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Abstract

The thesis in hand focuses on a novel numerical simulation method to compute aeroacoustic analogies
based on compressible flow data by a hybrid technique. Industrial applicability of aeroacoustic simulation
technologies is computational demanding. The computational workload is reduced with the hybrid ap-
proach to an efficient minimum. With the proposed workflow we are capable of combining the properties
of a fully resolved compressible flow simulation (including feedback from acoustics to flow structures) and
the desirable advantage of a separated acoustic simulation. A separation of the physical fields during the
simulation yields in a computationally efficient algorithm, which is capable of including relevant physical
effects due to the flow and acoustically specific boundaries, like impedance, can be applied.

In this sense, we extend the hybrid approach from underlying incompressible flow simulations to
compressible flow simulations using Helmholtz projection to obtain a vortical base flow and apply the
known hybrid methodologies. The application of this hybrid methodology seems to be unconventional
and fluid dynamically not rigorous, but with the correct wave operator the equation obeys the fluid
dynamic conservation equations. We apply the method to aeroacoustic examples involving aeroacoustic
feedback mechanisms, which require a compressible flow simulation. However, practical applications show
that sometimes even for incompressible flow simulations "typical feedback mechanism", as described by
Rossiter, are captured. A short mathematical explanation, why feedback is even possible for incompress-
ible flow structures, is given based on compact acoustics.

Hybrid aeroacoustic analogies rely on energy conserving and accurate transformation schemes that
convert the known physical quantities, like pressure, and velocity, form one grid to another. Simple
Nearest Neighbor mappings are not accurate enough for source term computation. Therefore, a combi-
nation of a local Radial Basis Function framework and conservative integration procedure relying on cell
intersections is applied to transform the physical quantities and construct accurate derivatives on them
for a robust simulation workflow.
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Kurzfassung

In dieser Dissertation wird eine neuartige hybride Simulationsmethode zur Berechnung strömungsakustis-
cher Effekte entwickelt. Industrielle Anwendung mit Akustik als Qualitätsmerkmal treiben die Nachfrage
nach effizienten Berechnungsmethoden. Durch den hybriden Ansatz wird der Effizienz Rechnung getra-
gen und der Simulationsaufwand, im Vergleich zu einer direkten Simulation von Strömung und Akustik,
wesentlich reduziert. Zusätzlich kann durch die Trennung eine detailliertere Akustiksimulation samt
spezieller Randbedingungen und Materialverteilungen durchgeführt werden.

Eine wesentliche Herausforderung stellt die Erweiterung von hybriden Ansätzen auf kompressible
Strömungsdaten dar. Aus der Sicht eines Strömungsmechanikers wirft dieser unkonventionelle Work-
flow Fragen auf (besonders im höheren Machzahl-Bereich). Bei speziellen Problemstellungen mit strö-
mungsakustischen Feedback erfordert die Physik eine kompressible Strömungsmodellierung und daher
eine Erweiterung der hybriden Methode. In diesem Sinne wird die Rahmenbedingung (inkompress-
ible Strömungssimulation) der hybriden Methoden auf eine kompressible Strömungsrechnung erweitert.
Die Helmholtz Zerlegung projiziert anschließend die kompressible Lösung auf einen inkompressiblen Lö-
sungsraum. Diese Projektion wird dann in der aeroakustischen Analogie verwendet. Interessanterweise
wird in der Praxis oft auch bei inkompressiblen Strömungssimulationen ein Rossiter-Feedback Mechanis-
mus festgestellt, welcher physikalisch nicht möglich ist.

Die hybride Methode verlangt eine exakte und energieerhaltende Gittertransformation der physikalis-
chen Größen. Ein einfacher Nächster-Nachbar-Algorithmus ist nicht ausreichend. Darum wird eine In-
terpolation mit radialen Basisfunktionen in Kombination mit einer konservativen Integration verwendet.
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Used Symbols

Symbols

A Vector potential
D Cavity depth
Dc Cavity neck correction length
DM Cavity neck length
E Total energy
F Force
Fint Mechanical energy due to an internal force density
H Specific enthalpy, Heaviside distribution
He Helmholtz number
I Momentum
L Characteristic length scale, Cavity length
L Lamb vector
M Mach number
Mbound Work due to shear force on the control volume surface
Pbound Work due to pressured control volume surface
Qint Internal heat production
Qbound Heat exchange over the control volume surface
Rs Specific gas constant (Air: 287.12 J/kgK), can be derived from the universial gas constant R
Re Reynolds number
St Strouhal number
S Cavity neck surface
T Temperature
Tp Time period
U Characteristic flow velocity
V Volume
W Filter function, Cavity width
X Eigenvectors

b Particle distribution function LBM
c Isentropic speed of sound (Air: c0 = 343.4 m/s at p = 101325 Pa and T = 20 ◦C)
cg Group velocity
cph Phase velocity
cp Specific heat at constant pressure (Air: 1006 J/kgK at p = 101325 Pa and p = 20 ◦C)
cph Phase velocity
cV Specific heat at constant volume (Air: 717.8 J/kgK at p = 101325 Pa and p = 20 ◦C)
d Length
e Specific total energy
ei Microscopic velocities of the Lattice Boltzmann method (LBM)
f Frequency, Surface function that describes solid surfaces
f Volume force density
h Specific enthalpy, Smooth transition
k Conductivity of Fourier’s law
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k Wavenumber vector
lv Characteristic vortex length
m Mass
nmesh Number of mesh points
n Normal vector on surface
p Fluid pressure
q Specific heat production
qmass Mass source of the acoustic wave equation
qmom Momentum source of the acoustic wave equation
qT Specific surface heat flux vector
r Radial coordinate
s Specific entropy, Surface area
t Time
u Specific internal energy
u Fluid velocity
v Specific volume
w Specific work, Cavity neck width
x Principal Cartesian coordinate directions (Eulerian), observer coordinate
x′ Source coordinate
z Principal Cartesian coordinate directions

Γ Boundary
Φ Scalar potential APE
Ω Control volume
∂Ω Boundary of the control volume

α Flatness scaling parameter
δ Boundary layer thickness, Delta distribution
δ2 Momentum thickness
ε Mass regularization parameter
λ Wavelength, Eigenvalues
λµ Bulk viscosity
φ Scalar potential, Thermal viscous dissipation
ψ Scalar potential
θ Scalar potential
κ Ratio of the specific heats cp

cV
, isentropic exponent

µ Dynamic viscosity (Air: 18.21µPas at p = 101325 Pa and p = 20 ◦C)
ν Kinematic viscosity (Air: 15.32 µm2

/s at p = 101325 Pa and p = 20 ◦C)
ρ Mass density
ρ1 Hardin and Pope’s density correction
θ General potential
ω Angular frequency
ω Vorticity
ξ Principal Cartesian coordinate directions (Lagrangian)

C Cauchy stress tensor
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E Strain tensor
F General tensor
I Identity tensor
J Jacobi-transformation matrix, Deformation gradient tensor
S Deviatoric stress tensor
T Lighthill tensor

B Homogeneous fluid body, Control volume
F Collision operator of the Boltzmann transport equation

Operators

(?) Temporal mean operator
(?)′ Fluctuation or perturbation operator
?̃ Base component
∆ Laplace operator with respect to the Cartesian coordinate system x

∇ Nabla operator with respect to the Cartesian coordinate system x
d?
dt Substantial, convective, total or material derivative with respect to parameter t
∂?
∂t Partial derivative with respect to parameter t
� d’Alembert operator or generic wave operator
: Scalar product : a : a = aijaji

tr Extracts the sum of diagonal elements, trace
E Operator matrix of the linearized Euler equation

Superscripts

0 Incompressible component
(0) Thermodynamic component
a Acoustic part
c Compressible part
h Harmonic part
ic Incompressible part
no Non radiating part
v Vortical part
∗ Joint function, Modified state

Subscripts

0 Reference state
∞ Far-field state
a Acoustic part
c Convective, advective component, correction
n Numerical
v Vortical part
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Used Acronyms
APE Acoustic perturbation equations
BEM Boundary element method
CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy condition
CAA Computational Aeroacoustic
D Dimensions
DNS Direct simulation of turbulent flows
DSC Direct sound computation
DX Direct simulation of flows and acoustics
EIF Expansion about the incompressible flow
FE Finite Element
FEM Finite Element Method
FW-H Ffowcs Williams and Hawking
IML Infinite mapping layer
LBM Lattice Boltzmann method
LEE Linearized Euler equations
LES Large eddy simulation
LPCE Linearized perturbed compressible equations
PCE Perturbed compressible equations
PCWE Perturbed convective wave equation
PDE Partial differential equations
RANS Reynolds averaged Navier-Stokes equations
RBF Radial basis function
PML Perfectly Matched Layer
RHS Right hand side of a PDE
URANS Unsteady RANS
SBES Stress blended eddy simulation
SNGR Synthetic noise generation
SPL Sound Pressure Level
SST Shear stress transport
STM Synthetic turbulence model
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1 Introduction

Humans experience nature and culture in a flourishing enthusiastic way with their incredible senses.
Singing birds, pounding waves and means of harmony are associated with typical sounds. Music even
connects opposing cultures and expresses emotions. Hearing assists all kinds of species with an audible
360 degree picture of their surrounding, saving them in case of danger. The magnificent human sense
of hearing has a lower limit of audible pressure at pa

0 = 20µPa (reference sound pressure for the sound
pressure level 0 dB) and reaches out to the threshold of pain at around 20 Pa/120 dB. The sound pressure
level (SPL) is commonly used in acoustics, since it describes the wide audible range of the human ear
relatively to the hearing threshold.

In contrast to the passive acoustic organ, the speech organ is the active part transmitting sound.
Humans express and exchange feelings and communicate with it actively. Both organs are valuable for
participative communication and save humans from unexpected hazards. These essential safety and life
quality aspects increase the value of hearing and speaking. The quality of humans’ lives puts special
emphasis on protecting humans by reducing the daily sound and noise level.

Besides the reduction of other types of pollution, modern cities aim to decrease the sound level and
noise exposure of housing and living areas. Therefore, highly sophisticated transportation concepts are
developed in the context of zero emissions. This zero emission target for noise leads to the questions:

”What are sound sources? Where are these sources located?”

Empirical and simulative studies derive aeroacoustic source mechanisms from flow data. This thesis in-
tends to develop computational models for predicting aeroacoustic sound sources arising from engineering
applications. People typically label acoustic radiation due to engineering applications and manufacturing
machinery as distracting noise. In most applications noise develops as a parasitic byproduct, which can
even effect labor productivity [1]. To conclude, parasitic noise effects humans’ health, causes an economic
impact and avoiding noise is an important goal of science.

1.1 Daily experience – Noise and Sound
Noisy environment decreases the effectiveness of means of communication, increases organ disorders,
and reduces social participation. Intensive noise exposure and all changes in noise levels, shape and
quality distract humans’ life. Humans are especially sensitive to a changing environment and they are
alarmed, when the environment changes. A highly noisy environment causes a lack of concentration
and defocuses people from their intention. Additionally, cognitive performance is highly influenced by a
noisy environment. Modern applications (e.g. smartphones) are exploiting this evidence to get humans
attraction, a special ring-tone or other sounds trigger that something amazing is happening right now.
Even the regeneration phase is destructed and elongated by noise. In conclusion humans’ lives and
especially work, studying, and sports are influenced by noise and sound. Sounds to one’s desire will
encourage, whereas noise generally defocuses people.
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Transportation business, industry and urban environments expose humans to an increasing number
(qualitatively and quantitatively) of sound sources at different levels. The engineering discipline ”sound
design” boosts the quality of sound to the passenger’s desire. Noise sources are minimized to prevent
individuals from distortion. Even a medium SPL range in conjunction with a sufficiently long exposure
duration causes hearing disorder. The defect increases with increasing SPL one is exposed to. Luckily, as
other organs, the ear regenerates itself within several days and gains hearing capabilities back. However,
a severe damage is only recovered insufficiently.

In the context of acoustic engineering a tremendous number of acoustic applications are of public
interest. What they all have in common is that an increasing sound quality serves mankind with a
lower audible stress state. This includes medical treatment, industry, transportation and construction
businesses.

• Health care - applications assisting people with hearing and speaking disorders [2].

• Prophylaxis - applications to reduce the noise exposure of people in an active or passive way.

• Transportation business, industry and machinery - due to the highly dynamic, taylorized, and
globalized the need of transportation, industry and machinery is enormous. Thus, the commercially
induced noise shall be minimized to a favorable background noise.

• Building and comfort - applications to increase the comfort of people in their personal housing or
at the office.

In modern transport systems, passengers’ comfort is greatly influenced by noise. The main noise source
can be roughly separated into three main acoustic source generation effects.

• Structural vibrations cause noise emissions from vibrating surfaces of all kind of dynamic structures
(e.g. machinery). A famous representative is hammering of iron or a ringing bell of an old church
tower. This field of scientific research is named vibroacoustic and combines structural dynamics and
acoustics.

• Thermal or combustion noise arises from thermal gradients in a given fluid and fluid expansion.
For example, jet engines radiate combustion noise. Combustion acoustics relates acoustics and
thermodynamics.

• Vorticity and turbulence are generating flow born noise inside the medium. The acoustic waves are
generated by a wide range of flow phenomena including cavities, gaps and compression shocks. The
research filed is called aeroacoustics and is physically described by fluid dynamics.

Figure 1.1 shows typical noise sources of a car with a combustion engine. With increasing trans-
portation speed, the flow induced noise component and its interaction with the other noise generation
mechanisms becomes the most important acoustic source. Vortical, turbulent flow structures radiate
acoustic waves and modify acoustic structures by scattering. If the acoustic wave length coincides with
a geometric mechanical dimension of a car, this lock-on state causes severe acoustic transmission to the
driver’s ear and should be avoided during design.

In the automotive industry, aiming for the age of electrification and lightweight constructions [4], flow
induced noise sources are no longer masked by other noise sources and influence passengers’ comfort,
as well as their safety. These two comfort factors have become a distinctive capability in the premium
automotive segment [5]. The sound design of air-conditioning systems in cars is a special comfort feature
for premium class products. To be specific, a major part of noise level in public transportation is airborne;
imagine a train rushing through the station or flying jets. Often, special mechanisms produce sound at
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Figure 1.1: Noise sources of a vehicle with a combustion engine. Extracted from [3].

discrete frequencies, like a whistle or cavities. Physicists and engineers are interested in a causal relation
of the source and the reaction of these mechanisms. In the last 70 years, numerous acoustic effects have
been studied by different physical models.

1.2 History of aeroacoustic models
The first proposed acoustic analogy by Lighthill [6,7] transforms the compressible Navier-Stokes equation
into an exact inhomogeneous wave equation. Lighthill’s equation describes a general wave equation in
terms of the fluctuating density. In its local form no assumptions are given with respect to the boundaries.
However, Lighthill proposed the solution of the wave equation by using Green’s function of the wave
equation for free field radiation. In doing so, resonators and bodies in the neighborhood of the sources
as well as diffraction, scattering, absorption and reflection by solid boundaries are neglected. Curle [8]
investigated the effects of stationary surfaces in the context of the integral solution of Lighthill’s theory.
Stationary surfaces are equivalent to a surface dipole distribution. Ffowcs Williams and Hawking [9]
extended Kirchhoff’s formula [10] and generalized the integral solution towards accounting for arbitrary
moving bodies in the source domain.

Ribner [11] and Powell [12] based their theories on comparing a slightly compressible flow with an
incompressible flow, where vorticity ω sources dominate. Further investigations on vortex sound were
carried out by Howe [13], Möhring [14], and Doak [15]. Recently, Goldstein [16] proposed his generalized
acoustic analogy, which shows that the Navier-Stokes equations can be rewritten as a set of linearized
Euler equations.

Aeroacoustic analogies compute noise radiation efficiently. However, basic assumptions restrict the
application of these methods, e.g. acoustic compact sources. Acoustic compact sources imply that
the characteristic size of the sources contributing to the acoustics are small compared to the generated
wavelength. Additionally, ambiguity of the acoustic analogies arises since the sources depend on the
solution of the equations.

The direct computation of flow and acoustic solves the compressible Navier-Stokes equations and
gains the united field of flow and acoustics. Compared to acoustic analogies this method is more general
since fewer model assumptions are made, when computing flow and acoustics with a single simulation.
However, the required resources are comparably high in the range of low Mach numbers. In this regime
small vortices develop large acoustic waves, extending the required computational domain. At low Mach
numbers acoustic waves propagate over long distances, requiring a conservative, non-dissipative scheme.
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In general, the acoustic quantities are of orders of magnitude weaker than the fluid dynamic ones. This
method is preferably used in the mid to high Mach number regime. Over the years this method was
extensively used to validate acoustic analogies and calculate applications in jet noise [17]. Today, these
methods are even used in the low Mach number regime. Recently, the Lattice Boltzmann approach gains
popularity in solving the flow and acoustic field directly. The applications of this method in acoustics reach
from airframe noise [18], to acoustic simulations of landing gears [19], and industrial applications [20].

Freund [21] used a wave number decomposition to separate the united field of flow and acoustics.
Goldstein [22] states the desired properties of a filtered flow variable, such that no radiating components
(acoustic) are present. The condition is the dispersion relation of acoustic waves in a quiescent medium.
Two main possibilities are given to realize the filtering. The first one is a local approach applying
the corresponding d’Alembert operator to the filtered variable. The second technique is based on a
convolution that cuts out the acoustic components.

An unresolved issue are exact transparent free field boundary conditions for the Navier-Stokes equa-
tion. The available conditions are categorized in linear characteristic boundary conditions [23–26], and
absorbing layers [24,27]. Furthermore, typical flow boundary conditions mistreat the acoustic reality and
design engineers have to evaluate the significance of the modeling assumptions on the acoustics during
aeroacoustic design. Ideally both common modeling errors are avoided: an inaccurate resolution of the
source mechanism, and an improper boundary treatment.

The third approach for computing aeroacoustics, airs towards a systematic decomposition of the field
properties. The general flow field is decomposed into a fluid dynamic part and an acoustic part. To
derive the linearized Euler equations, the field variables (ρ,u, p) are decomposed in a temporal mean
component (?) and a fluctuating component (?)′. Bailly et al. [28,29] indicate the significant aeroacoustic
source terms on the momentum equation of the linearized Euler equations (LEE). Over the years, the
linearized Euler equation was modified to guarantee that only acoustic is propagated [30]. Ewert and
Schröder [31] proposed a different filtering technique for a uniform flow field. Instead of filtering the
flow field, the source terms of the wave equations are filtered according to the properties of the acoustic
modes, obtained from the LEE.

Ribner [11] formulated his dilatation equation such that the primary fluctuating pressure variable of
Lighthill’s analogy is decomposed in a pseudo pressure and an acoustic pressure part p′ = p0 +pa. Hardin
and Pope [32] formulated their viscous/acoustic splitting technique expansion about the incompressible
flow (EIF), where they introduced a density correction ρ1. The method relies on an incompressible flow
simulation to extract the sources. The perturbed variables converge to the acoustic perturbations in
the far field. In the near field Hardin and Pope stated that the perturbed variables are the difference
between the compressible and the incompressible solution of the flow field. EIF is validated by the
pulsating sphere and the flow over a rectangular cavity. Inconsistency critics arose on the original EIF
formulation [33]. Shen and Sørensen [33, 34] modified this method to account for non-isentropic flows.
Their extension is validated against the pulsating sphere and the circular cylinder. Slimon et al. [35]
proposed an aerodynamic/acoustic splitting method, which is cost-effective and is validated for a non-
compact source regions. This further development of the EIF method is derived systematically via a
Mach number expansion.

As noticed by Seo and Moon [36] the viscous/acoustic formulation neglects near field coupling ef-
fects. Thus, they proposed a different version of perturbation equations named perturbed compressible
equations (PCE) for handling near field coupling effects. This method was applied to human phonation
simulations [37]. At low Mach numbers the sound field is grid dependent. As a consequence, Seo and
Moon [38] reformulated their nonlinear PCE to a grid independent, perturbed vorticity suppressing lin-
ear formulation. At low Mach numbers, the total derivative of the incompressible fluid dynamic pressure
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acts as the dominant source. The dominant source is consistent with the source term in Goldstein’s
generalized acoustic analogy [16] and the acoustic perturbation equations for incompressible flow [31].

Ewert and Schröder [31] utilized a slightly different approach to derive the acoustic perturbation
equations (APE), in several versions and complexity. APE-1 is the general formulation describing the
total system via the pressure perturbation and the velocity perturbation. The APE-2 formulation is
used in conjunction with an incompressible unsteady flow simulation. At low Mach numbers, the source
term is approximated by the time derivative of the pressure perturbation of the incompressible flow
simulation. The introduced APE-3 system coincides with the APE-1 system, where the system is based
on the perturbed total enthalpy. This formulation has one advantage over the APE-1, since no Poission’s
equation (source term filtering) has to be solved to determine the source terms. The APE-4 variant of the
formulation is based on the APE-1 system such that the sources are easily computed by a compressible
flow simulation. Hüppe and Kaltenbacher [39] derived a computational efficient reformulation of the
APE-2 system and named it perturbed convective wave equation (PCWE).

Munz and coworkers [40–42] proposed an alternative derivation of perturbed equations for acoustic
by a Mach number scaling. This ansatz is inserted into the compressible Euler equations and constitutes
the linearized Euler equations with the total derivative of the incompressible pressure perturbation as
significant source term.

De Roeck and Desmet [43] thought about the necessity of a aerodynamic/acoustic splitting technique
based on Helmholtz decomposition. First, the field is decomposed in a mean flow field and a fluctuating
part, as introduced during the derivation of the LEE, and subsequently the fluctuations are further
decomposed in an aerodynamic and an acoustic component. The acoustic field is irrotational and the
aerodynamic part rotational.

1.3 Aim of the thesis
Knowing the computational limitations of direct simulation of acoustic and flow when applying it to an
industrial applications, we aim for a hybrid methodology that is based on a compressible flow simulation.
This means that acoustics is already partly resolved during the flow computation and we have to adapt
the wave propagation model and filter the source terms to reduce the already resolved acoustics within
them. The thesis in hand is focusing on the Helmholtz decomposition of the compressible velocity field.
Based on the decomposed field, we construct a consistent wave propagation formulation that can be
derived from existing aeroacoustic analogies. The method will be validated through four applications.

Practical applications (e.g. cavity with a lip) often seek for compressible simulation, since acous-
tic feedback mechanisms excite flow structures [44]. However, compressible source term simulations in
conjunction with the arising computational effort demand huge computational resources. The method
derived in this thesis claims to combine the computational efficiency of aeroacoustic analogies and a
compressible source term computation. Computational efficiency is introduced by the hybrid procedure.
Hybrid methods separate the flow simulation and the acoustic simulation; each simulation model is well
suited to the physical phenomenon. The vorticity dominates the acoustic source of several aeroacoustic
applications. Helmholtz decomposition extracts the vorticity components fast and elegant. The aim of
this thesis is to filter the flow field, based on the divergence free property of vortical structures. In this
sense the compressible flow is split into vortical mode and compressible mode (remaining part).

Additionally, the procedure aims to correct an inaccurate boundary treatment, during the flow simu-
lation, e.g. non-exact radiation condition. In general, the hybrid workflow focuses on the proper acoustic
model with a sufficient resolution of the main aeroacoustic sources. The current model does not incorpo-
rate nonlinear interaction of different aeroacoustic source mechanisms and the acoustic quantity.
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The rest of the thesis is structured as follows: Chapter 2 presents the fundamental equations, a
historical evolution of computational techniques of aeroacoustics, and the theoretical background on cavity
noise, since the application examples include mostly cavities with a Rossiter feedback loop. Chapter 3
introduces the physical relevancy of splitting the flow field into a vortical and a compressible part for
aeroacoustic and Chap. 4 formulates the Helmholtz decomposition. The computation of the aeroacoustic
sources is illustrated in Chap. 5. Chapter 6 validates the developed method by several benchmark
examples including a direct simulation of flow and acoustics and its decomposition into acoustic and
vortical components. From the direct simulation of flow and acoustics, the reader will be convinced that
Helmholtz decomposition is an excellent way of visualizing acoustics. Finally, Chap. 7 concludes the main
findings.
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2 Computational Aeroacoustics

The theoretical part introduces the basic concepts and the common footprint of fluid dynamics and
acoustics. In its general form, flow and acoustics are described by the same set of equations including
conservation of mass, momentum, and energy [45,46]. The continuum theory and model specific assump-
tions specify different simplifications of these equations for acoustics and flow. In conjunction with the
constitutive laws, primarily using a Newtonian fluid and the perfect gas law, we have a closed system of
equations. Acoustics and its inherent propagating nature relies on a compressible, inviscid fluid. These
fluid properties excite wave modes. In contrast, general fluid dynamics is modeled with a viscous fluid.
Below Mach 0.3 the incompressibility assumption of the fluid neglects acoustic modes in the simulation.

2.1 Fluid dynamics – Conservation equations
Conservation of mass, momentum and energy describe the properties of a fluid based on the assumptions
of continuum theory. In conjunction with the constitutive equation (e.g.: Newtonian fluid) and equation
of state (e.g.: ideal gas law), a closed set of partial differential equations describes the dynamic fluid
properties.

2.1.1 Continuum approximation

In the context of continuum theory, a homogeneous fluid body B consists of a volumetric conglomerate of
homogenized mass particles. The size of these particles is assumed to be large enough such that molecular
effects are negligible. Each particle must represent the physical field accurately, which limits the size on
the upper scale. To apply the continuum theory successfully a compromise between the upper and lower
limit must be found.

Continuum theory allows to write physical quantities of the flow field as a function of the coordinate
x and the time t (density ρ(x, t), pressure p(x, t), velocity u(x, t), ...). Physically speaking, the total
change of a field quantity (e.g. density ρ(x, t)) is defined as

dρ = ∂ρ

∂t
dt+∇xρdx . (2.1)

The total derivative of the density, in fluid dynamics often called substantial derivative of the density, is
given by

dρ
dt = ∂ρ

∂t
+ (u · ∇x)ρ (2.2)

A generalization for arbitrary tensor fields is simple. The substantial derivative of a tensor field in an
Eulerian reference frame writes as

d?
dt = ∂?

∂t
+ (u · ∇x) ? . (2.3)

7



2.1.2 Reynolds transport theorem

The Reynolds transport theorem is a general rule to treat balance equations [47] and formalize the
treatment of conserved quantities. Important applications of the Reynolds transport theorem are the
conservation of mass, momentum, and energy. In the next section, we apply this theorem to derive the
Navier-Stokes equation.

Theorem 2.1.1 For a given tensor field F(x, t) with index i ≥ 0 uniquely defined on Ω, C1, and a flow
field u(x, t) the relation

d
dt

∫
Ω(t)

F(x, t)dx =
∫

Ω(t)

∂F(x, t)
∂t

dx+
∫
∂Ω(t)

F(x, t)u(x, t) · nds (2.4)

holds.

First, we rewrite the material derivative over the volume integral from the Eulerian configuration x to
the Lagrangian configuration ξ. The time independent integral is transformed using the determinant of
the deformation gradient tensor (determinant of the Jacobi-transformation matrix) J := ∇ξx. Now, the
time derivative and integral can be changed (Leibnitz integral rule) and due to time independent domain
the material derivative is equal to the partial derivative

d[?(ξ, t)]
dt = ∂[?(ξ, t)]

∂t
+ (∂ξ

∂t
· ∇ξ)[?(ξ, t)] = ∂[?(ξ, t)]

∂t
. (2.5)

This leads to
d
dt

∫
Ω(t)

F(x, t)dx =
∫

Ω

∂F(ξ, t)J
∂t

dξ (2.6)

for the time dependent integral. Using product rule and the identity for the time derivative of the
Jacobian ∂J

∂t = (∇ξ · u)J, we obtain∫
Ω

∂F(ξ, t)J
∂t

dξ =
∫

Ω

(
∂F(ξ, t)
∂t

J + F(ξ, t)(∇ξ · u)J
)

dξ . (2.7)

Transforming the integral back to the moving configuration, we find∫
Ω

(
∂F(ξ, t)
∂t

J + F(ξ, t)(∇ξ · u)J
)

dξ =

=
∫

Ω(t)

(
∂F(x, t)
∂t

+ [F(x, t)∇x · u+ u∇x · F(x, t)]
)

dx . (2.8)

Additionally, the tensor identity F∇x ·u+u∇x ·F = ∇x ·(uF) is utilized. Finally applying the divergence
theorem, we derive Theorem 2.1.1.

∫
Ω(t)

(
∂F(x, t)
∂t

+∇x · (uF)
)

dx =

=
∫

Ω(t)

∂F(x, t)
∂t

dx+
∫
∂Ω(t)

F(x, t)u(x, t) · nds (2.9)

The first term formulates the temporal change of the tensor field inside the control volume, whereas the
second term is the boundary exchange of the control volume. From that point on the Eulerian description
is used and all operators are based on the coordinate x, ∇ := ∇x .

8



2.1.3 Conservation of mass

The mass m of a body B is defined by the volume integral of the body’s mass density distribution ρ(x, t)

m :=
∫

Ω
ρdx . (2.10)

Mass conservation describes the well known effect that the mass of a body is conserved over time in a
control volume, as long as there is no source or drain

d
dtm = 0 . (2.11)

The mass conservation holds for any control volume. Applying Reynolds’ transport theorem (2.1.1)
and assuming a continuous mass density field, the mass conservation results in the local differential
representation for a compressible fluid

∂ρ

∂t
+∇ · (ρu) = 0 . (2.12)

Equation (2.12) is called equation of continuity and with respect to the equation, the mass density ρ and
the velocity u must be at least continuously differentiable. In the case of incompressibility, the density is
constant over a streamline and if it is initially uniform it stays uniform. This fact simplifies the continuity
equation (2.12) to

∇ · u = 0 , (2.13)

and restrict the incompressible flow field to be divergence free. This property of the flow field is used in
Chap. 3 to derive a vorticity dominated aeroacoustic analogy based on compressible flow quantities.

2.1.4 Conservation of momentum

The momentum I of a body B is defined by the volume integral of the body’s local momentum density
distribution ρu

I :=
∫

Ω
ρudx . (2.14)

Conservation of momentum generalizes Newton’s second law, one fundamental axiom of classical mechan-
ics. Any change of momentum is driven by the acting force F

d
dtI = F . (2.15)

To derive the Navier-Stokes equation, the conservation of momentum is applied to a physical domain,
the control volume. The Reynolds’ transport theorem (2.1.1) quantifies the change of momentum on the
left hand side. According to Newton’s second law, this change is due to a volume force density f and
surface forces C · n. ∫

Ω

∂

∂t
(ρu)dx+

∫
∂Ω
ρuu · ds =

∫
∂Ω

C · ds+
∫

Ω
fdx (2.16)

The Cauchy stress tensor C is split into a hydrostatic stress tensor −pI (all eigenvalues of the characteristic
equation are −p) and a deviatoric stress tensor S

C = −pI + S . (2.17)

Applying the divergence theorem to the surface integrals of the conservation of momentum (2.16), the
boundary (surface) integrals are transformed into a volume integral. Furthermore, we assume the consti-
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tutive relation of a Newtonian fluid (see Sec. 2.2.2), which yields to the Navier Stokes equations in their
conservative form ∫

Ω

(
∂

∂t
(ρu) +∇ · (ρuu) +∇p− µ(∆u− 1

3∇∇ · u)− f
)

dx = 0 . (2.18)

Since the equation holds for arbitrary control volumes, the continuous integrand vanishes, which leads to
the Navier-Stokes equations in the local, conservative, strong formulation.

∂

∂t
(ρu) +∇ · (ρuu) = −∇p+ µ(∆u+ 1

3∇∇ · u) + f (2.19)

The Navier-Stokes equation describes two structurally different vortical flow states, laminar and turbulent
flow. A limited range of length and energy scales occur during a laminar flow, which makes it relatively
simply to compute. With increasing Reynolds number Re, the viscous forces are unable to keep the lam-
inar layers together and as a result turbulent mixing forms turbulent eddies in the flow. These turbulent
flow structures have a wide range of different length and energy scales. Kolmogorov spectrum [48] de-
scribes these scales and the conversion of scales up to viscous dissipation. A direct simulation of turbulent
structures demands excessive computational resources. Thus, the turbulent eddy spectrum is modeled
by specific turbulence models. This type of modeling is known as closure problem in fluid mechanics.

2.1.5 Conservation of energy

The total energy E of a body B is defined by the volume integral of the local energy density distribution
ρ
(
e+ u·u

2
)

E :=
∫

Ω
ρ
(
e+ u · u

2

)
dx . (2.20)

Both, the change of the inner energy e and the kinetic energy u·u
2 are described by conservation of energy,

d
dtE = Qint +Qbound + Pbound +Mbound + Fint , (2.21)

that associates any change of energy [49] to an internal heat production Qint

Qint :=
∫

Ω
qdx , (2.22)

a heat exchange on the surface Qbound

Qbound :=
∫
∂Ω
qT · nds , (2.23)

the work done by a surface pressure Pbound

Pbound :=
∫
∂Ω
pu · nds , (2.24)

the work done by a shear force on the surface (traction) Mbound

Mbound :=
∫
∂Ω

(S · u) · nds , (2.25)

and the mechanical energy of an internal force density f

Fint :=
∫

Ω
f · udx . (2.26)
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The divergence theorem transforms the surface integrals to volume integrals and afterwards Reynolds’
transport theorem (2.1.1) and mass conservation is used for further manipulation. Since the obtained
equation holds for arbitrary control volumes, the continuous integrand vanishes and we obtain the local
form of the energy conservation

ρ
d
dt

(
e+ u · u

2

)
= q −∇ · (qT + pu− S · u) + f · u . (2.27)

By exploiting the properties of the specific entropy s(x, t) in thermodynamics, Howe [50] writes the
conservation of energy as

ρT
ds
dt = q −∇ · qT + S : ∇u . (2.28)

Adiabatic flows characterize no heat exchange over the control volume boundary. A further tightening
restriction is an isentropic flow that is adiabatic and reversible. The term reversible indicates a conser-
vative system; no dissipation is present; thus viscous dissipation is neglected. If no internal heat source
is present, isentropic flow fulfills the relation

ρT
ds
dt = 0 . (2.29)

The most restrictive thermodynamic flow state is a homentropic fluid that is homogeneous and with
uniform entropy in the control volume (ds = 0).

Pressure equation: In computational fluid dynamics it is partly convenient to use a pressure equation
instead of the tedious energy equation. The thermodynamic definition of the specific enthalpy h,

dh = Tds+ vdp (2.30)

with the specific volume v = 1/ρ, allows to rewrite the energy equation in the entropy form (2.28). The
left hand side of the equation is further simplified by conservation of mass and yields

ρ
d
dth−

d
dtp = q −∇ · qT + S : ∇u . (2.31)

Exploiting the fact that an ideal gas is inert, the ideal gas law (2.41) holds and the change of specific
enthalpy dh = cpdT . Expressing Rs/cp = (κ − 1)/κ, the relation between the pressure p, the density ρ,
and the specific enthalpy h is obviously

p = κ− 1
κ

ρh . (2.32)

These relations are inserted into the derivatives on the left hand side. The relation between the pressure
p, the density ρ, and the specific enthalpy h in conjunction with the conservation of mass again, we obtain
the final result of the pressure equation

d
dtp+ κp∇ · u = (κ− 1)(q −∇ · qT + S : ∇u) . (2.33)

2.2 Constitutive laws
The three principal conservation equations, conservation of mass, momentum, and energy, introduce
unknown field variables. In fact, more unknowns are part of the equations than the number of equations
the conservation laws accounts for. This leads to an undetermined problem. To close the system,
additional empirical models connect certain unknowns and form constitutive relations of fluid dynamics.
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In aeroacoustic, the relevant constitutive laws are the ideal gas law and the concept of the Newtonian
fluid. The ideal or perfect gas (state equation) relation is used to derive the pressure equation; the
Newtonian fluid links the velocity and the stress tensor during the derivation of Navier-Stokes equation.

2.2.1 Equation of state – Perfect gas

In this case, the fluid is considered to be in thermodynamic equilibrium and to be homogeneous. Thus,
the thermodynamic state is universally represented by two intrinsic state variables. The first law of
thermodynamics states that a change in the specific internal energy e is caused by heat exchange or work

de = dq + dw . (2.34)

Thermodynamic equilibrium requires a sufficiently slow (quasi-static) compression of the fluid. The
intrinsic state variables are the specific entropy s and the specific volume v. In this sense, we can express
the heat change by the change of the specific entropy s

dq = Tds . (2.35)

The representation of the internal energy as u = u(s, v) restricts the mechanical work to isobaric work.
A volumetric compression of the fluid element is defined by

dw = −pdv . (2.36)

In the field of acoustics, the density ρ is a more convenient second intrinsic state variable than the specific
volume v. Therefore, the differential of the specific volume in terms of the density is rewritten as

dv = d1
ρ

= − 1
ρ2 dρ . (2.37)

If the previous definitions are inserted, we obtain the relation of the internal energy (fundamental ther-
modynamic relation) based on two intrinsic state variables s and ρ

de = Tds+ 1
ρ2 dρ . (2.38)

Furthermore, the pressure p is an acoustically relevant state variable. Considering thermodynamic state
description, the same intrinsic variables s and ρ are used to express the change of the pressure by the
definition of its differential change

dp =
(
∂p

∂s

)
ρ=const

ds+
(
∂p

∂ρ

)
s=const

dρ . (2.39)

Per definition, the isentropic (ds = 0) speed of sound relates the density and pressure perturbation
dp = c2dρ. Comparing the coefficients leads to

c2 =
(
∂p

∂ρ

)
s=const

. (2.40)

At a sufficiently high temperature above the boiling point of the medium and at a sufficiently low pressure
as well as supposing that the kinetic energy of the particle is large, the interaction of gas particles is low.
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Neglecting the attraction between particles, the gas is modeled by the perfect gas law

p = ρRsT , (2.41)

with the specific gas constant Rs. Acoustics in air at ambient pressure and temperature satisfies the
assumptions of an ideal gas. For an ideal inert gas we can express the internal energy u by

de = cVdT . (2.42)

Replacing the left hand side in equation (2.38), using the ideal gas law (2.41), and an isentropic state
ds = 0 we derive

dT
T

= Rs

cV

dρ
ρ
. (2.43)

The differential of the ideal gas law divided by the ideal gas law results in

dp
p

= dT
T

+ dρ
ρ
. (2.44)

Now (2.43) is inserted into (2.44). Additionally, the definition of the isentropic exponent κ := cp
cV

, the
relation between the specific heats, and the specific gas constant Rs = cp − cV simplifies the result to

dp
p

= κ
dρ
ρ
. (2.45)

To conclude, we obtain the isentropic speed of sound c from the relation,

dp = κRsTdρ = c2dρ . (2.46)

The isentropic speed of sound depends on the media through the constants Rs and κ as well as on the
thermodynamic state via the temperature T [51]. For ambient conditions in air, the isentropic speed of
sound is approximately 340 m/s.

2.2.2 Newtonian fluid

Newtonian fluid or Stokes relation constitutes a viscous fluid. Stokes relation connects the velocity u,
respectively the strain rate tensor E, and the deviatoric stress tensor S linearly with the dynamic viscosity
µ and the bulk viscosity λµ. Both constants are positive µ > 0 and λµ ≥ 0

S = 2µE + λµtr(E)I . (2.47)

The strain rate tensor is defined by velocity gradients

E = 1
2(∇u+ (∇u)T) . (2.48)

In thermodynamic equilibrium, according to Stokes hypotheses the bulk viscosity and the dynamic vis-
cosity is related by λµ = −(2/3)µ. As a consequence, the divergence of the stress tensor can be written
as

∇ · S = µ(∆u+ 1
3∇∇ · u) . (2.49)

Often, computational fluid dynamics treats the bulk part of the stress tensor as an additional isentropic
term, like pressure.
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2.3 Dimensionless numbers in fluid dynamics
Fluid dynamics develops different flow phenomena with respect to the flow configuration and the geometry.
Dimensionless numbers relate flow phenomena to characteristic flow quantities. Based on this numbers
a general similarity between different flow states is observed.

Perhaps the most popular one is known as Reynolds number, which is widely utilized to separate
laminar flow and turbulent flow characteristics. Two configurations with identical Reynolds number

Figure 2.1: Kármán’s vortex street behind a cylinder in a crossflow, Re = 200.

behave in a similar way, with respect to viscous effects. Typically aeroacousticians work with four
similarities: Reynolds number Re, Strouhal number St, Helmholtz number He, and the Mach number
Ma. To enhance the reader’s understanding, the dimensionless numbers are applied to the flow around a
cylinder, which forms a von Kármán’s vortex street (see Fig. 2.1).

2.3.1 Reynolds number

Reynolds investigated the similarity of stream lines for different flow configurations in pipes. He explored
Reynolds similarity. A flow configuration is Reynolds similar if the Reynolds number Re coincides. With
this in mind, Reynolds equivalent down sizing of flow configurations is possible. Re is defined as

Re = ρUL

µ
= UL

ν
, (2.50)

with a characteristic length L (diameter of the cylinder), the mass density ρ, the dynamic viscosity µ,
the kinematic viscosity ν, and the characteristic flow velocity U (free stream velocity). Reynolds number
relates the inertia forces and the viscous forces acting on a fluid particle.

inertia
viscous = ‖ ρ(v.∇)v ‖

‖ µ∆v ‖ (2.51)

This ratio indicates the transition between laminar and turbulent fluid dynamics; above a critical Reynolds
number the flow is most likely turbulent.

2.3.2 Strouhal number

An additional similarity parameter of a flow configuration is the Strouhal number St. Strouhal number
specifies oscillatory flow unsteadiness and cyclic variations in the flow. Obviously, the wake of the cylinder,
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the von Kármán’s vortex street, is oscillating and at medium Reynolds numbers periodic vortex shedding
occurs. The Strouhal number describes these unsteady phenomena

Stn = fnL

U
≈ |n=1O(1) , (2.52)

and relates the vortex shedding frequency fn to a characteristic flow time scale. Typical values for the
flow unsteadiness are in the range of 0.1 - 0.2 for the first order cycles. Two flow configurations are
dynamically similar, if both the Reynolds number and the Strouhal number are identical.

2.3.3 Helmholtz number

As Strouhal number describes the periodic structures of unsteady flow, the Helmholtz number He qualifies
periodic structures based on the speed of sound c. Acoustic phenomena are characterized by the Helmholtz
number.

Hen = L

λn
= fnL

c
= St Ma (2.53)

The vortical structures of the von Kármán’s vortex street radiate acoustic waves at the same frequency
fn, but the acoustic wavelength λ is 1/Ma larger than the characteristic length of vortical structures,
where Ma denotes the Mach number.

A special case for He � 1 is compact acoustics that approximates the wave equation by a Poisson
equation. Acoustic compact bodies do not scatter sound, they are ”transparent” to the acoustic wave
and neglecting these bodies in an acoustic propagation simulation leads to an insignificant error.

2.3.4 Mach number

The Mach number interprets the significance of a density variation due to a velocity variation in the
flow field. The ratio of the characteristic velocity U and the isentropic speed of sound c yields the Mach
number

Ma = U

c
. (2.54)

In one dimension and for steady isentropic flows, the conservation of momentum describes that a density
change is proportional to a velocity change scaled by the square of the Mach number

−Ma2 dU
U

= dρ
ρ
. (2.55)

This fact divides fluid dynamics into an incompressible (Ma < 0.3) and a compressible (Ma ≥ 0.3) regime.
If we are interested in vortical flow structures at low Mach numbers, the flow is typically modeled as
incompressible. However, direct simulation of acoustics requires a compressible fluid.

2.4 Acoustics
Conservation of mass, momentum and energy and the constitutive relations provide the equations of fluid
dynamics and acoustics. We start the derivation of the linear acoustic wave equation from the linearized
Euler equations. The acoustic perturbations are assumed to be sufficiently small [49] and are defined
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around a mean field by

ρ = ρ + ρa , (2.56)

p = p + pa , (2.57)

u = u + ua . (2.58)

Furthermore, the derivation assumes a zero mean velocity (u = 0) flow field and an isentropic thermo-
dynamic state ds = 0

∂ρa

∂t
+ ρ∇ · ua = qmass (2.59)

ρ
∂ua

∂t
+∇pa = qmom (2.60)

pa = c2ρa , (2.61)

where we introduced a mass source qmass and a momentum force term qmom. The manipulation of (2.59)
to (2.61) results in the well known formula of linear isentropic acoustics

1
c2
∂2pa

∂t2
−∇ · ∇pa = ∂qmass

∂t
−∇ · qmom . (2.62)

A Fourier transformation of the acoustic wave equation yields in Helmholtz’s equation of acoustics,

k2p̂a +∇ · ∇p̂a = jωq̂mass −∇ · q̂mom , (2.63)

with the Fourier transformed pressure p̂a, the imaginary unit j, and the Fourier transformed source terms
q̂mass, q̂mom, and the wave number k = ω/c. The wave number is connected to the spatial periodicity,
the wavelength λ, by

k = 2π/λ . (2.64)

The dispersion relation connects the wavelength and the wave frequency by the speed of sound c as

λ = c

f
. (2.65)

For a non-disperse wave, the group velocity cg of the wave

cg = dω
dk = c (2.66)

and the phase velocity cph of the wave
cph = ω

k
= c (2.67)

are the same as it results from the dispersion relation.

2.4.1 Compact acoustics

As mentioned above, the Helmholtz number characterizes compact acoustics. In the case of compact
acoustics [51] with He � 1, the linear isentropic acoustic wave equation (2.62) is approximated by the
Poisson problem,

−∇ · ∇pa = ∂qmass

∂t
−∇ · qmom . (2.68)
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In comparison to the wave equation the information speed is infinite, c → ∞. As a consequence, the
infinite simulation domains must be modeled by a special boundary condition [52].

2.4.2 Acoustics and Fluid dynamics

According to the governing equations of fluid dynamics, acoustics is an integral part of fluid dynamics.
The acoustic field requires a compressible media to be propagated. Acoustic quantities fluctuate and as
a consequence the stationary component of an acoustic quantity is zero

ua = 0 . (2.69)

The acoustic part of the velocity field ua is an irrotational field

∇× ua = 0 . (2.70)

In terms of Helmholtz decomposition the velocity field u ∈ L2(Ω) can be separated into a vortical part
uv and a compressible part ua

u = uv + ua , (2.71)

where the properties of the acoustic component are (∇ × ua = 0, ua = 0, and |uv| � |ua|). This
decomposition can be accomplished for arbitrary fields. A separation into a vortical part, being a synonym
to mathematically incompressible flow, and a compressible acoustic part works for low Mach numbers,
since all compressible effects are due to the acoustic mode. Naturally, an irrotational acoustic field gives
rise to a Helmholtz decomposition of the compressible flow field into a scalar φa and vector potential Av

u = uv + ua = ∇×Av +∇φa . (2.72)

By applying the (inverse) Helmholtz decomposition the irrotational and the solenoidal part of the flow
field are determined.

2.5 Helmholtz decomposition
A fundamental theorem in fluid dynamics is the Helmholtz decomposition. Both, the Helmholtz de-
composition and the inverse problem, are often denoted by the term Helmholtz decomposition, without
making a difference. This work focuses on the inverse Helmholtz decomposition [53–57], obtaining the
split from a given flow field into distinct parts. The decomposition isolates the irrotational (longitudinal
process) and the solenoidal part (transverse process) of the flow field u and allows to study the specific
properties of incompressible flow and vortex dynamics on the relevant flow components, using potential
representation and stream functions.

Theorem 2.5.1 Every vector field u, C1 smooth, on a simply connected domain Ω ⊆ R3 (unbounded
Ω+ = R3) with the property limr→∞ u(r)r = 0 of a radial coordinate r = ||x||2 with x ∈ R3 , can be
decomposed in L2-orthogonal velocity field components

u = uv + uc = ∇×Av +∇φc , (2.73)

with the vector potential Av satisfying ∇ ·Av = 0 (toroidal component of the vector potential) and the
scalar potential φc.
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The proof of the Helmholtz theorem involves several steps. Starting from the vector identity

u = ∇ · ∇θ = ∇(∇ · θ)−∇×∇× θ = ∇φc +∇×Av , (2.74)

we use Green’s function of the Laplace equation

−∇ · ∇ 1
4π||x− x′||2

= δ(x− x′) (2.75)

to solve the vector identity for θ

θ(x) =
∫

Ω
θ(x′)δ(x− x′)dx′ = −

∫
Ω

u

4π||x− x′||2
dx′ . (2.76)

The divergence of θ computes the inverse Helmholtz decomposition for φc(x) on a bounded domain

φc(x) = ∇ · θ = −∇ ·
∫

Ω

u(x′)
4π||x− x′||2

dx′ (2.77)

= −
∫

Ω
u · ∇ 1

4π||x− x′||2
dx′ (2.78)

=
∫

Ω
u · ∇′ 1

4π||x− x′||2
dx′ (2.79)

= −
∫

Ω

∇′ · u
4π||x− x′||2

dx′ +
∫

Ω
∇′ · u

4π||x− x′||2
dx′ (2.80)

= −
∫

Ω

∇′ · u
4π||x− x′||2

dx′ +
∫
∂Ω
n · u

4π||x− x′||2
ds′ . (2.81)

Analog to the scalar potential the vector potential is solved

Av(x) =
∫

Ω

∇× u
4π||x− x′||2

dx′ −
∫
∂Ω

n× u
4π||x− x′||2

ds′ . (2.82)

The calculation of the vector potential implies the gauge condition ∇ · Av = ∇ · ∇ × θ = 0. For an
unbounded domain the surface integral vanishes as long as the field decays towards zero at infinity.
Alternatively, the scalar potential can be obtained by directly applying Green’s function

φc(x) = =
∫

Ω
φc(x′)δ(x− x′)dx′ = −∇ ·

∫
Ω

u(x′)
4π||x− x′||2

dx′ (2.83)

= −
∫

Ω

∇′ · u
4π||x− x′||2

dx′ +
∫
∂Ω
n · u

4π||x− x′||2
ds′ (2.84)

and the vector potential (using the gauge condition)

Av(x) = =
∫

Ω
Av(x′)δ(x− x′)dx′ = −∇×

∫
Ω

u(x′)
4π||x− x′||2

dx′ (2.85)

=
∫

Ω

∇× u
4π||x− x′||2

dx′ −
∫
∂Ω

n× u
4π||x− x′||2

ds′ . (2.86)

The decomposition considers both bounded and unbounded domains. For bounded domains, the bound-
ary integral represents the interface condition to the exterior and ensures uniqueness.

The origin of Helmholtz’s decomposition reaches far into the history of science [58] and is utilized by
many disciplines such as electrodynamics [59], fluid dynamics [46] and computer visualization. Based on
fluid dynamics, the motion of a continuum point has been proven to be a combination of three exclusive
shapes [46] (see Fig. 2.2).
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(a) An isotropic expansion proportional to the volumetric rate of expansion ∇·u. This field component
can be described by a scalar potential associated with the compressibility of the fluid.

(b) Irrotational deformation without volume change. The classical theory of potential flow equations
describes this velocity field and is well known in fluid dynamics. This flow component is both,
divergence-free and curl-free.

(c) A rigid-body rotation at an angular velocity of 1
2∇× u. Vortical or incompressible flow structures

are described by the vorticity and its dynamics.

(a) (b) (c)

Figure 2.2: Illustration of the deformation shapes of a continuum point. (a) isotropic expansion, (b) ir-
rotational deformation without volume change, and (c) rigid-body rotation.

A curl-free representation of a flow field includes mode (a) and (b). Respectively a divergence free field
includes both modes (c) and (b). This effect seems to be difficult to understand, thus a different expla-
nation of (b) is that this deformation is the homogeneous solution of both partial differential equations,
solving mode (a) or (c). The extension of the Helmholtz decomposition on homologically trivial domains
(domains with holes) is served by a generalization, with suited boundary treatment (see Chap. 4). A
further generalization to manifold is the Helmholtz-Hodge decomposition.

2.5.1 Sequence of temporal images

Helmholtz decomposition transforms only the spatial representation of the velocity field; the connection
between the time steps is guided by the compressible velocity data. The velocity field u(x, ti) is a sorted
sequence of flow snapshots, with an intrinsic transformation from one time index ti to another ti+1. Time
ti is a parameter associated with the state of the velocity field that represents the physical evolution.
Therefore, the time invariant Helmholtz decomposition is interpreted as a filter at a frozen time ti.

2.5.2 Decompose the fluctuating component

A separation of the overall flow field into a mean and a fluctuating field

u = u+ u′ (2.87)

can be beneficial with respect to the decomposition and the boundary treatment For fields that do
not vanish at the boundaries, the assumptions and requirements enhance the computation with further
difficulties to ensure an orthogonal decomposition pair. Therefore, it might be promising to assume that
the compressible field is a fluctuating field, at least at the boundaries

uc|∂Ω = u′|∂Ω . (2.88)
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This implies that all vortical perturbations are fully decayed towards the boundaries. Assuming this, a
promising substitution for the vortical solution at the boundary can be formulated

uv|∂Ω = u|∂Ω . (2.89)

With this boundary conditions we have a well defined Helmholtz decomposition. De Roeck [43] proposed a
decomposition of the fluctuating velocity field. If the flow disturbances are bounded within the domain ΩF,
we may prolongate the domain virtually towards infinity and use a well defined Helmholtz decomposition
of the fluctuating field u′ .

2.5.3 Helmholtz decomposition and conservation laws

A frequently asked question on the validity of Helmholtz decomposition is, if the decomposition obeys
the conservation laws. Statements like the colorful nature of fluid dynamics are not subject to such a
trivial decomposition and one is misled to think that all vortical structures like grained turbulence can
be captured. This physical and emotional myth ignores the mathematical capability of the Helmholtz
decomposition and mixes facts. Helmholtz decomposition is not capable of computing fluid dynamics,
but it is capable of separating it into distinct vortical and compressible subparts.

The terminology related to Helmholtz decomposition confuses physicists and mathematicians and
corrupts their dialog. Stating the commons and the differences, mathematically incompressible means
the vortical part of a compressible flow in physics. Mathematically incompressible does not necessarily
mean physically an incompressible flow that obeys the equations of a physically incompressible flow and
is consequently a result of an incompressible flow simulation. Although a terminological difference could
imply ambiguity, the Helmholtz decomposition derives indeed a possible incompressible flow system based
upon a compressible flow simulation.

The vortical part satisfies per definition the divergence free condition of an incompressible flow. By
inserting this vortical flow into the continuity equation one obtains a condition for the vortical den-
sity, which is not necessarily constant (as assumed for a physical incompressible flow). The substantial
derivative of the density being zero

∂ρv

∂t
+ uv · ∇(ρv) = 0 (2.90)

means that the density of a particle remains constant over time. That density requirement is exactly
physically incompressible. A decomposed vortical flow is directly connected to a vortical density field that
acts like an incompressible one. Computational algorithms solving incompressible flow rely on Helmholtz
decomposition to construct the divergence free flow field.

So far, the vortical flow field and the vortical density field are incompressible-like fields. The third
state of an incompressible flow configuration is the incompressible pressure, which is extracted by the
momentum equation for the reverse conclusion drawn here. Navier-Stokes equation (2.19) provides the
missing link to the vortical pressure distribution pv for the decomposed vortical field

∇pv = −ρv ∂

∂t
(uv)− ρv∇ · (uvuv) + µ∆uv + f . (2.91)

Summing up, the vortical flow part, computed by Helmholtz decomposition, is incompressible-like in both
mathematical and physical terms; the components are therefore labeled by a superscript (v).
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2.6 Aeroacoustic models
This section gives a comprehensive overview of research in the field of aeroacoustic at low Mach numbers.
Zheng et al. [60] categorize aeroacoustic methods in three groups: general acoustic analogies, direct
numerical simulation and acoustic equations based on splitting/filtering techniques. Motivated by this
categorization, we start historically from acoustic analogies, go over to direct simulation of flow and
acoustic, and finally discuss perturbation equations.

2.6.1 General acoustic analogies

The first proposed acoustic analogy by Lighthill [6, 7] transforms the compressible flow equations into
an exact inhomogeneous wave equation, without any assumptions to boundaries and the equations.
Lighthill’s equation describes a general wave equation in terms of the fluctuating density ρ′, which reads
as follows

∂2

∂t2
ρ′ − c2∇ · ∇ρ′ = ∇ · ∇ · T . (2.92)

Lighthill’s tensor T represents all remaining nonlinear terms when rearranging the mass and momentum
equation:

T = ρuu+ S + p′I− c2ρ′I . (2.93)

This source term incorporates sound generation, refraction, convection with the flow, and dissipation
by the viscosity. The underlying fluid is stated to be a uniform acoustic medium at rest. During
the derivation the variables are reduced and to be computational efficient and meaningful this implicit
formulation requires further manipulation. In computational aeroacoustics, Lighthill’s wave equation in
combination with a hybrid computational procedure is widely used for subsonic flows and an approximate
Lighthill source term1

T ≈ ρuu . (2.94)

The approximation error is proportional to M2. As prominent at this time, Lighthill utilizes Green’s
function of the free field radiation to solve the wave equation. In doing so, Lighthill implicitly neglected
resonators and other bodies near sources, hence diffraction, scattering, absorption and reflection by solid
boundaries. Curle [8] investigated the effects of static surfaces on the integral solution in terms of Green’s
function on Lighthill’s theory. Static surfaces are equivalent to a surface dipole distribution in the resulting
radiated field. Difficulties in the acoustic prediction arise if the flow is incompressible and the surface not
acoustically compact [61]. Ffowcs Williams and Hawking [9] generalized Curle’s integral representation
towards accounting for the effects of arbitrary moving bodies in the source domain, extending Kirchhoff’s
formula derived in [10]. The extension uses the known facts of distribution theory. Finally, the wave
equation is extended to

1
c2
∂2

∂t2
p′ −∇ · ∇p′ =

∇ · ∇ · T +∇ · ((S + p) · δ(f)∇f) + ∂

∂t
(ρuδ(f)∇f) . (2.95)

1 The approximation involves three assumptions

• For high Reynolds numbers we can neglect the stress tensor S, since ρuu� S.
• An isentropic state relates the pressure perturbation to the density perturbation, p′ = c2ρ′. Simulating combus-

tion noise the pressure and the density are related by the enthalpy of the heat source, p′ = c2ρ′ + ρ0(κ− 1)h′.
• Assuming low Mach numbers the density is close to the density of the resting media, ρ(x) = ρ0.

These approximations reduce the analogy to self-noise and shear-noise, but neglect refraction interactions of the acoustic
components with the mean flow. In particular, these refraction interactions should be considered by the wave operator
and not the source terms (see Chap. 3).
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Here, δ denotes the delta distribution and f is a distribution describing the surface of bodies. In the
integral formulation, the first additional term results in Curle’s dipole radiation and the second additional
one is Ffowcs Williams and Hawking’s monopole radiation due to the motion of the surfaces. The applica-
tion of distribution theory in aeroacoustic is intensively discussed by Farassat [62], and its application to
Kirchhoff’s and Ffowcs Williams and Hawkings formula is revisited in [63]. Ffowcs Williams and Hawk-
ing’s integral formulation relies on a compressible flow simulation. Only if the sources are compact an
incompressible flow solution can be utilized to solve the integral sufficiently well. Further simplifications
are possible, if the integration surface of the integral contains all volume sources, the volume integral
vanishes. However, the acoustic waves must be propagated at least to the integration surface.

Ribner [11] and Powell [12] based their theory on comparing a slightly compressible flow with an
incompressible flow, where the vorticity ω plays a major role in the derivation of the acoustic propagation.
After applying vector calculus theorems the nonlinear term of the Lighthill tensor is formulated by

ρ∇ · (uu) = ρ (ω × u) + ρ∇
(u · u

2

)
, (2.96)

where ω = ∇×u describes the vorticity of the fluid. Howe [13] derived that the main sources for Ma� 1
and Re� 1 are almost entirely formed by the Lamb vector L = ω×u. Thus, vortical structures generate
the major acoustic far-field at low Mach numbers. The first term of (2.96) is known as the Lamb vector,
where the acoustic far field of this component p1 scales as

p1 ∼
L

|x|
ρ0U

2Ma2 , (2.97)

and the second term radiates p2 into the far field

p2 ∼
L

|x|
ρ0U

2Ma4 + L

|x|
ρ0u

2Ma2 1
Re . (2.98)

Here, L denotes a spatial length scale and U a characteristic flow velocity. For uniform flow in the far
field, Lighthill’s wave equations and the integral derivatives compute the directivity pattern of the noise
efficiently. This assumes acoustic compact sources or a bounded source region. Acoustically compact
means that the size of the flow sources contributing to the acoustic are small compared to the generated
wavelength. This requirement is inherently fulfilled for low Mach number applications. A dimensional
analysis shows that vorticities generate acoustic waves with an order of magnitude Ma−1 larger length
scale [31]. Mathematically speaking, the Helmholtz number He = kL = StMa � 1 is small. However, a
specific source distribution may exceed this limit. A main problem of the acoustic analogies arises since
the sources originally depend on the solution of the wave equation and hence back coupling must be
modeled somehow or the waves are already incorporated in the aeroacoustic sources. The application of
aeroacoustic analogies in a hybrid strategy with compressible sources is not free from ambiguity, which
is discussed later.

Howe [13], Möhring [14], and Doak [15] carried out further investigations on vortex sound. Theory of
vortex sound focus on vorticity and entropy inhomogeneities as dominant sources of sound. The theory
assumes an irrotational mean flow specified by a velocity potential. Howe started his derivation from
Crocco’s form of the momentum equation, which includes the total stagnating enthalpy H = h+ u2/2,

H =
∫ dp

ρ
+ 1

2u
2 , (2.99)

as primary variable of the wave equation. After applying reformulations, Howe arrived at the well known
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vortex sound equation for homentropic flow (for simplicity excluding entropy and thermal effects),

d
dt

1
c2

d
dtH + 1

c2
du
dt · ∇H −∆H = ∇ · (ω × u)− 1

c2
du
dt · (ω × u) with d

dt = ∂

∂t
+ u · ∇ . (2.100)

Möhring [14,64] derived a similar acoustic analogy that claims to be more general2. Finally, the nonlinear
wave equation is denoted as Möhring’s acoustic analogy (for simplicity excluding entropy and thermal
effects),

d
dt

1
c2

d
dtH −

1
ρ
∇ · ρ∇H = 1

ρ
∇ · (ρω × u) with d

dt = ∂

∂t
+ u · ∇ . (2.101)

For high Reynolds numbers, low Mach numbers and homentropic flows Howe’s, Möhring’s and Doak’s
convective wave equations converge to each other. Linearization yields a convenient convective wave
equation for low Mach numbers

1
c2

d2

dt2H −∇ · ∇H = ∇ · (ω × u) with d
dt2 = ∂

∂t
+ uic · ∇ . (2.102)

This vortex sound sources are more localized than Lighthill’s sources and reduce the relevant computation
source domain [57].

Recently, Goldstein [16] proposed his generalized acoustic analogy, which shows that the equations of
fluid dynamics can be rewritten as a set of linearized equations around a base flow. He derived several
variants of analogies, considering a non-radiating as well as a radiating base flow. In the case of non-
radiating unsteady base flow (e.g. incompressible flow), the total derivative of the pressure is the main
source of this acoustic analogy.

2.6.2 Direct simulation of flow and acoustic

The direct computation of flows and acoustics (DNX) solves the compressible Navier-Stokes equations
and gains the united field of flow and acoustics. Compared to acoustic analogies this method gains
generality since model restriction such as a low Mach number, a high Reynolds number, and compactness
of the source are no longer necessary conditions for valid results. Fewer empirical modeling uncertainties
are made when computing flows and acoustics with a single simulation. However, the required resources
are comparably high in the range of low Mach numbers. In this regime small vorticies excite acoustic
waves with large wave length, demanding the extension of the computational flow domain compared to
a incompressible flow simulation. A major drawback of this method is to separate the acoustic and the
fluid dynamic pressure components accurately. In general, the acoustic quantities are orders of magnitude
lower than the fluid dynamic ones. At low Mach numbers acoustic waves propagate over long distances
and require a conservative, non-dissipative numerical scheme. Thus, this method is preferably used in
the mid to high Mach number regime.

Freund et al. [17] simulated a turbulent jet and its acoustic near field by means of the compressible
fluid dynamic equations. The simulation was carried out at Mach 1.92, with a special boundary layer
to minimize acoustic reflections [27]. Outside the source domain a linear wave equation extrapolates the
acoustic into the far field. Gloerfelt [66] compared two different numerical methods to compute the noise
of a 2D cavity at Mach 0.7. Both Ffowcs Williams and Hawkings method and the direct computation of
noise by the compressible fluid dynamic equations show good results. They stated that the main drawback
of the direct computation is that the extrapolation to the far field is computationally expensive. Tam
2 "Howe’s calculations are restricted to the lowest order in Mach number. The same is true for many other applications

of Eq. (11). One of the reasons for this restriction is the lack of a reciprocity relation for Eq. (11) for higher Mach
numbers. Equation (11) admits such a relation only to first order in Mach number or, what amounts to the same
thing, it is not self-adjoint. Recently Möhring (1979) found a modification of Eq. (11) that is self-adjoint for B for
arbitrary functions c, u, and p, and therefore admits a reciprocity relation for all Mach numbers." [65]
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and Dong’s [23] radiation boundary condition is implemented to account for the open domain. To reduce
computational burden Schwartzkopff and Munz [40, 41] propose a domain decomposition method for
direct simulation of flow and acoustics. In regions where nonlinear effects are negligible, the linearized
Euler equations are applied to propagate waves. They put special emphasis on making the transition
from the Euler equation to the linearized Euler equation non reflective. Sandberg et al. [67] performed a
direct simulation of the trailing edge noise in the mid Mach number range.

In the recent years, direct simulations of flow and acoustics treat feedback mechanisms in the low
Mach number range. Frank and Munz [68] simulated the acoustic feedback mechanism of a car side
mirror utilizing a higher order discontinuous Galerkin method to solve the fluid dynamic equations.

Lattice Boltzmann Approach

In the recent years, the Lattice Boltzmann approach [69, 70] has gained popularity in solving the flow
and acoustic field directly. Applications of this method in acoustics reach from airframe noise [18],
to acoustic simulations of landing gears [19], and industrial applications [20]. The method is capable of
describing unsteady, compressible, turbulent low Mach number flows in an efficient way and the algorithm
is intrinsically parallelizable. Every Lattice Boltzmann method [71] is based on the Boltzmann transport
equation

∂b

∂t
+ u · ∇b = F , (2.103)

where b is the particle distribution function, u is the particle velocity, and F is the collision operator. The
Navier Stokes equation can be recovered by this method using a proper choice of the collision operators.
In 2D a fluid particle, one node of the lattice, has 9 degrees of freedom. Based on the Maxwell-Boltzmann
particle distribution and the moments of this distribution, the macroscopic density, velocity, and energy
of the fluid are computed. The (macroscopic) fluid density ρ is obtained by summing up the particle
distribution functions

ρ =
9∑
1
bi (2.104)

and the overall (macroscopic) velocity u is computed by the sum of the particle distribution weighted by
the microscopic velocities ei

u = 1
ρ

9∑
1
cbiei . (2.105)

Boundary conditions

A general drawback of DNX is the lack of acoustic boundary treatment that starts simply with the
following uncertainty: "What is acoustics in a DNX?"

In the case of linear partial differential equations, far field, radiation or absorbing boundary conditions
were developed (see [72]). Colonius [73] reviews different open boundary techniques for compressible flow
simulations. The methods are categorized in linearized boundary conditions (far-field approximations),
nonlinear characteristic boundaries and absorbing layers. A general technique is to linearize the equations
and treat the boundaries of the nonlinear system with the characteristic boundary of the linearized
system [23,24]. Thompson [25,26] derived open boundary conditions for the linear hyperbolic equations
based on a 1D open domain boundary

( ∂
∂t
± c ∂

∂x
)p = 0 . (2.106)

However, the boundaries have to be improved to find suitable boundary conditions for the nonlinear
equations. Freund [27] developed a boundary layer technique for the compressible fluid dynamic equations
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that drives the solution to a quiescent target state. Freund’s conclusion states that the reflections are
significantly reduced compared to the local boundary condition of Thompson. Tam et al. [24] developed
a perfectly matching layer (PML) formulation for the linearized Euler equations. The stabilized PML
performs well as absorbing boundary condition. However, in a confined flow the group and the phase
velocity of the wave may have opposite sign, where the PML will not work well.

Impedance boundaries are available for linearized Euler equation [74] in the frequency domain or
discrete time domain, where the convolution integral is z-transformed [75]. For the full nonlinear Navier-
Stokes equations impedance boundaries are challenging. Furthermore, the impedance boundary of a
material is known to be incident angle depending. In the context of DNX, the modeling of acoustic
surfaces is limited to acoustically hard walls or full resolution of the absorbing material [76], e.g. micro
perforated plates or fibrous absorbers. Typically, acoustic simulations capture these damping effects, by
relatively simple and accurate models, e.g. complex fluid model. These models are validated by standard
measurement procedures and are tuned towards the experimental data. DNX focus on the details of
modeling nonlinear fluid dynamic effects on the sound propagation with reduced capabilities in modeling
the enclosed body surfaces. In this case a design engineer has to judge the importance of the distinct
effects with respect to the design objectives during product development.

After a valid DNX simulation, filtering methods are applied to determine the acoustic part of the
simulation. A basic approach filters the acoustic with respect to the wavenumber. Freund [21] applied
the wavenumber decomposition to a turbulent jet at Mach 0.9. The analysis was performed in one spatial
and the temporal coordinate, to extract the aerodynamic part.

Goldstein [22] states the desired properties of a filtered variable g, such that no radiating components
are present. The Fourier transformation of the filtered variable is defined by

ĝ =
∫ ∫

ge−(ωt−k·x) d3x dt . (2.107)

For an unbounded domain, the relation for a non-radiating filter in the Fourier space is

ĝno = 0, if |k| = ω/c . (2.108)

This condition is the dispersion relation of acoustic waves in a quiescent medium. In general, two
possibilities are available to realize the filtering. The first filtering technique is a local approach applying
the corresponding differential operator to the filtered variable. In the case of an unbounded quiescent
medium, the d’Alembert operator is

� := 1
c2
∂2

∂t2
−∆ . (2.109)

This property ensures that if g = ( 1
c2

∂2

∂t2 − ∆)gno, the condition (2.108) is satisfied. This filter can be
used directly in space-time to filter out radiating components. A second filtering technique is based on a
convolution filter equivalent to a window function W in the Fourier space.

ĝno = Wĝ (2.110)

The main challenge of this method is to define an accurate window for the investigated problem. A
perfect window has the following characteristic

W (ω,k) = 0 when |k| = ω/c

W (ω,k) = 1 otherwise . (2.111)
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The convolution targets the acoustic components. Practical realizations of such filters are problem de-
pendent and challenging. A more convenient realization targets the main flow components instead of
filtering the acoustic ones. Sinayoko et al. [77] applied this filtering techniques to a parallel shear layer
flow with promising results.

2.6.3 Perturbation equations

The third main approach, computing aeroacoustics, are perturbation equations that follow a systematic
separation of the fluid dynamic variables. A general flow field is decomposed into a fluid dynamic part and
an acoustic part. Klainerman and Majda [78] showed in the limit of low Mach numbers that acoustics is
the perturbation of the incompressible solution. The fundamental bases are mass, momentum and energy
balance and the constitutive equations relating pressure-density and stress-velocity. As for aeroacoustic
analogies, the computational workflow of perturbation equation follows the hybrid aeroacoustic method
that separates flow and acoustic simulation.

This promising idea of deriving perturbation equations extends the field decomposition technique that
is used to derive the linearized Euler equation (LEE). Before we discuss specific perturbation equations,
the LEE are derived. Starting from the Euler equations

dρ
dt + ρ∇ · u = 0 (2.112)

ρ
du
dt +∇p = 0 (2.113)

ρ
de
dt + p∇ · u = ∇ · (k∇T ) (2.114)

that are the high Reynolds number limit of the compressible fluid dynamic equations, where viscous
effects are neglected, e denotes the total specific energy, k the conductivity of Fourier’s law and T the
temperature. The energy equation of the Euler equation (2.114) is written as

dp
dt + κp∇ · u = (κ− 1)∇ · (k∇T ) , (2.115)

when dealing with acoustics and assuming an ideal gas. These equations describe an inviscid fluid, where
no boundary effects are essential and may be used for nonlinear wave propagation at high Mach numbers
with these underlying assumptions [79]. Based on the Euler equations the LEE are derived. The field
variables (ρ,u, p) are decomposed into a temporal mean component (·) and a fluctuating component (·)′

– perturbation. Finally, the LEE

∂ρ′

∂t
+ u · ∇ρ′ + u′ · ∇ρ+ ρ∇ · u′ + ρ′∇ · u = 0 (2.116)

∂u′

∂t
+ u · ∇u′ + u′ · ∇u+ 1

ρ
∇p′ − 1

ρ2∇(p′p) = 0 (2.117)

∂p′

∂t
+ u · ∇p′ + u′ · ∇p+ κp∇ · u′ + κp′∇ · u = 0 (2.118)

are obtained in their general form, neglecting conductivity. Bailly et al. [28, 29] developed special aeroa-
coustic LEE forced by aeroacoustic source terms on the momentum equation. The dominant source term
is of second order

∇ · (ρu′u′)−∇ · (ρu′u′) . (2.119)

Since then, the LEE have been modified to guarantee pure acoustics propagation [30].
The first idea to introduce a pressure reformulation of Lighthill’s dominant source term at low Mach
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numbers for an incompressible flow was proposed by Meecham and Ford [80]. Ribner [11] formulated his
dilatation equation that the primary pressure variable of Lighthill’s analogy is decomposed in a pseudo
and an acoustic part p′ = p0 + pa. This decomposition leads to the following known formulations of
Lighthill’s analogy based on an incompressible estimation of Lighthill’s tensor,

1
c2
∂2

∂t2
p′ −∇ · ∇p′ = ∇ · ∇pic . (2.120)

Furthermore, the acoustic part can be obtained by

1
c2
∂2

∂t2
pa −∇ · ∇pa = 1

c2
∂2

∂t2
pic . (2.121)

Additionally, Ribner extended the wave operator to uniform mean flow, without any physical justification.
Perturbed convective wave equation (PCWE) [39], follows right after Ribner’s extension to mean flow
convection, by inserting the definition of the acoustic potential into the acoustic pressure. The derivation
of PCWE is an exact reformulation of the APE 2 [31], in contrast to Ribner.

Hardin and Pope [32] formulated their viscous/acoustic splitting technique expansion about the in-
compressible flow (EIF), where they introduced a density correction ρ1

u = uic + u′

p = pic + p′ (2.122)

ρ = ρic + ρ1 + ρ′ .

The set of variables (u, p, ρ) is the compressible solution, (uic, pic, ρic) the incompressible solution and
the primed values are labeled as perturbations of the system. Inserting this into the mass balance and
momentum balance and utilizing the state equation p′(ρ′) yields a closed system of equation. This density
correction is not an acoustic variable, but needs to be taken into account such that the resulting field is
isentropic [81].

All perturbations (compressible part of a low Mach number flow) are computed in a second separate
acoustic simulation. In terms of Lighthill’s approach, this density correction modifies the source term of
Lighthill’s equation and satisfies an isentropic perturbation density, by solving

∂2

∂t2
ρ′ − c2∇ · ∇ρ′ = ∇ · ∇ · T− ∂2

∂t2
ρ1 − c2∇ · ∇ρ1 . (2.123)

The method relies on an incompressible flow simulation to extract the sources. Perturbation variables
converge to the acoustic perturbations in the far field. In the near field Hardin and Pope stated that
the primed variables are the difference between the compressible and the incompressible solution of the
flow field. This is validated by the pulsating sphere and the flow over a rectangular cavity. Inconsistency
critics arose on the EIF formulation of Hardin and Pope [33]. Shen and Sørensen [33, 34] modified this
method to account for non-isentropic flows. Their method is validated against the pulsating sphere and
the circular cylinder. Slimon et al. [35] proposed an aerodynamic/acoustic splitting method, which is
cost-effective and is validated for non-compact source regions. This further development of the expansion
about the incompressible limit method is derived systematically via a Mach number expansion.

As noticed by Seo and Moon [36] the viscous/acoustic formulation neglects coupling effects, which play
a role in the near-field. Thus, they proposed their version of perturbation equations named perturbed
compressible equations (PCE) for handling near-field coupling effects. They decompose the flow field into
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an incompressible and a compressible part

u = uic + u′

p = pic + p′ (2.124)

ρ = ρic + ρ′ .

The incompressible variables (uic, pic, ρic) represent the unsteady viscous flow and the primed variables the
difference between the compressible and incompressible field. In the far-field the compressible perturbed
quantities coincide with the acoustic part (irrotational in the far-field ∇× u′ = 0), whereas in the near-
field more complicated phenomena are described. Near field coupling effects are investigated in terms of
the perturbed vorticity ω′ equation of the flow

ω = ωic + ω′ . (2.125)

They derived the PCE by subtracting the incompressible flow dynamics equations from their compressible
counterpart and obtained their formulation in the nonconservative form

∂ρ′

∂t
+ u · ∇ρ′ + ρ∇ · u′ = 0 (2.126)

∂u′

∂t
+ u · ∇u′ + 1

ρ
∇p′ + u′ · ∇uic + ρ′

ρ

duic

dt = 1
ρ
∇ · S′ (2.127)

∂p′

∂t
+ u · ∇p′ + κp∇ · u′ + u′ · ∇pic = −dpic

dt
+ (κ− 1) (φ−∇ · qT) , (2.128)

where d.
dt := ∂.

∂t + uic · ∇(.) and the incompressible pressure must be rescaled such that pic
∞ = ρicc2/κ. φ

is the thermal viscous dissipation term and qT the heat flux vector. This method was applied to human
phonation simulations [37]. At low Mach numbers the influence of the perturbed vorticity on the sound
field is negligible and causes a grid dependent solution. Thus, Seo and Moon [38] reformulated their
nonlinear PCE to a grid independent, perturbed vorticity suppressing linear formulation. By neglecting
nonlinear terms and using vector identities to reformulate vortical structures the linear PCE can be
written as

∂ρ′

∂t
+ uic · ∇ρ′ + ρic∇ · u′ = 0 (2.129)

∂u′

∂t
+∇(uic · u′) + 1

ρic∇p
′ = −(ωic × u′)− (ω′ × uic) (2.130)

− ρ′

ρic
duic

dt + 1
ρic∇ · S

′ (2.131)

∂p′

∂t
+ uic · ∇p′ + κpic∇ · u′ + u′ · ∇pic = −dpic

dt
+ (κ− 1) (φ−∇ · qT) . (2.132)

A Mach number scaling u = uic + Mau(1) + Ma2u(2) + ... is utilized to show the Mach number depen-
dency of the terms. The perturbed velocity is proportional to the first expanded term u′ ∼ Mau(1).
Additionally, all fluid dynamic variables are scaled by their free stream values, and the perturbed vari-
ables are non dimensionalized by acoustic quantities. The dependency of the Mach number motivates
further simplifications on the linear PCE such that the linearized perturbed compressible equations are
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obtained.

∂ρ′

∂t
+ uic · ∇ρ′ + ρic∇ · u′ = 0 (2.133)

∂u′

∂t
+∇(uic · u′) + 1

ρic∇p
′ = 0 (2.134)

∂p′

∂t
+ uic · ∇p′ + κpic∇ · u′ + u′ · ∇pic = −dpic

dt (2.135)

At low Mach numbers the total derivative of the incompressible fluid dynamic pressure acts as the main
source. Goldstein [16] as well as Ewert and Schröder [31] indicate this source term as the dominant source
at low Mach numbers.

Ewert and Schröder [31] utilized a slightly different approach to derive the acoustic perturbation
equations (APE) in several versions and levels of complexity. The perturbation quantities of the APE
system are defined as the following decomposition of the flow field

u = u+ u′ = u+ uv + ua . (2.136)

In this equation u denotes the time averaged mean flow, uv the solenoidal (vortical) fluctuating velocity
perturbation and ua an irrotational acoustic velocity perturbation. Based on this field decomposition
four APE formulations are derived. The sources of the APE system are subject to Ewert and Schröders
source term filtering, which extracts the acoustic relevant source term projections on the modes. Instead
of filtering the flow field, the source terms of the wave equations are filtered according to the mode
properties. Chu and Kovasznay [82] showed that the linearized, viscous, compressible and heat-conducting
flow equations excite three fluctuation modes. The vorticity mode (turbulence), the entropy mode (heat
conduction), and the acoustic mode (compressibility) are activated by this equation and each mode
corresponds to an eigenvalue and an eigenvector. Acoustically active source terms are filtered by the
acoustic eigenmode projection. Therefore, the linearized Euler equations are transformed from space-time
(x, t) to the wavenumber-frequency domain (k, ω). Now an algebraic system of equations is obtained

EU = i(S +Uinit/2π) , (2.137)

where E is the operator matrix of the linearized Euler equation in frequency domain, U the vector of
the primary variables with its initial conditions Uinit, and S the source term. The eigenvalues λi and
eigenvectorsXi (vorticity, entropy and acoustic) of the system matrix A are evaluated. By projecting the
excitation to the acoustic subspace, the acoustic excitation is extracted. Finally, the system of equations
of the filtering is transformed back to space-time (x, t). In the original space the filtering is equivalent to
the solution of Poisson’s equation of the original source term S = (S1, ..., S5)T due to the compressible
flow simulation. Thus, the acoustic source term reads as

Sa =

c
−2S5

∇Φ
S5

 , (2.138)

where the condition for Φ is ∆Φ = ∂S2
∂x + ∂S3

∂y + ∂S4
∂z . The extension to a nonuniform flow field provides

a challenging task since the products of the mean flow and the perturbed quantities cannot be treated
separately in the frequency domain.

To derive the APE equations the mass and momentum conservation are expressed by the enthalpy h
and the velocity u as primary variables. These equations are finally expressed in terms of the perturbed
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pressure p′ and the acoustic velocity perturbation ua as the APE-1 formulation

∂p′

∂t
+ c2∇ ·

(
ρua + u p

′

c2

)
= c2

(
−∇ρ · uv + ρ

cp

ds′

dt

)
(2.139)

∂ua

∂t
+∇(u · ua) +∇p

′

ρ
= ∇ΦP +∇qω + T ′∇s− s′∇T , (2.140)

where d.
dt := ∂.

∂t + u · ∇(.). Additionally, cp is the specific heat capacity, s is the entropy and T the
temperature. ΦP contains velocity source terms as products of (u,uv) and qω vortical source terms. For
a low Mach number and incompressible applications only the term of ΦP matters, which further reduces
to ΦP ≈ (∇(pic)′)/ρ∞, with (pic)′ as the incompressible pressure perturbation.

The APE-2 formulation decomposes the pressure perturbation p′ further to exclude the incompressible
pressure perturbation (pic)′ ≈ ρΦP

p′ = ρΦP + pa (2.141)

from the remaining acoustic pressure perturbation pa. APE-2 is used in conjunction with an incompress-
ible unsteady flow simulation. At low Mach numbers and when neglecting nonlinear coupling, the source
term is approximated by the total time derivative of the pressure perturbation of the incompressible flow
simulation.

The introduced APE-3 system coincides with the APE-1 system, where the system is based on the per-
turbed total enthalpy. This formulation has one advantage over the APE-1, since no Poission’s equation
has to be solved to determine the source terms.

The APE-4 variant is based on the APE-1 system, with a focus on an efficient source term computation
by a compressible flow simulation, without solving a Poisson problem. Considering vortex sound problems,
the dominant source term of APE-4 is the Lamb vector.

An elegant wave equation with the total derivative of the incompressible fluid dynamic pressure as
source term was proposed by Hüppe and Kaltenbacher [39]. PCWE, which is formulated as

1
c2

d2φa

dt2 −∆φa = 1
ρ0c2

dpic

dt , (2.142)

is an exact reformulation of APE-2. Compared to the APE only one scalar equation is solved; the
computation is more efficient with respect to all computational resources. The acoustic velocity potential
φa is connected to the acoustic particle velocity and the acoustic pressure via

ua = ∇φa (2.143)

pa = −ρ0
dφa

dt = ρ0

(
∂φa

∂t
+ u · ∇φa

)
. (2.144)

By inserting the definition of the velocity potential into PCWE yields the formulation in the acoustic
pressure and velocity formulation

1
ρ0c2

dpa

dt +∇ · ua = − 1
ρ0c2

dpic

dt . (2.145)

The derivation of the PCWE assumes an incompressible averaged mean flow, with uniform mean den-
sity (ρ0 = ρ) and state equation (p′ = c2ρ′). Starting from the APE-2 system, with incompressible
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aeroacoustic sources

∂ρ′

∂t
+∇ · (ρua + uρ′) = 0 (2.146)

∂ua

∂t
+∇(u · ua) +∇p

′

ρ
= ∇ΦP +∇qω + T ′∇s− s′∇T (2.147)

∂pa

∂t
− c2 ∂ρ

′

∂t
= −∂p

ic

∂t
, (2.148)

the first equation is inserted into the last and the properties of the assumptions are used to rewrite the
variables

1
c2

(∂p
a

∂t
+ u · ∇p′) + ρ0∇ · ua = − 1

c2
∂pic

∂t
. (2.149)

The definition of the pressure fluctuations in the APE-2 equation p′ = pic + pa is used to get the final
version of the PCWE equation

1
c2

(
∂pa

∂t
+ u · ∇pa

)
+ ρ0∇ · ua = − 1

c2

(
∂pic

∂t
+ u · ∇pic

)
. (2.150)

Munz and coworkers [40–42] proposed an alternative derivation of perturbed equations for acoustic
by a Mach number scaling. They decomposed the field variables in the following way

u = uic + Mau′

p = p(0) + Ma2(pic + p′) (2.151)

ρ = ρ(0) + Ma2(ρic + ρ′) ,

where the incompressible density correction is related to the incompressible pressure pic = c2ρic. Addi-
tionally, p(0) and ρ(0) are the thermodynamic parts of the pressure and density. The decomposition is
inserted into the compressible Euler equations. After some manipulations, the linearized Euler equations
with the total derivative of the incompressible pressure perturbation as source are constituted as

∂ρ′

∂t
+ uic · ∇ρ′ + ρ(0)

Ma∇ · u
′ = −∂ρ

ic

∂t
− uic · ∇ρic (2.152)

∂u′

∂t
+∇ · (uicu′ + u′uic) + 1

Maρ(0)∇p
′ = 0 (2.153)

∂p′

∂t
+ uic · ∇p′ + κp(0)

Ma ∇ · u
′ = −∂p

ic

∂t
− uic · ∇pic . (2.154)

The dominant source is the incompressible pressure perturbation, all other sources are at least by a factor
Ma weaker. The equation models boundary compression and viscous effects. In the case of a vanishing
incompressible background flow, the formulation constitutes the linear acoustic wave equation, with the
second time derivative of the incompressible pressure as source term. The application of the method is
valid for subsonic flows, especially in the low Mach number regime.

Recently, Henke [83] proposed that the flow can be decomposed by an uniform asymptotic expansion
around the path-line averaged base flow. This decomposition shows that Lighthill’s acoustic analogy with
the approximated source term is the first order perturbation around the path-line averaged base flow.

In difference to the standard perturbation equations, De Roeck and Desmet [43] considered the prop-
erties of fluid dynamics at low Mach numbers. At low Mach numbers fluid dynamic effects are assumed
to be incompressible, while compressible effects are of acoustic nature. This assumption gives rise to a
Helmholtz decomposition of the compressible flow field and is the core concept of the aerodynamic/acous-
tic splitting technique. Therefore, the field is decomposed into a mean flow field and a fluctuating part,
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as introduced for the LEE. Furthermore, the fluctuating part is decomposed into an aerodynamic and an
acoustic component to split the field by its mathematical properties. The acoustic field is irrotational,
the aerodynamic part rotational and the source field, a compressible flow simulation, is separated into
these two parts. For both parts a Poisson’s equation is solved. The acoustic part follows from

∆φ = ∇ · u′ (2.155)

u′a = ∇φ , (2.156)

and the aerodynamic part is obtained by solving a vector valued Possion’s equation

∇×∇×A = ∆A = −∇× u′ (2.157)

u′v = ∇×A . (2.158)

With these equations the source domain is filtered to obtain the accurate acoustic and aerodynamic
quantities. At the coupling interfaces the information is propagated to the far field with an irrotational
formulation of the linearized Euler equations.

Source truncation

The domain, computing the aeroacoustic sources, is typically smaller than the propagation domain. A
smooth truncation of the source field is of special interest during hybrid methods [84], since otherwise
spurious sound modes are generated by this interface [85, 86]. Ewert [87] proposed two ideas to correct
this artificial interface error. The first correction is based on the fact that the source is truncated by a
Heaviside distribution

L∗ = H(f(x))L . (2.159)

Hence, the source vector is modified to L∗ and excites nonphysical modes. These modes can be corrected
by an additional source term. The modified source term is written as

∇ ·L∗ = H(f(x))∇ ·L+ δ(f(x))(n ·L) . (2.160)

Now the modified source term can be corrected by a line source on the artificial boundary due to the
truncation of the source field. The second approach suppresses spurious noise by a smooth window
function on the source domain. This window function reduces the edge effects. For a smoothed growth
h of the source terms with length d, waves of the size of λ� d are unaffected.

δ(f(x))(n ·L) −→ ∂H

∂x
(n ·L) (2.161)

For a special filter function one can estimate the wave-number dependency of the filter.

2.7 Cavity tones
The aeroacoustic method that is developed throughout this thesis is validated against specific cavity
problems. These cavity simulations utilize Helmholtz’s decomposition as a post processing tool as well
as an underlying concept for aeroacoustic propagation simulations. In order to be familiar with the
fundamental physical behavior, this chapter describes known effects of overflowed cavities.

Figure 2.3 shows a typical cavity, that is overflowed perpendicular to the cutout and parallel to the
L cursor. Overflowed cavities, such as cutouts in overflowed plates, generate various flow configurations.
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A turbulent boundary layer along the plate produces a free turbulent shear layer above the neck of the
cavity, complex recirculation inside the cavity, acoustic waves, and multiple interactions. The conservation
equations of viscous, heat-conducting, compressible fluid dynamics describe all effects of aeroacoustics,
including nonlinear interactions. According to Chu and Kovasznay [82], the linearized equations excite
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Figure 2.3: Example of a cavity with a lip [88].

three fluctuation modes, the vorticity mode (turbulence), the entropy mode (heat conduction) and the
acoustic mode (compressibility). Fluid dynamic modes or vorticity modes are perturbations that describe
viscous and turbulent fluid effects and are modeled by the incompressible fluid dynamic equations at low
Mach numbers. The entropy mode represents thermal effects of the fluid. Sound, or acoustic mode, is
linked to the compressible fluid and the wave can travel upstream and downstream below Mach one.
This list of excitation mode is extended to a fourth mode, the boundary excitation mode, which includes
vibrating surface and fluid structure interaction.

Multilateral interaction between these independently described modes is possible. A mode coupling
may modify the flow configuration towards a totally different phenomenon. Therefore, an exclusive
nonlinear interaction between the vorticity mode and the acoustic mode is assumed. Under this condition
the vortical limit cycle dominates the acoustic radiation [89]. The complex interaction is illustrated by
two simplified processes that transfer energy from flow to acoustic and vice versa. First, if streaming
fluid is accelerated or decelerated, respectively by wall interaction, vorticies are formed. The energy
of these vorticies is provided by the streaming fluid and the acoustic that triggers the instability. The
second process simply shows that any vortical structure radiates sound, especially when it hits a solid
surface (whistle). Acoustic waves have a large wave length at low Mach numbers and may interact with
channels or geometrical configurations. During an experimental investigation one must consider these
effects carefully. In most applications the net energy transfer supplies the acoustic mode, although the
coupling phenomena are quite different; this sound is summarized as cavity tones.

2.7.1 Historical perspective and classification

Since 1950, many scientists have been studying cavities. Pioneers like Roshko [92] and Karamcheti [90,93]
studied cavity noise considering aviation and aerospace applications. Roshko investigated the influence
of cavities on the flow. The experience of flow-induced vibrations and the enormous increase in drag
gave rise to intensive experimental investigations. He identified a primary recirculation inside the cavity
and secondary in the cavity corners, as known from a lid driven cavity. Despite the prior reason of
investigation, undesired structural vibrations lead to fatigue and generation of noise, reducing the capa-
bilities and maintenance intervals of aircrafts. Karamcheti was the first who analyzed acoustic radiation
in the sub and supersonic regime, including the influence of the boundary layer. Figure 2.4 shows the
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(a) Schlieren, M=0.64

(c) Schlieren, M=0.7

(e) Schlieren, M=0.8

(b) Run 2M6, M=0.6

(d) Run 2M7, M=0.7

(f) Run 2M8, M=0.8

Figure 2.4: Comparison of schlieren photographs [90] with contours of density gradient from the DNS.
In the schlieren photographs, the knife edge is horizontal in (c), vertical in the others; in the
DNS figures, ∂ρ/∂y is shown in (d), ∂ρ/∂x in the others. Extracted from [91]
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radiation pattern of overflowed cavities. A downstream amplification of the wave front was identified. In
the 1960’s, the next remarkable effects were explored by Plumblee et al. [94] for deep cavities, where the
cavity resonance couples to the turbulent shear layer instabilities. Years later, Elder et al. [95] named
the interaction between the Helmholtz resonator and the turbulent flow, turbulent rumble. Again, this
mechanism was not the last being detected. After an extensive parameter study, Rossiter [96] reported
severe resonances for laminar and turbulent flows, known as shear layer mode or Rossiter mode. His
well known semi-empirical formula defines the aeroacoustic feedback loop of a self sustained oscillation.
In the late 1970’s, Rockwell and Naudasher [97,98] stated the importance of the vortex-edge interaction
for self sustained interactions and published their popular classification of three typical cavity excita-
tion groups, fluid dynamic (aeroacoustic feedback), fluid-resonant (acoustic resonances), and fluid-elastic
(fluid-structure interaction) (see Fig. 2.5).

fluid-dynamic fluid-elasticfluid-resonant
(transversal)

fluid-resonant
(longitudinal)

Figure 2.5: Rockwell and Naudasher’s classification of cavity tones [99].

The experimental breakthrough from Gharib und Roshko [100] was the identification of the wake mode
during an incompressible cavity study. A wake mode is present for thin boundary layers and produces
a high flow resistance. Although the flow properties are very different, one can confuse shear layer and
wake mode.

The number of experimental and numerical studies increased the last years tremendously, especially
at low fluid speeds [101–105]. Low Mach number applications are motivated by the construction and
automotive industry [106, 107]. As obvious consequence of a low Mach number application, the fluid
is modeled incompressible [100, 108–111] and somehow aeroacoustic feedback is resolved. Section 3.3
explains ”why an incompressible flow simulation might resolve aeroacoustic feedback”.

2.7.2 Aeroacoustic feedback – Shear layer mode

Aerodynamic feedback (or fluid dynamic excitation) of cavities is one major noise mechanism. Under spe-
cial flow and geometry conditions, typical Kelvin-Helmholtz instabilities of the shear layer in conjunction
with acoustic instabilities form a feedback loop [89,97], called self sustained oscillations. This mechanism
is not limited to cavities, it is also known as jet-edge tone interaction, where a free jet flow impinges on a
solid wedge and involves feedback. Acoustic feedback inside cavities occurs for small ratios of the cavity
length L to the acoustic wave length λ, L/λ� 1.

Being geometry dependent, the boundary layer separates at the leading edge of the cavity and forms a
shear layer. This initially stable or unstable shear layer reaches from the leading to the trailing edge. If the
flow condition is suitable, the shear layer is unstable and Kelvin-Helmholtz instabilities convect towards
the trailing edge. These instabilities interact with the edge, causing mass oscillations [101, 104]. The
fluid motion drags fluid particles partly into the cavity and the remaining part is convected downstream.
Different escape phenomena have been classified by Rockwell and Knisely [112] (see Fig. 2.6). Each
interaction with the flow around the trailing edge originates an acoustic wave. Inside and outside the
cavity waves travel towards the leading edge and ignite new instabilities (see Fig. 2.6). This ignition
relies on the existing velocity gradient through the width of the shear layer. The newly generated
instabilities convect downstream and interacts with the trailing edge to form a closed loop. Strong acoustic
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Figure 2.6: (a) Schematic of the shear layer mode [104]. (b) Rockwell and Knisely’s [112] classification
of the edge interaction.

amplification is a consequence of a distinctive and effective in-phase feedback [113]. If the acoustic wave
is present but not effective in triggering a new oscillatory instability at the upstream location no self
sustained oscillation is formed. Figure 2.7 shows a sequence of characteristic flow structures during one
feedback loop.
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Figure 3. Effect of grid placement on the normal velocity at y = 0 and x = 1.57D, for run L2: (a)
the time trace for the reference case (——) and for a larger domain case (· · · · · ·); (b) the spectra
of the data in (a). Reference case L2 has downstream boundary 7.6D, upstream −3.9D, normal
9.2D. The grid has 1008 × 384 points above the cavity, and 240 × 96 points in the cavity. The larger
domain case extends to 11.8D downstream and 15.6D in the normal direction.
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Figure 4. Instantaneous vorticity contours for run L2 (shear-layer mode) at three different times
(a–c), corresponding to approximately one-third phase intervals of the dominant mode of oscillation
(2nd Rossiter mode). 15 equi-spaced contours between ωD/U = −5 and 1.67 are shown; positive
contours are dashed. Only a small portion of the computational domain near the cavity is shown.

3. Shear-layer mode

The shear-layer mode is characterized by the feedback process described in the
introduction: the roll-up of vorticity in the shear layer, impingement and scattering of
acoustic waves at the downstream cavity edge, upstream acoustic wave propagation,
and receptivity of the shear layer to acoustic disturbances. The process is clearly born
out by the computational results. Iso-contours of vorticity are depicted in figure 4 for
run L2, and these are indicative of all the runs in the shear-layer mode of oscillation.
Vortical disturbances in the shear layer are clearly evident, and the flow inside the
cavity is relatively quiescent, with a weak vortex occupying the downstream half of
the cavity. Vorticity of the opposite sign (to boundary-layer vorticity) is generated
along the walls of the cavity. Note that at three different instants in time, while the
phase of the disturbances in the shear layer has shifted, the vorticity contours in the
cavity are nearly the same. The steadiness of the vortex occupying the latter half of
the cavity (which is confirmed by the mean flow, discussed in comparison to the wake
mode mean flow in § 4) indicates that the interaction of the flow inside the cavity with
the shear layer is relatively weak.

Figure 5 provides a qualititative confirmation of the acoustic feedback process.
Plotted are contours of the density fluctuations along the cavity mouth (y = 0) and
along the cavity walls, as a function of time. Both upstream (acoustic) and downstream
(vortical) disturbances are evident along the shear layer, while density fluctuations
along the bottom are purely acoustic. The phase variation of these disturbances will

Figure 2.7: Instantaneous vorticity contours for run L2 (shear-layer mode) at three different times (a-c),
corresponding to approximately one-third phase intervals of the dominant mode of oscillation
(2nd Rossiter mode). 15 equi-spaced contours between ωD/U = −5 and 1.67 are shown;
positive contours are dashed. Only a small portion of the computational domain near the
cavity is shown. Extracted from [91].

Laufer and Monkewitz [114] derived the characteristic frequency based on matching traveling times
of the vortex shading the pressure wave. Unknown parameters were estimated and the phase lag of the
acoustic emission was introduced by Rossiter. Rossiter [96] fitted a semi-empirical model describing the
characteristic frequency of the acoustic noise depending on the Mach number Ma

Stn = n− α
U∞
Uc

+ Ma
∀ n ∈ N+ . (2.162)

The model is limited to Mach numbers above 0.4, where α is the phase lag that corresponds to the time
delay from an impinging vortex at the trailing edge and the emission of the acoustic noise. The free
stream velocity U∞ and the convective velocity Uc of the vortex in the shear layer complete Rossiter’s
formula. Parameter estimates are given in literature [66, 96, 104, 115, 116]. Rossiter’s formula computes
the base frequency of the nth shear layer mode. Each shear layer mode has further multiples k of this
base mode at

fnk = k
StnL
U∞

∀ n, k ∈ N+ . (2.163)

Elder [117] detected speed variations during the convection of the vortices. With increasing distance from
the leading edge the growing structure accelerates since it is driven by a larger tangential velocity. In
laminar boundary layers vortices are convected faster than in turbulent boundary layers, since laminar
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Figure 2.8: Rossiter modes. Variation of the peak frequencies as a function of the Mach number for the
cavity experiments of Kegerise [115] for L/D = 2. Extracted from [89].

vortices are typically further away from the wall [89]. Figure 2.8 illustrates the remarkable prediction of
the shear layer frequency. Although, various known influences on cavity noise are ignored or simplified,
the location of the characteristic frequency is predicted well (as long as the fitted parameters are valid).
Trailing edge interaction variations [97,98], the effects of the cavity depth [118], and complex recirculation
inside the cavity are neglected by Rossiter’s formula.

2.7.3 Fluid dynamic feedback – Wake mode

The wake mode is a fluid dynamic cavity mode causing high flow resistance. The shed vortex in the wake
mode has nearly the dimensions of the cavity size, as depicted in Fig. 2.9. A transition from the shear
layer mode to the wake mode is observed with increasing Mach number and increasing relative width
and depth (based on the leading edge boundary layer thickness). Under these conditions the Kelvin-
Helmholtz instabilities are so large and strong that they dominate the flow inside the cavity as well as
the feedback. Figure 2.9 shows the evolution of the flow structures over one period. A strong vortex is
formed at the leading edge that pushes out the vortex of the previous period, while it drags in fluid from
the free stream. The squeezed vortex is roughly drawn over the trailing edge and separates the flow after
the cavity. In the clean cavity the new vortex enlarges until it separates from the leading edge and the
next leading edge pushes the vortex structure further downstream. The characteristic frequency of the
wake mode coincides with the vortex shedding frequency and depends weakly on the Mach number that
indicates a fluid dynamic feedback [91]. Compared to the shear layer much stronger pressure fluctuations
occur in the mouth of the cavity. Although, the wake mode and shear layer mode are Kelvin-Helmholtz
instabilities, the resonant behavior and origin is quite different and should not be mixed up.

2.7.4 Acoustic resonances or fluid resonant

If the box mode condition or Helmholtz condition is fulfilled, oscillatory effects in the fluid excite these
cavities. Firstly, the cavities characteristic length has to be equal or larger than the acoustic wave length
(box mode or duct mode). Secondly, the Helmholtz mode is a compressibility effect, since the cavity neck
and the back volume form a single-mass spring system. The Helmholtz condition is fulfilled if an excitation
frequency meets the natural frequency of the fluid mass oscillations. Interaction between the acoustic
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Figure 16. Instantaneous vorticity contours for run L4 (wake mode) at four different times (a–d ),
corresponding to approximately quarter-phase intervals of the periodic cycle. 15 contours between
ωD/U = −5 and 1.67. Positive contours are dashed. Only a small portion of the computational
domain near the cavity is shown.

is predicted well, at least for moderate values of x/θ. Knisely & Rockwell (1982)
used a constant-thickness mean profile, and found that the amplitude matched the
linear theory well, for x/θ0 6 30; Cattafesta et al. (1997) found good agreement
for x/θ0 6 60, also using a constant-thickness mean profile. However, our Reynolds
number is much smaller than that in either of these experiments, so presumably a
viscous stability calculation would agree better.

In summary, linear stability theory gives reasonable predictions for the mode
shapes of the resonant frequencies, and also the convection speeds of disturbances,
but amplification rates are significantly over-predicted. The linear stability calculation
was compressible, but inviscid, and locally parallel. Adding viscous effects, including
effects of flow/acoustic coupling, or carrying out a multiple scales analysis to account
for slightly non-parallel effects (e.g. Crighton & Gaster 1976) may provide a better
agreement than is obtained here.

4. Wake mode

As the length or depth of the cavity (relative to the upstream boundary-layer
thickness) and/or Mach and Reynolds numbers is increased, there is a substantial
change in the behaviour of the cavity oscillations. Under these conditions, the flow is
characterized by a large-scale shedding from the cavity leading edge. As noted in the
introduction, Gharib & Roshko (1987) were the first to understand this transition in
detail, and used the term wake mode to describe the resulting flow regime. Connections
with the experiment are discussed further below. The shed vortex has dimensions of
nearly the cavity size, and as it is forming, irrotational free-stream fluid is directed
into the cavity, impinging on the cavity base. The vortex is shed from the leading edge
and ejected from the cavity in a violent event. The vortex is large enough to cause flow
separation upstream of the cavity during its formation, and again in the boundary
layer downstream of the cavity as it convects away. Figure 16 shows four snapshots
of the vorticity field in wake mode for run L4 over one period of oscillation.

Figure 2.9: Instantaneous vorticity contours for run L4 (wake mode) at three different times (a-d), cor-
responding to approximately quarter-phase intervals of the periodic cycle. 15 equi-spaced
contours between ωD/U = −5 and 1.67 are shown; positive contours are dashed. Only a
small portion of the computational domain near the cavity is shown. Extracted from [91].

resonant effect and the fluid oscillatory effects are small and also the superelevation of the resonance is
smaller than the amplification of aeroacoustic resonances. The excitation mechanisms, turbulent rumble
(see Fig. 2.10) and damped fluid dynamic oscillations are not subject to any feedback mechanism. Inside
the boundary layer turbulent pressure fluctuations trigger distinctive cavity modes. These pressure

U∞ U∞ U∞

xxcrit0

δ (x)

Figure 2.10: Schematic of boundary layer at an overflowed flat plate [119] that undergoes the transition
from a laminar boundary layer to a turbulent boundary layer at the location xcrit at a
boundary layer thickness of δ. Extracted and modified from [120].

fluctuations above the neck of the cavity are called turbulent rumble [117, 121]. Cavities interact with
broadband fluctuations and elaborate a selective amplification of the sound source. The resonator (cavity)
filters the sound like a band-pass. CAA resolves turbulent rumble either by a highly resolved large eddy
simulation (LES) or direct numerical simulation (DNS), or a hybrid synthetic turbulence model. In
contrast to aeroacoustic feedback, damped oscillations are not in phase with the feedback mechanism
and therefore not self-sustained. The acoustics generated by the mechanism is not coupling to the source
oscillation (no energy is transfered back). If this flow oscillation extinguishes, the sound generation
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and amplification diminishes rapidly. However, the co-existence of aeroacoustic feedback and acoustic
feedback is possible and in the case of coinciding frequencies this lock-on state causes even higher sound
levels. The lock-on state is characterized such that almost all energy of flow disturbances is trapped in
this frequency and multiple harmonics.

Duct modes

Acoustic modes of a cavity can be approximated by a simple box model. The cavity fluid box consists
of five sound hard walls and one sound soft top. This model describes duct resonances and accounts for
mode coupling (see Fig. 2.11). The main parameters of the box model are the cavities length L, depth
D, and width or span W as well as the isentropic speed of sound c0. Box resonance frequencies follow
the equation

fnx,ny,nz = c0
2

√(nx
L

)2
+
( ny

2D

)2
+
(nz
W

)2
∀ nx, ny, nz ∈ N . (2.164)

In the case of shallow cavities L/D > 1 the radiation loss is so dominant that these acoustic modes are
highly damped and cause no effective noise amplification.

axial (1D) tangential (2D) oblique (3D)

Figure 2.11: Duct modes and their radiation path [122].

Helmholtz resonance

Named after the German physicist Hermann von Helmholtz, a Helmholtz resonator is an acoustic res-
onator that looks like a bottle (see Fig. 2.12). Today, room acousticians use Helmholtz resonators
frequently as sound absorbers to improve the acoustic quality of rooms. Beside these positive associa-
tions, unintended Helmholtz resonators arise during vehicle design (e.g. sunroof [123], door gaps [124]).
Cavities with a reduced neck and a relatively large back volume are Helmholtz resonators. Figure 2.12
describes this resonance type by an illustrative mechanical analogy to a single-mass oscillator [125]. The
grazing flow through the orifice and the relative stiffness of the back volume allows the resonator to
amplify one distinctive frequency

f = c0
2π

√
S

V (DMn +Dc) . (2.165)

The resonance depends on the cross section of the neck S, the total back volume of the cavity V , the
length of the neck DMa and the correction length of the neck Dc (e.g. Dc = Wπ/2, neck width W ).
Further, investigations on Helmholtz resonators aim to include dissipative effects and derive a more
general lumped mass model [126].

2.7.5 Fluid elastic resonant - fluid structure interaction

Finally, fluid elastic resonant effects are discussed briefly, since all simulations within this thesis consider
rigid walls. A starting point for further insight in fluid elastic cavity effects could be [99]. Elastic cavity
wall vibrations are an important sound generation mechanism. Prominent examples of fluid elastic
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Figure 2.12: Schematic of the single-mass oscillator model analogy of the Helmholtz resonator. Extracted
from [88].

resonances are musical instruments, like guitars and drums. If structural vibration and the acoustic
resonant or aeroacoustic resonant effects are in phase and amplify each other (lock-on state) sound is
generated efficiently.

2.7.6 Factors of influence - shear layer mode

Experimental studies characterized general influence factors on the different cavity modes and air towards
a more fundamental perspective. A common classification based on the dimensionless depth L/D of the
cavity misdirected pioneers work, since it was believed that the dimensionless depth adds value to the
experimental cavity studies. East [127] analyzed deep cavities and concluded that aeroacoustic effects
should be indicated by real flow parameters rather than geometrical parameters. Characteristic flow
parameters are the dimensionality of the flow, the free stream velocity, the boundary layer thickness,
effective viscosity, and recirculation. The following paragraphs discuss the most important influence
factors on shear layer modes.

Mach number

Known from Rossiter’s formula, the free stream velocity, respectively the Mach number, in combination
with the cavity length L is a key parameter of cavity noise. Rossiter modes are proportional to the
velocity; this dependency is known as ladder structure when the Rossiter mode frequencies are plotted
over the Mach number. Two possible reasons cause Mach number independent Rossiter modes. Firstly,
the Rossiter mode couples with an acoustic mode, usually with the depth mode. Secondly, the wake mode
is wrongly identified as shear layer mode. According to Ahuja and Mendoza [104], higher Mach numbers
cause higher sound pressures for the whole frequency range. This increase is explained by nonlinear
interactions and higher harmonics.

Evolution of the shear layer

Gloerfelt et al. [128] describe the evolution of the shear layer throughout the cavity. When the boundary
layer arrives at the leading edge, fluid exchange between the moving and resting fluid drives momentum
thickness growth. Figure 2.13 separates the growth of the momentum thickness δ2 into three subpro-
cesses. Second order growth of Kelvin-Helmholtz instabilities is estimated by the first two linear growth
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subprocesses (1) and (2). Initially, the acoustic disturbance in conjunction with vortex pairing promotes
a strong increase of Kelvin-Helmholtz instabilities. In the second part, viscous energy transfer without
vortex interaction reduces the initial growth rates. The third region near the trailing edge is dominated
by the impact which widens the vortices laterally with high deviations between consecutive collisions.
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Figure 2.13: Non-dimensional momentum thickness δ2/δ2,ref between the two corners of the cavity: LES
of L/D = 3, Ma = 0.8, and ReL = 1.23 · 105 cavity. Extracted from [128].

At increasing Reynolds numbers, the initial vortex pairing is believed to be superior to the acoustic
trigger. In this state different metastable shear layer modes coexist, mode switching can occur through
spontaneous reorganization of tiny turbulent vortices and additional low frequent components are pro-
duced by complex recirculation [89]. The overall dependency on the Reynolds number is emphasized in
the next section.

Reynolds number

Reynolds number describes the transition from laminar to turbulent flows, but is not specific for cavities.
However, the flow state inside the laminar and turbulent regime is essential for the Kelvin-Helmholtz
instabilities of the shear layer. For low Reynolds numbers, the shear layer may remain stable. Weak,
three dimensional recirculations occur inside the cavity. Until reaching a critical Reynolds number, these
recirculations are intensified (see Fig. 2.14). Above the critical Reynolds number the turbulent vortices
are different from Kelvin-Helmholtz instabilities and excite broadband noise, turbulent rumble.

Re=4600 Re=8070 Re=10670

Figure 2.14: Increased unsteadiness of the recirculation zone as the Reynolds number is increased in the
water tunnel experiments of Faure et al. [107] for a L/D = 2 cavity.

Boundary layer thickness

By applying stability theory to the shear layer, the boundary layer thickness was found to be a main
influence factor [129]. Having the same shear layer mode, a decreasing boundary layer thickness increases
the mode frequency, the pressure level inside the cavity, and the radiated sound pressure level [44, 88].
Gharib and Roshko [100] observed a minimum relative cavity length L/δ2; beneath it, the laminar shear
layer instability is stable. The DSC study [66] indicated that the third Rossiter mode is likely for thinner
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boundary layers, whereas the second Rossiter mode is present for the thicker cavity mode (see Fig. 2.15).
This interpretation lacks generality, since only two configurations are compared.

(a) — 3. Rossiter Mode

(b) — 2. Rossiter Mode

Figure 2.15: Influence of the boundary layer thickness on the selection of the mode of oscillations at low
Reynolds numbers. Crossview, sideview and planview of the norm of the vorticity for the
cases (a) L/δ2 = 105, (b) L/δ2 = 76 [66].

For high Reynolds number ReL > 106, the flow modes are independent of the boundary layer thick-
ness [130]. Figure 2.16 depicts the flow disturbances for two boundary layers at Ma = 0.78. Beside
turbulent rumble, the modes coincide qualitatively. Additionally, Gloerfelt [131] validated his LES by

(a)                                                                           (b)

Figure 2.16: Influence of boundary layer thickness at a high Reynolds number. Schlieren pictures with
knife edge horizontal for a cavity with L/D = 0.42 and a Mach number Ma = 0.78 with (a)
or without (b) suction of the boundary layer ahead of the cavity. Extracted from Illy [130].

Kegerise’s high Reynolds number experiments [115]. The profound LES study varied the boundary layer
thickness (δ = 3.5 mm and δ = 6.1 mm) and the turbulent intensity of the boundary layer. Analog to
previous discussions, the flow inside the cavity is independent of the boundary layer thickness and an
increase in turbulence reduces the strength of the large vortices (see Fig. 2.17).

Dimensionless width

Although downsizing of flow properties to geometrical ones is critical, the dimensionality of the flow is
expressed by the dimensionless width L/W . In the case of wide cavities (L/W < 1) the shear layer forms
coherent structures transverse to the flow. These coherent structures can be seen as a two dimensional
flow. All effects of the side walls are less important for the overall flow condition. For slender cavities
(L/W > 1) these side wall effects interact with the main shear layer and produce three dimensional
and incoherent structures. The geometric limit is not absolute and additionally depends on the Mach
number, the boundary layer thickness, and the recirculation inside the cavity. A two dimensional shear
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(a) (b)

(c) (d)

Figure 2.17: Influence of boundary layer thickness at high Reynolds numbers. Large-eddy simulation of a
L/D = 2 cavity at a Mach number of 0.4 [131]. Snapshots of instantaneous vorticity modulus
averaged over the cavity span with: (a) δ = 3.5 mm and no perturbation; (b) δ = 6.1 mm
and no perturbation; (c) δ = 3.5 mm with turbulent inflow; (d) δ = 6.1 mm with turbulent
inflow. Extracted from [89].

(a) (b)

Figure 2.18: Effect of L/W on cavity flow narrow band noise spectra measured by Block [101] (a), and
Ahuja and Mendoza [104] (b).

layer typically forms a three dimensional recirculation inside the cavity [89]. Rossiter [96], Block [101],
as well as Ahuja and Mendoza [104] investigated the aeroacoustic relevancy of L/W . Figure 2.18 shows

(a) (b)

Figure 2.19: Pressure fields in the span-wise midplane for the two simulations at Mach 0.6: L/W = 1.28
in (a), L/W = 0.5 in (b). PL between -500 and 500 Pa. Extracted from [66].
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both wide and slender cavities excite a common frequency. The studies are not clear whether the slender
or the wider cavity is louder.

A DSC study of Gloerfelt et al. [66] analyzed the acoustic radiation pattern with respect to the
cavity width at Ma = 0.6. The results of a slender cavity L/W = 1.28 and wide cavity L/W = 0.5
confirm differences in the radiation and the number of vortices (3 and 2.5) in the orifice of the cavity (see
Fig. 2.19).

Recirculation and 3D effects

Two dimensional recirculation inside the cavity may turn unstable and form three dimensional Taylor-
Görtler vortex pairs (see Fig. 2.20). The extension of the Taylor-Görtler vortex pairs depends on the

Figure 2.20: (a) Experimental stationary Taylor-Görtler vortices for Re = 850 reproduced from Alben-
soeder and Kuhlmann [132]. The flow is from the top to the bottom, and was illuminated
in the plane y ≈ −1/2 by a light sheet. (b) Numerical simulation of the flow for the same
parameters as in (a). Vorticity iso-surfaces |ωx| = 210 are shown. Extracted from [132].

intensity of the primary vortex and its side wall interaction. Side wall modified span-wise modulation of
the shear layer transfers additional three dimensional momentum into the recirculation. The recirculation
causes an upstream convection inside the front part of the cavity (see Fig. 2.21). The continuous
upstream interacts with the shear layer and the transversal coherence of the flow structures vanish inside
the neck. Each modulation shear layer by the upstream component triggers low frequent components in
the pressure spectra. As already noted in the previous paragraph, low frequent velocity oscillations can
also be a product of vortex pairing, or mixing layer and jet-edge interaction phenomena.

Figure 2.21: Instantaneous vorticity contour sequence (a–d); compressible 2D URANS study [133].
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3 Flow-Acoustic Coupling and
Aeroacoustic splitting

Preliminary, this chapter discusses the possible issues during DSC (direct sound computation). DSC
describes the computation of flow and acoustic. Acoustics is one of multiple modes of fluid dynamics [134]
and the special physical requirements on the algorithms are appraised. The DSC resolves acoustics directly
and, in contrast to acoustics, turbulence is modeled or computed directly.

If acoustics is not resolved and all turbulence is computed directly, this simulation type is called a
direct numerical simulation (DNS). What is DSC and what DNS? DSC simulates acoustics directly; DNS
simulates turbulence directly. However, a DSC that computes turbulence directly is also a DNS and vice
versa, called direct multi-scale simulation (DX) afterwards.

3.1 Direct numerical simulation
DNS solves the compressible fluid dynamic equations and the emerging unsteady turbulent fluctuations
directly. Unsteady turbulent fluctuations contain turbulent kinetic energy and the essence of DNS is to
resolves the whole turbulent kinetic energy spectrum. The turbulent spectrum (see Fig. 3.1) reaches
from the large turbulent vortices, represented by the integral length, to the tiny turbulent structures,
estimated by the Kolmogorov scale. Advantages and limitations of DNS lie close to each other, resolving
all possible turbulence scales makes the DNS the superior turbulence treatment with the contradiction
on the computational workload. The number of mesh points nmesh is assessed by the ratio of the integral
length and the Kolmogorov scale in three dimensions

nmesh ∼ Re9/4 . (3.1)

”Despite the considerable progress in computing resources [...], it is still only possible to reach moderate
values of the Reynolds number in direct numerical simulation.” [135]

However, DNS drives the development and validates the applicability of turbulence models. In prac-
tical flow application, large eddy simulations (LES), unsteady Reynolds averaged Navier-Stokes models
(URANS) or hybrid LES-URANS turbulent models are currently used.

Although these turbulence descriptions are applied in direct sound computation, hybrid aeroacoustics
has found a different way to model turbulence. These synthetic turbulence models (e.r. SNGR [137])
mimic turbulent structures for aeroacoustic investigations and reduce the computational cost. The herein
developed method can be extended towards separating distinctive aeroacoustic effects onto the modeled
turbulent source terms [16]. In particular, the vortex sound approximation in combination with a syn-
thetic turbulence model is computationally efficient for high Reynolds number aeroacoustics.
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Figure 3.1: Energy cascade of turbulent kinetic energy spectrum. Extracted from [136].

3.2 Direct sound computation
For practical applications, DSC is infeasible, even though great advances have been made in direct
computation of aerodynamic sound. Section 2.6.2 discussed already the open issues of DSC and for
transonic and supersonic flow configurations simulations show satisfactory results with respect to the
computational burden. In this range of Mach numbers, Helmholtz number and the Strouhal number are
of the same magnitude. Physically speaking, the vortical and the acoustic length scale are of the same
order. For subsonic flows, we determine the disparity of acoustic length scales (wavelength) λ and the
vortical length scale lv by the Mach number Ma

λ = lv
Ma . (3.2)

At low Mach numbers, DSC suffers from this disparity of length scales and although the flow can be mod-
eled as incompressible, the simulation has to solve the compressible flow equations. Possible challenges
of DSC are summarized below.

ΩA

ΩF

ΓF

ΓA

ΓS

Ω

Ω1

Figure 3.2: Typically, the domain Ω of a hybrid aeroacoustic workflow consists of two subsets: The
domain ΩF, where vortical structures are present and the subsequent acoustic propagation
domain ΩA .
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Compressible fluid
The propagation of an acoustic field requires a compressible fluid. Compared to an incompress-
ible flow simulation, wave propagation and feedback of the acoustic field onto the flow field is
incorporated. Numerically and mathematically speaking, wave propagation is only possible if the
computational scheme suits the compressible flow equations.

Farfield decay
Based on Biot-Savart formula, an incompressible flow perturbation decays with O(1/||x||32), whereas
the acoustic field decays with O(1/||x||2) [13]. This decay discrepancy leads to a larger domain
(Ω = ΩF ∩ΩA) for a DSC, as if hybrid aeroacoustic methods are used (only ΩF). Additionally, the
weak acoustic decay involves an accurate radiation boundary treatment at ΓA that transmit waves
without reflections.

Disparity of scales
Small vortices, at low Mach numbers (Ma < 0.3), produce waves with a much longer wavelength. In
order to model these waves in the flow domain, the fluid domain and the discretization is adjusted
in order to resolve acoustics. The number of mesh points is proportional to

nmesh ∼
1

Ma3 . (3.3)

Analog to the length scale disparity, the difference in the energy scale of vortical structures and
acoustics is enormously. For subsonic flows, the energy concentration in vortical structures leads
to a higher amplitude of flow fluctuations compared to acoustic perturbations. The acoustic per-
turbations ||ua||/||u|| ∼= 10−3 are potentially so small [138, 139] that they could be computational
noise, and the aeroacoustic sources for subsonic flows are inefficient ∼ Ma5. As a consequence, a
separate acoustic computation has been proposed – hybrid aeroacoustic.

Discretization
The numerical resolution of partial differential equations approximates, discretizes, the continuous
space and time derivatives by algebraic terms. For wave equations, a spatial discretization of about
20 computational points per wavelength with a second order scheme leads to an acceptable disper-
sion error for engineering applications1. In combination with a time derivative, numerical stability
requires that the time step of an explicit time scheme must satisfy the Courant–Friedrichs–Lewy
(CFL) condition

CFL = ∆t Ui∆Xi
≤ CFLcrit . (3.7)

1 Classification of numerical errors of the wave equation:

– Phase velocity error, the numerical phase velocity cph is not the speed of sound

cph =
ω

||k||
6= c , (3.4)

and results in a phase shift over the propagation.
– Group velocity error, the numerical group velocity cg is not the speed of sound

cg =
∂ω

∂||k||
6= c , (3.5)

and results in a energy transport delay during wave propagation.
– Amplitude error, the numerical angular frequency ωn is complex

ωn = ωrn(k) + iωin(k) (3.6)

and the wave looses or gains energy.
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At low Mach number the critical CFL region is where tiny flow structures are resolved by the refined
grid. To stabilize the flow simulation, the time step must be reduced accordingly.

The discussed difficulties arise with the structure of the partial differential equation and the physically
correct boundary conditions. In particular for fluid dynamics, the structure of the partial differential
equation changes from an elliptic-parabolic equation (incompressible) to a hyperbolic-parabolic equation
in the compressible constitution. The hyperbolic part describes the wave propagation. Analog to the
incompressible flow simulation, the compressible flow simulation has fluid dynamically speaking similar
boundary conditions, but impinging waves of the acoustic component must be treated.

Farfield radiation
The DSC boundary conditions must transmit, absorb, and reflect waves physically. For the non-
linear compressible fluid dynamic equations no exact acoustic free field boundary conditions are
available yet. Today, the damping properties of the grid or/and additional artificial viscosity damp
the waves in a sponge zone2. If this technique is not used, spurious reflections will corrupt the
DSC. It is obvious that a profound DSC must consider these boundary effects. When just mod-
eling fluid dynamic, even though acoustic scales are small, the compressible flow solution must be
boundary-robust3 against acoustic effects.

Acoustic absorbing material
If special acoustically relevant materials are investigated, such as absorbing material, the flow
simulation must either model the boundary or resolve acoustic material. Typically, a full scale
resolution of absorbers is beyond computational resources. Simplified CFD models mimic the flow
resistance and the acoustic behavior. In most cases a hybrid aeroacoustic simulation can incorporate
known acoustic effects during the acoustic simulation easily.

Finally, the currently available proprietary tools incorporate additional damping inside the computational
method to increase robustness. Acoustically suboptimal first or second order approximation schemes are
usually used.

3.3 Hybrid methodology – Incompressible flow
Compared to DSC, hybrid methods increase the computational efficiency. Figure 3.3 illustrates the hybrid
workflow. A highly specialized incompressible flow solver calculates the fluid dynamics and resolves
necessary turbulent scales. In a second simulation the acoustic propagation is computed. This hybrid
procedures ensures a fast and accurate computation of the flow on a reduced domain, as well as an efficient
acoustic propagation on a larger domain. Both solvers are well-suited for their application. Typically,
hybrid aeroacoustics is applied in conjunction with an incompressible flow simulation.

Known physical effects, like the Rossiter mode, involve acoustic feedback and the flow simulation must
resolve acoustics. If an acoustic feedback mechanism triggers flow structures, physical theory suggests
a compressible flow simulation and hence an incompressible simulation is inappropriate. However, in
some applications even an incompressible flow simulation catches this feedback – somehow (e.g. Rossiter
mode [44]).

2 A sponge zone is usually utilized to damp acoustic and vortical perturbation. For large wave length, the zone extension
might violate acoustic compactness and acoustic reflections can occur.

3 Robust flow configuration are flow states that include no aeroacoustic feedback and therefore no aeroacoustic flow
modulation. In this sense, a robust compressible flow configuration converges to the incompressible flow configuration
for low Mach numbers. A boundary-robust configuration is unaffected by small spurious boundary reflections.
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Figure 3.3: Schematic of a typical hybrid approach in aeroacoustic. One way coupling of the resolved
flow to the acoustics.

3.3.1 Feedback

In this section, we investigate the role of coupling of flow and acoustics during an incompressible flow
simulation (see Fig. 3.4). Prior to discussing incompressible feedback and consolidating the conclusion,
the feedback situation during a compressible simulation is outlined. For a compressible flow simulation it
is clear that the acoustic waves are part of the solution and trigger feedback. This feedback mechanism
is a closed loop of simplified processes. At first, a vortex is triggered by an acoustic wave. Secondly, the
vortex is convected and transformed while sound is emitted. The radiated sound travels ”back” to the
flow structure trigger point and causes new flow instability. This process description has been used by
Rossiter to deduce his well-known feedback formula. This feedback occurs since phase relations inside
the flow are considered by traveling effects and a limited speed of sound. In contrast to the compressible
flow, an incompressible flow neglects these traveling effects and violates phase relations. However, in the
low Mach number range of an compressible flow simulation these phase relations are nearly identical to
the incompressible approximation, with unlimited speed of sound.

In the case of an incompressible simulation, this coupling phenomenon is studied by compact acoustics.
Compact acoustics approximates the acoustic field by an elliptic equation for small Helmholtz numbers
He� 1. Lighthill’s compact acoustic version reads as

−∇ · ∇p′ = ∇ · ∇ · T . (3.8)

The feedback mechanism is similar to the feedback of compressible flows, with an instantaneous ”back”
traveling of compact acoustics (elliptic equation). We show that the compact form of Lighthill’s aeroa-
coustic analogy coincides with the pressure correction equation of the incompressible CFD. We start the
derivation from the incompressible Navier-Stokes equations without external forcing

ρ0
du
dt = −∇p− η∆u . (3.9)

If we represent the velocity Laplacian by the vorticity ∆u = ∇ × ω, the incompressible Navier-Stokes
equations is

ρ0
du
dt = −∇p− η∇× ω (3.10)
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and taking the divergence afterwards yields the pressure correction equation

ρ0∇ · (u · ∇)u = −∇ · ∇p . (3.11)

After the velocity term is simplified ∇· (u ·∇)u = ∇·∇ ·T−∇·u∇·u, Lighthill’s tensor T is introduced
and the consequence of incompressible flow ∇ · u = 0 is used. In this sense, the pressure correction
equation is reorganized to

−∇ · ∇p = ∇ · ∇ · T . (3.12)

To conclude, compact acoustic propagation is part of the incompressible flow simulation and feedback
might be possible.
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Energy

Compressible CFD

Acoustic

Flow

Hyperbolic

Coupling
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Energy

Inompressible CFD

Compact Acoustic

Flow

Elliptic

Coupling(?)

Figure 3.4: Comparison of compressible CFD and incompressible CFD and the feedback mechanisms of
flow and acoustics.

3.4 Hybrid methodology – Compressible flow
Section 2.7.2 describes a well-known feedback mechanism of compressible fluids. Compressible fluid
dynamics includes all wave phenomena as well as aeroacoustic feedback. In combination with a hybrid
workflow, a compressible flow simulation must resolve the acoustic already perfectly (DSC) in order to
satisfy the equation reassembly of acoustic analogies (see next paragraph). Implicitly, the aeroacoustic
source terms include wave refraction and scattering. This means, for an accurate acoustic simulation, after
the flow simulation, the engineers have to know the whole physics and gain no computational efficiency
by the separate far-field propagation. Having this in mind, an aeroacoustic analogy that distinguishes
between resolved and unresolved acoustics would be of great importance.

3.5 Source term modeling in aeroacoustic analogies
DSC resolves flow and acoustics at all Mach numbers. However, the open issues of proprietary CFD,
which is discussed in Sec. 3.2, severely diminishes the applicability in product development. Acoustic
analogies, used in current hybrid approaches (see Fig. 3.3), overcome these open issues, except the
aeroacoustic feedback. To incorporate aeroacoustic feedback, the presented hybrid aeroacoustic method
relies on a compressible flow simulation.

Before this method is outlined, the derivation of aeroacoustic analogies is generalized. Aeroacoustic
analogies rearrange terms of the flow equations; just rearranging terms, does not change the mathematical
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properties of the physical model. Often, this fact is neglected during term manipulation. Assumptions
and simplifications empower the analogy and despite all criticism remarkable results have been obtained.

3.5.1 Implicit formulation

A general aeroacoustic analogy assumes a causal forward coupling of the forcing (obtained by an in-
dependent flow simulation) on fluctuating quantities, e.g. the fluctuating pressure p′ that approaches the
acoustic pressure pa at large distances from the turbulent region. Thereby, a general acoustic analogy
composes a hyperbolic left hand side defined by a wave operator and a generic right hand side RHS(?)

�p′ = RHS(p,u, ρ, ...) . (3.13)

Lighthill’s inhomogeneous wave equation perfectly fits to this class, which reads as [6, 7]

∂2ρ′

∂t2
− c20∇ · ∇ρ′ = ∇ · ∇ · T . (3.14)

In (3.14), ρ′ denotes the density fluctuation, c0 the constant speed of sound and T the Lighthill tensor.
Lighthill’s tensor is computed by

T = ρuu+
(

(p− p0)− c20(ρ− ρ0)
)
I− S (3.15)

with the fluid velocity u, the pressure and density fluctuations p′ = p − p0, ρ′ = ρ − ρ0 and the viscous
stresses S. It is obvious that the right hand side RHS(?) of Lighthill’s inhomogeneous wave equation
contains not only source terms, but also interaction terms between the sound and flow field, which
includes effects, such as convection and refraction of the sound by the flow. Therefore, the whole set of
compressible flow dynamics equations has to be solved in order to calculate the right hand side of (3.14).
If the right hand side RHS(?) is computed, a DSC must already resolve the acoustics as implicit part
of the right hand side RHS(?), which is a challenge for any numerical scheme and the computational
noisy errors itself may strongly disturb the physical radiating wave components [140]. Phillips and
Lilley [141,142] moved interaction effects, at least to some extend, to the wave operator � and predicted
certain aspects of jet-noise quite accurately. These effects are neglected by Lighthill’s wave operator
and are often not present in Lighthill’s source term (3.15) due to the restricted numerical resolution of
interactions during a preceding flow simulation [143]. For low Mach number flows, the source terms are
based on an incompressible CFD, one possible non-radiating base flow, and Lighthill’s tensor reduces to

T = ρ0u
icuic (3.16)

with the incompressible flow velocity uic. The incompressible flow simulation constrains hybrid methods
to low Mach numbers and simulation cases, where aeroacoustic feedback is negligible.

3.5.2 Explicit reformulation

In year 2003, Goldstein [16] proposed a method to split flow variables (p,u, ...) into a base flow (non-
radiating) and a remaining component (acoustic, radiating fluctuations)

? = ?̃+ ?′ . (3.17)

Although Goldstein’s idea has a different perspective, a separation into a base flow and a remaining
component shows distinctive features of sound in the source terms and treats the models physically and
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mathematically accurate. What are the components, non-radiating or radiating?

Base flow (preferable non-radiating)
Per definition, the base flow is the flow around the flow equations are linearized. A base flow could
either be radiating (compressible CFD) or non-radiating. Due to several drawbacks of radiating
base flows (accurate resolution of flow and acoustics, numerical schemes and boundaries adapted to
wave phenomena) [16], we prefer the non-radiating base flow. A non-radiating base flow is a base
flow that has no radiating components inside, but can possibly emit sound (like an incompressible
flow solutions). Prominent realizations of non-radiating base flows are RANS solutions or incom-
pressible flow solutions. RANS simulation base flow techniques yield synthetic noise generation
models (SNGR) and reduce the computational workload with respect to a DNS. Incompressible
CFD simulations form the basis of hybrid aeroacoustics at low Mach numbers. In the case of
a compressible CFD, an incompressible solution is constructed via Helmholtz decomposition (see
Chap. 4).

Remaining component
The residual component deviates from the base flow and is usually small. Depending on the base
flow selection, the remaining component describes parts of the radiation, or the complete radiating
component, the sound field. Even in supersonic flows, the radiated sound is many orders of mag-
nitude smaller than the non-radiating components. Consequently, numerical errors may hide the
acoustic component and suggest to separate the acoustic simulation from the overwhelming base
flow.

Applying the decomposition to the right hand side of the wave equation, the left hand side of the equation
is already treated in this manner during the derivation of the acoustic analogy, which leads to

�p′ = RHS(p̃, ũ, ρ̃, p′,u′, ρ′, ...) . (3.18)

Now interaction terms can be moved to the differential operator to take, e.g., convection and refraction
effects or even nonlinear interactions4 into account. Exactly this approach has been applied in the theories
of Phillips and Lilley, and furthermore in the derivation of perturbation equations [31,36,42,144].

Referring to Goldstein’s concept, the Mach number constraint imposed by the incompressible flow
simulation is relaxed. Naturally, this leads to a compressible flow simulation. Acoustics and other
radiating components are already incorporated in the flow quantities, composing the right hand side of
the wave equation. From a mathematical aspect, these quantities are modeled by the left hand side.

To account for the separation and to avoid the Mach number constraint imposed by the incompressible
flow simulation, a three step Mach number extended workflow is proposed. At first, we perform a
compressible flow simulation, which incorporates two-way coupling of the flow and acoustics and extends
aeroacoustic analogies to physical phenomena, where feedback matters. Secondly, we assume that the
main interaction terms between the flow and the acoustic field are modeled by the wave operator, e.g.
convection and refraction effects as in the case of APE. Thirdly, the aeroacoustic sources are filtered,
such that a non-radiating field is obtained which computes the sources and solves with an appropriate
wave operator �̃ the radiating field

�̃p′ = RHS(p̃, ũ, ρ̃, ...) . (3.19)

Thereby, Helmholtz decomposition provides the non-radiating base flow (see Chap. 4). This approach is of
high practical relevance, since the decomposition into the base flow mitigates noisy artifacts5 encountered

4 The nonlinear interactions (3.30) are described in terms of the acoustic potential φa.
5 Acoustic modeling errors due to boundary treatment and numerical scheme dependent resolution of the acoustic waves.
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by the use of flow solvers.
An additional note on DSC: the computational variables are the aggregated flow variables and contain

both, radiating and non-radiating components. In this case, a decomposition into radiating and non-
radiation components extracts sound.

3.6 Taylor expansion
Nonlinear partial differential equations can be expanded around an operating condition. In this case the
operating condition is the base flow of the underlying flow field. Generally, flow equations6 can be written
in this form

F (p,u, ρ) = 0 . (3.20)

An additive decomposition separates the field quantities into a base component g̃ = [p̃, ũ, ρ̃]T and a
perturbation component g′ = [p′,u′, ρ′]T

g = g̃ + g′ . (3.21)

The Taylor expansion of F is defined as

F = F (g̃) +∇gF |g̃ · g′ + (g′)T · (∇g∇gF )|g̃ · g′ +O(g′3) . (3.22)

3.6.1 Alternative derivation of Lighthill’s Analogy

Taylor expansion of the continuity and the Navier-Stokes equation yields Lighthill’s analogy. Assuming
a linear acoustic medium at rest, Lighthill’s base flow obeys four assumptions:

• The fluid is assumed to be at rest (u0 = 0) and has a uniform background pressure p0, and density
ρ0.

• The base flow satisfies the continuity equation that yields ∂ρ0
∂t = 0.

• Newtons constitutive equation calculates the baseflow stress tensor S0 = 0.

• By inserting the already defined base flow components into the momentum conservation, an addi-
tional pressure condition ∇p0 = 0 is determined.

Consequently, the base flow solves the flow equations. The component vector g defines the expansion
variables

g = [∂ρ
∂t
,∇ · (ρu), ∂ρu

∂t
,∇ · (ρuu),∇p,∇ · S]T . (3.23)

Furthermore, the base flow is collected in g̃

g̃ = [∂ρ0

∂t
, 0, 0, 0,∇p0, ]T , (3.24)

and respectively the nonlinear fluctuating components are

g′ = [∂ρ− ρ0

∂t
,∇ · (ρu), ∂ρu

∂t
,∇ · (ρuu),∇(p− p0),∇ · S]T . (3.25)

The base flow reduces F to
F (g̃) = 0 , (3.26)

6 The generic flow equation (3.20) can be any known reformulation of conservation of mass, momentum and energy with
flow specific constitutive laws.
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and proves that the base flow fulfills the continuity and the momentum equation. A first order approxi-
mation desires the gradient of F to be

∇gF =
(

1 1 0 0 0 0
0 0 1 1 1 1

)
(3.27)

in a standard form, since nonlinear terms are treated in their inherent structure. These ingredients are
inserted into Taylor’s expansion

∂ρ− ρ0

∂t
+∇ · (ρu) = 0 (3.28)

∂ρu

∂t
+∇ · (ρuu) +∇(p− p0) +∇ · S = 0 . (3.29)

If ∇c20(ρ− ρ0) is added on both sides of the momentum equation (3.29) and ∇ · (3.29) is subtracted from
∂(3.28)/∂t, Lighthill’s analogy is derived.

3.6.2 RHS linearization of Lighthill’s Analogy

The linearization of the source tensor around the vortical base flow leads to a separation of the vortical
contribution and all interactions of compressibility and vorticity. This allows a detailed study of vortical
sound sources. If there are artificial acoustic domain resonances in the flow solution, they are fully
separated into the second nonlinear contribution and do not disturb the sound calculation.

∇ · (ρuu) = ∇ · (ρvuvuv) + (∇ · (ρuu)−∇ · (ρvuvuv)) (3.30)

Furthermore, the second part contains terms that depend on the solution variable, linearly and nonlin-
early, and should be solved iteratively. If all compressible terms are modeled and only acoustics plays a
role in (3.30), the additional contributions are functions of the velocity potential φa. The vortical velocity
deviation

ua = u− uv ∼ ∇φa (3.31)

and the vortical density deviation7

ρa = ρ− ρv ∼ 1
c2

(
∂φa

∂t
+ uv · ∇φa

)
(3.32)

are functions of the acoustic particle velocity potential. By inserting these definitions into (3.30)

(∇ · (ρuu)−∇ · (ρvuvuv)) = O(φa) +O((φa)2) +∇ · ( 1
c2
∂φa

∂t
∇φa∇φa) (3.33)

non-linear acoustic terms are derived. The additional refraction and scattering due to the base flow is
then accounted by the base flow and the wave operator. 8

7 Using d’Alembert solution of the wave equation, the convective term of the acoustic density can be neglected for low
Mach numbers.

8 Side note: Interpreting the numerical solution as data bundle, proper orthogonal decomposition (POD) or dynamic
mode decomposition (DMD) [145] can be utilized to investigate effects of different interaction modes and if necessary
exclude artificial modes.

(∇ · (ρuu)−∇ · (ρvuvuv)) =
∑

modes

∇ · (ρuu) (3.34)

Further investigations of the source data modes determine the energy content and the contribution to the acoustics.
Obviously, spurious modes should not contribute to acoustics. Furthermore, the radiation of specific modes can be
investigated. If we decompose the deviation from the vortical sources, we clarify the radiation pattern given by
refraction, convection and scattering and may explore additional interactions.
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3.6.3 Modified Lighthill’s Analogy

In this section, the base flow is considered to be a RANS simulation (non radiating). Since a RANS
simulation is time independent representation of a turbulent flow field, no wave modes are part of the
solution. Taylor expansion of the continuity equation and the Navier-Stokes equation yields a modified
Lighthill’s analogy. The component vector g defines the expansion variables

g = [∂ρ
∂t
,∇ · (ρu), ∂ρu

∂t
,∇ · (ρuu),∇p,∇ · S]T . (3.35)

For the base flow, we obtain g̃

g̃ = gRANS = [∂ρ
RANS

∂t
,∇ · (ρu)RANS,

∂(ρu)RANS

∂t
,∇ · (ρuu)RANS,∇pRANS,∇ · SRANS]T (3.36)

and respectively for the nonlinear fluctuating components

g′ = g − gRANS . (3.37)

The base flow reduces F to
F (g̃) = 0 , (3.38)

and proves that the base flow fulfills the continuity equation and momentum equation. An exact first
order approximation delivers the gradient of F

∇gF =
(

1 1 0 0 0 0
0 0 1 1 1 1

)
(3.39)

in a standard form, since nonlinear terms are treated in their inherent structure. Finally, Taylor’s
expansion yields the modified equation is corrected by the RANS solution

∂ρ− ρRANS

∂t
+∇ · (ρu)−∇ · (ρu)RANS = 0 (3.40)

∂ρu

∂t
− ∂(ρu)RANS

∂t
+∇ · (ρuu)−∇ · (ρuu)RANS

+∇(p− pRANS) +∇ · S−∇ · SRANS = 0 . (3.41)

By supposing that the base flow is a RANS simulation, then the deviation to an URANS or LES is the
aeroacoustic source term (∆URANS/LES). All unresolved turbulent scales can be modeled by a synthetic
turbulence model (∆STM), but limitations on the statistical modeling must be solved.

∇ · (ρvuvuv) = (∇ · (ρvuvuv))∆URANS/LES + (∇ · (ρvuvuv))∆STM (3.42)

3.6.4 Linearization of vortex sound

Howe [146] derives the equation of vortex sound and states the relevant assumptions

d
dt

1
c2

d
dtH −

1
ρ
∇ · ρ∇H = 1

ρ
∇ · (ρω × u) . (3.43)

The substantial derivative is based on the total velocity u and therefore the wave operator is nonlinear.
Most important is that viscous stresses are negligible for high Reynolds number flows. In contrast to Howe,
the total velocity is approximated by the incompressible velocity component and quadratic non-linear
contributions to the wave operator are neglected. The linearized equation around the incompressible base
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flow leads to a valid approximation, whenever compressible contributions u−uv � u [138,139] are small,

dH
dt := ∂H

∂t
+ u · ∇H = ∂H

∂t
+ uv · ∇H + (u− uv) · ∇H . (3.44)

Additionally, the incompressible base flow confirms a constant speed of sound and density. As proposed
previously, the RHS is linearized and for computational simplicity we neglect the interaction terms.

1
c2

d2
v

dt2H −∇ · ∇H = ∇ · (ω × uv) . (3.45)

The linearized wave operator is defined by

dvH

dt := ∂H

∂t
+ uv · ∇H . (3.46)

All material parameter interactions are neglected. The base flow speed of sound and the base flow density
are constant in space and time. Second order effects of the wave operator are neglected

ρv
[
∂(u− uv) · ∇H

∂t
+ uv · (u− uv) · ∇H + (u− uv) · (uv) · ∇H

]
(3.47)

+(ρ− ρv)
[

1
c2

d2
v

dt2H
]

(3.48)

−∇ · (ρ− ρv)∇H (3.49)

and third order effects of the wave operator are neglected

ρv [(u− uv) · (u− uv) · ∇H] (3.50)

+(ρ− ρv)
[
∂(u− uv) · ∇H

∂t
+ uv · (u− uv) · ∇H + (u− uv) · (uv) · ∇H

]
(3.51)

and fourth order effects of the wave operator are neglected

(ρ− ρv) [(u− uv) · (u− uv) · ∇H] . (3.52)

Furthermore, first order interaction terms on the right hand side are neglected

∇ · (ω × (u− uv)) . (3.53)

A final remark on the enthalpy: "What is the velocity in the definition of the enthalpy in (2.99)?" The
solution variable of a wave equation excites modes that cannot be part of the flow solution. We conclude
that this velocity must be the perturbation computed by the wave equation and not the total velocity
including the base flow. The wave modes9 that are excited by the wave operator (3.45) are solutions to
this equation

1
c2

(ω2 − 2ωk · uv + (k · uv)2)− k2 = 0 . (3.54)

The dispersion relation solves the equation

ω =
2k · uv ±

√
4(k · uv)2 − 4((k · uv)2 − c2k2)

2 (3.55)

9 Fourier wave number transforms the operators ∇( −ik and ∂
∂t
( iω.
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and describes all solutions on a hyper-surface in 3+1D

ω = k · uv ± c k · k
||k||2

. (3.56)
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4 Helmholtz decomposition and
acoustic analogies

Helmholtz decomposition obtains a vortical base flow satisfying the incompressibility condition. The
original version of Helmholtz decomposition assumes an unbounded, simply connected domain, which
is of course infeasible for typical engineering applications, like a fan or a duct system. Considering
these practical challenges, numerical simulation techniques and the standard approximation methods
are developed for finite domains. Without vanishing fields at the boundaries, Helmholtz decomposition
causes a non-unique decomposition.

4.1 Simply connected domain
A simple example illustrates the topology based non-uniqueness of Helmholtz decomposition. This non-
unique component is called harmonic part or potential flow solution, since the field is the solution of
Laplace’s equation. If additional information about the flow system is given at the boundaries, the
harmonic field can be calculated. A velocity field of the form u = (u0 + sin(πx))ex + xey is prescribed
on the domain Ω = [0, 2]2 (see Fig. 4.1).

• The velocity field comes with a vorticity distribution of ∇× u = −ez

• and a rate of expansion of ∇ · u = π cos(πx).

The point of interest is the decomposition of the velocity field into a compressible and an incompressible
field. Both fields are computed by solving a Poisson equation, in 2D. In doing so for the compressible
part, the inhomogeneous Neumann problem is solved

∇ · ∇φ∗ = ∇ · u , (4.1)

with n·∇φ∗ = n·u. The solution u∗c = ∇φ∗ and the conjugated field u−u∗c = u−∇φ∗ are L2-orthogonal.
When the homogeneous Neumann problem is solved

∇ · ∇ψ = 0 , (4.2)

with n ·∇ψ = n ·u, the harmonic solution u⊥ = ∇ψ is obtained. The compressible part and its harmonic
component is given in Tab. 4.1 and Fig. 4.1. As indicated the compressible part incorporates the
harmonic part. Executing the same procedure for the incompressible part u∗ic, we decompose the velocity
field again and reach the results shown the results are given in Tab. 4.2 and Fig. 4.1. Both decomposition
variants extract the same harmonic part, since the boundary conditions dictate the harmonic component
as an exterior influence. For these two possible decompositions of one vector field, each one is orthogonal
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Table 4.1: Helmholtz decomposition - The compressible part based on the scalar potential.

Scalar potential Harmonic field (Scalar)
φ∗ = − 1

π cos(πx) + u0x+ b ψ = u0x+ b
u∗c = (u0 + sin(πx))ex u⊥ = u0ex

Table 4.2: Helmholtz decomposition - The incompressible part based on the vector potential.

Vector potential Harmonic field (Vector)
A∗z = u0y − 1

2x
2 + b Bz = u0y + b

u∗ic = u0ex + xey u⊥ = u0ex

to its conjugated field. The question is, whether the separately decomposed fields (u∗c , u∗ic) are orthogonal
or not? L2-orthogonality implies that∫

[0,2]2
u∗c · u∗icdx = ||u0||L2 > 0 (4.3)

vanishes and L2-orthogonality concludes nonorthogonality. As a remedy, we establish a unique decom-
position through an additional condition causing a unique boundary.

4.2 Helmholtz decomposition
In the next chapters, we concentrate on the computability and uniqueness of Helmholtz’s decomposition.
By the weak formulation of Helmholtz’s decomposition, the existence of strong derivatives of the potentials
C2 reduces to C1. This weak formulation is then discretized by the finite element method.

Theorem 4.2.1 Every square integrable vector field u ∈ [L2(Ω)]3, C1 smooth, on a simply connected,
Lipschitz domain Ω ⊆ R3, has an L2-orthogonal decomposition

u = uic + uc = ∇×Aic +∇φc , (4.4)

with the vector potential Aic ∈ H(curl,Ω) and the scalar potential φc ∈ H1(Ω) [147].

The vector potential is unique up to an additive component ∇× (Aic +C) = ∇× (A +∇θ +C), that
can be represented by a gradient field of a scalar function θ and a constant vector field C. Uniqueness
of the vector potential can be incorporated by the gauge condition ∇ · (Aic + C) = 0. Especially,
the scalar/vector potential Neumann problem is unique up to an additive constant/constant vector field.
These issues are treated by mass regularization and adequate function spaces [148]. The L2-orthogonality
of the decomposed components implies

(uic,uc) =
∫

Ω
uic · ucdx = 0 . (4.5)

Integration by parts leads to a general orthogonality condition for the boundaries for the scalar potential

(uic,uc) = −(∇ · uic, φc) +
∫
∂Ω
φc(u−∇φc) · nds =

∫
∂Ω
φc(u−∇φc) · nds = 0 . (4.6)

This implies unique boundaries for the scalar potential; either the scalar potential has a homogeneous
Dirichlet boundary or the normal component of the velocity is entirely captured by the scalar potential.
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Figure 4.1: This figure illustrates the functions of the simple example. The total velocity field is given
in (a), (b) shows the vorticity distribution, (c) the rate of expansion. The figures (d) and (e)
show the results of the Poisson’s equation, respectively the scalar potential formulation of the
Helmholtz decomposition, whereas (f) and (g) show the results for the vortical component
and the homogeneous solution of the curl-curl equation.
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Applying the same derivation to the vector potential leads to

(uic,uc) = (Aic,∇× uc) +
∫
∂Ω
Aic · (u−∇×Aic)× nds = 0 . (4.7)

Satisfying a unique boundary for the vector potential is more involved then for the scalar potential. The
first possibility is a homogeneous Dirichlet boundary; the second choice is a vector potential, orthogonal
to the compressible part of the decomposition uc or uc |∂Ω= 0. Boundary treatment is fundamental and
can be incorporated in the prescribed function space of the scalar and vector potential. An orthogonal
Helmholtz decomposition satisfies (4.6), (4.7) at the boundaries [58]. Depending on the boundaries, it
is possible to extract different decompositions that fulfill the orthogonality condition. The conjugated
decomposition pair is always a solution of the inverse problem. Each choice of a unique boundary leads to
a distinct separation of the harmonic field that represents the exterior properties R3/Ω of the decomposed
vector field u.

4.3 Scalar potential
In this section, we derive the equation for the scalar potential φ∗,c ∈ H1(Ω), which is associated with
the compressible part and the property ∇ × u∗,c = 0. The star denotes the joint function of both, the
compressible and the harmonic one.

u = ∇×Aic +∇φ∗,c (4.8)

∇φ∗,c = u∗,c = uc + uh = ∇φc +∇φh + uholes (4.9)

A harmonic part uh can be further split into parts accounting for closed boundary curves [149]. Each
domain hole, representing solid cutouts, defines a homogeneous Neumann boundary with uholes · n = 0
on the boundary (see Sec. 4.6). The homogeneous Neumann boundary (solid, no penetration, no slip
boundaries in continuum theory) is intrinsically satisfied by the finite element formulation. However, a
general penetrating wall implies an inhomogeneous Neumann boundary.

By taking the divergence of equation (4.8), we obtain a scalar valued Poisson equation with the
dilatation ∇ · u as forcing

∇ · ∇φ∗,c = ∇ · u . (4.10)

The function space of the scalar potential has to obey (4.6) to enforce an orthogonal decomposition and
has to be adjusted for different flow problems.

4.3.1 Weak formulation

Starting from the strong formulation, we derive the weak formulation of the partial differential equations
and apply the finite element method. Therefore, we multiply the equation by a test function ψ ∈ H1(Ω)
and integrate over the constitutive domain Ω∫

Ω
ψ(∇ · ∇φ)dx =

∫
Ω
ψ∇ · udx . (4.11)

Partial integration of the volume integral∫
Ω
∇ψ · ∇φ dx−

∫
Ω
ψ(∇ · ∇φ) dx =

∫
∂Ω
ψ(∇φ · nds) (4.12)
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leads to the weak form of the partial differential equation and the requirement on the function space
is reduced. The differentiation operator swaps onto the test function and an additional surface integral
arises over the boundary ∂Ω of the domain Ω. This is the final equivalent weak formulation of the partial
differential equation ∫

Ω
∇ψ · ∇φdx−

∫
∂Ω
ψ(∇φ · nds) =

∫
Ω
ψ∇ · udx . (4.13)

The boundary term can be expressed in terms of the derivative with respect to the normal direction or
as the normal component of the compressible velocity component∫

∂Ω
ψ(∇φ · nds) =

∫
∂Ω
ψ
∂φ

∂n
ds =

∫
∂Ω
ψ(uc · nds) . (4.14)

Functions φ ∈ V are in the infinite function space V

V = {φ(x)|φ(x) ∈ H1(Ω), φ(x) = φe(x) on Γe} , (4.15)

and the corresponding test function ψ ∈W is in the space W

W = {ψ(x)|ψ(x) ∈ H1(Ω), ψ(x) = 0 on Γe} . (4.16)

H1(Ω) denotes the standard Sobolev-space of the domain Ω. Γe ⊂ ∂Ω includes all essential boundaries,
also named homogeneous Dirichlet boundaries. The boundary term ∂φ

∂n for each subsurface (wall, free
boundary, inlet, outlet, and symmetry) must be modeled in compliance with the flow field. Section 4.3.2
discusses typical flow boundaries. The implemented weak formulation is∫

Ω
∇ψ · ∇φdx−

∫
∂Ω
ψ
∂φ

∂n
ds =

∫
Ω
ψ∇ · udx . (4.17)

For a Neumann problem Γe = 0 we get the following bilinear form

B(ψ, φ) =
∫

Ω
∇ψ · ∇φdx−

∫
∂Ω
ψ
∂φ

∂n
ds =

∫
Ω
ψ∇ · u dx . (4.18)

The bilinear form B(ψ, φ) is not coercive for a constant function θc

B(θc, θc) = 0 < c||θc||H1 . (4.19)

Mass regularization recovers the elliptic property, by introducing a small parameter 0 < εreg � 1, for the
Neumann problem

Bε(ψ, φε) =
∫

Ω
(∇ψ · ∇φε + εregψφ

ε) dx−
∫
∂Ω
ψ
∂φε

∂n
ds =

∫
Ω
ψ∇ · udx , (4.20)

and now the bilinear form is coercive

Bε(θc, θc) ≥ c||θc||2H1 . (4.21)

Finally, mass regularization converges if φε → φ as εreg → 0.

Bε(ψ, φε)−B(ψ, φ) = Bε(ψ, φε − φ)−
∫

Ω
εregψφdx = 0 (4.22)
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Utilizing the Friedrich’s-type inequality yields for the coercive functional

c1||φε − φ||2L2
6 c||φε − φ||2L2

+ c||∇(φε − φ)||2L2
= c||φε − φ||2H1 (4.23)

6 Bε(φε − φ, φε − φ) = εreg(φ, φε − φ) (4.24)

and by using the Cauchy-Schwartz inequality

εreg(φ, φε − φ) 6 εreg||φ||L2 ||φε − φ||L2 . (4.25)

In general
c1||φε − φ||L2 6 εreg||φ||L2 (4.26)

holds and φε → φ converges as εreg → 0. To obtain the finite element formulation of (4.20), the continuous
domain is discretized by a mesh Ωh ⊂ Ω and a function space approximation restricts the infinite function
space of the field and the test function by a finite subset V h ⊂ V , and W h ⊂W .

4.3.2 Boundary conditions

The preceding derivation seeks for flow conforming boundary conditions. Based on the orthogonality
condition (4.6), we identify the following boundaries for the scalar Poisson problem:

Wall At perfectly smooth, no slip, non-penetrated wall boundaries, the flow velocity in normal direction
is equal to the compressible wall penetration movement (u · n = 0 ⇒ uic · n = −uc · n). Assuming a
non-penetrating wall for the incompressible component implies

∂φ

∂n
= uc · n = 0 . (4.27)

The condition represents sound hard wall, if the compressible component is interpreted as acoustics.

Outlet and Inlet Since the condition of a velocity inlet is in general nonzero (uic ·n 6= 0), the orthogo-
nality condition (4.6) leads to

φ = 0 . (4.28)

Symmetry: A symmetry condition of the field prevents flux exchange over the boundary u ·n = 0 and
respectively uic · n = 0.

∂φ

∂n
= uc · n = 0 (4.29)

In viscous flows, the symmetry condition is equivalent to a slipping wall with zero shear.

Periodic Periodic conditions satisfy both Dirichlet and Neumann connections of the corresponding pe-
riodic interfaces and they maintain the physical quantity and flux.

Free field - Asymptotic boundary condition/Infinite Mapping Layer One possible choice is an asymp-
totic boundary condition for elliptic partial differential equations [150]

∂φ

∂n
= −φ

r
. (4.30)

This boundary condition treats infinity well for circular surfaces and for known point sources distances r.
Typically, the point source distance is unknown and circular domains are inefficient. Therefore, a general
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treatment of infinite domains has been developed, called infinite mapping layer (IML). Appendix A
illustrates further details on IML. This layer merges benefits of infinite elements and layer techniques
to overcome infinite problem domains. The domain extension towards infinity allows the field quantities
to have enough space to decay sufficiently. In contrast to hybrid schemes based on analytic Green’s
functions, the IML is solution independent. Compared to a hybrid method using BEM at the boundary,
the IML conserve sparsity and locality of the numerical system. The method works for both linear and
nonlinear systems.

4.3.3 Poisson problem – Shortcomings

The formulation of the scalar potential, with its algorithmic simplicity and computational efficiency
(compared to the vector potential formulation), has two severe drawbacks.

• The computational domain of the scalar potential should capture compressible effects e.g. acoustics.
Acoustic radiation in a free field configuration would reach to infinity and the acoustic variable is
decaying with O(1/||x||2). This slow decay results in an involved boundary for the free field. A
possible solution strategy is the IML.

• A second issue arises for non-convex domains with a C0 smooth boundary, like reentrant corners.
For such flow domains, the computation of the scalar potential leads to a singular point in the
corner and corrupts the solution. Using FEM, a graded mesh can treat this singularity. However,
in most cases these reentrant corners are the main aeroacoustic source regions.

Caused by these two drawbacks, the computationally efficient scalar potential separation is limited and
we suggest the computation of the vector potential.

4.4 Singularity at reentrant corners
To show the limitations of the scalar potential, the singularities of reentrant corner for the both possible
Helmholtz decompositions are analyzed. The key difference is the incompressibility condition for the
vector potential that ensures a bounded solution of the derivative.

4.4.1 Poisson problem

We derive the order of the singularity, occurring at reentrant corners. The investigation is carried out
on a wedge with a wedge angle Θ (see Fig. 4.2). At a specific angle (Θ < π) the domain is convex and
for larger angles than π the domain becomes concave. On both radial domain borders a homogeneous
Neumann boundary condition, a sound hard wall, is imposed

∇φ(r, θ)|θ=0 = ∇φ(r, θ)|θ=Θ = 0 . (4.31)

According to the Helmholtz decomposition, a Poisson problem is computed on this wedge domain. The
Laplace operator in polar coordinates is written as

∆φ(r, θ) = 1
r

∂

∂r
r
∂φ

∂r
+ 1
r2
∂2φ

∂θ2 = 0 . (4.32)

A multiplicative variable decomposition ansatz φ(r, θ) = R(r)Ψ(θ) separates the variables

α2 =
1
r
∂
∂r r

∂R
∂r

R
= −

∂2Ψ
∂θ2

Ψ . (4.33)
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Figure 4.2: A wedge subdomain for the Poisson problem, wedge angle Θ.

The separate functions depend exclusively on different variables. Therefore, the conglomerates (4.33) are
constant α2. The general solution

Ψ(θ) = a cos(αθ) + b sin(αθ) (4.34)

R(r) = crα + dr−α (4.35)

holds for α > 0. From the second equation, unbounded solutions at r → 0 are excluded by choosing
d = 0. A bounded solution at the origin leads to a constant function for α = 0. The Neumann boundary
at θ = 0 selects b = 0 and the second radial Neumann boundary provides the condition

∇φ(r, θ)|θ=Θ = 1
r

dΨ
dθ |θ=Θ = −aα

r
sin(αθ) = 0 . (4.36)

For all αk = πk
Θ k ∈ {1, 2, ..., n}, the characteristic (4.36) of the boundary value problem is fulfilled. The

solution of the wedge is

φ(r, θ) =
∞∑
k=1

Akr
αk cos(αkθ) . (4.37)

If the angle of the domain is Θ > π, the gradient of the leading term k = 1 tends to infinity for r → 0
and a singularity occurs at the origin of reentrant corners.

4.4.2 Curl-curl equation

The alternative vector formulation of the Helmholtz decomposition overcomes the reentrant corner sin-
gularity. Again, by assuming Coulomb gauge condition ∇·A = 0, a Poisson equation in two dimensional
space for the z component of the vector potential Az is solved

∆Az = 0 . (4.38)
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However, the boundary conditions are different

∇×Az(r, θ)ez × n|θ=0 = ∇×Az(r, θ)ez × n|θ=Θ = 0 . (4.39)

Applying the same analysis and ansatz as in the preceding derivation d = 0, b = 0, the second radial
Neumann boundary provides a condition for a

− 1
r

dAz

dθ |θ=Θ = aα

r
sin(αθ) = 0 . (4.40)

For all αk = πk
Θ k ∈ {1, 2, ..., n} the characteristic of the boundary value problem is fulfilled. The solution

constitutes as

Az(r, θ) =
∞∑
k=1

Azkr
αk cos(αkθ) . (4.41)

Again, the gradient of the leading term k = 1 tends to infinity for r → 0, when the angle of the domain
Θ > π. A singularity occurs at the origin for k = 1, but the vector potential obeys divergence freedom.
To control divergence for k = 1, we integrate the normal component of the velocity u ·n = ∇×Azez ·n
on a closed path Γ (see Fig. 4.3).

n

Integration path

Γ1
Γ2

Γ3

θ

r

Ω

Γ = Γ1 ∩ Γ2 ∩ Γ3

Figure 4.3: Integration path to evaluate global divergence free fields.

The condition for a global divergence free field is

lim
r→0

∫∫
V

∇ · u dV = lim
r→0

∫
Γ

u · n ds = 0 , (4.42)

where u is a divergence free vector field. Thus, the sum of the integrals over Γ2 and Γ3 is zero, due to a
no slip wall boundary. This implies that the integral over Γ1 must vanish for divergence free fields

lim
r→0

π

ΘAz1r
π
Θ−1

Θ∫
0

sin( πΘθ)dθ = − lim
r→0

Az1r
π
Θ−1

[
cos( πΘθ)

]Θ
0

= lim
r→0

Az1r
π
Θ−1 = 0 if Az1 = 0, (4.43)

hence, the odd k = 1 with Az1 = 0. In particular, all odd k coefficients αk must vanish and no singularity
occurs for θ < 2π. In contrast, all even coefficients are non zero, Azk 6= 0, and the series of orthogonal
functions in θ accounts for the wall boundary.
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4.5 Vector potential
The Helmholtz decomposition, formulated by the vector potential A∗,ic ∈ H(curl,Ω), is associated with
the incompressible part and the property ∇ · u∗,ic = 0. A star superscript denotes the joint function of
the incompressible and the harmonic part

u = ∇×A∗,ic +∇φc (4.44)

∇×A∗,ic = u∗,ic = uic + uh = ∇×Aic +∇×Ah + uholes . (4.45)

As it applies for the scalar potential formulation, the harmonic part accounts for the exterior and interior
cutouts [149], with uholes×n = 0 at a no-slip boundary. The function space of the vector potential enforces
an orthogonal and unique decomposition (4.7) and has to be adjusted for different flow problems. By
taking the curl of equation (4.44), the curl-curl equation for the vector potential A∗,ic is obtained

∇×∇×A∗,ic = ∇× u = ω , (4.46)

forced by the vorticity ω = ∇ × u. However, the harmonic component of the vector potential can also
be represented by a scalar potential.

4.5.1 Weak formulation

From the strong formulation, we derive the weak formulation of the partial differential equations and
apply the finite element method. Therefore, a test function A′ ∈ H(curl,Ω) is multiplied onto the
curl-curl equation and the equation is integrated over the domain Ω∫

Ω
A′ · (∇×∇×A)dx =

∫
Ω
A′ · ωdx . (4.47)

The next step is indispensable when deriving a weak formulation. Integration by parts reduces the
regularity of the function space from C2 to C1. The divergence theorem (Gauss’s theorem) is written as∫

Ω
∇× F ·Gdx−

∫
Ω
F · ∇ ×Gdx =

∫
∂Ω
F ×G · nds , (4.48)

and leads to the following equivalent weak formulation of the partial differential equation∫
Ω

(∇×A′) · (∇×A)dx−
∫
∂Ω
A′ × (∇×A) · nds =

∫
Ω
A′ · ωdx . (4.49)

Gauss’s theorem swaps the differentiation operator to the test function (weak derivative); an additional
surface integral arises over the domain boundary ∂Ω. The Neumann boundary condition enters into the
surface integral and the vector identity reformulates the Neumann boundary to the tangential velocity
field

A′ × (∇×A) · n = A′ · (∇×A)× n = A′ · (u∗,ic × n) . (4.50)

Section 4.5.2 discusses flow conforming inhomogeneous Neumann boundaries and specific model of u∗,ic

at the boundaries. Finally, the weak formulation reads as∫
Ω

(∇×A′) · (∇×A)dx−
∫
∂Ω
A′ · (u∗,ic × n)ds =

∫
Ω
A′ · ωdx . (4.51)
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The functions A ∈ V are defined in the infinite function space V

V = {A(x)|A(x) ∈ H(curl,Ω),A(x) = Ae(x) on Γe} , (4.52)

and the corresponding test functions A′ ∈W are in the space W

W = {A′(x)|A′(x) ∈ H(curl,Ω),A′(x) = 0 on Γe} . (4.53)

H(curl,Ω) = {u ∈ [L2]3 : ∇×u ∈ [L2]3} denotes the curl-space of the domain Ω with the corresponding
norm

||u||2H(curl) = ||u||2L2
+ ||∇ × u||2L2

, (4.54)

and the essential boundary Γe ⊂ ∂Ω. Although, the vector potential is in the desired function space, it
is non-unique

A+ = A∗ +∇Π . (4.55)

When the incompressible velocity is computed, the gradient field vanishes

u∗,ic = ∇× (A∗,ic −∇Π) = ∇×A∗,ic . (4.56)

In order to select a unique solution, the vector potential is gauged. The coulomb gauge condition

∇ ·A∗,ic = 0 (4.57)

may be incorporated by a Lagrange constraint or mass regularization.
This section further proofs that mass regularization and Coulomb gauging are equivalent in the limit

of a vanishing mass regularization parameter. For simplicity homogeneous Neumann boundaries are
assumed and a second functional (Lagrange constraint) regularizes the Neumann problem. In doing so,
a saddle point problem for A ∈ H(curl,Ω) and ϕ ∈ H1(Ω)/R is solved∫

Ω(∇×A′) · (∇×A)dx+
∫

ΩA
′ · ∇ϕdx =

∫
ΩA

′ · ωdx ∀A′ ∈ H(curl,Ω)∫
ΩA · ∇ψdx = 0 ∀ψ ∈ H1(Ω)/R .

(4.58)

Mass regularization determines the vector potentialAε uniquely with a small mass parameter 0 < εreg � 1

Bε(A′,Aε) =
∫

Ω
(∇×A′) · (∇×Aε)dx+

∫
Ω
εregA

′ ·Aεdx =
∫

Ω
A′ · ωdx , (4.59)

with
∫

Ω∇θ · ωdx = 0 ∀θ ∈ H1(Ω). The vorticity is divergence free and cannot be represented as a
gradient field. Under this assumption the operator

B(A′,Aε) =
∫

Ω
(∇×A′) · (∇×Aε)dx =

∫
Ω
A′ · ωdx , (4.60)

is not coercive for θ ∈ H1(Ω)
B(∇θ,∇θ) = 0 < c||∇θ||H(curl,Ω) . (4.61)

We have to proof that Aε → A converges in the limit εreg → 0.

Bε(A′,Aε)−B(A′,Aε) = Bε(A′,Aε −A)−
∫

Ω
εregA

′ ·Adx = 0 (4.62)
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Friedrich’s-type inequality estimates the coercive functional

c1||Aε −A||2L2
6 c||Aε −A||2L2

+ c||∇ × (Aε −A)||2L2
= c||Aε −A||2H1 (4.63)

6 Bε(Aε −A,Aε −A) = εreg(A,Aε −A) (4.64)

and the Cauchy-Schwartz inequality states the information about the upper limit of the error

εreg(A,Aε −A) 6 εreg||A||L2 ||Aε −A||L2 . (4.65)

In general, Aε → A converges as εreg → 0

c1||Aε −A||L2 6 εreg||A||L2 . (4.66)

Two further steps are necessary to arrive at the finite element formulation of (4.59). At first, the
continuous domain must be discretized by a mesh Ωh ⊂ Ω. Secondly, the infinite function space of
the field and the test function is restricted to a finite subset V h ⊂ V , W h ⊂ W . Nédélec’s H(curl)
elements [151] approximate the vector potential of the curl-curl equation

A ≈ Ah =
me∑
e=1

NeAe . (4.67)

The edge moments define the degrees of freedom

Ae =
∫
e

Ah · ds . (4.68)

Inserting the discretization into (4.59) results in the algebraic form of the weak formulation

∑
a

∑
e

(
Aa
∫

Ω(∇×Na) · (∇×NeAe) + εregNa ·NeAedx
)

−
∑
a

∑
e

(
Aa
∫

ΓIONa · (u× n)ds−Aa
∫

ΩNa · ωdx
)

= 0 .
(4.69)

The equation holds for any test coefficient Aa; each row in the global system matrix is associated to
one specific test function unknown Aa. All FE basis functions are defined in the discrete function space
Ah ∈ V h ⊂ V

V h = {Ah(x)|Ah(x) ∈ H(curl,Ω),Ah(x) = Ae(x) on Γe} , (4.70)

and the corresponding test function is defined in the function space A′h ∈W h ⊂W

W h = {Ah(x)|Ah(x) ∈ H(curl,Ω),Ah(x) = 0 on Γe} . (4.71)

To sum up, the algebraic weak formulation can be written in standard matrix form

KÃ = f , (4.72)

with the element stiffness matrix

ke =
∫

Ωe
((∇×Na) · (∇×Ne) + εregNa ·Ne) dx (4.73)

and the element forcing vector
fe =

∫
Ω
Na · ωdx . (4.74)
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Both are assembled to the global stiffness matrix K and the forcing vector f . Additional to the forcing
term, inhomogeneous Neumann boundaries are discussed in the following section.

4.5.2 Boundary conditions

Based on the orthogonality condition (4.7), typical flow boundaries in combination with the curl-curl
problem can be identified.

Wall For perfectly smooth, no slip, non-penetrating wall boundaries, the overall tangential flow velocity
is equal to the wall movement uwall in tangential direction

u× n = uwall × n . (4.75)

Rigid walls, with a no-slip condition uwall = 0, enforce a homogeneous Neumann boundary for the vector
potential.

Inlet and Outlet At the inlet and the outlet the tangential velocity is described by

u× n = uinlet/outlet × n . (4.76)

Symmetry A symmetry condition on the vector potential field can be imposed by two methods. The
first method treats the boundary as a slip wall and imposes the tangential velocity. For this case a
Neumann type problem can occur and this is treated by mass regularization. The second method is a
real symmetry condition, with a prescribed normal flux fn

fn = n · u = n · (∇×A) . (4.77)

The equivalent problem is to find a function β for which

n×A = β , (4.78)

holds under ∇ · β = fn [152]. Symmetry states that fluxes over the boundary are zero, fn = 0. The
trivial choice β = 0 leads to

n×A = 0 . (4.79)

Periodic Periodic conditions satisfy both Dirichlet and Neumann boundaries of the corresponding pe-
riodic interfaces and maintain the physical quantity and flux.

Free field If all the compressible physical effects are damped towards the boundaries u∗,ic|∂Ω = u|∂Ω,
then the tangential flow velocities simply describe the exterior. Afterwards, this assumption is used.
However, IML is possible.

The tangential velocity component of the total field approximates the free field boundary term. Two
facts support this approximation. Firstly, the amplitudes of the acoustic perturbation are very small and
if the numerical setup is wave dissipative the waves do not travel until the free boundaries. Secondly, if
the numerical setup is not dissipative the prescribed radiation condition at flow boundaries is optimal for
normal wave impingement. Consequently, the domains are designed to satisfy normal wave impingement.
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4.5.3 Boundary term – Transformation

The treatment of the boundary term is difficile and involves the mapping to the integration space (in-
tegration coordinates ξ = [ξ, η, ζ]T ) and finite element specific operations to obtain the boundary shape
functions ∫

ΓIO
A′ · (u∗,ic × n)ds . (4.80)

Vector space transformations [59, 153] to the integration space involve a covariant transformation of the
surface component and a transformation of the integral∫

Γref
A′ · J−T (u∗,ic × n)detJdξdη . (4.81)

At first, the normal on the surface n points outside the connected base volume element. Then, an
integration surface element transforms from the ”physical” space x = [x, y, z]T to the ”integration” space
ξ = [ξ, η, ζ]T by

ds = ||∂x
∂ξ
× ∂x

∂η
||2dξdη (4.82)

that includes the definition of determinant in terms of the cross product. Thirdly, the Piola transformation
projects the velocity (u∗,ic × n) to the parameter space ξ by the Jacobian J

J =
(
∂x

∂ξ
,
∂x

∂η

)
. (4.83)

Fourthly, the pseudo inverse of the Jacobian requires the inverse of the symmetric metric tensor ð 1

ð = JT J . (4.84)

Inserting these four ingredients into the inhomogeneous Neumann boundary yields∫
Γref

A′ · ð−T JT (u∗,ic × n)||∂x
∂ξ
× ∂x

∂η
||2dξdη . (4.85)

4.6 Helmholtz-Hodge decomposition
Technically, the Helmholtz and the Helmholtz-Hodge decomposition [154] are the same computational al-
gorithms, where the latter aims to decompose the field in three distinctive parts on a manifold. Helmholtz-
Hodge theory widens the domain aggregate to manifold and drops the restriction to homologically triv-
ial [59] domains (see Fig. 4.4). Some authors even denote the extension of Helmholtz decomposition from
simply connected Lipschitz domains to homologically trivial domains as Helmholtz-Hodge decomposition.

Theorem 4.6.1 (Helmholtz-Hodge decomposition [155]) A smooth vector field u ∈ L2(Ω) on a homolog-
ically trivial domain Ω can be decomposed in three L2-orthogonal velocity field components

u = uic + uc + uh = ∇×Aic +∇φc + uh . (4.86)

The field uic contains the solenoidal (incompressible) part, uc the irrotational (compressible) part, and
uh the harmonic part of the flow velocity. Bachelor [46] describes the motion of a continuum point as

1 The pseudo inverse represents the transformation property described by Monk [59] (Page 216).
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Figure 4.4: Domain Ω with cutouts Ω1 (e.g. holes).

a combination of three exclusive shapes and motivates the decomposition into three components (see
Fig. 2.2).

(a) An isotropic expansion uc proportional to the volumetric rate of expansion of ∇ · u. The field
component is described by a scalar potential associated with the compressibility of the fluid.

(b) Irrotational deformation uh without volume change. Classical potential flow theory describes this
velocity component that is divergence-free and curl-free.

(c) A rigid-body rotation uic at an angular velocity of 1
2∇ × u. Vortical and incompressible flow

structures are described by the vorticity and its dynamics.

The harmonic can be interpreted as the exterior properties R3/Ω of the decomposed vector field u [156].
If the decomposition domain is R3, the harmonic part is zero. For Ω, the harmonic part can be obtained
by the homogeneous solutions of the partial differential equations with the enforced boundaries.
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5 Aeroacoustic source interpolation

Today, efficient interpolation techniques are especially important when dealing with computational aeroa-
coustics. Since the beginning of CAA, hybrid methods have been established as the most practical method
for fast and accurate aeroacoustic computations at low Mach numbers. The workflow of hybrid aeroa-
coustics involves three steps (see Fig. 5.1): 1. perform unsteady flow computations on a restricted
sub-domain; 2. compute the acoustic sources; 3. simulate the acoustic field. Hybrid aeroacoustic meth-
ods seek for robust and flexible procedures that provide a conservative mesh to mesh interpolation of the
aeroacoustic sources while high computational efficiency is ensured. For low Mach number applications,
a key challenge in CAA is the huge disparity of scales between flow structures and audible acoustic wave-
lengths. The scaling between the acoustic wavelength λ and the characteristic length lv of a vortex is
given by

λ ∼ lv
Ma ,

where Ma is the Mach number. Utilizing this disparity of scales, aeroacoustic analogies or perturbation
techniques separate the flow computation from the acoustic computation (see, e.g., [140,157]). Therefore,
the sizes of the two computational grids are in general quite different.

Fluid dynamics
- CFD
- Measurements

Aeroacoustic sources
.
.
.
.
.
.

RBF computation of
aeroacoustic sources
- ∇ · (((∇× u)× u)′)
- ∇ · (T ′∇s− s′∇T )

Conservative in-
terpolation from
the flow grid to the
acoustic grid

Acoustic
simulation

Hybrid aeroacoustic workflow
.
.
.
.
.
.
.
.
.

Figure 5.1: The hybrid aeroacoustic workflow consists of three main computational parts, where the
presented RBF source term computation is important if the CFD solver provides only primary
results, like the pressure p or the velocity u.

For both physical fields, the individual optimal computational grid achieves the highest accuracy and
the two grids differ according to the modeling criteria. On the one hand, the flow grid resolves boundary
layers and is mostly coarsened towards outflow boundaries to dissipate vortices. On the other hand,
the acoustic grid transports waves and therefore needs a uniform grid size all over the computational
domain. In order to couple the different meshes, an interpolation scheme is necessary that satisfies the
fundamental requirement of hybrid CAA: an accurate data transfer from the flow to the acoustic grid
to minimize interpolation errors and conserve the energy. To cope with this task, different interpolation
strategies can be applied, starting from low complexity nearest neighbor interpolation to complex source
term computation models with volume intersections between the flow and the acoustic grid. The simple
nearest neighbor interpolation fails to compute the acoustic sources accurately (see, e.g., [158, 159]).

73



In [158], the aeroacoustic source term is computed by summing the contributions of all flow cells belonging
to finite elements that surround an acoustic finite element node. It is assumed that the flow quantities
used for the acoustic source term computation are constant over each flow cell. This approach has also
been used in [160] for three-dimensional problems, where a grid dependency has been observed, resulting
in a too low sound pressure level over the whole frequency spectrum. A fully conservative approach has
been used in [161], where the acoustic sources within the finite element formulation are first computed
on the fine flow grid. These so-called nodal loads are then interpolated by a conservative scheme to the
acoustic grid. This approach is accurate in cases where the flow grid is much finer than the acoustic grid
but fails in cases where the flow grid is coarser than the acoustic grid. As a solution to this problem, a
cut cell approach has been derived and successfully applied to the aeroacoustic computation of an axial
fan [51]. Similar investigations have been performed in [159], where for both the flow and the acoustic
field a Finite-Volume scheme has been used. However, most of these methods fail if the CFD simulation
only provides primary variables, such as the pressure p or the velocity u, since the aeroacoustic sources are
often non-trivial combinations of these primary variables (see Fig. 6.6). Desirably an accurate, flexible,
and conservative coupling scheme ensures a rigorous connection between fluid dynamics and acoustics
within a hybrid aeroacoustic simulation. The properties of the desired coupling scheme, or interpolation,
are summed up as follows:

• An accurate and fast interpolation technique.

• An interpolation technique that handles special grids, e.g. grids to resolve boundary layers.

• A method to compute accurate derivatives of the primary flow variable, such as pressure p, velocity
u, density ρ, temperature T , and entropy s.

• A flexible algorithm that can be integrated into a standard product development cycle.

• A flexible algorithm that assembles different hybrid aeroacoustic source terms, e.g. the divergence
of the Lamb vector ∇·(((∇×u)×u)′) or the divergence of an entropy source ∇·(T ′∇s−s′∇T ) [31].

• A conservative algorithm transfers the desired amount of energy, defined by the aeroacoustic sources,
from the flow discretization to the mesh of the acoustic simulation [51].

In this paper, we propose to compute the aeroacoustic sources directly from the primary CFD variables
by applying an interpolation scheme based on RBFs (Radial Basis Functions) in conjunction with RBF
derivatives. We show the ideal setup for the algorithms, the choice of the kernel function and propose
a natural neighbors selection based on the connectivity of the flow grid. This patch search technique
guarantees the resolution of typical flow structures. The application of local RBFs provides promising
capabilities in terms of computational efficiency, known from nearest neighbor algorithms. Furthermore,
the computation of RBF derivatives can be carried out elegantly and accurately with a local-global
approach.

5.1 Interpolation Schemes
In the late 1960’s, Hardy developed an approximation and interpolation method for surface fitting prob-
lems [162]. Since then, the multiquadric approximation of scattered data

||x− z||2 7→ Φ(||x− z||2) :=
√

1− ||x− z||22 x, z ∈ Rd (5.1)

has been used in geodesy, mapping, signal processing, digital terrain modeling, and hydrology [163]. This
function (5.1) is an early representative of RBFs, which are scalar valued multivariant functions Rd 7→ R
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that depend on the radial measure r in terms of the Euclidean norm r = ||x − z||2 between a scattered
data (source) point x and the evaluation (target) point z (see Fig. 5.2).

z

x

x− z

Figure 5.2: Geometric definitions of scattered data (x, •) and the target point (z,
⊙

).

Since then, application-driven development of RBFs has modified function type, shape, and rele-
vant support. The most prominent RBF kernels are the Gaussian, the multiquadric, and the inverse
multiquadric [164].

At this point, a clear distinction between local and global methods should be drawn. Global methods,
mainly using the Gaussian kernel, are well suited for theoretical analyses since it can be shown that the
solution converges to the exact solution under certain conditions [165]. But on the down side, the condition
number of the global interpolation matrix tends to infinity. There are some approaches to circumvent this
issue [166] using a QR-decomposition or a Taylor-expansion but they are computationally more expensive
and less parallelizable than local ones.

With increasing number of ill-placed datapoints in datasets, the demand for RBFs with compact local
support [167] increases. Local representations reduce computational time when interpolating data and
increase the condition number of each local subproblem. Instead of inverting one ill-conditioned global
system matrix, many small well-conditioned stencil-matrices are inverted. Using Wendland’s compactly
supported RBFs together with a modified Shepard’s method as presented in [168], high computational
efficiency for large system can be achieved.

An important aspect of this work is the application of RBF interpolation schemes to scattered data
distributions with bad quality, such as extremely anisotropic point distribution, e.g. from boundary layer
flow. We use a local collocation method that represents the data exactly in the prescribed point. In
this sense no algorithmic uncertainty is present at the individual, deterministic, scattered data point. To
handle anisotropic point distributions, a special search procedure is used to find the optimal local point
distribution for interpolation, which will be presented in Sec. 5.1.3.

5.1.1 Radial basis function interpolation

As mentioned above, the main purpose of this method is to interpolate flow results, such as velocity u
or vorticity ω, from a CFD mesh to an acoustic FEM mesh. Since hybrid aeroacoustics deals with a
large number of unknowns and unfortunate data distributions, e.g. in boundary layers, a parallelizable
algorithm to achieve high computational efficiency is of particular interest.

In this work, the local Wendland kernel Φ (5.2) together with a modified Shepard’s method was
chosen, similar to [168]. This is the most promising approach since it is both fast and capable of handling
boundary layer meshes if the chosen kernel is combined with the patch search technique presented in
Sec. 5.1.3. The scaled Wendland kernel [168] has the following form:

Φ(||x− z||2, α) =
(

1− ||x− z||2
α

)
, (5.2)

where x ∈ Rd is the location of a scattered data point. For all scattered data points we define the
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associated indices ωs ∈ 1, 2, ..., Ns, with Ns as the number of scattered data points, also called source
points. The point z ∈ Rd is the point at which the interpolation is evaluated. These points are called
target points and form a set of target point indices ωt ∈ 1, 2, ..., Nt, where Nt is the number of target
points. The parameter α is responsible for the scaling of the compact support (5.2), which is especially
important for bad source point distributions resulting in a high condition number of the interpolation
matrices. The parameter α is chosen to be

α ∼ rmax = max
i∈Iq
{ri} . (5.3)

Iq are the indices of the Nq neighbors of the target point z and define the patch set.

Local interpolation method Following the approach of Lazzaro [168], two different scattered data
patches around the target point are introduced at which the interpolant is evaluated (see Fig. 5.3).
The first set is Xq = {xi ∈ ωs, i ∈ Iq}. The second set is Xw = {xi ∈ ωs, i ∈ Iw}, with Iw as the
indices of the Nw influence points, defines the influence of the different patches. The influence radius
rWk

= maxk∈Iw{rk}, with rk = ||xk − z||2, is defined to be the maximum distance of a target point in
Xw and Nw ⊂ Nq. The interpolant is given by

x

y

Xq

Xw

Figure 5.3: Geometric definitions of the two scattered data sets with respect to one target point (z,
⊙

).
The metric of the search algorithm is essential to the shape of the sets.

s(z) =
Nq∑
k=1

W k(z)Rk(z), (5.4)

where Rk(z) defines the local interpolation system and W k the weight function. The local interpolation
system is given by the algebraic system

Rk(xk) =
Nq∑
j=1

cjΦ(||xj − xk||2) , (5.5)

which has to be initially solved for the Nq temporary (unscaled) interpolation weights cj , where Rk(xk)
denotes the scattered data (field that is interpolated) at the patch source point xk. The weight function
W k of the modified interpolant s(x) is chosen to be

W k(x) =

(
max{ (rWk−rk)

rWkrk
, 0}
)p

∑Nq
l=1

(
max{ (rWk−rl)

rWkrl
, 0}
)p , (5.6)
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with the exponent p as a measure of locality. Since the weights W k(x) constitute a partition of unity,
the following holds,

Nt∑
k=1

W k(x) = 1 . (5.7)

The bigger p, the more local is the approach, which makes it less accurate but capable of resolving
stronger gradients. Then the interpolant s(x) can be evaluated at every target point z. The algorithm
of the local RBF interpolation is written in pseudo code (Algo. 1).

Algorithm 1 Local RBF Interpolation
1: s(z)← RBFInterpolation(x)

2: function RBFInterpolation
3: for k in ωt do
4: Iq = GetNodeIndicesOfPatch(k) . Iq holds indices of Nq source points in patch
5: xk = GetCoordsOfSrcPointsForTrgPoint(k)
6: Rk = GetSourceData(Iq) . get scattered data at patch source point
7: Solve the Nq ×Nq-system for the patch coefficients ck, (5.5)
8: iw = Iq[influence-point] . get index of influence point
9: rWk

= GetDistOfPoint[iw] . distance between target point and iw-th source point
10: Compute weights for every source point in patch k: W k, (5.6)
11: Compute interpolant s(zk) at target point zk, (5.4)
12: end for
13: end function

5.1.2 Proof of convergence of the interpolation

As described by Lazzaro in [168], an upper bound for the global approximation error E(x) reads

E(x) = ||f(x)− s(x)|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
Nq∑
k=1

W k(x)f(x)−
Nq∑
k=1

W k(x)Rk(x)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

Nq∑
k=1

W k(x)ek(x), (5.8)

with ek(x) = ||f(x)−Rk(x)|| as the approximation error of the interpolant Rk(x) relative to the local
interpolation system. Additionally, Madych has proven in [165] that the following holds if the distance h
between the source points is sufficiently small,

ek(x) = ||f(x)−Rk(x)|| ≤ C1e
−C2α ||f ||2 , (5.9)

where C1, C2 ∈ R+ are constants. Thus, for the shape parameter of the Wendland kernel (5.2) with
α → ∞ the approximation error of the local interpolation system ek(x) tends to zero and hence from
(5.8) the same is true for the global approximation error E(x). Moreover, Madych has shown that ek(x)
decreases monotonically in the source neighbor spacing.

5.1.3 On the optimal choice of neighbors

An important part of the interpolation is the choice of source points xi in the patchXq to avoid unphysical
artifacts in the interpolated field. This is especially important in boundary layers, where cells or elements
are distorted or stretched with high aspect ratios. A common approach to obtain a specific amount of
nearest neighbors is to use a kd-tree search, e.g. from CGAL [169] or FLANN [170].
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search target 1 search target 2

Grid of target points
(FEM) Grid of source points

(CFD)

(a) The search of a kd-tree patch is based on a euclidean met-
ric where all source points inside the influence domain (black
dashed circle) surrounding the target point (red circle) are se-
lected. For different mesh discretizations, different search pat-
terns arise. These patterns severely influence the quality of the
interpolation.

U∞

(b) The velocity field of a CFD simulation was inter-
polated to a different grid with the ordinary kd-tree
search algorithm. Non-physical artifacts occur in the
boundary layer.

Figure 5.4: kd-tree search and resulting interpolated flow field.

These fast kd-tree algorithms have to be provided with the coordinate of the target point for which
the patch is defined and all coordinates of the source points. By doing this, the underlying mesh structure
(connectivity) is ignored and the data is represented on discrete scattered points (see Fig. 5.4(a)). Thus,
we might miss important information to improve the quality of the interpolation. To understand the
shortcoming of this approach, a simple example of a boundary layer flow in a channel is provided, where
the cell data from a CFD simulation is interpolated to nodes of a different FEM mesh. The interpolation
from a CFD Finite Volume mesh to an FEM mesh is the standard procedure; however, the findings are
also true for other mesh types without loss of generality.

The interesting part is the area close to the wall, where a mesh refinement is necessary for the boundary
layer to be resolved properly. The resulting patch of elements emerging from a kd-tree search for two
example nodes on the boundary layer is shown in Fig. 5.4(a). There, one can see the unfavorable choice
of source points (black) for different target points (red circle). As shown in Fig. 5.4(b), this patch choice
results in a poor interpolation in streamwise direction, which leads to numerical artifacts. The results
become even worse for heavily distorted meshes. Some of the patches only contain vertical neighbors and
thus these patches have no connection in stream-wise direction.

However, if we use a connectivity preserving mesh-based neighbor search, the patch looks as dis-
played in Fig. 5.5(a), which results in an even spatial distribution and good interpolation results (see
Fig. 5.5(b)). This modified patch algorithm searches for the next directly connected neighbor elements
over the common global nodes. By applying a “layer strategy”, the neighbors of the direct neighbors are
also taken into account. This search can be carried out recursively in a layered manner until the preferred
number of elements is reached. In the illustrated example, only a one-layer level search was applied.

Another drawback of a coordinate based kd-tree search is the interpolation along slender wing profiles
and structures. It is possible that a kd-tree search at the upper side of the wing includes points from
the lower side in the patch, which would lead to completely incorrect results. In this case, the modified
patch search, based on the connectivity, performs well since elements on the upper side have no direct
connection to the elements on the lower side of the slender airfoil.

With the given interpolation formulation it is possible to impose exact boundary conditions, e.g. a
no-penetration condition u ·n = 0, where the corresponding entries of the interpolant equal is set to zero.
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(a) The modified patch search is based on the connectivity of the
mesh. Only direct neighbors of the origin element are selected by
a layer strategy.

U∞

(b) The velocity field of a CFD simulation was inter-
polated to a different grid with the mesh based search
algorithm. No artifacts occur in the boundary layer
and the high quality of the flow field is maintained.

Figure 5.5: Modified patch search and resulting interpolated flow field.

5.1.4 Convergence of interpolation

To analyze the convergence of the RBF interpolation and to quantify the more or less heuristic observa-
tions of correct choice of patches, we prescribe analytic functions on a unit cube Ω ∈ [0, 1]3 with different
node distributions and observe the l2-error after interpolating to a different mesh with equidistant node
distribution.

The first analytic function

f1 (x) =
(
x2 + y2 + z2) sin (10x) sin (10 y) sin (10 z) (5.10)

represents the transition of different vortex structures in shear layers (see Fig. 5.6(a)). This smooth
function is used to investigate the convergence and accuracy of the RBF interpolation since the majority
of pressure fields encountered in low Mach number aeroacoustics are smooth. The second analytic function

f2 (x) = tanh (20 (x+ 0.3 sin (−10 y)− 0.3 sin (−5 (z − 0.1)))) (5.11)

is a representative of a continuous sinusoidal shock, which is similar to the numerical solution of a shock
using a dissipative flow solver [171] (see Fig. 5.7(a)). This function is used to test the capabilities of RBF
interpolation to handle strong gradients and sharp transitions.

(a) Representation of the first ana-
lytic function f1 (x).
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(b) Illustration of the l2-error for the interpolation of the first analytic function
on different mesh types using a nearest neighbor search (solid) and patch search
(dotted). The target mesh discretization is ∆z = 0.1.

Figure 5.6: Convergence of the interpolation for the first analytic function f1 (x).
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(a) Representation of the second an-
alytic function f2 (x).
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(b) Illustration of the l2-error for the interpolation of the second analytic func-
tion on different mesh types using a nearest neighbor search (solid) and patch
search (dotted). The target mesh discretization is ∆z = 0.1.

Figure 5.7: Convergence of the interpolation for the second analytic function f2 (x).

The unit cube Ω ∈ [0, 1]3 was discretized by equidistant hexahedrons, distorted hexahedrons where the
source mesh discretization distance ∆x grows exponentially on one side of the unit cube (see Fig. 5.8(a)),
and tetrahedron elements. Then the analytic function (nodal values) were interpolated to a different mesh
consisting of equidistant hexahedrons with discretization distance ∆z using a nearest neighbor search or
the modified patch search, respectively.

y

(a) Local l2-error for interpolating the first
analytic function from a source mesh (red)
consisting of distorted hexahedrons with 51
nodes on an edge to a mesh consisting of
equidistant hexahedrons with ∆z = 0.1
(black).
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(b) Analytic function f1 (x) along the line y with source nodes (o)
and target nodes (×). For illustration purposes, the interpolation is
assumed to be linear.

Figure 5.8: Illustration of the development of the l2-error for heavily distorted source meshes. As depicted
in Subfig. (a), the high errors arise due to the underresolved physical function in the lower
left of the computational domain. This phenomenon is illustrated in Subfig. (b).

Figure 5.6(b) and Fig. 5.7(b) show the convergence of the RBF interpolation with respect to the
source discretization distance ∆x for the first and second analytic function. Obviously, there is an
influence resulting from the source data density. The RBF interpolation performs well for both the
nearest neighbor search and the modified patch search on all of the different mesh types, except for
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distorted hexahedrons. The reasons for this lie in the source node distribution and the form of the
function to be interpolated.

Figure 5.8 illustrates how the l2-error develops. As it can be seen from the local l2-error in Fig. 5.8(a),
the interpolation delivers good results, except in regions where the source discretization becomes too
coarse and the distance from the source points in the respective area to the target points becomes too
big. Looking at the analytic function that is to be interpolated along the line where the maximum local
l2-errors occur (see Fig. 5.8(b)), we can see that in order to minimize the l2-error while still using a
coarse source mesh discretization, the distance between the source and target points needs to be minimal
and the gradients between the source points should not vary too much.

In order to further analyze the capability of the RBF interpolation for handling boundary layer data
in combination with the different choices of neighbors, we use the function

f3 (x) = 10
4.6151

(
log(y + 10−2)− log(10−2)

)
. (5.12)

The analytic function f3 (x) roughly describes the flow velocity component in inflow direction in a bound-
ary layer (see Fig. 5.9(a)). Here, the wall that is the reason for the boundary layer to develop is located
at y = 0. As mentioned above, a CFD mesh to properly resolve the boundary layer is characterized by
cells with a big aspect ratio in the region adjacent to the wall, where the largest gradients occur. For this
investigations, a mesh consisting of hexahedrons with different aspect ratios in the range of 2 to 512 for
the cells at y = 0 (typical CFD boundary layer mesh [172]) is used. With growing distance y, the mesh
gradually becomes coarser. In order to realize different aspect ratios in the first cell row, the cell height
is varied while the number of nodes on the edges stays the same.

As shown in Fig. 5.9(b), the kd-tree based nearest neighbor search interpolation causes increasing
errors with increasing aspect ratio. Hence, the interpolation error for large aspect ratios limits the
application of the nearest neighbor search. However, the previously described patch search leads to
better results at large aspect ratios where it significantly outperforms the kd-tree based nearest neighbor
search. Ideally, the l2-error is independent of the aspect ratio. One can see that this requirement is
approximately met using patch search.

(a) Representation of the third ana-
lytic function f3 (x).
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(b) Illustration of the l2-error for the interpolation of the third analytic
function on a hexahedron mesh with different source discretizations using
a nearest neighbor search (solid) and patch search (dotted). The target
mesh discretization is ∆z = 0.1.

Figure 5.9: Convergence of the interpolation for the third analytic function f3 (x) on a mesh to resolve a
boundary layer.
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5.2 Derivatives based on RBFs
Although the procedure to compute derivatives based on RBFs is similar to the RBF interpolation, there
is one important difference. For derivatives, there is only one source patch set Xq = {xi ∈ ωs, i ∈ Iq},
with Iq as the indices of the Nq neighbors of the target point z (see Fig. 5.10).

x

y

Xq

Figure 5.10: Geometric definitions of the scattered data set with respect to one target point (z,
⊙

). The
metric of the search algorithm is essential to the shape of the sets.

Matrix notation demystifies the deduction of the radial basis function derivative of a given function
s(z) at target point z. At first, the interpolation weights σ form the interpolant s(x) are determined by

s(x) = Φ(x) · σ (5.13)

at the values of the discrete datapoints x. This system needs to be solved for the weights σ,

σ = Φ−1(x) · s . (5.14)

Then the differential operator L[ ] is applied to the interpolant

L[s(z)] = L[Φ(z) · σ] (5.15)

and the weights from (5.14) are inserted

L[s(z)] = L[Φ(z) ·Φ−1(x) · s]. (5.16)

Now the fact that σ = Φ−1(x) · s does not depend on z is used to pull it out of the operator’s range

L[s(z)] = L[Φ(z)] ·Φ−1(x) · s︸ ︷︷ ︸
σ

. (5.17)

Finally, the derivative is rewrite in a compact form

L[s(z)] = L[Φ(z)] ·Φ−1(x)︸ ︷︷ ︸
c(z)

·s . (5.18)

The process from above can now be transformed to a more implementation-friendly form, based
on [173], where we first have to apply the spatial derivative operator L to the RBF and evaluate it, as

82



presented in (5.19), where xk and xl are the coordinates of two source points with indices k, l ∈ Iq.

LkΦ = L[Φ(||z − xk||2)] =
Nq∑
l=1

clΦ(||xl − xk||2) , k = 1, . . . , Nq . (5.19)

This system has to be inverted in order to obtain the weights cl for the derivatives at the source points
l ∈ Iq. Then the derivative of the given function s(z) can be evaluated by

L[s(z)] =
Nq∑
l=1

cls(xl) =
Nq∑
l=1

clRl , (5.20)

where Rl = s(xl) ∈ RNq×1 is the scattered data value of the given function at the source point with index
l.

Algorithm 2 shows how to calculate derivatives of scattered data distributions. Vector-valued datasets
can be interpreted as a tuple of scalar components

s(x) =

s1(x)
s2(x)
s3(x)

 . (5.21)

Then Rk is a matrix RNq×d with d as the spatial dimension and evaluating the last expression of Algo. 2
leads to a Jacobian matrix (5.22), where each row i contains the derivatives of the scattered data vector.

Algorithm 2 Local RBF Derivative
1: s(z)← RBFDerivative(x)

2: function RBFDifferentiation
3: for t in ωt do
4: Iq = GetNodeIndicesOfPatch(t) . Iq holds indices of the Nq source points in the patch
5: xk = GetCoordsOfSrcPointsOfTrgPoint(t)
6: for k in Iq do
7: LkΦ = CalcDerivativesOfRBF(xi) . L[Φ(||xk − xi||2)]→ LkΦ ∈ RNq×d
8: Φ = EvalRBFat(xk,xi) . Φ ∈ RNq×Nq
9: LkΦ = Φ · c(xk, z) . Compute the weight for source point k, (5.19)
10: end for
11: Rt = GetSourceData(Iq) . Get the scattered data at patch source point
12: S(zt) = c ·Rt . Derivatives s(zt) at zt, (5.20)
13: end for
14: end function

To show how to form the desired differential operator from the spatial differentiation matrix and to out-
line the workflow, a simple example is presented. Assuming a scattered data vector field (s1, s2, s3)T (z) ∈
R3, then the rows of LkΦ contain the spatial derivatives of the three-dimensional RBF in the three spa-
tial directions

(
∂Φ
∂z1

, ∂Φ
∂z2

, ∂Φ
∂z3

)
. Additionally, the derivative coefficients c(xk, z) for source point k are

three-dimensional vectors. The final evaluation S(z) = c ·R(z) leads to the following 3× 3 matrix
∂s1
∂z1

∂s1
∂z2

∂s1
∂z3

∂s2
∂z1

∂s2
∂z2

∂s2
∂z3

∂s3
∂z1

∂s3
∂z2

∂s3
∂z3

 . (5.22)
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Kernel scaling As mentioned above, the Gaussian kernel is used in a local approach. The local kernel
has no numerical stability problem in its basic form and works well on regular grids. But as soon as the
mesh becomes distorted (e.g. boundary layer) the results get worse. An improvement can be achieved
by scaling the Gaussian ansatz function in the following way,

Φ(||x− z||2, α) = e

(
||x−z||2

α

)2

. (5.23)

Theoretically, the Gaussian kernel leads to high accuracy (in theory differentiation up to any given
order is possible) but the stability problem, similar to the global interpolation method, restricts the
maximum flatness α. Roberts proposed a method using a Taylor’s expansion in the flatness parameter α
to circumvent this issue [174]. However, there are optimization strategies [164] to find optimal values of
the flatness parameter α.

It should be emphasized here that the parameter α is computed differently depending on whether an
interpolation or derivation procedure is carried out. An idea to find an optimal shape parameter for the
RBF derivative procedure is to derive a relationship (a confident initial guess)

α ∼ f(r12) (5.24)

for the parameter α with respect to the distance r12 to the next point. The basic approach is to minimize
the following objective functional

E(α, r12) + λ(κ(α, r12)− κlimit) , (5.25)

with the L2-error E, the Lagrange multiplier λ, the condition number κ, and the limit of the condition
number κlimit, where the system becomes sensitive to floating-point round-off errors. The L2-error repre-
sents the deviation of the basis function from being one (absolutely flat, α → ∞) on the whole domain.
This error measure can simply be obtained by integrating

E(α, r12) =
∫

Ω2/3

|1− Φ(||x− z||2, α)|2dΩ . (5.26)

The challenging task is to find the influence of the shape parameter α on the condition number of the
resulting linear system. In general, the condition number κ of a matrix is defined as the ratio of the
largest to the smallest eigenvalue,

κ(α, r12) = σmax(α, r12)
σmin(α, r12) . (5.27)

Therefore, the smallest eigenvalue must be non-zero in order to stay invertible.
The minimization is trivial since the functional decreases monotonically in α while a critical condition

number κlimit guarantees the invertibility of the matrix. With this constraint, a confident initial guess
αinitial is

αinitial ∼ 1/r12 (5.28)

and from this starting point the shape parameter is iterated to the limit of the matrix invertibility,
depending on the inversion algorithm.

As depicted in Fig. 5.11, by increasing the α-parameter the l2 error decreases. However, when
a certain critical condition number of the interpolation matrix is reached, the inversion suffers from
numerical instabilities. The critical α-parameter is dependent on the RBF kernel, the size of the system
matrix, and the function which is to be differentiated. For the example shown in Fig. 5.11 using the
Gaussian kernel, the critical α-parameter is about 2.
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Figure 5.11: Illustration of the l2-error for derivatives using the global Gaussian kernel. For this example,
the optimal α-parameter is about 2. For larger α-parameters, a numerical stability problem
occurs during the inversion of the ill-conditioned system matrix.

Additional notes During the computation, there is an easy way to assess how accurate the derivative will
be. Looking at the last expression of Algorithm 2, where the weight matrix c ∈ Rd×Nq and the source data
matrix R ∈ RNq×d are multiplied, we can state that the row-sum of each row must be zero for an accurate
derivative. This can be seen by considering a constant field, where all entries are equal Rij = const. and
the resulting derivative must be zero (derivative of a constant function) Si(z) =

∑Nq
j=0 cijRj = 0. For

non-trivial coefficients, this only holds if the rowsum is zero
∑Nq
j=0 cij = 0 for i = 1, ..., d. This rowsum

condition is used for optimal neighbor consideration.
During investigations, the local Wendland kernel Φ2,0 = (1− ||x− z||2)2 was found to work perfectly

for generic test cases with moderately distorted elements. But as soon as the the Wendland kernel was
applied to more sophisticated problems (e.g. boundary layers) severe numerical artifacts were observed,
especially when computing the divergence. Therefore, a local approach with a Gaussian kernel (5.23) is
used, which produces accurate results for a wide range of mesh discrepancies.

5.2.1 Convergence of derivatives

To analyze the convergence and accuracy of the RBF derivatives, the analytic functions (5.10 - 5.12) are
again prescribed on a unit cube Ω ∈ [0, 1]3 with different node distributions and observe the l2-error after
computing the gradient of the field.

Figure 5.12(a) shows the convergence of the RBF derivatives with respect to the characteristic dis-
cretization distance ∆x for the first and second analytic function. Similar to the RBF interpolation,
we find that there is an influence resulting from the data density. Although the RBF derivatives are
accurate for both analytic functions, it is obvious that larger gradients (as encountered in the second
analytic function) lead to larger deviations.

Additionally, the convergence of the derivatives in boundary layers was analyzed considering the
analytic function (5.12). This analytic function was again prescribed on a mesh consisting of hexahedrons
with different aspect ratios in the range of 2 to 128 for the cells in the first row.

As shown in Fig. 5.12(b), the l2-error decreases with increasing number of nodes in the region
where the largest gradients occur (next to the wall). However, since the number of nodes on the edges
perpendicular to the wall stays the same while the height of the cells is varied, a point is eventually
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(b) Illustration of the l2-error for the gradient of the third
analytic function on a hexahedral mesh with respect to the
mesh discretization.

Figure 5.12: Convergence of the derivatives for the analytic functions (5.10), (5.11), and (5.12).

reached where the nodes are not distributed well enough over the entire region of the largest gradients.
This is the reason for the flattening of the curves for hexahedrons with large aspect ratios.

5.3 Application of RBF algorithm
Based on the RBF algorithm, the implemented aeroacoustic source terms are verified (see Tab. 5.1).
In the convergence study the numerical source terms were compared to the analytical reference. The

Table 5.1: In CFSDAT (Coupled Field Simulation DAta Transformation is an inhouse data transformation
tool.) implemented aeroacoustic source terms, based on RBFs.

Formulation
∇ · ((∇× u)× u)
∇ · ((∇× u)× u) +∇ · ∇( 1

2u · u)
∇ · ∇ · (ρuu)

reference is an analytic velocity distribution u (x) that is similar to vortical structures and isentropic in
space

u (x) =
(
x2 + y2 + z2) sin (2πx) sin (2πy) sin (2πz) (ex + ey + ez) . (5.29)

Figure 5.13 shows the analytic function and the convergence of the computed source terms with
respect to the number of points per wavelength. The computation involves a second derivative and the
source terms converge to the analytic solution.

5.4 Conservative Interpolation
After assembling the aeroacoustic sources, a conservative interpolation scheme transforms the total energy
from the CFD mesh to the acoustic mesh. Energy conservation is guaranteed by the interpolation
algorithm through an integration over the cell volume. A rudimentary approach is to sum up all volume
weighted aeroacoustic loads from the CFD centroids whenever the centroid is located inside an acoustic
element. Figure 5.14 shows this computational efficient variant based on the cell centroids of the CFD
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(a) Cut view of the analytic function
f (x) prescribed on a unit cube.
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(b) l2-error with respect to the mesh discretization resulting from the com-
putation of different source terms based on the analytic function f(x) on an
equidistant quadrilateral mesh.

Figure 5.13: Convergence of the aeroacoustic source terms.

grid. However, this approach computes wrong acoustic sources if the acoustic cells are smaller than the
flow cells. To avoid this limit, an advanced interpolation algorithm has been proposed in [175] that is

Figure 5.14: Standard approach of the conservative interpolation based on the flow grid cell centroids.
Extracted from [175].

based on the intersection of the different acoustic and flow grid. Based on the intersection, the volume
integral adds up the contributions to the respective CAA elements (see Fig. 5.15).

Figure 5.15: Computational steps for the conservative interpolation based on cut-volume-cell approach.
Extracted from [175].

The standard conservative interpolation and the cut-volume-cell approach are compared and verified
against an analytic function

f (x) = sin (3πx) , (5.30)
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on the domain Ω ∈ [0, 1]2. Considering the standard approach, energy errors will occur for large mesh
ratios Γ

Γ = NCAA

NCFD
, (5.31)

with NCAA the number of nodes on the edges of the CAA mesh and NCFD the number of nodes on
the edges of the CFD mesh per resolved wavelength λa = 2/3 m, for this example. Figure 5.16 shows
how the FE nodal right hand side values develop on the line at y = 0.5. Along the evaluation line, the
number of nodes of the CFD grid are constant for the different evaluations, 101 nodes. In contrast to
that, the number of the nodes along the CAA mesh vary according to the mesh ratio. If Γ < 1, the
CFD grid is finer than the CAA mesh; for Γ > 1, the CFD grid is coarser than the CAA mesh. The
standard interpolation performs satisfactory for low mesh ratios, when the CFD grid is fine. For larger
mesh ratios, the standard interpolation exhibits spurious modes and energy is transferred to higher wave
length (unphysical). Overall, the cut-volume cell approach has the desired conservative properties for all
mesh ratios.

Based on Parceval’s theorem, the relative energy content of the real wavelength λa is evaluated
compared to the total energy by the energy ratio er

er =

(
Q̂RHS(λa)

)2

∑N
k=1

(
Q̂RHS(λk)

)2 . (5.32)

Here, Q̂RHS are the amplitudes of the discrete wave number transformation at the corresponding wavenum-
ber, respectively. Table 5.2 compares the standard conservative integration based on the cell centroids
(standard) to the conservative cut-volume-cell interpolation (cut-volume-cell). As expected the more ac-
curate conservative cut-volume-cell interpolation performs superior. However, the computational demand

Table 5.2: Ratio of the energy corresponding to the actual wavelength and the total energy for the
standard procedure and the cut volume-cell procedure, respectively.

Γ Standard er Cut volume-cell er

0.5 99.59 % 99.34 %
1 99.51 % 99.14 %
2 87.5 % 98.76 %
5 55 % 98.94 %
10 31.23 % 98.96 %
20 15.85 % 99.06 %
30 10.6 % 99.1 %

increases with the number of cell intersections (see Tab. 5.2). Compared to the standard approach, the
cut-volume-cell intersection takes about 5 times as long, but overall the computational demand increases
linearly.
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Figure 5.16: FE nodal right hand side values at y = 0.5 with respect to the distance in x-direction.
Number of nodes of the CFD grid on along the line evaluation line is 101; whereas the
number of the nodes along the line is based on the mesh ratio Γ. Γ < 1: the CFD grid is
finer than the CAA mesh; Γ > 1: the CFD grid is coarser than the CAA mesh. The standard
interpolation for different mesh ratios is illustrated in (a, c, e, g) and the cut-volume cell
approach is illustrated in (b, d, f, h).

89



6 Validation and Applications

The validation links the missing or contradicting thoughts of readers. In combination with the developed
methodology continuously four typical questions arose through review processes. These four misunder-
standings are addressed by a separate validation example.

Firstly, the capability of the Helmholtz decomposition is underestimated. Without merit, thoughts
spread that the decomposition cannot split colorful, and rich fluid dynamics into vortical and non-vortical
components. This misinterpretation is clarified by all four examples in this thesis; the first example, a
cylinder in a crossflow, focuses exclusively on the separation. The conclusion reveals that the Helmholtz
decomposition extracts the incompressible part of a low Mach number compressible flow simulation.

Secondly, the developed method has no fundamental fluid dynamic justification. Goldstein justifies
that the vortical part of Helmholtz decomposition of the compressible flow field is non-radiating. The
non-radiating base flow is used to extend the Mach number limitation of hybrid aeroacoustic analogies.
Typical hybrid analogies follow a three step approach: the incompressible CFD simulation, the extraction
of acoustic sources, and the direct one-way coupling to the acoustic simulation. The incompressible fluid
restricts fluid dynamics such that only compact acoustic feedback mechanisms are resolved. If the feedback
mechanism is not acoustically compact, the state of the art is a DSC simulation of flow and acoustics.
Investigations proved that even a coarser discretization than the one used by the DSC resolves the
dominant aeroacoustic feedback. At low Mach numbers, we show that acoustically under-resolved DSC
simulations in combination with the Helmholtz decomposition are able to compute the non-radiating
base flow. The Mach extended hybrid analogy follows again a three step approach, the compressible
CFD simulation in combination with a Helmholtz decomposition, the direct one-way coupling of the
non-radiating base flow to the acoustic. This second example ”cavity with a lip” validates the workflow
in 2D.

Thirdly, turbulent structures are used to doubt the capabilities of the Helmholtz decomposition.
Thoughts spread that the decomposition cannot resolve turbulent vortical structures. The third example
”cavity with a lip” clarifies the method in 3D.

Fourthly, a disfavor arose with the conceptual extension to larger Mach numbers, well below Mach one.
Although, the first three examples are simple, they proof validity of the concept and support application
of a Helmholtz decomposition at higher Mach numbers. The last example compares hybrid simulations at
higher Mach numbers with DSC data. This comparison emphasizes further investigation of this method.

This hybrid aeroacoustic workflow focuses on the acoustic properties of the simulation task. The
aeroacoustic problem is analyzed; significant aeroacoustic sources are detected. Based on this, an acoustic
behavior-oriented solution is favored. Impedance boundaries and other experimentally justified acoustic
material properties are easily integrated. Furthermore, a fast and optimal numerical scheme, designed
for wave equations, computes the acoustic. To conclude, this chapter manifests valid applications of the
theory.
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6.1 Cylinder in a crossflow – 2D
This section is dedicated to show the physical capabilities and mathematical difficulties on the Helmholtz
decomposition. Since the Helmholtz decomposition does not compute fluid dynamics, but separates the
compressible and vortical effects, it is self-evident that this decomposition can reproduce an incompressible
flow. The intention of this case is to show that the Helmholtz decomposition with the exact boundaries
is indeed able to recover the incompressible CFD solution. As the Mach number is quite low and no
feedback mechanism will occur for the given flow state, the compressible and the incompressible CFD
results develop the same flow structures. Therefore, the compressible CFD results are projected to the
incompressible function space and finally compare it with the incompressible CFD solution.

Mathematically, the decomposition on a homologically trivial domain (domain with holes) causes
a generally non-unique decomposition and an additional harmonic term occurs. This harmonic term
is known as the potential flow solution. For the vector potential formulation and the given Neumann
boundaries, the potential flow solution is hidden in the vortical component.

Table 6.1: Geometric and flow parameters of the ”cylinder in a crossflow”.

Parameter Value Description
Re 200 Reynolds number
M 0.03 Mach number
U∞ 10 m/s Free stream velocity
D = 2a 0.02 m Cylinder diameter
St 0.2 Strouhal number

In fluid dynamics the most simplest example of a homologically trivial domain is a cylinder, with
radius a, in a crossflow. The geometrical and fluid dynamic properties are given in Fig. 6.1 and Tab. 6.1.
A circular domain surrounds the cylinder. Asymptotic approximation provides the potential flow solution

Γin Γout

U∞ = 10 m/s

Figure 6.1: Schematic of the geometry and the flow configuration.

of the velocity potential Φ

Φ = U∞

(
1− a2

r2

)
r sinϕ. (6.1)
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6.1.1 Fluid dynamics

Compressible as well as incompressible, viscous flow simulations of the ”cylinder in a crossflow” are
performed on the circular 2D domain, discretized by a structured grid. The time-step is chosen to resolve
the vortices in the wake of the cylinder, known as ”Von Karman vortex street”, characterized by the
Strouhal number. During the compressible simulation the fluid is modeled as an ideal gas. At the
cylinder’s wall a no-slip and no-penetration condition is enforced. A velocity inlet at Γin and a pressure
outlet condition at Γout complete the setup.

6.1.2 Helmholtz decomposition

The ”cylinder in a crossflow” involves no aeroacoustic feedback at such a low Mach number and as a
consequence the incompressible and the compressible flow structures converge to each other. A decom-
position of the compressible velocity field in its compressible component and vortical component should
recover the incompressible CFD solution.

Helmholtz decomposition computes the vortical component for a rectangular subdomain of the CFD
region. To extract the vortical velocity, we solve the curl-curl equation for the vector potential. The
tangential velocity imposes accurate boundaries and mass regularization guarantees solvability of the
Neumann problem. Figure 6.2 shows the similarity of the incompressible CFD and incompressible result
of the Helmholtz decomposition. The results of the velocity magnitude converged up to a relative l2-
error of 0.6% between the fields. The remaining error is partly connected to the difference between the
compressible and incompressible vorticity field and partly due to the numerical procedures used obtain
the incompressible projection.

(a) Incompressible CFD, |uic|2 (b) Helmholtz decomposition, |∇ ×A∗ic(t)|2

0 14.2

Velocity (m/s)

Figure 6.2: Comparison of the incompressible velocity (a) and the incompressible projection of a com-
pressible velocity (b).

For this example the Helmholtz decomposition based on the compressible potential (4.10) was not
investigated, as we expect large numerical errors due to a extremely small rate of dilatation at this low
Mach number. At this small rate of expansion, the numerical noise of the numerical procedure will be in
the order of the rate of dilatation.

6.1.3 Conclusions

In this section, the application of the Helmholtz decomposition to a homologically trivial domain was
demonstrated. Considering the vorticity distribution and the used Neumann boundaries, the simulation
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model suppresses the potential flow solution. The vector potential formulation, being the solution of the
inhomogeneous curl-curl equation, gives accurate results compared to the incompressible flow simulation.
To conclude, the Helmholtz decomposition extracts vortical components, but strictly relies on the quality
of the CFD simulation. Consequently, this decomposition cannot resolve further or finer structures in
the velocity field.

6.2 Cavity with a lip – 2D
Hybrid analogies follow a three step approach, the incompressible CFD simulation, the direct one-way
coupling to the acoustic, and the acoustic simulation. The incompressible fluid restricts fluid dynamics,
only compact acoustic feedback mechanisms are resolved. If the feedback mechanism is not acoustically
compact, the state of the art simulation approach is a DSC. This investigation aims to prove that even
a coarser discretization, than the one used by the DSC, resolves the dominant aeroacoustic feedback. At
low Mach numbers, we show that acoustically under-resolved DSC simulations in combination with the
Helmholtz decomposition are able to compute the non-radiating base flow. Goldstein labels the vortical
part of Helmholtz decomposition of the compressible flow field as non-radiating. The non-radiating
base flow is used to extend the Mach number limitation of hybrid aeroacoustic analogies. Similar the
previously discussed workflow, the Mach extended hybrid analogy follows again a three step approach,
the compressible CFD simulation in combination with a Helmholtz decomposition, the direct one-way
coupling of the non-radiating base flow to the acoustic. This hybrid workflow is validated in 2D by the
aeroacoustic benchmark case ”cavity with a lip” [176]. Figure 6.3 shows the geometrical properties and
the flow configuration of the benchmark case, with all spatial dimensions in mm.

A reduced cross-section at the neck of the cavity characterizes a Helmholtz resonator like geometry.
Typically, turbulent pressure fluctuations in the boundary layer excite the resonator. The Helmholtz
resonance of the cavity is 2150 Hz, but will not be resolved by the URANS flow simulation.

A free-stream of U∞ = 50 m/s rushes over the plate and develops a boundary layer up to a boundary
layer thickness of δ = 10 mm. For this configuration a first shear layer mode at fs1 = 1700 Hz is expected
that is well captured by measurements (see Fig. 6.4). Interpretation of the measurements reveal that
a duct mode (n = 2) occurs in the cavity span at fsp = 1360 Hz, which cannot be resolved by the
2D simulation. The first box mode of the cavity depth, known as λ/4-mode, is at fd = 3000 Hz. The
acoustically under-resolved flow simulation focuses on the frequency range of 1000 Hz − 2000 Hz and
especially the resolution of the shear layer mode.

U∞ = 50 m/s

δ = 10 mm

8.7 mm

24
.7

m
m

3.
3

m
m

15.9 mm
Measurement: wall pressure C1

Figure 6.3: The geometry and the flow configuration of the benchmark problem ”cavity with a lip”.
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Figure 6.4: Experimental investigation of the cavity with a lip for various boundary layer free stream
velocities. The study was conducted at FAU Erlangen during a master thesis. Extracted
from [177].

6.2.1 Simulation workflow

The workflow is split into three main steps. First, a compressible flow simulation on a reduced domain ΩF

is carried out, such that the flow phenomena is captured. The second computation filters the compressible
flow data on the flow domain ΩF and extracts the non-radiating base flow in order to construct the vortical
source term L. Finally, the acoustic propagation is computed on the joint spatial domain ΩA = ΩP∪ΩF,
both in frequency and time domain (see Fig. 6.5). The perfectly matching layer serves as an accurate
free field radiation condition.

6.2.2 Fluid dynamics

During this study, compressible as well as incompressible flow simulations of the cavity with a lip are
performed on the 2D domain ΩF . Since the expected mode fs1 involves strong aeroacoustic feedback from
the compressible part of the solution on the vortical structures, a compressible simulation is indispensable.
The unsteady, compressible, and laminar flow simulation is performed with a prescribed velocity profile
u = uin at the inlet ΓF1, a no slip and no penetration condition u = 0 for the wall ΓF2, an enforced
reference pressure p = pref at the outlet ΓF3, and a symmetry condition u · n = 0 at the top ΓF4 (see
Fig. 6.5).

As known from literature [44], the incompressible simulation misinterprets the physics and predicts a
shear layer mode of second type. Figure 6.6 shows the wall pressure level (PL) of the compressible CFD at
the measurement point C1. The compressible flow simulation predicts the shear layer mode at 1680 Hz,
accurately and measurements confirm the simulation results. A careful reader recognizes ambiguous
phenomena in the PL at around 1105 Hz. An acoustic eigenmode analysis detects computational domain
resonance fdom = 1105 Hz, the mode of the computational artifacts (see Fig. 6.7). Although performing
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ΩF ... Flow domain

ΩP ... Propagation domain

ΩA = ΩF ∪ ΩP

... Acoustic domain

ΓFi ... Flow boundaryΓF1

ΓF2 ... Wall

ΓF3

ΓF4

Figure 6.5: Schematic of the computational domain. The flow domain ΩF is a subdomain of the acoustic
domain ΩA, which includes the flow domain as its source domain.
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Figure 6.6: The wall pressure level (PL) of the compressible flow simulation at the observation point C1
in the cavity. The 1st shear layer mode is located at 1680 Hz and the artifical computational
domain resonances are located around 1100 Hz and 1400 Hz. The reference pressure is 20µPa.

Figure 6.7: Mode of the computational artifacts at 1105 Hz due to the boundary inaccurate treatment
during the CFD.

a 2D flow simulation of the cavity, a resonance at 1390 Hz occurs, surprisingly close to the span-wise
duct mode of the measurements. A possible explanation is that the computational domain resonance
modulates the aeroacoustic source term. This multiplicative combination of flow components generates
a beat tone artifact at 1382.5 Hz. The modulation frequency fmod is given by

fmod = fs1 + fdom

2 = 1382.5 Hz . (6.2)
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At a representative time step, the rate of expansion ∇ · u of the compressible flow simulation shows this
dominant artificial computational domain resonances at a frequency of 1105 Hz (see Fig. 6.8).

−50 0 50

Rate of expansion ∇ · u (1/s)

Figure 6.8: The rate of expansion ∇ · u of the compressible flow simulation at a representative time
step. The figure demonstrates the presence of artificial standing waves due to the boundary
conditions of the compressible flow simulation. The figure shows a characteristic time step.

The artificial computational domain resonances emphasize physically correct boundary models. Con-
sidering this proprietary flow solver, the free field transmission boundary for vortical and wave structures
were limited in the application that resulted in an inaccurate solution.1 Ordinary CFD boundaries are
optimized to propagate vortical structures without reflection. In contrast to that, acoustic radiation
conditions are not modeled precisely and as a consequence artificial computational domain resonances
superpose the flow field. The common DSC simulation utilizes sponge layer techniques to damp acoustic
waves towards the boundaries. However, during ordinary flow simulation, without aeroacoustic feedback,
the weak acoustic energy has typically no impact on the flow simulation. Additionally to the lack of
boundary models, the used flow solver is second order accurate and the flow stabilizing numerical damp-
ing dissipates waves.2 Consequently, engineers face a relatively high computational burden if they resolve
both flow and acoustics with a flow solver. The hybrid aeroacoustic workflow targets the algorithmic
challenges. Furthermore, the acoustically inaccurate boundary models during the CFD are corrected by
the Helmholtz decomposition.

1 Although the self-sustained oscillation interact with this boundary reflections, the 3D application shows that the shear
layer mode is captured.

2 Usually before the waves propagate into the far field.
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6.2.3 Helmholtz decomposition

The Helmholtz decomposition of the flow field extracts the artificial computational domain resonances
and the modulation of the aeroacoustic source term due to the boundary condition at ΓF1, ΓF3, ΓF4.
Physical radiating compressibility is separated from non-radiating base flow components.

Both, the scalar and the vector potential formulation have been implemented applying the finite
element method. The simply connected domain ΩF, with its reentrant corners at the orifice of the cavity,
causes singularities in the compressible velocity component u∗,c = ∇φ∗,c (see Fig. 6.9). In general, this
holds for domains, where corners with a corner angle θ > π exist. The singularities are treatable by a
graded mesh. Overall, the L2-orthogonality

< ∇φ∗,c,u−∇φ∗,c >:=
∫

ΩF

φ∗,c · (u−∇φ∗,c)dx = 6 · 10−4% (6.3)

of the extracted field component ∇φ∗,c to the complementary field u−∇φ∗,c holds.

0 4

‖ u∗,c ‖ (m/s)

Figure 6.9: The magnitude of the compressible part of the velocity reveals singularities at reentrant
corners. As illustrated, the artificial pattern in the domain is captured well. The figure shows
a characteristic time step.

Compared to the scalar potential formulation, the vector potential (Fig. 6.10) does not face singular-
ities at the corners. In case of reentrant corners, the vector potential formulation is the method of choice,
since no singularities are present and the overall extracted field contains all divergence-free components.
The L2 orthogonality of the extracted field ∇ × A∗,ic to the complementary field u − ∇ × A∗,ic holds
< ∇×A∗,ic,u−∇×A∗,ic > = 0.02%.

As the boundaries of both, the scalar and vector potential decompositions, are adjusted to the orthog-
onality condition at the boundaries (4.6) and (4.7), this adjusted decomposition is able to extract a unique
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pair of L2 orthogonal vector fields < ∇×A∗,ic,∇φ∗,c >= 0.03%. The non-radiating field ũ := ∇×A∗,ic

composes the corrected aeroacoustic source term.

0 50

‖ u∗,ic ‖ (m/s)

Figure 6.10: The magnitude of the vortical component shows that it captures all vortical flow features of
the simulation. The figure shows a characteristic time step.

6.2.4 Acoustic propagation

This method tackles the compressible phenomena inside the domain ΩF by filtering the domain artifacts
of the compressible flow field such that the computed sources are not corrupted. The result of the vector
potential formulation is used to construct the corrected Lamb vector L(ũ) (Fig. 6.11.a). CFS++ [178]
solves the equation of vortex sound (2.102) for the total enthalpy H in terms of the finite element method.
The effectiveness of the filtering technique is investigated based on acoustic propagation in the time and
frequency domain, and the simulation results are compared to the measurements inside the cavity as
well as outside. In the ideal case, the radiating field in the aeroacoustic source terms are filtered out.
Therefore, we compare the acoustic field resulting from the corrected source term and the acoustic field
forced by the non-corrected source term. Figure 6.11 illustrates the shape and nature of the Lamb vector
for a characteristic time step and surprisingly there is no visible difference in the source term, except its
strength. The Lamb vector and the derivatives are computed in the framework of radial basis functions.
Doppler’s effect is included in the convective wave operator, in upstream direction the wavefronts reduce
their wavelength and downstream the distance between the peaks of the wavefronts are enlarged. The
finite element domain consists of three discretization independent and non-conforming regions: acoustic
source domain, the propagation domain and a PML domain that ensures accurate free field radiation.
This domains are connected by non-conforming Nitsche-type Mortar interfaces [179]. The aeroacoustic
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sources are prescribed in the source domain. Two different aeroacoustic source variants are investigated,
the uncorrected Lamb vector L(u) (includes non-radiating and radiating components) and the corrected
Lamb vector L(ũ) based on the Helmholtz-Hodge decomposition in the vector potential formulation.

(a) Lcorr = ω × u∗,ic (b) L = ω × u

0 1

Lamb vector (Mm/s2)

Figure 6.11: Comparison of the Lamb vector for the corrected (a) and the non-corrected (b) calculation.
The figure shows a characteristic time step.

Figure 6.12 compares the resulting acoustic field whether for applying the source term correction or
not. As expected, the acoustic field of the corrected source term is weaker. The corrected acoustic field
represents the acoustics due to the vortical velocity component in the source term.

(a) Lcorr corrected (b) L not corrected

−80 0 80

Enthalpy H (J/kg)

Figure 6.12: Field of the total enthalpy fluctuation H at a characteristic time. (a) Aeroacoustic sources
of the wave equation are corrected. (b) Aeroacoustic sources are not corrected.

Oberai et al. [180] and Kato’s approach [181] corrects the 2D SPL values to a representative 3D SPL
value, considering a span of the cavity simulation of Ls = 1 m compared to measurements of L = 250 mm.
These results meet the expectations for the physical shear layer resonance and the monopole radiation
characteristics [182–184]. Equation (2.99) and the ideal gas law relate the specific enthalpy and the sound
pressure level in its linearized form H/RsT � 1

SPL3D = SPL2D + SPLC = 20 log
(

H

RsTp0

)
+ 20 log

(
L

Ls

√
f

c0r

)
. (6.4)
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The 3D SPL value are computed at ambient conditions. A comparison of the SPL inside the cavity
shows that the non-corrected results are higher. A quantitative analysis is given in Tab. 6.2, where the
overall results of the non-corrected acoustic simulation is worse. Speaking of the corrected results, the
characteristic frequencies are captured well and the amplitude matches the one of the first shear layer
mode. The amplitude of the artificial mode is diminished by the corrected simulation results from 62 dB
to 35 dB. The SPL in Fig. 6.13 reveal that the physical shear layer mode is present inside the cavity.

Table 6.2: Comparison of the pressure inside the cavity.

fs1/Hz SPL3D/dB fmod/Hz SPL3D/dB
Experiment 1650 60.5 - -
Simulation L(ũ) = ω × ũ 1660 57 1390 35
Simulation L(u) = ω × u 1660 77 1390 62

This simulation result coincides with the experiment with respect to the location and the amplitude of
the resonance, as well as the derived monopole characteristics. It is self evident that the 2D simulation
is not able to compute the span-wise cavity mode.
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Figure 6.13: Comparison of the sound pressure level inside the cavity. The curves reveal that both
physical peaks are present inside the cavity.

The second measurement point, above the cavity, exhibits that results of the corrected Lamb vec-
tor formulation coincides with the experiment with respect to the location and the amplitude of the
resonances. Table 6.3 quantifies the obtained results in the far-field. Similar to the near-field, the charac-
teristic shear layer mode is captured well. The amplitude of the shear layer mode is slightly overestimated,
which can be explained by the higher free stream velocity in the simulation. Like before, the non-corrected

Table 6.3: Comparison of the pressure outside the cavity.

fs1/Hz SPL3D/dB fmod/Hz SPL3D/dB
Experiment 1650 30 - -
Simulation L(ũ) = ω × ũ 1660 32 1390 13
Simulation L(u) = ω × u 1660 50 1390 39

results are higher and interestingly, the artificial mode at 1390Hz is reduced significantly in the corrected
formulation as it is intended by the method. The curve in Fig.6.14 reveals that the shear layer mode is
significant outside the cavity.

6.2.5 Conclusions

If a compressible flow simulation already contains acoustics (which are solved by the aeroacoustic analogy),
the sources of an aeroacoustic analogy have to be filtered such that a non-radiating base flow is obtained to

100



1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000

0

20

40

60

f in (Hz)

S
P
L

2D
in

(d
B
) Lcorr

L

Figure 6.14: Comparison of the sound pressure level outside the cavity. The curve of the corrected Lamb
vector formulation reveals that only the shear layer mode is present outside the cavity.

construct the source terms. By applying the Helmholtz decomposition, it is possible to extract the vortical
(non-radiating) flow component for arbitrary domains. The method filters domain resonant artifacts, due
to the boundaries. However, an accurate treatment of the boundary during CFD simulations is always
recommended.

It has to be noted, that for bounded domains and domains with holes, an additional decomposition
component arises, which is in the harmonic function space. The additional harmonic term is the solution
of the potential flow theory of the geometrical configuration. Since the non-radiating base flow relies on
the divergence free formulation, the vector potential equation serves as a valid formulation to extract all
divergence-free and non-radiating parts of the flow, whether or not containing harmonic components.

The difference to state of the art hybrid aeroacoustic techniques is that this method handles com-
pressible source data to compute the aeroacoustic source terms. Since the method relies on the extraction
of a non-radiating baseflow, as proposed by Goldstein, the application to general aeroacoustic analogies
is possible. This means, differently to FW-H that computes the fluctuating pressure, it is possible to
compute acoustics applying the method in conjunction with APE-2 or PCWE.

This investigation proved that even a coarser discretization than the one used by the DSC resolves
the dominant aeroacoustic feedback. At low Mach numbers, an acoustically under-resolved compressible
simulation in combination with the Helmholtz decomposition is able to compute the non-radiating base
flow for the Mach number extended hybrid analogy. This Mach extended hybrid analogy follows again a
three step approach, the compressible CFD simulation in combination with a Helmholtz decomposition,
the direct one-way coupling of the non-radiating base flow to the acoustic. The example ”cavity with a
lip” validates the workflow in 2D.
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6.3 Cavity with a lip – 3D
The compressible fluid dynamic equations solve both fields, flow and acoustic fluctuations, in the same
calculation. During this simulation we use flow focused numerical schemes, grid, and time step size;
acoustics is expected to dissipated with respect to its propagation. The simulation avoids reflection by a
special free field condition3. As already discussed, a direct sound computation (DSC) is computationally
demanding and needs proper non-reflecting boundary conditions that avoid reflections. In contrast to
DSC, the proposed flexible hybrid methodology avoids this error sources, too. This section addresses the
underestimated capability of the Helmholtz decomposition to resolve turbulent vortical structures.

6.3.1 Fluid dynamics

The executed simulations focus exclusively on compressible flow simulations to get a profound under-
standing of the example (at ambient conditions p = 101325 Pa and T = 300 K). Figure 6.15 shows the
geometry of the cavity used for the simulations. More details on the flow and geometrical parameters can
be found in [88], the values coincide with the ones of Farkas [44]. The grid resolves the viscous sublayer
and a convergence was assessed by grid convergence for URANS and LES turbulence models. At the
free field boundary non-reflective conditions are set. Throughout the simulations turbulence models, flow
velocities, and boundary conditions have been varied and compared. The aim of the CFD study is to
identify uncharacterized modes in the pressure spectrum, investigate the three-dimensional Taylor-Görtler
vortices from the recirculation, and their role on the shear layer instability.
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Figure 6.15: Geometrical properties of the cavity with a lip in 3D. The pressure microphone is located
in the middle of the front cavity face. Extracted from [88].

Pressure fluctuations

The computational meshes are analyzed by a general Richardson’s interpolation [185, 186] and the best
performing meshes, with respect to the mode resolution in the pressure spectrum and the computational
efficiency, are selected. The mesh resolves the turbulent boundary layer y+ < 1, for both simulations
kω-SST (shear stress transport) and SBES (stress blended eddy simulation). Relevant computational
settings are given in Tab. 6.4. Further details on the simulation settings, with an in-depth discussion of
each choice, are given in [88].

3 Otherwise, reflections of the boundary conditions could shade physical acoustic waves
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Table 6.4: Compressible CFD simulation settings and boundary conditions. Values for y+ and CFL are
maximum values during the convergence study: simulation time t = 0.15 s. [88]

Fluid Air approximated by perfect gas at p = 101325 Pa
and T = 300 K

Solver pressure-based
Pressure–velocity coupling coupled
Gradient least squares cell based
Pressure second order
Density second order upwind
Momentum second order upwind (kω-SST);

bounded central differencing (SBES)
Turbulent kinetic energy second order upwind
Specific dissipation rate second order upwind
Energy second order upwind
Transient formulation second order implicit
Inlet velocity inlet with pgauge = 101325 Pa

based on boundary layer simulations and non-reflecting
Outlet, Top pressure outlet with pgauge = 101325 Pa;

non-reflective and from neighboring cell
Front and back (span-wise) periodic (front – periodic zone; back – shadow zone)
Wall (Cavity and Plate) wall
Inlet turbulence turbulent length scale lt = 0.4δinlet

low turbulent Intensity It = 0.5 %
y+ < 1 plate boundary layer; < 12 inside the cavity
CFL-Number < 47 for ∆t = 2 · 10−5 s

Figure 6.16 compares the simulated pressure fluctuations inside the cavity with analytic locations of
modes and the measurements of Henderson [176]. Simulations based on the URANS turbulence model
calculate the location of the first Rossiter mode (2.162)

fR1 = U∞
LM

1− α
Ma + κ−1

c
= 1733 Hz (6.5)

and higher harmonics accurately. In (6.5), U∞ denotes the free stream velocity, LM the length of the cavity
mouth, the semi-empirical constant κc = 0.43 represents the ratio between the vortex convection speed
and the flow velocity, and α = 0.25 the time delay between the moment of the vortex impinging on the
trailing edge and the emission of the acoustic waves [176]. The brief measurement documentation brought
up discussions about the real boundary layer thickness during the experiments. The systematic deviation
to the experimental values correlate with the boundary layer thickness and is analyzed in the dedicated
paragraph. As expected, no additional modes are triggered by URANS turbulence. Remarkably is the
comparable resolution of the Rossiter modes for URANS and LES based simulations. In contrast the
URANS based simulations, where only the the first Rossiter mode is resolved, the LES based simulations
resolve additionally the Helmholtz resonator mode (2.165)

fH = c

2π

√
πR′2

V (DM + πR′

2 )
= 2149 Hz (6.6)

and cavity modes, since instantaneous fluctuations are quantified. Equation (6.6) is calculated using the
speed of sound c = 347.411 m/s, the total cavity volume V , the depth of the cavity mouth DM, and the
equivalent hydraulic radius R′ =

√
A/π, where A stands for the area of the cavity orifice. The cavity
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mode in transversal direction is visible at a frequency of

fCy = c

4 (D +DM) = 3102 Hz , (6.7)

where (D +DM) denotes the total cavity depth. The systematic underestimation of these modes is
explained by lower turbulence in the boundary layer compared to the measurements. The flow field
shows a two dimensional shear layer structures in the span-wise direction, with small recirculations inside
the cavity. The non-reflective boundaries, based on the characteristics of the LEE, absorb acoustics, since
no artificial domain resonances have been found in the pressure spectrum.
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Figure 6.16: URANS and DES pressure fluctuations inside the cavity for U∞ = 50 m/s. Both simulations
are carried out on the same grid. Extracted from [88].

Velocity variations

The variation of the turbulence model revealed effects of instantaneous fluctuations on the cavity. Sticking
to the LES turbulence model, the free stream velocity is varied from 50 m/s to 26.8 m/s. As described in
literature [44], this simulation shows that the first Rossiter modes switches to the second one and beyond
this a subharmonic peak occurs at 800 Hz (see Fig. 6.17). The analysis of the flow field detects an
interesting phenomenon; only every second vortex hits the cavity edge, known as complete clipping,
whereas the other partially escapes (see Fig. 2.6). A profound correlation study indicates that strong
recirculations below the leading edge separation push the shear layer and produce this different edge
interaction. This subsequent different trailing edge interaction causes the subharmonic peak.

Boundary layer thickness

As previously addressed, the systematic deviation of the resonance frequency compared to the experi-
mental values correlate with the boundary layer thickness. Figure 6.18 illustrates the dependency on the
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Figure 6.17: DES pressure fluctuations inside the cavity variable flow speeds U∞ = 50 m/s and U∞ =
26.8 m/s. The simulations are carried out on the optimal grid (fine) based on the grid
convergence study. Extracted from [88].

boundary layer thickness. In general, an increasing boundary layer thickness decreases the pressure level
inside the cavity and the mode frequency of the Rossiter mode. For decreasing boundary layer thickness,
the energy concentrates at the Rossiter mode and fewer side peaks occur. The LES based simulation
results in a 3 dB higher pressure level and a weaker dependency on the boundary layer variations for
the frequency. A lower pressure level for kω-SST complies with under-resolved turbulent structures and
coincides with [187]. It is curious that at δ = 8 mm mode switching occurs, which has been investigated
by Henderson [176] and causes a small reduction of the amplitude.4
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Figure 6.18: Variation of the pressure level (right) and resonance frequency (left) at U∞ = 50 m/s depend-
ing on the boundary layer thickness. Extracted from [88].

4 ”One additional consideration should be made when directly comparing numerical results to experimental results.
When multiple tones occur in the spectrum, the preferred or dominant mode often changes randomly. This can result
in a change of 3 dB or more in the peak sound pressure levels.” [176]
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Vertical ejection

The most remarkable result is the vertical ejection of every second vortex and the amplification of
subharmonics by a decreasing time step. Figure 6.19 shows the pressure fluctuations for the different
time step sizes at U∞ = 50 m/s. Similarly to reduced velocities, the edge-interaction transits the flow to a
somewhat odd behavior with an increasing recirculation strength. An instantaneous variability below the
shear layer distorts the convection of the vortices inside the shear layer. As a consequence, consecutive
vortex trailing edge interactions deviate from each other in the range of complete clipping to complete
escape.
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Figure 6.19: Variation of the pressure level at U∞ = 50 m/s depending on the time step size. The sim-
ulations are carried out on the optimal grid (fine) based on the grid convergence study.
Extracted from [88].

Detected modes

Table 6.5 links the modes of Henderson’s experiments [176] to the URANS and LES simulations. In
contrast to Henderson’s measurements in a channel, the present simulation considers free radiation and
therefore no duct modes should occur in the simulation results. However, improper radiation boundaries
excite a channel like mode. All present subharmonics are subject of further investigations to clarify their
causal physical origin. Rossiter’s and Helmholtz’s resonance are captured well and investigated by a
parameter study. The higher harmonics of the Rossiter mode are present as well as the higher harmonics
of the cavities’ depth mode. Two further modes are unlabeled.
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Table 6.5: Comparison of the pressure modes of the different simulations at U∞ = 50 m/s and δ = 10 mm
to Henderson’s experiments [176]. Mode labels with a �∗ denote a proposed mechanism.

Henderson

f PL
(Hz) (dB)
380 102.5
930 103
1340 107
1824 134
2016 113
2848 106
3552 111
− −
− −
− −
− −

URANS LES LES
∆t = 20µs ∆t = 1µs

f PL f PL f PL Expected
(Hz) (dB) (Hz) (dB) (Hz) (dB) mode
− − 480 88.2 442 87.7 Artificial domain resonance
− − − − 798 87.1 Shear layer-edge interaction
− − 1190 93.7 1250 98.9 3D effects∗

1673 131.2 1671 134.3 1702 136.1 First Rossiter mode fR1

− − 2152 102 2154 96.2 Helmholtz resonance fH
− − 2861 89 2952 87.6 First Cavity depth mode fCy

3355 99.7 3341 106 3404 101.8 First higher Harmonic fR1

− − 3822 75.7 3875 89.4 unknown
− − 4543 72 4654 79.3 First harmonic of fH

5028 75.8 5012 78 5106 93.9 Second higher Harmonic of fR1

− − 5502 58.3 5577 80.6 Second Cavity depth mode fCy

6.3.2 Helmholtz decomposition

The Helmholtz decomposition of the flow field extracts the artificial computational domain resonances
and the modulation of the aeroacoustic source term due to the boundary condition at ΓF1, ΓF3, ΓF4.
Physical radiating compressibility is separated from non-radiating base flow components. Due to the
known drawbacks of the scalar potential formulation, we apply the vector potential formulation with
inhomogeneous Neumann boundaries. Figure 6.20 shows the decomposition (vector potential formulation)
of a flow simulation with an URANS turbulence model as well as a flow simulation with a SBES turbulence
model. The turbulent vortical structures are separated and clearly captured. Additionally to the URANS
flow simulation, the SBES turbulence based flow simulations models instantaneous turbulent structures.
These turbulent structures are separated by the Helmholtz decomposition.

Figure 6.21 shows the decomposition based on the vector potential for the total domain. Differently
to the Poisson equation, the vector potential behaves optimal at reentrant corners. However for large
computational domains, solving the curl-curl equation is computational demanding. Another possibility
under investigation is the direct extraction of compressible parts during the CFD simulation by solving
a Poisson problem.

Direct extraction of compressible parts during CFD

The CFD simulation solves generic transport equations and Poisson’s equations. Additionally to the
conservation laws, the parallel computation of scalar transport equations is efficient

∂ρφ

∂t
+∇ · (ρuφ−∇φ) = Sφ , (6.8)

where φ denotes the scalar function and Sφ the source term. Neglecting the convective and unsteady
term, Helmholtz decomposition can be directly treated as scalar Poisson’s equation

−∇ · ∇φ = Sφ . (6.9)
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Figure 6.20: Helmholtz decomposition of an URANS simulation (left) and a SBES simulation (right).

The unknown source term Sφ is determined through a reformulation of the continuity equation (2.12)

1
ρ

dρ
dt +∇ · u = 0 . (6.10)

The Helmholtz decomposition (2.73) is inserted into the divergence of the velocity. Based on the properties
of the vector potential A, the vector potential term is null and only the scalar potential φ remains in the
equation

−∇ · ∇φ = 1
ρ

dρ
dt = −∇ · u . (6.11)

By comparing the source terms of the reformulated continuity equation with the reduced scalar Poisson
equation (6.9), two variants of the source term are available. The first is the relative variation of the
density along a streamline, the second variant depends solely on the velocity

Sφ = 1
ρ

dρ
dt = −∇ · u . (6.12)

Although it is not correct, the free field boundary conditions are modeled by a homogeneous Dirichlet
boundary and the wall boundaries are a homogeneous Neumann boundary. Further improvement of this
free field boundary condition can be applied by the IML, which is not implemented in the CFD solver.
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Figure 6.21: Vortical velocity component after the Helmholtz decomposition with the curl-curl equation.
X-component of the velocity field.

Figure 6.22 shows the result of this computation. As one can clearly see, the scalar potential extracts the

−1 0 1

Scalar potential in (µm2/s)
0 0.1

Compressible part of the velocity in (m/s)

Figure 6.22: Direct execution of the decomposition during the CFD simulation provides the scalar poten-
tial (left). Similar to the previous investigations in 2D, the derivative of the scalar potential,
compressible part of the velocity field, tends to infinity near reentrant corners (right).

compressible components of the fluid that converge to the acoustic quantities in the far-field. Upstream
amplification is captured by the direct simulation of flow and acoustic, but the wrong free field radiation
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condition, approximated by a homogeneous Dirichlet boundary, ”squeezes” the acoustic field unnaturally.
Furthermore, as already indicated in the 2D simulation of the cavity, the computation of the compressible
part of the velocity field results in an unbounded solution at reentrant corners.

6.3.3 Mapping 3D to 2D

Simulation models aim to reduce computational complexity, while maintaining generality of the results. In
order to reduce the computational domain from three dimensions to two, we analyze the correlation of the
aeroacoustic source terms qa = ∇·∇ ·T at the distinct first Rossiter mode. The strongest sources emerge
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Figure 6.23: Investigated domain of the span-wise correlation study, separated into four areas of shear
layer growth. The contours illustrate the sources of Lighthill’s aeroacoustic wave equation.
Extracted from [88].

inside and above the orifice. Around this region, the span-wise correlation judges the coherence of the
radiating structures. If the sources are coherent, a reduction to two dimensions is possible. Additionally,
this reduction mapping can be used to detect 3D effects in the flow domain (e.g. the assumed mode
mechanism at 1200 Hz). Figure 6.23 depicts the selected region of investigation around the neck of the
cavity and its segmentation into four sections that coincide with three areas of shear layer growth A-
C [128] and the post-edge interaction zone D. This distinction and the division into line locations above,
at the orifice, and inside the neck allows a unique identification of three dimensional regions.
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Figure 6.24: Mapping schematic of the uniform, span-wise spaced 3D acoustic mesh to the 2D acoustic
mesh. Extracted from [88].

For the purpose of the coherence study, we used 54 equidistant acoustic source term probes qa,i in the
span-wise direction in the region near the cavity mouth, where the dominant sources occur (see Fig.6.23).
After defining a reference probe qa,ref at the middle of the cavity’s span, the coherence

γ2
i (f) =

|Gqa,refqa,i(f)|2

Gqa,refqa,ref(f) ·Gqa,iqa,i(f) , 0 ≤ γ2
i (f) ≤ 1 (6.13)

was calculated with regard to all other 53 probes. In (6.13) Gqa,refqa,i(f) denotes the cross spectral density
between reference probe and probe i, whereas Gqa,refqa,ref(f) and Gqa,iqa,i(f) denote the power spectral
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densities of both probes, qa,ref and qa,i.
Figure 6.25 presents the span-wise coherence for line 11, 6, and 1 at the dominant Rossiter frequency.

Aeroacoustic sources cohere well on the lines 11 and 6 for all segments A-D. This indicates two dimensional
aeroacoustic structures inside and above the shear layer. Being inside the neck of the cavity, the coherence
of the flow structure increases towards the trailing edge. At the trailing edge, where the dominant shear
layer tones are generated, the flow is again nearly two dimensional and we conclude that a reduction
is possible. The incoherent structures below the leading edge separation of the boundary layer proof
evidence of three dimensional recirculations tuning the shear layer instability to some extent.
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Figure 6.25: Span-wise coherence at 1671 Hz of different segments on different lines for the mesh cluster
11 (left), 6 (middle) and 1 (right). Extracted from [88].

The high correlation between the sources justifies the reduction to two dimensions by a span-wise
average over the aeroacoustic source terms. The aeroacoustic sources are mapped from an uniform
distributed span-wise mesh to a 2D coordinate (see Fig. 6.24). For uniform spaced meshes the mean
value is simply computed by the span-wise average. The domain reduction to the mean quantity q follows

q = 1
N

N∑
i=1

qi .

This span-wise averaged aeroacoustic sources are now used to compute the sound propagation in 2D.

6.3.4 Acoustics

The acoustic simulation is performed by applying FEM to the vortex sound equation in 2D (see (3.45)).
The simulation parameters are summarized in Tab. 6.6. Conceptually, the acoustic simulation setup
coincides with the previous example (see Sec. 6.2). The Lamb vector L of the compressible CFD

Table 6.6: Simulation setup of the FE program CFS++ that is used to compute the wave propagation.

Fluid Air, perfect gas at p = 101325 Pa and T = 300 K
Wall sound hard
Non-conforming Grid Nitsche-Type Mortar interface

(nitscheFactor = 100)
PML inverseDist with dampFactor = 1
Acoustic wave Vortex sound equation
Time stepping Hilbert-Hughes-Taylor with timeStepAlpha=-0.3
Solver pardiso

simulation is compared to the corrected Lamb vector Lcorr. Based on the Helmholtz decomposition that
was performed directly in the CFD (scalar potential formulation), the corrected Lamb vector is computed
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by
Lcorr = ω × (u−∇φ) . (6.14)

As illustrated in the previous investigation, using the scalar potential formulation is not optimal (e.g.
corner singularities). Nevertheless, this decomposition is performed along with the CFD simulation that
leads to a low computational cost for large simulation models.

Source (=CFD)

Propagation

Perfectly Matched Layer

R

φ

Figure 6.26: Simulation domain of the FE simulation, source domain followed by a propagation domain
and a PML. The domains are connected by Nitsche-Type Mortar interfaces.

Figure 6.26 shows the simulation domain of the FE simulation, a source domain is followed by a
propagation domain and a PML. The separated sub-domains are connected by Nitsche-Type Mortar
interfaces. At an radius R = 0.775 m, a microphone array detects the radiation pattern of the acoustic
propagation, which is expected to amplify radiation in upstream direction and will be of monopole
characteristics. At this low Mach number, the convective mean flow effects are very small. Figure 6.27
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Figure 6.27: Uncorrected source term computed with constant density and SBES turbulence model and
the corrected source term are compared at the microphone position of ϕ = 90◦ on the
evaluation circle (left) and the radiation pattern at the first shear layer mode (right).

depicts the radiation pattern of the cavity at the 1st shear layer mode. As detected in previous studies,
the radiation pattern is a monopole, slightly directed to the upstream direction. The sound pressure
level in 2D is corrected according to (6.4) to 3D values. Since the free field radiation condition of the
CFD simulation fulfills radiation during the flow simulation, no reduction on the SPL is visible in the
spectrum, comparing the corrected, ∇ ·Lcorr, and the non-corrected source term, ∇ ·L, (see Fig. 6.27).
Figure 6.27 shows the SPL as a function of the frequency of the microphone at ϕ = 90◦ on the evaluation
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circle. The amplitude of the corrected and the non-corrected SPL at the 1st shear layer mode is close to
the experimental result of 30 dB (this was measured at a slightly lower free stream velocity).

All higher harmonics are captured and the Helmholtz frequency as well as the depth mode of the cavity.
Additionally, the mode at 1200 Hz is not present in the sound spectrum, hence a 3D effect must be the
origin. The SPL of the microphone inside the cavity shows good agreement with the measurements [177].
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Figure 6.28: Uncorrected source term computed with constant density and SBES turbulence model and
the corrected source term are compared at the microphone position inside the cavity.

The SPL of the corrected simulation at the first shear layer mode is 59.4 dB compared to the measurement
60.5 dB.

6.3.5 Discussion of the deviation

Overall, it is possible that the corner singularities pollute the computation and increase the radiated
sound slightly. A possible alternative would be a direct extraction of incompressible parts during CFD.
Similar to the scalar Poisson’s equation, the curl-curl problem can be transformed into a vector Poisson
equation for Coulomb gauging (just on a convex domain)

∇×∇×A∗,ic = ∇∇ ·A∗,ic −∆A∗,ic = −∆A∗,ic = ∇× u = ω . (6.15)

The three unknown source terms of the three Poisson’s equations are the components of the vorticity.
However, the complex boundary terms of each vector potential equation depend on the three computa-
tional variables and therefore require a general CFD solver having the necessary boundary conditions.
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6.4 Cavity 2M4 and 2M8
The application of the Helmholtz decomposition to a DSC of a flow past a cavity demonstrates the
workflow for a higher Mach number. An extensive numerical investigation of this problem was performed
by Colonius [188]. The cavity case 2M4 and 2M8, both exciting the shear layer mode, are investigated
(see Fig. 6.29). The Blasius boundary layer prescribes the velocity field at the inlet, with a free stream

U∞

δ

Figure 6.29: Schematic of the cavities geometry and the flow conditions. The cavity has a length to depth
ratio of two.

velocity ensuring Ma = 0.4 and Ma = 0.8 respectively. For both cases, the Reynolds number of Reδ = 56.8
describes the viscous flow configuration and L/δ = 52.8 the geometrical property relative to the boundary
layer thickness. All dimensionless numbers are computed with D = 2.54 mm and result in the following
physical quantities for the wave equation (see Tab. 6.7). For compressible flows, this cavity involves a

Table 6.7: Geometric and flow parameters of the cavity 2M4 and 2M8.

Parameter Value 2M4 Value 2M8 Description
Reδ 56.8 56.8 Reynolds number
Ma 0.4 0.8 Mach number
U∞ 136 m/s 272 m/s Free stream velocity
D 2.54 mm 2.54 mm Cavity depth
L 5.08 mm 5.08 mm Cavity length
δ 0.0962 mm 0.0962 mm Boundary layer thickness

shear layer instability, a typical fluid dynamic-acoustic resonance. This resonance is characterized by
distinctive processes over one limit cycle. The vortical structure in the shear layer impinges the trailing
edge of the cavity. During the slash on the edge, flow energy propels acoustic radiation. Acoustic waves
travel upstream and hit the cavity’s leading edge and trigger a vortical instability in the shear layer. The
shear layer instability and its process has been described by Rossiter [96]. He developed a semi-empirical
formula to predict resonance frequency measurements. The modified Rossiter formula [189] is

Stm = m− α

Ma
√

1 + κ−1
2 Ma2 + 1

κc

. (6.16)

For this cavity L/D = 2, the parameters are specified by m ∈ N+, α = 0.25, κc = 0.57, the specific heat
ratio κ = 1.4, and the Mach number Ma [96].

The main purpose of the simulation is to convince skeptical readers that the method is valid at higher
Mach numbers. The herein presented hybrid aeroacoustic workflow is compared to a DSC simulation.
Since the direct simulation resolves the acoustic field, the validity of two essential ingredients can be
assessed: the decomposition itself and the whole hybrid aeroacoustic workflow. At first, the Helmholtz
decomposition must be capable of extracting the compressible velocity components of the direct simula-
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tion. In the far-field, this compressible part converges to the acoustic part of the DSC simulation. If this
is the case, the remaining component is the vortical flow part. Secondly, the proposed hybrid aeroacoustic
procedure is applied. The acoustic propagation simulation recalculates a acoustic field and will be judged
by the DSC far-field.

0.96 1.06

ρ/ρ0

0.87 1.09

ρ/ρ0

Figure 6.30: The relative density of the flow field displays compressible flow structures and the resulting
acoustic wave propagation in the flow domain. 2M4 (left) and 2M8 (right).

Before the hybrid method is analyzed, the accurate DSC simulation are discussed. Thanks to the
developers of the FLEXI solver [190] and Thomas Kuhn, Universität Stuttgart Institut für Aerodynamik
und Gasdynamik, who provided the DSC simulation for this investigation. This DSC simulation is
computed by a higher order discontinuous Galerkin scheme in space and time in non-dimensional form.
The non-dimensional time step ∆τ corresponds to a physical time step size of ∆τD/U∞ = t = 0.9337µs
(2M4) and ∆τD/U∞ = t = 0.46685µs (2M8). Both, vortical structures and acoustic waves are resolved
in the DSC data. The density field and the velocity field indicate the presence of a shear layer mode
(see Fig. 6.30 and Fig. 6.31). Weak relative density variations are present inside the cavity; the density
variations convect downstream the cavity. Radial density variations outside the cavity indicate acoustic
propagation. The acoustic waves originate at the cavity’s trailing edge. Typical cavity tone effects such
as the Doppler’s shift and upstream amplification of the acoustic wave are captured by the DSC for both
cases.

A whip shaped shear layer of the velocity field proofs the presence of a shear layer mode. A typical
side effect of this shear layer mode is the secondary vortex in the rear half of the cavity. Compared to the
fluid dynamic velocity field, the acoustic velocity is of orders of magnitude smaller. This first validation
shows how the weak acoustic velocity component is extracted by using Helmholtz decomposition.

6.4.1 Helmholtz decomposition

Helmholtz decomposition of the flow field into compressible and vortical structures requires either the
computation of the rate of expansion or the vorticity of the velocity field. The rate of expansion (see
Fig. 6.32) is a measure of the compressibility of the flow field. Compressibility is highly connected to wave
structures and density variations. A careful reader detects line artifacts in Fig. 6.32; these line artifacts
indicate borders between the discontinuous elements and are due to the discontinuous velocity field. In
the left corner of the domain, the prescribed incompressible Blasius boundary layer adapts its velocity
profile to the compressible fluid and low Reynolds number assumption Rex � 1, with respect to the
developing length, might be violated. The very steep velocity gradient at the inlet leads to unsatisfying
divergence of the numerical flow field. A grid study of the radial basis function derivatives showed that
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Figure 6.31: The magnitude of the flow velocity indicates the presence of the shear layer mode. 2M4
(left) and 2M8 (right).

−50 0 50

∇ · u/U∞ in (10−6· 1/m)
−500 0 500

∇ · u/U∞ in (10−6· 1/m)

Figure 6.32: Rate of expansion of the velocity field. 2M4 (left) and 2M8 (right).

the origin of the checkerboard pattern is partly due to the weak approximation of the divergence by the
direct numerical simulation. However, the direct Helmholtz decomposition of the compressible part with
the rate of expansion is not possible on a non-convex domain. The computation of the scalar potential
results in a singular behavior for reentrant corners. However, Helmholtz decomposition based on the
vorticity works for reentrant corners.

Figure 2.7 shows the vorticity of the shear layer mode [91]. The distinctive shear layer separates
the weak, and stationary secondary vortex inside the cavity, as well as the free stream outside the
cavity. The curl-curl equation of the vector potential is used to obtain the vortical velocity component
of the Helmholtz decomposition. Referring to the first validation, the compressible flow field is obtained
indirectly by subtracting the vortical velocity component from the total velocity field of the DSC. In these
cases, the Mach numbers are 0.4 and 0.8; significant compressible flow structures are expected around
the cavity orifice as well as propagating waves in the decomposed velocity field.

The curl-curl equation with the vorticity as source term computes the vector potential A∗,v. Radial
basis function derivatives derive the local vorticity. Afterwards, the local vorticity is integrated conser-
vatively to finalize the correct finite element loads. At all boundaries, the tangential component of the
velocity field is introduced as a Neumann boundary. Mass regularization guarantees a unique solution of
the Neumann curl-curl problem; the system of equations is solvable. Having the solution of the vector
potential, the incompressible (vortical) velocity component is obtained by uv = ∇ ×A∗,v. Figure 6.34
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Figure 6.33: Vorticity of the cavity configuration in the shear layer mode. 2M4 (right) and 2M8 (left).
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Figure 6.34: Incompressible velocity component of the Helmholtz decomposition. 2M4 (left) and 2M8
(right).

illustrates the vortical velocity component. A comparison to the flow field reveals that vortical structures
dominate the flow.

The complementary field u−∇×A∗,v represents the compressible part of the DSC (see Fig. 6.35).
An analysis of the compressible structures shows radiating waves and strong compressible circular shaped
structures convecting through the cavity orifice analog to the DSC density field. From the compressible
component, an upstream amplification of the compressible waves is detected. As expected, the com-
pressible velocity is about two orders of magnitude lower than the total velocity. The simulation shows
the extraction of the weak acoustic velocity component using Helmholtz decomposition. In the next
validation step, the effect of the hybrid workflow on the acoustic radiation, based on filtered aeroacoustic
sources, is evaluated.

6.4.2 Aeroacoustic simulation

The aeroacoustic propagation simulation recalculates the total stagnating enthalpy H based on the
equation of vortex sound (2.102). This equation is solved in terms of the FEM by the in-house solver
CFS++ [178]. The non-radiating base flow uv is used to construct the corrected Lamb vector. Finally,
the acoustic field is judged by the DSC far-field.

The wave equation is discretized in space by the finite element method and in time by a Newmark time
integration scheme. Doppler’s effect is included in the convective wave operator. Non-conforming Nitsche-

117



0 10 20

‖ uc/U∞ ‖ in 10−3

Figure 6.35: Compressible velocity component of the Helmholtz decomposition. 2M4 (left) and 2M8
(right).

Figure 6.36: Non-conforming interfaces are used to lower the number of elements.

type Mortar interfaces connect the finite element domain that consists of three independent discretizations
and non-conforming regions [179] (see Fig. 6.36). The divergence of the Lamb vector, which is computed
by radial basis functions and the non-radiating base flow uv and forms the aeroacoustic sources, is
prescribed on the source domain. A propagation domain is enclosed between the source domain and the
outer PML. The PML ensures accurate free field radiation for low Mach number of the convective wave
equation. At higher Mach numbers, M= 0.8 reflections occur at the interface from the propagation region
to the PML that emphasizes a further development of the PML. Currently, the PML is just implemented
for the standard wave equation without mean flow.

Figure 6.37 shows the acoustic field of the simulation. The acoustic field represents the acoustics
due to the vortical velocity component. The comparison to the direct numerical simulation leads to
satisfying results for the acoustic field. Upstream amplification and downstream attenuation is captured.
The convection of the acoustic waves is computed correctly for the given Mach number. Equation (2.99)
in the far-field approximation [146], H = p/ρ0, and the ideal gas law for the perturbation serve an
approximate relation between the specific enthalpy fluctuation and the relative density fluctuation

dH/c2 = dρ
ρ0

. (6.17)

Table 6.8 compares the density variations. The density fluctuations of the DSC simulation and the
density variations of the acoustic propagation simulation show similar results in direction of propagation.
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Figure 6.37: Characteristic snapshot of the acoustic propagation. 2M4 (left) and 2M8 (right).

Table 6.9 shows the dominant shear layer mode and the first secondary mode for the considered simulation
setups. The deviations of the predicted shear layer frequency, compared to the experiments and the semi-

Table 6.8: Comparison of the acoustic density fluctuations outside the cavity (the location is depicted in
Fig. 6.36).

Acoustic dρ/ρ0 dH dρ/ρ0

DSC 2M4 0.0035 - 0.0035
Hybrid 2M4 - 0.0218 0.003488
DSC 2M8 0.0345 - 0.0345
Hybrid 2M8 - 0.0402 0.0256

empirical modified Rossiter formula, are in the range of Colonius [73] meticulous cavity study. Figure 6.38
shows the Fourier modes (St1, St2) of the acoustic radiation for Mach 0.8 using the vortex sound equation.
The radiation characteristics of both the dominant first and the secondary Rossiter mode are examined.

Table 6.9: Comparison of the shear layer frequency of 2M4 and 2M8. The dominant Rossiter mode is
depicted and the subdominant Rossiter mode is written in brackets.

St1 2M4 (St2 2M4) (St1 2M8) St2 2M8
Experiments [93] - 0.91 - 0.69
Analytic (6.16) 0.35 0.81 0.29 0.67
Simulation [73] 0.48 0.78 0.34 0.63
DSC 0.471 (0.76) (0.34) 0.645
Hybrid 0.47 0.76 0.342 0.645

Starting with the dominant mode, strong vertical wave amplification is present, very similar to the overall
radiation character. The secondary mode has a lower oscillation frequency and a more spread radiation
pattern. Most important, the radiation pattern of different acoustic meshes is compared to the reference
solution, the DSC. For Mach 0.4, the radiation pattern converges to the DSC as the simulation mesh is
refined. The shape and the magnitude agree with the direct simulation. However for the Mach 0.8 case,
the strong radiation lobes in vertical direction are underestimated. With increasing mesh refinement,
the parasitic side lobes are reduced and the nature of the main lobe is formed. If further linear and
non-linear terms are included in the wave operator, these difference can be reduced to a minimum. By
using the instantaneous flow field in the convective wave operator, second order and third order effects
are investigated. This preliminary study examines the effects of a nonlinear wave equation. Replacing
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Figure 6.38: Fourier modes of the 2M8 cavity. First Rossiter mode (left) and second Rossiter mode
(right).

Figure 6.39: Radiation pattern at the dominant Rossiter mode. 2M4 (right) and 2M8 (left). The
different meshes of the acoustic mesh study, coarse (blue), middle (green), and fine (brown),
are compared to the reference solution (red).

the vortical velocity in the wave operator by the instantaneous flow field, the operator writes as

d
dt = ∂

∂t
+ uv · ∇ → d

dt = ∂

∂t
+ u · ∇ . (6.18)

This change causes nonlinear interactions in the wave operator. Second order acoustic velocity effects of
the wave operator that are included are summarized by

ρ0

[
∂(u− uv) · ∇H

∂t
+ uv · (u− uv) · ∇H + (u− uv) · (uv) · ∇H

]
(6.19)

and third order acoustic velocity effects of the wave operator are included by

ρ0 [(u− uv) · (u− uv) · ∇H] . (6.20)

To incorporate these interaction terms into the wave equation, they must be expressed in terms of the
enthalpy or additional equations arise to compute the acoustic quantities. Figure 6.40 shows the nonlinear
effects for the cavity 2M8. Compared to the linear computation (see Fig. 6.37), the results of the
extended equation illustrate that including further nonlinear effects may lead to a general wave equation,
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Figure 6.40: Simulation including nonlinear compressible velocity interactions, 2M8 cavity.

propagating acoustics at higher Mach numbers. Furthermore, the first order vorticity interaction term

∇ · (ω × (u− uv)) , (6.21)

must be modeled within the wave equation, to follow the proposed concept of Chap. 3.

6.4.3 Conclusions

Based on the DSC data the validity of two essential ingredients is analyzed: the Helmholtz decomposi-
tion itself and the whole hybrid aeroacoustic workflow. At first, the Helmholtz decomposition extracts
the compressible velocity components and the vortical component of the DSC velocity. Secondly, the
proposed hybrid aeroacoustic procedure computes vortex sound that is justified by the DSC far-field.
The hybrid aeroacoustic workflow is enhanced through the computation of the aeroacoustic sources. As
prosed by Goldstein, aeroacoustic sources are based on the non-radiating base flow. It is possible to
extract the vortical (non-radiating) flow component for non-convex domains with the help of a Helmholtz
decomposition. The acoustic field, based on hybrid aeroacoustis and the vortex sound, converges to the
acoustic mode of the DSC in the far-field for Mach 0.4. For Mach 0.8, the strong radiation lobes in vertical
direction are underestimated, since only linear wave propagation is considered in this study. Although,
we are far beyond the limits of the equation of vortex sound and the hybrid methodology, the results
are promising for further studies. This satisfactory match validates the workflow for vorticity dominated
aeroacoustic method. However, further investigations on the relevant terms of the wave operator have to
be done in the future.
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7 Summary and Conclusions

Direct sound computation resolves flow and acoustics at all Mach numbers, but for practical applications,
this is infeasible, even though great advances have been made in direct computation of aerodynamic sound.
Furthermore, open issues of proprietary CFD, e.g. radiation conditions and acoustic active materials,
severely diminishes the applicability in product development. Acoustic analogies based on incompressible
flow simulations overcome these open issues, except the aeroacoustic feedback. To incorporate aeroacous-
tic feedback, the presented hybrid aeroacoustic method relies on a compressible flow simulation. Since
the beginning of computational aeroacoustics (CAA), hybrid methodologies have been established as the
most practical methods for aeroacoustic computations (see Fig. 7.1). Especially in low Mach number
aeroacoustics, the well known disparity of length scales makes it possible to apply well suited simulation
models using different meshes for flow and acoustics, which leads to a very efficient computational pro-
cedure. However, the procedure is generally not limited to low Mach numbers. The workflow of these
aeroacoustic approaches is based on three steps: 1. perform unsteady flow computations on a restricted
sub-domain; 2. compute the acoustic sources; 3. simulate the acoustic field. Hybrid aeroacoustic meth-
ods seek for robust and flexible procedures that provide a conservative mesh to mesh interpolation of
the aeroacoustic sources while high computational efficiency is ensured. We realized this source term
computations by radial basis function interpolation in combination with a volume cut-cell approach.

Fluid dynamics
- CFD
- Measurements

Aeroacoustic sources
.
.
.
.
.
.

RBF computation of
aeroacoustic sources

Conservative in-
terpolation from
the flow grid to the
acoustic grid

Acoustic
simulation

Hybrid aeroacoustic workflow
.
.
.
.
.
.
.
.
.

Figure 7.1: The hybrid aeroacoustic workflow consists of three main computational parts.

A general aeroacoustic analogy assumes a causal forward coupling of the forcing (obtained by an
in-dependent flow simulation) on fluctuating quantities, e.g. the fluctuating pressure p′ that approaches
the acoustic pressure pa at large distances from the turbulent region. Thereby, a general acoustic analogy
composes a hyperbolic left hand side defined by a wave operator and a generic right hand side RHS(?)

�p′ = RHS(p,u, ρ, ...) . (7.1)

As already illustrated, the separation of the flow and acoustic quantities is of major importance. The
acoustic quantities are modeled by the wave equation. A preceding compressible flow simulation computes
fluid dynamic structures, including aeroacoustic feedback. Based on these compressible simulations a
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vortical projection of the flow variables is used as the consistent source term and base flow for the linear
or non-linear wave operator.

The herein presented Helmholtz decomposition obtains a vortical base flow satisfying the incom-
pressibility condition. In contrast to the original version of Helmholtz decomposition, which assumes an
unbounded, simply connected domain, we introduced consistent boundary conditions for the Helmholtz
decomposition in order to be applicable for engineering applications. Considering these practical chal-
lenges, numerical simulation techniques and the standard approximation methods are developed for finite
domains, without vanishing flow fields at the boundaries. This causes a non-unique Helmholtz decom-
position up to the influence of the exterior of the simulation domain. We show that the scalar potential
formulation of Helmholtz decomposition fails for reentrant corners (often these reentrant corners are re-
gions of edge-tone and therefore relevant for the acoustic simulation), but the vector potential formulation
based on the curl-curl equation succeeds in decomposing the velocity field, even for high Mach numbers
and highly turbulent structures. The crucial difference between the scalar and the vector potential is
the incompressibility condition of the vector potential that ensures a bounded solution of the derivative
at reentrant corners (s-regularity). Additionally, we investigated the possibility of decomposing the field
directly during the CFD simulation by solving a Poisson equation in each time-step during the CFD
computation.

Furthermore, we have to note that this hybrid aeroacoustic workflow focus on the acoustic properties
of the problem, an acoustic behavior-oriented solution. The aeroacoustic problem is analyzed, significant
aeroacoustic sources are detected, and acoustic absorbing materials and boundaries are modeled precisely.
Impedance boundaries and experimentally justified acoustic material properties can be integrated.

7.1 Application
The presented numerical simulation method, based on compressible flow data, is applied to different
aeroacoustic examples. With the proposed workflow we are capable of combining the properties of a
fully resolved compressible flow simulation (including feedback from acoustics to flow structures) and the
desirable advantage of a separated acoustic simulation. In this sense, we extend the hybrid approach from
underlying incompressible flow simulations to compressible flow simulations using Helmholtz projection to
obtain a vortical base flow to apply the established hybrid method. The application of this hybrid method
seems to be unconventional and fluid dynamically not rigorous, but with the correct wave operator the
equation is conforming the conservation equations.

The validation linked the missing or contradicting thoughts of readers and we addressed all four
confusions by a separate validation example.

• First, the capability of the Helmholtz decomposition is underestimated. Without merit, thoughts
spread that the decomposition cannot split colorful, and rich fluid dynamics into vortical and
non-vortical components. This misinterpretation is clarified by all four applications in this thesis;
the first example, cylinder in a crossflow, focuses exclusively on the separation. The conclusion
reveals that the Helmholtz decomposition extracts the incompressible part of a low Mach number
compressible flow simulation. Both, the incompressible and vortical (Helmholtz decomposition)
solution coincide.

We demonstrated the application of the Helmholtz decomposition to a homologically trivial do-
main. The special use of Neumann boundaries suppresses the potential flow solution. The vector
potential formulation, as the solution of the inhomogenious curl-curl equation, gives accurate results
compared to the incompressible flow simulation. We conclude that the Helmholtz decomposition
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extracts vortical components, but relies on the quality of the CFD simulation. Consequently, this
decomposition cannot resolve further or finer structures in the velocity field.

• Second, the developed method has a fundamental fluid dynamic justification. Goldstein justifies that
the vortical part of Helmholtz decomposition of the compressible flow field is non-radiating. The
non-radiating base flow is used to extend the Mach number limitation of hybrid aeroacoustic analo-
gies. Typical hybrid analogies follow a three step approach: the incompressible CFD simulation,
the extraction of acoustic sources, and the direct one-way coupling to the acoustic simulation. The
incompressible fluid restricts fluid dynamics that only compact acoustic feedback mechanisms are
resolved. If the feedback mechanism is not acoustically compact, the state of the art is a DSC
simulation of flow and acoustics. Investigations proved that even a coarser discretization than used
by the DSC resolves the dominant aeroacoustic feedback. At low Mach numbers, we show that
acoustically under-resolved DSC simulations in combination with the Helmholtz decomposition are
able to compute the non-radiating base flow. The Mach extended hybrid analogy follows again a
three step approach, the compressible CFD simulation in combination with a Helmholtz decom-
position, the direct one-way coupling of the non-radiating base flow to the acoustic. This second
example ”cavity with a lip” validates the workflow in 2D.

If a compressible flow simulation already contains acoustics (which are solved by the aeroacoustic
analogy), the sources of an aeroacoustic analogy have to be filtered such that a non-radiating
base flow is obtained to construct the source terms. We show, that with the help of a Helmholtz
decomposition, it is possible to extract the vortical (non-radiating) flow component for arbitrary
domains. The method filters domain resonant artifacts, due to the boundaries. However, an
accurate treatment of the boundary during CFD simulations is always recommended.

It has to be noted, that for bounded domains and domains with holes, an additional decomposition
component arises, which is in the harmonic function space. The additional harmonic term is the
solution of the potential flow theory of the geometrical configuration. As we rely on the divergence
free formulation, the equation to obtain the vector potential serves as a valid formulation to ex-
tract all divergence-free and non-radiating parts of the flow, whether or not containing harmonic
components.

• Third, turbulent structures are used to doubt the capabilities of the Helmholtz decomposition. Thoughts
spread that the decomposition cannot resolve turbulent vortical structures. The third example
”cavity with a lip” clarifies the method in 3D. Further investigation on the example including
experimental validation is planned for the future.

• Fourth, a profound disfavor arose with the conceptual extension to larger Mach numbers, well below
Mach one. Although, the first three examples are simple, they proof validity of the concept and
support application of a Helmholtz decomposition at higher Mach numbers. The last example
compares hybrid simulations at higher Mach numbers with DSC data.

Based on the DSC data, we analyzed the validity of two essential ingredients: the Helmholtz de-
composition itself and the whole hybrid aeroacoustic workflow. First, the Helmholtz decomposition
extracts the compressible velocity components and the vortical component of the DSC velocity.
Second, the proposed hybrid aeroacoustic procedure computes vortex sound that is justified by
the DSC far-field. The hybrid aeroacoustic workflow is enhanced through the computation of the
aeroacoustic sources. As prosed by Goldstein, aeroacoustic sources are based on the non-radiating
base flow. We show, with the help of a Helmholtz decomposition that it is possible to extract the
vortical (non-radiating) flow component for non-convex domains. The acoustic field, based on hy-
brid aeroacoustis and the vortex sound, converges to the acoustic mode of the DSC in the far-field
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for Mach 0.4. For Mach 0.8, the strong radiation lobes in vertical direction are underestimated,
since only linear wave propagation is considered in this study. Although, we are far beyond the
limits of the equation of vortex sound and the hybrid methodology the results are promising for
further studies. This satisfactory match validates the workflow for vorticity dominated aeroacoustic
method. However, further investigations on the relevant terms of the wave operator have to be done
in the future. This comparison emphases further investigation of the method.

7.2 Properties of the extended hybrid workflow
The Mach number extended hybrid workflow advertises its application through the following properties,
including the most important computational benefits.

Subsonic Flows
The splitting into compressible and vortical components has no Mach number restriction. However,
for large Mach numbers the interpretation of the components is difficult and for very low Mach
numbers the compressible component can be overwhelmed with numerical errors. In general, the
proposed workflow is only restricted to the resolution of the relevant effects by the wave operator
(could be a Mach number constraint).

Domain requirement
With respect to engineering applications, no domain assumptions are made during the derivation.
The workflow is applicable for confined and unbounded domains with appropriate boundary condi-
tions during the CFD simulation. The limiting factor is the computational capability of the cluster.
In some cases, a homologically trivial domain can result in additional harmonic component during
the decomposition. Usually, the domain extension can be reduced through this method just to the
region of sound generation.

Incompressible projection
The vortical component of the Helmholtz decomposition fulfills the incompressible equations (see
Sec. 2.5.3). However, this incompressible solution branch is not necessarily the solution of incom-
pressible CFD.

Noise generation mechanism
The separation leads to a detailed investigation of different source mechanisms and interactions as
well as the energy transfer between the components can be analyzed. A exact determination of
the source area can confine the source domain and reduce the computational effort. Additionally,
the combination of the aeroacoustic source and correct wave equation allows the reduction of the
overall computational workload (similar to the coupling strategy in multi-physical simulations).
Similar to the wave number decomposition, Helmholtz decomposition can be used as an adequate
post-processing method to extract the compressible phenomena, which correspond to acoustic fluc-
tuations in the far-field.

Focus on acoustics
The hybrid workflow centers on an acoustic behavior-oriented solution. Significant aeroacoustic
sources are detected and acoustic active materials and boundaries are modeled precisely, e.g.:
impedance boundaries and experimentally justified acoustic material properties are easily inte-
grated. This is beneficial, since the absorbers are acoustically modeled and not fluid dynamically
resolved, up to very small scales.
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Far-field extrapolation
With the Helmholtz decomposition, a combination of a CFD source simulation and a separate
propagation simulation through a transformation layer is possible [30].

The Mach number extended hybrid workflow is limited by the following effects.

Interaction directly
The resolution of the interactions between the fluid perturbations is limited if the CFD simula-
tion neglects them. In order to predict acoustics accurately, the most dominant acoustic source
mechanism must be resolved.

Interpretation of compressible part
The Helmholtz decomposition of the compressible velocity filed into compressible and vortical com-
ponent suffers from a clear physical interpretation of the compressible part for higher Mach numbers.
There is no simple selection of the acoustic component of a direct sound computation. Partly this
task can be achieved by a wave number decomposition of the compressible part.

Decomposition errors
At low Mach numbers the divergence of the flow field is so small that it could be dominated by
non-negligible numerical errors. Therefore, the vorticity based decomposition equation is preferred
at low Mach number, beside the other optimal properties.

Computational time
Focusing just on the feedback region of the domain, the computational workload of the method
compared to a direct sound computation is reduced drastically. However, compared to the ordinary
hybrid method the computational workload is higher due to the additional Helmholtz decomposi-
tion.

7.3 Further investigations
Throughout this work, several interesting aspects are not addressed and could be subject to further
investigations. First of all, the integration of the decomposition into a CFD simulation tool would be
computational efficient. This parallel computation of the vortical projection would result in a severe
reduction in the overall computational time. Instead of implementing the Poisson problem or the curl-
curl problem directly in the elliptic formulation, divergence correction techniques could be used [191,192].

A second route is the incorporation of linear interactions and non-linear terms into the aeroacoustic
wave equation. These additional effects will account for scattering and refraction by the instantaneous
vortical flow field as well as density variations. Based on this formulation, the distinctive terms can be
quantified systematically and can be neglected if certain conditions are fulfilled.
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A Infinite mapping layer

Based on the drawbacks of other unbounded domain methods, the infinite domain method encounters
some major advantages. Most importantly, the restriction to special geometries (ballooning, asymptotic
boundaries, analytic-FEM, Green’s function - FEM, conformal mapping techniques) is avoided. The
method is motivated by the Cartesian coordinate mapping and represents the Laplace operator on an
infinite domain. In contrast to infinite elements, the mapping layer is discretized radially by several layers
of finite elements and ordinary basis functions constitute the elements in the IML. Differently to hybrid
schemes which are based on analytic Green’s functions, the infinite mapping layer is solution independent.
Compared to a hybrid method using BEM at the boundary IML conserves sparsity and locality of the
numerical system. The method is applicable for both, linear and nonlinear, equations.

A.1 Mapping Layer Formulation
IML formulation maps an infinite computation domain to finite domain (see Fig. A.1). A compressed
domain is then discretized by ordinary finite elements. The derivatives and operators are adapted to
the mapping and used consistently to constitute the finite element formulation in the layer. All finite
elements use ordinary basis functions to approximate the continuous solution. These difficulties of the
unbounded mapping are avoided by placing the quadrature points inside the elements.

A general Poisson’s problem in the space Rn with n dimensions and the forcing function f in un-
bounded domains with a bounded solution at ‖x‖2 →∞ is written as

∇ · ∇ φ(x) = f (1.1)

φ(x) → 0 ‖x‖2 →∞ , (1.2)

where ‖x‖ is the Euclidean norm of x. The fundamental solution (Green’s function) of the Laplace
operator writes as

G(x) =


1

2π ln(‖x‖2) n = 2

− 1
ηn‖x‖n−2

2
n > 2,

(1.3)

where ηn is the surface of the unit ball with respect to Rn. The decay of a solution u(x) based on an
arbitrary source can be estimated in the limit ‖x‖2 →∞ as

u(x) =

C2 ln(‖x‖2) n = 2
Cn

‖x‖n−2
2

n > 2.
(1.4)

Knowing the behavior of the solution allows to design mapping functions with reasonable approximation
of the infinite domain. The mapping must be bijective and C2 smooth, since the formulation requires the
first and the second derivative of the mapping. A slightly different formulation can be obtained where only
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Figure A.1: The transformation of the PDE of an infinite domain to a finite domain and the derivation
of the weak form and its connection to the isoparametric representation.

the first derivative is required and additionally the inverse of the Jacobian. The ideas and requirements of
the mapping are summarized in Fig. A.2. In general, the mapping function maps an unbounded spatial
coordinate [xi0(= 0),∞) to a standard interval [0, 1). Four different mapping functions are presented.
The rational map was found [193] to work well for a number of examples. In general, a mapping can
be tuned to be the exact inverse mapping of the solution, such that the solution behaves linearly in the
mapping layer. However, the tuning requires information about the analytic solution or an optimization
procedure. The exponential map used by [193] shows one major drawback: it distributes the points
of numeric evaluation oddly and as a result large errors occur. Additionally to the exponential map,
an arctan function is proposed. Furthermore, the behavior and the difference to the rational function is
investigated in details. Table A.1 summarizes the mapping functions, the inverse mapping and derivatives.
The mapping functions are extended over the entire domain by the composition

g(xi) =

f(xi) xi ∈ ΩMapped

xi xi ∈ ΩInitial .
(1.5)
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zi = 0 zi = 1

xi = xi0(= 0) xi →∞

Mapping
zi = f(xi)

Inverse Mapping
xi = f−1(zi)

Figure A.2: The mapping transformation and the geometric variables illustrate the truncation of a domain
with respect to an orthogonal set of geometric variables.

In the infinite zone, the infinite mapping is active and in the non-mapped region the relation is identical
to the coordinate. Based on the mapped analytic solution, the mapping layer behavior is estimated for
the three mapping functions with κ = 1, L = 1 (see Fig. A.3). The exact mapping transforms the

Table A.1: The three different mapping functions under investigation.

Name Mapping zi = f(xi) Inverse xi = f−1(zi) Derivative ∂zi(xi)
∂xi

Exponential L(1− exp−xi/κ) −κ log
(
1− zi

L )
)

L
κ exp−xi/κ

Tangent 2L
π arctan xi

κ κ tan
(
πzi
2L
) 2L

κπ
1

(xi/κ)2+1

Rational xiL
xi+κ κ zi/L

1−(zi/L)
Lκ

(xi+κ)2

solution to a straight line in the mapping layer; the exact mapping is the rational mapping with κ = 4,
L = 1. Relaxing the optimal condition κ = 1, L = 1, the rational mapping gains curvature in the layer
and behaves similar as the tangent mapping. At the outer boundary, the tangent function is steeper
with slightly higher curvature. The overall behavior of the rational and tangent map is supporting their
accuracy compared to the exponential map, with a steep inclination towards virtual infinity.

x

u(x)

Figure A.3: The solution, Green’s function, is mapped analytically to the infinite mapping layer to de-
termine the behavior of the mapped solution. The analytic solution mapped by its inverse,
rational mapping κ = 4, L = 1 (black); mapped by the rational mapping κ = 1, L = 1 (red);
mapped by the tangent mapping κ = 1, L = 1 (green); mapped by the exponential mapping
κ = 1, L = 1 (blue).
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A.2 Finite Element Implementation
An analytic mapping truncates the infinite domain to a finite domain. The core derivation of the IML
introduces the finite element formulation. Basis functions of the IML elements are in the space V

V = {φ(x)|φ(x) ∈ H1(Ω), φ(x) = φe(x) on Γe}, (1.6)

and the corresponding test functions are in the space W

W = {ψ(x)|ψ(x) ∈ H1(Ω), ψ(x) = 0 on Γe} . (1.7)

H1(Ω) denotes the standard Sobolev-space. Based on the definition of the function spaces we derive the
weak formulation for an ordinary Poisson equation.

A.3 Laplace Operator
Considering a Poisson problem in Cartesian coordinates (1.1) we derive the weak finite element formula-
tion and apply the IML technique. In the case of an isotropic material parameter, this equation represent
the electrostatic field. In unmapped coordinates, the gradient operator is defined as

∇x = ( ∂

∂x1
,
∂

∂x2
,
∂

∂x3
)T . (1.8)

The transformed operator ∇z in Cartesian coordinates writes as

∇x = J∇z = ( ∂z1

∂x1

∂

∂z1
,
∂z2

∂x2

∂

∂z2
,
∂z2

∂x2

∂

∂z3
)T . (1.9)

Based on the transformation with the Jacobian J, we derive the Poisson’s equation in the coordinate
system zi. According to FEM the mapped Poisson’s equation is integrated over the domain and the weak
form of the IML is obtained.∫

Ωz
∇z(ψ)J · J∇z(φ)dz +

∫
Ωz
ψ(∇z · J) · J∇z(φ)dz =

∫
Ωz
ψfdz (1.10)

If J is symmetric, the bilinear form is symmetric; and for Cartesian coordinates J is diagonal. The
profound application of the IML to water waves is given in [52].
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