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Abstract 

 

The diagnosis and prognosis of patients with severe chronic disorders of consciousness (scDOC) are 

still challenging and a lot of misdiagnosis is evident. We aim to show new techniques to get a better 

insight into these disorders and introduce methods that can help in the diagnosis, all focusing on 

functional magnetic resonance imaging (fMRI) as modality.  

 

After a general introduction, an overview of fMRI is given. The physical and physiological basis is 

described. Furthermore, the most important experimental designs as well as analysis techniques are 

explained. The next part focuses on scDOC patients and presents definitions of the different diagnoses 

and challenges that are faced nowadays.  

 

After these introductory sections, a chapter dealing with fMRI under anesthesia follows. The patient 

group of scDOC patients is especially difficult to investigate because they often cannot lie still for 

the duration of an fMRI scan. We show for the first time, as far as known to us, results of fMRI under 

anesthesia of a patient in minimally consciousness state. Such results are possible because we choose 

a specific task, namely stimulation with a brush. Moreover, in a second example we show that it is 

possible to detect brain activity in the motor cortex of a patient in the final stage of Creutzfeldt-Jakob 

disease when anesthetized. This is a new result because, up to now, it was assumed that patients in 

the late stages of Creutzfeldt-Jakob disease are in the apallic syndrome and thus do not activate the 

cerebral cortex no more.  

 

The next part deals with the analysis of resting state fMRI. Resting state fMRI describes an fMRI 

experiment when the subject does not perform any task during scanning. This is of special interest 

for the considered patient group because no active participation of the subject is needed for such an 

examination. We present different analysis methods dealing with regions of interest (ROI). The first 

is an ROI-to-ROI analysis using a special connectivity analysis software. After that we turn to a 

method using graph theory. We construct networks out of the correlation matrices of the ROIs and 

then analyze the modularity with the multislice modularity approach. We choose this method because 

standard methods are not able to detect differences in the modularity of the different patient groups 

with scDOC. We are the first to use this new technique on this patient group and are able to detect 

differences between the subgroups. Furthermore, we introduce a new approach for a classifier which 

is based on modularity detection with the multislice method. The last part of this chapter combines a 

genetic algorithm and a support vector classifier to find the ROIs which differ most when considering 

the diverse groups of scDOC patients as well as healthy controls. The approach to combine a genetic 



 

 

algorithm and a support vector classifier is well-established but it has never been used in this special 

way and with this patient group. 

 

The last section gives a conclusion and outlook of what kind of work still has to be done in this field 

and shows how our new results can contribute to the understanding of this disease, e.g., by showing 

which ROIs are the most important indicators for the different types of disorders.  



 

 

Zusammenfassung 

 

Die Diagnose und Prognose von Patienten mit schweren chronischen Bewusstseinsstörungen (scBS) 

sind immer noch eine Herausforderung und eine hohe Anzahl an Fehldiagnosen ist bekannt. Wir 

zeigen neue Techniken um ein besseres Verständnis dieser Störungen zu erlangen und stellen 

Methoden vor, die bei der Diagnose behilflich sein könnten, alles im Hinblick auf funktionelle 

Magnetresonanztomographie (fMRT). 

 

Nach einer allgemeinen Einleitung, wird ein Überblick über fMRT gegeben. Die physikalischen als 

auch physiologischen Grundlagen werden erklärt. Darüber hinaus wird ein Überblick über die 

wichtigsten experimentellen Methoden und Analysetechniken gegeben. Der nächste Abschnitt 

konzentriert sich auf Patienten mit scBS und führt die Definitionen der unterschiedlichen Diagnosen 

und die Herausforderungen, die sich gegenwertig stellen, an.  

 

Nach diesen einführenden Kapiteln folgt ein Abschnitt der sich mit fMRT unter Anästhesie 

beschäftigt. Die betrachtete Patientengruppe ist eine sehr schwierig zu untersuchende Gruppe, da sie 

oft für die Dauer des fMRT Scans nicht still liegen kann. Wir zeigen, zu unserer Kenntnis zum ersten 

Mal, Resultate einer fMRT Untersuchung eines Patienten im Minimally Consciousness State unter 

Narkose. Diese Ergebnisse sind möglich, weil wir eine spezielle Methode, nämlich die Stimulation 

mit einer Bürste, wählen. In einem zweiten Beispiel zeigen wir, dass es möglich ist, im Endstadion 

der Creutzfeldt-Jakob Krankheit immer noch Aktivität im Motorkortex festzustellen, wenn der Patient 

unter Narkose steht. Dies ist eine neue Erkenntnis, weil bis jetzt geglaubt wurde, dass sich Patienten 

im Endstadion der Creutzfeldt-Jakob Krankheit im Apallischen Syndrom befinden und somit 

keinerlei cerebralen Kortex mehr aktivieren.  

 

Der nächste Teil beschäftigt sich mit der Analyse von Ruhezustands fMRT. Eine solche Untersuchung 

beschreibt ein fMRT bei dem keinerlei Aufgaben durchgeführt werden. Diese Vorgehensweise ist von 

speziellem Interesse für Patienten mit scBS, da keinerlei aktive Teilnahme der Versuchsperson für 

eine solche Untersuchung nötig ist. Wir zeigen unterschiedliche Analysemethoden. Die erste ist eine 

Interessensregion zu Interessensregion Analyse einer speziellen Konnektivitätsanalysesoftware. 

Danach gehen wir zu einer Methode, die Graphentheorie verwendet, über. Wir konstruierten 

Netzwerke aus den Korrelationsmatrizen der Interessensregionen und analysieren die Modularität mit 

mehrschichtiger Netzwerkmodul Berechnung. Wir wählen diese Methode, weil die 

Standardmethoden keinerlei Unterschied in der Modularität der unterschiedlichen scBS 

Patientenuntergruppen finden können. Wir verwenden als Erste diese neue Technik und sind damit 



 

 

fähig solche Unterschiede zu zeigen. Darüber hinaus stellen wir eine neue Methodik für einen 

Klassifikator, der auf der Mehrschicht-Modul Berechnung basiert, vor. Der letzte Teil dieses 

Abschnitts kombiniert einen genetischen Algorithmus mit einem Support Vektor Klassifikator, um 

die wichtigsten Interessensregionen zu finden, welche den größten Unterschied zwischen den 

diversen Krankheitsbildern als auch gesunden Probanden zeigen. Der Ansatz einen genetischen 

Algorithmus mit einem Support Vektor Klassifikator zu kombinieren ist gut etabliert, allerdings 

wurde es noch nicht in dieser speziellen Weise und mit dieser Patientengruppe gemacht.  

 

Der letzte Abschnitt dient der Zusammenfassung und gibt einen Ausblick auf Arbeit, die noch getan 

werden muss und zeigt wie unsere Ergebnisse und Techniken zum Verständnis der Krankheit 

beitragen können, indem sie zum Beispiel aufzeigen, welche Interessensregionen am wichtigsten sind 

für die Unterscheidung der Patientensubgruppen.  
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1. Introduction 

In the last decades, intensive care as well as emergency treatment have improved significantly, thus 

a lot more patients survive severe brain injuries or diseases. Nonetheless, not all of these patients 

recover fully, but some remain with severe chronic disorder of consciousness (scDOC) (Giacino et 

al., 2009; Laureys et al., 2006). We mainly distinguish two types of scDOC, namely unresponsive 

wakefulness syndrome (UWS), which describes patients that are not aware of themselves or their 

environment but do have a day and night circle, and minimally consciousness state (MCS), which are 

patients who react to some external stimuli but inconsequently (Giacino et al., 2002; Laureys et al., 

2010). Moreover, there is the locked-in syndrome (LIS), which is a state that might look like the 

patients suffer from scDOC but indeed are totally aware of themselves and their environment, they 

just cannot communicate (Posner et al., 2007). Most of the time behavioral testing is taken as the 

golden standard when it comes to consciousness evaluation. What is important is that there is a huge 

misdiagnosis rate in the field of scDOC. In the literature we find a value of up to 43% for the 

misdiagnosis (Andrews et al., 1996; Giacino et al., 2009; Schnakers et al., 2009). A newer study from 

Russia even reports that 80% of MCS and 55% of UWS patients are initially misdiagnosed 

(Legostaeva et al., 2017). Such a high misdiagnosis rate can be devastating for the patients and has 

an impact on ethical as well as legal questions. Moreover, the diagnosis is also important for the 

prognosis of these patients (Luauté et al., 2010; Noé et al., 2012). Hence, new methods for the 

diagnosis are needed.  

 

In the last years, neuroimaging techniques - like functional magnetic resonance imaging (fMRI) -

have seemed to gain possible insights into scDOC (Gosseries et al., 2016, 2014; Hirschberg and 

Giacino, 2011; Jox et al., 2012). One famous example was reported by Owen et al. in 2006. They 

used fMRI to show that a patient diagnosed as being in UWS was actually in LIS  and totally aware 

of herself and her environment (Owen et al., 2006). This is why a lot of physicians make their patients 

undergo fMRI, which can be a quite challenging task in daily clinic. Many of the patients suffering 

from scDOC also develop movement disorders or just do not tolerate being put into the scanner. 

Hence, we decided to anesthetize the patients in order to see whether we can find fMRI signals. There 

are studies focusing on anesthesia and the change of the fMRI signal due to anesthesia but up to now 

this was not done with scDOC patients. We used a special guided anesthesia and a robust stimulus 

(Rath et al., 2016). This method was able to detect fMRI signals of patients when under anesthesia 

(Wutzl et al., 2018). 
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Besides the actual scanning procedure and trying to improve the setup, there has also been research 

on new analysis methods. Resting state, which describes an investigation in which the subject does 

not have to actively participate is of special interest for this patient group. One new approach for the 

analysis is to use graph-theoretical methods. Studying graphs, or networks, is not a new topic and has 

been done in a lot of fields like computer sciences or also in applied fields like sociology. In the last 

decades, the theories developed in these different fields came to neuroscience (Sporns, 2010). We 

focused on one special technique whose basis are modules, i.e., nodes of the same module are more 

tightly connected to one another than to the nodes of the rest of the network (Fortunato, 2010; Girvan 

and Newman, 2002; Porter et al., 2009). What is known so far is that the brain network has a small-

world structure and is modular with highly connected hubs (nodes with many of connections) 

(Bullmore and Sporns, 2009). These methods have also been used for scDOC patients, e.g., (Achard 

et al., 2012; Crone et al., 2014; Giacino et al., 2006; Schiff et al., 2005). Nevertheless, none of these 

studies was able to find differences in the modularity of the different groups of scDOC patients. We 

used a new method introduced by Mucha et al. in 2010 (Mucha et al., 2010). Instead of looking at 

every subject individually, we connected their graphs and calculated the modularity for the whole 

group. Using this method, we were able to find differences between healthy subjects and MCS 

patients, between healthy subjects and UWS patients, and between UWS and MCS patients. 

Furthermore, we introduce one classifier which is able to distinguish healthy controls and scDOC 

patients and also with a slight modification separates UWS and MCS patients better than at random.  

 

Another approach that is used for trying to better understand these diseases is feature selection with 

a classification algorithm. We use a well-established method, namely combining a genetic algorithm 

(GA) with a support vector classifier (SVC). Even though the approach is not new, it has so far not 

been used for scDOC patients. We truncate the correlation matrix of the resting state fMRI in a special 

way so that we find the regions of interest (ROIs) that are most important for the distinction of the 

different disease groups as well as to healthy controls. These are also the ROIs that differ most when 

comparing the different groups.  
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2. Functional magnetic resonance imaging 

 

Measuring the human brain, in particular its function, has been a challenge since early times of 

modern medicine. In the past, a lot was speculated about the brain functions and several of theories, 

especially by philosophers, have been made. Nowadays, we are able to measure the brain and its 

function directly and indirectly. Hence, there are a lot of different tools for measuring brain activity, 

like electroencephalography (EEG), positron-emission tomography (PET), functional magnetic 

resonance imaging (fMRI), magnetoencephalography (MEG), and even others. All these methods use 

different physical or physiological mechanisms to detect brain activity. We focus on fMRI, whose 

physical mechanisms are described in the following sections. 

 

2.1. Overview of fMRI technology  

 

FMRI is a technique that makes use of the blood oxygenation level dependent (BOLD) effect and 

measures the brain activity using magnetic resonance imaging (MRI). It is of special interest because 

it does not use any ionizing radiation, like X-rays, and is a completely non-invasive method. 

Considering its properties, it has a temporal resolution of seconds s and a  high spatial resolution of 

millimeters mm. Figure 1 shows different neurological imaging techniques and compares their 

temporal resolution on the logarithmic-scaled x-axis in seconds versus the spatial resolution given on 

the logarithmic-scaled y-axis in millimeter. FMRI is shown in the upper middle part of the figure. As 

one can see, it occupies quite a big area of this chart. This indicates that fMRI is useable for a wide 

range of scales, i.e., it has a temporal resolution from hours to seconds and a spatial resolution from 

the entire brain down to neural columns. These properties make fMRI suitable for a lot of different 

experiments and examinations. The electrophysiological methods, like MEG and EEG, are shown in 

the upper left corner. Hence, their temporal resolution is better than that of fMRI, but their spatial 

resolution does not occupy such a big field, i.e., its spatial resolution is not as good as the one of 

fMRI. According to Figure 1, PET, which is shown in the upper right corner is not favorable, first 

because its temporal and spatial resolution are poorer than those of fMRI and beyond that it is an 

invasive method using radioactive substances. Looking at Figure 1, one finds that other techniques 

like the patch clamp technique do have even better temporal and spatial resolution than fMRI. 

Nevertheless, this technique is hard to use and is also an invasive method, which makes it less 

favorable.   
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Figure 1: Overview of different neural measurement techniques and their relation to spatial and 

temporal resolution Modified from (Medaglia, 2017). 

 

2.1.1. Overview of magnetic resonance imaging (MRI) 

 

2.1.1.1.  The history of MRI  

 

MRI was first described by Paul Christian Lauterbur (06.05.1929 - 17.03.2007) in 1971 and published 

in 1973 (Becker, 2007; Filler, 2009). Since then it has been gaining more and more importance, 

especially in the field of medicine, where it is used quite regularly these days. In 2003, Lauterbur and 

Sir Peter Mansfield (09.10.1933 - 08.02.2017) received the Nobel Prize for physiology and medicine 

for their work on MRI (Filler, 2009; Morris, 2017). 

 

The underlying principle of MRI is nuclear magnetic resonance (NMR) which is now known for a 

little less than hundred years. The first important scientist who worked on that field was Wolfgang 

Ernst Pauli (25.04.1900 - 15.12.1958) in the 1920s. This was followed by Isidor Isaac Rabi 

(29.07.1898 - 11.01.1988) who made an experiment to detect magnetic spins of nuclei in 1938 for 

which he won the Nobel Prize in 1944 (Filler, 2009; Peierls, 1960; Shampo et al., 2012). 

 

Felix Bloch (23.10.1905 - 10.09.1983) and Edward Mills Purcell (30.08.1912 - 07.03.1997) described 

independently that the results of magnetic resonance found by Rabi in gases can also be found in 
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solids. This finding lead to the Nobel Prize in physics for both of them in 1952 (Bleaney, 1999; 

Hofstadter, 2008). 

 

There are even more researchers, who were awarded the Nobel Prize for their work related to MRI 

namely Nicolaas Bloembergen (1981), Norman F. Ramsey (1989), Richard R. Ernst (1991) and Kurt 

Wüthrich (2002) (Boesch, 2004). 

 

2.1.1.2. Underlying physical principles of MRI 

 

In order to describe the basic principles of MRI we follow standard textbooks on this topic, like 

(Huettel et al., 2008; Plewes and Kucharczyk, 2012). 

 

The main aspect of MRI makes use of NMR, which is a physical phenomenon describing that atomic 

nuclei absorb and re-emit electromagnetic radiation when brought into a magnetic field. Nucleons 

with a spin unequal to zero behave like little magnets. The most important nucleon for imaging is 1H, 

which is one of the main elements found in the human body – but also, e.g., 13C, 19F, 23Na or 31P, are 

used. What makes an element suitable for MRI is when it has an odd number of neutrons or protons, 

i.e., it exhibits a spin unequal to zero. In the following we will focus on 1H because it is most often 

used for MRI. Moreover, it is easy to describe because it consists of just a single proton. Nevertheless, 

all descriptions hold for all elements used for MRI. 

 

The proton of the 1H is positively charged and due to thermal effects, it rotates around its own axis 

like a spinning top. Other than a spinning top, it cannot be stopped nor can it be accelerated. The 

rotation produces a current and hence a magnetic field which is called magnetic moment μ. 

Furthermore, the proton has a mass. Hence, its spin results in an angular momentum denoted as J. 

What all nuclei for MRI have in common is that they have a magnetic moment μ as well as an angular 

momentum J. These two are proportional to each other given by a constant γ which is called the 

gyromagnetic ratio. This equality is shown in Equation (1). 

 

 

μ = γ J    

 

(1) 

As mentioned before γ is a constant and as such does not depend on any external condition such as 

pressure, temperature, or anything else and it is unique to each element. Its unit is rad per second and 

Tesla. Some values for the gyromagnetic ratio are given in Table 1– in the more commonly used unit 

of Mega Hertz per Tesla. 
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Table 1: Gyromagnetic ratio of different elements (Plewes and Kucharczyk, 2012) 

Element Gyromagnetic ratio (γ) 

[MHz/T] 

1H 42.58 

2H 6.53 

19F 2.627 

23Na 11.27 

31P 1.131 

17O -5.77 

  

The application of an external magnetic field to the protons leads to parallel and antiparallel alignment 

to the external magnetic field. The parallel as well as the antiparallel state are equilibrium states. The 

parallel state is the low energy state whereas the antiparallel is the high energy state.  

 

 

Figure 2: a) A proton in the outer magnetic field B0 tries to align parallel (most of the times), b) a 

gyroscope in the outer gravitational field g, c) a proton precessing with an angular velocity of ω in 

the outer magnetic field B0 d) a gyroscope precessing with an angular velocity of ω in the outer 

gravitational filed g (Plewes and Kucharczyk, 2012)  

 

When a nucleon with a spin unequal to zero is brought into a magnetic field it tries to realign in a 

parallel or antiparallel direction to the outer magnetic field (more often it will align parallel to the 

outer magnetic field). Figure 2a) shows a nucleon parallel to the outer magnetic field B0. This can be 

compared to a gyroscope in the Earth’s gravitational field g - see Figure 2b) where a gyroscope 

hanging from a vertical pivot is shown. However, the proton also has an angular momentum. Hence, 

it starts precessing with an angular velocity ω around the axis of B0 which can be seen in Figure 2c). 
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The same effect would occur if the gyroscope is slightly disturbed. It would also start to precess with 

ω around the outer axis of g (Figure 2d)). The frequency of this precession is proportional to B0 as 

well as to γ which is, as mentioned above, unique to each element. This is summed up in the so called 

Larmor Equation (2). 

 

 𝜈 =
𝛾

2𝜋
𝐵0    (2) 

 

with ν being the Larmor frequency in Mega Hertz, B0 in Tesla and γ in Mega Hertz per Tesla. See 

Table 2 for some values ν of some common elements. 

 

Table 2: Larmor frequencies of different elements at different outer magnetic fields. 

Element ν for B0=1T 

[MHz] 

ν for B0=1.5T 

[MHz] 

ν for B0=3T 

[MHz] 

1H 6.78 10.17 20.34 

2H 1.04 1.56 3.12 

19F 0.42 0.63 1.26 

23Na 1.79 2.69 5.37 

31P 0.18 0.27 0.54 

17O -0.92 -1.38 -2.75 

 

When a sample of several protons is brought into an outer magnetic field B0, most of the protons will 

align parallel and some will align antiparallel to B0. One might think that difference between the 

parallel and antiparallel aligned protons is huge, but it is rather small, i.e., just about one out of 100000 

protons does not cancel out with another proton in antiparallel state. This one out of 100000 then 

contributes to the MRI signal. However, this leads to a net magnetization. Summing up all these 

protons that do not cancel out can be illustrated as one magnetization vector precessing around B0. 

This can be seen in Figure 3.  

 

In order to measure the precession magnetization, receiver coils are used - see Figure 4 for an 

illustration. The magnetic field varies due to the precession of the nucleons. Hence, a current is 

induced into the coils. This magnetization is known as transverse component. Two coils are used so 

that the direction of rotation as well as the angle can be determined at any time.   
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Figure 3: Showing just the protons that do not cancel out with a partner in the antiparallel state. 

(Plewes and Kucharczyk, 2012) 

 

Figure 4: Two receiver coils for detecting the precessing magnetization.  

(Plewes and Kucharczyk, 2012) 

 

When irradiating the sample with exactly its ν, the net magnetization is flipped by a flip angle, e.g., 

of 90 °. After turning of the excitation, which is in general a radio frequency pulse, the atoms start to 

align again with B0 which is shown in Figure 5 (B0 in z-direction).  

 

 

Figure 5: Irradiation of the net magnatization with ν results in precession in the transverse plane. 

(Plewes and Kucharczyk, 2012) 
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This realignment can be measured via free induction decay, which describes the radio frequency 

signal which is now emitted by the atoms when spinning back to their original aligned position. This 

is called relaxation and is of different duration depending on the tissue. Thus, this difference can be 

used for imaging purposes. 

 

Up to now, we assumed that the magnetization is spatially homogeneous. Even with a perfect magnet, 

this is not a realistic assumption. Hence, the magnetization toward the tissue is heterogenous. This 

means that different spins precess with different ν. Using a rotating frame of reference with a rotation 

of the average of all spin rotations for description, we find that the magnetization vectors fan out in 

the transverse plane and hence, lose their alignment. This also leads to a decrease of the net 

magnetization and thus, a drop in the signal. This mechanism has a time constant T2* of the time 

when the signal drops to 1/e of its original value. The inhomogeneities have different origins. Some 

are intrinsic whereas others are extrinsic. The extrinsic inhomogeneities result from the magnet and 

its imperfection which can be accounted for by a constant T2’. In contrast to that, there are intrinsic 

factors contributing to T2*. The spins that are excited together have an effect on each other. Hence 

some precess faster and some are slowed down. This is characterized by the constant T2. For all these 

constants Equation (3) holds. 

 

 
1

𝑇2∗
=

1

𝑇2′
+

1

𝑇2
      (3) 

 

Thus, the T2* decay is always faster or equal to the T2 decay. This T2 relaxation is also called spin-

spin relaxation or transverse relaxation. 

 

Besides this T2 relaxation, there is also the T1 relaxation which is also called spin-lattice relaxation 

or longitudinal relaxation and describes how the excited spins return to their lower energy state – 

most parallel to the outer magnetic field. The total magnetization is constant. Thus, the transverse 

magnetization decreases with the increase of longitudinal magnetization. The following formulae 

hold 

 

 𝑀𝑧 = 𝑀0 (1 − 𝑒−
𝑡

𝑇1)  and  (4) 

 𝑀𝑥𝑦 = 𝑀0𝑒− 
𝑡

 𝑇2 . (5) 
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In general, the phenomena of MRI can be described by a single equation called the Bloch equation 

(after Felix Bloch – see Section 2.1.1.1). This equation reads  

 

 
𝑑𝑀

𝑑𝑡
= 𝛾 𝑀 x 𝐵 +

1

𝑇1
(𝑀0 − 𝑀𝑧) −

1

𝑇2
(𝑀𝑥 + 𝑀𝑦).      (6) 

 

It describes how a net magnetization M of a spin system evolves over time with a present total 

magnetization B, with T1 and T2 being the relaxation times, M0 the original magnetization and Mx, 

My and Mz the magnetization in the spatial directions.  

 

The following Figure 6 shows the different behaviors for Mz  and Mxy  depending on T2 and T1, 

respectively. 

 

Figure 6: Behavior of 𝑀𝑧 and 𝑀𝑥𝑦 depending on T2 and T1 respectively for different tissue types.  

 

The following Table 3 shows some examples of different tissue types and their relaxation times T1 

and T2 for a magnetic field strength of 1.5 Tesla.  

 

Table 3: Examples of T1 and T2 relaxation times for different tissue types at 1.5 Tesla (Plewes and 

Kucharczyk, 2012) 

Tissue T1 [ms] T2 [ms] 

Gray matter 950 100 

White matter 600 80 

Muscle 900 50 

Cerebrospional fluid 4500 2200 

Fat 250 60 

Blood ~1400 ~180-250 
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Despite the fact that T1 is in general larger than T2, the two constants do not fulfill any proportionality. 

This is because the underlying molecular dynamics are fundamentally different.  

 

2.1.1.3. Encoding techniques for MRI 

 

What is unique to MRI, in comparison to other imaging techniques, is that the signal is created by the 

entire object and not just by a single point in space. Hence, some form of spatial encoding is needed 

to determine the location of the origin of the signal. This is done by nonuniform magnetic fields so 

that the spin locations are encoded in the different ν values. A key task for encoding is selective 

excitation. The following Figure 7 illustrates the combination of NMR, magnetic field gradient, and 

a band pass filtered radio frequency excitation pulse. In order to get an axial image of a specific region 

(the shaded area in Figure 7 a) the first step is to apply a field gradient in z-direction (the direction of 

B0). This results in a ν of the atoms which is dependent on the location in z-direction. The shaded part 

consists of ν values from f1 to f2 (Figure 7 b). Then a radio frequency pulse, which is band pass 

filtered to f1 to f2, is applied (Figure 7 c). After turning off the radio frequency pulse, a transverse 

magnetization remains in the desired area whereas the other areas (the not shaded ones) are not 

changed (Figure 7 d). 

 

Figure 7: Selective excitation: a) The shaded area is transversely magnetized. b) A field gradient in 

z-direction is applied which results in a location dependent field and Larmor frequency between f1 

and f2 c) a band pass filtered radio frequency pulse from f1 to f2 is applied d) just the protons in the 

shaded area are excited. (Plewes and Kucharczyk, 2012) 
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Now, what remains is to determine the location of the signal in the slice. The two missing steps are 

the so-called frequency encoding and the phase encoding. The phase encoding step is the one that is 

performed first. It is also a spatial gradient, applied in y-direction. By applying it, the protons start to 

precess at different frequencies. Hence, after some time they are not in phase anymore, which can 

later on be used for encoding. The last one is the frequency encoding, which is also a spatial gradient 

(in x-direction). It is simultaneously applied during signal acquisition. The name frequency encoding 

is due to the fact that this gradient changes the frequencies of the protons which, by that time, are 

already phase shifted. Thus, now we have a 3-dimensional encoding of the space. 

 

For further details on MRI see, e.g., (Haacke et al., 1999; Huettel et al., 2008; Jin, 1998; Slichter, 

1996).  

 

2.1.2. FMRI and its physiological basis 

 

In this chapter we follow the descriptions of (Uludag et al., 2015) Chapter 8 and (Huettel et al., 2008) 

Chapter 7.  

 

In 1990, Seiji Ogawa and colleagues (Ogawa et al., 1990) described for the first time the possibility 

of measuring physiological activity of the brain indirectly using BOLD contrast. Since the 

introduction of fMRI in 1992 (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992) there 

has been a lot of progress – not only in the hardware but also in the software and analysis tools which 

made fMRI a widespread tool nowadays. BOLD does not measure neural activity itself but rather a 

series of indirect effects, i.e., it measures changes of magnetic properties of water which reflect 

changes of deoxygenated hemoglobin (dHb) content. While the first fMRI was recorded using a 

contrast agent, the main contrast used nowadays is BOLD. It is an endogeneous contrast and as such 

does not have the same problems as exogeneous contrasts sometimes face. In order to measure the 

BOLD contrast, one has to consider the oxygenation supply of the brain. Hemoglobin is what 

transports oxygen through the body. Linus Carl Pauling (28.02.1901 – 19.08.1994) and his student 

Charles DuBois Coryell (21.02.1912 – 07.01.1971) studied hemoglobin in 1936 and made some 

interesting discoveries, namely oxygenated and deoxygenated hemoglobin have different magnetic 

properties (Dunitz, 1996; Times, 1971). Thus, oxygenated hemoglobin (hemoglobin saturated with 

oxygen) is diamagnetic and has a susceptibility similar to the one of tissue whereas dHB (hemoglobin 

with no bound oxygen) is paramagnetic, i.e., it distorts surrounding magnetic fields. Hence, the 

protons in the vicinity are exposed to different field strength during the MRI measurement which 
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results in different precessing frequencies. T2* sensitive pulse sequences show more signals in 

regions with highly oxygenated blood in comparison to regions with deoxygenated blood.  

 

When a brain region is active the energy demand increases in this region. Hence, the inflow of 

oxygenated blood is increased. However, the oxygenation demand is overcompensated and thus leads 

to a local change in the magnetic field. Thus, the increase in oxygenation leads to an increase in the 

signal of this region. The three main sources for measuring a BOLD signal are the cerebral blood 

flow (CBF), cerebral metabolic rate of oxygenation consumption (CMRO2) and the cerebral blood 

volume (CBV) - see Figure 8 for a schematic view. This figure shows, how the different parts interact 

with each other. Neural events, e.g., action potentials or synaptic activity need oxygen (measured in 

the CMRO2) and glucose (measured in the cerebral metabolic rate of glucose consumption). Hence, 

an increase of neural response leads to an increase in CBF. This blood inflow has an effect on the 

CBV, the dHb, and the blood outflow of the specific area, i.e., the CBV and blood outflow increase 

with the inflow whereas the dHb decreases. The blood outflow has an influence on the dHb and the 

CBV which both affect the BOLD response.  

 

 

Figure 8: Physiological and physical processes for fMRI measurement. Arrows indicate the 

direction of influence. On the left-hand side two neurons are shown that try to keep a balance 

between excitation and inhibition. On the right-hand side a blood vessel with different influences is 

shown. The neural response has an influence on the blood inflow which itself influences the deoxy-

Hb, the CBV, and the CBF which then have an direct or indirect influence on the BOLD response.   

(Havlicek et al., 2015) 

 

The problem one has to face when dealing with BOLD, is that similar BOLD signals can be generated 

from different underlying changes. If the CBF rises also the blood oxygenation rises and hence a 
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bigger signal intensity is observed. The opposite holds for CMRO2, i.e., if the CMRO2 increases, the 

blood oxygenation and hence the signal intensity decreases. Considering CBV both of the following 

can hold: if it increases, the blood oxygenation can increase or decrease. 

 

The change in signal is referred to as hemodynamic response which has a time variation given by the 

hemodynamic response function (HRF), shown in Figure 9. This figure shows two examples of the 

HRF, which is dependent on the stimulus and hence the underlying neuronal activity. Figure 9 (A) 

shows the HRF for an event stimulus whereas Figure 9 (B) shows the HRF for a block design (longer 

lasting stimulus). Some studies have reported an initial dip, i.e., a short-term decrease in the signal. 

This is not shown in Figure 9 because it is not always reported and not fully understood up to now.   

 

 

Figure 9: BOLD HRF: response to a single event (A) and response to a block of events (B)   

(Huettel et al., 2008) 

 

Figure 10 shows the initial dip for different events of very short duration. The initial dip has in general 

a duration of 1 or 2 seconds. As mentioned above, the initial dip is not easy to detect especially in not 

so high field strength and it seems that the initial dip scales with field strength. Hence, it was reported 

that the initial dip at 1.5 T was just one third of the proportion magnitude measured in 4 T experiments. 

It seems that the initial dip results from small vessels which are more sensitive to field strength. 

Nevertheless, the initial dip is not fully understood up to now and needs further investigation. After 

the initial dip the HRF rises to its peak at around 4 to 6 seconds after the stimulus onset. This rise is 

due to the inflow of oxygenated blood and a hyper compensation of the used oxygen. If the stimulus 

has a longer duration, i.e., the neuronal activity lasts longer, the HRF reaches some plateau which is 

slightly below the peak of the function (see Figure 9). After the stimulus and the neuronal activity 
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stop the HRF experiences some undershoot. There are different explanations for this undershoot. The 

following 3 are the most plausible ones: 

 

1. Balloon or Windkessel model: The dHb content is evaluated due to higher CBV, i.e., the CBV 

returns slower to baseline than CBF  (Buxton et al., 1998; Mandeville et al., 1999, 1998). 

2. Less oxygenated hemoglobin: CBF sinks under the baseline after the stimulus stops. This might 

be due to neuronal inhibition or other unbalanced excitation-inhibition activity after the stimulus 

(Logothetis et al., 2001; Uludağ et al., 2004). 

3. Sustained oxygen consumption: More dHb is produced because the oxygen consumption goes 

on after the stimulus stopped. Thus, CBF recovers before CMRO2 does (Frahm et al., 1996; Lu 

et al., 2004). 

 

It is worth mentioning that these three causes do not exclude each other but rather cause the 

undershoot all together.  

 

 

Figure 10: fMRI courses for single events of very short duration showing the initial dip at a field 

strength of 3 Tesla (Uludag et al., 2015)  

 

For further details see standard literature of fMRI, e.g., (Huettel et al., 2008; Uludag et al., 2015).  

 



16 

 

2.2. Experimental design in fMRI 

 

The main goal of fMRI is to localize specific brain functions caused by some stimuli, e.g., sensory 

motor or cognitive stimuli. This localization is often referred to as ‘brain mapping’. The fact that the 

amplitude change of the BOLD signal is as low as 1-5% of the MRI signal and the fact that there are 

many confounding effects, such as head movement or signal drifts, make brain mapping not an easy 

task. Hence, a lot of mathematical and computational methods are required to find the right regions. 

These different methods will be described in this chapter. 

 

The state-of-the-art scanner nowadays operates with 3 Tesla. Most fMRI use echo planar imaging 

(EPI) with a matrix of 64x64 voxels and 40 slices. The time between the scan of one voxel to the next 

scan of the same voxel is called repetition time (TR) and gives the temporal resolution of the fMRI. 

A standard protocol takes a few seconds to scan the whole brain. Such an image is referred to as 

functional image. Several functional images scanned uninterrupted are referred to as run. As a rule of 

thumb, it is said to best ‘acquire the data perpendicular to the longest axis of the structure of interest.’ 

(Amaro and Barker, 2006) p. 8. Beside these functional runs, in general also a T1 weighted MRI, 

which has a very good white-gray matter contrast with a resolution close to 1 mm3, is acquired. This 

image is mainly used for visualization but can also serve for restricting the statistical data to cortical 

voxels. 

 

For a more detailed description of the following see, e.g., (Amaro and Barker, 2006). 

 

Now let us have a look at the paradigm design. A paradigm is defined as ‘construction, temporal 

organization structure, and behavioral predictions of cognitive tasks executed by the subject during 

an fMRI experiment.’ (Amaro and Barker, 2006) p. 4. This is the most important part when conducting 

an experiment and has to be addressed in the very beginning. 

  

2.2.1. Comparing methods for different paradigm 

 

The first and most traditional way is the so-called subtraction approach where two images (one with 

a control condition and the other with the active condition) are subtracted from each other (Friston et 

al., 1996). Such an approach assumes that two conditions can be added and do not interact among 

each other, an assumption which does not hold true in general. Nevertheless, it is useful as simple 



17 

 

model of the BOLD response and moreover, gives robust and reproducible results (Friston et al., 

1999). 

 

The next approach is called factorial approach and allows, other than the subtraction approach, also 

to test for interactions of components (Friston et al., 1996). The main idea behind this is to test the 

components separated but also mixed in the paradigm. The underlying principle is linearity of the 

BOLD response from different conditions. This approach is very useful to investigate cognitive 

interactions (Gurd et al., 2002).  

 

The next is the parametric strategy which can be used for tasks with different levels of difficulty. 

Thus, the underlying idea is to increase the cognitive demand without changing the nature of the task. 

The approach is that the increase of the cognitive demand would also increase the BOLD (Büchel et 

al., 1998). Even though this strategy is very interesting in theory it is hard to perform in practice . It 

is very challenging to increase one parameter without using other cognitive processes.  

 

The last one is the so-called conjunction approach which is similar to the factorial one, but just 

involves two or more conditions at the same time, i.e., no stimulus is tested by itself but always at 

least paired with one other stimulus (Bremmer et al., 2001). What distinguishes this approach from 

others is that it searches for commonalities rather than difference in tasks, i.e., it tries to find the 

common pattern of the BOLD response given by the different stimuli (Friston et al., 1999). 

 

Nevertheless, all of these four approaches can, and in general are, combined. An overview of all four 

different methods can be found in Figure 11. 

 

 

2.2.2. Event-related and block design of stimuli 

 

Considering the experimental stimuli there are two mayor types, namely event-related and block 

design. See Figure 12 for the different types of stimuli.  

 

Block design refers to a stimulus presentation that is clustered together in blocks and these blocks, of 

several seconds up to minutes, are repeated after an interblock interval. This design together with the 

subtraction approach (see Section 2.2.1) has dominated in the beginning of the fMRI years because 

of the simple fact that it was applied in PET and thus, people were familiar with it. Despite all of the 
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drawbacks and criticism, it is still very common. This is mainly because of its robustness, increased 

statistical power and large BOLD signal changes (Buxton et al., 1998; Friston et al., 1999). 

 

 

Figure 11: Overview of the different experimental strategies. I) Pure subtraction approach assumes 

that the conditions A and B do not interfere with each other. II) Factorial design also allows to test 

for interactions between conditions A and B. III) Parametric strategy showing two main tasks A and 

B with one task, A, changing the level of difficulty from easy A1 to most difficult A3. IV) Conjunction 

analysis where always two or more conditions, i.e., a combination of A, B, C, and D, are present at 

the same time and commonalities are searched for.  

(Amaro and Barker, 2006) 

 

 

Figure 12: Different types of stimuli: A block design: the tasks are presented in a block T which 

alternate with interblock condition C. B event-related design: very short stimuli T just occur once in 

a while. C mixed design: mixture of event and block design: there are blocks during which event-

related stimuli are presented. These blocks are again intermitted by a rest condition C.  

(Amaro and Barker, 2006)   
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On the other hand, there is also event-related design. This design method describes stimuli which are 

of very short duration and just occur once in a while. The main advantage of this type of stimulus is 

that it makes use of the higher temporal resolution fMRI has in comparison to PET. It is even possible 

to detect transient variations in the HRF. What is also important is that different brain areas associated 

with the same stimulus may have different HRF (Kruggel and von Cramon, 1999). Moreover, using 

this event design it is also possible to analyze results of individual trials and hence maybe find out 

errors in challenging tasks (Braver et al., 2001; Kiehl et al., 2000; Schacter et al., 1997). Another 

important advantage is that event-related design is less sensitive to head motion (Birn et al., 1999; 

Huang et al., 2002). In general, this design type has a minimal interstimulus duration of the time of 

the HRF. This can be overcome by so-called rapid event-related MRI. However, the main problem 

with this technique is issue of linearity or non-linearity of the BOLD interaction in overlapping HRFs 

(Friston et al., 1998b; Glover, 1999; Hinrichs et al., 2000). What is best for all these designs is always 

to keep the interstimulus interval different so that the subject cannot predict when the next stimulus 

comes and pays more attention to the experiment.  

 

The last type shown in Figure 12 is mixed design. This term describes a combination of blocks which 

consist of single events. It helps to investigate which neural activations are maintained and which are 

transient neural activations during paradigm performance (Donaldson et al., 2001; Otten et al., 2002). 

Nonetheless, it has the huge drawback that the HRF shape cannot be estimated that well. 

 

Block designs as well as event-related designs have advantages and disadvantages and it depends on 

the specific research question which one is most suitable for the experiment. The main advantage of 

event-related over block designs is that there are no adaptation effects. Nevertheless, one has to keep 

in mind that the response function has a delay of several seconds. Hence, the individual trials should 

be separated by at least that interval in order to prevent overlaps. Otherwise, complex mathematical 

methods need to be applied to separate the overlaid signals. As a general rule, it holds that if one 

wants to optimize detection power it is better to use a block design whereas an event-related design 

is better for estimation efficiency. 

 

Nevertheless, a substantial problem remains, namely that the measured brain activity is not an 

absolute quantity and hence quantitative interpretation is difficult. Thus, most fMRI experiments also 

record a baseline. Having such a baseline gives a control condition to which changes in BOLD can 

be compared. 

 



20 

 

2.2.3. Temporal and spatial resolution of fMRI 

 

As mentioned above, the temporal resolution is given by the TR, which is the time between two 

excitation pulses. It holds: the shorter the TR, the less time to collect slice data. This is due to the 

characteristics of the HRF that there is no use for imaging at a TR lower than 1 s (Constable and 

Spencer, 2001). On the other hand, a high TR will result in a longer experiment time which can 

become uncomfortable for the subject. Guidelines for clinical fMRI studies are given by Amaro and 

Barker as: 2 min per condition but each run should not exceed 12 minutes and the session should not 

exceed 40 minutes (Amaro and Barker, 2006).  

 

When it comes to the spatial resolution one would wish to get the smallest possible voxel size and 

image boundaries which includes the whole brain. Nonetheless, one has to keep in mind that a smaller 

voxel size will lead to a longer time to obtain the scan. Sometimes increasing the voxel size is 

desirable, e.g., when trying to detect sensitive BOLD effects. This is because an increase in the voxel 

size also leads to an increase of tissue in the voxel and thus to an increase of the BOLD signal 

(Howseman et al., 1999). On the other hand, reducing the voxel size is unfavorable for the signal-to-

noise ratio of the image. A good guide for setting the optimal voxel size is the cortical thickness, i.e., 

3-4 mm (Amaro and Barker, 2006). 

 

Put together, most of the time, it is a challenge to find a tradeoff between spatial and temporal 

resolutions as well as total scanning time. Two techniques, that assess this problem, are jittering and 

parallel imaging. Jittering means that the delays between the starting times of sampling the brain 

volume and the starting times of the stimulus presentation are different. This results in different time 

points (relative to the start of the experiment) being sampled each time. There are two main 

approaches to jittering. The first is to use a so-called fixed jittering scheme, i.e., the interscan interval 

is not a multiple of the TR. The second approach is the so-called variable jittering scheme, which 

means that the interscan interval is varied each time. Amaro and Barker advise to use jittering when 

a high temporal resolution as well as a full brain coverage is needed but scanning time and behavior 

analysis are not so important. The next approach, addressing the spatial and temporal resolution issue, 

is parallel acquisition which is highly dependent on the hardware of the used scanner. This technique 

is often used nowadays and can reduce the scanning time by a factor of, generally, 2 to 3. Using 

parallel imaging, susceptibility artefacts are reduced. Furthermore, signals from mesial temporal and 

basal frontal regions are improved. Nevertheless, the signal-to-noise ratio is reduced (Amaro and 

Barker, 2006).  
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2.3. FMRI signal analysis 

 

After this introduction to the different methods and challenges when measuring brain signals, we now 

turn to the signal analysis. This section follows standard books like (Huettel et al., 2008; Strother, 

2006; Uludag et al., 2015). 

 

Setting up the right measurement protocol for fMRI is very challenging and so is its analysis. The 

signal of interest measured by fMRI is very low in comparison to the noise also contained in the 

signal. The analysis procedure now faces the problem of extracting exactly the signal of interest from 

the whole signal, which contains also these huge amounts of noise. There are many steps needed to 

find the signal of interest. In the following an overview over some of these procedures is given. 

 

2.3.1. Preprocessing 

 

Computational steps following the image reconstruction, but before the statistical analysis, are in 

general known as preprocessing. With the introduction of new high field scanners, not just images 

get better, but also artefacts get more pronounced. Hence, preprocessing and especially artefact 

removal gets more and more important.  

 

As mentioned before, a lot of preprocessing has to be done before the data of fMRI experiment can 

be analyzed. There are a lot of different preprocessing steps depending on what analysis is aimed for.  

All these steps are included in the most common software packages like Statistical Parametric 

Mapping (SPM, https://www.fil.ion.ucl.ac.uk/spm/),  FMRIB software library (FSL, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), Analysis of Functional NeuroImages (AFNI, 

https://afni.nimh.nih.gov/), and BrainVoyager ( https://www.brainvoyager.com/).  

 

2.3.2.1. Quality control  

 

Before starting the whole preprocessing pipeline, it is crucial to perform an initial quality control 

check on the raw data. This includes, first of all, a visual inspection of the recorded data which can 

be done by using one of the common software packages mentioned in the last paragraph. This first 

visualization is important to get an overall impression of the quality of the scanned data and to check 

whether there are any major artefacts, e.g., scanner noise. Such an inspection is most easily done by 

visual inspection of a time-series movie. This is offered by most of the software packages mentioned 

https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://afni.nimh.nih.gov/
https://www.brainvoyager.com/
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above. The human visual system is good at finding changes between successive images. One example 

that might be detected during this step, is radiofrequency noise, which shows repetitive patterns on 

top of the data. On the other hand, head motion appears as a rapid jerk. Besides this visual inspection, 

also other computational initial quality assurance steps should be performed. These may include 

calculating the raw signal-to-noise ratio or the mean image intensity (Huettel et al., 2008). 

 

Moreover, the image orientation should also be checked. The check for orientation is important 

because there are two main orientations used these days, namely the neurological and the radiological 

orientation. In the neurological orientation image left corresponds to the patient’s left whereas 

radiological convention means that the image’s right side is the patient’s left. This often leads to 

problems. 

  

Another issue is about simple slice artefacts. Sometimes it happens that the most of the brain image 

is fine except for some slices where artefacts are found These scans have to be sorted out in the 

beginning (Strother, 2006). 

 

2.3.2.2. Head motion and realignment 

 

One of the most important steps when analyzing fMRI data is to get rid of head motion. Even if the 

subject tries to lie without moving, it is inevitable that the head moves several millimeters. Because 

of the high resolution of fMRI, this displacement could lead to a voxel being shifted into another 

voxel. Nevertheless, it should be kept to a minimum, e.g., by using foam pads to fixate the head as 

much as possible. Another option to prevent head movement is the so-called bite bar. This is a dental 

mold which the subject has to wedge in between his or her teeth. Such an immobilization of the jaw 

reduces head movement to a minimum. Furthermore, there is the option of creating a mask around 

the subject’s head. This is in general more tolerated by subjects because it passively restricts head 

movement instead of requiring active participation of the subjects. Nevertheless, creating such a mask 

for every single subject is very time consuming and thus, it is generally not done in praxis. A good 

tradeoff is using vacuum-pack systems. After placing the subject in the scanner, the pack filled with 

soft beads is fitted around the subject’s head and the air is pumped out, which hardens the pack. Such 

a system combines good motion prevention as well as patient comfort. Nevertheless, it is quite 

expensive. Hence, a cheaper and easier version of this is the aforementioned use of foam pads, which 

are just squeezed and then placed around the subject’s head. Moreover, it is useful to train the subjects, 

so that they are used to the scanner environment and can relax more easily.  
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There are several head motion correction tools but because of the severe impact on the data, a subject 

is in general excluded if the head motion in any direction exceeds about 5 mm or a rotation of more 

than 5 degrees in any direction. The reason for this is that the magnetic field is sensitive to the head 

position. Before starting the functional scan, the field is optimized (called shimmed) for the head 

position at this instant and hence moving the head leads to inhomogeneities in the magnetic field and 

thus to a bad data quality. Sometimes, also field maps are used. Such field maps show the actual static 

magnetic field. It is created by acquiring two images of the signal phase with slightly different echo 

time (TE). Field maps can also be incorporated into the preprocessing analysis to correct for 

geometric distortions.  

 

During head motion correction one volume scan is used as reference (this can be any scan, e.g., the 

first, the middle, or an averaged one) and all the other scans are realigned to this one fixed target scan. 

Most algorithms use a rigid body transformation. Such a transformation consists of six variables. 

Three of those are for translations on the three axes (mostly named x, y and z), whereas the other 

three are for rotations along the three axes (named as pitch, yaw and roll). Such a rigid body 

transformation is sufficient because the motion of the brain can be fully described by translations and 

rotations around the three spatial axes. The values of the aforementioned parameters are estimated 

iteratively. An error measure gives the best goodness of fit. Often, a sum of squared intensity 

differences of two corresponding volume elements is used as an error measurement. This search is 

iterated until a minimum of the error measure is found. Nevertheless, the choice of this cost function 

and the way it is optimized is what differentiates the implementation in the different software 

packages. What is known, up to now, is that intensity-based cost functions give in general better 

results than fiducial-marker-based or land-marker-based algorithms (Strother et al., 1994; West et al., 

1997). After a minimum of the error measure is determined, the found motion parameters are applied 

to the source volume by making use of an interpolation method. Such an interpolation creates new 

values at spatial locations. A tradeoff between speed and residual interpolation error has to be found. 

The sinc interpolation gives most of the time good results. 

 

 Most fMRI preprocessing software packages visualize the time course of the six parameters which 

can later on be used as confounds in the general linear model (GLM). Nonetheless, one has to keep 

in mind that a head motion can occur at any moment of a scan. As mentioned above, a scan is not 

acquired instantaneously and thus, some slices of a scan may be acquired before and some after the 

head motion. That is why the rigid body model is not totally accurate for fMRI. Figure 13 shows an 

example of a six parameter rigid body transformation – the time course of the six parameters as well 



24 

 

as a difference image before and after head motion (Huettel et al., 2008; Strother, 2006; Uludag et al., 

2015). 

 

 

Figure 13: Rigid body transformation a showing the time series of the motion in the three spatial 

directions x, y, and z, as well as the rotations around the three axes. The white arrow indicates an 

abrupt head motion. b difference image from the target to the volume image before and after motion 

correction. The arrows indicating the improvement achieved by motion correction, namely a 

reduction in contrast at the border of the brain. (Uludag et al., 2015)  

 

 

2.3.2.3. Slice timing 

 

Another very important point to consider is that one volume is not scanned instantaneously but takes 

a certain time. Hence the voxels in one scan are not scanned at exactly the same time instant. 

Considering descending or ascending acquisition, the first and the last scanned slice have a time 

difference of one TR. For interleaved scanning two neighboring slices are TR/2 apart. This is crucial 

especially in event-related designs, while it is still discussed if it is needed for block design. The aim 

is to preprocess the data in order to get a scan in which all voxels are scanned at the same time. This 

procedure is called slice timing because one slice (or in multiband sequences several slices) is 

recorded at the same time and the other slices have to be brought in accordance to this slice (or these 

slices). Hence, the time series of the other slices are shifted to a specific time point of the reference 

slice. This reference slice can be any slice. Most of the time it is the slice acquired at the middle of 

the time interval. After shifting the time series to the right time points, the series is resampled. During 

this process data points that have not been sampled in first place, need to be considered. These points 

are interpolated. The most used algorithms are linear, sinc, or cubic spline algorithms. What is crucial 
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for this process is the acquisition order. It is possible to acquire the slices either in a descending or 

ascending manner or in an interleaved manner, which is often done in order to prevent so-called cross-

talk between slices. This means that, e.g., all even slices are acquired followed by all odd slices. 

Otherwise, also the HRF could be shifted. But the above mentioned algorithm is the most frequently 

used one (Uludag et al., 2015). 

 

There is no clear consensus whether slice timing should be done first or whether realignment should 

be done first. Huettel et al. proposed some rules which say that slice timing should be done before 

realignment when having an interleaved slice acquisition with a long TR. On the other hand, 

realignment should be done first for sequential acquisition or short TRs (Huettel et al., 2008). 

 

2.3.2.4. Coregistration 

 

One of the main aims of researchers is, in general, to find how the activation pattern fits to the 

neuroanatomy. This is not possible by just looking at the functional scan because its resolution is 

mostly very poor. Hence, a high-resolution image is acquired. This has to be aligned with the 

functional image. Figure 14 shows a comparison of structural and functional scans of the same subject 

of one of our studies. As can be seen, the upper row (structural image) shows high resolution images 

of the three main views, i.e., coronal, sagittal, and axial. They have high contrast which means all the 

brain structures can be seen easily. Moreover, it is easy to distinguish gray matter (GM) and white 

matter (WM) in these images. On the other hand, the second row shows functional images (again 

coronal, sagittal, and axial view of the same subject). These images seem very blurry and have low 

contrast. The sulci and gyri that could be easily seen in the structural image can hardly be identified 

here. Thus, it is necessary to overlay the identified functional activation with the structural high-

resolution image, in order to define the exact location of the activation. This procedure is called 

coregistration.  

 

Even when taking from the same subject, there are always differences in the functional and the 

structural images. Thus, sometimes not the same slices are acquired, or the subject moved slightly 

between the two scans. Moreover, the structural image has in general a smaller voxel size. In order to 

coregister these two images, cost functions using mutual information are most often used. 
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Figure 14: Comparison of structural (upper row) and functional (lower row) data of the same 

subject from one of our studies.  

 

2.3.2.5. Normalization 

 

The aim of a study is often, not just to find results for one specific subject, but to compare different 

subjects or to perform a group study which allows generalization to the general population. A 

normalization step is necessary when comparing different subjects with each other. The brain shape 

of every person is different like the general body shape. This diversity starts with the overall shape of 

the brain and goes down to fine-grained cortical folding patterns. Thus, it is not possible to directly 

compare them. A standard brain is needed for this step. The most common ones are the Talairach 

(from a single post mortem female human brain) (Talairach and Tournoux, 1988) and the Montréal 

Neurological Institute (MNI) atlas, which was derived by averaging 305 brains (Evans et al., 1993). 

Nevertheless, it is also possible to create a reference brain, e.g., an average brain over the subjects 

included in a specific study.  

 

The Talairach atlas has as origin the midpoint of the anterior commissure (AC). After rotation of the 

brain, the posterior commissure (PC) is supposed to be in the same axial plane as the AC. The 

connection of these two points (AC and PC) is the y-axis of that coordinate system. The x-axis goes 
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from left to right through AC and is orthogonal to the y-axis. The last axis, the z-axis, goes from 

inferior to superior through AC and is orthogonal to the xy-plane. In order to perform a full Talairach 

transformation, one creates a cuboid which is parallel to all three axes and encompasses the outer 

boundary of the cortex. This is further separated by planes into 12 sub-cuboids which are each linearly 

expanded or shrunken to match the Talairach standard brain sub-cuboid. Altogether, this 

transformation ensures that the AC and PC are located at the same coordinates in every brain. 

Furthermore, the sub-cuboids defined by the AC, PC, and borders of the cortex have the same size in 

every brain. Nevertheless, this does not ensure that same coordinates point to corresponding brain 

areas in different individuals. This is especially true for cortical regions but not so pronounced for 

areas close to the AC-PC line (De Martino et al., 2013; Frost and Goebel, 2012). 

 

When comparing the results of the MNI alignment with an intensity driven automatic algorithm, one 

finds that the result is not much better than that with Talairach, even when using nonlinear spatial 

transformations. This is because the template brain of the MNI has been averaged extensively and 

thus has lost anatomical details. It is also possible to directly transform the functional data to the MNI 

space because also EPI templates exist. However, it is recommended to first coregister the structural 

and functional data, and then use this transformation for normalization (Uludag et al., 2015). 

 

After a reference brain template is chosen, mathematical methods like stretching, warping, or 

squeezing are used to transform all other brain images to the reference brain. Hence, the size of the 

brain is transformed, but also some landmarks like, e.g., major sulci are used for the transformation 

(the exact landmarks depend on the algorithm used). 

 

Further quite new approaches are the surface-based or cortex-based algorithms. During this approach 

the brain is inflated to a sphere. Hence, it has just two dimensions, i.e., longitude and latitude, instead 

of having three dimensions, as in volumetric space. The information of gyri and sulci is preserved 

indirectly by curvature maps which are calculated prior to inflation. The cortical meshes are aligned 

by increasing the overlap of curvature information. Thus, it aligns corresponding sulci and gyri across 

the brains (Uludag et al., 2015). Frost et al. showed that this approach increases the statistical power 

and spatial specificity of group analyses because it not only increases the overlap of macroanatomical 

regions but also of corresponding functionally defined specialized brain areas (Frost and Goebel, 

2012). Surface-based algorithms are especially good to separate activations which are near in 

volumetric space but not in neural space, for example, if two voxels on opposite sides of a sulcus are 

active (Huettel et al., 2008). 
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Moreover, there is a method, where the functional information is used directly for normalization. 

Hence, first a standard stimulus is performed in order to help to identify a specific region of interest 

(ROI) in each subject. These ROIs are later on used to extract specific time courses. This approach 

seems to be the perfect solution to the problem of correspondence in different subjects. It also allows 

to detect very small differences in various subjects at group level, even with a high statistical accuracy. 

The main problem with this technique is to find a suitable localizer experiment. It is also important 

to notice that this approach just looks at specific brain regions, and thus it can happen that activity in 

other brain regions are totally overlooked. This can be avoided by a new approach proposed by Frost 

and Goebel which is an approach integrating whole-cortex macroanatomical and ROI-based 

functional alignment (Frost and Goebel, 2013). Another approach by Haxby et al. is called 

hyperalignment and describes a method where subjects watch the same movie and then 

correspondence between voxels is established (Haxby et al., 2011). 

 

Normalization is an important and useful tool when comparing different subjects, especially for group 

studies. Nevertheless, one has to keep in mind that all the templates that are used are generally 

obtained from healthy college-aged neurologically normal subjects. It is known that many other 

subject groups differ from this group. For example, brains of elderly subjects generally have atrophy, 

i.e., ventricle enlargement and sulcal widening. On the other hand, children also have different brains, 

e.g., they have different contrasts due to less myelination. Furthermore, also male and female brains 

differ. These are all things to consider when performing normalization because it may be possible that 

normalization masks group differences. Besides these differences for healthy subjects, there are a lot 

of different brain structures in patients. This may lead to an inaccurate all-over normalization. 

Because of all the reasons mentioned above, some normalization techniques for subgroups have been 

developed. Another technique, to avoid all this, is to use subject-based ROI analysis (Huettel et al., 

2008). 

 

2.3.2.6. Segmentation 

 

Segmentation describes the separation of the image into different tissue parts, i.e., GM, WM, and 

cerebrospinal fluid (CSF). This is done because, e.g., sometimes, it is convenient to restrict the 

activation pattern to the GM areas. Such algorithms use the intensity of different voxels to identify 

different brain areas. Hence, it is crucial that all these areas have the same intensity. Thus, bias 

correction is needed and necessary for segmentation algorithms (Smith et al., 2004). 
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What is also worth mentioning is that a lot of the algorithms for preprocessing work better when the 

brain is segmented from non-brain tissue, i.e., the scalp and skull.  

 

 

2.3.2.7. Further common preprocessing techniques 

 

Beside the above-mentioned steps, a lot of different other preprocessing steps are applicable. 

Nevertheless, these are not always used and sometimes have to be used with caution to not remove 

signals of interest. Two important ones are temporal and spatial filtering. A filter is a tool that tries to 

remove uninteresting noise but to keep as much as possible of the signal of interest. It is always a 

tradeoff and has to be used with a lot of caution to not remove too much of the signal. On the other 

hand, when used well it can improve the signal-to-noise ratio.  

 

 Temporal filtering 

 

The main aim of temporal filtering is to preserve interesting frequencies while getting rid of 

frequencies arising from noise. The signal is Fourier-transformed from temporal to frequency space 

after which a filter is applied. When talking about filtering, one always has to keep the Nyquist 

theorem in mind. This says that for the maximum frequency, called Nyquist frequency, the following 

equation holds. 

 

 2νNyquisst = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒   (7) 

 

In other words, no frequency higher than 0.25 Hz is present for TR=2s. 

  

When talking about temporal filters, it is, most of the time, more convenient to consider the frequency 

domain, i.e., the Fourier-transformation of the time domain. Then, we apply the filters in this 

frequency domain. Three main types of filters are distinguished, namely low-pass filters, high-pass 

filters, and band-pass filters. A low-pass filter cuts off all the high frequencies whereas low ones stay 

in the spectrum. A high-pass filter is the opposite of a low-pass filter and thus, cuts off low frequencies 

and keeps only the high ones. Finally, a band-pass filter is a combination of the before mentioned 

ones, meaning it cuts off low as well as high frequencies and just keeps a band in the middle range.  
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There are two main effects that are accounted for when performing temporal filtering. One is the 

removal of linear and nonlinear drifts, whereas the other is temporal smoothing. There is 

physiological and physical noise. Hence, time courses of a voxel are often nonstationary. The simplest 

case is a linear trend. This describes that the signal rises or falls with a constant slope over the entire 

experiment. If this is not the case, the trend is called nonlinear and is more difficult to correct. These 

drifts describe slow signal changes. Thus, they can be dealt with by using a high-pass filter. As 

mentioned above, first the signal is Fourier-transformed to the frequency space where it is filtered 

using a high-pass filter. After filtering an inverse Fourier transformation is applied to get it back into 

the time domain. This procedure is shown in Figure 15. The first line of this figure shows the raw 

signal and a schematic drawing of the frequency space, i.e., the signal after Fourier transformation. 

In the frequency space we see 3 frequencies belonging to low, middle and high frequency signals. 

The middle one is the one we are interested in and the low frequency one is the so-called drift, whereas 

the high frequency signal is noise. The drift can be removed by using a high-pass filter (see row three 

in Figure 15). After the inverse Fourier-transformation, we do not see the rising trend of the raw signal 

anymore. This removal of the drift is a crucial preprocessing step because it can essentially improve 

the statistical analysis of the data. On the other side of the spectrum, there are high frequency 

fluctuations, which can be considered noise. These high frequency fluctuations are also shown in 

Figure 15. The purple part in the first row represents this high frequency noise, which can be removed 

by using a low-pass filter, i.e., a filter removing high frequencies and letting low frequencies pass. In 

the second row of Figure 15 we see what happens when applying such a filter. Hence, the left-hand 

side (after inverse Fourier-transformation) has no high frequencies anymore and just shows the 

middle frequency signal and the low frequency drift. In order to cancel out both high and low 

frequencies we use in general a band pass filter which cuts off all the low and high frequencies we 

are not interested in. Such a band-pass filter is illustrated in the last row of Figure 15. This band-pass 

filter leaves us with the signal we are interested in. Removing the high frequency noise improves the 

signal-to-noise ratio but it is not recommended for event-related design because it may happen that 

the onset or width estimates of the responses become distorted. Moreover, one should also keep in 

mind that temporal smoothing increases the serial correlation between successive time points (Uludag 

et al., 2015). 

 

Furthermore, one has to be aware of temporal autocorrelation. This describes that the amplitude of a 

future time point could be predicted by the amplitude of past time points. Hence, preprocessing 

software uses prewhitening algorithms to get rid of these autocorrelations before doing other 

preprocessing steps. Nonetheless, it is crucial to estimate the autocorrelation correctly in order to 
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eliminate it. Another approach, which is used when autocorrelation cannot be estimated well is 

precoloring. This introduces specific autocorrelations into the datasets (Huettel et al., 2008). 

 

 

Figure 15: Example of filtering in the frequency domain with the help of Fourier transformation. In 

the first row on the left-hand side is the raw signal, which then is Fourier transformed. On the 

right-hand side one sees three frequencies of which the signal is composed. A low one (red), the 

drift, a middle one (green), the signal we are interested in, and a high frequency one (purple) which 

is noise. The next three lines show low-pass, high-pass, and band-pass filters and the results when 

transforming the signal back into time domain via inverse Fourier transformation. (Uludag et al., 

2015)  

 

 

 Spatial filtering 

 

Spatial filtering is sometimes also just referred to as smoothing. When talking about spatial smoothing 

most of the time we refer to using a Gaussian filter. This is a filter having the well-known bell-shaped 

Gauss curve. It smears the results over each voxel to his neighbors. The neighboring voxels involved 

in spatial filtering depend on the size of the kernel, measured in full width half maximum (FWHM). 
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A larger number includes more neighbors, whereas a small number just includes the nearest neighbors. 

The biggest advantage is that using a filter of a similar size as the area of the signal of interest gives 

a better signal-to-noise ratio and is similar to the band-pass filter described in the last section. It 

increases the signal-to-noise ratio because all fMRI data have a spatial correlation resulting from two 

main aspects, namely similar functional participation of neighboring brain regions as well as blurring 

caused by the vascular system. Moreover, spatial correlation is introduced in group studies, where 

more subjects are compared. The fact that not all brains are equal and that normalization algorithms 

are not perfect results in activations recorded in slightly different voxels. Spatial smoothing becomes 

even more important when scanning using higher field strength, e.g., 7 T. Some studies showed that 

sampling data at higher resolution and then smoothing it gives better signal-to-noise ratio than 

sampling at the lower resolution. Another advantage of spatial smoothing is related to statistical 

significance. Because of the fact that a brain consists of a huge number of voxels, there are a lot of 

tests, which also results in many false positive results during statistical analysis. If the data is 

smoothed, there are fewer local maxima which are statistically significant. Furthermore, smoothing 

also improves the analysis by making parameter errors more normal distributed, which is assumed by 

many statistical tests. These advantages are especially important when dealing with regions with a 

low signal-to-noise ratio. 

 

The biggest drawback is when the size of the filter does not match the size of the result. Thus, if the 

kernel is too large, significant results may be missed. This has to be taken into account when focusing 

on small regions. 

 

The typical FWHM used is about 6 to 10 mm which are about two to three voxels. Nevertheless, also 

bigger and smaller FWHM are possible. Last but not least, it should be mentioned that such a spatial 

filtering is important and beneficial just for voxel-wise analysis but does not have any positive effect 

on ROI analysis (Huettel et al., 2008). 

 

2.3.2. Statistical analysis 

 

For the description in this section we follow (Uludag et al., 2015) Chapter 12 and (Huettel et al., 

2008) Chapter 10. See these or similar textbooks for more details and fundamental statistical 

explanations.  

 

During statistical analysis we aim to find those brain regions which exhibit greater or less response 

to a specific task when comparing to the control stimulus. One big problem is that there is always 
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physiological and physical noise which contaminate the signals. Hence, variations between diverse 

stimuli might just be due to chance. Hence, we need statistical tools to identify those results which 

did not just occur by chance. One also has to keep in mind that we just measure a sample of the data 

but want to find results which hold true for the whole population. If it seems very unlikely that a 

difference between two stimuli is just due to noise it can be seen as a real difference between those 

stimuli. These are variations we are interested in. When considering single-subject statistical fMRI 

analysis, the tests are usually performed independently for each voxel’s time course, i.e., using a 

univariate analysis. Independent tests at each voxel raise the probability of finding some statistically 

significant voxel which just arises from noise fluctuations. Hence, multiple comparative adjustments 

have to be made.  

 

In Figure 16 one can see a representation of the statistical analysis of the data of two brain regions a 

(left) and b (right). One common approach to deal with this problem is simply to subtract the two 

means, i.e., the mean of the rest condition versus the mean of the stimulus condition. The example 

shown in this Figure 16, would give the same result in brain regions a and b. Nevertheless, one has 

to also consider the noise. Thus, we would generally trust the result in brain region b more than that 

of brain region a because the former has less noise. Hence, it is important to know something about 

the noise fluctuation. This can be estimated from the data. The uncertainty of effects can be estimated 

by integrating the variability of measurements as well as the number of observations.  

 

 

 

Figure 16: Representation of statistical data analysis for an experiment with two conditions, i.e., 

rest and stim (=stimulation). a shows a time course for one brain region and b shows a time course 

for another brain region. (Uludag et al., 2015) 

 

Then, the general procedure is to simply formulate a null hypothesis and test for it by using a t-test. 

As a significance level most of the time a value of α=0.05 is used. Nevertheless, a t-test is not always 

appropriate for fMRI because it does not capture the fall and rise of fMRI responses. Hence, often 

correlation analysis is used because one can incorporate a gradual increase and decrease of the 
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measured signal with this method. Each time course of a voxel is compared to the time course of a 

reference function which could be the expected ideal noise-free time course. This is done by 

calculating the correlation coefficient r given by 

 

 r =
∑ (𝑋𝑡 − �̅�)(𝑌𝑡 − �̅�)𝑇

𝑡=1

√∑ (𝑋𝑡 − �̅�)2 ∑ (𝑌𝑡 − �̅�)2𝑇
𝑡=1

𝑇
𝑡=1

 (8) 

 

with T being the number of time points, 𝑋𝑡 the reference time course, and 𝑌𝑡 the data time course. 

Moreover,  �̅� is the mean of the time series of 𝑋𝑡and  �̅� is the mean of the time series 𝑌𝑡. We divide 

by √∑ (𝑋𝑡 − �̅�)2 ∑ (𝑌𝑡 − �̅�)2𝑇
𝑡=1

𝑇
𝑡=1  for normalization, i.e., if r = 1 we find that both time series are 

totally correlated. This means that the one time course goes up when the other also goes up, or down 

when the other goes down. r = -1 gives us the opposite, namely that one time course goes up while 

the other goes down, or vice versa. This behavior is called anticorrelation. A value of r = 0 indicates 

that both time courses are not correlated at all.  

 

2.3.3.1. The general linear model  

 

The general linear model (GLM) was introduced by Friston and colleagues (Friston et al., 1994b, 

1994a) and is mathematically a multiple regression analysis which is suitable for multiple variables. 

This is the reason why GLM is the most important tool when it comes to univariate fMRI data analysis. 

We focus here on the use of the GLM regarding fMRI data, for a deeper explanation see for example 

(Draper and Smith, 1998; Kutner et al., 2004). It is worth mentioning that in the fMRI literature GLM 

refers to its univariate version whereas in other fields there are often multiple dependent variables. 

The dependent variables in such a model are the observed fMRI time courses. The reference functions, 

i.e., the time courses of the expected and noise-free fMRI signals, are also called regressors, 

predictors, explanatory variables, basis functions, or covariates. The time course of the regressor is 

in general obtained by convolving a box-car function with the HRF. The box-car function is set to 1 

when the stimulus is on, whereas it is set to 0 when the stimulus is off. In general, the assumption is 

made that long stimulation periods can be predicted from known responses to short stimulation. We 

call the response function of the short stimulus the impulse response function which is in general 

modelled by two gamma functions (Friston et al., 1998a). Such two functions are plotted in Figure 

17. Using appropriate parameters, the combination of γ1and γ2, shown in Figure 17, model the BOLD 

HRF, which has been observed empirically for short stimuli. The two different functions represent 
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the two parts of the HRF. The first one, γ1, represents the shape and the peak whereas the second one, 

γ2, gives us the discussed undershot (see Section 2.1.2). 

  

 

Figure 17: Two gamma functions model the HRF: 𝛾1(𝑥) = 6𝑥5 𝑒−𝑥

𝛤(6)
 and  𝛾2(𝑥) = −𝑥15 𝑒−𝑥

𝛤(16)
. The 

first 𝛾1 gives the general shape and the peak and 𝛾2 gives the undershoot. 

 

When considering a voxel time course y, one has to explain the variance. This is done by associating 

a weight βi to each regressor time series 𝑋i. Then, the time course of voxel y is modeled as the sum 

of all regressors, each multiplied by its weight  βi,  as well as an error term ϵ (also called noise, 

residuals or prediction error). The GLM system for n data points and r regressors reads as follows 

 

 

𝑦1 = β0 + β1𝑋11 + ⋯ + β𝑟𝑋1𝑟 + 𝜖1 

𝑦2 = β0 + β1𝑋21 + ⋯ + β𝑟𝑋2𝑟 + 𝜖2 

… 

𝑦𝑛 = β0 + β1𝑋𝑛1 + ⋯ + β𝑟𝑋𝑛𝑟 + 𝜖𝑛 

(9) 

 

or in matrix notation (the dot representing matrix multiplication) 

 

 

 
(

𝑦1

𝑦2

⋮
𝑦𝑛

) =  (

1 𝑋11 ⋯ 𝑋1𝑟

⋮ 𝑋21 ⋯ 𝑋2𝑟

⋮ ⋮ ⋱ ⋮
1 𝑋𝑛1 ⋯ 𝑋𝑛𝑟

) . (

β0

β1

⋮
β𝑟

) + (

𝜖1

𝜖2

⋮
𝜖𝑛

) (10) 

or simplified as, 

 𝑦 =X . β + ϵ. (11) 

 



36 

 

Hence, y gives the voxel time course, i.e., the time course from time point 1 (y1) to time point 2 (y2) 

until time point n (yn). β0 gives the baseline and the regressors on the right-hand side of the equation 

model the time course expected by different stimuli and are scaled by βi (i=1, …, r). The matrix X is 

called the design matrix. Figure 18 gives a graphical representation of the above equations.  

 

 

Figure 18: Figure of a GLM. The left-hand side gives the time course of a voxel (time passing from 

top to bottom. The right-hand side gives the weighted (beta values at the top) design matrix and the 

error term. The green and the red rectangles symbolize the on-condition in the experiment and the 

white curve gives the BOLD response. On the right-hand side of each predictor there is a grayscale-

ccoded bar indicating the expected responses, i.e., white indicating high response and black 

indicating no response. (Uludag et al., 2015) 

 

When performing an experiment, we get the data y and construct the design matrix X. Hence, the 

GLM serves for finding the beta values, while minimizing the error term. When constructing the 

design matrix special care has to be taken. If the design matrix is constructed in a wrong way, 

interesting effects are modeled as errors. In Figure 19 one sees three GLMs fitted to the same data 

but with different design matrices X. The various models give different results and different errors. 

The first column on the left-hand side of the figure represents a design matrix that just has a constant 

term and thus no stimuli. The residuals (top figure) are very high and also include the active phases 

of the fMRI. In the middle of Figure 19, a design matrix which models the constant as well as one 

stimulus term is shown. We find that the residuals are lower than in the first case but still include an 

active term which is not pure noise. The last column shows a design matrix with two active stimuli 

and a constant term. This is the only case where the data time course and the predicted time course 

are nearly the same. Moreover, the residuals are very small and just represent real noise and do not 

include any active phases from the fMRI experiment anymore. Thus, it is crucial to include all 
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expected effects into the design matrix, also those which are not of direct interest, like motion or 

drifting parameters. Only in the last case, the error represents real noise fluctuations of physical or 

physiological origin.  

 

 

Figure 19: Three different GLMs fitting the same data. The first row shows the residuals, the second 

one shows the time course of the data (blue), and the predicted time course (green). The other 

figures show the three different design matrices. The design matrix on the left just models a constant 

effect. The one in the middle models the constant effects as well as one stimulus, and the one on the 

right models the constant effect as well as two stimuli. The colored rectangles again represent the 

onset time for the condition. (Uludag et al., 2015)   

 

Everything described so far was for single voxels. Nevertheless, it also holds true for the entire brain 

because in general a univariate voxel-wise analysis is performed. Nonetheless, there are some aspects 

that have to be considered when analyzing the whole brain. A typical fMRI scan consists of several 

hundred thousand of voxels. Each of the analyses described above is done for every voxel and hence, 

results of the GLM are also available at each voxel. All these statistical tests are then integrated into 

a 3D data set, a so-called statistical (parametric) map. What is very important is to find an appropriate 

threshold for those maps. If we consider one voxel, we can use a classical threshold of, e.g., p<0.05. 

On the other hand, if we consider all voxels of an fMRI experiment, we get a massive multiple 

comparison problem. If we test one voxel with a probability of 0.05, we expect 5% of false positives 

when repeating the experiment several times. Assuming that there are no real effects in any time 

course of any voxel, testing spatially in parallel 100000 voxels is, from the point of statistics, equal 

to testing one voxel 100000 times, i.e., with a p value of 0.05 we expect 5000 false positive voxels. 
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This is a huge problem in fMRI. Luckily, several methods to control for this massive multiple 

comparison problem have been presented.  

 

The first one is the Bonferroni correction, which is a basic multiple comparison correction approach. 

It controls the error across all voxels. Hence, it is also called family-wise error (FWE). The method 

yields single-voxel threshold values so that the error probability of 0.05 is reached for the global level. 

If we assume N independent tests, we get a probability of  

 

 pFWE = 1 − (1 − p)N (12) 

 

for one or more false positive results. Thus, for a given pFWE we have to adjust p as 

 

 

 

p = 1 − (1 − pFWE)1/N ≈
𝑝𝐹𝑊𝐸

𝑁
 (13) 

with ≈  holding for small values of pFWE (which holds in general). Using this method, we get 

p=0.0000005 for 1000000 voxels for pFWE = 0.05. This approach would be valid if neighboring voxels 

would be indeed independent from each other. However, neighboring voxels give similar responses. 

Hence, the Bonferroni correction is too conservative for fMRI, which leads to a drop in detecting 

truly active voxels.  

 

Another approach which takes the fact into account, that neighboring voxels activate together was 

described by Worsley et al. (Worsley et al., 1992). The crucial point is the use of Gaussian random 

fields which are utilized to describe statistical maps. Nevertheless, this approach requires 

substantially smoothing the fMRI data which makes it less attractive. 

 

A different way is controlling the false discovery rate (FDR) which was described by Benjamini and 

Hochberg in 1995 (Benjamini and Hochberg, 1995). This method describes all the positive results 

found that are actually false positives. It is calculated with an iterative approach. This method was 

introduced to fMRI by Genovese et al. in 2002 (Genovese et al., 2002) and is becoming more and 

more popular.  
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3. Severe chronic disorders of consciousness (scDOC) 

This section follows partly the description found in chapter 2 of (Zeller, 2017). Over the past decades 

intensive care medicine as well as modern equipment in this field have improved the chances of 

surviving severe brain damage (Laureys, 2007; Giacino et al., 2009). The main question is always 

whether these patients are conscious or not. There is no official and widespread definition of 

consciousness (Zeman, 2001). The medical definition relies on arousal and awareness (Posner et al., 

2007). Moreover, there is intentional behavior which describes the motivation to react intentionally 

to external or internal stimuli (Goldfine and Schiff, 2011). If the patient has his or her eyes open over 

a longer period (either spontaneously or after stimulation), it is interpreted as a sign of arousal. This 

is done more accurately using EEG. Nevertheless, consciousness is missing neuronal marker so that 

it needs an interaction with the outer world (Owen, 2013).  

 

3.1. Different categories of scDOC 

 

In this subsection we present different diagnoses of scDOC. These are coma, unresponsive 

wakefulness syndrome and minimally conscious state. Moreover, a definition of locked-in syndrome 

is given.  

 

3.1.1. Coma 

 

In 1972, Plum and Posner defined coma as a pathological state with severe and permanent disorders 

of vigilance and consciousness. Such a condition may be caused by severe brain damage (Laureys et 

al., 2004). It should not be confused with a syncope, delirium, or brain concussion which have a 

duration of less than one hour. Patients in coma cannot be woken up by any stimulation and do not 

show any signs of consciousness. An EEG mostly shows long waves in delta and theta bands (Giacino 

et al., 2009). The prognosis and care of the patient is influenced by various factors, e.g., etiology or 

age. Traumatic etiologies give in general better prognosis than non-traumatic ones. In general, coma 

takes two to four weeks. After that period the patient either dies or reaches a higher level of 

consciousness (Bernat, 2006). 
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3.1.2. Unresponsive wakefulness syndrome (UWS) 

 

The impairment of consciousness was described as apallic syndrome (AS) (Kretschmer, 1940) and 

its remission was studied intensively (Gerstenbrand et al., 1963). Jennet and Plum introduced the term 

vegetative state  (VS) for this condition characterized by no intellectual activity or social interaction 

(Jennett and Plum, 1972). In 1977, detailed results of scientific work were published in the field of 

AS concerning diagnosis and terminology (Gerstenbrand et al., 1977a; Gerstenbrand et al., 1977c; 

Mamoli et al., 1977; Peters and Gerstenbrand, 1977), treatment (Gerstenbrand and Lücking, 1977; 

Zhuber et al., 1977), symptomatology (Gerstenbrand, 1977; Lücking et al., 1977; Scherzer and 

Gerstenbrand, 1977) and etiology (Avenarius and Gerstenbrand, 1977; Gerstenbrand et al., 1977a; 

Gerstenbrand et al., 1977b). Currently, diagnostic criteria defined by the United States Multi-Society 

Task Force on Persistent Vegetative State (The Multi-Society Task Force on PVS, 1994) are widely 

applied. 

 

The term VS was soon replaced by unresponsive wakefulness syndrome (UWS) (Laureys et al., 2010). 

It is the first remission phase of coma. Autonomous functions, like the cardiovascular system, breath-

ing and thermoregulation, are starting to work again. Moreover, these patients have a sleep and awake 

cycle meaning that they have phases when they spontaneously open their eyes and other phases when 

they close them again. Nevertheless, these patients do not sleep like healthy patients (Cologan et al., 

2013) as the EEG shows monotonous and slow waves with closed as well as opened eyes (Bekin-

schtein et al., 2009; Kobylarz and Schiff, 2005). The occurrence of sleep spindles is a sign for recov-

ering from UWS (Cologan et al., 2013; Urakami, 2012). 

 

UWS is defined (The Multi-Society Task Force on PVS, 1994) as a life 

• without evidence of awareness of self or environment, and an inability to interact with others 

• without evidence of sustained, reproducible, purposeful, or voluntary behavioral responses to 

visual, auditory, tactile, or noxious stimuli 

• without evidence of language comprehension or expression 

• with intermittent wakefulness manifested by the presence of the sleep–wake cycle 

• with sufficiently preserved hypothalamic and brainstem autonomic functions permitting sur-

vival with medical and nursing care 

• with bowel and bladder incontinence 

• with variably preserved cranial nerve and spinal reflexes. 
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3.1.3. Minimally conscious state (MCS) 

 

Another form of scDOC is the MCS which is generally the next stage after UWS when recovering 

from coma but may also be seen during progressive degradation of neurodegenerative diseases 

(Giacino et al., 2002). Patients in MCS show one or more signs of consciousness either of themselves 

or their environment. Such signs of consciousness may be following easy commands, yes/no answers 

to simple questions, smiling, or crying in response to emotional but not neutral stimuli, grasping 

towards objects in the field of view or manually manipulating objects given to the patient’s hand. 

Nevertheless, these reactions are typically shown inconsistently. The damage is mostly diffuse axonal 

with multifocal cortical contusions. Comparing MCS to UWS lesions of the thalamus are found rarely 

(Giacino et al., 2014).  

 

MCS is defined diagnostically as global impaired responsiveness with limited but discernible 

evidence of awareness of self and the environment as indicated by the presence of one or more of the 

following behaviors (McQuillen, 1991; Giacino et al., 2002): 

 

• following simple commands 

• gestural or verbal responses to yes/no questions 

• intelligible verbalization 

• purposeful behavior: movements or affective behaviors that occur in contingent relation to 

relevant environmental stimuli and which are not simply reflexive movements, e.g., 

 

o smiling or crying in accordance to visual or linguistic stimuli 

o answering linguistic content via vocalization or gestures 

o grasping towards objects in the right direction or position 

o touching or holding objects by adjusting to its size or form 

o visual fixation or following as reaction of moving stimuli. 

 

In general, visual following is an early sign for transiting from UWS to MCS (Giacino, 2005). A clear 

sign of consciousness is following commands, yes/no answering, or understandable linguistic verbal-

ization. In comparison with UWS patients who also cry or smile, MCS patients do this according to 

appropriate stimuli. All these signs may be fluctuating but at least one has to be reproducible during 

a clinical examination in order to diagnose a patient as MCS. It is important to keep in mind that 
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aphasia and apraxia may falsify the results of such an examination and always have to be included 

into the diagnosis (Giacino et al., 2015). 

 

Recovery from MCS is given if the patient can communicate verbally or via gestures to yes/no ques-

tions and can use two objects accordingly (Giacino et al., 2002). 

 

3.1.3.1. MCS+ and MCS- 

 

As the above described group is a very big and heterogenous. Bruno and colleagues proposed in 2011 

to distinguish between two subgroups, MCS+ and MCS–. They describe patients who can follow 

commands and are able to express non-functional communication as MCS+ patients. On the other 

hand, patients who are able to follow with their eyes, or localize painful stimuli and show contingent 

reactions to emotional stimuli, like smiling or crying, are defined as MCS- (Bruno et al., 2011b). 

 

3.1.4. Locked-in syndrome (LIS) 

 

The LIS is no disorder of consciousness but can be confounded with such a disorder because patients 

in LIS have problems communicating. The first to describe this syndrome were Plum and Posner in 

1982. They characterized these patients as being incapable of speaking or moving (neither the face 

nor the body). The only way of communication is vertical eye movement or blinking using the upper 

eyelid. In extreme cases these patients are not even able to move their eyelids. Nevertheless, they are 

totally awake and conscious. Moreover, most of their cognitive, sensory, and emotional functions are 

intact. Especially in the first few months after brain damage it is often misdiagnosed as UWS or MCS 

(Majerus et al., 2005; Posner et al., 2007). In 1995, the American Congress of Rehabilitation Medicine 

described the LIS as a neurological impairment which is characterized by open eyes, quadriplegia or 

quadriparesis, aphonia or severe hypophonia, as well as resisting cognitive functions. 

 

Bauer, Gerstenbrand, and Rumpl (Bauer et al., 1979) distinguished three types of LIS: 

 Classic LIS: These patients suffer from quadriplegia and aphonia but can move their eyes 

vertically and are able to blink. 

 Incomplete LIS: These patients can move parts of their body besides their eyes and eyelids. 

 Complete LIS: These patients cannot move anything – not even their eyes or eyelids. 
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Most of the time the acute LIS is caused by a stroke. There are often bilateral ventro-pontine vascular 

lesions in the brainstem with disconnections of the corticospinal and corticobulbar tracts (Plum and 

Posner, 1972). Other causes may be different neurological diseases like infections, central pontine 

myelinolysis or hypo- or hyperglycemia (León-Carrión et al., 2002). A slowly progressive form of 

LIS can be found in progressive diseases of motoneurons like amyotrophic lateral sclerosis (ALS) 

(Birbaumer et al., 1999; Birbaumer and Schmidt, 1999; Bruno et al., 2008; Sorger et al., 2009). The 

mortality in acute state is very high. Nevertheless, there are cases where patients lived up to 20 years 

in a stable state of LIS (Laureys et al., 2005; León-Carrión et al., 2002). These patients are the ones 

benefiting most from so called brain-computer interfaces (BCIs) or brain-machine interfaces (BMIs). 

This kind of devices works just with brain activity and is able to translate it into communication or 

for controlling other devices for the patient (Birbaumer et al., 1999; Chatelle et al., 2012; Kübler et 

al., 2009; Lulé et al., 2013; Naci et al., 2012). The LIPS is a newly defined form which is a 

combination of the above two forms of LIS and scDOC (Seidl et al., 2013). 

 

3.1.5. Summary of the different stages of consciousness 

 

Summing up, one can say that there are many different categories of scDOC which are partly 

overlapping. Another way to describe the different stages of consciousness is via awareness and 

vigilance. Awareness stands for the level of contents of consciousness whereas vigilance describes 

the awake behavior, i.e., for example open eyes. Figure 20 from Boly at al. (2013) gives an overview 

of the different stages of consciousness as well as other stages of differing consciousness. One finds 

that coma is indicated by a low level of awareness and vigilance, which is similar to general anesthesia. 

UWS (in the figure Vegetative state) shows a high level of vigilance and a low level of awareness, 

namely the patient appears to be awake but does not have any signs of being aware neither of himself 

nor of the environment. In this figure, MCS is slightly above UWS, i.e., the level of vigilance of MCS 

patients is the same as that of UWS patients but the level of awareness is slightly higher. Hence, MCS 

patients show, as described above, some signs of awareness. The state conscious/wake is shown in 

the upper right corner, i.e., a normal conscious person has a high level of awareness as well as arousal. 

locked-in syndrome is shown close to conscious/wake because these patients are fully conscious like 

a healthy person – they just cannot move their bodies. Moreover, this chart shows stages of sleep 

which are located along the first median from slow wave sleep to drowsiness. This shows that both 

the level of awareness and the level of vigilance become lower, the deeper we sleep.  
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Figure 20: Different stages of consciousness with respect to awareness (y-axis) and vigilance (x-

axis). Coma and general anesthesia are found near the origin of the coordinate system because they 

both have low awareness and vigilance. On the other side, Conscious/Wake is found in the upper 

right corner showing a high level of both awareness and vigilance. UWS (Vegetative state in the 

figure) is shown on the right-hand side, i.e., it has a high level of vigilance but a low level of 

awareness. MCS is located slightly above UWS representing a higher level of awareness. (Boly et 

al., 2013) 

 

3.2.Behavioral testing 

 

There are still no clear physiological markers for consciousness so that the diagnosis of patients with 

scDOC relies on behavioral testing. There are a lot of different scales and criteria for the diagnosis of 

these disorders. Hence, in 2010, Seel and colleagues (Seel et al., 2010) choose 13 different diagnosis 

procedures in order to evaluate the content, standardization, psychometric features and clinical 

applicability. They especially evaluated the scales for 

 

 differentiation between UWS, MCS, and remission of MCS 

 interrater and retest reliability 

 validation of diagnosis, and 

 prognosis of functional remission. 
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The scales included were (in alphabetical order) 

 

 Coma/Near-Coma Scale CNC (Rappaport et al., 1992) 

 Coma Recovery Scale-Revised CRS-R (Giacino et al., 2004) 

 Comprehensive Levels of Consciousness Scale CLOCS (Stanczak et al., 1984) 

 Disorders of Consciousness Scale DOCS (Pape et al., 2005)  

 Full Outline of UnResponsiveness Score FOUR (Wijdicks et al., 2005)  

 Glasgow-Liege Coma Scale GLS (Born, 1988) 

 Innsbruck Coma Scale INNS (Benzer et al., 1991) 

 Loewenstein Communication Scale LOEW (Borer-Alafi et al., 2002) 

 Sensory Modality Assessment Technique SMART (Gill-Thwaites, 1997) 

 Sensory Stimulation Assessment Measure SSAM (Rader and Ellis, 1994) 

 Swedish Reaction Level Scale-1985 RLS85 (Stålhammar et al., 1988) 

 Wessex Head Injury Matrix WHIM (Shiel et al., 2000) and  

 Western Neuro Sensory Stimulation Profile WNSSP (Ansell and Keenan, 1989). 

 

Of the above mentioned CNC, CRS-R, DOCS, SMART, SSAM, WHIM, and WNSSP have been 

found acceptable with CRS-R being the only one that fulfills all criteria of the Aspen Workgroup 

(Giacino, 2004; Giacino et al., 2002). On the other hand, the scales CLOCS, FOUR, GLS, INNS, 

LOEW, and RLS85 are at the moment not recommended by Seel and colleagues (Seel et al., 2010). 

 

In the following we will focus on the scales that are most commonly used nowadays. These are the 

Glasgow Coma Scale (GCS) , which had not been investigated by Seel and colleagues, and the CRS-

R. 

 

3.2.1. Glasgow Coma Scale (GCS) 

 

The GCS is the golden standard in the acute medicine and intensive care. It was published by Teasdale 

and Jennett in Lancet in 1974 (Teasdale and Jennett, 1974). The scale is so popular because it is easy 

and quick to perform. It measures whether the patient shows responses via their eyes, or verbal or 

motor signs to external stimuli. The best reactions are given a point which are added up in the end. 

The highest grade is 15. A total number of under 8 points indicates that the brainstem is not intact. 

There is also a lot of criticism on this scale especially because it is not able to distinguish between 

UWS and MCS (Laureys, 2006; Laureys and Tononi, 2008; Teasdale and Jennett, 1974). 
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3.2.2. JFK Coma Recovery Scale-Revised (CRS-R) 

 

The JFK Coma Recovery Scale was first developed in 1991 at the JFK Johnson Rehabilitation 

Institute (Giacino et al., 1991). In the year 2004 this scale was revised (Giacino et al., 2004). The 

scale consists of 23 items which are categorized into six subscales and investigate audio, visual, motor, 

and oromotor functions, as well as the ability to communicate and arousal.  See Table 4 for a full 

representation of all 23 items.  

 

Table 4: JFK CRS-R, * denotes MCS, ** denotes emergence from MCS. (Giacino et al., 2004) 

AUDITORY FUNCTION SCALE OROMOTOR/VERBAL FUNCTION SCALE 

4-consistent movement to command *  

3-reproducible movement to command * 3-intelligible verbalization* 

2-localization to sound 2-vocalization/oral movement 

1-audotory startle 1-oral reflexive movement 

0-none 0-none 

VISUAL FUNCTION SCALE MOTOR FUNCITON SCALE 

 6-functional object use ** 

5-object recognition * 5-automatic motor response* 

4-object localization: reaching* 4-object manipulation* 

3-visual pursuit* 3-localization to noxious stimulation* 

2-fixation* 2-fexion withdrawal 

1-visual startle 1-abnormal posturing 

0-none 0-none/flaccid 

COMMUNICATION SCALE AROUSAL SCALE 

3-oriented** 3-attention* 

2-functinal: accurate** 2-eye opening without stimulation 

1-non-functional: intentional* 1-eye opening with stimulation 

0-none 0-unarousable 

 

The lowest points are equal to reflexes. On the other end, the highest points are given to behaviors 

which need cognitive processing. What is especially important for this scale is the consistence and 

retest ability. Hence there is a baseline examination followed by retesting of the same item. This 

guarantees with high security that the behavior is not just caused by reflexes (Giacino et al., 2004). 

Moreover, this scale is especially useful when testing whether a patient is in UWS or MCS. Hence, a 
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fixation lasting longer than 2 seconds leads to a diagnosis of MCS (Schnakers et al., 2006). Most of 

the time signs of the patient being in MCS are shown in the visual subscale. The next is the motor 

subscale whereas finding non-reflexive behavior via the oromotor subscale is seldom (Estraneo et al., 

2015).  

 

Schnakers and colleagues compared the scales of GCS, CRS-R, and FOUR. 60 patients were 

investigated. The GCS found that 29 where in UWS. The FOUR found four of these patients to be in 

MCS, whereas the CRS-R even found seven more patients to be in MCS (Schnakers et al., 2006). 

This indicates that the CRS-R is the most sensitive scale of these. This is of special importance for 

the patient because a wrong diagnosis can be devastating.  

 

3.2.3. Limits of behavioral testing 

 

When investigating patients with scDOC, most of the time consciousness is set equally to behavior 

but this is just an indirect measure of consciousness. In clinical assessment consciousness is seen as 

the adequate behavior according to external stimuli. Thus, consciousness without adequate behavior 

is not detected in clinical praxis. This fact leads to a lot of misdiagnosis. In 1976 Teasdale and Jennet 

investigated the misdiagnosis rate between conscious and unconscious patients and found that one 

out of five diagnosticians gave a wrong diagnosis (Teasdale and Jennett, 1976). In 1991, Tresch and 

colleagues found that 18% of patients who were diagnosed as UWS were able to communicate with 

a trained investigator (Tresch et al., 1991). In 1993 Childs and colleagues investigated 193 patients 

being diagnosed as UWS and found that 37% were in MCS (Childs et al., 1993). Another study done 

in 1996 by Andrews and colleagues found that 43% of 40 patients diagnosed as UWS were 

misdiagnosed. 70% of these could spell messages, over 60% were even abele to perform simple 

calculations and were oriented with regard to time, place, and person. Moreover nearly 90% were 

able to give preferences when it came to quality and every day life. Some of these patients have been 

diagnosed as being in UWS over several years (Andrews et al., 1996). A similar study was conducted 

in 2004 when 45% of 60 patients were found to have signs of consciousness (Gill-Thwaites and 

Munday, 2004). In 2006, Schnakers and colleagues found inconsistent diagnoses because of the use 

of different diagnostic tools at different sites (Schnakers et al., 2006). The misdiagnosis rate is also 

nowadays about 40% (Schnakers et al., 2009). A new study from Russia, which was conducted in 

2017, even found that about 55% of UWS and 80% of MCS patients are initially misdiagnosed 

(Legostaeva et al., 2017). Moreover, also LIS is often misdiagnosed as UWS or MCS (Bauby, 1998; 

León-Carrión et al., 2002; Majerus et al., 2005; Ostrum, 1994). Nevertheless, a misdiagnosis can also 

be made the other way around. Hence automatic reflexes are misinterpreted as conscious reactions 
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(Majerus et al., 2005). The reasons for this may be that stimuli reach the subcortical centers and are 

processed there without reaching the cortical centers. Even if using standardized and structured 

diagnostic tools there are still some confounding factors. Some of these are for example fluctuation 

of consciousness, sensory or motor deficits, or side effects of medication (Bekinschtein et al., 2009; 

Candelieri et al., 2011; Giacino et al., 2009). Up to now there are no national or international 

consistent diagnostic tools. Hence, the quality of the diagnosis varies a lot according to the 

investigation sites (Coleman et al., 2009). 

 

3.2.4. Summary of behavioral testing 

 

Despite all these problems, there are some clear signs for different stages of consciousness. 

Recovering from coma is marked by reflex movements and opening of the eyes. Remission from 

UWS into MCS is marked by oriented movements and command following, while recovery from 

MCS is marked by functional communication and functionally usage of objects (Bruno et al., 2011a). 

Nevertheless, these do not take into account deficits, like aphasia, agnosia or apraxia, which are often 

found in this patient group (Schnakers et al., 2015). If these or other deficits are noted, the total score 

of the coma scale cannot be reported. Besides the above-mentioned issues there are also other factors 

interfering with a right diagnosis like the compliance of the patient, unexperienced diagnosticians, or 

the time taken for diagnosing. Of these the last one is the most severe one because the patient is not 

always at his best consciousness when being assessed (Andrews et al., 1996; Candelieri et al., 2011). 

Hence, it is advised to use an interdisciplinary team, different diagnosticians, medical and 

physiotherapeutic interventions, and to include relatives for the diagnosis of these patients (Gill-

Thwaites, 2006).  
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4. Experiments under anesthesia  

 

4.1.Case report 1: MCS patient 

 

4.1.1. Introduction to case report 1 

 

As mentioned before, emergency treatment and intensive care have improved in the last years, which 

results in more people surviving severe brain injuries (Giacino et al., 2009; Laureys et al., 2006). 

However, not all of those patients totally recover and some stay with scDOC whose diagnosis is still 

challenging (see Section 3 for details). Neuroimaging tools like PET, DTI, or fMRI have been gaining 

more importance for the diagnosis and prognosis of scDOC in the last decades. This is because it was 

found that some patients do not show any signs of consciousness when they are tested behaviorally, 

but indeed show signs of consciousness when using imaging techniques for the examination 

(Gosseries et al., 2014). Studies on patients with scDOC using fMRI have been published and 

interesting and promising results have been found. For example, Staffen et al. reported on a patient 

in persistent vegetative state (another term for UWS) who showed clear responses in fMRI when 

hearing his own name in comparison to someone else's name. Owen and colleges detected awareness 

in a patient who was diagnosed as VS using fMRI (Di Perri et al., 2014; Monti et al., 2010; Owen et 

al., 2006; Staffen et al., 2006; Vanhaudenhuyse et al., 2010).  

 

When focusing on the clinical practice one will experience that sometimes it is very challenging to 

examine patients with scDOC. Some of these patients develop various movement disorders, such as 

parkinsonism, myoclonus, chorea, rigidity, dystonia, seizures and status epilepticus which may 

overlay and contaminate the clinical examination and moreover make high quality imaging nearly 

impossible because of too large movement artefacts (Venkatesan and Frucht, 2006). Huang et al. 

examined patients with scDOC as well as subjects under anesthesia. They found that signal 

synchronization as well as temporal variability of spontaneous brain activity are changed in similar 

ways in the two groups (Huang et al., 2016). However, they did not anesthetize patients with scDOC. 

Hence, up to now it is not fully understood in which way narcotic drugs affect the BOLD activity in 

these patients or whether it is even possible to find BOLD activity in this patient group when 

anesthetized. Different anesthetics have different effects on the brain. Dueck at al. have shown that 

the use of Propofol decreases the BOLD response (Dueck et al., 2005). This finding makes Propofol 
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useless for our experiment because such a decrease could lead to false negative findings when 

investigating the response of patients with scDOC, i.e., if we do not find any activity in a specific 

brain region it is not clear whether this is because there is indeed no brain activation or whether this 

is due to the decrease of the BOLD effect caused by the anesthetic drug. On the other hand, there is 

Sevoflorane. It has been shown that low concentrations of Sevoflorane enhance BOLD signals, i.e., 

it is easier to detect brain activity which at first sight may seem useful to us, but one has to keep in 

mind that this may lead to false positive findings in our experiment. Hence, we decided to keep the 

Sevoflorane concentration at about 0.75 minimum alveolar concentration (MAC) which is most 

appropriate according to Marcar and colleagues (Marcar et al., 2006). 

 

The next challenge was to find a suitable subject for our experiment. In the following a case study on 

a patient in MCS or Remission Phase II on the Modified Innsbruck Remission Scale (Gerstenbrand 

et al., 1977; Giacino et al., 2002) will be described. The patient described had complex sudden tonic 

extension and flexion movements of legs and arms. Moreover, sudden tonic opisthotonic retroflexion 

of the trunk and head, which lasted for several seconds, occurred. Thus, it seemed impossible to 

perform an fMRI investigation on this patient unless the patient was put under anesthesia.  

 

4.1.2. Clinical Case of the MCS patient 

 

In September 2012, a 16-year-old boy was admitted to the Christian Doppler clinic in Salzburg after 

near-drowning and cardiopulmonary resuscitation. He suffered from hypoxic encephalopathy and 

showed initially a full picture of an AS and remained after three months in an early remission state I 

– II according to the Innsbruck Remission Scale, fulfilling the criteria of an MCS according to 

Giacinio et al., (Gerstenbrand et al., 1977; Giacino et al., 2002). Three years later (November 2015) 

he was brought to our center for reevaluation of his status. In the following an overview of his clinical 

status is given.  

 

The patient could perform gaze fixation and following. He was partially conscious. Hence, he 

demonstrated cognitively mediated behavior. This behavior occurred, however, inconsistently but 

reproducibly. Moreover, it sustained long enough so that it could be differentiated from reflexive 

behavior. In case of simple commands and appropriate environmental stimuli he blinked or moved a 

finger which was not merely a coincidental behavior. Furthermore, the patient seemed to be – at least 

partly – aware of himself and the environment. Nevertheless, verbal or gestural yes/no responses or 

reasonable verbalization were not possible. Moreover, the patient also smiled and cried appropriately 

in response to emotional visual or linguistic content, but not to neutral topics or stimuli. He also 
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showed no vocalizations or gestures in direct response to the linguistic content of questions. Besides, 

the patient was able to reach for objects and there was a clear relationship between object location 

and his direction of reach. Furthermore, he demonstrated pursuit eye movement and sustained fixation 

which was found in direct response to salient stimuli or motion. The patient also had a spastic tetra 

paresis with long tract signs as well as a positive Babinski sign on both sides due to a cross sectional 

injury of the medulla. Muscle reflexes in all levels were found to be hyperreflexive. Moreover, the 

patient showed a directed and adequate reaction to painful stimuli on all extremities. He was in a 

decerebrate posture with extension of the lower and flexion of the upper extremities. The patient 

showed bilateral spastic contractures in the ankle and wrist. Furthermore, choreatiform and athetotic 

paroxysmal ballistic movements of arms, legs, and trunk occurred. Besides, he was provided with a 

tracheostomy, a urine catheter, and percutaneous transdermal gastric probe. His bowel function was 

spontaneous and occurred every three to four days. Moreover, he had a myelopathy C4 to T1 with 

additional transverse spinal cord syndrome. Besides, the patient had a burst fracture of C6 and C7 

and spinal fusion C4 to T2. He also showed symptomatic epilepsy with complex focal as well as 

secondary generalized seizures (Wutzl et al., 2018). 

 

An MRI scan was also performed while the patient was under anesthesia. A severe hypoxic 

encephalopathy with pronounced outer and inner cerebral atrophy was seen. Furthermore, the scan 

showed extensive post hypoxic gliosis, cortically and sub cortically. This was especially found 

frontally and parieto-temporo-occipitally within both hemispheres but with a preponderance on the 

left hemisphere. Moreover, post hypoxic signal changes were seen in the corpus callosum and on both 

sides in the basal ganglia. Signs of a Wallerian degradation occurred in the brainstem. However, no 

signs of diapedesis of the liquor could be seen. In comparison to the initial MRI scan which was taken 

in October 2012 deterioration of the findings was seen. Thus, increase of the outer and inner brain 

atrophy and also a rise of the post hypoxic signal changes in the left as well as in the right hemisphere 

were observed. In Figure 21 slices of the MRI scans are shown. The subfigures are all axial T2-

weighted images which are shown in radial convention. a) and b) show the time of the onset whereas 

c) and d) show the state when the experiment was performed. What can be seen is that at the onset 

there were global cortical hyperintense signal changes in both hemispheres which were due to 

hypoxic brain damage which also lead to cortical laminar necrosis. Nevertheless, no brain atrophy 

could be detected. Moreover, also subcortical hyperintense signal changes occurred within the basal 

ganglia of the right as well as the left hemispheres which were due to hypoxic brain damage. The 

MRI at the time point of our experiment showed global cortical and subcortical WM hyperintense 

signal changes in the right as well as in the left hemisphere which were due to hypoxic brain damage. 
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Furthermore, three and a half years post onset it was possible to detect extensive brain atrophy within 

the MRI image. Besides, extensive enlargement of the third as well as both lateral ventricles was 

found (Wutzl et al., 2018). 

 

 

Figure 21: Shown in radiological convention: a) MRI at onset: axial T2-weighted image showing 

global cortical hyperintense signal changes in both hemispheres due to hypoxic brain damage 

leading also to cortical laminar necrosis. At the time of onset, no brain atrophy can be detected. b) 

MRI at onset: axial T2-weighted image showing subcortical hyperintense signal changes within the 

basal ganglia of both hemispheres due to hypoxic brain damage. Again, no brain atrophy can be 

detected within the MRI image. c) MRI at time point two (three and a half years later): axial T2-

weighted image showing global cortical and subcortical WM hyperintense signal changes in both 

hemispheres due to hypoxic brain damage. Three and a half years post onset extensive brain 

atrophy can be detected within the MRI image. d) MRI at time point two (three and a half years 

later): axial T2-weighted image showing global cortical and subcortical basal ganglia WM 

hyperintense signal changes in both hemispheres due to hypoxic brain damage. Again, extensive 

brain atrophy can be detected within the MRI image with extensive enlargement of both lateral 

ventricles and the third ventricle. (Wutzl et al., 2018) 

 

4.1.3. Methods used for the fMRI measurement of the MCS patient 

 

4.1.3.1. The FMRI experiment 

The fMRI was performed using a 12-channel head coil on a 3 Tesla Siemens Magnetom Tim Trio 

machine (Siemens Erlangen, Germany). We performed four functional runs during each of which we 

focused on one extremity. As paradigm we chose stimulation with expected response in the soma-

tosensory cortex. This was done because such a stimulation is known for its stability and robustness 

(Rath et al., 2016) which were of special importance. When evaluating whether an examination of 

anesthetized patients in scDOC was possible, it is crucial to have a good working paradigm. If the 

paradigm is not robust one may get false-negative results which are just due to a poor choice of the 

paradigm and not caused by the effects of anesthesia. Hence, a well-trained operator stimulated all 

four extremities with a brush. A self-paced frequency of about 2Hz was used for the stimulation. He 

stimulated one extremity per functional run. The locations of the stimulation were the dorsa manuum 
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and pedum. The experiment started with 6 dummy scans. After that 89 whole brain images were 

acquired using a T2*-weighted single-shot EPI sequence. The parameters used were: TR 2.2 s, TE 

30ms, matrix 64x64, field of view FOV 210mm2 and flip angle FA of 70°. The first 9 images served 

as the first block of the resting condition i.e. no stimulation was performed. This first block was 

followed by four blocks of each 10 images of stimulation alternating with 10 images of rest. 

 

Besides these experiments, a high-resolution anatomical image was also acquired. A 3D magnetiza-

tion prepared rapid gradient echo (MPRAGE) T1-weighted sequence was used. The parameters were: 

TR 2.3 s, TE 2.91 ms, time of inversion TI 900 ms, 160 slices, slice thickness 1.20 mm, in-plane 

resolution 1.0 mm x 1.0 mm, generalized autocalibrating partial parallel acquisition (GRAPPA)=2, 

and FA of 9° (Wutzl et al., 2018). 

 

4.1.3.2. The used anesthesia  

As mentioned above (cf. Section 4.1.1), Dueck at al. found that BOLD response decreases with 

Propofol (Dueck et al., 2005),  Hence, Propofol was not a useful drug for our experiment. Therefore, 

our anesthetist started the anesthesia by letting the patient inhale Sevoflurane until the patient’s end-

tidal concentration reached 4%. Analgesia was also provided, namely by Fentanyl 0.15 mg intrave-

nously. A laryngeal mask size 5 was inserted. The anesthetist ventilated the patient to end-tidal 36 

mm Hg CO2. Based on Marcar's findings anesthesia for fMRI investigation is most suitable with 

Sevoflurane MAC 0.75. Hence, this is what was used during the entire examination (Marcar et al., 

2006). After finishing the experiment, the patient recovered uneventfully from anesthesia (Wutzl et 

al., 2018). 

 

4.1.3.3. Data analysis 

We used one of the most common software for the data analysis, namely SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). During the pre-processing the functional data were first realigned, 

then unwarped, and co-registered to the structural image. Moreover, the functional data were 

smoothed using a Gaussian kernel with 8mm FWHM. After pre-processing, the data were analyzed 

using a GLM. During this analysis, the blocks, during which the patient was stimulated, were con-

volved using a synthetic HRF. Furthermore, the six parameters of the realignment process were in-

cluded as covariates. Such covariates correct for head motion. Besides, a high-pass filter (of 128 s) 

was applied. In order to find significant voxel clusters, each run was analyzed by using a one-sample 

http://www.mr-tip.com/serv1.php?type=db1&dbs=Magnetization+Prepared+Rapid+Gradient+Echo
http://www.mr-tip.com/serv1.php?type=db1&dbs=Magnetization+Prepared+Rapid+Gradient+Echo
http://www.fil.ion.ucl.ac.uk/spm/
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t-contrast checking for that were higher during the stimulation with the brush compared to those dur-

ing the time of rest. The voxel clusters were thresholded for clusters with more than 50 voxels. The 

p-value for each analysis was thresholded as p<0.001, uncorrected (Wutzl et al., 2018). 

 

4.1.4. Results found from the fMRI experiment of the MCS patient under 

anesthesia  

 

The most important result was the one corresponding to stimulation of the left hand, i.e., this is where 

the strongest and widest activation was found (see Figure 22b). The result shows an activation pattern 

in the right motor cortex, namely within the post central gyrus - in other words, in the somatosensory 

cortex which is contra lateral to the left hand. When comparing this finding to the behavioral testing 

of the patient, one finds that it was also the left hand which he used to move a lot, especially also for 

goal-directed activities of daily life. This observation from daily life made us believe that the right 

motor cortex was intact. On the contrary, the patient did not use his right hand so much and on the 

MRI it seems as if the left motor cortex is totally damaged (Figure 22a). However, the results of the 

statistical analysis of the other three extremities, i.e., right hand, left and right foot, did not give any 

conclusive findings. Actually, this is a result that often occurs when trying to analyze fMRI data of 

patients with scDOC. Hence, the fact that activation was found in one out of the four stimulated 

extremities leads to the conclusion that the non-finding in the other three extremities is not directly 

correlated to the anesthesia but rather to the nature of the data when dealing with patients with scDOC 

(Wutzl et al., 2018).  

 

4.1.1. Summary of case report 1 

 

FMRI will gain more importance and will play a crucial role in the evaluation of brain function of 

scDOC patients in the future. Nonetheless, a regular fMRI examination is often impossible when 

dealing with these patients because of different reasons, e.g., patient movement, autonomic decom-

pensation, spastic contractures, or an intolerable stress burden. Thus, it is more than likely that an 

investigation under anesthesia will be favored in the future. According to our results presented above, 

we conclude that an fMRI investigation of patients with scDOC under anesthesia is doable and that 

at least a somatosensory perception can be detected. Nevertheless, further work has to be done in 

order to clarify whether other fMRI paradigms also lead to a robust BOLD response in anesthetized 

scDOC patients (Wutzl et al., 2018). 
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Figure 22  a) Axial T2-weighted MRI shows extensive post hypoxic cortical gliosis, especially 

frontally and parieto-temporo-occipitally in both hemispheres with a preponderance on the left 

hemisphere. (Image shown in radiological convention.) b) fMRI of the patient during brushing with 

a frequency of about 2 Hz onto the dorsum of the left hand- overlaid on an T1 image for 

visualization. A clear activation of the right motor cortex was found. Color bar indicates t-statistics. 

(Image shown in neurological convention.) Modified from (Wutzl et al., 2018). 

 

4.2. Case report 2: patient with Creutzfeldt-Jakob disease 

 

4.2.1 Introduction to case report 2 

 

The second case report is about a 62-year old male patient, who had a blunt neurological history. He 

had the diagnosis of a UWS, via CRS-R, in a rapidly progressive disease which was the Creutzfeldt-

Jakob disease (CJD). MRI images showed hyperintensive abnormalities in basal ganglia and cortex. 

magnetic resonance spectroscopy (MRS) revealed decreased level of N-acetyl-aspartate (NAA) and 

other metabolites. In order to further investigate the consciousness of the patient, an fMRI 

investigation was performed. This investigation showed a clear response within the sensorimotor 

cortex. After this fMRI, the patient lived for three more weeks before he died. The diagnosis of 

sporadic CJD (sCJD) was pathologically confirmed postmortem. Up to now, as far as we know, there 

are no reports on fMRI for investigating patients with CJD. We report an fMRI investigation of a 

somatosensory paradigm. A clear BOLD response was found within the sensorimotor cortex. This 

response indicates that there was still residual cortical function in the final stage of CJD. Hence, for 

the first time, to our best knowledge, we report results showing persistent cortical activity in the final 

stage of CJD (Golaszewski et al., in prep.). 
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4.2.2 Creutzfeldt-Jakob disease 

 

sCJD is a lethal disease which occurs very seldom (de Villemeur, 2013; Gasparini et al., 2013). It is 

characterized by rapidly progressive dementia, memory loss, as well as motor disturbances. The 

incidence of sCJD was 1 - 2 : 1 000 000 during the last decades (Ladogana et al., 2005). A reliable 

diagnosis can just be given postmortem via autopsy. MRI, Diffusion-Weighted Imaging (DWI), EEG, 

and 14-3-3 protein in the CSF allow to narrow-down the differential diagnosis during lifetime (de 

Villemeur, 2013; Gasparini et al., 2013). The final state of CJD is believed to be characterized via 

total absence of cortical functions of the patient, i.e., the patient is in AS. Since the radiologic 

diagnosis is heavily based on MRI, a short review of the main results of MRI for CJD patients is 

given in the following. 

 

Many studies of serial MRIs of individuals with CJD as well as retrospective studies have been 

published. The main consensus is that MRI is useful for premortem diagnosis of CJD. This is 

especially true for sequences with a long TR, i.e., fluid-attenuated inversion recovery (FLAIR), DWI, 

or proton-weighted sequences (Schröter et al., 2000). Some classical changes have been found in GM, 

variable with phenotype of the prion protein and the disease progression (Furukawa et al., 2014; 

Krope et al., 2011). Four types of CJD are distinguished. The first one is the sCJD, characterized by 

new abnormal protein folding, which results in proteinaceous infectious particles or prions. The next 

one is the genetic or familial CJD. This form describes the case when a gene mutation, which leads 

to abnormal protein folding, is inherited. The third form of CJD is called iatrogenic. This form results 

from the transmission of prions, e.g., via transplantation of dura mater of the cornea. The last type of 

CJD is the new variant CJD (vCJD), which is transmitted to humans from cattle suffering from bovine 

spongiform encephalopathy (de Villemeur, 2013; Sikorska et al., 2012). The different forms of CJD 

show different changes in the MRI.  

 

First, we consider sCJD which has six subtypes depending on codon 129 of the prion protein gene. 

Hence, valine and methionine (MM, MV, VV) are distinguished. Furthermore, two pathological 

isotypes of the prion protein exist, i.e., PrPSc 1 and PrPSc 2. This results in a total number of six 

combinations, namely MM1, MV1, VV1, MM2, MV2, and VV2. Krope et al. found that the location 

of the signal hyperintensities are slightly different in these six subgroups (Krope et al., 2011). An 

MRI, which is suggestive of sCJD, has signal changes in the GM in the basal ganglia (striatum) but 

also in the thalamus, where one finds the so-called pulvinar sign, which describes bilateral pulvinar 

hyperintensity, or the hockey stick sign, which refers to hyperintense signal in the pulvinar and 

dorsomedial thalamic nuclei bilaterally (Casimiro et al., 2012). Moreover, such an MRI shows 
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changes in the cerebral cortex, known as cortical ribboning sign (frontal, parietal, and temporal lobes, 

cingular gyrus, hippocampus and insula), and also in the cerebellar cortex (Abdulmassih and Min, 

2016; Furukawa et al., 2014; Krope et al., 2011). The lesions in the thalamus and basal ganglia are 

generally found to be bilateral and symmetric (Schröter et al., 2000), but sometimes also appear 

asymmetrical (Cammaroto et al., 2015). 

 

Now we turn to the vCJD. This type of CJD has just one subtype known, i.e., Methionin homozygote 

and PrPSc type 2B (Kobayashi et al., 2005). The pulvinar nucleus of the thalamus appears 

hyperintensely bilateral and in one third of the patients the striatum is hyperintense (Fukushima et al., 

2004; Urbach et al., 2001). 

 

In the past, serial MRI studies of patients with CJD have been made and these have been able to 

correlate images with pathological cellular changes. In the early stage of CJD, bilateral 

hyperintensities of the putamen and nuclei caudate were found in T2-weighted images whereas in 

later stages cortical atrophy is developed and the basal ganglia hyperintensities increase (Hutzelmann 

and Biederer, 1998). In 2014, Fukushima et al. published their work showing initial hyperintense 

lesions in thalamic nuclei like ventral lateral, ventral anterior, and lateral dorsal nucleus instead of the 

pulvinar nucleus. These initial hyperintensities spread later on to the entire thalamus (Furukawa et al., 

2014). Another study of serial MRI of a CJD patient showed the progression from bilateral 

hyperintensity in the thalamus, cortex, and caudate nuclei, two months after the onset of the symptoms, 

to cortical ribboning, diffuse signal abnormalities, and enlargement of the lateral ventricles, 14 

months after the first scan and one week before death. These findings were assumed to be cortical 

vacuolizations which was pathologically confirmed, namely cellular loss, spongiform changes and 

hypertrophic astrocytosis (Cammaroto et al., 2015). Moreover, Kulkarni reported that the 

hyperintensities which can be observed in MRIs at later stages of CJD can also be found (more subtly) 

retrospectively at early stage MRIs (Kulkarni, 2015). 

 

Comparing the CSF markers like 14-3-3 to DWI findings, Forner et al. stated that the DWI is more 

specific and also give better predictive values for CJD (Forner et al., 2015). 

 

Furthermore, also MRS has shown to be useful for the diagnosis of CJD. A study conducted with 14 

patients with prion disease found, with the help of spectroscopic analysis, a reduction of NAA 

compared to myo-inositol (mi) in the cerebellum and compared to creatine (Cr) in the striatum and 

the thalamus, when contrasting patients with the prion disease versus patients without it. The 

sensitivity was 79% and the specificity was 100% when considering the NAA/mi ratio and the 
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sensitivity was 100% and the specificity was 73% when considering the NAA/Cr ratio (Lodi et al., 

2009). Another study could demonstrate a relationship between NAA/Cr ratio and the duration of the 

disease; the shorter the disease the lower the NAA/Cr ratio (Kim et al., 2011). 

 

 

4.2.3 Clinical case of the CJD patient 

 

A 62-year old male was admitted to the Christian-Doppler Clinic with cognitive and psychological 

degradation. The onset was about five months prior to admission. He had a blunt neurological history 

and also an unremarkable family history. The first symptoms had been social regression and 

irritability. After that the patient had begun to have problems finding words and had shown memory 

deficits, executive dysfunctions, disturbed emotional reactions, behavioral disturbances, as well as 

disinhibited sexual desire.  

 

The first neurological examination found parkinsonian symptoms with rigidity, an intention tremor 

at both upper extremities and additional spastic symptoms of the extremities, bulbar muscles, and the 

trunk. Moreover, a severe ataxia was shown in gait and targeted movements. Myoclonic jerks, namely 

systemic rhythmic myocloni, including the face and trunk muscles, were seen. Considering frontal 

signs, perceptive and expressive aphasia, with symptoms of higher brain function disorders such as 

agraphia and acalculia, was noted.  The patient’s state of consciousness was awake but reduced.  

 

The state of the patient worsened over the following two months. The myoclonic jerks expanded to 

the upper extremities, more pronounced on the right side. Furthermore, the patient was found in a 

stretched position of both legs. He had also flexion of the upper extremities and hence, was confined 

to bed. The speech problems increased and also understanding problems occurred more often. The 

patient developed primitive motor reflexes, namely rooting, grasping, and sucking reflex. Moreover, 

the sexual disinhibition rose which lead to more interest in the genital region. He was still conscious 

but with disoriented episodes, day-time sleeping, and tiredness.  

 

The patient fell into UWS, diagnosed via the CRS-R, seven months after the first symptoms appeared.  

He developed spasticity of the extremities with a flexed position, severe oculomotor disturbances and 

additional signs of rigidity. Moreover, severe vegetative dysregulations were observed. Primitive 

reflexes of grasping as well as oral tendencies – in form of the Klüver Bucy pattern – were noted.  

Then, respiratory failure occurred. The patient died eight months after the first onset of symptoms 

which was four weeks after onset of coma (Golaszewski et al., in prep.). 



59 

 

4.2.4 Paraclinical investigations  

 

An initial CT revealed enlarged cortical sulci but no other abnormalities. A T2-weighted MRI, which 

was performed one week later, showed minimal hyper intensive signals in the left caudate and right 

thalamus. Moreover, DWI could detect hypo-intensities, which were a sign of restricted diffusion of 

all lobes (Kim et al., 2011; Kumaran et al., 2012). MRS presented a decreased NAA/choline ratio 

(Newey et al., 2013). EEG showed, besides a general slowing, Rademaker’s complexes, a left 

temporal focus and an encephalopathic pattern. 14-3-3 and τ protein were elevated when analyzing 

the CSF. Single photon emission computed tomography (SPECT)  detected cortical malperfusion in 

parietal lobes, which could not be detected in temporal lobes. Hexamethylpropylenaminooxim 

(HMPAO)  and Ioflupan SPECT could not confirm Parkinson disease or Alzheimer disease. Hence, 

CJD was suspected.  

 

A post mortem histology revealed immunohistochemical proof of prion protein in cerebellar vermis 

and cortex. The diagnosis of sCJD was confirmed in the histological examination of the autopsied 

brain. The brain was 1355 grams and had no specific gross-anatomical changes. However, mild 

spongiform changes were noted in the basal ganglia, temporal cortex, cerebellum parietal cortex, and 

thalamus. On the other hand, the frontal cortex, the occipital cortex, and the hippocampal formation 

showed moderate changes. Moreover, the substantia nigra and the pons were unaffected. Diffuse 

synaptic deposits in the temporal cortex, the frontal cortex, parietal cortex, occipital cortex, basal 

ganglia, and cerebellum showed immunohistochemically the presence of pathological prion protein. 

Mild to moderate neuronal loss was found in the investigated brain regions. Reactive microgliosis 

and astrogliosis were severe to moderate. Amyloid plaques, α-synuclein-positive inclusions, or 

neurofibrillary tangles were not present in the immunohistochemical investigation (Golaszewski et 

al., in prep.). 

 

4.2.5 Methods used for the fMRI experiment for the CJD patient  

 

4.2.5.1 The fMRI experiment 

 

An fMRI was performed one week after onset of coma and three weeks before death. The scan was 

conducted using a 12-channel head coil on a 3 Tesla Magnetom Trio Tim (Erlangen, Germany). We 

obtained 110 whole brain images (including 6 dummy scans) during the 3 functional runs with a T2*-

weighted single-shot EPI. The matrix was 64x64, FOV 210 mm2, TR 2200 ms, TE 30 ms and FA 70°. 

Moreover, a high-resolution MRI was acquired. A 3D MPRAGE T1-weighted image with 160 slices, 

https://de.wikipedia.org/w/index.php?title=Hexamethylpropylenaminooxim&action=edit&redlink=1
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slice thickness 1.2 mm, in-plane resolution 1x1mm2, GRAPPA=2, TR 2300 ms, TE 2.91 ms, TI 900 

ms, and FA 9°. As a paradigm we chose again a vibrotactile paradigm (see also Section 4.1.3.1). As 

seen before, this paradigm also shows responses when scanning scDOC patients under anesthesia. 

We started and ended each run with an epoch without stimulation. Seven of these rest episodes altered 

with six vibrotactile stimulation epochs whitch each lasting for 16 s. Further details on the used 

paradigm can be found in (Gallasch et al., 2006; Golaszewski et al., 2002a, 2002b), (Golaszewski et 

al., in prep.). 

 

4.2.5.2 The used anesthesia 

 

The patient was unresponsive and suffered from agitation and myoclonic. Hence, the patient was 

scheduled for fMRI under anesthesia. Moreover, we expected airway difficulties after extubation. 

This is why the patient was scheduled for fully monitored overnight surveillance. The set-up for the 

anesthesia followed In’s descriptions (In et al., 2011) as well as the infection control guidelines of the 

Australian government (Australian Department of Health and Aging, 2008). All staff members, who 

were involved in the examinations, wore face masks with plastic transparent shield visors, liquid 

repellent gowns, and double gloves. Then, we used non-ferromagnetic standard monitoring (Precess, 

Invivo corp., Orlando, FL 32826, USA). Non-ferromagnetic plastic laryngoscope, face mask, O2 flow 

meter, ventilation bag, stethoscope, and endotracheal tube were of single-use type. Moreover, single-

use filters were fit in between the valve and the endotracheal tube. We protected the MRI suitable 

ventilator (Parapac, Pneupac LTD, Luton LV34BU, UK) against contamination with a plastic overlay. 

The infusion pumps were ferromagnetic. Hence, they were deposited outside the MRI room with an 

extended line to 4.5 meters.  

 

Our anesthetist induced anesthesia with Propofol 200 mg and then maintained it with 5.5 mg/kg. This 

was done because Sevoflorane, another common anesthetic, modulates higher-order connections 

(Martuzzi et al., 2010). Analgesia was also provided, initially by Fentanyl 0.15 mg and then two 

repetitive doses of Fentanyl 0.1 mg. Rocuronium 80 mg was used to facilitate intubation. Systolic 

blood pressure was kept over 100mmHg with an infusion of Phenylephrine 10 mg solved in 500 ml 

Ringer’s solution. The ventilation of the patient was with an FiO2 of 0.45 to end-tidal CO2 of 37 

mmHg. Moreover, SpO2 was 99% during the whole anesthesia. 

 

The patient recovered uneventfully from anesthesia. After we finished, we incinerated the whole 

equipment for anesthesia except the infusion pump and ventilator (Golaszewski et al., in prep.). 
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4.2.5.3 Data analysis 

 

The preprocessing was done using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), beginning with head 

motion correction and unwarping, followed by coregistration of the functional and structural image, 

and then normalization to MNI space. This was done first by normalizing the structural image and 

then applying the parameters to the functional data. Finally, the data were smoothed with a Gaussian 

kernel with FWHM of 8 mm. The fMRI data were analyzed using a GLM. This included also 

convolving the stimulation epochs with an HRF in block design. Moreover, the six realignment 

parameters (three from translation and three from rotation) were used as covariates to control for 

noise due to head movements. A high-pass filter of 128 s cutoff was applied. Furthermore, a 

movement algorithm (Woods et al., 1993) was also used to control for serial correlations. Then, a 

one-sample t-test was performed to find the voxels with higher signals during the vibration task when 

compared to rest, all thresholded with p<0.005, uncorrected. We are only reporting clusters that were 

significant at FWE p<0.05 (Golaszewski et al., in prep.). 

 

 

4.2.6 Results found from the fMRI experiment of the CJD patient under 

anesthesia 

 

We could find a clear BOLD response in our patient in the final stage of sCJD when using a 

vibrotactile paradigm. The response found was within the primary sensorimotor cortex SM1 

contralaterally to the hand which was stimulated. The responses in the pre- and postcentral gyrus 

show preserved cortical function in these cortical areas of the  patient in the final stage of sCJD. The 

results of the fMRI investigation can be seen in Figure 23 (Golaszewski et al., in prep.). 

 

 

Figure 23: fMRI results of the CJD patient during pneumatic finger vibration. Stimulation was on 

the right thumb and index finger. BOLD responses are visible in the contralateral primary 

sensorimotor cortex SM1. (Golaszewski et al., in prep.) 

 

 

 

http://www.fil.ion.ucl.ac.uk/spm/
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4.2.7 Summary of case report 2 

 

sCJD is a disease which shows very different radiological and clinical presentations. We presented a 

patient in the final stage of sCJD, who presented the clinical picture of an UWS or AS. Nevertheless, 

we were able to detect activation of the primary somatosensory cortex when examining the patient 

using a task fMRI. This finding is highly surprising because the cortex is already involved in the early 

stages of the disease. Hence, the cerebral cortex of the patient maintained activity also in the later 

stages of the disease. We have to point out that we just found activity in the primary somatosensory 

cortex because we could not investigate other functions in this study. The findings presented here 

suggest the persistence of plasticity and thus, the theoretical possibility of functional recovery.  The 

initial diagnosis via the CRS-R did not prove true and the patient was not in an AS when undergoing 

the fMRI investigation.  Hence, our findings should be taken into account by treating therapists, 

physicians, caregivers and relatives. 
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5. Analysis of resting state fMRI data 

 

5.1. Introduction to resting state fMRI 

Resting state fMRI describes the form of fMRI acquisition when no specific task is performed, for a 

detailed review of resting state fMRI see, e.g., (Smitha et al., 2017). This paradigm has been gaining 

more and more popularity because of different reasons. One is that there is nearly no compliance of 

the subject or patient needed. Moreover, it is easy to acquire, does not need any further tools or 

equipment, and there are a lot of analysis methods available. Another huge advantage is that studies 

showed that resting state fMRI can also be undergone by difficult patient groups like pediatric patients 

or patients with scDOC.  All this makes it more favorable when compared to task-based fMRI. 

Resting state signals are low frequency signals in the range of 0.01-0.08 Hz and its basis lies in studies 

of Biswal and colleagues who investigated the transfer function in the motor cortex and sources of 

noise in the brain (Biswal, 2012; Raichle and Mintun, 2006). Resting state fMRI and task fMRI both 

have the same basic underlying principle. Nevertheless, there are some differences. These differences 

are listed in Table 5.  

 

Table 5: Comparison of task-based and resting state fMRI. rs-fMRI: resting state fMRI , SNR: 

signal-to-noise ratio (Smitha et al., 2017) 

Task-based fMRI rs-fMRI 

Analyses of spontaneous modulations in the 

BOLD signal in the presence of a particular 

activity (e.g. finger-tapping, eye-blinking, 

naming, memorizing, etc.)  

Analysis of the spontaneous BOLD signal in 

the absence of any explicit task or an input 

Task-related increase in neuronal 

metabolism are less than 5% 

60-80% of brain’s energy is consumed during 

resting state 

During task-based activity the focus is only 

on a very small fraction of the brain’s 

overall activity 

In term of overall brain function, the resting 

state brain activity is far more significant than 

task-related activity 
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The signal during a task-related activity is 

very small compared to the noise, i.e. 80% of 

the BOLD modulation is discarded as noise 

The signals which are discarded as noise in 

task fMRI is taken as signals in rs-fMRI as they 

are the low frequency spontaneous fluctuations 

in the BOLD signal 

Due to discarding of signal as noise, task 

fMRI has a low SNR 

Have improved SNR since it takes the overall 

spontaneous low frequency fluctuations  

For the interpretation of results, a large 

number of trials are required in task fMRI 

No need of more trials like task fMRI 

If one wants to analyse the motor function 

and language function, a separate task may 

be required to analyze each function in task-

based fMRI 

In rs-fMRI, the acquired may be used to 

analyse one or more functions 

Patient cooperation is essential to do task 

fMRI 

Paediatric patients, patients with low IQ and 

even patients in the vegetative and coma state 

are able to do rs-fMRI 

Repeated sessions of task-based activity to 

assess the disease prognosis, treatment effect 

etc. will result in familiarity with the task 

which will affect the output adversely 

In rs-fMRI even we are taking different 

sessions, due to the absence of task, we are able 

to avoid the task-related confusions and 

uncertainties faced by task fMRI 

 

An adult brain comprises about 2% of the body weight of the adult. However, it consumes 20% of 

the energy of the human body (Raichle, 2006). Of this energy the brain uses about 60 to 80% for 

communication between neurons and cell support. However, the brain uses just 0.5 to 1% for elicited 

activity (Raichle and Mintun, 2006). 

 

5.1.1. Analysis methods for resting state fMRI data 

 

The first method used for resting state network analysis was seed-based analysis (Biswal et al., 1995). 

This method uses an ROI as seed and searches for all the voxels that have a correlation to this seed. 

It is an easy approach which can be interpreted straightforward. Nevertheless, it is difficult to analyze 

the whole brain using this approach. 
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Another very popular approach is the Independent Component Analysis (ICA). This method is data-

driven and relies on a blind separation algorithm (Bell and Sejnowski, 1995; Boly et al., 2008; 

McKeown et al., 1998). It simultaneously analyzes voxel to voxel interactions from different brain 

networks. A big advantage of this method is that there is no prior knowledge needed. Nonetheless, 

such prior knowledge is useful to distinguish the network components of the resting state from those 

components arising from noise. 

 

The next method, which will also be discussed in Section 5.5, is graph theory. This approach is used 

to find mathematical models of network functions of the brain. The networks have connections 

between different regions and subregions. The main concept is the study of edges and nodes and their 

interaction (Butts, 2008). 

 

 

5.1.2. Different resting state networks  

 

Earlier studies showed that there are several resting state networks. Following (Smitha et al., 2017), 

the most important ones are briefly described,.  

 

 Salience network 

This network consists of the presupplementary motor area, bilateral insula, and the dorsal anterior 

cingulate cortex. It plays an important role in the regulation of other networks. Hence, its dysfunction 

influences a lot of other networks. Furthermore, it is important for rapid changes of behavior. Thus, 

its proper functioning is needed to commence and control cognition processes (Ham et al., 2013; 

Menon and Uddin, 2010; Uddin, 2015) 

 

 Auditory network 

The auditory network comprises the left and right primary auditory cortex, planum polare and 

temporale, Heschel’s gyrus, posterior insular cortex and lateral superior temporal gyrus (Andoh et al., 

2015; Schmidt et al., 2013). 
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 Basal ganglia network 

This network involves the basal ganglia, subthalamic nucleus, striatum, substantia nigra, global 

pallidum interna and externa. Changes in the function of the basal ganglia is the basis of Parkinson’s 

disease. The network plays a role in controlling motor areas as well as emotion or cognition (Afifi, 

2003; Balasubramani et al., 2015; Rolinski et al., 2015; Szewczyk-Krolikowski et al., 2014). 

 

 Visual network 

The visual network describes the synchronous activation of the bilateral and medial calcarine sulcus 

and extrastriate regions, i.e., the inferior area of the precuneus, the lingual gyrus and the lateral 

geniculate nucleus of the thalamus. Of the aforementioned, the lateral geniculate nucleus connects 

the visual input and the primary visual cortex (Beckmann et al., 2005). 

 

 Visuospatial network 

This network involves the regions of the posterior parietal cortex of the occipitoparietal junction, the 

posterior cingulate cortex, the midline of the precuneus, and the frontal pole. As the name suggests, 

it is involved in orienting to salient visuospatial cues (Beckmann et al., 2005; Greicius et al., 2004, 

2003; Gusnard et al., 2001). 

 

 Default mode network 

The default mode network is the most popular resting state network but discussing all the details 

would be beyond the scope of this work. Hence, just a short introduction is given here. It consists of 

the posterior cingulate cortex, the lateral parietal cortex, and the medial prefrontal cortex. This 

network is especially active during rest. Thus, it is a perfect candidate for resting state fMRI. 

Sometimes it is also referred to as the task-negative network because it becomes deactivated when 

the subject performs any task. This network is involved in social cognition, such as emotional 

processing, mind wandering, introspection, thinking, and other mental tasks (Blakemore, 2008; 

Gusnard et al., 2001; Sherman et al., 2014). The precuneus is a special part of the default mode 

network. It has a higher metabolic rate than other regions during resting state. It is involved in 

manipulating mental images or internally guiding attention, autobiographical memory retrieval, 

reward outcome monitoring, and emotional stimulus processing (Cavanna and Trimble, 2006; 

Maddock et al., 2003, 2001). 
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 Language network 

The language network involves Broca’s and Wernicke’s area but also the prefrontal, temporal parietal 

and subcortical regions. It is mainly involved in speech, reading, mimicking, comprehension, 

interpreting, etc. Moreover, Broca’s area is a known location of mirror neurons. These neurons are 

active when subjects perform goal-directed tasks or while observing such goal-directed movements 

performed by others (Ardila et al., 2016; Kilner et al., 2009; Lametti and Mattar, 2006; Skipper et al., 

2007). 

 

 Executive network 

This network describes the dorsolateral prefrontal cortex and the posterior parietal cortex. It is 

involved in executive functions. It is also anticorrelated during the resting condition (Binder et al., 

1999; Fox et al., 2005; Shulman et al., 1997). 

 

 Executive control network 

The executive control network comprises the medial and superior frontal gyrus, the anterior cingulate 

cortex, the ventrolateral prefrontal cortex, the paracingulate gyri, and the subcortical regions of the 

thalamus. It is active during cognitive control, tasks needing the working memory, control of 

intellectual activities and target-directed activities (Krmpotich et al., 2013; Seeley et al., 2007). 

 

 Sensorimotor network 

The sensorimotor network is special because it was the first one studied by Biswal et al. There is a 

high correlation between the right and the left motor cortex (Biswal et al., 1995, 1997; Biswal, 2012).  

 

Figure 24 and Figure 25 show seed-based analyses resulting in the resting state networks. Hence, 

Figure 24 shows coronal, sagittal, and axial images of the salience network, the auditory network, 

the basal ganglia network, the higher visual network, the visuospatial network, and the default mode 

network. Figure 25 shows the other networks, namely the language network, the left executive 

control network, the right executive control network, the precuneus network, the primary visual 

network and the sensory motor network. 
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Figure 24: Resting state networks from seed-based analysis, showing coronal, sagittal and axial 

images of (a) salience network, (b) auditory network, (c) basal ganglia network, (d) higher visual 

network, (e) visuospatial network, and (f) default mode network. (Smitha et al., 2017) 
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Figure 25: Resting state networks from seed-based analysis, showing coronal, sagittal and axial 

images of (a) language network, (b) left executive control network, (c) right executive control 

network, (d) precuneus network, (e) primary visual network, and (f) sensory motor network.  

(Smitha et al., 2017) 
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5.2. Experimental details for the resting state fMRI measurement 

Before starting the experiment, we obtained the approval of the Ethics Commission Salzburg (Ethik-

kommission Land Salzburg, number 415-E/952). In the following, we focus on the separation of 

healthy controls and patients with either UWS or MCS. We included patients of different ages and 

etiologies (see Table 15). The healthy subjects were of mean age 44.17 (standard deviation 19.45, 

range 20-79) with 8 female und 22 male, and had no history of neurological or psychiatric disorders. 

The data for this experiment were acquired over several years. During this time there were hardware 

updates made in the clinic which resulted in two different scanners being used for the experiments, 

namely a 3 Tesla Philips Achieva (Philips, Amsterdam, Netherlands) and a 3 Tesla Siemens Tim Trio 

(Siemens, Erlangen, Germany). A total number of 58 patients were included in the study. Among 

those subjects, 34 were in UWS, 22 in MCS and 2 were not defined. 13 UWS patients and 4 MCS 

patients were scanned using the 3 T Philips and the rest using the 3 T Siemens scanner. Of the healthy 

subjects, 12 were scanned using the 3 T Philips and the rest using the 3 T Siemens scanner. The 3 T 

Philips scanner acquired T2*-weighted images in the axial plane with EPI sequence. The TR was 2.2 

s and the TE was 45 ms. 25 slices with a slice thickness of 4.5mm and an inter-slice gap of 0.5 mm 

were acquired. The FOV was 210 mm2, the matrix size 64x64, and the flip angle 90°. Finally, the 

parameters of the 3 Tesla Siemens scanner were as follows: T2*-weighted images with EPI sequence 

in the axial plane, 36 slices with a slice thickness of 3 mm but no interslice gap, FOV=192 mm2, 

TR=2.25 s, TE= 30 ms, and a flip angle of 70°. Besides, a T1-weighted MPRAGE sequence was also 

acquired for all 88 participants. For the experiment the subjects were instructed to lie still and not to 

think about anything in particular (Wutzl et al., in prep., in prep.b). 

 

5.3. Preprocessing of the resting state fMRI data 

 

The data from the scans were preprocessed using the CONN functional connectivity toolbox (Whit-

field-Gabrieli and Nieto-Castanon, 2012). We applied the default pipeline of the software but without 

smoothing (for more details on the different steps see Section 2.3.1). The CONN default pipeline 

starts with realigning and unwarping the functional data. After that the functional data are centered, 

slice-time corrected, and outlier detection was done based on the Artifact Detection Toolbox (ART) 

for which we used 97th percentiles in normative samples as thresholds. Moreover, functional direct 

segmentation was done simultaneously with GM, WM and cerebrospinal fluid. Then, MNI normali-

zation was performed. The structural MRI data were also preprocessed in this pipeline, i.e., centered, 

segmented, and normalized. Furthermore, denoising was applied.  Quality control was performed 
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throughout the preprocessing pipeline. Hence, some of the patients had to be removed, e.g., because 

parts of the brain were missing on the scans or because of too many moving artefacts. This resulted 

in a total of 29 UWS and 20 MCS patients (UWS1, UWS7, UWS14, UWS18, UWS19, MCS13, and 

MCS22 had to be excluded). None of the healthy subjects had to be removed. After the preprocessing, 

an ROI-to-ROI analysis using the CONN default atlas was performed and Fisher’s Z transformed 

correlation matrices were obtained (Wutzl et al., in prep., in prep.b). 

 

The CONN atlas consists of three parts: a cortical, subcortical, and a cerebellar part. The cortical part 

is divided into 91 ROIs by the FSL Harvard-Oxford Atlas maximum likelihood cortical atlas with 

bilateral areas being divided into right and left hemisphere. The subcortical part contains 15 regions 

from the FSL Harvard-Oxford Atlas maximum likelihood subcortical atlas where WM, cerebral cor-

tex, and lateral ventrical areas are disregarded (Desikan et al., 2006; Frazier et al., 2005; Goldstein et 

al., 2007; Makris et al., 2006). Moreover, the cerebellar parcellation is taken from the AAL Atlas 

(Tzourio-Mazoyer et al., 2002). To avoid assigning multiple labels to some voxels, a precedence of 

cortical > cerebellar > subcortical is used. See Figure 26 for a representation of the different ROIs in 

sagittal, coronal and axial view. A 3D representation can be found in Figure 27. Table 16 gives all 

ROI numbers and the associated brain regions’ names.  

 

Figure 26: CONN atlas showing the 132 different regions of interest in sagittal, coronal and axial 

view. The colors indicate different ROIs. (Whitfield-Gabrieli and Nieto-Castanon, 2012). 
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Figure 27: 3D view of the different ROIs of the CONN atlas. Different colors indicate different 

ROIs. (Whitfield-Gabrieli and Nieto-Castanon, 2012). 

 

5.4. Connectivity analysis using the software CONN 

 

5.4.1. Using the software CONN 

 

First, we started with a connectivity analysis of the resting state paradigm for which we used CONN 

(Whitfield-Gabrieli and Nieto-Castanon, 2012). The different combinations of subject groups were 

analyzed, i.e., healthy subjects versus scDOC patients, healthy subjects versus MCS patients, healthy 

subjects versus UWS patients, and MCS versus UWS patients. We included all possible confounds 

gained by CONN’s quality control, namely 

 Number of valid scans  GM volume 

 Number of invalid scans  GM eroded volume 

 Maximum motion  WM volume 

 Mean motion  WM eroded volume 

 Maximum global signal  CSF volume 

 Mean global signal  CSF eroded volume 

  Average correlation GCOR of the rest 

condition. 
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This was done in order to make sure that the results are just due to the differences in the groups and 

not due to any of the above-mentioned confounding factors.  

 

5.4.2. Results found with the software CONN 

 

When testing which connections are stronger in healthy subjects than in patients, we find that eight 

regions are important. These are 

 lateral occipital cortex, inferior division 

right (iLOC r) 

 lateral occipital cortex, inferior division 

left (iLOC l) 

 precentral gyrus right (PreCG r)  precentral gyrus left (PreCG l) 

 occipital fusiform gyrus right (OFusG r)  occipital pole left (OP l) 

 temporal pole right (TP r)  temporal pole left (TP l). 

 

All the connections, i.e., iLOC r to iLOC l, PreCG r to PreCG l, OFusG r to OP l and TP r to TP l are 

significantly (FDR corrected on analysis level with a significance level of 0.05) stronger in healthy 

subjects when comparing them to patients. A graphical representation can be found in Figure 28 and 

the statistics are shown in Table 6. The following Figures (Figure 29 and Figure 30) and Tables (Table 

7 and Table 8) show the results of the comparison from healthy subjects to MCS and UWS patients, 

respectively. First of all, what can be found is that, the connection OFusG r- OP l is not significant 

for healthy subjects versus MCS patients whereas the connections PreCG r-PreCG l and TP r- TP l do 

not show up as significant when comparing healthy subjects to UWS patients. The comparison of 

MCS to UWS patients did not show any significant results at all.  

 

5.4.3. Discussion of the results found with the software CONN 

 

The results that we found show that there are four combinations of connections that are stronger 

connected when comparing healthy subjects to patients. Three of these are significant when 

comparing healthy to MCS. Hence, we conclude that the connection OFusG r – OP l may still be 

strong in MCS patients but not in UWS patients. Indeed, we find that this connection, together with 

the connection iLOC r-iLOC l, plays an important role when comparing healthy subjects to UWS 

showing that the connection is weaker in UWS patients than in healthy subjects. On the other hand, 

we do not find the connections PreCG r-PreCG l and TP r-TP l to be significant in this comparison. 

Thus, these connections may be important just for MCS patients. We hypothesize that the connections 
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OFusG r-OP l, as well as PreCG r-PreCG l, and TP r-TP l are different in MCS and UWS patients. 

However, this could not be found when comparing MCS to UWS patients. This does not mean that 

these connections are not different at all but just means that they are not statistically significant.  

 

 

5.4.4. Summary of the connectivity analysis with the software CONN 

 

We used the toolbox CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012) to compare the 

connections between the different ROIs of resting state fMRI of healthy controls and patients with 

scDOC. After the standard preprocessing steps described in Section 5.3 we conducted an ROI-to-ROI 

analysis using all possible confounds generated by CONN to find significant connections. We found 

four brain connections to be stronger in healthy controls than in scDOC patients. Among these, three 

remain significant when analyzing healthy subjects versus MCS patients and two remain significant 

when analyzing healthy versus UWS patients. Hence, there seems to be a difference in the connection 

between MCS and UWS patients, but these did not show up as statistically significant (FDR corrected 

on analysis level with a significance level of 0.05).  
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Figure 28: Graphical representation of the connections that are stronger in healthy subjects than 

patients (when taking the groups MCS and UWS together). The color code reflects t-statistics whose 

values can be found in the following Table 6. 

 

Table 6: Table showing the statistics of the results when comparing healthy subjects to patients.  

Analysis Unit Statistic p-FDR 

iLOC r-iLOC l T(67)=5.59 0.0039 

PreCG r-PreCG l T(67)=4.98 0.0203 

OFusG r- OP l T(67)=4.85 0.0226 

TP r- TP l T(67)=4.67 0.0321 
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Figure 29: Graphical representation of the results when comparing healthy subjects versus MCS 

patients. The color code reflects t-statistics whose values can be found in the following Table 7. 

 

Table 7: Table of results when comparing healthy subjects to MCS patients.  

Analysis Unit Statistic p-FDR 

PreCG r-PreCG l T(67)=5.01 0.0257 

iLOC r-iLOC l T(67)=4.93 0.0257 

TP r- TP l T(67)=4.67 0.0441 
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Figure 30: Graphical representation of the results when comparing healthy subjects versus  

UWS patients. The color code reflects t-statistics whose values can be found in the following Table 

8. 

 

Table 8: Table of results from the comparison from healthy subjects to UWS patients.  

Analysis Unit Statistic p-FDR 

iLOC r-iLOC l T(67)=5.96 0.0010 

OFusG r- OP l T(67)=4.82 0.0384 
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5.5. Analyzing resting state fMRI data using networks and modularity  

 

Before starting this subsection, we introduce some mathematical definitions which are needed later 

on.  

 

5.5.1. Mathematical definitions of networks and modularity 

 

Networks or graphs have been studied for a long time in disciplines like mathematics or sociology. 

However, its use in fields like neuroscience is quite new. In order to describe the basic mathematical 

models of graphs we follow (Estrada, 2011) and (Rubinov and Sporns, 2010).  

 

First, we give a working description of a network, nodes, and links. 

 

Definition 1: A diagrammatic representation of a system is called a network or graph. Such a network 

or graph consists of nodes (vertices), which stand for the entities of the system, and links (edges) 

which connect the nodes and stand for the special interconnection of the nodes they combine.    

 

Now a more formal definition of a network or a graph is given in Definition 2. 

 

Definition 2: The tuple G=(N, E) is called a network or graph if N is a finite set of nodes and  E ⊆

N ⊗ N = {e11, 𝑒12, … 𝑒𝑖𝑗 , … 𝑒𝑛𝑛} a set of links.  

 

The links or edges can be multifold. The following Definition 3 gives an overview of the different 

possible types of links in a network. 

 

Definition 3: A link is called  

 Simple or undirected link if it connects two nodes, 

 Directed link if it starts in one node and ends in another, 

 Multi link if there is more than one link between a pair of nodes 

 Self-loop if a link connects a node to itself. 

 

Moreover, links can have weights associated to them. Such a (in general positive) number represents 

the strength of the link between the nodes.  
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Another important object, which is described in the next Definition 4, is the adjacency matrix.  

 

Definition 4: The adjacency matrix 𝐴 = (𝐴𝑖𝑗)
𝑛𝑥𝑛

 of G = (N, E) is given by 

 

 

𝐴𝑖𝑗 ≔ {
1       𝑖𝑓 𝑒𝑖𝑗 ∈ 𝐸

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

(14) 

with eij being a link between node i and node j. 

 

Considering brain networks, nodes represent in general ROIs while links stand for anatomical, 

functional, or effective connections (Friston Karl J., 1994). Anatomical connections represent most 

of the time WM tracts between ROIs whereas functional connections are temporal correlations 

between two ROIs, even if there is no structural connection between them. Finally, effective 

connections are direct or indirect causal influences which one ROI may have on another one.  

 

When dealing with networks it is often useful to search for modules which are also called communities, 

clusters, classes, groups, etc. These modules are roughly speaking a group of nodes which are more 

tightly connected to one another than to the rest of the network. Different definitions are found in the 

literature, see, e.g., (Wasserman and Faust, 1994). Here we give the definition from (Radicchi et al., 

2004), but first we define the term subgraph. 

 

 

Definition 5: A subgraph V of a graph G is a graph which is formed by a subset of the edges and 

vertices of G. 

 

Definition 6: Let Aij be the adjacency matrix of the network G. The degree of a node i is given by 

ki=ΣjAij. Let V⊂G be a subgraph to which i belongs. Moreover,   

 

 

 

𝑘𝑖
𝑖𝑛(𝑉) = ∑ 𝐴𝑖𝑗

𝑗∈𝑉

  (15) 

 

 

𝑘𝑖
𝑜𝑢𝑡(𝑉) = ∑ 𝐴𝑖𝑗 .

𝑗∉𝑉

 

 

(16) 
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Then we define a module in strong sense as the subgraph V if   

 

 

 𝑘𝑖
𝑖𝑛(𝑉) >  𝑘𝑖

𝑜𝑢𝑡(𝑉)       ∀𝑖 ∈ 𝑉  

 

(17) 

holds. Furthermore, a module in weak sense is defined as the subgraph V if  

 

 

∑ 𝑘𝑖
𝑖𝑛(𝑉)

𝑖∈𝑉

 >  ∑ 𝑘𝑖
𝑜𝑢𝑡(𝑉)

𝑖∈𝑉

     ∀𝑖 ∈ 𝑉  

 

(18) 

holds. 

 

Subgraphs V which are either modules in the strong or in the weak sense are called modules. Where 

necessary, it will be specified about which type we are talking.  

 

There are many methods to compare module partitions. Two of the most often used ones are the 

variation of information and the mutual information of two partitions or clusterings. We start with 

describing mutual information, i.e., how much information does one clustering have about the other.  

 

Definition 7: Mutual information of two clusterings C and C’ is given by (Meila, 2007) 

 

 

 𝐼(𝐶, 𝐶′) = ∑ ∑ 𝑃(𝑘, 𝑘′)𝑙𝑜𝑔

𝐾′

𝑘′=1

𝑃(𝑘, 𝑘′)

𝑃(𝑘)𝑃′(𝑘′)

𝐾

𝑘=1

 

 

(19) 

where P(k,k’) denotes the probability that a node belongs to clustering Ck in C and to Ck’ in C’, i.e., 

the random variables associated with the clusterings. P(k) is the probability mass function, and K 

and K’ are the number of nodes in the clusterings C and C’, respectively. 

 

To describe the term variation of information we also need to define entropy. 

 

Definition 8: Entropy H of a clustering C is defined as (Meila, 2007) 

 

 

 𝐻(𝐶) = − ∑ 𝑃(𝑘)𝑙𝑜𝑔𝑃(𝑘)

𝐾

𝑘=1

 

 

(20) 

with P the probability mass function and K the number of nodes in the clustering.  
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With these terms at hand, we can now turn to the variation of information.  

 

Definition 9: The variation of information of two clusterings C and C’ is described as (Meila, 2007)  

 
 

 𝑉𝐼(𝐶, 𝐶′) = 𝐻(𝐶) + 𝐻(𝐶′) − 2𝐼(𝐶, 𝐶′). 

 

(21) 

 

In the following we define some of the most important features of graphs, see, e.g., (Rubinov and 

Sporns, 2010) for more details. 

 

 

Definition 10: Let N be the set of all nodes in the graph G then the number of triangles around a node 

i is given by 

 
𝑡𝑖 =

1

2
∑ 𝐴𝑖𝑗𝐴𝑖ℎ𝐴𝑗ℎ

𝑗,ℎ∈ 𝑁

.  

 

(22) 

 

Definition 8: The  clustering coefficient C of the graph G is defined according to Watts and Strogratz 

(Watts and Strogatz, 1998), with ki being the degree of node i, N the set of all nodes, and n the number 

of all nodes in the graph, as 

 

 

𝐶 =
1

𝑛
∑ 𝐶𝑖 =

1

𝑛
∑

2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁𝑖∈𝑁

.  

 

(23) 

Ci denotes the clustering coefficient of node i with Ci=0 for ki<2. 

 

 

Definition 11: The shortest path between node i and node j is given by 

 

 

𝑑𝑖𝑗 = ∑ 𝐴𝑢𝑣

𝐴𝑢𝑣∈𝑔𝑖↔𝑗

 

 

(24) 

where Auv is the adjacency matrix and  𝑔𝑖↔𝑗 is the shortest (geodesic) path. If the nodes i and j are 

disconnected, then 𝑑𝑖𝑗 = ∞. 
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Definition 12: The global efficiency is defined by (Latora and Marchiori, 2001) as 

 

 

𝐸 =
1

𝑛
∑ 𝐸𝑖 =

1

𝑛
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁𝑖∈𝑁

 

 

(25) 

with n the number of nodes, N the set of all nodes, Ei the efficiency of node i, and dij the shortest path 

between nodes i and j.   

 

Definition 13: The characteristic path length L is given by (Watts and Strogatz, 1998) 

 

 

𝐿 =
1

𝑛
∑ 𝐿𝑖 =

1

𝑛
∑

∑ 𝑑𝑖𝑗𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁𝑖∈𝑁

 
(26) 

where again n is the number of nodes, N the set of all nodes, and dij the shortest path between node i 

and j.  Moreover, Li is the average distance from i to all other nodes.  

 

Definition 14: The small worldness is defined as (Humphries and Gurney, 2008) 

 

 

S =
C/Crand

L/Lrand
 

 

(27) 

with C and L being the clustering coefficient and the characteristic path length of the graph G and 

Crand and Lrand being the clustering coefficient and the characteristic path length of a random network. 

A small-world network is characterized by S≫1. 

 

Definition 15: Betweenness centrality of node i is (Freeman, 1978) 

 

 

𝑏𝑖 =
1

(𝑛 − 1)(𝑛 − 2)
∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗ℎ,𝑗∈𝑁
ℎ≠𝑗,ℎ≠𝑖,𝑗≠𝑖

 

 

(28) 

with ρhj giving the number of shortest paths between the nodes h and j, ρhj(i) the number of shortest 

paths between the nodes h and j that pass through node i, n the number of nodes, and N the set of all 

nodes. 
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Definition 16: The assortativity is given by (Newman, 2002) 

 

 

𝑟 =
𝑙−1 ∑ 𝑘𝑖𝑘𝑗 − [𝑙−1 ∑ 1

2
(𝑘𝑖 + 𝑘𝑗)](𝑖,𝑗)∈𝐿

2
(𝑖,𝑗)∈𝐿

𝑙−1 ∑ 1
2
(𝑘𝑖

2 + 𝑘𝑗
2) − [𝑙−1 ∑ 1

2
(𝑘𝑖 + 𝑘𝑗)](𝑖,𝑗)∈𝐿

2
(𝑖,𝑗)∈𝐿

 

 

(29) 

where l is the number of links, L the set of all links, (i,j) a link between node i and node j, and ki the 

degree of node i.  

 

Another term, which often comes up when dealing with networks, is hub. However, there is no clear 

definition of this term. A hub can be characterized by different factors, e.g., as nodes with high degree 

or high centrality.  

 

5.5.2.1. Mucha’s multislice modularity 

 

As mentioned above, modules are roughly speaking clusters of nodes that are more tightly connected 

to each other than to the rest of the network, always in comparison to a null model. One way to define 

modules is via a quality function Q which compares the intracommunity edges with what would be 

expected at random.  

 

Definition 17: Such a quality function Q is given by (Newman, 2006) 

 

 

𝑄 =
1

2𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
) 𝛿(𝑔𝑖, 𝑔𝑗)

𝑖,𝑗

 

 

(30) 

with m being the number of links, Aij the adjacency matrix, ki the node degree, and  

 

 

𝛿(𝑔𝑖, 𝑔𝑗) = {
1        𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑜𝑑𝑢𝑙𝑒
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                           .

 

 

(31) 

 

What is crucial is the choice of the null model. Mucha et al. defined such a null model for multislice 

networks, i.e., coupled adjacency matrices, see Figure 31 for a graphical explanation of a coupled 

adjacency matrix. 
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Figure 31: Graphical representation of a multislice network. Here four slices {1,2,3,4} are shown. 

The solid lines represent the intraslice connections given by the adjacency matrix Aijs which gives 

the connection of node i to node j in slice s. On the other hand, the dashed lines represent the 

interslice connections given by Cjrs, representing the connection of node j to itself from slice r to 

slice s. This interslice connections are just shown for two nodes. The upper one shows coupling just 

between neighboring slices, which is appropriate for ordered slices, whereas the lower one shows 

an all-to-all interslice coupling which is suitable for categorical slices. (Mucha et al., 2010) 

 

Mucha et al. updated the quality function of Definition 17 to  

 

 

𝑄 =
1

2𝜇
∑ [ (𝐴𝑖𝑗𝑠 − 𝛾𝑠

𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠
) 𝛿𝑠𝑟 + 𝛿𝑖𝑗𝐶𝑗𝑠𝑟] 𝛿(𝑔𝑖 , 𝑔𝑗)

𝑖,𝑗,𝑠,𝑟

 

 

(32) 

with γs the resolution, δij the Kronecker Delta, and Cjsr the coupling strength for node j between slices 

s and r which is for simplicity taken to be binary {0,ω}, depending on whether the coupling is present 

with strength ω or absent, i.e., a strength of 0. Moreover, μ is given by 

 

 

2𝜇 = ∑ (𝑘𝑗𝑠 + ∑ 𝐶𝑗𝑠𝑟

r

) .

𝑗,𝑠

 
(33) 

 

Now, modules can be calculated using heuristic methods (Mucha et al., 2010). One of the most used 

one is the Louvain Algorithm. This algorithm consists of two parts that are repeated iteratively. The 

starting point is a weighted network with n nodes. The first step is to assign different communities to 

every node of the network which results in n communities. After that the neighbors of each node are 

taken into account. It is calculated how much the quality function Q would gain if the node i is moved 

to the same community as its neighbor j. If there is a positive gain when moving i to the community 

of one of its neighbors this is done. If not, i stays in its community. This is done for all nodes until no 

positive gain can be achieved. During the second step a new network is built consisting of nodes 
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which are communities of the first step. Then the first step is repeated with the new nodes. This whole 

process is repeated until no more gain is possible. For more details see (Blondel et al., 2008). 

 

5.5.2.2.  Accuracy, precision and recall 

 

The most common way how to describe if a classifier performs well is in terms of its accuracy, also 

called recognition rate. This term is described in Definition 18, see, e.g., (Abe, 2010).  

 

Definition 18:  

 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(34) 

 

Some other metrics which we are going to need later on are precision and recall. They describe, 

similar to the accuracy, how good a classification algorithm is. The next definition explains these two 

quantities, see, e.g., (Abe, 2010). 

 

Definition 19: 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (35) 

  

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(36) 

 

Figure 32 shows a graphical representation of precision and recall. Imagine we have a group of sub-

jects with some suffering from a certain disease whereas others do not. We will call the ones having 

the disease the positive group and the ones that do not have the disease the negative group. The light 

gray dots in Figure 32 represent all the positive values, namely all the subjects that have the disease. 

All the dark gray dots represent those who do not have the disease, i.e., the negative values. After the 

classification we got a result for every subject. The ones in the dark green area are the ones that are 

classified correctly as positives. Whereas the ones in the red area are classified as positive but are 

indeed negative, meaning that our classifier would tell us that the subjects have a certain disease 

although they do not. The light green ones are the ones that do have the disease but are classified as 

not having it. On the other hand, the orange ones are the ones that do not have the disease and are 

correctly classified as negative.  
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Precision gives the percentage of true positives of all positives, i.e., the true and false positive ones. 

It can be interpreted as a measure of how trustworthy the algorithm is: can I trust that a positively 

identified subject really has the disease? On the other hand, recall gives the percentage of the true 

positives from all positives, in other words, the false negatives and the true positives. Hence, recall 

can be seen as some sort of detection rate, namely the chance of detecting a subject of having the 

disease, if he/she really does. An algorithm with high precision and low recall labels very few sub-

jects/samples as positive but the ones that are positive labeled are correctly positive, in our example 

subjects that have the disease. On the other hand, an algorithm with high recall and low precision 

marks a lot of samples as positive but a lot of them are labeled incorrectly as positive, hence those 

who do not have the disease. Thus, an ideal algorithm has high precision and high recall, which means 

it detects a lot of samples as positive and these are labeled correctly. 

 

 

Figure 32: Graphical representation of precision and recall. The light gray dots represent the ones 

that are true in reality and the dark gray dots represent those who are false in reality. The big circle 

in the middle marks all dots that are classified as positive by the algorithm. Precision is given by 

the true positives divided by all positives given by the algorithm, i.e., true positives and false posi-

tives, whereas recall is defined as the quotient of true positive divided by all real positives, i.e., true 

positives and false negatives. 

 

 

Using these two metrics we can calculate the F1-score. This is a metric that is suitable to compare the 

performance of a classifier when the sample sizes are imbalanced because, for imbalanced sample 

sizes, the frequently-used accuracy gives misleading results. The following Definition 20 explains 

how to calculate this metric.  
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Definition 20: The F1-score is given by (Powers, 2011) 

 

 

 

F1=2∗
precision∗recall

precision+recall
. (1) 

 

 

5.5.2. Introduction to the analysis of resting state fMRI data with networks and 

modularity  

 

As discussed in Section 3 the diagnosis and prognosis of patients with scDOC is very difficult. Hence, 

there is a need for new techniques. One new approach is the use of graph-theoretical tools. Using 

these methods, we focus on brain networks with ROIs as nodes and functional connectivities as edges. 

Considering human brain networks, it was found that they are generally modular, i.e., can be separated 

into modules (see Definition 6 in Section 5.5.1) and of small-world type (see Definition 14 in Section 

5.5.1). Moreover, the modules consist of highly connected hubs (Bullmore and Sporns, 2009). Achard 

et al. demonstrated that these hubs were reorganized in comatose patients. They found that the fusi-

form gurus and precuneus, which are known to be hubs with high degree in healthy brain networks, 

were low-degree non-hubs in patients. On the contrary, the angular gyrus (normally a low-degree 

non-hub) was found to be a high-degree hub in patients. Clustering, modularity, global efficiency, and 

other global network measures (see Section 5.5.1 for mathematical definitions), were statistically not 

different when comparing healthy subjects and comatose patients (Achard et al., 2012). However, 

they just focused on patients in acute state (the maximal time between onset and scan was 32 days). 

Furthermore, they did not look at different subgroups of patients. However, Crone et al. found the 

same result as Achard et al. considering global network topology, but not for modularity. Indeed, they 

found a significant difference in modularity between healthy controls and patients (UWS and MCS 

together). In their work they present data from 59 patients with scDOC and found, besides the ones 

mentioned before, also alterations in connectivity and network properties of several regions in the 

cortico-thalamic and fronto-parietal regions. Moreover, differences between UWS and MCS were 

only reported for measures of segregation, namely in the right frontal and medial regions and in the 

precuneus. Furthermore, it is worth mentioning that most altered regions belong to highly connected 

nodes, also known as rich clubs (Crone et al., 2014). 

 

Besides, Laureys and colleagues reported that the thalamo-cortical connectivity plays an important 

role for the recovery from coma. They stated that connectivity in that region was re-established in 
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some patients who recovered from UWS and thus regained consciousness (Laureys et al., 2000). 

Giacino et al. found that UWS patients have a global disconnection between higher-order cortices 

and primary cortical areas (Giacino et al., 2006). Large scale cortical networks associated with lan-

guage and visual processing were advocated to be preserved in MCS patients (Schiff et al., 2005). 

Laureys et al. also proposed a biomarker to differentiate healthy controls from scDOC patients. They 

found the connectivity of the medial parietal cortex to be such a biomarker (Laureys et al., 2004). 

 

5.5.3. Methods for the analysis of resting state fMRI data with networks and 

modularity 

 

After preprocessing the fMRI data, we extracted the correlation matrices with Fisher’s Z-transformed 

values from CONN (see Section 5.3). From now on the analysis was run in MATLAB (The Math-

Works, Inc., Natick, Massachusetts, United States) Version 2018a using the Statistics and Machine 

Learning Toolbox Version 11.3, and the Brain Connectivity Toolbox (BCT), see (Rubinov and Sporns, 

2010). 

 

Before starting the multislice analysis, we calculated some metrics of the correlation matrix and 

checked for their statistical significance. The metrics were all calculated using the implementations 

in BCT and the statistical relevance was tested using a Welch test. When considering the global met-

rics, i.e., assortativity, betweenness centrality, edge centrality, characteristic path length, clustering 

coefficient, and global efficiency (for definitions see Section 5.5.1) there were no differences in any 

of the comparison groups: healthy versus MCS, MCS versus UWS, or healthy versus UWS. This is 

why we decided to try another approach to find statistically differences between our groups.  

  

5.5.3.1. Multislice Modularity 

 

Now let us turn to the multislice approach. The following workflow is shown in Figure 33. First, we 

thresholded the correlation matrices with a proportional threshold θ=0.1. This number was chosen 

according to previous papers which showed that a link density of 10% gives optimal discriminative 

ability (Achard et al., 2012; Itahashi et al., 2014; Mansour et al., 2016). Furthermore, the correlation 

matrix was binarized, i.e., such a matrix has just entries 1 or 0 depending on whether there is or is a 

connection between two ROIs or not. This gave us an adjacency matrix for an undirected graph. Now, 

we searched for communities or modules. For this we used the multislice modularity by Mucha which 

estimates basic modular structures across networks (Mucha et al., 2010). We used a categorical mul-
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tislice modularity algorithm (GenLouvain, 2018) which couples each node (ROI) from one slice (sub-

ject) to the same node in other slices, see also Figure 31. This algorithm makes use of two parameters 

namely ω which is the coupling parameter between subjects and γ which gives the modularity reso-

lution, i.e., determines the number and size of modules. Up to know there is no agreed consensus on 

how to find the two parameters ω and γ. We decided to perform a grid search through the parameter 

space ωϵ{0.1,0.2,0.4,0.6,0.8,1}  and γϵ{0.25, 0.5, 0.75, 1, 1.25, … 3.75,4}  and searched for how 

many modules were found with each combination. The results can be found in Table 17 and Table 18. 

Little surprising the result did not (or just little) depend on ω. The brain architecture consists of 10 to 

15 modules. Hence, we tried to find values for γ that give us such a number of modules. This was 

found to be the case for γ=2.00. What is also worth mentioning is that the number of modules also 

depends on the number of slices (or subjects) one considers in the multislice modularity algorithm. 

 

 

Figure 33: Workflow from Fisher’s Z correlation matrices to agreement matrix. Starting in the 

upper left corner with the Fisher’s Z correlation matrices which are thresholded and binarized to 

get the adjacency matrix. Using the multislice modularity algorithm gives us a modularity matrix 

which leads to the agreement matrix.(Wutzl et al., in prep.) 
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Since we did have more UWS patients and healthy controls than MCS patients, we randomly 

downsampled all groups to have the number of MCS patients, so that we could use the same γ and ω 

in our analyses. The next step was to find a suitable value for the coupling parameter ω. We did this 

again by trying different values, i.e., ω∈{0.01, 0.02, 0.03, ..., 0.32, 0.33, 0.34, 0.35}. This time we 

focused on the modularity matrix. We wanted the coupling coefficient ω to be big enough so that not 

all the subjects had totally different module partitions but also not so big that all the subjects had 

exactly the same partitions. Three different values for ω (ω=0.01, 0.25, 0.35) are plotted in Figure 34 

with different colors indicating different modules. The x-axis shows the different slices or subjects 

and the y-axis the different ROIs. The colors per se do not have any specific meaning. The plot with 

ω=0.01 shows that the partitions are very different from each other, i.e., the module structure of the 

different subjects is very different. On the other hand, a coupling constant of ω=0.35 is so strong that 

the connection between the slices (subjects) is a lot stronger than between the nodes of each subject. 

Hence, this results in a plot where every subject has exactly the same module partition. We chose 

ω=0.25. because this is the largest value of ω where each partition for each subject is still unique. 

 

 

Figure 34: Comparison of different values for ω with ω=0.01 showing no real effect of the 

multislice coupling, i.e., every subject has a very different module composition whereas ω=0.35 

shows that the coupling is so strong it is preferred over intra subject connectivity and ω=0.25 

showing the tradeoff that every subject’s partition is unique to this subject. The different colors 

symbolize different modules, x-axis indicates subjects or slices and the y-axis indicates the different 

ROI. (Wutzl et al., in prep.) 

 

Once we found these two parameters, γ and ω, we could get back to the algorithm of Figure 33. Since 

the outcome of the multislice modularity algorithm is not deterministic, we run the algorithm 100 

times to get an average of the modules. After that we created the agreement matrix (Lancichinetti and 

Fortunato, 2012) of the 100 module partition results for all subjects. Such a matrix gives how often 

two ROIs are in the same module. After normalization we get a matrix with values in the interval 
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[0,1]. The last step was to build the difference of the agreement matrices of different subject groups 

(UWS, MCS, healthy). Hence, we got a matrix with values in the interval [-1,1] which gives us in-

formation about how different the module structures of the different groups are with a 0 indicating 

nearly no difference and 1 and -1 showing high differences. In order to find significant results a per-

mutation test (permuting the membership of the different groups) was performed with 1000 repeti-

tions and a statistical significance value of 0.001 uncorrected was used (Wutzl et al., in prep.). 

 

 

5.5.3.2. Classification  

 

After comparing the agreement matrices, we turned toward classification. The aim was to use this 

multislice approach to classify one new subject to one of the three groups (healthy, MCS, or UWS). 

First of all, one subject which should be classified was chosen and then, was excluded from its group 

which were all randomly downsampled to the smallest group, namely MCS. Then we performed the 

same steps as shown in Figure 33 which resulted in agreement matrices for each group. After having 

those at hand we calculated a consensus modularity vector (Lancichinetti and Fortunato, 2012). Such 

a vector is a heuristic representation of the modular structure described by the agreement matrix. The 

calculation of the consensus vector via BCT needs two parameters. These are τ which gives the reso-

lution of the reclustering, and the number of repetitions which describes how many reapplications of 

the clustering algorithms are performed. The next step was to compare the consensus vectors to the 

modularity structure of the previously chosen subject. Thus, we also needed a consensus vector for a 

single subject. To find such a consensus vector we first needed to determine an agreement matrix and 

thus modules. We tried three algorithms to find such modules. The first approach was to use the 

categorical method of Mucha et al. (Mucha et al., 2010) again. To do so, we used the same subject n 

times with n being the number of MCS patients included, i.e., the smallest number of subjects in one 

group. The next method was to use the command modularity_und of the BCT. This command applies 

Newman’s spectral community detection to find modules for a single subject(Newman, 2006; Reich-

ardt and Bornholdt, 2006). The last approach was the command community_louvain from BCT which 

uses the Louvain community detection algorithm with added finetuning to find modules (Blondel et 

al., 2008; Reichardt and Bornholdt, 2006; Ronhovde and Nussinov, 2009; Rubinov and Sporns, 2011; 

Sun et al., 2009). All these methods were then again repeated 100 times like for the multislice modu-

larity approach, which also resulted in 100 modularity partitions from which we could build the agree-

ment matrix which was again normalized. Now, having the agreement matrices of the groups (UWS, 

MCS and healthy) as well as for our chosen subject at hand we can calculate the consensus vector of 
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all the four groups and compare them using partition_distance (Meila, 2007). This method returns 

two outputs, i.e., normalized variation of information and normalized mutual information (see Defi-

nition 7 and Definition 9). We decided to use the first one as our measure. In order to find out which 

of the above-mentioned methods for modularity detection of the single subject give the best results, 

we used the F1-score (see Definition 20). We chose this metric because we have imbalanced sample 

sizes for which this method is more suitable than accuracy.  

 

During our analyses we found that the F1-scores do not differ much when comparing the three dif-

ferent methods for modularity calculation of the single subject. However, the Louvain community 

approach gave slightly better results. Moreover, we found τ=0.35, again resulting in about 10 to 15 

modules, i.e., brain networks, and a repetition of 100 to be suitable.  

 

However, we assume that this measure (just measuring the partition distance of the consensus vectors) 

may not be very accurate because a lot of all 132 ROIs are included. Not all of these ROIs can be 

assumed to be equally important, i.e., some may just give noise. Hence, we decided to shorten the 

vector and just include the most important ROIs. These ROIs were considered as the most important 

ones which turned out to be statistically significant when comparing the module belongings (Wutzl 

et al., in prep.). 

 

 

5.5.4. Results found when analyzing resting state fMRI data with networks and 

modularity 

 

5.5.4.1. Results from the multislice modularity 

 

When analyzing MCS or UWS patients versus healthy controls, we found that there were a lot of 

ROIs that had statistically significantly (at significance level 0.001 uncorrected) different module 

belonging when compared to a partner, namely 237 pairs (including 90 different ROIs) for healthy 

versus MCS and 321 pairs (including 111 ROIs) for healthy versus UWS. When comparing MCS and 

UWS patients we found a narrower result, i.e., just 7 ROI pairs were significant. These pairs mainly 

included the middle temporal gyrus, posterior division right. This ROI and the parietal operculum 

cortex left, the central operculum cortex left, the frontal operculum cortex left, the insular cortex left 

and right, as well as the Heschl’s gyrus left were significantly less often in the same module in MCS 
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when compared to UWS. The two regions planum polare right and temporal pole left were more often 

in the same module.  

 

5.5.4.2. Results from the classification  

 

As described before we found a lot of significant results when comparing scDOC patients to healthy 

controls. Hence, we first run the algorithm without shortening the consensus vector. The confusion 

matrix of this algorithm is shown in Table 9. 

Table 9: This table shows a confusion matrix using a consensus vector with all 132 ROIs, τ=0.35 

and number of repetitions 100, and all other values were the same as in the modularity part. The 

table shows the real group and the one predicted from the classifier. (Wutzl et al., in prep.)  

predicted real UWS MCS Healthy 

UWS 12 8 6 

MCS 8 5 2 

Healthy 9 7 22 

 

The F1-score of this table is 0.4618 which is not bad for a classifier with three classes (a random 

classifier would give an F1-score of 0.3333). However, one has to take the whole confusion matrix 

into account. When looking at Table 9, we find that the good result comes from the separation of 

healthy subjects to scDOC. When calculating the F1-score for healthy versus scDOC we find that it 

is 0.6976, now comparing to 0.5, which is the result of a random classification. When grouping UWS 

patients and healthy together, we calculate an F1-score of 0.5419 which corresponds to a nearly ran-

dom classifier. A similar result, i.e., an F1-score of 0.5686, is found for the groups MCS and healthy 

versus UWS. Thus, the fact that the classifier is better than random is just due to the good classifica-

tion between patients and healthy subjects.  

 

When considering daily-life applications, it is not so important to have a classifier which separates 

healthy subjects from patients but which separates the two patient groups because this is where a very 

high misdiagnosis rate is evident (see Section 3). Thus, we just focused on this inter-patient classifi-

cation of MCS and UWS from now on. The first approach was again to use the entire consensus 

vector for the classification. The confusion matrix of this classifier is shown in Table 10.  
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Table 10: This table shows the confusion matrix of the classification algorithm with a consensus 

vector with all 132 ROIs. τ=0.35, number of repetitions 100, and the rest of the parameters were the 

same as in the section 5.5.3.1. (Wutzl et al., in prep.)  

 

predicted 
real UWS MCS 

UWS 17 12 

MCS 12 8 

 

This gives us an F1-score of 0.4931, in other words, a classification at random. This shows that using 

all the ROIs is very noisy and not suitable for such a fine classification. Hence, we shortened the 

consensus vector such that it only included the 9 ROIs that were found to be statistically important 

when comparing modules (see last Section 5.5.4.1). The following Table 11 shows a confusion matrix 

of the classifier if we use a consensus vector with just these 9 ROIs. 

 

Table 11: Confusion matrix of the classifier if the consensus vector just consists of the nine 

important regions when comparing the agreement matrices of UWS and MCS. The parameters were 

the same as before. (Wutzl et al., in prep.)  

 

predicted real UWS MCS 

UWS 18 6 

MCS 11 14 

 

This confusion matrix gives an F1-score of 0.6576 which is higher than a random classifier with a 

value of 0.5. A closer look shows, that the classifier was able to classify 62.07% of the UWS patients 

and 70.00% of the MCS patients correctly. (Wutzl et al., in prep.) 

 

5.5.5. Discussion of the analysis of resting state fMRI data with networks and 

modularity 

 

We found many significant results, namely ROI pairs that belong to different modules, when 

comparing scDOC to healthy controls. Such a result is difficult to interpret. But we can conclude that 

the modularity structure of the brain is very different when comparing healthy controls and scDOC 

patients. When turning to the comparison of MCS and UWS patients we found a small number of 

different pairs in module belonging, namely nine ROIs or seven pairs. This shows that the multislice 

modularity approach can find differences where classical methods fail to find some. This is especially 

interesting for the comparison between MCS and UWS because the diagnosis of those is still 

challenging and every new information can be useful.  
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Turning to the classification we demonstrated that the approach to compare the consensus vectors of 

the different groups to a single test subject using normalized variation of information worked very 

well when distinguishing between healthy subjects and scDOC patients. This makes us conclude, first 

of all, that the method is reliable and works. Moreover, this result means that the modular structure 

of the brains of the different subject groups vary in a lot of ROIs. This is also what was found when 

comparing the agreement matrices of the different groups. On the other hand, the simple comparison 

of the consensus vector did not show significant results when trying to classify UWS and MCS 

patients, meaning that their module structure does not differ that much. Hence, we shortened the 

consensus vector to just the ROIs which turned out to be important when comparing the agreement 

matrices. Using this proposed approach, we could show that the classification gets better, and that the 

algorithm gives an F1-score which is higher than that of a random classifier. However, one might ask 

why the classification does not give even better results. We hypothesize that this is not due to a lack 

in quality of our method but rather lies in the fact that the JFK CRS-R was used as a ground truth for 

the reference data. This method is a behavioral measure and as such prone to misdiagnosis. Though 

our physicians gave their best, the misdiagnosis rate is something that cannot be neglected. 

Nonetheless, we claim that we would be able to achieve even better results, when using this method 

for a disease with less initial misdiagnoses. Nonetheless, this method is useful for the diagnosis of 

patients with scDOC. Furthermore, a larger dataset would make the classifier more accurate and then 

the second approach can be used to classify new patients. This method is of special interest, because 

all it uses is the resting state of an fMRI scan and thus is not biased by behavioral testing. Moreover, 

the method does not need the compliance of the patients, something that is of special interest when 

dealing with this patient group (Wutzl et al., in prep.). 

 

5.5.6. Summary of the analysis of resting state fMRI data with networks and 

modularity 

 

In the above, we presented techniques using the multislice approach of Mucha et al. (Mucha et al., 

2010). We used this method to find the modules of the fMRI data of healthy subjects, MCS and UWS 

patients. The first part dealt with the comparison of agreement matrices which show the relative fre-

quency of two ROIs being in the same module for one subject group. We could show that this method 

revealed differences where classical approaches fail to find some, i.e., in the module structure when 

comparing MCS and UWS patients. Moreover, the comparison of scDOC patients and healthy con-

trols revealed a lot of different module assignments between ROI pairs. The second part introduces a 

new method for the classification of UWS and MCS patients as well as healthy subjects just according 
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to their fMRI resting state brain scans. We generated the consensus community vector from the agree-

ment matrices and compared them using normalized variation of information. This gives good results 

when comparing scDOC to healthy controls, but just random classification for UWS versus MCS 

patients. Shortening the consensus vector to the ROIs found to be most important in the first step even 

made it possible to classify UWS and MCS patients with an F1-score better than a random classifier 

would give. Hence, we conclude that this method is useful for classifying fMRI resting state data into 

different groups and we hypothesize that the classification of a new patient would even be better if 

we would have more accurate diagnosis for the initial data set.  

 

5.6. Using genetic algorithm and support vector classifier for feature 

selection 

 

5.6.1. Introduction to the use of genetic algorithm and support vector classifier 

 

When considering the misdiagnosis of the patients with scDOC, we find that a lot of effort was made 

to improve the results. Hence, in the last decades also interdisciplinary approaches have been used. 

Of these interdisciplinary methods machine learning seems to be useful for neuroimaging data (Lemm 

et al., 2011; Richiardi et al., 2013). Höller et al. divided scDOC patients into the different subgroups 

using EEG-features from an imagery paradigm (Höller et al., 2013). Zheng and colleagues used an 

approach with DTI and machine learning (Zheng et al., 2016). Moreover, Pugin et al. predicted the 

outcome of post-anoxic comatose patients after cardiac arrest according to their resting state fMRI 

scans also using machine learning (Pugin et al., 2018). Another study, which was conducted by 

Riganello et al. in 2018, showed that the heart rate variability entropy gives useful features for 

machine learning techniques to discriminate scDOC patients. Above all, classification methods, e.g., 

support vector classifier (SVC) (see Section 5.6.3), also combined with feature extraction, have been 

applied with success (Karamzadeh et al., 2015; Pereira et al., 2009; Sachdeva et al., 2013; Segovia et 

al., 2016). Most of these papers use feature extraction, i.e., the data are transformed from the feature 

space to some target space. This is done using, e.g., principal component analysis (PCA). For an 

exemplary paper see (Sachdeva et al., 2013). However, such an approach is difficult to interpret 

because the target space is usually not the feature space. Hence, it is difficult to find the significant 

features.  This is why we turn to another approach, which is feature selection. This technique describes 

a method where input patterns are reduced to only the most important features. In the following we 

will use a combination of a genetic algorithm (GA) (see Section 5.6.2) and a SVC (see Section 5.6.3) 

for this feature selection. Such a combination has been used successfully in other research fields, see 
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for example (Frohlich et al., 2003; Huang and Wang, 2006; Salcedo-Sanz et al., 2002). Turning to the 

classification of fMRI data, we find that we have a high dimensional input space. Using the whole 

data as input features also includes a lot of irrelevant features for our classification. This can increase 

the computational cost and the runtime of the system and, what is even more important, lead to worse 

results. Thus, the aim is to find the features that contribute most to the classification process. We have 

to face the balancing act of wanting to include as little features as possible but also finding the best 

results of the SVC.  

 

Before details of the method and the results are presented, a short introductions to GA as well as to 

SVC are given in the next two sections.  

 

 

5.6.2. Genetic algorithm (GA) 

 

We want to find the ROIs that are most important for the distinction between healthy controls and 

patient groups as well as between UWS and MCS patients. This is done via feature selection using a 

GA which is a form of evolutionary algorithm. Pioneer work for this algorithm was done by John 

Henry Holland (Holland, 1975). In the following, a brief introduction to the field of GA will be given, 

but for more details see, e.g., (Davis, 1991; Goldberg, 1989; Michalewicz, 1994). We follow in this 

section (Olariu and Zomaya, 2005) Chapter 16. 

 

GAs are adaptive, efficient, randomized, and robust search and optimization processes. They use 

models from natural genetics and are most often used in multimodal, large and complex landscapes. 

GAs are based on natural genetic systems. The genetic information of every potential solution is 

stored in a structure called chromosome. A group of chromosomes is called a population. Biologically 

inspired operations are performed on the population in order to find a new and hopefully better 

solution. Like in nature, populations that are better suited to the environment survive and pass on their 

genetic information to the new generation (Olariu and Zomaya, 2005). 

 

The essential components as defined by Olariu and Zomaya (Olariu and Zomaya, 2005) p. 236-237 

are: 

 A representation strategy that determines the way in which potential solutions will be 

encoded to form string like structures called chromosomes. 

 A population of chromosomes. 

 Mechanism for evaluating each string (fitness function). 
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 Selection/reproduction procedure. 

 Genetic operators (crossover and mutation). 

 Probabilities to perform genetic operations.  

 

Figure 35 shows a typical workflow of a GA.  

 

GAs operates on a chromosomal representation of a parameter set. This is encoded as a string of finite 

size using an alphabet of finite length. In general, chromosomes are binary strings of 1s and 0s. An 

example of such a binary chromosome of length 10 is 

 

1 0 1 1 0 0 0 0 1 1. 

 

 

Figure 35: The GA starts with a random initialization of the population. The next step consists of 

performing the job with the decoded version of the strings. After that the fitness computation 

follows. Then it is checked whether the termination criterion has already been reached. If so, the 

algorithm stops, if not, strings are selected to create a new mating pool which is followed by 

crossover and mutation to generate a new population. This new population is now used instead of 

the previous population and the algorithm is repeated until the termination criterion is reached.  

(Olariu and Zomaya, 2005)  

 

Thus, the number of different chromosomes is 2n with n being the length of the chromosomes. Each 

chromosome stands for a possible solution. A population is a set of chromosomes in a generation. The 

size of such a population may be fixed or vary from one generation to another. Usually the initial 

population is chosen randomly.  
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The key point of a GA is the fitness function. It is the only information which is used by the GA to 

search the target space. Hence, it is crucial to define it right. The fitness function is chosen in such a 

way that good chromosomes have a high fitness.  

 

The next important step is the selection or reproduction process. During this step, individual 

chromosomes, referred to as parent chromosomes, are copied into a new population called mating 

pool or children. If the number of copies of a chromosome is directly proportional to the value of the 

fitness function, it is called proportional selection scheme. However, there are different selection 

procedures, e.g., the stochastic universal selection, binary tournament selection or the roulette wheel 

parent selection. For details see, for example (Goldberg, 1989; Michalewicz, 1994). Moreover, an 

elite list is often used. Such a list consists of the chromosomes with the best fitness function values 

and are not changed from one step to the next.  

 

The most often used genetic operations to change the parents into new children population are 

mutation and crossover.  

 

Mutation describes random changes in the genetic structure of a chromosome. The easiest is the bit-

by-bit mutation, i.e., each bit in a chromosome will be changed with a certain probability. The 

following shows an example of a mutation of position 4 in the above example chromosome of length 

10. 

 

1 0 1 1 0 0 0 0 1 1 

1 0 1 0 0 0 0 0 1 1 

 

Mutation provides genetic diversity in the population. It may be the case that the optimal solution is 

not represented in the genetic structure of the current population. Thus, the algorithm could not find 

the optimal solution without mutation.  

 

Crossover, on the other hand, needs two input parent chromosomes. These chromosomes are 

combined to produce new children for the next generation. The most common used scheme is the so-

called single point crossover. Other techniques are for example the two-point as well as multiple point 

crossover, the uniform and shuffle exchange crossover. Details can be found in, e.g., (Davis, 1991). 

Here, the single-point crossover is described. Such a crossover starts, by pairing the parent 

chromosomes at random. Then, crossover occurs with a crossover probability at a certain position of 
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the chromosome. The following shows an example of a crossover of our example chromosome of 

length 10 and another parent chromosome. The crossover is shown after bit 7 by a vertical bar. 

 

1 0 1 1 0 0 0 |0 1 1 

1 1 0 1 0 0 1 |1 0 1 

 

After the crossover the children look like 

 

1 0 1 1 0 0 0 1 0 1 

1 1 0 1 0 0 1 0 1 1. 

 

The GA runs until it reaches a termination criterion. Such a termination criterion can be manifold. 

Some of the most often used criteria are: 

 

 A predefined value of the fitness function is obtained by at least one chromosome. 

 The average fitness value does not change anymore with a new population. 

 A certain number of generations has been reached.  

 

What has not been mentioned up to now is that there are a lot of parameters that need to be finetuned 

and fixed by the programmer. The four most important parameters are the population size, the 

probabilities for crossover and mutation, as well as the termination criterion. Besides, there are also 

other parameters and adjustments need to be made within the algorithm depending in general on the 

given problem.  

 

 

5.6.3. Support vector classifier (SVC) 

 

We are using a support vector classifier (SVC) in our algorithm for which a brief introduction is given 

in the following. SVC are also called support vector machines or support vector networks and were 

introduced by Corinna Cortes and Vladimir Vapnik in 1995 (Cortes and Vapnik, 1995). SVC is a 

machine learning approach for a classification problem with two classes. The main idea is that the 

input vectors are mapped into a high dimensional feature space where they are separated by a 

hyperplane. For the formal definition we follow (Abe, 2010). 
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First, we start with a description of a hard-margin SVC. Let xi (i=1, …, N) be n-dimensional input 

data which belong either to class 1 with label yi = 1 or to class 2 with label yi = -1. If the data are 

linearly separated, a decision function D can be found so that for all n-dimensional vectors v  

 

 D(𝑣) = 𝑤T𝑣 + 𝑏 (37) 

   

 with w being an n-dimensional vector and b a bias term. Moreover, for each i=1, …, N holds  

 

 

𝑤𝑇𝑥𝑖 + 𝑏 {
> 0        for      𝑦𝑖 = 1   
< 0        for      𝑦𝑖 = −1

  . 
(38) 

   

Since the data are linearly separable, no xi satisfies wTxi+b=0 for i=1, …, N. So instead of the above 

we consider (with maybe different constants w and b) 

 

 𝑤𝑇𝑥𝑖 + 𝑏 {
≥   1            for    𝑦𝑖 = 1
≤ −1         for    𝑦𝑖 = −1

 (39) 

   

which is equivalent to  

 yi(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 for 𝑖 = 1, … , 𝑁 . (40) 

   

The hyperplane given by 

 
 

D(𝑣) = wT𝑣 + 𝑏 = 𝑐  for  − 1 < 𝑐 < 1  
(41) 

   

separates xi (i=1, …, N) according to their classes. The distance between the separation hyperplane 

and the data sample xi nearest to it is called margin. However, there is an infinite number of separating 

hyperplanes. Hence, the aim is to find the separating hyperplane with the maximum margin which is 

then called the optimal separating hyperplane. Figure 36 shows different separating hyperplanes and 

the optimal separating hyperplane with the maximal margin.  
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Figure 36: On the left-hand side different separating hyperplanes are shown for the two groups 

(red=group 1, green=group 2). On the right-hand side the optimal hyperplane is plotted with the 

maximum margin. Modified from (Koutsouleris et al., 2009). 

 

When trying to find this optimally separating hyperplane, one has to consider the maximal distance 

of the margin points, i.e., points nearest to the margin. This maximal distance is reached when c = 0 

in Equation (41). The next step is to find values for w and b. Now we take an arbitrary data point v 

and calculate its distance to the hyperplane. This is given by 

 

 dist(𝑣, 𝐷) =
|𝑤𝑇𝑣 + 𝑏|

‖𝑤‖
.  (42) 

   

We want to maximize this equation for our margin points. Now, let us consider a margin point xM for 

which an equal sign holds in Equation (40). This gives  

 

 𝑑𝑖𝑠𝑡(𝑥𝑀, 𝐷) =
1

‖𝑤‖
  (43) 

   

and thus, maximizing the margin is equivalent to minimizing ‖𝑤‖. In summary, one has to solve the 

following minimization problem for w and b 

 

 minimize Q(𝑤, 𝑏) =
1

2
‖𝑤‖2 (44) 

 subject to yi(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1   for i= 1, …, N (45) 
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where the factor ½ and the quadratic function are just introduced for mathematical convenience but 

do not change the problem per se.  

 

The assumption we made before that the classes are linear separable means that there exist w and b 

that can satisfy Equation (44). Such a solution is called feasible. It is important to notice, that also if 

the solutions are not unique, the objective function is always unique. The points satisfying the 

equalities are the so-called support vectors which give the name to the whole algorithm.  

 

Up to now we assumed that the data are linearly separable which is not the case in general. Now we 

will extend the above case so that the SVC is also applicable to inseparable cases. In order to do so 

we introduce the slack variable ξi ≥0 into Equation (40)  

 

 yi(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  for 𝑖 = 1, … , 𝑁  (46) 

   

which leads to the following minimization problem 

 

 minimize Q(w, b, ξ) =
1

2
‖𝑤‖2 +

𝐶

𝑝
∑ 𝜉𝑖

𝑝𝑁
𝑖=1  (47) 

 subject to yi(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,     ξi ≥ 0     for i= 1, …, N (48) 

with C being the margin parameter, i.e., C gives the tradeoff between the minimization of the 

classification error and the maximization of the margin. The variable p can either be 1 or 2 and thus 

the SVC is either called L1 or L2 soft margin SVC.  

 

What makes SVC so special is the introduction of so-called kernels. A kernel describes the way in 

which the scalar product is performed. The most common kernels are the linear kernel, polynomial 

kernels, exponential kernels, or the radial basis function kernel. The aforementioned kernels are just 

a few examples because basically any function can be used as a kernel. For more details see the 

corresponding literature, e.g., (Scholkopf and Smola, 2001).  

 

5.6.4. Methods for the combination of GA and SVC 

 

The first part of our analysis was done in CONN (see Section 5.3). From here on, we used python 

version 2.7 (Python Software Foundation, https://www.python.org/) for our calculations. The main 

part of the analysis was a GA (see Section 5.6.2 for an introduction). The starting point were the 

Fisher’s Z transformed correlation matrices found with CONN (see Section 5.3) which consisted of 

132 ROIs.  All these 132 ROIs could be considered as features. Nevertheless, not all of them are 

https://www.python.org/
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equally important for the classification of the different groups (healthy, MCS, and UWS). Thus, we 

aimed at finding the most important ones, i.e., those ROIs that contribute most to the classification of 

our three groups.  

 

Different methods exist to select the most important features for classification, namely wrapper, filter, 

or embedded method. When using a filter method, the features are preselected during the 

preprocessing step. This is done with regards to a relevance measure which does not depend on the 

performance of the learning algorithm. The advantages of this method are that it is computationally 

effective and robust to overfitting. The wrapper approach describes a method where a subset of all 

features is used as input to the classifier. Then the performance is calculated and used as a relevance 

criterion for the selected subset. This method is more powerful than the filter method, but the 

disadvantages are that it is computationally more expensive and often has the problem of overfitting. 

The last method, the embedded approach, is a newly proposed method which combines feature 

selection directly with the learning algorithm (Blum and Langely, 1997; Guyon and Elisseeff, 2003; 

Kohavi and John, 1997; Weston et al., 2000).  

 

The python library scikit-learn has already implemented some feature selection techniques 

(Pedregosa et al., 2011). These include for example the univariate feature selection technique 

SelectKBest, but also multivariate methods, e.g., Recursive Feature Elimination (Guyon et al., 2002). 

Nevertheless, all these algorithms do not achieve what we aimed for, namely using the single ROIs 

as features. We use correlation matrixes as input data for the algorithms. Hence, each entry is a feature 

of two ROIs, namely the correlation of ROI i to ROI j. We propose to use the meta-heuristic GA to 

determine a subset of single ROIs as features.  

 

We started with randomly allocating 1s and 0s to our ROIs with a probability of 0.25. This means that 

each ROI got a 1 with a probability of 0.25. If the ROI was allocated a 1, it was considered in the 

classification algorithm. We applied the chromosome as a filter to the columns and rows of the 

correlation matrix, a 1 indicating that the ROI should be included and a 0 that it should not be included. 

Figure 37 shows a graphical representation of the procedure. The application of the binary ROI mask 

results in a smaller truncated correlation matrix (orange matrix in Figure 37). Since the correlation 

matrix is symmetric, we then extracted the upper triangular matrix of this smaller correlation matrix. 

This smaller matrix was then transformed into a feature vector for the SVC (see Section 5.6.3) which 

was then used for the classification process where the fitness function was determined.  
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Figure 37: Representation of the used algorithm. In the upper row we have a binary ROI mask 

vector on the left-hand side as an individual of the GA. This vector is applied to the rows and 

columns of the correlation matrix in the middle of the upper row (in our algorithm this correlation 

matrix is a 132-by-132 matrix, however, for graphical representation only a 9-by-9 matrix is 

shown). Hence, just those combinations of ROIs which are both turned “on”, i.e., indicated with an 

entry 1, are selected. This procedure results in a smaller truncated correlation matrix (orange 

matrix on the right-hand side of the upper row). Since it has symmetrical entries, its upper 

triangular matrix was extracted and then flattened into a feature vector for the use in the SVC. 

(Wutzl et al., in prep.) 

 

As described in Figure 35 and Section 5.6.2 we needed to define a termination criterion. Our 

termination criterion made the GA repeat 1000 generations regardless of the value of the fitness 

function.  What is worth mentioning is that the solution of a GA can just get better over time and 

never worse. Hence, if the algorithm finds a good solution it is kept until a better one is found. Thus, 

in the worst case it will yield as best solution the one it found in the very first generation. 

 

The performance of a classifier is often evaluated with accuracy (see Definition 18) as metric. 

However, since this is not a good measure when dealing with different sample sizes, we use precision 

and recall (see Section 5.5.2.2). Hence, the precision and recall were calculated and plotted as a 

precision-recall curve of which the area under the curve (AUC) was used as the fitness function.  

 

The other parameters for the GA were as follows. A population of 1000, number of generations 100, 

number of elites 5, i.e., 5 chromosomes were kept in every step, mutation probability of 0.1 – we just 

allowed the turning off of ROIs as mutation because our aim was to decrease the number of ROIs, 
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which were different between the groups. We tested all four possible combinations: healthy versus 

patients, healthy versus MCS, healthy versus UWS and MCS versus UWS. 

 

Finally, we checked whether the performance of the classifier improved when choosing just the eleven 

most important ROIs for classification. We averaged over 100 train-test splits with a ratio of 0.33. 

Such a fraction means that an amount of 0.33 of the whole sample set is kept for testing and the rest 

is used for training (Wutzl et al., in prep.). 

 

5.6.5. Results found by the combination of GA and SVC 

 

Figure 38 shows one run of the GA when testing healthy subjects versus scDOC patients. The 

presented run found as the best solution the ROIs [7,14,33,71,110,123], i.e., (see Table 16) middle 

frontal gyrus right, precentral gyrus left, postcentral gyrus right, temporal fusiform cortex, posterior 

division left, cerebellum crus 2 right, and cerebellum 10 left. When considering just these selected 

ROIs for the SVC, a fitness (AUC of precision and recall curve) of one was obtained. The fitness rose 

to this value from an initial (randomly chosen ROIs) value of 0.85. However, one has to keep in mind 

that this is just one exemplary run and that different runs find different ROIs as best solutions. Hence, 

the algorithm was performed 1000 times to find the ROIs that are most often in the best fit solution.  

 

Figure 38: One exemplary run of the GA for heathy versus patients. Considering the color-coded 

matrix on the left-hand side, the yellow dots represent ones, i.e., those are the chosen ROIs. The x-

axis shows the ROIs and the y-axis shows the population of the 100th generation.  The upper figure 

on the right-hand side, shows the chosen ROIs (yellow dots) from the solution with the best fitness 

of each generation. This run ends with a solution, which has 6 ROIs, i.e., the ROIs 

[7,14,33,71,110,123]. The lower figure on the right-hand side represents the development of the 

best fitness of the population. Here it starts at an initial fitness value, i.e. the AUC of the precision 

and recall curve, of around 0.85 and ends at a fitness value of 1. (Wutzl et al., in prep.)  
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Considering the classification of healthy subjects versus scDOC patients we found that the ROI which 

was most often in the best fit solution was the postcentral gyrus right. This was also the most 

prominent one for the classification between healthy subjects versus MCS patients. The superior 

temporal gyrus posterior division right was the second most important one when distinguishing 

healthy subjects from patients and the postcentral gyrus left was the third most prominent one. When 

analyzing healthy subjects versus MCS, the insular cortex left and the postcentral gyrus left were the 

second and third most important ROIs. Turning to the third group (healthy versus UWS), the most 

important ROI was the superior temporal gyrus posterior division right. This ROI was also the second 

most prominent one when comparing healthy subjects versus scDOC patients. Caudate right and 

Vermis 3 were the second and third most important ROIs. Vermis 3 was also found to be essential 

when comparing healthy subjects and scDOC patients. Considering the comparison of MCS and 

UWS patients, we found the inferior temporal gyrus temporooccipital part left to be most crucial, the 

caudate left to be the second most important, and accumbens right to be the third most influential 

ROI. These did not show that much importance in any of the other separations. Nevertheless, we also 

found caudate right, inferior temporal gyrus anterior division left and temporal occipital fusiform 

cortex left to be significant when distinguishing healthy subjects and UWS patients, or UWS and 

MCS patients.    

 

 A histogram of all 1000 runs and their most important ROIs can be found in Figure 39 to Figure 42 

showing all four combinations, namely Figure 39 shows healthy controls versus patients, Figure 40 

healthy controls versus MCS patients, Figure 41 healthy controls versus UWS patients, and Figure 

42 MCS versus UWS patients. The x-axis of all these histograms gives the number of the ROI in the 

CONN atlas (see Table 16 for the corresponding names) and the y-axis gives the frequency, i.e., how 

often this ROI was chosen to be in the best solution by the GA. Considering Figure 40, one finds that 

one ROI, namely postcentral gyrus right, is of special interest because its frequency bar towers 

significantly over the bars of the rest of the other ROIs. Looking at the other three histograms (Figure 

39, Figure 41, and Figure 42) one also sees ROI bars that are higher than the others but those are not 

as pronounced as this one. A summary of the eleven most pronounced ROIs and their frequency can 

be found in Table 12 and Table 13.  
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Figure 39: Frequency of the different ROIs when comparing healthy subjects to patients (MCS and 

UWS patients together). The x-axis gives the number of the ROI in the CONN atlas and the y-axis 

gives the frequency, i.e., how often the GA found this ROI to be part of the best solution when 

running 1000 times. (Wutzl et al., in prep.) 

 

 

 

Figure 40: Frequency of the different ROIs when comparing healthy subjects to MCS patients. The 

x-axis gives the number of the ROI in the CONN atlas and the y-axis gives the frequency, i.e., how 

often the GA found this ROI to be part of the best solution when running 1000 times.  

(Wutzl et al., in prep.) 
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Figure 41: Frequency of the different ROIs when comparing healthy subjects to UWS patients. The 

x-axis gives the number of the ROI in the CONN atlas and the y-axis gives the frequency, i.e., how 

often the GA found this ROI to be part of the best solution when running 1000 times. 

(Wutzl et al., in prep.) 

 

 

Figure 42: Frequency of the different ROIs when comparing MCS patients to UWS patients. The x-

axis gives the number of the ROI in the CONN atlas and the y-axis gives the frequency, i.e., how 

often the GA found this ROI to be part of the best solution when running 1000 times.  

(Wutzl et al., in prep.) 
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Table 12: The eleven most pronounced ROIs (name: ROI, number in CONN atlas: Nr. and 

frequency: #), according to the GA, when comparing healthy subjects versus patients and healthy 

subjects versus MCS patients are shown in this table. Bold-marked ROIs show up more than once in 

this table or Table 13. (Wutzl et al., in prep.) 

Healthy vs patients Healthy vs MCS 

ROI Nr.   # ROI Nr.  # 

Postcentral Gyrus Right 33 253 Postcentral Gyrus Right 33 367 

Superior Temporal Gyrus, 

posterior division Right 

19 234 Insular Cortex Left 4 212 

Postcentral Gyrus Left 34 189 Postcentral Gyrus Left 34 142 

Precentral Gyrus Left 14 182 Middle Frontal Gyrus Left 8 138 

Superior Parietal Lobule Left 36 167 Cerebelum 3 Left 111 128 

Temporal Pole Right 15 166 Caudate Left 95 118 

Parahippocampal Gyrus, posterior 

division Right 

64 161 Hippocampus Right 100 111 

Parahippocampal Gyrus, posterior 

division Left 

65 161 Frontal Operculum Cortex Left 77 109 

Inferior Frontal Gyrus, pars 

triangularis Right 

9 160 Temporal Fusiform Cortex, 

anterior division Left 

69 100 

Precentral Gyrus Right 13 119 Inferior Frontal Gyrus, pars 

opercularis Right 

11 99 

Vermis 3 126 119 Occipital Fusiform Gyrus Right 74 99 

 

Table 13: The eleven most pronounced ROIs (name: ROI, number in CONN atlas: Nr. and 

frequency: #), according to the GA, when comparing healthy subjects versus UWS patients and 

MCS versus UWS patients are shown in this table. Bold-marked ROIs show up more than once in 

this table or Table 12 . (Wutzl et al., in prep.) 

Healthy vs UWS MCS vs UWS 

ROI Nr.   # ROI Nr.  # 

Superior Temporal Gyrus, 

posterior division Right 

19 211 Inferior Temporal Gyrus, 

temporooccipital part Left 

32 231 

Caudate Right 94 102 Caudate Left 95 185 

Vermis 3 126 179 Accumbens Right 104 182 

Vermis 9 131 160 Caudate Right 94 173 

Temporal Pole Right 15 153 Lateral Occipital Cortex, superior 

division Left 

44 136 

Inferior Temporal Gyrus, 

anterior division Left 

28 151 Inferior Temporal Gyrus, 

anterior division Left 

28 131 

Parahippocampal Gyrus, 

posterior division Left 

65 150 Angular Gyrus Right 41 128 

Superior Parietal Lobule Left 36 145 Frontal Orbital Cortex Left 61 119 

Cerebelum 10 Left 123 139 Supramarginal Gyrus, posterior 

division Right 

39 116 

Cerebelum Crus1 Right 108 1036 Temporal Occipital Fusiform 

Cortex Left 

73 115 

Temporal Occipital Fusiform 

Cortex Left 

73 129 Superior Temporal Gyrus, 

anterior division Left 

18 110 
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The last step was comparing the performance of the classifier when eliminating all but the eleven 

most important ROIs for classification. Table 14 shows the accuracy and AUC of the precision and 

recall curve. These values were averaged over 100 train-test splits with a fraction of 0.33. We found 

that all the values increased for all the four combinations when comparing the initial value to the one 

found when just using the eleven ROIs that are most often in the best fit solution (Wutzl et al., in 

prep.). 

Table 14: The table shows the accuracy and AUC of the precision and recall curve, when just using 

the eleven most important ROIs (Accuracy_11 and AUC_11) as well as for all 132 ROIs 

(Accuracy_132 and AUC_132) for the classification. The values are averaged over 100 runs using 

a train-test split with a fraction of 0.33. (Wutzl et al., in prep.) 

 

 Healthy vs patient Healthy vs MCS Healthy vs UWS MCS vs UWS 

Accuracy_11 0.7096 0.7612 0.7880 0.7388 

Accuracy_132 0.5163 0.4812 0.3645 0.5876 

AUC_11 0.8239 0.7950 0.8871 0.8628 

AUC_132 0.5018 0.3886 0.4116 0.6159 

 

 

5.6.6. Discussion of the approach to combine GA and SVC for scDOC patients 

 

The first finding is that the algorithm works and that it is applicable to patients with scDOC. The fact 

that some ROIs occur more often, namely for different comparisons, shows that the algorithm is 

consistent. Choosing the approach of feature selection gave us directly ROIs that are important for 

the classification and thus, do have different correlations with the rest of the ROIs, when comparing 

different groups. 

 

Using the 11 most important features for the classification, the SVC gives better results than when 

using all of the ROIs. This shows that it is indeed better to use just a fraction of all the ROIs and that 

there are a lot of ROIs that just contribute noise and are not useful for the classification. Nearly all 

the values for 132 ROIs (see Table 14) are close to random, whereas using just the 11 most prominent 

ones give statistically significant results for the separation.  

 

According to our findings the postcentral gyrus right seems to play an important role in MCS patients. 

Its frequency is highest when looking at the comparison of healthy controls versus patients and also 

it is especially pronounced in the case of healthy controls versus MCS. On the other hand, turning to 

UWS patients we find that the superior temporal gyrus, posterior division right is important because 

it has the highest frequency when comparing healthy controls and UWS patients and also is the second 

most important ROI for the comparison of healthy controls and patients. The distinction of MCS 
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versus UWS shows quite different results and only shows three ROIs that are also important in other 

comparisons, namely, healthy subjects versus UWS patients, but no same ROI to the comparison of 

healthy versus patients. Hence, we conclude that the separation of healthy versus scDOC patients is 

fundamentally different from the one of MCS and UWS patients. This sounds quite reasonable 

because there is a big gap between healthy and patients whereas the distinction between scDOC 

patients is quite difficult. Even though we concentrated here on finding the most important ROIs, it 

is not that easy. Often correlations of ROIs or even networks are altered in the different patient groups, 

for example Huntington’s or Parkinson’s disease (Göttlich et al., 2013; Werner et al., 2014).  

 

This approach seems to be a promising tool in the field of neuroscience. Nevertheless, it has its 

limitations. The brainstem and the cerebellar anatomical regions are missing in the important ROIs. 

Brainstem lesions seem to play an important role in scDOC (Kampfl et al., 1998; Paterakis et al., 

2000; Fischer et al., 2016). The fact, that these ROIs are missing among those found in the best fit 

solution, might be due to the way the atlas assigns the ROI regions. Thus, also other atlases have to 

be used in order to confirm our results. Furthermore, it would be interesting to analyze MCS+ versus 

MCS- patients as well as LIS and LIPS, because these have especially high misdiagnosis rate (see 

Section 3).  In the future, the combination of GA and SVC shall also be applied to other neurological 

diseases, especially dementia, where specially supratentorial features can distinguish different 

pathological entities, e.g., in early stages of dementia or other neurogenerative diseases, Multiple 

Sclerosis, brain tumor, or cognitive and psychiatric disorders (Wutzl et al., in prep.). 

 

5.6.7. Summary of the approach to combine GA and SVC for scDOC patients 

 

We investigated scDOC patients and wanted to know which ones are the ROIs that show the biggest 

difference between the patient groups and healthy subjects. For this we used a combination of two 

approaches, namely GA and SVC, both being two well-established methods in data science. 

Nevertheless, we were the first, to our best knowledge, to use this combination for patients with 

scDOC. Several repetitions of the GA found different ROIs in each run to be important. The fact that 

we find different results each time lies in the nature of the GA. Hence, we ran the algorithm 1000 

times and checked the ROIs that showed up most often. We looked at the eleven most prominent 

ROIs for each comparison, i.e., healthy controls versus scDOC patients, healthy controls versus MCS 

patients, healthy controls versus UWS patients, and MCS versus UWS patients. The results show that 

the algorithm is applicable to this patient group and found important ROIs for the separation. In the 

future, we hope that this algorithm can also help to investigate other neurological diseases.  
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6. Conclusion 

 

Since the diagnosis of scDOC patients is still very challenging, a lot of misdiagnosis is made. This 

thesis tries to contribute to the understanding of these disorders and introduces new techniques, 

focusing on fMRI, that may help in the diagnosis of these patients.  

 

After an introduction to fMRI as well as to scDOC, the first thing we showed was that a special task 

fMRI is possible for scDOC patients under anesthesia. This special task consisted of stimulating the 

patient on his extremities using a brush. This paradigm had shown robustness before, which is why 

we chose it for our experiments with anesthesia. Our results demonstrate for the first time, as far as 

we know, that this task fMRI is suitable for an investigation of an MCS patient as well as a patient in 

the final state of CJD. Before our experiment it was not even clear whether an fMRI would show 

results when anesthetizing a patient with scDOC. Moreover, it was believed that patients in the final 

stage of CJD are in the AS and do not activate the cerebral cortex anymore. We could report, as a 

novel result, that this was not true.  

 

Then we turned to the analysis of resting state fMRI of patients with scDOC. In the first part we used 

a special connectivity software which revealed differences when comparing scDOC patients to 

healthy controls as well as one of the subgroups, i.e., MCS or UWS patients, to healthy controls. 

However, we did not find any differences between the connectivity of MCS and UWS patients. The 

fact that we detected significant differences between the other comparisons, shows that the 

connectivity of these patients and healthy controls is not the same. Nonetheless, we did not find any 

results between MCS and UWS patients which might be due to the diversity of the disorders, making 

it difficult to find statistically significant differences between the subgroups of scDOC.  

 

The next part dealt with the approach of multislice modularity. This method was applied for the first 

time, to our best knowledge, to the data of scDOC patients. Moreover, a new classifier was introduced. 

We used this approach to first find different module assignments in the three classes of healthy 

controls, MCS, and UWS patients. When comparing healthy subjects to either group of scDOC 

patients we found many different module assignments, which made us conclude that the brains of 

healthy subjects and those of patients are very different when it comes to modules. On the other hand, 

when considering UWS versus MCS patients we found seven different module assignments. The fact 

that there are such little significant differences is due to the manifold disease patterns of scDOC. 

Hence, these results are even more important because, despite the different causes of the disorders, 



114 

 

similarities were found. Then we turned to the new classifier which was based on this multislice 

modularity calculation. This new classifier was able to distinguish healthy subjects and patients with 

scDOC very well but had problems when it came to the separation of UWS and MCS patients. Hence, 

we modified the classifier to just take the ROIs, which turned out to be important in the modularity 

assignment part. This allowed us to find a classifier that was statistically better than random when 

classifying MCS versus UWS patients and thus, could assist physicians in their decision making when 

diagnosing these patients.  

 

The last part deals with a combination of GA and SVC which is a well-established composition but 

has never, as far as we know, been used for feature selection of this patient group. We truncated the 

correlation matrix in a special way so that we just include some preselected ROIs. Thus, were able to 

find those ROIs that are most different when comparing the patient groups as well as healthy controls.  

 

The work presented contributes to the literature in the way that it shows for the first time that scDOC 

patients can be anesthetized for their fMRI investigation, at least for such a robust task fMRI. This 

finding will make it a lot easier for physicians in the future because this patient group does not tolerate 

fMRI examinations very well and it would be a lot more comfortable for the patients if they were 

anesthetized. Nonetheless, different tasks and also resting state fMRI should be tested in the future so 

that maybe the whole fMRI examination can be done under anesthesia and not only a somatosensory 

paradigm. Moreover, our technique gave the novel insight that the diagnosis of AS is not appropriate 

for patients in the final stage of CJD.  

 

The new analysis method for resting state fMRI using the multislice modularity approach of Mucha 

et al. (Mucha et al., 2010) leads to a classifier that is better than random when classifying the different 

disorders. Hence, it could assist the physician in determining diagnoses. It is of special interest 

because the classifier just uses resting state fMRI and as such is not prone to misdiagnoses relying on 

behavioral testing.  However, the results of the classifier have room for improvement. The weak spots 

are, on the one hand, the misdiagnosis rate of MCS and UWS patients that we had to include, in lack 

of another option, as ground truth and, on the other hand, our sample size was not very large. It was 

large enough for finding results, but a more reliable result needs a larger sample size. Furthermore, 

we hypothesize, that our method is suitable for other brain disorders and would give even better 

results when classifying a disease with a lower misdiagnosis rate for the training set.   

 

The GA and SVC approach is also suitable for other diseases, especially for those whose damage is 

located to a single brain areas. This is of course not proven yet and is something that should be done 
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in the future. Perhaps, the combination of GA and SVC, as well as the multlislice technique can help 

to understand even more brain diseases. 
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7. Supplemental material 

Table 15: Overview of the patients included in the study. The table gives the number of the subject, 

UWS indicating UWS patients, MCS indicating MCS patients and missing indicates a missing 

diagnosis for UWS or MCS but the patient had scDOC. Moreover, the age, sex, time since onset, the 

etiology and the used scanner are listed. (Wutzl et al., in prep., in prep.b) 

 

subject age [yr] sex time since 

onset [d] 

etiology scanner 

UWS1 45 F 64 traumatic brain injury 3 T Philips 

UWS2 45 M 635 cardiopulmonary resuscitation 3 T Philips 

UWS3 50 M 204 cardiopulmonary resuscitation 3 T Philips 

UWS4 69 M 58 cardiopulmonary resuscitation 3 T Philips 

UWS5 39 F 73 respiratory failure 3 T Philips 

UWS6 47 M 65 cardiopulmonary resuscitation 3 T Philips 

UWS7 45 M 182 traumatic brain injury 3 T Philips 

UWS8 29 F 104 basilar thrombosis 3 T Philips 

UWS9 78 M 39 cardiopulmonary resuscitation 3 T Philips 

UWS10 47 F 51 Multiple ischemic infarct 3 T Philips 

UWS11 63 M 16 subarachnoid hemorrhage  3 T Philips 

UWS12 51 M 30 cardiopulmonary resuscitation 3 T Philips 

UWS13 50 M 165 Ischemic brainstem infarct  3 T Siemens 

UWS14 51 F 1474 cardiopulmonary resuscitation 3 T Siemens 

UWS15 38 F 78 subarachnoid hemorrhage 3 T Siemens 

UWS16 55 F 121 cardiopulmonary resuscitation 3 T Siemens 

UWS17 61 M 116 traumatic brain injury 3 T Siemens 

UWS18 26 M 124 traumatic brain injury 3 T Siemens 

UWS19 55 M 47 metabolic encephalopathy 3 T Siemens 

UWS20 54 M 70 cardiopulmonary resuscitation 3 T Siemens 

UWS21 59 M 20 traumatic brain injury 3 T Siemens 

UWS22 55 M 182 cardiopulmonary resuscitation 3 T Siemens 

UWS23 73 M 59 traumatic brain injury  3 T Siemens 

UWS24 43 M 68 cardiopulmonary resuscitation 3 T Siemens 

UWS25 52 M 611 venous sinus thrombosis  3 T Siemens 
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UWS26 82 M 27 cardiopulmonary resuscitation 3 T Siemens 

UWS27 68 M 43 cardiopulmonary resuscitation 3 T Siemens 

UWS28 30 M 502 traumatic brain injury 3T Siemens 

UWS29 18 M 569 hyperthermia 3 T Siemens 

UWS30 18 M 41 encephalopathy  3 T Siemens  

UWS31 17 M 94 encephalopathy  3 T Siemens 

UWS32 33 M 80 encephalopathy 3 T Siemens 

UWS33 48 F missing intracerebral hemorrhage 3 T Siemens 

UWS34 66 M 60 traumatic brain injury 3 T Siemens 

MCS1 40 M 1887 traumatic brain injury  3 T Philips 

MCS2 54 F 640 subarachnoid hemorrhage 3 T Philips 

MCS3 51 M 102 intracerebral hemorrhage 3 T Philips 

MCS4 37 M 67 respiratory failure  3 T Philips 

MCS5 47 M 49 PICA infarct 3 T Philips 

MCS6 47 M 52 traumatic brain injury 3 T Siemens 

MCS7 34 M 51 traumatic brain injury 3 T Siemens 

MCS8 54 F 74 subarachnoid hemorrhage 3 T Siemens 

MCS9 46 M 34 multiple cerebral infarct  3 T Siemens  

MCS10 65 M 85 intracerebral hemorrhage  3 T Siemens 

MCS11 31 M 66 traumatic brain injury 3 T Siemens 

MCS12 52 M 146 subarachnoid hemorrhage 3 T Siemens 

MCS13 71 F 355 subarachnoid hemorrhage  3 T Siemens 

MCS14 66 F 224 intracerebral hemorrhage 3 T Siemens 

MCS15 53 F 100 subarachnoid hemorrhage 3 T Siemens 

MCS16 41 F 40 cardiopulmonary resuscitation 3 T Siemens 

MCS17 71 F 70 cardiopulmonary resuscitation 3 T Siemens 

MCS18 43 M 75 traumatic brain injury 3 T Siemens 

MCS19 32 F 37 encephalitis 3 T Siemens 

MCS20 33 M 91 encephalitis  3 T Siemens 

MCS21 85 M 66 subarachnoid hemorrhage 3 T Siemens 

MCS22 18 M 937 traumatic brain injury  3 T Siemens  

Missing1 20 M missing missing 3 T Siemens  

Missing2 19 M missing missing 3 T Siemens 
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Table 16: Table of all the ROIs of the CONN atlas (Whitfield-Gabrieli and Nieto-Castanon, 2012) 

Number 

of ROI 

Region Number 

of ROI 

Region  

1 Frontal Pole Right 67 Lingual Gyrus Left 

2 Frontal Pole Left 68 Temporal Fusiform Cortex, 

anterior division Right 

3 Insular Cortex Right 69 Temporal Fusiform Cortex, 

anterior division Left 

4 Insular Cortex Left 70 Temporal Fusiform Cortex, 

posterior division Right 

5 Superior Frontal Gyrus Right 71 Temporal Fusiform Cortex, 

posterior division Left 

6 Superior Frontal Gyrus Left 72 Temporal Occipital Fusiform 

Cortex Right 

7 Middle Frontal Gyrus Right 73 Temporal Occipital Fusiform 

Cortex Left 

8 Middle Frontal Gyrus Left 74 Occipital Fusiform Gyrus Right 

9 Inferior Frontal Gyrus, pars 

triangularis Right 

75 Occipital Fusiform Gyrus Left 

10 Inferior Frontal Gyrus, pars 

triangularis Left 

76 Frontal Operculum Cortex Right 

11 Inferior Frontal Gyrus, pars 

opercularis Right 

77 Frontal Operculum Cortex Left 

12 Inferior Frontal Gyrus, pars 

opercularis Left 

78 Central Opercular Cortex Right 

13 Precentral Gyrus Right 79 Central Opercular Cortex Left 

14 Precentral Gyrus Left 80 Parietal Operculum Cortex Right 

15 Temporal Pole Right 81 Parietal Operculum Cortex Left 

16 Temporal Pole Left 82 Planum Polare Right 

17 Superior Temporal Gyrus, anterior 

division Right 

83 Planum Polare Left 

18 Superior Temporal Gyrus, anterior 

division Left 

84 Heschl's Gyrus Right 

19 Superior Temporal Gyrus, posterior 

division Right 

85 Heschl's Gyrus Left 

20 Superior Temporal Gyrus, posterior 

division Left 

86 Planum Temporale Right 

21 Middle Temporal Gyrus, anterior 

division Right 

87 Planum Temporale Left 

22 Middle Temporal Gyrus, anterior 

division Left 

88 Supracalcarine Cortex Right 

23 Middle Temporal Gyrus, posterior 

division Right 

89 Supracalcarine Cortex Left 

24 Middle Temporal Gyrus, posterior 

division Left 

90 Occipital Pole Right 

25 Middle Temporal Gyrus, 

temporooccipital part Right 

91 Occipital Pole Left 

26 Middle Temporal Gyrus, 

temporooccipital part Left 

92 Thalamus Right 

27 Inferior Temporal Gyrus, anterior 93 Thalamus Left 
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division Right 

28 Inferior Temporal Gyrus, anterior 

division Left 

94 Caudate Right 

29 Inferior Temporal Gyrus, posterior 

division Right 

95 Caudate Left 

30 Inferior Temporal Gyrus, posterior 

division Left 

96 Putamen Right 

31 Inferior Temporal Gyrus, 

temporooccipital part Right 

97 Putamen Left  

32 Inferior Temporal Gyrus, 

temporooccipital part Left 

98 Pallidum Right 

33 Postcentral Gyrus Right 99 Pallidum Left 

34 Postcentral Gyrus Left 100 Hippocampus Right 

35 Superior Parietal Lobule Right 101 Hippocampus Left 

36 Superior Parietal Lobule Left 102 Amygdala Right 

37 Supramarginal Gyrus, anterior 

division Right 

103 Amygdala Left  

38 Supramarginal Gyrus, anterior 

division Left 

104 Accumbens Right 

39 Supramarginal Gyrus, posterior 

division Right 

105 Accumbens Left 

40 Supramarginal Gyrus, posterior 

division Left 

106 Brain-Stem 

41 Angular Gyrus Right 107 Cerebelum Crus1 Left 

42 Angular Gyrus Left 108 Cerebelum Crus1 Right 

43 Lateral Occipital Cortex, superior 

division Right 

109 Cerebelum Crus2 Left 

44 Lateral Occipital Cortex, superior 

division Left 

110 Cerebelum Crus2 Right 

45 Lateral Occipital Cortex, inferior 

division Right 

111 Cerebelum 3 Left 

46 Lateral Occipital Cortex, inferior 

division Left 

112 Cerebelum 3 Right 

47 Intracalcarine Cortex Right 113 Cerebelum 4 5 Left 

48 Intracalcarine Cortex Left 114 Cerebelum 4 5 Right 

49 Frontal Medial Cortex 115 Cerebelum 6 Left 

50 Juxtapositional Lobule Cortex -

formerly Supplementary Motor 

Cortex- Right 

116 Cerebelum 6 Right 

51 Juxtapositional Lobule Cortex -

formerly Supplementary Motor 

Cortex- Left 

117 Cerebelum 7b Left 

52 Subcallosal Cortex 118 Cerebelum 7b Right 

53 Paracingulate Gyrus Right 119 Cerebelum 8 Left 

54 Paracingulate Gyrus Left 120 Cerebelum 8 Right 

55 Cingulate Gyrus, anterior division 121 Cerebelum 9 Left 

56 Cingulate Gyrus, posterior division 122 Cerebelum 9 Right 

57 Precuneous Cortex 123 Cerebelum 10 Left 

58 Cuneal Cortex Right 124 Cerebelum 10 Right 

59 Cuneal Cortex Left 125 Vermis 1 2 

60 Frontal Orbital Cortex Right 126 Vermis 3 
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61 Frontal Orbital Cortex Left 127 Vermis 4 5 

62 Parahippocampal Gyrus, anterior 

division Right 

128 Vermis 6 

63 Parahippocampal Gyrus, anterior 

division Left 

129 Vermis 7 

64 Parahippocampal Gyrus, posterior 

division Right 

130 Vermis 8 

65 Parahippocampal Gyrus, posterior 

division Left 

131 Vermis 9 

66 Lingual Gyrus Right 132 Vermis 10 

 

 

 

Table 17: Number of average modules of the Gen Louvain algorithm with a repetition of 10 and the 

total number of 29 UWS patient varying γ from 0.25 to 4.0 with an increment of 0.25 and ω from 0.1 

to 1.0. 

γ  ω 0.1 0.2 0.4 0.6 0.8 1.0 

0.25 1.0 1.0 1.0 1.0 1.0 1.0 

0.5 1.4 1.0 1.0 1.0 1.0 1.0 

0.75 3.7 2.0 2.0 2.0 2.0 2.0 

1.0 5.4 3.6 4.3 4.3 4.5 4.3 

1.25 7.2 6.1 6.4 6.6 6.7 6.7 

1.5 9.2 7.8 9.3 9.2 9.3 9.9 

1.75 11.1 9.6 11.3 11.0 11.1 11.3 

2.0 13.2 12.3 13.5 14.0 13.9 12.9 

2.25 16.6 15.8 17.2 18.1 17.9 17.7 

2.5 19.6 19.9 21.5 21.4 21.3 21.9 

2.75 23.2 24.1 24.6 24.4 24.0 24.6 

3.0 28.4 28.8 28.8 29.3 29.3 29.1 

3.25 33.1 32.0 32.0 33.2 33.4 32.7 

3.5 40.1 37.8 37.8 36.8 37.4 37.6 

3.75 44.3 42.2 42.6 42.3 41.8 42.0 

4.0 49.2 45.9 45.8 45.5 45.2 45.9 
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Table 18: Number of average modules of the Gen Louvain algorithm with a repetition of 10 and the 

total number of 20 MCS  patient varying γ from 0.25 to 4.0 with an increment of 0.25 and ω from 

0.1 to 1.0. 

γ   ω 0.1 0.2 0.4 0.6 0.8 1.0 

0.25 1.2 1.0 1.0 1.0 1.0 1.0 

0.5 2.0 1.2 1.0 1.0 1.0 1.0 

0.75 4.0 2.3 2.0 2.0 2.0 2.0 

1.0 5.5 4.4 3.4 3.8 3.9 3.9 

1.25 8.2 6.4 6.1 5.9 6.1 6.0 

1.5 10.8 9.0 10.1 10.3 10.5 10.3 

1.75 13.8 11.4 13.1 13.3 12.7 12.9 

2.0 17.0 14.5 16.5 15.8 15.6 15.9 

2.25 20.0 17.9 20.1 19.1 18.9 20.1 

2.5 22.9 21.2 24.2 24.7 23.4 23.9 

2.75 27.0 26.4 30.2 29.8 28.6 29.1 

3.0 31.4 31.2 33.7 33.7 33.1 32.5 

3.25 35.3 37.1 38.4 38.9 38.4 37.9 

3.5 40.0 42.7 45.4 45.1 43.9 43.4 

3.75 44.7 48.2 50.9 51.6 50.2 49.7 

4.0 49.9 56.0 57.4 56.8 56.3 58.6 
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Table 19: Number of average modules of the Gen Louvain algorithm with a repetition of 10 and the 

total number of 30 healthy controls varying γ from 0.25 to 4.0 with an increment of 0.25 and ω from 

0.1 to 1.0. 

γ   ω 0.1 0.2 0.4 0.6 0.8 1.0 

0.25 1.0 1.0 1.0 1.0 1.0 1.0 

0.5 2.2 1.0 1.4 1.4 1.9 1.7 

0.75 3.8 2.8 3.0 3.0 3.0 3.0 

1.0 5.1 4.4 4.1 4.7 4.3 4.6 

1.25 6.7 5.7 6.3 6.2 6.3 6.3 

1.5 8.2 7.1 8.4 7.7 7.6 8.1 

1.75 10.0 8.2 10.5 10.2 9.9 10.1 

2.0 12.3 10.7 12.3 12.2 12.4 12.6 

2.25 14.1 12.3 14.4 14.2 14.2 14.3 

2.5 17.1 14.8 16.9 16.3 15.8 16.4 

2.75 20.0 18.0 18.5 18.4 18.5 18.4 

3.0 23.6 20.6 20.0 20.3 20.4 20.0 

3.25 27.0 22.1 21.6 21.8 20.8 21.8 

3.5 32.7 26.3 25.9 26.0 25.6 25.8 

3.75 36.2 29.2 29.0 29.8 30.0 28.8 

4.0 41.8 35.4 35.9 35.7 36.2 36.7 
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The 4th CiNet Conference 

• Comparison of brain resting state networks from different imaging modalities, Wutzl B, 

Leibnitz L; poster, 26.-27.2.2018 

 

EAN 2017 (3rd Congress of the European Academy of Neurology) 

• Promising and highly diagnostic fMRI paradigms for classifying the level of consciousness 

of patients with severe chronic disorders of consciousness, Wutzl B, Florea C, Schwenker K, 

Rattay F, Trinka E, Gerstenbrand F, Golaszewski SM; oral presentation 25.06.2017 

• Cortical afferent inhibition reflects cognitive impairment in obstructive sleep apnea 

syndrome: a TMS study, Golaszewski SM, Kunz AB, Schwenker K, Wutzl B, Seidl M, 

Brigo F, Höller Y, Florea C, Trinka E, Nardone R; poster 24.-27.06.2017 

 
EAN 2016 (2nd Congress of the European Academy of Neurology) 

• The role of functional MRI in the diagnosis and prognosis of patients with severe chronic 

disorders of consciousness, Wutzl B, Florea C, Seidl M, Kunz AB, Schwenker K, Nardone 

R, Trinka E, Gerstenbrand F, Golaszewski S; oral presentation, 29.05.2016 

• Whole-hand electrical stimulation in stroke patients in the subacute stage, Schwenker K., 

Christova M, Wutzl B, Bartsch H, Nardone R, Gallasch E, Rafolt D, Gerstenbrand F, Trinka 

E, Golaszewski S; oral presentation, 29.05.2016 

• Long-Term Coma State and the Bedrest Syndrom, Golaszewski S, Wutzl B, Florea C, Kunz 

AB, Seidl M, Schwenker K, Nardone R, Trinka E, Gerstenbrand F; poster, 30.05.2016 

• The Locked-In-Plus-Syndrome, Golaszewski S, Florea C, Wutzl B, Seidl M, Kunz AB, 

Schwenker K, Nardone R, Trinka E, Gerstenbrand F; poster, 30.05.2016 

  

ÖGN 2016 (13. Jahrestagung der Österreichischen Gesellschaft für Neurologie) 

• Long-Term Coma State and the Bedrest Syndrom, Golaszewski SM, Florea C, Wutzl B, 

Schwenker K, Kunz A; poster, 16.-18.03.2016 

 

SCI-TReCS Summit 2015 (Spinal Cord and Injury Tissue Regeneration Center Salzburg Summit) 

• Stimulation of the proprioceptive System in SCI patients, Golaszewski SM, Wutzl B, 

Schwenker K, Kunz AB, Seidl M, Florea C, Leis S, Trinka E, Gerstenbrand F; poster, 

05.11.2015 

 

WRAP 2013 (Workshop on Recent Advances in Photonics, IEEE) 

• Dynamics of Photorefractive Similaritons, Wutzl B, Soloman Raju T; paper, 17.-18.12.2013 

 

Prize 

Runner-up prize: EAN Tournament “Basic Neurology”, European Academy of Neurology, 2017 
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Programming Skills 
• LaTeX 

• MATLAB (including SPM, CONN) 

• python 

• Maple (basics) 

• R (basics) 

• C (basics) 

 

 

Language Skills 
• German (native) 

• English (fluent) 

• Spanish (fluent) 

• Italian (basic) 

• Japanese (basic) 

• French (basic) 

• Latin 

 


