
Mehr Parallelismus in
Single-Source Shortest Path

Algorithmen
Simulation und Implementierung

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Michael Kainer, BSc
Matrikelnummer e01325106

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Jesper Larsson Träff, MSc PhD

Wien, 1. Dezember 2018
Michael Kainer Jesper Larsson Träff

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

More Parallelism in Single-Source
Shortest Path Algorithms

Simulation and Implementation

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Michael Kainer, BSc
Registration Number e01325106

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Jesper Larsson Träff, MSc PhD

Vienna, 1st December, 2018
Michael Kainer Jesper Larsson Träff

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michael Kainer, BSc
Dr. Heinrich Bachstraße 39
2442 Unterwaltersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2018
Michael Kainer

v

Acknowledgements

I want to start by thanking my family, who was always supportive and provided the
support that made it possible for me to pursue my studies in a hassle-free environment.
Without their support, this chapter in my life would only have been half as fun as it
turned out to be.

Prof. Träff not only made this thesis possible, but was also very supportive through the
whole process of creating this thesis. We had interesting discussions, whiteboard sessions,
and a fruitful exchange of knowledge. He also provided me with valuable feedback to
improve this thesis and bring it into the form it is today. Of course, this thesis would not
have been possible if Prof. Träff and his team did not organize their amazing courses
on parallel computing that started my fascination with this topic. Many thanks to
Prof. Träff and his team for all of that.

Furthermore, I want to thank all my friends and colleagues at TU Vienna. They form
the basis of a nice environment to study in, which in my opinion is the most important
factor for a successful and fulfilling academic adventure.

vii

Kurzfassung

Das Single-Source Shortest Path Problem (kürzester Pfad von einem Startpunkt aus)
ist eines der am häufigsten untersuchten Probleme in der Informatik. Allerdings ist das
Problem dafür bekannt enorm schwierig parallelisierbar zu sein. Dies liegt vor allem an
dem sogenannten Transitive Closure Bottleneck.

1998 wurde ein Algorithmus namens Δ-Stepping vorgeschlagen um das Single-Source
Shortest Path Problem zu parallelisieren. Dieser Algorithmus hat als Basis für eine Reihe
von zusätzlicher Forschung im Bereich solcher Algorithmen gedient und zählt heute als
der Standardalgorithmus zum Parallelisieren des Single-Source Shortest Path Problems.

Eine weitere Idee das Single-Source Shortest Path Problem zu parallelisieren wurde von
Crauser et al., ebenfalls 1998, publiziert. Diese Idee hat allerdings nie viel Aufmerksamkeit
erlangt und ist aus heutiger Sicht nicht mehr sehr bekannt.

Das Ziel dieser Arbeit ist es zu evaluieren ob diese Idee eine mögliche Alternative für
Δ-Stepping darstellt. Des Weiteren werden verschiedene Möglichkeiten betrachtet diesen
Lösungsansatz zu erweitern.

Um diese Ziele zu erreichen werden zuerst die Algorithmen eingeführt, danach werden sie
als korrekt bewiesen und letztendlich implementiert. Jeder Algorithmus wird zweimal
implementiert: Eine Implementierung dient zum Analysieren der Anzahl an Phasen die
benötigt werden um das Single-Source Shortest Path Problem zu lösen. Diese Anzahl
an Phasen stellt eine wichtige Kennzahl dar um die Qualität solcher Algorithmen zu
beurteilen. Die zweite Implementierung dient zur Performancemessung auf den Systemen
der Forschungsgruppe.

Die Analyse der Phasenanzahl hat ergeben, dass die vorgeschlagenen Erweiterungen der
original Formulierung des Algorithmus die Anzahl an Phasen um einiges reduziert und
daher zu einer theoretischen Verbesserung des Algorithmus führt. Leider konnte keine
effiziente Implementierung dieser Verbesserungen gefunden werden und daher konnte diese
theoretische Verbesserung nicht in die Praxis umgesetzt werden. Nichtsdestotrotz hat
sich herausgestellt, dass der original Algorithmus von Crauser et al. eine ausgezeichnete
Performance im Vergleich zu Δ-Stepping aufweist und daher als Alternative dazu gesehen
werden kann.

ix

Abstract

The single-source shortest path problem is one of the most studied problems in computer
science. Nevertheless, it is infamous for being notoriously hard to parallelize due to the
so-called transitive closure bottleneck.

In 1998 an algorithm called Δ-stepping was proposed to parallelize the single-source
shortest path problem. This algorithm formed the basis for further research in even more
optimized algorithms, and eventually became to be the de-facto standard in parallelizing
the single-source shortest path problem.

A second idea by Crauser et al. to parallelize the single-source shortest path problem
was published in 1998. This idea did not get a lot of attention, and seems to have been
forgotten.

The goal of this thesis is to evaluate the viability and performance of Crauser et al.’s
approach in comparison to Δ-stepping. Furthermore, several ideas to improve or change
this approach are evaluated.

In order to do this, these algorithms are first introduced, then proven correct, and finally
implemented. There are two implementations of each algorithm. One implementation is
to analyze the number of phases each algorithm needs to solve the single-source shortest
path problem, a key metric in assessing the quality of such algorithms. The second
implementation is optimized to measure the performance on the systems provided by the
research group.

The phase analysis shows that the improvements to Crauser et al.’s original formulation
of their algorithm reduce the number of phases by a large margin, therefore leading
to a theoretical gain. Unfortunately, no efficient implementation was found for these
improvements, and therefore they cannot enhance real-world performance. Nevertheless,
Crauser et al.’s original algorithm performs very well and is competitive to Δ-stepping.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Mathematical Preliminaries . 3
1.2 Related Problems . 5

2 Related Work 7
2.1 Label Setting Algorithms . 7
2.2 Label Correcting Algorithms . 9
2.3 Other Algorithms . 11

3 Algorithms 13
3.1 Dijkstra’s Algorithm . 13

3.1.1 Proof of Correctness . 15
3.2 Algorithm Scheme . 17
3.3 Motivation & Discussion . 18
3.4 Implied Criteria . 20
3.5 Combining Criteria . 20
3.6 Oracle . 21
3.7 Crauser’s Criteria . 22

3.7.1 Crauser’s In Criteria . 22
3.7.2 Crauser’s Out Criteria . 24

3.8 Heuristic . 26
3.9 Träff’s Bridge Criteria . 27

4 Simulation 31
4.1 Methodology . 32

4.1.1 Input Graphs . 32
4.1.2 Implemented Criteria . 41
4.1.3 Statistical Methods . 41

xiii

4.2 Results . 44

5 Implementation 51
5.1 Preliminaries . 52

5.1.1 Memory Model . 52
5.1.2 Inbox/Relaxed Vector . 53
5.1.3 Collective Operations . 55
5.1.4 Non-Collective Operations . 58

5.2 Decision Procedures . 59
5.2.1 Dijkstra’s Algorithm . 60
5.2.2 Crauser’s Out Criteria . 61
5.2.3 Crauser’s In Criteria . 62
5.2.4 Heuristic . 62
5.2.5 Träff’s Bridge Criteria . 62

5.3 Graph Representation . 63
5.3.1 Graph Generation . 64
5.3.2 Additional Node Information 65

5.4 Parallelization . 66
5.5 Δ-Stepping . 69
5.6 Complexity . 72
5.7 Benchmark . 74

6 Conclusion and Further Research 87

Bibliography 89

CHAPTER 1
Introduction

The single-source shortest path problem aims to answer the following question about
weighted graphs: Given a distinguished starting node, what is the path with the least
cost to all other nodes in the graph? Intuitively, the user wants to move from a starting
location to a destination location in the shortest amount of time. Single-source shortest
path algorithms calculate the path the user should take.

The single-source shortest path problem is one of the most famous and most studied
problems in computer science. Not only in theory, but also in practice, this problem
is of high relevance. Obvious applications include routing problems, which are not
only limited to route planning on road maps, but are also relevant in circuits, e.g.,
to find critical signal paths [8], or in video games, e.g., to control the movement of
game pieces. Furthermore, the single-source shortest path problem is often required in
order to solve more complex problems, and can therefore be considered a fundamental
building block in algorithm design. Examples include the all-pairs shortest path problem,
approximation algorithms, or scheduling problems. Ahuja et al. [3, Chapter 4.4] offer
an exhaustive description of many more applications of the single-source shortest path
problem. Sometimes, the single-source shortest path problem crops up in completely
unexpected places. A nice example of such an occurrence is the C++ pretty-printer
clang-format, which uses Dijkstra’s algorithm [26, Problem 2] to find the visually most
pleasing way to break overlong lines [40].

In a sequential setting the single-source shortest path problem is well understood, and
there are multiple algorithms to solve this problem efficiently. Some of these algorithms
are going to be discussed in detail in the next chapter, and some of these algorithms
serve as basis for parallel implementations. For a more detailed overview of these basic
algorithms one can reference to Introduction to Algorithms [18, Chapter 24] or the
study of Cherkassky et al. [15]. Zwick’s survey [70] additionally contains an overview of
problems closely related to the single-source shortest path problem, and algorithms to
solve them.

1

1. Introduction

Parallelization in the context of this thesis is restricted to parallelization on CPUs in a
shared-memory system. The concrete systems used for benchmarking will be described
in Section 5.7. Parallelization utilizing distributed memory systems or parallelization
with the help of accelerators, especially GPUs, is not considered in this thesis. Since the
benchmark is implemented using C++, the C++ memory-model has to be used. Chapter 5
gives a brief overview of this memory-model and how it has to be used to ensure correct
semantics of the implementation, and how it can be used to enhance the efficiency of
the implementation. The theoretical sections of this thesis assume the usual comparison
based model of computation.

Unfortunately, the single-source shortest path problem is very hard to parallelize, in the
sense that there is no both time-efficient and work-efficient parallel algorithm to solve
the problem for general graphs. The reason for this is the so-called transitive closure
bottleneck [41]. Intuitively, one can explain the difficulties with parallelizing this problem
by considering a graph that contains a long sequential chain. While processing this
chain only one processor can perform meaningful work, namely the processor that is
looking at the single node at the frontier. This problem can be reduced to a problem
called list-ranking. Although list-ranking by itself is perfectly parallelizable [17], such
techniques have not been applied to the single-source shortest path problem because in
order to apply list-ranking one would have to know in advance that there is such a list in
the graph, and it does not seem to be possible to detect this efficiently.

The basis of this thesis is Crauser et al.’s paper „A Parallelization of Dijkstra’s Shortest
Path Algorithm“ [20], which proposes a simple idea to parallelize Dijkstra’s algorithm.
The goal of this thesis is threefold: First, the ideas of Crauser et at. are being refined
and explored by trying some simple and new ideas. Second, an empirical analysis of
Crauser et al.’s original algorithms and of the new ideas is performed. Third, a benchmark
of a shared-memory implementation to evaluate the performance of these algorithms
compared to a state-of-the-art algorithm is performed. Note that Crauser et al.’s approach
is limited by the transitive closure bottleneck as well, and can therefore not lead to a time-
efficient and work-efficient parallel algorithm. The same holds true for the refinements
made in this thesis. Nevertheless, this restriction only becomes relevant in a worst-
case scenario. If one considers the average case, Crauser et al.’s approach leads to a
high performance and is simple to implement, as is shown in Chapter 5. Although the
algorithm does not improve the situation in a worst-case analysis, it is still valuable in a
practical setting.

The remainder of this thesis is structured as follows:

• The remaining sections of this chapter introduce the fundamental concepts required
thorough the remainder of this thesis. It contains the mathematical preliminaries
required for the thesis and formally introduces the single-source shortest path
problem. Furthermore, related problems are introduced as well.

• Chapter 2 gives an overview of the research that has been done in this field. It

2

1.1. Mathematical Preliminaries

contains an overview of the state-of-the art of the parallel single-source shortest
path problem, and an overview of the previous research in this field.

• Chapter 3 explains the ideas and motivation behind the algorithms. It formally
introduces the algorithm by Crauser et al. and the new variations thereof. Further-
more, this chapter proves them correct.

• After having defined the algorithms, they will be analyzed empirically to find the
potential for parallelism under the assumption that there is an infinite amount
of processors available. Chapter 4 discusses the merits and weaknesses of this
empirical analysis, the methodology, and finally the results thereof.

• Lastly, a benchmark is performed to check if the theoretical performance can be
achieved in real implementations as well. Chapter 5 describes how the algorithms
presented can be implemented efficiently, and concludes with the methodology and
results of the benchmark.

1.1 Mathematical Preliminaries

This section aims to give an exact definition of the single-source shortest path problem
and all other mathematical tools required in this thesis. To define the single-source
shortest path problem, graphs, as used in this thesis, need to be defined first.

Definition 1.1 (Directed Graph). A directed graph G = 〈V,E〉 consists of a finite set
of nodes V that are unidirectionally connected via some edges E ⊆ V × V . Each edge
〈v, v′〉 ∈ E is defined by an originating node v ∈ V , called the source, and a target
node v′ ∈ V , called the destination.

Definition 1.2 (Weighted Directed Graph). A weighted directed graph additionally
defines a function cost(v, v′) : V ×V → R≥0∪{∞} that maps each edge to a non-negative
real number, which is called the cost, or weight, of the edge. If the edge 〈v, v′〉 does not
exist, the function assumes the value ∞.

Definition 1.3 (Outgoing Edges, Incoming Edges). For each node v ∈ V outgoing(v) ⊆
E is the set of all edges such that 〈v, v′〉 ∈ E, i.e., all edges that originate at v. Conversely,
let incoming(v) ⊆ E be the set of all edges such that 〈v′, v〉 ∈ E, i.e., all edges whose
destination is v.

This definition of weighted graphs limits the costs to be non-negative on purpose. Without
this limitation, the single-source shortest path problem gets more difficult, as will be
briefly discussed in Section 1.2. Due to this increased difficulty most algorithms to solve
the problem with non-negative edge weights are not applicable anymore, and therefore
graphs with negative edge weights will not be covered in this thesis.

3

1. Introduction

Definition 1.4 (Path, Cost, Shortest Path, Distance). A path between two nodes v
and v′ is a sequence of edges [e1, ..., en] in a graph such that the source of e1 is v, the
source of ei is the destination of ei−1 for i > 1, and the destination of en is v′.

The cost of a path is the sum of the costs of all edges in the path.

A shortest path between v and v′ is a path between them with the smallest cost.

The cost of a shortest path is called distance between the two nodes, and is designated as
dist(v, v′). If there is no path between v and v′, the distance is ∞.

Note that the shortest path between two nodes is not necessarily unique, although for
the purposes of this thesis this fact does not matter. Whenever „the shortest path“ is
mentioned, any of the possible shortest paths can be chosen.

Definition 1.5 (Single-Source Shortest Path Problem). Given a designated source node
s ∈ V in a weighted, directed graph, what is the distance dist(s, v) for each v ∈ V ?

For simplicity, in the context of the single-source shortest path problem let dist(v) =
dist(s, v), i.e., dist(v) designates the distance from the starting node s to v. This definition
of the single-source shortest path problem is only concerned with the distances to all
nodes. The following section gives an overview of related problems.

Definition 1.6 (Shortest Path Tree). The shortest path tree is a tree rooted at the
designated source node s that contains all reachable nodes. Furthermore, each path from s
to any other node in the tree corresponds to a shortest path from s to the other node in
the original graph.

Since shortest paths are not necessarily unique, the shortest path three is not unique as
well. All algorithms analyzed in this thesis can be easily extended to generate a shortest
path tree without additional work. Nevertheless, there are algorithms where this is not
possible without additional work, as will be seen in Section 2.3.

The term ∞ was already used multiple times without explicitly defining its semantics.
For purposes of this theses, semantics similar to IEEE 754 floating point numbers are
assumed, i.e., let −∞ < r <∞ for all real numbers r and use the „intuitive“ meaning
for mathematical operations: r +∞ = ∞, r − ∞ = −∞, r · ∞ = ∞ and r/∞ = 0.
Furthermore, let min∅(·) =∞ and max∅(·) = −∞. This simplifies a lot of the definitions
later on because these definitions remove almost all corner cases regarding to nonexistent
edges or empty sets.

Furthermore, this thesis utilizes the probability distributions as summarized in Table 1.1.
E(x) denotes the expected value of the random variable x.

For performance analysis the usual Big-O notation O(·) is used:

f(x) = O(g(x))⇐⇒ ∃c > 0 ∃n0 > 0 ∀n > n0 : f(n) ≤ c · g(n)

4

1.2. Related Problems

A(p) Bernoulli distribution with a success chance of p
B(n, p) Binomial distribution with n experiments with a success chance of p
P(λ) Poisson distribution with the rate λ
PB(A) Poisson binomial distribution with the vector of success chances A
U(a, b) Continuous uniform distribution for the domain [a, b]

Table 1.1: Summary of the probability distributions used in this thesis.

While this definition is only for functions in a single variable, it is usually „intuitively“
extended to functions in multiple variables. It turns out that doing so mathematically
rigorously is non-trivial, but luckily works out fine for the use-case of algorithm analysis.
Details about this topic can be found in Howell’s technical report about asymptotic
notation with multiple variables [37].

1.2 Related Problems
There are several problems that are closely related to the single-source shortest path
problem. Even though they will not be covered in this thesis, this overview gives an
impression of how large this field of research is, and might be helpful in branching out to
find inspirations on how to solve the single-source shortest path problem more efficiently.

An immediate generalization of the single-source shortest path problem as defined in
this thesis is to allow negative edge costs. This small variation makes the problem
NP-complete [33, ND29: Comment] and is not covered by most algorithms, with the
notable exception of the Bellman-Ford algorithm: This algorithm continues to work
normally as long as there is no negative-weight cycle in the graph. If there is such a cycle
in the graph, the algorithm can at least detect this situation and finish gracefully [18,
Chapter 24].

Definition 1.7 (All-Pairs Shortest Path Problem). Given a graph, what is the distance
dist(v, v′) for all node pairs v and v′?

The all-pairs shortest path problem is an immediate generalization of the single-source
shortest path problem since the restriction of a single starting node is removed. Interest-
ingly, this problem is easier to parallelize than the single-source shortest path problem.
Intuitively, this is because there is just more work to do. This problem can be solved
sequentially using Floyd’s algorithm [29] or using multiple runs of any algorithm to solve
the single-source shortest path problem.

Definition 1.8 (Single-Source Single-Destination Shortest Path Problem). Given a
graph, what is the distance dist(v, v′) between a designated source node v and a designated
destination node v′?

The single-source single-destination shortest path problem is an immediate specialization
of the single-source shortest path problem. Instead of considering all destination nodes,

5

1. Introduction

i.e., calculating the shortest path tree, one is only concerned about the shortest path to
a single destination node. This problem is in general not easier than the single-source
shortest path problem but can be solved in practice more efficiently by utilizing guided
search strategies, which utilize additional information based on the structure of the input
graph. For example, two-dimensional maps obey the triangle-inequality, which can be
leveraged for such guided searches. An example of such an algorithm is the so-called
A* (A-star) algorithm [36].

Definition 1.9 (Longest Path Problem). Given a graph and two designated nodes in
this graph v and v′, what is the longest path from v to v′ without visiting a node twice?

This seemingly innocuous variation of the single-source single-destination shortest path
problem is actually NP-complete [33, ND29] and even in the class of NP-complete
problems it is considered to be very difficult in the sense that is it provably very hard
to find approximate solutions, even for unweighted graphs [42]. Naturally, there are no
efficient algorithms to solve this problem in general.

6

CHAPTER 2
Related Work

The single-source shortest path problem has been studied for at least 70 years, and there
is a lot of published literature and research, both of theoretical and of practical nature.
This chapter aims to give an overview of the state-of-the art parallel algorithms to solve
the single-source shortest path problem and the sequential algorithms they are based on.

There are two major approaches for solving the single-source shortest path problem: label
setting and label correcting. Label setting algorithms visit all nodes in the input graph
in such an order that the correct distances to all nodes can be set in one pass. For this
to be correct a lot of thought has to be put into the order in which the nodes are visited.
Algorithms of this nature are usually similar to Dijkstra’s algorithm. Label correcting
algorithms visit the nodes in the input graph in a much more relaxed order, and therefore
may assign wrong distances to some nodes. Label correcting algorithms recognize these
mistakes and subsequently correct them. This may lead to redundant work because at
the time of correction the mistake might already have propagated itself. Due to this,
other nodes may have to be revisited as well, aggravating this effect. Algorithms of this
nature are usually similar to the Bellman-Ford algorithm. Other approaches to solve the
single-source shortest path problem exist as well, but they either need preprocessing, are
restricted to special classes of graphs or are probabilistic.

2.1 Label Setting Algorithms
Dijkstra’s algorithm [26, Problem 2] is the most famous and, even today, the most
performant and most used sequential single-source shortest path algorithm. Dijkstra’s
algorithm maintains a tentative distance for each node that is initialized to 0 for the
source node and to ∞ for all other nodes. The algorithm finds a correct label setting
ordering of the nodes by placing them into a priority queue ordered by the tentative
distance, and repeatedly settling the node with the smallest tentative distance. During
settling, each neighbor of a node is considered. If a neighbor’s tentative distance is greater

7

2. Related Work

than the tentative distance of the settled node plus the edge cost to the neighboring node,
the tentative distance of the neighboring node is updated to the new, smaller, value.
Newly reached nodes are added to the priority queue.

The performance of this algorithm is highly dependent on the performance of the data
structure used for the priority queue. By using a Fibonacci heap [32] to implement
the priority queue it is possible to reach the theoretical optimal runtime for Dijkstra’s
algorithm, namely O(|V | log|V |+ |E|), for arbitrary graphs with real-valued non-negative
edge costs in a comparison-based computation model. This is due to the fact that it
is trivially possible to sort using priority queues, and therefore Dijkstra’s algorithm.
Furthermore, the converse direction holds as well, i.e., if the time-bound of sorting
is O(f(n)) it is always possible to obtain a priority queue with the time-bound O(f(n))
for delete and insert, and O(1) for find-minimum [68]. Even though the Fibonacci heap
gives the best theoretical time-bounds, research in the area of priority queues continued.
Consequently, there are many more possible heap implementations, e.g., pairing heaps [31],
relaxed heaps [27], or Brodal heaps [11].

Once one considers more powerful machine models, i.e., models that can perform more
than just comparisons on numbers, one can obtain better time-bounds for Dijkstra’s
algorithm due to the fact that one has better time-bounds for sorting and subsequently
for priority queues. Thorup presents one such priority queue for the RAM model of
computation [67] leading to a runtime of O(|E| log log|E|) for Dijkstra’s algorithm.

Crauser et al. [20] noticed that the strict visiting order employed by Dijkstra’s algorithm
can be relaxed with some additional bookkeeping. Due to this relaxation it is possible
to freely choose between multiple nodes to visit next. In a parallel implementation
this allows for settling all those nodes in parallel. While the authors did include a
theoretical analysis of their approach for random graphs, they unfortunately did not
include benchmarks of their approach.

Dijkstra’s algorithm and Crauser et al.’s work form the basis of this master thesis and
therefore both algorithms will be explained in much more detail at a later point in this
work.

It is possible to solve the single-source shortest path problem in linear time for undirected
graphs with integer weights [65]. This algorithm can also be generalized to work with
IEEE floating-point numbers [66]. Even though, the algorithm is extremely complicated
and hard to implement, it was implemented during a Bachelor’s thesis [59]. Unfortunately,
the algorithm was found to be much slower than Dijkstra’s algorithm. Therefore, one
can conclude that Thorup’s results are more of a theoretical nature than of a practical.
Nevertheless, Crobak et al. [21] parallelized a simplified version of Thorup’s algorithm.

Brodal et al. [12] developed a parallel priority queue with support for a decrease-key
operation that can be used to implement Dijkstra’s algorithm in linear time in the number
of nodes, given enough processors.

Another approach with a shared data-structure, in this case a shared weighted tree, is

8

2.2. Label Correcting Algorithms

presented by Shi and Spencer [63]. They modify Dijkstra’s algorithm in such a way that
it does not only settle the chosen node itself but also its k nearest neighbors.

2.2 Label Correcting Algorithms
The first nowadays well-known algorithm to solve the single-source shortest path problem
was the Bellman-Ford algorithm. It was independently described by Ford in a paper
about the maximum network flow problem [30, Chapter 7] in 1956, by Moore [54] in 1957,
and by Bellman [5] in 1958. This algorithm maintains a set of fringe nodes and a tentative
distance for each node. At the beginning only the source node is in the set of fringe nodes.
Furthermore, the tentative distance is initialized to ∞ for all nodes, except for the source
node where it is initialized to 0. In each iteration all nodes in the set of fringe nodes
are settled and removed from the set. Each node whose tentative distance was changed
during the settling phase is then (re-)added to the set of fringe nodes. The algorithm
terminates when the set of fringe nodes is empty. This takes at most as many iterations
as there are nodes in the graph. Since each iteration is embarrassingly parallel, this
algorithm is often used as basis for a parallelized single-source shortest path algorithm.
Since a lot of redundant work is performed during execution, this algorithm is considered
to be inefficient.

Δ-stepping (delta-stepping) [53]1 is a refinement of the Bellman-Ford algorithm that
replaces the set of fringe nodes with multiple buckets of fringe nodes. This algorithm is
primarily controlled by a parameter ∆ which is a positive real number. The first bucket
contains all nodes with the tentative distance 0 to ∆, the second bucket contains all nodes
with the tentative distance ∆ to 2∆, and so on. In each iteration the algorithm settles
all nodes in the first non-empty bucket and subsequently removes them from the bucket.
All nodes whose tentative distance was changed in this process are then (re-)added into
their appropriate bucket. Note that this means that a node might be re-added into the
bucket it was in before the iteration. This can be optimized by splitting each iteration
into two phases: In the first phase one considers only edges whose cost are less than ∆,
so-called light edges. Once there have been no re-insertions into the current bucket, one
considers the other edges, the so-called heavy edges. This optimization uses the fact, that
it is unnecessary to propagate information via heavy edges as long as there might still be
the possibility that the tentative distance in the bucket changes due to light edges.

The performance of this algorithm is highly dependent on the chosen ∆. Which value is
good is dependent on the structure of the input graph, but in general there is a tradeoff
between large and small ∆’s: On one hand, a large ∆ increases parallelism. This is
because all nodes in a single iteration can be settled in parallel. Therefore, if ∆ is large,
there are usually more nodes in each bucket, leading to more parallelism. On the other
hand, a small ∆ decreases the amount of redundant work. This is because the buckets are
smaller, and therefore lead to less nodes that are settled too early and have subsequently

1This idea was already published in 1998 [51]. The referenced article from 2003 additionally contains
ideas and refinements that were introduced afterwards.

9

2. Related Work

to be re-inserted into a bucket and later settled again. Meyer and Sanders have proven
that at least for random graphs there exists a ∆ that leads to a good tradeoff between
those two extremes.

Furthermore, they refined this algorithm to be able to deal with graphs where a good Δ
cannot be chosen a priori and optimized the algorithm even more by introducing shortcut
edges for each bucket. This way buckets can be cleared in a constant number of
iterations [52].

Δ-stepping will be explained in much more detail later in this work, because this is
currently the state-of-the art algorithm for solving the single-source shortest path problem
in parallel.

Madduri et al. [49] did an experimental study of simple Δ-stepping on a quite unusual
Cray MTA-2 machine. They were able to achieve a good relative speedup of more than 30
when using 40 processors for various classes of graphs.

Chakaravarthy et al. [13] implemented Δ-stepping on a distributed memory cluster and
developed multiple improvements: First, they refined the notion of light and heavy edges
to further optimize the phases of each iteration. Second, they introduced a heuristic to
greatly reduce the number of edges that need to be relaxed after clearing a bucket. Third,
they noticed that starting with Δ-stepping and switching to a simple Bellman-Ford
algorithm at a later point during execution improves the performance. To improve the
scaling behavior across their cluster, they also implemented a load balancing scheme.
The authors claim a „four orders of magnitude improvement over the best published
results“ at the time of writing, which implies that Δ-stepping can indeed be used for
large-scale graph processing in a real-world setting.

Blelloch et al. [7] extended Δ-stepping to radius-stepping by making the parameter ∆,
and therefore the bucket sizes, variable. Each node in the graph is assigned a radius. All
radii are valid but the performance of this algorithm is directly dependent on a good
choice of these radii. For each iteration radius-stepping chooses the minimum of tentative
distance plus the node’s radius as new threshold. All nodes whose tentative distance is
less than or equal to this threshold are then settled as in Δ-stepping. The authors have
proven that for so-called (k, ρ)-graphs this algorithm is indeed efficient. A (k, ρ)-graph
is a graph where each node v fulfills the property that each of the ρ nodes with the
smallest distances from v can be reached from v with a path with a maximum length of k.
Furthermore, the authors provided an algorithm that allows any graph to be transformed
into this class by adding shortcut edges.

Dijkstra Strip Mined Relaxation, short DSMR [50], is a different label-correcting approach
to solve the single-source shortest path problem in parallel. The idea is to distribute the
nodes in the graph and split the algorithm into phases. In each phase each processor
runs Dijkstra’s algorithm until a certain number of edges has been relaxed. Relaxations
that would have to reach out for remote nodes are buffered. Once this number of edges
has been reached, the buffered requests are exchanged in an all-to-all communication and
executed on the local sub-graph. This is repeatedly done until the algorithm has nothing

10

2.3. Other Algorithms

more to do. The authors furthermore provided two preprocessing algorithms to speed up
their algorithm. DSMR works particularly well on scale-free graphs [4]. Intuitively, these
are graphs that have few nodes with a very high degree and a lot of nodes with a low
degree. For example, social networks fulfill this property.

Nikas et al. [56] parallelized Dijkstra’s algorithm by using helper threads to speculatively
relax edges that are deeper in the priority queue with the hopes that these relaxations save
some work later on. To avoid lock contention and other locking overheads they utilized
transactional memory to access the shared data structures. On their testing system they
achieved a speedup of 1.84 for 14 threads, therefore proving that transactional memory
and speculative relaxations are a viable strategy to speed up the otherwise completely
sequential algorithm by utilizing multiple helper threads.

2.3 Other Algorithms

A different idea to solve the single-source shortest path problem is based on so called
contraction hierarchies [34]. Each node is assigned a unique priority. All priorities are
correct but a good assignment of priorities is essential for good performance of this
algorithm. While finding the optimal priorities is non-trivial, simple heuristics lead to
good performance in a real-world setting. Now, the input graph is preprocessed with
the help of an auxiliary graph, called the overlay graph: The overlay graph starts as a
copy of the input graph. All nodes are then traversed in priority order and contracted.
During the contraction of a node v each path [u, v, w] is considered. For each such
path a shortcut edge 〈u,w〉 with cost(u,w) = cost(u, v) + cost(v, w) is inserted into both
graphs if dist(u,w) > cost(u, v) + cost(v, w) in the overlay graph, while v is ignored for
calculating dist(u,w). Intuitively, a shortcut edge is inserted if it is required to preserve
the shortest path distances between predecessors and successors of v in spite of the
removal of v from the overlay graph. Finally, the contracted node v is removed from the
overlay graph. At the end of this process, the overlay graph is empty.

To execute a single-source single-destination shortest path query on such a preprocessed
graph two shortest path searches using Dijkstra’s algorithm are run. One starts from the
starting node and only considers edges such that the priority of nodes is increasing and
the other starts at the destination node and only considers edges such that the priority
of nodes is decreasing. It can be shown that the two searches will meet at a common
node v. Once this has occurred, a shortest path has been found: It is the concatenation
of the shortest path from the starting node to v and the shortest path from v to the
destination node. If necessary, one has to map the path, which uses shortcut edges, back
to a path without shortcut edges.

Parallel Hardware-Accelerated Shortest Path Trees, in short PHAST, developed by
Delling et al. [23], extend the idea of contraction hierarchies to calculate the whole shortest
path tree and therefore solve the single-source shortest path problem. Furthermore,

11

2. Related Work

Delling et al. parallelize their algorithm using SSE instructions2 to handle more than
one starting node in parallel and finally port their algorithm to CUDA [57] to make
it run on GPUs. They also devise a simple parallelization scheme for single instances.
Nevertheless, PHAST needs preprocessing on the graph it is being used on, and therefore
it is only worthwhile to use when multiple queries are performed on a single graph.

Contraction hierarchies work well on graphs with a low highway dimension [1, Section 3,
Definition 1]. Given a graph G = 〈V,E〉, the highway dimension is defined as the smallest
integer h that fulfills the following condition: For all r ∈ R≥0 and for all v ∈ V , one
constructs a subgraph G′ consisting only of nodes w such that dist(v, w) ≤ 4r and all edges
between these nodes. For each such subgraph G′ a set S ⊆ E ∧ |S| ≤ h is constructed,
such that for each shortest path π in G′ with cost greater than r and originating at v π∩S
is non-empty. Intuitively, graphs with edges that are used often in shortest paths have
small sets S, and therefore a low highway dimension. For example road networks have
a low highway dimension because for most shortest paths one—literally—has to use
highways.

There are several theoretical results with respect to graphs using separator decompositions.
A separator is a set of nodes whose removal splits a graph into two subgraphs that are
not connected with each other anymore. In other words: All paths from one subgraph to
the other subgraph have to cross the separator. Furthermore, one requires that these
subgraphs are roughly of the same size, in the sense that they only differ by a given
fraction. Planar graphs are proven to have small separator decompositions fulfilling these
properties [48]. Examples of such approaches include Cohen’s work [16] for directed
graphs where the separator decomposition is given and Träff and Zaroliagis’ work for
planar graphs [69].

2Streaming SIMD Extensions: An instruction set specialized in providing instruction level parallelism
by working on multiple data items at once. Consult a CPU manufacturer’s documentation for more
details, for example AMD’s Architecture Programmer’s Manual [2].

12

CHAPTER 3
Algorithms

This chapter describes the label setting algorithms used and developed during this thesis.
All algorithms solve the single-source shortest path problem on directed graphs exactly
and deterministically.

The rest of this chapter is structured as follows: First, Dijkstra’s algorithm will be
introduced and proven correct. Second, an algorithm scheme will be derived from
Dijkstra’s algorithm to ease the definition of all other algorithms. Third, this scheme
will be proven correct as long as the used sub-algorithms fulfill certain properties. Lastly,
all analyzed algorithms will be defined using the aforementioned algorithm scheme.

3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm [26, Problem 2] takes a weighted graph and a source node as input,
and returns the distance from the source node for each node, and optionally the shortest-
path tree. To achieve this, the algorithm maintains a tentative distance for each node.
The basic idea of Dijkstra’s algorithm is to initialize the tentative distance for each
node to ∞, except for the source node where it gets initialized to zero. After that the
non-settled node with the smallest, non-infinite, tentative distance is chosen to be settled.
During settling each outgoing edge of this node is considered and if following this edge
leads to a shorter path than the tentative distance of the destination node, the tentative
distance of the destination node is updated. This step is repeated until there are no such
nodes left. After finishing this algorithm all tentative distances are equal to the shortest
distances from the source node. A formal description of this algorithm can be seen in
Algorithm 3.1.

The set of all nodes V is partitioned into three pairwise disjoint sets, unsettled U , fringe F ,
and settled S, during each point in time in the algorithm. All nodes, except the starting
node, start in U . Once a node is first reached during settling of another node, it moves

13

3. Algorithms

Require: a directed graph G = 〈V,E〉 and a starting node s
Ensure: ∀v ∈ V : tent[v] = dist(v)
for all v ∈ V do

tent[v] :=∞
end for
fringe := {s}
tent[s] := 0
while fringe is not empty do
v := argminv∈fringe tent[v]
remove v from fringe
for all 〈v, v′〉 ∈ outgoing(v) do
if tent[v] + cost(v, v′) < tent[v′] then
insert v′ into fringe if tent[v′] =∞
tent[v′] := tent[v] + cost(v, v′)

end if
end for

end while

Algorithm 3.1: Dijkstra’s Algorithm

from U to F . Each node that has been settled ends up in S. A formal definition of these
sets, independent of Dijkstra’s algorithm, follows.

Definition 3.1 (Unexplored, Fringe, Settled). A node is in the set U and is called
unexplored iff its tentative distance is ∞. The set S contains some nodes called settled
for which tent(v) = dist(v) holds. Note that there might be such nodes which are not in S
yet. Finally, all nodes that are reachable from S by using a single edge and are not in S
themselves are in the set F and are called fringe.

Nodes which are unreachable will forever remain unexplored, while at the end of Dijkstra’s
algorithm all reachable nodes will be settled. There are no fringe nodes at the end of the
algorithm.

Definition 3.2 (To Relax, To Settle). To relax an edge 〈v, v′〉 means to evaluate tent(v)+
cost(v, v′) < tent(v′). If this inequality holds, tent(v′) is set to tent(v) + cost(v, v′). This
corresponds to the innermost if of Algorithm 3.1.

To settle a node means to relax all its edges and move the node from F to S.

Definition 3.1 and 3.2 are not specific to Dijkstra’s algorithm. Most single-source shortest
path algorithms, and certainly all considered in this thesis, use the same notion of the
three sets U , F and S and utilize an analogous relaxation and settling operation.

To show the correctness of Dijkstra’s algorithm with respect to the single-source shortest
path problem the following two notions are introduced:

14

3.1. Dijkstra’s Algorithm

Definition 3.3 (Soundness). An algorithm is called sound iff for each node v ∈ S
tent(v) = dist(v), i.e., an algorithm is called sound if it fulfills the definition of S.

Soundness is not enough for an algorithm to be correct as it does not state anything
about nodes that are not in S. Nevertheless, soundness is strong enough to guarantee
that each node that is considered to be done has the correct distance assigned to it, i.e.,
soundness allows to define the notion of a partial solution to the single-source shortest
path problem.

Definition 3.4 (Single-Source Shortest Path Partial Solution). A partial solution for
the single-source shortest path problem consists of a set of nodes where for each node
tent(v) = dist(v) holds.

The empty solution without any nodes is trivially a partial solution for the single-source
shortest path problem. Just the source node, i.e., {s} with tent(s) = dist(s) = 0, is a
trivial partial solution as well.

Definition 3.5 (Completeness). An algorithm is called complete iff after termination F
is empty and for all nodes v ∈ U tent(v) = dist(v) =∞, i.e., the remaining nodes in U
are unreachable. All other nodes have to be in S by definition, i.e., they have to be settled.

Completeness intuitively states that the algorithm settles all reachable nodes. Soundness
and completeness together imply a correct algorithm to solve the single-source shortest
path problem.

3.1.1 Proof of Correctness

This proof is more elaborate than later proofs in order to be able to reference it in
the proofs for the other algorithms. At first, the soundness of Dijkstra’s algorithm is
shown by induction over the set of settled nodes and then an argument is given for the
completeness of the algorithm. Let a phase be an iteration of the outermost loop in
Dijkstra’s algorithm.

Lemma 3.1. The starting node s can be settled immediately.

Proof. It is safe to settle this node, since by definition dist(s) = 0 and by the initialization
tent(s) = 0. Therefore after the initial step S = {s} is a valid set of settled nodes.

This lemma is going to be the induction base later on.

The next lemma will be the induction step and is motivated by the way Dijkstra’s
algorithm selects a node to be settled in each phase. This lemma is not applicable for
the starting node because the starting node does not have a predecessor. In the final
proof this will not matter because the starting node will be handled by Lemma 3.1.

15

3. Algorithms

Lemma 3.2. Assume S to be a partial solution to the single-source shortest path problem,
then for the chosen node v = argminv∈F tent(v), with the tentative predecessor p, there
does not exist another predecessor p′ such that settling p′ reduces the tentative distance
of v.

This non-existence of such a predecessor p′ implies that tent(v) = dist(v), which is the
soundness condition required for Dijkstra’s algorithm to move a node from F to S.

Proof. In other words, there must not exist a predecessor p′ such that p′ 6= p and
dist(p′) + cost(p′, v) < dist(p) + cost(p, v) = tent(v). This will be shown using a proof by
cases over all possible origins of p′.

• Assume p′ to be in S. Furthermore, v is in F by definition. This means that
the potentially better predecessor p′ has already been settled, and therefore the
edge 〈p′, v〉 has already been relaxed. Therefore, if p′ was a better predecessor for v
it would already have been discovered. Since this is not the case, because p′ 6= p, p′
cannot be a better predecessor for v (see the inner if of Dijkstra’s algorithm).

• Assume p′ to be in F or U . Since p′ is not in S each path from s to p′ has to
leave S somehow since s is in S and p′ is not. The lower bound of the length of
such a path is given by dist(b), with b being some node in S, plus an outgoing edge
from b leaving S:

min
b∈S,f∈F

(dist(b) + cost(b, f)) ≤ dist(p′)

This situation is depicted in Figure 3.1. Since v was chosen such that tent(v) =
dist(p)+cost(p, v) is minimal, i.e., b = p and f = v in the equation above. Therefore,
tent(v) ≤ dist(p′) which means that dist(p′) + cost(p′, v) < tent(v) cannot hold.
Therefore, p′ cannot be in F or U .

This concludes the proof that no better predecessor p′ for v can exist.

Theorem 3.3. Dijkstra’s algorithm is sound.

Proof. Induction over the number of elements in S. The induction base is provided by
Lemma 3.1. The induction hypothesis is that S is a partial solution for the single-source
shortest path problem. The induction step is then provided by adding the chosen node
using Lemma 3.2 to S.

Theorem 3.4. Dijkstra’s algorithm is complete.

Proof. Each node reachable from s will eventually be put into the set F since Dijkstra’s
algorithm always inserts all unexplored nodes reachable via outgoing edges of settled
nodes (innermost if-block) into F . Furthermore, since the algorithm will move one
node from F to S in each phase, and only terminates once F is empty, completeness is
given.

16

3.2. Algorithm Scheme

S F ∪U

s

p

b p′

v

Figure 3.1: p′ can only be reached via a „border“ node b ∈ S plus at least one outgoing
edge.

3.2 Algorithm Scheme
All other algorithms and criteria discussed in this chapter follow the same structure as
Dijkstra’s algorithm: Newly reached nodes are moved from U to F , and in each phase
some nodes fulfilling a predicate ϕ are settled, and subsequently moved from F to S. In
case of Dijkstra’s algorithm the predicate is „the tentative distance is minimal.“ This
intuition leads to the definition of the algorithm scheme as seen in Algorithm 3.2.

Definition 3.6 (Phase). A phase is an iteration of the outermost loop of the algorithm
scheme. In other words: A phase is concerned with all nodes proposed by a criteria ϕ in
a single iteration.

To reason about the correctness of this algorithm scheme the definitions of soundness
and completeness have to be adapted to arbitrary criteria.

Definition 3.7 (Soundness). A criteria ϕ is called sound if for each node v ϕ(v) →
tent(v) = dist(v).

Definition 3.8 (Completeness). A criteria ϕ is called complete if as long as F is not
empty there exists a node v ∈ F such that ϕ(v) is true.

Theorem 3.5. The algorithm scheme is sound if the criteria ϕ is sound.

Proof. Induction over the set of settled nodes. The induction base is given by Lemma 3.1.
The induction hypothesis is that S is a partial solution to the single-source shortest path
problem. The induction step follows immediately from the soundness of ϕ: For each
node v that is settled ϕ(v) is true, which immediately implies that tent(v) = dist(v).

Theorem 3.6. The algorithm scheme is complete if the criteria ϕ is complete.

17

3. Algorithms

Require: a directed graph G = 〈V,E〉, a starting node s, and a criteria ϕ
Ensure: ∀v ∈ V : tent[v] = dist(v) if ϕ is sound and complete
for all v ∈ V do

tent[v] :=∞
end for
fringe := {s}
tent[s] := 0
while fringe is not empty do
for all v ∈ fringe ∧ ϕ(v) do
remove v from fringe
for all 〈v, v′〉 ∈ outgoing(v) do
if tent[v] + cost(v, v′) < tent[v′] then
insert v′ into fringe if tent[v′] =∞
tent[v′] := tent[v] + cost(v, v′)

end if
end for

end for
end while

Algorithm 3.2: Algorithm Scheme

Proof. A complete criteria always proposes at least one node to be settled in F by
definition. Therefore, eventually all nodes in F will be settled. During the settling
of a node, all neighboring and so far unreached nodes will be moved to F . Therefore,
transitively all reachable nodes will end up in F , and will eventually, by the completeness
of ϕ, be settled.

3.3 Motivation & Discussion

Dijkstra’s algorithm always chooses the node with the smallest tentative distance, relaxes
its edges, and then chooses the next node with the, now, smallest tentative distance,
and so on. This approach makes Dijkstra’s algorithm sequential, i.e., there is a chain of
calculations that depend on each other: The choice of the next node with the smallest
tentative distance is potentially dependent on the relaxations performed by the current
choice.

As long as we consider algorithms that are Dijkstra-like, this is actually the best result
possible in the worst-case: If there is a graph that looks like a linked list, i.e., each node
has a single edge to a successor, there is no way to work around this dependency in
Dijkstra’s algorithm.

Once there are multiple edges per node, a possible parallelization scheme is to parallelize
the relaxations of outgoing edges of the node that is currently being settled. This
parallelization scheme can only work with very dense graphs and is primarily of theoretical

18

3.3. Motivation & Discussion

interest. The reason behind this is that this scheme requires to maintain a shared priority
queue. Such shared priority queues cannot be implemented efficiently.

The alternative approach considered in this thesis is based on the key observation by
Crauser et al. that the settling-order of Dijkstra’s algorithm can actually be relaxed by
relaxing the condition „node with the smallest tentative distance.“ It turns out that there
are other criteria, which will be explained in this chapter, that do not yield a single node
but a whole set of nodes that are safe to be settled. This is the primary motivation for
the algorithm scheme and the definition of phase therein: Each phase is concerned with
settling a safe set of nodes.

All nodes which can be settled in one phase do not interfere with each other afterwards
because a sound criteria has to guarantee that there is no way for any unsettled node to
be part of a better path to the nodes being settled in the current phase. Therefore, these
nodes can settled in any order, and even more so, they can be settled in parallel. The
details of how this can be done in practice will be presented in Chapter 5. It suffices to
say that the degree of parallelism is directly proportional to the number of phases and
the number of nodes in each phase.

This approach is still not completely conflict free. If two nodes v and w can be settled
in the same phase, and both have an edge 〈v, x〉, resp. 〈w, x〉, there might be a conflict
while updating the tentative distance of x. How this conflict is avoided will be explained
in-depth in Chapter 5.

Since the degree of parallelism is directly proportional to the number of phases, i.e., a
lower number of phases leads to more potential parallelism, the number of phases is an
important metric to measure the quality of criteria. This is because after each phase a
communication and synchronization phase has to happen, which means that processors
have to wait for each other, potentially leading to idle processors. This is due to the
calculations of the next phase which depend on the calculations performed in the current
phase. As with Dijkstra’s algorithm the phases form a chain of computations that cannot
be reordered, but unlike Dijkstra’s algorithm, in each phase more than one node is settled.

In practice this is implemented in such a way that each processor is responsible for a
certain subset of all nodes. This means that in the worst case, even through there are
ample of nodes in each phase, only one processor could happen to perform all the work.
There is no way to notice such load imbalances using solely the number of phases because
they depend on the way the graphs are generated and distributed among the processors.
The simulation as presented in Chapter 4 is oblivious to these factors as well. To alleviate
this problem it is possible to implement load balancing.

To summarize: The number of phases is an important metric to judge the quality of
a criteria. If a criteria can propose many nodes for settling per phase, the number of
phases becomes smaller, thus leading to more parallelism.

19

3. Algorithms

3.4 Implied Criteria

Some algorithms introduced in this chapter will have two variations. Usually there is
one variation, called the static variant, that only considers data that is immediately
available in the input graph, and another variation, called the dynamic variant, that
tries to consider information which only emerges during the execution of the algorithm
scheme. In most cases, the latter variation will settle a superset of the nodes of the static
variation in each phase, i.e., the predicate holds true for more nodes. This motivates the
study of implied criteria.

Theorem 3.7. Let ϕ and ψ be two criteria such that ϕ(v) → ψ(v) and ψ is sound.
Then ϕ is sound.

Proof. This is a direct consequence of the transitivity of logical implication.

precondition︷ ︸︸ ︷
(ϕ(v)→ ψ(v))∧

soundness of ψ︷ ︸︸ ︷
(ψ(v)→ tent(v) = dist(v)) =⇒

soundness of ϕ︷ ︸︸ ︷
(ϕ(v)→ tent(v) = dist(v))

Theorem 3.8. Let ϕ and ψ be two criteria such that ϕ(v)→ ψ(v) and ϕ is complete.
Then ψ is complete as well.

Proof. Consider the set of nodes defined by the criteria. ϕ chooses all nodes Φ = {v : v ∈
F ∧ ϕ(v)}, while ψ chooses all nodes Ψ = {v : v ∈ F ∧ ψ(v)}. ϕ(v)→ ψ(v) means that
whenever ϕ(v) is true that ψ(v) has to be true as well. This implies that Φ ⊆ Ψ. Since Φ
is already large enough in each phase to be complete, Ψ has to be as well, since it is
potentially larger.

Notice how the roles of ϕ and ψ are swapped with respect to soundness and completeness.

3.5 Combining Criteria

It is also possible to combine criteria to form new criteria. This leads to the following
observations.

Theorem 3.9. Given the criteria ψ and ρ such that both criteria are sound, then these
criteria can be combined into a sound criteria ϕ disjunctively: ϕ(v) ≡ ψ(v) ∨ ρ(v).

Proof. This follows from the following logical implication.

soundness of ψ︷ ︸︸ ︷
(ψ(v)→ tent(v) = dist(v))∧

soundness of ρ︷ ︸︸ ︷
(ρ(v)→ tent(v) = dist(v))

=⇒ ((ψ(v) ∨ ρ(v))→ tent(v) = dist(v))︸ ︷︷ ︸
soundness of ϕ

20

3.6. Oracle

Corollary 3.10. ϕ(v) ≡
∨k
i=1 ψi(v) is a sound criteria if all ψi are sound.

Theorem 3.11. A combined criteria ϕ(v) ≡ ψ(v) ∨ ρ(v) is complete if at least one of ψ
or ρ is complete.

Proof. This follows from the fact that the two criteria are joined disjunctively, i.e., if one
criteria always chooses at least one node in each phase, an additional disjunction cannot
change this fact. In other words: A union-operation on a set cannot make a non-empty
set empty.

Corollary 3.12. ϕ(v) ≡
∨k
i=1 ψi(v) is a complete criteria if at least one ψi is complete.

3.6 Oracle

As explained in Chapter 1 Crauser et al.’s algorithm is limited by the infamous transitive
closure bottleneck: In a graph that only consists of a single chain, no parallelism can be
achieved by using their algorithm. The same restriction applies to the here introduced
algorithm scheme, which is a generalization of Crauser et al.’s algorithm.

Nevertheless, it would be interesting to know the lower bound of the number of phases
that can be expected from this algorithm scheme. Answering this question obviously
depends on the chosen criteria and type of graph, and will be answered empirically in
Chapter 4. This leads to the question if there is an optimal criteria, especially if there
actually is a lower bound in the number of phases. If there is such an optimal criteria, it
would have to reach this lower bound, and can therefore be used to empirically measure
the quality of all other criteria in comparison to the optimal lower bound.

By the definition of soundness of a criteria, a node may be chosen by a criteria if
tent(v) = dist(v). This leads to the definition of an omniscient criteria ϕ, called the
oracle, that is literally defined as ϕ(v) ≡ (tent(v) = dist(v)). The oracle always chooses
all nodes that are by definition safe to settle.

In contrast to the other criteria defined later, the oracle needs in its definition already
the solution to the single-source shortest path problem. This is also the reason why it is
considered to be omniscient.

Theorem 3.13. The oracle is the criteria with the smallest amount of phases in the
given algorithm scheme.

Proof. For the algorithm scheme to be sound the criteria has to be sound, and by the
definition of soundness for criteria it follows that there cannot be a more exhaustive
criteria than this oracle. Each more exhaustive criteria would have to allow the settlement
of at least one node for which tent(v) 6= dist(v) holds and therefore cannot be sound.

Theorem 3.14. The oracle is sound.

21

3. Algorithms

Proof. By definition the oracle settles all nodes in F for which tent(v) = dist(v) holds.
This is literally the soundness condition.

Theorem 3.15. The oracle is complete.

Proof. As argued in the proof of Dijkstra’s algorithm, at least for the node with the
minimal tentative distance in F tent(v) = dist(v) holds. Therefore, at least this one node
from F will be settled in each phase. Eventually all nodes in F will be settled and the
criteria is therefore complete.

3.7 Crauser’s Criteria

3.7.1 Crauser’s In Criteria

Intuitively, this criteria [20] exploits the following observation: If the smallest tentative
distance in F is M , then all shortest paths that can be found from now on can only be
of cost M or higher. Furthermore, the shortest path to some node v for that the shortest
path has not yet been found has to pass through one of the incoming edges of v. This
means that M plus the cost of an incoming edge of v is the lower bound for any new
shortest path that could potentially be found for v. Therefore, if the tentative distance
of v is already below this lower bound, it is not possible to find a cheaper path for v, and
therefore v is save to be settled. An example can be seen in Figure 3.2.

Formally, this criteria settles a node v if i(v) ≤M where

M = min
v∈F

tent(v)

is the smallest tentative distance in F and

i(v) = tent(v)−min
p∈V

cost(p, v)

is the tentative distance minus the smallest incoming edge cost. This characterizes the
maximum allowed value allowed for any potential predecessor of v to still obtain an
improvement of tent(v). This formulation of this criteria will be called the static variant
because it only uses information that does not depend on the state of the sets U , F
and S, i.e., all information required for deciding this criteria is immediately available in
the input graph.

The dynamic formulation of this criteria is defined as above, except

i(v) = tent(v)− min
p∈F∪U

cost(p, v)

i.e., incoming edges from already settled nodes are not considered. Intuitively, this is
possible because no new tentative distances can be discovered from these predecessors,
since they are already settled and their outgoing edges are already relaxed.

22

3.7. Crauser’s Criteria

S

F

U

a♦�4 tent(a) = 10

b�4 tent(b) = 11

c� tent(c) = 14

d� tent(d) = 14

e�4 tent(e) = 11

f4

tent(f) = 12

gN tent(g) = 13

10

5

11

11

11

6

9

3

1

1

2

3

4

8

4 2

1

2

Figure 3.2: A demonstration of Crauser’s criteria. Dijkstra’s algorithm (♦) would
just settle a. Crauser’s In criteria (�) uses M = 10 (the minimum tentative distance)
as threshold, and settles a (tent(a)− 10 = 0), b (tent(b)− 3 = 8), c (tent(c)− 4 = 10),
and e (tent(e)− 4 = 7). The dynamic (�) variant additionally finds d (tent(d)− 8 = 6,
not minus 3). Crauser’s Out criteria (4) uses L = 12 (see node e: tent(e) + 1 = 12)
as threshold, and therefore settles a, b, e, and f because their tentative distances are less
than or equal to L. For the dynamic (N) variant L = 13 because the outgoing edge back
into S from e is ignored, therefore tent(e) + 2 = 13 (not plus 1). This additionally settles
the node g. One can see that all criteria settle the node Dijkstra’s algorithm would have
chosen. Additionally, there are nodes that are settled by the In criteria but not by the
Out criteria and the other way around.

23

3. Algorithms

Theorem 3.16. The dynamic variant of Crauser’s In criteria is sound.

Proof. Consider any chosen node v and its tentative predecessor p. To prove soundness
the possibility of a better predecessor p′, i.e., one that fulfills dist(p′) + cost(p′, v) <
dist(p) + cost(p, v), is ruled out.

By the same argument as in the proof of Dijkstra’s algorithm, p′ cannot possibly be in S.
It remains to show that p′ cannot exist in F or U as well (proof of Lemma 3.2, first half).

The minimal cost to reach F ∪ U from s is M (proof of Lemma 3.2, second half).
Therefore M ≤ dist(p′). The additional edge from p′ to v has a cost of cost(p′, v).
Therefore, the path π′ = [..., p′, v] has a cost of at least M + cost(p′, v). Furthermore,
minp∈F∪U cost(p, v) ≤ cost(p′, v) by definition. This leads to a lower bound for the cost
of π′ of M + minp∈F∪U cost(p, v).

By the criteria tent(v)−minp∈F∪U cost(p, v) ≤M holds. This is equivalent to tent(v) ≤
M + minp∈F∪U cost(p, v). The second half of this inequality is equal to the previously
found lower bound for the cost of π′. This finally leads to:

tentative distance︷ ︸︸ ︷
tent(v) ≤

bound given by the criteria︷ ︸︸ ︷
M + min

p∈F∪U
cost(p, v) ≤

cost of the alternative path︷ ︸︸ ︷
dist(p′) + cost(p′, v)

Therefore dist(p′) + cost(p′, v) < dist(p) + cost(p, v) = tent(v) cannot hold and no better
alternative path via p′ exists. Therefore, p′ /∈ F ∪ U .

Corollary 3.17. By Theorem 3.7 the static variant is sound as well.

Theorem 3.18. The static variant of Crauser’s In criteria is complete.

Proof. In each phase at least the node that induced the value of M , i.e., the one with
the minimal tentative distance, is settled. This is because for this node i(v) ≤M has to
hold even if the minimal-cost incoming edge has cost zero.

Corollary 3.19. By Theorem 3.8 the dynamic variant is complete.

3.7.2 Crauser’s Out Criteria

While Crauser’s In criteria focuses on incoming edges, Crauser’s Out criteria [20] focuses
on outgoing edges. Here, the observation is that each new path that can be found has to
have at least the cost of reaching some node v in F plus an outgoing edge of v. Therefore,
all nodes whose tentative distance is already smaller than the smallest of these values can
be settled since there is no way that any new path could reduce the tentative distance of
these nodes. An example can be seen in Figure 3.2.

In its static variant this criteria settles a node v if it fulfills tent(v) ≤ L where

L = min
f∈F,f ′∈V

(tent(f) + cost(f, f ′))

24

3.7. Crauser’s Criteria

characterizes the minimum cost of any new path that could possibly be found as argued
above. Therefore, all nodes with a tentative distance lower than this bound can be
relaxed.

In the dynamic variant L is defined as

L = min
f∈F,f ′∈F∪U

(tent(f) + cost(f, f ′))

with the same intuition as for Crauser’s In criteria, i.e., if a node is already settled it
cannot have any influence on shortest paths of unsettled nodes.

Lemma 3.20. If v ∈ F ∪U and tent(v) = dist(v), then L ≤ dist(v) + cost(v, v′) with v′
being any successor of v in F or U .

Proof. If v is unreachable, tent(v) = dist(v) =∞ and the lemma holds trivially.

If v is reachable, it has to be in F . This leads to:

L = min
f∈F,f ′∈F∪U

(tent(f) + cost(f, f ′)) ≤ tent(v) + cost(v, v′) = dist(v) + cost(v, v′)

The last equality in this equation holds because by assumption tent(v) = dist(v).

Lemma 3.21. If v ∈ F ∪U and v is reachable, then the shortest path to v contains some
node q ∈ F ∪ U that fulfills tent(q) = dist(q).

Proof. The shortest path for any node in F can be split in two parts. The path starts at
the starting node followed by any amount of nodes in S. Then the path has any amount
of nodes in F ∪ U followed by v itself, which is in F ∪ U by the precondition of this
lemma.

The proof is by induction over the number of nodes in the second part, the ones in F ∪U ,
of the shortest path to v.

The base case is that the number of nodes in the second part is 1. In this case q = v
because tent(v) = dist(v) has to hold. This is because the correct predecessor of v is
already in S, and therefore has already to be the tentative predecessor of v. This means
that the tentative distance of v already has to be correct.

The induction hypothesis is that the lemma holds for all nodes of the second half of the
path.

In the induction step the second half of the path is extended by one node. Since the
path now has at least two nodes in F ∪ U , and by the induction hypothesis for all nodes,
except the new one, of the second half the lemma holds, the lemma holds for the new
node as well. This is because the new node is guaranteed to have a predecessor for whom
the lemma holds, and the lemma itself propagates to successors in a path.

Theorem 3.22. The dynamic variant of Crauser’s Out criteria is sound.

25

3. Algorithms

Proof. Consider any node v and its tentative predecessor p for which the criteria holds
true. Any better predecessor p′ 6= p is ruled out:

As already argued in the first half of Lemma 3.2 p′ /∈ S. It is therefore enough to show
that no better predecessor p′ ∈ F ∪ U exists.

By Lemma 3.21 there exists a node q in the path [s, ..., p′] such that tent(q) = dist(q).
Applying Lemma 3.20 to this node q means that the cost to leave q, and therefore the
cost to leave p′, is at least L. Since tent(v) ≤ L, this implies that p′ cannot possibly be a
better predecessor, i.e., dist(p′) + cost(p′, v) < tent(v) cannot be true.

Corollary 3.23. By Theorem 3.7 the static variant is sound.

Theorem 3.24. The static variant of Crauser’s Out criteria is complete.

Proof. In each phase at least the node that defines L can be settled, therefore all nodes
in F will eventually be settled.

Corollary 3.25. By Theorem 3.8 the dynamic variant is complete.

3.8 Heuristic

The idea behind this criteria is the following: If one could estimate the distance to reach
all predecessors of a node a priori, it would be possible to decide which predecessors are
irrelevant and will never lead to a better tentative distance. Once there are no relevant
predecessors left, it is possible to settle the node. This is achieved by introducing a
heuristic function to estimate the distance to each node.

A heuristic is considered admissible if h(v) ≤ dist(v), i.e., the heuristic always has to
underestimate the real distance. Given an admissible heuristic h(v), this criteria settles
a node if

tent(v) ≤ min
p∈F∪U

(h(p) + cost(p, v))

Theorem 3.26. Given an admissible heuristic h(v), the heuristic criteria is sound.

Proof. Again, the only interesting case to prove is if for any chosen node v with the
tentative predecessor p there exists a better predecessor p′ in F ∪ U .

By construction of h it follows that h(p′) ≤ dist(p′). Therefore, the path [..., p′, v]
has to have cost of at least h(p′) + cost(p′, v). Furthermore, v was chosen because
tent(v) ≤ minp∈F∪U (h(p)+cost(p, v)) and minp∈F∪U (h(p)+cost(p, v)) ≤ h(p′)+cost(p′, v)
holds by definition. This leads to:

holds by the criteria︷ ︸︸ ︷
tent(v) ≤ min

p∈F∪U
(h(p) + cost(p, v)) ≤

holds by the admissibility of h︷ ︸︸ ︷
h(p′) + cost(p′, v) ≤ dist(p′) + cost(p′, v)

26

3.9. Träff’s Bridge Criteria

S F

U

d

v

q p

5

5

5

5

10

5

3

5

3

53

Figure 3.3: An example for a node v that might be a candidate for Träff’s Bridge criteria.
tent(d) = 10 is the minimum tentative distance, while tent(v) = 15 and tent(q) = 10 as
well. Since v does not have any predecessor in F it might be eligible for Träff’s Bridge
criteria. It remains to find the length of the cheapest two-step backwards path from v
through U . In this case the path is [q, p, v] with a cost of 6. Since tent(v)− 6 = 9 is less
than the threshold of 10, v is indeed settled by Träff’s Bridge criteria.

Therefore, dist(p′) + cost(p′, v) < dist(p) + cost(p, v) cannot hold. Therefore, p′ /∈
F ∪ U .

The heuristic strategy is not complete, just consider h(v) = 0 for all nodes: In this case
tent(v) ≤ minp∈F∪U (0 + cost(p, v)) would have to hold, which is impossible once the
tentative distance of a node is larger than the cost of any incoming edge. Therefore, once
such a node exists in the graph this node will never be settled by this criteria, making
the Heuristic criteria incomplete.

3.9 Träff’s Bridge Criteria
If one considers a node that does not have predecessors in F , it is only possible to obtain
a new tentative distance to this node via U . Therefore, the tentative distance of this node
can only be improved if the cost of leaving S, plus entering U , plus leaving U again to
reach the node is small enough to improve the tentative distance of the node in question.
Träff’s Bridge criteria defines a lower bound for this cost and can therefore identify some
nodes that fulfill this observation. In some sense, the node forms a „bridge“ between S
and U without being touched by nodes in F . The general idea is shown in Figure 3.3.

This criteria settles nodes that have no predecessors in F and fulfill the following
inequality:

tent(v)−min
p∈U

(cost(p, v) + min
q∈V

cost(q, p)) ≤ min
n∈F

tent(n)

27

3. Algorithms

Theorem 3.27. Träff’s Bridge criteria is sound.

Proof. As usual consider a chosen node v with the tentative predecessor p and assume
that a better predecessor p′ exists. Since this criteria prohibits predecessors in F it is
enough to show that p′ cannot exist in U .

If p′ is in U , the path to v has to look like [..., f, ..., p′, v] with f ∈ F . Furthermore, f 6= p′

because f ∈ F and p′ ∈ U , additionally f 6= v because shortest paths never contain
cycles, i.e., f , p′ and v are disjoint nodes. As argued in Lemma 3.2 the minimal cost to
reach f has to be minn∈F tent(n).

Therefore, a lower bound of the cost to reach v has to be the cost to reach f , plus the
distance from f to p′, which can be bounded by the minimal incoming edge cost of p′,
plus cost(p′, v). This leads to a lower bound A of the cost of this path:

A =
to reach f︷ ︸︸ ︷

min
n∈F

tent(n) +
to reach p′ from f︷ ︸︸ ︷
min
p′′∈V

cost(p′′, p′) +
from p′ to v︷ ︸︸ ︷
cost(p′, v) ≤

the potentially better path︷ ︸︸ ︷
dist(p′) + cost(p′, v)

By the criteria the following is true as well:

tent(v) ≤ min
n∈F

tent(n) + min
p∈U

(cost(p, v) + min
q∈V

cost(q, p)) = B

It remains to show that B ≤ A since then tent(v) ≤ B ≤ A ≤ dist(p′) + cost(p′, v) which
rules out that p′ can be a better predecessor. The term minn∈F tent(n) immediately
cancels out, left is:

min
p∈U

(cost(p, v) + min
q∈V

cost(q, p)) ≤ min
p′′∈V

cost(p′′, p′) + cost(p′, v)

Assume that p̂ and q̂ are the p and q that induce the value of the left term. Then the
left term represents the path πB = [q̂, p̂, v]. This path represents the minimum cost of
a path of the form [x, y, v] with x ∈ V and y ∈ U . Assume that p̂′′ is the node that
induces the value of the right term. Then the right term represents a path πA = [p̂′′, p′, v].
Since p′ ∈ U and p̂′′ ∈ V , πA is in the same class of paths for which πB represents the
minimum-cost path. Therefore, the cost of πB has to be less than or equal to the cost
of πA, and therefore the inequality holds. This concludes the proof that p′ /∈ U .

This criteria is not complete. The reason for the incompleteness is that it is required for
nodes to not have any predecessor in F . Unfortunately, it can occur that no such node
exists, i.e., that each node in F has a predecessor in F . One such example can be seen in
the graph depicted in Figure 3.4. Complete graphs observe this problem as well, simply
because as long as |F | > 1 there must be a predecessor in F for each node.

28

3.9. Träff’s Bridge Criteria

S

F

s

Figure 3.4: An example of a graph where Träff’s Bridge criteria cannot continue after
settling the starting node s because each node in F has a predecessor in F .

29

CHAPTER 4
Simulation

Already Crauser et al. [20, Section 6] included a simulation in their work of their algorithm
to find empirical evidence of the quantitative quality of their algorithm. They claim
that Crauser’s Out criteria needs 2.5

√
|V | phases and that Crauser’s Inout criteria

needs 6 3
√
|V | phases on average for randomly uniform graphs.

Similarly to their paper, this work contains an analysis of the quality of all criteria, in
terms of number of phases, in this chapter. This chapter is divided into three sections,
first the idea behind this analysis, the information obtained from it, and the drawbacks
will be discussed. Second, the methodology of the analysis will be presented. Finally, the
results will be depicted and discussed.

The basic idea of this analysis is to implement Algorithm 3.2 with various criteria and
count the number of phases on a multitude of graph families. Furthermore, each node
gets assigned a phase-number, which is the number of the phase the node was settled in.
By convention, the starting node is the only node settled in the special phase 0. The
basic idea of this analysis is captured in Algorithm 4.1.

The simulation is completely performance oblivious. This means that the additional
overhead of various criteria is completely ignored. Unfortunately, the complexity of the
criteria analyzed is non-trivial and leads in some cases to serious performance degradations,
as will be seen in Chapter 5. This is even more pronounced due to the fact that Dijkstra’s

for enough repititions do
graph := generate a graph
run Algorithm 3.2 on graph
output the number of phases

end for

Algorithm 4.1: Simulation

31

4. Simulation

algorithm performs the bare minimum of work required to solve the single-source shortest
path problem, not only in an asymptotic sense, but also in absolute numbers: Each edge
is only looked at once. For example, already Crauser’s In criteria, one of the cheapest
criteria, has to look twice at each edge: Since the criteria requires to know the smallest
incoming edge for each node, it has to scan through all edges once to find the minimum
for each node, leading to two accesses to each edge in the graph, i.e., double the amount
than Dijkstra’s algorithm.

Finally, the data obtained by this simulation represents only an average case for the
chosen, theoretical classes of graphs: On one hand, the results depend heavily on the
graph generation algorithm, which is a hard problem in itself and will be discussed in
the next section, and on the other hand, the results are only an aggregation of multiple
runs, i.e., the results only talk about the average number of phases of the given sample
of graph instances. This average case analysis can be enough for practical purposes, but
if worst-case guarantees are needed, e.g., in safety critical systems, or in systems with
untrusted user input, this analysis might not be enough.

Since the analysis includes an algorithm that is known to be optimal in the number of
phases, namely the oracle of Section 3.6, it is possible to quantitatively measure the
difference of each criteria to the optimum. This might serve as inspiration for further
research into promising criteria or as empirical base for proving certain probabilistic
bounds on criteria. Furthermore, the analysis can be used to explore differences between
various types of input graphs.

4.1 Methodology

The simulation consists of three main ingredients: the generated graph, the criteria
executed on the graph, and the processing of the output data. The simulation is
performed by a simulation tool that is written in C++ and is available for the general
public.1

4.1.1 Input Graphs

Input graph generation is a difficult problem for itself, since it is hard to characterize the
structure of real-world graphs like social networks or road networks. Furthermore, there
are multiple vastly different classes of real-world graphs and it depends solely on the
use-case which graph class is applicable. So, although there are public datasets of big
graphs, e.g., Stanford’s Large Network Dataset Collection [46] or the graphs of the Ninth
DIMACS Implementation Challenge [24], they cannot be used for a statistical analysis,
since each such graph is just a single instance of an unspecified graph class. Nevertheless,
such single instances can be analyzed with respect to the number of phases, and the tool
supports reading graphs from input files.

1https://github.com/kaini/sssp-simulation

32

https://github.com/kaini/sssp-simulation

4.1. Methodology

Figure 4.1: The difference between uniformly sampled positions (left) and Poisson disk
sampled positions (right). One can clearly see clusters and holes in the uniformly sampled
positions, while the Poisson disk sampled positions are much more regular.

The generation of graphs is randomized but seeded, i.e., on a single system it is possible to
generate the same graphs if one supplies the same seed and graph generation parameters.
Graph generation is split into three phases: First, the nodes are generated and positions
are assigned to them. Node positions are irrelevant for most types of graphs, they are
only needed for the visualization and for Euclidean distances. Second, the edges are
generated. Third, the cost function is generated.

Nodes and Positions

The simulation tool provides two ways to initialize the position of nodes. The simplest
method of doing so is to uniformly distribute the node positions in a 〈0, 0〉 to 〈1, 1〉
square.

Definition 4.1 (Uniformly Distributed Positions). The positions of the nodes in a graph
are distributed uniformly if each position 〈x, y〉 ∼ 〈U(0, 1),U(0, 1)〉.

While uniformly distributed positions are well understood mathematically, they are not
visually pleasing since they tend to generate holes and clusters in the distribution of the
nodes. It is well known that humans do not consider uniformly distributed positions
as „pretty.“ To solve this issue it is possible to generate node positions using so-called
Poisson disk sampling. The difference between those two can be seen in in Figure 4.1.

Poisson disk sampling is similar to uniformly random positions with the single exception
that each position must have a minimum distance to all other positions. A naïve algorithm
to achieve this, is to randomly generate a candidate point and check it against all already

33

4. Simulation

chosen points. If there is one point such that the minimal distance is violated, reject the
current candidate and try again. This approach is very inefficient. Bridson [10] describes
a simple and efficient Poisson disk sampling procedure in a beautiful one-page paper,
which was implemented in the simulation tool. Davies [22] published a nice, interactive
visualization of Bridson’s algorithm on his website.

Definition 4.2 (Poisson Disk Distributed Positions). The positions of the nodes in a
graph are Poisson disk distributed if their positions were obtained by using a sampling
procedure as described above.

Poisson disk sampled positions are not of interest for the purposes of this analysis and
will only serve as basis for the visualizations generated by the tool.

Edges

The simplest way of generating edges is to consider each possible edge with a given
probability. This leads to the first method of generating edges:

Definition 4.3 (Uniformly Distributed Edges). The edges of a graph are uniformly
distributed if the existence of each possible edge, excluding self loops and multiple edges
between nodes, is determined by A(p).

A graph with v vertices and uniformly distributed edges with the probability p is also called
an uniformly random graph. Uniformly random graphs are well understood mathematical
objects and enjoy a lot of mathematical properties that can come in handy for proofs. For
details one can for example reference the work of Karp [43]. One notable property is that
connected components of such graphs are either very large or very small [43, Section 2.1].

Since there are |V |(|V | − 1) possible edges, the number of edges is |E| ∼ B(|V |(|V | −
1), p). The number of outgoing (or incoming) edges for each node is |incoming(v)| ∼
|outgoing(v)| ∼ B(v − 1, p).

A naïve algorithm to generate such graphs is to draw a random number from 0 to 1
for each possible edge and check that it is below p. This approach takes O(|V |2) time.
Using the distributions described in the previous paragraph it is possible to devise a
much faster, O(|V |+ |V |2p) = O(|V |+ E(|E|)) in the average case, algorithm. Instead
of considering each possible edge, one considers each node and draws the number of
outgoing edges. Then one takes this amount of random destinations to create the edges.
This algorithm can be seen in Algorithm 4.2.

Uniformly random graphs are interesting from a mathematical perspective, but they are
not appropriate for visualization purposes since the edges are all over the place and it is
impossible for a human observer to discern the structure of the graph. For this reason
the tool is able to generate planar graphs.

Definition 4.4 (Planar Graph). A graph is planar if it is possible to arrange the nodes
in two-dimensional space in such a way that no two edges cross each other.

34

4.1. Methodology

Require: a set of nodes V and an edge probability p
Ensure: created uniformly distributed edges for V

nodes := [0, 1, ..., |V | − 1]
for all v ∈ V do

edges := draw from B(|V | − 1, p)
shuffle edges + 1 elements of nodes {e.g. with a partial Fisher-Yates shuffle [28]}
for all 0 ≤ i < edges do
if nodes[i] = v {to avoid self-loops} then
add edge 〈v,nodes[edges]〉 to graph

else
add edge 〈v,nodes[i]〉 to graph

end if
end for

end for

Algorithm 4.2: Fast Sampling of Uniformly Distributed Edges

The tool does not try to generate uniformly random planar graphs or some designated
class of planar graphs. The algorithm simply takes the positions of the nodes and tries
to add edges that do not intersect with already added edges and furthermore avoids too
long edges. This leads to a highly biased selection from the set of all planar graphs, is
mathematically intractable, and therefore is not suited for any analysis. Nevertheless,
this algorithm is simple to implement and leads to graphs that are pleasing to look at.

The last method to generate edges is to generate layered graphs.

Definition 4.5 (Layered Graph). Assume that all nodes are classified into n classes.
Then nodes in the ith class may only connect to nodes in the (i+ 1)th and (i− 1)th class.

Layered graphs were added to the tool out of curiosity with the hope of interesting results.
2-layered graphs, also called bipartite graphs, i.e., a graph where only the classes 0
and 1 exist and all paths have to alternate between these two classes at each step, are a
well-known sub-class of this class.

An example for all three types of graphs can be seen in Figure 4.2.

Edge Costs

The only piece missing for finished graphs is the edge-cost function. The tool implements
the following three cost functions:

Definition 4.6 (Uniform Edge Costs). The cost for each edge is drawn independently
from U(0, 1).

This is the usual definition of edge costs for uniformly random graphs, as used in the
original analysis of Crauser’s criteria and Meyer’s Δ-stepping. Note, that the actual

35

4. Simulation

Figure 4.2: Example of an uniformly random graph (left), a planar graph (center), and
a 2-layered graph (right). Notice how in the 2-layered graph nodes connect only from the
lower half to the upper half and vice-versa. The nodes in the layered graph are arranged
this way for clarity only, in the simulation these nodes are still located at random positions
in their respective half of the plane, but of course, their overall structure remains layered.

range of the uniform cost is irrelevant as long as it is non-negative, since all ranges can
be mapped into a zero-to-one range.

Definition 4.7 (Constant One Edge Costs). All edges have cost 1.

This cost function degenerates the single-source shortest path problem into a breadth-first
search problem.

Definition 4.8 (Euclidean Distance Edge Costs). Given an edge between the nodes v
and v′ with v being at the position 〈xv, yv〉 and v′ being at the position 〈xv′ , yv′〉, then the
cost of this edge is

√
(xv − xv′)2 + (yv − yv′)2.

This definition of the cost function simply takes the length of a straight line between the
two nodes connected by each edge.

Kronecker Graphs

The graphs generated so far are very synthetic and highly unrealistic in the sense that
they do not look like and do not enjoy the properties of real-world networks, like social
networks, citation networks, or messaging patterns in communities [45, Section 2.1 & 2.2].
These types of graphs have some properties that are not captured by the methods of
generating graphs defined so far.

One of these properties is that there are a few nodes with a lot of edges, e.g., celebrities
in social networks, and a lot of nodes with comparatively few edges. Furthermore, such
networks have some form of a self similarity, i.e., the structure on the macro level is
similar to the structure on the micro level. Lastly, natural networks have a very low
effective diameter. The Kronecker graph paper [45, Section 2.1] gives an overview of

36

4.1. Methodology

these properties. This is also the reason for the well-known paradox that everyone knows
everyone else via a very low amount of intermediate persons. For example, on Facebook
everyone knows everyone else on average with three and a half hops [6].

Kronecker graphs [45] aim to realistically model networks with such properties. The
authors prove that Kronecker graphs fulfill several properties which are typical for natural
networks and furthermore provide empirical evidence that their method of generating
synthetic networks leads to networks which are very close to natural networks.

To define Kronecker graphs the Kronecker product has to be defined.

Definition 4.9 (Kronecker Product, Kronecker Power). The Kronecker product of two
matrices A and B with the dimensions mA × nA and mB × nB is defined as

A⊗B =

a1,1B a1,2B . . . a1,nAB
a2,1B a2,2B . . . a2,nAB

...
...

amA,1B amA,2B . . . amA,nAB

where the resulting matrix is a mAmB × nAnB matrix.

The Kronecker power Ak is defined as

Ak = A⊗ · · · ⊗A︸ ︷︷ ︸
k-times

with the result being a mk
A × nkA matrix.

A Kronecker graph is now defined as the Kronecker power of the adjacency matrix of
some initiator graph. Usually the initiator graph is very small, i.e., the adjacency matrix
of the initiator graph has the size 2× 2 or 3× 3. Since the Kronecker power observes
an exponential growth in the matrix size, the generated graphs become large very fast.
Since adjacency matrices are 0/1-matrices, all Kronecker powers lead to 0/1-matrices as
well, and therefore induce exactly one graph for each power.

In order to use this technique to define whole families of graphs one replaces the adjacency
matrix with a probability matrix A such that Ak has the size |V | × |V |. The number in
cell i, j represents the probability that the edge 〈i, j〉 exists in the graph. It is important
to allow self-edges in these matrices, otherwise whole blocks in higher powers become
zero, therefore ruling out many edges that should be possible to be generated. Later, a
method will be introduced to get rid of self-edges in the final graph. The whole matrix
represents a set of independent Bernoulli distributions and therefore represents in whole
a Poisson binomial distribution. A visualization of Kronecker powers on probability
matrices can be seen in Figure 4.3.

To explain the implemented algorithm to generate such graphs, the following properties
are required.

37

4. Simulation

Figure 4.3: A visualization of the Kronecker process for A = (0.57, 0.19; 0.19, 0.05): top
left A1, top right A2, bottom left A3, bottom right A4. The colors are renormalized in
each step such that the highest probability is bright and the lowest probability is dark.
Furthermore, the color scale is logarithmic to make the small probabilities in higher
powers more visible. The matrix A is the same as used by the Graph 500 benchmark [35].

38

4.1. Methodology

Lemma 4.1.
∑

(A ⊗ B) = (
∑
A)(

∑
B), where

∑
X means the sum of all elements

in X.

Proof. That this holds can be seen if the sum over the Kronecker product is written
explicitly. The definition of the Kronecker product is

A⊗B =

a1,1B a1,2B . . . a1,nAB
a2,1B a2,2B . . . a2,nAB

...
...

amA,1B amA,2B . . . amA,nAB

which leads to∑

(A⊗B) = (
∑

a1,1B) + (
∑

a1,2B) + · · ·+ (
∑

amA,nAB)

= a1,1(
∑

B) + a1,2(
∑

B) + · · ·+ amA,nA(
∑

B)

= (a1,1 + a1,2 + · · ·+ amA,nA)(
∑

B)

= (
∑

A)(
∑

B)

Theorem 4.2. The expected number of edges in a Kronecker graph Ak is E(|E|) =
(
∑
A)k.

Proof. By definition |E| ∼ PB(Ak), with the expected value E(|E|) =
∑

(Ak). That this
is equal to (

∑
A)k is an immediate consequence of Lemma 4.1.

An exact implementation of a sampling algorithm for Kronecker graphs would have to
explicitly calculate Ak and then sample the Bernoulli distribution for each cell. The last
step alone takes O(|V |2) steps and space, and is therefore way too inefficient to generate
large graphs.

For this reason the authors propose a more efficient sampling algorithm in their paper [45,
Section 3.6]. This algorithm can be seen in Algorithm 4.3.

The basic idea is that one first samples the number of edges using a Poisson distribu-
tion, which can be done without calculating Ak due to Theorem 4.2, i.e., just sample
from P((

∑
A)k).

With the number of edges set, it remains to decide between which nodes these edges are
going to be placed. This will be decided independently for each edge. The location of
each edge is determined by a recursive descent through the initiator matrix.

For simplicity assume that the initiator matrix A is a 2× 2 matrix. In the first step a
random cell of A is chosen, of course proportionally to the probabilities of each cell. This
first choice determines the quadrant the final edge is going to end up in the adjacency
matrix.

39

4. Simulation

Require: an initiator matrix A with dimensions n× n and the parameter k
Ensure: created a Kronecker graph without double-edges and self-edges
AΣ := inclusive prefix sum of A
edges := sample from P((

∑
A)k)

for all 0 ≤ e < edges do
cell := 0
granularity := 1
for all 0 ≤ i < k do

value := sample from U(0,maxAΣ)
index := find index of first element not less than value in AΣ {binary search}
cell := cell + index ∗ granularity
granularity := granularity ∗ n ∗ n

end for
〈u, v〉 = 〈cell div nk, cell mod nk〉
emit edge 〈u, v〉 if it does not exist yet and u 6= v; redo full iteration otherwise

end for

Algorithm 4.3: Fast Sampling of Kronecker Graphs [45, Section 3.6]

Due the recursive nature of Kronecker graphs, the chosen quadrant itself is split again
into four quadrants with the probabilities of A. Therefore, again a random cell of A is
chosen to determine the quadrant in the quadrant where the edge is going to end up.

This process repeats k times. After these k times, the final cell in the adjacency matrix
for the edge has been determined by repeatedly choosing a quadrant. The edge is going
to be the one corresponding to the final cell. If at this point it is detected that this would
lead to a self-edge or a double-edge the process is repeated.

This process can be compared with zooming into a fractal, with the exception that the
process stops after k steps. The assumption of a 2× 2 initiator matrix was made to be
able to use the word quadrant. If the initiator matrix is a 3× 3 matrix one would have
to talk about ninths, 4× 4 would correspond to sixteenths, and so on.

While this method does not exactly yield Kronecker graphs, the authors claim that graphs
generated using this method are essentially indistinguishable from real Kronecker graphs.
Additionally, this algorithm is a direct generalization of the R-MAT algorithm [14] to
generate random graphs.

The number of edges in the resulting graph is directly encoded in the initiator matrix A,
as can be seen in the assignment to edges in the sampling algorithm. This especially
means that if

∑
A = 1 the number of edges for any power of A stays 1. Therefore, it is

recommended to define the initiator matrix such that
∑
A = 1 and then multiply it by

some constant to control the expected number of edges.

Kronecker graphs, especially R-MAT generated graphs, have been used by various
researchers to analyze their algorithms [13, 21, 49, 50] and are used by the Graph 500

40

4.1. Methodology

benchmark [35].

4.1.2 Implemented Criteria

The simulation tool implements all criteria defined in Chapter 3 in such a way that
they can be mixed and matched arbitrarily at runtime. This allows an analysis of all
interesting combinations of criteria. While this feature incurs a runtime overhead, this
does not matter for the purposes of a simulation because all measures taken from the
simulation are run-time oblivious.

This is achieved by implementing an algorithm scheme similar to the one presented in
Algorithm 3.2. The only change made to this scheme is that it is extended with callbacks
that have to be called to feed the implementations of the criteria with information to
allow them to perform their calculations. Each criteria is solely defined by the following
interface:2

initialize(graph, starting node) Called once to initialize the criteria to be prepared
to solve the single-source shortest path problem for the given graph and starting
node.

changed predecessor(node, predecessor, distance) Called when a node gets a new
predecessor, and therefore a new distance, assigned.

relaxed node(node) Called when a node has been moved from the fringe state into
the settled state.

relaxable nodes() Called at the start of each phase to get a list of the nodes that can
be settled in the current phase. Of course it is no error if multiple criteria propose
the same node.

This usage of this interface can be seen in in Algorithm 4.4. Basically, this algorithm is
an implementation of Dijkstra’s algorithm with the exception that Dijkstra’s criteria is
not used to decide the nodes to be settled. Instead, the callbacks of all passed criteria
are called to build a set of nodes to be settled in each phase. Whenever the tentative
distance of a node changes, or whenever a node is being settled, this is communicated to
all criteria via the interface as well.

4.1.3 Statistical Methods

Each measurement was repeated 100 times with a different seed, i.e., a different randomly
generated graph. The simulation tool outputs a single line for each phase. Each line
consists of information about the graph generation and results of the simulation. Fields
that are irrelevant, for example „uniform node count“ if „position algorithm“ is set to
„poisson,“ are set to the special null-value NA. A list of all fields follows:

2See criteria.cpp for details.

41

4. Simulation

Require: a directed graph G = 〈V,E〉, a starting node s, and a set of criteria Φ
Ensure: ∀v ∈ V : tent[v] = dist(v) if Φ is sound and complete
for all ϕ ∈ Φ do
ϕ.initialize(G, s)
ϕ.changed predecessor(s, null, 0)

end for
for all v ∈ V do

tent[v] :=∞
end for
tent[s] := 0
loop

todo :=
⋃
ϕ∈Φ ϕ.relaxable nodes()

if todo is empty then
break

end if
for all v ∈ todo do
for all 〈v, v′〉 ∈ outgoing(v) do
if tent[v] + cost(v, v′) < tent[v′] then

tent[v′] := tent[v] + cost(v, v′)
for all ϕ ∈ Φ do
ϕ.changed predecessor(v′, v, tent[v′])

end for
end if

end for
for all ϕ ∈ Φ do
ϕ.relaxed node(v)

end for
end for

end loop

Algorithm 4.4: „Dijkstra’s algorithm“ utilizing a generalized interface

42

4.1. Methodology

Position algorithm ∈ {poisson,uniform}: The algorithm that was used to sample the
positions of all nodes.

Poisson minimum distance ∈ R≥0: The minimum distance between two sam-
pled nodes.

Poisson maximum reject ∈ N: The maximum number of retries for the fast
Poisson sampling algorithm.

Uniform node count ∈ N: The number of uniformly sampled nodes.

Edge algorithm ∈ {planar,uniform, layered, kronecker}: The algorithm that was used
to sample the edges between the nodes.

Planar edge probability ∈ [0, 1]: The probability of the existence of each edge
in planar graphs.

Uniform edge probability ∈ [0, 1]: The probability of the existence of each edge
in uniformly random graphs.

Layered edge probability ∈ [0, 1]: The probability of the existence of each edge
in layered graphs.

Layer count ∈ N≥1: The number of layers in a layered graph.
Kronecker initiator matrix ∈ Rx,x≥0 ;x ∈ N≥1: The initiator matrix A for Kro-

necker graphs.
Kronecker power ∈ N≥1: The Kronecker power k.

Cost algorithm ∈ {uniform, one, euclidean}: The algorithm that was used to sample
edge costs.

Graph file (path on the file system): If the graph was loaded from an existing file, this
field contains the path of the file.

Algorithm (list of criteria): The combination of criteria that was simulated.

Seed ∈ Z: The seed used for the random number generator for graph generation.

Node count ∈ N: The number of nodes in the generated graph.

Phase ∈ N: The phase this output line represents.

Relaxed ∈ N: The number of nodes that moved from fringe to settled in this phase.

Due to the size of the graphs, the high repetition count, and the number of criteria these
files reach sizes which are too large to be processed by simple R-scripts [60]. To solve
this problem the files are first pre-aggregated using a small tool written in Rust [61]3:

3Rust is a programming language primarily developed by Mozilla Corp. with the aim to offer a safe
alternative for „systems programming,“ i.e., the niche that C and C++ are currently dominating. Rust
was chosen to implement this aggregation tool just out of curiosity.

43

4. Simulation

As described above the file contains one line for each phase for each thread. These
leads to multiple gigabytes of data. The Rust tool aggregates these lines along the
phase-dimension, i.e., all phases that belong to a single run are aggregated into a single
line. This reduces the amount of data to multiple megabytes. These aggregated files
are then fed into an R-script which groups by criteria and calculates the mean of the
repeated runs.

This data is then used to apply a curve-fitting algorithm to find a matching growth
functions and to plot the data as seen in the next section. Each result was fitted either
using the function a + b · |V |c with the three parameters a, b and c, or the function
a+ b · log2 |V | with the two parameters a and b. In the end, it was always very easy to
identify the correct of the two functions as the p-values of the parameters of the worse
fit were multiple orders of magnitudes lower than the p-values of the better fit (small
p-values are evidence that the fit is bad). For example for Crauser’s In criteria the
logarithmic fit lead to p-values of 2 ·10−7 and 3 ·10−14 for a and b, i.e., an extremely small
probability that the fit is good. While the polynomial fit lead to p-values of 0.92, 0.58,
and 0.002 for a, b, and c.

4.2 Results
All algorithms as defined in the previous chapter are being simulated with the addition
of some combinations, i.e., 1. Crauser’s Out in the static variation, 2. Crauser’s In
in the static variation, 3. Crauser’s Inout in the static variation, 4. Crauser’s Out in
the dynamic variation, 5. Crauser’s In in the dynamic variation, 6. Crauser’s Inout in
the dynamic variation, 7. the heuristic (straight-line distance) with Crauser’s Inout in
the dynamic variation, 8. Träff’s Bridge Criteria with Crauser’s Inout in the dynamic
variation, and 9. the oracle. The heuristic was only simulated on graphs with Euclidean
edge costs because that is the only class of graphs considered in this thesis where a
sensible admissible heuristic exists.

Each algorithm, except the heuristic, was simulated on the following eight graph types:

• Uniformly distributed edge costs on 1. bipartite, 2. Kronecker, and 3. uniform
graphs.

• Euclidean distance edge costs on 1. bipartite and 2. uniform graphs. Since nodes in
Kronecker graphs are used to model things like social networks, citation networks,
or world wide web links, they do not have a natural spatial dimension. For this
reason there is no notion of an Euclidean distance. Of course it would be possible
to just assign random positions in the plane to the nodes of a Kronecker graph but
the immediate question would be what this is supposed to mean semantically, i.e.,
this would be no different from assigning random edge costs, except that a strange
distribution of the edge costs would emerge.

• Constant 1 edge costs on 1. bipartite, 2. Kronecker, and 3. uniform graphs.

44

4.2. Results

For Kronecker graphs the initiator matrix (0.57, 0.19; 0.19, 0.05) was used, which is the
same that is used by the Graph 500 benchmark.

The results on graphs with uniformly distributed edge costs can be seen in Figure 4.4.
There is no difference between bipartite and uniform graphs, while Kronecker graphs have
fewer phases on average. Furthermore, one can observe that Crauser’s static Inout leads
to less phases than Crauser’s dynamic In as well as Crauser’s dynamic Out criteria. Only
Crauser’s dynamic Inout beats the static one, with the exception of Kronecker graphs
where Crauser’s dynamic In is already slightly better than Crauser’s static Inout. Träff’s
Bridge criteria leads to a minuscule improvement over Crauser’s dynamic Inout criteria.
Notable is that all criteria observe a polynomial growth of the number of phases (with
the exponent being less than 1, i.e., sublinear), while the Oracle’s growth is logarithmic.

Figure 4.5 depicts the results for graphs with Euclidean distances between nodes. For the
aforementioned reason, Kronecker graphs are missing in these results. The observations
are similar to the ones with uniformly distributed edges, except that there is a notable
difference in the number of phases for bipartite and uniform graphs. The heuristic is
not able to improve Crauser’s dynamic Inout criteria by any significant margin. Again,
all Criteria observe polynomial growth in the number of phases, while the Oracle is
logarithmic in the number of phases.

Using graphs with constant edge costs degenerates the single-source shortest path problem
to a breadth-first search problem. This can be clearly observed in the simulation because
all criteria are already optimal with respect to the oracle. This can be seen in Figure 4.6.
Note, that all other criteria have been removed from the graph because they would
perfectly overlap with the oracle. This leads to the conclusion that already the weakest
of all criteria, namely Crauser’s static Out criteria, is enough to solve the single-source
shortest path problem on these graphs optimally with respect to the oracle. Also, the
number of phases is exceptionally low, e.g., there are only 8 phases for uniform graphs
with around 80000 nodes. For Kronecker graphs of this size there are only 5 phases.

The results of the curve-fitting are summarized in Table 4.1. All graphs use the fitted
functions as lines, while they display the real data as points. There are almost no proven
bounds on the number of phases. Crauser et al. prove the bounds for the static Out and
Inout criteria on uniformly random graphs to be O(|V |1/2), and respectively O(|V |1/3),
which matches the empirical data. A notable observation is that the oracle only needs
O(log|V |) phases in all cases. This implies that there is still a considerable gap between
the theoretical optimum and the criteria utilized so far.

Furthermore, the Full USA graph from the Ninth DIMACS Implementation Challenge [24]
was analyzed. This graph is a distance graph of the street network4 of the USA. The graph
consists of 58 million edges connecting 24 million nodes. Crauser’s static Inout criteria
needed 308 thousand phases, while the dynamic Inout criteria finished in 231 thousand
phases. Notice how these numbers of phases are about a factor of 1500 higher than the

4The graph has many errors and cannot be used for real-world route planning but it is close enough
to be realistic.

45

4. Simulation

Edges Criteria Number of Phases for Edge Costs
Uniform Euclidean One

Bipartite

Crauser’s Out (Static) 2.51 · |V |0.5 3.69 · |V |0.24 0.4 · log2(|V |)
Crauser’s In (Static) 2.27 · |V |0.5 3.25 · |V |0.24 0.4 · log2(|V |)
Crauser’s Out (Dynamic) 1.7 · |V |0.49 3.17 · |V |0.23 0.4 · log2(|V |)
Crauser’s In (Dynamic) 1.52 · |V |0.45 4.16 · |V |0.2 0.4 · log2(|V |)
Crauser’s Inout (Static) 3.97 · |V |0.34 5.58 · |V |0.17 0.4 · log2(|V |)
Crauser’s Inout (Dynamic) 3.91 · |V |0.29 6.82 · |V |0.14 0.4 · log2(|V |)
Heuristic† N/A 7.02 · |V |0.14 N/A
Träff’s Bridge† 4.27 · |V |0.28 8.11 · |V |0.13 0.4 · log2(|V |)
Oracle 1.71 · log2(|V |) 0.98 · log2(|V |) 0.4 · log2(|V |)

Kronecker

Crauser’s Out (Static) 1.79 · |V |0.51 N/A 0.11 · log2(|V |)
Crauser’s In (Static) 2.17 · |V |0.43 N/A 0.11 · log2(|V |)
Crauser’s Out (Dynamic) 1.68 · |V |0.42 N/A 0.11 · log2(|V |)
Crauser’s In (Dynamic) 3.01 · |V |0.32 N/A 0.11 · log2(|V |)
Crauser’s Inout (Static) 3.49 · |V |0.31 N/A 0.11 · log2(|V |)
Crauser’s Inout (Dynamic) 4.03 · |V |0.24 N/A 0.11 · log2(|V |)
Heuristic† N/A N/A N/A
Träff’s Bridge† 4.17 · |V |0.23 N/A 0.11 · log2(|V |)
Oracle 1.17 · log2(|V |) N/A 0.11 · log2(|V |)

Uniform

Crauser’s Out (Static) 2.48 · |V |0.5 3.16 · |V |0.34 0.4 · log2(|V |)
Crauser’s In (Static) 2.28 · |V |0.5 2.78 · |V |0.34 0.4 · log2(|V |)
Crauser’s Out (Dynamic) 1.66 · |V |0.5 2.41 · |V |0.33 0.4 · log2(|V |)
Crauser’s In (Dynamic) 1.43 · |V |0.46 2.26 · |V |0.3 0.4 · log2(|V |)
Crauser’s Inout (Static) 3.97 · |V |0.34 5.19 · |V |0.21 0.4 · log2(|V |)
Crauser’s Inout (Dynamic) 3.75 · |V |0.29 6.09 · |V |0.17 0.4 · log2(|V |)
Heuristic† N/A 6.96 · |V |0.16 N/A
Träff’s Bridge† 4.19 · |V |0.28 7.19 · |V |0.15 0.4 · log2(|V |)
Oracle 1.69 · log2(|V |) 1.06 · log2(|V |) 0.4 · log2(|V |)

Table 4.1: Empirical number of phases for all simulated types of graphs. Each dataset
was fitted using the function a+ b · |V |c or a+ b · log2(|V |). The term a was left for clarity.
Criteria marked with a dagger (†) are combined with Crauser’s Inout (Dynamic) criteria.

expected number of phases for uniform graphs with Euclidean distances. Although it is
surprising that this disparity is so high, some disparity is to be expected since a street
network has a vastly different structure from a uniformly random graph.

Concluding, one can observe that Crauser’s original Inout criteria is already a very
strong criteria. Remarkably, in most cases the Inout criteria is already stronger than the
dynamic In as well as the dynamic Out criteria. Only the dynamic Inout criteria improves
upon the static variant. Since, as will be seen in the next chapter, the dynamic criteria
incur an expensive overhead they are not able to beat the static criteria in practice even
though the number of phases is smaller. If one works with graphs without edge weights,
there is absolutely no need to implement any powerful criteria. Plain Crauser’s Out
criteria is already enough to solve the single-source shortest path problem on such graphs
in the optimal number of phases.

46

4.2. Results

B
ipartite

K
ronecker

U
niform

0 20000 40000 60000 80000

0

200

400

600

0

200

400

600

0

200

400

600

Number of Nodes

N
um

be
r
of

Ph
as
es

Criteria
Crauser’s Out (Static)
Crauser’s In (Static)
Crauser’s Out (Dynamic)
Crauser’s In (Dynamic)
Crauser’s Inout (Static)
Crauser’s Inout (Dynamic)
Träff’s Bridge†
Oracle

Figure 4.4: Average number of phases of various criteria on various types of graphs with
uniformly distributed edge costs. Criteria marked with a dagger (†) are combined with
Crauser’s Inout (Dynamic) criteria.

47

4. Simulation

B
ipartite

U
niform

0 20000 40000 60000 80000

0

50

100

0

50

100

Number of Nodes

N
um

be
r
of

Ph
as
es

Criteria
Crauser’s Out (Static)
Crauser’s In (Static)
Crauser’s Out (Dynamic)
Crauser’s In (Dynamic)
Crauser’s Inout (Static)
Crauser’s Inout (Dynamic)
Heuristic†
Träff’s Bridge†
Oracle

Figure 4.5: Average number of phases of various criteria on various types of graphs with
the Euclidean distance as edge costs. Criteria marked with a dagger (†) are combined
with Crauser’s Inout (Dynamic) criteria.

48

4.2. Results

B
ipartite

K
ronecker

U
niform

0 20000 40000 60000 80000

4

5

6

7

8

9

4

5

6

7

8

9

4

5

6

7

8

9

Number of Nodes

N
um

be
r
of

Ph
as
es

Criteria
Oracle

Figure 4.6: Average number of phases of the oracle on various types of graphs with the
constant edge cost of 1. Note that all other criteria have been omitted since their results
are the same as for the oracle.

49

CHAPTER 5
Implementation

This chapter gives an overview of how to decide the criteria introduced in Chapter 3
efficiently and furthermore provides some optimizations that can be implemented. This
is followed by a presentation of the results of benchmark runs on two shared memory
systems.

The criteria presented in this thesis have been implemented efficiently in a benchmarking
tool. The implementation of this benchmarking tool is available for the general public.1
The purpose of this implementation is to obtain real performance numbers for the systems
provided by the research group. The benchmarking tool performs multiple steps:

1. The command-line arguments are read and parsed: The command-line arguments
control the graph generation algorithm, the number of threads to be used, and
optionally if the results of the algorithm should be validated against a simple
implementation of Dijkstra’s algorithm. The criteria to be chosen is not controlled
by a command-line argument but by choosing the right executable, i.e., the build
process generates an executable for each combination of criteria that has been
measured. This is done this way due to performance reasons.

2. Spawn threads: The correct amount of threads is spawned. The threads are then
pinned to processing units to avoid any performance impact caused by the operating
system by sporadically rescheduling threads across CPUs.

3. Graph generation: Based on the command-line arguments supplied in the first step,
the graph is now generated in parallel, or read from an input file. This step often
takes a considerable amount of time, usually more than the single-source shortest
path algorithm itself.

1https://github.com/kaini/sssp-shm

51

https://github.com/kaini/sssp-shm

5. Implementation

4. The time measurement starts once all threads reach this point.

5. Algorithm execution: The chosen algorithm with the chosen criteria is now executed.

6. The time measurement ends.

7. Validation: If requested by the user, the results of the previously run algorithm are
validated against a plain implementation of Dijkstra’s algorithm.

5.1 Preliminaries
The tool is written in C++ and has been tested on Microsoft Windows, Linux, and
SunOS/Solaris systems. This section aims to give a brief overview of the memory model
as defined by C++ followed by a description of some basic data structures that are used
by the implementation of the algorithms later on.

5.1.1 Memory Model

This section gives an informal summary of the C++ memory model. For a detailed
definition of the C++ memory model one has to reference the current C++ standard [39].
This section is not concerned about how the C++ memory model maps to hardware but
is only concerned about describing the abstract model as defined by the standard.

On the highest level C++ is defined, unlike most modern programming languages, by
utilizing an addressable RAM. Each object2 has a non-zero size and an unique address in
this memory. It suffices to say that the language standard then defines the semantics of
aliasing and address arithmetic as one would expect. These definitions are enough to
reason about memory in sequential programs.

Unfortunately, programs with multiple threads make things much more complicated
because there needs to be a notion of synchronizing memory accesses between these
threads to allow communication. C++ opted to choose a highly fine-grained model based
on so-called atomics. Atomics are nothing more than objects with special memory access
operations. It is forbidden to access non-atomics by multiple threads at once.

All atomic objects have a load, store, exchange, and compare-and-exchange operation.
Load and store are self-explanatory. Exchange atomically returns the current value of
the object and replaces it with a new value. Compare-and-exchange atomically performs
an exchange if the comparison with a given reference object succeeds. Numerical atomic
objects additionally have atomic fetch-and-add, fetch-and-sub, fetch-and-and, fetch-and-
or, fetch-and-xor, increment, and decrement operations. It is allowed to perform all these
operations at the same time from any amount of threads.

Having synchronized operations on single atomic variables is not enough to efficiently
write multi-threaded programs. Therefore, there are also rules that govern how memory

2„Object“ in this context is not to be confused with the notion of object from object-oriented
programming. Here it just means a „thing“ in memory.

52

5.1. Preliminaries

writes, including to non-atomic objects, become visible for other threads relatively seen
to atomic memory accesses. This act of „memory writes becoming visible“ is called
happened-before relationship, i.e., if a thread can see something that another thread has
done, the actions of the second thread happened-before the lookup of the first thread.
The rules of how happened-before relations are formed form the core of the C++ memory
model. The way to control these relations is that each of the aforementioned atomic
operations takes a memory ordering as argument that governs which memory accesses
are going to be visible, i.e., defines the happened-before relations. The for this thesis
relevant memory orderings are:

relaxed No memory accesses are made visible.

acquire All writes by other threads before accessing the same atomic variable using a
release ordering are made visible.

release All writes before the release ordered access are going to be visible to other
threads that access the same atomic variable using an acquire ordering.

acq rel Combined acquire and release.

There are more memory orderings, e.g., a sequential consistent one, but they are not
going to be used in this thesis. A nice overview of all memory orderings can be found in
the cppreference wiki [19].

The most important concept in this context is the so-called acquire-release ordering:
Whenever a thread accesses an atomic variable using an acquire memory ordering, all
memory writes by other threads that happened before an access to the same atomic
variable using the release ordering become visible to the thread that issued the access
with the acquire memory ordering.

Additionally, there is the concept of fences. A fence is an operation that takes a memory
ordering just like atomics, and therefore has the same synchronization effects as atomics.
The only difference to atomics is that there is no underlying object or memory access.
Fences exist solely to establish order.

Note that using volatile objects for cross-thread synchronization is almost always wrong
and should be avoided at all cost. Unfortunately, using them on x86/AMD64 systems
often seems to work but this behavior is not guaranteed by the C++ memory model by
any means.

5.1.2 Inbox/Relaxed Vector

An inbox is a data structure with the following operations:

push back O(1): Inserts an item at the end of the inbox.

53

5. Implementation

for each O(n): Iterates over all items in the inbox.

clear O(1): Removes all items from the inbox.

size O(1): Returns the number of items in the inbox.

Furthermore, the following constraints have to be considered when using an inbox:

• Any amount of threads is allowed to execute push back in parallel but while doing
so no other operation of the inbox may be executed.

• Only a designated thread, the so-called owner of the inbox, may access for each,
clear, and size during a period of quiescence with respect to push back.

• This data structure does not guarantee any memory synchronization at all, i.e.,
before the owner can read the items in the inbox, an appropriate synchronizing
operation has to be executed manually.

The inbox is implemented by using a self-implemented relaxed vector.3 The vector
consists of an array of memory blocks data, i.e., an array of atomic pointers, and an
atomic index at which designates the next free slot in the memory blocks. The chunks
themselves are not atomic, only the pointers to them.

At initialization at := 0 and data := [null, ...,null]. The maximum number of blocks, and
therefore the maximum number of elements in the relaxed vector, is fixed at initialization
time.

The push back operation can be seen in Algorithm 5.1. The idea is that at is atomically
incremented by one to obtain the slot for the element to be inserted. Then the function
checks if the block for the given slot is already allocated. If so, the element is just written
there. If not, the thread allocates the whole memory block and tries to compare-and-swap
it into the array of block-pointers. If this compare-and-swap does not succeed, another
thread allocated the block in question in the meantime. This means that the current
thread has to free the just allocated memory and just uses the in-the-meantime allocated
block for insertion. Notice how there are only two relaxed atomic memory accesses in
the non-allocating case.

The for each function just iterates over all chunks and the elements in them up to at.
Since for each may only be called by the owner during a period where no other thread
accesses the relaxed vector, there is not much to take care of: A simple iteration over the
storage suffices. Similarly simple, size just returns at, and clear sets at := 0.

A simple alternative to this data structure would be a standard vector protected by a
mutex. There are two major issues with this approach though. First, a mutex slows

3See relaxed_vector.cpp for the implementation.

54

5.1. Preliminaries

Require: an element to insert e and the relaxed vector V
Ensure: e is inserted into V

index := V.at.fetch-and-add(1, relaxed)
chunk := index div chunk_size
position := index mod chunk_size
ptr := V.data[chunk].load(relaxed)
if ptr = null then

new_chunk := allocate memory for a chunk
if compare-and-exchange(relaxed) ptr in V.data[chunk] with new_chunk succeeds
then

ptr := new_chunk
else
free new_chunk
{the compare-and-exchange populated ptr with the correct pointer}

end if
end if
ptr [position] := e

Algorithm 5.1: The push back Operation of a Relaxed Vector

down the push back operation considerably if multiple threads have to push to the same
vector. Since this data structure is used for storing remote relaxations, a high throughput
is important. Second, a mutex incurs a memory fence, which additionally increases the
cost although the memory fence is not needed.

In the given implementation the only point of contention is V.at.fetch-and-add(1, relaxed),
since the fetch-and-add operation could be issued by multiple threads at the same time.
An approach to remedy this would be to fetch-and-add with a higher number than 1,
e.g., 16. This would mean that a thread reserves 16 elements at once and only has to
execute a new fetch-and-add once the 16 elements are used. But this approach incurs
additional implementation complexity: Since a thread might not use all 16 elements
there are holes in the array. This means that the for each operation has to know which
elements are used and which are not used, for example by utilizing an additional flag per
element. Furthermore, each thread needs a local counter to remember its index in the
inbox. Such thread-local counters are not needed in the given implementation.

5.1.3 Collective Operations

The C++ threads are manually grouped together in thread groups. Each thread group
has access to some shared data, as described in this section, which is used to implement
collective operations.

Collective operations are functions that can be called in a thread group with the restriction
that all threads participating in a thread group have to issue the same sequence of collective

55

5. Implementation

Require: shared variables in the thread group: generation, waiting
Ensure: all threads continue execution once they all entered the barrier
fence(release)
current_generation := generation.load(relaxed)
current_waiting := waiting.fetch-and-add(1, relaxed) + 1
if current_waiting = thread_count then

generation.store(!current_generation, relaxed)
waiting.fetch-and-sub(thread_count, relaxed)

else
while generation = current_generation do
yield {busy wait}

end while
end if
fence(acquire)

Algorithm 5.2: Barrier

operations. There is a hand full of collective operations implemented.4

Barrier

A barrier stops execution of all threads that invoked the barrier, until all threads in the
thread group reach the barrier. At this point in time all threads in the thread group are
allowed to continue execution. Optionally, the barrier can also emit memory fences to
make memory writes from before the barrier visible to all threads after the barrier.

The implementation used is inspired by Boost’s [9] implementation of barriers. Unfor-
tunately, Boost’s implementation uses expensive primitives, and can therefore not be
used for the purposes of this thesis. The custom implementation for this thesis uses only
relaxed accesses to atomic variables.

The implementation can be seen in Algorithm 5.2. It assumes that the thread group
has access to two shared variables: generation, an atomic boolean value, and waiting,
an atomic integer. The basic idea of this barrier is that waiting is counted up until the
thread count is reached. Once this is the case, a single thread, namely the last thread
that incremented waiting, flips the value of generation. This is the signal for all other
threads to continue execution.

The barrier uses C++’s std::this_thread::yield to inform the operating system
about the busy-waiting loop, which might allow the operating system scheduler to de-
schedule the current thread to allow other threads to make progress. Depending on the
operating system, the number of threads, and the CPU topology this might or might not
have an effect on the performance.

4See collective_functions.hpp for the implementation.

56

5.1. Preliminaries

Require: an operation ⊗, a starting value s, and a contribution for the current thread c;
shared variables in the thread group: into

Ensure: into contains the result of the reduce operation
into.store(s, relaxed)
barrier
current_value := into.load(relaxed)
wanted_value := c⊗ current_value
while wanted_value 6= current_value ∧

into.compare-and-exchange(current_value, wanted_value, relaxed)
does not succeed do

{the compare-and-exchange refreshed the value in current_value}
wanted_value := c⊗ current_value

end while
barrier

Algorithm 5.3: Reduce

It would have been very interesting to implement a barrier by using the special x86
instructions MONITOR and MWAIT. Unfortunately, these instructions are only allowed to
be executed in privileged mode, i.e., in kernel space, and are therefore of no use for the
benchmarking tool.

Reduce

Given t participants, a starting value s, a value for each thread vi, and a commutative
and associative operation ⊗, then a reduce operation calculates

v = s⊗
t⊗
i=1

vi

such that this result is available to each thread participating in the reduce operation.
A common example would be that ⊗ = min to find the minimum of a value across all
threads.

Algorithm 5.3 shows the used implementation of this algorithm. The algorithm assumes
access to a shared atomic variable into that will be used to store the result. The basic
idea of this implementation is that before the first barrier it is ensured that the starting
value is in into. After that each thread tries to add its own contribution using a compare-
and-exchange operation until it succeeds. Once all threads have added their contribution,
they may continue execution.

Performance measurements of the whole algorithms have shown that the performance
impact of the reduce operation is completely negligible compared to the whole runtime.
Therefore, although more efficient reduce algorithms exist, this simple and straightforward
implementation was chosen.

57

5. Implementation

Require: a function fn to be executed once; shared variables in the thread group: do
Ensure: once a thread returns from this function, fn has been executed by some thread

do.store(1, relaxed)
barrier
if do.exchange(0, relaxed) then
call fn

end if
barrier

Algorithm 5.4: Single

Single

The single operation is a collective operation that ensures that the given function is only
executed by exactly one thread, but does not allow other threads to continue until the
given function has been executed. This operation comes in handy for initialization work.

The implementation, seen in Algorithm 5.4, is quite simple: A shared atomic boolean do
is used to decide if the current thread is supposed to execute the function or not. Each
thread exchanges the value with false. The thread that manages to exchange the initially
stored true value is the one that has to execute the passed function.

5.1.4 Non-Collective Operations

Non-collective operations can be called by any thread in the thread group at any point
in time, without participation of the other threads. Of course, it is allowed that multiple
threads call these operations at the same time.

Memory Allocations

There are three allocators used in the benchmarking tool. First and foremost the system
allocator, i.e., the default behavior of C++’s new-operation. This allocator is avoided and
only used in performance oblivious initialization code, and to implement the more refined
allocators. Nevertheless, to optimize this allocator Intel Threading Building Blocks’ [38]
allocator was used instead of the default system allocator on platforms that are supported
by it.

For memory that has to be shared between multiple threads, hwloc’s [58] memory allocator
is used. This is a special NUMA-aware allocator that can be used to tune allocations in
such a way that they have the most efficient layout with respect to the memory latencies
by the various threads. All memory allocations in performance sensitive parts of the
applications were carefully crafted in such a way that they use all advantages that hwloc
can offer.

Lastly, there are a lot of data structures that do not need to be shared between threads.
For the allocations for these data structures a special thread-local memory allocator

58

5.2. Decision Procedures

Require: a shared atomic number a and an argument b
Ensure: a = min(a, b)
a′ = a.load(relaxed)
while b < a′ ∧

a.compare-and-exchange(a′, b, relaxed) does not succeed do
{the compare-and-exchange operation refreshed the value in a′}

end while

Algorithm 5.5: Atomic Min

was implemented. This memory allocator uses the system memory allocator to, rarely,
allocate large chunks of memory. These chunks will then be managed using buddy
memory allocation [44, Chapter 2.5]. Since this allocator avoids the system allocator
most of the times, it does not need any system wide lock and has a very low overhead.
For allocation heavy data structures, for example for Fibonacci heaps, this allocator even
improves the performance in single-threaded applications.

Atomic Min

The atomic min operation is a simple operation to atomically store the minimum of an
atomic variable a and a non-atomic argument b in a. This can be achieved by a simple
compare-and-exchange operation, as can be seen in Algorithm 5.5. As with the reduce
operation, the performance of this operation is not relevant for the overall performance
of the algorithms, and therefore this simple implementation was chosen.

5.2 Decision Procedures
This section aims to give an overview of how each of the criteria can be decided. This
will be done by providing an algorithm with placeholders that will be filled in with the
decision procedure by each criteria. Algorithm 5.6 shows this algorithm scheme. The
placeholders are marked with circled numbers.

In all implementations of the decision procedures Fibonacci heaps [32] are used as priority
queue whenever one is needed. Pairing heaps [31] were tried as well, unfortunately it
turned out that they perform worse than Fibonacci heaps. Both heap implementations
are provided by the Boost library [9]. Fibonacci heaps are an allocation intensive data
structure but since the tool implements a custom thread-local allocator, as described in
Section 5.1.4, this does not matter from a performance perspective. In principle, there
are many other priority queue implementations available as well but most of them lack
support for the decrease-key operation, an operation that allows to update the priority
of an item already in the queue, which is required for efficient implementations of these
decision procedures. This is also an intuitive explanation why many heap implementations
do not reach the performance of Fibonacci heaps for this use-case: Since the decrease-key
operation will be invoked many times, about O(|E|) times, it is important that this

59

5. Implementation

Require: a directed graph G = 〈V,E〉 and a starting node s
Ensure: all reachable nodes are correctly settled

1 {initialize the priority queues}
add s to the priority queues
while priority queues are not empty {iterations of this loop are called phases} do

todo := ∅
while 2 {condition to find nodes to be settled} do
insert node to be settled into todo
remove the node from all priority queues

end while
for n ∈ todo do
settle n
update priority queue entries for the destinations of outgoing(n) if required

end for
3 {additional bookkeeping if required}

end while

Algorithm 5.6: Algorithm Scheme for Deciding the Criteria

particular operation is very cheap. The performance of the other operations, which are
invoked about O(|V |) times, does not matter too much. Furthermore, the size of the
priority queue is bounded by O(|V |).

All these decision procedures can be implemented by not using any priority queues at all.
It is always possible to just store all nodes in F in a simple array and iterate over all
of them, naïvely checking the criteria as they are defined in Chapter 3. This has been
implemented in the benchmark as well, and as will be seen in Section 5.7, is faster than
using priority queues.

A description of the decision procedure for each criteria follows. Note that the circled
numbers, 1 , 2 , and 3 , reference to the placeholders in Algorithm 5.6.

5.2.1 Dijkstra’s Algorithm

This summarizes the usual implementation of Dijkstra’s algorithm.

1 To implement Dijkstra’s algorithm, a single priority queue ordered by the tentative
distance of each node suffices. The smallest tentative distance has to be at the tip
of the priority queue.

2 The only node to be settled in each phase is the smallest node in the priority queue.

3 No additional bookkeeping required.

60

5.2. Decision Procedures

5.2.2 Crauser’s Out Criteria

To decide Crauser’s Out criteria, it is assumed that each node knows its cheapest outgoing
edge. The performance impact of this requirement will be discussed at a later point in
time.

1 To decide Crauser’s Out criteria, two priority queues are required. The first one is
the same as for Dijkstra’s algorithm, i.e., ordered by the tentative distance of each
node, and will be called T . The second one is a priority queue O ordered by the
tentative distance plus the cheapest outgoing edge cost for each node.

2 To find the nodes to be settled, one evaluates T.head ≤ O.head. As long as this
evaluates to true, the head of T can be added to the set of nodes to be settled and
removed from all priority queues.

3 No additional bookkeeping is required for the static variation. The dynamic variant
needs to update the cheapest outgoing edge potentially for each node. To achieve
this, each non-settled node is considered. If the destination of the currently cheapest
edge is settled, a new cheapest edge is looked for. This can be achieved in three
different ways:

One, a simple linear scan through the outgoing edges of each node can be performed
to find the new cheapest outgoing edge. This adds a per-phase overhead of
O(|outgoing(n)|) for each such node. In the worst case this sums up to O(|E|). In
practice this method turns out to be the most efficient and was implemented in the
benchmark.

Two, in a preprocessing phase the array of outgoing edges for each node is heapified.
This amounts to an preprocessing overhead of O(|E|). Now, instead of a linear
scan, one can use find-min to find the new cheapest edge. Note however, that
multiple calls to find-min may be required if multiple neighbors of the node in
question were settled. A single find-min adds a per-phase per-node overhead of
O(log|outgoing(n)|). In the worst case find-min has to be called outgoing(n) times.
In total this sums up to about O(|V | log|E|), not assuming the worst-case.

Three, in a preprocessing phase the array of outgoing edges for each node is
sorted. This amounts to an preprocessing overhead of O(|E| log|E|). Whenever the
destination of the head of this sorted list is settled, it is removed. This is possible
in O(1) time. Note however, that similarly to the second approach this step might
have to be repeated. This way, the head of the sorted list is always the cheapest
outgoing edge. In total this sums up, again not assuming the worst case, to O(|V |)
time overhead per phase.

The described method of deciding the static variation of this criteria was already proposed
as it is here by Crauser et al.

61

5. Implementation

5.2.3 Crauser’s In Criteria

This criteria assumes that each node knows its cheapest incoming edge. The dynamic
variation even assumes that each node knows all its incoming edges.

1 To decide this criteria, similarly to the Out criteria, two priority queues are
needed. T is a priority queue ordered by the tentative distance of each node, exactly
as it is used in Dijkstra’s algorithm. I is a priority queue ordered by the tentative
distance minus the cheapest incoming edge.

2 To find nodes to be settled one evaluates I.head ≤ T.head. As long as this evaluates
to true, the head of I can be added to the set of nodes to be settled and removed
from all priority queues.

3 Completely analogous to Crauser’s Out criteria, except that one has to work with
the incoming edges instead of the outgoing edges, i.e., the initialization cost and
per-phase overhead is O(1) and O(|E|) for not pre-sorting the incoming edges,
O(|E|) and O(|V | log|E|) for pre-heapifing the incoming edges, and O(|E| log|E|)
and O(|V |) for pre-sorting the incoming edges.

Again, for the static variant, Crauser et al. did already propose this method of deciding
the criteria.

5.2.4 Heuristic

This criteria assumes that each node additionally knows its incoming edges.

Each node v has to maintain a list of its predecessors sorted by h(p)+cost(p, v). Whenever
a node is settled, each successor s has to be considered: While the minimum of the sorted
list of predecessors of s settled, it has to be removed from this list. Therefore, after this
step, the list of predecessors is either empty, or is lead by a predecessor that is not settled
yet. In this step it is already possible to check if s is eligible for settling in the next phase,
by comparing its new tentative distance with the lead of the aforementioned list. Note,
that this approach does not fit into the algorithm scheme like the other criteria do.

This criteria is only implemented in the simulation, not in the benchmark. This is
because the benchmark does not generate graphs for which a sensible heuristic exists.
Furthermore, according to the results of the simulation, the heuristic is a very weak
criteria, but it is very expensive to execute, rendering its minuscule improvements in the
number of phases completely useless.

5.2.5 Träff’s Bridge Criteria

This criteria assumes that each node knows its incoming edges and the minimum cost
incoming edge. Furthermore, each node needs to know the minimum sum of two
„backward“ steps. In other words, each node needs to know the minimum of the cheapest
incoming edge of a predecessor plus the edge cost to reach this predecessor.

62

5.3. Graph Representation

1 Again, two priority queues are needed. The first priority queue, T , is ordered by
the tentative distance of each node. The second priority queue, II , is ordered by
the tentative distance minus the minimum two-steps-backwards cost for each node.
Additionally, a counter has to be maintained for each node. This counter is going
to count the number of predecessors in F for each node. Initially, it is set to zero
for all nodes.

2 To find candidates to settle II .head ≤ T.head is evaluated. As long as this evaluates
to true, the head of II can be removed from all queues and added to the set of
candidates to be settled.
In a second step, all candidates have to be checked if they have an incoming edge
originating from any node in F . If the aforementioned counter for any given node is
zero, the given node does not have such an edge and can be settled. If the counter
is not zero, the node has to be re-added into the priority queues and cannot be
settled.

3 Whenever a node moves from U to F , the counter for all reachable nodes by an
outgoing edge of this node has to be increased by one. Consequently, whenever a
node moves from F to S, the counter for all these nodes has to be decreased by
one. Both steps incur an overhead of O(|outgoing(n)|) for each node during the
whole execution of the algorithm.

To implement Träff’s Bridge criteria dynamically, one would have to update the afore-
mentioned two-step-backwards minimum after execution of each phase, similarly how the
dynamic Crauser’s criteria have to update the minimum incoming/outgoing edge.

Unfortunately, doing so would be prohibitively expensive for this criteria. A possible
two-step implementation is: First, use the same method as for dynamic Crauser’s In
criteria to find the cheapest incoming edge for each non-settled node. Second, use the
method for dynamic Crauser’s In criteria again, except that this time instead of looking at
the cheapest incoming edge, it is now possible to look at the cheapest two-step-backwards
path since, due to the first step, the cheapest incoming edge for each node is already
known. In total this amounts to double the overhead compared to dynamic Crauser’s
In criteria, in addition to the overhead needed for deciding Träff’s Bridge criteria in the
static variation.

Unfortunately, since the simulation suggests that this criteria only improves the number
of phases by a small margin, and since the implementation is quite complicated, it is not
to be expected that this criteria improves the performance in the benchmarks.

5.3 Graph Representation
A (sub-)graph is represented by two arrays. The first array is an array of all edges,
arranged in such a way that all edges that originate at the same node are next to each

63

5. Implementation

4 1 4 7

Figure 5.1: The layout of graphs in memory in the benchmarking tool. The lower array
represents nodes, four in this example, while the upper array contains all edges grouped
by node.

other. Each edge consists of the three fields: source, destination and cost. The second
array represents the nodes. Each node is nothing more than a pointer and a size. The
size is the number of edges that belong to the given node, and the pointer points to the
first edge of the node in question in the first array. Since the edges are ordered by their
origin, this suffices to find all edges of any given node. Nodes are identified by their index
in the second array. This can be seen in Figure 5.1.

Notice how iterating over the edges of a single node is cache friendly. Furthermore,
iterating over edges of subsequent, or even all, nodes is cache friendly as well.

This graph representation can easily be distributed among threads by splitting both
arrays into multiple chunks and moving these chunks to their respective threads. This is
also the way this is implemented in the benchmarking tool.

5.3.1 Graph Generation

Generating uniformly random graphs in parallel is simple. Each thread is assigned a
certain set of graph nodes it is responsible for. For each of these nodes, the thread draws
a random number from B(|V |, p), with p being the edge chance. This number represents
the number of outgoing edges for the node in question. Lastly, the edges are generated
with a uniformly random cost and a random destination. Note, that this process allows
self-edges and multiple-edges, although their chance of appearing is quite low.

The generation of Kronecker graphs is more expensive, nevertheless not complicated.
A single thread samples the total number of edges from P((

∑
A)k), with A being the

initiator matrix and k being the Kronecker power. Each thread now generates 1/t-th of
the sampled number of edges using the recursive descend as described in Section 4.1.1.
Since each thread is responsible for a certain set of nodes, the generated edges have to
be exchanged in such a way that all edges are moved to the thread that is responsible
for the edge’s origin. This is implemented by placing the edges into an inbox for each
thread. Again, this process allows for self-edges and multiple-edges. The first phase of
this algorithm is embarrassingly parallel, this approach is only made expensive by the
edge exchange required at the end.

64

5.3. Graph Representation

If one wants to generate very large graphs, e.g., graphs with more than 109 nodes, one
would have to use more efficient approaches. For example, Sanders and Schulz [62] present
an embarrassingly parallel, highly efficient algorithm to generate graphs with properties
similar to Kronecker graphs, albeit not Kronecker graphs.

5.3.2 Additional Node Information

As mentioned during describing the decision procedures of each criteria, some criteria
expect to have access to some additional information. For example, Crauser’s static In
criteria expects to know the cheapest incoming edge for each node. This subsection aims
to give an overview of the approaches to and the cost of obtaining such information.

Cheapest Outgoing Edge Cost

Obtaining this information is trivial. A simple linear scan through the list of outgoing
edges for each node suffices. The overhead therefore is O(|E|), respective O(|E|/t) under
the assumption that each of the t threads is responsible for |E|/t edges.

Cheapest Incoming Edge Cost

Obtaining the cheapest incoming edge cost is a little bit more involved since the incoming
edges are not known to the single nodes. Algorithm 5.7 shows the chosen approach.
The basic idea is to have a shared array of atomic floats called cheapest. Each entry
corresponds to a single node. After initializing each entry of this array to ∞, each thread
iterates over all edges. For each edge an atomic minimum at the edge’s destination
node’s entry in the array with the cost of the edge is executed. The time complexity
of this approach is O(|E|/t), assuming that the atomic-min operation, as described in
Section 5.1.4, can be completed in O(1) time.

This assumption means that the compare-and-exchange operation in atomic-min fails
only O(1) times. This assumption is reasonable for this algorithm because iterating over
all edges and accessing the array entry corresponding to their destination leads to a
completely random access pattern into the array. Therefore, it is highly unlikely that two
threads access the same element of the array at the same time, i.e., it is highly unlikely
that the compare-and-exchange in atomic-min fails.

Incoming Edges

If a thread needs to actually know all incoming edges of the nodes it is responsible
for, the information exchange becomes more expensive. This is achieved in two phases.
In the first phase, each thread counts the number of edges it has to send to all other
threads. These counts are then atomically summed for each thread. In the next step,
each thread therefore knows how many edges it will receive, and can therefore allocate an
array of appropriate size. Finally, all threads place a copy of the edges in the respective
per-thread array. This concludes the information transfer. As post processing step, each

65

5. Implementation

Require: a directed graph G = 〈V,E〉
Ensure: each thread knows the cheapest incoming edge cost for its nodes
for all nodes v this thread is responsible for do

cheapest[v].store(∞, relaxed)
end for
barrier
for all nodes v this thread is responsible for do
for 〈v, v′〉 ∈ outgoing(v) do
atomic-min(cheapest[v′], cost(v, v′))

end for
end for
barrier
for all nodes v this thread is responsible for do
store cheapest[v].load(relaxed) locally

end for

Algorithm 5.7: Finding the Cheapest Incoming Edge Cost

thread has to sort the incoming edges, so that they can be accessed efficiently for each
node. The time cost of this algorithm is O(|E|/t · log(|E|/t)) when using a traditional
sorting algorithm. By using bucket-sort [18] it is possible to reduce this time to O(|E|/t),
although at the cost that the memory consumption is doubled since bucket-sort is an
out-of-place sorting algorithm.

Cheapest Two-Steps-Backwards Edge Cost

To find the cheapest size-two incoming path for each node, first all incoming edges are
collected, as described in the previous section, and the minimum incoming edge cost for
all nodes is calculated, again as described previously.

Using this knowledge, each thread can iterate over the nodes it is responsible for, and
therefore iterate over their incoming edges, and add the cheapest incoming edge of
each edge’s source by accessing the shared array cheapest. This way, the minima of all
two-steps-backwards paths is found.

5.4 Parallelization
There were three approaches considered of how to distribute and parallelize the algorithm
scheme.

• Each thread is responsible for a certain subset of all nodes, and therefore the
edges belonging to these nodes. This is the chosen approach. This approach
does not need any shared data-structures, besides an inbox for each thread to
buffer remote relaxations. As described in Section 5.1.2 such an inbox can be

66

5.4. Parallelization

implemented efficiently. Since each thread only knows O(|V |/t) nodes, the size
of all data-structures is bounded by O(|V |/t), leading to an improvement of the
run-times of all data-structure operations.

• Each thread is responsible for a certain subgraph and the algorithm scheme is
implemented by using a shared data-structures. This approach is considered
infeasible because such shared data-structures, e.g., a parallel priority queue with
support for decrease-key, are extremely hard to implement in practice, and even
harder to implement efficiently. Most of these data-structures are of theoretical
interest only.

• Each thread is responsible for a certain subset of edges, no matter their origins
or destinations, and the algorithm scheme is implemented by not using shared
data-structures. This approach has the major problem that all threads need to
keep track of the priority queues for the criteria themselves. Since each thread
needs to be informed about all nodes each of these priority queues is of size O(|V |),
which means that the performance of all priority queue operations is as-if there
was only a single thread. In other words: The work of all priority queue operations
is multiplied by a factor O(t).

The memory containing the subgraph data structure is allocated in such a way that it is
most efficient for the thread, as explained in Section 5.1.4. Algorithm 5.8 shows the parallel
algorithm scheme to decide each criteria. Notice, how the parallel algorithm scheme
utilizes the same placeholders as the sequential algorithm scheme. The placeholders
are filled with the same sub-algorithms as described in Section 5.2. Furthermore, this
algorithm assumes that there is a shared array inboxes which contains an inbox for each
thread. There are no additional shared data structures, i.e., each thread maintains its
own set of priority queues. The basic idea of the parallelization is that remote relaxations
are stored in the inbox of the receiving thread and executed after the local relaxations,
while the bounds required to decide the criteria are obtained by reduce operations.

Träff’s criteria needs an additional barrier because 2 has to access a shared array that
counts the number of predecessors for each node, see Section 5.2.5 for details. Since
during local relaxations, this array can already be changed, there has to be an additional
barrier separating the fill-phase of todo and the settling-phase of todo. The other criteria
do not have such a dependency.

Additionally, depending on the chosen criteria, 1 has to be extended by the approaches
shown in the previous section, so that each thread has all the data required to efficiently
decide 2 .

There is one optimization left that was not explained so far. Step 3 for the dynamic
criteria requires to know if the source/destination of a given edge has already been settled.
This check would have to access the thread-local data of the thread that is responsible
for each given source/destination. This would entail to access the thread-local memory

67

5. Implementation

Require: a directed subgraph graph G = 〈V,E〉 and a starting node s
Ensure: all reachable nodes are correctly settled

1 {initialize the local priority queues & exchange required data}
add s to the priority queues if this thread is responsible for s
loop
use a reduce operation to find the thresholds of the criteria

{this works by reducing over the tips of the priority queues}
break if the thresholds are ∞
todo := ∅
while 2 {condition to find nodes to be settled using the reduction’s result} do
insert node to be settled into todo
remove the node from all priority queues

end while
barrier if Träff’s criteria is used
for n ∈ todo do
for 〈n, n′〉 ∈ outgoing(n) do
if this thread is responsible for n′ then
relax 〈n, n′〉

else
store 〈n, n′, tent(n) + cost(n, n′)〉 in the inboxes[t] of the responsible thread t

end if
end for

end for
barrier
execute all relaxations in the thread’s inbox
empty the inbox
barrier
3 {additional bookkeeping for the dynamic criteria}
barrier

end loop

Algorithm 5.8: Parallel Algorithm Scheme for Deciding the Criteria

68

5.5. Δ-Stepping

of another thread. Additionally such accesses to foreign memory might require additional
synchronization measures or atomic primitives.

To avoid this overhead an additional array of atomic doubles, called seen_distances, is
used. Each node has a corresponding entry in this array. Initially, all entries are set to∞.
Whenever a thread settles are node, it atomically sets the corresponding entry to −∞.
Whenever a thread places a relaxation into an inbox, or performs a local relaxation, it
updates the value using an atomic store to the potential new value. Notice how this
approach avoids any synchronization at the cost that a higher value might override a
lower value due to race-conditions.

Now, to quickly decide in 3 if a given node is settled, it suffices to check that
seen_distances is set to −∞. Due to the aforementioned race-conditions this check
is not complete, i.e., it might flag a node as non-settled even though it is settled, but
always sound, i.e., it will never flag a non-settled node as settled.

Furthermore, this array can be used to reduce the memory traffic to the inboxes. Instead
of placing a relaxation into the inbox, it is first checked if the new tentative distance
implied by the relaxation is less than the current distance in seen_distances for the
destination node. If this is not the case, the relaxation is just thrown away. Again notice,
that due to the race-conditions this might allow relaxations that do not improve the
tentative distance to be placed into an inbox, but a relaxation that can improve the
tentative distance will never be rejected.

5.5 Δ-Stepping

Δ-stepping [53] is currently considered the state-of-the art algorithm to parallelize the
single-source shortest path problem on shared as well as on distributed memory systems.
The algorithm can be seen in Algorithm 5.9.

The idea of the algorithm is the following. Similar to the Bellman-Ford algorithm, the
algorithm maintains a tentative distance for each node. Furthermore, the algorithm
maintains, conceptually an infinite amount, of buckets. A range is associated with each
bucket. The size of this range is controlled by a parameter ∆, hence the name of this
algorithm. The range for the first bucket is 0 to ∆. The range of the second bucket is ∆
to 2∆, and so on. In practice one only needs maxv,v′∈V cost(v, v′)/∆ buckets.

At the start of the algorithm the tentative distances are initialized to ∞, except for the
starting node where the tentative distance is being initialized to 0. Additionally, the
starting node is placed into the first bucket. Whenever the tentative distance of any node
is updated, it is removed from the bucket it currently belongs to and inserted into the
bucket corresponding to its new tentative distance.

The algorithm now performs the following steps repeatedly until all buckets are empty:
All nodes in the first non-empty bucket are removed from the bucket and are relaxed.
Relaxed means that the node’s tentative distance plus outgoing edge cost are compared

69

5. Implementation

Require: the parameter ∆, a graph G = 〈V,E〉, and a starting node s
Ensure: tent[v] contains the distance for each v
for all v ∈ V do

tent[v] :=∞
end for
buckets[0] := {s}
tent[v] := 0
while buckets 6= ∅ do

b := first non-empty buckets index
heavytodo := ∅
while buckets[b] 6= ∅ do

todo := buckets[b]
heavytodo := heavytodo ∪ todo
buckets[b] := ∅
relax-all(todo, <)

end while
relax-all(heavytodo, ≥)

end while

function relax-all(nodes, ◦)
for all v ∈ nodes do
for all 〈v, v′〉 ∈ outgoing(v) ∧ cost(v, v′) ◦∆ do
if tent[v] + cost(v, v′) < tent[v′] then
remove v′ from it’s bucket
tent[v′] := tent[v] + cost(v, v′)
add v′ into it bucket tent[v′]/∆

end if
end for

end for
end function

Algorithm 5.9: Δ-Stepping [53]

70

5.5. Δ-Stepping

with the tentative distance of the neighbor. If this comparison leads to a better distance
to reach the neighbor, the neighbor’s tentative distance is updated. This also means
that the bucket the neighboring node is in might change. This also means that a node
that was just removed from a bucket is being re-inserted. This process repeats until all
buckets are empty.

To reduce the number of unnecessary relaxations there exists a simple optimization.
One splits the set of edges into two subsets: Heavy edges are those with cost greater
or equal to Δ, and light edges are those with cost less than Δ. Now, one empties the
first non-empty bucket B but only relaxes light edges. If B is non-empty after this step,
this is repeated until B is eventually empty. Only after that, the heavy edges, which
were ignored until now, are relaxed. To further optimize this, one can pre-partition the
outgoing edges of each node into heavy and light edges. If done, one saves time by only
iterating over the relevant set of edges.

In a parallel setting, as with the criteria, it is assumed that each thread is responsible
for a subset of all nodes. Furthermore, it is assumed that each thread has an inbox and
maintains local buckets. The parallel implementation of Δ-stepping then only needs minor
extensions with respect to the here presented sequential implementation. A summary of
the parallel Δ-stepping implementation can be seen in Algorithm 5.10.

First, an edge can only be relaxed locally if the edge’s destination and edge’s source are
handled by the same thread. If this is not the case, the relaxation is buffered in the inbox
of the respective thread. After iterating over all edges in a bucket, the inboxes are used
to apply the relaxations from foreign threads.

Second, to avoid race conditions two pairs of barriers have to be introduced. Each pair,
as seen in the pseudocode, protects the processing of the thread’s inbox. These barriers
are required because during relaxations, remote relaxations are placed into the inbox of
the respective destination thread. Therefore, all threads have to finish placing relaxations,
before they may access their inboxes. The barrier after processing the inboxes exists for
the same reason, i.e., no thread may start placing relaxations into the inboxes until all
threads are finished processing their inbox.

Third, to decide if the algorithm is finished it suffices to know that all buckets are empty.
This can be achieved if each thread checks if its local buckets are empty, resulting in a
boolean. These booleans are then reduced using the operator ∧. If the result is true,
there are not any nodes in the buckets globally, and therefore the algorithm is finished.
This is the condition of the outer while-loop in the pseudocode.

Fourth, to decide if a bucket is emptied, the same method as just described is used, with
the change that only the number of nodes in the current bucket is checked, instead of
the number of nodes in all buckets. This is the condition of the inner while-loop in the
pseudocode.

71

5. Implementation

Require: the parameter ∆, a subgraph G = 〈V,E〉, and a starting node s
Ensure: tent[v] contains the distance for each v the thread is responsible for
for all v ∈ V do

tent[v] :=∞
end for
buckets[0] := {s} if the thread is responsible for s
tent[v] := 0
b := 0
while globally buckets 6= ∅ {reduce local bucket sizes to decide this} do
b := b+ 1
heavytodo := ∅
while globally buckets[b] 6= ∅ {reduce size of buckets[b] to decide this} do

todo := buckets[b]
heavytodo := heavytodo ∪ todo
buckets[b] := ∅
relax-all(todo, <)
barrier
execute relaxations in this thread’s inbox
empty the inbox
barrier

end while
relax-all(heavytodo, ≥)
barrier
execute relaxations in this thread’s inbox
empty the inbox
barrier

end while

Algorithm 5.10: Parallel Δ-Stepping

5.6 Complexity

This section aims to give an overview of the total complexity of the algorithms when
combining all the approaches described and analyzed so far. The summary can be seen
in Table 5.1.

All algorithms have an initialization overhead of at least O(|V |) to allocate and initialize
memory for the tentative distances, and for an array of pointers into the various Fibonacci
heaps to allow for O(1) decrease-key and O(log(n)) removal.

Crauser’s static In, or Out, or the combination of both, additionally has an initialization
overhead of O(|E|) because for each edge the minimum incoming/outgoing edge has to
be found. This is, as described in Section 5.3.2, implemented as a linear scan over all
edges. The same holds true for Träff’s Bridge criteria. These criteria also do not incur

72

5.6. Complexity

Algorithm Sequential Time
Initialization Σ All Phases

Dijkstra’s Algorithm O(|V |) O(|V | log|V |+ |E|)
Crauser’s In/Out Heap
static O(|V |+ |E|) O(|V | log|V |+ |E|)
dynamic plain O(|V |+ |E|) O(|V | log|V |+ |E|+ |V ||E|)
dynamic pre-heapifing O(|V |+ |E|) O(|V | log|V |+ |E|+ |V | log|E|)
dynamic pre-sorting O(|V |+ |E| log|E|) O(|V | log|V |+ |E|)

Crauser’s In/Out Array
static O(|V |+ |E|) O(|V |2 + |E|)
dynamic plain O(|V |+ |E|) O(|V |2 + |E|+ |V ||E|)
dynamic pre-heapifing O(|V |+ |E|) O(|V |2 + |E|+ |V | log|E|)
dynamic pre-sorting O(|V |+ |E| log|E|) O(|V |2 + |E|)

Träff’s Bridge Heap O(|V |+ |E|) O(|V | log|V |+ |E|)
Träff’s Bridge Array O(|V |+ |E|) O(|V |2 + |E|)

Table 5.1: Overview of the sequential time complexities of the presented algorithms.

any additional overhead, in an asymptotic sense, during execution of the phases. After
the initialization, the only additional overhead to Dijkstra’s algorithm is that multiple
priority queues have to be managed. This fact is oblivious to an asymptotic analysis.

As described earlier, there are three possible implementations for the dynamic criteria:

• The plain approach does not do any further preprocessing and uses a linear scan
after each phase to find the new minima. Since in general |F | = O(|V |), and the
minima have to be validated for all nodes in F after each phase, this means that
potentially each edge has to be looked at at the end of a phase. Since in the worst
case there are |V | phases, the total overhead is O(|V ||E|). If it is assumed5 that
the set of edges that have to be accessed after each phase is divided by n after
each phase,

∑∞
k=0(|E|/nk) = O(|E|) holds, and therefore the overhead would only

be O(|E|).

• The pre-heapifing approach has to heapify the edges in the initialization phase. Since
this is possible in linear time, no asymptotic overhead occurs compared to the static
criteria. After each phase, instead of linear scans through the incoming/outgoing
edges, find-mins suffice. Since find-min is possible in logn time, and there are at
most |V | phases, this leads to a total overhead6 of O(|V | log|E|).

• The pre-sorting approach has to sort the incoming/outgoing edges during the
initialization phase, therefore leading to an overhead of O(|E| log|E|). After each

5This assumption is just a thought experiment, no experiments were conducted, and therefore no
evidence was collected, that would validate this assumption.

6In fact the per-phase overhead would be
∑

e∈Ê
log|e|, with Ê being a partition of E. This sum is

approximated using O(log|E|). Similar approximations are done thorough the whole analysis.

73

5. Implementation

phase it now suffices to look at the top of the sorted incoming/outgoing edges and
remove it until the top is an edge with a non-settled source/destination. In total
this means that each edge is only looked at O(1) additional times. Therefore, the
total overhead is O(|E|), which is asymptotically irrelevant compared to Dijkstra’s
algorithm.

The complexity of the parallel algorithms, assuming t threads, depends on many factors.
For initialization time one can, assuming that each thread is responsible for roughly the
same amount of nodes and edges, replace |V | and |E| with |V |/t and |E|/t.

For the time complexity of the phases this is not so simple. In the worst case, e.g., a
graph that is just a long linked list, the complexity stays the same, because there is no
parallelism in this case.

Only under the following two very strong assumptions it holds that |V | and |E| can be
replaced with |V |/t and |E|/t in the sequential runtimes to obtain the parallel runtimes.
First, each thread has to be responsible for roughly the same amount of nodes and edges.
Second, in each phase the criteria have to find a set of nodes such that the number of
nodes to be settled and number of edges to be relaxed in each phase are roughly equal
amongst all threads.

5.7 Benchmark

The benchmark was performed on two systems. „mars,“ a shared memory machine with
eight Intel Xeon E7-8850 CPUs, which have a base clock speed of 2 GHz and 10 cores/20
threads each. In total the system has about 1 TiB main memory and 80 cores/160
threads. And „nebula,“ a shared memory machine with with two AMD EPYC 7551
CPUs. Each of these CPUs has a base clock speed of 2 GHz and 32 cores/64 threads
each. Furthermore, the system has about 256 GiB of memory.

Each measurement was repeated 30 times, each time with a different seed, and the median
of the results is presented here. The high repetition count, the two graph types, the
various criteria, the heap vs. array based implementation, different Δ’s for Δ-stepping,
and the different thread counts add up to a total benchmark runtime of a few days. For
the analysis, the median of the maximum of all thread-times (per run) is used.

Additionally, the data is presented in two columns: The first column „with initialization“
includes 1 , as seen in Algorithm 5.6 and 5.8, in the time measurement, while the second
column „without initialization“ does not include this time.

The benchmarks were performed on two types of graphs. Firstly, uniformly distributed
graphs as defined in Definition 4.3 and Definition 4.6 with the exception that self-
edges and multiple-edges are allowed to simplify the parallel implementation of the
graph generation. Secondly, Kronecker graphs as defined in Section 4.1.1 with the
initiator matrix 2.5 · (0.57, 0.19; 0.19, 0.05) and the Kronecker power 20. Again, with the

74

5.7. Benchmark

simplification that self-edges and multiple-edges are allowed. How these graphs were
obtained is described in Section 5.3.1.

The comparison includes Crauser’s In, Crauser’s Out, and Crauser’s Inout criteria in
their static variant, Crauser’s Inout criteria in its dynamic variant, Träff’s Bridge criteria,
and Δ-stepping with various values for ∆. The reference speed for the absolute speedup
is an efficient sequential implementation of Dijkstra’s algorithm.

Each algorithm was executed using 1, 2, 4, 10, 20, 30, 40, 60, 80 and 160 threads on
mars. These numbers were chosen with care: 1, 2, and 4 were used because these thread
counts are common on home computers. 10, 20, 30, 40, 60, and 80 use exactly one,
two, three, four, six, and eight sockets of the given system. The jump from 80 to 160
makes use of the, so far unused, hyper-threads. On nebula the algorithms were executed
using 1, 2, 4, 8, 16, 32, 64, 96 and 128 threads because of a similar reasoning.

Figure 5.2, 5.3, and 5.4 depict the absolute time, absolute speedup, and relative speedup
of the benchmarked algorithms on uniformly distributed graphs on mars. The static
Crauser’s Inout criteria performs exceptionally well compared to the other criteria and
Δ-stepping. This is followed, albeit with a large gap, by the static Crauser’s Out and
the static Crauser’s In criteria. After that Δ-stepping follows. The dynamic criteria are
hopelessly slow. Furthermore, it can be observed that using arrays instead of priority
queues consistently leads to better performance. Nevertheless, the static Crauser’s Inout
criteria only achieves an absolute speedup of 15 with 40 threads and drops in performance
for higher thread counts. With 40 threads the absolute efficiency is only 38 %, while
with 160 threads the absolute efficiency is at merely 5 %. All other criteria, but not
Δ-stepping, exhibit a similar drop in performance with more than 40 threads.

Figure 5.5, 5.6, and 5.7 depict the results for Kronecker graphs on mars. The results
draw a similar picture to uniformly distributed graphs with the exception that static
Crauser’s In, Out and Inout criteria are much closer together, and that all algorithms
perform much worse than in uniformly distributed graphs. The best achieved absolute
speedup is 4.5 for 80 threads. This is equivalent to an absolute efficiency of about 5 %.
For some reason Δ-stepping performs exceptionally bad on this class of graphs.

Figure 5.8, 5.9, and 5.10 show the time, absolute speedup and relative speedup of uniform
graphs on nebula. Overall, the picture is not much different to mars with two notable
differences: First, the absolute times are much smaller than mars, i.e., nebula seems to
be much more computationally capable for this kind of problem. Second, after reaching
their peak, the efficiency does not drop as much as on mars. This can be clearly seen
when looking at the absolute speedup. Δ-stepping even continues to scale for all number
of threads, while it stops to scale for higher number of threads on mars. This might
imply either that nebula’s hyper-threads are more capable than mars’, or that nebula’s
memory system is stronger than mars’.

There do not seem to be any benchmarks of Crauser’s approach in the literature, and
even benchmarks on shared memory machines for Δ-stepping are scarce. Meyer et
al. [53, Section 9] themselves claim an absolute speedup compared to „an optimized

75

5. Implementation

implementation of Dijkstra’s algorithm“ of 3.1 for random d-regular graphs, i.e., graphs
where most nodes have the same number of edges, on a distributed memory system.
This leads to an absolute efficiency of 19 %. For dense graphs the performance is worse,
unfortunately no absolute speedup is given by Meyer et al.

Lesnikov and Chernoskutov [47] compared Dijkstra’s algorithm, the Bellman-Ford algo-
rithm, and Δ-stepping on a shared-memory system. They claim an absolute speedup of
about 3.6 compared to Dijkstra’s algorithm with 12 threads when benchmarking using
R-MAT graphs, i.e., a special case of Kronecker graphs. These performance numbers are
much better than the ones achieved by the implementation of this thesis. Unfortunately,
there is no information in this paper about their implementation of Dijkstra’s algorithm.
Since the implementation of Dijkstra’s algorithm for this thesis is highly optimized by
using Fibonacci heaps with a custom allocator the absolute speedup might be much lower
than compared with a unoptimized implementation of Dijkstra’s algorithm. Interestingly,
they claim a relative speedup of 2.7 for 12 threads while the implementation for this
thesis reaches about 2.4 for 10 threads. These numbers seem to match up.

A fairly recent result by Dhulipala et al. [25] achieves high speedups for a multitude
of graph algorithms, including the single-source shortest path problem. They achieve,
depending on the graph instance, a relative speedup of 28 to 67 for 72 threads for a
parallel implementation of the Bellman-Ford algorithm. Interesting to note is that they
use the graph compression scheme from Ligra+ [64] to achieve high performance on very
large graphs. Nevertheless, according to the previously discussed results of Lesnikov
and Chernoskutov [47] Dijkstra’s algorithm is about 2.5 times faster compared to the
Bellman-Ford algorithm. If one assumes this ratio of performance, this means that
Dhulipala et al. only reach an estimated absolute speedup of about 11 to 27 compared to
Dijkstra’s algorithm (with 72 threads). Depending on the level of optimization performed
on Dijkstra’s algorithm this could be even worse.

Apart from Ligra+ there are other graph processing frameworks as well. One recent
example is Galois [55]. By using this framework the authors achieve a relative speedup
of 12 with 20 threads, i.e., a relative efficiency of 60 %, and a relative speedup of 9 with 40
threads, i.e., a relative efficiency of 40 %, when benchmarking using a road graph.

76

5.7. Benchmark

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 150 0 50 100 150

1

10

100

1

10

100

1

10

100

Thread Count

lo
g 1

0-
T
im

e
[s
]

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.2: Absolute time needed (log-scale) on an uniform graph with 1000000 nodes
and an edge chance of 0.0001, i.e., about 100 edges per node and therefore about 100
million edges in total on mars. Criteria marked with a dagger (†) are combined with
Crauser’s Inout (Dynamic) criteria.

77

5. Implementation

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 150 0 50 100 150

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

Thread Count

A
bs
ol
ut
e
Sp

ee
du

p

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.3: Absolute speedup compared to single-threaded Dijkstra’s algorithm on an
uniform graph with 1000000 nodes and an edge chance of 0.0001, i.e., about 100 edges
per node and therefore about 100 million edges in total on mars. Criteria marked with a
dagger (†) are combined with Crauser’s Inout (Dynamic) criteria.

78

5.7. Benchmark

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 150 0 50 100 150

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Thread Count

R
el
at
iv
e
Sp

ee
du

p

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.4: Relative speedup compared to the performance with a single thread on an
uniform graph with 1000000 nodes and an edge chance of 0.0001, i.e., about 100 edges
per node and therefore about 100 million edges in total on mars. Criteria marked with a
dagger (†) are combined with Crauser’s Inout (Dynamic) criteria.

79

5. Implementation

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 150 0 50 100 150

1

10

1

10

1

10

Thread Count

lo
g 1

0-
T
im

e
[s
]

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.5: Absolute time needed (log-scale) on a Kronecker graph induced by the
matrix (2.5 · (0.57, 0.19; 0.19, 0.05))20 on mars. Criteria marked with a dagger (†) are
combined with Crauser’s Inout (Dynamic) criteria.

80

5.7. Benchmark

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 150 0 50 100 150

0

2

4

6

0

2

4

6

0

2

4

6

Thread Count

A
bs
ol
ut
e
Sp

ee
du

p

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.6: Absolute speedup compared to single-threaded Dijkstra’s algorithm on a
Kronecker graph induced by the matrix (2.5 · (0.57, 0.19; 0.19, 0.05))20 on mars. Criteria
marked with a dagger (†) are combined with Crauser’s Inout (Dynamic) criteria.

81

5. Implementation

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 150 0 50 100 150

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

Thread Count

R
el
at
iv
e
Sp

ee
du

p

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.7: Relative speedup compared to the performance with a single thread on a
Kronecker graph induced by the matrix (2.5 · (0.57, 0.19; 0.19, 0.05))20 on mars. Criteria
marked with a dagger (†) are combined with Crauser’s Inout (Dynamic) criteria.

82

5.7. Benchmark

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 0 50 100

1

10

1

10

1

10

Thread Count

lo
g 1

0-
T
im

e
[s
]

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.8: Absolute time needed (log-scale) on an uniform graph with 1000000 nodes
and an edge chance of 0.0001, i.e., about 100 edges per node and therefore about 100
million edges in total on nebula. Criteria marked with a dagger (†) are combined with
Crauser’s Inout (Dynamic) criteria.

83

5. Implementation

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 0 50 100

0

5

10

15

0

5

10

15

0

5

10

15

Thread Count

A
bs
ol
ut
e
Sp

ee
du

p

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.9: Absolute speedup compared to single-threaded Dijkstra’s algorithm on an
uniform graph with 1000000 nodes and an edge chance of 0.0001, i.e., about 100 edges
per node and therefore about 100 million edges in total on nebula. Criteria marked with
a dagger (†) are combined with Crauser’s Inout (Dynamic) criteria.

84

5.7. Benchmark

With Initialization Without Initialization

∆
-Stepping

A
rray

H
eap

0 50 100 0 50 100

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

Thread Count

R
el
at
iv
e
Sp

ee
du

p

Criteria
Crauser’s In (Static)
Crauser’s Inout (Dynamic)
Crauser’s Inout (Static)
Crauser’s Out (Static)
N/A
Träff’s Bridge†

∆ =
NA
0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Figure 5.10: Relative speedup compared to the performance with a single thread on an
uniform graph with 1000000 nodes and an edge chance of 0.0001, i.e., about 100 edges
per node and therefore about 100 million edges in total on nebula. Criteria marked with
a dagger (†) are combined with Crauser’s Inout (Dynamic) criteria.

85

CHAPTER 6
Conclusion and Further Research

In Chapter 3 Dijkstra’s algorithm, Crauser’s original In and Out criteria, the dynamic
variation thereof, an heuristic approach, Träff’s Bridge criteria, and the oracle has been
introduced and proven correct. Furthermore, it has been shown that it is possible to
combine criteria and end up with new valid criteria.

This was followed by a simulation (Chapter 4) of these criteria. The results of this
simulation validated Crauser et al.’s claims about their static criteria in terms of number
of phases. Furthermore, the dynamic variations thereof turned out to be able to improve
the number of phases considerably compared to the original versions. This indicates a
theoretical potential for more parallelism when using the dynamic criteria instead of the
static criteria. The heuristic and Träff’s Bridge criteria, unfortunately, did not achieve a
notable improvement compared to the static criteria.
Open Question. Does a class of graphs with a heuristic exist, such that the heuristic
criteria becomes good? Or is it the case that the heuristic approach cannot work in
context of the single-source shortest path problem?
Open Question. Proofs of the average number of phases empirically found in the simulation
would be desireable, i.e., proofs for the contents of Table 4.1.

Interestingly, it turned out that the lower bound in number of phases is logarithmic,
while all other criteria are still polynomial in the number of phases, although with an
exponent less than one.
Open Question. Is it possible to reach the lower bound with a criteria that does not need
the solution to the single-source shortest path problem a priori?

The thesis concluded with an implementation and benchmark of the criteria (Chapter 5).
The benchmark compared the defined criteria with Δ-stepping and a highly optimized
Dijkstra’s algorithm on the shared-memory systems provided by the research group.

87

6. Conclusion and Further Research

The original formulation of Crauser’s criteria, i.e., the static variants, turned out to be
competitive with Δ-stepping and should be considered to be an alternative to Δ-stepping.
Unfortunately, no efficient implementation was found for the dynamic criteria, and
therefore they remain too slow to be of use in a practical setting. This leads to multiple
further questions.
Open Question. Is it possible to implement the dynamic criteria in an efficient manner?
Open Question. How does Crauser et al.’s algorithm scale on distributed memory systems?
Open Question. How does Crauser et al.’s algorithm perform very large graphs?
Open Question. How does Crauser et al.’s algorithm compare with Δ-stepping if for both
algorithms a state-of-the-art load-balancing scheme would be implemented?

88

Bibliography

[1] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension,
shortest paths, and provably efficient algorithms. In Proceedings of the 21st ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 782–793, 2010.

[2] Advanced Micro Devices Inc. AMD64 Architecture Programmer’s Manual Vol-
ume 4: 128-Bit and 256-Bit Media Instructions. Advanced Micro Devices Inc.,
2018.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Pearson Education, 1993.

[4] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[5] R. E. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.

[6] S. Bhagat, M. Burke, C. Diuk, I. O. Filiz, and S. Edunov. Three and a half degrees of
separation. https://research.fb.com/three-and-a-half-degrees-of-separation/, 2016.

[7] G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan. Parallel shortest paths using
radius stepping. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 443–454, 2016.

[8] P. Bolzhauser, A. Sulistio, G. Angst, and C. Reich. Parallelized critical path search
in electrical circuit designs. In Proceedings of the 10th International Conference on
Parallel and Distributed Computing, Applications and Technologies (PDCAT), pages
10–17, 2009.

[9] Boost. Boost C++ libraries. https://www.boost.org/.

[10] R. Bridson. Fast poisson disk sampling in arbitrary dimensions. In Proceedings of
the 34th International Conference on Computer Graphics and Interactive Techniques
Sketches (ACM SIGGRAPH Sketches), page 22:1, 2007.

[11] G. S. Brodal. Worst-case efficient priority queues. In Proceedings of the 7th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 52–58, 1996.

89

https://research.fb.com/three-and-a-half-degrees-of-separation/
https://www.boost.org/

[12] G. S. Brodal, J. L. Träff, and C. D. Zaroliagis. A parallel priority queue with constant
time operations. Journal of Parallel and Distributed Computing, 49(1):4–21, 1998.

[13] V. T. Chakaravarthy, F. Checconi, F. Petrini, and Y. Sabharwal. Scalable single
source shortest path algorithms for massively parallel systems. In Proceedings of
the 28th IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 889–901, 2014.

[14] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: a recursive model for graph
mining. In Proceedings of the 4th SIAM International Conference on Data Min-
ing (SDM), pages 442–446, 2004.

[15] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms: theory
and experimental evaluation. Mathematical Programming, 73(2):129–174, 1996.

[16] E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition.
Journal of Algorithms, 21(2):331–357, 1996.

[17] R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking.
Information and Computation, 81(3):334–352, 1989.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 3rd edition, 2009.

[19] cppreference.com Community. std::memory_order. https://en.cppreference.com/w/
cpp/atomic/memory_order.

[20] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s
shortest path algorithm. In Proceedings of the 23rd International Symposium on
Mathematical Foundations of Computer Science (MFCS), volume 1450 of Lecture
Notes in Computer Science (LNCS), pages 722–731, 1998.

[21] J. R. Crobak, J. W. Berry, K. Madduri, and D. A. Bader. Advanced shortest paths
algorithms on a massively-multithreaded architecture. In Proceedings of the 21st
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
1–8, 2007.

[22] J. Davies. Poisson-disc sampling. https://www.jasondavies.com/poisson-disc/.

[23] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck. PHAST: hardware-
accelerated shortest path trees. In Proceedings of the 25th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 921–931, 2011.

[24] C. Demetrescu, A. V. Goldberg, and D. S. Johnson. 9th DIMACS implementation
challenge: shortest paths. http://www.dis.uniroma1.it/challenge9/download.shtml,
2006.

90

https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order
https://www.jasondavies.com/poisson-disc/
http://www.dis.uniroma1.it/challenge9/download.shtml

[25] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph
algorithms can be fast and scalable. In Proceedings of the 30th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 393–404, 2018.

[26] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[27] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: an alter-
native to fibonacci heaps with applications to parallel computation. Communications
of the ACM (CACM), 31(11):1343–1354, 1988.

[28] R. A. Fisher and F. Yates. Statistical Tables for Biological, Agricultural and Medical
Research. Oliver and Boyd, 1938.

[29] R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM (CACM),
5(6):345, 1962.

[30] L. R. Ford. Network Flow Theory. RAND Corporation, 1956.

[31] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap: a
new form of self-adjusting heap. Algorithmica, 1(1–4):111–129, 1986.

[32] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615,
1987.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[34] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies:
faster and simpler hierarchical routing in road networks. In Proceedings of the 7th
International Workshop on Experimental and Efficient Algorithms (WEA), volume
5038 of Lecture Notes in Computer Science (LNCS), pages 319–333, 2008.

[35] Graph 500 List. Graph 500. https://graph500.org/.

[36] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[37] R. R. Howell. On asymptotic notation with multiple variables. Technical Report
2007-4, Department of Computing and Information Sciences, Kansas State University,
2008.

[38] Intel Corporation. Intel threading building blocks.
https://www.threadingbuildingblocks.org/.

[39] ISO/IEC 14882:2017. Programming languages — C++. Standard, 2017.

91

https://graph500.org/
https://www.threadingbuildingblocks.org/

[40] D. Jasper. clang-format: automatic formatting for C++. https://llvm.org/devmtg/
2013-04/jasper-slides.pdf, 2013.

[41] M.-Y. Kao and P. N. Klein. Towards overcoming the transitive-closure bottleneck:
efficient parallel algorithms for planar digraphs. Journal of Computer and System
Sciences, 47(3):459–500, 1993.

[42] D. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18(1):82–98, 1997.

[43] R. M. Karp. The transitive closure of a random digraph. Random Structures &
Algorithms, 1(1):73–93, 1990.

[44] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1.
Addison-Wesley Professional, 3rd edition, 1997.

[45] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kro-
necker graphs: an approach to modeling networks. Journal of Machine Learning
Research (JMLR), 11:985–1042, 2010.

[46] J. Leskovec and A. Krevl. SNAP datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

[47] D. Lesnikov and M. Chernoskutov. Performance analysis of ∆-stepping algorithm on
CPU and GPU. In Proceedings of the 47th International Youth School-Conference
„Modern Problems in Mathematics and its Applications“ (MPMA), pages 164–169,
2016.

[48] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics (SIAP), 36(2):177–189, 1979.

[49] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak. An experimental study of a
parallel shortest path algorithm for solving large-scale graph instances. In Proceedings
of the 9th Meeting on Algorithm Engineering and Expermiments (ALENEX), pages
23–35, 2007.

[50] S. Maleki, D. Nguyen, A. Lenharth, M. Garzarán, D. Padua, and K. Pingali. DSMR:
a parallel algorithm for single-source shortest path problem. In Proceedings of
the 30th International Conference on Supercomputing (ICS), pages 32:1–32:14, 2016.

[51] U. Meyer and P. Sanders. Δ-stepping: a parallel single source shortest path algorithm.
In Proceedings of the 6th Annual European Symposium on Algorithms (ESA), volume
1461 of Lecture Notes in Computer Science (LNCS), pages 393–404, 1998.

[52] U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In Proceedings
of the 6th International Euro-Par Conference, volume 1900 of Lecture Notes in
Computer Science (LNCS), pages 461–470, 2000.

92

https://llvm.org/devmtg/2013-04/jasper-slides.pdf
https://llvm.org/devmtg/2013-04/jasper-slides.pdf
http://snap.stanford.edu/data

[53] U. Meyer and P. Sanders. Δ-stepping: a parallelizable shortest path algorithm.
Journal of Algorithms, 49(1):114–152, 2003.

[54] E. F. Moore. The shortest path through a maze. In International Symposium on the
Theory of Switching, Part II, volume 30 of Annals of the Computation Laboratory of
Harvard University, pages 285–292, 1957.

[55] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph
analytics. In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP), pages 456–471, 2013.

[56] K. Nikas, N. Anastopoulos, G. Goumas, and N. Koziris. Employing transactional
memory and helper threads to speedup Dijkstra’s algorithm. In Proceedings of
the 38th International Conference on Parallel Processing (ICPP), pages 388–395,
2009.

[57] NVIDIA Corporation. CUDA zone. https://developer.nvidia.com/cuda-zone.

[58] Open MPI Project. Portable hardware locality (hwloc). https://www.open-mpi.org/
projects/hwloc/.

[59] N. Prühs. Implementation of Thorup’s linear time algorithm for undirected single-
source shortest paths with positive integer weights. Bachelor’s Thesis, Department
of Computer Science, Christian-Albrechts-Universität zu Kiel, 2009.

[60] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, 2018.

[61] Rust Project Developers. The Rust programming language. https://doc.rust-
lang.org/book/.

[62] P. Sanders and C. Schulz. Scalable generation of scale-free graphs. Information
Processing Letters, 116(7):489–491, 2016.

[63] H. Shi and T. H. Spencer. Time–work tradeoffs of the single-source shortest paths
problem. Journal of Algorithms, 30(1):19–32, 1999.

[64] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: parallel processing
of compressed graphs with Ligra+. In Proceedings of the 2015 Data Compression
Conference (DCC), pages 403–412, 2015.

[65] M. Thorup. Undirected single-source shortest paths with positive integer weights in
linear time. Journal of the ACM (JACM), 46(3):362–394, 1999.

[66] M. Thorup. Floats, integers, and single source shortest paths. Journal of Algorithms,
35(2):189–201, 2000.

[67] M. Thorup. On RAM priority queues. SIAM Journal on Computing (SICOMP),
30(1):86–109, 2000.

93

https://developer.nvidia.com/cuda-zone
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

[68] M. Thorup. Equivalence between priority queues and sorting. Journal of the
ACM (JACM), 54(6):28:1–28:27, 2007.

[69] J. L. Träff and C. D. Zaroliagis. A simple parallel algorithm for the single-source
shortest path problem on planar digraphs. Journal of Parallel and Distributed
Computing, 60(9):1103–1124, 2000.

[70] U. Zwick. Exact and approximate distances in graphs — a survey. In Proceedings of
the 9th Annual European Symposium on Algorithms (ESA), volume 2161 of Lecture
Notes in Computer Science (LNCS), pages 33–48, 2001.

94

	Kurzfassung
	Abstract
	Contents
	Introduction
	Mathematical Preliminaries
	Related Problems

	Related Work
	Label Setting Algorithms
	Label Correcting Algorithms
	Other Algorithms

	Algorithms
	Dijkstra's Algorithm
	Proof of Correctness

	Algorithm Scheme
	Motivation & Discussion
	Implied Criteria
	Combining Criteria
	Oracle
	Crauser's Criteria
	Crauser's In Criteria
	Crauser's Out Criteria

	Heuristic
	Träff's Bridge Criteria

	Simulation
	Methodology
	Input Graphs
	Implemented Criteria
	Statistical Methods

	Results

	Implementation
	Preliminaries
	Memory Model
	Inbox/Relaxed Vector
	Collective Operations
	Non-Collective Operations

	Decision Procedures
	Dijkstra's Algorithm
	Crauser's Out Criteria
	Crauser's In Criteria
	Heuristic
	Träff's Bridge Criteria

	Graph Representation
	Graph Generation
	Additional Node Information

	Parallelization
	Δ-Stepping
	Complexity
	Benchmark

	Conclusion and Further Research
	Bibliography

