide where one of the two emitters is initially excited.
The two-atoms dynamics in the single excitation subspace can be exactly solved by
going to Laplace space, similarly as we presented for the spontaneous emission in
the previous section. Here we do not show this exact solution, which can be found
in [44, 46, 47, 48, 138], but we summarize the main results. Similarly to the single
atom case we can distinguish di↵erent regimes by considering di↵erent atom-edge
detunings.

• For atomic frequencies deep in the band, �e � �, the qubit dynamics resembles
that one of two atoms in a waveguide and is mainly Markovian. In this case
the excitation transferred to the second qubit never exceeds the value of p

2

�
0.25, which occurs at resonant distances when the collective behaviour becomes
important [see discussion in Sec. 2.2.1].

• For atomic frequencies close to the band edge, �e � 0, the excitation transfer
process changes dramatically. From Fig. 3.3 (a) we observe that, after an initial
transient where the excited atom rapidly decays loosing part of its population,
on a longer time scale the rest of excitation is resonantly exchanged between the
atoms. This transfer of excitation occurs in an oscillatory and non-dissipative
manner and is caused by the beating between two atom-photon bound states
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Figure 3.3: (a)-(c) Excitation transfer between two atoms as function of time for the case
where one of the atoms is initially excited. We fixed �e�� = 0, d��e � 1(a), �e�� = −15,
d��e � 1, (b) and �e�� = −15, d��e � 4(c).

with frequency in the gap (note that these two-atom bound states will be
discussed in more detail in the similar CCA case presented in Sec. 4.3). This
allows a dispersive interaction between the atoms mediated by the localized
photonic cloud surrounding each of them.

• For atomic frequencies deep in the gap, �e < 0 and ��e� � �, the dispersive
interaction becomes dominant and the amount of excitation that goes trough
dissipative dynamics becomes negligible as shown in Fig. 3.3(b). In this limit
the dynamics resembles that one observed in the dispersive regime of cavity
QED discussed in Sec. 1.3.2 where the atom-field states are weakly dressed by
the photons and consist of mainly atomic excitations.

The last point seems to suggests that, similarly to cavity QED, it should be
possible to write down an e↵ective model where the photonic degree of freedom
is traced out and an e↵ective atom-atom interaction is obtained. However, this
mapping fails because, compared to a cavity, in a photonic crystal the atom-atom
distance d still plays a role. This is clear in Fig. 3.3(c) where we observe that by
increasing the qubits separation the interaction occurs in a much longer time scale.
In the next section we will derive the correct e↵ective Hamiltonian that takes in
account this distance dependence.

E↵ective dipole-dipole interaction

In the limit where �e < 0 and ��e� � �, the atom-field bound states are weakly
dressed by the photonic modes that can be eliminated to obtain a description only
in terms of the atomic degree of freedoms [48, 49]. In this limit, where the atomic
frequency is detuned from the band edge, it is still possible to use the Born-Markov
approximation and to get a master equation similar as we did in Sec. 2.2.1 for
multiple atoms in a waveguide. In particular let us consider the correlation function:

Aij =
2g2

⇡ �
∞

0

d⌧ �
t

k0
dk eik(zi−zj)ei�k⌧ = 2g2

⇡ �
∞

k0
dk

1

i�k
�ei�kt − 1� , (3.29)
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where �k = !a−!k and between the LHS and RHS we performed the time integration.
In the limit of ��e�� � the exponential term on the RHS of (3.30) is fast oscillating
compared to the rest of the system dynamics, which occurs on a time scale given
by �, and can be adiabatically eliminated. The correlation function can thus be
simplified to:

Aij �
ig2�
��e�↵

e−
�z
i

−z
j

�
�

e , (3.30)

where �e =
�
↵���e� is the localization length of a single atom-photon bound state.

We immediately notice that, in the limit of interest, the correlation function Aij is
always imaginary. This means that the atom dynamics is never dissipative but only
coherent and can be fully described by a unitary e↵ective Hamiltonian. If we define
the e↵ective coupling gc = g�

√
�e we can write the e↵ective Hamiltonian describing

the atom-atom interaction as:

H
e↵

= g2c
�e
�
ij

e−
�z
i

−z
j

�
�

e �i+�j−. (3.31)

This kind of interaction resembles the dispersive interaction in cavity QED described
by Eq. (1.33) where the photonic cloud associated to the atom-photon bound state
plays the role of the cavity mode. The main di↵erence arises from the extended
multi-mode dressing of the atom compare to the single localized mode that hy-
bridizes with an emitter in cavity QED. This di↵erence manifests itself in the ex-
ponentially localized suppression of the interaction with the distance. The physical
interpretation is that the interaction among the atoms is mediated by the exponen-
tial photonic cloud surrounding each of them. When the atoms are too far apart
the clouds do not overlap and the interaction is suppressed. Nevertheless, as we
pointed out in Sec. 3.1.3, in optical implementations the photonic cloud can be
largely extended and for frequencies deep in the gap they can still have a length
of the order of ∼ 100µm. This means that it is possible to implement long-range
dispersive interactions between atoms that are protected from decay.

This kind of interactions recently attracted a lot of attention. In particular, it was
suggested to exploit them to establish long-distance entanglement among atoms and
to simulate many-body physics and spin models [48, 49, 50, 51]. This last idea relies
on the possibility of controlling and engineering the properties of the interaction.
This is indeed possible for the strength of the coupling that can be tuned through
the photon localization length and the shape of the Bloch function. The scaling
with the atomic distance can also be modified to a power law by e↵ectively coupling
the atoms with more than one band edges [49]. These theoretical proposals have led
to a significant experimental e↵ort in this direction [38, 39, 139, 140].

3.2 Narrow bandwidth waveguide

In the last section we have shown how the reduction of the photon group velocity
that occurs in a photonic crystal waveguide can drastically a↵ect the interaction
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Figure 3.4: Implementations of a narrow bandwidth waveguide. (a) An array of defects
in a photonic crystal waveguide creates an e↵ective array of coupled resonators [141, 142].
(b) A sketch of a bottle resonator and a SNAP waveguide [143, 146].(c) An array of
mircrowave resonators coupled to superconducting qubits [56, 139].

of one or multiple emitters with the field. In spite of these results for some of the
e↵ects that we are going to present in this thesis the speed of the light is still not
slow enough.

In a photonic crystal waveguide, even if the group velocity approaches zero close
to the band edge, the maximum speed is still given by the linear part of the dispersion
relation shown in Fig. 3.1(b). This maximum speed scales with the photonic band as
c̄ ∼ Ba, with a being the lattice constant. In most of the photonic implementations
this bandwidth is on the order of B ∼THz and and the maximum speed of light,
c̄ = max{vg(k)}, is around c̄ � 106m�s. In order to enter in a regime where the
maximum speed of the photons is even slower we need to further decrease the width
of the band.

The bandwidth of a waveguide can be narrowed by implementing a stronger spa-
tial modulation of the medium. E↵ectively, this means that we pass from a weakly-
perturbed waveguide to a tight-binding model. In a photonic crystal this can be
done by considering a periodic arrangement of defects, as shown in Fig. 3.4(a), that
creates an e↵ective coupled-cavity array with a GHz “miniband”, where the group
velocity of the photon is strongly reduced. This kind of structures are know in the
literature as Coupled Resonator Optical Waveguides (CROW) [141, 142]. Another
possible optical implementation consists in creating a periodic modulation of the
radius of an optical fiber. The modulation e↵ectively generates an array of bottle
resonators [143, 144, 145] as shown in Fig. 3.4(b). This is possible with the recent
development of surface nanoscale axial photonic (SNAP) waveguides where a high
level of control on the disorder can be achieved [146, 147]. Besides the nano-photonic
implementations another promising route to engineer narrow bandwidth waveguides
consists in considering arrays of microwave resonators coupled to superconducting
qubits as sketched in Fig. 3.4(c) [56, 148]. Here the great advantage relies on the
higher control on the system fabrication that recently has allowed to experimentally
explore this slow-light regime, as we will discuss in more detail in chapter 4 [139, 140].

The possibility to narrow and engineer the bandwidth of the waveguides opens
new interesting regimes where the atoms can interact with very slow photons. Here
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we summarize a few of these aspects that will be investigated in the remainder of
the thesis.

First, as we explained in Sec. 3.1.3, in a photonic crystal waveguide the bound
states play an important role in the dynamics only when the atomic frequencies
are deep in the photonic gap and consist of atomic excitation weakly dressed by
the photonic bath. When the bandwidth is further decreased we enter in a regime
where the bound states get strongly hybridized between the atomic and photonic
components with a small localization length. In this limit the width of the photonic
band is almost comparable to the typical atomic decay rate in the waveguide � ∼ B
and, as we will show in chapter 4, the bound states become the main elementary
excitations of the system and play a crucial role even when the atomic frequency is
inside the band.

Second, in such narrow bandwidth waveguides it is possible to highly decrease
the maximum speed of propagation of the photons to a value of the order of c̄ ∼ 104
m�s. This means that we can enter a regime where the light can propagate with
velocities similar to that one of atomic beams or to the propagation speed of acoustic
waves in phononic waveguides. These e↵ects will be discussed in chapters 5 and 6.

In this section in order to introduce the physics of these slow light waveguides
we will first present a simple model that captures the transition from a photonic
crystal to a narrow bandwidth waveguide. We will then introduce the tight binding
model that encodes most of the e↵ects that we are going to discuss.

3.2.1 A simple model: from photonic crystals to slow light waveguides

In this section we present a model that captures the transition from a photonic crys-
tal of the kind shown in Sec. 3.1 to a narrow bandwidth waveguide. Let us consider
one or multiple TLA coupled close to the band edge of a photonic crystal waveg-
uide. As previously discussed, close to the band edge !e the dispersion relation is
approximately quadratic [see Fig. 3.5(b)] and has an e↵ective photon mass m∗. To
further decrease the photonic bandwidth we add an e↵ective periodic potential V (z)
for the photons, as shown in Fig. 3.5(a). This potential can be induced by creating
an additional spatial modulation of the waveguide, for example, by a periodic ar-
rangement of defects. We then obtain an Hamiltonian in position space, which can
be considered the “slow light” version of the waveguide QED Hamiltonian presented
in (2.25):

H =
N

a

�
i

�h�i�i+�i− + �hg
N

a

�
i=1
�a†(zi)�i− + �i+a(zi)� +�

L

0

dz a(z)† �−
�h2@2

2m∗@z2 + V (z)�a(z),
(3.32)

where �i = !i − !e and L is the length of the waveguide. Let us consider the case
of a periodic potential with spatial grating a. Without a↵ecting too much the
generality of the discussion we can choose a potential shape of the form V (z) =
V cos (�kz), where �k = 2⇡�a is the lattice vector. Note that the model presented
here is analogous to the one of neutral atoms in optical lattices. Here the e↵ect of
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Figure 3.5: (a) Sketch of the setup where an ensemble of two-level atoms is coupled to a
1D photonic crystal waveguide spatial modulated by an e↵ective photonic potential V (z).
(b) Original quadratic dispersion associated with the PC-waveguide with e↵ective photon
mass m

∗. (c) Band structure formation arising from an e↵ective potential with strength
V �Er = 0.2.
the spatial modulation consists in separating the original quadratic dispersion into
individual bands.

We can diagonalize the photonic part of Hamiltonian (3.32) by decomposing the
field in momentum space as

a(z) = 1√
L
�
nk

eikzunk(z)ank, (3.33)

where ank are the annihilation operators that destroy a field excitation of the n-th
band with momentum k ∈ (−⇡�a,⇡�a]. The unk(z + a) = unk(z) are the periodic
Bloch functions satisfying the eigenvalues equation

!n(k)unk(z) = −
i
�h �
�h2

2m∗ �
@

@z
+ ik�

2

+ V (z)�unk(z). (3.34)

These functions can be decomposed as

unk(z) =
∞
�

`=−∞
u
(`)
nk e

i(�kz)`. (3.35)

By inserting this decomposition into Eq. (3.34) we obtain an equation for the coef-
ficients

�
l

H``′u(`)nk = �h!n(k)u(`)nk , (3.36)

where

H``′ =
�����������

Er(` + k
�k)2, ` = `′

V
2

, �` − `′� = 1
0, otherwise.

(3.37)

In this equation Er = �h2�k2�(2m∗) is the photonic recoil energy. The solution
of (3.36) provides the band structure !kn and the Bloch coe�cients unk(z). The
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width of the band is determined by the ratio of the potential strength V and the
recoil energy. When V �Er > 0 the original quadratic dispersion starts to get split
into several bands that get flatter and more separated as much as the ratio V �Er

increases as shown in Fig. 3.5(c). This means that by properly engineering the
strength of this additional modulation that we impose on the waveguide we can
achieve the slow-light regime that we are aiming. In particular, in the limit of
strong modulation, V � Er, a tight binding approximation (TBA) can be applied
on the specific band under study and the band can be described approximately by
a dispersion of the form !n(k) � !cn ∓ (B�2) cos (ka) where !cn is the frequency in
the center of the n-th band and the ∓ depends on the curvature of the band. This
tight binding picture will be properly discussed in the next section.

3.2.2 Tight binding limit: coupled-cavity array

In this section we model a “slow-light” waveguide with finite bandwidth as a Coupled-
Cavity Array (CCA): a one dimensional arrangement of optical resonators with
nearest-neighbour coupling. In the absence of any emitters, such a system forms
a finite propagating band with an e↵ective speed of light that is fully controlled
by the tunnel coupling between neighboring cavities, and thus can in principle be
made arbitrarily small. An elegant feature of the CCA system is that in various
parameter regimes one can recover the behavior of other systems previously dis-
cussed (such as single-mode cavity QED, infinite-bandwidth waveguides and one
dimensional photonic crystal). Coupled cavity arrays (CCA) received a lot of at-
tention in the context of quantum simulation of many-body physics with light
with the purpose of observing quantum phase transitions [53, 54, 55, 149, 150].
At the same time many people became interested also in photon scattering pro-
cesses in this finite-bandwidth scenario with a special focus the transmission prop-
erties [56, 57, 58, 59, 151, 152, 153, 154, 155, 156]. In presence of a finite bandwidth
there is indeed the appearance of localized photonic bound states similar to that
one discussed in section 3.1.3 [57, 151, 156, 60, 62]. These bound states can lead to
unusual two-photon scattering processes, where, e.g., one photon can remain bound
to an atom [58, 59, 151], while the other one escapes. Such processes are absent in
free space or infinite-band waveguides.

In chapter 4 of this thesis we will make a detailed analysis on the nature and
on the main features of these bound states. Here we will start to introduce in
more detail the CCA setup presenting the basic properties and the single excitation
dynamics.

Model

The model that we are going to use is illustrated in Fig. 3.7 (a), where a set of
Na two-level atoms is coupled to an array of N →∞ optical resonators with center
frequency !c and nearest-neighbor tunnel coupling J . For atoms located at sites xi
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Figure 3.6: (a) Sketch of a slow-light waveguide modelled as a large array of coupled
cavities with nearest-neighbor coupling J . (b) Band structure of the waveguide without
atoms. (c) Correlated decay rates �ij as a function of the (discrete) interatomic distance�xi−xj � and (d) coherent dipole-dipole interactions Uij versus �xi−xj � for di↵erent detunings
� = !a−!c. The solid lines are a guide to the eye obtained from a continuous interpolation
of Eq. (3.43). In both plots, the photon loss rate has been set to �c�(2J) = 0.14.
the total Hamiltonian for this system is (�h = 1)

H = !c�
x

a†
xax−J�

x

(a†
xax−1+a†

x−1ax)+
N

a

�
i=1
!a�e�i�e�+g

N
a

�
i=1�x

�ax�i+ + a†
x�

i−� �x,x
i

, (3.38)

where ax (a†
x) are bosonic annihilation (creation) operators for the individual cavity

modes. This Hamiltonian can be considered the discrete version of the waveguide
QED Hamiltonian presented in (2.25) with the coupling strength rescaled to have the
dimension of a frequency, i.e. g → g�√a, where a is the longitudinal size of a cavity.
We can eliminate the absolute optical frequencies by changing into a rotating frame
with respect to !c, and the resulting system dynamics depends only on the atom-
photon detuning � = !a − !c. To account for atomic emission into other radiation
modes as well as the loss of waveguide photons, we introduce a bare atomic decay
rate �a and a photon loss rate �c for each cavity as additional phenomenological
parameters.

The first line of Eq. (3.38) represents the tight-binding Hamiltonian Hc of the
waveguide. By introducing the momentum operators ak = 1√

N
∑x e

ikxax, with k ∈
]−⇡,⇡] (note that here we are implicitly rescaling the wave-vector k ∶= ka), we can
write (3.38) in a diagonal form Hc = ∑k !ka

†
kak, where the mode frequencies

!k = !c − 2J cos(k), (3.39)
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form a band of total width B = 4J centred around the bare cavity frequency !c [see
Fig. 3.7 (b)]. The propagation of photons inside the waveguide is characterized by
the group velocity

v
g

(!) = @!k

@k
�
!
k

=! =
�
4J2 − (! − !c)2, (3.40)

which vanishes for J → 0 or when operating at frequencies close to the band edges,
i.e., ! ≈ !c ± 2J . In the limit J = 0 the cavities are completely decoupled, each
site being thereby described by a single-mode Jaynes-Cummings model [3] with
coupling constant g and detuning �. In this sense the present model captures well
finite-bandwidth and bandedge features over a wide range of parameters.

Large bandwidth limit

Let us consider the weak-coupling or broadband limit g�J → 0. In this regime the
CCA is equivalent to a photonic waveguide and simply acts as a collective reservoir
for the atoms. In particular, it is possible to derive, by using a Born-Markov approx-
imation, the same master equation given in (2.14) for the bidirectional waveguide:

⇢̇ = −i[Ha,⇢] +�
i,j

�ij

2
�2�j−⇢�i+ − �i+�j−⇢ − ⇢�i+�j−� , (3.41)

where in the rotating frame with respect to !c,

Ha =�
i

��e�i�e� +
1

2
�
i,j

Uij ��i+�j− + �i−�j+� . (3.42)

Similarly to section 2.2.1, �ij and Uij represent the correlated decay rates and the
coherent dipole-dipole interactions, respectively, which arise from virtual or real
photons propagating along the waveguide. Compared to what we have done in the
previous chapter, here we generalize the ME including small atomic and photonic
losses [see App. A.1]. This allows us to still capture some features of the system
even for frequencies close to the band edge. We thus obtain �ij = 2Re{Aij}+�a and
Uij = 2Im{Aij}, where

Aij =
g2

ṽ
g

(�)e
iK�x

i

−x
j

], (3.43)

and

K = ⇡ − arccos �� + i�c�2
2J

� . (3.44)

Here we have introduced a generalized (complex) group velocity

ṽ
g

(�) =
�

4J2 − �� + i�c
2
�
2

. (3.45)

For �c → 0 and for atomic frequencies within the photonic band this quantity reduces
to the conventional group velocity given in Eq. (3.40). In this case ∼ 1��vg(�)�
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determines the density of photonic modes, or equivalently, the correlation time of
the waveguide. In a system with losses this correlation time is now replaced by
1��ṽ

g

(�)�, which is well-defined and non-diverging even at or beyond the band edges
(for a related study of the group velocity in lossy waveguides see also Ref. [157]).
Therefore, the Born-Markov approximation, which requires

g � �ṽ
g

(�)�, (3.46)

can be used for all atomic frequencies provided that the coupling g is su�ciently
weak and photon propagation times are negligible [see App. A.1 for additional details
on the validity of the Born-Markov approximation].

Figure 3.7(c)-(d) illustrates the dependence of �ij and Uij on the interatomic
distance for di↵erent atom-photon detunings, �, and a non-vanishing photon loss
rate �c. If instead cavity losses are negligible, Eqs. (3.42)-(3.44) reproduces the same
results for two-level atoms coupled to an infinite-bandwidth waveguide discussed in
Sec. 2.2.1. In particular for frequencies within the propagating band, K is purely
real and the dipole-dipole interactions become infinite in range, with a phase factor
eiK�xi

−x
j

� that reflects the propagation phase of photons at the atomic resonance
frequency that mediate the interaction. This behaviour can be seen in Fig. 3.7(c)-
(d) for � = 0 (blue curve), with the deviation from infinite-range interaction due
to the finite cavity losses �c. As expected, by going from the center of the band
towards the edge, � ≈ 2J (red curve), both the coherent couplings as well as the
correlated decay rates increase due to a reduction of the group velocity. However,
slow propagation also means that the photons have more time to decay and for a
finite �c and large atom-atom distances, there is a trade-o↵ between an enhanced
coupling and a larger propagation loss. For atomic frequencies outside the band there
are no longer waveguide modes into which the atom can emit. Therefore, for �c → 0,
the real part of Aij vanishes and the atoms interact predominantly in a coherent way
via a virtual exchange of photons. The exponential decay of interactions directly
reflects the exponential attenuation of fields propagating through a band gap (see
green curve of Fig. 3.7 (c)-(d)). This is the regime where the atom-atom interactions
are mediated by the atom-photon bound states as discussed in Sec. 3.1.4 in the
context of photonic crystal waveguides.

In summary, Eq. (3.41) shows that for su�ciently weak couplings the dynamics
of the waveguide QED system can be described in terms of atomic excitations,
which interact via a quasi-instantaneous exchange of photons. In this regime it is
preferential to work near the band edge or to reduce the waveguide bandwidth all
together in order to enhance waveguide mediated atom-atom interactions (coherent
or dissipative) compared to the bare atomic decay. However, eventually the Markov
condition given by Eq. (3.46) breaks down and for larger couplings the photons
emitted by an atom can be coherently reabsorbed before they decay or propagate
along the fiber. In this strong coupling regime photons and atoms can be bound
together and form atom-photon bound states that will be discussed in chapter 4.
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Figure 3.7: (a) Atomic population as function of time for di↵erent values of the coupling
strength. Here we assumed � = 0. (b) Photonic wave function emitted by the atom for
g�2J = 0.6 and � = 0.
Single-photon dynamics

To have a first idea about the physics beyond the Markov approximation is instruc-
tive to consider the simple case of the spontaneous emission of a single TLA in a
CCA. This problem can be exactly solved in the same way as we did in section 3.1.2,
but here we will just focus just on describing the overall behaviour. A detailed dis-
cussion of the exact analytic solution of this problem can be found in Ref. [60].

Compare to the cases analysed so far here the coupling strength plays a crucial
role. Increasing the coupling has consequences not only on the decay rate, but also
allows the atom to “see” all the band modes, which strongly modifies its spontaneous
emission.

To visualize the process we plotted in Fig. 3.7(a)(b) the atomic population as
function of time for di↵erent coupling strengths. We identify the following regimes.

• For low coupling values g � J and atomic frequency in the band the emitter
does not feel the finiteness of the band and the atom excitation exhibits a
purely exponential decay as shown in Fig. 3.7(a). Note that in this limit, if
the atomic frequency is tuned to one of the band edges, the CCA is equivalent
to a photonic crystal waveguide and the usual fractional decay is observed.

• When the coupling is increased, secondary oscillations start to arise but still,
as long the ratio g�2J is not too large, the majority of the excitation still gets
emitted into propagating modes.

• For coupling comparable to the photon bandwidth g ∼ 2J the oscillatory be-
haviour becomes dominant and a big amount of the excitation remains trapped
or long times. This behaviour is even more clearly shown in 3.7(b) where a con-
siderable part of the emitted photonic wave function remains localized around
the atom. The physical explanation of this e↵ect relies on the atom-field bound
states that will be extensively discussed in the next chapter.
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• We finally note that in the limit of g � J the atom e↵ectively feels just a single
mode and the usual Jaynes-Cumming model with Rabi oscillation is recovered.
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Chapter 4

Atom-field dressed states in slow-
light waveguide QED

In the last chapter we introduced the coupled cavity array as a simple and elegant
model which is able to capture, in di↵erent parameter regimes, the physics of single-
cavities, infinite-bandwidth waveguides and photonic crystals. In a CCA, similar
to a photonic crystal, an important role on the system dynamics is played by the
atom-photon bound states that emerge in the moderate and strong coupling regime
as the the elementary excitations of the system. These states can be written as a
continuum generalization of the dressed-states of the Jaynes-Cummings model for a
single cavity.

In this chapter we go beyond the single-atom and single-photon configuration by
extending the discussion to the multi-photon and multi-atom cases. In particular,
we introduce a variational ansatz to characterize the multi-photon dressed states and
we discuss their spectral features. For these states, we identify the crossover from
a linear regime, where the bound state energies are proportional to the number of
excitations, Ne, to a nonlinear regime where the splitting of the bound-state energies
from the photonic band scales like ∼

√
Ne.

In the last part of the chapter, we show how the usual long-range dipole-dipole
interactions between multiple atoms coupled to broadband waveguides are modified
in the presence of bound photonic states. Here we observe the formation of meta-
bandstructures for delocalized dressed states as well as a partial “melting” of these
bands back into the continuum, when specific coupling conditions are met.

All the results presented in this chapter have been obtained in collaboration with
Francesco Ciccarello, Darrick Chang and Peter Rabl and were published in Physical
Review A 93, 033833 (2016). In this work I contributed as a leading author and
performed all the analytic and numerical calculations under the supervision of Peter
Rabl.
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4.1 Atom-photon bound states

Let us consider the model given in Eq. (3.38). In the absence of other decay
channels, the atom-light coupling conserves the total number of excitations, Ne =
∑x a

†
xax+∑i �e�i�ei�, and the eigenstates of H can be discussed separately within

each subspace of given excitation number. For a given value Ne, the Schrödinger
equation H ��� = E��� then has two types of solutions. First, there are scattering
states, which are spatially extended over the whole waveguide and have an energy
E�Ne ∈ [−2J,2J] within the free Ne-photon band. Second, there are states with
energy �E��Ne > 2J . These states are energetically separated from the Ne-photon
continuum and represent bound states with an exponentially localized photonic com-
ponent. While both types of states are atom-photon dressed states, here we are pri-
marily interested in the latter type, namely in bound dressed states. Note that these
bound states exist also in photonic crystal waveguides, as discussed in Sec. 3.1.3.
The main di↵erence here is that in a narrow bandwidth setup these states can be
highly hybridized and have a small localization length of the photonic cloud. This
gives rise to new interesting e↵ects such as multi-photon bound states and interac-
tions among the dressed states that will be discussed respectively in Sec. 4.2 and
Sec. 4.3.

In this section we will concentrate on the case of a single atom in the single-
excitation sector. We will first derive the expression of the single-photon bound
state and we will discuss its main properties. Then, we will discuss a more realistic
implementation taking into account the e↵ect that dissipation has on these states
by presenting the excitation spectrum and deriving the minimal conditions on the
parameters to spectroscopically distinguish these states. Finally, we will make some
estimates about the impact of disorder on these states.

Note that these single photon bound states were experimentally observed for the
first time few months after we published this work. The results, obtained in an array
of microwave resonators coupled to a transmon qubit, can be found in [139].

4.1.1 Single photon bound states

Let us first consider the simple case of a single photon, Ne=1, coupled to a single
atom located at position xa. In order to find the eigenstates we need to solve the
stationary Schrödinger equation H ��� = E���. The solutions of this problem can be
found both in the position and momentum space. Let us use the latter approach by
rewriting Hamiltonian (3.38) in k space as (in a frame rotating with frequency !c)

H= − 2J�
k

cos(k)a†
kak + ��e��e� +

g√
N
�
k

�a†
k�−eikxa+ak�+e−ikxa� . (4.1)

In the single-excitation sector a generic state can be written as a superposition of
an atomic excitation �e,0� and a single photon states �g,1x� ≡ a†

x�g,0�:

��� = �b�+ +�
k

cka
†
k� �g,0� . (4.2)
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Plugging this ansatz into the stationary Schrödinger equation yields the coupled
equations

b(E − �) = g√
N
�
k

ck e
−ikx

a ,

ck(E + 2J cosk) = g√
N

beikxa .
(4.3)

Using the second equation to eliminate ck in the first one, we end up with the
eigenvalue equation

E − � = ⌃
1

(E) , (4.4)

where the self-energy ⌃
1

(E) (in the continuum limit) is given by

⌃
1

(E) = 1

2⇡ �
⇡

−⇡dk
g2

E + 2J cosk
= g2

E
�
1 − 4J2

E2

, (4.5)

where in the last identity we calculated the integral explicitly using that �E� > 2J
[158]. Replacing the self-energy in Eq. (4.4) we end up with the following expression:

E − � = g2

E
�
1 − 4J2

E2

. (4.6)

This equation has two real solutions E±, where E+ (E−) lies above (below) the
continuum of scattering states E ∈ [−2J,2J]. Figure 4.1(a) shows the resulting
energy spectrum as function of the coupling strength. The corresponding bound
states can be worked out with the help of Eq. (4.3) as

��±� = b(E±) ��++ 1√
N
�
k

geikxa

E± + 2J cosk
a†
k� �g,0�, (4.7)

where, using that the state must be normalized,

b(E) =
�
�
1 + g2

E2�1− 4J2

E

2 �
3
2

�
�

− 1
2

. (4.8)

By going back in the real space, the bound state can be rewritten as

��±� = b(E±)
�������
�+ + g∑x(∓1)�x−xa

�e− �x−xa �� a†
x

E±
�
1−4J2

E2±

�������
�g,0�, (4.9)

where the parameter �± = �(E±) is a function of the corresponding bound state
energies and is given by:

1

�
= arccosh��E�

2J
�. (4.10)
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Figure 4.1: (a) Single-photon (i.e., single-excitation) spectrum as a function of the atom-
photon coupling g in the case of a single atom (with !a = !c) coupled to a cavity array
according to Hamiltonian (3.38). (b) The width of the photonic wavepacket in the upper
bound state, �+, is plotted as a function of g and for three di↵erent detunings �. (c)
Atomic population p

+
a = cos2(✓+) in the upper bound state as function of the coupling

constant g and the atom-field detuning �.

We see that the bound states show an exponential localization of the photons around
the atomic position with a localization length given by �±. In order to make a direct
connection with the cavity QED formalism we can define the normalized bosonic
creation operator

a†
�,±(xa) =�

x

(∓1)�x−xa

�e− �x−xa ��±
�
coth 1

�±
a†
x, (4.11)

which creates a photon in the localized wavepacket around the atom. This allows
us to rewrite the bound states in the form

��±� = �cos ✓±�+ ± sin ✓±a†
�,±(xa)� �g,0� ≡D†±(xa)�g,0�, (4.12)

where we introduced the mixing angles:

cos ✓ =
�
�
�
1 + g2

E2 �1 − 4J2

E2 �
3
2

�
�
�

− 1
2

. (4.13)

The form used in Eqs. (4.12) to rewrite the bound states has the advantage of
establishing a direct connection to the more familiar dressed states of a single mode
cavity model [3][see Sec 1.3]. Indeed, in the limit of single cavity, J → 0, the bound
states energies approach the value of the Jaynes-Cumming model given in (1.21),
i.e. E± = �

2

± 1

2

�
�2 + 4g2. Moreover the extended photonic cloud reduces to a single

cavity mode �± ≈ 0 [see Fig.4.1 (b)] and the dressed states become fully hybridized
✓+ = ✓− − ⇡�2 [see Fig.4.1 (c)]. On the other hand Eqs. (4.6)-(4.10) also reproduce
various results that we have been previously presented for photonic bound states
near band edges or in coupled cavity arrays [41, 42, 46, 57, 59, 151, 156, 60, 62][see
Chap. 3]. The nice aspect of the form of the wavefunction given in Eq. (4.12) is that
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provides a unified description of all those cases in terms of the mixing angles ✓± and
the wavepacket lengths �±.

For a finite and large J the single-cavity picture is modified in di↵erent ways
depending on whether the atomic frequency lies inside or outside of the band.

• For atomic frequencies inside the band the photonic component is extended
over multiple sites and becomes more and more delocalized the weaker the
coupling g gets [see Fig. 4.1 (b)]. This delocalization of the bound states is
associated to a progressive decreasing of the total atomic contribution of both
bound states, cos2(✓+) + cos2(✓−) < 1. This quantity is indeed always smaller
than one and for ��� < 2J it vanishes as g�J → 0 [see Fig. 4.1 (c)]. In this limit
the bound state energies get really close to the band edge [see Fig. 4.1(a)] and,
although a bound state solution always exists, both dressed states become more
photon-like as g�J decreases and eventually become indistinguishable from the
propagating waveguide modes. This regime approaches exactly the broadband
waveguide limit [see Sec. 3.2.2] where the bound states do not play any role in
the dynamics that is instead entirely ruled by the scattering states.

• For atomic frequencies outside the band, e.g., � > 2J , the upper bound state
becomes more atom-like as g�J → 0, but the residual photonic cloud remains
localized. This is the limit where the system is equivalent to a photonic crystal
waveguide [see Sec. 3.1.3] where the photonic component of the bound states
can be adiabatically eliminated and can eventually enable virtual photon me-
diated atom-atom interactions.

• When the coupling strength and the bandwidth are comparable, g ∼ J , the
CCA really di↵ers from the systems discussed so far. In this limit the bound
states are extended over more than a lattice sites but, compared to the photonic
crystal case, a strong hybridization between atomic and photonic states can be
achieved with a localization length that entirely lie inside the waveguide. This
means that the system have interesting non-linear features, typical of cavity
QED systems, in an extended setup where such non-linearities could be probed
by propagating waves.

We finally notice that the simplified model described in section 3.1.4 [49], where
the waveguide is replaced by an e↵ective cavity of size �, is incomplete. In particular,
such a description misses the fact that for � ≠ 0 photonic wavefunctions associated
with the two dressed states can significantly di↵er, i.e., �+ ≠ �− and ✓+ ≠ ✓−.

4.1.2 E↵ect of dissipation: excitation spectrum and strong coupling con-
ditions

In the last section we derived the atom-photon bound states in the absence of dissi-
pation. In realistic implementations additional decay channels should be taken into
account and could a↵ect the spectral properties and even the existence of the bound
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states. In this context, an experimentally relevant quantity to probe the proper-
ties of atom-photon bound states in presence of dissipation is the atomic excitation
spectrum Sa(!). It can be obtained by weakly exciting the atom with a laser of
frequency ! and recording the total emitted light. In the weak driving limit the
excitation spectrum is given by

Sa(!) =
�2a
4
��e,0� 1

H
e↵

− ! �e,0��
2

, (4.14)

where
H

e↵

=H − i�a
2
�e��e� − i�

x

�c
2
a†
xax, (4.15)

and the normalization has been set such that S(! = !a) = 1 for g = 0. Figure 4.2

scattering
continuum

bound
states

E_

E+

(a)

bound
states

scattering
continuum

E+

E_

(b)

0.6

0

1

2

0.5

1

1 1.4

0.95 1.051

0

(c)

(d)

Figure 4.2: (a)-(b) Atomic excitation spectrum Sa(!) (in logarithmic scale) as function
of g and for an atom-cavity detuning (a) � = 0 and (b) � = 2J . The dotted lines show the
bound-state energies E± in the absence of loss, while the dashed lines correspond to the
waveguide band edges. In either case, we have set �a�(2J) = 0.1 and �c�(2J) = 0.2. (c)-(d)
Dependence of the atomic excitation spectrum Sa(!) near the band edge and for (c) � = 0
and (d) � = 2J . In (c) the values g�(2J) = 0.3 and �a�(4J) = 0.02 and in (b) the values
g�(2J) = 0.2 and �a�(4J) = 0.05 have been assumed and in both cases the spectrum is
plotted for di↵erent cavity decay rates �c.

shows the results for Sa(!) for di↵erent coupling strengths g and for the two relevant
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cases � = 0 (center of the band) and � = 2J (upper-band edge). For � = 0 we observe
three di↵erent regimes.

• For very weak couplings there is only a single peak at the atomic frequency
with a width ∼ �a + 2g2�J due to the enhanced emission into the waveguide
(recall that in the broadband limit the atom emission rate into the waveguide
is 2g2�J [see Section 3.2.2].

• At intermediate couplings g�(2J) ∼ 1 the spectrum is completely smeared out.
The atom is now partially hybridized with all the waveguide modes and there
is no longer a well defined frequency associated with the atomic excitation.

• At larger couplings two dominant resonances at the dressed-state energies E±
appear. As the coupling increases the width of the two bound-state resonances
approaches

�̄ = �a + �c
2

, (4.16)

as expected from an equal superposition of atomic and photonic excitations.

For � = 2J a significant hybridization between atom and photon is already observed
at small g, consistent with the atomic population p+a ≈ 0.67 predicted for the dressed
state exactly at the band edge [see Sec. 3.1.2]. However, in this case the transition
from waveguide-enhanced decay to atom-photon hybridization is not so clear and
requires a more detailed discussion.

To clarify this point and, more generally, to understand better how dissipation
a↵ects the bound-state physics it is useful to identify the “strong coupling” condi-
tions for this slow-light waveguide system. In cavity QED the “strong coupling”
regime, where the coherent interaction between atoms and photons dominates over
the relevant decay processes, is achieved when

g > �a + �c
4

, (4.17)

as we discussed in 1.3.1 [note that here we also added the atomic dissipation]. Our
goal is now to identify an equivalent condition for the waveguide QED system, by
taking a closer look at the spectral features for g � J . The atomic excitation
spectrum (4.14) can be explicitly written as [43, 154]

Sa(!) =
�2a
4

1

�! − � + i�a
2

− ⌃̃(!)�2
, (4.18)

where ⌃̃(!) = −ig2�ṽ
g

(!) is the self energy in the presence of dissipation. To bring
this result into a more useful form we define

�±(!) = �! − � + i�a
2
� ṽ

g

(!) ± ig2. (4.19)
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The product �+(!)�−(!) is a forth order polynomial in ! with two roots given by
the complex eigenenergies Ẽ± of H

e↵

. We can use this property to further rewrite
the spectrum as

Sa(!) =
�2a
4

�ṽ
g

(!)�−(!)�2
�(! − Ẽ+)(! − Ẽ−)L(!)�2

. (4.20)

Here L(!) is a quadratic polynomial, which for the limits discussed below has two
roots with real parts inside the photonic band, and thus describes the atomic emis-
sion into the waveguide continuum. Overall the structure of the spectrum consists
of two external poles with a position and a width given by the real and imaginary
parts of Ẽ± and a broader emission peak inside the band. Note that for �c → 0 the
generalized group velocity, ṽg(!), and therefore also the spectrum vanishes exactly
at the bandedge, ! = ±2J . This is due to a destructive interference between the
excitation laser and the long-lived band-edge mode and leads to a Fano-like profile
for Sa(!). For non-vanishing �c this interference e↵ect is washed out.

We first consider the case � = 0, where we obtain to lowest order in g

Ẽ± � ±2J ± g4

16J3[1 ± i(�a − �c)�(2J)]
− i�c

2
, (4.21)

which shows that for not too large decay rates, the position of the external peaks
essentially follows the bare energy levels E± and their width is mainly determined
by photon loss. For the polynomial determining the internal peaks we obtain

L(!) = �! + i�a
2
�
2

+ � g
2

2J
�
2

, (4.22)

which therefore contributes with two purely imaginary poles at ! = −i(�a ± g2�J)�2.
Figure 4.2 (c) shows a zoom-in on the resulting spectrum near the band edge and
for di↵erent values of �c. First, we observe that for large �c the external peak is
completely buried within the tail of the broad internal peak and a closer inspection
shows that a minimal coupling of

g >
�
J�c, (4.23)

is required to spectrally resolve the existence of an external bound state. This
condition is equivalent to the requirement that the atomic emission rate into the
waveguide exceeds the cavity loss rate. Once this condition is fulfilled we can define
strong coupling by the requirement that the separation of the external peak from
the band edge, Re{Ẽ+ − 2J}, exceeds its half-width given by Im{Ẽ+}. Again for
�c,�a � 2J we obtain

g > 4
�
8J3�c, (4.24)

as the strong coupling condition for a resonantly coupled waveguide QED system.
Note that since in the present regime the bound states are mainly photonic in nature
the atomic decay is relevant only for higher-order corrections.
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The second important limit is � = 2J , which for g�J � 1 corresponds to the
quadratic dispersion relation assumed for photonic bound states near the band edge
of a photonic crystal waveguide described in chapter 3. Note that in this regime the
initial scaling of the bound state energy in the absence of losses (�a = �c = 0) is given
by

E+ � 2J + � g
4

4J
�

1
3

, (4.25)

where the splitting � = 3
�
g4�(4J) can be directly identified with the beta factor

introduced in section 3.1.2. In the presence of decay and for g < ��c − �a� we obtain
the modified result

Ẽ+ � 2J − i�a
2
+ g2

2
�
J ��c − �a�

(1 ∓ i), (4.26)

where the minus (plus) sign is for the case �c > �a (�c < �a). This result shows that
the e↵ect of the dissipation is not only restricted to a modification of the initial
scaling of the bound state energy. Indeed Eq. (4.26) also predicts that at the band
edge and for small g the atom is critically damped, i.e., the coupling induced losses
are exactly of the same magnitude as the coherent shift of the bound state energy.
By increasing the coupling further the imaginary part of the eigenvalue Ẽ+ will
eventually saturate at a value �̄�2 [see Eq. 4.16] corresponding to a fully hybridized
state. This hybridized regime is reached for coupling strengths

g > 4

�
J ��c − �a�3

4
. (4.27)

Under this condition the separation of the bound-state from the bandedge is then
given by � from which we obtain the strong coupling condition � > �̄�2, or

g > 4
�
J �̄3�2 . (4.28)

Figure 4.2 (d) shows a zoom-in of the atomic spectrum Sa(!) for � = 2J and for
three di↵erent values of the photon decay, which correspond to the critically damped,
intermediate and strong coupling regime. Note that for � = 2J the internal poles
associated with L(!), i.e., !

1

= 2J − i�c
2

and !
2

= 2J − i�a
2

− g2(1 ∓ i)�(2
�
J ��c − �a�)

provide an additional background, but do not play a significant role.
In conclusion we underline that in this work we are mainly interested in coherent

e↵ects and from now on for the sake of clarity we will only present results for idealized
systems where �a = �c = 0. Therefore, the validity of these results in particular
requires that the strong-coupling conditions identified in Eqs. (4.23), (4.24), (4.27)
and (4.28) are fulfilled in the respective limits.

4.1.3 Disorder induced localization

All the results discussed for this project are based on the model of a perfectly
regular cavity array. In real systems disorder in the cavity frequencies or tunnel
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couplings introduces an additional localization mechanism, even in the absence of
the emitters. Here we do not want to extensively treat this topic and for a more
accurate treatment of localization in waveguides we refer the reader to Ref. [159, 160]
and the supplementary material of [49].

Nevertheless, we can still make a rough estimate to identify a minimal require-
ment for the maximum disorder that can be tolerated in order to observe the bound-
state physics. Let us consider a simple impurity model, where we add an energy
o↵set ✏ to one of the lattice sites, Hc → Hc + ✏a†

x
d

ax
d

. This model is well known
in literature [158] and it exhibits a purely photonic bound state with a localization
length given by

1

�`
= arcsinh� �✏�

2J
� . (4.29)

This means that random energy o↵sets of typical strength ✏ will create bound states
that are localized over �` ∼ 2J��✏� lattices sites. While atom-photon bound states
will also exist in such disordered waveguides, in order to still be able to distinguish
them from the disorder induced localization we will assume in this project that �`
is large compared to the size of the atom-induced bound states, �±.

4.2 Multi-photon bound states

In Sec. 1.3.1 we discussed how the quantum nature of cavity QED systems arises
when more than a single excitation is considered. Indeed, when a TLA atom is
coupled to a single cavity mode, the mode splitting presents a non-linear scaling
with the number of excitations, ∼ g

√
Ne, that allows to generate highly non-classical

photon states. The question that we want to address in this section is, if this
non-linear features of the spectrum persist in the context of slow-light waveguides
where both cavity and waveguide QED aspects must be considered. In contrast to
the single excitation case, the Schrödinger equation for Ne > 1 no longer permits
explicit analytic solutions [61] and for exact results one is restricted to numerical
methods in real or momentum space [58, 59, 151, 154]. In this chapter we perform
such calculations by an approximate variational approach, which provides additional
intuition on the nature of the multi-photon dressed states. This allows us to evaluate
the corresponding bound-state energies for excitation numbers that are no longer
trackable by standard numerical methods. With this approach then we discuss and
quantify the non-linear properties of the spectrum that still persist in the extended
waveguide system.

4.2.1 Two-photon dressed states

Let us first evaluate the spectrum in the simplest case of the two-excitation subspace.
A general eigenfunction of Hamiltonian (3.38) can be written in the form

��� =�
x

b(x)a†
x�e,0� +

1√
2
�
x,y

u(x, y)a†
xa

†
y �g,0�. (4.30)

75



By assuming that the atom is located at xa = 0 the inversion symmetry of the
Hamiltonian and the bosonic symmetry of the wavefunction require u(x, y) = u(y, x),
u(−x, y) = u(x, y) and b(−x) = b(x). Applying the stationary Schrödinger equation
to this ansatz we get the set of coupled equations

−J [u(x + 1, y) + u(x − 1, y) + u(x, y + 1) + u(x, y − 1)]+ g√
2
[b(x)�

0,y + b(y)�0,x] = Eu(x, y),
(4.31)

and
−J [b(x + 1) + b(x − 1)] + g√

2
[u(0, x) + u(x,0)] = Eb(x) . (4.32)

These equations can be considered as the discrete extension of the continuous waveg-
uide expressions in the 2-excitation subspace given in [7]. They can be solved nu-
merically and the resulting eigenvalue spectrum is shown in Fig. 4.3 together with
the single excitation energy band discussed in Sec. 4.1.1. For our numerical calcula-
tions an array of N = 120 coupled resonators with periodic boundary conditions has
been assumed. We can identify three di↵erent classes of states.

• In line with the single-excitation case there is a band of two-photon scattering
states with energies E ∈ [−4J,4J]. As before these states are extended in
nature and they are associate to propagating photons.

• In addition, there are two bands with energies E ∈ [E± − 2J,E± + 2J]. These
bands can be simply interpreted as the combination of a single-atom bound
state with energy E± and an additional free photon with energy !k. In this
configuration one photon remains localized around the atom while the other
propagates in the waveguide.

• Finally, we observe two isolated lines at energies E
(N

e

=2)± above and below
all other states. These discrete energy levels represent the true two-photon
bound states in the Ne = 2 sector. It is possible to show both numerically
and analytically [61] that in general multi-photon bound states always exists
in 1 and 2 dimensions for gapped system with quadratic or cosine-like disper-
sion relation. In three dimensions instead their existence is limited to specific
parameters regimes.

Before proceeding with a more detailed discussion on the two-photon bound
states, let us briefly point out another interesting feature of Fig. 4.3, namely the
overlap region between the continuum of states with a single bound photon (shaded
in green) and the two-photon continuum (shaded in purple). In this region, which
extends up to a coupling strength of about g�(2J) � 3 scattering processes of the
form

�2
in

�↔ �1
out

��1
bound

�, (4.33)

are energetically allowed, meaning in particular that scattering processes where two
incoming photons evolve into a bound photon and an outgoing one are allowed.
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Figure 4.3: Sketch of the single- and two-excitation spectrum in a finite-bandwidth waveg-
uide coupled to an atom for � = 0.
Such processes have previously been observed in numerical studies [58, 59, 151]
and further investigated in Refs. [154, 155]. The energy level diagram shown in
Fig. 4.3 provides simple energetic arguments to determine under which conditions
such processes can occur.

Finally, we note that all the qualitative considerations made so far can be ex-
tended to the Ne-excitation subspace. For example the Ne = 3 band structure
consists of three-photon continuum of width 12J , two bands of one bound and two
free photons of width 8J , two bands with two bound and one free photons of width
4J and two true three-photon bound states, and so on. Therefore, the complete
energy spectrum of a single atom waveguide QED system can be constructed from
the knowledge of the Ne-photon bound states energies E(Ne

)± .

4.2.2 Variational ansatz

While the exact eigenstates can be still found numerically in the Ne = 2 excitation
subspace, solving the problem for excitation subspaces higher than Ne ≥ 4 can be
challenging even with modern numerics technique such as matrix product states
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Figure 4.4: Sketch of the variational asnatz protocol to find the multi-photon bound states.

(MPS) [61]. To tackle this problem here we present a variational approach that
allows us to estimate the bound states energies for arbitrary excitation subspaces.
Note that a di↵erent and more complex ansatz to solve the same problem has been
proposed in [61]. The advantage of our approach relies on its e↵ectiveness and
simplicity and provides an additional intuition about the nature of multi-photon
bound states.

To explain the method let us first consider the two excitation case. Within this
subspace the lower energy two-photon bound state corresponds to the ground state
and this allows us to use a variational approach. The state can be generically written
as

� (2)− � = �cos(✓)�+A†
1

− sin(✓)B†
2

� �g,0�, (4.34)

where A
1

and B
2

are single and two-photon operators, respectively. Based on the
discussion in Sec. 4.2.1 a suitable ansatz for the two-photon state is

B†
2

= 1

Nu

ã†
�1
ã†
�2
, (4.35)

where ã� = ∑x e
− �x�

� a†
x and the normalization constantNu is chosen such that �0�B

2

B†
2

�0� =
1. Note that this trial is equivalent to a Bethe-like ansatz having the 2-photon wave-
function of the form:

u(x, y)∝ �e− �x��1
− �y�

�2 + e− �x��2
− �y�

�1 � . (4.36)

This two-photon wavepacket is an exact solution of the Schrödinger equation for
x, y ≠ 0 with an energy

E
(2)− = −2J cosh(1��

1

) − 2J cosh(1��
2

). (4.37)

For the single-photon operator we demand that the wavefunction also satisfies the
first boundary condition, Eq. (4.31), at x = 0 and y ≠ 0. This leads to

A†
1

= 1

Nb

�sinh� 1
�
2

� ã†
�1
+ sinh� 1

�
1

� ã†
�2
� , (4.38)
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Figure 4.5: The Ne-photon bound-state energies E

(N
e

)− obtained from a variational ap-
proach are plotted for Ne = 1, . . . ,8 in descending order and for (b) � = 0 and (c) � = −2J .
The dashed lines in the insets show the exact numerical results for Ne = 2 and Ne = 3.
where Nb is again a normalization constant. By using this ansatz we can now find
an upper bound for the two-photon bound state by minimizing E

var

= � (2)− �H � (2)− �
with respect to ✓ and �

1,2. To further reduce the parameter space, it is reasonable
to assume that the wavepacket size of the first photon, �

1

, is approximately given by
the value of �−, which we determined for the single-photon bound state in Sec. 4.1.1.
The variational ansatz is then based on the physical picture of a two-photon dressed
state consisting of the single-photon dressed state plus an additional photon, which
is more weakly bound and thus less localized, �

2

> �
1

.
An important aspect of our variational wavefunction approach is that it can be

extended to higher excitation numbers Ne in a systematic way. To do so we write
the wavefunction for the lowest energy state within the Ne-excitation subspace as

� (Ne

)− � = �cos(✓)�+A†
N

e

−1 − sin(✓)B†
N

e

� �g,0�. (4.39)

Based on analogous arguments as above, we make the ansatz

B†
N

e

= 1

Nu

ã†
�1
ã†
�2
. . . ã†

�
N

e

, (4.40)

and

A†
N

e

−1 =
1

Nb

�sinh� 1

�N
e

�ã†
�1
...ã†

�
N

e

−1 ... + sinh�
1

�
1

�ã†
�2
...ã†

�
N

e

� , (4.41)

where Nu and Nb are chosen to normalize each photonic component of the state. To
reduce the variational parameter space, the problem can be solved in an iterative
manner, i.e., by using the values of �

1

, . . .�N
e

−1 as input for minimizing the energy
E
(N

e

)− with respect to ✓ and �N
e

. In Fig. 4.4 we summarized the iterative variational
protocol used to numerically evaluate the bound state energies.

To probe the validity of our ansatz we compared in figure 4.5 the bound-state
energies E

(N
e

)− obtained from our variational approach with the energies obtained
from the exact numerical diagonalization. In the insets the Ne = 2,3 cases in the
crossover regime g�(2J) ∼ 1 are shown. The excellent agreement within ∼ 1% (for
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Figure 4.6: Sketch of the first three photonic wavefunctions that appear in the variational
ansatz, Eq. (4.40), for the multi-photon bound states. Here, we have set g = 0.6, (a) � = 0
and (b) � = −2J − 0+. Figures (c) and (d) show the exponential decay length �̄N

e

as a
function of g, for Ne = 1,2, and 3 photons and for � = 0 and � = −2J −0+, respectively. The
dotted line shows the result for �̄ obtained numerically for the case Ne = 2. In Figs. (e) and
(f) the atomic population pa = cos2(✓(EN

e− )) is plotted against g for � = 0 and � = −2J −0+,
respectively.

smaller or larger values of g the agreement is even better) demonstrates that our
variational ansatz captures the essential features of the exact wavefunction. Based
on this confirmation, we then plot in the main part of figure 4.5 the bound-state
energies E(Ne

)− for up to Ne = 8 excitations, a subspace that would not be accessible
with standard numerical techniques.

4.2.3 Properties of the multi-photon dressed states

In this section we use the variational ansatz previously developed to discuss the
main features of the multi-photon bound states and to estimate the associated non-
linearity. As discussed in the previous section, in our ansatz the photonic cloud
surrounding the atom plays a role similar to that one of an electronic orbital in a
molecule. It is interesting to investigate if the size of this cloud depends on the
number of excitations involved in the system.

With this purpose, we plot in Fig. 4.6 (a) and (b) the shape of the individual
photonic wavepackets associated with the operators ã†

�
i

in Eq. (4.40) for Ne = 1,2,3.
We see that in particular near the band edge there is a significant di↵erence between
�
1

and �
2

, while the di↵erences between the �N
e

are less pronounced for higher
excitation numbers. This dependence on the number of photons seems to suggest
that there is some non-linearity in the system. This is indeed the case and will be
discussed in more details in a moment. Before it should be noted that the variational
approach, which is constructed to minimize the energy, is not very sensitive to the
exponential decay of the wavefunction �0, . . . ,0, xN

e

� (Ne

)− � ∼ e−�xN

e

��¯�
N

e . For physical
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Figure 4.7: The non-linearity parameter �
nl

(Ne) as defined in Eq. (4.43) is plotted for
Ne = 2 and di↵erent atom-photon detunings �.

e↵ects that rely on more accurate predictions for the exponential decay we can,
instead of simply setting �̄N

e

= �N
e

, make use of the exact energy relation [see
Eq. (4.37) for Ne = 2]

E
(N

e

)−
2J

=
N

e

�
n=1

cosh� 1

�̄n
� , (4.42)

valid at distances far away from the atom. Therefore, from the exact result for
�
1

≡ �̄
1

and the set of bound state energies E
(N

e

)− obtained from our variational
calculations, one can iteratively apply Eq. (4.42) to also calculate values for the
asymptotic decay lengths �̄N

e

. For Ne = 2 the results of this procedure are shown
in Fig. 4.6 (c) and (d) and compared with the asymptotic decay length extracted
from the numerical solution of the two-photon wavefunction u(x, y). We observe
the same general trend as already mentioned above, but at the same time the use
of Eq. (4.42) provides more accurate quantitative results.

It is also interesting to analyze how the atomic population varies with the number
of excitations. In Fig. 4.6 (e) and (f) we plot the atomic population for Ne =
1,2,3 for di↵erent atom-cavity detuning. In both cases we observe an increase of
the hybridization for higher excitation numbers. Indeed, for � = 0 the state is
mainly photonic and the atomic component increases when higher excitations are
considered. Reversely, when � = −2J , the state is mainly atomic and becomes more
dressed by the photons when further excitations are added. This behaviour similarly
to cavity QED relies on an e↵ective increasing of the coupling with the number of
photons that leads to an higher hybridization of the dressed states.

From the discussion on the localization length and on the atomic population it
seems that our slow-light waveguide QED setup presents indeed non-linear prop-
erties. This is even more clear by observing Fig. 4.5, where we see that for large
couplings, g�(2J) � 1, the bound-state energies exhibit a splitting from the bare
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energy by an amount ∼
√
Ne, characteristic of the scaling in conventional cavity

QED [see Sec.1.3.1]. In this limit all bound photons are essentially localized on
the atom site and the single-mode physics is recovered. To characterize the non-
linearity of the spectrum also in the weak and moderate coupling regime we define
the non-linearity parameter

�
nl

(Ne) =
�NeE

(1)− −E(Ne

)− �
g�Ne −

√
Ne�

. (4.43)

With this definition �
nl

(Ne) � 1 implies that the excitation spectrum is as nonlinear
as cavity QED under resonance conditions, � = 0, while the opposite limit �

nl

(Ne) �
0 indicates a harmonic spectrum. In Fig. 4.7 we plot �

nl

(Ne = 2) for di↵erent
values of g and di↵erent atomic detunings. We see that, as expected, in the strong
coupling limit, g � {J, ���}, the waveguide QED system approaches asymptotically
the nonlinear behaviour of the single-mode Jaynes-Cummings model. For small
values of g the amount of non-linearity strongly depends on the atomic frequencies
and we can identify the following regimes.

• For detunings in the band or close to the upper edge (we recall that in Fig. 4.5
we focussed on the lowest dressed state) the non-linearity approaches zero
because the states becomes completely photonic and exhibits a harmonic spec-
trum.

• For � = −2J , although �
nl

(2) vanishes at small g, it is still much stronger than
for the resonant case � = 0. This is consistent with the observation that for
� = −2J the wavelength of the second photon, �

2

, can be much larger than the
wavelength of the first bound photon, �

1

, in contrast with the � = 0 case where
�
1

≈ �
2

. Note that the approximate scaling of the nonlinearity parameter for
g → 0 can be understood from the simplified assumption E

(2)− ≈ E(1)− −2J , which
would correspond to a single photon bound state plus an additional very loosely
bound photon at the bandedge. By recalling that E

(1)− � −2J − [g4�(4J)]1�3
[see Eq.(4.25)] we obtain �

nl

(2) ∼ 3
√
g.

• Finally for � = −3J , which for g → 0 corresponds to a two-level atom-like
state inside the bandgap, the nonlinearity parameter diverges. Note that this
divergence is a consequence of the chosen normalization for �

nl

(Ne) and can

again be understood from the approximation E
(2)− � � − 2J for small g.

4.3 Dipole-dipole interactions between dressed states

Our analysis so far has focused on the bound states of a single atom. However, a
key element of waveguide QED are the photon-mediated interactions between two
or multiple separated emitters. So far in this thesis we presented two di↵erent ex-
amples of such interactions. In the weak-coupling regime discussed in Sec. 2.2.1
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Figure 4.8: Sketch of the setup where an ensemble of atoms with equidistant spacings,
xi+1 − xi =�x, is coupled to a slow-light waveguide. Here we set xa = xN

a

�2.

and Sec. 3.2.2 we have identified e↵ective dipole-dipole interactions between indi-
vidual atoms, which are both dissipative and dispersive in nature and which can be
infinite-range, scaling like �ij, Uij ∼ g2�J . In Sec. 3.1.4 instead we have shown how
in a photonic crystal waveguide the atom-atom interactions become fully dispersive,
but remain long-range due to the long extension of the bound states. In both cases
we were able to eliminate the photonic degree of freedom and to obtain an e↵ective
interaction in terms of the only atomic operators. In the following section we are
interested in the nature of the interactions between dressed bound states which, in
the strong coupling regime, represent the elementary excitations of our slow-light
waveguide setup. Compared to usual photonic crystal waveguide here the hybridized
polaritonic nature of these states plays an important role and leads to a di↵erent
physics compared to that one commonly used in the gap of photonic structure.

4.3.1 General solution

Here we present a generic method to solve the stationary Schrödinger equation for
the case of Na > 1 atoms. In the single excitation subspace, Ne = 1, the problem can
be solved analytically. At higher excitation a numerical approach is needed and we
refer to [161] for further details.

Let us consider an ensemble of Na > 1 atoms placed along the waveguide with
equidistant spacings, xi+1−xi =�x, as sketched in Fig. 4.8. This system is reflection
symmetric with respect to the center of the atomic array. A possible way to derive
the multi-atoms bound states is to exploit this mirror symmetry. For the sake
of argument, here we focus on bound states below the continuum, i.e., such that
E < −2J . In accordance with the mirror symmetry, we define the pair of collective
atomic operators

Ss=e,o =
N

a

�
n=1
(±1)�n+1��n− , (4.44)

where the + (-) sign holds for s = e, o. Above the band, the reasoning is analogous,
but an extra phase factor (−1)�xn

−x
a

� needs to be included in the definition of the
collective operators (4.44), i.e.,

Ss=
N

a

�
n=1
(±1)�n+1�(−1)�xn

−x
a

��n− . (4.45)

83



Note that in the case Na = 2, the operators (4.44) reduce to the (unnormalized)
symmetric and antisymmetric combinations of �1− and �2−. Based on this definition,
here we look for bound states of the form

��(Na

)
s � = �bS†

s +�
k

cka
†
k� �g, . . ., g,0� . (4.46)

Imposing the ansatz (4.46) to be an eigenstate of Hamiltonian (4.1) with eigenvalue
E yields an eigenvalue equation analogous to Eq. (4.4) with the self-energy now
given by

⌃s(E) =�
n

(±1)�n+1� 1
2⇡ �

⇡

−⇡dk
g2eik(xn

−x
a

)
E + 2J cosk

= ⌃
1

(E) fN
a

,s(E), (4.47)

where ⌃
1

(E) is the single-atom self-energy given in Eq. (4.5). Here we have defined
the function

fN
a

,s(E) =�
n

(±1)�n+1�e− �xn−xa �� , (4.48)

where the localization length � = �(E) has the same energy dependence as given in
Eq. (4.10). The atomic position xa set the choice of placing the atomic ensemble in
the array and will be specified later in the derivation of fN

a

,s(E). As in the one-atom
case, in deriving the last identity of Eq. (4.47) we used E < −2J to calculate the
integral over k through standard methods [158].

The self-energy, hence the eigenvalue equation, is thus determined by the function
fN

a

,s(E) in Eq. (4.48). In the next sections we will explicitly derive this function
for the paradigmatic cases Na = 2 and Na � 1 and we will discuss the properties of
the corresponding bound states.

4.3.2 Two-atom dressed states

Derivation of the states

We first consider the case of two atoms located at positions x
1

and x
2

. In this case
we set xa = x1

and Eq. (4.48) simply yields

f
2,e = e−�x

2� cosh ��x
2�
� , f

2,o = e−�x

2� sinh ��x
2�
�, (4.49)

for the even- and odd-parity states, respectively (recall that �x = �x
1

−x
2

�). This
provides the self-energy function that explicitly reads

⌃s(E)=
g2

E
�
1−4J2

E2

�������
1±
�
�
�E�
2J
− �E�
2J

�
1−4J

2

E2

�
�

�x1−x2��������
, (4.50)

where the + (−) sign holds for s = e (s = o). In close analogy to what we did for the
single atom case in Sec. 4.1.1, the bound states energies are given by the solution
of the eigenvalue equation E − � = ⌃s(E) in the domain �E� > 2J . The resulting
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energy spectrum has up to four solutions [see discussion below and appendix A.2]
with energies E±,s=e,o outside the waveguide continuum given by the real solutions
of

E±,e − � =
2g2e− �x1−x2 �2� cosh � �x1−x2�

2� �

E±,e
�
1 − 4J2

E2±,e
(4.51)

for the even parity states and

E±,o − � =
2g2e− �x1−x2 �2� sinh � �x1−x2�

2� �

E±,o
�
1 − 4J2

E2±,o
(4.52)

for the odd parity states, where � ≡ �(E±,s) has the same energy dependence as
for the single atom case in Eq. (4.10). For concreteness and notational simplicity,
we restrict the following discussion to the two lower bound states with energies
E−,s < −2J below the continuum and even (s = e) or odd (s = o) symmetry of the
atom-field system. The corresponding bound states can be derived in terms of E−,s
in a way essentially analogous to that one used in Sec. 4.1.1 and in momentum space
read:

��−,s� = b(E−,s) ��1+ ± �2+,+ 1√
N
�
k

g(eikx1 ± eikx2)
E−,s + 2J cosk

a†
k� �g1, g2,0� , (4.53)

where the function b(E) follows from the normalization constraint

b(E) = �2 + g2N 2

s

2J2 sinh2

1

�

�
− 1

2

, (4.54)

and

Ne,o =
�

coth
1

�
�1 ± e− �x1−x2 �� � ± �x

1

− x
2

�e− �x1−x2 �� , (4.55)

is the corresponding normalization constant (again, the + (−) sign holds for the even
(odd) case). In position space, the state (4.53) can be rewritten as

��−,s� = b(E−,s)��1+ ± �2++ g

E−,s
�
1 − 4J2

E2−,s
�
x

�e− �x−x1 �� ± e− �x−x2 �� �a†
x��g1, g2,0�. (4.56)

In analogy to the single-atom case, one can express such bound states in terms of
the polaritonic operators

��s=e,o� = 1√
2
�D†

s(x1

) ±D†
s(x2

)� �g
1

, g
2

,0�, (4.57)

where the dressed-state creation operators D†
e,o(xi) are defined as

D†
s=e,o(xi) = cos(✓s)�i+ + sin(✓s)

ã†
�,s(xi)
Ns

, (4.58)
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Figure 4.9: The bound-state energy levels E−,s (a) and the corresponding atomic pop-
ulations pa = cos2(✓(E−,s)) (b) are plotted as a function of the interatomic distance for
the case of two atoms and for three representative values of g�(2J). For all plots � = 0
is assumed. For comparison, in each panel the dashed line indicates the corresponding
bound-state energy or atomic population for a single atom.

with ã†
�,s(xi) = ∑x e

− �x−xi �
� a†

x being an unnormalized photonic creation operator. Here
the mixing angle ✓ is given by

cos ✓s = �1 +
g2N 2

s

4J2 sinh2

1

�

�
− 1

2

, (4.59)

which depends on both the bound-state energy and the distance between the atoms.

Before we proceed with the discussion of the bound state properties, it is impor-
tant to make a few remarks. First, regarding the bound states above the band, one
can follow an analogous reasoning by taking into account the di↵erent definition of
operators Ss given in (4.45). While this a↵ects the expression of the bound states,
namely the counterparts of (4.53) and (4.56), (4.47), the self-energy turns out to be
una↵ected both above and below the continuum.

Second, while our approach based on the collective atomic operators (4.44) is
devised to easily tackle the Na � 1 limit, in the Na = 2 case an equivalent method
would be to block-diagonalize H with the blocks corresponding to even- and odd-
parity sectors of the entire single-excitation Hilbert space (including the field). In the
even (odd) subspace, the problem is reduced to an e↵ective single atom coupled to
the cosine-shaped (sine-shaped) field modes. This approach was followed in Ref. [67],
where however the authors focused only on the bound states in the continuum (BIC)
discussed in Sec. 2.3.3. The e↵ective Hamiltonian in each parity-definite subspace
di↵ers from the model in Eq. (4.1) (case Na = 1) in that the atom-mode couplings
are k-dependent. Such “coloured” Fano-Anderson model is investigated in Ref. [66]
in the case of sine-shaped couplings.
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Discussion

Figure 4.9 shows the dependence of the two-atom dressed state energies E−,s on the
atomic separation �x. For distances which are large compared to � both energies
are approximately equal to the single-atom bound state, E−,e � E−,o � E− and the
two atoms do not interact. At a large but finite separation �x

1

− x
2

� � �(E−) the
photonic wavefunctions associated with the single-atom bound states start to overlap
and induce a splitting of the energies such that E−,e < E− < E−,o. As long as this
splitting is still small and the two atoms not too close the dressed-states dynamics
can be described by the Hamiltonian

H ≈ �
i=1,2

E−D†
iDi +

U
dd

2
�D†

1

D
2

+D
1

D†
2

� . (4.60)

Here the Di ≡ D(xi) are the single-atom dressed state operators introduced in
Eq. (4.12) that follow the commutation rules

[D(x
1

),D(x
1

)†] = [D(x
2

),D(x
2

)†] = I (4.61)

and in the approximated model in Eq. (4.60) these operators are treated as inde-
pendent and mutually commuting degrees of freedom, i.e,

[D(x
1

),D(x
2

)†]∝ e− �x1−x2 �� ∼ 0. (4.62)

Hamiltonian (4.60) describes a dipole-dipole like coupling between distant dressed
states as sketched in Fig. 4.10(a). The e↵ect of the interaction is that the initially
almost degenerate states split in two distinct energy levels according [see also [162]]:

Ee,o � E ±Udd, (4.63)

where

Udd ≈
4J cosh 1

� − ���
1 + coth2

1

� −
���
2J

1

cosh

1
�

sinh

2 1
�

e−�x1−x2��� (4.64)

gives the strength of the interaction. Note that in this approximate regime the
localization length � used in (4.64) is that one of the single atom bound state. This
clearly shows the localized nature of the interactions when g�(2J) � 1, in contrast
with the long-range coupling obtained in the weak-coupling regime. Note that here,
even at large distances, the interaction involves the fully hybridized dressed states
and not only the atomic degrees of freedoms as it occurs for the photonic crystal
waveguides discussed in Sec. 3.1.4.

This point is even clearer when the atoms get closer. Indeed, as the atom-atom
separation decreases further, the mutual distortion of the wavepackets must be taken
into account. As illustrated in Fig. 4.10(b) and (c), the even bound state, corre-
sponding to the lower level E−,e in Fig. 4.9(a), is a “bonding’” state such that the
photon becomes more and more localized between the atoms and the corresponding
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Figure 4.10: (a) Sketch of the long-distance regime where the atom-atom interactions can
be described by a dipole-dipole like coupling between the unperturbed dressed states. (b)
Sketch of the photonic cloud distortion that arises when the dressed states become closer.
A bonding (even) and an antibonding (odd) wavepackets are formed. (c) Spatial profile of
the photonic wave function us(x) = �x��s� corresponding to the even (red solid line) and
odd (green dashed line) lower band bound states in the case of two atoms for di↵erent
coupling strengths and interatomic distances. For all plots � = 0 is assumed.

atomic population increases [see Fig. 4.9(b)]. In contrast, the odd state, correspond-
ing to the upper level E−,o, behaves as an “anti-bonding” state such that the photon
becomes more and more delocalized as the atomic spacing decreases with the states
that eventually becomes completely photon-like [see Fig. 4.9(b)].

In general two regimes can be distinguished.

• For g > gm and � > −2J , where

gm = 2J
�

1 + �

2J
, (4.65)

both E−,e and E−,o solutions exist for all �x ≥ 1 [see App. A.2]

• In the opposite case, g < gm, we find that there is a finite distance xm =
(gm�g)2 > 1 below which the upper bound state E−,o reaches the band edge
and disappears [see Fig. 4.9](a). This “melting” of one of the bound states
into the waveguide continuum is related to a progressive delocalization of the
photonic wavepacket that eventually becomes completely delocalized along the
array [see for instance the dashed green line in Fig. 4.10(c)].

This e↵ect is most relevant for resonantly coupled atoms, � ≈ 0, and for moderate
coupling strengths, while for frequencies in the gap, � ≤ −2J , both the two-atom
bound states always exist. Note that the current discussion has been restricted
to the two lower dressed states E−,s< − 2J , but analogous results are obtained for
the two-atom bound states above the photonic band, E+,s > 2J with the sign of �
reversed. See App. A.2 for more details.
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In conclusion we mention that recently, for two qubits coupled to a supercon-
ducting microwave photonic crystal, an avoided crossing of the bound states energies
has been observed. This result confirms the prediction illustrated in this section and
can be found in [140].

4.3.3 Multi-atom dressed states

Let us now consider the case of multiple atoms, where for N � Na � 1 and equidis-
tant spacings, �xi+1 −xi� =�x, function fN

a

,s(E) (4.48) can be written in a compact
form. Here we assume to have an even number of atoms and we set xa = xN

a

�2. Note
that an analogous reasoning with a slightly di↵erent choice for xa can be made if Na

is odd. By expressing in Eq. (4.48) each atomic position as xn = xa + (n−Na�2)�x,
the function fN

a

,s(E) reduces to a geometric series and we end up with

fN
a

�1,e = coth�
�x

2�
� , fN

a

�1,o = tanh�
�x

2�
� , (4.66)

which provide the eigenvalue equation for the bound states ��(Na

�1)
s �. Here the

coupling between neighbouring atoms leads to the formation of a meta-bandstructure
for propagating dressed-state excitations below and above the bare photonic band.
This is illustrated in Fig. 4.11 where the single-photon bound-state energies for
Na = 40 atoms are shown as a function of �x. For large �x we see that the bound
states form a narrow band around the single-atom energies E+ and E− with a width
of �E ≈ U

dd

. For smaller atomic spacings, the bandwidth grows and, depending on
the parameters, it can either partially melt into the waveguide continuum or remain
energetically separated.

As shown in App. A.2, the meta-band is bounded by an upper and lower energy
Eu and El, which obey the equations

Eu − � =
g2 coth ��x

2�
�

Eu

�
1 − 4J2

E2
u

(4.67)

and

El − � =
g2 tanh ��x

2�
�

El

�
1 − 4J2

E2
l

, (4.68)

respectively. We confirmed numerically that the metaband-edge levels [see Fig. 4.11]
for growing Na converge to the numerical solutions of the eigenvalue equation E−� =
⌃

1

(E)fN
a

�1,s(E). Specifically, above the continuum (E > 2J) the solution for s = e
(s = o) gives the upper (lower) metaband edge, while below the continuum s = e
(s = o) corresponds to the lower (upper) metaband edge.

Similarly to the previous section, it is possible to define a critical coupling

g
(N

a

�1)
m =

√
2gm , (4.69)
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Figure 4.11: Single-excitation energy spectrum in the case of Na = 40 equally spaced atoms
as a function of the atomic nearest-neighbour distance �x. Note the appearance of upper
and lower metabands of bound states. For this plot ��(2J) = 0.6 and g�(2J) = 1 have been
assumed.

for the multi-atom band, which only di↵ers by a factor
√
2 from the two-atom case

gm given in Eq. (4.65). For g > g(Na

)
m and ����(2J) < 1, the meta-band is separated

from the photonic continuum regardless of �x. In the opposite case, g < g
(N

a

)
m ,

a fraction of the dressed-state band disappears in the waveguide continuum and,
unlike in a usual band-structure, only a fraction of the k-modes are available.
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Chapter 5

Strong coupling between moving
atoms and slow-light Cherenkov
photons

In the last chapter we have shown how narrow bandwidth waveguides can lead to
di↵erent physical e↵ects compared to usual waveguides and photonic crystals. In
particular, we focussed on the fact that the atom-field coupling strength and the
associated decay rate can be comparable to the waveguide bandwidth and in this
“strong coupling” regime the atom-field bound states emerge as the elementary
excitations of the system.

Here we want to address another remarkable feature of the slow-light waveguides
that relies on the existence of a maximum value for the photonic group velocity,
which can be highly decreased and approach, match or even go below typical atomic
velocities in cold atom experiments. In this chapter we exploit this e↵ect by consid-
ering a slow-light waveguide coupled to atoms that move with a speed comparable
to the velocity of propagation of the photons.

The study of the emission of particles moving close to the speed of light it is not a
new problem. Indeed, it was first addressed by Cherenkov [163, 164] and it is usually
considered in the context of relativistic and high-energy physics [165]. On the other
hand, in quantum optics, the motion of neutral atoms and molecules coupled to
classical or quantized fields is usually investigated when particle velocities are low
and mainly a↵ects the emission and absorption of photons via a small Doppler shift
of the transition frequency. This e↵ect had a crucial role for the development of laser
cooling [166] and successive atom trapping techniques [167], which enabled the study
of strong light-matter interactions even at the single photon level [36, 106, 168, 169].

In this chapter we merge these two opposite scenarios and we show that mov-
ing atoms coupled to a slow-light waveguide give rise to a new intriguing regime
for atom-light interactions where atoms and photons move at comparable veloci-
ties while still interacting strongly with each other. In particular, the existence of
an upper bound for the photonic group velocity introduces a velocity-induced di-
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Figure 5.1: Sketch of the setup where two-level atoms moving at a velocity v are strongly
coupled to the evanescent field of a 1D waveguide. By introducing a su�ciently strong
spatial modulation with periodicity a, photons are slowed down by Bragg-reflection and
can propagate with a maximal group velocity comparable to typical atomic velocities.

vergence in the photonic density of states that goes beyond the usual Cherenkov
emission [163, 170, 171] and that is not present for static atoms. This divergence,
which is associated with a strong resonant coupling between the moving atoms and
individual co-propagating Cherenkov photons, leads to a non-Markovian sponta-
neous emission of the atoms and can be used to enhance the excitation transfer
between separated emitters.

To describe this new regime of light-matter interactions we develop an e↵ective
model that correctly describes the dynamics for the relevant range of parameters
and we also discuss its validity. In the last section we finally propose a potential
realization of this system that consists of Rydberg atoms flying across a coupled
array of planar microwave resonators [148, 172, 173, 174, 175].

All the results presented in this chapter have been published in Physical Review
A 95, 043824 (2017). In this work I contributed as a main author and I performed
all the analytic and numerical calculations under the supervision of Peter Rabl.

5.1 Model

5.1.1 Atoms moving close to a slow-light waveguide

In this chapter we consider a setup as shown in Fig. 5.1, where Na two-level atoms
with mass M are coupled to the field of a 1D waveguide while moving along the lon-
gitudinal direction �ez. In conventional waveguides and within the relevant frequency
range the dispersion relation is usually linear !k � (c�n)�k�, where c is the speed of
light in vacuum and n ∼ O(1) is the refractive index of the material. Therefore, in
this case the photonic group velocity, vg(k) = @!k�@k ∼ 108 m/s, is much larger than
typical velocities v � 104 m/s of neutral atoms.

To achieve the condition v ∼ vg, we again consider a slow-light waveguide setup
of the form presented in 3.2.1. In particular, we assume a spatially periodic mod-
ulation of the waveguide (for example, of its width, refractive index, etc.) with
lattice constant a, that slows down the propagation of the photons and separates
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the spectrum into individual bands. For this specific work we further assume that
all the relevant time-scales of the system dynamics are slow compared to the inverse
frequency separation between individual bands, ∼ a�c. This allows us to restrict
our analysis to a single band and to approximate the dispersion relation using the
tight binding model introduced in 3.2.2, i.e. !k � !0

− 2J cos(ka) where !
0

is the
central frequency and 4J = B the total width of the band. Within the single band
of interest, the periodic modulation introduces an upper bound for the maximal
propagation velocity of the photons given by the e↵ective speed of light

c̄ =max{vg(k)} = 2Ja. (5.1)

The interesting point is that the maximal photon speed can be tuned close to zero
by taking the limiting case of a weakly tunnel-coupled array of localized resonator
modes, making the regime v ∼ c̄ experimentally accessible. Note, however, that
the required reduction of the photonic group velocity by many orders of magnitude
goes significantly beyond what is possible in conventional photonic crystal struc-
tures [134]. In Sec. 5.4 below we will discuss in more detail, how this extreme slow-
light condition can be realized in practice. With these assumptions the Hamiltonian
for this system reads

H =
N

a

�
i=1
� p2i
2M
+ �h!a�e�i�e�� +�

k

�h!k a
†
kak +

N
a

�
i=1�k

�hg � k(zi)ak�i+ + ∗k(zi)a†
k�

i−� , (5.2)

where zi and pi are the atomic position and momentum operators and in this defini-
tion the coupling has the dimension of a frequency ([g]=Hz). As explained in 3.2.1,
here ak and a†

k are the bosonic annihilation and creation operators for photons obey-
ing [ak, a†

k′] = �k,k′ , with Bloch-wavefunctions

 k(z) =
�

a

L
uk(z)eikz, (5.3)

where L� a is the waveguide length, k ∈ (−⇡�a,⇡�a] and the uk(z) = uk(z + a) are
periodic functions. Compared to the usual waveguide Hamiltonian given in (2.1), by
introducing a periodic modulation for slowing down the photons we have changed to
a Bloch-wave description, which also results in a periodic variation of the coupling,
g → g(z) ∼ u(z). For atoms moving along classical trajectories, i.e., zi(t) = zi + vit,
this translates into a time-periodic modulation of the coupling with frequency ⌦i =
2⇡�vi��a, which makes the dynamics of the system in general quite involved. However,
it turns out that for a large range of parameters, in particular for the relevant case
of high velocities, v ∼ c̄, and atomic frequencies !a inside the propagation band a
simple e↵ective model can be derived as we will present in the next section.

5.1.2 E↵ective model

Hamiltonian (5.2) is time dependent and in general not easy to treat. To solve
the problem we exactly simulated numerically the full time-dependent Schrödinger
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equation. Before we present and discuss the results, we first introduce an e↵ective
model that captures well the physics in the regime of interest and provides a simpler
and clearer picture of the system dynamics.

Let us start by rewriting the full model given in Eq. (5.2) in the interaction
picture with respect to the bare atom and photon Hamiltonian:

HI = �h
N

a

�
i=1
�

a

L
�
k

�gk(zi(t))eikzi(t)ei�ktak�i+ + g∗k(zi(t))e−ikzi(t)e−i�kta†
k�

i−� , (5.4)

where �k = !a − !k and g(z) = guk(z). To proceed we assume that at time t = 0 the
i-th atom is located at the left border of one of the unit lattice cells, i.e., zi(0) ≡
zi = (n1

− 1�2)a, and the atom then traverses l lattice sites following a classical
trajectory zi(t) = zi + vit. We here consider the case of very fast atoms where
⌦i = 2⇡�Ti = 2⇡�vi��a � g. The integrated coupling between the atom and mode ak
is given by

Gl
k ∶= �

lT
i

0

dt′ gk(zi(t′))eikzi(t′)ei�kt′ = g

vi
�

z
i

+la
z
i

dz uk(z)eikzei�k(z−zi)�vi . (5.5)

We now use the fact that in the tight-binding limit,

uk(z) � ū(z)e−ikz for − a�2 < z < a�2, (5.6)

where ū(z) is approximately k-independent. Then, by discretizing the position
variable we can rewrite Eq. (5.5) as

Gl
k = �

gTi

a �
a

2

−a

2

dz ū(z)ei�kz�vi�
n1+l−1
�
n=n1

eikanei�kTi

(n+ 1
2
). (5.7)

To proceed we neglect the variation ∼ ei�kz�vi in the integral in Eq. (5.7). This is
valid for small detunings, �k � ⌦i, for strongly peaked ū(z) and under the already
taken assumption that the system dynamics is slower compared to the modulation
frequency g � ⌦i . Under these approximations we can introduce the average
coupling

ḡ = g

a �
a

0

dz ū(z), (5.8)

and obtain

Gl
k � ḡTi ×

n1+l−1
�
n=n1

eikanei�kTi

(n+1�2). (5.9)

We see that this result is just the discretized version of the integral

Gl
k � ḡ�

lT
i

0

dt′ eikzi(t′)ei�kt′ . (5.10)

We now observe that the exactly same result could have been obtained by starting
with the e↵ective model (going back from the interaction picture):

H(t) �
N

a

�
i=1
�h!a�e�i�e�+�

k

�h!k a
†
kak +

N
a

�
i=1
�

a

L
�
k

�hḡ �eikzi(t)ak�i+ + e−ikzi(t)a†
k�

i−� , (5.11)
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where the time periodic modulation induced by the Bloch functions is averaged over
one unit cell and only the e↵ective coupling ḡ appears. This e↵ective model, mimics
very closely the coupling of fast moving atoms to arbitrarily slow photons in a 1D
continuum and will be used to describe the atom-light interaction properties in the
the following sections.

In Hamiltonian (5.11) the only remaining time-dependence arises in the phase
factor eikzi(t). To achieve a full time independent description and to obtain a better
intuition of the atomic emission it is convenient to change into a frame, which is
co-moving with the atom. This is achieved by the unitary transformation H̃ =
UHU † + i�hU̇U †, where

U(t) = ei∑k

vka†
k

a
k

t. (5.12)

In this new representation the time-dependence in the exponentials in Eq. (5.11) is
eliminated, z(t)→ z, and we obtain the following tilted dispersion relation

!k → !̃k = !k − kv. (5.13)

This means that, within the validity of our approximations, we can e↵ectively de-
scribe the system as an ensemble of atoms at rest coupled to a waveguide with the
tilted dispersion relation given in (5.13). In Fig. 5.2 we illustrate the e↵ect of the
atomic velocity on the dispersion relation. When the atoms are moving there is a
range of frequencies where only photons with negative (positive if v < 0) group ve-
locity can be emitted [see Fig. 5.2(b)]. This suggests that we can achieve a velocity
induced directional emission. Most surprising is the case when the atoms are mov-
ing at the maximal group velocity of the photon. In this limit the dispersion gets
completely tilted, as shown in Fig. 5.2(c) and a saddle point appears in the middle
of the band. This divergence of the density of states inside the band is quite unusual
and leads to a directional and non-Markovian emission that we will discuss in the
next section 5.2. For a detailed analysis on the range of validity of the e↵ective
model see section 5.3.

5.2 Atoms and photons interacting at the speed of light

Based on the e↵ective model given in Eq. (5.11), we now investigate in this section,
how basic atom-photon processes are modified when atoms and photons move at
comparable velocities. We first consider the simple spontaneous emission of a moving
atom and we show the arising of a velocity-induced directional emission. Then we
extend the results to describe the exchange of excitations between multiple atoms.

5.2.1 Spontaneous emission of a moving atom

Let us first consider the process where a photon is emitted from a single atom moving
at a constant velocity v > 0. By assuming that at time t = 0 the atom is in state �e�
and the waveguide in the vacuum state �vac�, the state of the whole system can be
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 chiral window  chiral window

Figure 5.2: Tilting of the dispersion relation for di↵erent values of the atomic velocity
v. (a) When the atom is at rest we have the usual tight binding cosine dispersion !k ∼
2J coska with band width B = 4J . (b) For atomic speed v = c̄�2 the dispersion gets tilted
and there is a range of frequency where only left propagating photons can be emitted.
(c) For atoms moving at the speed of light v = c̄ the dispersion is completely tilted and a
plateau arises in the middle of the band.

written as
� (t)� = �ce(t)�+ +�

k

 (k, t)a†
k��g��vac�, (5.14)

where pe(t) = �ce(t)�2 is the excited state population and  (k, t) is the wavefunction
of the emitted photon in k-space. For frequencies !a inside this tilted band, away
from the divergencies of the density of states, and for su�ciently small ḡ < 4J , the
coupling to the continuum of modes in the waveguide can be described by using
a Born-Markov approximation. This will result in an approximately exponential
decay of pe(t) with total rate � = �L + �R, where

�L,R =
ḡ2a

�ṽg(kL,R)�
(5.15)

is the decay rate that now depends on the modified group velocity ṽg(k) = vg(k)− v
in the co-moving frame. Here kL < 0 and kR > 0 are left- and right-propagating [in
the lab frame] wavevectors defined by the resonance condition !̃k = !a.

In the usual case, where the dispersion is linear, vg(k) � ±c̄ and v � c̄, Eq. (5.15)
implies that photons are emitted with Doppler-shifted wavevectors kL,R = ∓!a�(c̄±v),
but with the same group velocity in the laboratory frame and approximately the
same rates �L � �R.

When v ∼ c̄, this picture changes significantly. This is summarized in Fig. 5.3,
where we plot the directionality parameter [127, 24]

D = �L − �R

�L + �R

, (5.16)

for a range of atomic velocities and atom-waveguide detunings � = !a − !0

. This
parameter indicates if the emission occurs to the left or to the right in the lab
frame. Note that for this plot we have assumed a finite decay rate �p�J = 0.01 for
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Figure 5.3: Plot of the directionality parameter D defined in Eq. (5.16) as a function of
� and v. The crosses mark the parameter values assumed in the corresponding plots in
Fig. 5.4. The solid red lines indicate the minimal (!̃

min

) and maximal (!̃
max

) frequency of
the tilted band. For each detuning, the dashed line shows the minimal velocity v

min

(�),
above which the e↵ective model (5.11) provides an accurate description of the dynamics
(see Sec. 5.3 for more details).

the photons, which allows us to generalize Eq. (5.15) to frequencies outside the band
and to avoid unphysical divergences, similarly as done in Sec. 3.2.2. In Fig. 5.3 we
point out di↵erent regimes that will be discussed in the following sections.

Velocity-induced directional emission of light

Fig. 5.3 shows a large parameter range (in yellow) where mainly left propagating
photons are emitted. The black dashed line indicates the area of validity of our
e↵ective model [see Sec. 5.3]. Let us consider as an illustrative example the param-
eters indicated by 1 . In this case the tilting of the finite propagation band opens
a frequency window, within which only backward propagating modes exist. This is
more clear in Figures 5.4(a)-(b) where we show snapshots of the photonic wavefunc-
tion in the discretized position space,  (z, t), and the atomic population as function
of time. Note that these results are obtained by using the e↵ective model (5.11) and
agree with the numerical simulation of the full model [see Sec. 5.3]. Figures 5.4(a)-
(b) show a purely unidirectional emission opposite to the atomic motion associated
with an exponential (Markovian) decay of the atom. This regime is formally equiv-
alent to the chiral waveguide QED scenario discussed in Sec. 2.2.2 with the only
di↵erence that here the time reversal symmetry breaking is induced by the atomic
motion. It is interesting to see that a fully directional emission already occurs at
velocities v < c̄, where photonic wavepackets travelling faster than the atom would
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Figure 5.4: Snapshots of the emitted photon wavepacket (evaluated at a time t = 100�J)
and corresponding excited state population pe(t) for di↵erent sets of parameters. In (a)-
(b) v = c̄�2, ��(2J) = 1 while in (c)-(d) v = c̄�2, ��(2J) = −0.5. In all plots a coupling of
ḡ�(2J) = 0.1 is assumed. The blue shaded area indicates the light cone, �z� ≤ c̄t. For each
set of parameters we also show the position of the atomic transition frequency within the
tilted photonic propagation band in the co-moving frame.

still be allowed. This would not be the case for an infinite band where a directional
emission could be reached only for v > c̄.

A di↵erent mechanism for directionality arises for the parameters chosen in ex-
ample 2 and shown in Fig. 5.4(c)-(d). To understand the emission in this case
let us discuss it in the frame co-moving with the atom. In this frame the atom is
coupled to a linear branch of the dispersion, associated with a fast photon emit-
ted in the backward direction [see the small propagating peak on the left side of
Fig. 5.4(c)], and to a divergence in the photonic density of states associated with
the right edge of the tilted propagation band. This divergence leads to an enhanced
emission of slows photons, i.e. ṽg(kR) � 0, in both directions. These slow photons
in the lab frame will move in the same direction of the atom contributing mainly to
the emission to the right. This explains the blue color around 2 in Fig. 5.3. Here it
is important to notice that although the emission into backward-propagating modes
is still allowed, this band-edge e↵ect leads to a strong asymmetry, �R � �L, as well
as a substantially increased total emission rate. Overall, the combination of both
of these mechanisms, related to either the absence or divergence of the photonic
density of states, can give rise to strong variations in the direction, the rate and
the group velocity of the emitted photons. This would be even more evident in the
cases that we are going to discuss in the next section.
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Atom-photon bound states at finite velocities

To derive the exponential decay with rates �L,R given in Eq. (5.15) we have assumed
a perturbative treatment of the photon emission process, which is strictly valid only
in the weak-coupling limit ḡ � �ṽ(kL,R)��a. As we showed in chapter 3 for static
atoms it is well known that even for ḡ � J , such a description breaks down near
the edges of the propagation band. In this regime a vanishing group velocity results
in a highly non-Markovian, oscillatory decay and a non-decaying photonic fraction.
This behaviour is caused by the atom-photon bound states that we largely discussed
both in chapter 3 and chapter 4.

It is interesting to ask if these states can still exist when the atom is moving,
or in other words, if a flying atom can drag the photon along. The example 3
in Fig. 5.3 and in Fig. 5.5 (a)-(b) show that such e↵ects remain even at very high
velocities. In both examples, a large fraction of the photon is coherently reabsorbed
and remains bound to the moving atom for a long time.

We emphasize that in contrast to the static case, the photons in this example are
only quasi-bound to the moving atoms and will eventually decay at very long times
[see Fig. 5.5(b)]. According our e↵ective model (5.11) the eigenvalue equation that
gives the bound states is similar to that one written for the static atom case, (4.6),
and reads:

!± − � = ḡ2a

2⇡ �
⇡�a
−⇡�a

dk

!± − !̃k

. (5.17)

This equation always predicts two non-decaying bound states with eigen-frequencies
!± outside the propagation band. This is in contrast to the long-time decay observed
in Fig. 5.5(b) and moreover such an analysis would also predict the existence of
atom-photon bound states at velocities v > c̄, which are clearly unphysical.

These paradoxical predictions are a consequence of the e↵ective model approxi-
mation used in Eq. (5.11). They disappear when the full time dependence of g(t) is
taken into account. As we will extensively discuss in section 5.3 these bound states
can decay via additional channels at the sideband frequencies !a ± l⌦, l ∈ N [171].
What happens is that when the atom is moving the bound states associated to the
static Hamiltonian are not anymore eigenstates and they becomes quasi-bound state
[see [176] for a related discussion]. We emphasize though that all the results shown
in Fig. 5.3, Fig. 5.4 and Fig. 5.5 are not artifacts of the approximation and are
accurately reproduced by the full model on the timescales of interest.

Photon emission at the speed of light

A new and very unique situation occurs when the atomic velocity matches the
maximum speed of light, v = c̄. In this case the dispersion relation presents a
plateau in the middle of the band with ṽg(k) � 0 as shown in Fig. 5.13(c). The
dispersion relation can then be approximated as cubic

!̃k � −⇡J −
Ja3

3
(k − kc)3, (5.18)
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Figure 5.5: Same plots as in Fig. 5.4 with di↵erent parameters. In (a)-(b) v = c̄�2,
��(2J) = −1.1 while in (c)-(d) v = c̄, ��(2J) = −⇡�2. In (d) the dashed line indicates the
approximate analytic result given in Eq. (5.35) for v = c̄ and � = −⇡J .
for wavevectors around kc = ⇡�(2a). This results in a higher order divergence ∼
(! − ⇡J)−2�3 in the e↵ective photonic density of states. However, in contrast to
usual band-edge e↵ects, this velocity-induced singularity lies in the middle of the
propagation band and for moderate ḡ there is no bound state associated with it.
This regime is fully described by the e↵ective model [as underlined by 4 in Fig. 5.3],
and the corresponding dynamics is shown in Fig. 5.5 (c)-(d). Here the divergence
results in strong non-Markovian interactions between the moving atom and the
co-propagating Cherenkov photon with group velocity vg(kc) = v. We emphasize
that this regime exists only for finite bandwidth where the photon group velocity is
bounded.

Let us analyze this case in more detail. Here the advantage of the e↵ective model
is that it allows us to map this problem to that one of a stationary atom coupled
to a photonic band with a cubic dispersion relation (5.18). To simplify the notation
we can set kc = 0 and assume the dispersion to be infinite, k ∈ (−∞,∞). This last
assumption is valid as long as the coupling strength is smaller than the bandwidth
ḡ � 4J . Since the bandwidth of this cubic model is infinite, all eigenstates are
scattering states of the form:

��k� = �cke�+ +� dk′ k(k′)a†
k′��g��vac�, (5.19)

with energy Ek = �h!̃k. From the Schrödinger equation H̃ ��k� = Ek��k� we obtain

cke(!̃k − !a) = ḡ
�

a

2⇡ � dk′ k(k′) , (5.20)

while the Lippmann-Schwinger equation for the photonic wavefunction reads [60,
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158]

 k(k′) =
�

a

2⇡

ḡcke
!̃k − !̃k′ + i✏

+ �(k − k′). (5.21)

Here the limit ✏ → 0+ is assumed to obtain the correct boundary conditions. By
inserting Eq. (5.21) back into Eq. (5.20) the atomic amplitude can be written in a
closed form as

cke =
�

a

2⇡

ḡ

!̃k − !a − ḡ2I0(!̃k)
. (5.22)

Here we have introduced the integral

Iz(!̃k) =
a

2⇡ �
eik

′zdk′
!̃k − !̃k′ + i✏

= −sgn(k)
√
3 + i

2Ja2k2

× �e−i kz2 −
√

3
2
�kz� + ✓(−z)ei 23⇡sgn[k]+ikz� ,

(5.23)

where sgn(k) is the sign function and ✓(z) is the Heaviside function with ✓(z = 0) = 0.
The scattering states can then be written in momentum space as

��k� = �cke�+ + a†
k +
�

a

2⇡ � dk′ ḡckea
†
k′

!̃k − !̃k′ + i✏
� �g��vac�. (5.24)

Finally, to evaluate the photonic wavefunction  k(z) = 1√
2⇡ ∫ dk

′ k(k′)eik′z in posi-

tion space, we make again use of the integral in Eq. (5.23) and we obtain

 k(z) =
1√
2⇡
�eikz + �k �e−i kz2 −

√
3

2
�kz� + ✓(−z)ei 23⇡sgn[k]+ikz�� , (5.25)

with the scattering amplitude

�k =
ḡ2I

0

(!̃k)
!̃k − !a − ḡ2I0(!̃k)

. (5.26)

These scattering states are very a-typical compared to usual linear or quadratic
dispersion [see Sec.2.3] since independent on the direction of the incoming wavevector
k. This means that the scattered wave vanishes at z → +∞, while it is finite at
z → −∞. This can be understood from the particularity of the assumed dispersion
relation, which always leads to negative group velocities.

Using the exact scattering solutions we can investigate the spontaneous emis-
sion of an initially excited atom. In this case the atom-field dressed state � (t)� =
�ce(t)�+ + ∫ dk (k, t)a†

k��g��vac� can be expressed in terms of the eigenstates of the
system according to

� (t)� = � dk (cke)∗e−i!̃k

t��k�, (5.27)

and we obtain ce(t) = �e� (t)� and the emitted photonic wave packet

 (z, t) = �z� (t)� = � dk k(z)(cke)∗e−i!̃k

t, (5.28)
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in terms of integrals over k. These results perfectly agree with the numerics pre-
sented in Fig. 5.5 (c)-(d).

To derive a simpler approximate result for the atomic population it is more
convenient to consider instead directly the equations of motion for ce(t) and  (k, t).
In a frame rotating with !c = !a − � they are given by

ċke = −i�ce(t) − iḡ
�

a

2⇡ � dk′ k(k′, t), (5.29)

 ̇(k, t) = i
J

3
(ka)3 (k, t) − iḡ

�
a

2⇡
ce(t). (5.30)

By performing a Laplace transformation we obtain for the atomic amplitude

ce(s) =
1

s + i� + ḡ2I(s) , (5.31)

where

I(s) = i a
2⇡ �

dk

J(ka)3�3 + is = (9Js
2)−1�3. (5.32)

For vanishing detuning, i.e., !a = !c, we can further rewrite ce(s) as

ce(s) =
1

s + iḡ � s
9J
�1�6
+ 1

s − iḡ � s
9J
�1�6
�

1

s + i⌦c + �c�2
+ 1

s − i⌦c + �c�2
,

(5.33)

where in the last step we made a single pole approximation introducing the e↵ective
rates that describe the coherent atom-photon oscillations and the overall decay

⌦c =
�
5 +
√
5

2
√
2
� ḡ

6

9J
�

1
5

, �c =
√
5 − 1
2
� ḡ

6

9J
�

1
5

. (5.34)

Under this approximation the inverse Laplace transform of ce(s) results in a damped
cosine function

pe(t) � cos2(⌦ct)e−�c

t, (5.35)

which approximates well the the non-Markovian decay of the atomic population
as shown by the dashed line in Fig. 5.5 (d). The oscillatory dependence of pe(t)
and the unusual scaling, ⌦c,�c ∼ ḡ6�5, demonstrate that atom-light interactions in
this critical parameter regime are highly non-perturbative and show a clear strong
coupling behavior already at the level of individual photons. For a given ḡ � J , �c

is also the fastest rate at which the atom can be completely deexcited by emitting
a highly localized photonic wave packet [see Fig. 5.5 (c)], which closely follows the
atom in forward direction.

At even higher velocities, v > c̄, the density of states, and therefore also the
emission rate, decreases again. As shown in Fig. 5.3, the directionality of the emitted
photon in the laboratory frame is then only determined by the condition � � −2J . For
the specific detuning � = −2J , a very extended and essentially stationary photonic
wavepacket is produced.

102



(a)

3

(b)

(c)

1

4

atom 1
atom 2 atom 3

atom 1

atom 2 atom 3

atom 1
atom 2

100 300 40000

1

0

1
0

1

Figure 5.6: Excitation transfer between moving atoms. In the first two plots three atoms
moving with the same velocity v > 0 and relative separations d

12

�a = 2 and d

13

�a = 45 are
considered. The parameters in (a) are v = c̄�2 and ��(2J) = 1 and in (b) v = c̄ and � = −⇡J .
For the plot in (c) two atoms with z

1

(0) = z
2

(0), slightly di↵erent velocities v
1

= 0.5c̄ and
v

2

= 0.53c̄ and a detuning of ��(2J) = −1.1 have been assumed. In all plots ḡ�(2J) = 0.1.

5.2.2 Excitation transfer processes

Compared to conventional Cherenkov radiation studied in higher dimensional struc-
tures [170, 171], a key feature of the current setting is that all emitted photons are
confined to one dimension and can thus be e�ciently reabsorbed by other atoms. For
conventional waveguides with static atoms, this emission and reabsorption of pho-
tons gives rise to almost instantaneous, long-range and bidirectional dipole-dipole
interactions, which depend only on the relative atomic positions �zi−zj �, as discussed
in 2.2.1. In our narrow-bandwidth waveguide setup with moving atoms this picture
changes qualitatively and di↵erent excitation transfer processes arise, depending
strongly on the velocities and detunings of the involved atoms.

To illustrate this point we first consider in Fig. 5.6 (a) and (b) the case of Na = 3
atoms moving at the same speed v > 0, with the first atom to the right being
initially prepared in the excited state. For this plot we have solved the evolution of
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the generalized wavefunction � (t)� = �∑N
i=1 cie(t)�i++∑k  (k, t)a†

k��g��vac� under the
action of Hamiltonian (5.11).

With all the atoms at rest, under the usual Markov approximation, and assuming
that the propagation time of the photons can be neglected, the maximal population
transfer from atom 1 to atoms 2 and 3 is limited to p

(2,3)
e (t) < 0.25. This result,

discussed in sections 2.2.1 and 2.3.3, can be understood from a decomposition of the
initial atomic excitation into super- and sub-radiant states and depends in detail on
the exact atomic positions.

This limit no longer applies at moderate and fast velocities, where the emission
becomes highly directional and therefore also results in a much more e�cient transfer
of excitations from the right to the left. This is shown in Fig. 5.6 (a), where the
same parameters as in example 1 in Fig. 5.4 for a completely unidirectional photon
emission have been assumed. In this regime the excitation transfer process is the
same as that one described in chiral waveguide QED systems [see Sec. 2.2.2]. Note
that for these parameters the retardation time ⌧

13

= �d
13

�(vg(kL) − v)� is still short
compared to the timescale of the transfer dynamics (∼ �−1L ) and the whole process
can be well described by a unidirectional Markovian master equation [21, 26] in the
co-moving frame.

This is no longer the case for the critical condition v = c̄ and ��J = −⇡ assumed
in Fig. 5.6 (b) when the atom is moving at the maximum speed of light. Here we
observe a very rapid transfer of the initial excitation from atom 1 to atom 2, which
is mediated by the highly compressed Cherenkov photon shown in example 4 in
Fig. 5.5(c). This photon then slowly falls behind and at a much later time overlaps
with the third atom. The resulting oscillations between the photon and atom 3 with
roughly the same Rabi frequency ⌦c as identified in Eq. (5.35), are again a clear
signature of the highly non-Markovian nature of the transfer process.

Finally, in Fig. 5.6 (c) we consider the example of the kind described by 3
[see Sec. 5.2.1]. Here two initially co-propagating atoms exchange excitations via a
co-moving bound photon which remains exponentially localized around the atomic
positions zi(t). By introducing a small velocity di↵erence, i.e. v

1

≠ v
2

, the atoms
slowly separate and gradually decouple. Depending on the detailed choice of param-
eters, the photon may remain with one of the atoms or be split into two separated
atom-photon bound states.

5.3 Validity of the e↵ective model

Our discussion so far has been based on the approximate model given in Eq. (5.11),
which ignores the time-periodic modulation of the coupling with multiples of the
frequency ⌦ = 2⇡�v��a. To understand more precisely, under which conditions this
description is meaningful let us consider again the evolution of the generic state

� (t)� = ��
i

cie(t)�i+ +�
k

 (k, t)a†
k��g��vac� (5.36)
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under the full Hamiltonian (5.2). We obtain the following set of equations

dcie(t)
dt

= −ig
�

a

L
�
k

 (k, t)uki(t)ei˜�
i

k

teikzi ,

d (k, t)
dt

= −ig
�

a

L
�
j

cje(t)u∗kj(t)e−i˜�
j

k

te−ikzj ,
(5.37)

where �̃ik = !a−(!k−vik) and uki(t) ≡ uk(zi(t)). After inserting the second equation
into the first we obtain the following integro-di↵erential equation

dcie(t)
dt

= −g
2a

L
�
j

�
k

eik(zi−zj)uki(t)ei˜�
i

k

t ×�
t

0

dt′u∗kj(t′)e−i˜�
j

k

t′cje(t′). (5.38)

The uki(t) are periodic in time and can be expanded in a Fourier series uki(t) =
∑n u

n
kie

i⌦
i

nt. The resulting expression can be written as

dcie(t)
dt

= − g2a

L
�
j

�
k

�
n,m

un
ki[um

kj]∗eik(zi−zj)ei(˜�ik−˜�
j

k

)tei(⌦i

n−⌦
j

m)t�
t

0

dt′ei˜�jk(t−t′)ei⌦j

m(t−t′)cje(t′)

= − g2a

L
�
j

�
k

u0

ki[u0

kj]∗eik(zi−zj)ei(˜�ik−˜�
j

k

)t�
t

0

dt′ei˜�jk(t−t′)cje(t′) + rest.

(5.39)

When evaluated in the stroboscopic limit ⌦i � g, the first term in the second line
of this equation simply corresponds to the evolution under the e↵ective model given
in Eq. (5.11). A first set of corrections arises from terms with n ≠ 0, but m = 0.
Such terms lead to additional oscillating contributions to cie(t). However, as long as
g � ⌦i, these corrections remain small and do not a↵ect the long time behavior of
cie(t).

More crucial are terms with n =m ≠ 0, which can generate non-oscillating contri-
butions that a↵ect the slowly varying dynamics of cie(t). To see this more explicitly,
let us consider a single atom and a specific correction term

dce(t)
dt
�
n=m = −

g2a

L
�
k

�un
k �2�

t

0

dt′ei˜�k(t−t′)ei⌦n(t−t′)ce(t′)

≈ − �⇡g
2a

L
�
k

�un
k �2� ��̃ik +⌦in�� ce(t),

(5.40)

where in the second line we have made a Markov approximation and replaced the
integral over t by a �-function in frequency. From this estimate we see that the
higher order correction terms introduce additional decay channels with rates �(n)
proportional to the density of states evaluated at the modulation frequencies !a −
(!k − vk) + n⌦, where n = ±1,±2, .... To ensure that such corrections do not a↵ect
the dynamics, all sidebands !a + n⌦ must lie outside the tilted propagation band,
as illustrated in Fig. 5.7 (a). This condition can be recast into the form

⌦ = 2⇡�v�
a
>maxk �

� + 2J cos(ka)
1 − ak

2⇡

� , (5.41)
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Figure 5.7: (a)-(c) The positions of the modulation frequencies !a±⌦ are shown in relation
to the tilted photonic band for (a) v�c̄ = 0.5 and ��(2J) = 1, (b) v�c̄ = 0.3 and ��(2J) =−1.05 and (c) v�c̄ = 0.22 and ��(2J) = −1. In (d) and e) the evolution of the excited state
population as predicted by the full model in Eq. (5.2) (continuous line) is compared with
the corresponding evolution under the e↵ective continuum model in Eq. (5.11) (dashed
line). (d) Decay of the excited state population corresponding to the cases: v = c̄�2 and
��(2J) = −0.5, v = c̄�2 and ��(2J) = −1.1 and v = c̄ and ��(2J) = −⇡�2.(e) Excitation
transfer between three atoms with v = c̄ and ��(2J) = −⇡�2. In all the plots g�(2J) = 0.1
and z

0

�a = 0.1 is assumed. All the other parameters are the same as in the respective
examples in Fig. 5.4 and Fig. 5.6.

and implies that our e↵ective description for the slow-light waveguide is only possible
for high enough velocities, �v� � 0.25c̄, and for atomic frequencies inside the tilted
propagation band. This simple picture also explains why there are no bound states,
e.g., in the gap above the upper band edge, !+ � !̃max

= !
0

+ 2J +⌦�2. In this case
the sideband !+ − ⌦ is necessarily inside the propagation window and leads to a
rapid decay.

While Eq. (5.41) captures very well the main region of validity of Eq. (5.11), it
is too strict in certain regimes. In particular, this is the case for moderately slow
atoms tuned to the lower band edge, !a � !̃min

. As indicated in Fig. 5.7 (b), for
these parameters the condition (5.41) can be violated, but the dynamics is still well
approximated by the e↵ective model. The reason is that the additional decay �(1)
associated with the sideband !a +⌦ is simply very slow compared to the dominant
evolution determined by the high density of states near the band edge. This explains
why quasi-bound states near the lower band edge can be observed at finite velocities.
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However, since �(1) is non-zero, these bound states still decay on longer timescales.
To verify the validity of our analytic estimates we compare directly the pre-

dictions from the e↵ective model (5.11) with a numerical simulation of the full
model (5.2), which accounts for the exact time-dependence of the couplings. To
do so we consider the specific example, where the local mode at each lattice site is
represented by a Gaussian wavepacket

ū(z) = 1

⇡1�4
�

a

z
0

e
− z

2

2z20 , (5.42)

with a width z
0

� a. This results in an averaged coupling ḡ � g
�

2z0
a ⇡

1�4. For the

simulation of the full model we assume g�(2J) = 0.1 and z
0

�a = 0.1. This corresponds
to ḡ�(2J) � 0.06. For these parameters we compare in Fig. 5.7 (d) and (e) the excited
state population predicted by the e↵ective model and the full model for some of the
values of � and v assumed in Fig. 5.4, Fig. 5.5 and Fig. 5.6. For all these cases
we see an excellent agreement between the exact and the e↵ective evolution. More
generally, we evaluate the evolution of the excited state population pe(t) for a single
atom up to a final time T

f

= 50�J for a wide range of parameters � and v. Then, the
discrepancy parameter

d =max{�pe↵e (t) − pfulle (t)�,0 < t < Tf}, (5.43)

can be used to quantify the validity of the e↵ective model. The black dashed line
in Fig. 5.3 exactly indicates the boundary set by the requirement d ≤ 0.1. For
most parameters, this boundary reproduces the condition identified in Eq. (5.41).
However, near � ≈ −2J the region of validity extends to very low velocities, which can
be explained by the qualitative arguments given above. We also see an additional
kink at v�c̄ � 0.22 and ��(2J) = −1. As shown in Fig. 5.7 (c), in this case also the
(!a +⌦) sideband hits a divergence in the photonic density of states and therefore
induces a significant perturbation. In conclusion, we find that, within the region
of parameters delimited by the dashed line in Fig. 5.3, the e↵ective model (5.11)
provides an accurate description of the dynamics and we can replace the modulated
couplings g(zi(t)) by the coupling ḡ averaged over one period, T = 2⇡�⌦.

5.4 Implementation

While the approach described so far for realizing the slow-light Hamiltonian (5.11)
is very generic and can in principle be implemented with various photonic waveguide
structures, the conditions for achieving a strong coupling between moving atoms and
co-propagating photons are in practice very demanding. In particular, for atomic
velocities v < 104 m/s and lattice constants of a > 10µm, the condition c̄ ∼ v restricts
the maximal bandwidth to J�(2⇡) ≈ v�(4a⇡) < 80 MHz, while it must still exceed
the level of on-site disorder to avoid localization [159, 160, 49]. In addition, the
atoms must be guided close to the surface of the waveguide such that the rate of
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Figure 5.8: a) Realization of an optical slow-light waveguide QED system using atoms
coupled to the evanescent field of a silica fiber with a periodically modulated radius. Note
that in this setup a natural reduction of the photonic speed already arises from the fact that
the light does not propagate in a straight line, but rather around the circumference of the
fiber. b) The tunneling amplitude J�(2⇡) is plotted (in a logarithmic scale) as a function of
the lattice constant a and the radial variation �R�R

0

. The white continuous lines indicate
the condition v = c̄ = 2Ja. For this plot a cuto↵ frequency of !e�(2⇡) � 350 THz (` = 180)
and a radiusR

0

= 17.5µm has been assumed. In order to avoid mixing with the neighboring
transverse branches, the radial variation has been limited to �R

0

�R
0

< 1�` � 0.0056.
emission into the waveguide, �, exceeds the decay rate into free space, �a, as well as
the photon loss rate, �c.

In the following we first show in Sec. 5.4.1 how such extreme slow-light condi-
tions can in principle be achieved in the optical regime. As example we focus on
the whispering gallery modes of a periodically modulated optical fiber. This setup
was introduced in Sec. 3.2 and recently SNAP waveguides [146] with a high level of
disorder control have been demonstrated [147]. In Sec. 5.4.2 we then describe an al-
ternative setup in the microwave regime, where many of the remaining experimental
di�culties can be overcome by simply working with much larger wavelengths.

5.4.1 Modulated optical waveguides

We consider a cylindric silica fiber with radius R
0

and refractive index n. As illus-
trated in Fig. 5.8 (a), the fiber supports optical modes, where light is guided around
the circumference of the waveguide [146, 143] and couples evanescently to nearby
atoms [104, 105]. We assume in addition a small periodic modulation of the fiber
radius,

R(z) = R
0

+ �R cos�2⇡z
a
�, (5.44)

with a period a that is large compared to the wavelength �e = 2⇡c�(n!e). This
modulation R(z) results in a variation of the cuto↵ frequency, !e(z) = !eR0

�R(z),
which corresponds to an e↵ective potential

V (z) = �h!e(�R�R0

) cos(2⇡z�a) (5.45)
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for the photons propagating along z.
The eigenmodes ��k(�r) of the electric field in the waveguide with frequency !k

and wavevector k along the z direction are solutions of the Helmholtz equation

�� + n2(�r)!
2

k

c2
� ��k(�r) = 0, (5.46)

where n(�r) is the refractive index that assumes the values n(�r) = n � 1.47 inside
the fiber and n(�r) = 1 outside. In view of the cylindrical symmetry we change to
polar coordinates and make the ansatz ��k(�r) = ��`(r, z) k(z)ei`�, where ` is the
azimuthal mode index. The radial component ��`(r, z) satisfies the radial Helmholtz
equation for a given R(z) and corresponding eigenfrequency !e(z) = `c

n̄c
r

R(z) . Here n̄
denotes the e↵ective refractive index averaged over the radial mode profile and cr is a
correction factor that accounts for the finite radial width of the mode function [144].
For a TM mode, i.e., ��` = �`,z�ez, the unnormalized radial mode functions are given
by [143, 144, 145, 179]

�`,z(r, z) = J` (k0(z)nr) , r ≤ R(z),

�`,z(r, z) = �
J`(k0(z)nR(z))
Y`(k0(z)R(z))

�Y` (k0(z)r) , r > R(z),
(5.47)

where J`(x) and Y`(x) are Bessel functions of the first and second kind and k
0

(z) =
!e(z)n�c. Given a certain frequency !e the fiber radius and the azimuthal number
` are related by the resonance condition

n
J ′̀(k

0

(z)nR(z))
J`(k0(z)nR(z))

− Y ′̀(k
0

(z)R(z))
Y`(k0(z)R(z))

= 0. (5.48)

By making a paraxial approximation, valid for �R�a� 1, we neglect the derivatives
of ��`(r, z) with respect to z and we obtain

� @
2

@z2
+ n̄2

c2
(!2

k − !2

e(z))� k(z) = 0. (5.49)

By introducing the eigenenergies Ek = �h(!k − !e) and the e↵ective potential V (z)
definition used in (5.45) this equation can be re-arranged as an e↵ective Schrödinger
equation:

�−
�h2

2m∗
@2

@z2
+ V (z)� k(z) = Ek k(z), (5.50)

This means that for a given branch with a cuto↵ frequency !e = `c
nR0

determined by
the azimuthal quantum number `, the dispersion relation for small wavevektors k
along the z-direction is approximately given by

!k � !e +
�hk2

2m∗ , (5.51)
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where m∗ = !en2�h�c2 ∼ 10−36 kg is the e↵ective photon mass. This e↵ective descrip-
tion is along the same line of the simple slow-light model presented in section 3.2.1.
The solution of Eq. (5.50) provides the dispersion relation Ek and the Bloch waves
 k(z) entering the model in Eq. (5.2). In the tight-binding limit J can be numerically
estimated from the width of the first energy band, i.e., J = (max{!k}−min{!k})�4.
For the specific example of a fiber with radius R

0

= 17.5µm and !e�(2⇡) � 350 THz
[144, 145] the resulting range of values for J is plotted in Fig. 5.8 (b) for varying
parameters a and �R.

From Fig. 5.8 (b) we see that for lattice constants in the range of a ∼ 10− 20µm
we can obtain by this approach a tunnel coupling of J�(2⇡) ≈ 80 MHz together with
an e↵ective speed of light of c̄ = 104 m/s.

To estimate the atom-photon coupling let us consider the absence of the periodic
modulation. The atom field coupling strength evaluated at the surface of the fiber
reads

g = d
�

!k

2�h✏
0

aA
� ��`(R0

)�. (5.52)

Here ✏
0

is the vacuum permittivity, d � 2×10−29 Cm is the dipole moment of a 133Cs
atom and A is the mode area defined as [143, 144]

A = ⇡ �n2�
R0

0

drrJ2

` (k0nr) +
J2

` (k0nR0

)
Y 2

` (k0R0

) �
∞

R0

drrY 2

` (k0r)� . (5.53)

The radial modulation gives an approximate quadratic potential for the photons in
each lattice site. Thus, the local modes can be represented by Gaussian wavepackets
of the form given in Eq. (5.42). This leads to an e↵ective coupling ḡ � g⇡1�4�2z

0

�a
as assumed for all our estimates.

For the same fiber parameters used to determine J we can estimate an atom-
photon coupling of g�(2⇡) � 30 − 40 MHz , in agreement with coupling constants
measured for bottle resonators of similar dimensions [145]. This translates into an
averaged coupling of ḡ�(2⇡) ≈ 10−20 MHz, consistent with the requirements for the
derivation of the e↵ective model. At the same time, this coupling can exceed both
the atomic decay rate, �a�(2⇡) � 2 MHz, as well as photonic losses, �p�(2⇡) � 0.5
MHz [145].

On the other end an ubiquitous problem of slow-light waveguides and coupled
resonator arrays are unintented, fabrication-related variations of the local frequency,
!e → !e(z). This additional random potential leads to localization of photons, when
the bandwidth J becomes too small. In Section. 5.4.3 we present a numerical study
of our model in the presence of random on-site energies of magnitude ✏. From this
study we estimate a tolerable level of disorder of ✏�(2J) ≤ 0.1. This translates into
maximal variations of the e↵ective fiber radius of �r � R

0

✏�!e � 0.05Ȧ. Even if
this seems a pretty demanding requirement that this level of disorder control is
achievable with in-situ tuning techniques, which have already been implemented for
tunnel-coupled bottle resonator arrays [147], similar to the setup considered here.
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On the other hand maintaining this amount of control on the fabrication could be
challenging for an extended waveguide.

In summary, these estimates show that, although challenging, a strong coupling
of atoms and photons under the condition c̄ ≈ v can in principle be realized with
modulated photonic waveguide structures. A remaining di�culty is the guiding
of atoms at rather high velocities [177, 178] and at a distance of less then the
optical wavelength above the waveguide. To overcome this problem it might be more
favorable to consider waveguide QED systems in a much lower frequency regime.

5.4.2 Slow-light waveguide QED with microwave photons and Rydberg
atoms

Let us now describe an alternative implementation shown in Fig. 5.9 (a), where flying
Rydberg atoms [172, 173, 174, 175] are coupled to an array of coplanar waveguide
(CPW) resonators.

A CPW resonator consists of a central superconducting track placed between
two ground planes printed onto a dielectric substrate as sketched in Fig 5.9. If the
coplanar track is cut along the longitudinal direction the edges of the cut act like
a mirror and we get a microwave resonator. Here we assume that the resonators
are arranged in an array, implementing the coupling between the di↵erent sites by
additional capacitors, as shown in Fig. 5.9(a).

The electric field of the fundamental mode of this resonator can be written as

�E(x, y, z) = [Ez(z, y)�ez +Ey(z, y)�ey] cos�
⇡x

Lx

�. (5.54)

To estimate the transverse electric field profile we consider the limit of an infinitely
flat CPW resonator with an additional ground plate located at a distance h below
the central track. Further, if the width of the two outer ground planes is larger than
twice the gap between them, they can be treated as infinitely extended [180]. With
this assumption, an exact solution for the electric field above the central electrode
of the CPW resonator can be obtained using conformal mapping techniques [181].
In particular, the two transverse field components are given by Ez(z, y) = Im{E(t)}
and Ey(z, y) = Re{E(t)}, where t = z + iy and for y > 0

E(t) = E
0�

� t2
l21
− 1�� t2

l22
− 1�

. (5.55)

For the evaluation of the coupling strength g we need the electric field per photon,

E
0

=
� �h!

2✏0Vr

, where Vr the mode volume of the resonator which can be found by

imposing the normalization condition

✏
0

Lx

2
��

∞
−∞ dz�

∞
−h dy �E2

z(z, y) +E2

y(z, y)�� =
�h!
2
. (5.56)

111



10 20 30 40 50

1

10

(a)

(b) (c)

v

5

60 70

0.5

Figure 5.9: Slow-light waveguide QED with Rydberg atoms. (a) Rydberg atoms fly at a
distance ya above an array of parallel CPW resonators coupled by capacitances C. (b)
Cross section of a single resonator and sketch of the transverse field distribution. (c)
Atom-field coupling strength as a function of the atom-surface distance ya for the example
described in the text. Here g

0

denotes the maximal coupling evaluated at z = 0 and ḡ the
corresponding averaged coupling, which is used in the e↵ective model (5.11).

For the parameters considered in the main text and h < 5µm, the volume below the
central electrode is negligible compare to the mode volume above and only the latter
must be considered for the evaluation of the field strength E

0

.
With these analytic expressions we can make the following estimates. For a

length of Lx ∼ 1 cm each the CPW resonator exhibits standing wave modes with
frequencies !

0

= c⇡�Lx in the GHz regime, while in z-direction the electric field is
strongly confined to a few tens of µm determined by the size of the middle electrode,
2l

2

[see Fig. 5.9 (b)]. By considering an array of parallel resonators separated by
a ∼ 100µm, we obtain a closely spaced resonator array with a tunnel coupling J that
can be fully adjusted by additional capacitive couplings at the end-points [139, 148].

As a specific example, we consider a microwave resonator with dimensions Lx =
0.5 cm, l

1

= 10µm, l
2

= 15µm and !
0

�(2⇡) ≈ 30 GHz. For a = 200µm and an atomic
beam of velocity v = 104 m/s [173] we choose a capacitive coupling J�(2⇡) = 4
MHz to obtain v�c̄ ≈ 1. This bandwidth is still considerably above the level of on-
site disorder achievable in large arrays of coupled microwave resonators [148]. By
identifying two Rydberg states with neighboring principle quantum numbers n, i.e.
�g� = �n� and �e� = �n + 1�, we obtain a resonant coupling !a = !n+1 − !n � !0

for
n � 50. The resulting maximal atom-field coupling g

0

= dn,n+1E0

(ya)��h [172, 173],
as well as the corresponding averaged coupling, ḡ, are plotted in Fig. 5.9 (c) where
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dn,n+1 is the transition dipole moment. We see that already at convenient distances
of ya ≈ 50µm we obtain ḡ ∼ J�4 and for the validity of the e↵ective model we can
choose any smaller value, e.g. ḡ�J � 0.1, by adjusting the position of the beam along
the x-direction.

On the relevant timescale set by �c�(2⇡) ≈ 400 kHz, both the decay rate of
the Rydberg states, �a�(2⇡) � 1 kHz, and the photon loss rate �p�(2⇡) � 30 kHz
of a high-Q microwave resonator [182] are still negligible. For an array of ∼ 500
resonators with a total length of L = 10 cm, the condition on the transverse spread
during the flight time, �y�ya < 1, requires a transverse cooling of the atom beam to
a few mK, or alternatively, on-chip guiding systems for Rydberg atoms [183].

Finally, regarding the disorder, in Sec. 5.4.3 we estimate a maximum tolerable
cavity o↵set of the order of ✏�(2J) � 0.1. In the CPW resonators array imple-
mentation this would corresponds a variation in the frequency of each resonator of
about ✏ � 0.8 MHz. This accuracy is achievable with the state of the art fabrica-
tion technology [148]. This shows that all the requirements for slow-light waveguide
QED systems can be achieved in the microwave regime, using fabrication and atom-
guiding techniques that are currently developed.

5.4.3 Disorder

In this last section we evaluate the influence of disorder on the present slow-light
waveguide system. Compare to the analysis performed in 4.1.3, where we were
interested in estimating the localization length of a single cavity defect, here we
consider a random frequency o↵set �!l at each lattice site l. In momentum space
this corresponds to the Hamiltonian

H
dis

= �h�
k,k′

fk,k′a†
kak′ , (5.57)

where fk,k′ = L
a ∑l e

i(k−k′)l�!l, which we add in our numerical simulation to the orig-
inal Hamiltonian given in Eq. (5.11). For numerical simulations the �!l are chosen
randomly from a uniform distribution within the interval [−✏�2, ✏�2].

In Fig. 5.10 (a) and (b) we plot the atomic population and the wave function of
the emitted photon for the case v�c̄ = 0.5 and ��(2J) = −0.5 and for di↵erent values
of the disorder strength ✏. From the plots we see that the system dynamics is almost
una↵ected by the disorder up to values of about ✏�(2J) = 0.1. Above this value the
signatures of a co-moving bound state are washed out. In Fig. 5.10 (c) and (d) we
plot the analogue results for the critical coupling conditions v�c̄ = 1 and � = −⇡J .
Here we find that the atomic decay is even less a↵ected by disorder. However,
for ✏�(2J) > 0.1 the emitted wavefunction is becomes again significantly distorted,
which would a↵ect the dynamics of excitation transfer processes. Therefore, we find
that all the e↵ects described in Sec. 5.2 are robust with respect to disorder up to a
strength of the order of ✏�(2J) � 0.1.
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Figure 5.10: The e↵ect of disorder on the system dynamics. The red dashed lines in the
plots in (a) and (b) show the emitted photon wavepacket (evaluated at t = 110�J) for
increasing levels of disorder and for the parameters (a) v�c̄ = 0.5, ��(2J) = −0.5 and (b)
v�c̄ = 1, ��(2J) = −⇡�2. For comparison the case without disorder is represented by the
blue solid line. The plots in (c) and (d) show the decay of the excited state population for
✏�(2J) = 0 (continuous line), ✏�(2J) = 0.02 (long dashes), ✏�(2J) = 0.1 (short dashes) and
✏�(2J) = 0.2 (dotted line). In all plots a coupling of ḡ�(2J) = 0.1 is assumed.
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Chapter 6

Acoustic control of emitter-photon
interactions in slow-light waveguide
QED

In the last chapter we have seen how in slow-light waveguides the photonic group
velocity can be significantly decreased, and we have exploited this e↵ect to study
the interaction between moving atoms and co-propagating photons. Here we make
a step further by noticing that such a reduced photonic group velocity can even
be comparable to the speed of propagating acoustic waves. This e↵ect opens new
possibilities where acoustic waves can be used to control the atom-light interaction.

Usually sound and light do not interact strongly with each other due to the di↵er-
ence in frequencies and propagation speed. Nevertheless, under specific conditions,
Brillouin scattering, where photons are scattered into orthogonal modes by simulta-
neously emitting or absorbing phonons, can occur. Recently, many ideas have been
proposed to turn such e↵ect around and to use acoustic waves for controlling the
propagation of optical fields [184, 185, 186, 187, 188, 189, 190] or for a↵ecting the
emission rate of an atom coupled to a photonic crystal [191]. A major limitation
to these proposals lies in the fact that, for large photonic bandwidth, the Brillouin
scattering occurs only at specific resonances. The situation is much di↵erent in a
slow-light waveguide modulated by strong acoustic waves. In this case the photonic
band, due to its finite width, can be deformed and tilted by the acoustic wave giving
rise to scenarios that go beyond usual Brillouin scattering.

Here we consider atomic or solid-state emitters coupled to such an acousto-
optical waveguide. When the photonic group velocity becomes comparable to the
speed of sound, a full directional emission of the atoms can occur for a wide range
of frequencies. Moreover, similar to the moving atoms case analyzed in the previous
chapter, the acoustic modulation can induce divergencies of the density of states,
which can a↵ect the emission rates of the emitters.

A crucial point of this setup is that the directional emission can be controlled by
properly tuning the acoustic wave parameters. This e↵ect provides a flexible tool
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for controlling emitter-emitter interactions in extended optical networks, and it can
be used, for example, for the generation of stationary entanglement or the shuttling
of quantum states via phononic conveyor belts.

This idea of modulating photonic structures with acoustic waves brings even
more interesting results when the model is extended to two dimensional photonic
lattices. In particular we show how, by modulating a 2D photonic structure with
propagating acoustic waves, it is possible to obtain a new type of chiral quantum
optics in two dimensions, where photons are emitted into a single, highly focused
beam with a slow radial decay.

In the last part of the chapter, we discuss the general conditions to implement
and observe all these e↵ects. In particular, we propose a possible implementation
consisting of solid-state defects coupled to a photonic crystal structure modulated
by a propagating surface acoustic wave.

For this work I performed all the analytic and numerical calculations under the
supervision of P. Rabl. A publication of these results is currently under preparation.

6.1 Model

In this chapter we consider a setup similar to the one presented in 3.2.1, where
Na two-level atoms or solid-state emitters are coupled to the field of a modulated
photonic crystal waveguide. We assume that the emitters are dominantly cou-
pled to photons of a single propagation band with a quadratic dispersion relation
!(k) � !e + �hk2�(2m∗) as shown in Fig. 6.1(b). To keep the discussion as simple as
possible we will primarily focus on homogeneous waveguides, where !e is the cuto↵
frequency of a given transverse mode and m∗ ≈ !e

�h�c2 the e↵ective mass. However,
as will be discussed in more detail in Sec. 6.5, our analysis can be generalized to
narrow bandwidth waveguides, where very strong couplings and much smaller group
velocities, i.e., much larger values of m∗, can be realized.

Compared to Sec. 3.2.1 here we assume that the waveguide is subject not only to
a spatial modulation but also to a time-dependent one. Specifically, we will focus on
refractive index modulations, n(z, t) = n+ �n(z, t), induced by propagating acoustic
waves via acousto-optical or optomechanical interactions [188, 189, 192, 193, 194],
as shown in Fig. 6.1(a). However, all of the following results can be generalized
to other electro-optical or Kerr-modulation schemes as well. The refractive index
modulation creates an e↵ective potential for the photon V (z, t) ∼ �n(z, t) that leads
to the following time-dependent Hamiltonian:

H =
N

a

�
i

�h��e�i�e� + �hg
N

a

�
i=1
�a†(zi)�i− + �i+a(zi)� +Hf(t), (6.1)

where � = !a − !e with !a being the transition frequency of the emitters and

Hf(t) = �
L

0

dz a†(z)��h!e −
�h2@2

2m∗@z2 + V (z, t)�a(z), (6.2)
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(c)(b)

(a)

IDT

acoustic wave
emitted photon

emitter

Figure 6.1: Sketch of a waveguide QED setup with multiple two-level emitters coupled to
photons inside a 1D photonic channel. A strong acoustic wave creates a modulation of the
refractive index, which propagates along the waveguide with velocity v and modifies the
emission properties. (b) Dispersion relation !(k) of the unperturbed waveguide, which
is assumed to be approximately quadratic above the edge frequency of the propagation
band, !e. (c) In the presence of the acoustic wave, the photon emission is determined by
the tilted Floquet quasi-energy bandstructure !̃n(k), which is plotted for Va�Er = 0.2 and
⌦�⌦r = 0.4. In (b) and (c) the circles indicate the resonance conditions given in Eq. (6.18),
which determine the set of wavevectors k↵ that contribute to the overall emission rate.

is the Hamiltonian of the acousto-optical waveguide of total length L→∞. In (6.1)
we further assumed that the coupling strength g(zi) � g is approximately the same
for all emitters, which are located at positions zi along the waveguide (note that
here g has dimension [g] = Hzm1�2).

Throughout this chapter we will consider the case of a perturbation of the form
V (z, t) = V (z − vt), that propagates at constant velocity v > 0 along the positive
longitudinal direction of the waveguide. This means that Hamitonian (6.1) can be
tackled not only in the lab frame at rest with the emitters but also in the frame
co-moving with the propagating potential. This description will be particular useful
for the case of a moving localized potential that will be discussed in section 6.3.2.
The change to the co-moving frame can be done by using the unitary transformation
H̃ = THT † + i�hṪT †, where

T = eip̂vt = e�hvt ∫ dza(z)† @

@z

a(z) (6.3)

transforms the bosonic operators according Ta(z)T † = a(z − vt). Applying such
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transformation and relabelling the integration variable we get the following Hamil-
tonian in the co-moving frame,

H =
N

a

�
i=1
�h��e�i�e�+�

L

0

dz a†(z)�−
�h2@2

2m∗@z2 + V (z) + i
�hv @
@z
�a(z)+�hg

N
a

�
i=1
�a†(zi − vt)�i− +H.c.� .

(6.4)
We note that in this frame the system is similar to the case considered in chapter 5
where we had quantum emitters moving close to a waveguide. The di↵erence with
respect to this case is the presence of an additional drift term in the photonic part
of the Hamiltonian, which can lead to di↵erent results, as we will see later below.

6.2 Photon emission in an acousto-optical waveguide

In a first step we are interested in the spontaneous emission of photons from a single
emitter, which is initially prepared in the excited state �e�. In the absence of the
acoustic perturbation, i.e V = 0, and for not too strong coupling g it is possible
to use the Markov approximation to derive an e↵ective equation for the decay of
the excited state amplitude. In particular, as we derived in 2.2.1, the resulting
decay rates are given by: �R = �L = g2��vg(kR�L)� where vg(k) = @!(k)�@k is the
group velocity and the two wavevectors kR = −kL are determined by the resonance
condition !eg = !(kR�L). In this section we will derive the corresponding emission
rates for the model (6.1) and we will show that the time modulation of the waveguide
can lead to a dynamical control of the atomic emission both in rate and direction.

6.2.1 Bloch-Floquet theory of spontaneous emission

Bloch-Floquet decomposition

Let us consider the case of a propagating periodic potential V (z, t) = Va coska(z − vt)
induced by a right-propagating acoustic wave with wavelength � = 2⇡�ka and fre-
quency ⌦ = vka. Note that this specific choice for the potential does not a↵ect the
generality of the results. The problem is similar to that one treated in Sec. 3.2.1
but the time-dependent modulation of the Hamiltonian makes the solution more
involved. In order to tackle the problem let us work in the lab frame at rest with
the emitters but similar results can be also obtained in the co-moving frame. In
this case it is convenient to change into the interaction picture with respect to the
decoupled Hamiltonian H

0

= �h!a�e��e� +Hf(t). In this new representation, the field

operator a(z, t) = U †(t)a(z)U(t), where U(t) = T e− i�
h

∫ t

0 dsH0(s), can be written in
terms of a Bloch-Floquet expansion as

a(z, t) = 1√
L
�
n,k

eikzunz(z, t)ank, (6.5)

where n is the band index, k ∈ [−ka�2, ka�2] lies within the Brillouin zone defined
by the phonon wavevector ka and the ank (a†

nk) are bosonic annihilation (creation)
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operators. The unk(z + �, t + 2⇡�⌦) = unk(z, t) are periodic functions satisfying the
di↵erential equation

u̇nk(z, t) = −
i
�h �
�h!c −

�h2

2m∗ �
@

@z
+ ik�

2

+ V (z, t)�unk(z, t), (6.6)

and can be decomposed as

unk(z, t) = e−i!̃n

(k)t ∞
�

`=−∞
u
(`)
nk e

i(k
a

z−⌦t)`, (6.7)

where ` is the Floquet index. The decomposition (6.7), once inserted in (6.6), leads

to the following eigenvalues equation for the coe�cients u(`)nk :

�
l

H``′u(`)nk = !̃n(k)u(`)nk , (6.8)

where

H``′ =
�����������

⌦r(` + k
k
a

)2 −⌦`, ` = `′,
V
a

2

�h , �` − `′� = 1,
0, otherwise,

(6.9)

and ⌦r = �hk2

a�(2m∗). The numerical solution of this eigenvalues problem gives us

the Bloch-Floquet coe�cients u
(`)
nk and the quasi-energies bands !̃n(k) shown in

Fig. 6.1(c), which for a static potential just correspond to the usual Bloch bands.
As we discussed in Sec. 3.2.1 for Va�Er � 1, where Er = �h⌦r is the photonic recoil
energy, the lowest bands become well separated and more and more flat. For finite
propagation velocity v, we observe an additional asymmetric distortion, and in par-
ticular, !̃n(k) ≠ !̃n(−k). By using the decomposition (6.7) and assuming z

1

= 0, the
remaining interaction Hamiltonian can be written as

HI(t) =
�hg√
L
�
kn`

u
(`)
nk e

−i(!̃
n

(k)+⌦l−!
a

)tank�+ +H.c.. (6.10)

Before we proceed, in order to be consistent with the derivation and in particular
with the interaction picture description, we prove that the commutation rules

[a(z, t), a(z′, t)] = 0, [a†(z, t), a†(z′, t)] = 0,
[a(z, t), a†(z′, t)] = �(z − z′), (6.11)

are fulfilled at each time t. The first equation comes directly from the standard
bosonic commutation relations [ank, an′k′] = 0. The second equation is also satisfied,
as shown in the following:

[a(z, t), a†(z′, t)] = 1

L
�

nn′kk′
eik(z−z′)unk(z, t)u∗nk(z′, t)[ank, a†

n′k′] =

= 1

L
�
nk

eik(z−z′)�
``′

u
(`)
nku

∗(`′)
nk eika(`z−`′z′)e−i⌦(`−`′)t = 1

L
�
k`

ei(k+`ka)(z−z′) = �(z − z′).
(6.12)
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Here between the first and the second line we have used [ank, a†
n′k′] = �k,k′�n,n′ and

between the second and the third line we used the orthogonality of the Bloch coef-
ficients, ∑n u

(`)
nku

(`′)
nk = �``′ .

Evaluation of the decay rates

The interaction Hamiltonian (6.10) allows us to solve the dynamics of the sponta-
neous emission process. The generic time-dependent state can be written as

� (t)� = �ce(t)�+ +�
nk

�n(k, t)a†
nk� �g��vac� (6.13)

and its evolution is determined by the time dependent Schrödinger equation, which
gives the following equations of motion:

ċe(t) = −i g√
L
∑nk �n(k, t)unk(z1, t)ei!a

t (6.14)

�̇n(k, t) = −i g√
L
ce(t)u∗nk(z1, t)e−i!a

t. (6.15)

After inserting the second equation into the first we obtain the integro-di↵erential
equation:

ċe(t) = −
g2

L
�
nk

�
``′

u
(`)
nk [u

(`′)
nk ]∗e−i⌦(`−`

′)t�
t

0

dt′ei(�nk−⌦`′)(t−t′)ce(t′), (6.16)

where �nk = !a−!̃n(k). This expression can be simplified by observing that, similarly
as done in section 5.1.2, the terms ` ≠ `′ are fast oscillating compared to the system
dynamics and can be neglected if g�

√
�� ⌦. We thus obtain the following simplified

expression for the time evolution of the atomic amplitude:

ċe(t) = −
1

L
�
nk`

�gu(`)nk �2�
t

0

dt′ei(�nk−⌦`)(t−t′)ce(t′). (6.17)

This expression shows that resonant interactions between the emitter and the field
can occur at multiple wavevectors k↵, which satisfy the condition

!eg = !̃n
↵

(k↵) +⌦`↵, (6.18)

for a band index n↵ and a Floquet index `↵ [see Fig. 6.1(c)]. The emission rate

into modes around k↵ will depend on the coupling ḡ↵ = gu(`↵)n
↵

k
↵

and the quasi group
velocity ṽg↵ = vg(k↵, n↵) = @!̃n

↵

(k)�@k�k=k
↵

. If we assume that the atomic frequency
lies inside the n-th band away from edges or divergences in the density of states, we
can perform a Born-Markov approximation in the limit g�

√
� � Bn, where Bn is

the width of the n-th band. This can be done by linearising the dispersion relation
around each resonant solution of (6.18) and in this way equation (6.16) reads in the
continuum limit:

ċe(t) � −�
↵n

�ḡ↵�2
2⇡ �

∞
0

d⌧ �
⇡�a
−⇡�a dk e

−iṽ
g↵

(k−k
↵

)⌧(✓[ṽg] + ✓[−ṽg])ce(t)

= −�
↵l

�ḡ↵�2
ṽg↵
�
∞

0

d⌧ �(⌧)(✓[ṽg↵] + ✓[−ṽg↵])ce(t) = −�
�R

2
+ �L

2
� ce(t).

(6.19)
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Figure 6.2: (a)-(b) Directional parameter D as a function of � and Va in (a) and ⌦ in
(b). In (a) we fixed ⌦�⌦r = 0.2 while in (b) Va�Er = 0.2. In both plots the dashed black
lines represent the band edge frequency. (c) Sketch of the bandstructure !n(k) in the
unperturbed case. Here the red arrow indicates the Brillouin scattering resonances.

In this derivation we have separated the total emission rates into right- and left-
propagating modes that are obtained by summing over all resonant k-vectors:

�R,L =�
↵

�ḡ↵�2
�ṽg(k↵)�

✓[±ṽg(k↵)], (6.20)

where ✓(x) denotes the Heaviside step function. In the next section we will show how
the dynamical modulation of the waveguide can lead to a directional and controlled
emission.

6.2.2 Photon dragging and directionality

In order to understand the modification in the emission process induced by the pres-
ence of a strong acoustic wave we can define the following directionality parameter

D = (�R − �L)��0

, (6.21)

which quantifies the di↵erence between the emission rates into right (positive values
of D) and left (negative values of D) propagating modes. Note that, compared
to the analogous parameter defined in (5.16), here D is normalized respect to the
characteristic decay rate �

0

= g2��vg(ka�4)� = 2g2ka�⌦r. In figure 6.2(a)-(b) we
plot this parameter as a function of the potential depth (a) and the acoustic wave
frequency (b). Both plots show the appearance of two frequency windows with
opposite directional emission.

For a weak perturbation and low frequencies, Va, �h⌦ � Er, directional emission
occurs only at two specific resonances

� = !a − !e �
⌦r

4
∓ 1

2

�
⌦2 + �Va

�h �
2

. (6.22)

In particular, in the limit of Va → 0, � � ⌦

r

4

∓ ⌦

2

and these resonances can be
understood from a regular Brillouin scattering process between modes k and k′ =
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Figure 6.3: Construction of the quasi bandstructure !̃n(k). The left plot shows the band-
structure, (mapped to the first BZ) in di↵erent Floquet sectors. The acoustic potential
couples dispersion branches in di↵erent Floquet sectors and in di↵erent Bloch bands.
When mapping the coupled branches into a single BZ, the di↵erent BZ of the original
bandstructure must be simultaneously shifted in frequency by ±⌦. In the right part of
the plot is shown the e↵ect that a finite perturbation, Va�Er = 0.05, has on the band
structure. In (a) we explain the forward emission process. (b) and (c) is illustrate the
backward emission process with two di↵erent mapping. The mapping illustrated in (b)
clearly indicates the main resonances while in (c) is shown the mapping implicitely used
in the Floquet decomposition. In all the plots we considered ⌦�⌦r = 0.2.
k + ka of the unperturbed waveguide. This scattering process is resonant only for
wavevectors that conserve the energy of the process, i.e. !(k) +⌦ = !(k′). This is
the transition of the kind indicated by the red arrow in Fig. 6.2(c) which leads to an
avoided crossing (band gap opening) for finite Va. When either kR or kL lies within
this avoided crossing, the corresponding left- or right-propagating emission channel
is suppressed and the emission becomes directional.

This mechanism can also be understood by looking at the resonances in the
quasi-energy band-structure, which is defined within the first Brillouin zone (BZ)
associated with acoustic wavevector ka. The left part of figure 6.3 graphically shows
how the quasi-energy bands are built from the static one. Here we considered the
Va → 0 limit to better visualize the connection of this representation with the original
dispersion. Compared to the static case, where the branches of the dispersion are
mapped to the first BZ by applying a momentum shift multiple of ka, in the time-
dependent case the branches are simultaneously shifted in frequency by ±⌦,±2⌦, ....
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Figure 6.3(a) explains the forward emission process indicated in Fig. 6.2(a) by 1 .
Here, in correspondence of the main resonance, ` = 0, there is a crossing of the left
branches of the first two bands that becomes a gap when the perturbation strength
Va is not negligible. In this case only right propagating photons can be emitted. The
same argument can be used also to explain the backward emission indicated by 2 in
Fig. 6.2(a). In this case the main resonance intersects the second band and the gap
arises in correspondence of the right propagating branch, as shown in Figure 6.3(b).
Note that in our Floquet decomposition the two branches of the second band are
labelled by ` ± 1. Thus, we are implicitly folding the dispersion relation in the first
BZ by using the mapping shown in Figure 6.3(c) and not that one illustrated in
Figure 6.3(b). In this case the the two main resonances are in correspondence of
` = ±1 and, when Va is not negligible, the right propagating one is suppressed by the
gap.

For a stronger potential, Va�Er � 0.1 the simple Brillouin scattering picture
does no longer apply and the emission characteristics changes substantially. In this
regime the photons become strongly confined by the potential and therefore they
are dragged along rather than being scattered by the acoustic wave. As a result, the
two narrow resonances evolve into broad windows, where strong directional emission
occurs. Interestingly, even in this photon-dragging regime a preferred emission in
the direction opposite to the acoustic wave can occur, although this e↵ect is less
pronounced than the forward emission.

Importantly, the presence of the acoustic wave can not only lead to a directional,
but also to a significantly enhanced rate of emission [see 3 in Fig. 6.2(a)]. This
enhancement arises, first of all, from an overall reduction of the quasi group velocity
ṽg. In addition, for ⌦ > 0 the tilting of the quasi energy bands can introduce new
divergencies in the e↵ective photonic density of states ∼ 1�ṽg, which have no analogue
in static lattices. Physically, such divergencies occur when the original photonic
group velocity matches the speed of sound, in which case the emitted photons reside
in the vicinity of the emitter for a very long time.

This e↵ect is closely related to the emission of Cherenkov photons by atoms
moving close to slow-light waveguides discussed in chapter 5. Note, however, that
the process of photons being emitted from a moving atom into a periodic structure
and the emission of photons into a moving photonic lattice are not the same, since
the presences of a periodic structure breaks Galilean invariance (see also [176]) as
also confirmed by the appearance of the additional drift term in the co-moving
frame Hamiltonian (6.4). A limit that shows the di↵erence between the two cases is
when the acoustic wave is propagating at very high velocities, i.e. ⌦ � ⌦r. In this
situation, compared to the moving atom case, all the directional emission features
vanish and the perturbation is not able anymore to drag the photons along.

6.2.3 Acoustic emission control

One remarkable property of our setup is that by tuning the shape and the strength
of the acoustic wave we can achieve a control over the emission of the atom. To make
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Figure 6.4: (a) Plot of the excited state probability pe(t) for an emitter with a frequency !a

slightly below the band edge. During the time interval �TR = t2 − t1 a right-propagating
acoustic wave passes the emitter and induces a strong decay. After the acoustic wave
has passed the emission is again inhibited until a second left-propagating acoustic packet
induces again a decay for a time interval �TL = t

4

− t
3

. The solid red line shows the
results from a numerical simulation of the full Hamiltonian and the dashed line the results
obtained from a Markovian theory with time-dependent decay rates �R,L(t) evaluated from
Eq. (6.20). (b) Plot of the emitted photon wavepacket ��(z, t)�2, which shows that during
the two time intervals the photon is emitted into di↵erent directions. The parameters for
both plots are Va�Er = 0.4, ⌦�⌦r = 0.6, ��⌦r = −0.3 and g�(√�⌦r) = 0.05.
this point clearer let us consider an emitter with a frequency !a < !e well within
the band gap, such that initially the emission is strongly suppressed. Figure 6.2
shows that for large enough Va the acoustic wave can open up an emission window
for frequencies below the edge !e, where otherwise no propagating photonic modes
exist. The example shown in Fig. 6.4 illustrates, how this feature can be used
to achieve full acoustic control over the emission dynamics. At time t

1

a right-
propagating acoustic wave of finite length is sent through the waveguide and induces
a decay into right-propagating photons during the time interval �TR = t2 − t1. Once
the acoustic wavepacket has passed the emitter, the decay process stops half way
in between. After a certain waiting time a second wavepacket propagating in the
opposite directions leads to a decay of the remaining population by emitting photons
to the left. Note that in the absence of other decay channels, the whole process is
fully coherent and produces a superposition between a right- and a left-propagating
photon.

In Fig. 6.4 (a) the evolution of pe(t) is calculated from Eq. (6.20) with rates
�R,L(t) ∼ Va(t) that simply follow the slowly-varying envelop of the modulation.
This approximate Markovian theory is compared with an exact simulation of the
emission process based on the full Hamiltonian (6.1). We see that within the regime
of validity, g�

√
�� ⌦r, the system dynamics is captured very well by the Markovian

model, which justifies the extension of this theory to multiple atoms as will be dis-
cussed below. The main discrepancy actually arises from the initial preparation step,
where the system quickly evolves into an atom-photon bound state with a residual
photonic component [see chapter 3]. This bound-state physics is not captured by the
Markov approximation, but can be taken into account by a more accurate modelling
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of the initial preparation step.

6.3 Quantum networking applications

In the previous section we have shown how a controlled directional emission can be
achieved in acousto-optical waveguides. This can already be useful for enhancing
the detection e�ciency of photons emitted from a single atom or defect. On the
other hand in section 2.2.2 we discussed how such directionality becomes an essential
ingredient for various quantum communication schemes, where propagating photons
are used to distribute quantum states or to generate entanglement between multiple
emitters along the waveguide [127, 21, 23, 25, 26]. In this context it is not only
important to emit photons into a preferred direction, but also to e�ciently reabsorb
the photons by a second emitter. In the following we will show in terms of two
basic examples, the new possibilities that are o↵ered by acoustic control schemes for
optical quantum networking applications.

6.3.1 Steady-state entanglement

Master equation formalism

Here we derive a master equation for the reduced density operator ⇢ of Na emitters
located at position zi along the waveguide. Similarly as done in section 2.2 we write
the total Hamiltonian (6.1) in interaction picture and we separate the contributions
corresponding to the right (R) and left (L) propagating modes:

HI(t) = �hg�
i

�[FR(zi, t) + FL(zi, t)]�i+ +H.c.� , (6.23)

where we defined the right- and left-propagating field operators:

F⌘(z) =
1√
L
�
n,k

unk(z, t)eikzank✓[±ṽg(k, n)] (6.24)

and in the Heaviside function we assigned the values ± to ⌘ = R,L. Note that here
we have identified the direction of propagation of the modes through the sign of the
group velocity because in this case, compared to section 2.2, it does not coincide
with the sign of the wavevector.

If we assume the field to be initially in the vacuum state we can proceed as done
in section 2.2 and evaluate the correlation functions A⌘

ij and B⌘
ij given respectively

in (2.5) and (2.6). By using again the Bloch-Floquet decomposition (6.7) the term
AR

ij in the continuous limit reads

AR
ij =

g2

2⇡ �
∞

0

d⌧ �
n``′
�

⇡�a
−⇡�a dku

(`)
nk [u

(`′)
nk ]∗eik(zi−zj)eika(zi`−zj`

′)e−i⌦(`−`′)tei(�nk−⌦`′)⌧✓[ṽg(k, n)]

� g2

2⇡ �
∞

0

d⌧�
n`
�

⇡�a
−⇡�a dk�u

(`)
nk �2ei(k+ka`)(zi−zj)ei(�

n

k

−⌦`)⌧✓[ṽg(k, n)],
(6.25)
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where �nk = !a − !̃n(k). Between the second and the third line we neglected the fast

oscillating terms ` ≠ `′ under the assumption g�
√
�� ⌦. As before we can linearise

the dispersion relation around the resonant solutions of (6.18) and the previous
equation reduces to

AR
ij =�

↵

�g↵�2
�ṽg↵�

ei(k↵+ka`↵)(zi−zj)�
∞

0

d⌧�(⌧ − (zi − zj)
ṽg↵

)✓[ṽg↵]

=�
↵

�g↵�2
�ṽg↵�

ei(k↵+ka`↵)(zi−zj)✓[zi − zj]✓[ṽg↵].
(6.26)

Similarly we get for the other coe�cients:

AL
ij =�

↵

�g↵�2
�ṽg↵�

ei(k↵+ka`↵)(zi−zj)✓[zj − zi]✓[−ṽg↵], (6.27)

BR
ij = A∗Rij and BL

ij = A∗Lij . Here the index ↵ runs again over all resonant wavevectors
k↵ and band indices n↵ in the quasi-energy band structure. Going back to the
Schrödinger picture with respect to the atomic frequencies we finally get the master
equation:

⇢̇ = − i�h[Ha,⇢]+�
ij

(AR
ij+AL

ij) ��j−⇢�i+ − �i+�j−⇢�+(A∗Rij +A∗Lij ) ��i−⇢�j+ − ⇢�j+�i−� , (6.28)

where Ha = ∑i
�h!a�e�i�e� is the atomic Hamiltonian.

Discussion

We want to study the generation of stationary entangled states between two distant
emitters located at positions z

1

< z
2

along the waveguide. For this purpose, we as-
sume that both emitters are continuously driven by an external laser with frequency
!L = !eg + �L and exchange photons via the waveguide. In this case the master
equation (6.28) can be rewritten in the form:

⇢̇(t) = − i�h �He↵

⇢ − ⇢H†
e↵

� +J (⇢). (6.29)

Here the first term describes the system evolution under the e↵ective (non-Hermitian)
Hamiltonian H

e↵

. In the frame rotating with the laser frequency !L it reads

H
e↵

= �
i=1,2
�h �−�L�e�i�e� +

E
2
�ei�i�i+ + e−i�i�i+��

− i
�h�
2
�e�

1

�e� − i
�h�
2
�e�

2

�e� − i�hAR�
2+�1− − i�hAL�

1+�2−,
(6.30)

where E is the Rabi frequency, �i are locally adjustable laser phases and we set
AR = AR

21

and AL = AL
12

. Eq. (6.30) shows that each individual emitter decays with
rate � = �R + �L + �ng

, where �R,L are the same as defined in Eq. (6.20) and �
ng
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Figure 6.5: (a) Plot of the ✏ parameter, concurrence C and purity P of the atomic state
as function of time. Here we keep the acoustic potential o↵ until the time T

1

. During the
time interval T

2

− T
1

the potential is switched on until it reach the value Va�Er = 0.4 and
it is kept constant until the end of the protocol. Here we assumed ��⌦r = 0.08, ⌦�⌦r = 0.2,
g�√� = 0.08, �bg��0 = 0.001. (b) Steady state concurrence Cs as function of � and Va for
⌦�⌦r = 0.2. Here we fixed the Rabi frequency to be always E = 1.3� and we included the
residual decay �bg��0 = 0.002.
accounts for residual decay into non-guided modes. In addition, there are correlation
e↵ects ∼ �2+�1− and ∼ �1+�2−, which arise from the coherent emission and reabsorption
of photons that are mediated by the coe�cients AR,L. The last term in Eq. (6.29)
is the recycling term introduced in Sec. 2.2.2. It ensures that probabilities are
conserved, and is given by

J(⇢) = �
i=1,2

�i�
i−⇢�i+ + (AR +A∗L)�1−⇢�2+ + (A∗R +AL)�2−⇢�1+. (6.31)

For the ideal case of a fully directional, single channel waveguide we obtain AR =
�ReikR(z2−z1) and AL = 0. In this limit the system is equivalent to the unidirectional
waveguide shown in section 2.2.2 and the master equation (6.29) has a unique pure
steady state, ⇢(t → ∞) = �D��D�, where the dark state �D� obeys H

e↵

� 
0

� = 0. For
�L = 0 and setting �i = −ikRzi to compensate for the propagation phase, this state
is the same as the one given in (2.22):

�D� =
�
��� �2

R

�2

R + 2E2
��gg� − i

√
2E
�R

�S�� , (6.32)

where �S� = (�ge� − �eg�)�
√
2 is the maximally entangled singlet state. Therefore,

for E ∼ �, the system evolves by itself into a highly entangled steady state without
any precise switching of control pulses. As we discussed in Sec. 2.2.2 this method
can also be generalized for the generation of more complex entangled states between
multiple emitters.

Under non-ideal conditions �L ≠ 0 and �AR� < �R the dark state condition
H

e↵

�D� = 0 can no longer be fulfilled perfectly and the purity, P = Tr{⇢2}, as well
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as the degree of entanglement of the steady state is degraded. While in principle
a pure entangled state can also exist for finite �L, it relies on an exact interference
between right-and left-propagating modes and becomes very sensitive to the exact
positioning of the emitters. By requiring that the protocol to be insensitive to the
exact positions z

1

and z
2

, we identify a single parameter

" = ��AR� − �AL��
�

, (6.33)

which takes all the relevant deviations from an ideal unidirectional waveguide into
account. In Fig. 6.5(a) we consider the current acousto-optical waveguide setting
and we implement the previously mentioned entanglement protocol. Here we assume
that the atomic frequency lies initially in the band and we gradually switch on the
acoustic potential [see lower plot of Fig. 6.5(a)]. We plot the " parameter together
with the purity and the concurrence C [see section 2.2.1] of the atomic state. We see
that once we enter in the ideal unidirectional regime, " ∼ 1, it is possible to prepare
the steady state (6.32) and to generate entanglement among the qubits. This is also
confirmed in Fig. 6.5(b) where the steady state concurrence averaged over di↵erent
distances d = �z

2

− z
1

� is plotted in terms of the system parameters. This figures
shows that the protocol works e�ciently when a strong forward emission for a single
emitter occurs. On the other hand in the backward emission window this is only
partially the case and the concurrence reaches a maximum value of C ∼ 0.6 only in
the small perturbation limit.

6.3.2 An acoustic conveyor belt for light

In all the examples discussed so far we have studied the e↵ects of continuous acous-
tic waves in the regime, where the emitter-field coupling is su�ciently weak. Under
these conditions a Markovian treatment of the emission and reabsorption process is
valid and determined by the structure of the quasi-mode continuum !̃n(k). How-
ever, due to the tight transverse confinement, this weak coupling assumption can
be violated in nanophotonic waveguides, when the atomic frequency is close to a
divergence of the density of states or in the band gap as discussed in chapter 3. In
this section we consider a case where these features, combined with a strong and
localized acoustic modulation, give rise to a non-Markovian mechanisms for manip-
ulating the interaction between emitters and photons. In particular, we focus on
the case, where the frequency of the emitters lies within the band gap, !a < !e, and
we assume a short acoustic pulse of the form:

V (z, t) = −Va cos[ka(z − vt)]e−
(z−vt)2
2�z

2 , (6.34)

where �z is in the order of a few wavelengths. As shown in Fig. 6.6(a), this
wavepacket creates a localized potential well, which for su�ciently strong Va can
drag along photons with it. In the following we will present an e↵ective model
to describe this configuration and we will then discuss its potential for quantum
networking applications.
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E↵ective model

To study this problem it is more convenient to work in the frame co-moving with
the acoustic pulse. The co-moving frame Hamiltonian (6.4) provides an e↵ective
Schrödinger equation for the photons

(E − �h!e)�(z) = �−
�h2

2m∗
@2

@z2
+ V (z) + i�hv @

@z
��(z). (6.35)

The photonic eigenstates consist of unbound states �k(z) with k ∈ [−∞,+∞] and
energies Ek = �h!k inside the band and bound states �n(z) with energies En =
�h!n below the band edge !e. These eigenstates can be modelled respectively by a
continuum and a discrete set of photonic modes, i.e. ak and an, and allow us to
decompose the field operator as a linear combination of these modes:

a(z) = � dk�k(z)ak +�
n

�n(z)an. (6.36)

Let us considering the interaction of a single emitter located at position z
1

with
a frequency below the band edge. The previous field decomposition allows us to
rewrite Hamiltonian (6.4) in the interaction picture as:

HI(t) = �hg� dk(�k(z1(t))ei�ktak�++H.c.)+�hg�
n

(�n(z1(t))ei�ntan�++H.c.) (6.37)

where z
1

(t) = z
1

− vt, �k = !a − !k and �n = !a − !n. Proceeding as usual we can use
this Hamiltonian to evaluate the evolution of the atomic amplitude ce(t), which is
described by the following integro-di↵erential equation

ċe(t) = − g2� dk′�
t

0

dt′ k(z1(t)) ∗k(z1(t′))ei�k(t−t′)ce(t′)

− g2�
n
�

t

0

dt′ n(z1(t)) ∗n(z1(t′))ei�n(t−t′)ce(t′).
(6.38)

Let now assume in addition that the emitter is tuned close to the resonance of the
lowest bound state with energy E

0

= �h!
0

. In the limit where all the other modes are
o↵ resonance, i.e. g�

√
� � ��n,k� n ≠ 0, we can isolate the 0-th mode from the sum

in (6.38) and integrate by parts all the rest. We thus end up with;

ċe(t) � −i⌃(t)ce(t) − g2�
t

0

dt′ 
0

(z
1

(t)) ∗
0

(z
1

(t′))ei�0(t−t′)ce(t′), (6.39)

where the e↵ect of all the other modes is just restricted to a frequency shift given
by the self energy

⌃(t) = g2 �� dk
� k(z1(t))�2

�k
+�

n≠0
� n(z1(t))�2

�n
� . (6.40)

To get this expression we neglected all the other contributions coming from the
integration by parts assuming that not only g�

√
�� ��n,k�, but also ⌦� ��n,k�. This
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last assumption comes from terms of the form ∼  ̇k,n(z1(t)) in the integration. In
most of the relevant cases the e↵ect of frequency renormalization given by the self
energy is negligible and we can approximate !a + ⌃(t) � !a. We notice that this
procedure of adiabatic elimination of the o↵ resonant field is closely related to that
one used in section 3.1.4 to derive the dipole-dipole interaction in a photonic band
gap.

Finally, by going back to the Schrödinger picture, we observe that equation (6.39)
can be directly obtained by an e↵ective moving cavity model. In particular, after
generalizing this result to many emitters with the same frequency !a, we obtain that
the e↵ective Hamiltonian

H
mc

(t) = �h!a�e��e� + �h!0

a†
0

a
0

+ �h�
i

gi(t)(a†
0

�i− + a0�i+). (6.41)

Here gi(t) = g��0

(zi−vt)� is the e↵ective coupling strength between the bound photon
and the i-th emitter. This means that for a finite speed of sound, these photonic
states can be dragged along by the acoustic wave and mediate interactions between
di↵erent emitters. In the following we are going to discuss an excitation transfer
application for this model.

Discussion

An interesting feature of the e↵ective Hamiltonian (6.41) is its formal equivalence to
models that were used for a long time in the context of atomic cavity QED to describe
the interaction of multiply Rydberg atoms flying through a single resonator [195, 196,
197]. However, here the roles are reversed, allowing the successive interaction of fixed
emitters with a common cavity mode that is carried by the acoustic wavepacket along
the waveguide. The fact that it is the “cavity” and not the emitters that is moving
is much more interesting and promising for quantum networking applications.

In Fig. 6.6(b) we show how this acoustic conveyor belt can be used for imple-
menting a state transfer protocol between two emitters located at positions z

2

> z
1

.
In this example, the first emitter is initially prepared in the excited state �e� and we

are interested in the excitation probability of the second emitter, p(2)e (Tf), at a final
time Tf , once the acoustic wave has left the interaction region. The frequencies of
both emitters are set to !a = !0

, which matches the frequency of the lowest photon
bound state for a potential depth of Va�Er = 0.5. From the plot we see an almost
perfect transfer of the excitation between the two emitters, where the delay be-
tween photon emission and re-absorption just corresponds to the propagation time
(z

2

− z
1

)�v. We also find a very good agreement between the numerical simulation
and the e↵ective theory as expected in the limit g�

√
�� ��n,k�.

In the example shown in Fig. 6.6(b) the potential parameters Va and �z have
been chosen to achieve perfect resonance conditions, !a = !0

, and to obtain a cou-
pling gi(t) satisfying ∫

T
f

0

gi(t)dt = ⇡, in order to realize a complete transfer between
the photon and the emitter. It is important to underline that for given !a is possi-
ble to shape the acoustic wavepacket in order to match the atomic resonances. In
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Figure 6.6: (a) Sketch of the set up where the interaction among the atoms is mediated
by the photonic bound state of a propagating potential well. (b) Excitation transfer
between two atoms as function of time as predicted for the full model (continuous line)
and the e↵ective moving cavity model (dashed lines). The two qubits are located at
a distance �z

2

− z
1

��� = 6 with frequencies tuned to ��⌦r = −0.096. The potential has
parameters Va�Er = 0.5, �z�� = 2 and ⌦�⌦r = 0.05. The bare coupling strength is fixed to

g�(√�⌦r) = 0.007. (c) Population of the second atom, p(2)e (Tf), as function of the acoustic
wave width �z and depth Va. The plot is obtained by using the e↵ective cavity model
and the rest of the parameters are the same used in (b).

support of this in Fig. 6.6(c) we plot the second atom population at the end of the

protocol, p(2)e (Tf), as function of the acoustic wave width, �z and strength Va. This
plot demonstrates a lot of flexibility for finetuning the emitter-photon interaction,
assuming that !a, g and the speed of sound are fixed.

6.4 Chiral quantum optics in 2D

For the implementation of larger quantum networks it would be preferable to arrange
the emitters in 2D lattices instead of along 1D arrays to achieve a better connectivity
and scalability. However, photons emitted into 2D waveguides quickly spread into
all directions and for two emitters separated by only several wavelengths, the ability
to deterministically exchange photons becomes vanishingly small. In this section we
show that the mechanism of acoustic emission control can be used to overcome this
problem and to achieve fully directional emitter-emitter interactions even in a 2D
scenario.
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6.4.1 Band structure and directional emission

In the following we generalize our previous model to the case of a 2D photonic
structure, where the photons are strongly confined along the z-axis, but propagate
freely in the x − y plane [see Fig. 6.7(a)]. The field Hamiltonian in this case reads

Hf(t) = � d2r †(r)��h!e −
�h2

2m∗∇
2

r + V (r, t)� (r), (6.42)

where r = (x, y), and V (r, t) is the potential for the photons generated by acoustic
waves inside the 2D waveguide structure. For the following discussion, we will focus
explicitly on a combination of two plane waves propagating in orthogonal directions,

V (r, t) = Vx cos (ka,xx −⌦xt) + Vy cos (ka,yy −⌦yt), (6.43)

with speed of sound and wavelength given respectively by vx = ⌦x�ka,x �x = 2⇡�ka,x
and vy = ⌦y�ka,y �y = 2⇡�ka,y.

To evaluate the emission characteristic of a single emitter under the influence of
this modulation, we focus again on the weak-coupling regime and extend the Bloch-
Floquet theory developed in Sec. 6.2.1 to two dimensions. From this analysis we
obtain the quasi-energy bands !̃n(k), within the first BZ defined by ka,x and ka,y.
Spontaneous emission occurs for all wavevectors, where the resonance condition

!a = !̃n(k) +⌦x` +⌦y`
′, (6.44)

is satisfied, which defines a set of isoenergetic lines within the first BZ. The di↵er-
ential emission rate d�n,`,`′(k) into a specific direction depends again on the local
group velocity ṽg(k) = ∇k!̃n(k) and the amplitude of the corresponding expan-

sion coe�cients u(`,`′)nk . This calculation can be carried out numerically for arbitrary
parameters, but in the remaining discussion we will focus on the regime, where
the acoustic potential is already su�ciently strong such that the bands are well
separated. In this case the emission is dominated by resonances in the lowest quasi-
energy band (n = 1) and with ` = `′ = 0. Under this assumption the total emission
rate is

� � �
res

d�
1,0,0(k) =

g2

2⇡ �
res

dk
�u(0,0)

1k �2
�ṽg(k)�

, (6.45)

where the integration runs over the line of k-vectors satisfying the resonance condi-
tion (6.44) for n = 1, ` = `′ = 0.

In Fig. 6.7 we plot the lowest quasi-energy band together with the vector field
profile of the quasi-group velocity for three di↵erent configurations. For a static
potential, vx = vy = 0, and su�ciently strong amplitude Vx = Vy, the system re-
duces to regular 2D tight-binding lattice with a dispersion relation of the form
!(k) � −2J cos(kx) − 2J cos(ky). As shown in Fig. 6.7(b), in this case the emission
is fully isotropic for !a near the bottom of the band, while in the middle of the
band the group velocities along the resonance line point mainly into four directions.
It has previously been shown [198, 199] that in the ideal tight-binding limit, this
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Figure 6.7: (a) Sketch of the setup where a 2D photonic crystal slab is dynamically
modulated by two orthogonal acoustic waves propagating with velocity vx and vy. (b)-
(d) Two dimensional dispersion relation !̃

1

(k)�⌦r plotted for the case of ⌦ = 0 (b),
⌦�⌦r = (0,0.2) (c) and ⌦�⌦r = (0.2,0.2) (d). In all plots a potential strength of V�Er =(0.4,0.4) is assumed. The black and white curves in the plot represent the isoenergetic path
corresponding to a specific atomic frequency !a. In particular, ��⌦r = −0.14(b)(white line),
��⌦r = −0.045(b)(black line), ��⌦r = 0.1(c)(black line) and ��⌦r = 0.1(d)(black line). The
black arrows represent the vectorial field associated to the photonic quasi-group velocity
ṽg(k).
results in a highly peaked emission of photons along the four diagonals. In realistic
bandstructures as assumed here, the regions of low group velocities near the corners
of the isoenergetic lines can change this picture and result instead in a dominant
emission along the x and y directions (see discussion below). In any case, since
for a static potential the reflection symmetry is not broken, the emission can be
highly peaked, but will always occur into at least four di↵erent directions. In the
presence of the acoustic potential, the bandstructure and therefore the emission be-
comes asymmetric. This is illustrated in Fig. 6.7(c) for a single wave in y direction,
Vx = 0 and Vy ≠ 0, and in Fig. 6.7(d) for the case of two acoustic waves of equal
strength and speed. As in the 1D case, the acoustic wave tilts the quasi energy
bands and for frequencies !a near the upper band edge resonant emission can occur
in one direction, but not along the opposite. For the case where the two acoustic
waves have the same speed [Fig. 6.7(d)] this can lead to a configuration, where all
the group velocities along the resonance line point in the same direction. This seems
to suggest that in this limit we could get a focussed unidirectional emission in 2D.
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Figure 6.8: (a)-(d) 2D plot of ��
12

(R)��� as function of the position of the second atom
r

2

= (x
2

, y

2

) assumed that the first is located in the center of the structure r

1

= 0. The
case considered are the same indicated by the isoenergetic path in Fig. 6.7(b)-(d). (e) Plot
of ��

12

(R)��� for the same cases as before as function of the atom-atom distance assuming
that the second atom is located along the diagonal r

2

= (r, r). (f) State transfer protocol
involving the same pulse for the coupling strength given in [201]. Here we assumed the
second atom to be located at position r

2

= (6,6) and we fix V �Er = 2.5, ⌦�⌦r = (0.3,0.3),
g�����⌦r = 0.085 and ��⌦r = −2.93.
In the following we are going to show that this is indeed the case.

6.4.2 Chiral dipole-dipole interactions

While the explicit evaluation of d�(k) for the scenario described above would al-
ready show a peaked emission into a single direction, it is less useful as a quantitative
measure for assessing the implementation of quantum state transfer protocols be-
tween two emitters located at positions r

1

and r
2

and separated by R = r
2

− r
1

. In
this case also the spreading of photon wavepacket or interference e↵ects must be
taken into account. It is thus useful to consider the correlated decay rate

�
12

(R) = g2

2⇡ �
res

dk
�u(0,0)

1k �2eik⋅R
�ṽg(k)�

(6.46)

that quantifies the ability to emit and reabsorb photons over a given distance. In
Fig. 6.8 the normalized absolute value of �

12

(R) is plotted as function of the second
atom position r

2

assuming that the first atom is located at the center of the structure
r
1

= 0. In particular we consider the various scenarios discussed in Fig. 6.7.
Fig. 6.8(a)-(b) show the two cases where the potential is static. The first plot

clearly shows an isotropic emission, that decays with the distance approximately
as a Bessel function �

12

(R) ∼ J
0

(�k
0

R�) [see the blue line of Fig. 6.8(e)]. Here the
frequency of the Bessel function is given by the resonant wave-vector k

0

. Note that
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this is true within the Markovian description, so it is not valid close to divergencies
in the density of state (for instance at k

0

∼ 0). In particular, close to the band edges
the dipole-dipole interaction becomes short range [see also the discussion done in
Sec. 3.2.2]. In the second plot we consider the isoenergetic path shown by the white
line in Fig. 6.7(b). As we discussed in the previous section, even if the emission
is anisotropic it still occurs in all directions just with di↵erent rates and involving
di↵erent group velocities.

The novelty of considering the propagating perturbation is evident in Fig. 6.8(c)-
(d). In the first figure the acoustic wave is propagating only along the y direction
and the atomic frequency is chosen to intersect the dispersion relation along the
isoenergetic path shown in Fig. 6.7(c). In this case the atomic emission becomes
directional and creates the analogous of a Cherenkov cone (even if here the dispersion
is not linear in contrast with the usual Cherenkov physics).

An even more interesting case arises when the two acoustic waves are propagat-
ing with the same speed. In this case Fig. 6.8(d) clearly confirms the intuitive pic-
ture obtained from the bandstructures and the group velocity profile in Fig. 6.7(d),
namely the ability to obtain a highly focused emission of photons along a single
line. To emphasize this point we plot in Fig. 6.8(e) ��

12

(R)� as a function of the
atom-atom distance assuming that the second atom is placed along the diagonal of
the crystal, r

2

= (r, r). We can see that, while in the static case the correlated decay
decreases quickly with the distance [blue and red lines], in the scenario described by
Fig. 6.8(d) the two emitters can e�ciently interact along this diagonal even when
being many wavelengths apart, i.e. �R� ∼ 30� [see green line]. Of course, by changing
the direction of the two acoustic waves, an emission into any of the four diagonals
can be selected, which provides a full connectivity of 2D arrays.

This result suggests that by using our scheme we could achieve an almost “chiral
1D” interaction in a 2D structure. To confirm this result we implemented a typical
excitation transfer protocol, largely used in chiral waveguide QED [200, 201], that
involves a time pulse on the coupling strength to achieve a perfect absorption of the
emitted photon. The essential ingredient for this protocol is the full unidirectionality
of the waveguide. The result is shown in Fig. 6.8(f), where we were able to achieve
an almost perfect state transfer for an atomic distance of �R� � 10�.

6.5 Implementation

In chapters 2 and 3 we presented di↵erent nanophotonic waveguides and photonic
crystal structures where embedded quantum dots as well as trapped atoms can
be e�ciently coupled to the waveguide modes. For the schemes described in this
chapter, photonic crystal waveguides made out of diamond [122, 137, 117] are of
particular interest. Diamond has excellent optical properties and the sound velocity
v ≈ 104 is considerably higher than in other materials. As we briefly discussed in
chapter 3 there are already several well-studies emitters, like the nitrogen-vacancy
(NV) or the silicon-vacancy (SiV) centers, which are ideally suited for quantum
information processing applications.
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Bulk or surface acoustic waves can be launched into such a photonic waveguide
using electrical interdigital transducers (IDT) that allow to have control on the shape
and on the strength of the acoustic pulse [189, 188, 194]. This waves can induce a
refractive index modulation of the order of �n�n

0

� 10−4 [192, 193]. For an optical
band at a frequency of about !c�(2⇡) ≈ 350 THz, this results in a potential depth
of Va��h = !c

�n
n0
≈ 2⇡ × 35 GHz. On the other hand, for continuous waveguide with

cut-o↵ or in conventional photonic crystals, typical e↵ective masses of the photons
are on the order of m∗ ≈ 5×10−36 kg. In order to show how this implementation can
match the requirements to achieve the acoustic emission control that we proposed,
let us consider separately the localized and the extended acoustic wave cases.

• For the conveyor belt model presented in section 6.3.2, it is necessary that the
system respects the following hierarchy of energy scales

�
ng

� � ∼ ⌦� ��n≠0,k�, (6.47)

where we remind that �n,k is the detuning of the atomic frequency from all the
photonic modes besides the lowest bound state.

To show that (6.47) can be fulfilled we consider an acoustic wavelength of
� ≈ 30µm. In this case we find ⌦�2⇡ ≈ 500MHz and ⌦r�2⇡ ≈ 70GHz, which
leads to the ratios Va�Er ≈ 0.5 and ⌦�⌦r ≈ 0.01. Note that the potential
strength is the same as that one used for the simulations in Fig. 6.6. Such
a potential can induce a photonic bound state with the a detuning from the
band edge of about ��� ≈ 5GHz. This is much bigger than ⌦. On the other
hand decay rates into the waveguide on the order of few hundred MHz can
be easily achieved in nowdays implementations. The main limitation is then
given by dissipation of the system into the environment. For atoms and many
solid-state emitters, this rate is in the range of 1 − 10 MHz. Thus it should be
possible to implement the conveyor belt model by sending acoustic modulation
on top of waveguides with band edges.

• The situation is di↵erent for the extended acoustic wave case presented in
Sec. 6.2. Indeed we have shown that acoustic modulations becomes relevant
when Va and the phonon frequency ⌦ become comparable to the recoil energy
Er and recoil frequency ⌦r, respectively. For an acoustic wave with ⌦�(2⇡) ≈
1 GHz, and � ≈ 15µm, we then obtain ⌦r�2⇡ ≈ 300 GHz. These numbers
give the ratios Va�Er ≈ 0.1 and ⌦�⌦r � 0.003. The main problem in this
configuration is that the acoustic wave is not fast enough to induce a substantial
band deformation. In the following we will show that it is possible to achieve
the regime where acoustic waves and photon co-propagate by considering a
narrow bandwidth waveguide setup.

6.5.1 Slow-light waveguides implementation: a super-lattice model

In order to explore the e↵ects discussed for the extended acoustic wave it is nec-
essary to further reduce the e↵ective photon mass. In general, this can be achieve
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Figure 6.9: (a) Logarithmic plot of the recoil energy ⌦r and of the static bandwidth B

as a function of the the static potential Vst. The dashed lines represent the value of the
acoustic wave frequency ⌦ and potential Va generated by a refractive index modulation of
�n�n � 10−4. Here we fixed the optical frequency to !e�(2⇡) = 350 THz and the acoustic
wavelenght to � = 3a = 15µm. (b) Comparison of the excited state population evaluated
with di↵erent approaches: numerical simulation (blue line), full Floquet theory (red line)
and the e↵ective mass approximation(blue line).

by imposing an additional static potential, V
st

(z), with a periodicity a. If this
potential is su�ciently strong, it will generate a band with dispersion relation
!(k) � (B�2) cos(ka), and with an enhanced e↵ective mass near the origin of
m∗ = 2�h�(Ba2). For a periodicity a which is larger than the optical wavelength,
the bandwidth B can be substantially reduced, as shown in Fig. 6.9(a) for a sim-
ply case of V

st

(z) = V
st

cos(k
st

z) with k
st

= 2⇡�a. In essence, the whole array is
divided into coupled cavities, in which case the propagation is considerable slower
than in regular photonic crystal waveguide. As shown in Fig. 6.9(a) by creating
such a “mini-band” of width B�(2⇡) ≈ 10 GHz, we already obtain m∗ ≈ 10−34kg
and ⌦r�(2⇡) ≈ 10 GHz, which leads to a ratio of ⌦�⌦r ≈ 0.1, consistent with our
requirements. Note that in the presence of the static modulation, the full optical
potential entering in Hamiltonian Hf(t) is given by

V (z, t) = V
st

cos (k
st

z) + Va cos(kaz −⌦t), (6.48)

which in general makes the analysis of the emission processes considerably more
involved than in the case of a continuous waveguide as we will show in the following.

Let us assume a super-lattice configuration where the acoustic wavelength is a
multiple M > 1 of the static potential lattice constant, i.e. � = Ma. In the static
limit V (z, t) = V (z) the acoustic potential breaks each band of the original band
structure generated by V

st

(z) into M sub-bands. Each of these sub-bands can be
described in the first Brillouin zone by a quasi-momentum k ∈ (−⇡��,⇡��] and
labelled by the index n as shown in Fig. 6.10(a). In the case where the acoustic
wave is propagating the description becomes more involved. To solve equation (6.6)
we use the following modified decomposition:

unk(z, t) =�
``′

u
(`,`′)
nk ei(k+ka`)ze−i(!̃n

(k)+⌦`′)t, (6.49)

where, compared to the V
st

= 0 case, we introduce two separate indices `, `′ for space
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and time. Inserting this ansatz into Eq. (6.6) we obtain the Floquet Hamiltonian

HF =

����������������

� �
H

st

+ I2⌦ H+a 0 0 0
H−a H

st

+ I⌦ H+a 0 0
0 H−a H

st

H+a 0
0 0 H−a H

st

− I⌦ H+a
0 0 0 H−a H

st

− I2⌦
� �

����������������

(6.50)

where

H
st,``′ =

�����������

⌦r(` + k
k
a

)2, ` = ¯̀′
Vst
2

�h , �` − `′� =M
0, otherwise

(6.51)

and

H±a,ll′ = �
V
a

2

�h , ` − `′ = ±1
0, otherwise.

(6.52)

Note that now the time dependence is embedded in a bigger time independent
Hilbert space. Similarly to the single potential case by diagonalizing (6.50) we get

the quasi-energies !̃n(k) and the coe�cients u
(`,`′)
nk . Note that the ansatz (6.49)

still satisfies the commutation rules (A.3). The proof is similar to the one detailed
in (6.12) with the only di↵erence that the following relation for the coe�cients should

be used ∑n u
(`,r)
nk u

(`,r′)
nk = �``′�rr′ .

Proceeding as before, we can solve the dynamics described by Hamiltonian (6.10)
working under the assumption g�

√
�� ⌦. Again in the limit g�

√
�� Bn, where Bn

is the width of the n-th band, we can perform a Markov approximation and obtain
the following expression for the total atomic decay rate:

� =�
↵

(∑rr′ g∗↵rg↵r′)
�ṽg↵�

(6.53)

where g↵r = gu(`↵,r)n
↵

k
↵

and the index ↵ labels the solutions of !eg = ⌦l↵ + !̃n
↵

(k↵) with
l↵ = ±1,±2, .... Equation (6.53) shows that more contributions and resonances have
to be taken into account compare to the single potential case. From the expression
for the atomic decay (6.53) a directionality plot, similar to that one of Fig. 6.2,
can still be obtained. As shown in Fig 6.10(b)-(c) a directional emission both in
the forward and backward direction can be still achieved. Here we plot the emit-
ted photonic wavefunction, computed with a full simulation of the model. From
Fig. 6.10(a) we observe that, compare to the single potential case, the chiral emis-
sion is weakly a↵ected by the additional decay channels arising from the modulation
induced by V

st

. A simplified description of this super-lattice configuration can be
obtain for the lower band in the limit where the recoil energy of the static potential,
⌦st

r = �hk2

st

�(2m∗), is large compared to the recoil energy associated with the acoustic
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Figure 6.10: (a) Sketch of the band structure corresponding to a super-lattice with period
M = 3. In the absence of the acoustic perturbation the band structure is determined
only by the static potential V

st

and the bands are labelled by the index m. For a finite
acoustic potential each band breaks into M sub-bands. Here we use the index n to label
all the bands in this configuration. (b)-(c) Snapshot of the emitted photon wavepacket for
V

st

�Er = 2.5 and Va�Er = 0.25. In (b) ⌦�⌦r = 0.3 and ��⌦r = −0.25. In (c) ⌦�⌦r = 0.45
and ��⌦r = 0.3.
wave ⌦r. This is always true in the limit of M � 1 where we recover the continuous
waveguide limit. In this regime the e↵ect of the static potential V

st

consists in just
a renormalization of the e↵ective photon mass that is give by m∗ = 2�h�(Ba2). This
is illustrated in Fig. 6.9(b) , where the exact decay process of a single emitter in
the presence of V

tot

is compared to the theory of Sec.6.2 with a reduced e↵ective
mass and to the full Floquet theory here developed. We observe that this e↵ective
mass approximation is already pretty good for M = 3 as long as the lower band is
considered.
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Chapter 7

Exciting a bound state in the con-
tinuum through multi-photon scat-
tering plus delayed quantum feed-
back

In section 2.3.3 we introduced the bound states in the continuum (BIC) as a class
of states that completes, together with the scattering states, the waveguide energy
spectrum. These are bound stationary states that arise within a continuum of un-
bound states unlike the bound states that occur in band gaps that we extensively
discussed in chapters 3 and 4. In section 2.3.3 we concentrated on the case where
the BIC consist by two emitters dressed with a single photon that is strictly confined
between them [19, 27, 28]. An analogous scenario arises when one of the two atoms
is replaced by a mirror [66, 68].

A typical question is how to form and prepare such states in order to enable
potential applications such as light trapping and quantum information processing.
A natural way to populate these states is through spontaneous emission of the emit-
ter(s) as discussed in section 2.3.3. This approach for exciting the BIC is most e↵ec-
tive in the Markovian regime where the characteristic photonic time delay (e.g. the
photon round-trip time between a qubit and a mirror or between two qubits) is
very short. This is because the atomic component of the BIC progressively shrinks
for growing time delay in favor of a larger photonic component [68, 19, 29]. This
makes such decay-based schemes ine↵ective for long enough mirror-emitter and/or
inter-emitter distances. This is a major limitation when entanglement creation is
the main goal [19].

A possible approach to generate these states in the regime of significant time
delay consists of preparing an initial state that overlaps with the photonic component
of the BIC. In practice this calls for techniques based on photon scattering. As
discussed in section 2.3.3 a single photon scattered o↵ the emitter(s) cannot excite
the BIC since it lives in a subspace orthogonal to the scattering states. When it
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Figure 7.1: Single atom coupled to a semi-infinite waveguide. The atom is placed at a
distance a from a perfect mirror located at the end of the waveguide, z = 0. When a BIC
exists it can be excited by an incoming two-photon wavepacket.

comes to multi-photon scattering, however, because of the intrinsic nonlinearity of
qubits, this argument does not hold any more.

The idea is similar to the one presented by Longo et al. [58, 59]. In these papers
it was shown that the bound states outside of the photonic continuum of an array
of resonators coupled to a qubit can be excited through multi-photon scattering.
This e↵ect relies on the structure of the energy spectrum of dressed states in the
two-excitation sector of the Hilbert space, which we discussed in chapter 4.

In this chapter we show that a BIC in a waveguide-QED setup can be indeed
excited via multi-photon scattering even if its energy does not lie in a photonic gap.
This e↵ect crucially relies on the time delay of the photon and occurs in the non-
Markovian regime. We consider both paradigmatic setups of a qubit coupled to a
semi-infinite waveguide and a pair of distant qubits coupled to an infinite waveguide.
In either case, generating the BIC results in single-photon trapping in the form of a
perfectly sinusoidal wavefunction and stationary excitation of the emitters.

In this work I contributed as a leading author and performed most of the analytic
and numerical calculations in collaboration with Y. L. Fang under the supervision
of F. Ciccarello and H. U. Baranger. A publication containing these results has been
posted on arxiv [69] and has been submitted to a peer-review journal.

7.1 Model

In this work we consider two di↵erent configurations where a BIC can exist. The
first setting consists of an atom placed inside a semi-infinite waveguide and in the
second case we consider two emitters coupled to an infinite waveguide. While the
model and the properties of the second scenario were discussed in section 2.3.3 the
first was not discussed in this thesis so far so we will introduce it here.

Let us consider the setup shown in Fig. 7.1 where a two-level atom is coupled to
the 1D field of a semi-infinite waveguide with a linear dispersion relation !k = vg �k�
(where vg is the photon group velocity and k the wavevector along the z-axis). The
emitter’s ground and excited states are separated in energy by !a = vgk0, where k0 is
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the resonant wavevector. The end of the waveguide lies at z = 0 [see Fig. 7.1] and is
represented by an e↵ective perfect mirror, while the atom is placed at a distance a
from the mirror. The Hamiltonian under the rotating wave approximation is similar
to the one given in Eq. (2.25) and reads

H = !a �+�−− ivg�
∞

0

dz�a†
R(z)

d

dz
aR(z)−a†

L(z)
d

dz
aL(z)�

+ g�
∞

0

dz ��a†
L(z)+a

†
R(z)��−+H.c.��(z−a) , (7.1)

where we remind that aR�L(z) are the bosonic field operators annihilating a right-
going (left-going) photon at position z.

In the single-excitation subspace (Ne = 1), the spectrum of (7.1) consists of an
infinite continuum of odd-parity unbound dressed states {��k�}, each with energy
!k = vg �k� [6, 7, 9, 11, 22, 19]. These states can be interpreted as scattering eigen-
states in which a left-incoming resonant photon is eventually reflected by the mirror
with 100% probability. Similarly to the two-atom case, when the condition k

0

a =m⇡
with m = 1,2, ... is matched, a further stationary state ��b� exists, which is a BIC.
This state has the same energy !b = !a as the atom and reads [68]

��b� = b��+ +
�

2�

v �
a

0

dz sin(k
0

z)a†(z)� �g��0�, (7.2)

where a†(z) is the operator that creates a photon at the position z and � = 2g2�vg
is the usual atom decay rate (in the absence of mirror). Note that in this state the
photonic component is bigger compare to the two-atom BIC given in (2.41). This
is because here we replaced one of the two atoms by a mirror, which fully reflects
any photon impinging on it. The BIC is fully specified (up to an irrelevant global
phase factor) by the emitter excited-state population given by

�b�2 = 1

1 + �

2

⌧
, (7.3)

where again ⌧ = 2a�vg is the delay time. The BIC is formed strictly inside the space
between the mirror and the atom 0 ≤ z ≤ a, where the photonic wave-function is a
purely sinusoidal. When the BIC exists, i.e., k

0

a =m⇡, the atom does not fully decay.
Indeed, the initial state �e,0� overlaps with the BIC by the amount �e,0��b� = b, hence
�b�2 represents also the probability of generating the BIC via spontaneous emission.
Based on Eq. (7.3) this probability monotonically decreases with the rescaled delay
time �⌧ , showing that this generation scheme is most e↵ective when �⌧ is small.

7.2 BIC generation through multi-photon scattering

7.2.1 Excitation trapping scheme

The bound state (7.2) cannot be populated via single-photon scattering since such a
process involves only the unbound states {��k�} (orthogonal to ��b�). An impinging
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photon, after a transient during which it can momentarily enter the atom-mirror
region and excite the atom, will be eventually fully released and reflected back. We
thus send, instead, a two-photon wave-packet to the atom initially unexcited. In
this way, as we will show in the following, it is possible to excite the BIC with a not
negligible probability.

Let us consider the generic state of the system at time t in the two-excitation
sector (Ne = 2):

� (t)� = ��
⌘
�
∞

0

dz  ⌘(z, t)a†
⌘(z)�+ +�

⌘,⌘′
1√
2

�
∞

0

dzdy�⌘,⌘′(z, y, t)a†
⌘(z)a†

⌘′(y)� �g��0�,

(7.4)
where the indices ⌘, ⌘′ take the values ⌘, ⌘′ = R,L. Here �⌘,⌘′(z, y, t) is the wave-
function of the two-photon component, while  ⌘(z, t) is the probability amplitude
that the emitter is excited and a right/left propagating photon is found at position
z. Let us assume to send a localized two-photon wavepacket propagating from the
right towards the end of the waveguide as sketched in Fig. 7.1. If the atom is initially
in the ground state the initial joint state reads

� (0)�= A√
2

�
∞

0

dzdy ��1

L(z)�2

L(y) + 1↔ 2�a†
L(z)a

†
L(y)�g��0�, (7.5)

where A is the normalization factor and �i
L(z) the wave-function of a single left-

propagating photon. We first consider for simplicity a two-photon exponential
wavepacket [sketched in Fig. 7.1] such that �1

L(z) = �2

L(z) = e−↵�z−a�−ik0(z−a)✓(z − a),
where ↵ is the wavevector width in k-space (hence �! = vg↵ is the bandwidth)
and k

0

the carrier wavevector resonant with the emitter. Note that in the way it is
defined, the front of the wavepacket reaches the emitter at t = 0.

For the following discussion it is useful to define the quantities

Pe(t)=�
⌘
�
∞

0

dz � ⌘(z, t)�2, (7.6)

P
ph

(t)=�
⌘,⌘′
�

a

0

dz�
∞

a
dy ��⌘,⌘′(z, y, t)�2, (7.7)

which represent respectively, the population of the emitter and the probability that
one of the two photons lies in the region [0, a] while the other in the interval (a,∞).

We numerically solve the dynamics described by the model (7.1) for a scenario
where the BIC (7.2) exists. The results are shown in Fig. 7.2. As the wavepacket
impinges on the qubit [see Fig. 7.2(a)] its population Pe exhibits a rise followed
by a drop (indicating photon absorption and re-emission, respectively) eventually
converging to a small finite steady value, which shows that part of the excitation
absorbed from the wave-packet is trapped.

The behavior of the field in the same process is illustrated in Figs. 7.2(b) and
7.2(c). They show, respectively, the spatial profile of the two-photon probability
density function ��(z, y, tf)�2 = ∑⌘,⌘′ ��⌘,⌘′(z, y, tf)�2 [see Eq. (7.4)] and the total pho-
ton density n(z) = � (tf)�â†(z)a(z)� (tf)� at a time tf long enough such that the
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Figure 7.2: BIC generation via two-photon scattering. (a) Evolution of the qubit pop-
ulation Pe and trapping probability P

tr

. (b) Two-photon probability density function��(z, y)�2 at the end of scattering (t = tf ). The white dashed lines z=a and y=a mark the
position of the atom. (c) Spatial profile of the total photon density n(z) at the end of the
scattering. The inset highlights the sinusoidal wavefunction in the range 0 ≤ z ≤ a. Panels
(b) and (c) are plotted in a logarithmic scale for tf=80��. In (a)-(c), we considered a two-
photon exponential wavepacket (see main text) and set k

0

a = 10⇡, �⌧ = 3 and ↵ = ��2v.

scattering process is over. From both plots we can see that the wavepacket is not
entirely reflected back. Indeed a significant fraction remains trapped between the
mirror and emitter, forming a perfectly sinusoidal stationary wave with wave-vector
k
0

[see Fig. 7.2(c)]. Note that this stationary wave has a single-photon nature. In-
deed, Fig. 7.2(b) shows that either both photons are scattered by the emitter (top
right corner) or one is scattered and the other remains trapped in the atom-mirror
region (top left and bottom right corners). The probability that both photons are
trapped is instead zero (bottom left corner).

Looking at these outcomes and considering the form of the BIC given in Eq. (7.2),
we can conjecture that after the scattering process the joint state has the form

� (t)� = �
∞

a
dz ⇠(x, t)a†

R(z)��b� +�
∞

a
dzdy �(z, y, t)a†

R(z)a
†
R(y)�g,0�. (7.8)

Here the first term describes the BIC excited and a single photon leaving the atom-
mirror region, while the second term corresponds to two outgoing photons. Note
that equation (7.8) is valid only in the long-time limit, t � ⌧ , when the scattering
process is over.

If we are actually interested in evaluating the probability to excite a BIC a more
relevant quantity that can be computed numerically is given by P

tr

= Pe + Pph

[see
Eq. (7.2.1) and (7.6)]. This quantity represents the probability that either a photon
is trapped between the mirror and the atom or that the emitter is excited. It can
be easily shown that if Eq. (7.8) holds then the asymptotic value of P

tr

satisfies

P
tr

(∞)=�
∞

a
dz �⇠(z,∞)�2=P

BIC

=�1 + �

2

⌧�Pe(∞), (7.9)

where P
BIC

represents the probability of generating the BIC (7.2). The time depen-
dence of P

tr

is shown in Fig. 7.2(a). It reaches a finite steady value that is larger
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than Pe(∞) by exactly the factor (1+�⌧�2), in full agreement with the last iden-
tity in Eq. (7.9), confirming the conjecture in Eq. (7.8) and thus the generation of
the BIC. Note that the identity P

tr

(∞)=(1+�⌧�2)Pe(∞) was checked in all of the
numerical results presented in this work.

7.2.2 Discussion

Dependence on time delay

A crucial point of our BIC generation scheme is that a significant delay time is
essential in order to get a non-negligible trapping. For instance, the parameter set
in figure Fig. 7.2 correspond to �⌧ = ⇡. To highlight this dependence further, we
report in Fig. 7.3(a) the steady values of Pe, Pph

and P
tr

, as functions of �⌧ for
the two-photon scattering process. Here, for each value of �⌧ , we used the optimal
wave packet width, ↵

opt

, that maximizes the BIC trapping. Its dependence on �⌧ is
shown in Fig. 7.3(b). In general we observe three di↵erent regimes for the trapping
process that are discussed in the following.

• In the Markovian regime, �⌧ � 1, we observe from Fig. 7.3(a) that both the
photon trapping and the atom’s stationary excitation are negligible. This is in
sharp contrast to spontaneous emission schemes for which this is instead the
optimal regime. An intuitive explanation of this behaviour is the following.
During the scattering one of the two photons excites the atom while the other
is transmitted and, after being reflected by the mirror, escapes the atom-mirror
region before that the absorbed photon is re-emitted by the atom.

• When the retardation time starts to be more significant, the trapping prob-
ability reaches a maximum at a delay of the order of �⌧ ∼ 1. In this regime
the first absorbed photon gets re-emitted by the atom on the same time scale
on which the transmitted photon comes back, allowing the relaxation into the
BIC.

• For large delay times, �⌧ � 1, Pe becomes negligible while P
ph

and P
tr

seems to
saturate only to weakly decrease with �⌧ (note that extend this simulation for
larger time delays is numerically challenging). Remarkably in this regime the
BIC becomes almost completely photonic. This means that with our scheme we
can capture an almost pure single photon (not dressed by atomic excitation),
which is not achievable in spontaneous emission, where the state is always
dressed [see Eqs. (7.2)].

Detuned wave-packets

From Fig. 7.3(a)-(b) we can see that, in the regime where the trapping probability
is not negligible, �⌧ � 1, the optimal width is on the order of ↵ ∼ ��(4vg). This
agrees with the general expectation [see e.g. Refs. [202, 203, 204]] that the photon
absorption during the scattering transient is maximum when the wave-packet width
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Figure 7.3: (a) Asymptotic values of Pe, P

ph

and P

tr

as function of the rescaled time
delay �⌧ . At each point of �⌧ we set the wave-packet width to the value that maximizes
P

tr

, ↵ = ↵
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, using the results given in (b). (b) Optimal wave-packet width, ↵
opt

, as
a function of �⌧ . (c) P

tr

(∞) = P

BIC

as a function of the width of the wavepacket for
di↵erent values of the detuning �. Here we considered a wavepacket featuring one photon
with carrier wavevector k

1

= k
0

+��vg and the other with k

2

= k
0

−��vg. We set k
0

a = 10⇡,
�⌧ = 3. (d) P

tr

versus time for a coherent-state wavepacket with di↵erent average photon
number, n̄. Here we considered the same shape for the wave packets and parameters as in
7.2 (a). For computational purposes, only contributions up to three-photon Fock states
were considered.

is of the order of the atomic decay rate. On the other hand this value is also
connected to the fact that the photon capture occurs through a nonlinear scattering
process. Indeed, in [205] it was pointed out that, when two photons scatter from
a TLA, the nonlinear scattering flux is peaked at two side frequencies detuned by
��2 from the atomic resonance. Thus, the requirement to observe the capture on
resonance is that the wave-packet width should be able to properly resolve these
side peaks. This argument becomes more evident in Fig. 7.3(c) where we plot the
trapping probability as a function of the wave-packet width for one of the input
photons blue-detuned from the atomic frequency while the other red-detuned by
the same amount �. We indeed observe that the capture probability can be further
maximized by tuning the input photons on resonance with the side peaks, � = ��2.
This also requires to consider a slightly smaller wave-packet width to properly resolve
the nonlinear scattering peaks.
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Figure 7.4: BIC generation scheme for the one-qubit setup using a shaped two-photon
wave-packet. (a) Photon density profile of the incoming wave-packet. (b) P

tr

and Pe

versus time. For this plot we fixed the distance to k

0

a = 20⇡ and the time delay to �⌧ = 5
to maximize the photon trapping probability [see Fig. 7.3(a)].

Coherent-state wave-packet

It is natural to ask whether the BIC excitation through photon scattering is a pecu-
liarity of the two-excitation subspace or if it can persists when more than photons
are involved. To answer this question we extended our numerical simulation to the
third excitation subspace and we found that the BIC can still be generated with
a considerable probability. In particular, in an experiment, it would be easier to
send a weak coherent photon pulse instead of a two photon wave-packet. We thus
considered the same setup, parameters, and wavepacket shape �(z) as in Fig. 7.2(a),
but assumed as an initial state the following coherent-state pulse [11]

���=e−���2
∞
�
m=0
(�m�m!)�� dz �(z)a†(z)�

m

�g,0�, (7.10)

where n̄ = ���2 is the average photon number. In Fig. 7.3(d) we show the trapping
probabilities as a function of time for di↵erent values of the average photon number.
In this simulation we truncated to the third excitation subspace so the results are
valid only for low-power coherent pulses. We note that for n̄ = 2, P

tr

(∞) is com-
parable to the one obtained with the two-photon pulse. This suggest that the BIC
can be generated also using weak coherent states.

Increasing the BIC generation probability

The exponential pulse considered for Figs. 7.2-7.5, is commonly used in the litera-
ture [203, 204] and we choose it for illustrative purposes and computational e�cien-
cies. On the other end the trapping probability, P

tr

(∞), could be strongly enhanced
by engineering di↵erent wavepacket shapes.

In order to find a more suitable wave-packet shape we consider the time reversal
scenario of our problem, where a BIC is initially excited and a single photon packet
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Figure 7.5: (a) Two-atoms coupled to an infinite waveguide. A two-photon wave-packet is
sent through the emitters and excites the BIC, yielding stationary entanglement between
the atoms. (b) Total atomic population, Pe, trapping probability P

tr

and atom-atom
concurrence C versus time in a two-photon scattering process. The shape of the incident
wave packet and parameters are the same as in Fig. 7.2.

is sent through the emitter. If ideally we could determine the single photon packet
that completely releases the BIC the two outgoing photons at the end of the process
would constitute the perfect wave-packet input for our BIC generation scheme.

Following this intuition we use a single photon gaussian wavepacket of the form

�L(z) = 1
4
√
⇡�z2

e− (z−a)
2

2�z

2 −ik0(z−a), (7.11)

where �z is the packet width. In particular, we fix the packet width to �z = 2vg��,
which minimizes P

tr

(∞) in the reverse problem.
In this case the shape of the final two photon outgoing packet, even if it does

not correspond to the optimal input, turns out to be a much better ansatz for our
original problem. In Figure 7.4 we show that the replacement of the exponential
two-photon wave-packet with the output of the reverse problem [given in Fig. 7.4(a)]
yields a trapping probability of P

tr

(∞) � 80%, a value about four times larger than
that one previously obtained. Note that here we set the parameters such that �⌧ = 5,
roughly corresponding to the maximum of P

tr

(∞) in Fig. 7.3(b). This result shows
that, in principle, with a properly shaped wave packets it should be possible to
excite the BIC through non-linear scattering with probability close to one.

7.3 Two-atom BIC

In this last section we consider a case analogous to that one treated so far: two
atoms in an infinite waveguide located at positions z

1

= −a�2 and z
2

= a�2 and
separated by a distance a, as shown in Fig. 7.5(a). As we discussed in section 2.3.3,
also in this configuration there exists a BIC in the single excitation subspace that
presents a photon localized in the inter-atomic region. The explicit form of the BIC
for this setup was given in Eq. (2.41). Note that in this case the relation between the
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trapping probability and the atomic amplitude is given by P
tr

(∞)=(1+�⌧�4)Pe(∞).
The atomic component of the BIC state it consists of a symmetric/antisymmetric
(depending on whether m is odd or even), maximally entangled state that can be
harvested by tracing out the field. Thus it is interesting to see if it is possible to
generate entanglement between the two atoms by using our scattering-based scheme.

With this goal in mind let us define the generic state of the system at a time t,

� (t)� =�f(t)�1+�2+ +�
⌘
�
∞
−∞dz  

1

⌘(z, t)a†
⌘(z)�1+ +�

⌘
�
∞
−∞dz  

2

⌘(z, t)a†
⌘(z)�2+

+�
⌘,⌘′

1√
2

�
∞
−∞dz1dz2 �⌘,⌘′(z, y, t)a†

⌘(z)a†
⌘′(y))� �g��0�,

(7.12)

where the apex i in  i
⌘(z, t) refers to the first or the second atom. The total qubit

population and the photon trapping population are defined in manner similar to the
atom-mirror case:

Pe(t)=�f(t)�2 +�
⌘
�
∞
−∞dz � 

1

⌘(z, t)�2 +�
⌘
�
∞
−∞dz � 

2

⌘(z, t)�2, (7.13)

P
ph

(t)=�
⌘,⌘′
�

a

−a dz�
−a
−∞ dy ��⌘,⌘′(z, y, t)�2 +�

⌘,⌘′
�

a

−a dz�
∞

a
dy ��⌘,⌘′(z, y, t)�2. (7.14)

The excitation trapping probability is then again given by P
tr

= Pe+Pph

. To evaluate
the amount of entanglement generated with our scheme we use the concurrence
introduced in section 2.2.1. For our setup it is explicitly given by

C(t) =max �0,2�C
12

(t)� −
�
�f(t)�2P

ph

� . (7.15)

where
C

12

(t)=�
⌘
�
∞
−∞dz ( 

1

⌘(z, t))∗ 2

⌘(z, t), (7.16)

is the atomic coherence.
For the following example we considered the same exponential wavepacket as in

Fig. 7.2 and we simulate the scattering process with the two atoms. In Fig. 7.5(b)
we plot the resulting evolution of the total atomic population, Pe, the trapping
probability, P

tr

, and the concurrence. Similar to the atom-mirror case there is a
finite probability to excite the BIC. In this case the reduced steady state of the two
atoms is indeed entangled as shown from the finite steady value of the concurrence.

.
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Chapter 8

Harvesting multi-qubit entanglement
from ultrastrong interactions in cir-
cuit QED

Throughout this thesis so far we have focused on physical situations where the atom-
light interaction can be correctly described within the rotating wave approximation.
For many years it has been experimentally challenging to reach regimes where this
approximation breaks down. The situation has recently changed, in particular, in
the field of circuit QED [70, 71], where a single superconducting two-level system
can be coupled to a microwave resonator mode [206, 207, 208, 209, 210, 211, 212].
In this context interaction strengths comparable to the photon energy have been
demonstrated in a number of experiments [213, 214, 215, 216, 217]. This regime,
that goes beyond the usual strong coupling of cavity QED, it is often referred as
ultrastrong coupling regime [72, 73].

A crucial di↵erence of this regime compared to usual cavity QED can already
be found in the ground state, which is not anymore just a trivial vacuum state
with no excitations. In the ultrastrong coupling regime the physics of the ground
state can indeed change drastically and various e↵ects like spontaneous vacuum
polarization [218, 219, 220], light-matter decoupling [221, 74] and di↵erent degrees
of entanglement [74, 222, 223, 224, 225] have been discussed.

Among several e↵ects here we want to focus in particular on a recent result, where
it has been shown that, in the USC regime, a system consisting of multiple super-
conducting qubits coupled to a single mode of a microwave resonator can exhibit, in
the ground and in the low-energy states, a high degree of multiqubit entanglement
[74]. However, this entanglement it is not easy to access since any operation on the
state would necessarily introduce a strong perturbation to the system.

In this project we propose an entanglement-harvesting protocol [227, 228, 229,
230, 231, 232, 233], which can extract the entanglement from the USC states and
convert it into equivalent entangled states of decoupled qubits. The protocol re-
quires a time-dependent tuning of some of the system parameters and combines
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(a) (b)

flux qubit

Figure 8.1: (a) Sketch of the circuit QED setup: multiple flux qubits are inductively

coupled to an LC microwave resonator. Here �N
q

= �
0

∑N
q

i=1'i. (b) Each flux qubit is
represented by the two lowest states � ↓� and � ↑� of an e↵ective double-well potential for
the phase variable '.

both adiabatic and nonadiabatic variations. As we will show, the protocol turns out
to be particularly robust with respect to temperature, disorder and lack of tunability
because the entangled state is protected by the strong atom-field interaction.

In this work I contributed as a second author and I supported F. Armata (first
author) to develop the protocol. In particular, I also performed part of the analytic
and numerical calculations. The circuit implementation of this protocol was entirely
developed by T. Jaako and is not reported here (see [75]). The work was done under
the supervision of P. Rabl and M. S. Kim and the results were published on Physical
Review Letters 119 (18), 183602 (2017).

8.1 Introduction to the model

8.1.1 Hamiltonian

For the following discussion we consider a circuit QED system consisting of a single
mode LC resonator with capacitance C and inductance L, which is coupled collec-
tively to an even number of Nq = 2,4,6, . . . of flux qubits [see Fig. 8.1(a)]. The
whole circuit is described by the Hamiltonian (see [75, 74] for the derivation of the
Hamiltonian from a Lagrangian formalism [234])

H = Q2

r

2C
+ (�r −�0

∑N
q

i=1'i)2
2L

+
N

q

�
i=1

H
(i)
q , (8.1)

where Qr and �r are charge and flux generalized operators for the resonator obeying
[�r,Qr] = i�h, and �0

= �h�(2e) is the reduced flux quantum. In Eq. (8.1) H i
q denotes

the free qubits Hamiltonian while 'i is the di↵erence of the superconducting phase
associated with each flux qubit. The second term of Hamiltonian (8.1) is explicitly
given by

(�r −�0

∑N
q

i=1'i)2
2L

= �
2

r

2L
−

N
q

�
i=1
'i�r

L
+

N
q

�
i,j=1

'i'j

2L
, (8.2)
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where the first term combined with Q2
r

2C provides the resonator energy, the second
term the collective qubit-photon coupling and the last term a collective qubit-qubit
interaction. This qubit-qubit interaction is usually neglected for cavity QED systems
with weak or moderately strong couplings. However, this term is crucial in the USC
regime and it is responsible for the nontrivial ground-state correlations that are at
the basis of this project, as we will discuss in the following. Note that here, apart
from the coupling of each individual qubit to the resonator, we did not included
any direct coupling among the qubits (for an extended model that includes direct
dipole-dipole interactions see [222]).

At cryogenic temperatures, at which the superconducting circuits operate, the
elementary excitations of the system are quantized. Therefore, we can express the
conjugate resonator variables in terms of annihilation and creation operators a and
a†, writing �r =

��h�(2C!r)(a+a†) and Qr = i
��hC!r�2(a† −a), where !r =

�
1�LC

is the resonator frequency. The energy spectrum of the flux qubit can be instead
approximately described by a double well potential, as depicted in Fig. 8.1(b). Here
we assume that the qubit dynamics can be restricted to the two lowest tunneling
states � ↓� and � ↑� of this potential. This approximation allows us to write 'i =
'i
0

�i
x where 'i

0

= 2�↓i �'i� ↑i� and �i
x is the usual Pauli operator. Under these

approximations, we can rewrite Hamiltonian (8.1) in the following quantized form

H = �h!ra
†a + �h

N
q

�
i=1

gi
2
(a† + a)�i

x + �h
N

q

�
i=1
!i
q

2
�i
z + �h

N
q

�
i,j=1

gigj
4!r

�i
x�

j
x, (8.3)

where !i
q are the qubit-level splittings. Here the collective qubit-resonator interac-

tion is mediated by the couplings gi = �0

�
�'i

0

�2!r�(2�hL).
For this work we are primarily interested in a symmetric configuration, i.e.,

gi = g and !i
q = !q. In this case the Hamiltonian (8.3) can be expressed in terms of

collective angular momentum operators Sn = ∑i �
i
n�2 and reduces to the extended

Dicke Hamiltonian [74, 222]

H = �h!ra
†a + �hg(a† + a)Sx + �h!qSz + �h

g2

!r

S2

x. (8.4)

The ultrastrong coupling regime, where the RWA approximation ceases to be
valid, is reached when g > !r,!q. This condition can be achieved not only with the
flux-qubits implementation that we are considering [218, 226, 235, 236, 210, 209],
but also with several charge qubit designs [74, 222]. Our flux qubits choice relies
on the fact that, in the protocol that we are going to present, it is necessary to
tune the coupling strength, g(t) and the qubit frequency, !q(t). This can be done
by controlling the matrix element 'i

0

and the height of the tunnel barrier via local
magnetic fluxes [226, 231]. A specific four-junction qubit design [236, 237], which
combines strong interactions with a high degree of tunability, is detailed in the
Supplemental Material of [75].
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(a) (b)

Figure 8.2: (a) Energy spectrum (with respect to the ground-state energy E

0

) of the
extended Dicke model (8.4) as a function of the coupling strength g for N = 4 and !q = !r.
(b) Ordering of the lowest energy states in the USC regime as determined by Eq. (8.7) for
the case Nq = 4. The multiple lines indicate the two- and threefold degeneracy of states
with total angular momentum s = 0 and s = 1, respectively.
8.1.2 Spectrum

Let us discuss the spectral properties of Hamiltonian (8.4). In the usual cavity QED
scenario the coupling is much smaller than the qubits and resonator frequencies,
g � !r,!q. In this regime we can make a rotating wave approximation and obtain the
standard Tavis-Cummings model (see Sec. 1.3.2), where the ground state is trivially
given by having both the resonator and the qubits unexcited, �G� = �n = 0�⊗ � ↓�⊗Nq .
In the specific case where the qubits are also o↵ resonance with the resonator,
�!q − !r� � g, the states of the qubits can be individually prepared, manipulated,
and measured by additional control fields. This is of fundamental relevance if the
final goal is to implement quantum information processing.

In the ultrastrong coupling limit, where the coupling strength becomes compa-
rable to the qubit and resonator frequencies, g ≥ !r,!q, the coupling terms ∼ Sx

and ∼ S2

x becomes important and the level structure changes completely. This is
illustrated in Fig. 8.2(a) where the energy levels are plotted as a function of g�!r.
In particular, for couplings g�!r � 3 the spectrum separates into manifolds of 2Nq

nearly degenerate states. In this regime the eigenstates of Hamiltonian (8.4) can be
obtained by applying a displacement operator to the photon number states �n� [74]:

� s,m
x

,n� � e−
g

!

r

(a†−a)S
x �n�⊗ �s,mx�. (8.5)

Here �s,mx� s are collective spin states and s is the total spin with mx = −s, . . . , s
being the spin projection quantum number; i.e., Sx�s,mx� = mx�s,mx�. The corre-
sponding eigenenergies of these states are given by:

Es,m
x

,n � �h!rn + �E(n)s,m
x

. (8.6)
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In particular, within the lowest manifold, the remaining level splittings are given by

�E
(0)
s,m

x

= �h� �m2

x − s(s + 1)� , � =
!2

q!r

2g2
, (8.7)

and the resulting ordering of the states is shown in Fig. 8.2(b) for Nq = 4 qubits.
For an even numbers of qubits, Nq, there are some states of the spectrum in the

USC regime that present a high degree of qubit-qubit entanglement. In particular,
in this work we are interested in states where the angular momentum has vanishing
projection along x, mx = 0, and s = Nq�2 or s = 0. The first case corresponds to
the ground state of the USC regime that is of the form �G̃� � n = �0� ⊗ �D

0

�, where
�D

0

� = �s = Nq�2,mx = 0� [indicated in Fig. 8.2(b)] denotes a fully symmetric Dicke
state. For instance, in the paradigmatic cases of Nq = 2,4 the qubits states are
respectively given by (in the rotated x basis)

�s = 1,mx = 0� =
1√
2
(� ↑↓�x + � ↓↑�x), (8.8)

�s = 2,mx = 0� =
1√
6
(� ↓↓↑↑�x + � ↑↑↓↓�x + � ↓↑↑↓�x + � ↑↓↓↑�x + � ↓↑↓↑�x + � ↑↓↑↓�x). (8.9)

The second case is represented by the energetically highest manifold (always within
the lowest excitation manifold) �Ẽ� = �n = 0� ⊗ �S�, where �S� indicates states with
total angular momentum s = 0 and Sz �S� = Sx�S� = 0 [see Fig. 8.2(b)]. For Nq = 2
and Nq = 4 qubits they are given by

�s = 0,mx = 0� =
1√
2
(� ↑↓�x − � ↓↑�x), (8.10)

and

�s = 0,mx = 0� =
�������

�S� = 1√
3

(� ↑↑↓↓�x + � ↓↓↑↑�x) − 1√
12

(� ↑↓↑↓�x + � ↑↓↓↑�x + � ↓↑↑↓� + � ↓↑↓↑�x),
�S′� = 1

2

(� ↑↓↑↓�x − � ↑↓↓↑�x − � ↓↑↑↓�x + � ↓↑↓↑�x).
(8.11)

The interest in these states not only relies on the high degree of entanglement,
but also on the fact that they can be decoupled from the cavity field. This is almost
the case for the s = Nq�2 states, when the coupling is su�ciently strong, g�!r � 3 [74],
while it occurs in all parameter regimes for the s = 0 states that are exact dark states
of Hamiltonian (8.4). Although theoretically fascinating, these maximally entangled
states can not be externally addressed since any attempt to locally manipulate or
measure the individual qubits would necessarily introduce a severe perturbation to
the entire strongly coupled system. In the following we will present two suitable
protocols (one for s = Nq�2 one for s = 0) to convert these states into equivalent
states energetically isolated from the resonator, where they become available as an
entanglement resource for further use.
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Figure 8.3: (a) Sketch of the protocol and general pulse sequence for the qubit parameters
!q(t) and g(t) considered for the implementation of the entanglement harvesting protocol.
(b) The fidelity F(t) is plotted as a function of time and for di↵erent qubit numbers. The
dashed line indicates the quantity 1 − P(t), where P(t) = Tr{⇢2q(t)} is the purity of the
reduced qubit state ⇢q(t) = Trr{⇢(t)} for the case Nq = 4. For all values of Nq the same
parameters !

max

�!r = 20, !min

�!r = 0.5, gmax

�!r = 4.5, gmin

�!r = 0.1 and times intervals
T

1

= T
2

= 6.5!−1r and T

3

= T
4

= 0.5!−1r have been assumed.

8.2 Protocol for the states with s = N
q

�2

8.2.1 Entanglement harvesting

In order to be able to address the entanglement states presented in the previous
section we here consider the possibility of tuning over time the qubit frequency
!q(t) and the coupling strength g(t) of Hamiltonian (8.4).

The main idea of the protocol that we are going to propose is sketched in 8.3(a)
where we consider a general pulse sequence of !q(t) and g(t). The protocol starts
by initializing the system in the ground state �G� of the weakly coupled system,
where the qubits are far detuned from the cavity, !q = !max

� !r, and the coupling
is set to a minimal value, g = g

min

< !r. In the first two steps, T
1

and T
2

, the system
is adiabatically tuned into the USC regime by applying two pulses that bring the
coupling and the qubit frequency to a maximal and a low value, g

max

> !r and
!
min

� !r, respectively. This process prepares the system in the USC ground state
�G̃�. In the successive steps, T

3

and T
4

we close the loop of Fig. 8.3(a) and we
separate again the qubits and the resonator mode. The main di↵erence here is that
now we apply nonadiabatic pulses to the parameters in the reverse order. Ideally,
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during this part of the protocol the system simply remains in state �G̃� and becomes
the desired excited state of the weakly coupled system at the final time T

f

= ∑4

n=1 Tn.
In order to correctly implement this sequence we need to respect two conditions

on the speed of the pulse. First, we require that the adiabatic preparation stage
must be slow compared to the time scales set by !−1

max

and g−1
max

. This is actually
not a a problem. Indeed the time scale relative to !−1

max

and g−1
max

is really fast
(compared for example to typical system decoherence time) and thus this part of
the protocol can still be implemented very rapidly. For the nonadiabatic decoupling
processes instead we need to be fast compared to the time scales !−1r , !−1

min

, and
g−1
min

. This condition can also be fulfilled. Indeed these time scales are slow enough to
make the required switching times experimentally accessible and consistent with the
two-level approximation assumed in our theoretical model. To prove the e�ciency
of our protocol we numerically solve the full time-dependent dynamics, given by
the Hamiltonian (8.4), with the time dependent parameters !̄q(t) and g(t). After
that the protocol is completed, in order to verify that we successfully prepared the
desired states, we evaluate the fidelity F(t) = Tr{⇢(t)�D

0

��D
0

�}, where ⇢(t) is the
density operator of the full system. In Fig. 8.3(b) we plot the F(t) for a specific
set of pulse parameters listed in the figure caption. We see that the entanglement
extraction fidelity (EEF) F

E

=max{F(t)�t ≥ T
f

}, i.e., the maximal fidelity after the
decoupling step, reaches near perfect values of F

E

� 0.95−0.99 for di↵erent numbers
of qubits, without any further fine-tuning of the control pulses. Note that the fidelity
oscillations at the end of the sequence are simply due to the fact that �D

0

� is not an
eigenstate of the bare qubit Hamiltonian, Hq = !qSz. However, this evolution does
not a↵ect the purity or the degree of entanglement of the final qubit state and can
be undone by local qubit rotations.

8.2.2 Robustness of the protocol

Lack of tunability

In principle our protocol would work perfectly if, in the nonadiabatic step, we could
completely and instantaneously switch o↵ the coupling. This would leave the qubits
in the final desired state state, �D

0

�, disentangled from the resonator mode. Obvi-
ously, in a realistic implementation, the switching o↵ time, T

4

, has a finite duration
and the coupling, g

min

, cannot be turned o↵ completely. In general possible limi-
tations to the protocol might come from a lack of complete tunability of both g(t)
and !q(t).

To discuss these points let us take a look at Fig. 8.4(a), which shows the evolution
of the lowest eigenenergies during di↵erent stages of the protocol for the case N = 2
and a finite value of g

min

. In this case the non-vanishing coupling g
min

induces several
avoided crossings during the final ramp-up step, which prevents a fully nonadiabatic
decoupling and limits the fidelity for a finite time T

4

. In Fig. 8.4(b) we plot the
extraction fidelity, EEF, for the same parameters as in Fig. 8.4(a), but for varying
g
min

and T
4

. This plot indeed shows the expected trade-o↵ between the minimal
coupling and the residual switching time, but also that the protocol is rather robust
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Figure 8.4: (a) Lowest eigenvalues during di↵erent stages of the protocol for the case
N = 2. Here g

min

�!r = 0.2, !min

�!r = 0.4, and in the final step of the protocol !
max

�!r = 5.
For clarity only the s = 1 states are shown and all time intervals have been stretched to
equal lengths. For di↵erent initial photon number states �n�, the colored segments and
arrows indicate the ideal evolution of the systems, which maximizes the probability to end
up in the qubit state �D

0

� = (� ↑↑� − � ↓↓�)�√2. Nonadiabatic crossings occur during the
fast decoupling steps (T

3

and T

4

), but also for small avoided crossings in the excited state
manifolds during the preparation step (T

2

). (b) Plot of the EEF for varying T

4

(= T

3

)
and g

min

and for N = 4. (c) EEF (solid line) for a resonator mode, which is initially in a
thermal state at temperature T , for N = 4. The dashed line indicates the corresponding
population of the ground state manifold. All the other pulse parameters in panels (a), (b)
and (c) are the same as in Fig. 8.2(b).

and fidelities of F
E

∼ 0.9 are still accessible over a wide parameter range. Similar
conclusions can be obtained when a partial dependence between the pulses for g(t)
and !q(t) or nonuniform couplings gi(t) and frequencies !i

q(t) due to fabrication
uncertainties are taken into account. This point is also analyzed in the following
where we will take in account the e↵ect of disorder in the system. In general we
can conclude that no precise fine-tuning of the system parameters is required to
implement this protocol.
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Figure 8.5: (a)-(d) Fidelity and entanglement entropy as function of time in the presence
of disorder obtained by averaging over 10 simulation runs for N = 4. In particular we show
the entanglement entropy SE(t) = −Tr{⇢(t) log

2

(⇢(t))} for the reduced density matrix of
the qubit subsystem (⇢q(t)) (blue line) and of a single qubit (⇢

1

(t) = Tr
N−1{⇢q(t)}) (red

line). In (a)-(b) we have considered qubit frequency disorder, while in (c)-(d) a disorder
in the individual coupling strengths. All the parameters for the protocol are the same as
in Fig 8.3.

Extracting entanglement from a thermal state

In our protocol we have assumed a rather low value for the resonator frequency, !r, in
order to enhance both g�!r as well as the nonadiabatic switching times. Considering
that typical resonator frequencies are on the order of few GHz (see the discussion on
the experimental implementation), this implies that even at temperatures of T = 20
mK the equilibrium populations of higher resonator states with n ≥ 1 cannot be
neglected.

To better investigate this point, in Fig. 8.4(c) we plot the EEF as a function
of the temperature T , assuming an initial resonator state ⇢

th

= ∑n pn�n��n�, where
pn = n̄n�(1 + n̄)n+1 is the thermal distribution for a mean excitation number n̄ =
1�(e�h!r

�k
B

T − 1). The plot shows also the corresponding ground state population as
function of the temperature. We see that the EEF is higher than the population
in the ground state, meaning that also the higher photon number states contribute
significantly to the final entangled state. The origin of this surprising e↵ect can be
understood from the eigenvalue plot in Fig. 8.4(a). For example, by starting from a
single excitation eigenstate in the the weak-coupling regime, e.g. �n = 1�⊗ � ↓�⊗N , we
see that is e�ciently mapped on the corresponding USC state �n = 1�⊗�s = N�2,mx =
0�, passing only through a weak, higher-order avoided crossing. Therefore, the
intermediate, and as a result also the final, qubit state is one with the resonator being
in state �1�. For higher photon numbers the avoided crossings become more relevant
and the population can get lost into unwanted states. Nevertheless the protocol
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still approximately implements the mapping �n� ⊗ � ↓�⊗N → �n� ⊗ �s = N�2,mx = 0�,
independent of the resonator state �n�. This feature makes it rather insensitive to
thermal occupations that involves the lower excitation states and avoids additional
active cooling methods for initializing the system in state �G�.

Disorder

As we previously mentioned our entanglement-harvesting protocol is also robust
with respect to fabrication disorder and control imprecisions on the relevant pa-
rameter. To see this point we re-do the numerical simulations shown in Fig. 8.3(b)
assuming that, in each run of the protocol, the individual qubit frequencies evolve
as !i

q(t) = !q(t)(1 + ✏i), where !q(t) follows the ideal pulse given in Fig. 8.3(a) and
the ✏i are randomly chosen from the interval [−0.1,0.1]. In Fig. 8.5(a) we plot the
fidelity averaged over the di↵erent runs. We see that the main part of the protocol
is essentially una↵ected by frequency disorder, since the system is initially in the
ground state and in the USC regime the system is dominated by the interaction
terms. Frequency disorder only becomes important in the final decoupled state,
where it dephases the symmetric state �D

0

�. Note, however, that for a fixed fre-
quency distribution, this dephasing can be undone, since as shown in Fig. 8.5(b),
it leads to almost no degradation of the degree of entanglement of the qubit state.
In Fig. 8.5(c) and (d) the same plots are shown for the case of coupling disorder
gi(t) = g(t)(1 + ✏i). Although, this type of disorder has a stronger influence on the
evolution of the state, the plot shows that our protocol does not require strictly iden-
tical couplings and variation of around 10% still lead to EEF F

E

� 0.9 and almost no
degradation of the qubit-qubit entanglement. In this case the main quantity a↵ected
is the entanglement entropy of the qubit subsystem, which does not approach the
value of zero, thus showing that qubits and resonator are not perfectly decoupled.
However, we note that this measure of entanglement is very sensitive in our case,
since the qubit state we achieve at the end of the protocol coincides with our target
state with fidelity above 90%.

Experimental considerations

Let us make here some simple estimates for a possible experimental implementation
of the protocol. Let us consider, for example, qubits with a frequency of !

max

�(2⇡) ≈
10 GHz coupled to a lumped-element resonator of frequency !r�(2⇡) = 500 MHz.
The required maximal coupling strength of g

max

� 4.5!r ≈ 2⇡×2.25 GHz is then con-
sistent with experimentally demonstrated values [209, 210]. For these parameters,
the nonadiabatic switching times assumed in Fig. 8.3(b) correspond to T

3,4 � 0.16 ns.
These switching times are within reach of state-of-the-art waveform generators and
a modulation of flux qubits on such time scales has already been demonstrated [238].
At the same time the duration of the whole protocol, T

f

= 15�!r ≈ 5 ns, is still much
faster than typical flux qubit coherence times of 1-100 µs [239] or the lifetime of a
photon, T

ph

= Q�!r, in a microwave resonator of quality factor Q = 104 − 106.
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Figure 8.6: (a) Pulse sequence for harvesting the 4-qubit entangled state �S� with total
angular momentum s = 0. As shown in the inset, during the first part of the protocol a
finite di↵erence between the qubit frequencies !1,2

q and !

3,4
q is used to break the symmetry

and couple di↵erent angular momentum states. (b) Evolution of the eigenvalues during
the second step of the protocol for extracting the state �S�. The colored lines indicate the
states, which are adiabatically converted into the two s = 0 states, �S� and �S′�. In the first
plot all qubit frequencies are the same, !i

q = 0.48!r, while in the second plot the values

!

1,2
q = 0.48!r and !

3,4
q = 0.35!r have been assumed. In both plots the couplings gi = g are

increased symmetrically during the period T

2

, i.e., the plotted time span from the value
g

min

= 0 to the value g

max

= 1.8!r. Note that for these modest coupling values, the state�S� is not yet the energetically highest state in the n = 0 manifold [see Fig. 8.2].

Another experimental concern could come from the influence of the higher res-
onator modes. For the kind of resonator that we are considering the next higher
mode is estimated to be at !e�2⇡ ∼ 10 GHz. In Ref. [74] it is shown that for such
a high ratio !e�!r > 20, the e↵ect of a higher circuit mode has no relevant influ-
ence on the resulting USC physics. By using an optimized design to increase this
frequency or simply changing the maximal qubit frequency to, e.g., 8 GHz would
avoid a resonant coupling to this mode without a↵ecting the protocol.

In conclusion, although many experimental techniques for implementing and
operating circuit QED systems in the USC regime are still under development,
these estimates clearly demonstrate the feasibility of realizing high-fidelity control
operations in such devices. For a detailed discussion on a specific implementation
that we proposed we refer to the supplementary material of our paper [75].
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Figure 8.7: (a) The expectation value of the total spin, � �S2(t)�, (solid line) and the purity
of the reduced qubit state, P(t), (dashed line) are plotted for the pulse sequence shown in
(a) and for an initial state � 

0

� = �0�⊗ � ↑↑↓↓�. (b) Evolution of the extracted state �0�⊗ �S�
(characterized by the expectation value of the total spin) after the protocol for di↵erent
final values of the couplings g

f

. Here we have assumed random distributions of the qubit
frequencies (see main text).

8.3 Harvesting singlet states

In this section we consider the singlet states �s = 0,mx = 0� introduced in section 8.1.2
and shown in Fig. 8.2(b). As we discussed, these states are dark states of Hamil-
tonian (8.4) and remain decoupled from the cavity field in all parameter regimes.
This means that these states are not connected to any of the bare qubit states in a
simple adiabatic way. Nevertheless, these states can still be prepared by using an
adapted protocol as described in Fig. 8.6(a).

Similar to the ground-state protocol, we start from the decoupled regime where
g � 0 and !i

q � !r, but we initialize the system in the excited qubit state � 
0

� =
�0�⊗ � ↑↑↓↓� (� 

0

� = �0�⊗ � ↑↓� for N = 2 ), where half of the qubits are in the excited
state and half in the ground state. Note that for N = 4 and a fully symmetric system,
the s = 0 manifold is two-fold degenerate and spanned, e.g., by the basis states given
in Eq. (8.11). To prepare a well-defined state, we break the symmetry by creating
an o↵set between the qubit frequencies, for example, by setting !1,2

q ≠ !3,4
q . Once

the state � 
0

� is prepared, all the qubit frequencies are lowered below the resonator
frequency such that !i

q < !r�2. This is done in time step T
1

while keeping g � 0. As
shown in Fig. 8.6(b), after this initial step all the relevant qubit states are below the
first excited photon state. This configuration avoids undesired level crossings with
higher photon number states during the next step of the protocol and only the n = 0
manifold must be considered.

During the second step !i
q ≤ !r�2, but we still keep a finite frequency di↵erence

between the qubits to separate the state � ↑↑↓↓� from other states with two qubits
excited. This di↵erence between the degenerate and non-degenerate qubit frequen-
cies can be visualized in Fig. 8.6(b). As the coupling g is slowly increased while the
di↵erence in the qubit frequencies is tuned to zero, the state � ↑↑↓↓� is adiabatically
transformed into the s = 0 state �S�. During this process the state �S� become almost
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completely degenerate with the other s = 0 state �S′� [see Fig. 8.6(b)]. However, also
the non-adiabatic coupling between these two states is almost negligible, such that
the preparation process is still adiabatic on the timescale of the protocol.

In the last step of the protocol, the qubit frequencies are ramped up to the initial
values as shown in Fig. 8.6(a). At this point maintaining a frequency o↵set is not
crucial anymore. Note that in this last protocol step there are not restrictions on the
operational time T

3

because the system is now in the dark state �S� and completely
decoupled from the resonator mode.

As before we numerically simulate the dynamics given by (8.4) implementing the
protocol that we just described. In Fig. 8.7(a) we plotted the expectation value of
the total spin, � �S2(t)�, and the purity of the reduced qubit state, P(t) as function
of time. We see that indeed we are able to bring the system into a pure state, which
lives in the subspace s = 0.

Compared to the ground-state protocol, this protocol for harvesting the state �S�
requires a fine tuning of the parameters and is less robust against imperfections. On
the other hand it owns another important feature. By retaining a finite coupling
g
f

= g(t = T
f

) ∼ !r at the end of the protocol, the extracted dark state �S� is
energetically separated from all other states with s ≠ 0 and it is thereby protected
against small frequency fluctuations. This e↵ect is illustrated in Fig. 8.7(b), which
shows the evolution of the extracted state �S� in the presence of small random shifts
of the individual qubit frequencies. In particular, we assume random distributions
of the qubit frequencies, !i

q = !q(1 + ✏i), where !q�!r = 10 and the ✏i are chosen
randomly from the interval [−0.05,0.05]. For g

f

= 0 this leads to dephasing of the
qubits and a rapid transition out of the s = 0 subspace. This dephasing can be
substantially suppressed by keeping the coupling at finite values. From Fig. 8.7(b)
we see that this e↵ect is already relevant for moderate values of the coupling, e.g.
g�!r � 1.8. This example shows that USC e↵ects can be used not only to generate
complex multiqubit entangled states, but also to protect them.
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Summary and outlook

In this doctoral thesis we have presented and discussed a new paradigm for atom-
light interactions that occurs when one or multiple quantum emitters are coupled to
the field confined in a one dimensional slow-light waveguide. In such a waveguide the
photonic band can be strongly decreased compared to usual broadband or photonic
crystal waveguides. This feature gives rise to a plethora of new interesting e↵ects
that were extensively analyzed in this thesis and that we are going to summarize
here.

First, we have described in detail the atom-photon bound states that represent,
in a slow-light waveguide QED setup, the main elementary excitations of the system.
To proceed with our analysis we have introduced a basic tight binding model, made
out of an array of coupled resonators. This model intuitively explains the physics
of the system and encodes various e↵ects, which have been previously described in
the limiting cases of broadband waveguides and cavity QED. Based on this system,
we have identified the necessary requirements that are needed to observe atom-
photon bound states under realistic experimental conditions. These requirements
have turned out to be correct, indeed few months after our publication, a single
atom-photon bound state has been observed in an array of microwave resonators
coupled to a superconducting qubit [139].

In the same project we have also discussed the essential properties of multi-atom
dressed-state excitations. In this case, due to the localized nature of the bound
states, the interaction between the emitters becomes short range. This interaction
does not involve only the atomic excitation, but the full dressed state and can lead
to a partial melting of the bound-state energies into the continuum, when specific
coupling conditions are met. Also these predictions were recently observed in a
superconducting circuit implementation [140].

An important part of our work was the extension of the atom-photon bound
states to the multi-photon case. In particular, we have demonstrated the existence
of these states for an arbitrary number of excitations and we have discussed the
quantum nonlinear optical features of these states. We are currently in contact with
experimental groups to find a strategy to observe these multi-photon states that
require stronger coupling strength and more sophisticated fabrication and detection
techniques.

The combination of multi-photon and multi-atom e↵ects represents a starting
point to further explore complex many-body e↵ects in waveguide QED systems.
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Recently, a first step in this direction was done by T. Shi et al. in [161], where
the bound states of an ensemble of atoms coupled to a slow-light waveguide were
discussed up to three excitations. The interesting point of this regime is the possi-
bility to go beyond the e↵ective Hamiltonian description, restricted to the atomic
excitations, by keeping the full polaritonic nature of the states. This opens a new
scenario where it could be possible to combine quantum non-linear optics with few
and many-body physics, maybe achieving a regime where dipole-dipole interactions
and phase transitions could depend on the number of excitations. Along this direc-
tion it would be interesting, for future research, to develop suitable analytical and
numerical techniques to treat this otherwise complex problem.

In the second project that we have presented in this thesis, we have studied
atom-photon interactions in the regime, where the atomic velocities are comparable
to the maximal speed of light of a narrow-bandwidth waveguide. Under such condi-
tions the atomic motion drastically changes photon emission and transfer processes
and induces not only directionalities, but also non-perturbative e↵ects. Indeed, the
combination of Doppler shift and finite band-width leads to a tilting of the pho-
tonic spectrum and gives rise to in-the-band divergencies of the photonic density of
states. In this project we have also proposed a possible implementation consisting
of Rydberg atoms flying above a coupled array of microwave resonators, which can
be experimentally explored with present-day technology.

Besides the fundamental interest in observing and probing these velocity-induced
modifications of the atom-light interaction, having moving qubits is not the ideal
scenario if the final goal is to implement quantum information processing. For this
purpose and in light of the previous results, we have considered a scenario where mul-
tiple emitters are coupled to a slow-light waveguide that is dynamically modulated
by a propagating acoustic wave. Similar to the moving atom case, we have demon-
strated that in this system it is possible to achieve a directional emission caused by
the deformation of the photonic band induced by the acoustic wave. Remarkably,
this emission can be controlled by properly shaping the acoustic wave packet and can
be exploited to implement e�cient excitation transfer and entanglement generation
schemes among several static emitters.

A promising application of this idea occurs when acousto-modulated 2D photonic
lattices are considered. In this case, we have found that the band deformation pro-
duced by the acoustic wave can lead to an innovative scenario where an e↵ectively
one dimensional chiral interaction among the emitters is achievable in two dimen-
sions. This is possible because photons get emitted into a single, highly focused
direction with a slow radial decay. Such a feature allows to implement excitation
transfer and quantum information protocols between the emitters in a way that
would not be obtainable otherwise. These results open new interesting prospects for
building complex quantum network, where quantum information, after having been
processed on the atoms, can be coherently transferred to the photons and distributed
around via phononic conveyor belts.

Regarding future research perspective, besides the engineering of specific schemes
for quantum information processing, it would be interesting to investigate others lat-
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tice geometries. Indeed, di↵erent band structures combined with a shaping of the
acoustic wave modulation could a↵ect the atom-light interactions in a totally dif-
ferent way. In general, extending the problem to several excitations and emitters
could give rise to new interesting scenarios for simulation many-body physics, due
to the possibility of having a time-dependent control of the interactions. Finally, it
would be very interesting to analyze the physics of such acousto-optical waveguides
in the regime, where also the phonons are treated fully quantum mechanically. The
combination of phononic, photonic and atomic degrees of freedom it is still not in-
vestigated, due to the intrinsic complexity of the problem, and developing analytical
and numerical methods able to provide some intuitions on this regime could give
rise to many interesting e↵ects.

In conclusion, in this thesis we have shown how slow-light waveguides repre-
sent a novel experimentally achievable platform where atom-light interaction can be
strongly modified. The intrinsic non-linearity of these interactions combined with
the possibility of achieving control over them, gives rise to many new opportunities
for quantum simulations and quantum information processing applications.
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Appendix A

Appendix

A.1 Master equation

In this Appendix we outline the derivation of the master equation (3.41) in the
weak coupling limit g�J → 0. Starting from Hamiltonian (3.38) we change into an
interaction picture with respect toH

0

= ∑i !a�e�i�e�+Hc and we obtain the atom-field
interaction Hamiltonian

H
int

(t) = g
N

a

�
i=1
��i+E(xi, t)ei!a

t + �i−E†(xi, t)e−i!a

t� , (A.1)

where

E(x, t) = 1√
N
�
k

e−i!k

teikxak, (A.2)

is the field operator at site x and k = 2⇡m�N with m = −N�2,−N�2 + 1, ...,N�2 − 1.
The field operators obey the commutation relations

[E(x, t),E†(x′, t′)] = �(x − x′, t − t′), (A.3)

where

�(z, ⌧) = 1
N
�
k

e−ikze−i!k

⌧

=e
−i!

c

⌧

N

N−1
�
n=0

e−i2⇡zn�Nei2J cos(2⇡n�N)⌧

=e
−i!

c

⌧

N

N−1
�
n=0

ei2⇡zn�N
∞
�

m=−∞ imJm(2J⌧)ei2⇡nm�N

=e−i!c

⌧ i�z�J�z�(2J⌧).

(A.4)

Up to second order in g and by performing the usual Born-Markov approximation
[78], we end up with a time-local master equation governing the time evolution of
the atom’s reduced density operator

⇢̇(t) = −�
∞

0

d⌧ Trc{[Hint

(t), [H
int

(t − ⌧),⇢c ⊗ ⇢(t)]]}, (A.5)
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where in the absence of any driving fields ⇢c = �0��0� is the vacuum state of the
waveguide modes. The master equation can be expressed in the form

⇢̇ =�
ij

Aij ��j−⇢�i+ − �i+�j−⇢� +A∗ij ��i−⇢�j+ − ⇢�j+�i−� , (A.6)

where

Aij =g2�
∞

0

d⌧ �E(xi, t)E†(xj, t − ⌧)�ei!a

⌧

=g2�
∞

0

d⌧ �(xi − xj, ⌧)ei!a

⌧e−�c⌧�2

=g2i�xi

−x
j

��
∞

0

d⌧ J�x
i

−x
j

�(2J⌧)e−� �c2 −i��⌧
(A.7)

and the cavity decay rate �c appears through the replacement !c → !c − i�c�2. The
final integral can now be evaluated with the help of

�
∞

0

d⌧ Jm(a⌧)e−b⌧ = 1√
a2 + b2

� a

b +
√
a2 + b2

�
m

, (A.8)

and we obtain

Aij =
g2eiK�xi

−x
j

]
�
4J2 − �� + i�c

2

�2
, (A.9)

where K is given in Eq. (3.44). Finally, since Aij = Aji we can regroup the individual
terms into the form given in Eq. (3.41), where we identify . �ij = 2Re{Aij} and
Uij = 2Im{Aij}.

The derivation of the master equations relies on the validity of the Born-Markov
approximation, which requires that the kernel in Eq. (A.7) either decays faster or
oscillates faster than the system evolution time set by the coupling ∼ g. For a single
atom this condition is satisfied as long as g � �ṽg(�)� and by assuming in addition
that �a � �ṽg(�)�, we can also add to �ii the bare atomic decay, without influencing
the coupling to the waveguide.

For multiple atoms the Bessel function J�x
i

−x
j

�(2J⌧) reaches its maximum at a
finite time

⌧ ≈ �xi − xj �
2J

, (A.10)

which reflects the minimal time it takes a photon to propagate between the atoms.
More generally, for the validity of a time-local master equation for Na-atoms with
spacing�x we must ensure that the maximal retardation time ⌧R ∼ (Na−1)�x��ṽg(�)�
is short compared to the system evolution determined by the single-atom spontaneous-
emission time �−1 with � = 2g2��ṽ

g

(�)�. This yields

g � �ṽ
g

(�)��
(Na−1)�x

(A.11)

as a slightly more stringent condition for large systems. See also Ref. [19, 14].
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A.2 Multi-atom bound-states

Here we address a number of properties of the multi-atom bound-state levels in the
case Na = 2 and Na � 1 with the goal of proving the salient features of the energy
spectra in Fig. 4.9 and 4.11 discussed in the main text.

A.2.1 Na = 2
Below the continuum, i.e., for E < −2J , both ⌃e(E) and ⌃o(E) monotonically
decrease with E [see Eq. (4.50)]. Thereby, if the value taken by the linear function
y = E − � at E = −2J lies above ⌃s(−2J) then a single bound state (for fixed s) of
energy E−,s < −2J certainly occurs. This condition thus explicitly reads −2J − � >
⌃s(−2J). This is always fulfilled for s = e given that ⌃e(−2J) = −∞. Instead, for
s=o, by calculating ⌃o(−2J) = −g2�x1

− x
2

��(2J) [see Eq. (4.50) for E→(−2J)+], the
above condition results in

g >
2J
�
1 + �

2J�
�x

1

− x
2

�
= gm�
�x

1

− x
2

�
, (A.12)

where gm is the same as in Eq. (4.65). Hence, as discussed in Sec. 4.3.2, both E−,e
and E−,o solutions exist for any interatomic distance when g > gm.

If instead g < gm, at the critical distance �x
1

− x
2

� = (gm�g)2 the solution E−,o
merges with the continuum, i.e., E−,o = −2J , and it no longer exists for �x

1

−x
2

� < xm

(see Fig. 4.9). Moreover, note that in the light of the geometrical criterion given
above if E−,o exists then E−,o > E−,e since ⌃o(E) > ⌃e(E) [see Eq. (4.50)]. Eq. (A.12)
holds for � > −2J . For � ≤ −2J , E−,o always exists since −2J − � is positive while
⌃o(2J) is negative anyway.

As for bound states above the continuum, a similar reasoning can be carried
out. Recalling that ⌃s(−E) = −⌃s(E), we have ⌃o(2J) = g2�x

1

− x
2

��(2J) and
⌃e(2J) = +∞ with both functions ⌃s(E) mononically decreasing with E for E > 2J .
The condition for the existence of a bound state will now read 2J − � < ⌃s(2J).
Again, it is always fulfilled when s = e since ⌃e(2J) diverges to +∞. Instead, for
s = o the threshold condition for � < 2J reads

g >
2J
�
1 − �

2J�
�x

1

− x
2

�
, (A.13)

which is analogous to Eq. (A.12) but the replacement � → −� in the expression of
gm. For � > 2J both levels E+,s exist. Moreover, since now ⌃o(E) < ⌃e(E) we have
E+,o < E+,e.

To summarize, outside the continuum, a pair of bound states of even symmetry
and energies E±,e always exist, one above and one below the photonic band. At
most two further odd-symmetry bound states of energies E±,o may be present as
well, depending on the values of g, �x

1

−x
2

� and �. Note that, for ��� < 2J , the critical
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coupling strengths appearing in Eqs. (A.12) and (A.13) are di↵erent, which entails
that three cases are possible: E+,o exists while E−,o does not (or vicecersa), E±,o
both exist, E±,o both do not exist. Combining together Eqs. (A.12) and (A.13), the
conditions for these three cases to occur, for ��� ≤ 2J , read

g > 2J

�
1+ ���

2J��x1−x2� ⇔ both E+,o and E−,o exist , (A.14)

2J

�
1− ���

2J��x1−x2� <g<
2J

�
1+ ���

2J��x1−x2� ⇔ only E
sgn (�),o exists, (A.15)

g < 2J

�
1− ���

2J��x1−x2� ⇔ neither E+,o nor E−,o exist . (A.16)

A.2.2 Na � 1

The analysis for Na � 1 proceeds similarly to the Na = 2 case. The explicit self-
energy functions ⌃s=e,o(E) are obtained from Eqs. (4.47), (4.66) and (4.10). Like in
the 2-atom case, ⌃e(E) > ⌃o(E) [⌃e(E) < ⌃o(E)] for E > 2J (E < −2J) with ⌃e(E)
diverging to +∞ and −∞ for E → (2J)+ and E → (−2J)−, respectively. Instead,
⌃o(±2J) = ±g2�x�(4J).

Accordingly, the same geometrical criterion as in the previous subsection entails
that the conditions for the existence of E+,o and E−,o are the same as in Eqs. (A.12)
and (A.13), respectively, apart from the factor

√
2 on either right-hand side. The

same factor thereby appears in Eqs. (A.14)-(A.16), which are now interpreted as the
conditions for establishing whether none [Eq. (A.14)], only one [Eq. (A.15)] or both
[Eq. (A.16)] of the metabands merge with the photonic band.
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[75] F. Armata, G. Calajó, T. Jaako, M.S. Kim, and P. Rabl Harvesting Multiqubit
Entanglement from Ultrastrong Interactions in Circuit Quantum Electrodynam-
ics, Phys. Rev. Lett. 119 18, 183602 (2017).

[76] R. H. Dicke, Coherence in Spontaneous Radiation Processes, Phys. Rev. 93, 99
(1954).

[77] M. Gross and S. Haroche, Superradiance: An Essay on the Theory of Collective
Spontaneous Emission, Phys. Rep. 93, 301, (1982).

[78] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Ox-
ford, Oxford University Press, 2002).

[79] D.F. Walls, G. J. Milburn, Quantum Optics (Springer, 1994).

[80] C. Gardiner, P. Zoller, Quantum noise: a handbook of Markovian and non-
Markovian quantum stochastic methods with applications to quantum optics
(Springer Science and Business Media, 2004).

[81] W. E. Lamb, R. C. Retherford, Fine Structure of the Hydrogen Atom by a
Microwave Method, Phys. Rev. 72, 241 (1947).

[82] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E.
Chang, Exponential Improvement in Photon Storage Fidelities Using Subradiance
and “Selective Radiance” in Atomic Arrays, Phys. Rev. X 7, 031024 (2017).

[83] H. Zoubi and H. Ritsch, Lifetime and Emission Character- istics of Collective
Electronic Excitations in Two- Dimensional Optical Lattices, Phys. Rev. A 83,
063831 (2011).

[84] D. Plankensteiner, L. Ostermann, H. Ritsch, and C. Genes, Selective Protected
State Preparation of Coupled Dissipative Quantum Emitters, Sci. Rep. 5, 16231
(2015).

[85] G. Facchinetti, S. D. Jenkins, and J.Ruostekoski, Storing Light with Subradiant
Correlations in Arrays of Atoms, Phys. Rev. Lett. 117, 243601 (2016).

[86] V. D. Vaidya, Y. Guo, R. M. Kroeze, K. E. Ballantine, A. J. Kollár, J.N. Keel-
ing, B. L. Lev, Tunable-range, photon-mediated atomic interactions in multimode
cavity QED, Phys. Rev. X 8, 021030 (2018).

[87] N. M. Sundaresan, Y. Liu, D. Sadri, L. J. Szocs, D. L. Underwood, M.
Malekakhlagh, H. E. Tureci, and A. Houck, Beyond Strong Coupling in a Multi-
mode Cavity, Phys. Rev. X 5, 021035 (2015).

[88] D. E. Chang, V.Vuletic, and M. D. Lukin, Quantum nonlinear optics - photon
by photon, Nat. Photon. 8, 685 (2014).

177



[89] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J.
Kimble, Photon blockade in an optical cavity with one trapped atom, Nature 436,
87 (2005).

[90] A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr,
and G. Rempe, Two-Photon Gateway in One-Atom Cavity Quantum Electrody-
namics, Phys. Rev. Lett. 101, 203602 (2008).

[91] E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance Absorption by Nuclear
Magnetic Moments in a Solid, Phys. Rev. A 69, 37 (1946).

[92] M. Tavis and F. W. Cummings, Exact Solution for an N-Molecule-Radiation-
Field Hamiltonian, Phys. Rev. 170, 379 (1968).

[93] M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble and H. J. Carmichael,
Normal-mode splitting and linewidth averaging for two-state atoms in an optical
cavity, Phys. Rev. Lett. 63, 240 (1989).

[94] Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W.
Mossberg Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis
and experimental observations, Phys. Rev. Lett. 64, 2499 (1990).

[95] F. Bernardot, P. Nussenzveig, M. Brune, J. M. Raimond and S. Haroche,
Normal-mode splitting and linewidth averaging for two-state atoms in an optical
cavity, Europhys. Lett. 17, 33 (1992).

[96] J. M. Fink, R. Bianchetti, M. Baur, M. Goppl, L. Ste↵en, S. Filipp, P. J.
Leek, A. Blais, and A. Wallra↵ Dressed Collective Qubit States and the Tavis-
Cummings Model in Circuit QED, Phys. Rev. Lett. 103, 083601 (2009).

[97] G. Agarwal, S. Gupta, and R. Puri, Fundamentals of Cavity Quantum Electro-
dynamics, (World Scientific Publishing Company Incorporated, 1995).

[98] Y. Kaluzny, P. Goy, M. Gross, J-M Raimond and S. Haroshe, Observation
of Self-Induced Rabi Oscillations in Two-Level Atoms Excited Inside a Resonant
Cavity: The Ringing Regime of Superradiance, Phys. Rev. Lett. 51, 1175 (1983).

[99] S. Haroche, Rydberg atoms and radiation in a resonant cavity: a simple system
to test basic quantum optics e↵ects, New Trends in Atomic Physics, Grynberg
and Stora editors, North Holland (1984).

[100] D. Meschede, H. Walther, and G. Müller, One-Atom Maser, Phys. Rev. Lett.
54, 551 (1985).

[101] G. Rempe, H. Walther, and N. Klein, Observation of quantum collapse and
revival in a one-atom maser, Phys. Rev. Lett. 58, 353 (1987).

[102] R. J. Thompson, G. Rempe, and H. J. Kimble Observation of quantum collapse
and revival in a one-atom maser, Phys. Rev. Lett. 68, 1132 (1992).

178



[103] S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, A. Rauschenbeutel, Disper-
sive Optical Interface Based on Nanofiber-Trapped Atoms, Phys. Rev. Lett. 107,
243601 (2011).

[104] D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, and A. Rauschenbeutel, Co-
herence Properties of Nanofiber-Trapped Cesium Atoms, Phys. Rev. Lett. 110,
243603 (2013).

[105] R. Yalla, M. Sadgrove, K. P. Nayak and K. Hakuta, Cavity Quantum Elec-
trodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity, Phys.
Rev. Lett. 113, 143601 (2014).

[106] J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nonlinear ⇡ phase
shift for single fibre-guided photons interacting with a single resonator-enhanced
atom, Nat. Photon. 8, 965 (2014).

[107] P. Solano, P. Barberis-Blostein, F. K. Fatemi, L. A. Orozco, S. L. Rolston,
Super-radiance reveals infinite-range dipole interactions through a nanofiber, Nat.
Commun. 8, 1857 (2017).

[108] P. Solano, J. A.Grover, J. E.Ho↵man, S. Ravets, F. K.Fatemi, L. A.Orozco,
S. L.Rolston,Optical Nanofibers: a new platform for quantum optics, Advances
in Atomic, Molecular, and Optical Physics 66, 439 (2017).

[109] M. Arcari, et al., Near-Unity Coupling E�ciency of a Quantum Emitter to a
Photonic Crystal Waveguide, Phys. Rev. Lett. 113, 093603 (2014).

[110] A. Javadi et. al, Single-photon non-linear optics with a quantum dot in a
waveguide Nat. Commun. 6, 8655 (2015).

[111] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Jr., Yu. A. Pashkin, T.
Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, Resonance fluorescence
of a single artificial atom, Science 327, 840 (2010).

[112] I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P.
Delsing, Demonstration of a Single-Photon Router in the Microwave Regime,
Phys. Rev. Lett. 107, 073601 (2011).

[113] A. F. van Loo, A. Fedorov, K. Lalumiére, B. C. Sanders, A. Blais, and A.
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Garćıa-Álvarez, G. Romero, E. Solano, K. G. Fedorov, E. P. Menzel, F. Deppe,
A. Marx, and R. Gross, Ultrastrong coupling in two-resonator circuit QED, Phys.
Rev. B 93, 214501 (2016).
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