
On Providing On-demand
Interoperability Solutions for the

IoT

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Michael Hammerer, BSc.
Matrikelnummer 01127218

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Dr.techn. Hong-Linh Truong

Wien, 13. Dezember 2018
Michael Hammerer Hong-Linh Truong

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

On Providing On-demand
Interoperability Solutions for the

IoT

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Michael Hammerer, BSc.
Registration Number 01127218

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dr.techn. Hong-Linh Truong

Vienna, 13th December, 2018
Michael Hammerer Hong-Linh Truong

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michael Hammerer, BSc.
Edlbacherstraße 11/10, 4020 Linz

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. Dezember 2018
Michael Hammerer

v

Danksagung

Allen voran, möchte ich mich bei meinem Betreuer Priv.-Doz. Dr. Hong-Linh Truong
bedanken. Er gab mir zu jeder Zeit wertvolles Feedback und dank seiner Unterstützung
konnte ich viel Wichtiges erlernen. Die harte Arbeit und Freizeit, die er investiert hat,
um mir zu helfen, schätze ich sehr.

Des Weiteren möchte ich mich bei Dipl.-Ing. Lingfan Gao für die unterhaltsamen Dis-
kussionen bedanken, die wir im Zuge unserer Diplomarbeiten hatten. Die gemeinsame
Arbeitszeit war mir ein Vergnügen.

Ohne die großartige Unterstützung meiner Eltern wäre ich nicht in der glücklichen Lage
in der ich mich befinde. Ich bin euch auf ewig dafür dankbar. Weiters danke ich meinen
Großeltern und meinen Geschwistern Tobias und Theresa, die mich alle stets förderten
und mir immer zur Seite stehen.

Es fällt mir schwer, die immense Dankbarkeit an meine Freundin Sarah in Worte zu
fassen. Es weiß sicherlich niemand so gut wie du, wie viele Stunden ich in diese Arbeit
investiert habe. Danke, dass du mich stets unterstützt und motiviert hast. Ohne dich
hätte ich es nicht geschafft.

Zu guter Letzt möchte ich mich bei all meinen Freunden bedanken. Mit euch durfte ich
schon viele unterhaltsame Stunden verbringen und ich freue mich jetzt schon auf die
schöne Zeit, die uns noch erwartet.

vii

Acknowledgements

First of all, I would like to thank my advisor Priv.-Doz. Dr. Hong-Linh Truong. He was
a great support and always provided new ideas and feedback when I needed it. I very
much appreciate all the hard work and time that he invested in helping me.

I would also like to thank Dipl.-Ing. Lingfan Gao for the pleasent discussions that we
had while working on the thesis. I really enjoyed our cooperation and the positive spirit
that he provided.

Without the support of my parents throughout my whole life, I would not have been able
to achieve this milestone. Thank you for everything. Additionally, I want to thank my
siblings for the support that they provided to me.

I want to express my profound gratitude to my girlfriend Sarah. You were always there
for me when I needed you. I feel blessed that I can share all the great moments with you
and I’m really thankful for having you.

Finally, I want to thank all of my wonderful friends for the great times that we had with
eachother.

ix

Kurzfassung

Da immer mehr Dinge dem Internet beitreten, wird die Interoperabilität von Dingen
eine wichtige Angelegenheit. Eine Vielzahl an Herausforderungen entstehen wenn Dinge
in der Lage sein sollen, mit anderen Softwarekomponenten zu interoperieren. Weil Dinge
eine enormes Anwendungsbereich ermöglichen, sind sie höchst heterogene Aktoren. Dinge
sind so designt, dass sie dem Anwendungskontext gerecht werden und daraus folgt, dass
die von Dingen bereitgestellten Daten höchst verschieden sind. Dazu kommt, dass Dinge
unterschiedlichste Technologien verwenden, da die Anforderungen an den Technologien
divergieren.

Softwaresysteme, die sich das Internet der Dinge (nachfolgend IoT) zu Nutzen machen,
werden Cloudservices, Netzwerkfunktionen und Dinge integrieren müssen. Sogenannte
IoT Cloud Systems werden wichtige Ermöglicher von IoT Applikationen. Aber damit IoT
Cloud Systems funktionieren, müssen deren Komponenten miteinander interoperieren.
Die Diversität der Dinge stellt jedoch eine Herausforderung für die Interoperabilität
von IoT Cloud Systems dar. Angemessene Interoperabilitätslösungen werden benötigt
um die Technologie- und Datendiversität zu bewältigen, sodass Dinge mit IoT Cloud
Systemen interoperieren können. Die Technologie- und Datendiversität an sich ist jedoch
nicht die einzige Interoperabilitätsherausforderung die bewältigt werden muss. Dinge
sind oft mobil und von ihrem Kontext und ihrer Umwelt abhängig. Wenn sich Dinge in
der Welt bewegen oder den Kontext wechseln, werden sie IoT Cloud Systeme dynamisch
betreten und verlassen müssen. Es ist daher nicht ausreichend, Interoperabilitätsprobleme
mit statischen Mitteln zu bewältigen. Interoperabilitätslösungen müssen on-demand
bereitgestellt werden.

Das Detektieren von Interoperabilitätsproblemen und das Finden angemessener Lösungen
ist noch immer eine erschöpfende und teure Tätigkeit. Das selbe gilt für das Bereitstellen
und das Anwenden solcher Lösungen. All diese Schritte sind jedoch nötig um Interopera-
bilitätslösungen on-demand bereitzustellen. Das Ziel dieser Diplomarbeit ist, die Zeit und
den Aufwand zu reduzieren, der benötigt ist um solche Tätigkeiten durchzuführen. Durch
das Modelieren von den Interoperabilitätsfähigkeiten von Dingen, Netzwerkfunktionen
und Cloudservices mithilfe von Interoperabilitätsmetadaten, bestreben wir Interoperabili-
tätsprobleme zu detektieren und Lösungen vorzuschlagen. Softwarekomponenten, die als
fähig angesehen werden das Problem zu lösen, werden wiederverwendet und angewendet.

xi

Außerdem diskutieren und definieren wir die Eigenschaft der on-demand Interoperabilität
und mehrere Fakturen die entscheidend sind um on-demand Interoperabilität bereitzustel-
len. Wir stellen Interoperabilitäts DevOps als die wichtigsten Interessensvertreter unseres
Frameworks vor, da komplexe Interoperabilitätsproblem mit menschlicher Intelligenz
gelöst werden müssen. Ein Proof-of-Concept Prototyp der das Framework implementiert
wurde im Zuge der Diplomarbeit entwickelt. Der Prototyp wurde anschließend verwendet
um die Angemessenheit des Frameworks zu evaluieren.

Abstract

As more and more Things join the Internet, the interoperability of Things becomes a
major concern. Several challenges arise when Things should be able to interoperate with
other software components. Since Things enable an enormous area of application, they
are highly heterogeneous actors. Things are designed to fit the application context and
as a result the data that Things offer varies greatly. Additionally, Things use diverse
technologies since their requirements diverge.

Software systems that utilise the IoT will have to integrate cloud services, network
functions and Things. Such IoT cloud systems will be major enablers of IoT applications.
But in order for an IoT cloud system to function, the components of the system have
to interoperate with each other. However, the Thing diversity presents a challenge
when the interoperability of IoT cloud systems is pursued. Appropriate interoperability
solutions are needed to manage the technology and data diversity, such that Things can
interoperate with IoT cloud systems. Nevertheless, the technology and data diversity
itself is not the only interoperability challenge that needs to be resolved. Things are
often mobile and depend strongly on their context and environment. As Things move
through the world or change contexts, they will have to dynamically enter and leave IoT
cloud systems. It is therefore not sufficient, to manage the interoperability problems with
static means. Interoperability solutions need to be provided on-demand.

Detecting interoperability problems and finding appropriate solutions is still an exhaustive
and costly task. Same is true for provisioning and deploying such solutions. However, all
of those steps are required to provide on-demand interoperability solutions. The aim of
this thesis is to reduce the time and effort that is required to perform those tasks. By
modeling the interoperability capabilities of Things, network functions and cloud services
with interoperability metadata, we endeavour to detect interoperability problems and
recommend solutions. Furthermore, we reuse and deploy software components that are
deemed capable of solving the problem.

Additionally, we discuss and define the property of on-demand interoperability and
several factors that are key to providing on-demand interoperability. We introduce
Interoperability DevOps as the main stakeholders of our framework, since complex
interoperability problems must be resolved with human intelligence. A proof-of-concept
prototype that implements the framework was built during this thesis. The prototype
was then used to evaluate the appropriateness of the framework.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation Scenario and Research Questions 2
1.3 Research questions . 2
1.4 Contributions . 3
1.5 Outline . 4

2 State of the Art 7
2.1 Overview . 7
2.2 IoT cloud systems . 7
2.3 IoT Interoperability . 8
2.4 Interoperability in existing IoT Frameworks 11
2.5 Related Work . 11
2.6 Summary . 13

3 Motivation Scenarios and Use Cases 15
3.1 Overview . 15
3.2 Application-domain: INTER-IoT Seaport 15
3.3 First Scenario: Upload Camera Footage 18
3.4 Modular Interoperability Scenarios . 20
3.5 Use Cases . 25
3.6 Summary . 37

4 Interoperability Framework 39

xv

4.1 Overview . 39
4.2 On-demand Interoperability . 40
4.3 Additional Interoperability Factors . 41
4.4 Interoperability DevOps . 43
4.5 Architecture and Models . 48
4.6 Detecting Problems - Interoperability Check 60
4.7 Interoperability Recommendation . 62
4.8 Discussion and Extensibility . 66
4.9 Summary . 68

5 Prototype 69
5.1 Overview . 69
5.2 Prototype Architecture and the rsiHub Framework 70
5.3 Test-driven Development . 72
5.4 Summary . 85

6 Evaluation 87
6.1 Overview . 87
6.2 Functional Evaluation . 87
6.3 Performance Evaluation . 97
6.4 Summary . 99

7 Conclusion and Future Work 105
7.1 Conclusion . 105
7.2 Future Work . 107

Bibliography 109

List of Figures

1.1 Example of interoperability bridges . 3

3.1 Motivation Scenario: Upload Camera Footage 19
3.2 Use case diagram . 27

4.1 Interoperability DevOps Workflow . 45
4.2 Framework Architecture Overview . 48
4.3 SliceInformation Model . 50
4.4 Interoperability Metadata Model . 52
4.5 Interoperability Metadata: Protocols . 53
4.6 Interoperability Metadata: Dataformats 54
4.7 Interoperability Metadata: Quality of Data 55
4.8 Interoperability Metadata: Quality of Service 55
4.9 Interoperability Metadata: Data Contract 56
4.10 Interoperability Metadata: Prototypes . 56
4.11 Interoperability Software Artefact Model 58
4.12 Interoperability Bridge Model . 60
4.13 Recommendation Solution Types . 64

5.1 prototype architecture overview . 70
5.2 rsiHub architecture taken from [Tru18] . 72

6.1 Evaluation workflow . 92
6.2 Screenshot of the Interoperability Service API 95
6.3 Screenshot of the Software Artefact Service API 95
6.4 Software artefact commands of pizza.js . 96
6.5 Screenshot of the interoperability check with pizza.js 96
6.6 Screenshot of the interoperability recommendation with pizza.js 97
6.7 Interoperability check response time (by increasing the number of nodes) 100
6.8 Interoperability check response time (by increasing the number of metadata

mismatches) . 101
6.9 Interoperability recommendation response time (by increasing the number of

nodes) . 102

xvii

6.10 Interoperability recommendation response time (by increasing the number of
metadata mismatches) . 103

List of Tables

3.1 Scenario Factor: Protocol . 20
3.2 Scenario Factor: Dataformat . 21
3.3 Scenario Factor: Data Syntax . 21
3.4 Scenario Factor: Data Contract . 22
3.5 Scenario Factor: Quality . 22
3.6 Scenario Factor: Quality of Data . 23
3.7 Scenario Factor: Quality of Data . 23
3.8 Scenario Factor: Combination . 24
3.9 Scenario Factor: Data Syntax . 24
3.10 rsiHub entity descriptions that are required for the use cases 25
3.11 Entity descriptions that are required for the use cases 26
3.12 UC01: Add Interoperability Software Artefact to rsiHub 28
3.13 UC02: Deploy Interoperability Software Artefact to Resource 29
3.14 UC03: Create Interoperability Bridge . 30
3.15 UC04: Search Interoperability Software Artefact / Interoperability Bridge /

Resource . 31
3.16 UC05: Update Interoperability Metadata of Interoperability Software Artefact

/ Interoperability Bridge / Resource . 32
3.17 UC06: Check the interoperability of a SliceInformation 33
3.18 UC07: Check the interoperability of a SliceInformation with a SliceContract 34
3.19 UC08: Get interoperability recommendations for a SliceInformation . . . 35
3.20 UC09: Get interoperability recommendations for a SliceInformation with a

SliceContract . 36

5.1 Testslices that are based on the seaport application domain. 74
5.2 Basic testslices that represent common problem graphs (Part 1 of 2) . . . 75
5.3 Basic testslices that represent common problem graphs (Part 2 of 2) . . . 76
5.4 Testslices that were derived from the slices of [GGH+15] 77
5.5 Detailed testcase description: working slice 78
5.6 Detailed testcase description: indirect mismatch 78
5.7 Detailed testcase description: push pull problem 79
5.8 Detailed testcase description: chaining 79
5.9 Detailed testcase description: indirect mismatch 1:N 80

xix

5.10 Detailed testcase description: M:1 . 81
5.11 Detailed testcase description: M:N . 82
5.12 Detailed testcase description: basic circle 83
5.13 Detailed testcase description: indirect, bidirectional problem with three circles 84

6.1 VM specifications for the functional evaluation 88
6.2 VM specifications for the performance evaluation 98

CHAPTER 1
Introduction

1.1 Introduction
The "Internet of Things"(IoT) is the idea of an information network that includes not
only computers but also Things, ranging from simple Things such as temperature sensors
to highly complex Things such as vessels. The IoT hits it’s highest potential, when
Things can operate with a wide range of applications independent from the specific
technology running on the Thing. This property is called interoperability and a McKinsey
Study [MCB+15] estimates that interoperability directly influences 40% of the potential
economic value of the IoT.

With the emergence of the "Everything-as-a-Service" business model ([LW14], [DFZ+15],
[BFB+11]), modern software applications often consist of cloud services, network functions
and Things (also termed as resources [LNT16]). Such IoT cloud systems are major enablers
of the IoT. But since Things are often mobile and change systems, the composition of such
IoT cloud systems often changes dynamically. It is therefore important to support the
dynamic and rapid provisioning of IoT cloud systems [Gao18]. But even when it’s possible
to provision IoT cloud systems dynamically, it is not ensured that the components of the
system are interoperable. Therefore, it is necessary to also support the provisioning of
on-demand interoperability solutions. The interoperability of software components and
resources is however not an obvious feature. Factors that determine if two components
are interoperable include but are not limited to:

• Communication protocols and properties since they determine if the compo-
nents are able to communicate with each other

• Data formats and syntax determine if the components can interpret the ex-
changed data

• Data rights and contracts are important to establish an interoperable legal
foundation, especially when accessing sensible information or using a component
"as-a-service"

1

1. Introduction

• Quality of Service interactions between components can fail when QoS require-
ments are not met

• Quality of Data IoT cloud systems might require certain data quality measures
in order to work

• Data semantics determine if both components agree on the meaning of the
interpreted data

Frameworks that enable the dynamic provisioning of IoT cloud systems encapsulate the
cloud services, network functions and Things into resource slices ([TN16], [Tru18]). This
thesis assumes the availability of a resources provisioning framework such as in [Gao18]
to provide on-demand interoperability solutions for interoperable resource slices.

1.2 Motivation Scenario and Research Questions
A basic motivation scenario is presented in Figure 1.1. This scenario is further elaborated
in Chapter 3. Consider that an alarm triggers the necessity of a resource slice ([TN16])
that sends camera data to a data storage. A resource slice includes a set of IoT units,
network functions and cloud services ([TN16]). The user application, respectively the
operator of the application, determines the cameras that should upload the data to a
selected data storage. As the cameras have different APIs and communication capabilities,
it is however not clear, whether the cameras can actually upload the video footage or
not. Furthermore, if a camera is indeed not interoperable with the data storage, the
interoperability problem has to be resolved. Nethertheless this could turn out to be a
demanding task, since an immediate solution is not available and has yet to be developed.

The goal of this thesis is therefore to develop a framework that enables the detection
of interoperability problems for IoT cloud systems. Additionally, we want to provide
on-demand interoperability solution to reduce the time and effort that is necessary to
solve interoperability problems, especially recurring problems.

1.3 Research questions
Based on the previously defined motivation scenario and goal, the thesis aims to answer
the following research questions:

• RQ1 Interoperability description How can we describe the interoperability
capababilities of IoT units, network functions, resources and IoT software compo-
nents? What information is needed to deal with the aforementioned interoperability
factors? How can we exploit the interoperability descriptions of IoT software
components to reduce the effort of dealing with interoperability problems?

• RQ2 Detecting interoperability problems Which IoT interoperability prob-
lems can be detected based on the interoperability description of resource slice

2

1.4. Contributions

Storage Platform

Alarm Platform

Camera Platform

Resource Provisioning
Service

Camera A

Alarm A

1.

3.

0.

Camera B

?
Interoperable

?
Interoperable

Actor
?

Fix Interoperability
Problem

provisions

User Application

Storage Units

Figure 1.1: Example of interoperability bridges

components? Which problems are hard to detect? What information is necessary
to describe interoperability problems?

• RQ3 Resolving interoperability problems What steps are necessary to create
an interoperable resource slice? What entities can we utilise to reduce the effort
of solving IoT interoperability problems? How can we improve the deployment
process of such entities?

• RQ4 Interoperability framework What are the main stakeholders of our frame-
work? How do we integrate our framework with the resource provisioning service
that the framework requires? How can we evaluate our framework?

To answer the research questions, this thesis develops an interoperability framework and
a prototype. The next section presents an overview of the contributions and projects
that the thesis contributes to.

1.4 Contributions

We contribute a framework that supports the following features:

3

1. Introduction

• modelling the interoperability capabilities of IoT resources and IoT software com-
ponents with interoperability metadata

• automated detection of interoperability problems within resource slices by leveraging
interoperability metadata

• recommendation of interoperability solutions based on interoperability metadata
values

• integrating software artefacts that can be reutilised to solve interoperability prob-
lems

• deploying interoperability software artefacts to resources by utilising resources
providers

• creating interoperability bridges by leveraging resource slices and interoperability
metadata

Additionally, we contribute a prototype that implements the interoperability framework.
The prototype was built in cooperation with the author of [Gao18] and uses the resource
provisioning capabilities of same author’s work. To this end, the prototype was built
on the foundational work of [LNT16] and [TN16]. The prototype is available at https:
//github.com/SINCConcept/HINC. Additional components that are utilised by the
prototype are available at https://github.com/rdsea/IoTCloudSamples. Some
of those software artefacts were also contributed during the work on this thesis.

The work on this thesis and the created prototype contribute to the INTER-HINC project
([II18b]), which is part of the INTER-IoT project [II18a]. The work also contributes to
the rsiHub framework from [Tru18]. The prototype of this thesis extends the rsiHub’s
prototype, which itself is based on the works of [TN16] and [LNT16].

The application-domain and scenarios of Chapter 3 are based on our industry collaboration
and the Inter-Iot project. Having these realistic scenarios as foundation to our scenarios
and obtaining realistic testdata was a great benefit. Additionally, the process of developing
and evaluating our prototype greatly benefited from the Google Cloud Platform Research
Grant (TU Wien).

Some concepts of this thesis contributed to the article "Service Architectures and Dynamic
Solutions for Interoperability of IoT, Network Functions and Cloud Resources"([TGH18])
which was published in the 12th European Conference on Software Architecture, Septem-
ber 24-28, 2018, Madrid, Spain.

1.5 Outline
The rest of the thesis is structured as follows: The State of the Art is presented in
Chapter 2 by providing important background information and related works. An

4

https://github.com/SINCConcept/HINC
https://github.com/SINCConcept/HINC
https://github.com/rdsea/IoTCloudSamples

1.5. Outline

application-domain, from which several scenarios and use cases are being derived, is
introduced in Chapter 3. The Chapter presents the motivation of the framework. The
defined use cases where used for implementing and evaluating the prototype. Chapter 4
proposes an interoperability framework that aims to enable the on-demand provisioning
of interoperability solutions. Within this Chapter, the term of on-demand interoperability
is discussed, followed by an introduction of supplementary on-demand interoperability
layers and the concept of Interoperability DevOps. Then, the framework architecture
and data models for interoperability metadata, interoperability software artefacts and
interoperability bridges are provided. The Chapter is completed with descriptions of the
framework’s interoperability check and recommendation. The prototype that implements
the interoperability framework is discussed in Chapter 5. Subsequently, an evaluation
of the prototype is provided in Chapter 6. Finally, the conclusion and future work is
provided in Chapter 7.

5

CHAPTER 2
State of the Art

2.1 Overview

We begin our discussion of the State of the Art by providing information about IoT
cloud systems and how to provision such systems. Furthermore, we provide information
about the resource provisioning framework that this thesis utilises to provide on-demand
interoperability solutions. Thereafter, we discuss the term interoperability and it’s
relevance to the IoT. In doing that, we provide a definition and examine the interoperability
property in more detail. Additionally, we present the role of quality measures and data
contract in IoT interoperability before providing some frameworks that deal with IoT
interoperability. Finally, we provide related research efforts that we organise by topics
that are relevant for this thesis.

2.2 IoT cloud systems

The term IoT cloud systems is used to describe systems that incorporate Things, network
functions and cloud services. With the growing importance of the IoT, as well as the
"Everything-as-a-Service" business model, IoT cloud systems are gaining more and more
importance. The composition and management of IoT cloud systems is a challenging
task, as many services have to be operated and monitored and all independent elements
of the IoT cloud system need to work together properly.

2.2.1 Provisioning IoT cloud systems

IoT cloud systems are highly distributed applications, especially when dealing with a
wide variety of services providers. In the provisioning step of an IoT cloud system, all
services need to be configured properly, so that they can eventually communicate with
each other. As each software component or service might have a different API or requires

7

2. State of the Art

a different configuration, the provisioning of IoT cloud systems is a complex task due
to the heterogenity that needs to be dealt with. To deal with this complexity, [LNT16]
introduced the concept of Harmonisation of IoT, Network Functions and Cloud System.

The authors of [TN16] introduce the concept of resource slices as a representation of
an IoT cloud system’s information model. Within resource slices, the Things, network
functions and cloud services that are part of the IoT cloud system, are unified to resources.
Based on the notion of resource slices from [TN16] and [Tru18], as well as the work
on the harmonisation of IoT, network functions and cloud services from [LNT16], the
article [Tru18] then introduces a framework architecture for provisioning resource slices,
respectively IoT cloud systems. More work on the provisioning of IoT cloud systems
can be found in [Gao18], where a proof-of-concept prototype that incorporates the
architecture from [Tru18] was implemented. The author of [Gao18] also uses the term
"resource ensamble" as a synonym for the term resource slice. However, the provisioned
resources of a resource slice are not inherently able to properly work together, as the
provisioning process solely deals with the acquisition and configuration of resources and
their connectivity settings, and does not concern questions about the interoperability of
resources, respectively resource slices.

2.2.2 rsiHub - Resource provisioning framework

Our framework is built upon on a resource provisioning framework. We assume that the
resource provisioning framework is capable of provisioning IoT cloud systems that are
defined by resource slices. While our framework does not necessarily require one specific
resource provisioning service, as long as it provides the required capabilities, we use the
rsiHub framework ([Tru18] and [Gao18]) for our prototype implementation.

The rsiHub framework offers one single interface for requesting and provisioning resources,
called Global Management Service. The Global Management Service controls several
Local Management Service through the RabbitMQ implementation of the AMQP protocol.
The Local Management Services in turn use adapters to interface with resource providers
([Gao18]). The flexibility of the rsiHub allows it to integrate several resource providers.
The rsiHub framework harmonises the operations that are used to control resources
providers and configure the resources. Resource slices contain resources, which can be
Things, network functions and cloud services.

2.3 IoT Interoperability

Oxford’s Online Dictionary defines the word interoperability as "the ability of computer
systems or software to exchange and make use of information" [ODO18]. This definition
certainly defines the positive, working state of interoperable computer systems. However,
in order to get a deeper understanding of the term interoperability, it is also necessary to
understand what has to be established in order for computer systems to be interoperable
and, to investigate the definition from the contraposition, what leads to systems not being

8

2.3. IoT Interoperability

interoperable. One frequently quoted and hence important work on the interoperability
of systems is the Levels of Conceptual Interoperability Model by Wang et al ([WTW09])

2.3.1 Levels of Conceptual Interoperability Model

In the research literature about IoT Interoperability, the Levels of Conceptual Inter-
operability Model by Wang et al ([WTW09] is frequently cited. As already evident in
the name of the model, it is organised in multiple interoperability levels, respectively
layers. The first layer of the model, that is right above the "no interoperability" level, is
called "technical interoperability" and it describes the availability of technical connections
that allows the systems to exchange data. In this level, data is considered to be without
structure or meaning, as this is part of levels that are above "technical interoperability".
The next level, syntactic interoperability or level 2, is established when the systems "have
an agreed protocol to exchange the right forms of data in the right order, but the meaning
of data elements is not established", [WTW09].

Once two (or more) systems can exchange data with an agreed protocol and the structure
of the data is understood by both systems, the next level, semantic interoperability, is
about reaching a common understanding of the data semantics. Further knowledge of
the systems’ semantics is exchanged in the next level, pragmatic interoperability, where
the meaning of the systems’ contexts is also known by all parties. Thus, two systems
that are pragmatically interoperable, are not only able to agree on the semantics of the
exchanged terms, but can also utilise the meaning of the information context.

Furthermore, systems that are able to deal with dynamic contexts, thus changing
the meaning of the own context and reacting to changes of the counterpart’s context,
are categorised in level 5, dynamic interoperability. Systems that are dynamically
interoperable "are able to re-orient information production and consumption based on
understood changes to meaning, due to changing context as time increases", [WTW09].
The highest level of the model, is the level of conceptual interoperability, where the
"interoperating systems are completely aware of each others information, processes,
contexts, and modeling assumptions", [WTW09]. The authors are however not certain, if
conceptual interoperability can actually be reached.

From the aforementioned definition of [ODO18] we can deduce that the interoperability of
computer systems or software can fail when either the ability to exchange information or
the ability to make use of information is impaired. To conclude the Levels of Conceptual
Interoperability Model, the ability to exchange information is impaired when the technical
or physical data exchange is broken, or when no syntactic agreement about the data
exchange is in place. On the other hand, to correctly make use of another system’s
information, the meaning of data and context is necessary as otherwise there is the
risk of failing to make the correct use and hence not being interoperable. Additionally,
interoperability can fail if the meaning of the context changes and systems fail to react
to such changes.

9

2. State of the Art

While it is is extremely difficult and challenging to make systems self-interoperable towards
other systems, our effort is to enable on-demand interoperability. The benefit of enabling
on-demand interoperability is that the systems do not have to be self-interoperable,
as interoperability will be established by the operators of the systems, depending on
the current interoperability situation and context of the systems. Hence, when the
circumstances with respect to any interoperability level change and interoperability is
not given anymore, on-demand interoperability solutions can repair the ability of the
systems to interoperate. On-demand interoperability solutions can therefore be used to
establish de facto dynamic interoperability.

2.3.2 The role of Quality of Service, Quality of Data and Data
Contracts in IoT interoperability

As we deal with IoT cloud systems and the on-demand provisioning of interoperability
solutions, Data Contracts are also topics of concern, as they influence a system’s ability
to exchange and make use of another systems information. Same is true for Quality of
Service (QoS) and Quality of Data (QoD) metrics.

In [TGC+11], an abstract model for Data Contracts is presented. The authors of [BT17]
propose a contract-aware IoT framework that allows the monitoring of QoD and QoS
metrics. The main contract categories of both works consist of

• Quality of Data mentioned QoD metrics are the completeness and conformity
with respect to a negotiated data model, average message age, average message
currency, consistency and interpretability. However, the appropriate metrics that
should be applicated, depending on the domain of the data asset.

• Quality of Service mentioned QoS metrics are availability and reliability. Same as
for QoD metrics, the actual QoS metrics depend on the capabilities of the resource.

• Data Rights contains information about whether the derivation, collection or
reproduction of the data is allowed. Additional properties determine if the data is
qualified for noncommercial use only and whether the provider requires attribution
or not.

• Regulatory Complience is represented by a list of regulatory acts that protect
or apply to the data asset.

• Pricing Model contains information about the financial effort it takes to aquire
the asset or resource. Valuable properties of pricing models are the price, currency
and the unit that is sold in the process.

• Control and Relationship contains information about the jurisdiction, the
warranty, liability and indemnity that is tied to the data asset or resource.

• Purchasing Policy is a contract subcategory that holds information about the
contract termination, shipping and refund

As mentioned before, the IoT hits its highest potential when interoperability is established.
IoT cloud systems can then be composed with resources from many different "Everything-

10

2.4. Interoperability in existing IoT Frameworks

as-a-service" platforms [LW14]. In our view, properties from the above listed categories
are important to achieve this goal. To enable interoperable "Everything-as-a-service"
resources in IoT cloud systems, data contracts and quality metrics need to be considered.

2.4 Interoperability in existing IoT Frameworks

To provide a short overview of the fastly growing amount of standards, projects and
technologies that concern the IoT, we list a couple of important technologies, frameworks
and projects. Taking into account the lists of [Pos18] and [GGH+15], there are currently
around sixty prominent protocol standards for the IoT. Some widely used application
protocol standards are: MQTT, AMQP, CoAP, STOMP, HTTP, XMPP. Examples
for dataformats that are widely utilised in the IoT are JSON, CSV, YAML, XML,
CBOR, Apache AVRO. Frequently used dataformats for representing semantic data are:
JSON-LD, RDF. Other frameworks and projects that deal with or are related to IoT
interoperability are:

• oneIoTa is a web-based tool that aims to define interoperable device data models
for the IoT, [OCF18].

• INTER-IoT is a research project that "aims to design, implement and test a frame-
work that will allow interoperability among different Internet of Things (IoT) plat-
forms", [II18a]. The approach of the INTER-IoT project is discussed in [FSP+18].

• IoTivity "is an open source software framework enabling seamless device-to-device
connectivity to address the emerging needs of the Internet of Things", [IoT18b]. The
architectural goal of IoTivity is however to implement a new standard ([IoT18a]).
The goals of IoTivity and the proposed framework of this thesis are therefore
diverging.

Since many IoT frameworks are at an early stage, it is sometimes hard to figure out
what each framework is striving for. Nevertheless, many frameworks push towards IoT
interoperability and a lot more deal with the IoT as such. However, we were not able to
locate a framework that deals with on-demand interoperability.

2.5 Related Work

We organise the related work into different categories that we deem important for our work.
However, as on-demand interoperability is a fairly recent topic, most of the investigated
research papers did not directly relate to this thesis. To this end, the main effort of the
research literature concerning IoT interoperability is about semantic interoperability,
or more precisely about how to reach a commonground for data semantics in the IoT
([JAK+16], [GS16], [SBK+17] and [AOK+15] among many others).

11

2. State of the Art

2.5.1 On-demand Interoperability

An on-demand SOA-based multiprotocol translater is proposed in [DED17]. While the
effort to dynamically translate different protocols is similar to our approach in the sense
that it is also done dynamically, our approach strives for reusing resources such as the
proposed translater. The focus of our work is on attaching interoperability information
to concrete resources such that those resources can be used from a higher abstraction
level. On this abstraction level we detect interoperability problems and solve them by
reusing appropriate software components, such as the multiprotocol translator. The
benefit of this approach is that interoperability problems that go beyond protocol issues
can be considered. In contrast to [DED17], we aim for the dynamic development of
interoperability solutions. More precisely, adding new capabilities to our framework
would require integrating additional resources during runtime rather than changing the
framework itself. With that being said, integrating the proposed multiprotocol translater
from [DED17] into our framework would certainly help solving a lot of interoperability
problems related to protocols.

The article [TD15] calls for a more coherent software layer in IoT cloud systems to
simplify the development of IoT cloud applications and unleash the potential of the IoT.
The envisioned systems allow for dynamic changes in resources. To guarantee that the
parts of the system are interoperable, it is important to provide dynamic interoperability
solutions. Static interoperability means are not sufficient to solve dynamic interoperability
demands that such systems create.

According to [Mil15], it is unlikely that a protocol and data format that the whole
community agrees upon will emerge, due to the fast spread of IoT. This leads to an inter-
operability gap which needs to be closed by using other principles than standardisation.
The article [Mil15] also states that interoperability is essential for reaching the potential
of IoT. In our view, this work further stresses the importance of interoperability in the
IoT, especially the need for on-demand interoperability.

The paper [JAK+16] proposes several approaches to establish semantic interoperability.
The goal is to connect vertical IoT silos, such that applications can use the data and
resources of different IoT platforms accordingly. The authors note that "even if today’s
IoT systems are willing to expose their data and resources to others their semantically
incompatible information models become an issue to dynamically and automatically inter-
operate as they have different descriptions or even understandings of resources and
operational procedures". They later present the H2020 symbIoTe project that achieves
semantic interoperability with semantic mapping and by dynamically rewriting SPARQL
queries. While the core approach also depends on metadata, the goal is slightly different
to ours. Our focus is on establishing on-demand interoperability for IoT cloud systems by
improving the ability to create interoperable slices, in contrast to establishing semantic
interoperability of IoT platforms. We therefore don’t require technologies of the semantic
web, but reuse software components to achieve interoperability.

12

2.6. Summary

2.5.2 Interoperability Check

The authors of [GPS16] developed a tool based on the concept of model-driven engineering
that helps developers with detecting interoperability problems, such that found problems
can be manually resolved by developers. The detection of problems using lightweight
interoperability models might be of interest for our work. However, in contrast to our
approach, this work does not aim to dynamically reuse, create and provide interoperability
solutions. We view the work of [GPS16] as complementary to our approach.

2.5.3 Interoperability Recommendation

One core component of the article "An Architecture for Interoperable IoT Ecosystems"
[SBK+17] are marketplaces that allow consumers and providers to exchange resources
and data. Such a marketplace could also be used for the interoperability recommendation,
where the marketplace is queried for resources and software components that are capable of
solving on-demand interoperability problems. Additionally, the Interoperability Software
Artefacts (Section 4.5.4) and Interoperability Bridges (4.5.5) could also be offered and
monetised within a marketplace. Apart from that, the proposed architecture also strives
for interoperability between IoT-platforms to allow for cross-platform and cross-domain
applications. To achieve this, the proposed work also relies on semantic web technologies
and it emphasises the importance of semantic interoperability.

2.6 Summary
In contrast to mentioned research efforts, our work is about on-demand interoperability
solutions for the IoT and the dynamic development of interoperabiliy solutions. The
thesis is strongly bound to the topic of dynamic provisioning of IoT cloud systems
(background provided in Section 2.2). As the provisioned systems are highly dynamic, the
interoperability problems that come with it, also have a dynamic nature and therefore
require on-demand solutions. The consequence is that our work has to incorporate
dynamic techniques to solve the problems. That being said, the scientific literature about
dynamic interoperabilty problems in the IoT is fairly sparse at this point in time.

13

CHAPTER 3
Motivation Scenarios and Use

Cases

3.1 Overview

This chapter presents a set of scenarios based on an application of the INTER-IoT project
([II18a]) that motivates the work in this thesis. After defining the most important entities
of the application-domain and explaining the dynamic aspect of the seaport, the first
scenario provides a more detailed insight into the problem at hand. Furthermore, several
scenarios of interoperability layers and problems within the domain of the seaport are
introduced. Finally, this chapter provides use cases that have been created with the
scenarios in mind.

3.2 Application-domain: INTER-IoT Seaport

In order to reach a high level of application, the entities of the interoperability framework
is very generic. This statement also applies to the resource provisioning service that
the interoperability framework depends on. To get a better grasp of the idea and the
framework’s capabilities, it is important to tie the framework to real world scenarios that
can later be used to verify the prototype. Additionally, those real world scenarios help
with explaining and understanding the abstractions of the generic framework, as it is
often easier to apply concrete thinking rather than abstract thinking.

Our application-domain is based on a modern, intelligent seaport. The entities of the
application-domain are equipped with IoT technologies. We then introduce motivating
scenarios that are based on this application-domain. The entities that we need for our
seaport scenarios are:

15

3. Motivation Scenarios and Use Cases

• Port Communication System (PCS) manages all the communication within
the seaport and is used by the Port Control System to manage entities within
the port. The Port Communication System itself exposes APIs that allow exter-
nal entities to request current tracking data (for instance information about the
approaching Vessels). For matters of simplicity, we do not further discuss the
capabilities of the Port Control System as the scenarios below do not necessarily
require it.

• Vessels dynamically enter and leave the port. Vessels have to communicate and
interoperate with the Port Communication System. Exchanged information contains
for instance (but is not limited to) the current location and the status of the Vessel
as well as commands from the Port Communication System.

• Access Gates are equipped with sensors that detect when a car enters or leaves
the port, so that the amount of cars in the seaport can be tracked.

• Weather Sensors do not only send their data to the Port Communication System,
but can also be requested by external parties.

• Cameras have APIs that allow to access live camera footage as well as the most
recent video footage that is in the camera’s memory.

• Alarm Sensors (e.g. Smoke Detectors) send the alarm information to the Port
Communication System

Additionally, we have external stakeholders and systems that will interact with the port.
Those entities are:

• Fire Brigade might require video footage in case of a fire alarm

• Cloud Data Storage Platforms as data sinks for video footage

• Logistics Companies that request tracking data from the PCS in order to update
schedules.

• Weather Analytics Systems that request weather data from the port.

While in a real port there would be additional entities to manage, we try to keep the
application-domain and scenarios as compact as possible. Since this thesis is about
on-demand interoperability solutions, we define the dynamic aspects of our application-
domain in the next subsection.

16

3.2. Application-domain: INTER-IoT Seaport

3.2.1 Dynamic aspects of the application-domain

Dynamic provisioning and on-demand interoperability are key aspects when dealing with
interoperability problems. In this thesis, the term on-demand interoperability means that
interoperability is established with dynamic techniques in opposition to static ways of
creating interoperability solutions. Such static ways of solving interoperability problems
could be standardisation or by creating a solution during the development phase of a
project, contrary to it’s operation phase. The questions that immidiately arise are:

1. Why can’t interoperability problems be solved with standardisation? If every entity
uses the same standardised protocol for instance, then the interoperability problem
would clearly be solved.

2. Why can’t interoperability problems not be solved when designing and implementing
the software project? After all, making components interoperable is a common task
when developing software and a core skill of software developers.

To answer the questions and to make a case for on-demand interoperability, consider
following scenario within the previously defined port. Consider that vessels will have to
communicate with the PCS in order to safely enter, leave and manouver within the port.
As vessels can be from any country, manufacturer or manufacturing year, they might
also use different communication technologies. It would be very positive if there was
one communication technology that every vessel uses, a silver bullet of communication
technologies. Nevertheless, such a standard is currently not available and it does not
seem like one will emerge in the near future. And even if a standard technology would
soon emerge, there are still a lot of vessels that do not incorporate this standard so there
are still interoperability problems that need to be taken care of. Another reason why
standardisation will not solve communicative interoperability problems in the IoT is that
a wide variety of standards simply exist because of the wide variety of demands. While
one standard might satisfy the demand of low energy consumption with the cost of low
bandwith, another standard might enable a high bandwidth but lead to a higher energy
consumption. The area of application and technical capability of the Thing determines
the demands on the standard and subsequently justifies which standard will be used.
There is no silver bullet.

If it’s not possible to solve the interoperability problems regarding to communication
technologies with one single standard, isn’t it possible to achieve the interoperability
of all vessel communication technologies during the development phase of the Port
Communication System?
This approach is unfortunately not sufficient either, because the problem domain is too big.
As mentioned above, vessels can have any communication technology. Considering that
any vessel that exists may at one point have to interact with the port, it is not possible
to deal with all those cases during the development phase. When also considering other
interoperability problem factors, not only the communication technology, the problem
domain becomes even bigger and the task of solving such issues with static means becomes

17

3. Motivation Scenarios and Use Cases

even more impossible than it already is. And even when agile software development
techniques are being applied, the development circles are too long for creating solutions
to dynamic interoperability problems, as problems might need to be solved as fast as
possible.

In conclusion, we must support solving interoperability problems during runtime, with
interoperability solutions being developed in short development circles and solutions
are best provisioned dynamically. On-demand interoperability is an important feature,
but currently there is a lack of solutions. Furthermore, an extra benefit of the dynamic
provisioning of interoperability solutions is that scalability and elasticity can easily be
achieved.

While there are frameworks available that provide means for dynamic provisioning of
resources ([Gao18], [Tru18]), they do currently not deal with interoperability. Our motiva-
tion is to provide dynamic mechanism that improve the way to deal with interoperability
problems based on a framework that is already capable of dynamically provisioning
resources.

3.3 First Scenario: Upload Camera Footage

To get a better grasp of the system view, consider the following scenario: In the port,
a fire sensor or security door triggers an alarm that is sent to the Port Control via the
Port Communication System. To analyse what caused the alarm, video footage provides
important information. However, cameras might have different APIs or capabilites and
some cameras might store video footage only locally. To prevent the risk of losing valuable
information and to give the fire brigade a chance to analyse the situation while they are
on their way, all cameras that are close to the source of the alarm should upload the
last five minutes of video footage that was recorded before the incident happened, to a
cloud storage. Again, as cameras might have different APIs and capabilites, it might be
necessary to deal with each camera in it’s own way, making them interoperable with the
cloud storage. Figure 3.1 provides an overview of the situation. For this system scenario
we have the following platforms and applications:

• Camera Platform
• Alarm Platform
• Data Storage Platform
• User Application

We described in Chapter 1 that our framework depends on a resource provisioning
service. While this can be any framework that provides the resource provisioning
capabilities, we use the rsiHub framework ([Tru18] and [Gao18]). For our scenario, the
most essential services of the rsiHub framework are the Global Management Service as
main communication interface and some Local Management Service that manage the
resources, respectively the platforms. Since rsiHub’s provisioning techniques are meant to
be flexible, the ensemble of resources could as well look differently and resources do not

18

3.3. First Scenario: Upload Camera Footage

Storage Platform

Alarm Platform

Camera Platform

rsiHub
Global Service

Camera A

Alarm A

rsiHub
Local Service

rsiHub
Local Service

rsiHub
Local Service

1.

2.

3.

0.

Camera B

?
Interoperable

?
Interoperable

Actor

?
Fix Interoperability

Problem

3.

4.
User Application

Storage Units

Figure 3.1: Motivation Scenario: Upload Camera Footage

have to be within a platform, but can also be run locally. For the scenario, we assume
that rsiHub’s services are already running.

The step that initiates the scenario is marked with 0., an alarm is triggered and it is
sent to the user application. Either the user application itself or an operator of same
application then uses the rsiHub Global Service to create an uplink from the relevant
cameras to the data storage platform. However, because of the varying camera models
and APIs, it is not clear, if such an uplink can be created for each camera. One problem
might for instance be that camera A pushes the data to a destination while camera B
requires the destination to actively request the data, so the data needs to be pulled from
camera B, but getting this information requires detailed investigation of the requested
resources.

It’s not clear if the cameras and the data storage platform are interoperable. Therefore

19

3. Motivation Scenarios and Use Cases

we have to determined if said components are interoperable, and if they are not, some
Actor has to fix those interoperability problems before rsiHub provisions the resources in
the last step. The successful end state would then be that all resources are provisioned
and that each requested camera uploads the video footage to the data storage platform.

3.4 Modular Interoperability Scenarios

As seen in Chapter 2, interoperability factors can be categorised within several levels. The
interoperability levels therefore also play an important role for this thesis and it is also
important to identify interoperability factors in scenarios. This section provides several
fine-grained scenarios where each scenario focuses on one particular interoperability
factor. But of course, interoperabiliy problems often belong not just to one isolated
interoperability level, but rather spread accross multiple interoperability levels and
therefore concern multiple interoperability factors. Thus, the scenarios of this section
can be seen as modules that could also be combined to more complex scenarios or
interoperability problems. All of the following scenarios are based on the components of
the previously defined application-domain of the INTER-IoT seaport.

3.4.1 Factor: Communication protocol

As already described, when a vessel wants to enter the Port, it has to establish com-
munication with the Port Control, such that the vessel can receive the commands of
the Port Control. The communication protocol of the vessel depends entirely on the
preferences of it’s manufactorer, as there is not just one protocol standard that must
be used. Depending on the actual communication protocol of the vessel entering the
port, the Port Control either can or can not communicate with the vessel. If there is
a disparity in communication protocols, then this gap has to be closed by dynamically
allocating an instance that is capable of mediating between the protocols of vessel and
Port Control. For instance, while the Port Control uses the MQTT protocol, the vessel
can only communicate using the AMQP protocol.

Factor Protocol
Example
From MQTT
To AMQP
Dynamic Aspect Although protocol mediations are rather static transformations,

the benefit of making this transformation dynamically is that
computing resources are only consumed when really needed.

Table 3.1: Scenario Factor: Protocol

20

3.4. Modular Interoperability Scenarios

3.4.2 Factor: Data format and syntax

Staying at the vessel scenario from the previous factor, even when protocol communication
is established, it is not guaranteed that the exchanged information is interpreted correctly,
as the vessel might use a different dataformat than the Port Control. Therefore, the
dataformat factor is also essential when establishing a working data communication
channel.

One example would be that the Port Control uses the JSON dataformat, while the vessel
uses CSV. Thus, a mediating instance would have to transform the JSON data to CSV
and vice versa, in order to establish a working data exchange.

Factor Dataformat
Example
From CSV
To JSON
Dynamic Aspect Same as for protocols, the benefit of not running these transforma-

tion services all the time is that computing resources are saved.

Table 3.2: Scenario Factor: Dataformat

An additional scenario that would fall into the dataformat factor are standardised data
models. Assume that both the vessel and the Port Communication System use JSON as
dataformat, but the way that the actual data is structured differs. While the vessel uses
a data model that confirms to the oneIoTa standard, the PCS uses the InterIoT standard.
An instance that knows how to translate both standards is required as mediator.

Factor Standardised Data Models of IoT Platforms
Example
From oneIoTa
To InterIoT JSON-LD
Dynamic Aspect

Table 3.3: Scenario Factor: Data Syntax

3.4.3 Factor: Data Contract

Jurisdiction: Assume that the cameras of the port can also be requested by external
parties. For instance, in case of a fire emergency, the most recent camera data is aquired
by the fire brigade, so that the firefighters can prepare for the situation while they are on
their way to the source of the fire. To aquire the video material, assume that the camera
has to store the data to a cloud storage facility that the fire brigade uses. Furthermore,
assume that for legal reasons, it is required that the camera data can only be stored
within the European Union. Thus, the cloud storage facility, as well as other intermediate

21

3. Motivation Scenarios and Use Cases

entities of the communication chain, have to be located within the European Union, so
that there is no legal interoperability problem.

Data Rights: As mentioned in the application-domain, the port possesses weather
sensors of which the data can be acquired by external parties. The assumption for this
kind of interoperability problem is that the port requires the data consumers to only
utilise the data for non-commercial usage.

Pricing: The Port Control keeps track of the vessels and additionally possesses access
gate sensors that can be used to keep track of the cars entering and leaving the port.
Those statistics can be used by external logistics companies to optimise delivery plans to
and from the port and to quickly reschedule in case of vessel delays. As the tracking data
has economic value, the port charges a price for consuming the data. Logistics companies
that do not want to pay for the data should therefore not be able to acquire the resource.

Factor Data Contract
Example
From Collection = any
To Collection = true
Dynamic Aspect In a dynamic application, data contract issues need also be consid-

ered among all parties, such that no violations to legal interoper-
ability appear.

Table 3.4: Scenario Factor: Data Contract

3.4.4 Factor: Quality of Service

Reliability: The access gate sensors that detect when a car enters or leaves the port
have a reliability measure. Assume that data consumers, like logistics companies as
described above, require a certain reliability value in order to trust and use the data that
they want to consume. Therefore, only access gates that possess a reliabity value that is
above the threshhold should be connected to the data consumers.

Factor Quality of Service
Example
From Reliability = any
To Reliability >= 90
Dynamic Aspect In a dynamic application, unreliable components can easily be

removed or replaced for more reliable components.

Table 3.5: Scenario Factor: Quality

Message Delivery Frequency: Consider that, due to performance reasons, an external
consumer of the weather data only wants to receive one update per minute. The weather

22

3.4. Modular Interoperability Scenarios

sensors on the other hand, send two updates per minute. Thus, the consuming application
and the sensors are not interoperable on the quality of service level.

Factor Quality of Service
Example
From Message Delivery Frequency = 1s
To Message Delivery Frequency = 2s
Dynamic Aspect It is important that the resources limitations are considered, as

otherwise the resource might deny it’s service.

Table 3.6: Scenario Factor: Quality of Data

3.4.5 Factor: Quality of Data

Precision: The data consumer that wants to acquire weather measurements requires
that the temperature sensors measure with a precision of 0.1◦C.

Average Measurement Age: To assert that the aquired data is relevant within the
current time frame, the logistics companies require that the average measurement age of
the aquired data does not exceed a certain threshold.

Factor Quality of Data
Example
From Average Measurement Age = 5s
To Average Measurement Age = 2s
Dynamic Aspect The age of a measurement can play a crucial role for the value of

the data.

Table 3.7: Scenario Factor: Quality of Data

3.4.6 Multi-factored Interoperability Problems

Interoperabitility problems do not occur purely seperated by factor, they can also be
combined which creates more complicated solution efforts. Consider the vessel scenario
where the vessel uses AMQP and CSV an the Port Communication System uses MQTT
and JSON. Multi-factored problems are another reason why dynamic interoperability is
important.

23

3. Motivation Scenarios and Use Cases

Factor Protocol & Dataformat
Example
From MQTT, CSV
To HTTP, JSON
Dynamic Aspect One benefit of a dynamic approach is that resources can be chained

and combined to dynamically create more powerful transformations,
leading to a smaller amount of basic transformations that can be
combined for multiple problems.

Table 3.8: Scenario Factor: Combination

3.4.7 Higher Factors: General Data Transformations and Data
Semantics

The status updates from the vessel put too much stress on the network because a lot
of unnecessary information is sent, resulting in large messages and further leading to
low throughput of important information within the Port Communication System. As a
lot of the status information is not considered anyways, the information of the status
updates should be filtered, resulting in only forwarding relevant information to the Port
Communication System. An instance of a software component that only forwards the
important information should therefore mediate between vessel and Port Communication
System.

Factor Data Transformation
Example
From "<keyA>:<value>"
To "<keyB>:{<keyC>:<value>}"
Dynamic Aspect These kind of problems are greatly varying because the data models

of data producers and consumers are not (and can not easily be)
standardised. When dealing with dynamic systems and compo-
nents, such problems can not be solved during the development
phase. It’s also not easily possible to solve such problems purely
with algorithmic measures. Solving such problems dynamically,
by deploying a custom-tailored transformation service, is a good
approach of dealing with such problems.

Table 3.9: Scenario Factor: Data Syntax

24

3.5. Use Cases

3.5 Use Cases
With the previously defined scenarios, we created use cases that are key to our framework.
The use cases are generic and can be applied to a wide range of scenarios and applications.
Since the interoperability framework enhances rsiHub, the use cases contain some key
definitions of rsiHub. Following table should provide a better understanding of those
rsiHub elements and how they can be tied to the application-domain:

Name Description Port Scenario Exam-
ples

Resource A running computing in-
stance, network function or
IoT entity

An IoT-vessel, a Node-
RED instance

SliceInformation A (requested) set of con-
nected Resources that has
not been provisioned yet

The PCS connected to a
message broker connected
to a vessel

Resource slice A provisioned SliceInforma-
tion

See SliceInformation. The
difference is that the Re-
sources are up and interact-
ing with each other

Table 3.10: rsiHub entity descriptions that are required for the use cases

Additionally, the use cases already contain some elements from the interoperability
framework that will be introduced in Chapter 4. Table 3.11 should give an idea about
those elements, more details will be provided in Chapter 4.

The preconditions that are assumed to be true for each of the use cases are as follows:

• rsiHub Global Management Service is online
• rsiHub Local Management Services are online
• SliceInformation, SliceContract and Interoperability Metadata definitions follow

the correct syntax

25

3. Motivation Scenarios and Use Cases

Name Description Port Scenario Exam-
ples

Software Artefact A piece of software that can
be executed by a Resource

A Node-RED flow that can
transform csv to json

Interoperability Metadata Information about the in-
teroperability capabilities

An Interoperability Meta-
data instance that de-
scribes that the Node-RED
flow can transform csv to
json

Interoperability Software
Artefact

A Software Artefact with
Interoperability Metadata
definition

See Software Artefact and
Interoperability Metadata

Interoperability Bridge A SliceInformation that
can be used for interoper-
ability purposes, together
with an Interoperability
Metadata definition

Two Software Artefacts
that are connected to each
other to make a more com-
plex transformation

SliceContract A set of conditions that a
resource slice needs to ful-
fill

A SliceContract instance
with the information that
the resource slice will be
used for commercial pur-
poses

Table 3.11: Entity descriptions that are required for the use cases

26

3.5. Use Cases

Add Recommended
Resources to

SliceInformation

Check
Interoperability of
SliceInformation

Create
SliceInformation

Add Resource to
rsiHub Add/Update

Interoperability
 Metadata

Developer

extends

Connect
Resources in the
SliceInformation

Select
Resources/Software

Artefacts/Bridges

includes includes

Provision
SliceInformation /

Create Slice

Get Interoperability
Recommendation

Add
Software Artefact to

rsiHub

extends

extends

DevOp

Operator

Develop Software
Artefact

includes

Deploy
Software Artefact to

Resource

Check Interoperability
of SliceInformation with

SliceContract

Get Interoperability
Recommendation with

SliceContract

Create
Interoperabiltiy

Bridge

Search rsiHub
Components by
Interoperability

Metadata

Use Case that is not part of the current system

Use Case is part of the current system

Legend

Use Case is performed outside of rsiHub

Use
Case

Use
Case

Use
Case

extends

includes

extends

extends

Figure 3.2: Use case diagram

27

3. Motivation Scenarios and Use Cases

ID UC01
Title Add Interoperability Software Artefact to rsiHub
Problem Statement A developer wants to add a Software Artefact to rsiHub that

can be used to solve interoperabiltiy problems.
Preconditions

• The Software Artefact is already developed and available
(either locally or remotely)

Main Scenario

1. The developer uses rsiHub’s command line client to add
an Interoperability Software Artefact

2. The developer provides the path or URL of Interoper-
ability Software Artefact

3. The developer provides the Interoperability Metadata
or the path to a json document that contains the Inter-
operability Metadata of the Interoperability Software
Artefact

4. The developer provides the execution environment of
the Interoperability Software Artefact

5. The developer provides a name for the Interoperability
Software Artefact

6. rsiHub creates a new Interoperability Software Artefact
holding the provided information. If the Software Arte-
fact was a local file, it is replicated in rsiHub’s cloud
storage.

Successful End States

1. The Interoperability Software Artefact has been added
to rsiHub.

2. The developer receives a message that the Interoperabil-
ity Software Artefact has been added

Table 3.12: UC01: Add Interoperability Software Artefact to rsiHub

28

3.5. Use Cases

ID UC02
Title Deploy Interoperability Software Artefact to Resource
Problem Statement An operator wants to deploy an Interoperability Software

Artefact to a Resource
Preconditions

• The Interoperability Software Artefact is available in
rsiHub

• A Resource that can execute the Interoperability Soft-
ware Artefact is provisioned and available in rsiHub

Main Scenario

1. The operator uses rsiHub’s command line client to de-
ploy the Interoperability Software Artefact to the Re-
source

2. The operator provides the ID of the Interoperability
Software Artefact

3. The operator provides the ID of the Resource

4. rsiHub’s command line client deploys the Interoperabil-
ity Software Artefact to the Resource

Successful End States

1. The Interoperability Software Artefact has been de-
ployed to the Resource.

2. The Interoperability Software Artefact is running on
the Resource.

Table 3.13: UC02: Deploy Interoperability Software Artefact to Resource

29

3. Motivation Scenarios and Use Cases

ID UC03
Title Create Interoperability Bridge
Problem Statement An operator or developer wants to create an Interoperability

Bridge from a previously created SliceInformation that solved
an interoperability problem, such that the Interoperability
Bridge can be used for similar problems.

Preconditions none
Main Scenario

1. The operator or developer uses rsiHub’s command line
client to create the Interoperability Bridge

2. The user provides the path to a json document that
contains the SliceInformation of the Interoperability
Bridge

3. The user provides a json String or the path to a json
document that contains the Interoperability Metadata
of the Interoperability Software Artefact

4. The developer provides a name for the Interoperability
Bridge

5. rsiHub creates a new Interoperability Bridge holding
the provided information

Successful End States

1. The Interoperability Bridge is available in rsiHub.

Table 3.14: UC03: Create Interoperability Bridge

30

3.5. Use Cases

ID UC04
Title Search Interoperability Software Artefact/Interoperability

Bridge/Resource (using Interoperability Metadata)
Problem Statement An operator wants to search an Interoperability Software

Artefact/Interoperability Bridge/Resource that can then be
used to solve an interoperability problem. To search the com-
ponent, the operator wants to use search attributes that are
related to interoperability issues (Interoperability Metadata).

Preconditions none
Main Scenario

1. The operator or developer uses rsiHub’s command line
client to search for Interoperability Software Artefact/In-
teroperability Bridge/Resource using Interoperability
Metadata

2. The user provides a json string or the path to a json
document that contains the query. The query is a valid
MongoDB query.

Successful End States

1. The operator receives a list of Interoperability Software
Artefacts/Interoperability Bridges/Resources that sat-
isfy the query.

Table 3.15: UC04: Search Interoperability Software Artefact / Interoperability Bridge /
Resource

31

3. Motivation Scenarios and Use Cases

ID UC05
Title Update Interoperability Metadata of Interoperability Software

Artefact/Interoperability Bridge/Resource
Problem Statement An operator or developer wants to change the informa-

tion regarding interoperability issues (Interoperability Meta-
data) of an Interoperability Software Artefact/Interoperability
Bridge/Resource.

Preconditions none
Main Scenario

1. The operator or developer uses rsiHub’s command
line client to update the Interoperability Metadata of
the Interoperability Software Artefact/Interoperability
Bridge/Resource

2. The user provides the ID of the Interoperability Software
Artefact/Interoperability Bridge/Resource

3. The user provides a json string or the path to a json
document that contains the updated Interoperability
Metadata

4. rsiHub updates the Interoperability Metadata of
the Interoperability Software Artefact/Interoperability
Bridge/Resource

Successful End States

1. The Interoperability Metadata of the Interoperabil-
ity Software Artefact/Interoperability Bridge/Resource
changed. The change is visible in rsiHub.

Table 3.16: UC05: Update Interoperability Metadata of Interoperability Software Artefact
/ Interoperability Bridge / Resource

32

3.5. Use Cases

ID UC06
Title Check the interoperability of a SliceInformation
Problem Statement An operator wants to check if a SliceInformation contains

any detectable interoperability problems before creating a
resource slice from the SliceInformation

Preconditions none
Main Scenario

1. The operator uses rsiHub’s command line client to check
the interoperability of the SliceInformation

2. The operator provides the path to a json document that
contains the SliceInformation that will be checked

Successful End States

1. The operator receives a list of interoperability problems

2. For each interoperability problem, the operator receives
information about what interoperability metadata is
involved in the problem

3. For each interoperability problem, the operator receives
information about what components of the SliceInfor-
mation are involved in the problem

Table 3.17: UC06: Check the interoperability of a SliceInformation

33

3. Motivation Scenarios and Use Cases

ID UC07
Title Check the interoperability of a SliceInformation with a Slice-

Contract
Problem Statement An operator wants to check if a SliceInformation contains any

detectable interoperability problems before creating a resource
slice from the SliceInformation. The SliceInformation should
also be validated against a SliceContract that the operator
provides.

Preconditions none
Main Scenario

1. The operator uses rsiHub’s command line client to check
the interoperability of the SliceInformation

2. The operator provides the path to a json document that
contains the SliceInformation that will be checked

3. The operator provides the path to a json document that
contains the SliceContract

Successful End States

1. The operator receives a list of interoperability problems

2. For each interoperability problem, the operator receives
information about what interoperability metadata is
involved in the problem

3. For each interoperability problem, the operator receives
information about what components of the SliceInfor-
mation are involved in the problem

4. The operator receives a list of contract violations

5. For each contract violation, the operator receives infor-
mation about what component violates the contract

6. For each contract violation, the operator receives in-
formation about what aspect of the SliceContract is
violated.

Table 3.18: UC07: Check the interoperability of a SliceInformation with a SliceContract

34

3.5. Use Cases

ID UC08
Title Get interoperability recommendations for a SliceInformation
Problem Statement An operator wants to get recommendations that suggest how

the interoperability of a SliceInformation can be improved
(also called Interoperability Recommendation)

Preconditions none
Main Scenario

1. The operator uses rsiHub’s command line client to get
recommendations for the SliceInformation

2. The operator provides the path to a json document that
contains the SliceInformation for which the recommen-
dations should be gathered

Successful End States

1. For each interoperability problem, the operator receives
either a recommendation that would solve the problem
or the information that no recommendation is available
for the respective problem

2. For each recommendation, the operator receives infor-
mation about what changes to the SliceInformation will
solve the problem

3. For each recommendation, the operator receives informa-
tion about the Interoperability Software Artefact/Inter-
operability Bridge/Resource that will solve the problem.

Table 3.19: UC08: Get interoperability recommendations for a SliceInformation

35

3. Motivation Scenarios and Use Cases

ID UC09
Title Get interoperability recommendations for a SliceInformation

with a SliceContract
Problem Statement An operator wants to get recommendations that suggest how

the interoperability of a SliceInformation can be improved.
The recommendations should also satisfy a SliceContract that
the operator provides.

Preconditions none
Main Scenario

1. The operator uses rsiHub’s command line client to get
recommendations for the SliceInformation

2. The operator provides the path to a json document that
contains the SliceInformation for which the recommen-
dations should be gathered

3. The operator provides the path to a json document that
contains the SliceContract

Successful End States

1. For each interoperability problem, the operator receives
either a recommendation that would solve the problem
or the information that no recommendation is available
for the respective problem

2. No recommendation does violate the SliceContract

3. For each recommendation, the operator receives infor-
mation about what changes to the SliceInformation will
solve the problem

4. For each recommendation, the operator receives informa-
tion about the Interoperability Software Artefact/Inter-
operability Bridge/Resource that will solve the problem.

Table 3.20: UC09: Get interoperability recommendations for a SliceInformation with a
SliceContract

36

3.6. Summary

3.6 Summary
In this chapter we introduced an application-domain that is based on the INTER-
IoT seaport and then discussed the dynamic aspects that the seaport implies. From
the application-domain, we derived several scenarios that serve as motivation for our
framework. The first scenario should provide an overview of the involved systems and
the problem situation in general. The scenarios that followed take specific properties of
interoperability problems into consideration. Finally, we used our scenarios to derive use
cases that are later used when implementing an evaluating the prototype.

37

CHAPTER 4
Interoperability Framework

4.1 Overview

As we have already shortly described in the scenarios of the previous chapter, we need
on-demand interoperability solutions for dealing with dynamic interoperability problems
(Section 4.2). The interoperability of multiple systems can be classified within the Levels
of Conceptual Interoperability Diagram ([WTW09]). On-demand interoperability calls
for additional interoperability factors and requirements (Section 4.3), that complement
the Levels of Interoperability Conceptual Diagram. While the algorithmic components
of this framework focus on the interoperability factors up to the corresponding Level
2, more difficult problems that incorporate higher factors require the introduction of
Interoperability DevOps (Section 4.4).

One goal of this framework is to reduce the effort of dealing with interoperability problems
and increase the efficiency of Interoperability DevOps by supporting them in their
tasks. To achieve this goal, the central idea of this framework is to use interoperability
metadata in order to reuse resources and software artefacts that are able to act as
interoperability bridges (Section 4.5). Additionally, interoperability metadata is used to
assist the Interoperability DevOps with finding interoperability problems (Section 4.6)
and recommended solutions to those problems (Section 4.7).

In order to enable dynamic provisioning of on-demand interoperability solutions, this
framework supplements the work on rsiHub, a framework that allows for the dynamic
provisioning of resource ensembles. Finally, a discussion about the interoperability
framework and thoughts about the extensibility of the framework conclude this chapter
(Section 4.8).

39

4. Interoperability Framework

4.2 On-demand Interoperability

In Chapter 3, we discussed problems that arise due to the dynamic aspects of the
seaport application-domain (Section 3.2.1. This chapter aims to give a broader view and
description of on-demand interoperability. In detail:

• In what situations is on-demand interoperability needed?

• What key features define on-demand interoperability?

• What are additional benefits of establishing on-demand interoperability?

When looking at the seaport scenarios from a general perspective, the essential traits of
an application that make on-demand interoperability an indispensable property are:

• need for interoperating with unknown entities: The domain of the entities
that have to interoperate with the application is either unknown, too big or too
vague to define. In the port scenario, the communication technology domain of the
vessels that enter the port was too big to define.

• time constrained need for solutions: It is important that an solution to the
interoperability problem is found within a time constraint that is too short to
solve the problem within the development phase of the application. In the port
scenario, vessels can not wait until an interoperable reiterated version of the Port
Communication System is online.

• interoperability problems appear during runtime: The source and destina-
tion of the interoperability problem do not allow a system shutdown. It is necessary
to create a new, interoperable communication channel. In the port scenario, it
is not possible to shutdown the Port Communication System and start a new,
interoperable version of the Port Communication System.

On-demand interoperability is on the other hand established when those essential re-
quirements are met. Key features that define the property of on-demand interoperability
are:

• software components run as own instances/services, independent from the interop-
erability problem’s source and destination system

• interoperability software components are strongly decoupled from the interoperabil-
ity problem’s source and destination system

• interoperability software components are developed in short iterations, independent
from interoperability problem’s source and destination system

40

4.3. Additional Interoperability Factors

• interoperability software components can be terminated once the interaction between
source and destination is completed

• ideally, interoperability software components can be stored and reused (to reduce
the time to solve a problem)

Establishing on-demand interoperability not only satisfies the previously mentioned,
required traits that lead to the need of on-demand interoperability, but it also bears
additional advantages. Those extra benefits are:

• allows for increased scalability/elasticity: new instances of interoperability
software components can easily be spawned and destroyed as they run independently
from the problem’s source and destination systems

• fine-grained interoperability components: the single goal of interoperability
software components is to mediate between the problem’s source and destination
system, respectively two technology standards

• allows for fast development circles for interoperability solutions: fine-
grained, independent components are easier and faster to develop and complex
interoperability problems can be solved with quick, responsive iterations

• complex interoperability problems can be solved by combining smaller
interoperability components small instances of interoperability software com-
ponents, that only mediate between two standards can be combined to mediate on
multiple interoperability dimensions

• enhanced interoperability evolution: when saving such interoperability com-
ponents, it reduces the effort to solve an interoperability problem.

• increased ability to interact with new standards and legacy systems:
interoperability software components that mediate between such standards and
systems can easily be created and instantiated

The Levels of Conceptual Interoperability Model from [WTW09] still applies when
on-demand interoperability is enabled. In fact, dealing with interoperability problems
on-demand calls for some complementary interoperability factors that we will introduce
in the following section.

4.3 Additional Interoperability Factors
A great foundation to understand interoperability from a greater perspective can be
gained from the Levels of Conceptual Interoperability Model by Wang et al ([WTW09]).
While working on this thesis, some additional interoperability factors that are not directly
mentioned in [WTW09] but are important for the interoperability framework have been

41

4. Interoperability Framework

considered. In our view, these additional factors complement and extend the Levels of
Conceptual Interoperability Model.

Quality of Service(QoS) and Quality of Data(QoD) might implicitely be included in the
Levels of Conceptual Interoperability Model, but they are not explicitely mentioned.
QoD and QoS are important features in the field of distributed systems. As IoT cloud
systems are distributed systems, these two factors are important to our framework.

To explain the importance of those two factors, consider a fictional situation where we
have an IoT cloud system with two components that are connected with each other. The
first component is an IoT alarm sensor that monitors the safety gate of a machine. The
IoT alarm sensor is connected to the control system of the factory. Assume that the
factory control system and the IoT sensor are semantically interoperable as otherwise
the factory control system would not be able to react to the alarms. Since the IoT sensor
monitors a safety gate, it has to send the data consistently to the factory control systems.
If it fails to do so, the factory control system assumes that the safety gate is breached and
reacts accordingly. Accordingly, when the IoT sensor is prone to lags because it’s QoS is
insufficient, the two components are not interoperable even though they are semantically
interoperable.

As for the QoD factor, assume that another IoT sensor periodically takes measurements
and sends the latest measurement to the factory control system. Assume that when
the sensor value reaches a critical value, the port control systems has only a short time
window within it has to trigger another event. The factory control system therefore
requires that the sensor measurements are taken within a time frame of 5 seconds after
the previous measurement. Additionally, assume that QoS is not an issue. If the IoT
sensor takes a measurement every 30 seconds but sends the latest data every 2 seconds,
the factory control system assumes everything is correct. However, a change of events
might not be sensed quickly enough. In that case, the factory control system fails to
react and therefore the two components are not truly interoperable.

Additionally, we introduce the Data Contract factor. This factor has no corresponding
level in the Levels of Conceptual Interoperability Model as the model considers only
technical aspects of interoperable systems and the Data Contract factor deals with
business and legal concerns. In more detail, the Data Contract factor needs to be
enabled such that the interoperation of two systems has a negationated legal set of rules
as foundation for the interaction. Thus, if in contrast, a legal foundation can not be
established, the two systems have to be considered unable to interoperate, even if they
are interoperable on a technical Level.

The central approach of the interoperability framework is to define interoperability meta-
data to describe the capabilities of software components. Based on the interoperability
metadata the parts of framework detect interoperability problems and construct recom-
mendations. The Levels of Conceptual Interoperabiliy Model influenced the definition
of interoperability metadata and also outlined a reasonable limit for the automated
detection of problems and recommendation of solutions. That being said, this work on

42

4.4. Interoperability DevOps

detection and recommendation mainly focusses on the interoperability factors up to Level
2, as well as the previously defined additional factors. Semantic interoperability problems
as well as problems that require complex data syntax transformations are hard to detect
and solve automatically. Hence, our framework envisiones a new group of stakeholders
that deal with problems that need to be solved with human intelligence. We call these
stakeholders Interoperability DevOps.

4.4 Interoperability DevOps
So far, the key stakeholders and main users of the interoperability framework were viewed
as the creators and operators of resource ensembles, respectively resource slices. But
viewing the operators of resource slices as key stakeholders has a shortcoming when solving
interoperability problems where on-demand interoperability is required. To elicitate the
need of Interoperability DevOps, we have to start the discussion with applications where
on-demand interoperability is required. This framework, as an supplement of the rsiHub
framework, aims to enable on-demand interoperability with all it’s benefits. One part
of establishing on-demand interoperability is the capability to dynamically provision
interoperability solutions, which is in part already possible with rsiHub and resource
slices, and can be done by the operator of the resource slice. But, in order to provision
the interoperability solution, the software component that acts as the interoperability
solution has to be acquired at first. To simplify this step, one goal of this framework
is to describe interoperability solutions with metadata and additionally to make them
reusable by utilising the interoperability metadata. However, there are interoperability
problems where a tailored interoperability solution is necessary, especially from data
syntax level (Level 2) upwards. The reason for this circumstance is, that complex model
transformations can not be properly described with metadata. A formal language would
be necessary to describe such transformations accurately. Even if the transformation
are described with a formal language, it be would extremely complex or even impossible
to apply such transforming interoperability solutions automatically and correctly. In
fact, there even exists a formal language to describe the data model transformations: the
source code of the software component that performs the data model transformation.
Thus, applying such model transformation automatically and in a correct way, is as
complex as learning an AI how to develop working, problem-solving software. Therefore,
in order to also deal with problems of such a complexity, Interoperability DevOps are
needed.

However, there are also alternatives to the Interoperability DevOps stakeholder group.
Another possible concept would be that interoperability experts with software development
skills solve problems for the creators and operators of resource slices. In such a strict
division of workforce, operators and interoperability developers would coexist and not
interfere with the task of one another. What speaks against this approach, is that the
interoperability developer would certainly lack vital information and decision power that
only the operators have. Nonetheless, the information and decision power might be
needed in order to develop or provision an appropriate solution. While it would still be

43

4. Interoperability Framework

possible that the operator informs the developer about the interoperability problems in
an ongoing communication, such a division of workforce, knowledge and power would
lead to a communication overhead that would not only increase errors, but also lead to
additional costs in time and finance. Therefore, we view the concept of Interoperability
DevOps as more favourable and profitable.

We define Interoperability DevOps as operators with skills in developing software and
expertise in the interoperability of software systems and technologies. To get a better
grasp of the Interoperability DevOps concept, we looked at the tasks that Interoperability
DevOps would need to perform. In our view, important Interoperability DevOp tasks
are:

• Create, Deploy and Operate Slices
• Create, Read, Update, Delete software artefacts, interoperability bridges and

resources
• Search/Browse software artefacts, interoperability bridges and resources
• Detect interoperability problems
• Solve interoperability problems

– Automatically with Recommendations based on the interoperability metadata
– Manually by browsing existing resources and software artefacts and adding

them to the slice
– Manually by creating a new software artefact and adding it to the slice

44

4.4. Interoperability DevOps

An Interoperability DevOp Workflow can be seen in Figure 4.1.

Develop
Software
Artefact Develop Slice Test Deploy

Software
Artefacts

Dev

Diverse
Providers

Operate
Slice

(under test)

Resource

Slice
(under operation)

Resources

Interoperability
DevOps
Utilities

 Resource
Management

Slice Management

Interoperability
Recommendation

Interoperability
Check

Interoperability
Resource Hub

pluginsSoftware
Artefacts

Resources
Metadata for

Interoperability

OpTester

Resource
Software
Artefacts

Software
DevOps Tools

Figure 4.1: Interoperability DevOps Workflow

4.4.1 Create, deploy and operate resource slices

Resource slices are the core entities for running resource ensembles. As DevOps are
operators by definition, Interoperability DevOps are also responsible for creating the
SliceInformation that leads to a deployed respectively provisioned resource slice. Creating
a SliceInformation is the first task in every Interoperability DevOp workflow. To create
a SliceInformation, an Interoperability DevOp has to select and add resources, software
artefacts and interoperability bridges to the SliceInformation and define which components
should be connected. After the SliceInformation has been created (and interoperability
issues have been resolved) the resource slice can be created and operated.

45

4. Interoperability Framework

4.4.2 Create, read, update, delete interoperability software artefacts,
interoperability bridges and resources

Interoperability DevOps will have to manage the main components of the interoperability
framework that will be used to deal with interoperability problems. Especially impor-
tant when solving interoperability problems are interoperability software artefacts and
interoperability bridges, specifically creating such entities within the framework. When
these components are created within the framework, they need to have assigned values
for interoperability metadata, such that the interoperability metadata can be used for
searching components, for detecting Interoperabiltiy problems and for recommending
solutions.

4.4.3 Search/Browse interoperability software artefacts,
interoperability bridges and resources

Interoperability DevOps must be able to efficiently access and search interoperability
software artefacts, interoperability bridges and resources by their capabilities regard-
ing interoperability, such that subsequently those components can be added to the
SliceInformation.

We defined our interoperability metadata to describe the capabilities of software artefacts,
interoperability bridges and resources with respect to the interoperability of components.
One intention of interoperability metadata is to make search efforts of Interoperability
DevOps easier.

4.4.4 Detect interoperability problems

In order to solve interoperability problems, one has to detect interoperability problems.
Like a compiler that checks if the source code of a program contains any errors, Inter-
operability DevOps need to find as many interoperability problems as possible before
provisioning the resource slice. That way, the temporal and financial costs of provisioning
an erroneous resource slice can be avoided.

4.4.5 Solve interoperability problems

When a resource slice contains an interoperability problem, the problem needs to be
solved. This is the very key task of Interoperability DevOps. We indentified several
techniques that Interoperability DevOps can apply when solving interoperability problems.
Although the goal and outcome of each technique is the same, the techniques themself
are quite different from each other. The techniques of solving interoperability problems
are:

1. Automatically with recommended solutions: with the appropriate descrip-
tions of a components interoperability capabilities and the knowledge of what causes
the interoperability problem, a solution can be recommended by an algorithm. The
Interoperability DevOp can then assess the solution and provision the resource slice

46

4.4. Interoperability DevOps

2. Manually by reusing interoperability components: This technique is similar
to the previous one except that the Interoperability DevOp herself/himself is
searching and adding existing resources, interoperability software artefacts and
interoperability bridges to the resource slice

3. Manually by developing a new interoperability component: If no suitable
interoperability component is available to solve the interoperability problem, the
Interoperability DevOp has to develop a new software artefact or interoperability
bridge that can subsequently be added to the resource slice. In this sense, developing
a new interoperability component can either mean to develop the software from
scratch and then add it to the framework, or to simply add existing software to the
interoperability framework.

4.4.6 Interoperability DevOp tasks and the interoperability
framework

All those aforementioned tasks can also be performed without the interoperability
framework. The Interoperability DevOps could alternatively gather all the computing
resources, network functions, Things and cloud services themselves, provision and wire
up all components manually. Interoperability problems can be debugged when some
connection is not working and appropriate mediating services can be developed to handle
those problems. However, it is still preferable to use the interoperability framework,
because it increases the efficiency of getting these tasks done. It shortens the time to
provision a resource slice, to find interoperability problems and solutions to eliminate those
problems. And time-efficiency is key when the time to find and deploy an interoperability
solutions is limited and on-demand interoperability is required.

The goal of our framework with respect to Interoperability DevOps is therefore to assist
them as good as possible in executing the tasks and reduce the time that is needed
to perform the tasks. One key aspect of achieving this goal is to reuse components
and solutions to solve problems. Instead of "solve a problem once, apply the solution
once" our approach is to "solve the problem once, apply the solution often". To make the
components and solutions reuseable, the component’s description of it’s interoperability
capabilites is essential. Our framework defines and uses sophisticated interoperability
metadata to describe these capabilities. In order for Interoperability DevOps to fully
utilise our framework, having good knowledge about the interoperability metadata is
key. After thoroughly defining and discussing the reasons, goals and stakeholders of
this interoperability framework, the upcoming sections of this chapter focus more on
the technical aspects of the framework, starting with the framework’s architecture and
models in the very next section.

47

4. Interoperability Framework

4.5 Architecture and Models

4.5.1 Interoperability Framework Architecture

Figure 4.2 shows the architecture of our framework. The Software Artefact Service
manages software artefacts and stores the interoperability metadata for the artefacts.
The Software Artefact Service is also capable of deploying software artefacts to resources.
To deploy the software artefact, the Software Artefact Service requires a service that is
either capable of provisioning resources on demand or capable of providing an already
running resource to the Software Artefact Service. The Software Artefact Service then
takes the "ingress access point" of the resource that is provided by the resource provisioning
service. The ingress access point is then used to connect to the resource and deploy the
software artefact to the resource.

Interoperability Service

Interoperability
Problem Detection

Interoperability
Solution

Recommendation

Interoperability
Bridge

Management

Interoperability
Bridge Metadata

Management

Interoperability
Bridge Deployment

Interoperability
Bridges

Interoperability
Metadata

Software Artefact Service

Interoperability
Software Artefact

Metadata
Management

Interoperability
Software Artefact

Deployment

Interoperability
Software Artefact

Management

Interoperability
Software Artefact

Discovery

Software
Artefacts

Interoperability
Metadata

Resource Provisioning Service

Resource
Discovery

Resource Provider
Discovery Resources

Interoperability
Metadata

Resource
Provisioning

Slice Provisioning

Resource Provisioning Framework

Interoperability Framework

Resource Layer

Slice Information

Sensor Storage

IoT thing
camera Cloud StorageComputing

Resource

Artefact

Artefact

Uses

User Layer

Uses

Uses

Interoperability
Devop

Figure 4.2: Framework Architecture Overview

48

4.5. Architecture and Models

The Interoperability Service manages interoperability bridges and performs the inter-
operability check and interoperability recommendation on SliceInformations. Both
interoperability check and interoperability recommendation can be performed with or
without considering a SliceContract. In order to perform the interoperability check and
recommendation, the framwork user has to send a SliceInformation to the Interoperability
Service. The SliceInformation is an entity or document that describes a resource slice
and therefore contains a set of resources. In addition to the resources, a SliceInforma-
tion can also contain interoperability software artefacts and interoperability bridges. A
set of user-defined connections determine how the user would like the components to
work together (this does not mean that it is actually possible, as the interoperability of
connected components needs to be checked first).

For the interoperability check and recommendation to work, the Interoperability Service
requires that all components of a SliceInformation have an assigned interoperability
metadata instance. This requirement also applies to components that will be considered
for the interoperability recommendation. Components that can be considered for an
interoperability recommendation are interoperability software artefacts, interoperability
bridges and resources. Same as for the Software Artefact Service, the Interoperability
Service requires a resource provisioning service that is capable of managing resources.
For the interoperability recommendation, the resource provisioning service is required
to have a search API, such that resources can be accessed based on an interoperability
metadata query. The deployment of interoperability bridges is equal to the provisioning
of SliceInformations. We assume that the resource provisioning service is capable of
provisioning SliceInformations.

4.5.2 SliceInformation Model

Resource slices are used to provision IoT cloud systems consisting of resources such as
IoT, network functions and cloud services. We assume that the resource provisioning
service that our interoperability framework is built upon uses resource slices. To detect
interoperability problems and recommend solutions, the Interoperability Service also has
work deal with resource slices, as interoperability problems are tied to resource ensembles.
Thus, we have to define the information model of resource slices that our framework uses.
Subsequently, we assume that the resource provisioning service that the interoperability
framework depends on uses the same information model to describe resource slices. Our
SliceInformation model can be seen in Figure 4.3.

The core elements of the SliceInformation model are resources, interoperability bridges
and interoperability software artefacts. However, since these SliceElements do usually
not run individually, but communicate with each other, a SliceInformation must also
hold information about which elements should be connected with each other. A SliceIn-
formation can thereby be seen as a graph where resources, interoperability bridges and
interoperability software artefacts represent the vertices and user-defined connections act
as the edges. The SliceInformation instance is then used to create a resource slice that
represents an IoT cloud system.

49

4. Interoperability Framework

SliceInformation

+ sliceId: String

+ createdAt: Number

Connectivity<<abstract>>
SliceElement

+ uuid: String

Extends Extends Extends

+ resources
0..*

+ connectivities
0..*

Interoperability Software Artefact

+ uuid: String

+ name: String

+ executionEnvironment: String

+ artefactReference: String

+ interoperabilityMetadata: Object

Resource

+ uuid: String

+ name: String

+ providerUuid: String

+ location: GeoHash

+ metadata: Object

+ interoperabilityMetadata: Object

Interoperability Bridge

+ uuid: String

+ name: String

+ slice: SliceInformation

+ interoperabilityMetadata: Object

+ inputResourceId: String

+ outputResourceId: String

+ in
1

+ source
0..*

+ out
1

+ target
0..*

Figure 4.3: SliceInformation Model

The prototype of our framework uses documents to represent and store SliceInformation
instances. The connections are defined by the creator of the SliceInformation. It is
easily possible that two components are wired together are not interoperable per se,
but should interoperate for the application to work. Listing 4.1 shows an example of a
SliceInformation document.

4.5.3 Interoperability Metadata

The Interoperability Metadata builds the very foundation of our framework and is it
utilised to dynamically reuse software components for solving interoperability problems.
It is also important when detecting interoperability problems. The main information
model of the Interoperability Metadata can be seen in Figure 4.4.

For describing the interoperability metadata model, we destinguish the entities of the
model based on the position in the information model tree. At first we discuss the main
entities that are close to the root. Afterwards, the entities in the leafs of the information
model (Prototype, Data Contract, etc.) will be described in more detail. The main
entities or categories of our Interoperability Metadata are

• Inputs
• Outputs
• Resource

We chose those three groups because they model the different capabilities that a SliceCom-

50

4.5. Architecture and Models

{
" s l i c e I d " : " valencia_intop_01_protocol " ,
" r e s ou r c e s " : {

" pcs " : {
. . .
" metadata " : { . . .
} ,
" source " : [" broker_to_pcs "] ,
" t a r g e t " : [" pcs_to_broker "]

} ,
" v e s s e l " : {

" metadata " : { . . .
} ,
" source " : [" broker_to_vesse l "] ,
" t a r g e t " : [" vesse l_to_broker "]

} ,
" broker " : {

" metadata " : { . . .
} ,
" source " : [" pcs_to_broker " , " vesse l_to_broker "] ,
" t a r g e t " : [" broker_to_vesse l " , " broker_to_pcs "]

}
} ,
" c o n n e c t i v i t i e s " : {

" pcs_to_broker " : {
" in " : {" l a b e l " : " pcs "} ,
" out " : {" l a b e l " : " broker "}

} ,
" broker_to_vesse l " : {

" in " : {" l a b e l " : " broker "} ,
" out " : {" l a b e l " : " v e s s e l "}

} ,
" vesse l_to_broker " : {

" in " : {" l a b e l " : " v e s s e l "} ,
" out " : {" l a b e l " : " broker "}

} ,
" broker_to_pcs " : {

" in " : {" l a b e l " : " broker "} ,
" out " : {" l a b e l " : " pcs "}

}
} ,
" createdAt " : 1534059245

}

Listing 4.1: Example of a SliceInformation
51

4. Interoperability Framework

Metadata

Resource Input Output

Prototype Data Contract
<<abstract>>

InOut

QoS QoDProtocol Data Format

Extends Extends

+ outputs
0..*

+ inputs
0..*

+ resource
1

+ type
1

+ data_contract
1

+ qos
1

+ qod
1

+ protocol
1

+ dataformat
1

<<Enumerated>>
Push_Pull

PUSH
PULL+ push_pull

<<Enumerated>>
Resource Category

IOT_RESOURCE
NETWORK_FUNCTION_SERVICE
CLOUD_SERVICE

+ category

QoS QoD

+ qod
1

+ qos
1

Figure 4.4: Interoperability Metadata Model

ponent can have within a graph or network topology. Inputs define the interoperability
capabilities with which a SliceComponent can receive data. Inputs are also viewed as
requirements that must be satisfied in order for the SliceComponent to work correctly.
Outputs on the other hand describe the capabilities an SliceComponent possesses for
sending data. Additionally, outputs define properties that a SliceComponent guarantees
to satisfy. A comparison can be drawn to other disciplines in software engineering where
preconditions must be satisfied and postconditions must be guaranteed in order for the
software component to work. SliceEntities can possess multiple Inputs and Outputs, as
this is often the case for actual software components.

The third main entity or category of the interoperability metadata is "Resource". The
Resource category specifies capabilites and properties that are tied to the SliceComponent
itself. Within the Resoure category, the specific type of the component can also be
defined in more detail by utilising the Prototype class. That way, special components like
message brokers or firewalls can be treated by their prototype definition and information
that is relevant for the interoperability framework but specific to the type of component
can also be stored within the framework.

When we defined our interoperability metadata properties, we looked at the interop-
erability factors that are significant for IoT cloud systems, as well as current relevant
technologies. The goal is to maximise the information that is relevant for detecting and
solving interoperability problems, such that resources, interoperability software artefacts
and interoperability bridges with appropriate interoperability metadata values can be
reused to solve problems.

To get an understanding of what is meant with each interoperability metadata property,
we created an Interoperability Metadata Catalogue, where we documented and defined

52

4.5. Architecture and Models

the semantics of the interoperability metadata properties. The current Interoperability
Metadata Catalogue is considered to be an initial suggestion that is neither final nor
limited, but rather intended to be extended as more knowledge has been collected.

As can be seen in Figure 4.4, the main entities (Inputs, Outputs and Resource) can
contain instances of the following types:

• Protocols
• Dataformat
• Quality of Service
• Quality of Data
• Data Contract
• Prototype

Since Interoperability Metadata instances are represented as documents and some
types can have subtypes, our framework uses type-discriminators with the key-pattern
"<type>_name". The values assigned to these discriminators are the names of the
subtypes.

Protocols

The attributes of these category correspond to the interoperability level 1. When
we collected the interoperability metadata attributes regarding protocols, we analysed
the most current specifications of the respective protocols ([CoA18], [FR18], [MQT18],
[Cha18], [STO18]). The interoperability metadata that we currently defined regarding
protocols can be seen in Figure 4.5.

Protocol

+ protocol_name: String

+ TLS: Boolean

AMQP

+ version: String

+ queue: String

+ exchange: String

+ implementation: String

+ implementation_version: String

TCP

MQTT

+ version: String

+ topic: String

+ qos: Integer

+ keep_alive: Integer

+ will_required: Boolean

+ will_topic: String

+ implementation: String

+ implementation_version: String UDP
HTTP

+ http_method: String

+ parameters: Parameter[0..*]

+ version: String

STOMP

+ topic: String

+ version: String

+ heartbeat: Integer

+ secured: Boolean

+ implementation: String

+ implementation_version: String

CoAP

+ version: String

+ method: String

+ parameters: Parameter[0..*]

+ observe: Boolean

+ max_age: Integer

+ observer_limit: Integer

+ implementation: String

+ implementation_version: String

Extends

Figure 4.5: Interoperability Metadata: Protocols

53

4. Interoperability Framework

Dataformats

The attributes of these category correspond to the interoperability level 1-2. Most
dataformats don’t require any extra attributes as the format is clearly defined. In case of
csv it is important to know what seperators are used and if the header values are not
added to the data stream, then the headers must also be provided in the interoperability
metadata. To also handle different, well recognised data schemata (the way that the
data is structured within the format), we also added the property "schema_type". The
interoperability metadata that we currently defined regarding dataformats can be seen in
Figure 4.6.

Data Format

+ encoding: String

+ dataformat_name: String

+ schema_type: String

CSV

+ seperator: String

+ newline_seperator: String

+ headers: String[0..*]

+ headers_included: Boolean

Apache Avro

+ schema: String

JSON

RDF

CBOR

XML

Binary

Plaintext

Extends

YAML

Figure 4.6: Interoperability Metadata: Dataformats

54

4.5. Architecture and Models

Quality of Data

The attributes of these category correspond to the additionally defined Quality of Data
interoperability factor. The attributes are based on the attributes defined in [TGC+11].
The interoperability metadata that we currently defined regarding quality of data can be
seen in Figure 4.7.

QoD

+ completeness: Decimal

+ conformity: Decimal

+ average_message_age: Decimal

+ average_measurement_age: Decimal

+ precision: String

Figure 4.7: Interoperability Metadata: Quality of Data

Quality of Service

The attributes of these category correspond to the additionally defined Quality of Service
interoperability factor. We defined the attributes based on conventional Quality of Service
metrics. The interoperability metadata that we currently defined regarding quality of
service can be seen in Figure 4.8.

QoS

+ data_interval: Number

+ reliability: Decimal

+ availability: Decimal

+ bit_rate: Decimal

+ bit_rate_unit: String

+ connection_limit: Integer

Figure 4.8: Interoperability Metadata: Quality of Service

Data Contracts

The attributes of these category correspond to the newly defined Data Contract interop-
erability factor. The attributes are based on the attributes defined in [TGC+11]. The
interoperability metadata that we currently defined regarding data contracts can be seen
in Figure 4.9.

55

4. Interoperability Framework

Data Contract

Pricing

+ price: Decimal

+ currency: String

+ unit: String

Data Rights

+ collection: Boolean

+ derivation: Boolean

+ reproduction: Boolean

+ commercial_usage: Boolean

+ attribution: Boolean

Regulation

+ jurisdiction: String

+ data_regulation_acts: String[0..*]

+ data_rights
1

+ pricing
1

+ regulation
1

Figure 4.9: Interoperability Metadata: Data Contract

Prototypes

For this category we defined multiple prototypical components that are quite common in
network topologies. As stated before, this Interoperabilty Metadata Catalogue can be
extended with additional prototypes that add value to the framework. The interoperability
metadata that we currently defined regarding prototypes can be seen in Figure 4.10.

Prototype

+ prototype: String

MQTT Broker

+ topics: String[0..*]

MessageBroker

+ implementation_name: String

+ implementation_version: String

+ protocols: Protocol[0..*]

+ auto_create: Boolean

Firewall

+ rules: Rule[0..*]

+ default_incoming: String

+ default_outgoing: String

Sensor

+ unit: String

+ sampling_interval: Decimal

+ precision: Decimal

+ range_min: Decimal

+ range_max: Decimal

+ location: GeoHash

+ semantic_reference: String

+ semantic_location: String

VPN

+ type: String

+ destination: String

+ vpn_protocol: String

Storage

+ product_name: String

+ provider: String

+ database_type: String

Software Artefact

+ executionEnvironment: String

Virtual Machine

+ provider: String

+ instance_type: String

+ cpu_count: Integer

+ memory: Decimal

+ gpu_count: Integer

+ os: String

Ingestion

+ product_names: String[0..*]

+ providers: String[0..*]

+ database_types: String[0..*]

AMQP Broker

+ queues: Queue[0..*]

+ exchanges: String[0..*]

+ bindings: Bindings[0..*]

Container

+ port_mappings: String[0..*]

+ container_network: String

Extends

Extends

Extends

Figure 4.10: Interoperability Metadata: Prototypes

56

4.5. Architecture and Models

{
. . .
" pcs " : {

" metadata " : {
" r e s ou r c e " : {

" category " : " i o t "
} ,
" inputs " : [{

" push_pull " : " push " ,
" p ro to co l " : {

" protocol_name " : " mqtt " ,
" qos " : 2 ,
" t op i c " : " pcs_in "

} ,
" dataformat " : {

" encoding " : " ut f −8" ,
" dataformat_name " : " j son "

}
}] ,
" outputs " : [{

. . .
}]

}
} ,
" broker " : {

" metadata " : {
" r e s ou r c e " : {

" category " : " network_funct ion_serv ice " ,
" type " : {

" prototype " : " messagebroker " ,
" p r o t o c o l s " : [{

" protocol_name " : " mqtt "
}] ,
" t op i c s " : [" pcs_in " , " pcs_out "] ,
" auto_create " : t rue

}
} ,
" inputs " : [] ,
" outputs " : []

} ,
. . .

}

Listing 4.2: Example of an Interoperability Metadata definition

57

4. Interoperability Framework

By having information about the Inputs and Outputs, respectively requirements and
guarantees, of a SliceElement, we can check if there are any interoperability problems
within the SliceInformation. Additional interoperability metadata of the Resource cat-
egory further improves the capabilities of detecting interoperability problems and also
allows to check the SliceInformation against a SliceContract. Interoperability metadata
can be utilised to reuse software components for interoperability purposes. The main
entities that we define within our framework for supporting on-demand interoperability
are interoperability software artefacts and interoperability bridges.

4.5.4 Interoperability Software Artefact

One of the interoperability framework’s main entities are software artefacts, respectively
interoperability software artefacts if the interoperability metadata for the software
artefact is defined. Software artefacts can in general be any pieces of software or software
components. The requirement our framework puts on software artefacts are the following:

• can be deployed to a capable resource (from the resource provisioning service that
our framework depends on)

• can be executed by the resource that is bound to the software artefact

• can be stored and replicated (for deployment)

An example of a software artefacts could be a Node-RED flow or a python application
within a Docker image. One typical use case for the an software artefact application
is for instance to connect to a message broker, transform the messages it receives (for
example to solve an interoperability issue regarding the message format) and forward
them to another message broker. Naturally, this is just one example from an unlimited
application domain. The information model of interoperability software artefacts can be
seen in Figure 4.11.

Software Artefact

+ uuid: String

+ name: String

+ executionEnvironment: String

+ artefactReference: String

+ interoperabilityMetadata: Object

Figure 4.11: Interoperability Software Artefact Model

The most important attributes of an interoperability software artefact are executionEnvi-
ronment, artefactReference and interoperabilityMetadata.

58

4.5. Architecture and Models

{
" uuid " : "5 bbc4678e7179a6602f78ac0 " ,
"name " : " ht tp2datas torage " ,
" executionEnvironment " : " docker " ,
" a r t e f a c tRe f e r en c e " : " rdsea / http2datas torage " ,
" metadata " : { . . .
}

}

Listing 4.3: Example of an Interoperability Software Artefact

executionEnvironment defines the environment in which a software artefact can be
executed. This is for instance Docker for a Docker Image or Node-RED for a Node-RED
flow. For those two examples (and our prototype implementation) a simple data string is
sufficient to describe the domain. However, other executionEnvirionments that do not
clearly define how a software component is correctly run and leave this freedom to the
developer, might require additional information about how precicely to run the software
artefact. With that regard, the framework can be complemented with the additionaly
required information if necessary. The next attribute, artefactReference, determines
the storage location of the software artefact. By adding interoperabilityMetadata to
the software artefact, interoperability software artefacts can be reused. The benefit
is that developers can utilise existing software artefacts for solving interoperability
problems that have already been solved by someone else, and therefore spare the time it
would take to develop the artefact themselves. Additionally, if the resource provisioning
services provide a diverse set of resources types that are capable of providing a variety of
execution environments, then software artefacts can easily be integrated to the framework.
Furthermore, the software artefacts can be provisioned and executed on-demand. Listing
4.3 presents the document of a interoperability software artefact.

4.5.5 Interoperability Bridge

The second main entity for raising dynamic interoperbility with our framework are
interoperability bridges. Interoperability bridges are more or less SliceInformation that
can be saved and reused for interoperability purposes. The big benefit of this approach
is that interoperability bridges therefore offer a powerful mechanism to quickly combine
several small building blocks like software artefacts or resources to a new, more powerful
component that is capable of solving more complex problems. The information model of
interoperability bridges can be seen in Figure 4.12.

Interoperability bridges have their own interoperability metadata value assigment, that
is condensed from the interoperability metadata of the bridge’s components. Condensing
and storing this information seperately decreases the time and complexity to search
an interoperability bridge based on it’s interoperability capabilities. Due to the direct

59

4. Interoperability Framework

Interoperability Bridge

+ uuid: String

+ name: String

+ slice: SliceInformation

+ interoperabilityMetadata: Object

+ inputResourceId: String

+ outputResourceId: String

Figure 4.12: Interoperability Bridge Model

relation to resource slices, provisioning an interoperability bridge works the same way
as provisioning a resource slice. In conclusion, interoperability bridges offer an easy but
powerful mechanism to combine multiple resources and software artefacts in order to
create more powerful components.

4.6 Detecting Problems - Interoperability Check

To increase the efficiency of Interoperability DevOps when analysing a SliceInformation
for possible interoperability problems, the interoperability framework provides the In-
teroperability Check. The detection mechanism analyses the interoperability metadata
of the SliceComponents to find problems with connected components. The first step
in the detection algorithm is to determine the metadata-connections of slice-connected
components.

Slice-connections versus metadata-connections

When checking the interoperability of a SliceInformation, we have to distinguish between
two kinds of connections. Slice-connections are the connections of SliceComponents that
the creator of the SliceInformation defined, or how the owner of the Slice envisions the
components to interact with each other. Two SliceComponents that are slice-connected
are not guaranteed to actually interoperate with each other, they are just intended to
work together.

Metadata-connections on the other side are based on the interoperability metadata of
two (or more) components that are meant to work together. A metadata-connection
exists, if a metadata Output of the source component matches a metadata Input of
the destination component. If no metadata-connection exists, then the components
are meant to interoperate with each other, but they are not able to. The first step
of the interoperability check algorithm is to determine all metadata-connections of the
SliceInformation. However, if multiple Inputs and Outputs per component are available,

60

4.6. Detecting Problems - Interoperability Check

this task can already be quite complex, as we also have to destinguish between direct
and indirect connections.

Direct connections versus indirect connections

Even when two components are not directly connected with each other they might still
interfere with each other. They are therefor indirectly connected with each other. The
best example for this matter are two components (System A and B) that communicate
over a message broker or have another network function like a firewall in between each
other. While the communication protocol of System A and B does not have to match
as long as it matches with the intermediate network function, they still have to use the
same dataformat in order to interoperate with each other.

Indirect connections therefore increase the complexity of checking a SliceInformation
for interoperability problems, as it is not sufficient to only check two directly connected
components for errors. Another challenging task is to determine which interoperability
metadata properties are relevant for an indirect connection and at what point the property
is not relevant any more as it is overwritten by a more relevant component. However, this
problem also arises when checking the interoperability of a SliceInformation manually.
The root of the problem is that components might indirectly interoperate with each other
on several layers and not every component in between might interfere with all layers.

Furthermore, having multiple Inputs and Outputs per component, as well as indirectly
connected components, might lead to multiple options for chosing an Input, respectively
Output. Finding the best fitted Input/Output couple is therefore not always obvious
and already a complex task.

Traversing and metadata checks

Once the metadata-connections have been determined, the graph, respectively the
SliceInformation can be traversed, ideally starting with SliceComponents that do not
have any incoming connections. To avoid problems regarding circles, every node of the
graph will be marked once it has been visited.

For every SliceComponent that is visited, the interoperability with all connected compo-
nents has to be checked. We differentiate between direct and indirect connections. Based
on the connection type, the approriate checks using the interoperability metadata of both
components are performed. Metadata checks are usually simple comparisons using the
same kind of metadata property, but can also be more complex (for instance when using
specific features of the components "Prototype" category).

Checking against SliceContracts

SliceContracts contain properties that each SliceComponent has to satisfy. Checking
against SliceContracts is therefore reached by simply checking the properties when visiting
each component while traversing the SliceInformation.

61

4. Interoperability Framework

Interoperability problem information

When an interoperability problem has been detected, the relevant information that is
tied to the problem has to be reported. The information that we consider to be relevant
is

• Violated Interoperability Metadata the keys and values of the properties that
lead to the interoperability problem

• Directly involved components the two components between which the interop-
erability problem has been detected

• Indirectly impacted components all components that are indirectly impacted
by the problem. These are all components that are on the path from source
component to destination component. Additionally, if source and destination
component are part of an M:N connection, then all other sources and destinations
of this connection are impacted by the interoperability problem. For example, if
the components S1 and S2 connect to a message broker and subsequently to the
components D1 and D2, then S1 and D1 are impacted if there is an interoperability
problem between S2 and D2. If there are additional components that are indirectly
connected to the network function, then they are also indirectly impacted by the
problem

• Problem description to provide understandable feedback to the Interoperability
DevOp a description of the interoperability problem is highly suggested

The information about the interoperability problems of a SliceInformation can be stored
in a list of problems, although a graph is deemed to be the more appropriate data
structure. When recommending solutions for the interoperabilty problems, the results of
the interoperability check will be used by the framework’s interoperability recommendation
algorithm.

4.7 Interoperability Recommendation
The interoperability framework aims to assist the Interoperability DevOps with solving
interoperability problems and to reduce the time and effort necessary to solve the
problems. As already described in Section 4.4, we identified three major techniques that
Interoperability DevOps can apply to solve interoperability problems with our framework:

• Automatically with recommended solutions

• Manually by reusing interoperability components

• Manually by developing a new interoperability software artefact or interoperability
bridge

62

4.7. Interoperability Recommendation

Within all of these techniques we also identify multiple solution types that can be
necessary to solve one particular interoperability problem between two components of a
SliceInformation.

Solution types

We identified the following operations that can be applied to the SliceInformation to
solve the interoperability problems:

• Addition a component will be added to the SliceInformation, typically between
problem source and destination

• Reconfiguration the configuration of a component will be changed, if the compo-
nent is reconfigurable

• Substitution a component will be exchanged for another one

• Reduction a component will be removed because it is not needed

• Chained Addition a chain of components will be added to the SliceInformation,
typically between problem source and destination

A graphical example of each solution type can be seen in Figure 4.13. The graphs on
the left-hand side represent the SliceInformation with an interoperability problem. The
graphs on the right-hand side represent the SliceInformation after the problem has been
solved by applying the respective solution type.

63

4. Interoperability Framework

Chained Addition
Problem Solution

Broker

Source Destination

csv
mqtt

Broker

yaml
mqtt

Transformer
json

Transformer
yaml csv

mqtt
json
http

yaml
mqtt Source Destination

mqtt

csv
mqtt

Broker

mqtt

yaml
mqtt

Reconfiguration
Problem Ideal Solution

Source Destination

mqtt
topic: S

Broker

mqtt
topic: D

mqtt
topic: D

Source DestinationBroker

mqtt
topic: D

Substitution
Problem Ideal Solution

Source Destination

mqtt

mqtt
mqtt

Broker
mqtt

mqtt

Source Destination

amqp

mqtt
amqp
Broker

amqp

mqtt

Reduction
Problem Ideal Solution

Source -
Server

Destination
- Poller

push

pull

Broker

push

pull
Source -
Server

Destination
- Poller

pullpull

SolutionProblem

Addition

Source Destination
jsoncsv

Source Destination

jsoncsv

Transformer

csv json

Figure 4.13: Recommendation Solution Types

We differentiate between Addition and Chained Addition, because while it is easy to find
a perfect fitting component that can solve a problem (if such a component is available),
finding a chain of components that solves the problem is extremely complex, with the
benefit of Chained Addition being that a lot more problems can be solved. The more

64

4.7. Interoperability Recommendation

solution types an implementation of the interoperability framework is capable of applying,
the higher it’s ability of solving interoperability problems.

4.7.1 Automated Recommendation

An automated recommendation uses an algorithm to solve the interoperability problems of
a SliceInformation. The major steps of the automated recommendation are the following:

1. Analyse problem context The reason for the interoperability problem as well
as the components that are part of the problem have to be analysed in order to
choose the appropriate solution type. If a component needs to be added to solve
the problem, the position of the component is of special interest, especially if the
problem is part of a 1:N, M:1 or M:N subgraph.

2. Query for solution components If a component needs to be added or substi-
tuted, a query has to be created that only returns components that are capable
of solving the problem. The query needs to contain the interoperability metadata
that caused the problem, restricted to to required values, as well as other require-
ments that dependent components demand to be satisfied. The new component
needs to satisfy the requirements that the original component satisfied, plus the
violated requirements from the interoperability metadata checks. Subsequently,
SliceContract properties impose additional restrictions on the new components.

3. Apply solution to SliceInformation The solution must be applied to the Sli-
ceInformation. Indirectly impacted components (as described in Section 4.6)
require special attention as applying the solution might have side effects on other
components or other interoperability problems. In case that two interoperability
problems have an overlapping impact, it is safer to re-run the interoperability check
before continueing with solving the next problem.

4.7.2 Manually by reusing Interoperability Components

When solving the problem with this technique, the Interoperability DevOp has to perform
all the steps that have been described for the Automated Recommendation technique her-
respectively himself. For this technique, the search capabilites are of great significance,
since an efficient search engine can greatly aid the Interoperability DevOps’ efforts
of solving the problem. The interoperability metadata serves as good foundation for
searching appropriate components as it describes the components’ capabilities regarding
solving interoperability problems.

4.7.3 Manually by developing a new software artefact or
interoperability bridge

If no components that can be reused to solve the problem are available, the final technique
is to develop a new interoperability software component that is capabable of doing so.

65

4. Interoperability Framework

Since developing a software application from scratch is usually a time-expensive task, the
interoperability framework provides the Interoperability DevOps the possibility to create
an interoperability bridge by combining already developed resources, interoperability
software artefacts and other interoperability bridges.

Furthermore, if the resource provisioning service that this interoperability framework
depends on, offers a diverse set of execution enviroments, then a lot of different software
artefacts can be created without having to spend too much time with managing the
deployment process of the software artefact, as the Interoperability Framework is capable
of performing this task. Subsequently, when appropriate execution environments are
provided, software artefacts can be small and simple as for instance a JavaScript function.
The benefit is that small software artefacts are easier and faster to develop than a full ap-
plication stack. Last but not least, the Interoperability DevOps can also acquire working
software artefacts from online sources. Speeding up the development circle, respectively
the time it takes to provision and deploy such software artefact greatly improves the In-
teroperability DevOps’ ability to provide on-demand interoperability solutions. And once
an interoperability software artefact has been added to the interoperability framework, it
can be reused to solve a recurring problem on many occasions.

4.8 Discussion and Extensibility

4.8.1 Discussion

Interoperability metadata builds the core of the framework and is a critical building
block. The semantics of metadata fields have to be well understood when assigning them.
Failing to assign the correct values might result in the framework not working correctly.
The catalogue of interoperability metadata properties must on the one hand be extensive,
so that it is possible to make good, accurate destinctions and find as much interoperability
problems as possible, which inevitably leads to complexity in using the metadata. On the
other hand however, the interoperability metadata catalogue must also be clearly defined
and simple to understand, so that it can be used correctly. Hence, one key factor is to
find a good balance between volume (respectively accuracy) and simplicity (respectively
clarity) of the interoperability metadata catalogue. Since metadata can just describe a
software component and a description of a component can never be completely accurate,
the goal of the framework is clearly to assist the Interoperability DevOps and not to
replace them. Another key factor for a successful implementation of the framework is to
focus on assisting the Interoperability DevOps as good as possible.

The Interoperability DevOps’ tasks that require the most effort and time will be the
tasks of finding interoperability problems and solving them. The implementation quality
of these two tasks will therefore have a great impact on the implementation quality as a
whole. One DevOp task that the framework does not consider right now, because of the
complexity and size of the task, is the monitoring of a resource slice. By being able to
easily see if a component works and access the data it produces, the efficency of creating
software artefacts would be improved, as DevOps would quickly get example out- and input

66

4.8. Discussion and Extensibility

data. However, the size of such a monitoring framework could probably spawn another
thesis. Allowing the Interoperability DevOps to extend the interoperability metadata
catalogue, as well as improving the interoperablity check and recommendation capabilities
is currently not part of the framework, but might be of value for an implementation of
the framework.

4.8.2 Extensibility

To make the interoperability metadata dynamically extensible, following information is
needed of new interoperability metadata properties:

• Data type/domain defines what values can be assigned to the interoperability
metadata attribute

• Identifier denotes the name of the attribute

• Semantic definition/description for the DevOp a description of the attributes
semantics and what qualities determine the values that need to be assigned

• How can the interoperability metadata be merged, respectively what
overides it? This information is especially crucial if the property is used for
an interoperability bridge, where components are combined to a more powerful
component. Furthermore, this information has to be known when the metadata
property will be used in an extended, newly defined method of the interoperability
check.

In order to also use the dynamically extensible interoperability metadata for the interop-
erability check, or to extend the capabilities of the interoperability check as a whole, new
check functions have to define the following properties:

• When does the check apply? Per component, between directly or indirectly con-
nected components

• What is checked, respectively what criteria leads to passing respectively failing
the test? The criteria may apply to the metadata of one single component, two
directly or indirectly connected components, all direct or indirect neighbors of a
component, all predecessors or all successors of the component. However, the check
can in general be an arbitrary function as well.

The interoperability check can also be extended by calling multiple services that analyse
the SliceInformation themselves. In such a case, while it would in general be sufficient to
simply return whether the check failed or not, at least the information defined in Section
4.6 (Interoperability Problem Model) should be provided as feedback, in order to have
enough information to comprehend and subsequently solve the problem.

67

4. Interoperability Framework

4.9 Summary
Applications that need to establish interoperability with unknown entities during runtime
and a constrained time window, call for on-demand interoperability solutions. On-
demand interoperability is the ability to dynamically deal with interoperability problems
on demand. Since a solution usually has to be found within a certain time constraint,
it is important to make the tasks of dealing with dynamic interoperability problems
as time-efficient as possible. As the interoperability framework is based on a resource
provisioning framework, a benefitial side-effect of enabling on-demand interoperability is
the increased scaleability, respectively elasticy of interoperability solutions.

As interoperability solutions have to be operated and some problems might demand a
tailored interoperability solution that requires the development of a new interoperability
software artefact or interoperablitiy bridge, we call for Interoperability DevOps as main
stakeholders of our interoperability framework. The goal of the interoperability framework
is to assist the Interoperability DevOps in their tasks and to increase their efficiency
in dealing with interoperability problems, such that on-demand interoperability can be
established.

Based on several interoperability factors, we defined an interoperability metadata model
as the core of our framework. The interoperability metadata will be utilised to reuse
software components for dealing with interoperability problems. By making use of the
interoperability metadata assignments, we assist Interoperability DevOps with detecting
and solving interoperability problems. The Interoperability DevOps can apply several
techniques for solving the detected problems. Either with an automatically generated
solution recommendation, by manually searching for capable components based on the
interoperability metadata or by creating a new interoperability bridge or interoperability
software artefact that is capable of solving the problem.

68

CHAPTER 5
Prototype

5.1 Overview
In the course of this thesis a prototype that implements the interoperability framework
has been created. Since the interoperabiltiy framework requires a resource provisioning
service, the prototype is built upon and part of the rsiHub Framework. Within the
rsiHub framework, the main communication interface of the resource provisioning service
is the Global Management Service. The prototype is available at https://github.
com/SINCConcept/HINC

To simplify the deployment of the prototype’s services, a Docker image has been created
for every service within the framework and is available at Docker Hub. Additionally, as
an application of the prototype is usually in the context of a specific scenario, a Scenario
Generator that helps with configuring the services of a rsihub-Scenario has also been
developed and is available in the repository of the prototype. Section 5.2 shows how
the interoperability framework aligns with the rsiHub architecture and outlines what
technologies where used for the prototype. Essential testcases that were used for the
test-driven development of the prototype are introduced in Section 5.3.

69

https://github.com/SINCConcept/HINC
https://github.com/SINCConcept/HINC

5. Prototype

5.2 Prototype Architecture and the rsiHub Framework

The frameworks that were used for creating the prototype can be seen in Figure 5.1. The

Interoperability Service

Interoperability
Problem Detection

Interoperability
Solution

Recommendation

Interoperability
Bridge

Management

Interoperability
Bridge Metadata

Management

Interoperability
Bridge Deployment

Interoperability
Bridges

Interoperability
Metadata

Software Artefact Service

Interoperability
Software Artefact

Metadata
Management

Interoperability
Software Artefact

Deployment

Interoperability
Software Artefact

Management

Interoperability
Software Artefact

Discovery

Software
Artefacts

Interoperability
Metadata

rsiHub Global Management Service

Resource
Discovery

Resource Provider
Discovery Resources

Interoperability
Metadata

Resource
Provisioning

Slice Provisioning

Resource Provisioning Framework

Interoperability Framework

Resource Layer

Slice Information

Sensor Storage

IoT thing
camera Cloud StorageComputing

Resource

Artefact

Artefact

User Layer

Uses

Interoperability
Devop

rsiHub Command
Line Client
(pizza.js)

Node-RED

swagger.io Spring

swagger.io Spring

Uses

Uses

JSON

Figure 5.1: prototype architecture overview

Interoperability DevOp’s main software component for interfacing with the interoperability
framework is the rsiHub command line client, also called rsiHub CLI or pizza.js (since it
deals with slices). pizza.js has been implemented with the javascript framework Node.js
([Nod18]). The Node.js package called "yargs"([Yar18]) was used in order to create a
proper command line interface. The rsiHub CLI communicates with the rsiHub Services

70

5.2. Prototype Architecture and the rsiHub Framework

in order to carry our the Interoperability DevOp’s tasks. All main rsiHub Services
expose REST APIs that the rsiHub CLI uses. Interoperability DevOps therefore do not
necessarily use the rsiHub CLI, but can also work with the REST APIs. SliceInformations
are json documents that confirm to the model in Figure 4.3.

The Interoperability Service has also been developed with Node.js. Data is stored using
MongoDB([Mon18]). The service exposes a REST API that is documented with OpenAPI
Version 3([Ope18]). A Docker image of the Interoperability Service is available at Docker
Hub with the identifier rdsea/rsihubintop.

The Software Artefact Service has been implemented in Java([Ora18]), using the Spring
framework([Spr18]). MongoDB has been used for the database layer. The service
also exposes a REST API that is documented with Swagger.io (OpenAPI Version 2,
[Swa18]). The Docker image is available in Docker Hub with the identifier rdsea/rsihubsas.
Some Software Artefacts that were used when developing and testing the prototype are
available at https://github.com/rdsea/IoTCloudSamples. The artefacts have
been developed with either Node-RED([NR18]) or Node.js and Docker.

As described in the previous Chapter, the Interoperability Framework depends on a
resource provisioning framework. The rsiHub Global Management Service exposes a
REST API that this prototype uses to interact with the required capabilities. The rsiHub
Global Management Service is not part of this prototype and it was already available.
During the course of this thesis, the rsiHub Global Management Service has merely been
modified to a minor degree, in order for the interoperability framework to work.

The rsiHub Global Management Service depends on resource providers that are able to
provision resources. The resource providers were already available and have not been
modified. The resource providers were used in order to deploy software artefacts and for
testing purposes in general. Specifically the resource providers that provision Node-RED
and Docker instances were being used for deploying Software Artefacts.

71

https://github.com/rdsea/IoTCloudSamples

5. Prototype

The architecture of rsiHub containing Interoperability Software Artefact Service, Inter-
operability Service and the Resource Provisioning Service (rsiHub Global Management
Service) together with it’s utilised components, is shown in Figure 5.2.

Figure 5.2: rsiHub architecture taken from [Tru18]

The prototype has been developed to satisfy the defined use cases from Section 3.5 and
to allow for much flexibility in scenarios and application-domains. In the next section we
present challenges that arised and testcases that we developed when we implemented the
prototype in a test-driven approach.

5.3 Test-driven Development
The prototype has been developed in a test-driven approach, which turned out to be crucial
in order to deal with the complexity of the interoperability check and recommendation.
The time that was needed to develop the testcases turned out to provide a good return
of investment. While developing the interoperability check and recommendation of the
prototype, a total of 73 unit tests have been implemented, that the prototype all passes.
Implemented testcases are available at https://github.com/SINCConcept/HINC/
tree/master/interoperability-service/src/test and can be executed from
the project directory with npm test.

72

https://github.com/SINCConcept/HINC/tree/master/interoperability-service/src/test
https://github.com/SINCConcept/HINC/tree/master/interoperability-service/src/test

5.3. Test-driven Development

Since SliceInformations can possess an arbitrary topology, it is important to find test
instances that represent and cover lots of problematic cases. Apart from the SliceInfor-
mation topology, other dimensions, that further increase of problem instance domain, are
the combinations of metadata fields that are available for each SliceInformation element
as well as the values that are assigned to those metadata fields. For the purpose of
finding test instances, the problem of having arbitrary combinations of metadata fields
can be viewed from a more general but simpler perspective. Metadata values of two
connected resources are always evaluated by the corresponding metadata-check. If we see
the metadata-check as a function that maps two sets of metadata values (one for each
resource of a connection) to the doman {true, false}, then we can project every tuple of
metadata value combinations to a boolean value.

This simplification leads to the situation that, for the slices that are used as test instances,
it is then not important, what metadata values are actually present, but only what
the result of a comparison will be. Under this circumstance, two problem instances
that differ in the metadata assignments, but are equal in the topology as well as in
the connection comparison results (whether a connection is interoperable or not), can
be considered equal. Nevertheless, taking this simplification into account, leads to the
necessity of testing the correctness of metadata comparators seperately, as for the overall
application, the correctness of metadata comparisons is vital to the application quality.
Also, metadata combinations are still relevant if a problematic connection can not be
solved with one perfectly fitting resource (i.e. if no resource is available that satisfies the
metadata values of both the source and destination resource). For automatic solution
chains, the metadata combinations are of great importance, but the calculation of such
solution chains can also be tested seperately, with taking only just a few basic slice
topologies into account, but greatly varying the metadata combinations and available
resources.

However, the problem instances that we came up with constitute a good set for testing
the prototype, as they test the very core of the detection and recommendation algorithm,
as well as the other solving techniques. Tables 5.1, 5.2, 5.3 and 5.4 provide an overview
and reference to the testslices that were created and used to implement the prototype.
Thereafter, some essential test instances are described in more detail, to elaborate some
of challenges that are embodied within the instances.

73

5. Prototype

T
es
ts
lic
es

th
at

ar
e
ba

se
d
on

th
e
se
ap

or
t
ap

pl
ic
at
io
n
do

m
ai
n

T
he

ac
tu
al

sli
ce
s

ar
e

av
ai
la
bl
e

at
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/
m
a
s
t
e
r
/

i
n
t
e
r
o
p
e
r
a
b
i
l
i
t
y
-
s
e
r
v
i
c
e
/
c
l
i
e
n
t
_
t
e
s
t
s
l
i
c
e
s
/
v
a
l
e
n
c
i
a
_
i
n
t
o
p

T
es
ts
lic
e
N
am

e
D
es
cr
ip
ti
on

Sl
ic
e
C
om

po
ne

nt
s

In
te
ro
pe

ra
bi
lit
y

P
ro
bl
em

0
1
_
p
r
o
t
o
c
o
l

T
hi
s
te
st
sli
ce

co
rr
es
po

nd
s
to

th
e
sc
en
ar
io

fro
m

se
ct
io
n
3.
4.
1

ve
ss
el
,b

ro
ke
r,

pc
s

pr
ot
oc
ol

m
qt
t
to

am
qp

(a
nd

vi
ce

ve
rs
a)

0
2
_
d
a
t
a
f
o
r
m
a
t

T
hi
s
sli
ce

co
rr
es
po

nd
s
to

th
e

sc
en

ar
io

fr
om

se
ct
io
n
3.
4.
2

ve
ss
el
,b

ro
ke
r,

pc
s

da
ta
fo
rm

at
cs
v
to

js
on

(a
nd

vi
ce

ve
rs
a)

0
3
_
d
a
t
a
c
o
n
t
r
a
c
t
_
j
u
r
i
s
d
i
c
t
i
o
n

T
hi
s
sli
ce

co
rr
es
po

nd
s
to

th
e

sc
en

ar
io

fr
om

se
ct
io
n
3.
4.
3

ca
m
er
a,

us
_
st
or
ag

e,
eu

_
st
or
ag

e
ca
m
er
a
re
qu

ire
s
eu

ju
-

ris
di
ct
io
n

0
4
_
d
a
t
a
c
o
n
t
r
a
c
t
_
d
a
t
a
r
i
g
h
t
s

T
hi
s

sli
ce

co
rr
es
po

nd
s

to
th
e

sc
en

ar
io

fr
om

se
ct
io
n

3.
4.
3.

It
m
us
t

be
us
ed

w
ith

th
e
co
rr
es
po

nd
in
g
Sl
ic
e-

C
on

tr
ac
t
fr
om

th
e
su
bf
ol
de

r
/
s
l
i
c
e
c
o
n
t
r
a
c
t
.

se
ns
or
,b

ro
ke
r,

an
al
yt
-

ic
s

se
ns
or

re
qu

ire
s

no
n

co
m
m
er
ci
al

us
ag

e

0
5
_
d
a
t
a
c
o
n
t
r
a
c
t
_
p
r
i
c
i
n
g

T
hi
s
sli
ce

co
rr
es
po

nd
s
to

th
e

sc
en

ar
io

fr
om

se
ct
io
n
3.
4.
3

tr
ac
ki
ng

_
da

ta
so
ur
ce
,

an
al
yt
ic
s

pr
ic
in
g
m
od

el
pr
ob

le
m

0
6
_
q
o
s
_
r
e
l
i
a
b
i
l
i
t
y

T
hi
s
sli
ce

co
rr
es
po

nd
s
to

th
e

sc
en

ar
io

fr
om

se
ct
io
n
3.
4.
4

ga
te
ac
ce
ss
_
se
ns
or
s,

br
ok
er
,a

na
ly
tic

s
an

al
yt
ic
s
re
qu

ire
s
re
li-

ab
le

se
ns
or
s

0
7
_
q
o
s
_
m
e
s
s
a
g
e
f
r
e
q
u
e
n
c
y

T
hi
s
sli
ce

co
rr
es
po

nd
s
to

th
e

sc
en

ar
io

fr
om

se
ct
io
n
3.
4.
4

se
ns
or
,b

ro
ke
r,

an
al
yt
-

ic
s

an
al
yt
ic
s
re
qu

ire
s
m
es
-

sa
ge
fr
eq
ue

nc
y

0
8
_
q
o
d
_
p
r
e
c
i
s
i
o
n

T
hi
s
sli
ce

co
rr
es
po

nd
s
to

th
e

sc
en

ar
io

fr
om

se
ct
io
n
3.
4.
5

se
ns
or
,b

ro
ke
r,

an
al
yt
-

ic
s

an
al
yt
ic
s
re
qu

ire
s
pr
e-

ci
sio

n
0
9
_
q
o
d
_
a
v
e
r
a
g
e
m
e
a
s
u
r
e
m
e
n
t
a
g
e

T
hi
s
sli
ce

co
rr
es
po

nd
s
to

th
e

sc
en

ar
io

fr
om

se
ct
io
n
3.
4.
5

tr
ac
ki
ng

_
da

ta
so
ur
ce
,

an
al
yt
ic
s

an
al
yt
ic
s
re
qu

ire
s
av
er
-

ag
e_

m
ea
su
re
m
en
t_

ag
e

Ta
bl
e
5.
1:

Te
st
sli
ce
s
th
at

ar
e
ba

se
d
on

th
e
se
ap

or
t
ap

pl
ic
at
io
n
do

m
ai
n.

74

https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/valencia_intop
https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/valencia_intop

5.3. Test-driven Development
B
as
ic

te
st
sl
ic
es

th
at

re
pr
es
en
t
co
m
m
on

pr
ob

le
m

gr
ap

hs
(P

ar
t
1
of

2)

T
he

ac
tu
al

sli
ce
s

ar
e

av
ai
la
bl
e

at
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/
m
a
s
t
e
r
/

i
n
t
e
r
o
p
e
r
a
b
i
l
i
t
y
-
s
e
r
v
i
c
e
/
c
l
i
e
n
t
_
t
e
s
t
s
l
i
c
e
s
/
b
a
s
i
c

T
es
ts
lic
e
N
am

e
D
es
cr
ip
ti
on

Sl
ic
e
C
om

po
ne

nt
s

In
te
ro
pe

ra
bi
lit
y
P
ro
bl
em

0
_
w
o
r
k
i
n
g
_
s
l
i
c
e

A
w
or
ki
ng

sli
ce

ht
tp
So

ur
ce
,h

tt
pD

es
t

no
ne

1
_
d
i
r
e
c
t
_
m
i
s
m
a
t
c
h

A
sli
ce

w
ith

a
1:
1
di
re
ct

co
n-

ne
ct
io
n
m
ism

at
ch

ht
tp
So

ur
ce
,h

tt
pD

es
t

da
ta
fo
rm

at
cs
v
to

js
on

2
_
i
n
d
i
r
e
c
t
_
m
i
s
m
a
t
c
h

A
sli
ce

w
ith

an
1:
1
in
di
re
ct

co
nn

ec
tio

n
m
ism

at
ch

m
qt
tS
ou

rc
e,

m
qt
tB

ro
ke
r,

m
qt
tD

es
t

da
ta
fo
rm

at
cs
v
to

js
on

3
_
s
u
b
s
t
i
t
u
t
i
o
n

A
sli
ce

th
at

co
nt
ai
ns

an
in
-

co
m
pa

tib
le
br
ok
er

th
at

id
ea
lly

sh
ou

ld
be

su
bs
tit

ut
ed

in
st
ea
d

of
ad

di
ng

so
lu
tio

ns

m
qt
tS
ou

rc
e,

am
qp

B
ro
ke
r,

m
qt
tD

es
t

am
qp

B
ro
ke
r
to

m
qt
tS
ou

rc
e

an
d
m
qt
tD

es
t

4
_
r
e
d
u
c
t
i
o
n

A
sli
ce

th
at

co
nt
ai
ns

an
un

-
ne
ce
ss
ar
y
br
ok
er

th
at

id
ea
lly

sh
ou

ld
be

re
m
ov
ed

in
st
ea
d
of

ad
di
ng

so
lu
tio

ns

ht
tp
So

ur
ce
,

m
qt
tB

ro
ke
r,

ht
tp
D
es
t

m
qt
tB

ro
ke
r
in

be
tw

ee
n
ht
tp
-

So
ur
ce

an
d
ht
tp
D
es
t

5
_
p
u
s
h
_
p
u
l
l

A
sli
ce

th
at

is
sim

ila
r
to

th
e

pr
ev
io
us

on
e
bu

t
ca
n
no

t
be

so
lv
ed

w
ith

re
du

ct
io
n

ht
tp
So

ur
ce
,

m
qt
tB

ro
ke
r,

ht
tp
D
es
t,

m
qt
tD

es
t

ht
tp
So

ur
ce

to
m
qt
tB

ro
ke
r,

m
qt
tB

ro
ke
r
to

ht
tp
D
es
t.

R
e-

du
ct
io
n

of
m
qt
tB

ro
ke
r

no
t

po
ss
ib
le

6
_
m
i
s
s
i
n
g
_
b
r
o
k
e
r

A
n
m
qt
t
co
nn

ec
tio

n
w
ith

ou
t

br
ok
er

m
qt
tS
ou

rc
e,

m
qt
tD

es
t

N
o

br
ok

er
is

us
ed

be
tw

ee
n

m
qt
t
re
so
ur
ce
s

7
_
c
h
a
i
n
i
n
g

A
ch
ai
n
w
ith

br
ok
er

an
d
tr
an

s-
fo
rm

er
sh
ou

ld
be

ad
de

d
to

th
is

sli
ce

m
qt
tS
ou

rc
e,

m
qt
tD

es
t

m
iss

in
g
br
ok

er
+

da
ta
fo
rm

at
cs
v
to

js
on

Ta
bl
e
5.
2:

B
as
ic

te
st
sli
ce
s
th
at

re
pr
es
en
t
co
m
m
on

pr
ob

le
m

gr
ap

hs
(P

ar
t
1
of

2)

75

https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/basic
https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/basic

5. Prototype

B
as
ic

te
st
sl
ic
es

th
at

re
pr
es
en
t
co
m
m
on

pr
ob

le
m

gr
ap

hs
(P

ar
t
2
of

2)

T
he

ac
tu
al

sli
ce
s

ar
e

av
ai
la
bl
e

at
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/
m
a
s
t
e
r
/

i
n
t
e
r
o
p
e
r
a
b
i
l
i
t
y
-
s
e
r
v
i
c
e
/
c
l
i
e
n
t
_
t
e
s
t
s
l
i
c
e
s
/
b
a
s
i
c

T
es
ts
lic
e
N
am

e
D
es
cr
ip
ti
on

Sl
ic
e
C
om

po
ne

nt
s

In
te
ro
pe

ra
bi
lit
y

P
ro
b-

le
m

8
_
i
n
d
i
r
e
c
t
_
m
i
s
m
a
t
c
h
_
m
1

A
sli
ce

w
ith

an
M
:1

in
di
re
ct

m
ism

at
ch

js
on

So
ur
ce
,c

sv
So

ur
ce
,b

ro
-

ke
r,

js
on

D
es
t

da
ta
fo
rm

at
cs
v
to

js
on

,h
as

to
be

so
lv
ed

on
so
ur
ce

sid
e

9
_
i
n
d
i
r
e
c
t
_
m
i
s
m
a
t
c
h
_
1
n

A
sli
ce

w
ith

an
1:
N

in
di
re
ct

m
ism

at
ch

jso
nS

ou
rc
e,

br
ok
er
,c

sv
D
es
t,

js
on

D
es
t

da
ta
fo
rm

at
cs
v
to

js
on

,h
as

to
be

so
lv
ed

on
de

st
sid

e
1
0
_
i
n
d
i
r
e
c
t
_
m
i
s
m
a
t
c
h
_
m
n

A
sli
ce

w
ith

an
M
:N

in
di
re
ct

m
ism

at
ch

js
on

So
ur
ce
,c

sv
So

ur
ce
,b

ro
-

ke
r,

cs
vD

es
t,

js
on

D
es
t

m
ul
tip

le
da

ta
fo
rm

at
pr
ob

-
le
m
s,

on
e

in
te
rm

ed
ia
te

da
ta
fo
rm

at
ne

ed
s

to
be

us
ed

(e
ith

er
cs
v
or

js
on

)
1
1
_
p
u
s
h
_
p
u
l
l

T
hi
s
sli
ce

re
pr
es
en
ts

th
e
ba

-
sic

us
e
ca
se

of
th
e
ca
m
er
a

sc
en

ar
io

fr
om

se
ct
io
n
3.
3

pu
llS

ou
rc
e,

pu
sh
D
es
tin

a-
tio

n
ht
tp

pu
ll
to

go
og

le
st
or
ag

e
pu

sh

1
2
_
b
a
s
i
c
_
c
i
r
c
l
e

T
hi
s
sli
ce

co
nt
ai
ns

a
ba

sic
ci
rc
le

T
hr
ee

co
m
po

ne
nt
s
th
at

pr
o-

du
ce

an
d
co
ns
um

e
da

ta
,o

r-
ga

ni
se
d
in

a
ci
rc
le

tw
o
pr
od

uc
e
an

d
co
ns
um

e
js
on

,o
ne

cs
v

1
3
_
m
u
l
t
i
_
c
i
r
c
l
e

T
hi
s
sli
ce

co
nt
ai
ns

tw
o
di
-

re
ct

ci
rc
le
s
an

d
on

e
in
di
re
ct

C
lie

nt
,

B
ro
ke
r,

Se
rv
er

(C
lie

nt
an

d
Se
rv
er

pr
od

uc
e

an
d
co
ns
um

e
da

ta
)

da
ta
fo
rm

at
cs
v
to

jso
n
(a
nd

vi
ce

ve
rs
a)

Ta
bl
e
5.
3:

B
as
ic

te
st
sli
ce
s
th
at

re
pr
es
en
t
co
m
m
on

pr
ob

le
m

gr
ap

hs
(P

ar
t
2
of

2)

76

https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/basic
https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/basic

5.3. Test-driven Development
T
es
ts
lic
es

th
at

w
er
e
de

ri
ve
d
fr
om

th
e
sl
ic
es

of
[G

G
H

+
15

].
T
he

sl
ic
es

ar
e
ba

se
d
on

a
B
as
eT

ra
nc

ei
ve
rS
ta
ti
on

sc
en

ar
io

T
he

ac
tu
al

sli
ce
s

ar
e

av
ai
la
bl
e

at
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/
m
a
s
t
e
r
/

i
n
t
e
r
o
p
e
r
a
b
i
l
i
t
y
-
s
e
r
v
i
c
e
/
c
l
i
e
n
t
_
t
e
s
t
s
l
i
c
e
s
/
b
t
s

an
d

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/

t
r
e
e
/
m
a
s
t
e
r
/
i
n
t
e
r
o
p
e
r
a
b
i
l
i
t
y
-
s
e
r
v
i
c
e
/
c
l
i
e
n
t
_
t
e
s
t
s
l
i
c
e
s
/
l
i
n
g
f
a
n
_
e
v
a
l
u
a
t
i
o
n

T
es
ts
lic
e
N
am

e
D
es
cr
ip
ti
on

Sl
ic
e
C
om

po
ne

nt
s

In
te
ro
pe

ra
bi
lit
y

P
ro
bl
em

b
t
s
_
t
e
s
t
s
l
i
c
e
0

A
w
or
ki
ng

sli
ce

of
th
e

B
T
S
sc
en

ar
io

js
on

Se
ns
or
,B

ro
ke
r,

In
-

ge
st
io
n

no
ne

b
t
s
_
t
e
s
t
s
l
i
c
e
1

A
B
T
S

sli
ce

w
ith

on
e

1:
1
da

ta
fo
rm

at
pr
ob

le
m

cs
vS

en
so
r,

B
ro
ke
r,

In
-

ge
st
io
n

da
ta
fo
rm

at
:
cs
v
to

jso
n

b
t
s
_
t
e
s
t
s
l
i
c
e
2

A
B
T
S

sli
ce

w
ith

on
e

M
:1

da
ta
fo
rm

at
pr
ob

-
le
m

cs
vS

en
so
r,

js
on

Se
ns
or
,

B
ro
ke
r,

In
ge
st
io
n

da
ta
fo
rm

at
:
cs
v
to

jso
n

T
es
ts
lic
e
N
am

e
D
es
cr
ip
ti
on

Sl
ic
e
C
om

po
ne

nt
s

In
te
ro
pe

ra
bi
lit
y

P
ro
bl
em

s
l
i
c
e
_
P
M
_
t
e
s
t
s

A
sli
ce

fr
om

th
e

pr
o-

vi
sio

ni
ng

fr
am

ew
or
k’
s

pr
ot
ot
yp

e

B
ro
ke
r,

A
na

ly
tic

s,
D
at
as
in
k,

te
m
pe

ra
tu
re
-

Se
ns
or
,h

um
id
ity

Se
ns
or

no
ne

s
l
i
c
e
_
U
C
0
1
_
a
d
d
_
d
a
t
a
_
c
o
n
s
u
m
e
r

A
sli
ce

fr
om

th
e

pr
o-

vi
sio

ni
ng

fr
am

ew
or
k’
s

pr
ot
ot
yp

e

B
ro
ke
r,

A
na

ly
tic

s,
D
at
as
in
k

no
ne

s
l
i
c
e
_
U
C
0
3
_
p
r
o
t
e
c
t
_
d
a
t
a
_
c
o
n
s
u
m
e
r

A
sli
ce

fr
om

th
e

pr
o-

vi
sio

ni
ng

fr
am

ew
or
k’
s

pr
ot
ot
yp

e

B
ro
ke
r,

A
na

ly
tic

s,
te
m
-

pe
ra
tu
re
Se
ns
or
,h

um
id
-

ity
Se

ns
or

no
ne

s
l
i
c
e
_
U
C
0
4
_
c
u
s
t
o
m
_
a
n
a
l
y
s
i
s
_
l
o
g
i
c

A
sli
ce

fr
om

th
e

pr
o-

vi
sio

ni
ng

fr
am

ew
or
k’
s

pr
ot
ot
yp

e

B
ro
ke
r,

A
na

ly
tic

s,
D
at
as
in
k,

te
m
pe

ra
tu
re
-

Se
ns
or
,h

um
id
ity

Se
ns
or

no
ne

Ta
bl
e
5.
4:

Te
st
sli
ce
s
th
at

w
er
e
de

riv
ed

fr
om

th
e
sli
ce
s
of

[G
G
H

+
15

]

77

https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/bts
https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/bts
https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/lingfan_evaluation
https://github.com/SINCConcept/HINC/tree/master/interoperability-service/client_testslices/lingfan_evaluation

5. Prototype

Slice correspondence Similar to 0_working_slice from Table 5.2
Description A basic, working slice where the data source and destination

communicate over a message broker

Problem Graph
Source Destination

json
mqtt

json
mqtt

Broker

Solution Graph
Source Destination

json
mqtt

json
mqtt

Broker

Available Resources No additional resources are necessary for this test
Challenges The purpose of this test is to check if the interoperability

check and recommendation do not tamper the slice if it is
already working.

Table 5.5: Detailed testcase description: working slice

Slice correspondence Similar to 2_indirect_mismatch from Table 5.2
Description A basic mismatch of an indirect connection over a message-

broker

Problem Graph
Source Destination

jsoncsv

Broker

Solution Graph
Source Artefact

jsoncsv

Broker Destination

json

Broker

csv

Available Resources Perfect fitting solution. An artefact that translates
from csv to json (see https://github.com/rdsea/
IoTCloudSamples/tree/master/IoTCloudUnits/
csvToJson_nodered. Additionally, another broker has
to be provided.)

Challenges The difficulty of this test is that the dataformat of source
and destination have to be checked, while it has to be
ignored for the connections to the broker. Another possible
solution would be to use just one broker, but different topics.

Table 5.6: Detailed testcase description: indirect mismatch

78

https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered

5.3. Test-driven Development

Slice correspondence Similar to 11_push_pull from Table 5.3
Description A mismatch between a pulling and pushing component

Problem Graph
Source Destination

push
gs

pull
http

Solution Graph
Destination

push
gs

pull
http

ArtefactSource

pull
http

push
gs

Available Resources Perfect fitting solution. An artefact that translates
from csv to json (see https://github.com/rdsea/
IoTCloudSamples/tree/master/IoTCloudUnits/
datastorageArtefact. Additionally, another broker
has to be provided.)

Challenges This test shows the necessity of the "push/pull" field.

Table 5.7: Detailed testcase description: push pull problem

Slice correspondence Similar to 7_chaining from Table 5.2
Description A problem that requires the chaining of solution components

Problem Graph
Source Destination

http
json

mqtt
csv

Broker

mqtt mqtt

Solution Graph Source

http
json

mqtt
csv

Broker

mqtt mqtt

Artefact

json

DestinationBroker

csv mqtt mqtt

Artefact

httpmqtt

Available Resources Datatransformer from csv to json, Mediator from mqtt to
http. An Artefact that is capable of both transformations
in one step is not available for this test.

Challenges This tests adds another difficulty, as the resources have to
be chained in order to solve this problem instance.

Table 5.8: Detailed testcase description: chaining

79

https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/datastorageArtefact
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/datastorageArtefact
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/datastorageArtefact

5. Prototype

Slice correspondence Similar to 9_indirect_mismatch_1n from Table 5.2
Description Indirect mismatch with one source and many destinations

Problem Graph

Source

Destination

json

csv

Broker

Destination

csv

Solution Graph

Source

Destination
json

csv

Broker

Destination
csv

Artefact

json

Broker

csv

Available Resources Perfect fitting solution. An artefact that translates
from csv to json (see https://github.com/rdsea/
IoTCloudSamples/tree/master/IoTCloudUnits/
csvToJson_nodered). Additionally, another broker has
to be provided.

Challenges This instance tests a 1:N connection, where only one con-
nection from source to destination is not interoperable. The
artefact therefore has to be inserted on the destination side.

Table 5.9: Detailed testcase description: indirect mismatch 1:N

80

https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered

5.3. Test-driven Development

Slice correspondence Similar to 8_indirect_mismatch_m1 from Table 5.2
Description Indirect mismatch with many sources and one destination

Problem Graph

Source

Destination

json

csv

Broker

Source
json

Solution Graph

Source

Destination

json

csv

Broker

Source
json

Artefact

json

Broker

csv

Available Resources Perfect fitting solution. An artefact that translates
from csv to json (see https://github.com/rdsea/
IoTCloudSamples/tree/master/IoTCloudUnits/
csvToJson_nodered). Additionally, another broker has
to be provided.

Challenges This instance tests a M:1 connection, where only one con-
nection from source to destination is not interoperable. The
artefact therefore has to be inserted on the source side.
This test, together with the previous one, shows that it is
necessary to determine the side of insertion dynamically.

Table 5.10: Detailed testcase description: M:1

81

https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered

5. Prototype

Slice correspondence Similar to 10_indirect_mismatch_mn from Table 5.2
Description Indirect mismatch with many sources and many destinations

Problem Graph

Source
Destination

json
csv

Broker

Destination

csv

Source
json

Solution Graph

Source
Destination

json
csv

Broker

Destination

csv

Source
json

Artefact

csv

Broker

json

Artefact

json

Broker

csv

Available Resources Perfect fitting solution. An artefact that translates
from csv to json (see https://github.com/rdsea/
IoTCloudSamples/tree/master/IoTCloudUnits/
csvToJson_nodered). Additionally, another broker has
to be provided.

Challenges The difficulty of this instance is that the solutions of both
problematic connections have to be coordinated. If both
problems are being solved on just one side of the broker,
the instance would still have two problematic connections.
The symmetric solution of the one that is in the figure,
would be to transform the json connections instead of the
csv connections.

Table 5.11: Detailed testcase description: M:N

82

https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered

5.3. Test-driven Development

Slice correspondence Similar to 12_basic_circle from Table 5.2
Description A problem within a circle

Problem Graph
A C

jsoncsv

B

jsoncsv

json json

Solution Graph
A C

json

csv

B json

csv

json
json

Artefact
jsoncsv

Artefact

json

csv

Available Resources Perfect fitting solution. An artefact that translates
from csv to json (see https://github.com/rdsea/
IoTCloudSamples/tree/master/IoTCloudUnits/
csvToJson_nodered). Additionally, another broker has
to be provided.

Challenges This tests checks if circles do not cause any errors.

Table 5.12: Detailed testcase description: basic circle

83

https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered

5. Prototype

Slice correspondence Similar to 13_multi_circle from Table 5.2
Description Indirect, bidirectional problem with three circles

Problem Graph

Client Server

jsoncsv

Broker

jsoncsv

Solution Graph

Broker Server

jsoncsv

Broker

jsoncsv

Artefact

jsoncsv

Artefact
jsoncsv

Client

Available Resources Perfect fitting solution. An artefact that translates
from csv to json (see https://github.com/rdsea/
IoTCloudSamples/tree/master/IoTCloudUnits/
csvToJson_nodered). Additionally, another broker has
to be provided.

Challenges This test is relatively similar the detailed testcase from
table 5.11 (10_indirect_mismatch_mn), but instead of
having two Sources and Destinations, both elements (noted
as "Client" and "Server") act as a source and destination
simultaneously. Since they also communicate over a mes-
sage broker, this test intends that they receive their own
messages, so that the instance contains a total of three cir-
cles. Two small circles between message broker and "Client"
respectively "Server", and one large circle that spreads over
all elements. Because of the message feedbacks, both arte-
facts must be either on the "client" or on the "server" side
of the broker, but they can not be on distributed across
both broker sides.

Table 5.13: Detailed testcase description: indirect, bidirectional problem with three
circles

84

https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson_nodered

5.4. Summary

5.4 Summary
In the course of this thesis, a prototype was created. In this chapter, we provided the
architecture and frameworks that we used for building the prototype. Thereafter, we
decribed the test-driven development approach that we applied for building the prototype.
As the interoperability check and recommendation are complex issues, the test-driven
approach was crucial. However, finding a good set of testinstance was a challenging task,
due to the vast problem domain. We therefore provided a summary of our testinstance
and gave detailed descriptions of several testinstance and their challenges.

85

CHAPTER 6
Evaluation

6.1 Overview
We evaluate our prototype along two dimension: functional and performance. At first we
determine the functional appropriateness of our framework by performing the use cases
from Section 3.5. We perform the use case experiments both isolated from each other and
in accordance to an Interoperability DevOps workflow that we defined for the experiments.
Subsequently, we evaluate our experiences against the ISO/IEC 25010:2011[ISO10] quality
measures of effectiveness, functional suitability and usability.

Thereafter, we evaluate the performance of our prototype’s interoperability check and
recommendation. Our performance testinstances scale in the "amount of components
per slice" and in the "amount of metadata mismatches per connection". We measure the
response time to assess if the framework can reduce the effort of detecting and solving
interoperability problems.

6.2 Functional Evaluation

6.2.1 Evaluation Environment

The application of the prototype is in some way always tied to a scenario. To evaluate
the prototype properly, a service ecosystem is necessary, such that actual resources can
be provisioned. Figure 5.2, showing the architecture of the rsiHub Framework, outlines
such a service ecosystem, which consists of

• one rsiHub Interoperability Service

• one rsiHub Software Artefact Service

• one rsiHub Global Management Service

87

6. Evaluation

• possibly several rsiHub Local Management Services

• possibly several Adapter instances between rsiHub Local Management Service and
Resource Provider

• possibly several Resource Providers

• one AMQP Message Broker

• at least one MongoDB Server

(in this listing, replicated services for the sake of load distribution only count as one)

The service ecosystem used to evaluate the prototype, is based on the application-domain
from Section 3.2. As the configuration of such a service ecosystem requires quite some
effort, a Scenario Generator has been developed and is available at https://github.
com/SINCConcept/HINC/tree/master/examples/src. The Scenario Generator
creates a docker-compose file and additionally the configuration files for the rsiHub
services, such that the whole stack can easily be deployed to a Docker Swarm or run
locally using docker-compose. This greatly reduces the effort to create a working rsiHub
stack, to run it and to stop it once it is not needed anymore.
We use the stack that is created when running the scenario generator with node
src/scenarios/valencia.js and following parameters:

• docker swarm deployment Yes

• local clusters 1

• rabbitmq connection string connection string of a CloudAMQP([Clo18]) in-
stance

• mongodb connection strings dockerised instances

The generated rsiHub stack is then deployed to a Docker Swarm that is running in Google
Cloud Platform ([Goo18a]). The Swarm consists of four VMs. The VM specification is
shown in Table 6.1. After deploying the rsiHub stack to the Docker Swarm, the rsiHub

Property Specification
Name n1-standard-8
Number of vCPUs 8
CPU Platform Intel Xeon E5 v4 (Broadwell E5)
Base Frequency 2.2 GHz
Memory 30 GB

Table 6.1: VM specifications for the functional evaluation

Command Line Client is configured to communicate with the rsiHub services running in
the Docker Swarm, respectively Google Cloud Platform.

88

https://github.com/SINCConcept/HINC/tree/master/examples/src
https://github.com/SINCConcept/HINC/tree/master/examples/src

6.2. Functional Evaluation

6.2.2 Criteria

The implementation of the proposed interoperability framework is evaluated against a
selected set of quality properties from the quality in use model and the product quality
model of the ISO/IEC 25010:2011 Systems and software engineering standard ([ISO10]).
The selected set of quality properties contains the values that are deemed to be of greatest
relevance for evaluating the framework, which are the following:

• effectiveness is defined as the "accuracy and completeness with which users achieve
specified goals"

• functional suitability is defined as the "degree to which a product or system
provides functions that meet stated and implied needs when used under specified
conditions"

• usability is defined as the "degree to which a product or system can be used by
specified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use"

6.2.3 Experiments

For the evaluation of the functional tests we consider the most important use cases
from Chapter 3. We consider the most essential use cases of this thesis and the work of
Interoperability DevOps to be:

• UC01 Add Interoperability Software Artefact to rsiHub (Table 3.12)

• UC02 Deploy Interoperability Software Artefact to Resource (Table 3.13)

• UC04 Search Interoperability Software Artefact/Interoperability Bridge/Resource
(Table 3.15)

• UC06 Check the interoperability of a SliceInformation (Table 3.17)

• UC08 Get interoperability recommendations for a SliceInformation (Table 3.19)

In order for the results to be reproduceable, we used a dockerised MongoDB instance
that we populated with the data available at: https://github.com/SINCConcept/
HINC/blob/feature/interoperability-experiments/interoperability-service/
src/test/testdata/valencia/db_resources/valencia_recommendation_
evaluation.json The steps that were carried out for testing each respective Use Case
were the following:

UC01 Add Interoperability Software Artefact to rsiHub A Node-RED flow that
would serve as the Software Artefact has been prepared, together with an json document
that contains the Interoperability Metadata of the Artefact. The Interoperability Meta-
data document has been created by using the Metadata Catalogue and follows the model

89

https://github.com/SINCConcept/HINC/blob/feature/interoperability-experiments/interoperability-service/src/test/testdata/valencia/db_resources/valencia_recommendation_evaluation.json
https://github.com/SINCConcept/HINC/blob/feature/interoperability-experiments/interoperability-service/src/test/testdata/valencia/db_resources/valencia_recommendation_evaluation.json
https://github.com/SINCConcept/HINC/blob/feature/interoperability-experiments/interoperability-service/src/test/testdata/valencia/db_resources/valencia_recommendation_evaluation.json
https://github.com/SINCConcept/HINC/blob/feature/interoperability-experiments/interoperability-service/src/test/testdata/valencia/db_resources/valencia_recommendation_evaluation.json

6. Evaluation

syntax of the Interoperability Metadata from Section 4.5.3. The MongoDB database, as
well as the Cloud Storage that is used to upload Software Artefacts that are only locally
available, were checked in order to guarantee that this particular Interoperability Software
Artefact is not already available. By using the rsiHub CLI, the Interoperability Software
Artefact has been created with pizza artefact create <software-artefact>
<execution-environment> <metadata-file> <name>. Following parameters
were used for this experiments:

• <software-artefact>: flow_json_to_csv.json
• <execution-environment>: nodered
• <metadata-file>: metadata_json_to_csv.json
• <name>: nodered_json_to_csv

After executing the command, the MongoDB database and Cloud Storage were again
checked, to evaluate if the Interoperability Software Artefact has been created. Addi-
tionally, the availability of the Interoperability Software Artefact has been checked with
pizza artefact list.

UC02 Deploy Interoperability Software Artefact to Resource This Use Case
has been tested with two different approaches, either deploying the Interoperability
Software Artefact to a Resource that first has to be provisioned by a Resource Provider,
or alternatively to an already running Resource.

Deploy with ResourceProvider The ID of an Node-RED Interoperability Software Arte-
fact has been retrieved. The ID of a Resource Provider that is capable of provision-
ing Node-RED Resources has been retrieved. We checked if no Node-RED Resource
was running. By executing pizza artefact deploy <software-artefact-id>
<resource-provider-id>, the deployment process of the Interoperability Software
Artefact has been started. Following parameters were used for this experiments:

• <software-artefact-id>: 5bcf22375d71560001b251ef
• <resource-provider-id>: nodered

we checked, if a new Node-RED Resource was running. By accessing the newly created
Node-RED Resource, we checked if the Interoperability Software Artefact has been
correctly deployed.

Deploy to running Resource The ID of an Node-RED Interoperability Software Artefact
has been retrieved. The ID of a running Node-RED Resources has been retrieved. By
accessing the Node-RED Resource, We checked if the Node-RED instance was empty (if
the Interoperability Software Artefact was not already executed by the Resource). By ex-
ecuting pizza artefact deploy <software-artefact-id> <resource-id>
--useResourceID, the deployment process of the Interoperability Software Artefact
has been started. Following parameters were used for this experiments:

90

6.2. Functional Evaluation

• <software-artefact-id>: 5bcf22375d71560001b251ef
• <resource-id>: datatransformer1539848591979

By accessing the created Node-RED Resource, we checked if the Interoperability Software
Artefact has been correctly deployed.

UC04 Search Interoperability Software Artefact /Interoperability Bridge /Re-
source A json document that contains a MongoDB query has been prepared. The
MongoDB database was checked to evaluate all Interoperability Software Artefacts that
would satisfy the query. The query has been executed with pizza artefact search
<query>. Following parameters were used for this experiments:

• <query>: ’{"metadata.inputs.dataformat.dataformat_name":"json"}’

The returned Interoperability Software Artefacts have been checked against the query
and the expected list of Interoperability Software Artefacts.

UC06 Check the Interoperability of a SliceInformation A json document that
contains a SliceInformation that satsifies the model of Figure 4.3 has been prepared. The
SliceInformation has been manually investigated for interoperability problems. The auto-
mated Interoperability Check has been executed with pizza intop check <slice>.
Following parameters were used for this experiments:

• <slice>: 02_dataformat.json

The list of interoperability problems that the prototype returned, has been evaluated
against the manually registered list of interoperability problems.

UC08 Get an Interoperability Recommendation for a SliceInformation A json
document that contains a SliceInformation that satsifies the model of Figure 4.3 has been
prepared. The SliceInformation has been manually investigated for Introperability Prob-
lems and we checked, if the rsiHub databases contain sufficient Interoperability Software
Artefacts/Resources/Interoperability Bridges to solve the interoperability problems of the
SliceInformation. The automated Interoperability Recommendation has been executed
with pizza intop recommendation <slice>. Following parameters were used for
this experiments:

• <slice>: 02_dataformat.json

The list of recommended solutions has been manually investigated and then applied to
the SliceInformation. The updated SliceInformation has been checked for interoperability
problems, both manually and automatically with pizza intop check <slice>.

91

6. Evaluation

6.2.4 Workflow Evaluation

In addition to the experiments that have been conducted, purely focussed on single use
cases and isolated from other use cases, an experiment that is based on an evaluation
workflow has also been conducted. To conduct the complete experiment, a representative
workflow that is based on the Interoperability DevOps workflow diagram has been created.
This evalution workflow is a fixed sequence of steps that have to be performed to deploy
an interoperable slice. Since we defined several techniques to solve interoperability issues,
the workflow is performed for each technique. This experiment that is based on the
evaluation workflow, helps to evaluate the prototype as a whole and the interdependencies
between the previously tested use cases. The evaluation workflow is shown in Figure 6.1.

Construction Phase

Interoperability Phase

Deployment
Phase

construct
SliceInfo

Interoperability
Check

automated
Interoperability

Recommendation

search
Interoperability

Software Artefact

add
Interoperability

Software Artefact
 to SliceInfo

create
 Interoperability

Software Artefact

develop
Artefact

provision
resources

deploy
Interoperability

Software
Artefacts

Technique
A

Technique
B

Technique
C

Interoperable
SliceInformation

Figure 6.1: Evaluation workflow

92

6.2. Functional Evaluation

6.2.5 Evaluation Results and Discussion

Effectiveness, the "accuracy and completeness with which users achieve specified goals",
[ISO10].

The goal of the framework is to increase the Interoperability DevOps efficiency in
dealing with interoperability problems. To achieve that, the interoperability problems
need to be detected. The prototype can detect interoperability problems based on the
Interoperability Metadata and solve them by reusing appropriate Software Artefacts,
Resources and interoperability problems. These tasks can be done automatically, which
is by far quicker than doing it manually. The efficiency goal is therefore achieved by the
prototype. The "accuracy and completeness" of the effectiveness trait is also established
by the prototype’s capability to add new Interoperability Software Artefacts to the
framework, that can then be quickly deployed. The quick deployment of newly created
Interoperability Software Artefacts also leads to a quicker respond time when dealing
with interoperability problems, which subsequently encourages a faster development cycle
for Interoperability Software Artefacts. All those aspects speak for the Effectiveness of
the prototype and framework.

On the other hand, one aspect that hinders the effectiveness of our framework is, that
working with Interoperability Metadata and assigning it correctly requires expertise and
can lead to errors. Especially when creating an Interoperability Software Artefact, this
circumstance hinders the effectiveness of our prototype.

Functional suitability, the "degree to which a product or system provides functions
that meet stated and implied needs when used under specified conditions", [ISO10].

The prototype’s functions of interoperability check and interoperability recommendation
as well as the management, search and deployment capabilities of Interoperability Software
Artefacts and Interoperability Bridges provide a rich set of functions that can be used
for properly dealing with interoperability problems.

A more appropriate way of adding Interoperability Software Artefacts, Interoperability
Bridges and Resources to the SliceInformation is a feature that can improve the func-
tionality of the prototype. Currently, this has to be done by editing the json document
manually. But as this functionality is not entirely part of the Interoperability Framework
alone this was not considered relevant within the scope of this thesis.

Another missing functionality, that was already mentioned in Chapter 4, is the ability to
dynamically monitor problematic elements of a resource slice and access data samples in
case the Interoperability Metadata is incorrect or insufficient. However, as stated before,
this is a complex issue and to implement this functionality would have gone well beyond
the scope of the thesis.

Usability, the "degree to which a product or system can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified context
of use", [ISO10].

93

6. Evaluation

Despite that usability was not a primary goal when developing the prototype, it is of
great importance as the prototype should assist Interoperability DevOps as good as
possible, hence also possess a high degree of usability. Since Interoperability DevOps are
the very target group of the prototype and framework, the availability of a command
line client and REST APIs, that are well-documented using OpenAPI, benefits the
usability of the prototype. The rsiHub CLI can for instance be used in bash scripts, the
REST API can be used by any kind of application that the Interoperability DevOps
developed themselves. The rsiHub CLI’s commands are also documented as expected
from sophisticated command line clients and the commands are straightforward.

However, there is also room for improvement. Especially when detecting interoperability
problems and recommending solutions, but also for viewing and editing a SliceInformation
in general, a graphical representation of the SliceInformation would improve the usability.
In such a graphical representation, the interoperability problems and recommendations
could be viewed directly within the graph. The impact of a problem would then be easier
and faster to comprehend.

Additionally, a feature that would simplify the manual search for interoperability solutions
would be a search function that creates a query based on two Resources, Interoperability
Software Artefacts or Interoperability Bridges that are not interoperable but should be
connected. Currently, this is just possible by using the search capabilities that work with
a MongoDB query document.

94

6.2. Functional Evaluation

Figure 6.2: Screenshot of the Interoperability Service API

Figure 6.3: Screenshot of the Software Artefact Service API

95

6. Evaluation

Figure 6.4: Software artefact commands of pizza.js

Figure 6.5: Screenshot of the interoperability check with pizza.js

96

6.3. Performance Evaluation

Figure 6.6: Screenshot of the interoperability recommendation with pizza.js

6.3 Performance Evaluation

6.3.1 Experiment setup

In addition to the functional evaluation, we conducted a performance test. The goal
was to evaluate the response time of the interoperability check and recommendation
with respect to varying instance sizes. In detail, we scaled our testinstance along two
dimension. The first dimension was the number of nodes that the testinstance contained,
while for the second dimension we scaled up the amount of metadata mismatches per
connection.

Furthermore, besides the two scaling dimensions, we defined two different topologies
that we used for the performance test. The first topology is simply a one-dimensional
chain of directly-connected nodes, were each connection results in an interoperability
problem, later labeled as direct instance. For the second topology we selected an
indirect 1:M scenario, were one source would be in-directly connected to an arbitrary
amount of destination-nodes (via message broker). We label the second instance type
as indirect instance. As for the first test topology, every connection results in an
interoperability problem that needs to be detected and solved. We additionally provided
a mocked software artefact that would, by it’s interoperability metadata values, solve the
interoperability problems.

For testing the performance of our framwork, we then deployed the service stack to a
Docker Swarm with one VM. For this matter, we chose a n1-standard-8 instance from
Google Cloud Platform. The specifications of a n1-standard-8 instance are shown in
Table 6.2

97

6. Evaluation

Property Specification
Name n1-standard-8
Number of vCPUs 8
CPU Platform Intel Xeon E5 v4 (Broadwell E5)
Base Frequency 2.2 GHz
All-Core Turbo Frequency 2.8 GHz
Single-Core Max Turbo Frequency 3.7 GHz
Memory 30 GB

Table 6.2: VM specifications for the performance evaluation

6.3.2 Evaluation Results and Discussion

Figures 6.7 and 6.8 show the response time of the interoperability check, scaling the
number of nodes for fixed amounts of metadata mismatches in Figure 6.7 and vice versa
in Figure 6.8. The same measures are shown for the interoperability recommendation,
in Figure 6.9 for the variable amount of nodes and Figure 6.10 for the variable amount
of mismatches. We performed five iterations of each test, to mitigate the impact of
statistical outliers. In the graphs, the datapoints of the testresults are marked with crosses.
Furthermore we added a trendline that was calculated by the linear approximation. Since
our performance instances are performed for up to 1000 nodes respectively metadata
mismatches, we chose logarithmic scales for our graphs. While the logarithmic scales
are more difficult to interpret than linear graphs, they provide more insight for our
testinstances. Linear scales would render the smaller testinstances invisible in comparison
to the values obtained by the larger instances.

The blue trend lines correspond to the direct instances, the red lines to the indirect
instances. The lighter the trendline, the fewer is the amount of fixed metadata mis-
matches respectively nodes of an instance. Every graph allows for the comparison of
multiple properties. We can compare the performance regarding the testinstance by
looking at the differently coloured trendlines. The performance with respect to the
scaling amount of nodes respectively mismatches is shown in the growth of the trendline.
The influence of the fixed amount of nodes respectively metadata mismatches can be
compared by looking at the colour graduation within one instance category.

We now discuss the results based on the performance graphs. The response times of
the interoperability check are highly satisfactory. Even for the largest instance with
1000 slicecomponents that have 1000 metadata mismatches each, the prototype requires
less than 6 seconds. Indirect checks are more costly than direct checks. At least
within the performance test specification, the response time of the interoperability check
grows linearily with respect to both the number of nodes and the amount of metadata
mismatches.

One surprising observation that was not considered when defining the testinstances is that
the interoperability recommendation performs far better for the indirect testinstances.

98

6.4. Summary

However, when looking at the testinstance, this result is perfectly reasonable. While
the direct instance requires the solution of as many problems as the number of nodes in
the instance, the indirect instance can be solved by simply adding one artefact on the
source side of the 1:N relationship. For up to 100 problematic nodes where each node has
100 metadata mismatches, the interoperability recommendation provides a reasonable
response time. The performance for larger instances could be improved however. As
seen in the results of the indirect instance, it is important to note that the response
time depends on the problematic nodes respectively the number of solutions that are
required to solve the problems. This circumstance relativates the bad performance for
large problem instances and deems the response times of interoperability recommendation
viable for slices with a reasonable amount of problems. However, the performance can
definitely be improved by applying parallel computing techniques.

Nevertheless, the automated interoperability check and recommendation provide response
times that are hard to match when doing the tasks manually. Thus, our framework
reduces the time to detect interoperability problems in resource slices and provides a
viable tool for recommending solutions to those problems.

6.4 Summary
After describing the evaluation environment and providing the functional evaluation
criteria, we presented the experiments that we conducted for the functional evaluation.
The experiments are derived from use cases of Section 3.5. We conducted the use
case experiments both isolated from each other and within an Interoperability DevOps
workflow. Thereafter, we evaluated the effectiveness, functional suitability and usability
of our prototype. The result of the functional evaluation is that our prototype provides
an effective tool for dealing with interoperability problems. While the prototype is
functionally suitable, there is room for improvement in the usability measure.

Additionally, we evaluated the performance of our prototype. We conducted the perfor-
mance evaluation by measuring the prototype’s response times against testinstances. We
defined two different instance types that we scaled on the dimension of "mismatching
metadata elements" and "nodes per slice". The performance results of the interoperability
check are very satisfactory. One area where the interoperability recommendation requires
improvement is when dealing with large testinstances were a lot of solutions need to be
applied. However, if the resource slice contains a reasonable amount of problems, the
interoperability recommendation scored satisfactory results. In conclusion, the frame-
work can reduce the efort of dealing with interoperability problems and therefore it is
considered to be a viable tool for Interoperability DevOps.

99

6. Evaluation

nu
m

be
r o

f n
od

es
 p

er
 s

lic
e

time [ms]

11010
0

10
00

1
10

10
0

10
00

di
re

ct
 in

st
an

ce
: 1

 m
is

m
at

ch

di
re

ct
 in

st
an

ce
: 1

0
m

is
m

at
ch

es

di
re

ct
 in

st
an

ce
: 1

00
 m

is
m

at
ch

es

di
re

ct
 in

st
an

ce
: 1

00
0

m
is

m
at

ch
es

in
di

re
ct

 in
st

an
ce

: 1
 m

is
m

at
ch

es

in
di

re
ct

 in
st

an
ce

: 1
0

m
is

m
at

ch
es

in
di

re
ct

 in
st

an
ce

: 1
00

 m
is

m
at

ch
es

in
di

re
ct

 in
st

an
ce

: 1
00

0
m

is
m

at
ch

es

In
te

ro
pe

ra
bi

lit
y

ch
ec

k
re

sp
on

se
 ti

m
e

(b
y

in
cr

ea
si

ng
 th

e
nu

m
be

r o
f n

od
es

)

Fi
gu

re
6.
7:

In
te
ro
pe

ra
bi
lit
y
ch
ec
k
re
sp
on

se
tim

e
(b
y
in
cr
ea
sin

g
th
e
nu

m
be

r
of

no
de

s)

100

6.4. Summary

nu
m

be
r o

f m
et

ad
at

a
m

is
m

at
ch

es
 p

er
 p

ro
bl

em

time [ms]

0.
111010
0

10
00

1
10

10
0

10
00

di
re

ct
 in

st
an

ce
: 1

 n
od

e

di
re

ct
 in

st
an

ce
: 1

0
no

de
s

di
re

ct
 in

st
an

ce
: 1

00
 n

od
es

di
re

ct
 in

st
an

ce
: 1

00
0

no
de

s

in
di

re
ct

 in
st

an
ce

: 1
 n

od
e

in
di

re
ct

 in
st

an
ce

: 1
0

no
de

s

in
di

re
ct

 in
st

an
ce

: 1
00

 n
od

es

in
di

re
ct

 in
st

an
ce

: 1
00

0
no

de
s

In
te

ro
pe

ra
bi

lit
y

ch
ec

k
re

sp
on

se
 ti

m
e

(b
y

in
cr

ea
si

ng
 th

e
m

et
ad

at
a

m
is

m
at

ch
es

)

Fi
gu

re
6.
8:

In
te
ro
pe

ra
bi
lit
y
ch
ec
k
re
sp
on

se
tim

e
(b
y
in
cr
ea
sin

g
th
e
nu

m
be

r
of

m
et
ad

at
a
m
ism

at
ch
es
)

101

6. Evaluation

nu
m

be
r o

f n
od

es
 p

er
 s

lic
e

time [ms]

11010
0

10
00

10
00

0

10
00

00

10
00

00
0

1
10

10
0

10
00

di
re

ct
 in

st
an

ce
: 1

 m
is

m
at

ch

di
re

ct
 in

st
an

ce
: 1

0
m

is
m

at
ch

es

di
re

ct
 in

st
an

ce
: 1

00
 m

is
m

at
ch

es

di
re

ct
 in

st
an

ce
: 1

00
0

m
is

m
at

ch
es

in
di

re
ct

 in
st

an
ce

: 1
 m

is
m

at
ch

es

in
di

re
ct

 in
st

an
ce

: 1
0

m
is

m
at

ch
es

in
di

re
ct

 in
st

an
ce

: 1
00

 m
is

m
at

ch
es

in
di

re
ct

 in
st

an
ce

: 1
00

0
m

is
m

at
ch

es

In
te

ro
pe

ra
bi

lit
y

re
co

m
m

en
da

tio
n

re
sp

on
se

 ti
m

e
(b

y
in

cr
ea

si
ng

 th
e

nu
m

be
r o

f n
od

es
)

Fi
gu

re
6.
9:

In
te
ro
pe

ra
bi
lit
y
re
co
m
m
en

da
tio

n
re
sp
on

se
tim

e
(b
y
in
cr
ea
sin

g
th
e
nu

m
be

r
of

no
de

s)

102

6.4. Summary

nu
m

be
r o

f m
et

ad
at

a
m

is
m

at
ch

es
 p

er
 p

ro
bl

em

time [ms]

11010
0

10
00

10
00

0

10
00

00

10
00

00
0

1
10

10
0

10
00

di
re

ct
 in

st
an

ce
: 1

 n
od

e

di
re

ct
 in

st
an

ce
: 1

0
no

de
s

di
re

ct
 in

st
an

ce
: 1

00
 n

od
es

di
re

ct
 in

st
an

ce
: 1

00
0

no
de

s

in
di

re
ct

 in
st

an
ce

: 1
 n

od
e

in
di

re
ct

 in
st

an
ce

: 1
0

no
de

s

in
di

re
ct

 in
st

an
ce

: 1
00

 n
od

es

in
di

re
ct

 in
st

an
ce

: 1
00

0
no

de
s

In
te

ro
pe

ra
bi

lit
y

re
co

m
m

en
da

tio
n

re
sp

on
se

 ti
m

e
(b

y
in

cr
ea

si
ng

 th
e

m
et

ad
at

a
m

is
m

at
ch

es
)

Fi
gu

re
6.
10

:
In
te
ro
pe

ra
bi
lit
y
re
co
m
m
en

da
tio

n
re
sp
on

se
tim

e
(b
y
in
cr
ea
sin

g
th
e
nu

m
be

r
of

m
et
ad

at
a
m
ism

at
ch
es
)

103

CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

This thesis proposes an interoperability framework, which aims to detect and solve inter-
operability problems by reusing software components through interoperability metadata
descriptions. The framework has been implemented and evaluated with a proof-of-concept
prototype. We started the elicitiation of the framework’s necessity by introducing the
basic problem statement. After providing important background information, we found
that currently only little to non related work exists on on-demand interoperability solu-
tions. To get an improved understanding of the problem statement, we introduced an
motivating application domain from which we derived several scenarios and subsequently
use cases that were later utilised to implement the prototype.

As interoperability is a complex property that can easily be underestimated on first sight,
we provided a thorough investigation on interoperability. In doing that, we started with
discussing the Levels of Conceptual Interoperability Model and provided problematic
interoperability examples in the scenario section. The interoperability study continued
by discussing the term of on-demand interoperability and it’s characteristics. Thereafter,
we defined additional interoperability layers that we deem important for on-demand IoT
cloud systems.

As we realised interoperability problems can not be solved entirely with the automated
means of our approach, we defined and called for Interoperability DevOps to establish
on-demand interoperability. We further defined the Interoperability DevOps based on
their workflow and the most important tasks that it is built from. Based on the intop
devop tasks, we envisioned a interoperability framework that assists the Interoperability
DevOps with establishing on-demand interoperability, by decreasing the time effort that
is required to perform the Interoperability DevOps’ tasks.

105

7. Conclusion and Future Work

The central point of the framework is to reuse interoperability components and resources
of IoT cloud systems by describing their interoperability capabilities with interoperability
metadata. The architecture of the framework, which depends on a resource provisioning
service, as well as the interoperability metadata models have been described. Additionally,
we defined important entities of our framework that are needed to solve interoperability
problem, named interoperability software artefacts and interoperability bridges.

We utilise the interoperability metadata to analyse resource slices that represent IoT
cloud systems, in order to detect interoperability problems with algorithmic measures.
This functionality of our framework is called interoperability check. Based on the results
of the interoperability check, we try to solve the interoperability problems by adding
appropriate interoperability software artefacts, interoperability bridges and resources
to the SliceInformations. This functionality is called interoperability recommendation.
If the interoperability recommendation, an automated solution technique, is not able
to solve the problem, the Interoperability DevOps can also solve the problem through
searching for solutions manually or by creating new interoperbility software artefacts and
interoperability bridges.

The framework has been implemented as a proof-of-concept prototype. The prototype
is built on top of and contributes to the rsiHub framework, which offers services for
provisioning IoT cloud systems based on resource slices. The prototype was built with
the use cases defined in Chapter 3, in an test-driven development approach, totaling 73
automated testcases that were developed in the process. These testcases were especially
valuable when dealing with the complexity of SliceInformations with respect to the
interoperability check and recommendation. To simplify the configuration of the prototype
and all of the resource providers that are necessary to run a specific scenario, a scenario
generator has also been implemented that creates a fully configured docker stack file,
since every prototype service is available as docker image.

We then evaluated the prototype’s functionality against the ISO/IEC 25010:2011 quality
properties of efficiency, functional suitability and usability. While the prototype offers
Interoperability DevOps an efficient, foundamental set of functions, there is still room for
improvement in the usability dimension. An additional functionality that would improve
the prototype would be the ability to monitor components of resource slices that are not
interoperable, however, this functionality would have exceeded the scope of this thesis.
The performance of the prototype has also been evaluated, showing that the framework is
capable of providing quick interoperability checks, even for large resource slices. When the
problems can be solved with a reasonable amount of interoperability software artefacts,
interoperability bridges or resources, the recommendation is also a viable tool. The
response times of both interoperability check and recommendation suggest that the
performance can hardly be matched with purely manual techniques. Thus, the framework
reduces the time and effort required to detect and solve interoperability problems.

106

7.2. Future Work

7.2 Future Work
As already stated above, one highly interesting feature that would add great value to the
prototype, would be to provide additional data monitoring capabilities. Interoperability
DevOps would then be able to easily access the data of non interoperable components.
This would benefit the development process of interoperability software artefacts and in
turn enhance the efficiency of our prototype. An additional feature that would increase
the usability of our prototype is a graphical UI. This would provide a better overview
of the SliceInformation graph and the interoperability problems that are within the
SliceInformation. Furthermore, devops could recognise the context and impact of the
problem faster, which would in turn facilitate solving the problem manually. Aside
from improving the performance of the interoperability recommendation by thoughtfully
applying parallel computing techniques, another future improvement would be to add
an algorithm that is capable of recommending interoperable resource chains. Due to
the complexity of such an algorithm, this feature was no within the scope of the thesis.
Finally, one interesting topic would be to add a feedback loop to the interoperability check
and recommendation algorithm that would provide information if a recommendation was
actually successful or not. This information could be used to create a statistical model for
the interoperability metadata, check and recommendation. Subsequently, the quality of
checks, recommendations and the interoperability metadata catalogue could be improved.
Nevertheless, such a feedback loop requires a broad application of the framework in order
to gather valuable feedback information.

107

Bibliography

[AOK+15] Muhammad Intizar Ali, Naomi Ono, Mahedi Kaysar, Keith Griffin, and
Alessandra Mileo. A Semantic Processing Framework for IoT-Enabled Com-
munication Systems. In The Semantic Web - ISWC 2015, Lecture Notes in
Computer Science, pages 241–258. Springer, Cham, October 2015.

[BFB+11] Prith Banerjee, Richard Friedrich, Cullen Bash, Patrick Goldsack, Bernardo A.
Huberman, John Manley, Chandrakant Patel, Parthasarathy Ranganathan,
and Alistair Veitch. Everything as a Service: Powering the New Information
Economy. Computer, 44(3):36–43, 2011.

[BT17] F. B. Balint and H. L. Truong. On Supporting Contract-Aware IoT Datas-
pace Services. In 2017 5th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud), pages 117–124, April
2017.

[Cha18] JPMorgan Chase. AMQP specification. page 113, 2018. docs.oasis-open.org,
2018. [Online]. Available: http://docs.oasis-open.org/amqp/core/v1.0/amqp-
core-complete-v1.0.pdf. [Accessed: 10- Dec- 2018].

[Clo18] CloudAMQP. CloudAMQP - RabbitMQ as a Service, 2018. cloudamqp.com,
2018. [Online]. Available: https://www.cloudamqp.com/. [Accessed: 10- Dec-
2018].

[CoA18] CoAP. The Constrained Application Protocol (CoAP), 2018. tools.ietf.org,
2018. [Online]. Available: https://tools.ietf.org/html/rfc7252 . [Accessed: 10-
Dec- 2018].

[DED17] H. Derhamy, J. Eliasson, and J. Delsing. IoT Interoperability #x2014;On-
Demand and Low Latency Transparent Multiprotocol Translator. IEEE
Internet of Things Journal, 4(5):1754–1763, October 2017.

[DFZ+15] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C.
Narendra, and Bo Hu. Everything as a Service (XaaS) on the Cloud: Origins,
Current and Future Trends. In Cloud Computing (CLOUD), 2015 IEEE 8th
International Conference on, pages 621–628. IEEE, 2015.

109

[FR18] Roy Fielding and Julian Reschke. Hypertext Transfer Proto-
col (HTTP/1.1), 2018. tools.ietf.org, 2018. [Online]. Available:
https://tools.ietf.org/html/rfc7230 . [Accessed: 10- Dec- 2018].

[FSP+18] Giancarlo Fortino, Claudio Savaglio, Carlos E. Palau, Jara Suarez de Puga,
Maria Ganzha, Marcin Paprzycki, Miguel Montesinos, Antonio Liotta, and
Miguel Llop. Towards Multi-layer Interoperability of Heterogeneous IoT
Platforms: The INTER-IoT Approach. In Raffaele Gravina, Carlos E. Palau,
Marco Manso, Antonio Liotta, and Giancarlo Fortino, editors, Integration,
Interconnection, and Interoperability of IoT Systems, Internet of Things, pages
199–232. Springer International Publishing, Cham, 2018.

[Gao18] Lingfan Gao. On Provisioning and Configuring Ensembles of IoT, Network
Functions and Cloud Resources. Wien, Wien, 2018.

[GGH+15] V. Gazis, M. Görtz, M. Huber, A. Leonardi, K. Mathioudakis, A. Wiesmaier,
F. Zeiger, and E. Vasilomanolakis. A survey of technologies for the inter-
net of things. In 2015 International Wireless Communications and Mobile
Computing Conference (IWCMC), pages 1090–1095, August 2015.

[Goo18a] Google. Google Cloud platform, 2018. cloud.google.com, 2018. [Online].
Available: https://cloud.google.com/. [Accessed: 10- Dec- 2018].

[Goo18b] Google. Google Sheets: Free Online Spreadsheets for Personal Use, 2018.
google.com, 2018. [Online]. Available: https://www.google.com/sheets/about/.
[Accessed: 12- Dec- 2018].

[GPS16] Paul Grace, Brian Pickering, and Mike Surridge. Model-driven interoperabil-
ity: engineering heterogeneous IoT systems. Annals of Telecommunications,
71(3-4):141–150, April 2016.

[GS16] Amelie Gyrard and Martin Serrano. Connected Smart Cities: Interoperability
with SEG 3.0 for the Internet of Things. pages 796–802. IEEE, March 2016.

[II18a] INTER-IoT. INTER-IoT - Interoperability Internet of Things, 2018. inter-iot-
project.eu, 2018. [Online]. Available: https://http://www.inter-iot-project.eu/.
[Accessed: 04- Dec- 2018].

[II18b] INTER-IoT. Inter-iot eu project open calls, 2018. inter-iot-project.eu, 2018.
[Online]. Available: http://www.inter-iot-project.eu/open-call . [Accessed: 04-
Dec- 2018].

[IoT18a] IoTivity. Architecture Overview | IoTivity, 2018. iotivity.org, 2018. [On-
line]. Available: https://iotivity.org/documentation/architecture-overview.
[Accessed: 04- Dec- 2018].

110

[IoT18b] IoTivity. Iotivity | an open source software framework enabling seamless
device-to-device connectivity to address the emerging needs of the internet
of things., 2018. iotivity.org, 2018. [Online]. Available: https://iotivity.org/ .
[Accessed: 04- Dec- 2018].

[ISO10] ISO/IEC. Iso/iec 25010 system and software quality models. Technical report,
2010.

[JAK+16] Michael Jacoby, Aleksandar Antonić, Karl Kreiner, Roman Łapacz, and
Jasmin Pielorz. Semantic Interoperability as Key to IoT Platform Federation.
In Interoperability and Open-Source Solutions for the Internet of Things,
Lecture Notes in Computer Science, pages 3–19. Springer, Cham, November
2016.

[LNT16] Duc-Hung Le, Nanjangud Narendra, and Hong-Linh Truong. HINC-
harmonizing diverse resource information across iot, network functions, and
clouds. In Future Internet of Things and Cloud (FiCloud), 2016 IEEE 4th
International Conference on, pages 317–324. IEEE, 2016.

[LW14] Gang Li and Mingchuan Wei. Everything-as-a-service platform for on-demand
virtual enterprises. Information Systems Frontiers, 16(3):435–452, 2014.

[MCB+15] James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard
Dobbs, Jacques Bughin, and Dan Aharon. Unlocking the potential of the
Internet of Things | McKinsey & Company, 2015.

[Mil15] Milan Milenkovic. A case for interoperable iot sensor data and meta-data
formats: The internet of things (ubiquity symposium). Ubiquity, 2015(Novem-
ber):2, 2015.

[Mon18] MongoDB. Mongodb | open Source Document Database, 2018. mongodb.com,
2018. [Online]. Available: https://www.mongodb.com/index . [Accessed: 10-
Dec- 2018].

[MQT18] MQTT. MQTT Version 3.1.1, 2018. docs.oasis-open.org, 2018. [Online].
Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-
v3.1.1-errata01-os-complete.html . [Accessed: 10- Dec- 2018].

[Nod18] Node.js. Node.js | a javascript runtime built on chrome’s v8 javascript engine.,
2018. nodejs.org, 2018. [Online]. Available: https://nodejs.org/en/. [Accessed:
10- Dec- 2018].

[NR18] Node-RED. Node-RED, 2018. nodered.org, 2018. [Online]. Available:
https://nodered.org/. [Accessed: 10- Dec- 2018].

[OCF18] OCF. OCF - oneIoTa Data Model Tool, 2018. openconnectivity.org, 2018. [On-
line]. Available: https://openconnectivity.org/developer/oneiota-data-model-
tool . [Accessed: 11- Dec- 2018].

111

[ODO18] ODO. interoperability | Definition of interoperability in
English by Oxford Dictionaries, 2018. [Online]. Available:
https://en.oxforddictionaries.com/definition/interoperability . [Accessed: 04-
Dec- 2018].

[Ope18] OpenAPI. Openapi | openapi initiative, 2018. openapis.org, 2018. [Online].
Available: https://www.openapis.org/ . [Accessed: 10- Dec- 2018].

[Ora18] Oracle. Java Software | Oracle, 2018. oracle.com, 2018. [Online]. Available:
https://www.oracle.com/java/. [Accessed: 11- Dec- 2018].

[Pos18] Pos. IoT Standards & Protocols Guide | 2018 Comparisons on Network,
Wireless Comms, Security, Industrial, 2018. Postscapes.com, 2018. [Online].
Available: https://www.postscapes.com/internet-of-things-protocols/. [Ac-
cessed: 04- Dec- 2018].

[SBK+17] Stefan Schmid, Arne Bröring, Denis Kramer, Sebastian Käbisch, Achille
Zappa, Martin Lorenz, Yong Wang, Andreas Rausch, and Luca Gioppo. An
Architecture for Interoperable IoT Ecosystems. In Ivana Podnar Žarko, Arne
Broering, Sergios Soursos, and Martin Serrano, editors, Interoperability and
Open-Source Solutions for the Internet of Things, volume 10218, pages 39–55.
Springer International Publishing, Cham, 2017. DOI: 10.1007/978-3-319-
56877-5_3.

[Spr18] Spring. spring.io | spring: the source for modern java, 2018. spring.io, 2018.
[Online]. Available: https://spring.io/. [Accessed: 10- Dec- 2018].

[STO18] STOMP. Stomp specification, 2018. stomp.github.io, 2018. [Online]. Available:
http://stomp.github.io/stomp-specification-1.2.html . [Accessed: 10- Dec-
2018].

[Swa18] Swagger.io. OpenAPI Specification | Swagger, 2018. swagger.io, 2018. [Online].
Available: https://swagger.io/specification/. [Accessed: 10- Dec- 2018].

[TD15] H. L. Truong and S. Dustdar. Principles for Engineering IoT Cloud Systems.
IEEE Cloud Computing, 2(2):68–76, March 2015.

[TGC+11] H. L. Truong, G. R. Gangadharan, M. Comerio, S. Dustdar, and F. De
Paoli. On Analyzing and Developing Data Contracts in Cloud-Based Data
Marketplaces. In 2011 IEEE Asia-Pacific Services Computing Conference,
pages 174–181, December 2011.

[TGH18] Hong-Linh Truong, Lingfan Gao, and Michael Hammerer. Service Architec-
tures and Dynamic Solutions for Interoperability of IoT, Network Functions
and Cloud Resources. July 2018.

112

[TN16] Hong-Linh Truong and Nanjangud Narendra. SINC-An Information-Centric
Approach for End-to-End IoT Cloud Resource Provisioning. In Cloud Com-
puting Research and Innovations (ICCCRI), 2016 International Conference
on, pages 17–24. IEEE, 2016.

[Tru18] Hong-Linh Truong. Towards a Resource Slice Interoperability Hub for IoT.
In 3rd edition of Globe-IoT 2018: Towards Global Interoperability among IoT
Systems, IEEE, 2018. Orlando, Florida, USA, April 17-20, 2018., 2018. To
appear.

[WTW09] Wenguang Wang, Andreas Tolk, and Weiping Wang. The Levels of Conceptual
Interoperability Model: Applying Systems Engineering Principles to M&S.
In Proceedings of the 2009 Spring Simulation Multiconference, SpringSim
’09, pages 168:1–168:9, San Diego, CA, USA, 2009. Society for Computer
Simulation International.

[Yar18] Yargs. yargs | yargs the modern, pirate-themed, successor to optimist., 2018.
npmjs.com, 2018. [Online]. Available: https://www.npmjs.com/package/yargs
. [Accessed: 10- Dec- 2018].

113

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivation Scenario and Research Questions
	Research questions
	Contributions
	Outline

	State of the Art
	Overview
	IoT cloud systems
	IoT Interoperability
	Interoperability in existing IoT Frameworks
	Related Work
	Summary

	Motivation Scenarios and Use Cases
	Overview
	Application-domain: INTER-IoT Seaport
	First Scenario: Upload Camera Footage
	Modular Interoperability Scenarios
	Use Cases
	Summary

	Interoperability Framework
	Overview
	On-demand Interoperability
	Additional Interoperability Factors
	Interoperability DevOps
	Architecture and Models
	Detecting Problems - Interoperability Check
	Interoperability Recommendation
	Discussion and Extensibility
	Summary

	Prototype
	Overview
	Prototype Architecture and the rsiHub Framework
	Test-driven Development
	Summary

	Evaluation
	Overview
	Functional Evaluation
	Performance Evaluation
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

