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Kurzfassung 
 

Es ist absehbar, dass in der nahen Zukunft humanoide Roboter Teil des menschlichen Alltags im 

Haushalt sowie am Arbeitsplatz sein werden. Es kann davon ausgegangen werden, dass sie auf dem 

Markt zu einem vernünftigen Preis erhältlich sein werden. Die Forschung über kostenorientierte 

humanoide Roboter begann im Jahr 2011. An der technischen Universität Wien (TU Wien) ist derzeit 

ein kostenorientierter humanoider Roboter, genannt Archie, in Entwicklung. Er setzt sich derzeit aus 

zwei Beinen, einer Hüfte und einem Rumpf zusammen und verfügt über die grundlegenden 

Gehfähigkeiten. 

Diese Doktorarbeit gibt einen Überblick über die Steigerung der Fähigkeiten des Roboters auf 

Hardware und Softwareebene. Das Ziel dieser Arbeit ist es, dem Roboter die 

Wahrnehmungsfähigkeit der Umgebung zu ermöglichen. Eine weitere Zielsetzung ist, dem Roboter 

die Fähigkeit zur Durchführung einer autonomen Pfadplanung von einer bestimmten Startposition 

zu einem Zielpunkt, inklusive der Hindernisvermeidung auf dem Weg, zu geben. 

Zur Zielerreichung wurde einer Stereo-Kamera auf dem Roboter installiert. Dies ermöglicht es, 

Daten aus der Umgebung zu sammeln. Des Weiteren wurde ein leistungsfähiger On-Board 

Computer eingebaut, um die Autonomie des Roboters zu erhöhen. 

Im Hinblick auf die Software wurde eine „Detect And Avoid“ Software (Erkennung und Vermeidung) 

realisiert. Die Zielsetzung ist es, Archie die Möglichkeit der Umgebungserfassung, durch die 

Verarbeitung der Daten aus den Stereo-Kameras, zu geben. Weitere Ziele sind die Bereicherung der 

Map mit den erkannten Hindernissen, die Erkennung der aktuellen Position auf der Map und die 

Planung eines sicheren Pfads zu einer Zielposition.  
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Abstract 
 

It is foreseeable that in the next future, humanoid robots will be part of everyday life in the 

household and in the workplace, and that they will be available on the market for a reasonable price. 

The research on cost-oriented humanoid robot started in 2011. At the Technische Universität Wien 

(TU Wien) a cost-oriented humanoid robot, named Archie, is in development. It is currently 

composed of two legs, a hip and a torso and it has basic walking capabilities. 

This PhD dissertation describes the efforts made to increase the capabilities of the robot at 

hardware as well as at software level. The goal of this work is to give the robot the capability of 

sensing the environment around it and to autonomously plan the path from its current position to 

a target position, while also avoiding the obstacles on the way. 

Such a goal required the addition to the robot of a stereo-camera in order to allow it to collect data 

from the environment around it. Furthermore, a powerful on-board computer was added in order 

to increase the autonomy level of the robot. 

From the software point of view, this work consisted in the first implementation of a detect and 

avoid software. It aims to give Archie the capability of mapping the environment, by processing the 

data coming from the stereo-cameras, enriching the map with the obstacles detected, knowing its 

position in the map and planning a safe trajectory from its position to a target position. 
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1. Introduction and problem formulation 

 

The humanoid robot Archie is under development at the Technische Universität Wien (TU Wien). 

The development of the robot started in (Byagowi, 2010) under the supervision of Prof. Peter 

Kopacek. Further developments were then performed in (Daniali, 2013) and (Dezfouli, 2013). 

Currently, Archie is able to perform basic human like walking motions (Kopacek; 2013). 

Archie has been developed in order to be a cost-oriented and research-oriented application. Thus, 

the hardware must fulfil the cost orientation target and should also allow the implementation and 

testing of advanced centralized control algorithm. Furthermore, being a research-oriented 

application, the software must keep as many possibilities as possible for further development and 

research.  

This PhD thesis presents the work performed in order to increase Archie’s capabilities. More 

precisely, the aim of this PhD work is to make Archie able to autonomously plan the necessary 

footsteps from a start position to a target position while also avoiding the obstacles on the way. In 

order to achieve such a goal, hardware modifications and the implementation of a new software 

were necessary. The hardware modifications aimed at providing the robot of an environment 

sensing system. The software instead, consists in the first implementation of an obstacle detector 

and of a footstep planner. 

Nowadays, the environment sensing systems for a humanoid robot consists of multiple sensors 

which give an accurate data model of the environment. On the software side, the footstep planners 

are based on 3D obstacle avoidance algorithms which computes directly the footstep position and 

the trajectory of the centre of mass (COM) for the balance of the robot.  

There are two main challenges in the development of such a system for Archie. The first is 

represented by the cost orientation which sets a limit to the number of sensors and consequently 

to the amount and density of data available to the software. The second challenge relies on the fact 

that Archie is a research-oriented application and it aims to be a test base for advanced gait and 

joint control algorithm. For this reason, the software should guarantee a safe and stable walking 

while also having a modular and flexible architecture in order to make easier further development 
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and research. Another requirement for the software consists in the computational load of the 

algorithms. It should be kept as low as possible in order to allow embedded data processing. 

The thesis is organized as follows. The next chapter will describe the state of the art in the field of 

humanoid robots with a reference to the environment sensing systems of the most famous 

humanoid robots. Subsequently, a description of the state of the art of the footstep planners for 

humanoid robots will be given, with a focus on path planning and collision avoidance algorithms and 

their implementation. 

Chapter 3 will depict a picture of the state of the development of the humanoid robot Archie, 

followed by an overview of the advanced gait and joint control algorithm currently in evaluation. 

These will be explained in order to give the requirements for the new electronic architecture and 

for the new software object of this PhD work.  

Next, the new hardware design will be given. Finally, the new footstep planner implemented for 

Archie will be described in detail along with all the algorithms used. 
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2. State of the art 

 

The research on humanoid robots involves various fields, from the artificial intelligence to the 

control theory to the dynamic and kinematics study of the human gait. 

The bipedal form is for sure the best for a robot due to the possibility of travel though every kind of 

terrain while also keeping the ability to manipulate the environment. As a matter of facts, a 

humanoid robot, unlike wheeled robot for instance, can climb stairs or step over obstacles without 

problems. 

A humanoid robot development though, is particularly challenging from many points of view, from 

the mechanical configuration to the power management to the sensor and on-board computer and 

all these problems are interlaced with each other. For example, a humanoid robot application 

requires a high computational power and a vast number of sensors i.e. tactile force sensor, stereo-

cameras and depth camera. These choices have an impact on the amount of power used by the 

robot and the more power the robot need, the bigger and heavier the batteries will be. A big and 

heavy battery will have an impact on the balance of the full system.  

This chapter will give a description of the state of the art in the field of humanoid robots. First, a 

description of some existing humanoid robots will be outlined with a special reference to the 

hardware dedicated to the perception of the environment around the robot. Then, the topics of the 

path planning and obstacle avoidance will be introduced along with a description of the only two 

open source footstep planners available. 

 

2.1. History of humanoid robots 

 

The Japanese research team at the University of Waseda was one of the first in the development of 

humanoid robots. In 1967 the first bipedal robot WL-1 appeared. Since this first prototype, they 

finished in 2009 the development of WABIAN-2R. 
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Figure 1: WL-1 and WABIAN 2R (Daniali,2013) 

 

The Honda Motor ASIMO is also another remarkable example of humanoid robot. It was developed 

in the year 2000. It is 1,30 m tall and it has a total of 34 Degrees of Freedom (DOF). The neck has 3 

DOF, the arms 7 DOF for every arm, 2 DOF for every hand, 1 DOF for the hip and 12 DOF for every 

leg. ASIMO’s environment identifying sensor system is composed of visual sensors placed in the 

head, which allows him also to recognize a person and ground sensors placed in the hip and 

composed of laser sensor and infrared sensor. The laser sensor is able to detect the ground and any 

obstacle 2 m from its feet. Furthermore, the ultrasonic sensors are placed in front and in the back 

of the robot and are able to detect obstacle up to three meters from it. With the ultrasonic sensors, 

it is also possible to detect glass as an obstacle which is not possible with the visual sensor. This 

subsystem is depicted in Figure 2. 

Since ASIMO, the research in the field of humanoid robotics continued at a remarkable speed. NASA 

developed a humanoid robot, called Robonaut, to help the astronauts in their daily job on board the 

International Space Station (ISS). The second version of this humanoid robot, called Robonaut 2 was 

launched on February 2011. At first just the torso of the robot was developed but then, in 2014 the 

“mobility platform” i.e. two climbing manipulators as legs were added. The tests and the 

developments on this robot are still in progress and soon more subsystems and sensors will be 

added to the current platform. Figure 3 depict Robonaut 2 on board the ISS. 
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Figure 2: ASIMO (Honda Asimo gallery, last retrieved 2017) and its environment identifying sensors (ASIMO Technical Information, 
2007) 

 

 

Figure 3: Robonaut 2 on board the ISS (NASA Robonaut website, last retrieved 2017) 
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Two other noteworthy examples of humanoid robots are ATLAS, developed by Boston Dynamics 

and THORMANG developed by Robotis which are depicted in Figure 4. 

ATLAS is a 28 DOF humanoid robot. It is 1.8 m tall and it weighs 150 kg. All its joints are hydraulically 

actuated and it is equipped with stereo-cameras and laser range finders. It is powered by an external 

power source by means of a flexible tether. ATLAS is capable of walk through rough outdoor 

environment and it is strong and coordinated enough to climb using hands and feet (Boston 

Dynamic website Atlas description, last retrieved 2017). 

THORMANG 3 is a 29 DOF humanoid robot. Its joints are actuated by Dynamixel motors. It is 1,37 m 

tall and it weighs 42 kg. It is equipped with force and torque sensors and with Inertial Measurement 

Units (IMUs), LIDAR and cameras.  

The same company which developed THORMANG 3, developed also small humanoid robots’ kits, 

the Bioloid series, easy to mount and easy to program for educational purposes. The Bioloid robot 

kit is showed in Figure 5.  

 

 

Figure 4: ATLAS on the left side (Boston Dynamic website Atlas description, last retrieved 2017). THORMANG 3 on the right side (I, 
Bioloid blog, last retrieved 2018) 
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Figure 5: Bioloid robot kit (Robotis website Bioloid description, last retrieved 2017) 

 

Another example of small commercial humanoid robot platform is NAO, developed by Aldebaran 

Robotics. It is a 25 DOF humanoid robot platform which is 58 cm tall. It is equipped with an inertial 

unit which allows him to maintain its balance. Numerous sensors in its head and in its hands and 

feet allows it to perceive the environment around him and the cameras in its head make it able to 

record images and video in high resolution as well as to recognize shapes and objects. NAO is 

showed in Figure 6. 

  

 

Figure 6: NAO Humanoid robot (NAO online description, last retrieved 2017) 



   
 

8 
 

2.2. Footstep planner for humanoid robots 

 

The planning of a collision free trajectory from an initial position to a target position requires a 

hardware and software architecture that is also capable of analyzing the environment around the 

robot. In the previous paragraph is listed some example of environment sensing hardware for some 

of the most remarkable examples of humanoid robots. 

The software needs then to be able to analyze the environment around the robot and create a map. 

There are two possible approaches for creating a map: discrete and continuous approximation. 

Maps produced with the continuous approximation are also known as topological maps. In this kind 

of maps, the environment is simplified in order to have every unnecessary information removed.  

With the discrete approximation, the environment is divided into cells of different shapes and size. 

It could be possible to have, for instance, grid maps or hexagonal maps and the different cells can 

be as big as a room in an apartment or as a small volume. The use of this approach allows a graph 

representation. In this case, every chunk of the map corresponds to a vertex (also known as “node”), 

which are connected by edges, if a robot can navigate from one vertex to the other (Correll, 2011). 

Currently, there is no preferred way to solve this problem. Every application has its own best way 

to create a map of the environment. The use of mixed approaches may also be required. One of the 

most common method used is the occupancy grid map. In this method, the environment is 

discretized into squares of various resolution on which obstacles are marked. Another version of 

this method is the probabilistic occupancy grid map in which the cells of the map are marked with 

the probability of the presence of an obstacle. A drawback of grid methods is the memory 

requirement and the computational load of the path planning algorithm which must plan a 

trajectory in such a map.  

The computational complexity and the computational load, for our application, needs to be kept 

under consideration both in the map creation and in the path planning algorithm in order not to 

slow down the entire system. This last requirement makes the use of the artificial potential field 

algorithm, for instance, not usable for such an application.  

The artificial potential field is an algorithm which associates the target position an attractive 

potential and a repulsive potential to the obstacle. By setting to zero the anti-gradient of the total 
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potential, the algorithm provides an optimal path between the start and the target position that 

also avoid the obstacles. Figure 7, depicts the attractive, repulsive and total potential field. 

 

 

Figure 7: Attractive, repulsive and total potential field (My Point Cloud blog, last retrieved 2017) 

 

Such an approach though has the drawback of the local minima. It is possible, as a matter of fact, 

that, due to symmetry in the total potential field, some local minima create in which the planning 

can get stuck. The strategy to avoid these local minima can be computationally expensive and can 

also have an impact on the optimality of the computed trajectory.  

Another approach for the path planning problem is the Dijkstra algorithm. It is a graph-based 

algorithm, meaning that it is usually used with a discrete map representation of the environment. It 

starts from the initial vertex marking all the neighbour vertex with the cost to get there. The planning 

then considers the vertex with the minimum cost associated to it, analysing the neighbour vertex 

and marking them with the cost to get to them via itself if the cost is lower (Correll, 2011). The 

algorithm goes then further analysing the neighbour of the vertex with the lower cost. After the 

search reaches the target position, the robot can then follow the edges with the lower costs. It is 

obvious that such a planning is computationally expensive because the planning does a lot of 

computations that are not needed examining the cells of the grid that are not in the direction of the 

target position. Figure 8 depicts the operation of the Dijkstra algorithm. 
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Figure 8: Operation of the Dijkstra algorithm (Milford M. and R. Schulz, 2014) 

 

A solution to this drawback of the Dijkstra algorithm is to add a further condition besides the cost 

of the vertex described above. This condition is based on the estimated distance to the goal. A vertex 

will be considered just if the estimated distance is lower with respect to others. This method is 

known as A* algorithm. As it is possible to see in Figure 9, the A* algorithm is less computationally 

expensive than the Dijkstra algorithm because it just analyzes cells in the direction of the target but, 

its computational load can still dramatically increase when a re-planning is necessary due to the 

presence of a new obstacle. For this reason, another version of this algorithm, called D*, was 

implemented. Although the computational load of the A* and D* approach is less compared to the 

Dijkstra algorithm, they become computationally expensive when either the search space is large, 

e.g., due to a fine-grain resolution required for the task, or the dimensions of the search problem 

are high (Correll, 2011). 

For a humanoid robot, path planning and obstacle avoidance are complex tasks because they don’t 

merely consist in the computation of a collision free path between an initial and a target position 

but they also rely on the balance of the full system and they have to take into account the increased 

number of possibilities that the humanoid configuration can offer such as, for instance, the 

possibility to step over an obstacle. 

The planning of a collision free trajectory between two positions for a humanoid robot requires also 

the computation of the position of the feet and of the COM of the robot for the balance. Currently, 

the most remarkable examples of path planning and collision avoidance algorithms for humanoid 

robots extend the 2D planner algorithms, such as the ones presented before in the chapter, making 

them a 3D planner which computes directly the position of the feet. An example of them is the 

planner developed in (Garimort et.al., 2011) and in (Hornung et.al., 2012). 
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Figure 9: A* algorithm (A* algorithm Stanford website description, last retrieved 2017) 

 

They developed an open source footstep planner for humanoid robots based, in the first version of 

the software, on the D* algorithm. The planner they implemented used the D* algorithm to 

compute directly the position of the feet of the robot. This approach showed good results both in 

simulation and in real world by means of the NAO humanoid robot platform as showed in Figure 10. 

 

 

Figure 10: Simulation and experiments of the footstep planner developed in (Garimort et.al., 2011) 

 

The navigation of a humanoid robot in a cluttered environment though, is still a challenging problem 

(Garimort et.al., 2011) for this planner. Their work was thus improved with the use of the Anytime 

Repairing A* (ARA*) and with the use of the randomized A* (R*) algorithm. Both algorithms are 

variations of the A* algorithm which sacrifice the optimality of the solution in order to have a quicker 
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execution time. The experiments performed showed the efficiency of the planner even in cluttered 

environment as showed in Figure 11. 

 

 

Figure 11: Performance of the footstep planner developed in (Hornung et.al., 2012) 

 

This planner, as mentioned before, is available open source as a ROS (Robot Operating System) 

package. ROS is a framework described in (Quigley et al., 2009) which provides tools and libraries to 

help developers to implement robot applications and it has emerged as a de facto standard in 

robotics research in recent years (Kohlbrecher et.al., 2016). To our knowledge, besides this planner 

the only other open source solution currently available is the planner developed in (Stumpf et.al., 

2016). In their opinion, the planner described above is very easy to use but provides limited 

adaptability. In order to consider robot specific constraints, the base code has to be changed directly 

(Stumpf et.al., 2016). They proposed thus, a more versatile solution which could be used with 

different kind of robotic platforms. Their footstep planner is designed in order to be a framework 

which integrates perception, world modelling, full 3D planning, step execution tracking, and 
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coactive planning, while being modular and extensible (Stumpf et.al., 2016). The open source ROS 

package they developed, as a matter of fact, is divided into plugins which allow an easy 

customization or the extension of the software. For the world perception, they used a lightweight 

approach based on the grid-based elevation map and an octree-based data structure. The first data 

structure is a grid-based map in which every cell stores the information about the elevation. The 

second is a tree structure in which every leaf has no more than 8 children which stores the 

information about the surface orientation. During the planning and the execution of the walk, the 

user has the possibility of following the robot and adjust the computed footstep if the planning was 

wrong. The visualization of the planning and of the terrain model is shown in Figure 12. 

This footstep planner was tested on 4 different humanoid robots and the planner fully proved its 

portability. 

 

 

Figure 12: Visualization of world model, and step planned of the footstep planner developed in (Stumpf et.al. 2016) 

 



   
 

14 
 

2.3. Summary 

 

In this chapter, an introduction of the state of the art in the humanoid robot research has been 

given. Different humanoid robot platforms were described with a note on the sensing hardware 

interface. All the humanoid robots have many sensors dedicated to this purpose. The most common 

are of course the stereo-cameras but also other kind of sensors are needed due to the limits of the 

stereo-cameras. For this reason, ASIMO sensing system for instance, is also provided with ultrasonic 

sensor distributed in various parts of its body. 

From the software point of view, different kind of world modelling and planning algorithm were 

introduced at first. The path planning algorithms described are though not enough to solve the 

problem of the computation of a suitable collision free trajectory for a humanoid robot which 

configuration allows to step over obstacles and to traverse terrains which other robot configurations 

could not. 

For this reason, the two footstep planners described at last in the chapter, are 3D planning algorithm 

which plan directly the position of the feet of the robot. 
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3. The humanoid robot Archie 
 

This chapter describes the mechanical, electrical and control architecture of the humanoid robot 

Archie and the lacks of the current design. Its first development started in (Byagowi, 2010) and was 

first developed as a 31 DOF robot. The development then continued in (Daniali, 2013) and (Dezfouli, 

2013). Currently, just the lower part of the body has been developed (torso, hip and leg) and the 

whole robot has 12 DOF which is the minimum DOF for the stable biped walking (Daniali, 2013). 

As showed in Figure 13, the robot has two legs connected by a hip and a torso composed by a spinal 

column: on every side of the hip, three motors are mounted, one brushed and two brushless. On 

every leg instead, three brushless motors are mounted. Every side of the robot has thus 6 DOF and 

the torso position and attitude can be estimated by the Denavit-Hartenberg (DH) parameters of the 

joints of the legs. The link connecting all the joints of the robot are made in aluminum alloy which 

provide a good strength with a low weight. Every leg is 68.6 cm long while the robot is 110 cm tall 

and weighs 20 Kg. 

 

 

Figure 13: The humanoid robot Archie (Daniali, 2013) 
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In the next chapter, the motor, the controllers and the electrical configuration will be showed 

 

3.1. Brushless DC motors 

 

The brushless DC motors used on the robot are the Maxxon Motor EC 45 flat. This model is a 

powerful and compact motor which is perfectly suitable for the joints of a humanoid robot. Figure 

14 depicts the components of such a motor and Table 1 lists the technical specification of the motor. 

 

 

Figure 14: The brushless DC motor used for the actuation of Archie’s joints (Daniali, 2013). 

 

Every brushless DC motor used for Archie is attached to a harmonic drive to transmit the movement 

of the motor to all the joints. This drive has a ratio of 160 and it can tolerate a maximum torque of 

76 Nm. 

Tree hall sensors are integrated in this motor to report the position of the rotor to drive (Daniali, 

2013). 
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Nominal voltage  24 V  

No load speed  6700 rpm  

No load current  201 mA  

Nominal speed  5260 rpm  

Max. continuous torque  84.3 mNm  

Max. continuous current  2.36 A  

Stall torque  822 mNm  

Starting current  24.5 A  

Table 1: The technical specification of the brushless DC motor (Daniali, 2013) 

 

3.2. Brushed DC Motors 

 

For the hip, two brushed DC motors are mounted. This choice was done due to the small movement 

required for these joints. Figure 15 depicts the scheme of the brushed DC motors and Table 2 their 

technical specification. 

 

 

Figure 15: Scheme of the DC motors (Daniali, 2013) 
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Nominal voltage  24 V  

No load speed  5900 rpm  

No load current  129 mA  

Nominal speed  5000 rpm  

Max. continuous torque  70 mNm  

Max. continuous current  1.86 A  

Stall torque  539 mNm  

Starting current  14.3 A  

Table 2: Technical specification of the brushed DC motor used in Archie (Daniali, 2013) 

 

Unlike the brushless DC motors, these motors are mounted on a planetary gear in order to transmit 

the torque to the joints. The ratio of the planetary gear is 415 and it can transmit a maximum torque 

of 15 Nm. Figure 16 depicts the components of the planetary gear. 

 

 

Figure 16: Components of the planetary gear (Daniali,2013) 
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3.3. Joint controllers 

 

In order to control the joints, an industrial controller named Elmo motion controller is used. It is 

composed by a PI cascaded controller and a power amplifier. It allows the communication by means 

of the CAN or of the RS232 protocol. Currently the CAN communication protocol is used to transfer 

the data between the computer and the controllers. The Elmo motion controller is showed in Figure 

17. 

 

 

Figure 17: Elmo motion controller (Daniali, 2013) 

 

The control algorithm implemented inside the Elmo motion controller is composed of 3 cascaded PI 

controllers, one for the position, one for the velocity and one for the torque. Every one of these 3 

PI controllers work at its own loop rate. The control algorithm scheme is depicted in Figure 18. 

As it is possible to see in Figure 18, every control loop uses a gain scheduling function to choose the 

proper gain for the control algorithm. This is necessary because the joints have some nonlinearities 

that need to be taken into account.  

A system identification on the robot joints has been performed by (Schoerghuber, 2014). This study 

showed that the joint plan has a non-linear behaviour. There are two main nonlinearities: 

• A dead zone at low speed caused by the high reduction gear 

• A non-linear transmission behaviour depending on the speed and likely due to friction in the 

reduction gear and to the non-linear dynamic of the DC motor. 



   
 

20 
 

This system identification study produced optimal values for the gain of the PI controllers depending 

on the speed of the motor and used by the Elmo whistle in the gain scheduling function. 

 

 

Figure 18: Elmo Whistle motion controller (Byagowi, 2010) 

 

3.4. Hardware integration 

 

The scheme of Archie hardware is instead depicted in Figure 19. In this figure, the dashed blocks are 

the missing part of the robot. All the controllers are connected in parallel to the power source and 

to the USB-to-CAN converter. This connection is made possible by means of a PCB specifically 

designed for the robot. The PCB was also designed to allow a more suitable pin position and allow 

a more efficient distribution of the power. Figure 20 depicts a brushless DC motor in the harmonic 

drive connected to the Elmo motion controller by means of the developed PCB. 
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Figure 19: Scheme of Archie hardware (Dezfouli, 2013) 
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Figure 20: Brushless DC motor in harmonic drive connected to the Elmo motion controller by means of the developed PCB (Dezfouli, 
2013) 

 

3.5. Software 

 

The software implemented for the realization of a stable walking for the robot is a C++ program. 

Using the inverse kinematics, it generates the trajectories of the joints of the robot during multiple 

gait. These trajectories are the sent via the CAN bus interface in the form of PT (Position Time) or 

PVT (Position Velocity Time) tables to the controllers. After reading these input data, the controller 

makes then the corresponding joints move accordingly. 

Figure 21 depicts the flow diagram of the current software.  

The robot uses a decentralized control approach, i.e. the control of the movement of the joint is 

entirely handled by the PI controllers and not by the software which only plans the movement 

before the execution. 

The GUI (Graphical User Interface) of the software is depicted in Figure 22. As it is possible to see in 

the figure, it gives the user the possibility to send commands to the joint controllers, shows a 

feedback of the CAN messages produced and of the command executed by the motor controllers.  

The software runs on an external Linux computer connected with the USB to CAN converter. 
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Figure 21: Motion controller flow diagram (Dezfouli, 2013) 

 

 

Figure 22: GUI of the current motion controller software (Dezfouli, 2013) 
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3.6. Summary 

 

To sum up, the mechanical, electronical and software architecture of the humanoid robot Archie 

was presented in this section. From the hardware point of view, Archie is a 12 DOF humanoid robot 

composed of two legs, a hip and spinal column. The joints of the legs are actuated by brushless DC 

motors while on the hip, brushed motors are utilized for the actuation.  

All the motors are controlled making use of an industrial controller which communicates with an 

external computer by means of a CAN interface. The control software runs on an external computer 

and it only plans the movement of the robot and sends the position planned to the controllers 

Compared to the state of the art, it must be pointed out that the robot misses a sensing hardware 

architecture and an on-board computer. Furthermore, the software provides Archie with a basic 

walking functionality. There is no possibility of turning or avoiding obstacles. The GUI of the software 

gives the user the possibility of sending basic commands that will be executed by the joints of the 

robot. Furthermore, due to the absence of proper sensors and feedback from the controllers, it does 

not give the user a proper feedback of the status of the robot. 
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4. Advanced gait planner and control algorithm 

 

As already mentioned, Archie is meant to become a test platform for advanced control algorithm, 

i.e. a control approach as centralized as possible. 

As it is possible to see in Figure 23, the usual approach consists in the use of a high-level controller 

which outputs the proper command (position, velocity etc.) to the joints’ motors receiving in input 

the feedback from them. The commands are then received from the embedded controllers (usually 

a PID) which then actuate the motors. 

 

Figure 23: Ros control architecture (Chitta et.al., 2017) 

 

Ideally, this high-level controller should enable Archie to plan the movements of the joints of the 

legs taking into account the joint constraints of every leg, the feedback coming from the joints, and 
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the influence that the movement of every joint has on the balance and stability of the full system. 

The complexity of such a task requires a model (at least kinematic) of the robot.  

The planning of the movement can be performed with the walking pattern generation method 

which is used to compute the movement of the COM of the robot during the gait. The model of the 

robot can be provided by the forward and inverse kinematics and the stabilization can be performed 

with several different methods based on the walking pattern generation. 

This chapter introduces one of the gait planning and control algorithm currently in evaluation for 

Archie. First, the walking pattern generation method will be presented, followed by the forward and 

inverse kinematics of the robot. Subsequently, an overview of the possible approaches for the 

stabilization of the system will be given. Finally, this chapter will provide a description of the 

approach in evaluation. In particular, it will be described the planning of the joint movements during 

the gait, hat has been developed in the course of this PhD work for the control strategy in evaluation. 

This planning was, at first, thought to be included in the footstep planner subject of this dissertation. 

Finally, it will be presented a discussion on the extendibility of the approach in evaluation when the 

upper body will be built. 

 

4.1. COM Planning algorithm 

 

Let us approximate the robot as a 3D linear inverted pendulum. Let us assume that all the mass of 

the robot is concentrated in its centre of mass (COM) and that it is connected to the ground (a huge 

3D plane) by means of a massless leg, as depicted in Figure 24. 

 

 

Figure 24: leg-hip system approximated as an inverted pendulum (Kuo, 2007) 
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It is possible to decompose the force 𝑓, named kick force in the three components parallel to the 

three axes: 

 

𝑓𝑥 = (
𝑥

𝑟
) 𝑓

𝑓𝑦 = (
𝑦

𝑟
) 𝑓

𝑓𝑧 = (
𝑧

𝑟
) 𝑓

      (1) 

 

It can be noticed that only gravity and the kick force act on the inverted pendulum. Its dynamics 

equations are then: 

 

𝑀�̈� = (
𝑥

𝑟
) 𝑓          

𝑀�̈� = (
𝑦

𝑟
) 𝑓          

𝑀�̈� = (
𝑧

𝑟
) 𝑓 − 𝑀𝑔

     (2) 

 

Let’s define the constraint plane on which the inverted pendulum will move: 

 

𝑧 = 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑧𝑐      (3) 

 

𝑘𝑥 and 𝑘𝑦 define the slope of the constraint plane while 𝑧𝑐 define the height of the plane. The 

inverted pendulum can move on this plane only if its acceleration is perpendicular to it. Thus, 

 

[𝑓 (
𝑥

𝑟
) 𝑓 (

𝑦

𝑟
) 𝑓 (

𝑧

𝑟
)] [

−𝑘𝑥
−𝑘𝑦
1

] = 0     (4) 

 

If one solves equation (4) for 𝑓 and substitute it in the equation of the constraint plane, one get (5) 
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𝑓 =
𝑀𝑔𝑟

𝑧𝑐
      (5) 

 

Substituting equation (5) in the dynamic’s equation leads to the acceleration component of the 

inverted pendulum in the cartesian plane one gets: 

 

�̈� =
𝑔

𝑧𝑐
𝑥

�̈� =
𝑔

𝑧𝑐
𝑦

      (6) 

 

These equations have only 𝑧𝑐 as parameter. The slopes 𝑘𝑥 and 𝑘𝑦 do not influence the motion of 

the linear inverted pendulum and consequently of the robot’s COM. Figure 25 shows a linear 

inverted pendulum moving along the constraint plane. The analytical solution of equations (6) is as 

follows: 

 

𝑥(𝑡) = 𝑥(0) cosh (
𝑡

𝑇𝐶
) + 𝑇𝐶�̇�(0) sinh (

𝑡

𝑇𝑐
)

𝑥(𝑡) =
�̇�(0)

𝑇𝐶
sinh (

𝑡

𝑇𝑐
) + �̇�(0) cosh (

𝑡

𝑇𝐶
)

̇     (7) 

 

For the x. For the y, similarly, one gets: 

 

𝑦(𝑡) = 𝑦(0) cosh (
𝑡

𝑇𝐶
) + 𝑇𝐶�̇�(0) sinh (

𝑡

𝑇𝑐
)

𝑦(𝑡) =
�̇�(0)

𝑇𝐶
sinh (

𝑡

𝑇𝑐
) + �̇�(0) cosh (

𝑡

𝑇𝐶
)

̇     (8) 

 

With 

 

𝑇𝑐 = √
𝑧𝐶

𝑔
      (9) 
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Figure 26 depicts instead a walking pattern generated with the inverted pendulum model dynamics. 

Every piece of the trajectory coloured with a different colour is the motion of an inverted pendulum 

having its own support base. The 𝑧𝑐 parameter is considered fixed for every inverted pendulum 

model. 

Figure 27 depicts one of the pieces of the generated walking pattern with the diagrams of the 

components of the velocity in the cartesian plane. 

The piece of the computed trajectory depicted in Figure 27, is computed in the time period [0, 𝑇𝑠𝑢𝑝] 

where 𝑇𝑠𝑢𝑝 is called support period and it represents the time period in which one of the two feet 

of the robot is the support foot. This piece of trajectory is called walking primitive and, as it is 

possible to see in the figure, has a hyperbolic behaviour with a symmetry along the y axis.  

 

 

 

 

Figure 25: Inverted pendulum moving on its constraint plane (Lee et.al., 2008)   
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Figure 26: Walking patter generated with the inverted pendulum model dynamics (Arbulú et.al., 2010) 

 

 

Figure 27: inverted pendulum motion in the generated walking pattern and diagrams of the velocity on x and y with time (Kajita 
et.al., 2014) 
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Due to its symmetry, the walking primitive is defined only by its terminal position (�̅� �̅�). It is 

possible to compute the terminal speed (𝑣𝑥̅̅ ̅ 𝑣𝑦̅̅ ̅) analytically. As a matter of facts, considering the 

walking primitive depicted in Figure 27, the initial conditions of the x are (−�̅� 𝑣𝑥̅̅ ̅) and the initial 

condition of the y are (�̅� −𝑣𝑦̅̅ ̅). By substituting the initial condition in the analytical solution of the 

inverted pendulum dynamic equation one get: 

 

�̅� = −�̅�𝐶 + 𝑇𝐶𝑣𝑥̅̅ ̅𝑆
�̅� = �̅�𝐶 − 𝑇𝐶𝑣𝑦̅̅ ̅𝑆

     (10) 

 

Solving equation (10) for the terminal velocity leads to: 

 

𝑣𝑥̅̅ ̅ =
�̅�(𝐶+1)

𝑇𝐶𝑆

𝑣𝑦̅̅ ̅ =
�̅�(𝐶−1)

𝑇𝐶𝑆

      (11) 

 

With: 

 

𝐶 = cosh (
𝑇𝑠𝑢𝑝

𝑇𝐶
) 𝑆 = sinh (

𝑇𝑠𝑢𝑝

𝑇𝐶
)           (12) 

 

Using the walking primitives allows to easily compute a walking trajectory as follows. For this 

purpose, it is frequently required to directly specify the foot placement (Kajita et.al., 2014).  

The first footstep (𝑝𝑥
(0) 𝑝𝑦

(0)) is the initial position of the first support foot. From the footstep 

positions, it is possible to determine the walk primitive as: 

 

[
�̅�(𝑛)

�̅�(𝑛)
] = [

𝑠𝑥
(𝑛+1)

2

(−1)𝑛
𝑠𝑦
(𝑛+1)

2

]    (13) 
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Where 𝑠𝑥 and 𝑠𝑦are respectively step length and width. 

As mentioned before, the walk primitive can be determined just by its terminal state. This can be 

noted in the equation where the nth walk primitive depends from the n+1th walk parameters. 

The terminal velocity can then be calculated by (11) as follows: 

 

[
�̅�𝑥
(𝑛)

�̅�𝑦
(𝑛)] = [

(𝐶+1)

𝑇𝑐𝑆
�̅�(𝑛)

(𝐶−1)

𝑇𝑐𝑆
�̅�(𝑛)

]     (14) 

 

The method creates a series of walk primitives which compose a walking pattern. The walk primitive 

computed in this way though are discontinuous and the walking pattern thus is not realizable. To 

solve this problem; it is possible to adjust its foot placement in order to control its speed. The 

intuitive explanation of this is depicted in Figure 28. On the left side of the figure it is depicted the 

process of speeding up by taking a shorter step and to slow down taking a longer step. 

 

 

Figure 28: Intuitive explanation of the modified foot placement method (Kajita et.al., 2014) 

 

Considering the modified foot placement in the dynamic equation of the inverted pendulum leads 

to (15). 
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�̈� =
𝑔

𝑧𝐶
(𝑥 − 𝑝𝑥

∗)

�̈� =
𝑔

𝑧𝐶
(𝑦 − 𝑝𝑦

∗)
     (15) 

 

Which analytical solution is: 

 

𝑥(𝑡) = (𝑥𝑖
(𝑛) − 𝑝𝑥

∗) cosh (
𝑡
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𝑡
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𝑡

𝑇𝐶
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𝑡
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   (16) 

 

On the x. Similarly, for on the y axis one has: 

 

𝑦(𝑡) = (𝑦𝑖
(𝑛) − 𝑝𝑦

∗) cosh (
𝑡

𝑇𝐶
) + 𝑇𝐶�̇�𝑖

(𝑛) sinh (
𝑡

𝑇𝐶
) + 𝑝𝑦

∗

�̇�(𝑡)̇ =
𝑦𝑖
(𝑛)
−𝑝𝑦

∗

𝑇𝐶
sinh (

𝑡

𝑇𝐶
) + �̇�𝑖

(𝑛) cosh (
𝑡

𝑇𝐶
)

   (17) 

 

From this set of equation, one can find the relation between the modified foot placement and the 

final state of the nth step: 

 

[
𝑥𝑓
(𝑛)

�̇�𝑓
(𝑛)
] = [

𝐶 𝑇𝐶𝑆
𝑆

𝑇𝐶
𝐶
] [
𝑥𝑖
(𝑛)

�̇�𝑖
(𝑛)
] + [

1 − 𝐶

−
𝑆

𝑇𝐶

] 𝑝𝑥
∗     (18) 

[
𝑦𝑓
(𝑛)

�̇�𝑓
(𝑛)
] = [

𝐶 𝑇𝐶𝑆
𝑆

𝑇𝐶
𝐶
] [
𝑦𝑖
(𝑛)

�̇�𝑖
(𝑛)
] + [

1 − 𝐶

−
𝑆

𝑇𝐶

] 𝑝𝑦
∗     (19) 

 

Consider as the target position, the final state of the walk primitive presented in the ground frame 

described by the (18) and (19) as shown in (20) and (21) 
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[𝑥
𝑑

�̇�𝑑
] = [

𝑝𝑥
(𝑛) + �̅�(𝑛)

�̅�𝑥
(𝑛)

]              (20) 

[
𝑦𝑑

�̇�𝑑
] = [

𝑝𝑦
(𝑛) + �̅�(𝑛)

�̅�𝑦
(𝑛)

]              (21) 

 

In order to compute the foot placement which ends with the closest final state to the target one 

can define the evaluation function: 

 

𝑁𝑥 = 𝑎(𝑥
𝑑 − 𝑥𝑓

(𝑛))
2

+ 𝑏(�̇�𝑑 − �̇�𝑓
(𝑛))

2

    (22) 

𝑁𝑦 = 𝑎(𝑦𝑑 − 𝑦𝑓
(𝑛))

2

+ 𝑏(�̇�𝑑 − �̇�𝑓
(𝑛))

2

    (23) 

 

With 𝑎 and 𝑏 positive weights. By setting to zero the derivatives of 𝑁𝑥 and 𝑁𝑦 with respect of 𝑝𝑥
∗  

and 𝑝𝑦
∗  one can compute the modified foot placement which will minimize 𝑁𝑥 and 𝑁𝑦: 

 

𝑝𝑥
∗ = −

𝑎(𝐶−1)

𝐷
(𝑥𝑑 − 𝐶𝑥𝑖

(𝑛) − 𝑇𝐶𝑆�̇�𝑖
(𝑛)) −

𝑏𝑆

𝑇𝐶𝐷
(�̇�𝑑 −

𝑆

𝑇𝐶
𝑥𝑖
(𝑛) − 𝐶�̇�𝑖

(𝑛))

𝑝𝑦
∗ = −

𝑎(𝐶−1)

𝐷
(𝑦𝑑 − 𝐶𝑦𝑖

(𝑛) − 𝑇𝐶𝑆�̇�𝑖
(𝑛)) −

𝑏𝑆

𝑇𝐶𝐷
(�̇�𝑑 −

𝑆

𝑇𝐶
𝑦𝑖
(𝑛) − 𝐶�̇�𝑖

(𝑛))

𝐷 = 𝑎(𝐶 − 1)2 + 𝑏 (
𝑆

𝑇𝐶
)
2

  (24) 

 

An example of walking pattern computed with the foot placement modification explained above is 

showed in Figure 29. In this figure the walking pattern generated is along a straight line. For changing 

the direction of motion, it is just necessary to make a few changings in the method described above. 
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Figure 29: Walking pattern generated with the modified foot placement method (Kajita et.al., 2014) 

 

For changing the direction of motion, one just need to consider also the parameter 𝑠𝜃 indicating the 

heading of the feet. 

The walk primitive of the nth steps is then: 

 

[
�̅�(𝑛)

�̅�(𝑛)
] = [

cos 𝑠𝜃
(𝑛+1) −sin 𝑠𝜃

(𝑛+1)

sin 𝑠𝜃
(𝑛+1) cos 𝑠𝜃

(𝑛+1)
] [

𝑠𝑥
(𝑛+1)

2

(−1)𝑛
𝑠𝑦
(𝑛+1)

2

]    (25) 

 

And finally, the speed of the walk primitive becomes: 

 

[
�̅�𝑥
(𝑛)

�̅�𝑦
(𝑛)] = [

cos 𝑠𝜃
(𝑛+1) −sin 𝑠𝜃

(𝑛+1)

sin 𝑠𝜃
(𝑛+1) cos 𝑠𝜃

(𝑛+1)
] [

1+𝐶

𝑇𝐶𝑆
�̅�(𝑛)

𝐶−1

𝑇𝐶𝑆
�̅�(𝑛)

]    (26) 

 

Substituting these last equations with the correspondent ones in the method explained before will 

lead to a walking pattern with a direction changing. It is possible to note that, if 𝑠𝜃
(𝑛)

 is zero, the 

equations will result in a straight trajectory as the one in Figure 29.  
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Figure 30 shows the walking pattern generated with the inclusion of the last walking parameter. 

 

 

Figure 30: walking pattern with changing direction (Kajita et.al., 2014) 

 

4.2. Forward kinematics of the current Archie configuration 

 

Forward and inverse kinematics are two methods widely used in robotics. The first one allows the 

calculation of the position of the end effector based on the values of the joint angles. The inverse 

kinematics instead provide the joint angles based on the position of the end effector. 

The forward kinematics can be solved easily using the transformation matrices. These matrices are 

matrices composed by a rotational part and a translational part. For the construction of these 

transformation matrices, different parameters called Denavit-Hartemberg parameters are used. 

Considering the two connected links depicted in Figure 31, the Denavit-Hartenberg parameters are 

defined as follows: 

• 𝑎𝑖, defined as distance between 𝑂𝑖 and 𝑂𝑖′ 

• 𝑑𝑖, defined as the coordinate of 𝑂𝑖 on the axis 𝑧𝑖−1 

• 𝛼𝑖, defined as the angle between 𝑧𝑖−1 and 𝑧𝑖 around the axis 𝑥𝑖  

• 𝜃𝑖, defined as the angle between 𝑥𝑖−1 and 𝑥𝑖  around the axis 𝑧𝑖 



   
 

37 
 

All the angles are defined positive in direction counter-clockwise. The parameters 𝑎𝑖 and 𝛼𝑖 are 

always constant and their values depend on the mechanical construction of the links. Of the 

parameters 𝑑𝑖 and 𝜃𝑖  just one of them is constant. Depending on the kind of joint, one of them is 

constant and the other is not. If the joint is prismatic just the parameter 𝑑𝑖 is the variable while 𝜃𝑖  

is constant. If the joint is rotational instead, the variable is 𝜃𝑖  while 𝑑𝑖 is constant.   

 

 

Figure 31: Denavit-Hartenberg parameters for a kinematic chain (Siciliano et.al., 2009) 

 

These parameters allow us to compute the position and orientation of the link 𝑖 from the known 

frame 𝑖 − 1 with the following steps: 

• From the frame 𝑖 − 1, translate the frame of 𝑑𝑖 along the axis 𝑧𝑖−1 and rotate it of 𝜃𝑖  around 

𝑧𝑖−1 obtaining the frame 𝑖′. The transformation matrix is then: 

 

𝐴𝑖′
𝑖−1 = [

cos 𝜃𝑖 −sin 𝜃𝑖 0 0
sin 𝜃𝑖 cos 𝜃𝑖 0 0
0 0 1 𝑑𝑖
0 0 0 1

]    (27) 
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• Perform a further translation along the axis 𝑥𝑖′ and rotate the frame 𝑖′ of 𝛼𝑖′ around the axis 

𝑥𝑖′ obtaining the frame 𝑖. The transformation matrix for this last step is: 

 

𝐴𝑖
𝑖′ = [

1 0 0 𝑎𝑖
0 cos 𝛼𝑖 −sin𝛼𝑖 0
0 sin 𝛼𝑖 cos 𝛼𝑖 0
0 0 0 1

]    (28) 

 

The total transformation matrix can be computed by means of the post-multiplication of the two 

transformation matrices: 

 

𝐴𝑖
𝑖−1 = 𝐴𝑖′

𝑖−1 ∙ 𝐴𝑖
𝑖′ = [

cos 𝜃𝑖 −sin 𝜃𝑖 cos 𝛼𝑖 sin 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖 cos 𝛼𝑖 −cos 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 sin 𝜃𝑖
0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

] (29) 

 

For an open kinematic chain like the one showed in Figure 32, it is possible to compute the pose of 

the last ith frame post-multiplying the transformation matrices of the frames 0 to i-1th. 

 

𝑇𝑛
0 = 𝐴1

0 ∙ 𝐴2
1 ∙ 𝐴3

2 ∙ …𝐴𝑛
𝑛−1     (30) 

 

Considering a kinematic chain like a manipulator or like the legs of a humanoid robot, it is possible 

to compute the position and attitude of the end effector computing the transformation matrix from 

the frame of the joint 0 (the base of the manipulator) to the frame n (the end effector). 

Figure 33 and Figure 34 depicts the kinematic chain of, respectively, the left and the right leg of 

Archie. For the kinematic chain of Archie’s left leg, it is possible to define the Denavit-Hartenberg 

parameters showed in Table 3 and taken from (Daniali, 2013). 

Table 4 taken from (Daniali, 2013) instead, shows the Denavit-Hartenberg parameters of Archie’s 

right leg. 
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Figure 32: Kinematic chain (Siciliano et.al., 2009) 

 

Parameter ai αi di θi θ0 

Link 1 a1 π/2 0 θ1 0 

Link 2 a2 0 0 θ2 0 

Link 3 a3 0 -d3 θ3 0 

Link 4 0 -π/2 0 θ4 0 

Link 5 0 -π/2 0 θ5 0 

Link 6 a6 0 d6 θ6 0 

Table 3: Denavit Hartenberg parameters of Archie’s left leg (Daniali, 2013) 

 

Parameter ai αi di θi θ0 

Link 1 a1 -π/2 0 θ1 0 

Link 2 a2 0 0 θ2 0 

Link 3 a3 0 -d3 θ3 0 

Link 4 0 π/2 0 θ4 0 

Link 5 0 -π/2 0 θ5 0 

Link 6 -a6 0 d6 θ6 0 

Table 4: Denavit Hartenberg parameters of Archie’s right leg (Daniali, 2013) 
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Considering the Denavit-Hartenberg parameters of the right leg, the transformation matrices of the 

joints have been computed in the course of this PhD work and are showed in (31)-(36). For clarity, 

it has to be noted that further in this chapter the joints will be named with the numeric convention 

used in Figure 33 and Figure 34 followed by the letter “l” in case of left leg and “r” in case of right 

leg. Joint number 6 instead is the COM. 

 

𝐴1𝑟
0𝑟 = [

 cos 𝜃0     0
 sin 𝜃0     0

   sin 𝜃0 𝑎1 cos 𝜃0
  −cos 𝜃0 𝑎1 sin 𝜃0

0      1       
0         0          

 
 0            0
0           1

]     (31) 

𝐴2𝑟
1𝑟 = [

cos 𝜃1 −sin 𝜃1
sin 𝜃1     cos 𝜃1

0 𝑎2 cos 𝜃1
0 𝑎2 sin 𝜃1

0           0
0           0

 
      1          0
   0       1

]    (32) 

𝐴3𝑟
2𝑟 = [

cos 𝜃2 −sin 𝜃2
sin 𝜃2     cos 𝜃2

0 𝑎3 cos 𝜃2
0 𝑎3 sin 𝜃2

0           0
0           0

 
      1          0
   0       1

]    (33) 

𝐴4𝑟
3𝑟 = [

 cos 𝜃3         0
sin 𝜃3         0

   sin 𝜃3 0
 −cos 𝜃3 0

0                   1
0                   0

 
    0    −𝑑3
   0       1

]    (34) 

𝐴5𝑟
4𝑟 = [

 cos 𝜃4         0
sin 𝜃4         0

   sin 𝜃4 0
 −cos 𝜃4 0

0                   1
0                   0

 
    0        0
   0       1

]              (35) 

𝐴6
5𝑟 = [

cos 𝜃5 −sin 𝜃5
sin 𝜃5     cos 𝜃5

0 𝑎6 cos 𝜃5
0 𝑎6 sin 𝜃5

0           0
0           0

 
      1     −𝑑6
   0  1

]    (36) 

 

Similar transformation matrices can be obtained for the right leg. The transformation matrices from 

the joint 0 to the COM of the robot can be computed by multiplying the transformation matrices 

(30) to (35) as showed in (37) 
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𝐴6
𝑜𝑙 = 𝐴1𝑙

𝑜𝑙𝐴2𝑙
1𝑙𝐴3𝑙

2𝑙𝐴4𝑙
3𝑙𝐴5𝑙

4𝑙𝐴6
5𝑙      (37) 

 

Using relation (37), and taking into account the symmetry of the system, the coordinates of the 

joints of both legs, in the fixed reference system based on the right foot, depicted in Figure 34, have 

been defined, in the curse of this PhD work, with the relations depicted in (38)-(40). 

 

𝑥: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥𝑓𝑙 = 0  
𝑥𝑜𝑙 = 𝑥𝑓𝑙

                                                                 

𝑥1𝑙 = 𝑥𝑜𝑙                                                                 
𝑥2𝑙 = 𝑎2𝑙 sin 𝜃1𝑙                                                    
𝑥3𝑙 = 𝑥2𝑙 + 𝑎3𝑙 sin 𝜃12𝑙                                       
𝑥4𝑙 = 𝑥3𝑙                                                                 
𝑥5𝑙 = 𝑥4𝑙 − 𝑑6 sin 𝜃123𝑙                                      
𝑥5𝑟 = 𝑥5𝑙 + 𝑎6 cos 𝜃40𝑙 cos 𝜃123𝑙 sin 𝜃5𝑙         
𝑥4𝑟 = 𝑥5𝑟 + 𝑑6 sin 𝜃123𝑙                                     
𝑥3𝑟 = 𝑥4𝑟 + 𝑑3 cos 𝜃40𝑙4𝑟 cos 𝜃123𝑙 sin 𝜃5𝑙5𝑟
𝑥2𝑟 = 𝑥3𝑟 + 𝑎3𝑟 sin 𝜃123𝑙3𝑟                              
𝑥1𝑟 = 𝑥2𝑟 + 𝑎2𝑟 sin 𝜃123𝑙32𝑟                            
𝑥0𝑟 = 𝑥1𝑟 + 𝑎1𝑟 sin 𝜃123𝑙321𝑟                          
𝑥𝑓𝑟 = 𝑥0𝑟 + 𝑎0𝑟 sin 𝜃123𝑙321𝑟                         

  (38) 

 

𝑦: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑦𝑓𝑙 = 0   
𝑦0𝑙 = 𝑦𝑓𝑙

                                                              

𝑦1𝑙 = 𝑦0𝑙 + 𝑎1𝑙 sin 𝜃0𝑙                                       
𝑦2𝑙 = 𝑦1𝑙 + 𝑎2𝑙 sin 𝜃0𝑙 cos 𝜃1𝑙                          
𝑦3𝑙 = 𝑦2𝑙 + 𝑎3𝑙 sin 𝜃0𝑙 cos 𝜃12𝑙                         
𝑦4𝑙 = 𝑦3𝑙 + 𝑑3 cos 𝜃0𝑙                                         
𝑦5𝑙 = 𝑦4𝑙 + 𝑑6 sin 𝜃04𝑙                                        
𝑦5𝑟 = 𝑦5𝑙 + 𝑎6 cos 𝜃04𝑙 cos 𝜃123𝑙 cos 𝜃5𝑙        
𝑦4𝑟 = 𝑦5𝑟 − 𝑑6 sin 𝜃04𝑙                                       
𝑦3𝑟 = 𝑦4𝑟 + 𝑑3 cos 𝜃04𝑙4𝑟 cos 𝜃123𝑙 cos 𝜃5𝑙5𝑟
𝑦2𝑟 = 𝑦3𝑟 + 𝑎3𝑟 sin 𝜃04𝑙4𝑟 cos 𝜃123𝑙3𝑟             
𝑦1𝑟 = 𝑦2𝑟 + 𝑎2𝑟 sin 𝜃04𝑙4𝑟 cos 𝜃123𝑙32𝑟           
𝑦0𝑟 = 𝑦1𝑟 + 𝑎1𝑟 sin 𝜃04𝑙4𝑟 cos 𝜃123𝑙321𝑟        
𝑦𝑓𝑟 = 𝑦0𝑟 + 𝑎0𝑟 sin 𝜃04𝑙40𝑟 cos 𝜃123𝑙321𝑟       

 

  (39) 
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𝑧: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑧𝑓𝑙 = 0  

𝑧0𝑙 = 𝑑0
                                                           

𝑧1𝑙 = 𝑧0𝑙 + 𝑎1𝑙 cos 𝜃0𝑙                                   
𝑧2𝑙 = 𝑧1𝑙 + 𝑎2𝑙 cos 𝜃0𝑙 cos 𝜃1𝑙                      
𝑧3𝑙 = 𝑧2𝑙 + 𝑎3𝑙 cos 𝜃0𝑙 cos 𝜃12𝑙                   
𝑧4𝑙 = 𝑧3𝑙 + 𝑑3 sin 𝜃0𝑙                                    
𝑧5𝑙 = 𝑧4𝑙 − 𝑑6 cos 𝜃04𝑙 cos 𝜃123𝑙                 
𝑧5𝑟 = 𝑧5𝑙 + 𝑎6 sin 𝜃04𝑙 cos 𝜃123𝑙                
𝑧4𝑟 = 𝑧5𝑟 + 𝑑6 cos 𝜃04𝑙 cos 𝜃123𝑙               
𝑧3𝑟 = 𝑧4𝑟 + 𝑑3 sin 𝜃04𝑙4𝑟 cos 𝜃123𝑙           
𝑧2𝑟 = 𝑧3𝑟 − 𝑎3𝑟 cos 𝜃04𝑙4𝑟 cos 𝜃123𝑙3𝑟      
𝑧1𝑟 = 𝑧2𝑟 − 𝑎2𝑟 cos 𝜃04𝑙4𝑟 cos 𝜃123𝑙32𝑟     
𝑧0𝑟 = 𝑧1𝑟 − 𝑎1𝑟 cos 𝜃04𝑙4𝑟 cos 𝜃123𝑙321𝑟  
𝑧𝑓𝑟 = 𝑧0𝑟 − 𝑎0𝑟 cos 𝜃04𝑙40𝑟 cos 𝜃123𝑙321𝑟

 

  (40) 

 

The same equations can be derived for the reference system based on the left foot depicted in 

Figure 33. 

 

4.3. Gait stabilization 

 

Concerning the balance and the stabilization of the gait of a humanoid robot, it is possible to 

introduce some useful definitions. First, it is possible to define the support polygon as the region 

formed by enclosing all the contact points between the robot and the ground by using an elastic 

cord braid (Kajita et.al., 2014). The support polygon is showed in Figure 35. 

Another important concept, regarding the balance and the stability of the human gait, is the Zero 

Moment Point (ZMP). As showed in Figure 36, the ZMP is the point on the ground plane in which 

the sums of all the ground reaction forces are zero. The ZMP always exists inside the support 

polygon, whereas the vertical projection of the COM on the ground floor can exist outside of the 

support polygon. 

As showed in Figure 37, for a standing human, the COM projection on the ground floor is inside the 

support polygon and it is coincident with the ZMP point. In a more dynamic situation, instead, the 

COM may fall outside while the ZMP is always inside the support polygon. 

There are two approaches for the realization of a stable human-like walk, static walking and dynamic 

walking. The static walking assumes that, if the movements of the joints are slow enough, they will 
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not influence the stability of the system. The movements are therefore planned considering the low 

speed constraint. Furthermore, the balance of the robot is guaranteed by the movement of the hip. 

The ankle joint is rotated in order to have the projection of the COM of the robot on the ground 

plane inside the support polygon. 

 

 

Figure 33: kinematic chain for the left leg of Archie. Adapted from (Daniali, 2013) 
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Figure 34: Kinematic chain of the right leg. Adapted from (Daniali et.al., 2013) 
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In the dynamic walking instead, the movement of the swing leg is not planned but computed online 

during the gait considering the data input from various kind of sensors in order to keep the balance 

and the stability of the system. This last approach guarantees the balance and the stability even in 

presence of external disturbances like for instance floor unevenness.  

 

 

Figure 35: support polygon for a humanoid robot (Vadakkepat, P. and D. Goswami, 2008) 

 

 

Figure 36:ZMP and ground reaction forces (Vadakkepat, P. and D. Goswami, 2008) 
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Figure 37: ZMP and support polygon (Kajita et.al., 2014) 

 

The balance of a humanoid robot in the dynamic walking is controlled by means of a stabilizer. The 

basic functionality of the stabilization is the correction of small errors around the previously 

computed walking pattern.  

One of the most successful stabilization methods is the control of the Zero Moment Point (ZMP). 

The position of the ZMP can be computed by the readings of various sensors, such as force sensors 

placed on the feet or by the acceleration of the COM of the robot. The control of the ZMP is based 

on the cart table model depicted in Figure 38. 

The cart table model consists in a massless table on which a cart is placed. All the mass of the robot 

and, consequently, the COM is concentrated on the cart. The movement of the cart causes the 

centre of pressure of the table on the floor, that is, the ZMP, to translate along the base of the table. 

It is also possible to stabilize the walk by controlling the ankle torque. Nevertheless, this solution is 

the most difficult to implement since the torque control on mechanism equipped with high 

reduction gear is an extremely difficult problem (Kajita et.al., 2014). 
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Another method consists in keeping the body of the robot in an upright position by controlling the 

hip joint during the walk. The attitude of the hip and of the body can be controlled with the use of 

attitude sensor such as an IMU, for instance. 

This last approach is the one used by (Hashimoto et.al., 2014). The balance control they developed 

is based on the readings of an IMU attached to the robot trunk. The foot placement of the robot is 

then modified according to an attitude angle measured by the IMU as showed in Figure 39. 

 

 

Figure 38: cart table model (González-Fierro et.al., 2015) 

 

 

Figure 39: stabilization of a humanoid robot gait by measurements of an attitude angle (Hashimoto et.al., 2014) 
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To be more specific, the attitude of the swing foot is modified on the roll angle to make it touch the 

ground horizontally. Furthermore, its landing point is translated laterally to prevent the robot to fall 

on the outside. This last step is necessary because this control has been implemented for the robot 

WABIAN-2R which has narrow feet. The trajectory of the legs is then returned to the pre-set pattern 

and the waist is translated laterally in order to begin the next swing phase. The angle and landing 

point modifications are done using simple geometrical consideration and the new trajectories are 

then computed using interpolating polynomials. 

Another simple geometrical algorithm for the balance of the robot based on the measurements of 

an angle is the one developed in (Park et.al., 2014). Their balance control takes in input the data 

from an inclinometer placed on the back of the right foot. The balance control they developed was 

able to make the humanoid robot GHR on an inclining surf board which was moving simulating the 

wave of the ocean. GHR is a simple humanoid robot platform composed by two legs and a hip 

developed at the Griffith University and showed in Figure 40.  

In order to stay in balance on a surf board, one leg needs to be stretched out and the other needs 

to be bent. Basing on this simple assumption, (Park et.al., 2014) developed a balance control using 

simple geometrical relations between the two legs. The experiments of this method showed in 

Figure 41 were successful. 

 

 

Figure 40: The humanoid robot GHR on the surf board used for the experiments (Park et.al., 2014) 
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Figure 41: The humanoid robot GHR during the experiments (Park et.al., 2014) 

 

4.4. Advanced gait planning and control algorithm 

 

The study from (Hashimoto et.al., 2014) and (Park et.al., 2014) presented in the last chapter showed 

that it is possible to control and balance the robot based only on the attitude of the COM. The 

approach currently in evaluation for Archie is similar to the one proposed by (Hashimoto et.al., 

2014) as it uses attitude variations of the hip from a pre-set pattern in order to stabilize the robot. 

This pre-set pattern for the gait of the humanoid robot is computed with a method defined during 

the course of this PhD work which, similarly as in the work of (Park et.al., 2014), links between each 

other the movement of the joints during the gait by means of geometrical relationships. 

Let us consider the support foot to be the right one and the swing foot to be the left one. Consider 

the reference system to be on the right foot as showed in Figure 34, and that the COM of the robot 

moves of a ∆𝑦 in order to move towards the support foot and of a ∆𝑥 in order to advance. 

On the frontal plane, as showed in Figure 42, in order to keep the trunk in an upright position, the 

angle of the joint {4l} is set to be always equal to {0l} with a changed sign. On the sagittal plane 

instead, as showed in Figure 43, the joint {3r} angle is set to be always equal to the joint {1r} with 

the sign changed in order to keep the trunk in an upright position. Supposing also that the angle of 

the joint {2r} is 0 during the gait one can relate directly the movement of the COM to the movement 

of the joint {0r} and {1r}. As a matter of facts, substituting the joint angle in the (38) one obtains the 

equation system: 

 

{
𝑦𝐶𝑂𝑀 = (𝑎1𝑟 + (𝑎2𝑟 + 𝑎3𝑟) cos 𝜃1𝑟) sin 𝜃0𝑟 + 𝑑3 cos 𝜃𝑜𝑟 +

𝑎6

2

𝑥𝐶𝑂𝑀 = (𝑎2𝑟 + 𝑎3𝑟) sin 𝜃1𝑟                                                                 
  (41) 
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Whose solution leads to: 

 

{
 
 

 
 
𝜃0𝑟 = tan

−1(2
2𝑘1±√4𝑘1

2−4𝑘2𝑘3

2𝑘2
)

𝜃1𝑟 = sin
−1 (

𝑥𝐶𝑂𝑀

𝑎2𝑟+𝑎3𝑟
)                   

    (42) 

 

With 

𝑘1 = 𝑎1𝑟 + (𝑎2𝑟 + 𝑎3𝑟) cos 𝜃1𝑟

𝑘2 =
𝑎6

2
− 𝑑3 − 𝑦𝐶𝑂𝑀                   

𝑘3 = 𝑑3 +
𝑎6

2
− 𝑦𝐶𝑂𝑀                   

   (43) 

 

Consider now the joint of the swing leg. The angle of the knee joint of the swing leg {2l} and {3l} are 

set in order to modify the length of the projection on the yz plane of the swing leg of a tan 2𝜃0𝑟  

factor and to guarantee its advancement.  

Consider for clarity Figure 44. The relation for the computation of the length of projection of the 

swing leg on the yz plane in the reference system based on the right foot is the (44). 

 

𝑙𝑠 = 𝑧3𝑟 − ∆ℎ      (44) 

 

Where 

 

∆ℎ = 𝑦3𝑙 tan 2𝜃0𝑙      (45) 

 

The joint angle 𝜃3𝑙, 𝜃2𝑙  and 𝜃1𝑙  can be computed using the cosine law as showed in (46), (47), (48) 

and (49): 
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ℎ𝑠 = 𝑙𝑠 − 𝑎1𝑙 − 𝑎0𝑙      (46) 

𝑟 = √∆𝑥2 + ℎ𝑠2     (47) 

𝜃2𝑙 = 𝜋 − cos−1 (
𝑎3𝑙
2 +𝑎2𝑙

2 −𝑟2

2𝑎3𝑙𝑎2𝑙
)   (48) 

𝜃3𝑙 = cos−1 (
𝑎3𝑙
2 +𝑟2−𝑎2𝑙

2

2𝑎3𝑙𝑟
) + 𝛽   (49) 

 

With 

 

𝛽 = tan−1 (
∆𝑥

ℎ𝑠
)     (50) 

 

If one assumes that the foot is always parallel to the ground, then: 

 

𝜃3𝑙 + 𝜃2𝑙 + 𝜃1𝑙 = 0     (51) 

From which: 

 

𝜃1𝑙 = −(𝜃3𝑙 + 𝜃2𝑙)     (52) 

 

All the other joint angles are set to be 0 during the full gait. To resume the geometrical relations 

that links all the joints of the leg with each other are for left (53) and right (54) leg: 
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝜃1𝑟 = sin−1 (

𝑥𝐶𝑂𝑀

𝑎2𝑟+𝑎3𝑟
)                               

𝜃0𝑟 = tan−1(2
2𝑘1±√4𝑘1

2−4𝑘2𝑘3

2𝑘2
)           

𝜃2𝑟 = 0                                                         
𝜃3𝑟 = −𝜃1𝑟                                                  
𝜃4𝑟 = −𝜃0𝑟                                                  
𝜃5𝑟 = 0                                                        
𝜃5𝑙 = 0                                                        
𝜃4𝑙 = 0                                                        

𝜃3𝑙 = cos
−1 (

𝑎3𝑙
2 +𝑟2−𝑎2𝑙

2

2𝑎3𝑙𝑟
) + 𝛽                 

𝜃2𝑙 = 𝜋 − cos
−1 (

𝑎3𝑙
2 +𝑎2𝑙

2 −𝑟2

2𝑎3𝑙𝑎2𝑙
)                 

𝜃1𝑙 = −(𝜃3𝑙 + 𝜃2𝑙)                                   
𝜃0𝑙 = 0                                                        

   (53) 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝜃1𝑙 = sin−1 (

𝑥𝐶𝑂𝑀

𝑎2𝑟+𝑎3𝑟
)                               

𝜃0𝑙 = tan−1(2
2𝑘1±√4𝑘1

2−4𝑘2𝑘3

2𝑘2
)           

𝜃2𝑙 = 0                                                         
𝜃3𝑙 = −𝜃1𝑟                                                  
𝜃4𝑙 = −𝜃0𝑟                                                  
𝜃5𝑙 = 0                                                        
𝜃5𝑟 = 0                                                        
𝜃4𝑟 = 0                                                        

𝜃3𝑟 = cos
−1 (

𝑎3𝑙
2 +𝑟2−𝑎2𝑙

2

2𝑎3𝑙𝑟
) + 𝛽                 

𝜃2𝑟 = 𝜋 − cos
−1 (

𝑎3𝑙
2 +𝑎2𝑙

2 −𝑟2

2𝑎3𝑙𝑎2𝑙
)                 

𝜃1𝑟 = −(𝜃3𝑙 + 𝜃2𝑙)                                   
𝜃0𝑟 = 0                                                        

   (54) 

 

If the support leg is the right one. With the geometrical relation showed in (53) and (54) between 

the joints of the legs it is possible to relate the movements of the COM and of all the joints of the 

legs during the gait just to the movements of the joint {0} and {1} of the support foot. Figure 45 and 

Figure 46 shows the movements of the legs during the gait computed with the method described 

above. 
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As mentioned before, the planning of the joint movements during the gait was developed at first as 

a part of the footstep planner. Besides the already described approach, another approach was also 

evaluated. 

 

Figure 42:Symmetries in Archie's movement on the frontal plane 

 

 

Figure 43: Symmetries in Archie's movements on the sagittal plane 
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Figure 44: Movement of the swing leg during the gait 

 

 

Figure 45: Movements planned on the frontal and sagittal plane 
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Figure 46: 3D view of the planned movements. 

 

The other tested approach consisted on the artificial potential field approach applied to a virtual 

manipulator which could approximate Archie’s leg and hip. As mentioned in chapter 2, the artificial 

potential field algorithm consists in the creation of two artificial potential fields, one for the obstacle 

and one for the goal. Then, by computing the anti-gradient of the total artificial potential field, it is 

possible to compute a free collision path for the robot.  

Denoting as 𝑈𝑎 the attractive potential (associated to the goal), 𝑈𝑟 the repulsive potential 

(associated to the obstacles) and with 𝑈𝑡 the total potential field, one can compute the gradients of 

the repulsive potential field and the gradient of the attractive potential field as: 

 

𝜕𝑈𝑟

𝜕𝑞
= (

𝜕𝑈𝑟

𝜕𝑥
,
𝜕𝑈𝑟

𝜕𝑦
,
𝜕𝑈𝑟

𝜕𝑧
)     (55) 

𝜕𝑈𝑡

𝜕𝑞
= (

𝜕𝑈𝑡

𝜕𝑥
,
𝜕𝑈𝑡

𝜕𝑦
,
𝜕𝑈𝑡

𝜕𝑧
)     (56) 
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In this formulation, only the end effector is subject to the potential of the goal. As a matter of fact, 

the end effector is the only part of the leg that has to reach the destination while the links just have 

to stay away from the obstacles.  

The virtual manipulator approximating Archie’s leg has been defined as follows. The supporting foot 

can be considered as the base of the manipulator whose position is fixed in time. The foot of the 

swing leg instead, can be regarded as the end effector. By assuming the hip always perpendicular to 

the legs, it is possible to considered it dot-like and as a rotational joint. Furthermore, by using a 

numerical notation for the joints, one will have that the point {0} is the point on the base, point {1} 

will be on the first link (the one that is closer to the base) and so forth until the point 𝑃 that is the 

end effector. This virtual manipulator is presented in Figure 47. 

The algorithm is basically a loop which, on every iteration, computes a new point of the path that 

must be followed by the end effector and the joints. The velocity of the end effector and the joint is 

computed by means of the: 

 

�̇� = −∑ 𝐽𝑖
𝑇(𝑞)∇𝑈𝑟(𝑝𝑖) − 𝐽𝑃

𝑇(𝑞)∇𝑈𝑡(𝑝𝑃)
𝑃−1
𝑖=1     (57) 

 

Where Ji
T is the Jacobian of the direct kinematics relative to the point 𝑖. 

Using this velocity, it is possible to compute with the Euler method, the next point of the planned 

trajectory: 

 

𝑞𝑘+1 = 𝑞𝑘 + 𝑇𝑞�̇�      (58) 

 

Where 𝑇 is the integration step. This algorithm has been tested with various simulations and the 

results showed that the algorithm had to be improved. 

Figure 48 shows the results of the first simulation. The red rectangle is the obstacle Archie must step 

over and the lines of different colours are the links composing Archie’s legs. Blue and purple are the 

links from the foot to the ankle of, respectively, the supporting and the swing leg. Red and green 

are the links from the ankle to the knee of, respectively, the supporting and swing leg. Black and 
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Yellow lines are the link between the knee and the hip of, respectively, the supporting and swing 

leg.  

 

 

Figure 47: First model of Archie’s leg for the simulations 

 

As it is possible to see in Figure 48, the movement of Archie’s legs are unnatural and, since it bends 

backwards to cross the obstacle, it could fall.  
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Figure 48: Movement of archie’s leg during the tests of the algorithm 

 

The algorithm needed some limitations to the possible movement of the leg. This can be realized by 

defining a different kind of artificial potential field or by defining a different virtual manipulator. For 

this reason, a second representation of Archie’s leg for a second test of the algorithm has been 

defined. In this representation the fixed reference system is on the hip which is approximated as a 

prismatic joint. Only the swing leg is considered. The new model of Archie’s leg is depicted in Figure 

49. 

A further difference between the first and the second formulation relies in the resolution method. 

The algorithm, in this second formulation, computed the movement just of the end effector and 

then, computed the movement of the other joints using inverse kinematics. 

The reason for this change lies in the fact that the artificial potential field algorithm assures to find 

always a safe path. However, it does not assure that the found path is the optimal and, above all, 

that the safe path computed is suitable for a humanoid robot legs, which movements are restricted 

by balance limitation. 
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Figure 49: Second considered model of Archie’s leg for the simulations 

 

Computing the movement of the end effector with the artificial potential field algorithm assures 

finding a path and the inverse kinematics allows us to be in accordance with the limitation of the 

movement of Archie’s leg. 

To summarize, the algorithm computes the trajectory of the end effector with the (59). 

 



   
 

60 
 

𝑞𝑘+1 = 𝑞𝑘 − 𝑇∇𝑈𝑡     (59) 

 

Where 𝑇 is the integration step, ∇𝑈𝑡 is the gradient of the total potential field and 𝑞𝑖 = [
𝑥4
𝑦4
], the 

vector containing the positions of the end effector.  

The potential functions are the same as in the first formulation: 

 

𝑈𝑎 = 𝐾𝑎‖𝑞 − 𝑞𝑔‖
2
     (60) 

𝑈𝑟 = {
𝐾𝑟

𝛾
(

1

𝜇𝑖(𝑞)
−

1

𝜌
)
𝛾

                                         𝑖𝑓  𝜇𝑖(𝑞) ≤  𝜌

0                                                                      𝑖𝑓  𝜇𝑖(𝑞)  ≥  𝜌 
   (61) 

 

Where 𝐾𝑟 and 𝐾𝑎 are empirical constants. 𝜇𝑖(𝑞) is the minimum distance between the end effector 

and the boundaries of the obstacle and 𝜌 is the distance at which one wants that the end effector 

“feel” the potential of the obstacle. Finally, 𝛾 defines the decrease in the influence of the obstacle 

potential with the distance. 

After the computation of the new position of the end effector, one can compute the new position 

of the other joints with inverse kinematics. 

The equations for the joints of Archie’s legs are: 

𝑥:    

{
 
 

 
 
𝑥0 = 0                                                                               
𝑥1 = 𝑥0 + 𝑎1 = 𝑎1                                                         
𝑥2 = 𝑎1 + 𝑙2 cos 𝜃2                                                        
𝑥3 = 𝑎1 + 𝑙2 cos 𝜃2 + 𝑙3 cos 𝜃23                                
𝑥4 = 𝑎1 + 𝑙2 cos 𝜃2 + 𝑙3 cos 𝜃23 + 𝑙4 cos 𝜃234       

  (62) 

 

𝑦:    

{
 
 

 
 
𝑦0 = 0                                                                    
𝑦1 = 0                                                                   
𝑦2 = 𝑙2 sin 𝜃2                                                      
𝑦3 = 𝑙2 sin 𝜃2 + 𝑙3 sin 𝜃23                                
𝑦4 = 𝑙2 sin 𝜃2 + 𝑙3 sin 𝜃23 + 𝑙4 sin 𝜃234        

   (63) 
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The limitation on Archie’s legs are: 

 

𝜃234 = −90°     →             sin 𝜃234 = −1,    cos 𝜃234 = 0                          
𝜃4 = 0°     →               𝜃234 = 𝜃23        →    sin 𝜃23 = −1,   cos 𝜃23 = 0

  (64) 

 

In order to keep Archie’s foot always parallel to the ground. Substituting this relation in the 

equations above one have: 

 

𝑦4 = 𝑥1 + 𝑙2 sin 𝜃2 + 𝑙3 sin 𝜃23 − 𝑙4 = 𝑦3 − 𝑙4      →        𝑦3 = 𝑦4 + 𝑙4  (65) 

𝑦3 = 𝑙2 sin 𝜃2 − 𝑙3                                        →      𝜃2 = sin
−1 𝑦3+𝑙3

𝑙2
   (66) 

𝑦2 = 𝑙2 sin 𝜃2                                                                                                        (67) 

𝑥4 = 𝑎1 + 𝑙2 cos 𝜃2 + 𝑙3 cos 𝜃23 = 𝑥3      →                𝑥3 = 𝑥4                   (68) 

𝑥3 = 𝑎1 + 𝑙2 cos 𝜃2 = 𝑥2                      →                       𝑥2 = 𝑥3                 (69) 

𝑥2 = 𝑎1 + 𝑙2 cos 𝜃2                →                       𝑎1 = 𝑥2 − 𝑙2 cos 𝜃2 = 𝑥1   (70) 

 

Simulations were performed in order to determine the performances of this approach. The results 

of this simulations are showed in Figure 50. As in Figure 48, blue is the environment in which Archie 

is moving and the red rectangle is the obstacle it must step over. Furthermore, as in Figure 48, every 

coloured line represents a segment of Archie’s leg. Green is the foot, black is the ankle, pink is the 

part of the leg between the ankle and the knee and yellow is the segment between the knee and 

the hip. Finally, red represents the hip. In the second model, for the hip, a prismatic joint has been 

chosen. Therefore, the backward movement of the hip represents a backward rotation of Archie’s 

hip to ensure the rise of the leg without touching the obstacle. The foot never touches the obstacle 

and the leg is able to cross the obstacle. Nevertheless, also this formulation of the artificial potential 

field algorithm had its limits and needed some optimizations. 
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The prismatic joint extension representing the rotation of Archie’s hip had to be limited because, a 

full 180° rotation of the hip (which is however not possible), had to represent the maximum 

elongation of the prismatic joint. 

From the computational point of view this second formulation was lighter and faster than the first 

one but there were still problems in cases of local minima whose resolution could be very 

computational expensive. 

 

 

Figure 50: Simulation of the second considered model of Archie's leg 

 

Due to all these implementation difficulties from the computational load point of view and from the 

robot stabilization point of view, it was then decided not to further improve the artificial potential 

field approach and to develop the geometric algorithm explained above. 

As a matter of fact, from the computational point of view the geometric method has a very low 

computational load and it is much faster than the artificial potential field approaches. Furthermore, 
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the resulting movements of the legs’ joints computed in this way should also guarantee a stable gait 

since the hip is always kept in an upright position. Furthermore, forward and backward movement 

of the hip corresponds to forward or backward movements of the swing leg which would produce a 

forward or backward movement of the swing leg in case the robot would fall forward or backward. 

Due to the stability of the geometric method, it is possible to develop a stabilization strategy that 

would make every movement of the robot (described by the measured speed and acceleration of 

the COM and by the feedback from the motor controller) as close as possible to this pre-set 

movements pattern. 

Figure 51 shows a scheme for the control approach proposed. The planning of the movement of the 

COM is first performed with the walking primitive generation. From the COM positions, the 

movement of the knee joint of the support leg are computed and consequently, using the (53) and 

(54), also the DH parameter of all the other joints of the support and swing leg.  

Once the desired angles are computed, it is possible to compute the velocity input for the motor 

controller. The computation of these inputs can be performed using the relations of the position 

control loop showed in Figure 18. The gains can be chosen from the lookup table that resulted from 

the system identification performed in (Schoerghuber, 2014) introduced in the previous chapter. 

The velocity commands are then sent to the embedded motor controllers which return the feedback 

velocity of the motors. The high-level control algorithm will then compute the current DH 

parameters of the legs and send them as input to the kinematical model of the robot together with 

the data from the IMU placed on the hip. The model will estimate the pose of the robot using the 

forward kinematics. The computed pose will be utilized by the stabilizer to compute the new desired 

angles considering the pre-set pattern previously calculated. 

 

4.5. Extendibility 

 

The stabilization approach explained in the previous chapter is good for the current configuration 

of the robot. As a matter of fact, one can assume the COM of the current configuration to be always 

on the hip.  
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In the future though, the upper body will be built and the movements of the other parts of Archie’s 

body, especially the arms, will have an effect on the position of the COM of the robot. The COM will 

be thus not always on the hip, but its position can be different depending on the movement of all 

the links of the robot.  

The stabilization approach proposed could also work in this case by integrating a more complex 

kinematical model of the robot. Such a model should be able to provide the transformation between 

the hip centre (formerly the COM of the lower body) and the actual COM of the full body. This 

transformation will be considered first in the walking primitive method by setting the correct 𝑧𝑐 

parameter in the (6) which is the height of the COM for the planning and then also in the 

stabilization.  

First, the position of the COM with respect to the pelvis needs to be computed using the feedback 

of the motors and the IMU data. Then, it will then be given as input to the walking primitive method. 

Afterwards, the transformation between the COM and the hip will be used to determine the 

movement of the hip from the COM movement. Finally, the movement pattern can be set from the 

movement of the pelvis computed from the COM movements using the transformation between 

the COM and the pelvis. The motion and the stabilization will then follow this pre-set pelvis 

movement pattern. This approach is depicted in Figure 52 

In addition to this more complex model of the robot it could also be possible to add force sensors 

under the robot’s feet in order to measure directly the position of the robot’s ZMP. From the 

planning of the position of the COM with the walking primitive method, it is also possible to compute 

a desired position of the ZMP and use this in order to control its position during the gait.  
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Figure 51: Advanced control algorithm lower body 
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Figure 52: advanced control algorithm upper body 

  



   
 

67 
 

 

5. New Archie electronic configuration 

 

The main purpose of this PhD work is to increase Archie’s capabilities by giving it the possibility to 

sense the environment around it and to plan a collision free trajectory from a start position to a 

goal position.  

Such a task requires a proper sensing hardware which the current design of the robot lacks. For this 

reason, this PhD work proposes the addition of stereo-cameras which will be used by the software 

for the modelling of the environment around it.  

Furthermore, in order to increase the autonomy of the robot, an on-board computer was added. 

The on-board computer can be connected to an external computer through a wireless network 

dedicated to the robot. The wireless connection is provided by means of a router to which the board 

connects with the use of a USB Wi-Fi dongle. This design choice is requested from the high 

computational power needed by the software. Although the computational power of the on-board 

computer is high, it could be possible to move some of the computation or pieces of the software 

on other machines connected wireless with the on-board computer, in order to speed up the 

processing. The visualization for instance, can be executed on a remote laptop. 

The control architecture of the robot is currently in replacement and a new design is also under 

evaluation. This new control architecture aims to allow the implementation of the new centralized 

advanced control algorithm. The new control hardware architecture is composed of: 

• A motor driver, for the control of the motor. 

• Arduino Due, for the execution of the embedded control algorithm 

• Arduino Micro, for the connection between the motor driver and the Arduino Due 

• IMU for measuring the attitude of the hip. 

In addition, the on-board computer is thought to be part of the new control hardware architecture 

as the advanced gait and control algorithm will run on it. 

This chapter will depict the new hardware chosen for Archie. First, the new on-board computer will 

be provided and then the stereo-cameras chosen will be described. Next, the USB Wi-Fi dongle and 

the router will be shown. The new control hardware architecture in development will then be 
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described in order to show how the onboard computer and the stereo-cameras are connected to 

the rest of the hardware of the robot.  

 

5.1. Spinal board 

 

 

Figure 53: Spinal board. (NVidia, last retrieved 2015) 

 

The spinal board has been chosen to be Archie’s on-board computer. An important requirement for 

a humanoid robot’s on-board computer is the high computational power. Many boards were 

evaluated focussing on their computational power with respect to their costs.  

Our first evaluations were concerning low cost boards usually used by hobbyist such as the 

Raspberry Pi or the Olinuxino. The reason for these evaluations relies on the fact that such boards 

are easy to program, and they would have offered various possibilities for the implementation and 

testing of different algorithms.  

Their low costs could have been perfect for a cost-oriented humanoid robot, but their 

computational power is limited. Both boards could have been interfaced with the stereo-cameras 

and all sensors. However, the computational power was still not enough for all algorithms that must 

run on the board. Furthermore, the Olinuxino does not support ROS which it was one of the 

requirements.  
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The choice made for the robot was the NVidia Jetson TK1 showed in Figure 53. It is a powerful board 

equipped with the Tegra GPU. The GPU is the Graphic Processing Unit and it is composed by several 

cores which can run operations in parallel resulting in a computational speed-up (d’Apolito et.al., 

2016). This high computational power is used with the stereo cameras and the data handling 

algorithms. The CUDA libraries were created by the same producer of the board and with them, it 

is possible to parallelize every kind of computation and not also the image processing-based 

computations. 

This board has the Ubuntu 14.04 installed on it and it is fully ROS compatible. Its computational 

power and the ROS compatibility made it the perfect candidate for our application.  

Despite all these research applications performed with this board, to our knowledge, this is the first 

time that this board is used for a humanoid robot application. 

The technical specifications of the on-board computer are shown in Table 5. More information on 

the board can be found at (NVidia, last retrieved 2015). 

 

GPU NVIDIA Kepler with 192 CUDA cores 

CPU Quad Core ARM® Cortex™-A15 NVIDIA 4-Plus-

1™    

DRAM 2 GB DDR3L 933 MHz EMC x16 using 64 bit data 

width 

Storage  16GB eMMC 4.51 

mini PCle  1 

USB 2.0 1 

USB 3.0 1 

HDMI 1 

Serial Port RS232 1 

Codec audio 1 Realtek ALC5639 

LAN GigE Realtek RTL8111GS 

SATA 1 

Table 5: NVIDIA Jetson TK1 technical specification (Nvidia, last retrieved 2015) 
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5.1.1. USB hub 

 

Only one USB port is present on the board. Thus, a USB hub is attached to the board to provide all 

the USB port necessary. It provides a USB 3.0 for the connection to the stereo-cameras and 3 USB 

2.0 port one of which is used for the USB Wi-Fi dongle. The USB hub is showed in Figure 54. 

 

Figure 54: The USB hub 

 

5.1.2. Wi-Fi Dongle 

 

The Wi-Fi Dongle is used to provide the board with the possibility of connecting to a wireless 

network. Such an adapter is the EDIMAX EW-7811UN. It was chosen for its low price and known 

good performances with the Jetson TK1. It is able to provide a 150 Mbit/s stable connection and it 

supports WEP, WPA, WPA2 encryption and it is also WPS compatible.  

The driver of the dongle for the Jetson TK1 works out-of-the-box and it is possible to download it at 

(ELinux Online Description Nvidia Jetson TK1, 2017). Figure 55 depicts the USB Wi-Fi dongle. 

 

Figure 55: The Wi-Fi dongle (EDIMAX EW-7811UN Product Description, last retrieved 2018) 
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5.2. The router 

 

The router chosen for our application is the TP-Link TL-WR841N. It is able to provide 300 Mbps and 

has a low price. More information can be found at (TP-Link TL-WR841N Online specification, last 

retrieved 2018). The router is depicted in Figure 56 

 

Figure 56: The router (TP-Link TL-WR841N Online specification, last retrieved 2018) 

 

5.3. Stereo-cameras 

 

Different stereo-cameras were evaluated for the robot but in the end, due to their price and 

dimensions, the LI-USB30-V024STEREO from Leopard Imaging was chosen. The stereo-cameras are 

showed in Figure 57. Its 5 mm baseline does not guarantee a great accuracy in the reconstruction 

of the environment around the robot, but its dimensions are perfect for a teen-sized humanoid 

robot such as Archie.  

The technical specifications of the cameras are listed in Table 6.  

 

 

Figure 57: Stereo-cameras used for the robot realization. (Leopard Imaging, last retrieved 2015) 
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Video Resolution 640x480          60 fps 

Sensitivity 4.8 V/lux-sec 

Dynamic Range 8 bit 

IR cut filter Yes 

Sensor Specification Aptina MT9V024 Global Shutter WVGA Sensor 

Shutter  Global 

Format  1/3’’ 

Resolution  H:752, V:480  

Pixel size  H:6.0 um, V: 6.0 um  

Color  Monochrome  

Lens mount M8 lens mount   

M8 Lens  2.35mm, 170° DFOV  

Interface  USB 3.0 

Supply voltage  USB 3.0 +5 VDC power source  

Current consumption  Approx. 270 mA at 5 VDC  

Dimensions (with lens)  L: 80 mm, W: 15 mm, H: 17 mm  

Mass  12 g  

Table 6: Stereo-cameras technical specification (Leopard Imaging, last retrieved 2015) 

 

5.4. Inertial Measurement Unit 

 

The inertial measurement unit (IMU) is a combination of sensor composed from 3 accelerometers 

and 3 gyroscopes: The data coming from these sensors are then combined to obtain the attitude of 

the IMU alongside the acceleration and the angular velocities on the three axis. The IMU chosen for 

our application is the MPU 6050 showed in Figure 58. 

It is possible to retrieve the sensor data using the I2C communication protocol. More information 

about the sensor can be found at (MPU 6050, last retrieved 2018). The values of the linear 

acceleration on the three cartesian axes and the three angular velocities measured respectively by 

the accelerometer and the gyroscopes are given as input to a complementary filter in order to 

compute the attitude of the sensor. More information can be found in (Kokaj, 2018). 
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Figure 58: The MPU 6050 IMU (MPU 6050, last retrieved 2018) 

 

5.5. New joint controllers 

 

The ELMO controllers will be replaced using a combination of 3 different electronic components: a 

motor driver, an Arduino Micro and an Arduino Due. The main reasons for this replacement are the 

following: 

• The high price of the controller makes them unfit for a cost-oriented application such as 

Archie 

• The high weight of the controllers makes the achievement of a human-like walking more 

difficult 

• The impossibility of developing and testing of advanced control algorithm. 

The next chapters will give an overview of the chosen electronic components followed by a 

description of the new hardware control architecture. 

 

5.5.1. Motor driver 

 

The motor driver chosen for the control of this motor is the Kimbrough BLD-70. It is a brushless DC 

motor driver of up to 70 W power. Figure 59 shows the motor driver chosen. The technical 

specifications of the component are listed in Table 7. 
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Driver Parameters  Minimum value  Rated value  Maximum value  unit  

Output current  -  3  6  A  

Input voltage  12  24  30  VDC  

Hall drive current  -  20  -  mA  

Hall signal voltage  4.5  6.25  6.5  V  

Applicable motor 

speed  
0  -  20000  RPM  

Table 7: Motor driver specification (Motor Driver Online Shop page, 2018) 

 

5.5.2. Arduino Due 

 

The Arduino Due will be used for the low-level control algorithm. There will be one of them for every 

leg and will translate the command coming from the high-level control into a command 

understandable from the motor driver. It was chosen for being a cost-oriented and easy 

programmable solution. Figure 60 shows an image of the Arduino Due and Table 8 lists its technical 

specification. More information can be found at (Arduino Due, 2018). 

 

 

Figure 59: The motor driver (Motor drive online shop page, last retrieved 2018) 

 

 

Figure 60: The Arduino Due (Arduino Due, last retrieved 2018) 
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Microcontroller AT91SAM3X8E 

Operating Voltage 3.3V 

Input Voltage (recommended) 7-12V 

Input Voltage (limits) 6-16V 

Digital I/O Pins 54 (of which 12 provide PWM output) 

Analog Input Pins 12 

Analog Output Pins 2 (DAC) 

Total DC Output Current on all I/O lines 130 mA 

DC Current for 3.3V Pin 800 mA 

DC Current for 5V Pin 800 mA 

Flash Memory 512 KB all available for the user applications 

SRAM 96 KB (two banks: 64KB and 32KB) 

Clock Speed 84 MHz 

Length 101.52 mm 

Width 53.3 mm 

Weight 36 g 

Table 8: Arduino Due specification (Arduino Due, last retrieved 2018) 

 

5.5.3. Arduino Micro 

 

The Arduino Micro is showed in Figure 61 and it will be used to connect the Arduino Due with the 

Arduino Micro. 

 

 

Figure 61: The Arduino Micro (Arduino Micro, last retrieved 2018) 
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The Arduino Micro is based on the ATmega32U4 processor and it is equipped with 20 input/output 

pin. 7 of these pins can be used as PWM outputs and 12 as analog inputs (Arduino Micro, 2018). 

More information about this micro controller can be found at (Arduino Micro, 2018). 

 

5.6. Connections 

 

As showed in Figure 62 the main board will be connected through the USB hub to the stereo-

cameras and to the Wi-Fi dongle. With this last component the Jetson TK1 will be able to connect 

to a network through which it will communicate to an external laptop. 

The Jetson TK1 will also be connected through I2C communication protocol to the MPU-6050 which 

will be attached to the hip of the robot. 

There will be two Arduino Due, one for every leg. They will be connected to the Jetson TK1 via serial 

communication. They will receive the commands from the main board, make the low-level control 

algorithm run and send the command for the motor drivers to the Arduino Micro by using the serial 

communication protocol. 

The Arduino Micros are connected to the motor drivers through the PWM. Two further digital pins 

are used for the direction of motion of the motor and for the brake. A PCB integrating the motor 

driver and the Arduino Micro will be developed. Finally, the motor drivers will then be connected 

with the motors through the 3 connections for the motor winding and the 3 connection for the hall 

sensor. 

 

5.7. Housing 

 

Figure 63 shows a 3D drawing of the robot structure with the described electronics mounted on it. 

The green prism on the torso represents the Nvidia Jetson TK1 and the black one is the USB Hub. 

The blue prism represents the two Arduino Due while the green prism on the legs are the PCB 

integrating motor driver and Arduino Micro. As it is possible to notice, the new electronics 

architecture can be perfectly integrated into the robot structure, leaving also plenty of space for 

future electronics or sensor additions.  
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Figure 62: Archie new hardware 
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Just one small modification to the robot structure should be performed. Considering Figure 64, it is 

possible to use the notation {L1}, {L2}, {L3}, {L4}, {L5} and {L6} for the horizontal aluminium bars 

placed on the robot’s torso. Starting from the top of the torso, the first two horizontal aluminium 

bars are named {L1} and {L2}. These bars are 260 mm long and have a width of 26 mm. {L3} and {L4} 

are the bars under the first two while {L5} and {L6} are the bars in front of them. {L3} and {L5} have 

also a length of 260 mm and a width of 26 mm. {L4} and {L6}, instead, have a length of 260 mm and 

a width of 20 mm.  

The bars {L3} and {L4} are mounted 14 mm from each other, as well as the bars {L5} and {L6}. The 

bars {L3} and {L4} are mounted 39 mm from each other while the bars {L1} and {L2} are mounted 93 

mm from each other. 

The two Arduino Due have a length of 101,6 mm and a width of 53.3 mm. The board is 15 mm heigh 

and thus, it fits in the space between the bars {L3} and {L4} and {L5} and {L6}. The Arduino Due 

dimensions are showed in Figure 65. As it is possible to see in the figure, the holes for the screws on 

the Arduino Due board are placed at 50.8 mm along the maximum dimension of the board. Thus, in 

order to place the two Arduino Due vertically, it is advised to move the bars {L3} and {L5} 10 mm 

upward. Considering future possible developments, it would be possible with this configuration to 

mount up to 4 more Arduino Due vertically or other sensors if it will be required. 

The Nvidia Jetson TK1 has a length of 127 mm and a width of 127 mm. It can be mounted in the 

centre of the torso between the bars {L1} and {L2} leaving a space of 66.5 mm to tis left and to its 

right. The USB hub can be mounted at its right as showed in Figure 63.  

The PCB integrating Arduino Micro and motor driver has a length of 60 mm, a width of 55 mm and 

a height of 15 mm. It is possible to mount them horizontally along their length. The link connecting 

the ankle and the knee is 260 mm long and it can store the PCB connecting to the two ankle’s joints. 

The link connecting the knee and the hip, instead, is 310 mm long and it can store 3 PCB respectively 

for the knee and for the two hip joints. Since the width of these PCBs is 55 mm and the link’s width 

is 54 mm, a small part of the PCB will end outside of the structure. In developing the PCBs, it has to 

be taken into account that the holes for the screws will have to be placed in the middle of the PCB 

at 40 mm from each other in order to be mounted on the legs. 
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Figure 63: Archie 3D drawing with electronics 

 

 

Figure 64: Archie Torso without electronics 
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Figure 65: Arduino drawing with dimensions (Arduino dimensions Adafruit, last retrieved, 2018). 
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6. New Archie software 

 

The new software developed for Archie is supposed to provide driver functionality for the stereo-

cameras, the construction of a map of the environment and the planning of the footsteps necessary 

to reach the target position while also avoiding the obstacles on the way. The software will 

communicate with the control node in which the advanced control algorithm will run. The advanced 

control algorithm explained in chapter 4 is still under evaluation and changes are still possible. For 

this reason, the software had to be implemented in a way that it would make easy the substitution 

or the removal of one or more part of the software.  

Ideally, the aim of the addition of the on-board computer is the increase of the autonomy level of 

the full system. Thus, one of the key tasks in the realization of the software was to keep the 

computational power required as low as possible.  

The Ubuntu 14.04 Operative system is installed on the Jetson TK1. For the realization of the 

software, ROS Indigo has been used. Any software, library or tool for robotic application in ROS is 

called package and it can consist of different nodes or nodelets, each with a specific functionality 

(d’Apolito et.al., 2016). Nodes and nodelets are both softwares that use the ROS framework. The 

difference between the two is that the nodelet implements usually just one algorithm allowing 

developers to be able to use different algorithms without copy transport between them. A ROS 

node, instead, implements more than one algorithm. The nodes or nodelets of a ROS package 

exchange data between each other with the use of the topics. These are ROS specific 

communication data channels which allow the exchange between nodes of ROS specific and 

custom-made data structure. Another important ROS tool is the ROSService which allows to send 

requests to the software, like for instance to start or stop the image acquisition from the stereo-

cameras. 

From the ROS framework different already implemented packages for data manipulation and sensor 

handling were used. Specifically, in the development of the software were used cv_bridge, 

image_proc, geometry, rviz, rviz_visual_tools, image_view and pcl_ros.  
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The cv_bridge package is the interface between ROS and OpenCV and provides a conversion 

between the ROS image data type and the OpenCV data type. More information can be found at 

(cv_bridge online documentation, last retrieved 2018). 

The image_proc node is also based on OpenCV and provides the removal of the distortions in the 

images coming from the sensors. The image_view node belongs to the same package of the 

image_proc node, i.e. the image_pipeline package, and it is used in the developed software for the 

visualization of the images coming from the stereo-cameras. More information can be found at 

(image_pipeline online documentation, last retrieved 2018). 

The new software analyses the environment around the robot using the point cloud library. As 

interface between ROS and the point cloud library, the package pcl_ros was used. More information 

about pcl_ros can be found at (pcl_ros online documentation, last retrieved 2018) 

The geometry package, instead, is a mathematical package and it is used for the geometrical 

computation of the planning algorithm and for handling the pose coming from the SLAM algorithm. 

More information about the geometry package can be found at (geometry online documentation, 

last retrieved 2018). 

Rviz is a useful tool of ROS which can visualize the point cloud output from the SLAM algorithm, the 

obstacle detected, the path planned and the computed footstep positions. In order to interact with 

RViz, the rviz_visual_tools package is used. More information about these two packages can be 

found at (rviz online documentation, last retrieved 2018) and (rviz_visual_tool, last retrieved 2018). 

Figure 66 shows the feedback of the software. On the top, it is possible to see the two image feeds 

from the image_view node while at the bottom the RViz GUI is visible. In the RViz GUI a grid is 

automatically drawn in order to give to the user a sense of distance. As a matter of fact, the grid is 

composed of of 1 m2 size squares. The point cloud is represented by the white dots over the grid. 

Moreover, in this representation, every white dot is a point belonging to the point cloud. The 

obstacles detected are shown in red, the computed avoidance trajectory in blue and the computed 

footsteps in green. It is possible to see two reference systems in the figure. The one on the grid is 

the map reference system, while the one over the grid represents the position and attitude of the 

robot computed by the SLAM algorithm. For these two reference systems, the RGB convention is 

used (Red = x, Green = Y and Blue = z). 

Outside of ROS, also the library libUVC is used for grabbing the images from the stereo-cameras. 
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The software implemented for Archie, consist in a ROS package composed by 2 nodes: 

• A camera manager node, providing the driver functionality for the stereo cameras 

• A vision and planning node, providing the obstacle detection and the footstep planning 

functionality. 

As depicted in Figure 67, the user can start and stop the acquisition of the stereo-cameras using two 

ROSService developed for our application: “archie_camera/start_capture” will make the camera 

manager node start the capture of the picture coming from the cameras and 

“archie_camera/stop_capture” will, instead, stop the capture.  

 

 

Figure 66: Feedback of the implemented software 

 

The two images, after a rectification process performed by the two image_proc nodes, are then 

given as input to the stereo_ptam node which will output the point cloud and the robot position 

result of the processing of the PTAM (Parallel Tracking and Mapping) algorithm. The point cloud is 

sent on the topic “/sptam/points” while the positions on the topic: “/sptam/robot/pose”.  
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The point cloud topic and the position topic are read by the vision and mapping node. The user is 

able, by calling the ROSService “archie_ai/start_planning”, to send the target position to Archie and 

to start the planning of the trajectory which lead the robot from its starting position to the new 

position. It is also possible by calling the ROSService “archie_ai/load_map” to load a user-defined 

map for testing purposes. 

The user has also the possibility to call the “/archie_ai/clearRViz” service in order to clear the map, 

the detected obstacles and the planned trajectory and footsteps. 

The vision and planning node consist of several algorithms: 

• Obstacle detection algorithm which handles the point cloud coming from the stereo_ptam 

package and detect the obstacle in the environment around the robot. 

• The collision avoidance algorithm which takes as input the detected obstacles, the start 

position and the goal position. As output, it gives a vector of waypoints composing the safe 

path planned. 

• The footstep computation algorithm which computes the position of the feet of the robot 

and the walk parameters.  

The computed footstep and the walk parameters will be sent on the ROS Topic 

“/vision_mapping/footsteps” to the control node. The vision and planning node produces the 

markers for RViz in order to give to the operator a visual feedback concerning the detected 

obstacles, the point cloud coming from the SLAM algorithm, the planned trajectory as well as the 

footstep computed.  

From RViz it is also possible to set a new target position which will start a new path planning. A 

further ROSService, called “/archie_ai/clear_RViz”, will also give the user the possibility of clearing 

the map, the detected obstacles, the planned trajectory and footsteps visualized on RViz. 

The software is started by running one unique launch file where all nodes with all their 

configurations parameters are already set up. Furthermore, through the launch file it is also possible 

to make the various node to execute on different machines on the same network (i.e. the on-board 

computer and the user’s laptop) in order to distribute the computational load on different 

machines. 
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Figure 67: Software architecture 
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As mentioned before the design of the software changed during the course of this PhD work. The 

flow diagram of the first version of the software is depicted in Figure 68 

 

Figure 68: First version of the developed software (Bauer et.al., 2015) 

 

In this first implementation, the software first checked the camera connection. If the cameras were 

not connected, the software waited for the user to select what type of action Archie had to perform: 

if he had to step over an obstacle or if no obstacle to step over was present, making the user input 

the direction to take. 

In case the cameras were connected then, the software at first requested a sampling and 

subsequently waited for the pictures grabbed by the cameras. After receiving them, the software 

distinguished between areas with no obstacles (green areas), areas where Archie had to step over 

an obstacle (orange areas) and areas that Archie had to avoid (red areas).  

As already mentioned, the gait planning algorithm was initially thought to be part of the software 

and to be executed after the collision avoidance algorithm. When Archie was in a green area, the 

artificial potential field step planning method for a regular step was called. Positions and velocities 

of the joints computed by the algorithm were then sent to the joints’ controllers. 
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When Archie was in an orange area, the function containing the artificial potential field step 

planning was called, adding the position and height of the obstacle it had to step over. As for the 

first case, the positions and velocities of the joints were sent to the joint controllers. The gains for 

the embedded control algorithm resulted from the study of (Schoerghuber, 2014), were sent 

together with the position and velocities. After the execution, a signal to the software was sent in 

order to signal the end of the motion and then another sample request to the cameras would had 

been forwarded.  

This version of the software was very simple, and it didn’t allow further research and development. 

The camera stream, for instance was discontinuous and thus, it was not suited for a non-static 

environment. In order to make it suitable for such an environment, the camera capture strategy 

should have been entirely replaced. This is not the case of the new version of the software which 

provides a continuous camera stream.  

Furthermore, the control strategy allowed by this software is decentralized. The desired joints and 

position velocities were sent to the embedded controller and then the software had to wait for a 

signal from the controllers confirming that the movement was finished. In order to allow the 

development of a centralized strategy, the new version of the software was implemented, and the 

gait planning algorithm was moved on the control node. 

 

6.1. Camera manager node 

 

The first node developed is the camera manager. The node is supposed to provide the “driver” 

functionality for the cameras, i.e. starting and stopping the capture, as well as a necessary data pre-

processing. The picture coming from the stereo cameras, as a matter of fact, are interlaced between 

each other. The incoming data are in format YUYV where Y is the light intensity and U and V the 

colour information. Each pixel is coded with 16 bit, 8 bit for the Y and 8 bit for U or V. OpenCV 

converts the data in RGB as soon as it gets it, which results in having useless data (d’Apolito et.al., 

2016). The camera manager node thus, grabs and separates the data coming from the stereo 

cameras in left and right image.  

The camera manager is based on the libUVC library (LibUVC, last retrieved 2016), an open-source 

library allowing the acquisition of the images from USB cameras. By means of this library, the camera 
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manager node can grab the data from the cameras, separate the two pictures and send it on a ROS 

topic.  

The tests proved that the camera manager is able to stream a 30 fps video stream from both 

cameras with a resolution of 630x480. Figure 69 shows the stream of the cameras from the ROS tool 

“image_view”. 

 

 

Figure 69: stereo-cameras video stream 
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6.2. The rectification and the stereo_ptam 

 

The stereo-PTAM is a SLAM algorithm. It provides the position and attitude of the stereo-camera in 

a map built by the algorithm giving the left and right image of the stereo-cameras.  

The main characteristic of this algorithm is that the tracking and the mapping tasks are executed in 

parallel, speeding up in this way the computation. Its first implementation can be found in (Klein, G. 

and D. Murray, 2007) and it was thought of as an algorithm for a monocular camera in Augmented 

Reality (AR) workspaces. It was then used especially in Unmanned Aerial Vehicle (UAV) application 

like for instance in (Weiss et.al., 2012) and in (Engel et.al., 2012).  

The first stereo-cameras application of the PTAM is described in (Pire et.al., 2015). In their method 

the tracking begins with the first pose and the initialization of the map. The last one is done by 

means of the triangulation of the features in the first pair of stereo-images. Then the tracking thread 

minimize the reprojection error between the features in the stereo-images pair and their 

corresponding points in the map for every frame, thus estimating the current robot pose. Some of 

the frames which incorporate new points can be strategically selected in order to augment the map. 

In parallel to the tracking thread, the mapping thread is always trying to minimize the reprojection 

error by adjusting all points and keyframes in a bundle (Pire et.al., 2015). 

The stereo matching between the left and right images is based on the epipolar geometry like most 

of the stereo algorithms. The epipolar geometry is based on the simple fact that the same point 

projected on two different camera frames will be in two different places in the picture. (See Figure 

70). 

As a matter of fact, using just the left image, one would not be able to retrieve the depth information 

of the 𝑋 point since every point on the 𝑂𝑋̅̅ ̅̅  line projects to the same point on the image plane. 

Adding the second image, one can triangulate the coordinate of the 𝑋 point since the points on the 

𝑂𝑋̅̅ ̅̅  line projects in the second image plane in different places (OpenCV Online Documentation on 

Epipolar Geometry and Stereo Vision, last retrieved 2017). 

The 𝑂𝑋̅̅ ̅̅  line, projected in the second image, forms a line which is commonly named as epiline to the 

point 𝑥. The plane containing the camera centres 𝑂, 𝑂′ and 𝑋 is called Epipolar Plane. The projection 

of the two centres in the other camera image plane, in Figure 70 indicated as 𝑒 and 𝑒′, are called 

epipole. 
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Usually, in order to speed up the computation and the search of the corresponding point in the two 

image frames the search is performed on the epiline instead of on the whole image. The difference 

between the position of the points in the two image frames is called disparity and it is supposed to 

be higher the more the closer the point is to the camera. To experience this, it is possible to close 

one eye and then rapidly open it while simultaneously closing the other one. The closer objects will 

apparently do a significant jump. 

 

 

Figure 70: Epipolar geometry (OpenCV Online Documentation on Epipolar Geometry and Stereo Vision, last retrieved 2018) 

 

If there is just a horizontal offset between the two image planes, i.e. the two image planes are 

coplanar, then the epipolar line is horizontal. This results in a simplification of the search of the 

matching point. Due to distortion and to an imperfect alignment of the two image centres, a stereo-

image pair needs to be rectified before being processed. 

The rectification process consists mainly in the correction of the distortion of the image and on the 

translation of the warping of the images in order to make it look like there is just a horizontal shift 

between the two image planes. 

The stereo-PTAM was tested with publicly available repository and with a robotic platform. All tests 

were successful showing a small error between the pose localization and the ground truth. Figure 

71 shows the results of the tests of the stereo-PTAM with the MIT Stata Data Centre Dataset 

described in (Fallon et.al., 2012). In the figure, the black points are the points composing the map, 
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the green line is the trajectory determined by the PTAM algorithm and the blue line instead is the 

ground truth. 

The parallelization of the tracking and mapping task is a huge computational advantage and it has 

the potential to allow a real time application even when running on an embedded board. This, 

together with the good performances showed by the tests, made the stereo-PTAM preferable to 

other SLAM algorithm for Archie. 

 

 

Figure 71: Test of the stereo-PTAM with the MIT Stata Centre Dataset (Pire et.al., 2015) 

 

6.3. Mapping and planning node 

 

The second node is the core of the presented software architecture and contains the obstacle 

detection algorithm, the path-planning and collision avoidance algorithm and the subsequent 

footstep computation. As input it takes the point cloud produced by the stereo_ptam node and the 

position and attitude of the robot in the map created by the PTAM. 

For the obstacle detection, the Ground Plane approach is used. It is based on the assumption that 

everything that is above the Ground Plane is an obstacle (d’Apolito F. and C. Sulzbachner, 2017). In 
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indoor environment, such as the ones Archie is supposed to operate, this assumption can be 

considered always valid.   

In order to detect the obstacles with such an approach, it is used first a pass-through filter, and 

finally a Euclidean cluster extraction for the segmentation of the obstacles. After these first 

processing, the bounding boxes and the centroids of the obstacles are computed, and they are 

finally approximated as circles. The centres and the radius of the circles approximating the obstacles 

are the input data of the planning algorithm. 

In contrast to the state of the art described in chapter 2, the planning algorithm for Archie is 

performed in two steps. First, an obstacle avoidance algorithm computes a safe trajectory for the 

robot from a starting position to an end position, then another algorithm computes the position of 

the feet during the trajectory. Each one of these two algorithms are implemented as a standalone 

class. 

The reason for such an implementation resides in the fact that Archie is supposed to be used as a 

test platform for the implementation of advanced control algorithm. This implementation of the 

footstep planning strategy, as a matter of fact, guarantees the possibility of further development 

and research by replacing one or more algorithm inside the software with newer ones without 

removing them completely or changing the full planning strategy.  

The obstacle avoidance algorithm is a geometrical path planning based on the binary tree approach. 

It computes the waypoints as the intersection points between the two sets of tangents to circular 

obstacles from the robot position and the goal. All these waypoints are then represented in a binary 

tree structure which is used to choose the shortest path to the end position. The output of the 

algorithm is the set of points belonging to the shortest trajectory chosen by the algorithm.  

It has to be noted that, in contrast with to state of the art, the representation of the environment 

around the robot is not grid-based and, thus, neither is the obstacle avoidance algorithm. This 

design choice was done mainly in order to keep the computational load low. Grid based 

representation and grid-based planning, as a matter of fact, can become computationally heavy if 

the search space is large. A small indoor demonstrator for this obstacle detection and avoidance 

strategy was developed using a UAV platform and it is described in (d’Apolito F. and C. Sulzbachner, 

2017). 
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The waypoint list computed by the collision avoidance algorithm is then used to compute the 

footsteps positions which will then be sent on a ROS topic to the control node. 

 

6.3.1. The obstacle detection algorithm 

 

For the obstacle detection two options were evaluated: The Inverted Cone Algorithm and the 

Ground Plane approach. 

The Ground Plane approach is a simple approach based on the assumption that everything that is 

above the ground plane is an obstacle (d’Apolito F. and C. Sulzbachner, 2017). 

The Inverted Cone algorithm is an obstacle detection algorithm developed in (Manduchi et.al., 

2005). This method, as showed in Figure 72, clusters all the points which belong to the same inverted 

cone by checking the slope between them and their heights. Mathematically, this algorithm is based 

on two definitions: 

• Definition 1: 2 points 𝑝1 and 𝑝2 are compatible with each other if they satisfy the 2 following 

conditions: 

 

1. 𝐻𝑚𝑖𝑛 < |𝑝2,𝑦 − 𝑝1𝑥| < 𝐻𝑚𝑎𝑥      (71) 

2. |𝑝2,𝑦−𝑝1,𝑦|

‖𝑝2−𝑝1‖
> sin 𝜃𝑚𝑎𝑥        (72) 

 

With 𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥  constant parameter representing minimum and maximum height 

and the maximum slope. Their values depend on the mechanical configuration of the robot. 

• Definition 2: 2 points 𝑝1 and 𝑝2 belongs to the same obstacle if they are compatible with 

each other or if there is a chain of point pairs connecting them.  

Contrary to the Ground Plane Approach which can be used just in indoor environment, this approach 

has reliable performances both in indoor and in outdoor environment. However, it requires a slope 

map and a dense point cloud. As it is possible to see in Figure 71, the point cloud output from the 

PTAM algorithm is sparse and on the robot there is no other sensor which can provide data for the 

obstacle detection. Furthermore, the inverted cone algorithm would have required also a further 



   
 

94 
 

segmentation process after the detection. Consequently, due to the sparsity of the input data and, 

the reduction of the computational load of all the system, the design choice was the Ground Plane 

approach. 

 

Figure 72: Graphical representation of the Inverted Cone Algorithm developed in (Manduchi et.al., 2005) 

 

The vision and mapping node receives the sparse point cloud computed from the Stereo-PTAM. The 

coordinates of the points in the incoming data are defined in the left camera frame. The point cloud 

is then given as input to the pass-through filter which is a simple filtering process along a specific 

direction. For Archie it is used to filter the input dataset along the “z” direction. Doing so, it is 

possible to eliminate all the points from the input point cloud which have a “z” coordinate higher 

than 5 meters. The reason for the implementation of such a filter is not only the down sampling of 

the input dataset but also the elimination of inaccurate points from the dataset. As a matter of fact, 

as showed in Figure 73, in the left camera frame the “z” axis is the axis coming out of the camera, 

the points with a high “z” coordinate in the input dataset are points that are far away from the 

cameras. These points, due to the small baseline between the cameras, do not have a high accuracy. 

The input point cloud is then rotated according to the transformation matrix between the map 

frame and the left camera frame. Figure 74 shows the reference systems on which the stereo-PTAM 

is based on. In the figure, the base_link frame is the reference system fixed on the robot. The point 

cloud, thus, has to be rotated from the camera_frame to the base_link frame and then from the 

base_link frame to the map frame, before being added to the map and being visualized. The 
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difference between the map frame and the base_link frame consists in a rotation of the attitude of 

the robot and a translation of the robot’s position. 

 

Figure 73: Point cloud defined in the left camera frame (stereo_image_proc online documentation, last retrieved 2018) 

 

Considering (𝜑, 𝜓, 𝜃) the euler angles respectively around 𝑥,𝑦 and 𝑧 one the can define the rotation 

matrices: 

 

𝑇𝑥 = [

1
0
0
0

0
cos𝜑
sin 𝜑
0

0
−sin𝜑
cos𝜑
0

𝑝𝑥
0
0
1

]     (73) 

𝑇𝑦 = [

cos𝜓
0

sin𝜓
0

0
1
0
0

sin𝜓
0

cos𝜓
0

0
𝑝𝑦
0
1

]     (74) 

𝑇𝑧 = [

cos 𝜃
sin 𝜃
0
0

−sin 𝜃
cos 𝜃
0
0

0
0
1
0

0
0
𝑝𝑧
1

]     (75) 

𝑇 = 𝑇𝑥𝑇𝑦𝑇𝑧 = [

1
0
0
0

0
cos𝜑
sin𝜑
0

0
−sin𝜑
cos𝜑
0

𝑝𝑥
0
0
1

] [

cos𝜓
0

sin𝜓
0

0
1
0
0

sin𝜓
0

cos𝜓
0

0
𝑝𝑦
0
1

] [

cos 𝜃
sin 𝜃
0
0

−sin 𝜃
cos 𝜃
0
0

0
0
1
0

0
0
𝑝𝑧
1

] (60) 
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With (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) cartesian coordinates of Archie’s position in the map. 

The transformation between the camera_frame and the base_link frame consists first, in a 90° 

rotation around the 𝑥 axis and then in another 90° rotation around the 𝑧 axis. There is no translation 

between them. The rotation matrices between the camera_frame and the base_link frame are 

showed in (59), (60) and (61). 

 

𝑅𝑥 = [
1 0 0
0 0 −1
0 1 0

]      (76) 

𝑅𝑧 = [
0 −1 0
1 0 0
0 0 1

]      (77) 

𝑅 = 𝑅𝑧𝑅𝑥 = [
0 −1 0
1 0 0
0 0 1

] [
1 0 0
0 0 −1
0 1 0

]     (78) 

 

Next step of the obstacle detection is then the Euclidean Cluster Extraction. Like every clustering 

method, this algorithm aims to divide the input point cloud into smaller parts called clusters. The 

Euclidean Cluster Extraction algorithm generates clusters of points which lie in a sphere of a given 

radius. As written in (Rusu, 2009), this clustering method can be implemented in a point cloud 

partitioned using a 3D boxes grid, or more generally, using a tree structure. 

In the course of this PhD work, it was used the Kdtree which is a data partitioning structure which 

allows a fast and efficient nearest neighbour search around a point or points. As described in 

(Euclidean Cluster Extraction Online Documentation, 2017), the algorithmic steps of the Euclidean 

Cluster segmentation are the following: 

1. Initialize a Kd-Tree which represents the input point cloud; 

2. Initialize an empty list of clusters P, and a queue of the points to check Q; 

3. For every point pi belonging to P do: 

3.1. Push pi to the considered queue Q; 

3.2. For every point pi belonging to Q do: 
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3.2.1. Look for the set Pk
i of points near pi included in a sphere of radius r < dth; 

3.2.2. For every neighbour pi
k belonging to Pk

i do  

3.2.2.1. Check if it has already been processed,  

3.2.2.2. If it has not already been processed, then  

3.2.2.2.1. Push it to Q; 

3.3. Push Q to the list of clusters C,  

3.4. Re-initialize Q to an empty list; 

The Euclidean Cluster Extraction algorithm is usually preceded by a RANSAC algorithm to eliminate 

the points belonging to the floor or, more generally, to flat surfaces. In this case, though, it was not 

needed because there were no points belonging to the floor in the conducted experiments. 

Furthermore, it is usually preceded by a voxel grid representation of the point cloud in order to 

decrease the computational load. Nevertheless, it was not needed due to the sparsity of the data. 

Clusters of points within a 30 cm radius were created. Every cluster represents a detected obstacle. 

For every cluster, its centroid and bounding box of the detected obstacles are subsequently 

computed as follows. After the centroids are computed, the generic detected obstacle is rotated in 

its eigen space and the maximum and minimum values of the points coordinates in each eigen axis 

is computed. The bounding box structure is filled with the point at the top left of the bounding box 

and its three dimensions: height, width and depth. The top left point is then rotated in the world 

frame. 

 

 

Figure 74: S-PTAM reference systems (S-Ptam Github Documentation, last retrieved 2018) 

 

From the knowledge of the bounding box it is then possible to proceed with the approximation of 

the obstacles as circles. One drawback of this approximation consists in the fact that the circle 

approximation can occlude the obstacle-free space. Consider for example an obstacle shaped as an 

elongated rectangle. The circle approximating it, needs to have a diameter as long as the maximum 



   
 

98 
 

size of the obstacle. This results in having an approximating circle that occlude also much of the free 

space as showed in the first of Figure 75. In order to solve this inconvenient, first the dimensions 

(width and depth) of the obstacles are checked with relation (79).  

𝑛 = {

𝑤𝑖𝑑𝑡ℎ

𝑑𝑒𝑝𝑡ℎ
            𝑤𝑖𝑑𝑡ℎ > 𝑑𝑒𝑝𝑡ℎ

𝑑𝑒𝑝𝑡ℎ

𝑤𝑖𝑑𝑡ℎ
            𝑑𝑒𝑝𝑡ℎ > 𝑤𝑖𝑑𝑡ℎ

     (79) 

 

If the dimensions of the obstacle are comparable (±10%) then the obstacle is approximated as a 

circle otherwise it is approximated as a series of n intersecting circles, as showed in the second of 

Figure 75. Considering 𝑥𝑚 and 𝑦𝑚, the minimum 𝑥 and 𝑦 coordinates of the bounding box, the 

centres of the circles are computed in the eigen space of the obstacle as follow: 

 

𝐶𝑖 = {
(
𝑥𝑚

2
+ 𝑖

𝑑𝑒𝑝𝑡ℎ

2
, 𝑦𝑚 +

𝑑𝑒𝑝𝑡ℎ

2
,

ℎ𝑒𝑖𝑔ℎ𝑡

2
)         𝑤𝑖𝑑𝑡ℎ > 𝑑𝑒𝑝𝑡ℎ         𝑖 = 1, … , 𝑛

(
𝑥𝑚

2
+
𝑑𝑒𝑝𝑡ℎ

2
, 𝑦𝑚 + 𝑖

𝑑𝑒𝑝𝑡ℎ

2
,

ℎ𝑒𝑖𝑔ℎ𝑡

2
)         𝑑𝑒𝑝𝑡ℎ > 𝑤𝑖𝑑𝑡ℎ         𝑖 = 1, … , 𝑛

 (80) 

 

The radius of the obstacle id computed as: 

 

𝑟 = {
𝑑𝑒𝑝𝑡ℎ cos 45°         𝑤𝑖𝑑𝑡ℎ > 𝑑𝑒𝑝𝑡ℎ
𝑤𝑖𝑑𝑡ℎ cos 45°         𝑤𝑖𝑑𝑡ℎ < 𝑑𝑒𝑝𝑡ℎ

    (81) 

 

The computed obstacles are then rotated back in the fixed reference frame and inserted in a queue 

which will send them to the path planning algorithm 
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Figure 75: elongated rectangle approximated with a circle and with a series of intersecting circles (d’Apolito, 2018). 

 

The test on the obstacle detection showed that the approach was lightweight and well suited for a 

real time execution. Furthermore, the representation of elongated obstacles as series of 

intersecting circles proved itself to be a good approach as it was able to correctly represent the 

obstacles without occluding the free space. Figure 76 and Figure 77 show two of the tests 

performed. As it is possible to see, the calculated obstacles represented well the point cloud that 

they received.  

It has to be noted though, that the point cloud computed from the PTAM is sparser than it was 

expected. Figure 78 shows a case encountered in bad lighting condition. As it is possible to see, there 

were no points in the point cloud representing many objects. This results in a failure in the detection 

of these objects. Although the point cloud is denser in case of good lighting, some object is still failed 

to be represented in the point cloud (see Figure 79)  

The reason for this relies most probably in the small baseline of the camera which makes it difficult 

to have a good stereo matching between the left and right images. 
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Figure 76: obstacle detection test 

 

 

Figure 77: further obstacle detection test 
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Figure 78: PTAM result with the stereo-cameras in bad lightning condition 

 

 

Figure 79: PTAM test result in good lightning condition 
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6.3.2. The obstacle avoidance algorithm 

 

The obstacle avoidance algorithm is a geometrical algorithm based on the binary tree approach. The 

binary trees, provided a known environment, give the robot various possible paths among which 

the shortest path to the goal is chosen. As mentioned before, the obstacles are approximated with 

circles with different radius, according with the dimension of the obstacle. The dimensions of every 

obstacle are then increased with the dimension of the robot in order to provide safe trajectories for 

the robot. 

The start position is the root of the binary tree which is then filled with the next points of the 

trajectory. In the case an obstacle is present between the starting position and the goal, two 

avoidance waypoints are calculated as the interception points of the two sets of tangents to the 

circle starting from the starting point and from the goal as depicted in Figure 80. In the figure, the 

two circles indicate the circle representing the obstacles (the inner circle) and the circle with the 

diameter increased by half of the robot’s hip length (the outer circle). 

 

 

Figure 80: Avoidance waypoint computed by the algorithm (d’Apolito F. and C. Sulzbachner, 2017). 
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Figure 81 gives a more detail explanation of the algorithm. The point 𝑆 = (𝑆𝑥, 𝑆𝑦) is the start 

position of the robot and 𝐺 = (𝐺𝑥, 𝐺𝑦) is the end position. 

 

 

 
Figure 81: tangent point computation (d’Apolito F. and C. Sulzbachner, 2017). 

 

As described in (d’Apolito et.al., 2017), in order to find the intersection points and, consequently, 

the avoidance waypoints, one first needs to compute the equation of the 4 tangents lines. It is 

possible to compute the angle 𝑂𝐶�̂� and the angle 𝑃𝑎2𝐶�̂� with the (82) and (83):  

 

𝑂𝐶�̂� = tan−1 (
𝑆𝑦−𝐶𝑦

𝑆𝑥−𝐶𝑥
)     (82) 

𝑃𝑎2𝐶�̂� = cos
−1 (

‖𝐶𝑃𝑎2̅̅ ̅̅ ̅̅ ̅‖

‖𝑆𝐶 ̅̅ ̅̅ ‖
)    (83) 

 

Given this two angle and because of the equivalence of the angle 𝑃𝑎2𝐶�̂� and of the angle 𝐺𝐶𝑃𝑎1̂  it 

is possible to calculate the angle 𝑂𝐶𝑃𝑎2̂  and 𝑂𝐶𝑃𝑎1̂  respectively with the sum and the difference of 

the angle 𝑂𝐶�̂� and the angle 𝑃𝑎2𝐶�̂�. Having these two angles allows to compute the tangent point 

𝑃𝑎1  and 𝑃𝑎2 with the relation (84) and (85). 
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𝑃𝑎1 = (
𝐶𝑥 + 𝑟 ∙ cos 𝑂𝐶𝑃𝑎1̂

𝐶𝑦 + 𝑟 ∙ sin𝑂𝐶𝑃𝑎2̂ )    (84) 

𝑃𝑎2 = (
𝐶𝑥 + 𝑟 ∙ cos 𝑂𝐶𝑃𝑎2̂

𝐶𝑦 + 𝑟 ∙ sin𝑂𝐶𝑃𝑎2̂ )    (85) 

 

After the computation of the tangent point, one can compute the equation of the tangents to the 

circle. 

 

𝑟�̅�:    𝑦 = 𝑚1𝑥 + 𝑞1
𝑡�̅�:    𝑦 = 𝑚2𝑥 + 𝑞2
𝑟�̅�:    𝑦 = 𝑚3𝑥 + 𝑞3
𝑡�̅�:    𝑦 = 𝑚4𝑥 + 𝑞4

     (86) 

 

With: 

𝑚1 =
𝑃𝑎1𝑦−𝑆𝑦

𝑃𝑎1𝑥−𝑆𝑥
         

𝑞1 = −𝑆𝑥𝑚1 + 𝑆𝑥

𝑚2 =
𝑃𝑎2𝑦−𝑆𝑦

𝑃𝑎2𝑥−𝑆𝑥
         

𝑞2 = −𝑆𝑥𝑚2 + 𝑆𝑥

𝑚3 =
𝑃𝑎3𝑦−𝐺𝑦

𝑃𝑎3𝑥−𝐺𝑥
         

𝑞3 = −𝐺𝑥𝑚3 + 𝐺𝑥

𝑚4 =
𝑃𝑎4𝑦−𝐺𝑦

𝑃𝑎4𝑥−𝐺𝑥
         

𝑞4 = −𝐺𝑥𝑚4 + 𝐺𝑥

     (87) 

 

Where 𝑃𝑎3 and 𝑃𝑎4 are the tangency points to the circle of the set of tangents originating from the 

goal position. 

Subsequently, one can compute the intersection points Cartesian components by means of the two 

systems of linear equations composed by the pairs of lines 𝑟𝑠 − 𝑡𝑔 and 𝑡𝑠 − 𝑟𝑔 with the relation (88) 
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𝑃1𝑥 =
𝑞4−𝑞1

𝑚1−𝑚4
          

𝑃1𝑦 = 𝑚1𝑃1𝑥 + 𝑞1

𝑃2𝑥 =
𝑞3−𝑞2

𝑚2−𝑚3
          

𝑃2𝑦 = 𝑚2𝑃2𝑥 + 𝑞2

     (88) 

 

In case one or more of the angular coefficients are infinite or 0, it is possible to use respectively the 

x or y coordinate of the starting or the target position and substitute it in the equation of the line 

whose angular coefficient is not singular to compute the other coordinate. Once the intersection 

points 𝑃1 and 𝑃2 are computed, they are stored in the binary tree (d’Apolito F. and C. Sulzbachner, 

2017). 

The binary tree developed for the algorithm stores the coordinates of the avoidance waypoints, the 

centroid of the obstacle to be avoided, the length of the path which is incrementally computed and 

an id.  

The steps of the collision avoidance algorithm are the following: 

1. Check if the paths planned reached the target position in any of the leaves in the tree. 

2. If not, then  

3. For every leaf do: 

3.1.  Check if one of the obstacles is in the way to reach the goal.  

3.2. If more than one obstacles are present, then 

3.2.1. Choose the obstacle to considered for the computation of the pair of avoidance 

waypoints. 

3.3. Compute the pair of avoidance waypoints and their ids and store them in the tree. 

3.4. If the computed points are inside the obstacle area, then 

3.4.1.  delete the computed points. 

4. Check if the planning succeeded for all the leaves.  

4.1. If in all the leaves the planning failed, then  
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4.1.1. Abort the planning.  

4.2. If not, then  

4.2.1. go to step 1 

Figure 82 depicts the flow diagram of the collision avoidance algorithm. 

The choice of the obstacle to consider, is based on two factors: 

• The distance between the robot position and the obstacle’s centre. 

• The distance between the line joining the robot position and the target position, and the 

obstacle’s centroid. 

For every obstacle, the algorithm computes the distance between the segment joining the starting 

and the target position. The resolution method for the computation of the distance is explained in 

(Distance line segment resolution method, last retrieved 2018). As described, the main focus of this 

calculation relies in the determination of whether or not the perpendicular through the obstacle 

centroid is inside the segment between starting and target position or not. One can describe the 

line between the start and the target position with the parametric relation: 

 

𝑙 ̅ = [

𝑆𝑥 + (𝐺𝑥 − 𝑆𝑥)𝑡

𝑆𝑦 + (𝐺𝑦 − 𝑆𝑦)𝑡

0

]     (89) 

 

The distance is minimum if the relation (90) is satisfied: 

 

𝑡 = −

[
𝑆𝑥−𝐶𝑥
𝑆𝑦−𝐶𝑦
0

][

𝐺𝑥−𝑆𝑥
(𝐺𝑦−𝑆𝑦)

0

]

|[

(𝐺𝑥−𝑆𝑥)

(𝐺𝑦−𝑆𝑦)

0

]|

2       (90) 

 

The (90) can be rewritten as the (91). 
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𝑡 = −
(𝑆𝑥−𝐶𝑥)(𝐺𝑥−𝑆𝑥)+(𝑆𝑦−𝐶𝑦)(𝐺𝑦−𝑆𝑦)

(𝐺𝑥−𝑆𝑥)2+(𝐺𝑦−𝑆𝑦)
2     (91) 

 

If 0 < 𝑡 < 1, then the minimum distance between the point 𝐶 and the line 𝑙  ̅falls into the segment 

delimited by the points 𝑆 and 𝐶. In this case the distance can be computed with the normal equation 

of the distance between a point and a line showed in (92). 

 

𝑑 =
|(𝐺𝑥−𝑆𝑥)(𝑆𝑦−𝐶𝑦)−(𝐺𝑦−𝑆𝑦)(𝑆𝑥−𝐶𝑥)|

√(𝐺𝑥−𝑆𝑥)2+(𝐺𝑦−𝑆𝑦)
2

    (92) 

 

If 𝑡 < 0 or 𝑡 > 1 then the minimum distance between the obstacle centre and the 𝑆𝐶̅̅̅̅  segment is 

the minimum between the Euclidean distance between the obstacle centroid and the boundary 

point of the segment. Once the distance is computed, the closest obstacle to the obstacle position 

is chosen. 

Figure 83 depicts the flow diagram of the algorithm for the decision of the obstacle to avoid. 

Once all the paths planned reached the goal, the search for the leaf with the shortest path length is 

performed. Every leaf in the tree is identified with the id and level parameters which are used later 

to search the waypoints in the tree leading to the shortest path. The leaves id and level are showed 

in Figure 84. 

The id is calculated and assigned to a leaf taking into consideration the id and the level of the parent: 

 

𝑥𝑖 = (𝑥𝑖−1 ∙ 𝑙𝑖−1) + 𝑘     (93) 

 

With  

𝑘 = {
0            𝑙𝑒𝑓𝑡 𝑙𝑒𝑎𝑓
1          𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑎𝑓

    (94) 
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Giving this relation, it is possible, given the id of the leaf with the shortest path length, to find the 

parent leaves and consequently all the waypoint composing the trajectory. 

 

 

Figure 82: Flow diagram of the collision avoidance algorithm 
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Figure 83: Flow diagram of the algorithm for the decision of the obstacle to avoid 

 

The search of the shortest path is made possible by the incremental computation of the path length 

performed for every waypoint computation. Every time a new waypoint is computed, the length of 

the path between the waypoint stored in the parent leaf and the newly computed one is added to 

the length of the path of the parent leaf. 
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As a matter of fact, the tree stores also the information of the length of the path along with the id 

and the level of the leaf. First, a search is done on the tree for the leaf which reached the target with 

the shortest path length. Second, basing on the level and id of this leaf, all the waypoint contained 

in the leaves that leads to it are added to a vector.  

 

Figure 84: Level and id in the tree structure. The levels are written on the right side. The ids are the number next to the leaves 
(d’Apolito F. and C. Sulzbachner, 2017). 

 

Given the relations (93) and (94), it is possible to define the algorithmic steps to accomplish such a 

task: 

1. Initialize an empty vector of length equal to the level of the leaf with the shortest path. 

2. Fill the first element of the vector with the id of the root of the tree (i.e. level equal to 1 and id 

equal to 1). 

3. Fill the last element of the vector with the id and level of the leaf with the shortest path. 

4. For all the other elements in the vector do: 

4.1. Compute the id of the leaf using equation (87) and (88) and insert it in the vector of ids. 

5. For every element of the vector, starting from the second do: 

5.1. Check the id of the leaf stored in the vector. 

5.2. Using equation (87) and (88), check if the next waypoint is in the right leaf or in the right 

leaf. 

5.2.1. If left, then 

5.2.1.1. Go left and insert the waypoint in the vector of waypoints. 

5.2.2. If right, then 
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5.2.2.1. Go right and insert the waypoint in the vector of waypoint.  

6. Return the vector of waypoint. 

The flow diagram of the algorithm is depicted in Figure 85 

The collision avoidance algorithm proved itself lightweight as the computation time required is 

always under 100 ms and a near-optimal path has always been found. Consider for instance the 

user-defined maps showed in Figure 86. In these cases, it was present in the map an elongated 

obstacle represented as a series of intersecting circles. As it is possible to see, the path output of 

the collision avoidance in these cases goes parallel to the longest dimension of the obstacle, proving 

that such a representation can correctly represent the obstacles without obstructing the free space. 

In order to prove the capabilities of the collision avoidance algorithm a few other tests are showed 

in Figure 87 to Figure 95 for user generated maps with an increasing number of obstacles. For all 

the test cases presented the start position is (0,0). 

 

 

Figure 85: algorithmic steps for the search of the waypoint belonging to the shortest path 
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Figure 86: First and second test case on the collsion avoidance algorithm 

 

The map in Figure 87 was created with obstacles in position (1,1), (1.5,1), (2,1), (0,3) and (3,0). The 

starting position is (0,0) and the target position is (4,0). The map in Figure 88 instead has the 

obstacles in position (1,1), (1.5,1), (2,1), (0,3). The target position is set as (2,3). 

 

 

Figure 87: Third test case for the collision avoidance algorithm 
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Figure 88: Fourth test case for the collision avoidance algorithm 

 

In Figure 89, the obstacles’ positions in the map are (1,1), (1,1.5), (1,2), (0,3), (2,2), (2,3) and (4,2). 

The target position is set to (4,4). In Figure 90, instead, the obstacles are in the positions (1,1), 

(1.5,1), (3,1), (3,2), (2,2.5), (-0.5,1.5). The target position is set to be (4,3). 

 

 

Figure 89: Fifth test case for the collision avoidance algorithm 
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Figure 90: Sixth test case for the collision avoidance algorithm 

 

In the test case of Figure 91, the obstacles are in position (1,1), (1.5,1), (2,1), (2,2), (3,2), (2,4), (3,0), 

(0.5,-1), (1,-1), (1.5,-1). The target position is set to (5,2). 

 

 

Figure 91:Seventh test case for the collision avoidance algorithm 
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In Figure 92, Figure 93, Figure 94 and Figure 95 the obstacles’ positions are the same and the 

generated map is the same as in Figure 91 with the addition of the obstacle in position (0,-2). In 

Figure 92 the target position is (4,2), in Figure 93 is (1,-3), in Figure 94 is (5,1) and in Figure 95 the 

target position is set to (3,5). 

 

 

Figure 92:Eighth test case for the collision avoidance algorithm 

 

 

Figure 93: Ninth test case for the collision avoidance algorithm 
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Figure 94: Tenth test case for the collision avoidance algorithm 

 

 

Figure 95: Eleventh test case for the collision avoidance algorithm 
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In all the test cases presented the obstacle avoidance was always successful in finding a near-

optimal path even in cases of cluttered environments. Something interesting can be noted in Figure 

93. In this test case, the obstacle in position (0,-2) is avoided with a not-optimal path. The planned 

trajectory first goes almost half a meter away from the obstacle and then comes back towards the 

target. This results from the way the points composing the trajectory are computed from the 

algorithm. Such a waypoint is, as a matter of fact, the intersection point between the tangent to the 

obstacle starting from the previous waypoint and from the target position. This may require some 

adjustments of the algorithm for this particular type of scenario. 

 

6.3.3. The footstep computation 

 

The next step of the footstep planning and collision avoidance strategy is the footstep computation. 

As described in (Kajita et.al., 2014), the foot placement during a walk can be defined by the walk 

parameter i.e. step width and length, respectively 𝑠𝑦 and 𝑠𝑥. Consider for instance, the walk 

parameter showed in Table 9. 

 

Step number 1 2 3 4 5 

Step length sx 0.0 0.4 0.4 0.4 0.0 

Step width sy 0.25 0.25 0.25 0.25 0.25 

Table 9: step width and step lenght for 5 consecutive steps 

 

Step width and step length are called walk parameters. From their knowledge it is possible to derive 

all the footstep coordinates during the walk. As a matter of fact, the nth footstep can be calculated 

from the walk parameter as: 

 

[
𝑝𝑥
(𝑛)

𝑝𝑦
(𝑛)] = [

𝑝𝑥
(𝑛−1) + 𝑠𝑥

(𝑛)

𝑝𝑦
(𝑛−1) − (−1)𝑛𝑠𝑦

(𝑛)]     (95) 
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For changing the direction of motion, one just need to introduce one walk parameter 𝑠𝜃 which 

indicates the heading of the feet. 

The computation of the footstep position becomes: 

 

[
𝑝𝑥
(𝑛)

𝑝𝑦
(𝑛)] = [

𝑝𝑥
(𝑛−1)

𝑝𝑦
(𝑛−1)] + [

cos 𝑠𝜃
(𝑛) −sin 𝑠𝜃

(𝑛)

sin 𝑠𝜃
(𝑛) cos 𝑠𝜃

(𝑛)
] [

𝑠𝑥
(𝑛)

−(−1)𝑛𝑠𝑦
(𝑛)]   (96) 

 

Equation (96), introduced in (Kajita et.al., 2014), was adapted for Archie in the course of this PhD 

work, since the reference system of the map is centred on the ground projection of the centre of 

mass initial position. First, the position of the centre of mass is computed as follows: 

 

[
𝑐𝑥
(𝑛)

𝑐𝑦
(𝑛)] = [

𝑐𝑥
(𝑛−1)

𝑐𝑦
(𝑛−1)] + [

cos 𝑠𝜃
(𝑛) 0

0 sin 𝑠𝜃
(𝑛)
] [
𝑠𝑥
(𝑛)

𝑠𝑥
(𝑛)
]    (97) 

 

With the centre of mass position, it is possible to calculate the footstep position with the relation 

(98). 

 

[
𝑝𝑥
(𝑛)

𝑝𝑦
(𝑛)] = [

𝑐𝑥
(𝑛)

𝑐𝑦
(𝑛)] + [

sin 𝑠𝜃
(𝑛) 0

0 cos 𝑠𝜃
(𝑛)
] [
(−1)𝑛𝑠𝑦

(𝑛)

−(−1)𝑛𝑠𝑦
(𝑛)
]   (98) 

 

As written in (d’Apolito et.al., 2016) the procedure for computing the footsteps’ positions from the 

waypoint list can be put in algorithmic form by making the following assumptions: 

• Archie starting pose is characterized by having its feet next and parallel to each other. 

• The first footstep is the right one. 

• A turn is done “on the spot”, i.e. without advancing (d’Apolito, 2018) 

Based on this assumption, the footsteps are computed as follows:  



   
 

119 
 

1. Set the first footstep position to be half the robot’s hip distant on the 𝑦 axis from the origin. Sets 

its heading to 0 and set also all its walk parameters to 0. Store, in the walk parameter vector, 

the walk parameter of the first step. 

2. Set the second walk parameter in order to move along the y axis. Set its heading to 0 and push 

it in the walk parameter vector. 

3. Compute the length of the waypoints’ vector. 

4. For every set of two consecutive waypoints do: 

4.1. Compute the distance between the two considered waypoints. 

4.2. Compute the number of footsteps necessary to move from the first waypoint to the second. 

4.3. Compute the heading of the line between the two considered waypoints. 

4.4. If the calculated heading is different from the heading of the line between the set of 

waypoints then: 

4.4.1. Set the step length 𝑠𝑥 of the next two footsteps to 0 and the step width 𝑠𝑦 of the next 

two footsteps to the maximum step width. The step heading 𝑠𝜃 of the next two 

footsteps, must be set as the heading of the line between the two waypoints. Push 

them finally in the vector of walk parameters.  

4.5. For each walk parameter do: 

4.5.1. Set the step length 𝑠𝑥 to the maximum step length. Set 𝑠𝑦 to the maximum step width 

and 𝑠𝜃 as the computed heading and push them in the walk parameter vector. 

4.6. Set the step length 𝑠𝑥 of the last footstep as 0. Set the step width 𝑠𝑦 of the last footstep as 

the maximum step width and the step heading 𝑠𝜃 as the computed heading. 

5. Calculate the length of the walk parameter vector. 

6. For each walk parameter in the vector do: 

6.1. Compute the footsteps using equation (92) and push it in the footstep vector. 

7. Return the footsteps vector.  

The flow diagram of this algorithm is shown in Figure 96. After the positions of the feet are 

computed, they are given as input to the walking pattern generator which computes the trajectory 

that the COM of the robot will have to follow during the walk between the two given positions. 
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Figure 96: flow diagram of the computation of the footsteps 

 

Figure 97 to Figure 106 show the results of the footstep computation for the user generated map 

showed in the previous chapter. 

 

 

Figure 97: Footstep computation for first and second test case 



   
 

121 
 

 

Figure 98: Footstep computation for third test case 

 

 

Figure 99: Footstep computation for the forth test case 

 

 

Figure 100: Footstep computation for the fifth test case 
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Figure 101: Footstep computation for the sixth test case 

 

 

Figure 102: Footstep computation for the seventh test case 

 

 

Figure 103: Footstep computation for the eight test case 
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Figure 104: Footstep computation for the ninth test case 

 

 

Figure 105: Footstep computation for the sixth test case 

 

 

Figure 106: Footstep computation for the eleventh test case 
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The test showed the developed approach was lightweight. The decision to increase the obstacle 

dimension of the dimension of half-length of Archie’s hip proved itself to be the best one for its 

computational simplicity and for its performance. No footstep was ever found inside the area of an 

obstacle. This is because the trajectory is always parallel to the obstacle. 

It has to be noted that, currently, the direction changing is done on the spot in one step. It can be 

considered acceptable for small direction changing but this approach will need to be calibrated for 

bigger direction changes when the new control system of the robot will be available. 

 

6.4. Collision avoidance tests with real scenario maps 

 

The whole new software architecture was tested together on the on-board computer and with the 

stereo-camera in order to evaluate its real time performance.  

The computational load of all the modules together was too high for the board. For this reason, 

some nodes of the software had to be executed on an external laptop connected to the wireless 

network dedicated for the robot. The major part of the computational power of the on-board 

computer was reserved for the camera driver which has to separate the left to the right image for a 

30 fps video stream. Although the stereo-PTAM was chosen for the low computational power it 

requires, it was the second most heavy application. However, the distribution of the computational 

load between the on-board computer and an external laptop, make a real time usage of the 

software possible. Figure 107 and Figure 108 show the result of the footstep planning for the map 

created by the obstacle detection showed in Figure 76 and Figure 77 
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Figure 107: footstep planning for the first detection example 

 

 

Figure 108: Footstep planning for the second detection example 
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7. Conclusion and future work 
 

In this PhD dissertation, it is described the development of a footstep planner for the cost oriented 

humanoid robot Archie. Archie is currently in development at the Technical University of Vienna 

and it currently has basic human-like walking capability.  

For the development of a footstep planner, the environment sensing system, i.e. the system 

composed of the sensors which analyse the working environment of the robot, has a particular 

importance. Many humanoid robots currently developed have environment sensing systems 

composed of many sensors in order to retrieve as many data as possible describing the work 

environment of the robot. 

The humanoid robot ASIMO for instance, has a complex environment sensing system composed of 

visual sensors in the head and laser sensor on the hip pointed to the ground in order to detect 

obstacles up to 2 meters from the robot. Furthermore, ASIMO’s environment sensing system is 

composed of ultrasonic sensor on the front and on the back of the robot. The humanoid robot ATLAS 

instead, is equipped with stereo-cameras and laser range finders. THORMANG 3 from Robotis is 

equipped with cameras and LIDAR. Even a commercial toy robot such as NAO is equipped with 

several sensors in the head which allow it to perceive the environment around him.  

Currently only two footstep planners for humanoid robots are available open source. The first one 

is the one described by (Garimort et.al., 2011) and in (Hornung et.al., 2012). The planner in question 

is based on a grid map representation of the environment. This representation is then used, in the 

first implementation of the footstep planner, by the D* algorithm to find a collision-free path 

between the start and the goal. In the second version, the ARA* is used in order to improve the 

performance of the footstep planner in case a re-planning is necessary due to modifications in the 

environment around the robot. 

The second footstep planner is the one described in (Stumpf et.al., 2016). It is based on the footstep 

planner by (Garimort et.al., 2011) but it has an improved implementation in order to make it more 

adaptable to various kind of humanoid robot platform. For the world perception they also use a grid 

map approach.  

In the beginning of the development, as described in (Byagowi, 2010) Archie was a full 31 DOF 

humanoid robot in which upper and lower body were developed. Currently only the lower body is 
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built i.e the two legs, the hip and a torso. All the joints are actuated by brushless and brushed DC 

motors and every motor is connected to an embedded controller. The control strategy is, thus, 

decentralized. Furthermore, due to the lack of an on-board computer, the Linux software 

implemented for operating the robot runs on an external laptop. No sensors for observing the 

environment or for the balance are present. 

The advanced control algorithm under evaluation receives as input the feedback from the motors 

and from an IMU mounted on the hip. It aims to correct deviation from a stable gait trajectory 

computed with symmetry relations between the Denavit-Hartenberg parameters of the joints.  

In order to pass from a decentralized control strategy to a centralized one, i.e in order to develop 

an advanced control algorithm for the robot, the addition of an on-board computer is necessary. 

The on-board computer has to be connected with all the motors and the sensors in order to receive 

the necessary input data. On this on-board computer, also the footstep planner developed for this 

thesis can run in order to increase the level of autonomy of the robot. 

The on-board computer selected for the robot is the Nvidia Jetson TK1, chosen for its high 

computational power compared with the price. The Ubuntu OS runs on it and it has full ROS 

compatibility. Furthermore, a USB hub and a Wi-Fi dongle were selected. The USB hub was added 

because the Nvidia Jetson TK1 has only one USB port and more were necessary. The Wi-Fi dongle 

was added in order to allow the connection between the robot and an external computer through 

a router dedicated for Archie. This router creates a local network where both the robot and an 

external computer can connect allowing them to exchange data between each other and, more 

generally, to divide the computational load between multiple machines.  

The stereo-cameras chosen for Archie are the LI-USB30-V024STEREO form Leopard Imaging. Their 

dimension, cost orientation and compatibility with the Jetson TK1 made them the best candidate. 

They are connected to the on-board computer via USB 3.0. 

The IMU sensors for the measurement of the attitude of the hip and the new embedded controllers 

in development were also shortly described in this dissertation. They will all be connected to the 

on-board computer via serial connection. 

There are three main challenges in the development of a footstep planner for Archie. The first one 

is the cost orientation which sets a limit to the number of sensor and thus to the density of the data 

describing the environment. 
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Secondly, it must be considered that Archie is supposed to be a research-oriented application. The 

main aim of the development of the robot is to make it a test bed for advanced control algorithm. 

One possible advanced control algorithm is currently in evaluation and changes are still possible. 

For this reason, the software must be implemented in a modular way in order to make the 

substitution or the removal of one of the modules possible without having to re-implement the 

whole software. 

The third challenge is the computational load of the software. In order to increase the autonomy 

level of the robot, the software should run on the new on-board computer. Thus, the computational 

load of the software should be kept as low as possible. 

The footstep planner has been developed using the ROS framework. The main components of the 

developed footstep planner are: 

• The camera manager. 

• The vision and mapping node. 

The camera manager is the component responsible for the connection with the stereo-cameras and 

therefore, provides the driver functionality for the cameras and a first pre-processing of the 

incoming data. The data coming from the cameras, as a matter of fact, store left and right image in 

the same data structure. Using open source tools such as the one provided by OpenCV for grabbing 

the image would result in having useless data. Thus, the camera manager divides the incoming data 

in left and right images before any other data processing is performed. 

The left and right images are then sent to two different image_proc nodes for the rectification. The 

image_proc package is an image rectification ROS tool. The rectification can be described as the 

process by which the distortions in an image are removed and, in the stereo-camera case, the image 

centres are aligned. 

The rectified images are then sent to the stereo-PTAM node which analyses the frame and output 

the position of the robot in the environment and the sparse point cloud used for the tracking. These 

data are then the input of the vision_mapping node. The main characteristics of the PTAM algorithm 

is the parallelization of the tracking and the mapping thread which makes it less computational 

expensive than other SLAM approaches. 
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The vision_mapping node is the core of the developed footsteps planner. It provides the obstacle 

detection, the collision avoidance algorithm and the footsteps computation. The obstacles are 

detected using the ground plane approach which is considers as obstacles everything with a positive 

vertical coordinate. The inverted cone algorithm was evaluated too but, in order to keep the 

computational load of the software low, it was decided to use the ground plane approach.  

Contrary to the two footstep planner available online, the footstep planner developed for Archie is 

not based on a grid map. The map is built approximating the obstacles as circles. Such a 

representation choice was done in order to keep the computational load low. As a matter of fact, 

the circle representation allows the use of simple geometrical planning algorithm. Furthermore, the 

grid representation can become heavy in terms of memory storage and collision-free path search in 

case of big environments. 

However, one drawback of the circle representation though, is the representation of elongated 

obstacles. As a matter of fact, the circle representing an elongated obstacle would have a radius 

equal to the maximum dimension of the obstacle. This would occupy much of the free space around 

the object. In order to solve this inconvenience, elongated obstacles are represented as a series of 

intersecting circles with centres along the maximum dimension of the obstacle. 

The computation of a collision free trajectory for a humanoid robot usually is a 3D path planning 

algorithm which computes directly the position of the footsteps as well as the trajectory of the COM. 

In the footstep planner developed for Archie, a collision avoidance algorithm computes first a 

collision free trajectory between the starting position of the robot and the target position and, then 

computes the footsteps with a simple geometrical algorithm. Such an implementation was chosen 

because Archie is supposed to be used as a test bed for the implementation of advanced control 

algorithms. The design of the footstep planner had to be flexible and modular. 

The developed collision avoidance algorithm is a geometrical algorithm which computes the 

avoidance waypoint as the intersection of the two sets of tangents to circular obstacles from the 

starting position of the robot and from the target position. The obstacles’ radius is previously 

increased by half the hip dimension of the robot. The waypoints computed are then stored in a 

binary tree structure along with the length of the path. This structure is later used to choose the 

shortest path to the target position. If more than one obstacle is present, the obstacle to avoid is 

chosen depending on the distance between the centre of the obstacle and the segment joining 

robot position and end position. Furthermore, the distance of the obstacle centre from the robot 
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position is considered. The planning stops when at least one of the leaves of the tree reached the 

target position. To every leaf in the tree is associated an identifier with a known mathematical 

relation in order to make the search of the shortest path easier. 

The collision-free trajectory outputted by the algorithm described is the safe trajectory that the 

COM of the robot has to follow. From this trajectory, the footstep positions are computed by means 

of geometrical relations and of the walk parameter which describes step heading, step width and 

step length.  

The developed footstep planner uses ROS tools in order to interact with an operator. As a matter of 

fact, the image_view package is used to visualize the stream of the stereo-cameras and RViz is 

utilized to visualize the point cloud, the robot positions, the circular obstacles, the collision-free 

trajectory planned and the footsteps computed. Through RViz, the operator can also set the target 

position for the robot to reach while avoiding the obstacles detected. In order to test the collision 

avoidance algorithm, the operator can also define a new map or clear the current map by means of 

an implemented ROSService.  

All the functionalities of the software and the single modules were tested. The camera manager 

node works without issues and it is able to stream a 30 fps video from the cameras with a resolution 

of 640x480. 

The obstacle detection and the subsequent circle approximation work. However, the point cloud 

output from the stereo-PTAM is sparser than it was expected and too much depending on the 

lighting condition. This is most probably due to the small baseline of the stereo-camera. 

The collision avoidance algorithm and the subsequent footstep computation also works without any 

complications. The computations are fast (less than 100 ms of computational time required) and 

the planned path is close to optimal. Such a low computational time makes the algorithm also usable 

in case of non-static environment. In case modification in the environment are detected, a re-

planning can be issued. It has to be noted that the representation of the elongated obstacles as a 

series of intersecting circles proved itself to be reliable as the planned trajectory is parallel to the 

maximum dimension of the obstacle. The design choice to increase the dimension of the obstacles 

with half the hip length of the robot was also a good choice because, since the trajectory is always 

tangent to the obstacles, it was never found a planned footstep inside the area occupied by the 

obstacles. 



   
 

131 
 

The software was also tested live in order to evaluate the real time capabilities of the new software 

architecture. The division of the data coming from the camera into left and right images is the most 

computationally expensive operation of the software. The stereo-PTAM is the second most 

computational expensive. The computational load of the camera manager and of the stereo-PTAM 

made the execution of the vision_mapping node od of RViz on an external laptop necessary.  

As future work, in order to make everything run on-board the robot, the camera manager 

operations should be moved on the GPU of the board in order to leave more of the computational 

capacity of the CPU free. Moreover, it is also advised to mount another board in parallel since the 

advance control algorithm node has to run. 

From the detection point of view, as mentioned before, the point cloud is too sparse. Other SLAM 

algorithms should be tested in order to see if it is possible to have a denser point cloud. In 

alternative, the stereo-cameras needs to be integrated with other sensors, such as a LIDAR for 

instance. Furthermore, with a denser point cloud, a more robust method for approximating the 

obstacles into circles may be required. A possible more robust method is to compute the median 

line of the point cloud as described in (Huang et.al., 2013) and then set the centres of the 

intersecting circles along the medial line.  
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Appendix 
 

Appendix A: Scilab simulation of joint movements during the gait 
 

A1: Stepping.sce 
 

This file computes the joint movements during the gait using the relation explained in Chapter 4. 

clear 
close 
clc 
 
//Initializations steps 
numSteps = 12; 
stepsFrontal = zeros(1,numSteps); 
stepSagittal = zeros(1,numSteps); 
 
//Initial DH Parameteres 
a1 = 12; 
a2 = 26; 
a3 = 31; 
a4 = 0; 
a5 = 0; 
a6 = 18; 
a7 = 0; 
a8 = 0; 
a9 = 31; 
a10 = 26; 
a11 = 12; 
a12 = 3.5; 
 
d1 = 0; 
d2 = 0; 
d3 = 7.5; 
d4 = 0; 
d5 = 0; 
d6 = 5; 
d7 = 5; 
d8 = 0; 
d9 = 7.5; 
d10 = 0; 
d11 = 0; 
d12 = 0; 
 
theta0 = zeros(numSteps,1); 
theta1 = zeros(numSteps,1); 
theta2 = zeros(numSteps,1); 
theta3 = zeros(numSteps,1); 
theta4 = zeros(numSteps,1); 
theta5 = zeros(numSteps,1); 
theta6 = zeros(numSteps,1); 
theta7 = zeros(numSteps,1); 
theta8 = zeros(numSteps,1); 
theta9 = zeros(numSteps,1); 
theta10 = zeros(numSteps,1); 
theta11 = zeros(numSteps,1); 
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x = zeros(numSteps,16); 
y = zeros(numSteps,16); 
z = zeros(numSteps,16); 
 
theta0(1,1) = 0*%pi/180; 
theta1(1,1) = 0*%pi/180; 
theta2(1,1) = 0*%pi/180; 
theta3(1,1) = 0*%pi/180; 
theta4(1,1) = 0*%pi/180; 
theta5(1,1) = 0*%pi/180; 
theta6(1,1) = 0*%pi/180; 
theta7(1,1) = 0*%pi/180; 
theta8(1,1) = 0*%pi/180; 
theta9(1,1) = 0*%pi/180; 
theta10(1,1) = 0*%pi/180; 
theta11(1,1)= = 0*%pi/180; 
 
//Starting point 
x0 = 0; 
y0 = 0; 
z0 = 3.5; 
 
stepsFrontal(1,1:numSteps/2) = linspace(16.5,6.5,numSteps/2); 
stepsFrontal(1,numSteps/2+1:numSteps) = linspace(6.5,16.5,numSteps/2); 
stepsSagittal(1,numSteps/2+1:numSteps) = linspace(0,15,numSteps/2); 
 
//Joints movements calculations 
for i = 1:numSteps 
     
    //Movements on x and y of the COM 
    deltaY = stepsFrontal(1,i); 
    deltaX = stepsSagittal(1,i); 
     
    //Theta1 computation from x movement 
    th1 = asin(deltaX/(a2+a3)); 
     
    //Theta0 computation from x and y movements 
    k1 = a1+(a2+a3)*cos(th1); 
    k2 = (a6/2-d3-deltaY); 
    k3 = (d3+a6/2-deltaY); 
     
    th01 = atan(2*((2*k1+sqrt(4*k1*k1-4*k2*k3))/(2*k2))); 
    th02 = atan(2*((2*k1-sqrt(4*k1*k1-4*k2*k3))/(2*k2))); 
     
    //theta angles 
    theta1(i,1) = th1; 
    theta0(i,1) = min(abs(th01),abs(th02)); 
    theta4(i,1) = -theta0(i,1); 
    theta2(i,1) = 0; 
    theta3(i,1) = -theta1(i,1); 
    theta5(i,1) = 0; 
    theta6(i,1) = 0; 
    theta7(i,1) = 0; 
     
    //Right leg and hip positions  
    x1 = x0; 
    x2 = x0 + a2*sin(theta1(i,1)); 
    x3 = x2 + a3*sin(theta1(i,1)+theta2(i,1)); 
    x4 = x3; 
    x5 = x4 - d6*sin(theta1(i,1)+theta2(i,1)+theta3(i,1)); 
    x6 = x5 + a6*cos(theta4(i,1)+theta0(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1))*sin(theta5(i,1)); 
    x7 = x6 + d6*sin(theta1(i,1)+theta2(i,1)+theta3(i,1)); 
    x8 = x7 + 
d3*cos(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1))*sin(theta5(i,1)+theta6(i,1)); 
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y1 = y0-a1*sin(theta0(i,1)); 
    y2 = y1 - a2*cos(theta1(i,1))*sin(theta0(i,1)); 
    y3 = y2 - a3*cos(theta1(i,1)+theta2(i,1))*sin(theta0(i,1)); 
    y4 = y3 + d3*cos(theta0(i,1));  
    y5 = y4 + d6*sin(theta4(i,1)+theta0(i,1)); 
    y6 = y5 + a6*cos(theta4(i,1)+theta0(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1))*cos(theta5(i,1)); 
    y61 = y5 + (a6/2)*cos(theta4(i,1)+theta0(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1))*cos(theta5(i,1)); 
    y7 = y6 - d6*sin(theta4(i,1)+theta0(i,1)); 
    y8 = y7 + 
d3*cos(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1))*cos(theta5(i,1)+theta6(i,1)); 
 
    z1 = z0 + a1*cos(theta0(i,1)); 
    z2 = z1 + a2*cos(theta1(i,1))*cos(theta0(i,1)); 
    z3 = z2 + a3*cos(theta1(i,1)+theta2(i,1))*cos(theta0(i,1)); 
    z4 = z3 + d3*sin(theta0(i,1)); 
    z5 = z4 - d6*cos(theta4(i,1)+theta0(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)); 
    z6 = z5 + a6*sin(theta4(i,1)+theta0(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)); 
    z7 = z6 + d6*cos(theta4(i,1)+theta0(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)); 
    z8 = z7 + d3*sin(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)); 
 
    //Theta angle for left leg 
    hn = z8; 
    hn1 = hn - y8*tan(2*theta0(i,1)) - a11 - a12; 
    rSq = deltaX*deltaX + hn1*hn1; 
    r = sqrt(rSq); 
    gammaAngle = -acos((a9*a9+a10*a10-rSq)/(2*a9*a10)); 
    theta9(i,1) = %pi - gammaAngle; 
    theta8(i,1) = acos((a9*a9+rSq-a10*a10)/(2*a9*r))+atan(deltaX/hn1); 
    theta10(i,1) = -(theta9(i,1) + theta8(i,1));  
    theta11(i,1) = 0; 
     
    //Left leg positions 
    x9 = x8 + a9*sin(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)); 
    x10 = x9 + a10*sin(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9(i,1)); 
    x11 = x10 + a11*sin(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9(i,1)+theta10(i,1)); 
    x12 = x11 + a12*sin(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9(i,1)+theta10(i,1)); 
    x13 = x12 - 3; 
    x14 = x12 + 19;  
     
    y9 = y8 + a9*sin(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)); 
    y10 = y9 + 
a9*sin(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9(i,1)); 
    y11 = y10 + 
a11*sin(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9(i,1)+theta10(
i,1)); 
    y12 = y11 + 
a12*sin(theta4(i,1)+theta0(i,1)+theta7(i,1)+theta11(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9(
i,1)+theta10(i,1)); 
    y13 = y12 - 3; 
    y14 = y12 + 3; 
     
    z9 = z8 - a9*cos(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)); 
    z10 = z9 - 
a10*cos(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9(i,1)); 
    z11 = z10 - 
a11*cos(theta4(i,1)+theta0(i,1)+theta7(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9(i,1)+theta10
(i,1)); 
    z12 = z11 - 
a12*cos(theta4(i,1)+theta0(i,1)+theta7(i,1)+theta11(i,1))*cos(theta1(i,1)+theta2(i,1)+theta3(i,1)+theta8(i,1)+theta9
(i,1)+theta10(i,1)); 
    z13 = z12; 
    z14 = z12; 
     
    x(i,:) = [0,x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14]; 
    y(i,:) = [0,y0,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14]; 
    z(i,:) = [0,z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14]; 
end  
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//Plots 
figure(1) 
for i = 1:numSteps/2 
    plot(y(i,:),z(i,:),'o'); 
    plot(y(i,:),z(i,:)); 
end 
a = gca(); 
a.isoview = "on"; 
a.x_label.text ="y"; 
a.y_label.text = "z"; 
 
figure(2) 
for i =1:numSteps/2 
    plot(x(i,8:16),z(i,8:16),'o'); 
    plot(x(i,8:16),z(i,8:16)); 
end 
a1 = gca(); 
a1.isoview = "on"; 
a1.x_label.text ="x"; 
a1.y_label.text = "z"; 
 
figure(3) 
for i = numSteps/2+1:numSteps 
    plot(x(i,:),z(i,:),'o'); 
    plot(x(i,:),z(i,:)); 
end 
a2 = gca(); 
a2.isoview = "on"; 
a2.x_label.text ="x"; 
a2.y_label.text = "z"; 
 
figure(4) 
a3=get("current_axes"); 
for i = 1:numSteps 
    param3d(x(i,:),y(i,:),z(i,:)); 
end 
a3 = gca(); 
a3.isoview = "on"; 
a3.x_label.text ="x"; 
a3.y_label.text = "y"; 
a3.z_label.text = "z"; 
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Appendix B: Camera Driver and vision_mapping node 
 

B1. Camera manager node 

 

B1.1 main_archievision.cpp 

 

This files initialize the ROS node of the camera driver and calls the loop by means of which the first 

image pre-processing is performed. 

 

/* 

 * main_archievision.cpp 

 * 

 *  Created on: Dec 19, 2015 

 *      Author: Francesco d'Apolito 

 */ 

 

#include "ros/ros.h" 

#include <iostream> 

#include <libuvc/libuvc.h> 

#include <libuvc/libuvc_config.h> 

#include "opencv2/opencv.hpp" 

#include <opencv2/core/core.hpp> 

#include <opencv2/highgui/highgui.hpp> 

#include <vector> 

#include "CameraDriver.h" 

 

using namespace cv; 

using namespace std; 

 

int main(int argc, char **argv) 

{ 

    //Ros initializations 

    ros::init(argc, argv, "archie_vision"); 

    ROS_INFO("Started Archie Vision Node"); 

    int ret = 0; 

    ros::NodeHandle node; 

    ros::NodeHandle camera_node; 

     

    //Camera Driver Initialization 

    Camera_Driver::CameraDriver camDriv(node,camera_node); 

 

    //Camera driver loop 

    ret = camDriv.loop(); 

     

    return ret; 

}  
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B1.2 CameraDriver.h 

 

/* 

 * CameraDriver.h 

 * 

 *  Created on: Apr 7, 2016 

 *      Author: Francesco d'Apolito 

 */ 

 

#ifndef CAMERADRIVER_H_ 

#define CAMERADRIVER_H_ 

 

#include "ros/ros.h" 

#include <iostream> 

#include <libuvc/libuvc.h> 

#include <libuvc/libuvc_config.h> 

#include "opencv2/opencv.hpp" 

#include <opencv2/core/core.hpp> 

#include <opencv2/highgui/highgui.hpp> 

#include <vector> 

#include <sensor_msgs/Image.h> 

#include <image_transport/image_transport.h> 

#include <tf/tfMessage.h> 

#include <tf/transform_broadcaster.h> 

#include <cv_bridge/cv_bridge.h> 

#include <boost/thread/mutex.hpp> 

#include <sensor_msgs/CameraInfo.h> 

#include <camera_info_manager/camera_info_manager.h> 

#include "archie_ai/start_capture.h" 

#include "archie_ai/stop_capture.h" 

 

using namespace std; 

using namespace cv; 

 

namespace Camera_Driver 

{ 

 

class CameraDriver { 

 

private: 

 

    uvc_context_t *ctx; 

    uvc_device_t *dev; 

    uvc_device_handle_t *devh; 

    uvc_stream_ctrl_t ctrl; 

    uvc_error_t res; 

    uvc_device_t **list;  
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    ros::NodeHandle node; 

    ros::NodeHandle camera_node; 

 

    ros::Time begin; 

    ros::Time lastPublished; 

    ros::Time t; 

 

    boost::shared_ptr<image_transport::ImageTransport> it; 

    image_transport::CameraPublisher imageL_pub; 

    image_transport::CameraPublisher imageR_pub; 

 

    tf::TransformBroadcaster br; 

    tf::Transform transform; 

 

    std::string cameraName; 

    boost::shared_ptr<camera_info_manager::CameraInfoManager> cinfo_; 

public: 

    CameraDriver(ros::NodeHandle nh, ros::NodeHandle camera_nh); 

    virtual ~CameraDriver(); 

    int loop(); 

    bool cameraOn(archie_ai::start_capture::Request &req, 

archie_ai::start_capture::Response &resp); 

    bool cameraOff(archie_ai::stop_capture::Request &req, 

archie_ai::stop_capture::Response &resp); 

    std::string cameraLeftChannel; 

    std::string cameraRightChannel; 

 

    ros::ServiceServer start_service; 

    ros::ServiceServer stop_service; 

 

    bool isRunning; 

    bool streaming; 

    bool found; 

    bool stopReceived; 

    bool contextInitialized; 

 

}; 

 

} 

#endif /* CAMERADRIVER_H_ */ 
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B1.3 CameraDriver.cpp 

 

This file handles the requests to start and stop the camera stream. Furthermore it separates the 

incoming data into left and right image as explained in Chapter 6. 

 

/* 

 * CameraDriver.cpp 

 * 

 *  Created on: Apr 7, 2016 

 *      Author: Francesco d'Apolito 

 */ 

 

#include "CameraDriver.h" 

 

pthread_mutex_t lockImgQueLeft = PTHREAD_MUTEX_INITIALIZER; 

pthread_mutex_t lockImgQueRight = PTHREAD_MUTEX_INITIALIZER; 

std::vector<cv::Mat> imgQueLeft; 

std::vector<cv::Mat> imgQueRight; 

 

cv::Mat left1; 

cv::Mat right1; 

 

void cb(uvc_frame_t *frame, void *ptr) 

{ 

    frame->frame_format = UVC_FRAME_FORMAT_YUYV; 

    std::cout << "Frame format" << std::endl; 

    std::cout << frame->frame_format << std::endl; 

    uvc_frame_t *greyLeft; 

    uvc_frame_t *greyRight; 

    uvc_error_t retLeft; 

    uvc_error_t retRight; 

 

    /* We'll convert the image from YUV/JPEG to gray8, so allocate space */ 

    greyLeft = uvc_allocate_frame(frame->width * frame->height); 

    greyRight = uvc_allocate_frame(frame->width * frame->height); 

    if (!greyLeft) 

    { 

        ROS_DEBUG("unable to allocate grey left frame!"); 

        return; 

    } 

    if (!greyRight) 

    { 

        ROS_DEBUG("unable to allocate grey right frame!"); 

        return; 

    }  



   
 

146 
 

    IplImage *cvImg, *cvImg2; 

    cvImg = cvCreateImage(cvSize(greyLeft->width, greyLeft->height), 

IPL_DEPTH_8U, 1); 

    cvImg2 = cvCreateImage(cvSize(greyRight->width, greyRight->height), 

IPL_DEPTH_8U, 1); 

    cvImg->imageData = (char*) greyLeft->data; 

    cvImg2->imageData = (char*) greyRight->data; 

 

    cv::Mat left (greyLeft->height, greyLeft->width, CV_8UC1, greyLeft->data); 

    cv::Mat right (greyRight->height, greyRight->width, CV_8UC1, greyRight-

>data); 

    left1 = left.clone(); 

    right1 = right.clone(); 

 

    pthread_mutex_lock(&lockImgQueLeft); 

    imgQueLeft.push_back(left1); 

 

    pthread_mutex_unlock(&lockImgQueLeft); 

    pthread_mutex_lock(&lockImgQueRight); 

    imgQueRight.push_back(right1); 

    pthread_mutex_unlock(&lockImgQueRight); 

 

    cvReleaseImage(&cvImg); 

    cvReleaseImage(&cvImg2); 

 

    uvc_free_frame(greyLeft); 

    uvc_free_frame(greyRight); 

} 

 

namespace Camera_Driver 

{ 

 

//Constructor 

CameraDriver::CameraDriver(ros::NodeHandle nh, ros::NodeHandle camera_nh): 

    node(nh,"archie_ai"), 

    camera_node(camera_nh,"archie_camera"), 

    cinfo_(new camera_info_manager::CameraInfoManager(camera_node)), 

    it(new image_transport::ImageTransport(camera_node)), 

    imageL_pub(it->advertiseCamera("left/image_raw",1)), 

    imageR_pub(it->advertiseCamera("right/image_raw",1)) 

{ 

    streaming = false; 

    isRunning = false; 

    found = false; 

    stopReceived = false; 

    contextInitialized = false; 

 

    start_service = 

node.advertiseService("/archie_camera/start_capture",&CameraDriver::cameraOn,t

his);  
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    stop_service = node.advertiseService("/archie_camera/stop_capture", 

&CameraDriver::cameraOff,this); 

} 

 

//Destructor 

CameraDriver::~CameraDriver() 

{ 

 

} 

 

//Callback of the request to turn on the camera: Start the stream if the 

request is received 

bool CameraDriver::cameraOn(archie_ai::start_capture::Request &req, 

archie_ai::start_capture::Response &resp) 

{ 

    bool ret = false; 

    //if(req.capture) 

    //{ 

        ROS_INFO("Received request for turning camera on\n"); 

        res = uvc_init(&ctx, NULL); 

 

        if (res < 0) 

        { 

            uvc_perror(res, "uvc_init"); 

            ret = false; 

        } 

        else 

        { 

            contextInitialized = true; 

            ROS_INFO("UVC initialized"); 

            res = uvc_get_device_list(ctx, &list); 

            if (res < 0) 

            { 

                uvc_perror(res, "uvc_get_device_list"); 

                ret = false; 

            } 

            else 

            { 

                /* Locates the first attached UVC device, stores in dev */ 

                res = uvc_find_device(ctx, &dev,0, 0, NULL); /* filter 

devices: vendor_id, product_id, "serial_num" */ 

 

                if (res < 0) 

                { 

                    uvc_perror(res, "uvc_find_device"); /* no devices found */ 

                    ret = false; 

                } 

                else 

                { 

                    ROS_INFO("Device found");  
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                    found = true; 

                    /* Try to open the device: requires exclusive access */ 

                    res = uvc_open(dev, &devh); 

 

                    if (res < 0) 

                    { 

                        uvc_perror(res, "uvc_open"); /* unable to open device 

*/ 

                        ROS_INFO("Unable to open device"); 

                        ret = false; 

                    } 

                    else 

                    { 

                        ROS_INFO("Device opened"); 

                        uvc_print_diag(devh, stderr); 

                        isRunning = true; 

                        ret = true; 

                    } 

                } 

            } 

        } 

    //} 

    begin = ros::Time::now(); 

    lastPublished = begin; 

    resp.status = 1; 

    return ret; 

} 

 

//Callback for the request to turn of camera: stop the stream  

bool CameraDriver::cameraOff(archie_ai::stop_capture::Request &req, 

archie_ai::stop_capture::Response &resp) 

{ 

    stopReceived = true; 

     

    //if(req.stop) 

    //{ 

        ROS_INFO("Received stop request\n"); 

        // TODO Auto-generated destructor stub 

        if(isRunning) 

        { 

            if(streaming) 

            { 

                /* End the stream. Blocks until last callback is serviced */ 

                uvc_stop_streaming(devh); 

                ROS_INFO("Done streaming."); 

            } 

            /* Release our handle on the device */ 

            uvc_close(devh); 

            ROS_INFO("Device closed"); 

        }  
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        if(found) 

        { 

            /* Release the device descriptor */ 

            uvc_unref_device(dev); 

        } 

        if(contextInitialized) 

        { 

            /* Close the UVC context. This closes and cleans up any existing 

device handles, 

            * and it closes the libusb context if one was not provided. */ 

            uvc_exit(ctx); 

            ROS_INFO("UVC exited"); 

        } 

    //} 

    resp.res = 1; 

    return true; 

} 

 

int CameraDriver::loop() 

{ 

    while(!isRunning) 

    { 

        ros::spinOnce(); 

    } 

    if(isRunning) 

    { 

        res = uvc_get_stream_ctrl_format_size(devh, &ctrl, 

UVC_FRAME_FORMAT_YUYV, 640, 480, 30); 

 

        /* Print out the result */ 

        uvc_print_stream_ctrl(&ctrl, stderr); 

 

        if (res < 0) 

        { 

            uvc_perror(res, "get_mode"); /* device doesn't provide a matching 

stream */ 

        } 

        else 

        { 

            /* Start the video stream. The library will call user function cb: 

            *   cb(frame, (void*) 12345) 

            */ 

 

            res = uvc_start_streaming(devh, &ctrl, cb, (void*)12345, 0); 

 

            if (res < 0) 

            { 

                uvc_perror(res, "start_streaming"); /* unable to start stream 

*/ 

            }  



   
 

150 
 

            else 

            { 

                ROS_INFO("Streaming..."); 

                streaming = true; 

                uvc_set_ae_mode(devh, 0); /* e.g., turn on auto exposure */ 

 

                while(!stopReceived) 

                { 

                    t = ros::Time::now(); 

                    if(t.toSec() - lastPublished.toSec() < 1) 

                    { 

                        //Transform from camera frame to base link PTAM frame 

                        transform.setOrigin(tf::Vector3(0.0,0.0,0.5)); 

                        tf::Quaternion q = 

tf::createQuaternionFromRPY(M_PI/2,0,0); 

                        transform.setRotation(q); 

                        

br.sendTransform(tf::StampedTransform(transform,ros::Time::now(),"base_link","

cam_left")); 

 

                        //Camera_info message 

                        sensor_msgs::CameraInfoPtr ci(new 

sensor_msgs::CameraInfo(cinfo_->getCameraInfo())); 

                        //Image left message 

                        pthread_mutex_lock(&lockImgQueLeft); 

                        if(!imgQueLeft.empty()) 

                        { 

                            int size = imgQueLeft.size(); 

                            ROS_DEBUG("size of imageQueLeft = %d. getting 

lock\n",size); 

                            std_msgs::Header head_left; 

                            head_left.frame_id = "cam_left"; 

                            sensor_msgs::ImagePtr msg = 

cv_bridge::CvImage(head_left, "mono8", imgQueLeft.at(size-1)).toImageMsg(); 

                            imageL_pub.publish(msg,ci); 

                            imgQueLeft.clear(); 

                        } 

                        pthread_mutex_unlock(&lockImgQueLeft); 

                         

                        //Image right message 

                        pthread_mutex_lock(&lockImgQueRight); 

                        if(!imgQueRight.empty()) 

                        { 

                            int size = imgQueRight.size(); 

                            ROS_DEBUG("size of imageQueRight = %d. getting 

lock\n",size); 

                            std_msgs::Header head_right; 

                            head_right.frame_id = "cam_right"; 

                            sensor_msgs::ImagePtr msg = 

cv_bridge::CvImage(head_right, "mono8", imgQueRight.at(size-1)).toImageMsg();  
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                            imageR_pub.publish(msg,ci); 

                            imgQueRight.clear(); 

                        } 

                        pthread_mutex_unlock(&lockImgQueRight); 

                        lastPublished = t; 

 

                    } 

                    ros::spinOnce(); 

                } 

            } 

        } 

    } 

    return res; 

} 

 

} 
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B2: Vision and mapping node 

 

B2.1 main_planning.cpp 

 

This file initializes the planning node and starts the planner loop where the obstacle detection and 

path planning are performed 

 

#include <ros/ros.h> 

#include <cv_bridge/cv_bridge.h> 

#include "PlanningNode.h" 

#include "PathSearchTree.h" 

 

int main(int argc, char **argv) 

{ 

    //ROS Node intialization 

    ros::init(argc, argv, "archie_planning"); 

    ros::NodeHandle nh; 

    ROS_INFO("Started Archie planning Node"); 

 

    PlanningNode planner(nh); 

 

    //Calling the planner loop 

    planner.loop(); 

 

    ROS_INFO("Exited from loop, exiting cleanly... \n"); 

     

    //When the planner is finished, return 

    return 0; 

 

} 
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B2.2 PlanningNode.h 

 

#ifndef PLANNINGNODE_H 

#define PLANNINGNODE_H 

 

#include <ros/ros.h> 

#include "HelperVariable.h" 

#include <geometry_msgs/Pose.h> 

#include "archie_ai/start_planning.h" 

#include "archie_ai/new_map.h" 

#include "archie_ai/clearMapAndPlanning.h" 

#include "PathSearchTree.h" 

#include "ObstacleDetection.h" 

#include <cv_bridge/cv_bridge.h> 

#include "opencv2/opencv.hpp" 

#include <opencv2/core/core.hpp> 

#include <opencv2/highgui/highgui.hpp> 

#include <pcl_ros/point_cloud.h> 

#include <sensor_msgs/PointCloud2.h> 

#include <rviz_visual_tools/rviz_visual_tools.h> 

#include <geometry_msgs/PoseStamped.h> 

 

class PlanningNode 

{ 

private: 

    ros::NodeHandle nh; 

 

    std::string pclChannel; 

    std::string pclPubChannel; 

    std::string markerObsChannel; 

    std::string markerPlanningChannel; 

    std::string markerFootChannel; 

    std::string markerFootPolygonChannel; 

    std::string goalTopic; 

    std::string poseTopic; 

    std::string footstepTopic; 

     

    ros::Subscriber pcl_sub; 

    ros::Subscriber goal_sub; 

    ros::Subscriber pose_sub; 

    ros::Publisher footstep_pub; 

    ros::Publisher pcl_pub;     //just for visualization in rviz 

    ros::Publisher markerObs_pub; 

    ros::Publisher markerPlanning_pub; 

    ros::Publisher markerFoot_pub; 

    ros::Publisher markerFootPolygon_pub;  
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    std::vector<obstacles> obst; 

    std::vector<ObsList> obstacleList; 

    std::vector<geometry_msgs::Pose2D> waypoints; 

 

    sensor_msgs::PointCloud2Ptr pclMsgBack; 

 

    tf::TransformBroadcaster br1; 

    tf::Transform transform1; 

 

public: 

 

    geometry_msgs::Pose archiePose;  

    geometry_msgs::Pose2D archiePose2D; 

    geometry_msgs::Pose2D endPosition; 

    PathSearchTree *planTrees; 

    ObstacleDetection *obstDetector; 

    bool running, goalAvailable; 

    bool pclAvailable, obstAvailable; 

    geometry_msgs::Pose2D posArchie; 

    geometry_msgs::Pose2D goal; 

    tf::Vector3 translation; 

 

    rviz_visual_tools::RvizVisualToolsPtr vis_toolObs; 

    rviz_visual_tools::RvizVisualToolsPtr vis_toolPlanning; 

    rviz_visual_tools::RvizVisualToolsPtr vis_toolFoot; 

    rviz_visual_tools::RvizVisualToolsPtr vis_toolFootPolygon; 

 

    ros::ServiceServer start_planning; 

    ros::ServiceServer new_map; 

    ros::ServiceServer clearRViz; 

     

    PlanningNode(ros::NodeHandle node); 

    bool planningCb(archie_ai::start_planningRequest &req, 

archie_ai::start_planningResponse &res); 

    bool new_mapCb(archie_ai::new_mapRequest &req, archie_ai::new_mapResponse 

&res); 

    bool clearMapAndPlanCb(archie_ai::clearMapAndPlanningRequest &req, 

archie_ai::clearMapAndPlanningResponse &res); 

    void loop(); 

    void pclCb(const sensor_msgs::PointCloud2ConstPtr pclMsg); 

    void poseCb(geometry_msgs::PoseStampedConstPtr pose); 

    void goalCb(geometry_msgs::PoseStamped g); 

}; 

 

#endif // PLANNINGNODE_H 
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B2.3 PlanningNode.cpp 

 

This file are the functions that receives the incoming data from the S-PTAM. The point cloud is then 

given here as input to the obstacle detector class. This file also receives the target position of the 

target by the user and sends it, together with the pose received from the S-PTAM to the planner. 

This file also serves as interface between the developed software and RViz, by sending to it the 

markers which represent detected obstacles and planned trajectory. 

 

#include "PlanningNode.h" 

#include "WalkingGeneration.h" 

#include <tf/LinearMath/Quaternion.h> 

#include <visualization_msgs/Marker.h> 

#include <visualization_msgs/MarkerArray.h> 

#include <string> 

#include <stdlib.h> 

#include <string.h> 

#include <archie_ai/footstepArray.h> 

 

//Constructor 

PlanningNode::PlanningNode(ros::NodeHandle node): nh(node, "vision_mapping") 

{ 

    ROS_INFO("Planning node running\n"); 

     

    //Topic names intialization 

    pclChannel = nh.resolveName("/sptam/point_cloud"); 

    poseTopic = nh.resolveName("/sptam/robot/pose"); 

    pclPubChannel = nh.resolveName("/archie_camera/pointcloud2"); 

    footstepTopic = nh.resolveName("vision_mapping/footsteps"); 

    markerObsChannel = nh.resolveName("/vision_mapping/markers_obs"); 

    markerPlanningChannel = nh.resolveName("/vision_mapping/marker_planning"); 

    markerFootChannel = nh.resolveName("/vision_mapping/marker_feet"); 

    markerFootPolygonChannel = 

nh.resolveName("/vision_mapping/marker_feet_polygon"); 

    goalTopic = nh.resolveName("/move_base_simple/goal"); 

 

    //Publisher and Subscriber intialization 

    pcl_sub = nh.subscribe(pclChannel, 1, &PlanningNode::pclCb, this); 

    pose_sub = nh.subscribe(poseTopic, 1, &PlanningNode::poseCb, this); 

    goal_sub = nh.subscribe(goalTopic,1,&PlanningNode::goalCb,this); 

    footstep_pub = nh.advertise<archie_ai::footstepArray>(footstepTopic,1); 

    pcl_pub = nh.advertise<sensor_msgs::PointCloud2>(pclPubChannel,1);  
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markerObs_pub = 

nh.advertise<visualization_msgs::MarkerArray>(markerObsChannel,1); 

    markerPlanning_pub = 

nh.advertise<visualization_msgs::MarkerArray>(markerPlanningChannel,1); 

    markerFoot_pub = 

nh.advertise<visualization_msgs::MarkerArray>(markerFootChannel,1); 

    markerFootPolygon_pub = 

nh.advertise<visualization_msgs::MarkerArray>(markerFootPolygonChannel,1); 

 

    //RViz visual tools initialization 

    vis_toolObs.reset(new 

rviz_visual_tools::RvizVisualTools("/map",markerObsChannel)); 

    vis_toolPlanning.reset(new 

rviz_visual_tools::RvizVisualTools("/map",markerPlanningChannel)); 

    vis_toolFoot.reset(new 

rviz_visual_tools::RvizVisualTools("/map",markerFootChannel)); 

    vis_toolFootPolygon.reset(new 

rviz_visual_tools::RvizVisualTools("/map",markerFootPolygonChannel)); 

 

    //Service publisher for starting the planning, insert a user created map 

and clear the Rviz view 

    start_planning = 

nh.advertiseService("vision_mapping/start_planning",&PlanningNode::planningCb,

this); 

    new_map = nh.advertiseService("/vision_mapping/new_map", 

&PlanningNode::new_mapCb,this); 

    clearRViz = 

nh.advertiseService("/vision_mapping/clearRviz",&PlanningNode::clearMapAndPlan

Cb, this); 

 

    //pclMsgBack = new sensor_msgs::PointCloud2Ptr; 

 

    running = true; 

    goalAvailable = false; 

    pclAvailable = false; 

    obstAvailable = false; 

 

    planTrees = new PathSearchTree(); 

    obstDetector = new ObstacleDetection(); 

 

    posArchie.x = 0; 

    posArchie.y = 0; 

 

    transform1.setOrigin(tf::Vector3(0, 0, 1.5)); 

    tf::Quaternion q1 = tf::createQuaternionFromRPY(0,0,0); 

    transform1.setRotation(q1); 

}   
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//Callback for the pose. It receives and memorize the pose from the S-PTAM 

void PlanningNode::poseCb(geometry_msgs::PoseStampedConstPtr pose) 

{ 

    posArchie.x = pose->pose.position.x; 

    posArchie.y = pose->pose.position.z; 

 

    translation = tf::Vector3(pose->pose.position.x, pose->pose.position.z, 

abs(pose->pose.position.y)); 

 

    transform1.setOrigin(translation); 

    tf::Quaternion q1 = tf::createQuaternionFromRPY(0,0,0); 

    transform1.setRotation(q1); 

} 

 

//Callback for the target position of the planning. It receives and memorize 

the target position 

void PlanningNode::goalCb(geometry_msgs::PoseStamped g) 

{ 

    goal.x = g.pose.position.x; 

    goal.y = g.pose.position.y; 

    goal.theta = 0; 

    goalAvailable = true; 

} 

 

//Callback for the start_planning service. As soon as the user call this 

service the planning start 

bool PlanningNode::planningCb(archie_ai::start_planningRequest &req, 

archie_ai::start_planningResponse &res) 

{ 

    goal.x = req.gx; 

    goal.y = req.gy; 

    goal.theta = 0; 

    goalAvailable = true; 

    return true; 

} 

 

//Callback for the service new map. The user calls it together with a list of 

obstacles. 

//It memorize the obstacles as soon as it gets them 

bool PlanningNode::new_mapCb(archie_ai::new_mapRequest &req, 

archie_ai::new_mapResponse &res) 

{ 

    if(!req.ox.empty() && !req.oy.empty() && req.ox.size() == req.oy.size())  

//Check if the input of the user is correct first 

    { 

        if(!obstacleList.empty())  //If the map is not empty then clear 

        { 

            obstacleList.clear(); 

        } 
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        for(unsigned int i = 0; i < req.ox.size(); i++)  //Fill the obstacle 

list with the new obstacles 

        { 

            ObsList o; 

            o.obstX = req.ox.at(i); 

            o.obstY = req.oy.at(i); 

            o.radius = 0.5; 

            o.height = 1; 

            ROS_INFO("Received %f %f %f %f \n", o.obstX, o.obstY, o.radius, 

o.height); 

            obstacleList.push_back(o); 

        } 

        obstAvailable = true; 

        return true; 

    } 

    else  

    { 

        return false; 

    } 

} 

 

//Callback for the service clear map and plan. As soon as it is received it 

clears all the markers in RViz 

bool PlanningNode::clearMapAndPlanCb(archie_ai::clearMapAndPlanningRequest 

&req, archie_ai::clearMapAndPlanningResponse &res) 

{ 

    bool ret = false; 

    obstAvailable = false; 

    pclAvailable = false; 

    goalAvailable = false; 

 

    if(!obstacleList.empty())  //If the map is not empty then clear 

    { 

        obstacleList.clear(); 

    } 

    if(!planTrees->obstToAvoid.empty())  //If the map is not empty then clear 

    { 

        planTrees->obstToAvoid.clear(); 

    } 

    if(!planTrees->obstToStepOn.empty())  //If the map is not empty then clear 

    { 

        planTrees->obstToStepOn.clear(); 

    } 

 

    bool ret1 = vis_toolObs->deleteAllMarkers(); 

    bool ret2 = vis_toolPlanning->deleteAllMarkers(); 

    bool ret3 = vis_toolFoot->deleteAllMarkers(); 

    bool ret4 = vis_toolFootPolygon->deleteAllMarkers();  
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    if(ret1 && ret2 && ret3 && ret4) 

    { 

      ret = true; 

    } 

 

    res.res = ret; 

    return ret; 

} 

 

//Loop of the planning node 

void PlanningNode::loop() 

{ 

    std::string obstString = "obst"; 

    //Color Obstacles 

    float rObstacle = 1.0f; //0.0f; 

    float gObstacle = 0.0f; //1.0f; 

    float bObstacle = 0.0f; //0.0f; 

    float aObstacle = 1.0; //1.0; 

 

    //Color Points 

    float rPoints = 0.0f; 

    float gPoints = 1.0f; 

    float bPoints = 0.0f; 

    float aPoints = 1.0; 

 

    //Color Points Feet 

    float rCenterFeet = 0.0f; 

    float gCenterFeet = 1.0f; 

    float bCenterFeet = 0.0f; 

    float aCenterFeet = 1.0; 

 

    //Color Points Feet 

    float rPointsFeet = 1.0f; 

    float gPointsFeet = 0.0f; 

    float bPointsFeet = 0.0f; 

    float aPointsFeet = 1.0; 

 

    //Color Lines Trajectory Planned 

    float rLinesT = 0.0f; 

    float gLinesT = 0.0f; 

    float bLinesT = 1.0f; 

    float aLinesT = 1.0; 

 

    while(running) 

    { 

        //Call for incoming data 

        ros::spinOnce(); 

         

        visualization_msgs::MarkerArray markArray; 

        unsigned int jkl = 0;  
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        //The software can be used in two mods: tests with map loaded by the 

user and real time usage 

        if(!pclAvailable && obstAvailable)  //Map input by the user 

        { 

            //No need to clear the previous obstacle list because it will be 

constant 

            for(unsigned int jj = 0; jj < obstacleList.size(); jj++) 

            { 

                //Creating the indexing of the markers 

                stringstream st; 

                st << jkl; 

                std::string numObst = st.str(); 

                visualization_msgs::Marker marker; 

 

                ObsList obsToAdd; 

                obsToAdd = obstacleList.at(jj); 

 

                //Header 

                marker.header.frame_id = "/map"; 

                marker.header.stamp = ros::Time::now(); 

                marker.type = visualization_msgs::Marker::CYLINDER; 

                marker.ns = obstString+numObst; 

                marker.id = jkl; 

                marker.action = visualization_msgs::Marker::ADD; 

                     

                //Pose and Orientation  

                marker.pose.position.x = obsToAdd.obstX; 

                marker.pose.position.y = obsToAdd.obstY; 

                marker.pose.position.z = 0; 

                marker.pose.orientation.x = 0.0; 

                marker.pose.orientation.y = 0.0; 

                marker.pose.orientation.z = 0.0; 

                marker.pose.orientation.w = 1.0; 

                     

                //Header 

                marker.scale.x = 2*obsToAdd.radius;//1.0; 

                marker.scale.y = 2*obsToAdd.radius;//1.0; 

                marker.scale.z = 0; 

                     

                //Colors 

                marker.color.r = rObstacle; 

                marker.color.g = gObstacle; 

                marker.color.b = bObstacle; 

                marker.color.a = aObstacle; 

 

                marker.lifetime = ros::Duration(); 

 

                markArray.markers.push_back(marker); 

 

                jkl = jkl + 1;  
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            } 

            markerObs_pub.publish(markArray); 

            obstAvailable = false; 

 

        } 

        else if(pclAvailable && obstAvailable) //Map created from pcl 

        { 

            //Delete the previous obstacle list first 

            obstacleList.clear(); 

 

            pcl::toROSMsg(*obstDetector->cloud_filtered2,*pclMsgBack); 

            pcl_pub.publish(pclMsgBack); 

 

            //So then we can fill it with the new obstacles coming from the 

analysis of the pcl 

            for(unsigned int ii = 0; ii < obst.size(); ii++) 

            { 

                int numObstacleDivided = obst.at(ii).c.size(); 

                printf("Obstacle divided in %i points \n", 

numObstacleDivided); 

                for(unsigned int jj = 0; jj < numObstacleDivided; jj++) 

                { 

                    stringstream st; 

                    st << jkl; 

                    std::string numObst = st.str(); 

                    visualization_msgs::Marker marker; 

 

                    //Creating the obstacle to insert in the obstacle list 

                    ObsList obsToAdd; 

                    obsToAdd.obstX = obst.at(ii).c.at(jj).x; 

                    obsToAdd.obstY = obst.at(ii).c.at(jj).y; 

                    obsToAdd.radius = obst.at(ii).radius; 

                    obsToAdd.height = obst.at(ii).bbox.height; 

                    obstacleList.push_back(obsToAdd); 

 

                    //Header 

                    marker.header.frame_id = "/map"; 

                    marker.header.stamp = ros::Time::now(); 

                    marker.type = visualization_msgs::Marker::CYLINDER; 

                    marker.ns = obstString+numObst; 

                    marker.id = jkl; 

                    marker.action = visualization_msgs::Marker::ADD; 

                     

                    //Pose and Orientation  

                    marker.pose.position.x = obsToAdd.obstX; 

                    marker.pose.position.y = obsToAdd.obstY; 

                    marker.pose.position.z = 0; 

                    marker.pose.orientation.x = 0.0; 

                    marker.pose.orientation.y = 0.0; 

                    marker.pose.orientation.z = 0.0;  
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                    marker.pose.orientation.w = 1.0; 

                     

                    //Header 

                    marker.scale.x = 2*obsToAdd.radius; 

                    marker.scale.y = 2*obsToAdd.radius; 

                    marker.scale.z = 0;//obsToAdd.height; 

 

                    //Colors 

                    marker.color.r = rObstacle; 

                    marker.color.g = gObstacle; 

                    marker.color.b = bObstacle; 

                    marker.color.a = aObstacle; 

 

                    marker.lifetime = ros::Duration(); 

 

                    markArray.markers.push_back(marker); 

 

                    jkl = jkl + 1; 

                } 

            } 

            markerObs_pub.publish(markArray); 

            pclAvailable = false; 

            obstAvailable = false; 

        } 

        if(goalAvailable) //If a target position is received 

        { 

            //Planning 

            bool resPlanning = planTrees->plan(posArchie, goal, obstacleList); 

            if(resPlanning) //If the planning was successful 

            { 

                //Initialization of marker for the planned trajectory 

                visualization_msgs::Marker waypoints, trajectoryPlanned; 

                visualization_msgs::MarkerArray waypointsArray, 

trajectoryPlannedArray; 

                 

                waypoints.header.frame_id = "/map"; 

                waypoints.header.stamp = ros::Time::now(); 

                waypoints.ns = "waypoints"; 

                waypoints.action = visualization_msgs::Marker::ADD; 

                waypoints.pose.orientation.w = 1.0; 

                waypoints.scale.x = 0.01; 

                waypoints.scale.y = 0.01; 

                waypoints.id = jkl + 1; 

                waypoints.type = visualization_msgs::Marker::POINTS; 

                waypoints.color.r = rPoints; 

                waypoints.color.g = gPoints; 

                waypoints.color.b = bPoints; 

                waypoints.color.a = aPoints; 

                waypoints.lifetime = ros::Duration(); 
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                trajectoryPlanned.header.frame_id = "/map"; 

                trajectoryPlanned.header.stamp = ros::Time::now(); 

                trajectoryPlanned.ns = "trajectoryPlanned"; 

                trajectoryPlanned.action = visualization_msgs::Marker::ADD; 

                trajectoryPlanned.pose.orientation.w = 1.0; 

                trajectoryPlanned.scale.x = 0.01; 

                trajectoryPlanned.id = jkl + 2; 

                trajectoryPlanned.type = 

visualization_msgs::Marker::LINE_STRIP; 

                trajectoryPlanned.color.r = rLinesT; 

                trajectoryPlanned.color.g = gLinesT; 

                trajectoryPlanned.color.b = bLinesT; 

                trajectoryPlanned.color.a = aLinesT; 

                trajectoryPlanned.lifetime = ros::Duration(); 

 

                ROS_DEBUG("There are %d waypoints \n", planTrees-

>waypoints.size()); 

 

                for(unsigned int kk = 0; kk < planTrees->waypoints.size(); 

kk++) 

                { 

                    ROS_DEBUG("Waypoint number %d \n", kk); 

                    geometry_msgs::Point p; 

                    p.x = planTrees->waypoints.at(kk).wP.x; 

                    p.y = planTrees->waypoints.at(kk).wP.y; 

                    p.z = 0; 

 

                    waypoints.points.push_back(p); 

                    trajectoryPlanned.points.push_back(p); 

                } 

                //Sending to RViz the markers of the planning 

                waypointsArray.markers.push_back(waypoints); 

                trajectoryPlannedArray.markers.push_back(trajectoryPlanned); 

                markerPlanning_pub.publish(waypointsArray); 

                markerPlanning_pub.publish(trajectoryPlannedArray); 

 

                //Computation of the position of the foot 

                WalkingGeneration *walkPrimitive = new WalkingGeneration; 

                walkPrimitive->footStepPoseComputation(planTrees-

>waypoints,posArchie); 

 

                //Initialization of the markers of the footsteps 

                visualization_msgs::MarkerArray footPointCentersMarker; 

                visualization_msgs::Marker centerFoot; 

                for(unsigned int n = 0; n < walkPrimitive-

>feetCentersPose.size(); n++) 

                { 

                    stringstream st; 

                    st << n; 

                    std::string numStep = st.str();  



   
 

164 
 

                    //Header 

                    centerFoot.header.frame_id = "/map"; 

                    centerFoot.header.stamp = ros::Time::now(); 

                    centerFoot.type = visualization_msgs::Marker::CUBE; 

                    centerFoot.ns = "Foot"+numStep; 

                    centerFoot.id = n; 

                    centerFoot.action = visualization_msgs::Marker::ADD; 

 

                    //Pose and Orientation 

                    centerFoot.pose.position.x = walkPrimitive-

>feetCentersPose.at(n).x; 

                    centerFoot.pose.position.y = walkPrimitive-

>feetCentersPose.at(n).y; 

                    centerFoot.pose.position.z = 0; 

                    tf::Quaternion q; 

                    q.setRPY(0,0,walkPrimitive->feetCentersPose.at(n).theta); 

                    centerFoot.pose.orientation.x = q.x(); 

                    centerFoot.pose.orientation.y = q.y(); 

                    centerFoot.pose.orientation.z = q.z(); 

                    centerFoot.pose.orientation.w = q.w(); 

 

                    //Header 

                    centerFoot.scale.x = 0.225; 

                    centerFoot.scale.y = 0.1; 

                    centerFoot.scale.z = 0; 

 

                    //Colors 

                    centerFoot.color.r = rCenterFeet; 

                    centerFoot.color.g = gCenterFeet; 

                    centerFoot.color.b = bCenterFeet; 

                    centerFoot.color.a = aCenterFeet; 

 

                    centerFoot.lifetime = ros::Duration(); 

 

                    footPointCentersMarker.markers.push_back(centerFoot); 

 

                } 

                markerFootPolygon_pub.publish(footPointCentersMarker); 

                archie_ai::footstepArray footstepMsg; 

                footstepMsg.header.stamp = ros::Time::now(); 

                footstepMsg.header.frame_id = "/map"; 

                visualization_msgs::Marker footPointMarker; 

                visualization_msgs::MarkerArray footPointArray; 

                footPointMarker.header.frame_id = "/map"; 

                footPointMarker.header.stamp = ros::Time::now(); 

                footPointMarker.ns = "feetPlanned"; 

                footPointMarker.action = visualization_msgs::Marker::ADD; 

                footPointMarker.pose.orientation.w = 1.0; 

                footPointMarker.scale.x = 0.01;  
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                footPointMarker.scale.y = 0.01; 

                footPointMarker.id = jkl + 3; 

                footPointMarker.type = visualization_msgs::Marker::POINTS; 

                footPointMarker.color.r = rPointsFeet; 

                footPointMarker.color.g = gPointsFeet; 

                footPointMarker.color.b = bPointsFeet; 

                footPointMarker.color.a = aPointsFeet; 

                footPointMarker.lifetime = ros::Duration(); 

                for(unsigned int kk = 0; kk < walkPrimitive->feetPose.size(); 

kk++) 

                { 

                    ROS_DEBUG("Footstep number %d \n", kk); 

                    geometry_msgs::Point p; 

                    p.x = walkPrimitive->feetPose.at(kk).x; 

                    p.y = walkPrimitive->feetPose.at(kk).y; 

                    p.z = 0; 

                    geometry_msgs::Pose2D fs; 

                    fs = walkPrimitive->feetPose.at(kk); 

                    footstepMsg.poses.push_back(fs); 

                    footPointMarker.points.push_back(p); 

                } 

 

                //Sending the markers of the footsteps to RViz and the 

footsteps to the control node 

                footstep_pub.publish(footstepMsg); 

                footPointArray.markers.push_back(footPointMarker); 

                markerFoot_pub.publish(footPointArray); 

 

            } 

            goalAvailable = false; 

        } 

    } 

} 
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B2.4 ObstacleDetection.h 

 

#ifndef INVERTEDCONEALGORITHM_H 

#define INVERTEDCONEALGORITHM_H 

 

#include <pcl/point_types.h> 

#include <pcl/point_cloud.h> 

#include "HelperVariable.h" 

#include <pcl/visualization/pcl_visualizer.h> 

#include <tf/tfMessage.h> 

#include <tf/transform_broadcaster.h> 

 

class ObstacleDetection 

{ 

 

public: 

 

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered2; 

 

    ObstacleDetection(); 

    ~ObstacleDetection(); 

    std::vector<obstacles> newPCLAvailable(pcl::PointCloud<pcl::PointXYZ> 

cloud, tf::Vector3 trans); 

    std::vector<obstacles> 

clusterAndApprox(pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud); 

    void passthroughFilter(pcl::PointCloud<pcl::PointXYZ>::Ptr inputCloud, 

pcl::PointCloud<pcl::PointXYZ>::Ptr outputCloud, std::string axis, float 

minimumAxis, float maximumAxis); 

    void rotateVoxelGrid(pcl::PointCloud<pcl::PointXYZ>::Ptr in, 

pcl::PointCloud<pcl::PointXYZ>::Ptr out, tf::Vector3 trans); 

 

}; 

 

#endif // INVERTEDCONEALGORITHM_H 

 
 

 

  



   
 

167 
 

B2.5 ObstacleDetection.cpp 

 

This file contains the code for the obstacle detection and approximation as explained in Chapter 6. 

The input point cloud if first filtered with a passthrough filter and then the Euclidean cluster 

extraction is performed. The dimensions of the clusters produced in this way are then computed 

and the obstacle is represented as a circle or as a series of intersecting circles. 

 

#include "ObstacleDetection.h" 

#include <pcl/filters/passthrough.h> 

#include <pcl/segmentation/extract_clusters.h> 

#include <pcl/common/common.h> 

#include <pcl/common/transforms.h> 

#include <ros/ros.h> 

#include <pcl/filters/voxel_grid.h> 

#include <string> 

#include <cmath> 

 

//Constructor 

ObstacleDetection::ObstacleDetection() 

{ 

     

} 

 

//Destructor 

ObstacleDetection::~ObstacleDetection() 

{ 

 

} 

 

//Function for the rotation of the point cloud from camera frame to base link 

frame. It takes in input input point cloud in, 

//output point cloud out and translation between the two reference systems 

void ObstacleDetection::rotateVoxelGrid(pcl::PointCloud<pcl::PointXYZ>::Ptr 

in, pcl::PointCloud<pcl::PointXYZ>::Ptr out, tf::Vector3 trans) 

{ 

    Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity(); 

    Eigen::Affine3f transform_3 = Eigen::Affine3f::Identity(); 

    float theta = M_PI/2; 

    float thetaz = M_PI/2; 

    pcl::PointCloud<pcl::PointXYZ>::Ptr outInter (new 

pcl::PointCloud<pcl::PointXYZ> ()); 
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    //Translation between the two reference systems 

    transform_2.translation() << trans[0], trans[1], trans[2]; 

 

    //From the fixed reference system and the camera reference system it is 

needed to rotate of 90 deg around x 

    transform_2.rotate (Eigen::AngleAxisf (theta, Eigen::Vector3f::UnitX())); 

    pcl::transformPointCloud (*in, *outInter, transform_2); 

 

    //Then there is a rotation of 90° around z 

    transform_3.rotate (Eigen::AngleAxisf (thetaz, Eigen::Vector3f::UnitZ())); 

     

    //Set the output point cloud as the results 

    pcl::transformPointCloud (*outInter, *out, transform_3); 

} 

 

//Passthrough filter. Filter the point cloud eliminating all the point which 

have a coordinate on the input axis not in the interval set by maximum and 

minimum  

void ObstacleDetection::passthroughFilter(pcl::PointCloud<pcl::PointXYZ>::Ptr 

inputCloud, pcl::PointCloud<pcl::PointXYZ>::Ptr outputCloud, std::string axis, 

float minimumAxis, float maximumAxis) 

{ 

    pcl::PassThrough<pcl::PointXYZ> pass; 

    pass.setInputCloud (inputCloud); 

    pass.setFilterFieldName (axis); 

    pass.setFilterLimits (minimumAxis, maximumAxis); 

    //pass.setFilterLimitsNegative (true); 

    pass.filter (*outputCloud); 

} 

 

//Function for Euclidean Cluster Extraction and circle approximation 

std::vector<obstacles> 

ObstacleDetection::clusterAndApprox(pcl::PointCloud<pcl::PointXYZ>::Ptr 

filteredCloud) 

{ 

    //initializations 

    pcl::PointCloud<pcl::PointXYZ>::Ptr fCloud; 

    pcl::PCA<pcl::PointXYZ> pca; 

    pcl::PointCloud<pcl::PointXYZ> fCloud1; 

    fCloud = filteredCloud; 

    std::vector<obstacles> obstDetected; 

 

    // Creating the KdTree object for the search method of the extraction 

    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new 

pcl::search::KdTree<pcl::PointXYZ>); 

    tree->setInputCloud (fCloud); 
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    //Euclidean Cluster Extraction 

    std::vector<pcl::PointIndices> cluster_indices; 

    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; 

    ec.setClusterTolerance (0.3); // 2cm 

    ec.setMinClusterSize (5); 

    ec.setMaxClusterSize (25000); 

    ec.setSearchMethod (tree); 

    ec.setInputCloud (fCloud); 

    ec.extract (cluster_indices); 

 

    ROS_INFO("I have %d indices \n", cluster_indices.size()); 

 

    int j = 0; 

    for (std::vector<pcl::PointIndices>::const_iterator it = 

cluster_indices.begin (); it != cluster_indices.end (); ++it) //For evey 

cluster 

    { 

        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new 

pcl::PointCloud<pcl::PointXYZ>); 

        pcl::CentroidPoint<pcl::PointXYZ> centroid; 

        pcl::PointXYZ c1; 

        //ROS_INFO("Obstacle %d \n", j); 

         

        //Centroid computation 

        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit 

!= it->indices.end (); ++pit) 

        { 

            cloud_cluster->points.push_back (fCloud->points[*pit]); 

            centroid.add(fCloud->points[*pit]); 

        } 

        cloud_cluster->width = cloud_cluster->points.size (); 

        cloud_cluster->height = 1; 

        cloud_cluster->is_dense = true; 

        centroid.get(c1); 

 

        //Bounding box computation: width, depth and height 

        pcl::PointXYZ min_pt; 

        pcl::PointXYZ max_pt; 

        pca.setInputCloud(cloud_cluster); 

        pca.project(*cloud_cluster, fCloud1); 

 

        pcl::PointXYZ proj_min; 

        pcl::PointXYZ proj_max; 

        pcl::getMinMax3D (fCloud1, proj_min, proj_max); 

 

        pca.reconstruct (proj_min, min_pt); 

        pca.reconstruct (proj_max, max_pt); 

 

        Eigen::Vector4f t = pca.getMean(); 
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        ROS_INFO("centroid %f %f %f \n", c1.data[0], c1.data[1], c1.data[2]); 

        ROS_INFO("minVector %f %f %f \n", min_pt.x, min_pt.y, min_pt.z); 

        ROS_INFO("maxVector %f %f %f \n", max_pt.x, max_pt.y, max_pt.z); 

 

        double width = proj_max.x-proj_min.x; 

        double depth = proj_max.y-proj_min.y; 

        double height = proj_max.z; 

        double width1, depth1, height1; 

        if(width < 0) 

        { 

            width1 = -width; 

        } 

        else 

        { 

            width1 = width; 

        } 

        if(depth < 0) 

        { 

            depth1 = -depth; 

        } 

        else 

        { 

            depth1 = depth; 

        } 

        if(height < 0) 

        { 

            height1 = -height; 

        } 

        else 

        { 

            height1 = height; 

        } 

        printf("Obstacle detected. width, depth height: %f %f %f \n", width1, 

depth1, height1); 

        double diffWidth = width1 - depth1; 

        double diffDepth = depth1 - width1; 

        printf("percentage width percentage depth %f %f \n", diffWidth, 

diffDepth); 

        int numObsDivided; 

        if( diffWidth > 0.01) //Elongated obstacle width bigger than depth 

        { 

            numObsDivided = ceil(width1/depth1); 

            printf("diffWidth > 0.1, numObsDivided %d \n ", numObsDivided); 

            obstacles obs; 

            std::vector<geometry_msgs::Pose2D> centers; 
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            //Centres computation 

            for(int ii = 0; ii < numObsDivided; ii++) 

            { 

                pcl::PointXYZ c; 

                pcl::PointXYZ cRotated; 

                geometry_msgs::Pose2D centre; 

                c.x = fmin(proj_min.x, proj_max.x)+(ii+1)*depth/2; 

                c.z = height/2; 

                c.y = fmin(proj_min.y, proj_max.y)+depth/2; 

                printf("center computed: %f %f \n", c.x, c.y); 

                pca.reconstruct(c,cRotated); 

                centre.x = cRotated.x; 

                centre.y = cRotated.y; 

                printf("center computed after rotation: %f %f \n", cRotated.x, 

cRotated.y); 

                centers.push_back(centre); 

            } 

            obs.bbox.x = max_pt.x; 

            obs.bbox.y = max_pt.y; 

            obs.bbox.z = max_pt.z; 

            obs.bbox.xm = min_pt.x; 

            obs.bbox.ym = min_pt.y; 

            obs.bbox.zm = min_pt.z; 

            obs.bbox.width = width; 

            obs.bbox.depth = depth; 

            obs.bbox.height = height; 

            obs.c = centers; 

            obs.isCircle = true; 

            obs.radius = (depth/2)*cos(M_PI/4); 

            printf("radius: %f \n", obs.radius); 

            obstDetected.push_back(obs); 

        } 

        else if(diffDepth > 0.01)  //Elongated obstacle. Depth bigger than 

width 

        { 

            numObsDivided = abs(ceil(depth/width)); 

            printf("diffDepth > 0.1, numObsDivided %d \n ", numObsDivided); 

            obstacles obs; 

            std::vector<geometry_msgs::Pose2D> centers; 

 

            //Centres computation 

            for(int ii = 0; ii < numObsDivided; ii++) 

            { 

                pcl::PointXYZ c; 

                pcl::PointXYZ cRotated; 

                geometry_msgs::Pose2D centre; 

                c.x = fmin(proj_min.x, proj_max.x)+width/2; 

                c.z = height/2; 

                c.y = fmin(proj_min.y, proj_max.y)+(ii+1)*width/2; 

                printf("center computed: %f %f \n", c.x, c.y);  
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                pca.reconstruct(c,cRotated); 

                centre.x = cRotated.x; 

                centre.y = cRotated.y; 

                printf("center computed after rotation: %f %f \n", cRotated.x, 

cRotated.y); 

                centers.push_back(centre); 

            } 

            obs.bbox.x = max_pt.x; 

            obs.bbox.y = max_pt.y; 

            obs.bbox.z = max_pt.z; 

            obs.bbox.xm = min_pt.x; 

            obs.bbox.ym = min_pt.y; 

            obs.bbox.zm = min_pt.z; 

            obs.bbox.width = width; 

            obs.bbox.depth = depth; 

            obs.bbox.height = height; 

            obs.c = centers; 

            obs.isCircle = true; 

            obs.radius = (width/2)*cos(M_PI/4); 

            printf("radius: %f \n", obs.radius); 

            obstDetected.push_back(obs); 

        } 

        else //The obstacle can be represented as a single circle 

        { 

            obstacles obs; 

            std::vector<geometry_msgs::Pose2D> centers; 

            geometry_msgs::Pose2D center; 

            center.x = c1.data[0]; 

            center.y = c1.data[1]; 

            printf("center computed: %f %f \n", center.x, center.y); 

            centers.push_back(center); 

            obs.bbox.x = max_pt.x; 

            obs.bbox.y = max_pt.y; 

            obs.bbox.z = max_pt.z; 

            obs.bbox.xm = min_pt.x; 

            obs.bbox.ym = min_pt.y; 

            obs.bbox.zm = min_pt.z; 

            obs.bbox.width = width; 

            obs.bbox.depth = depth; 

            obs.bbox.height = height; 

            obs.c = centers; 

            printf("no Obstacle division needed. Size of the center vector %lu 

\n", obs.c.size()); 

            obs.isCircle = true; 

            obs.radius = fmax(obs.bbox.width, obs.bbox.depth); 

            printf("radius: %f \n", obs.radius); 

            obstDetected.push_back(obs); 

        } 

        j++; 

    }  
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    return obstDetected; 

} 

 

//This function is called by the point cloud callback in PlanningNode.cpp. 

Receives the point cloud and filters it  

std::vector<obstacles> 

ObstacleDetection::newPCLAvailable(pcl::PointCloud<pcl::PointXYZ> cloud, 

tf::Vector3 trans) 

{ 

    pcl::PointCloud<pcl::PointXYZ>::Ptr pntCloud(new 

pcl::PointCloud<pcl::PointXYZ>); 

    *pntCloud = cloud; 

    ROS_INFO("Inverted con class. Cloud: width = %d , height = %d \n", 

pntCloud->width, pntCloud->height); 

    ROS_INFO("Cloud size: %d \n", pntCloud->size()); 

    pcl::PointCloud<pcl::PointXYZ> cloud_out; 

 

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered1(new 

pcl::PointCloud<pcl::PointXYZ>); 

    cloud_filtered2.reset(new pcl::PointCloud<pcl::PointXYZ>); 

 

    //Calling passthrough filter 

    passthroughFilter(pntCloud, cloud_filtered1, "z", 0.0, 5.0); 

     

    //Point cloud rotation 

    rotateVoxelGrid(cloud_filtered1, cloud_filtered2, trans); 

 

    //ROS_INFO("Cloud filtered width and height: %d  %d \n", cloud_filtered2-

>width, cloud_filtered2->height); 

 

    //Clustering and approximation 

    std::vector<obstacles> obss = clusterAndApprox(cloud_filtered2); 

 

    return obss; 

} 
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B2.6 WalkingGeneration.h 

 

#ifndef FOOTCOMPUTATION_H 

#define FOOTCOMPUTATION_H 

#include "HelperVariable.h" 

#include <ros/ros.h> 

 

class WalkingGeneration 

{ 

public: 

  float sx, sy; 

  float px, py; 

  geometry_msgs::Pose2D footPose; 

  geometry_msgs::Pose2D footCenterPose; 

  std::vector<geometry_msgs::Pose2D> s; 

  std::vector<geometry_msgs::Pose2D> feetPose; 

  std::vector<geometry_msgs::Pose2D> feetCentersPose; 

  std::vector<geometry_msgs::Pose> hipCenters; 

 

  WalkingGeneration(); 

  ~WalkingGeneration(); 

  void footStepPoseComputation(std::vector<waypoint> wPs, 

geometry_msgs::Pose2D inPos); 

   

}; 

 

#endif // FOOTCOMPUTATION_H 
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B2.7 WalkingGeneration.cpp 

 

In this file the function which computes the footsteps is contained. The computation is performed 

for every couple of waypoints in the planned trajectory. First the walk parameters are computed 

and the, according to the method explained in Chapter 6, the footsteps are computed. 

 

#include "WalkingGeneration.h" 

 

//Constructor 

WalkingGeneration::WalkingGeneration() 

{ 

    ROS_INFO("Walking pattern generator started \n"); 

     

    px = 0; 

    py = -0.1; 

} 

 

//Destructor 

WalkingGeneration::~WalkingGeneration() 

{ 

 

} 

 

//Footsteps computation function. It is called in PlanningNode.cpp and it 

takes in input the waypoint from the  

//obstacle avoidance and the position of the robot coming from the S-PTAM 

void WalkingGeneration::footStepPoseComputation(std::vector<waypoint> wPs, 

geometry_msgs::Pose2D inPos) 

{ 

    //Initializations 

    unsigned int size = wPs.size(); 

    int index = 2; 

    ROS_INFO("number of waypoint %d \n", size); 

    geometry_msgs::Pose2D s0; 

    geometry_msgs::Pose2D s1; 

 

    //First foot position 

    px = py + wPs.at(0).wP.x;//inPos.x; 

    py = py + wPs.at(0).wP.y;//inPos.y; 
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    //Insertion of first foot position in the footstep vector 

    footPose.x = px; 

    footPose.y = py; 

    footPose.theta = 0; 

    feetPose.push_back(footPose); 

 

    //First position of the centre of mass 

    geometry_msgs::Pose hCn0; 

    hCn0.position.x = wPs.at(0).wP.x; 

    hCn0.position.y = wPs.at(0).wP.y; 

    hCn0.position.z = 1.3; 

    hipCenters.push_back(hCn0); 

 

    //Second footsteps computation 

    footCenterPose.x = px + 0.0375; 

    footCenterPose.y = py; 

    footCenterPose.theta = 0; 

    feetCentersPose.push_back(footCenterPose); 

 

    //First walk parameter 

    s0.x = 0; 

    s0.y = 0; 

    s0.theta = 0; 

    s.push_back(s0); 

 

    //Second walk parameter 

    s1.x = 0; 

    s1.y = maximum_footstep_lenghtY; 

    s1.theta = 0; 

    s.push_back(s1); 

 

    for(unsigned int ii = 0; ii < size-1; ii++)  //For every waypoint 

    { 

        //Compute heading of previous waypoint and current 

        ROS_INFO("Considering Waypoint number %d and %d \n", ii, ii+1); 

        ROS_INFO("Positions: %f %f %f %f %f %f \n", wPs.at(ii).wP.x, 

wPs.at(ii).wP.y, wPs.at(ii).direction, wPs.at(ii+1).wP.x, wPs.at(ii+1).wP.y, 

wPs.at(ii+1).direction); 

        float distWPs = sqrt((wPs.at(ii+1).wP.x - 

wPs.at(ii).wP.x)*(wPs.at(ii+1).wP.x - wPs.at(ii).wP.x) + (wPs.at(ii+1).wP.y - 

wPs.at(ii).wP.y)*(wPs.at(ii+1).wP.y - wPs.at(ii).wP.y)); 

        int numSteps = (int)(round(distWPs/maximum_footstep_lenghtX)); 

        ROS_INFO("The distance between the two is %f and the number of steps 

are %d \n",distWPs, numSteps); 

        float theta = wPs.at(ii+1).direction; 

        ROS_INFO("The waypoint number %d has theta : %f \n",ii+1, theta); 

        float headDiff = theta - wPs.at(ii).direction; 
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        int numBeginningStep = s.size(); 

        if(headDiff > 0.01 || headDiff < -0.01) //If is a change of heading 

between this waypoint and the previous one  

        { 

            //If it has to turn right and the current foot is the right one 

            //or if it has to turn left and the current foor is the left one 

            //Then three footsteps needs to be added because. One with the 

previous heading and two with the new one  

            if(((headDiff > 0) && (numBeginningStep%2==0)) || (headDiff < 0) 

&& (numBeginningStep%2!=0)) 

            { 

              //Walk parameters for the turn 

              geometry_msgs::Pose2D snHeadChange; 

              snHeadChange.x = 0; 

              snHeadChange.y = maximum_footstep_lenghtY; 

              snHeadChange.theta = wPs.at(ii).direction; 

 

              geometry_msgs::Pose2D snHeadChange1; 

              snHeadChange1.x = 0; 

              snHeadChange1.y = maximum_footstep_lenghtY; 

              snHeadChange1.theta = theta; 

 

              geometry_msgs::Pose2D snHeadChange2; 

              snHeadChange2.x = 0; 

              snHeadChange2.y = maximum_footstep_lenghtY; 

              snHeadChange2.theta = theta; 

 

              s.push_back(snHeadChange); 

              s.push_back(snHeadChange1); 

              s.push_back(snHeadChange2); 

            } 

            else //In this case, just two footsteps with the new heading needs 

to be added  

            { 

              //Walk parameters for the turn 

              geometry_msgs::Pose2D snHeadChange; 

              snHeadChange.x = 0; 

              snHeadChange.y = maximum_footstep_lenghtY; 

              snHeadChange.theta = theta; 

 

              geometry_msgs::Pose2D snHeadChange1; 

              snHeadChange1.x = 0; 

              snHeadChange1.y = maximum_footstep_lenghtY; 

              snHeadChange1.theta = theta; 

 

              s.push_back(snHeadChange); 

              s.push_back(snHeadChange1); 

            } 

        } 

        unsigned int gg;  
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        //Compute walk parameter for every steps until the next waypoint 

        for(gg = 0; gg < numSteps; gg++) 

        { 

            if(gg != numSteps-1) 

            { 

              geometry_msgs::Pose2D sn; 

              sn.x = maximum_footstep_lenghtX; 

              sn.y = maximum_footstep_lenghtY; 

              sn.theta = theta; 

              s.push_back(sn); 

              ROS_INFO("s computed: %f %f %f %d \n", 

sn.x,sn.y,sn.theta,s.size()); 

            } 

            else 

            { 

              float rest = (distWPs/maximum_footstep_lenghtX)-numSteps; 

              geometry_msgs::Pose2D sn; 

              sn.x = maximum_footstep_lenghtX + rest*maximum_footstep_lenghtX; 

              sn.y = maximum_footstep_lenghtY; 

              sn.theta = theta; 

              s.push_back(sn); 

              ROS_INFO("s computed: %f %f %f %d \n", 

sn.x,sn.y,sn.theta,s.size()); 

            } 

 

        } 

 

        //Walk parameter for last footstep 

        geometry_msgs::Pose2D sLast; 

        sLast.x = 0; 

        sLast.y = maximum_footstep_lenghtY; 

        sLast.theta = theta; 

        s.push_back(sLast); 

 

        index = index+gg; 

        ROS_INFO("New Index %d , s size %d \n", index, s.size()); 

    } 

     

    //Computation of footsteps based on the walk parameter 

    ROS_INFO("Second Loop. Total number of steps: %d \n", s.size()); 

    for(unsigned int jj = 1; jj < s.size(); jj ++) 

    { 

        ROS_INFO("Considering footstep number %d \n", jj); 

        ROS_INFO("s vector for the step: %f %f %f \n",s.at(jj).x, s.at(jj).y, 

s.at(jj).theta); 

 

        geometry_msgs::Pose hCn; 

        hCn.position.x = hipCenters.at(jj-1).position.x + 

cos(s.at(jj).theta)*s.at(jj).x; 
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        hCn.position.y = hipCenters.at(jj-1).position.y + 

sin(s.at(jj).theta)*s.at(jj).x; 

        hCn.position.z = 1.3; 

        hipCenters.push_back(hCn); 

 

        geometry_msgs::Pose2D pn; 

        pn.x = hipCenters.at(jj).position.x + pow(-

1,jj)*sin(s.at(jj).theta)*s.at(jj).y; 

        pn.y = hipCenters.at(jj).position.y - pow(-

1,jj)*cos(s.at(jj).theta)*s.at(jj).y; 

        pn.theta = s.at(jj).theta; 

        ROS_INFO("Computed foot pose: %f %f %f \n", pn.x, pn.y, pn.theta); 

        feetPose.push_back(pn); 

 

        geometry_msgs::Pose2D cn; 

        cn.x = pn.x + cos(s.at(jj).theta)*0.0375; 

        cn.y = pn.y + sin(s.at(jj).theta)*0.0375; 

        cn.theta = s.at(jj).theta; 

        feetCentersPose.push_back(cn); 

    }   

} 
 

 

B2.8 HelperVariable.h 

 

This file contains the definition of some variable used by the planning node. 

 

#ifndef HELPERVARIABLE_H 

#define HELPERVARIABLE_H 

 

#include "geometry_msgs/Pose2D.h" 

#include "geometry_msgs/Pose.h" 

#include <pcl/common/pca.h> 

 

#define maximum_footstep_lenghtX 0.3 

#define maximum_footstep_lenghtY 0.1 

#define tSup 1 

#define grAcc 9.80665 
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struct BoundingBox 

{ 

    float x;                                        //maximum x 

    float y;                                        //maximum y 

    float z;                                        //maximum z 

    float xm;                                       //minimum x 

    float ym;                                       //minimum y 

    float zm;                                       //minimum z 

    float width;                                    //width of the obstacle 

    float depth;                                    //depth of the obstacle 

    float height;                                   //height of the obstacle 

}; 
 

struct obstacles 

{ 

    std::vector<geometry_msgs::Pose2D> c;           //Coordinates of the 

obstacle 

    BoundingBox bbox;                               //Bounding box of the 

obstacle 

    bool isCircle;                                  //Is it representable as a 

circle? 

    float radius;                                   //the radius of the 

obstacle or of the series of obstacle is... 

}; 

 

struct ObsList 

{ 

    double obstX;                                   //X coordinates of the 

obstacle 

    double obstY;                                   //Y coordinate of the 

obstacle 

    double radius;                                  //radius of the obstacle 

    double height;                                  //height of the obstacle 

}; 
 

struct waypoint 

{ 

    geometry_msgs::Pose2D wP; 

    bool obsToStepOn; 

    ObsList obs; 

    float direction; 

}; 
 

#endif // HELPERVARIABLE_H 
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B3: Services and messages 

 

B3.1 foorstepArray.msg 

 

This is the ROS message which stores the computed footsteps that is sent from the planning node 

to the control node. 

 

Header header 

 

geometry_msgs/Pose2D[] poses   #Array of footsteps 
 

 

 

B3.2 clearMapAndPlanning.srv 

 

This is the ROS service used to clear the markers on RViz 

 

#Request: clear all 

 

--- 

#Response: ok or no 

uint8 res 
 

 

B3.3 start_capture.srv 

 

This service is used to start the stream from the camera 

# request: start capture 

 

--- 

#response: ok or no 

uint8 status  
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B3.4 stop_capture.srv 

 

This service is used to stop the camera stream 

 

# request: stop capture 

 

--- 

#response: ok or no 

bool res  

 

B3.5 new_map.srv 

 

This is the service used to insert a user defined map. It has to be called with a list of obstacles 

positions 

 

# request: new_map 

float32[] ox 

float32[] oy 

--- 

#response: ok or no 

uint8 status  

 

B3.6 start_planning.srv 

 

This service allows the user to start the planning sensing as input the end position 

 

# request: start planning 

float32 gx 

float32 gy 

--- 

#response: ok or no 

uint8 status 
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