
Global Registration of Range
Scans with Match Tolerance

Verification
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Florian Laager, BSc.
Matrikelnummer 0525859

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Mag. rer. soc. oec. Stefan Ohrhallinger, PhD

Wien, TT.MM.JJJJ
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Global Registration of Range
Scans with Match Tolerance

Verification
DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Florian Laager, BSc.
Registration Number 0525859

to the Faculty of Informatics
at the Technische Universität Wien

Advisor: Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Mag. rer. soc. oec. Stefan Ohrhallinger, PhD

Vienna, TT.MM.JJJJ
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Florian Laager, BSc.
Klara-Blum-Gasse 4/11/2, 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

Weder der Abschluss einer Diplomarbeit, und noch weniger der eines ganzen Studiums, ist ohne
die Hilfe vieler Menschen möglich. Hier möchte ich gerne ein paar Zeilen dazu nutzen, die-
sen Menschen meinen Dank und meine Anerkennung auszudrücken, wobei das volle Ausmaß
hiermit nicht annähernd darstellbar ist.

Von ganzem Herzen will ich meiner Familie für ihre überschäumende Liebe und Unterstüt-
zung danken. Meinem Bruder, Stefan, dafür dass er immer da ist und mich in allem nur Vorstell-
baren unterstützt. Meinen Eltern, Christa und Kurt, für ihre ständige Geduld und Gutmütigkeit
und dass sie mich auf die Universität geschickt haben und gesagt haben dass ich das packe wenn
ich anderer Meinung war. Ein großer Dank geht auch an meinen kürzlich verstorbenden Groß-
vater, Alois, für all die interessanten Konversationen und das Formen meiner Persönlichkeit, und
dafür mich immer zu fragen: “Na, bist’ schon fertig?”. Ich bin’s.

Es gibt keine Worte um meine Anerkennung und Dankbarkeit meiner Freundin, und bald
Frau, Sabrina, auszudrücken. Danke für deine unendliche Geduld und Hartnäckigkeit wenn mei-
ne Prokrastination wieder ein neues Level erreicht hat. Danke, dass du mir immer Raum gegeben
hast mich auf die Diplomarbeit zu konzentrieren. Und natürlich auch für’s Korrekturlesen. Dan-
ke, danke, danke.

Danken möchte ich auch gerne meinen Betreuern, Stefan Ohrhallinger und Michael Wim-
mer, für die riesen Hilfe. Angefangen bei der Hilfe dabei meine ersten Ideen zu formulieren
bis hin zu deren unglaublichen Korrekturen am Ende. Danke auch an Stefan Ohrhallinger für
die vielen E-Mails und Skypekonversationen dazwischen. Ich hätte es ohne eure Hilfe nicht
geschafft.

Es gibt noch so viele andere Menschen deren Namen sich einen Platz auf diesen Seiten
verdient haben. Freunde, alt und neu, für ihre Begleitung auf dem Weg hierher. Professoren
dafür dass sie ihr unglaubliches Wissen geteilt haben. Danke auch an Arbeitskollegen für ihre
Inspiration zu strukturierterem Denken und Arbeiten.

Vielen Dank euch allen.

iii

Acknowledgements

The completion of a diploma thesis, much less of a whole study, cannot be achieved without the
help of many people. I would like to spend a few lines to show my appreciation and thank these
people and give them credit, unfortunately much less than they would actually deserve.

From the bottom of my heart I want to thank my family for their overflowing love and
support. My brother, Stefan, for always being there and supporting me in every way imaginable.
My parents, Christa and Kurt, for their patience and benevolence on so many occasions, and for
making me go to university and telling me I could do it when I thought I’d not be cut out for it.
A big “thank you” also to my late grandfather, Alois, for all the interesting conversations and
shaping my personality, and never ceasing to ask “So, are you done yet?”. I am now.

There are no words to express my appreciation for my girlfriend, soon to be wife, Sabrina.
Thank you for your undying patience and tenacity when I reached new levels of procrastination.
For taking so many things off my plate so I could focus on the thesis. And last but not least for
proof reading this thesis. Thank you, thank you, thank you.

I would also like to thank my supervisors, Stefan Ohrhallinger and Michael Wimmer, for
their immense help. Starting from helping me formulate the first ideas until their amazing cor-
rections at the end. To Stefan also for all the e-mails and Skype chats in between. I wouldn’t
have made it without your help.

There are so many more people whose names deserve to be on these pages. Friends, old and
new, for accompanying me along the way. Professors for sharing their incredible amounts of
knowledge. Colleages from work for inspiring me to more structured thinking and working.

Thank you all so much.

v

Kurzfassung

Bei der Registrierung von Oberflächen handelt es sich um den Prozess, Punktkorrespondenzen
zwischen multiplen Oberflächen zu finden und eine ausrichtende Transformation zu schätzen.
Diese Transformation soll dann die beiden Oberflächen so aufeinander ausrichten, dass sie sich
so gut wie möglich überlappen. Es existieren einige Ansätze, die hervorstechende Punkte iden-
tifizieren und einen lokalen Deskriptor bauen, der die lokale Nachbarschaft der identifizierten
Punkte beschreibt. Korrespondenzen werden gefunden, indem die Deskriptoren der jeweiligen
Punkte miteinander verglichen werden. Die globale Registierung, mit der sich die vorliegende
Arbeit beschäftigt, zielt allerdings darauf ab Oberflächen auszurichten und dabei Wissen über
den gesamten Überlappungsbereich einzusetzen.

Durch das Erscheinen von Endverbraucher-Tiefenscannern wie der Microsoft KinectTM wur-
de die Forschung über Registrierung von Tiefenscans weiter vorangetrieben. Ein Objekt kann
von mehreren Perspektiven gescannt werden und die Teilscans können dann aufeinander re-
gistriert werden und ein vollständiges virtuelles Objekt rekonstruiert werden. Ein anderer An-
wendungsfall wäre im Bereich der Augmented Reality oder in der Robotik, wo Tiefenscans der
Lokalisierung der Kamera in einer Referenzszene dienen.

Über Oberflächenregistrierung, lokal als auch global, existiert viel Material in der Literatur.
Im Rahmen dieser Arbeit wird ein Algorithmus zur Registrierung von Tiefenscans vorgeschla-
gen der, anders als die von uns in der Literatur gefundenen Ansätze, eine ausrichtende Transfor-
mation nur dann extrahiert, wenn diese innerhalb eines Toleranzbereichs existiert. Ähnlich zu
vielen Ansätzen identifizieren wir dazu zuerst hervorstechende Feature-Punkte auf der Oberflä-
che und erstellen einen globalen Deskriptor, der das räumliche Verhältnis der Punkte zueinander
abbildet. Wir bauen ein Toleranzmodell für die Akzeptanz von ausrichtenden Transformationen,
das auf dem Fehlermodell des verwendeten Scanners aufbaut.

Wir haben unseren Algorithmus an Tiefenscans unterschiedlicher Objekte angewendet und
seine Fähigkeit zur Registrierung evaluiert. Weiters haben wir Tiefenscans, die mit der Micro-
soft KinectTM v2 aufgenommen wurden, mittels unseres Algorithmus registriert und dessen An-
wendbarkeit untersucht. Des Weiteren haben wir unseren Ansatz mit einem state-of-the-art Al-
gorithmus verglichen um zu sehen, ob er entscheiden kann ob eine ausrichtende Transformation
existiert oder nicht.

vii

Abstract

Surface registration is the process of identifying correspondences between points on multiple
surfaces and estimating an aligning transformation of one surface to the other so that corre-
sponding surface patches overlap. Several approaches exist that identify salient points on the
surface and extract a local descriptor of the neighborhood of those points. Correspondences are
then found by comparing the descriptors. Global registration, however, aims at aligning surfaces
using knowledge over the whole area of overlap.

Registration of range scans has seen a lot of research since the advent of commodity range
scanners like the Microsoft KinectTM. An object can be captured from multiple perspectives and
the scans can be registered to reconstruct the whole virtual object. Another usage can be found
in the fields of augmented reality or robotics, where range scans are used to locate the camera
within a reference scene.

A lot of work has been conducted on surface registration, both local and global. We propose
an algorithm for registration of range scans that, other than what we found in the literature, pro-
vides an aligning transformation only if such a transformation exists within a certain tolerance.
Similar to many approaches, we first identify salient feature points on the surface and build a
global descriptor that incorporates the spatial relation between feature points. Using the error
model of the capture device, we build a tolerance model for acceptable aligning transformations.

We applied our algorithm to range scans of objects of different types and evaluated its regis-
tration capabilities. Additionally, we registered range scans made with the Microsoft KinectTM

v2 using our algorithm and evaluated its applicability. Furthermore, we compared our approach
to a state-of-the-art algorithm in global registration to see whether it is able to decide on whether
an aligning transformation exists.

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of this work . 3
1.4 Methodological Approach . 4
1.5 Structure of this work . 4

2 Related Work 5
2.1 Surface Registration . 5
2.2 Fine registration: the Iterative Closest Point algorithm 6
2.3 Feature detection . 7
2.4 Feature description . 8
2.5 Feature-agnostic alignment . 13
2.6 Commodity ranger scanners: the Microsoft KinectTM 16
2.7 Summary . 17

3 Tolerant global registration 19
3.1 Definitions . 19
3.2 Algorithm Overview . 20
3.3 Parameters . 22
3.4 Calculating 3D point positions and pointwise errors 22
3.5 Occlusion detection . 26
3.6 Local Curvature Estimation . 28
3.7 Local maximum detection . 30
3.8 Feature Filtering . 31

3.8.1 Curvature Scale Space – not satisfactory 31
3.8.2 Filtering features based on curvature confidence – not satisfactory . . . 32
3.8.3 Filtering features based on curvature saliency – satisfactory 33
3.8.4 Considerations regarding the range scanner error model 34

3.9 Global Descriptor . 35
3.9.1 Global Descriptor matching . 37

3.10 Transformation estimate calculation . 38
3.11 Match Verification . 39

xi

3.11.1 Transform Tolerance . 40
3.11.2 Surface Overlay Test . 42

4 Results 45
4.1 Evaluation . 45

4.1.1 Synthetic range scans . 46
4.1.2 Tolerance to geometrical variation . 46
4.1.3 Robustness to angle difference . 48
4.1.4 Registration of Kinect v2 scans . 58

4.2 Comparison to state-of-the-art . 61
4.3 Discussion . 65

5 Conclusion 67
5.1 Synopsis . 67
5.2 Limitations and Future Work . 68

Bibliography 69

xii

CHAPTER 1
Introduction

1.1 Motivation

Figure 1.1: Several range scans, here shown as triangular meshes, being registered onto each
other. First aligned roughly in a crude registration step, followed by fine registration. Image
courtesy of Gelfand et al. [15].

How does a computing device know if two different images show one and the same scene if
the only information it has are pixel values? If it does, is it able to stitch together the captured
images in such a way that they form a whole? This would be helpful if one wanted to capture a
panoramic image of a beautiful landscape scenery but the camera used can only cover so much
area in one capture. This functionality is nowadays usually already built into an average digital
camera or smartphone. What one would need to do is to take several images of the landscape
such that in each image, there is a part of the scene that is also visible in another image. The
camera will then register the images by finding salient features in them. It then aligns the images
such that matching features in the images are positioned at the same pixel locations. This results
in a panorama image.

The same is possible for images taken with a range scanner, a capture device that captures
depth information at pixel locations. Now the depth information inherent to a range scan can be
leveraged and geometrical properties of the captured scene can be used to extract salient feature
points. Registration of range scans is used, for example, by autonomous robots equipped with

1

range sensors, so that they know where they are in a reference coordinate system. Consecutive
camera frames are analyzed and related to each other so that the robot knows how it has moved
in the time elapsed since the last frame. (See Durrant-Whyte et al. [12])

Another application of registration of range scans lies in the field of heritage preservation.
An ancient artefact is seldom retrieved as a whole but in parts. To get an image of the whole
object, range scans of each part can be used to produce a virtual 3D model of the whole object by
aligning the scans and “stitching” them together, just like the example of the panorama image
described earlier, but for 3D data.

In shape retrieval, also similar shapes can be retrieved by providing a reference shape as
input to a database of shape data. The output would then generally be a list of matching shapes,
3D models for example. Range images can also be used as an input to find matching 3D models.
The approach can be used in CAD and other domains that make heavy use of 3D models [38].

A lot of work has been conducted on automatic registration of surfaces. Algorithms gen-
erally consist of two steps: crude registration, where the surfaces are roughly aligned, and fine
registration, which aims at optimising the aligning transformation in such a way that every point
of one surface is as close as possible to its corresponding point on the other surface. These steps
are depicted in Figure 1.1. Fine registration has been solved by the Iterative Closest Point (ICP)
algorithm, which is an iterative process that first finds correspondences between points on both
surfaces and then estimates a transformation using the corresponding points that minimizes an
error metric over the whole surfaces. Many variants of the algorithm have been presented that
differ in the way in which point distance is modeled, e.g., point-point distance or point-plane
distance, or how the transformation is derived from point correspondences [33]. Although ICP
can solve the problem of fine registration, the solution depends on whether or not the surfaces
are already roughly aligned. It needs a first rough guess of the aligning transformation so that
it does not converge to a locally minimal solution due to its iterative nature. Crude registration
can be used to provide such a rough estimate. A lot of research has been conducted on crude
surface registration of rigid and non-rigid surfaces, and methods exist that work on 3D meshes,
unstructured point clouds and range scans [34].

1.2 Problem Statement

The algorithm presented in this thesis can be positioned in the domain of crude registration of
range scans of rigid 3D surfaces.

Crude Registration, in literature also called coarse registration, is the process of roughly
aligning two or more surfaces. In the discrete case, the given surfaces can be modelled as point
clouds or meshes. The general problem of registering surfaces consists of finding an aligning
transformation and then verifying the quality of the alignment. The former can be modelled
in multiple ways, e.g., in case of the brute-force approach, trying out all possible transforma-
tions with six degrees of freedom (6DOF). The prevalent approach is to model registration as a
minimization problem and find correspondences between subsets of the given surfaces. These
subsets are used to estimate a transformation that aligns them. The transformation is then veri-
fied using the whole surfaces by measuring the amount of residual error between the points of
both surfaces after applying the transformation. This formulation, however, does not provide

2

evidence of whether or not the registered surfaces actually match. The subsets used for cor-
respondence search can be chosen at random or can be selected using feature detection based
on certain characteristics of the surface at their location. The correspondence search can also
be used such that corresponding points on the other surface exhibit the same characteristic, or
feature descriptor. This is also called local registration, since the correspondence search is only
based on local information at a given point on a surface.

Another approach, global registration, consists of identifying correspondences between points
of two surfaces by evaluating their spatial relation. This means finding a subset in one surface
that exhibits the same spatial layout as a subset on the other surface. The algorithm presented in
this thesis follows this approach.

A formal statement of the problem of rigid surface registration is the following. Let S be a
surface captured with a range sensor from two different positions and let PR and PT be the sets
of points sampled from S. Corresponding points p ∈ PR and q ∈ PT will not fall within the
same infinitesimal space but instead into a volume of a certain size, ‖p − q‖ ≤ ξ, because of
measurement error and sample displacement. Measurement error here is based on noise of the
sensor itself. Sample displacement is based on the fact that the sampling pattern “slides” over
the surface as the scanner is moved or increasing sampling distance based on perspective. The
aim of crude registration is to find a rigid transformation T that aligns the target point cloud PT
to a reference point cloud PR such that a given error metric E is minimized, taking into account
all mentioned sources of spatial displacements between corresponding points. The solution T̂ is
then

T̂ = argminT (
∑
i,j

‖pi − T ∗ qj‖E)

As can be seen, usually several transformations have to be evaluated if correspondences are not
known in advance. The problem with extracting several transformations and calculating an error
measure for each one, then returning the transformation with the smallest error, is that it is not
guaranteed that using the best transformation will lead to successful fine registration, or that
the surfaces match at all. This happens for example if the surfaces exhibit symmetries at their
overlap. Since this technique will always report a minimal error, it would also do so even in
case of geometric differences still existing between surfaces, because it always aims at a “best”
alignment.

1.3 Aim of this work

To be able to know whether or not two surfaces captured with a range sensor actually match or
not can save computation time on fine registration that would not make sense if no match was
given at all. The aim of this thesis is to propose a method to incorporate the error model of a
range sensor into the crude registration process of range scans and answer the above question
within an uncertainty threshold that is based on the error model of the range sensor and the
geometrical properties of the scanned surface. At the same time, if possible, our method will
provide an estimate of the aligning transformation. As an optional additional step, a fine reg-
istration using ICP can be applied afterwards to further align the surfaces, if necessary, and to
guarantee convergence to the global minimum.

3

1.4 Methodological Approach

We follow the prevalent approach to crude registration, by first preprocessing the range scans
to extract necessary point correspondences, which are then used to construct transformation
candidates. To reduce the search space of correspondences, we reduce the number of points
by identifying salient features within the captured range scans. One surface characteristic that is
invariant to rigid transformation is local surface curvature, so we choose local curvature extrema
as the salient feature characteristic. Since range scans are subject to noise, which has high impact
on local curvature, we estimate the local curvature at each point by fitting a quadratic surface to
its local neighborhood. The size of the used neighborhood depends on the spatial error of the
evaluated point and is based on two factors. First, the sensor noise model of the range sensor
which was used for capturing the scans, and secondly, on discretization artefacts introduced by
sampling the captured surface in pixels.

Other than most works on surface registration, we do not encode the local neighborhood of
the salient features in a feature descriptor per point, but rather incorporate the spatial relation
between triples of points into a global descriptor of the whole range scan. The global descriptor
also takes the pointwise error model into account.

Transformation candidates are calculated using corresponding point triples of both range
scans and are verified by matching the whole scans while, again, considering spatial point errors
in the process. This either leads to a verified match within a tolerance based on the sensor’s
noise model and discretization artefacts introduced during sampling of the scans or a negative
answer if the two scans do not overlap or do not match at all.

1.5 Structure of this work

The rest of this thesis is structured as follows. In Chapter 2 the basic concepts and related litera-
ture on surface registration are reviewed, with a special emphasis on different feature detectors
and feature descriptors. In Chapter 3 our proposed implementation for global registration of
range scans is presented, accompanied by a practical example using synthetic data. A critical
evaluation of the important concepts of the implementation is described in Chapter 4, with a
comparison to a state-of-the-art-method for crude global registration. The thesis is then con-
cluded in Chapter 5 with a summary and an outlook on possible future work.

4

CHAPTER 2
Related Work

In this chapter an overview of the research on rigid surface registration is presented, with a spe-
cial emphasis on crude registration. Since registration is an important field in many different
research domains, like computer vision, computational geometry or medical imaging, a lot of
research has been conducted. We will present the relevant literature structured as follows. Start-
ing from a more general view on surface registration, we will split up the literature review into
separated steps often found in the literature: feature detection and feature description.

In addition to the literature on algorithms, we will also provide a short coverage of the
Microsoft KinectTM commodity range scanners and how they capture depth information.

2.1 Surface Registration

A recent review of crude registration methods is offered by Diez et al. in [10]. They also
propose a standardized notation to counteract the fact that crude registration plays an important
role in several different research domains, like computational geometry and computer vision,
but similar ideas are named differently. They also mention volumetric data as registration input,
since it is most common in medical applications where registration also plays an important role.
The structure of this chapter was inspired by their registration pipeline definition. They highlight
the relation between feature detection and description since features are often chosen because
of the distinctiveness of their associated descriptor, and in most cases both steps are based on
the local shape of the object. They also define the term shape function which is used to describe
which surface characteristic is used to detect or describe a feature point.

In terms of applications Weise et al. [40] use a combination of coarse and fine registration
which also leverages the texture information provided by an RGB-D camera, a camera that pro-
vides color as well as depth data, for in-hand 3D modelling at interactive frame rates. They also
conduct geometrical, as well as textural, consistency checks for a registration result but do not
incorporate the sensor error model into the checks.

Registration of fractured objects is presented by Huang et al. [21] where they segment the
parts of an object to identify fracture surfaces. Features are then identified and correspondences

5

found. Registration is performed first in a pair-wise manner to create a matching-graph, and then
multi-part registration is performed, using this graph, to get the final reassembled object.

2.2 Fine registration: the Iterative Closest Point algorithm

Fine surface registration, independent of representation and dimension, is presented by Besl
and McKay in their seminal work on the Iterative Closest Point (ICP) algorithm, [5]. Several
implementations of ICP exist in Open Source Software packages, e.g. [26, 29].

The key idea is to register 2 surfaces, the data surface, represented as point set P , against
the model surface, transformed to point set X , iteratively, in the following 4 steps:

1. For points pi ∈ P , find their closest points yi ∈ X

2. Compute a transformation which best aligns pi and yi

3. Evaluate a mean square error metric

4. Re-iterate if maximum-threshold not satisfied

When a closest point yi is found for each point pi an aligning transformation is estimated by
calculating a symmetric matrix Q(

∑
PY) of the following form:

Q(
∑
PY

) =

[
tr(
∑

PY) ∆T

∆
∑

PY +
∑T

PY −tr(
∑

PY)I3

]
(2.1)

where tr is the trace, ∆ = [A23A31A12] is the anti-symmetric matrix Aij = (
∑

PY −
∑T

PY),
T is the transpose operation of a matrix and I3 is the 3x3 identity matrix.

∑
PY is the cross-

covariance matrix of points pi and their corresponding closest points yi. The aligning transfor-
mation consists of a rotation matrix R and a translation vector t. The rotation matrix is based
on the unit eigenvector qR = [q0, q1, q2, q3]

t corresponding to the maximum eigenvalue of the
matrix Q. t is the vector difference between the mean position of yi and the mean position pi
rotated by R,

R =

q
2
0 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 , (2.2)

R = µy −Rµp. (2.3)

They prove that their algorithm monotonically converges to a local minimum of the mean
square error metric stated above. Leveraging this monotonicity property, they present an accel-
erated algorithm for finding the next registration transformation, formulated as a unit quaternion
vector q0−6, based on either line based or parabola based deduction in the 7-space of transfor-
mations. This typically provides them with a reduction of iterations needed from 50 to between

6

15 and 20 iterations for a given mean square error tolerance. The convergence toward a local
minimum means that the resulting aligning transformation is not necessarily the correct one.

They address global matching by relying on a set of initial states. Depending on the first two
moments of geometric variation of the shapes and coverage they limit the set of initial sets to
rotations. If this is not enough, they propose sampling the upper hemisphere of the unit 4-sphere
of possible quaternions based on rotation groups of the regular polyhedra. One can easily deduce
that its sensitivity to an initial alignment state is a limitation, although once the correct initial
state is found, global fine registration can be achieved using ICP.

Multiple improved versions of ICP have been proposed that address different concerns. In
[18] Greenspan et al. propose nearest neighbor pre-processing of the model point set in order
to speed up closest-point search by looking at local neighborhoods of the closest points of the
previous iteration. Jost et al. [24] use invariant point features to improve the point distance metric
for better correspondence. Features used are spherical harmonics, curvature and moments. A
similar approach is also followed in Godin et al. [16] such that they incorporate color information
for better point correspondences to also handle geometrical symmetries.

ICP has been used in Newcombe et al. [30] to continuously build an implicit surface registra-
tion of a complex scene in real-time using sensor data from a Microsoft KinectTM device. Their
work is targeting the field of simultaneous localisation and mapping (SLAM), which is often
used to give autonomous robots the ability to sense their environment and localise themselves
within it.

Using the data streams of a handheld Kinect sensor, they continuously track its 6 degrees-of-
freedom (6DoF) pose and integrate depth measurements into a global dense volumetric model of
the scene in real-time using the highly parallel computing capabilities of a graphics processing
unit(GPU). They use ICP on a multi-scale representation of a range scan for scan alignment to
estimate the sensor’s pose relative to the global surface.

They preprocess each scan frame with a discontinuity preserving bilateral filter to decrease
the amount of noise and therefore gain better per-point normals. They assume only small move-
ment between consecutive depth frames, which lets them use ICP with a projective data associ-
ation algorithm to obtain correspondence and the point-plane metric for pose optimisation.

2.3 Feature detection

Some approaches in surface registration rely on the identification of salient, or distinctive, fea-
ture points. One of the reasons for that is that it is important to reduce the number of points for
the correspondence search. We now want to present an overview of different feature detection
methods available in the literature.

Feature detection and description are closely related since often the distinctiveness of a fea-
ture descriptor in a given set of points is used to map a saliency measure. This step is also called
filtering, since “unimportant” points will be filtered.

In an attempt to investigate saliency as such, Chen et al. [8] analyse Schelling points, those
points on surfaces that where identified by most people based on perceived saliency, in a survey
they conducted. The idea was to find out what makes up a significant point. They concluded
that these points are usually highly symmetric across an object and often relate to points with

7

significant local curvature, points on symmetry axis or center points of segments. They also fit
an analytical model to their collected observations which can predict Schelling points on 3D
meshes.

If point normals are available, Normal Space Sampling (NSS) can be used. Introduced by
Rusinkiewicz and Levoy in [33], they group points into “buckets” according to the angles be-
tween their normal vectors (considered in the unit sphere) and the coordinate axes. To filter
points, they sample uniformly across the resulting buckets, providing a downsampling of the
points with more “frequent” normal vectors. Diez et al. build upon this idea in [11] by grouping
buckets hierarchically to speed up correspondence search during matching.

Similar to the approach presented in this thesis Ho et al. present a curvature scale space in
[19]. At each surface point pi, they estimate its local curvedness, the amount of local curvature,
expressed as a positive number. They estimate the local curvature at different scales by fitting a
manifold to the local neighborhood of different sizes. They identify salient feature points based
on the confidence in local curvedness extrema. In Section 3.6 we provide a comparison between
curvature scale space and the approach used for our algorithm, for identifying feature locations
in noisy data.

Another approach based on estimated normals by Ioannou et al. is proposed in [22]. They
introduce the multi-scale Difference of Normals (DoN) operator. It is based on the idea of the
Difference of Gaussians multi-scale operator used for 2D image recognition proposed by Lowe
et al. [27]. They estimate normals in range data using principal component analysis (PCA). The
Difference of Normals operator at point p is formulated in its basic form as

∆n̂(p, r1, r2) =
n̂(p, r1)− n̂(p, r2)

2
, (2.4)

with n̂(p, ri) denoting the estimated normal vector for support radius ri and r1 < r2. Choosing
support radii is a matter of experimentation and results in features of different scales being
filtered.

Other related work in the field of feature detection are approaches which apply prominent
algorithms from the 2D image processing domain to 3D data. Harris 3D by Sipiran and Bustos
([36]) aims at applying the well known Harris operator on a 2D projection of the point data and
considers those points as feature points that exhibit the highest Harris response.

2.4 Feature description

Once salient feature points are identified, a feature descriptor can be used to aid the correspon-
dence search between data and model surface. A feature descriptor encodes information about
the neighborhood around a feature point. What follows is a review of feature description ap-
proaches most found in the literature.

Spin Images, a localised description of the global shape of an object, was proposed by John-
son et al. in [23]. It can be modified to encompass only local information as well. The descrip-
tion is relative to an oriented basis point, i.e. a point and the surface normal at this point. Because
they need reliable normals to establish point orientation they need the shape to be represented as
a polygonal surface mesh.

8

Figure 2.1: Concept of spin images. 3 spin images constructed from 3 different basis points on
the surface shown on the lower left. Image courtesy of Johnson et al. [23]

.

A spin-image is a 2D array of bins (α, β) that encodes aggregated point positions on the
surface relative to the oriented basis point by “spinning” a sheet around the surface normal at the
basis point. For each other point, the value at the bin at its radial coordinate α and the elevation
coordinate β is increased. The concept is depicted in Figure 2.1.

They base the bin size on the mesh resolution. The amount of the neighborhood encoded in
a spin image can be controlled by 2 parameters, image width and support angle. Image width
controls the number of bins in both dimensions and defines together with the bin size the support
distanceDs. Image width is used to limit the amount of clutter encoded within a spin-image, the
support angle is used to reduce self-occlusions possibly not visible from a capture perspective.
The support angle is used in the following way.

Given a base oriented point a with normal na, a point b with normal nb will be accumulated
in the spin-image of a if

acos(na,nb) < As (2.5)

where As denotes the support angle.
This formulation basically means that points with similar normals will be accumulated. For

highly concave objects self-occlusions cannot entirely be removed but in combination with Ds

highly reduced. Matching of spin-images rests on the fact that spin-images from uniformly

9

Figure 2.2: Illustration of difference of HKS between the point marked by the purple sphere
and other points on the object’s surface over different temporal intervals [t1, t2]. The difference
increases as the color changes from red to green to blue. Left: both t1 and t2 are small, right: t1
is small but t2 is big. Image courtesy of Sun et al. [39]

.

sampled surfaces are linearly related. This means that surfaces need to be resampled before
in order to enforce uniform sampling. Similarity of spin-images is measured using the linear
correlation coefficient. For performance reasons, they also present a way to compress spin-
images of model data for later matching using PCA, and show how to match uncompressed
spin-images with compressed ones.

Sun et al. [39] present Heat Kernel Signature (HKS) to both describe the geometry around a
point p and detect salient points on a surface using those descriptors for manifolds. HKS is based
on the heat kernel kt(x, y), associated with the Laplace-Bertrami operator [39], that describes
how much heat flows from point x to point y in time t. HKS, however, is limited to the temporal
domain and thus more compact. They state that HKS is informative in that it characterizes the
local shape up to isometry and holds all information about the intrinsic geometry. They achieve
a multi-scale description by varying the time component t. In this way, they get point descriptors
for a point x that hold information about the structure of the local neighborhood with small t and
characteristics of the global structure relative to x with higher values for t. HKS for different
scales is shown in Figrure 2.2.

They define the HKS at a point p as

HKS(x) : R+ → R, HKS(x, t) = kt(x, x), (2.6)

where kt(x, x) denotes the heat kernel for a point x which is computed as

kt(x, x) =
∑
i

e−λitφ(x)2. (2.7)

Here λi and φi denote the i’th eigenvalue and eigenfunction of the Laplace-Bertrami operator
of the manifold. Sun et al. show that, in the discrete case, the Laplace-Bertrami operator can be
substituted by the Laplace operator of the mesh.

We could have also mentioned HKS in Section 2.3 because it can also be used to identify
salient points on a manifold. Sun et al. also show that in case of discrete surfaces (meshes) HKS
is closely related to Gaussian curvature, a fact they use to detect salient points as follows.

10

Figure 2.3: The intrinsic reference frame based on the principal axis e1 ans e2. a) shows the pri-
mary one whereas b)-d) depict reference frames based on a) to cover all possibilities of primary
axis directions. Image courtesy of Zhong et al. [42]

For each point p, it’s HKS is computed. A point is considered salient if it exhibits a local
maximum in HKS compared to it’s 2-ring neighborhood.

The difference between to HKS is defined as

d[t1,t2](x, x
′) = (

∫ t2

t1

(
|kt(x, x)− kt(x′, x′)|∫

M kt(x, x)dx
)2d log t)

1
2 . (2.8)

In practice, matching HKS’s of two points x and x′ at a scale interval [t1, t2] is done by creating
a vector by uniformly sampling their HKS on a logarithmic temporal scale and computing the
L− 2 norm of the vectors.

Although HKS provides stable multi-scale properties, it is limited to meshes and therefore
not applicable to point clouds. The reported computation times for calculating the matrix and
extracting the necessary 300 eigenvalues for each point lay in the minutes, which proved to be
rather time consuming compared to other techniques.

Zhong et al. [42] present Intrinsic Surface Signatures (ISS) to describe the semi-local neigh-
borhood around a basis point pi. They compute a 3D occupational histogram using a discrete
spherical grid ([20]) for a spherical neighborhood of radius rfeature around each basis point.
Each point pi is assigned a weight which is inversely related to the number of points in the
spherical neighborhood of pi with radius rdensity:

wi =
1

‖{pj : ‖pj − pi‖ < rdensity}‖
. (2.9)

They achieve view independence of the ISS by setting up an intrinsic reference frame Fi
at each basis point pi. The intrinsic reference frame consists of a coordinate system which is
estimated with PCA using a weighted scatter matrix with weights computed with 2.9. With
eigenvectors e1, e2, e3 of the scatter matrix that correspond to the 3 biggest eigenvalues the axes
of the coordinate system are formed via e1, e2 and their cross product and the basis point pi
which represents the origin. Orientational symmetries are also handled by storing 4 versions of
each intrinsic reference frame, as depicted in Figure 2.3.

With K denoting the number of spherical grid cells, the ISS for a point pi is a vector fi =
(fi0, · · ·fiK−1) where each element fij is computed as the sum of the weights of all points in
cell j plus the intrinsic reference frame Fi.

They match two point clouds by point-to-point comparison of ISS’s to find point pairs. To
calculate an aligning transformation they apply a voting scheme over all transformations which

11

Figure 2.4: Illustration of calculating the Integral Volume Descriptor for the 2D case. (a)
Gelfand et al. [15] encode the intersection of a sphere of radius r centered at point p with the
interior of the surface. (b) shows the discretization into a volume grid of cell size ρ.

align a pair of intrinsic reference frames of matching ISS. Two points match if their ISS’s are
similar and they satisfy the transformation with the maximum vote.

They formulate their measure of match between two point clouds P and Q as

Ecomprehensive =
Eresidual(P,Q)

Similarity(P,Q)
. (2.10)

Eresidual specifies the positional residual between matching point pairs and Similarity mea-
sures the number of matching point pairs Nc versus the geometric mean of the numbers of basis
points of each point cloud NP and NQ,

Similarity(P,Q) =
Nc√

NP ·NQ

. (2.11)

This measure of match is still based on local descriptors and does not provide a concrete
answer on whether or not two point clouds match globally, and together with the fact that an
intrinsic reference frame has three siblings based on symmetries, adds another factor of uncer-
tainty.

Gelfand et al. [15] argue that differential surface properties like normals or curvature are
very sensitive to noise. They propose an integral measure as their local surface descriptor. They
present the Integral Volume Descriptor. Given a sphere Br(p) with radius r centered at surface
point p, they count the number of voxels which lie inside the surface boundary. They setup an
occupancy grid and intersect it with the sphere. The descriptor is then the amount of voxels of
the sphere that fall inside the surface. See Figure 2.4 for the 2D case. The volumetric descriptor,
assuming a simply-connected intersection between the convolution kernelBr(p) and the surface
S, is related to the mean curvature H as follows,

Vr(p) =
2π

3
r3 − πH

4
r4 +O(r5). (2.12)

12

They also use their descriptor to identify salient points. After calculating the descriptor for
every point of the data surface with cardinality N , they create a histogram and select the k least
populated bins such that the total number of points in them is less then 0.01N , N being the total
number of points in the point cloud. They also limit the minimum distance of the selected points
to a radius Re which is based on a predefined noise model.

For scale invariance, they employ a scale-space strategy by calculating the volume descriptor
for 5 radii ri between 10ρ and 0.1 times the diameter of the shape. ρ is the resolution of the voxel
grid. They consider a point p a feature only if it is selected from the volume descriptor histogram
for at least 2 consecutive radii. By deriving the scale-space radii from the diameter of the shape,
they are able to relate feature points of the data and model shape based on their scale.

They identify correspondence candidates on the model surface using an intrinsic metric,
the distance root mean squared error (dRMS). The dRMS error is computed by comparing all
internal pairwise distances of the two point sets, and is defined as

dRMS2(P′,Q′) =
1

n2

n∑
i=1

n∑
j=1

(‖pi − pj‖ − ‖qi − qj‖)2. (2.13)

This way they do not need to calculate a transformation to evaluate the model points for corre-
spondence. For each point on the data surface, they identify a correspondence candidate set of
points of the model data and use a branch-and-bound algorithm to find the best correspondences.
They leverage the rigidity constraint to prune away correspondence candidate branches. Once
the best correspondences for the feature points are found, they calculate an aligning transfor-
mation and repeat the process with an updated bound for the branch-and-bound algorithm until
they reach a minimal error. This way however, even though a lot of pointwise correspondences
are found for the feature points, there is no guarantee that the remaining data points have real
correspondences in the model data.

For partial matching they introduce a non present value ∅ as a possible point correspondence
setting in their correspondence search. To get the maximum number of valid correspondences,
while still keeping dRMS as low as possible, they run their branch-and-bound algorithm with
varying numbers k of assumed points missing in the model data.

2.5 Feature-agnostic alignment

Chen et al. [7] present RANSAC-based DARCES, an algorithm which searches for point cor-
respondences by evaluating them with respect to a rigidity-constraint. Their output is a rigid
transformation TC which aligns the data surface with the model surface.

Different than the literature presented so far, they do not exploit local point features, like
normals or curvatures, but instead propose uniform subsampling of the surface to reduce the
number of data points as search space. They argue that no pre-processing is needed this way,
and thus time saved.

In their basic algorithm, they identify three control points on the data surface: the primary
point Sp, the secondary point Ss and the auxiliary point Sa. Three point correspondences are
needed to calculate a least mean square (LMS) transformation with 6DoF. On the model surface,

13

Figure 2.5: The rigidity constrained search in RANSAC-based DARCES for three control
points Sp, Ss and Sa. a) shows the initial setup of the primary point Sp, the secondary point
Sp and the auxiliary point Sa on the left. How the corresponding point Ms for the secondary
point is found once a correspondence candidate Mp for the primary point is chosen, is depicted
on the right side. A sphere of radius dps is centered at Mp and all points at the intersection
border of the sphere and the surface are possible candidates for the secondary point. b) shows
how to get the corresponding point of the auxiliary point. Image courtesy of Chen et al. [7].

they start from a randomly selected point Mp as the correspondence for Sp and select two more
points such that they form a similar triangle as the one spanned by Sp, Ss and Sa, as depicted in
Figure 2.5. If they can identify such three points, they use the correspondence pairs to calculate
a transformation which is then used to transform all the remaining subsampled points Sr,i of the
data surface. The alignment quality is then measured as the number n0 of successfully aligned
Sr,i. They call a point successfully aligned if its distance to the model surface is smaller than a
given threshold but do not provide further details on which metric they use or whether they base
their threshold on a specific model.

They use the first three control points to calculate a transformation TC and then transform
each of the remaining control points and evaluate the rigidity constraint. If the rigidity constraint
is violated by one of the transformed control points they discard the transformation and proceed
with the next possible three point correspondence. In this way, they do not check all the points
of the data surface for correspondence for each three point correspondences found in the model
data.

In addition, they provide explanation on how to use more than three points. Arguably, using
more than three points speeds up correspondence search in the case when the data surface is
fully contained within the model data.

The RANSAC-based approach rests on the verification process. Several control point sets
are used to find correspondences. Verification is done by measuring the number n0, or over-
lapping number, of points of the data surface that have a corresponding model data point. The
transformation with highest n0 is considered an aligning transformation. By its optimisation-
nature, their verification does not guarantee an aligning transformation since only the “best”
transformation is accepted and manual verification is still needed. This is the most commonly
used verification procedure found in the literature. They only guarantee the optimal solution in
case of noiseless data, and when the data surface is fully contained within the model data, since
they can evaluate all possible transformations.

The algorithm presented in this thesis was heavily inspired by RANSAC-based DARCES

14

Figure 2.6: The concept of congruent 4-points by Aiger et al. [1]. Using a quadrilateral base of
S1, the idea is to find a 4-point set in S2 such that specific ratios are preserved.

Figure 2.7: Identifying congruent 4-points in a target surface Q. Given a base of 4 roughly
coplanar points a, b, c, d calculate ratios r1 and r2 (left). With a point pair (q1, q2) ∈ Q, calculate
intersection point candidates for each ratio for both directions (middle). 2 point pairs for which
intersection points for the correct ratio coincide can be considered for congruency test (right).

such that it also identifies triples of points and identifies correspondences between triples points
based on a rigidity-constraint.

Aiger et al. [1] follow a similar approach. They extract correspondences between 4-point
sets, four (roughly) coplanar points, of each surface. The key idea is the following: Under
affine transformations certain ratios are preserved. Given two point clouds P and Q, they
follow a RANSAC approach and select from P a random quadrilaterial base, ie. 4 points
B ≡ {a, b, c, d} which are roughly coplanar and roughly span the estimated overlap of the sur-
faces. Using this base, they find congruent 4-point sets in Q. For each such a candidate, they
estimate a transformation which aligns it to the base of P . Figure 2.6 shows the concept.

The 4-point set exhibits the following properties. The intersection point e of the lines ab and
cd is used to calculate ratios r1 = ‖a−e‖

‖a−b‖ and r2 = ‖c−e‖
‖c−d‖ . The interesting finding is that these

ratios are preserved under affine transformations.
With distances d1 = ‖ab‖ and d2 = ‖cd‖, they identify subsets R1, R2 ⊆ Q such that

R1 ≡ {(qi, qj)|qi, qj ∈ Q, ‖qi − qj‖ ∈ [d1 − ε, d1 + ε]} (2.14)

15

R2 ≡ {(qi, qj)|qi, qj ∈ Q, ‖qi − qj‖ ∈ [d2 − ε, d2 + ε]} (2.15)

with ε being a user defined inaccuracy measure. To all those point pairs, they apply ratios
r1 and r2 for both directions, which gives them 4 intersection point candidates per point pair.
The combinations of pairs of R1 and pairs of R2, which have coinciding intersection point
candidates, form congruent 4-points that can be used to estimate a transformation which aligns
them toB. The concept above is depicted in Figure 2.7. Each extracted transformation is applied
to Q until a Largest Common Pointset (LCP) between P and Q is found.

In principal, their approach is not dependent on point features or the use of other surface
characteristics, e.g. color, but can be enriched by them to aid the correspondence search. They
also show how to incorporate pointwise normals in their approach, as an example.

The point to note about 4-point congruent sets is that, although only 3 points would be
necessary to estimate a 6DoF transformation, using quadrilaterals as base, they can reduce the
runtime complexity of the correspondence search to O(n2) because they only need to identify
point pairs.

An improved version of the 4-PCS, aiming at reducing the time complexity, was proposed
by Mellado et al. [28]. They tackle the most computationally complex part of the approach by
Aiger et al., which is the extraction of point pairs which are d1 and d2 apart. They formulate it
as an incidence problem of points and spheres. They apply a grid based approach in which they
recursively rasterize spheres of radius d1 and d2. The spheres are centered at points qi ∈ Q.
They then subdivide cells which have an incidence with the spheres. They adaptively index
points based on the grid cell they are in, and build point pairs between the centers of the spheres
and the points in the cell reached by the sphere. This gives them optimal linear time.

For our comparison in Section 4.2 we chose Super 4-PCS due to its global and featureless
nature.

2.6 Commodity ranger scanners: the Microsoft KinectTM

The algorithm for this thesis was implemented while having a Microsoft KinectTM device of
the first and second generation as a data source in mind. The differences in how they acquire
depth information are important to know how they affect the noise of point measurements. A
detailed description will be provided in Section 3.4, but the high-level differences in capturing
depth information are as follows.

Kinect v1 measures depth based on triangulation. An infrared speckle pattern is projected
into the scene and its reflection captured by an infrared sensor. The expected pattern at a ref-
erence plane of known distance is stored within the device. Since the infrared sensor does not
coincide with the projector, it will observe displacements of the projected pattern at objects of
different distance to the projector. This disparity can be used to calculate the distance of the cap-
tured object using triangulation. The fact that depth measurements are based on triangulation
leads to a depth measurement error as a quadratic function of the measured distance, [25].

Kinect v2 measures depth using the Time-of-Flight principle. It measures how long it took
for the infrared light projected into the scene to arrive back at the infrared sensor after being
reflected by objects. This is done by correlating the incoming signal phase via a known phase

16

modulation frequency with light emitted by the infrared laser projector, [35]. This leads to a
linear depth measurement error function as reported by Pagliari et al. [31].

2.7 Summary

In this chapter a literature review in the field of surface registration was provided, focusing on
feature detection and feature description algorithms. We first covered the ICP algorithm as a
solution for fine registration. After that we presented multiple solutions for feature detection
and description. Feature-agnostic approaches, which do not depend on surface characteristics
at a given point, were also presented. We furthermore provided a short summary of how depth
is captured in commodity range scanners. In the next chapter a detailed description of our
algorithm will be covered.

17

CHAPTER 3
Tolerant global registration

In this capter a detailed description of the approach taken for this thesis is provided. First,
the most important aspects used in the description are defined, followed by each step of the
algorithm accompanied by the registration of two synthetic range scans of the Stanford Bunny
as an example. Code was written in the C++ programming language1 using the OpenCV2 library
for its well documented matrix calculation and image processing-routines.

3.1 Definitions

The spatial error of a measurement made with a range sensor is usually modelled as a Gaussian
distribution. We employ the error sphere as a simplified assumption of the error model, instead
of an ellipsoid reflecting the cut-off of the Gaussian distribution modelling the error at a given
position.

A point triple is a set of three points a, b and c that together make up a triangle with edges
ab, bc and ca. Each point of the triple is a point of the point cloud that results from reprojecting
the range scan to 3D and therefore subject to the noise model of the sensor that captured the
point cloud. Hence the length of each edge is specified as an interval

[
lmin, lmax

]
with

lmin = ‖ab‖ − (ra + rb) (3.1)

lmax = ‖ab‖+ (ra + rb) , (3.2)

rp being the radius of the error sphere centered at triangle point p.
Only three point correspondences, the position of these points being subject to sensor noise,

are used to calculate a transformation candidate that minimizes the distance between correspond-
ing point pairs of both point cloudsA andB. This leads to a transformation T̂ that minimizes an
error function, e.g., least squares, that only takes into account those point pairs of corresponding

1https://isocpp.org
2http://opencv.org

19

https://isocpp.org
http://opencv.org

point triples used to estimate it. Effectively, this means that all other points of the point cloud A,
after transformation, are not as close to their corresponding points of B as they could be if the
error function would have been minimized globally, i.e. over all points of the point cloud. Given
a candidate for an aligning transformation T̂ estimated using corresponding point triples ta and
tb consisting of points ai and bi with their respective error sphere radii rai and rbi, a point p of
A transformed by T̂ ,

p̂ = T̂ ∗ p, (3.3)

has to be evaluated for correspondence incorporating a transform tolerance r̂tilt. The trans-
form tolerance models the fact that the points of ta used to estimate T̂ are inaccurate measure-
ments and, would they be displaced withing their error spheres, a different transformation T̂e
would have been estimated and p would be transformed to a different position,

p̌ = T̂e ∗ p. (3.4)

Transform tolerance r̂tilt of p is therefore

r̂tilt = ‖p̂− p̌‖ . (3.5)

In this way, we incorporate inaccuracy awareness into our transformation verification pro-
cess. For further details on calculating the transform tolerance see Section 3.11.1.

3.2 Algorithm Overview

Here we provide an overview of all the steps involved in the registration process, followed by an
overview of both Microsoft KinectTM devices and their characteristics. A detailed explanation of
every step of our algorithm is then provided, starting at Section 3.3, which defines the involved
parameters and provides a short explanation of their usage. We will now list each step of our
algorithm, see Figure 3.1 for an illustration:

• 3D position and error calculation: The 3D point clouds are projected from the range
scans and pointwise spatial error radii are calculated using a scanner-dependent error
model, taking into account discretization due to pixelation and depth measurement noise.
See Section 3.4.

• Occlusion detection: We identify points that lie on the object’s silhouette and boundaries
of self occlusion in the image domain using a 2D image filter. See Section 3.5.

• local curvature estimation: We use the information gathered from occlusion detection so
we can reliably fit a quadratic surface to a point’s local neighborhood and evaluate the
curvature of the surface. See Section 3.6.

• Feature identificatin: We then identify local curvature maxima as salient feature points.
See Section 3.7.

20

Figure 3.1: Flow chart of the proposed algorithm which highlights the main steps involved.
The algorithm terminates either with an aligning transformation or if no more transformation
candidates are available or the process times out after a specified period of time.

• Feature filtering: We filter feature points based on multiple criteria to shrink the search
space of correspondence search. See Section 3.8.

• Global descriptor setup: We set up our global descriptor based on point triples that incor-
porate the previously computed pointwise spatial error radii, See Section 3.9.

• Transformation estimation: Global descriptors of the target and reference range scans are
iteratively matched by randomly selecting a point triple of the reference scan and finding
matching point triples in the target scan by comparing the edge lengths between the points
constituting each point triple using a sweep and prune approach. A candidate for an
aligning transformation is calculated with Singular Value Decomposition (SVD) using the
three point correspondences of the matching triples. See Section 3.10.

• Match verification: The estimated transformation is verified by first testing Invalid Free
Space violations and Invalid Occupied Space violations of every point of the target scan
against a subset of the reference scan that in image space is covered by the evaluated target
point’s transform tolerance volume. If that test passes, the transformation is again verified
by aligning the reference scan to the target scan and only then is a transformation consid-

21

ered an aligning transformation. This is in contrast to other work found in the literature,
where only a measure of match quality can be given based on stochastic estimates. See
Section 3.11.

Transformation estimation and match verification are done iteratively, and our algorithm
terminates either if a match could be verified or if no more matching point triples are left to
estimate another transformation candidate. Additionally, we introduced a timeout parameter,
which can be used in case a decision needs to be made in a certain period of time.

3.3 Parameters

Before entering the algorithm implementation in detail, a short description of the available pa-
rameters is shown below.

• Occlusion threshold (τo): A global threshold on the depth difference between neigh-
boring pixels of the 2D range scan to identify points at boundaries of the object or self
occlusion. Specified in scene dimensions.

• Curvature absolute minimum threshold (κmin): A global threshold to filter points with
low curvature response.

• Maximum triple edge length (λmax): Threshold used to limit the size of a point triple
expressing the expected diameter of overlap between scans. Specified in scene dimen-
sions.

• Minimum triple edge length (λmin): Threshold to choose wider point triples to reduce
the possible transform tolerance. More details will be shown in Section 3.11.1. Defaults
to 0.

3.4 Calculating 3D point positions and pointwise errors

The presented algorithm processes a point cloud in 3D space. The first data preparation step
described here will set up an association of each pixel that holds valid depth information with
a pair of 3D point and error radius. The input for this step is a range image. Its output is a list
of 3D points together with their error radii. Each point is associated with a pixel in the original
range image.

As covered in Chapter 2, different surface-registration techniques work on data of varying
representations. It can be in the form of a 3D mesh, which is a essentially a connected graph with
nodes V as 3D positions and edgesE connecting neighboring nodes, an unstructured point cloud
with no neighborhood information, or a range image, which can be seen as an image where the
value at each pixel describes the distance of the first object visible to the scanning device at that
particular pixel at the time of capture, measured as the distance to a plane perpendicular to the
viewing direction of the range sensor. Our implementation rests heavily on the fact that, using
a range image, its 2D nature provides an inherent neighborhood information between points,

22

which is not available when using an unordered 3D point cloud. Furthermore, dealing with a
range scan in terms of an image makes it possible to leverage image-processing routines, like
edge detection, that are well known and have good software support. Therefore, when registering
two range scans, we operate on two images IR and IT captured by one or two distinct range
sensors. Each pixel of IR,T that covers the captured object holds a distance in millimeters. A
value of 0 at a pixel indicates either a measured distance outside of the sensor’s reliable range
or that the sensor itself reported invalid data for that pixel, so only non-zero pixels will be
processed.

Given the input in the image domain, the goal of the data preparation stage is to derive the
3D position of a point corresponding to a pixel as well as its spatial error sphere. The latter is
the volume around the measured point in which the ground-truth surface point could actually
lie. The aim is to establish a correlation of a pixel to a 3D point together with an error measure,
p ∼ (p, re), with p being the image domain pixel, p being the 3D point associated with it and re
the radius of the error sphere centered at p.

3D position

To derive the 3D information of a pixel p, it has to be reprojected to 3D space. To do this, the
intrinsic parameters, i.e., focal length for both image axes fx, fy and radial distortion parameters
k2, k4 and k6, of the scanning device the scan was captured with have to be known. To incor-
porate the spatial uncertainty of the scanned point into the pixel-point mapping, two sources of
spatial error were identified, discretization due to pixelation and sensor noise.

To be able to establish correct correspondences, we need to map pixels of different range
sensor outputs to the same coordinate system relative to the scanning device. This coordinate
system is defined by the three axis vectors xc, yc and zc. We chose the prevalent right-handed
coordinate system in computer graphics with yc pointing to the top of the device, zc pointing in
the opposite viewing direction and xc resulting from the cross product of yc and zc. Given an
image pixel p = (x̂, ŷ, d), x̂ and ŷ denoting the 2D image pixel coordinates and d the measured
distance in millimeters, the reprojection of p to p = (x, y, z), denoted as P−1 : p→ p, is given
by

xp = x̂n ∗ δ ∗ d
yp = −1 ∗ ŷn ∗ δ ∗ d (3.6)

zp = −d

with normalized pixel coordinates pn = (x̂n, ŷn)

x̂n = (x̂− cx)/fx (3.7)

ŷn = (ŷ − cy)/fy.

fx,y denote the focal length in pixels and cx,y the center of projection, also given in image-
space coordinates. δ denotes the radial distortion factor for pixel (x̂, ŷ) and radial distortion

23

Figure 3.2: Decoded disparity values given in pixels around the reliable depth range of 800mm
to 4000mm of the Microsoft KinectTMv1. Disparity is given in pixels on the x-axis. Decoded
distance is represented on the y-axis and given in millimeters.

parameters k2, k4 and k6 given by

δ = 1− k · rT , (3.8)

k =

k2k4
k6

, r =

 ‖pn‖2

(‖pn‖2)2
(‖pn‖2)3

Error

The error re of p is calculated as
re = max(rd, rn) (3.9)

rd is the error based on discretization and rn the error based on sensor noise.

Discretization Error

rd is measured as the maximum Euclidean distance in 3D space between points p and qi of pixel
p and pixels qi corresponding to the 8-neighborhood of p, i.e.

rd = max(‖p− qi‖). (3.10)

As described in Section 2.6, dz is a special case when operating on data obtained with the
Microsoft KinectTM v1 sensor, because the value at a depth measurement pixel retrieved using

24

the OpenKinect3 driver gives depth encoded in 11-bit precision integer values draw, and to get
to the real depth value, the raw data has to be decoded with

d = 1000.0/(draw ∗ −0.0030711016 + 3.3309495161), (3.11)

which gives better resolution at close distances but precision decreases with increasing distance
as can be seen in Figure 3.2. The reliable depth range is reported 4 within 800 to 4000 mil-
limeters. This can lead to higher discretization errors based on depth precision than on pixel
neighborhood. Therefore, to calculate the possible discretization error for a measured depth
value d, the corresponding encoded value d̂ for d is increased by 1 and decoded again, which
gives d1. The discretization error for the given pixel is then

rd = max(‖p− q‖ , dz) (3.12)

dz = ‖d− d1‖. (3.13)

Sensor Noise

The error based on sensor noise rn is calculated as a function of x̂, ŷ and d using a model for
each axis provided by Choo et al. [9] in case of the Kinect v1 sensor and as a function of d as
described in Fankhauser et al. [14] for the Kinect v2 device. Both use a quadratic model with
estimated parameters. For the sake of completeness we want to present them here.

The noise model for the Kinect v1 is based on a quadratic surface fitted to consecutive
measurements. For the z axis the model can be used directly, but for axes x and y the image is
divided into 8x8 tiles and

x̂r =

⌈
x̂

640/8

⌉
ŷr =

⌈
ŷ

480/8

⌉
. (3.14)

The sensor noise at pixel p along axis a ∈ {x, y, z} is then calculated with

f(x̂, ŷ, d, a) = β1,ax̂
2+β2,aŷ

2+β3,ad
2+β4,ax̂ŷ+β5,ax̂d+β6,aŷd+β7,ax̂+β8,aŷ+β9,ad+β10,a

(3.15)
with coefficients βi,a given by Table 3.1.

The model provided by Fankhauser et al. [14] for Kinect v2 only takes into account the
depth component d but incorporates an angular component, which denotes the angle θ between
the surface normal at pixel p and the vector pointing form p to the position of the sensor.

With dm denoting the measured distance in meters, the sensor noise can be computed with

f(dm, θ) = 1.5− 0.5dm + 0.3d2m + 0.1d
3
2
m

θ2

(π2 − θ)2
. (3.16)

Assuming a uniform distribution of surface normals of the scanned objects, θ was used as
a conservative constant with 60◦ in radians (approx. 1.047), so normals did not have to be
computed. The behavior of the used noise model is depicted in Figure 3.3.

3https://openkinect.org
4https://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges

25

https://openkinect.org
https://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges

x y z
β1 1.1225e-01 6.3038e-01 2.0000e-05
β2 6.3801e-01 2.6496e-01 2.0000e-05
β3 3.5751e-06 1.3279e-06 1.2500e-6
β4 4.0645e-03 1.5000e-02 2.0000e-06
β5 0-1.4951e-04 9.0174e-05 3.5000e-09
β6 07.0336e-05 3.3417e-04 3.5000e-09
β7 0-5.6762e+00 -5.9320e+00 -1.0002e-02
β8 0-8.0153e-01 -2.4411e+00 -1.002e-02
β9 0-3.1496e-03 3.1239e-03 -1.5025e-03
β10 1.2996e+01 1.0995e+01 1.4515e+00

Table 3.1: Coefficients for the quadratic model to calculate noise along the corresponding axis
as described in Choo et al. [9]. Each column represents the error along the given axis.

Figure 3.3: Effect of surface angle and distance on measurement error of the Microsoft
KinectTM v2. Image courtesy of Fankhauser et al. [14].

3.5 Occlusion detection

After calculating 3D position and error radius for each pixel, the next step will mark each pixel if
it is part of an occlusion boundary. Since a range scanner can only store the distance information
of the nearest object it “sees” at each pixel, all other objects, or parts of objects, behind the
nearest one along the projection direction are said to be occluded at that pixel. Occlusions have
to be taken into account because of two reasons, which are depicted in Figure 3.4.

The first reason, as shown in Figure 3.4 a, is to get reliable estimates for the local curvature at
a surface point. Curvature is a differential quantity of a surface and occlusion boundaries mark
discontinuities. When fitting a quadratic surface to a local neighborhood, care has to be taken to
not select points for the support neighborhood of that point that lie across occlusion boundaries

26

Figure 3.4: Occlusions have to be taken into account for reliable curvature estimation as de-
picted in a). Capture direction is depicted as v0. Had the points in grey also been used for fitting
a quadratic surface, the resulting curvature would be less reliable. Using only the points in black
leads to reliable local curvature estimates. Also, as shown in b), when selecting local curvature
maxima as reliable features from capture v0, we cannot use points at occlusion boundaries since
local curvature could increase from another perspective, i.e., v1. A potential local maximum is
shown in red. A surface patch that was missing during capture is depicted as a dotted line. A
more reliable local extremum, shown in blue, would be visible from another perspective.

Figure 3.5: Range scan image with occlusion pixels marked in red.

and therefore do not belong to the same object or surface patch.
The second reason is that capturing the same object from multiple viewing positions may

expose features that are occluded from one point of view but are visible from another. We
identify features as local extrema of surface curvature. If such extrema lie on an occlusion
boundary they are not reliable. This is because it is possible that curvature would increase even
further along parts of the surface that are occluded.

Since a range scan is an image with the depth of the captured point as the value at each
pixel, occlusion detection is implemented as a simple edge detection in screen space using a
Sobel filter to calculate the gradient magnitude at each pixel. The image is convolved with
the Sobel kernel to calculate first derivatives, or gradients, along the horizontal and vertical
direction, [37]. The gradient magnitude is then thresholded using an occlusion threshold τo

27

mentioned in Section 3.3, which states how much neighboring pixels can differ in distance to
the camera and still be assumed to belong to a continuous surface patch. This parameter has to
be explicitly specified.

Formally, whether or not a pixel coordinate (x, y) lies on an object’s silhouette is given by
G(x, y) > τo for a given occlusion threshold τo, with G defining the gradient magnitude of each
pixel of range image Ir, i.e.

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ Ir, Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗ Ir
G =

√
G2
x +G2

y. (3.17)

Detected occlusions for one scan of the Stanford bunny can be seen in Figure 3.5.

3.6 Local Curvature Estimation

Since we identified local surface curvature extrema, the next step estimates local curvature. We
will end up with a curvature image C which, for each pixel location p of the original range scan,
holds the local curvature value c at p.

With occlusion pixels detected, the next step consists of estimating the local curvature at
each non-occlusion pixel corresponding to a point of the scanned object, by fitting a quadratic
surface to the local neighborhood of that point. We chose the sphere as an approximation of the
local surface patch. This is a trade-off between accuracy and simplicity. Although techniques
like the one by Cazals et al. [6] exist to fit arbitrary quadratic surfaces, the sphere geometrically
better matches the object features we want to detect, like bumps and dents. Also, noise would
have a bigger impact on the fitted surface when fitting arbitrary quadratic surfaces. The sphere,
on the other hand, has led to a good representation of local curvature behavior.

With the error radius re at each point p known, the size of the local neighborhood Np of p
is simply given as 4 ∗ re. The factor 4 was chosen empirically and led to reliable local curvature
estimates. To be able to leverage the 2D neighborhood information of the scan data, it is nec-
essary to transform the error radius given in object space to the 2D image domain. To get the
image-space equivalent of Np, N̂p, a sphere Se with radius 4 ∗ re centered at p is projected to
the image space of the range scan using the inverse of the re-projection defined in 3.6 with the
characteristics of the scanning device as described in 3.4.

It is now necessary to remove pixels of the image-space neighborhood N̂p which can only
be reached by crossing occlusion boundaries found during occlusion detection described in Sec-
tion 3.5. This is achieved by applying the floodfill algorithm starting at pixel location p corre-
sponding to the point p in object space. This yields a floodfilled neighborhood N̂ff .

Pixels in N̂ff can still correspond to points in object space that lie outside Se, so the sphere
has to be fitted to all points

pi ∈ Nfit = {p ∼ p ∈ N̂ff \ pi, ‖pi − p‖ < re}. (3.18)

28

rf

4*re

re

c)

b)

a)

Figure 3.6: Sphere fitting procedure (assuming orthogonal projection for simplicity) for one
point p (blue). The 3D neighborhood determined by the point error of p by splatting a sphere of
radius 4∗re to image space (a). Floodfill with p as seed pixel is performed to filter out occlusion
points (b). A sphere is fitted to the remaining neighborhood (c).

Fitting a sphere to points of Nfit is done using an extension of the work of Al-Sharadqah
et al. [2] on algebraic circular fitting to 3D space formulated as an Eigenproblem that provides
a smaller regression bias than previous techniques. See Prieler et al. [32] for a more detailed
explanation of the method. The fitting process yields a sphere of radius rf , so the local curvature
estimate c at point p is given as

c = 1/rf . (3.19)

Since at least 4 points that are not co-planar are necessary to define a sphere in 3D space, neigh-
borhoods of |Nfit| < 4 yield c = 0. The 2D case of the process of sphere-fitting to a local

29

Figure 3.7: Range scan image with estimated curvature

neighborhood of a point p is shown in Figure 3.6
Figure 3.7 depicts the estimated curvature for each pixel of the used range scan.

3.7 Local maximum detection

To be able to setup a global descriptor, a list of feature locations in range-scan image coordinates
is extracted next. To identify salient feature points as local maxima of the curvature response,
the curvature image C of the range scan image is filtered with a 3× 3 kernel ω centered at p. A
pixel location p is identified as a local maximum if c(p) ≡ max(cω).

The 2D nature of this formulation provides the possibility to fully leverage the neighbor-
hood information inherent to the range-scan image pixels and take advantage of parallelization
techniques for image processing routines, since every pixel can be processed independently of
the other.

Local maxima which are located at pixels pm of the silhouette of the object and occlusion
boundaries are ignored since there is no supportive information available whether they really
correspond to a local curvature maximum of the surface or not, because captured from a different
perspective the curvature might still increase in the neighborhood of p ∼ pm, as described in
Section 3.5.

Since discretization artefacts have not been accounted for until now, it is possible that many
local maxima will be identified based on discretization. Also, using a wide kernel during curva-
ture estimation damps the impact of noise, but local extrema based on noise will still be apparent.
Also, at a higher sampling density more local extrema can be detected since smaller details are
captured. The curvature fitting kernel radius is defined in 3D space and is therefore independent
of sampling density. Increasing sampling densities could, however, still introduce additional
local extrema in the curvature response. These will still include the local extrema identified at
lower sampling densities as long as the feature is not missed entirely during sampling. Figure 3.8
shows the effect of higher sampling density on the amount of features detected for 2 scans made
of the Stanford bunny that only differ in capture distance.

30

Figure 3.8: Comparison of identified local curvature extrema at different capture distances. The
left side shows both scans with identified local curvature maxima as red dots. The right side
shows the scan made from a higher distance (left upper subfigure) with the covered area of the
closer scan (left lower subfigure) marked in orange. Red local extrema were identified in the
farther scan but not in the close scan. Local extrema identified in the close scan but not in
the farther scan are marked in purple. Green extrema depict spatially matching locations in
the farther scan. Turquoise points mark local extrema identified in the close scan which have
corresponding points in the farther scan (green). Local extrema were considered corresponding
if their spatial error spheres intersect.

The local maximum detection step yields a list M of pixel locations {pi}. In Figure 3.9,
local curvature maxima of the Stanford bunny range image are marked. Until now the amount of
feature points would lead to an unfeasible number of feature triples later, so the next step filters
unreliable extrema.

3.8 Feature Filtering

A drawback of local curvature is that its behavior is highly sensitive to noise. Many of the local
curvature maxima identified in the previous step will therefore be based on noise instead of the
actual surface. To reduce the amount of point triples set up in Section 3.9, the number of features
used has to be reduced. The output of the filtering step will be a reduced list of feature locations.

By using a wide kernel for fitting a spher, we reduced the impact of noise on the local
curvature estimate. The effect of wider fitting kernels on estimated curvature can be seen in
Figure 3.11 on the right. Curvature peaks still remain, but differences between adjacent curvature
peaks and valleys based on noise are heavily reduced.

31

Figure 3.9: Range-scan image with marked local curvature maxima. As can be seen, noise and
small geometrical details led to many more local curvature extrema being detected than would
be necessary for efficient registration.

3.8.1 Curvature Scale Space – not satisfactory

To gain a resolution-independent representation of the local curvature at a surface point, Ho
et al. [19] propose a curvature scale space. They perform curvature estimation similar to the
procedure described above on neighborhoods of varying sizes (or scales) ki, hence the term
scale space. It is based on the idea of scale invariant feature transform (SIFT) to detect scale
invariant salient feature points as local maxima of a Difference of Gaussians scale space with an
image blurred with a Gaussian kernel with increasing σ, [27].

This approach was also attempted by varying the factor to calculate the size of Np. For each
scale k the size of Np is given by k ∗ re and the resulting curvature as c(k, p). Broadening the
fitting kernel is approximately equivalent to further smoothing the scanned surface to reduce
the impact of sensor noise, so a wider fitting kernel yields a curvature response which is less
perturbed by noise.

Exploiting the curvature scale space, a salient feature point is then identified as a local max-
imum across several scales. A point p refers to a feature point if a local maximum was detected
at the corresponding pixel location p of point p at consecutive scales ki−1, ki and ki+1. This
approach, however, did not yield satisfactory results in terms of the number of detected feature
points since local maxima were not stable enough across scales, as can be seen in Figure 3.10
for a 2D example.

3.8.2 Filtering features based on curvature confidence – not satisfactory

One approach to filtering feature locations was to look at the distribution of curvature values
in a local neighborhood of pixel p of the same size as the fitting kernel, similar to the method

32

Figure 3.10: 2D visualization of feature detection based on stable local curvature scale-space
maxima. Scale sizes k varied from 0.87 to 1.59, with corresponding graphs colored in blue to
red respectively for better visual distinction. Ground-truth feature locations are marked as blue
points, while features stable across 3 adjacent scales are marked as red points. Not only are only
2 of 6 detected but also features are detected at multiple locations.

proposed by Ho et al. [19]. The confidence in a curvature value at a pixel location p is defined
as

γ(p) =
|c(p)− µc|

σc
. (3.20)

Feature locations are removed if the confidence lies below a confidence threshold γt with

µc =
1

|Nf |
∗
∑
Nf

c(pi) (3.21)

σc =

√√√√ 1

(|Nf | − 1)
∗
∑
Nf

(c(pi)− µc)2. (3.22)

Filtering feature location by confidence did not lead to good results, and instead of remov-
ing features solely based on noise and keeping features on curved surface patches it had the
opposite effect. A 2D example of the effect of confidence filtering compared to the effect of
filtering features that share shallow valleys can be seen in Figure 3.11. As can be seen in case of

33

Figure 3.11: Comparison between filtering features based on curvature valleys as opposed to
a confidence threshold for a 2D case. On the left side, a sinusoidal curve and a flat line, both
of which have been perturbed by Gaussian noise, are shown with the corresponding curvature
confidence, for two different fitting kernel sizes, k = 0.85 and k = 1.57. Features identified
by confidences higher than the marked threshold are marked with dots. On the right side, the
same noisy curves are shown with their corresponding curvature response for the same two
kernel sizes. The identified feature locations for each kernel size using our approach are marked
by dots. Ground-truth feature locations on both sides are marked with a vertical blue line.
It is clear to see that features identified using a curvature valley threshold correspond much
better to the ground truth and that no features were identified for the flat line. In case of the
confidence threshold for the sinusoidal curve, too many features were filtered, and the flat line
feature identification seems to exhibit random behavior.

zero ground-truth curvature, increasing the neighborhood size reduces the absolute response of
curvature estimates but still exhibits random variation that leads to unreliable confidence peaks.

3.8.3 Filtering features based on curvature saliency – satisfactory

To get stable features, locations identified in Section 3.7 are filtered taking the curvature at
pi ∈ M and looking for other feature locations q ∈ M that exhibit higher local curvature,
c(q) > c(pi). If q and pi share an adjacent local curvature minimum at location pv, with c(pv) >
c(pi)−ε, we call pv a curvature valley connecting q and pi and discard pi fromM . In this way, we
focus on more salient feature locations and discard those based on minor surface perturbations
and reduce the feature density around local maxima. ε was set empirically to 0.0001.

Additionally, a global absolute curvature threshold κmin is applied to filter local curvature
maxima that do not satisfy c(p) > κmin.

34

Figure 3.12: Range scan image with marked feature locations after filtering.

3.8.4 Considerations regarding the range scanner error model

Range scan images captured with Microsoft KinectTM devices exhibit increasing sensor noise
near image corners ([9, 14, 41]), so a second filtering step is performed that removes feature
locations lying outside of an ellipse centered at the range image center and having its major
axes of horizontal length 0.8× (w2) and vertical length 0.8× (h2), w and h being the number of
columns and rows of the range scan image.

The resulting set of filtered feature locations Mf for the Stanford bunny range scan is shown
in Figure 3.12.

3.9 Global Descriptor

In this step we will set up the global descriptor of point triples using the remaining feature
locations in the previous step. Our algorithm produces a set of point triples which will later be
used to find correspondences.

To be able to calculate a transformation that maps the points of the target range scan ST to
points of the reference range scan SR, it is necessary to find correspondences between points
of either range scan. In most cases, this is done by pointwise matching of feature descriptors
like Gelfand et al. [15] or Zhong et al. [42]. Our approach however is similar to Chen et al.
[7] and Aiger et al. [1] and builds a global descriptor which holds information of the global
geometrical semantics of the range scan. It is essentially a set of point triples that store minimum
and maximum lengths of the edges connecting each point pair of the point triple. We additionally
take into account the error radius of the triple points. Similar to Aiger et al. [1] we will refer to
a point triple used to calculate an aligning transformation as a base. They use more than three
points to be able to calculate length ratios between two point pairs. Other than them, we follow

35

Figure 3.13: Point triple setup for points a, b and c, taking into account point errors re, For each
edge eij , store ‖eij − (re(i) + re(j))‖ and ‖eij + (re(i) + re(j))‖.

the idea of Chen et al. [7] and use three points for our base. A 2D schematic of an example triple
formation is depicted in Figure 3.13.

Given an estimate of the value of the diameter of the surface overlap λmax of the range scans
(see Section 3.3), a set of point triples is set up in the following way. For each point p of the set
of salient features Mf , a set of pairs of its nearest neighbors is formed,

{(s, t) ∈ Nλmax ×Nλmax |s 6= t}. (3.23)

with
Nλmax(p) = {pn|λmin <= ‖pn − p‖ <= λmax}. (3.24)

For efficiency, ANN (Approximate Nearest Neighbor) [3] was used for neighborhood queries
in R3. λmin is a user-defined parameter mentioned in Section 3.3 for the minimum distance be-
tween point p and its neighbors. It serves as a means of limiting the number of resulting point
triples. It can also be dynamically set to the distance of p to its the nearest neighbor. A point
triple t is formed of points a, b and c and edges eab, ebc and eca connecting them. Additionally,
for each edge we store its minimum and maximum lengths ěij and êij , which depend on the
point error of the edge endpoints i, j ∈ {a, b, c}. Edge-length intervals are hence calculated

36

Figure 3.14: Effect on alignment stability if using a wide base for transform calculation. Dots
mark the bases used on both surfaces (grey and brown). Top: a wide base is used, which leads to
globally better alignment. Bottom: small bases lead to sub-optimal alignment. Image courtesy
of Aiger et al. [1].

with

rij = re(i) + re(j) (3.25)

ěij = ‖eij‖ − rij (3.26)

êij = ‖eij‖+ rij . (3.27)

As described in Goodrich et al. [17], a wider base is more stable with regard to the resulting
alignment transformation as depicted in Figure 3.14. However, point pairs found with 3.23 can
still lie very close to each other. It is therefore necessary to only consider those point triples
which satisfy a balanced edge length condition. With the edge eab of the triple that exhibits the
highest êij , i.e. eab = argmaxij(êij), in a point triple, the remaining edges of the same triple
ebc and eca have to satisfy

min(|ebc|, |ebc|) >= |eab| ∗ β (3.28)

so that the point triple can be considered a stable base. β can either be specified by the user
or be estimated from λmax.

3.9.1 Global Descriptor matching

To identify global descriptor pairs that can be used to calculate an aligning transformation, the
global descriptors DT of ST and DR of SR are matched by evaluating triples tr of DR and
triples tt of DT with the following relaxed isometry condition

∑
tt

êij ≥
∑
tr

ěij , (3.29)∑
tt

ěij ≤
∑
tr

êij (3.30)

which gives only a candidate. It approximately states, together with 3.28, whether the in-
tervalls [ěij , êij] of all edges of triples tt and tr intersect. A candidate transformation T̂ will be
evaluated using the remaining points of ST and SR after it is estimated.

37

Figure 3.15: Effect of wrong triple point correspondence order. With correct correspondence
shown left. Examples for a wrong correspondence order and resulting displacements are shown
in the middle and right.

If a target triple tt matches a reference triple tr with respect to conditions 3.29 and 3.30, it is
not guaranteed that points are in the same order. Assuming that the triples consist of correspond-
ing points, a wrong order of points would still lead to a wrong transformation, perturbed by a
reflection, a rotation, or both. Therefore, to ensure that the correct globally aligning transforma-
tion will be computed, transformations have to be calculated for a triple of every permutation of
points a, b and c of tt as well. Figure 3.15 shows effects of wrong point order.

Even though point triples might match based on edge lengths, we cannot tell whether they are
positioned at the same location of the surface before we evaluate their alignment transformation
candidate using all other points of the surface. This will be described in Section 3.11.

3.10 Transformation estimate calculation

Eventually, the aim of our algorithm is to find an aligning transformation between two point
clouds. The process of estimating a candidate transformation using a pair of matching point
triples is described here. The output is a 3×3 transformation matrix consisting of a rotation part
and a translation part.

The extracted point correspondences between point triples tr and tt, as described in Sec-
tion 3.9, are now used to calculate a transformation candidate T . Similar to Chen et al. [7], we
follow a RANSAC-based approach by randomly selecting a triple tr ofDR and a matching triple
tt of DT . T has to minimize the error between triple point positions, argminT̂ (

∑
t |qt − (T̂ ∗

pt)|), with q ∈ tr and p ∈ tt. Since range-scan data records absolute distance information, the
transformation to be calculated is a combination of a rotation R and a translation T ignoring any
scaling.

The optimal rotation is calculated using Singular Value Decomposition (SVD) of the covari-
ance matrix of points q1,2,3 of triple tr and points p1,2,3 of triple tt. With the centroids of the
triples

cq =
q1 + q2 + q3

3
, cp =

p1 + p2 + p3
3

(3.31)

38

and both triples positioned around the origin with

t′r = tr − cq, t′t = tt − cp. (3.32)

the translation component is calculated as

T = t′t −R ∗ t′r (3.33)

and the rotation component as

R = U

1
1

det(UV T)

V T . (3.34)

There are several other methods for approximately aligning 3D points sets. SVD was chosen
because it is built into the OpenCV C++ libray, efficient, and in a comparison conducted in
Eggert et al. [13], it proved to be the most stable of all the techniques presented in the report.

We evaluate every calculated transformation T̂ , such that points qi of transformed triple
t̂t, i.e. t̂t = T̂ ∗ tt, are at most rq,i + rp,i away from their correspondence points pi. So, a
transformation is only considered further if the point error spheres with radii rq and rp intersect:

|qi − pi| < rq,i + rp,i. (3.35)

If no such transformation can be found, the triple candidate tt is discarded.

3.11 Match Verification

The last step in our algorithm verifies whether the previously calculated transformation T̂ glob-
ally aligns the target range scan ST to the reference scan SR. Other than usual RANSAC ap-
proaches, we don’t count the number of inliers for each candidate T̂ and choose the one which
leads to the highest number of inliers, because this would lead us to a “best fit” solution. Our
output is a Boolean specifying whether a match was found or not.

We consider a transformation as globally aligning if it satisfies the relaxed geometric con-
sistency criteria defined in Weise et al. [40], i.e., does not result in Invalid Occupied Space
violation or Invalid Free Space violation. We test the criteria taking into account the pointwise
error model extracted in Section 3.4 by evaluating every point pt of the target range scan against
the reference surface SR and vice versa, and accept T̂ only if no disqualified point was found.
For every evaluated point we extract its transform tolerance and then, using it during an surface
overlay test, evaluate for geometric consistency.

The transformation T̂ calculated in the previous step is only guaranteed to optimally align
the triple points which were used to estimate it. This means that it is locally optimal and the
respective pointwise spatial error has high impact on the transformation. Slightly different point
positions can lead to a significantly different transformation. For a globally optimal transforma-
tion, we would have had to have the solution to the correspondence problem already available,

39

Figure 3.16: Effect of slightly different positions of points used to calculate transformation
candidate T̂ . For simplicity we only show the 2D case with two points a and b used. As can be
seen, point p would be displaced out of its error volume. Also the effect increases with distance
to a, b.

so we could use all points to calculate the transformation. Figure 3.16 shows the possible impact
of slightly different point positions on the resulting alignment.

Since T̂ is now used to transform the target points, p′i = T̂ ∗ pi, the error of transformed
points p′i is relative to the error of the triple points. In other words, if the triple points ti used
to calculate the transformation actually lay somewhere else within the boundaries of their error
spheres, perturbed by an error vector ei, then the transformation would be slightly different, i.e.
T̂ plus a secondary Tilt-transformation ˆTtilt,

ti → T̂ ,

ti + ei → ˆTtilt ∗ T̂ .

3.11.1 Transform Tolerance

As mentioned above, the estimated transformation T̂ only minimizes the least squares error
between corresponding triple points of both scans. This has to be taken into account during
match evaluation. This is why, when evaluating a transformed target point pt for correspondence,
we model its error model as a tolerance volume. We chose the sphere as a simplified assumption
of this tolerance volume. The concept is depicted in Figure 3.17.

In 3.1 we defined the transform tolerance of a point as our means to model the inaccuracy
of a transformation estimate which is based on measurements which exhibit spatial error. We
calculate it by tilting the point triple used for transformation estimation in three different direc-
tions and apply the resulting transformations to the evaluated target point. In this way, we find
a volume in which the target point can lie if the triple position measurements differ within their
error bounds.

To calculate the transform tolerance of pt as the radius r̂tilt of the transform tolerance sphere
centered at pt, we assume T̂tilt as a rotation R that transforms the plane with normal n spun by
the triangle {a, b, c} such that the following points lie on it:

p̂k = pk + n ∗ rk,
p̂l = pl − n ∗max(rl, ri), (3.36)

p̂i = pi − n ∗max(rl, ri)

where pk ∈ {a, b, c}, pl, pi ∈ {a, b, c} \ pk and pl 6= pi. ri corresponds to the radius of the error
sphere of the respective triple point. We calculate three such transformations Rj by assigning

40

Figure 3.17: Calculating the transform tolerance from triple points p{i,k,l} for an evaluated
point pt. a) shows the three triple points used to calculate the candidate transform with circles
the size of the error radii ri, rk and rl together with the evaluated point pt. b) shows the triangle
with normal n spanned by the triple points. c) shows the triangle from the side to get a better
understanding. d) shows how rotation R is set up such that the points p̂i = pi + n ∗ ri, p̂k =
pk − n ∗max(rk, rl) and p̂l = pl − n ∗max(rk, rl) lie on the plane of the rotated triangle. e)
shows how to calculate the displacement radius rw by applyingR to pt. Repeating this procedure
for the other two triple points and their opposite edges results in transform tolerance r̂w as given
by max({rw}) + rt.

41

Figure 3.18: When checking for correspondences of a transformed target point p̂t, there are
several possible situations. The transform tolerance sphere of the target point is shown in blue,
the reference scan surface is green with points corresponding to pixels covered by the projected
tolerance sphere with their respective error spheres shown in grey. Each sub-figure shows the
observed situation during overlay testing on the left side and its interpretation on the right side.
In negative cases (a, b) the incorrectly registered target surface is marked red. (a) shows an
Invalid Occupied Space Violation, which basically says that a target point occludes a patch of
the reference scan but its error sphere does not intersect the error sphere of any reference point.
This means that if it were part of the reference surface, it would have been captured. (b) shows
the Invalid Free Space Violation when a target point lies isolated within the reference scan’s
image space and should have therefore been captured by the scanner. In (c) the test cannot tell
whether p̂t is transformed correctly or not because it can be a point that was occluded when
capturing the reference scan. Similarly, when the target point does not project into the image
domain of the reference scan at all, it might simply not be part of the overlap. (d) shows the case
in which p̂t is assumed to spatially correspond to one of the reference points.

pk to a, b and c respectively for each calculation. We set the transform tolerance radius r̂tilt of
pt to be:

r̂tilt = argmaxj(|pt −Rj ∗ pt|). (3.37)

3.11.2 Surface Overlay Test

After the transform tolerance radius r̂tilt has been calculated for each point pt of the target range
scan, we can use that information when verifying transformation T̂ . We evaluate every target
point pt by applying T̂ to transform it into the reference scan’s coordinate system. We disqualify
T̂ if one of the following geometric consistency violations can be found. See possible overlay
conditions depicted in Figure 3.18.

• Invalid Occupied Space Violation: As depicted in Figure 3.18 a): if pt lies perspectively
in front of the reference surface but no spatial correspondence can be found for pt because
the error sphere with radius r̂tilt centered at pt does not intersect the error sphere of any
point pr of the reference surface.

42

Figure 3.19: A screen-space view of the registered range scans of the Stanford bunny. The
reference scan is shown in green and the target scan in red, both in the image space of the
reference scan. The triple used to calculate the transformation is also marked. The alignment
suffices as an initial state for fine registration with ICP and is therefore accepted.

• Free Space Violation: If pt should have been captured by the scanner but again has no
spatial correspondence. See Figure 3.18 b). It is important to note that for scans captured
with a Microsoft KinectTM scanner, missing data in the reference scan would lead to this
violation. Therefore, when dealing with Kinect scans, this check was omitted.

T̂ cannot be disqualified if a spatial correspondence can be found for pt, i.e., if its error
sphere intersects the error sphere of at least one point pr of the reference scan. T̂ can also not be
disqualified if the error sphere centered at pt may not intersect any error sphere of the reference
scan but is occluded be the reference scan.

If no target point met a disqualification criterion, we have to evaluate all points pr of the ref-
erence scan with the inverse of T̂ against the target scan. Only if we cannot find any disqualified
point can T̂ be considered an aligning transformation.

Evaluating all points pt ∈ ST against all points pr ∈ SR and vice versa would lead to O(n2)
complexity. To reduce complexity we identify candidate points against which to evaluate by
projecting the error sphere with radius r̂tilt into the image-space of the reference scan. We then
evaluate for overlay conditions only those points of the reference scan corresponding to pixels
that are covered by the projected sphere.

A verified registration of the two scans for the Stanford bunny is shown in Figure 3.19 where
the aligned target scan has been projected to the image-space of the reference scan.

A pseudo-implementation of the match verification step is given in Algorithm 3.1.

43

input : Transformed target points P ′,
reference points Q,
target triple tp,
transformation T̂

output: Boolean whether a valid match was found

1 for p′ ← P ′ do
2 rw← TransformTolerance(tp, p′)
3 SSp← SSPixelsCovered(rw, p′)
4 for q ∼ q′ ← SSp do
5 if DisqualificationCheck(q, (p′, rw)) then
6 return FALSE
7 end
8 end
9 end

10 return TRUE
Algorithm 3.1: Pseudo code for match verification

44

CHAPTER 4
Results

This chapter covers the evaluation of the presented algorithm. Section 4.1 presents a detailed
analysis of registration capabilities of the presented algorithm. Section 4.2 describes a com-
parison conducted against a state-of-the-art algorithm in global registration of point clouds. In
Section 4.3 the results of the evaluation will be critically discussed.

4.1 Evaluation

A special emphasis was put on the algorithm’s tolerance towards geometrical variations between
captures of the same object, as well as its matching capabilities with respect to increasing angle
difference of capture viewpoints. For the analysis of these criteria, synthetic range scans were
made to provide for a controlled environment and ground-truth information.

The presented algorithm was also compared to the Super4-PCS approach presented by Mel-
lado et al. [28], to see whether it can detect a scan mismatch that other algorithms would still
interpret as a transformation candidate, i.e., a false positive.

Furthermore, we applied the algorithm to scans of real scenes captured with the Microsoft
KinectTM v2 to evaluate its real-world value.

The evaluation was conducted on a desktop PC with the following specifications:

• Operating System: Microsoft WindowsTM10 64bit

• CPU: Intel i7TM950

– 3GHz

– 4 physical cores

– 8 logical cores

• Main memory: 6GB

45

4.1.1 Synthetic range scans

To better control the scan environment and to have ground-truth information about the view-
space pose of the scanned object available, we created synthetic range scans using a system
implemented in C++ using OpenGL1. The idea was loosely based on the framework presented
by Berger et al. [4], but unlike them, we did not use implicit sufarces as input.

As input the system receives a file of a 3d mesh as well as parameters which control the
view-space pose of the object. The virtual camera was modelled to have a similar field of view
as the Microsoft KinectTM v2 as described in Section 2.6. For maximum precision the near-
and far plane of the view frustum were positioned near the object’s boundaries. The object was
rasterized and the depth buffer was used as the output range scan.

Together with the input view-space pose parameters as ground-truth data we could use the
output scan as input for our registration algorithm.

We did not model properties of the sensor like noise or lens distortions as a full simulation
of a physical sensor was out of scope for this thesis. Although, as future work a full simulation
as in [4], controlling the sensor noise model and object material dependent sampling, mirroring
the results of evaluation work like [31] or [25] would greatly benefit the comparison to results
from using real range scans.

4.1.2 Tolerance to geometrical variation

Figure 4.1: The human head model used for transform tolerance evaluation based on the Haus-
dorff distance of the nose tip is shown on the left. The resulting scans with shrinking nose are
shown on the right. The Hausdorff distances ĥHD of the nose tip, normalized to the extent of
the model, are outlined below the respective capture image.

The transform tolerance concept presented in Section 3.11.1 has the potential to greatly
impact the geometrical variability of the shapes being tolerated during matching. We applied
our algorithm to synthetic range scans of the human head model shown in Figure 4.1. The aim
was to determine what amount of geometrical differences would still be accepted as a match.

1https://www.opengl.org/

46

https://www.opengl.org/

The geometrical difference was modelled using the well-known Hausdorff distance of a
manually chosen feature of the human head model. The nose was identified as the model’s most
significant feature. Several versions of the human head model were created and synthetically
scanned, as described above, from the same perspective. With each scan, the nose vertices were
further pulled towards the nose’s base plane, therefore decreasing the Hausdorff distance of the
points of the nose to the base plane of the nose at each step. Figure 4.1 shows all versions of the
human head model created together with their respective normalized Hausdorff distance of the
nose tip. The Hausdorff distance hHD was normalized against the model’s extent δxyz ,

ĥHD =
hHD
δxyz

, (4.1)

where ĥHD denotes the normalized Hausdorff distance, hHD the absolute Hausdorff distance
and δxyz denotes the diameter of the model’s axis aligned bounding box across all three axes x,
y and z, defined by the two points minxyz and maxxyz ,

δxyz = ‖maxxyz −minxyz‖ . (4.2)

Figure 4.2: Selected feature triples in geometrical difference tolerance evaluation.

To focus the evaluation on the transformation verification step described in Section 3.11, for
each perturbation of the nose, 3 fixed, manually selected, feature triples were used. This resulted
in 30 runs, 10 degrees of normalized Hausdorff distance per feature triple, {0.041, 0.036, 0.032,
0.028, 0.024, 0.020, 0.016, 0.012, 0.008, 0.004}. The feature triples were chosen to differ in
shape and size. They are shown in Figure 4.2.

The narrow triple was chosen to evaluate triples which lead to a high amount of tilt during
transform tolerance calculation and therefore lead to a higher displacement of the target point
being evaluated for correspondence. The furthest point from the feature triple being evaluated
exhibited a radius of 0.083, normalized against the objects diameter.

The case that a balanced (roughly equilateral) triple is used for transform estimation is shown
with the small triple. The small case also describes the situation in which a smaller overlap is

47

Figure 4.3: a) shows mismatching pixels in red for the narrow case. b) shows mismatches for
the small case, c) for the optimal case.

to be expected and smaller triples have to be chosen. Here, the highest calculated normalized
transform tolerance radius was 0.032.

As stated in Section 3.9, it is advisable to choose triples for transform estimation that ap-
proximately cover the diameter of the overlap area of the reference and target scan. In the case
of our evaluation, the capture perspective was equal for both scans, which leads to full overlap.
We therefore also chose a triple which in size is close to the diameter of the visible surface area.
The optimal case shows a triple that was also selected by our algorithm. Here the maximum
transform tolerance was 0.012.

For each triple the base scan with the flat nose was registered against all altered versions.

Results

Figure 4.3 shows mismatched points for each run in red.
Choosing the narrow triple led to a verified match for all scans. In the small case the scan

with Hausdorff distance ratio of 0.016 could not be verified as a match anymore.
The only scan which could be verified as a match in the optimal case was the one with

Hausdorff distance ratio 0.004. Starting from 0.008, no more scans could be verified.
The bigger the overlap the less tolerant our algorithm is toward geometrical variation. This

means that if the amount of overlap between surfaces is known we can optimize the size of point
triples and therefore the tolerance of our algorithm toward more accurate decisions regarding
surface matches.

4.1.3 Robustness to angle difference

An important metric for surface registration is an algorithm’s ability to match captures from
arbitrary viewing angles. We analysed our algorithm regarding its registration capability on 2
scans of the same object. To be able to control the capture conditions and have ground-truth

48

pose data available, synthetic range scans of digital 3D models were used. Together with each
scan, we stored the ground-truth information about the camera pose.

For each object, we created 25 captures c0−24 by rotating the camera in steps of 5 degrees
around the object’s origin. This resulted in a total angle coverage of 120 degrees. The distance
between the virtual camera and the center of the objects was kept constant between captures at
1.7. Objects were captured with a field of view of 55 degrees, which resulted in angle coverage
of the objects of 147 degrees per capture. This results in 147 degrees overlap at 0 degrees
capture angle difference and leaves 27 degrees overlap remaining at 120 degrees capture angle
difference.

We posed the question for how many (and which) of the 5 given objects our algorithm was
able to verify a given match at increasing view angle difference between two captures of the
same object.

The objects used for the evaluation are shown in Figure 4.4. The goal was to use manmade
as well as non-manmade objects to see how the algorithm performs for different geometrical
properties. Manmade objects often exhibit a high amount of flat surfaces, sharp edges and
straight lines, whereas non-manmade objects usually do not and exhibit bumps and dents at
various scales.

Figure 4.4: The 5 virtual objects used for view angle difference evaluation.

Objects

The atom object is a synthetic object and exhibits a high variation in curvature from every angle,
without symmetries. Due to the overall spherical shape of its convex hull, the amount of surface
area covered at captures at each angle is roughly the same, and a linear decrease in surface
overlap between two captures was expected. The curvature distribution exhibited by the atom
model also leads to approximately uniformly distributed salient points being detected. Figure 4.5
shows a closer look at the atom model’s surface geometry, exhibiting geometric perturbations at
smaller scales that are not due to noise.

The bunny represents a non-manmade object with curvature features at different scales, e.g.,
the paws on a wide scale and the small details of the fur. Geometrical variation is bigger at
areas of the torso and legs, whereas the head exhibits mid-scale curvature features at the eyes
and snout. Taking a close look at the furry areas, as shown in Figure 4.6 of the bunny model,
one can observe the high amount of curvature of the fur.

The human head model has few, but significant, curvature-based features compared to the
rest of the objects. Also, the features are mainly apparent on the face.

49

Figure 4.5: A closer look at the atom model used during evaluation.

Figure 4.6: A closer look at the bunny model used during evaluation.

The car and the train represent the manmade objects among the used models, and exhibit
many sharp edges and small details, with the train also consisting of many flat surfaces.

For each object, we made 25 runs, matching captures c0 and c0−24. Each run was limited
to 2 minutes execution time on the given hardware. If it took the algorithm longer to detect a
match, it was interpreted as the equivalent to having detected a mismatch.

Table 4.1 lists the parameters used during matching of scans for all models. A description of
the parameters can be found in Section 3.3. The parameter values were found by experimentation
and adjusted taking into account the geometrical properties of the respective object as described
above.

As can be seen from Figure 4.7, from 0 to 20 degrees, which corresponds to 147 and 127
angle overlap, for all objects, a match could be verified. Starting from 35 degrees (112 degrees
overlap), the match detection rate decreases with 80 degrees (67 degrees overlap) marking the
first run in which no match could be verified, for any object. This results in 16 runs out of 25
yielding successful matches. Out of 16 runs, the atom could be verified 14 times. On average,
92 triples could be evaluated before the evaluation timed out. The bunny could be verified 10

50

- Atom Bunny Human Head Car Train
Occlusion Threshold(mm) 0.05 0.1 0.05 0.08 0.06
Curvature absolute threshold 13.0 8.0 10.0 5.0 8.0
Maximum triple edge length (mm) 0.25 0.25 0.25 0.25 0.2
Minimum triple edge length (mm) 0.05 0.05 0.05 0.05 0.05

Table 4.1: Parameters used for each model

times. Here, 136 triples could be evaluated on average before the timeout was reached. The head
was successfully verified 13 times, with 63 triples having been evaluated on average in cases of
evaluation timeout. The car and train could be verified 8 times. For the car, 711 triples were
evaluated on average before timing out. In case of the train, an average of 1444 triples could
be evaluated before the timeout limit. The first expected mismatch was reported at 25 degrees
difference (112 degrees overlap) for the car and 40 degrees difference (107 degrees overlap) for
the train. Other than the train, the car could be matched at 55 degrees angle difference, which
corresponds to 92 degrees overlap.

Figure 4.7: Evaluation of angle difference between viewpoints. Shows for which objects the
algorithm was able to detect a match at a given viewing angle difference.

51

To put the above results into context, Figures 4.8 through 4.12 show feature count metrics
for each scan.

52

Figure 4.8: Feature counts for the atom model. The total amount of salient points detected
averages to 911.04 over all viewing-angles. From the total amount of salient points, on average
133.8 were removed because of a curvature response below 13. From the remaining points
another 522.36 were discarded due to having a point in their close vicinity that had a higher
curvature response. As can be seen from the depicted ground-truth feature matches, 74 feature
matches get lost when rotating the capture angle by the first 5 degrees, but after that, the amount
of feature matches deteriorates slowly, and only at an angle difference of 110 degrees, no features
could be matched anymore. On average 6.61 feature matches are lost at each capture step.

53

Figure 4.9: Detected features for the bunny model per angle difference. On average 1457.32
salient points were detected, with more being detected as long as the facial features are in view.
On average 899.88 points were removed from the feature list because they had a close point
with a higher curvature response, leaving between 500 and 600 salient points remaining. Points
removed from consideration because of a curvature response below 8.0 were on average 265.16.
At viewing-angle difference of 5 degrees, 151 features matched. At increasing angle differences,
on average 6.13 feature matches were lost, however, even at an angle difference of 120 degrees,
still 10 features matched under ground-truth transformation.

54

Figure 4.10: For the human head an aspect that is easily detectable from this plot is the symme-
try of the model. On average 1240.24 salient points were detected. 403.64 points were removed
from the feature list because they had a close point with a higher curvature response. Points
not picked as features because of a curvature response below 10 were on average 743.56. At
viewing-angle difference of 5 degrees, 46 feature locations matched. At incresing angle differ-
ences, on average 2 feature matches were lost. The first viewing-angle difference step at which
no more feature locations could be matched when applying the ground-truth transformation was
at 105 degrees.

55

Figure 4.11: The car model had 922.92 salient points identified on average with a dip in the
amount of salient points extracted when capturing from frontal perspectives. An average of
398.04 features were not selected because of a point of higher curvature response near. 123.52
of the average salient points were discarded based on their low curvature response of < 5.
Ground-truth feature matches lost with every angle step were 11, although feature matches dete-
riorated faster between 5 and 50 degrees angle difference. Only at 115 degrees of capture-angle
difference, no more feature locations matched.

56

Figure 4.12: 496.76 salient points were identified for the train model, averaged over all cap-
ture poses, even though numbers varied between a maximum of 734 at 120 degrees of angle
difference and a minimum of 270 salient points at 55 degrees. On average, 137 feature points
were discarded because of a close point with higher curvature response. 202 salient points were
taken from consideration because they had a curvature response below 8. An average of 3.17
feature matches were lost with each angle step with 95 degrees marking the spot at which no
more feature could be matched.

57

Figure 4.13: The range scans made with the Microsoft KinectTM v2 commodity range scanner.

4.1.4 Registration of Kinect v2 scans

To show the algorithm’s real-world applicability, it was applied to range scans made with the
Microsoft KinectTM v2 commodity range scanner. The main focus was on whether the algorithm
was able to detect a match (true positive) as well as a mismatch (true negative). The scans used
were made from a static scene from several perspectives.

The scene consisted of a couch standing close to a wall. 3 scans, R, T0 and T1, were made
from 1, 5m distance, as depicted in Figure 4.13. R served as the reference scan which both
T0 and T1 were registered against. T0 is a scan of the same scene from a slightly different
perspective. T1 represents a different scene in which pillows were placed upon the couch. Two
questions were asked:

• Is the algorithm able to detect a match between R and T0

• Is the algorithm able to detect a mis-match between R and T1

Scene

Figure 4.14: An RGB image of the scene captured for the Microsoft KinectTM v2 evaluation.

58

Figure 4.15: The smear artefact, which can happen if two objects are captured close to each
other, between the floor and the lower front edge of the couch or the wall and the back rest of
the couch. As can be seen, also points of the wall are displaced toward the couch.

Scans were made in artificial lighting conditions such that there could not be any sunlight
which could interfere with the infrared emitted from the Kinect device. The couch measures
180 × 85 × 65 centimeters. The armrests are 18 centimeters wide. The couch is completely
coated with blue cotton. The coating exhibits small wrinkles and dents, which can occasionally
be set off the main surface by roughly 1 centimeter. The pillows are covered in cotton as well
and are colored with stripes in different shades of grey and different width. The floor consists of
a slightly reflective laminate flooring. Figure 4.14 shows an RGB image of the scene.

The surface conditions are explained here because, as mentioned in Section 2.6, the quality
of depth capture depends on surface characteristics such as color and reflectivity.

Scan cleanup

Scans made with the Kinect v2 scanner exhibit certain artifacts. Implementing their removal in
an automated way was out of the scope of this thesis, therefore the artefacts described below
were removed by hand prior to registration. The range scans were transformed into 3D point
clouds. The open source software package MeshLab2 was used to manipulate the point clouds
and remove points based on the below artefacts. The cleaned point clouds were then tranformed
back into image space to form a cleaned range scan.

The first artefact to be removed is the smear of depth values appearing at shallow capture
angles and when two disjoint objects are only centimeters away from each other. Its effect on a
range scan is depicted in Figure 4.15.

The infrared-emitter is not at the same location on the Kinect device as the infrared sensor,
but is slightly displaced. This leads to a shadowing effect. This depth occlusion, at areas which
the sensor can see but the emitter cannot, happens on the right side of an object of interest from
the sensor’s perspective, between the object’s edges and the background surface (in case of the
scans made, the wall). Figure 4.16 shows this effect.

2http://meshlab.net

59

http://meshlab.net

Figure 4.16: The shadow artefact exhibited on the right side of objects being scanned with the
Microsoft Kinect v2 sensor. They come from the fact that the infrared emitter and the receiving
sensor are at different locations on the device. This leads to measurements behind the object of
interest, which exhibit wrong depth information in areas of infrared shadows.

Figure 4.17: Outliers that represent measurement errors.

Outliers are due to measurement errors near object edges, and especially near the corners of
the scan image, as shown in Figure 4.17.

Match verification results

Registering R against T0 yielded a successful match and aligned point clouds. The coarsely
aligned point clouds are shown on the left of Figure 4.18. 218 triples were selected from R
and 313 were selected from T0. The average transform tolerance when aligning T0 to R using
the verified transformation was 86.8486mm. The average transform tolerance when verifying
the reverse transformation, aligning R to T0, was 84.148mm. The match could be verified in
1m29s.

60

Mismatch verification results

Scans R and T1 were classified as a mismatch. Figure 4.18, on the right side, shows the points
indicating the mismatch marked in red in the range-scan image of R.

Figure 4.18: left: The coarsely aligned point clouds R (white) and T0 (dark grey). right: The
points indicating a mismatch between R and T1 for a candidate transformation T̂ .

4.2 Comparison to state-of-the-art

The algorithm was also compared to the approach by Mellado et al. [28] to evaluate point-cloud
matching capabilities and precision. As described in Section 2.5, their algorithm calculates
multiple aligning transformation candidates and evaluates each by the LCP metric, based on a
user-provided delta parameter used for pointwise correspondence search.

The conducted evaluation aimed to register synthetic range scans of the bunny model with
geometric distortion of increasing degree against a reference scan. Synthetic scans were made
as described in Section 4.1.1. The models were distorted by scaling the features of the fur, the
face and in the maximum case by pulling out a “blob” of the left leg. The maximum case was
considered a mis-matching surface in this evaluation. The goal was to evaluate the algorithm’s
capability of discerning a mismatch between two scans where other state-of-the-art algorithms
report an aligning transformation as a “best fit”, even though the two scans are not of the same
object. Additionally, the registration quality was compared using a root mean squared error
(RMSE) metric for the point correspondences, axis-wise Euler angle differences for the rotation
part of the resulting transformations, and the L2-norm between translation vectors of the ground-
truth transformation and the reported result.

Four scans of the bunny, scaled to fit into the unit cube, were made using rasterization with
increasing degree of geometric distortions as described above. One scan of the undistorted model
was made from a different perspective. This served as the reference scan during registration. The
capture perspectives are shown in Figure 4.19. The distorted scans are shown with their color-
coded Hausdorff distance with respect to the undistorted version of the model in Figure 4.20.

61

Figure 4.19: The capture perspectives used during comparison. The camera’s distance to the
object’s center of mass was kept constant, whereas the viewing angle was altered by 15 degrees.

Figure 4.20: The geometrically distorted scans used for comparing the presented approach to
a state-of-the-art algorithm. Color scale encodes the Hausdorff distance with respect to the
undistorted scan in absolute values with blue indicating no displacement and red indicating the
maximum displacement. The maximally exhibited Hausdorff distance for the respective scan is
shown above as H.

For each of the distorted versions of the scan, both algorithms were applied to calculate an
aligning transformation, if possible. Since synthetic range scans were used, the ground-truth
transformation was known and could be used to measure the registration quality. The results of
both algorithms for all scans used with the resulting RMSE color-coded are shown in Figure 4.21.

The reported transformations were also compared to the ground-truth transformation in
terms of the difference in Euler rotation angles per axis and the L2-norm between translation
vectors. The results are shown in Figure 4.22 and 4.23, for an increasing amount of distortion.

As can be seen, the resulting transformation reported by our algorithm resulted in a rotation
angle difference to the ground-truth transformation of no more than 0.5 degrees, whereas Su-

62

Figure 4.21: Aligned point clouds using both algorithms. The top row shows scans aligned
using our algorithm with distortion degree increasing from left to right. The bottom row shows
scans aligned using Super 4-PCS. We provide the maximum Hausdorff distance to the ground-
truth result below the images. As can be seen, we cannot provide a result for the maximum
displacement case since our algorithm detected a mismatch.

per 4-PCS produced transformations which were off by 2.182 degrees in case of the distortion
of Hausdorff distance 0.532. The error in the translation for transformations reported by our
algorithm lay at 0.0124 at maximum.

The error in translation in case of Super 4-PCS increased from 0.0191 in case of no distor-
tions to 0.0805, which is almost 10% of the model’s longest side, in case of Hausdorff distance
0.532.

The transformation reported by our algorithm led to higher registration quality for all ex-
periments. Super 4-PCS reported an aligning transformation even though the extruded part of
the bunny model exhibits a Hausdorff distance out of the tolerance interval. As depicted in Fig-
ure 4.21 by the red “X”, our algorithm detected this and did not report a transformation, labeling
the candidate scan a mismatch. Also no transformation differences could be reported for our
algorithm, as shown in Figures 4.22 and 4.23.

It is important to note that, other than Super 4-PCS, our algorithm’s main goal is not to report
a “best match” but to verify if the two surfaces match at all at their overlap within a tolerance,
with the aligning transformation as a byproduct.

Another important aspect is the runtime behavior of the compared algorithms. Other than
for the evaluation reported in Section 4.1.3, we did not limit the runtime of the algorithms this
time. Table 4.2 summarizes the runtimes of both algorithms for all distortion cases. Super 4-PCS
reported an aligning transformation within 7 seconds in case of no distortion, whereas it took our
algorithm 54 seconds to verify a match. For the maximum distortion case it took Super 4-PCS
almost fourty minutes to converge at a transformation estimate. It took our algorithm more than

63

Figure 4.22: Error in rotation between our algorithm and Super 4-PCS relative to the ground-
truth transformation. Errors are expressed in Euler angles around each axis, x in red, y in green
and z in blue.

Our algorithm Super 4-PCS
no 54 7

minimal 74 7
middle 934 57
high 13245 2395

Table 4.2: Runtime of both algorithms in seconds for all distortion cases.

two hours to evaluate all transformation cadidates and not find an aligning transformation. The
times for our algorithm include all steps described in Chapter 3. This includes pre-processing
steps not needed by Super 4-PCS.

For our algorithm the most time-consuming step is match verification in case the surfaces
match and the true aligning transformation is being evaluated. In this case, every point of the
target surface is evaluated against the reference surface and vice versa. This means that, assum-
ing that the first transformation being evaluated is in fact the true one, as was the case for no
distortion, our algorithm, on the evaluation PC, would take at least 54 seconds in order to verify
the match.

Since Super 4-PCS keeps the best aligning transformation, limitting the runtime for both
algorithms to any time between 54 and 13245 seconds would give Super 4-PCS time to improve
upon its transform estimate but limit the time for our algorithm to find the aligning tranformation.
If this time limit runs out Super 4-PCS reports its best estimate whereas our algorithm reports
the last transformation evaluated.

64

Figure 4.23: Errors in translation of aligned scans using our algorithm and Super 4-PCS com-
pared to the ground truth. Errors are expressed as L2-norm between translation vectors of the
transformations.

4.3 Discussion

Evaluating our algorithm’s capability of tolerating transformations based on inaccurate corre-
spondences showed its ability to provide detection of scan mismatches if the amount of geomet-
ric distortion is high. The amount of tolerance is, however, dependent on the size of the base
triple used to estimate the transformation. An optimal tolerance could be achieved by finding
the point triple that best approximates the surface overlap between the reference and target scan
and is therefore dependent on the estimate of surface overlap by the user. In Section 4.1.2 we
saw that the bigger the overlap the more accurate our algorithm’s decision on a match can be
since its tolerance decreases.

A big challenge is finding the right parameter values. The choice of curvature absolute
minimum threshold (κmin), for example, has a high impact on the number of features being
used for point triple creation and therefore, on how many triples will be available to choose from
for match verification. On the other hand, choosing a too high value for κmin may lead to too
few features being selected, in which case no correspondences can be found. Another parameter
with high impact on the quality of the aligning transformation, as well as the computation time
needed to find it, is the maximum triple edge length (λmax). Choosing a too high value, bigger
than the actual overlap between scans, will lead to a mis-match, whereas a too small number
would lead to too many triples and very inaccurate alignment, as discussed in Section 3.9. An
optimisation would be to start with a very high value for λmax and, if no match can be found,
decreasing it iteratively until either λmin or a different minimum value is reached. Aiger et al.
propose a similar approach in [1].

Following Chen et al. [7], leveraging the spatial relation between base points forming a triple
proved to be sufficient for correspondence search. However, extracting local surface descriptors

65

like Gelfand et al. [15] or Zong et al. [42] could further improve the process of finding corre-
spondences if the additional computation cost for extracting descriptors can be invested.

By incorporating the uncertainty into the accuracy of the transformation, a better model of
the alignment error can be applied during transformation verification.

Section 4.1.3 showed the algorithm’s weakness in case of man-made objects that exhibit a
high amount of flat surfaces, straight lines and sharp edges. Here, the curvature-based feature
identification struggles with finding reliable salient points. In the case of predominantly flat
surfaces, an approach like Mellado et al. [28], without prior surface characteristic extraction,
could lead to better results. It would apply specifically well to flat surfaces since it uses coplanar
4-points as a base.

In case of scans made with commodity hardware, like the Microsoft Kinect v2, many arte-
facts, as shown in Section 4.1.4, are introduced that cannot be modelled with a non-stochastic
alignment evaluation as the one presented in this thesis. Without prior removal of outliers,
however, a stochastic analysis like LCP is better suited to model the quality of an aligning
transformation. When considering only noise, the error model implementation as described in
Section 3.4 provides more information on the pointwise inaccuracy such that the tolerance can
be calculated in a contextually aware way.

As shown in the presented comparison to the approach by Mellado et al. [28], our algorithm
not only provides an aligning transformation in cases where this is possible, but it also evaluates
the match of the scan pair such that scans captured of different objects can be discarded.

A weakness of the presented algorithm is the RANSAC-based approach of exhaustively
searching all transformation candidates needed to conclude with a result in case a scan pair is
a mismatch. In the conducted experiments, a timeout parameter was needed to stop further
evaluation of a scan pair and interpret a timeout as a mismatch. This is due to the fact that the
presented algorithm is still primarily aimed at finding an aligning transformation but using the
match verification as a possibility of aborting the evaluation of one transformation candidate
early. Additionally, no computation time has to be invested in fine registration if two scans are
not matching.

66

CHAPTER 5
Conclusion

Starting with a summary of the main topics covered in Section 5.1, we provide a short coverage
of our global registration algorithm that highlights the lessons learned during implementation.
In Section 5.2 we provide an outlook on possible future work which can be conducted in order
to improve the algorithm.

5.1 Synopsis

The aim of our algorithm is to provide global registration of range images made with a commod-
ity range scanner, e.g., Microsoft KinectTM. Other than previous work, we additionally wanted
to provide a decision about whether or not a scan is considered a match. We introduced the con-
cept of transform tolerance, which incorporates the inaccuracy of an estimated transformation
into the transformation verification step. The output of our algorithm is then either a roughly
aligning transformation or an indication that the geometric differences between the registered
scans exceed a tolerance interval that is based on the scanner’s measurement error model.

We first reproject the pixels of the range scan back into the 3D domain and introduce the
sensor’s error model per 3D point. This gives us the possibility to introduce the error model also
in our global descriptor.

The extraction of the occlusion boundaries is a step that leverages the 2D nature of range
scan images. We used an edge-detection kernel to identify the points on occlusion boundaries.
These points are then considered in the step of local curvature estimation to discard points in
our quadratic surface fitting approach that lie across an occlusion boundary and would lead to
unreliable curvature estimates, as noted in Section 3.6.

We build our global descriptor from local curvature maxima, which are filtered using a high-
pass filter. We build point triples that incorporate the sensor error model. Using the triples on
both scans, we find correspondences using isometry and rigidity constraints. Matching triples
are used to estimate a 6DOF transformation using SVD.

Transformation verification is done by approximating the effect of the inaccurate transfor-
mation as a transform tolerance for all evaluated points of the aligned point clouds, therefore

67

leveraging the sensor error model during matching. All points are evaluated against Occupied
and Free Space violation criteria, and if a point not satisfying these criteria is found, we discard
the transformation and proceed with the next candidate.

The output of our algorithm is either an aligning transformation or the conclusion that the
two range scans do not depict the same object.

5.2 Limitations and Future Work

Although promising results were produced, as presented in Chapter 4, many improvements to
better handle different scenarios can be made to our algorithm. An important point to note is the
algorithm’s inability to handle artefacts apparent in range scans made with commodity hardware,
e.g., as outlined in Section 4.1.4, outliers, depth smear and depth shadows. A fully automatic
approach would greatly benefit the algorithm’s usage in real-world scenarios.

The detection of a mismatch is currently done by exhaustively evaluating the estimated trans-
formation candidates and concluding with a mismatch only if no aligning transformation could
be found. We applied an execution time limit empirically, but for a decisive evaluation, all
transformation candidates would need to be evaluated.

The spherical regression approach for curvature estimation leads to good results for non-
manmade objects, but objects that exhibit a high amount of corners, sharp edges and flat surfaces
pose a problem to our algorithm. Here, approaches like the one by Sipiran et al. [36] lead to more
reliable features.

A possibility to completely rid our algorithm of the necessity to identify salient points and
focus on the transformation evaluation would be to combine our error model with the 4-point
correspondence search in Mellado et al. [28] and apply an adapted approach for computing the
transform tolerance to 4-point bases during match evaluation. In this way, our proposed method
of match evaluation can improve upon the output of Mellado et al. and can provide a decision
of whether their best match is a match at all.

If performance is a focus, parts of our algorithm could leverage the highly parallel computing
capabilities of today’s GPUs. The curvature estimation would be one of the candidates for
implementing such a general purpose GPU (GPGPU) approach.

68

Bibliography

[1] Dror Aiger, Niloy J Mitra, and Daniel Cohen-Or. 4-points congruent sets for robust pair-
wise surface registration. In ACM Transactions on Graphics (TOG), volume 27, page 85,
2008.

[2] Ali Al-Sharadqah, Nikolai Chernov, et al. Error analysis for circle fitting algorithms. Elec-
tronic Journal of Statistics, 3:886–911, 2009.

[3] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal
of the ACM (JACM), 45(6):891–923, 1998.

[4] Matthew Berger, Joshua A Levine, Luis Gustavo Nonato, Gabriel Taubin, and Claudio T
Silva. A benchmark for surface reconstruction. ACM Transactions on Graphics (TOG),
32(2):20, 2013.

[5] Paul J Besl, Neil D McKay, et al. A method for registration of 3-d shapes. IEEE Transac-
tions on pattern analysis and machine intelligence, 14(2):239–256, 1992.

[6] Frédéric Cazals and Marc Pouget. Estimating differential quantities using polynomial fit-
ting of osculating jets. Computer Aided Geometric Design, 22(2):121–146, 2005.

[7] Chu-Song Chen, Yi-Ping Hung, and Jen-Bo Cheng. Ransac-based darces: A new approach
to fast automatic registration of partially overlapping range images. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 21(11):1229–1234, 1999.

[8] Xiaobai Chen, Abulhair Saparov, Bill Pang, and Thomas Funkhouser. Schelling points on
3d surface meshes. ACM Transactions on Graphics (TOG), 31(4):29, 2012.

[9] Benjamin Choo, Michael Landau, Michael DeVore, and Peter A Beling. Statisti-
cal analysis-based error models for the microsoft kinecttm depth sensor. Sensors,
14(9):17430–17450, 2014.

[10] Yago Díez, Ferran Roure, Xavier Lladó, and Joaquim Salvi. A qualitative review on 3d
coarse registration methods. ACM Computing Surveys (CSUR), 47(3):45, 2015.

[11] Santiago Díez Donoso, Joan Martí Bonmatí, and Joaquim Salvi. Hierarchical normal space
sampling to speed up point cloud coarse matching. c© Pattern Recognition Letters, 2012,
vol. 33, núm. 16, p. 2127-2133, 2012.

69

[12] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i.
Robotics & Automation Magazine, IEEE, 13(2):99–110, 2006.

[13] D.W. Eggert, A. Lorusso, and R.B. Fisher. Estimating 3-d rigid body transformations: a
comparison of four major algorithms. Machine Vision and Applications, 9(5):272–290,
1997.

[14] Péter Fankhauser, Michael Bloesch, Diego Rodriguez, Ralf Kaestner, Marco Hutter, and
Roland Siegwart. Kinect v2 for mobile robot navigation: Evaluation and modeling. In Ad-
vanced Robotics (ICAR), 2015 International Conference on, pages 388–394. IEEE, 2015.

[15] Natasha Gelfand, Niloy J Mitra, Leonidas J Guibas, and Helmut Pottmann. Robust global
registration. In Symposium on geometry processing, volume 2, page 5, 2005.

[16] Guy Godin, Denis Laurendeau, and Robert Bergevin. A method for the registration of
attributed range images. In 3-D Digital Imaging and Modeling, 2001. Proceedings. Third
International Conference on, pages 179–186. IEEE, 2001.

[17] Michael T Goodrich, Joseph SB Mitchell, and Mark W Orletsky. Practical methods for
approximate geometric pattern matching under rigid motions:(preliminary version). In
Proceedings of the tenth annual symposium on Computational geometry, pages 103–112.
ACM, 1994.

[18] Michael Greenspan and Guy Godin. A nearest neighbor method for efficient icp. In 3-
D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on,
pages 161–168. IEEE, 2001.

[19] Huy Tho Ho and Danny Gibbins. Curvature-based approach for multi-scale feature ex-
traction from 3d meshes and unstructured point clouds. IET computer vision, 3:201–212,
2009.

[20] Berthold Horn. Robot vision. MIT press, 1986.

[21] Qi-Xing Huang, Simon Flöry, Natasha Gelfand, Michael Hofer, and Helmut Pottmann.
Reassembling fractured objects by geometric matching. ACM Transactions on Graphics
(TOG), 25(3):569–578, 2006.

[22] Yani Ioannou, Babak Taati, Robin Harrap, and Michael Greenspan. Difference of normals
as a multi-scale operator in unorganized point clouds. In 3D Imaging, Modeling, Process-
ing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference
on, pages 501–508. IEEE, 2012.

[23] Andrew E. Johnson and Martial Hebert. Using spin images for efficient object recognition
in cluttered 3d scenes. IEEE Transactions on pattern analysis and machine intelligence,
21(5):433–449, 1999.

70

[24] Timothée Jost and Heinz Hugli. A multi-resolution scheme icp algorithm for fast shape
registration. In 3D Data Processing Visualization and Transmission, 2002. Proceedings.
First International Symposium on, pages 540–543. IEEE, 2002.

[25] Kourosh Khoshelham. Accuracy analysis of kinect depth data. In ISPRS workshop laser
scanning, volume 38, page W12, 2011.

[26] PLC Point Cloud Library. https://pointclouds.org. https://pointclouds.org. Ac-
cessed: 2016-09-30.

[27] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vision, 60(2):91–110, nov 2004.

[28] Nicolas Mellado, Dror Aiger, and Niloy J Mitra. Super 4pcs fast global pointcloud reg-
istration via smart indexing. In Computer Graphics Forum, volume 33, pages 205–215.
Wiley Online Library, 2014.

[29] MeshLab. https://www.meshlab.net. https://www.meshlab.net. Accessed: 2017-
05-30.

[30] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, An-
drew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and tracking. In Mixed and augmented re-
ality (ISMAR), 2011 10th IEEE international symposium on, pages 127–136. IEEE, 2011.

[31] Diana Pagliari and Livio Pinto. Calibration of kinect for xbox one and comparison between
the two generations of microsoft sensors. Sensors, 15(11):27569–27589, 2015.

[32] D Prieler. Local reconstruction using isotropically fair neighborhoods. diploma thesis,
University of Technology Vienna, 2016.

[33] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In 3-
D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference o,
pages 145–152, 2001.

[34] Joaquim Salvi, Carles Matabosch, David Fofi, and Josep Forest. A review of recent
range image registration methods with accuracy evaluation. Image and Vision Comput-
ing, 25(5):578–596, 2007.

[35] John Sell and Patrick O’Connor. The xbox one system on a chip and kinect sensor. IEEE
Micro, 34(2):44–53, 2014.

[36] Ivan Sipiran and Benjamin Bustos. Harris 3d: a robust extension of the harris operator for
interest point detection on 3d meshes. The Visual Computer, 27(11):963–976, 2011.

[37] Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for image processing. a
talk at the Stanford Artificial Project in, pages 271–272, 1968.

71

https://pointclouds.org
https://www.meshlab.net

[38] Georgios Stavropoulos, Panagiotis Moschonas, Konstantinos Moustakas, Dimitrios Tzo-
varas, and Michael Gerassimos Strintzis. 3-d model search and retrieval from range images
using salient features. Multimedia, IEEE Transactions on, 12(7):692–704, 2010.

[39] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative
multi-scale signature based on heat diffusion. In Computer graphics forum, volume 28,
pages 1383–1392. Wiley Online Library, 2009.

[40] Thibaut Weise, Bastian Leibe, and Luc Van Gool. Accurate and robust registration for
in-hand modeling. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8. IEEE, 2008.

[41] Lin Yang, Longyu Zhang, Haiwei Dong, Abdulhameed Alelaiwi, and Abdulmotaleb
El Saddik. Evaluating and improving the depth accuracy of kinect for windows v2. Sensors
Journal, IEEE, 15(8):4275–4285, 2015.

[42] Yu Zhong. Intrinsic shape signatures: A shape descriptor for 3d object recognition. In
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference
on, pages 689–696. IEEE, 2009.

72

	Introduction
	Motivation
	Problem Statement
	Aim of this work
	Methodological Approach
	Structure of this work

	Related Work
	Surface Registration
	Fine registration: the Iterative Closest Point algorithm
	Feature detection
	Feature description
	Feature-agnostic alignment
	Commodity ranger scanners: the Microsoft Kinect™
	Summary

	Tolerant global registration
	Definitions
	Algorithm Overview
	Parameters
	Calculating 3D point positions and pointwise errors
	Occlusion detection
	Local Curvature Estimation
	Local maximum detection
	Feature Filtering
	Curvature Scale Space – not satisfactory
	Filtering features based on curvature confidence – not satisfactory
	Filtering features based on curvature saliency – satisfactory
	Considerations regarding the range scanner error model

	Global Descriptor
	Global Descriptor matching

	Transformation estimate calculation
	Match Verification
	Transform Tolerance
	Surface Overlay Test

	Results
	Evaluation
	Synthetic range scans
	Tolerance to geometrical variation
	Robustness to angle difference
	Registration of Kinect v2 scans

	Comparison to state-of-the-art
	Discussion

	Conclusion
	Synopsis
	Limitations and Future Work

	Bibliography

