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Abstract

This thesis examines the swing-up and stabilization of a spherical inverted pendulum
attached to a robot with seven degrees of freedom. A mechatronic design for a spherical
inverted pendulum is proposed, which can be mounted on a Kuka LWR IV+ and other
robots with a compatible end effector.
After deriving mathematical models for the spherical inverted pendulum, the robot

and the complete system, an optimal control problem is solved to obtain the swing-up
trajectory. The dynamic optimization problem is converted to a static optimization
problem using a direct method. The swing-up trajectory is obtained in the course of a
three-step process. First, the search for a swing-up trajectory is performed on a simpler
model with fewer states and inputs. This trajectory is then used as an initial guess for
the static optimization problem for the complete system, which is then solved to find a
trajectory for the full problem. A time-variant LQR is designed to stabilize the system
around the swing-up trajectory. After the successful swing-up, the controller switches to
a stabilizing controller, which consists of two LQRs for stabilizing the pendulum and a
Cartesian trajectory tracking controller.
The swing-up trajectory and the controllers are investigated in simulations as well

as in a complete experimental setup using real-time capable industrial hardware. The
robustness to model and parameter uncertainties, disturbances and calibration errors is
verified.
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Kurzzusammenfassung

Diese Arbeit befasst sich mit dem Aufschwingen und Stabilisieren eines sphärischen
inversen Pendels, welches an einem Roboter mit sieben Freiheitsgraden befestigt ist. Ein
mechatronisches Design für das sphärische inverse Pendel wird vorgestellt, welches die
Befestigung an einem Kuka LWR IV+ und an anderen Robotern mit kompatiblem
Endeffektor ermöglicht.

Es werden mathematische Modelle für das sphärische inverse Pendel, den Roboter und
das komplette zusammengesetzte System hergeleitet. Die Aufschwingtrajektorie wird
mittels eines Optimalsteuerungsproblems berechnet. Das dynamische Optimierungspro-
blem wird dabei mit einem direkten Verfahren in ein statisches Optimierungsproblem
übergeführt. Die Aufschwingtrajetorie wird mithilfe eines dreistufigen Prozesses berechnet.
Im ersten Schritt wird eine Aufschwingtrajektorie für ein einfacheres Modell mit weniger
Zuständen und Eingängen ermittelt. Diese Lösung wird dann als Starttrajektorie für das
statische Optimierungsproblem des kompletten zusammengesetzten Systems verwendet.
Um das System um die Aufschwingtrajektorie zu stabilisieren, wird ein zeitvarianter LQR
entworfen. Nach dem erfolgreichen Aufschwingen des Pendels wird auf einen Stabilisie-
rungsregler umgeschaltet, welcher aus zwei LQRs, die das Pendel stabilisieren, und einem
kartesischen Trajektorienfolgeregler besteht.
Die Aufschwingtrajektorie und die Regler werden in der Simulation und im experi-

mentellen Aufbau, der echtzeitfähige Industriekomponenten verwendet, untersucht. Die
Robustheit gegenüber Modellungenauigkeiten, Parameterschwankungen, Störgrößen und
Kalibrierungsfehlern wird dabei verifiziert.
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1 Introduction
Inverted pendulums are popular systems in control engineering, as they are under-actuated
nonlinear systems with unstable equilibrium postures. Originally, inverted pendulums
gained research interest as they are good models for designing attitude controllers for
the vertical take-off of rockets [1, 2]. During take-off, rockets are extremely unstable as
the airspeed is too small for aerodynamic stability and thus require a controller to stay
upright, just as an inverted pendulum [3]. Inverted pendulums are also good models for
automatic aircraft landing systems, aircraft stabilization in turbulent air-flow, stabilization
of a cabin in a ship and humanoid walking control [1, 4]. In humanoid walking control,
the robot can be approximated by an inverted pendulum on a cart. The pendulum is
deflected from the equilibrium posture into the correct direction to enable the motion.
Trajectory tracking control needs to be applied to stabilize the robot around the gait
pattern [5].

1.1 Literature and Previous Works
There are many different experimental implementations of inverted pendulums, where the
most common are the single arm rotary inverted pendulum, the inverted pendulum on a
cart and the double inverted pendulum. An overview of inverted pendulum (IP) types is
given in Table 1.1. The parallel type dual inverted pendulum, mentioned in this table,
consists of two pendulums on carts and a bar connecting the top ends of the two inverted
pendulums.

Name Degree of under-actuation Actuator Paper
single arm rotary IP 1 rotary [6]

IP on a cart 1 linear [7]
double IP 2 linear [8]

two-link rotary IP 2 rotary [9]
parallel type dual IP 2 linear [10]

spherical IP 2 linear or rotary [11, 12]
3D pendulum 3 linear [13]

triple IP 3 linear [14]
quadruple IP 4 linear [15]

Table 1.1: Inverted pendulum types.

The research topics of inverted pendulums can be divided into swing-up control, sta-
bilization control, switching control, and trajectory tracking control. The purpose of

1



1 Introduction 1.1 Literature and Previous Works 2

swing-up control is to move the pendulum from the downward equilibrium posture to the
upward equilibrium posture. Swing-up control is especially interesting and challenging
as many standard techniques of nonlinear control are ineffective. The system is neither
input-output linearizable, nor feedback linearizable and the controllability distribution
does not have constant rank [16]. Stabilization control has the purpose of stabilizing the
pendulum around the upper equilibrium posture. In many cases, the swing-up controller is
switched to the stabilizing controller after a successful swing-up, which requires switching
control. However, single controllers solving both problems have also been proposed [17].
Trajectory tracking control is used to move the base point of the pendulum along a
trajectory, while the pendulum remains at the unstable position [18, 19].

Due to its properties, the inverted pendulum is a popular benchmarking system in control
engineering. Therefore, many control concepts have been applied to inverted pendulums.
For swing-up control, energy-based [6], fuzzy logic [20] and time optimal control [21] are
often used. An extensive list of swing-up controllers is given in [18]. For energy-based
swing-up control, a nonlinear feedback law is used to pump energy into the system until
the upper equilibrium posture is reached. The asymptotic stability can be proven for
energy-based swing-up control, as performed in [6, 22]. Fuzzy logic control uses linguistic
rules to describe the control action. Stability is hard to confirm, but fuzzy logic control
is easy to implement and computationally less demanding. Combined with optimization
methods such as genetic algorithms and particle swarm optimization, it is robust against
noise and disturbances and can also outperform energy-based controllers in terms of
steady-state error, settling time, rise time, and maximum overshoot [23]. Compared to
energy-based swing-up, the optimal swing-up control takes less time. Additionally, it is
possible to choose a terminal state, as long as it is suitable. However, time optimal control
is not robust to parameter perturbations [21].
In cases where a separate stabilizing controller is used, switching is performed to the

stabilizing controller when the pendulum is near the upright equilibrium posture. These
controllers are mostly based on a linear quadratic regulator (LQR) designed for the
linearized system in the upright equilibrium posture or on a partially linearized system
[12, 24]. Adaptive controllers [25], multiobjective integral sliding mode controllers [26],
fuzzy logic regulators [27], pole placement techniques [28], and optimized PID controllers
[29] have also been proposed in the literature.

The stabilization of a spherical inverted pendulum can be divided into approaches which
use an LQR and other ones. A cascade controller consisting of an LQR for pendulum
stabilization, inverse kinematics, and an inverse dynamics controller to compensate for
the robot’s dynamics is applied in [30]. A similar approach, but with a decentralized joint
acceleration controller, is used in [31, 32] and another variation utilizing PID controllers
to control the robot joints is presented in [33]. Other control concepts for stabilization of
a spherical inverted pendulum include an LQR in combination with feedback linearization
[12] and a plain LQR [34, 35]. A global stabilization method which uses the forwarding
technique in combination with an LQR is proposed in [36]. An approach which does not
use an LQR but an adaptive backstepping controller is presented in [37].
To the best of the author’s knowledge, the swing-up of a spherical inverted pendulum

has so far merely been performed in simulations with passivity-based control for a fully-
actuated spherical inverted pendulum with rotary actuators [38, 39]. This system differs
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from the systems usually examined for swing-up control, as those are under-actuated. A
further reference performs the swing-up in simulation and experiments where the controller
design relies on passivity control and the forwarding technique for a spherical inverted
pendulum mounted on a custom-built robot with three rotary joints [11]. Neither the
combination of an industrial robot with a spherical inverted pendulum nor optimal control
for swinging up a spherical inverted pendulum have been proposed in the literature so far.
A detailed overview of previous research results regarding the control of inverted

pendulums can be found in [18, 19].

1.2 Aim of this Thesis
To date there have been experiments with a spherical inverted pendulum in combination
with an omnidirectional mobile robot [37], a two-link (SCARA) robot [30], a three-link
robot [11] and a redundant three-link robot [31, 32]. However, this work aims at using a
robot with seven degrees of freedom (DOF) to operate a spherical inverted pendulum,
which has not been proposed in literature so far, at least to the best of the author’s
knowledge. While passivity-based approaches for swing-up have been used before, this
thesis proposes an optimal control approach for the swing-up of a spherical inverted
pendulum. This approach has the benefit of incorporating the robot kinematics, dynamics,
and the kinematic and dynamic limits, which were neglected in [11]. As the spherical
inverted pendulum has two non-actuated DOF, the system has a degree of under-actuation
of two. Therefore, this system constitutes a challenging combination of robotic control and
the classical benchmarking system of an inverted pendulum. For stabilization, a cascade
controller consisting of two LQRs for the pendulum and a Cartesian trajectory controller
is used. It should be noted that [30–32, 40] use a similar approach for stabilization as
proposed in this thesis.

1.3 Overview of this Thesis
First, a short overview of the system and the mechanical design of the pendulum is given in
Chapter 2. Subsequently, the kinematics and dynamics of the spherical inverted pendulum
with Cartesian input, the kinematics of the robot, as well as the kinematics and dynamics
of the complete system with torque input are derived. The equilibrium postures of the
pendulum are calculated and discussed.
The swing-up trajectory is calculated by solving an optimal control problem, which

is described in Chapter 3. To ensure convergence to a feasible solution, the problem is
solved in a three-step process. First, the swing-up trajectory is found for the model of the
spherical inverted pendulum with Cartesian input, which has fewer DOF and is suitable
to find the first physical solution. This trajectory is then converted into a trajectory of
the complete system with torque input using inverse kinematics and forward dynamics.
By employing the latter trajectory as an initial guess for the optimization problem of the
complete system with torque input, a swing-up trajectory for the whole setup is found.
To ensure robustness to parameter perturbations, an LQR for the swing-up and a

cascade controller are designed in Chapter 4. The controller is switched to a cascade
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controller as soon as the pendulum is near the upper equilibrium posture, which is also
presented in this chapter.

Simulations of the setup with calibration errors and disturbances acting on the system are
performed. The simulation results are discussed in Chapter 5, followed by the evaluation
of the experimental results in Chapter 6.



2 Design and Mathematical Modeling

This chapter introduces the robotic system and the pendulum tool, which are used in this
thesis. First, an overview of the system is given. Then, the design and the mathematical
model of the spherical inverted pendulum are discussed, resulting in the equations of
motion. These equations are linearized around an equilibrium posture, since the result
is required for the controller design. Finally, the kinematics of the robot as well as
the dynamics of the complete system are derived. The resulting models are used to
calculate the swing-up trajectory for the spherical inverted pendulum separately and for
the complete system. The equations of motion of the complete system are also used for
the controller design in Chapter 4 and for the simulations in Chapter 5.

2.1 System Overview
The system consists of the 7-axis robot Kuka LWR IV+ with a custom-built spherical
inverted pendulum mounted on its flange, which is depicted in Figure 2.1. The spherical
inverted pendulum is composed of two axes, which intersect in one point to allow for
motions of the pendulum tip on a sphere. Each of the axes of the spherical inverted
pendulum is equipped with a magnetic angular encoder to measure the angle and the
angular velocity. The combination of the robot and the spherical inverted pendulum
results in a system with nine degrees of freedom and seven inputs.

2.2 Design and Model of the Spherical Inverted Pendulum
First, the mechanical design of the spherical inverted pendulum is introduced in this
chapter and described in detail. Next, a mathematical model of the spherical inverted
pendulum with Cartesian input is derived. After calculating the kinematics, the equations
of motion are derived. The equilibrium postures of the model are calculated and then
used to linearize the equations of motion.

2.2.1 Mechanical Design
The basic components of the mechanical design of the spherical inverted pendulum are a
mounting enclosure and two perpendicular intersecting placed axes, which are shown in
Figure 2.2.

The mounting enclosure (2) is connected to the flange of the robot with seven hexagon
socket head cap screws (1). Axis 8 (8) and Axis 9 (9) are mounted to rotate freely using
capped single row deep groove ball bearings, which are chosen for minimum friction [41].
A locating/non-locating bearing arrangement is used for both axes to compensate for axial
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Figure 2.1: Robot with the spherical inverted pendulum.
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(1) hexagon socket head cap screws

(2) mounting enclosure

(4) magnetic actuator for Axis 8

(3) magnetic read head for Axis 8

(5) magnetic actuator for Axis 9

(6) magnetic read head for Axis 9

(7) pendulum rod

(8) Axis 8

(9) Axis 9

(10) counterweight

(11) EtherCAT terminals

Figure 2.2: Components of the spherical inverted pendulum.
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displacements and for the accumulation of tolerances of the components [41, 42]. Axis 8
(8) has a boring along its rotation axis to install the cables of the rotary encoder of Axis 9
(6). At the end of the boring, a slip ring is mounted to allow for infinite travel between
the mounting enclosure and Axis 8. Axis 9 (9) including its bearing arrangement and
rotary encoder is asymmetric. Therefore, a counterweight (10) is used to move the center
of mass of Axis 9 onto the longitudinal axis of the rod (7) to ensure that the vertical
position of the rod is an equilibrium posture.

Two magnetic rotary encoders are used to measure the angles of the magnetic actuators
(4) and (5) relative to the respective read head (3) and (6). One magnetic actuator is
mounted on each axis. The read head for Axis 8 is mounted on the mounting enclosure
and the read head for Axis 9 is placed on Axis 8. Three EtherCAT terminals (11) are
attached to the mounting enclosure, which read out the two rotary encoders.

2.2.2 Kinematics
System

The generalized coordinates of the system are the two degrees of freedom of the spherical
inverted pendulum (subscripted by “p” for pendulum)

qp =
[
q8
q9

]
. (2.1)

The input of the system is composed of the Cartesian acceleration of the tool attachment
point

up = r̈ =



r̈x
r̈y
r̈z


 , (2.2)

which is located in the center of the plane of the mounting enclosure facing the robot.
In the further text, results are only stated where they benefit the comprehension of the
calculations. The calculations including the complete results can be found on the attached
CD-ROM.

Coordinate Frames

The coordinate frames of the spherical inverted pendulum with Cartesian input are shown
in Figure 2.3. The space-fixed coordinate frame is denoted by (00x0y0z0), the frame of
the tool attachment point is described by (0txtytzt) with the origin r. The orientation is
fixed such that zt is parallel to x0, yt is parallel to y0 and xt is antiparallel to z0. Hence
the transformation between (00x0y0z0) and (0txtytzt) is described by the homogeneous
transformation matrix

Tt
0,p =




0 0 1 rx
0 1 0 ry
−1 0 0 rz
0 0 0 1


 . (2.3)
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Figure 2.3: Coordinate frames of the spherical inverted pendulum with Cartesian input.
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The kinematics of the pendulum is described by the Denavit-Hartenberg parameters
[43] given in Table 2.1 and the parameterized homogeneous transformation matrix

T(a, α, b, θ) =




cos(θ) − sin(θ) cos(α) sin(θ) sin(α) cos(θ)a
sin(θ) cos(θ) cos(α) − cos(θ) sin(α) sin(θ)a

0 sin(α) cos(α) b
0 0 0 1


 . (2.4)

i ai αi bi θi

8 0 π
2 d4 q8

9 0 π
2 0 q9 − π

2

Table 2.1: Denavit-Hartenberg parameters of the spherical inverted pendulum.

The homogeneous transformation matrices between the coordinate frames (00x0y0z0)
and (08x8y8z8), and (00x0y0z0) and (09x9y9z9) are calculated by the composition of the
transformation matrices (2.3) and (2.4)

T8
0,p = Tt

0,pT(a8, α8, b8, θ8) (2.5a)
T9

0,p = T8
0,pT(a9, α9, b9, θ9) . (2.5b)

Translation

The homogeneous vectors of the center of mass in the body-fixed coordinate frames

Pic
i =




cix
ciy
ciz
1


 , i = 8, 9 (2.6)

are transformed using

Pic
0,p = Ti

0,pPic
i , i = 8, 9 (2.7)

into the space-fixed coordinate frame. The vectors of the center of mass are extracted
from the homogeneous vectors (2.7) by taking the first three entries

pic0,p = Pic
0,p[1 . . . 3] , i = 8, 9 . (2.8)

The linear velocities v are the time derivative of these position vectors

vic0,p = d
dtp

ic
0,p , i = 8, 9 . (2.9)
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Rotation

Next, the rotation matrices are extracted from the homogeneous transformation matrices
(2.5)

Ri
0,p = Ti

0,p[1 . . . 3, 1 . . . 3] , i = 8, 9 . (2.10)

To receive the angular velocity, the skew-symmetric operator S(ω) is calculated by

S
(
ωi0,p

)
=
( d

dtR
i
0,p

)(
Ri

0,p
)T

, i = 8, 9 . (2.11)

As the operator S(ω) has the form

S(ω) =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 , (2.12)

the elements of the angular velocities are extracted from this equation.

Manipulator Jacobian

The Jacobian of the end of the rod of the spherical inverted pendulum referenced in the
space-fixed coordinate frame is calculated by

Je0v,p =
∂pe0,p
∂qp

(2.13)

with pe0,p being the position vector between the space-fixed coordinate frame (00x0y0z0)
and the end of the rod of the spherical inverted pendulum calculated by

Pe
9 =




0
0
d5
1


 (2.14a)

Pe
0,p = T9

0,pPe
9 (2.14b)

pe0,p = Pe
0,p[1 . . . 3] . (2.14c)

2.2.3 Dynamics
The equations of motion of the spherical inverted pendulum with a Cartesian input are
derived using the Euler-Lagrange equations [43]. Friction is neglected in this model.
The results from the previous chapter are used to calculate the kinetic and potential

energies of the spherical inverted pendulum. The symmetric inertia tensors Ii for the
individual rigid bodies are composed of

Ii =



Ii,xx Ii,xy Ii,xz
Ii,xy Ii,yy Ii,yz
Ii,xz Ii,yz Ii,zz


 , i = 8, 9 (2.15)



2 Design and Math. Modeling 2.2 Design and Model of the Sph. Inv. Pend. 11

and are given in the body-fixed coordinate frames. Therefore, they have to be transformed
into the space-fixed coordinate frame to calculate the rotatory kinetic energy. The mass
of a link is denoted by mi.

The kinetic energy T is the sum of the translatory and the rotatory kinetic energies of
all links

Tp =
∑

i=8,9

1
2
(
ωi0,p

)T
Ri

0,pIi
(
Ri

0,p
)T
ωi0,p + 1

2mi

(
vic0,p

)T
vic0,p . (2.16)

Using the vectors of the center of mass (2.8), the potential energy is calculated by

Vp =
∑

i=8,9

[
0 0 g

]
pic0,pmi , (2.17)

with the acceleration of gravity g.
Next, disturbance forces

Fext =



Fx
Fy
0


 (2.18)

are introduced to the model of the spherical inverted pendulum. Fx and Fy are parallel
to x0 and y0 respectively, as depicted in Figure 2.4. Using (2.13) the corresponding
generalized force results in

τ ext,p =
(
Je0v,p

)T
Fext . (2.19)

Entwurf: December 14, 2018

z0

y0

x0

Fx

Fy

Figure 2.4: Disturbance force acting on the spherical inverted pendulum.
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The equations of motion are finally calculated in the form

d
dt

(
∂Lp
∂q̇p

)T

−
(
∂Lp
∂qp

)T

= τ ext,p (2.20)

with the Lagrangian
Lp = Tp − Vp . (2.21)

2.2.4 Equilibrium Posture
By setting all time derivatives and the disturbance forces in (2.20) to zero, the equilibrium
postures of the spherical inverted pendulum result from

(
∂Lp
∂qp

)T
∣∣∣∣∣∣q̈p=0
q̇p=0
qp=qe,p

r̈=0

= 0 , (2.22)

which are two equations in two unknowns, q8e and q9e. The resulting six sets of equilibrium
postures of the model are

q8e1 = πZ1 q9e1 = 2πZ2 (2.23a)
q8e2 = πZ3 q9e2 = π + 2πZ4 (2.23b)

q8e3 = π

2 + 2πZ5 q9e3 = π

2 + 2πZ6 (2.23c)

q8e4 = π

2 + 2πZ7 q9e4 = −π2 + 2πZ8 (2.23d)

q8e5 = −π2 + 2πZ9 q9e5 = π

2 + 2πZ10 (2.23e)

q8e6 = −π2 + 2πZ11 q9e6 = −π2 + 2πZ12 , (2.23f)

with Zi ∈ Z, i ∈ {1, . . . , 12}. Due to the periodicity of the trigonometric functions
there are infinite solutions which are physically identical. Although a counterweight is
used, the resulting equilibrium postures of the spherical inverted pendulum have small
deviations from the exact vertical (max. 2 · 10−8 rad) and exact horizontal position (max.
8 · 10−4 rad), due to the asymmetric mechanical design of the spherical inverted pendulum.
The equilibrium postures are given rounded here, for the sake of simplicity.

The equilibrium postures 3 to 6 describe postures where the rod of the spherical inverted
pendulum is horizontal. Exemplarily, posture 6 is depicted in Figure 2.5. While postures
3 and 5 cannot be reached, as the rod of the spherical inverted pendulum would intersect
Axis 8 and the mounting enclosure, postures 4 and 6 are actual equilibrium postures. The
lever arm of the gravitational force is zero around Axis 8 and the gravitational force is
parallel to Axis 9, resulting in zero momentum acting on the pendulum.
The remaining equilibrium postures 1 and 2 describe the vertical position of the rod.

While both sets of postures include postures where the pendulum rod is both standing and
hanging, they are not physically identical, due to the asymmetric design of the spherical
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inverted pendulum. Aside from this, the rotational direction of q9 in those two different
sets of postures differs. The solutions

qeu =
[
0
0

]
(2.24a)

qel =
[
π
0

]
(2.24b)

for the standing and hanging equilibrium posture, respectively, are chosen and are further
on used for swinging up the pendulum and stabilizing it.

Figure 2.5: Equilibrium posture 6 of the spherical inverted pendulum.

2.2.5 Linearization of the Equations of Motion
The equations of motion (2.20) are rearranged in state-space form

d
dtxp = fp(xp,up,dp) (2.25)

with the state

xp =




qp
q̇p
r
ṙ


 , (2.26)

the input (2.2) and the disturbance input dp = Fext. The state-space representation (2.25)
is completed by the equations dr

dt = ṙ and dṙ
dt = r̈. The equations (2.25) are linearized
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around an equilibrium posture from (2.23)

∆ẋp = Ap∆xp + Bp∆up + Bd,p∆dp (2.27a)

Ap = ∂f(xp,up,dp)
∂xp

∣∣∣∣∣
xp=xe,p,up=0,dp=0

(2.27b)

Bp = ∂f(xp,up,dp)
∂up

∣∣∣∣∣
xp=xe,p,up=0,dp=0

(2.27c)

Bd,p = ∂f(xp,up,dp)
∂dp

∣∣∣∣∣
xp=xe,p,up=0,dp=0

, (2.27d)

with the deviations from the equilibrium posture

∆xp = xp − xe,p (2.28a)
∆up = up (2.28b)
∆dp = dp . (2.28c)

2.3 Kinematics of the Robot
The coordinate frames of the robot are depicted in Figure 2.6. They are arranged according
to the Denavit-Hartenberg convention, with the Denavit-Hartenberg parameters given in
Table 2.2. The space-fixed coordinate frame located in the first joint and the coordinate
frame of the tool attachment point of the robot are denoted by (00x0y0z0) and (0txtytzt),
respectively.

i ai αi bi θi

1 0 π
2 0 q1

2 0 −π
2 0 q2

3 0 −π
2 d1 q3

4 0 π
2 0 q4

5 0 π
2 d2 q5

6 0 −π
2 0 q6

7 0 0 0 q7
t 0 0 d3 0

Table 2.2: Denavit-Hartenberg parameters of the robot.

To formulate the kinematic relationship between the space-fixed coordinate frame and
the tool attachment point of the robot, the corresponding position vectors pi0,r (subscripted
by “r” for robot), linear velocities vi0,r and angular velocities ωi0,r (2.6) to (2.9) with
i ∈ {1, . . . , 7, t} are calculated. The corresponding Jacobian of the tool attachment point
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Figure 2.6: Coordinate frames of the robot for qr = 0.

with respect to the space-fixed coordinate frame results from

Jt0,r =
[
Jt0v,r
Jt0ω,r

]
=



∂pt

0,r

∂qr
∂ωt

0,r

∂q̇r


 , (2.29)

with the generalized coordinates of the robot

qr =
[
q1 q2 q3 q4 q5 q6 q7

]T
. (2.30)

2.4 Model of the Complete System
In this section, the model of the complete system is derived. The generalized coordinates
qs (subscripted by “s” for system) and the inputs us of the complete system read as

qs =
[
q1 q2 q3 q4 q5 q6 q7 q8 q9

]T
(2.31)

and
us =

[
M1 M2 M3 M4 M5 M6 M7

]T
, (2.32)

respectively.

2.4.1 Kinematics
The coordinate frames of the system are depicted in Figure 2.7 (compare Figure 2.3 and
Figure 2.6). The Denavit-Hartenberg parameters of the complete system are given in
Table 2.3, which is a composition of Table 2.1 and Table 2.2.
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Figure 2.7: Coordinate frames of the complete system for qs = 0.

i ai αi bi θi

1 0 π
2 0 q1

2 0 −π
2 0 q2

3 0 −π
2 d1 q3

4 0 π
2 0 q4

5 0 π
2 d2 q5

6 0 −π
2 0 q6

7 0 0 0 q7
t 0 0 d3 0
8 0 π

2 d4 q8
9 0 π

2 0 q9 − π
2

Table 2.3: Denavit-Hartenberg parameters of the complete system.
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Equations (2.6) to (2.9) with i ∈ C, C = {1, . . . , 7, t, 8, 9} give the position vectors of
the center of mass pic0,s, the linear velocities of the center of mass vic0,s and the angular
velocities ωi0,s. Note that the center of mass P7c

7 , mass m7 and inertia tensor I7 are
composed of the values of the robot and the mounting enclosure of the spherical inverted
pendulum. The manipulator Jacobians are given by

Jic0v,s =
∂pic0,s
∂qs

, i ∈ C (2.33)

Ji0ω,s =
∂ωi0,s
∂q̇s

, i ∈ C . (2.34)

2.4.2 Dynamics
This section derives the rigid-body dynamics using the results from the previous section
to assemble the mass matrix D, the Coriolis matrix C and the gravity vector g [43].
Friction is neglected in this model. By using the results from the previous section, the
symmetric and positive definite mass matrix Ds, which consists of translatory and rotatory
components, is given by

Ds(qs) =
∑

i∈C
mi

(
Jic0v,s

)T
Jic0v,s +

(
Ji0ω,s

)T
Ri

0,sIi
(
Ri

0,s
)T

Ji0ω,s . (2.35)

Next, the elements of the matrix Cs result from

Cs(qs, q̇s)[k, j] =
9∑

i=1

1
2

(
∂Ds(qs)[k, j]

∂qi
+ ∂Ds(qs)[k, i]

∂qj
− ∂Ds(qs)[i, j]

∂qk

)
q̇i , (2.36)

Using

Vs =
9∑

i=1

[
0 0 g

]
pic0,smi (2.37)

to calculate the potential energy Vs, the gravity vector gs is derived by

gs(qs) =
(
∂Vs(qs)
∂qs

)T
. (2.38)

The torque vector of each link consists of the torques of the drives attached to both ends
of every link (except for link 7)

M1 =




0
M1
−M2


 , M2 =




0
−M2
−M3


 , M3 =




0
−M3
−M4


 , M4 =




0
M4
−M5


 (2.39a)

M5 =




0
M5
−M6


 , M6 =




0
−M6
−M7


 , M7 =




0
0
M7


 , (2.39b)
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which are then mapped to the corresponding generalized force by

τ s =
7∑

i=1

(
Ji0ω,s

)T
Ri

0,sMi =
[
M1 M2 M3 M4 M5 M6 M7 0 0

]T
. (2.40)

The disturbance force Fext as defined in (2.18) is also used for this system as disturbance
input. Analogous to (2.19), the generalized force is calculated as

τ ext,s =
(
Je0v,s

)T
Fext . (2.41)

Finally, the equations of motion are composed of

Ds(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = τ s + τ ext,s . (2.42)

The rigid-body equation (2.42) can be rearranged in state-space form by multiplying the
equation with the inverse of the mass matrix Ds, which is always invertible due to its
positive definiteness, resulting in

d
dt

[
qs
q̇s

]
= ẋs = fs =

[
q̇s

(Ds(qs))−1(−Cs(qs, q̇s)q̇s − gs(qs) + τ s + τ ext,s)

]
. (2.43)

2.4.3 Equilibrium Postures
The equilibrium postures are calculated from (2.42), by setting all time derivatives and
disturbance forces to zero, which results in

gs(qe,s) = τ e,s . (2.44)

As the posture of the robot can be chosen freely, there is an infinite number of operating
points in addition to the infinite number of equilibrium postures of the spherical inverted
pendulum. If the robot adopts a posture such that the tool attachment point has the same
orientation as in (2.3), the equilibrium postures of q8 and q9 are the same as in (2.23).



3 Swing-Up Trajectory

The swing-up trajectory of the spherical inverted pendulum is calculated in a three-step
process by sequentially solving multiple optimization problems, using each solution as the
initial guess for the next problem. This division into multiple optimization problems is
necessary in order to obtain a feasible solution using a simpler model first and, further on,
increase the problem complexity until a viable solution for the complete model is found.
The first feasible solution is calculated for the model of the spherical inverted pendulum
with Cartesian acceleration input from Section 2.2. This solution trajectory is converted
into a trajectory for the model of the complete system with torque input from Section 2.4,
using inverse kinematics and forward dynamics. This serves as an initial guess for the
optimization problem of the complete model. The solution of the latter optimization
problem is used for the simulations in Chapter 5 and the experiments in Chapter 6.

3.1 Spherical Inverted Pendulum with Cartesian Acceleration
Input

The purpose of the optimization problem discussed in this section is to first find a feasible
swing-up trajectory for a simpler problem. The optimization problem uses the model of
the spherical inverted pendulum with Cartesian acceleration input, which is derived in
Section 2.2. Compared to the model of the complete system, the model of the spherical
inverted pendulum with a Cartesian acceleration input has a smaller number of generalized
coordinates and inputs, which simplifies the search for a feasible solution when starting
from an infeasible starting point. The resulting trajectory can be converted into a suitable
initial guess for the subsequent optimization problem, as described in Section 3.3.
The search for a feasible swing-up trajectory is formulated as a dynamic optimization

problem

min
u(·)

J(u(·)) =
∫ t1

t0
l(t,x(t),u(t)) dt (3.1a)

s.t. ẋ = f(t,x,u) x(t0) = x0 (3.1b)
φ(t1,x(t1)) = 0 (3.1c)
xlb ≤ x(t) ≤ xub, ∀t ∈ [t0, t1] (3.1d)
ulb ≤ u(t) ≤ uub, ∀t ∈ [t0, t1] , (3.1e)

which leads to the optimal input u(t) with respect to the cost functional J(u(·)), the
dynamic equations (3.1b), the final condition (3.1c) and further inequality constraints (3.1d)
and (3.1e). Instead of solving the infinite-dimensional optimal control problem (3.1), the
direct method is used to derive a finite-dimensional static optimization problem. Therefore,

19
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a time grid ti with N collocation points is introduced, which splits the optimization horizon
[t0, t1] into N − 1 equidistant intervals

ti = t0 + i
t1 − t0
N − 1 , i = 0, . . . , N − 1 . (3.2)

The states and inputs are only evaluated at the grid points and constitute the vector of
optimization variables yp ∈ R(10+3)N ,

yp =
[(

x0
p

)T (
u0
p

)T (
x1
p

)T (
u1
p

)T
· · ·

(
xN−1
p

)T (
uN−1
p

)T
]T

, (3.3)

with the state xip = xp
(
ti
)
and the input uip = up

(
ti
)
from the system (2.25). The

cost function and constraints of the dynamic optimization problem (3.1) are discretized
accordingly, which transforms (3.1) to the static optimization problem

min
yp

Jp(yp) (3.4a)

s.t. ceq,p(yp) = 0 . (3.4b)

This discretization is discussed in the following subsections.
While indirect methods have the benefit of providing solutions with high accuracy, it is

difficult to initialize them and the domain of convergence is relatively small. Therefore,
indirect methods are often initialized with a solution obtained from a direct method.
Adding equality and inequality constraints is usually more difficult with indirect methods
than with direct methods. Although direct methods only provide suboptimal solutions,
it has been shown that the solution converges to the exact solution of the optimization
problem if the number of collocation points is increased. Due to the aforementioned
drawbacks of indirect methods, the direct method is applied for solving the optimal control
problem. As the approach used in this thesis discretizes the states and inputs, it is called
a direct simultaneous method. Compared to direct sequential methods, which discretize
inputs alone, inequality constraints are handled more easily and the computational effort
is lower, as no computational time is wasted with obtaining accurate state values for
inputs/parameters which are far from their optimal values. This is especially beneficial
for finding solutions where instabilities occur in the range of inputs or no solution exists
for certain inputs, see, e. g., [44, 45].

3.1.1 Cost Function
By applying the trapezoidal rule to the cost functional (3.1a) the integral is discretized,
thus the discretized cost function results in

Jp(yp) =
N−2∑

i=0

1
2
(
ti+1 − ti

)[
lp
(
ti,xip,uip

)
+ lp

(
ti+1,xi+1

p ,ui+1
p

)]
. (3.5)

The Lagrange function is chosen to be of quadratic form

lp
(
ti,xip,uip

)
=1

2

((
xip − xr,p

)T
Qp

(
xip − xr,p

)

+
(
uip − ur,p

)T
Ri
p

(
uip − ur,p

))
,

(3.6)
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where the weighting matrices Qp and Ri
p penalize the deviation from the reference values

xr,p and ur,p, respectively. Additionally, the time-dependent weighting matrix for the
inputs Ri

p allows to adjust the weights for each instant of time. To decrease the search time
and increase the accuracy, the gradient of the cost function is provided to the optimization
algorithm, which is computed from (3.5) and leads to

∂Jp
∂yp

(yp) =
[

1
2
(
t1 − t0) ∂lp∂xp

(
t0,x0

p,u0
p

)
,

1
2
(
t1 − t0) ∂lp∂up

(
t0,x0

p,u0
p

)
,

1
2
(
t2 − t0) ∂lp∂xp

(
t1,x1

p,u1
p

)
,

1
2
(
t2 − t0) ∂lp∂up

(
t1,x1

p,u1
p

)
, · · ·

1
2

(
tN−1 − tN−3

)
∂lp
∂xp

(
tN−2,xN−2

p ,uN−2
p

)
,

1
2

(
tN−1 − tN−3

)
∂lp
∂up

(
tN−2,xN−2

p ,uN−2
p

)
,

1
2

(
tN−1 − tN−2

)
∂lp
∂xp

(
tN−1,xN−1

p ,uN−1
p

)
,

1
2

(
tN−1 − tN−2

)
∂lp
∂up

(
tN−1,xN−1

p ,uN−1
p

)]
.

(3.7)

with

∂lp
∂xp

(
ti,xip,uip

)
=
(
xip − xr,p

)T
Qp (3.8a)

∂lp
∂up

(
ti,xip,uip

)
=
(
uip − ur,p

)T
Ri
p . (3.8b)

3.1.2 Constraints
To find a viable swing-up trajectory, two constraints are introduced, which specify the state
vector at the beginning and at the end of the trajectory with x0

p and xN−1
p , respectively.

For t = t0, the spherical inverted pendulum needs to be in the lower equilibrium posture
(2.24b), the tool attachment point needs to be in a defined start position r0. Although the
actual value for r0 is irrelevant for the swing-up trajectory in this optimization problem,
it is set to a suitable and reachable start position for the robot to ease the conversion of
the resulting trajectory for the complete system in the next chapter. The initial condition
is therefore

xp(t0) =




qel
0
r0
0


 . (3.9)

As with the initial condition, the final condition of the state is composed of the requirement
that the spherical inverted pendulum is in the upper equilibrium posture (2.24a) and the
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tool attachment point of the robot has returned to the start position r0, i. e.

xp(t1) =




qeu
0
r0
0


 . (3.10)

Since (3.1b) is discretized using the trapezoidal rule, the system equation constraints are
only fulfilled at the collocation points. The constraints resulting from the equations of
motion, as well as the initial and final condition, are combined to the vector of equality
constraints

ceq,p(yp) =



x1
p − x0

p − t1−t0
2

(
fp
(
t0,x0

p,u0
p

)
+ fp

(
t1,x1

p,u1
p

))

...
xN−1
p − xN−2

p − tN−1−tN−2

2

(
fp
(
tN−2,xN−2

p ,uN−2
p

)
+ fp

(
tN−1,xN−1

p ,uN−1
p

))

x0
p − xp(t0)

xN−1
p − xp(t1)



.

(3.11)
The gradient of the vector of equality constraints is calculated as

∂ceq,p(yp)
∂yp

=




A0
eq,p B1

eq,p 0 · · · 0
0 A1

eq,p B2
eq,p · · · 0

... . . . . . . ...
0 · · · AN−2

eq,p BN−1
eq,p[

I10 0
]

0 · · · 0
0 · · ·

[
I10 0

]




(3.12a)

Ai
eq,p =

[
−I10 − ti+1−ti

2
∂fp

∂xp

(
ti,xi,ui

) − ti+1−ti
2

∂fp

∂up

(
ti,xi,ui

)]
(3.12b)

Bi
eq,p =

[
I10 − ti+1−ti

2
∂fp

∂xp

(
ti,xi,ui

) − ti+1−ti
2

∂fp

∂up

(
ti,xi,ui

)]
, (3.12c)

with the identity matrix In of size n.

3.1.3 Algorithm and Parameters
The search for a minimum of the optimization problem (3.4) with (3.5) to (3.12) is
performed using fmincon from the Matlab Optimization Toolbox [46]. The parameters
used for the fmincon solver are shown in Table 3.1. The interior-point algorithm is used
because it is the recommended algorithm for nonlinear problems in [46]. The usage of the
gradients of the objective function and of the constraints is enabled and the number of
iterations and function evaluations are increased to avoid a premature end of the search.
Additionally, the use of parallel processing is activated to decrease the search time for a
minimum.
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Parameter Value
Algorithm interior-point

SpecifyConstraintGradient true
SpecifyObjectiveGradient true
MaxFunctionEvaluations 109

MaxIterations 109

UseParallel true

Table 3.1: fmincon options for the optimization problem of the spherical inverted pendu-
lum with Cartesian acceleration input.

The matrices used in the Lagrange function (3.6) are chosen as

Qp = diag(0, 0, 1, 1, 1, 1, 1, 1, 100, 100) (3.13a)
Ri
p = diag(100, 1, 1) , i = 0, . . . , N − 1 , (3.13b)

with diag(d1, d2, . . . , dn) denoting a diagonal matrix whose diagonal elements starting in
the upper left corner are d1, d2, . . . , dn. The weights of q8 and q9 in Qp are chosen to be
zero, but tests have shown that setting them to one results in satisfying solutions too.
The last two elements of the diagonal of the matrix Qp are chosen to be 100 to retain
the velocities ṙy and ṙz. The weight of the acceleration r̈x in Rp is increased to avoid any
movements in the direction of the x0 axis, which are not needed for the swing-up of the
spherical inverted pendulum (see Figure 2.3). The reference values used in the Lagrange
function (3.6) are set to

xr,p = xp(t1) (3.14a)
ur,p = 0 . (3.14b)

Furthermore, the initial value of yp (3.3) is obtained by assigning the linear interpolation
between (3.9) and (3.10) to xip and setting uip to zero.

The number of collocation points N is set to 80 with an optimization horizon of t1 = 2 s,
as this has proven to be a good compromise between accuracy and calculation time for
solving the optimization problem.

3.1.4 Results
The fmincon solver found a solution with the characteristic values of the optimization
process shown in Table 3.2. The resulting trajectory is shown in Figure 3.1. In this thesis,
discrete-time signals are shown as continuous-time signals for reasons of clarity. Both
the initial condition (3.9) and the final condition (3.10) are satisfied and the position r
and the velocity ṙ of the tool attachment point have small deviations from their initial
values of about 0.1 m and 0.5 m/s, respectively. Small values are beneficial since more
reserve is available in view of the kinematic and dynamic limits of the robot, which is in
the next section used to perform the dynamic motion of the tool attachment point. The
angle q9 remains very close to zero and is not used for the swing-up, as was intended by
the increased weight of r̈x.
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Figure 3.1: Swing-up trajectory of the spherical inverted pendulum with Cartesian input.
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Name Value
iterations 1062

function evaluations 9093
constraint violation 2.2482 · 10−15

first order optimality 1.2746 · 10−6

Jp
(
yp,min

)
34.0357

optimization variables 1040

Table 3.2: Characteristic values of the optimization problem of the spherical inverted
pendulum with Cartesian acceleration input.

3.2 Inverse Kinematics and Forward Dynamics
As the resulting trajectory of the previous section only describes the pendulum and the
tool attachment point, this solution is now transformed into a swing-up trajectory of the
complete system with torque input. This transformed trajectory serves as an initial guess
for subsequent optimizations. For this purpose, the relationship between the linear and
angular velocity of the tool attachment point ż and the joint velocities of the robot q̇r,
described by (2.29)

ż = Jt0,rq̇r , (3.15)

is used [43]. The time derivative of (3.15) is

z̈ = J̇t0,rq̇r + Jt0,rq̈r , (3.16)

which involves the linear and angular acceleration of the tool attachment point z̈ and the
joint accelerations q̈r. While the linear velocities and accelerations are taken from the
results of the optimization problem for the spherical inverted pendulum with Cartesian
acceleration input, the angular velocities and accelerations are set to zero, to reflect that
the orientation of the coordinate frame of the tool attachment point remains fixed

żi =
[

ṙi
03×1

]
, z̈i =

[
r̈i

03×1

]
, i = 0, . . . , N − 1 . (3.17)

Using the pseudo-inverse, denoted by †, (3.15) and (3.16) are rearranged to calculate the
joint velocities and accelerations for each instant of time ti as

q̇ir =
(
Jt,i0,r

)†
żi , q̈ir =

(
Jt,i0,r

)†(
z̈i − J̇t,i0,rq̇ir

)
, i = 0, . . . , N − 1 . (3.18)

The joint angles result from integrating the joint velocities using the Euler method

qi+1
r = qir +

(
ti+1 − ti

)
q̇ir , i = 0, . . . , N − 2 . (3.19)

As a result, this inverse kinematics process deduces a joint-based trajectory for the robot
qir, q̇ir and q̈ir from the desired tool attachment point velocities ṙi and accelerations r̈i.



3 Swing-Up Trajectory 3.2 Inverse Kinematics and Forward Dynamics 26

Based on this trajectory, the dynamics of the complete system (2.42) can be simulated
forward, to calculate the trajectory of the complete system. The equations to calculate
the joint angles, velocities, and accelerations of the complete system with torque input
read as

qis =



qir
qi8
qi9


 , q̇is =



q̇ir
q̇i8
q̇i9


 , q̈is =

[
q̈ir[

02×2 I2 02×6
]
f ip

]
, i = 0, . . . , N − 1 , (3.20)

with fp from (2.25). The input of the complete system with torque input is calculated
from the equations of motion (2.42) with τ ext,s = 0

τ is = Ds

(
qis
)
q̈is + Cs

(
qis, q̇is

)
q̇is + gs

(
qis
)

(3.21a)

uis =
[
I7 07×2

]
τ is , i = 0, . . . , N − 1 . (3.21b)

As start value for the angles of the robot

q0
r =

[
π
6 −π

2 −π
2

π
3 0 π

6
π
2

]T
(3.22)

is used. This configuration has the benefit that three axes of the robot are parallel to the
z0 axis of the space-fixed coordinate frame. The robot has therefore a large workspace,
although the tool attachment point is restricted to translatory motions along the x0
and y0 axes and rotatory motions around z0 axis. The coordinate frame of the tool
attachment point (0txtytzt) has the same orientation as the one used in the model for the
pendulum with Cartesian input. This allows direct conversion of the trajectory obtained
in Section 3.1 to a trajectory for the complete system with torque input.

The robot kinematics and dynamics are restricted by physical limits in terms of limiting
angles ql,r (subscripted by “l” for limit), joint velocities q̇l,r, and torques Ml,r, which
are shown in Table A.1. These limits need to be satisfied at all times [47]. The chosen
start value (3.22) provides a sufficient distance to the angle limits ql,r of the robot. In
particular, the three axes parallel to z0 have at least 50 % reserve to the angle limits of
the robot. The results of the trajectory conversion (3.17) to (3.21) is shown in Figure 3.2.
Indices of vectors are denoted by the subscript “i”. The values in the figure are scaled
with

qs,s =
[
qT
l,r 360° 360°

]T
(3.23a)

q̇s,s =
[
q̇T
l,r 720 °/s 720 °/s

]T
(3.23b)

Ms,s = Ml,r , (3.23c)

respectively. The limits of the robot are satisfied with a reserve of at least 24 % to the
limits in all axes, which is sufficient for additional controller input occurring during the
swing-up. This is ensured by the chosen start value for the angles and the chosen weights
of the optimization problem in the previous section.
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used as initial guess for the optimization problem. The graphs are scaled with
the scaling vectors from (3.23).
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3.3 Complete System with Torque Input
The converted trajectory from the previous section is now used as an initial guess for
the optimization problem of the complete system with torque input. This optimization
problem is used to calculate the swing-up trajectory of the spherical inverted pendulum,
utilized during the simulation and the experiments. As this optimization problem is based
on the model of the complete system from Section 2.4, the weights in the cost function
are applied directly to the axes, which allows for more direct tuning of the final trajectory.
Additionally, this approach also allows to constrain the robot axes directly according to
the kinematic and dynamic limits of the robot listed in Table A.1. As a trajectory with
a time resolution of 1 ms is needed for the experimental setup, the first solution with a
lower resolution is then successively refined to reach the desired time resolution.

The vector of variables ys ∈ R(18+7)N is composed of the state xs =
[
qT
s q̇T

s

]
and the

input us from (2.32) evaluated on the time grid (3.2)

ys =
[(

x0
s

)T (
u0
s

)T (
x1
s

)T (
u1
s

)T · · ·
(
xN−1
s

)T (
uN−1
s

)T
]T

. (3.24)

Similar to the static optimization problem (3.4), the static optimization problem consisting
of

min
ys

Js(ys) (3.25a)

s.t. ceq,s(ys) = 0 (3.25b)
ylb,s ≤ ys ≤ yub,s (3.25c)

is solved.

3.3.1 Cost Function
The same cost function and gradient of the cost function as in (3.5) to (3.8) (with subscript
“s”) are used for this optimization problem. The optimization algorithm has a tendency
to find solutions, which incorporate a jerky motion towards the end of the optimization
horizon [t0, t1] to meet the constraint of the final value. To counteract this behavior, the
time-variant matrix Ri

s is used to increase the weights of the input towards the end the
optimization horizon. This ensures a smooth motion of the complete system into the final
position.

3.3.2 Constraints
The initial and final condition of the optimization problem need to reflect the requirement
that, initially, the robot is in its start position q0

r (3.22) and the pendulum is hanging
down, and, when the swing-up maneuver is finished the robot should return to its start
position and the pendulum is standing upright. Thus, the initial condition consists of the
start position of the robot and the lower equilibrium posture of the pendulum (2.24b) and
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the final condition consists of the start position of the robot and the upper equilibrium
posture of the pendulum (2.24a), i. e.

xs(t0) =




q0
r

qel
09×1


 (3.26a)

xs(t1) =




q0
r

qeu
09×1


 . (3.26b)

The equality constraint vector and its gradient have the same structure as in (3.11) and
(3.12), respectively, whereby the model equations in state-space form fs are taken from
(2.43). To receive the gradient of the equality constraints, the partial derivative of (2.42)
with respect to xs and us is calculated and then rearranged to

∂fs
∂xs

=




[
09×9 I9

]

(Ds(qs))−1
(
−
(∑9

i=1
∂di,s(qs)
∂xs

q̈i,s
)
− ∂(Cs(qs,q̇s)q̇s)

∂xs
− ∂gs(qs)

∂xs
+ ∂τ s

∂xs

)

 (3.27a)

∂fs
∂us

=
[

018×9
(Ds(qs))−1 ∂τ s

∂us

]
. (3.27b)

The term ∑9
i=1

∂di,s(qs)
∂xs

q̈i,s results from the product rule, with di,s(qs) denoting the
columns of Ds(qs).
Next, the upper bound yub,s and the lower bound ylb,s of the vector of optimization

variables ys are used to incorporate the kinematic and dynamic limits of the states (2.31)
and the inputs (2.32) of the complete system. The vectors of kinematic and dynamic
limits of the robot (see Table A.1) are extended with limits for q8, q9, q̇8, and q̇9. As both
axes allow for an infinite travel and their joint velocity is not constrained, this leads to

ql,s =
[
qT
l,r ∞ ∞

]T
(3.28a)

q̇l,s =
[
q̇T
l,r ∞ ∞

]T
(3.28b)

Ml,s = Ml,r . (3.28c)

The possibility of a collision between the pendulum rod and the mounting enclosure
(compare Figure 2.3) is neglected here, but is taken into consideration while choosing the
weights of the cost function in the following subsection. The vectors (3.28) constitute the
upper bound yub,s of the vector of optimization variables ys, which are composed to a
vector of the same dimension as ys ∈ R(18+7)N . Furthermore, the lower bound ylb,s is
equal to the negative upper bound, i. e.

yub,s =
[
qT
l,s q̇T

l,s MT
l,s︸ ︷︷ ︸

N times

· · · qT
l,s q̇T

l,s MT
l,s

]T
(3.29a)

ylb,s = −yub,s . (3.29b)



3 Swing-Up Trajectory 3.3 Complete System with Torque Input 30

3.3.3 Algorithm and Parameters
Just as with the optimization problem for the spherical inverted pendulum with Cartesian
input, the fmincon solver is used to solve the optimization problem for the complete
system. The algorithm is switched to SQP, as this has proven to reduce the search time.
The remaining options are kept unchanged and are equal to the ones listed in Table 3.1.
The matrices used in the cost function are chosen as

Qs = diag
(
1, 1, 1, 1, 1, 1, 1, 0, 103, 1, 1, 102, 101, 5 · 101, 102, 101, 0, 103

)
(3.30a)

Ri
s =

{
I7, for ti ≤ 1.95 s
103 · I7, for ti > 1.95 s .

(3.30b)

The weights of q8 and q̇8 are chosen to be zero, as the trajectory is not important, as long
as the initial and final condition are satisfied. The largest weight is applied to q9 and q̇9
to avoid any motions in this coordinate. Therefore, the swing-up is primarily performed
using Axis 8. This also benefits the convergence during the search for a minimum, as
otherwise non-physical solutions are found. The weights of the joint velocities are adjusted
such that the solution trajectory has approximately 50 % reserve to the limits of the robot.
The weights of the inputs are increased towards the end of the optimization horizon, to
avoid jerky motions. The reference values of the states and inputs are set to

xr,s = xs(t1) (3.31)

and
ur,s = gs

([
q0
r

qeu

])
, (3.32)

respectively, which compensates the gravitational force in the final posture.
The number of collocation points is again chosen to be N = 80. As the experimental

setup runs with a sampling time of 1 ms, the final trajectory needs to have a larger number
of sampling points N = 2001 for the optimization horizon of t1 = 2 s. Therefore, the
optimization problem (3.25) is solved repeatedly, while increasing N by 10 % at every
iteration. The solution of the previous iteration is interpolated on the new time grid
and used as initial guess for the next iteration. Due to memory limit of the computer
performing the calculation, N could only be increased to 1282 in this way. The final
solution with N = 2001 is calculated using a cubic spline interpolation.

3.3.4 Results
The result of the optimization using the model (2.42) with torque input is shown in
Figure 3.3. The characteristic values of the optimization problem are listed in Table 3.3.
A small difference between the first solution with N = 80 and N = 2001 can be observed.
The kinematic and dynamic limits of the robot are satisfied and the system moves from
the start position (3.26a) to the final position (3.26b). As intended by the choice of the
weights, the joint velocities have more than 50 % reserve to the limits. The largest joint
velocity of 37 % is needed in Axis 3. The maximum torque is needed in Axis 2 (54.4 N m
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or 27 %). This is due to the choice of the initial posture of the robot, which causes a large
lever arm between the joint of Axis 2 and the weight forces of Axis 2 to 7 as well as the
weight forces of the spherical inverted pendulum. Large input torques towards the end of
the optimization horizon are not observed and the system moves smoothly into the final
position.

Name Value
N = 80 iterations 273

function evaluations 955
constraint violation 5.3291 · 10−15

first order optimality 1.9597 · 10−7

Jp(yp,min) 49.7188
optimization variables 2000

N = 1282 iterations 280
function evaluations 561
constraint violation 1.9984 · 10−15

first order optimality 9.2861 · 10−7

Jp(yp,min) 49.6803
optimization variables 32050

Table 3.3: Characteristic values of the optimization problem of the complete system with
torque input.
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Figure 3.3: Scaled result of the optimization problem of the swing-up trajectory for the
complete system with torque input. The trajectory with N = 2001 is shown
with a solid line, the trajectory with N = 80 is shown with a thin, dashed line.
The graphs are scaled with the scaling vectors from (3.23).



4 Controller Design

This chapter describes the design of the controller used during the swing-up of the spherical
inverted pendulum and the controller used for stabilizing the pendulum. A time-variant
LQR is used to perform the swing-up motion. Once the system is close to the operating
point where the pendulum is in the unstable upright position, the controller is switched
to a cascaded controller structure, which is used for stabilizing the pendulum. The
cascade controller structure consists of an inner and an outer loop. The outer loop is
composed of an LQR, which stabilizes the pendulum and the pendulum with Cartesian
input. This LQR provides the desired Cartesian position, velocity, and acceleration of
the tool attachment point, which are fed as desired trajectory to the Cartesian trajectory
tracking controller moving the robot.

4.1 Time-variant LQR for the Swing-Up Trajectory
In Section 3.3, a swing-up trajectory for the complete system with torque input (2.42) was
obtained, which consists of desired values for the joint angles qd,s, the joint velocities q̇d,s,
and the inputs ud,s. Due to model uncertainties and the fact that friction was neglected
in the system (2.42), the system needs to be stabilized around this trajectory to ensure a
successful swing-up of the spherical inverted pendulum. Therefore, a time-variant LQR is
utilized in this section, which is easier to be designed for MIMO systems than using the
pole-placement approach [48].

An LQR is a state-space controller for a linear time-variant system
(
Φk,Γk

)
, which is

derived from the optimal solution to the optimization problem

min
(u0,...,uN−1)

J
(
(u0, . . . ,uN−1)

)
= 1

2
(
xN
)T

SxN + 1
2

N−1∑

k=0

(
xk
)T

Qxk +
(
uk
)T

Ruk

(4.1a)
s.t. xk+1 = Φkxk + Γkuk , (4.1b)

with superscript “k” denoting the time step. This optimal solution can be given in closed
form as

uk = Kkxk (4.2a)

Kk = −
(
R + ΓTPk+1Γ

)−1(
ΓTPk+1Φ

)
(4.2b)

Pk =
(
Q + ΦTPk+1Φ

)
−
(
ΓTPk+1Φ

)T(
R + ΓTPk+1Γ

)−1(
ΓTPk+1Φ

)
, (4.2c)
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with the time-variant feedback matrix Kk and the symmetric, positive (semi)definite
solution Pk, PN = S, of the Riccati equation (4.2c). Both matrices, Kk and Pk, are
independent of the initial state x0 and can be calculated off-line.
For a time-invariant system

xk+1 = Φxk + Γuk , (4.3)

a stationary solution (k →∞) can be calculated by using

uk = K∞xk (4.4a)

K∞ = −
(
R + ΓTP∞Γ

)−1(
ΓTP∞Φ

)
(4.4b)

P∞ =
(
Q + ΦTP∞Φ

)
−
(
ΓTP∞Φ

)T(
R + ΓTP∞Γ

)−1(
ΓTP∞Φ

)
. (4.4c)

The equation for calculating P∞ is also called algebraic Riccati equation, see, e. g., [45].
As the LQR can only be applied to linear systems, the equations of motion (2.42) are

linearized around the swing-up trajectory xis, uis with i = 0, . . . , N − 1. The states and
inputs can be written in the form

xs
(
tk
)

= xis + ∆xs
(
tk
)
, k = i , i = 0, . . . , N − 1 (4.5a)

us
(
tk
)

= uis + ∆us
(
tk
)
, k = i , i = 0, . . . , N − 1 , (4.5b)

with the deviations from the trajectory ∆xks and ∆uks . For small deviations, a linear
time-variant system is obtained by using the already derived gradients (3.27) resulting in

∆ẋs
(
tk
)

= Ak
s∆xs

(
tk
)

+ Bk
s∆us

(
tk
)

(4.6a)

Ak
s = ∂fs

∂xs

∣∣∣∣xs=xi
s

us=ui
s

, k = i , i = 0, . . . , N − 1 (4.6b)

Bk
s = ∂fs

∂us

∣∣∣∣xs=xi
s

us=ui
s

, k = i , i = 0, . . . , N − 1 . (4.6c)

This linearized system is discretized using zero-order hold and a sampling time of Ts = 1 ms

xk+1
s = Φk

sxks + Γksuks . (4.7)

To receive a usable start value for KN−1
su and PN−1

su (subscript “su” for swing-up), the
stationary solution (4.4) is calculated. These matrices are then used to calculate Kk

su and
Pk
su using (4.2) to iterate backward from k = N − 2, . . . , 0. The control law consists of

the desired input ukd,su = uis, k = i obtained in Section 3.3 and the control input of the
LQR uLQR,su

uksu = ukd,su + ukLQR,su , k = 0, . . . , N − 1 (4.8a)
ukLQR,su = Kk

suxks , k = 0, . . . , N − 1 . (4.8b)
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4.2 Cascade Controller for Pendulum Stabilization
After the swing-up of the spherical inverted pendulum is finished and the tool attachment
point is close to the end position, the controller is switched to a cascade controller for
pendulum stabilization. This controller has the benefit of being easier to tune and performs
better if disturbances are applied to the closed-loop system. The cascade controller consists
of an inner and an outer loop. The outer loop assumes that Cartesian movements of the
tool attachment point of the robot can be commanded freely. This is used to stabilize the
pendulum on a plane parallel to the x0-y0-plane of the space-fixed coordinate frame, with
a fixed orientation of the frame of the tool attachment point. The inner loop is a Cartesian
trajectory tracking controller, which stabilizes the robot motion on the trajectory given
by the outer loop.

4.2.1 LQR for the Stabilization of the Spherical Inverted Pendulum
The outer loop is designed using the linearized equations of motion (2.27) evaluated at the
upper equilibrium posture (2.24a). As the state xp also includes the position r and velocity
ṙ of the tool attachment point, it is possible to stabilize the pendulum and move the robot
back into its initial position. The state input pairs (q8,r̈y) and (q9,r̈x) are decoupled in
the equilibrium posture, due to the symmetry of the mass distribution and the fact that
Axis 8 and 9 are parallel to the x0 axis and y0 axis, respectively. This can be deduced
from the linearized equations in

d
dt∆xp = Ap∆xp + Bp∆up , (4.9)

with

Ap =







0 0 1 0
0 0 0 1
∗ 0 0 0
0 ∗ 0 0


 04×3 04×3

03×4 03×3 I3×3
03×4 03×3 03×3




(4.10a)

Bp =







0 0 0
0 0 0
0 ∗ 0
∗ 0 0




03×3
I3×3



, (4.10b)
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whereby the elements marked with ∗ are skipped for brevity. The linearized equations of
motion can be split up into

d
dt∆xp,q8 = Ap,q8∆xp,q8 + Bp,q8∆r̈y (4.11a)

Ap,q8 = VT
q8ApVq8 (4.11b)

Bp,q8 = VT
q8BpVry (4.11c)

∆xp,q8 = VT
q8∆xp =




∆q8
q̇8

∆ry
ṙy


 , (4.11d)

with

VT
q8 =




1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0


 , Vry =




0
1
0


 , (4.12)

and

d
dt∆xp,q9 = Ap,q9∆xp,q9 + Bp,q9∆r̈x (4.13a)

Ap,q9 = VT
q9ApVq9 (4.13b)

Bp,q9 = VT
q9BpVrx (4.13c)

∆xp,q9 = VT
q9∆xp =




∆q9
q̇9

∆rx
ṙx


 , (4.13d)

with

VT
q9 =




0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0


 , Vrx =




1
0
0


 . (4.14)

The matrices Vq8 , Vry , Vq9 , and Vrx select the rows/columns from Ap, Bp and ∆xp,
which are part of the subsystems (q8,r̈y) and (q9,r̈x), respectively. These two systems are
then discretized using zero-order hold and a sampling time Ts = 1 ms. Additionally, an
integrator state is added to each system to allow for the design of an LQR with integrator,



4 Controller Design 4.2 Cascade Controller for Pendulum Stabilization 37

which is performed with the Matlab function dlqr. The resulting systems read as

∆xk+1
p,q8 = Φp,q8∆xkp,q8 + Γp,q8∆r̈ky (4.15a)

∆xk+1
p,q9 = Φp,q9∆xkp,q9 + Γp,q9∆r̈kx (4.15b)

[
∆xk+1

p,q8

∆rk+1
y,I

]
=
[

Φp,q8 04×1[
0 0 Ts 0

]
1

][
∆xkp,q8
∆rky,I

]
+
[
Γp,q8

0

]
∆r̈ky (4.15c)

[
∆xk+1

p,q9

∆rk+1
x,I

]
=
[

Φp,q9 04×1[
0 0 Ts 0

]
1

][
∆xkp,q9
∆rkx,I

]
+
[
Γp,q9

0

]
∆r̈kx . (4.15d)

The desired accelerations of the tool attachment point, i. e. the control laws of the
LQRs, are calculated using

r̈kx,d = ∆r̈kx,d = kT
q9

[
∆xkp,q9
∆rkx,I

]
(4.16a)

r̈ky,d = ∆r̈ky,d = kT
q8

[
∆xkp,q8
∆rky,I

]
, (4.16b)

where the desired velocities ṙkx,d and ṙky,d and positions rkx,d and rky,d result from discrete-
time integrators. These values are then given to the inner control loop as a desired
trajectory for the Cartesian motion of the tool attachment point.

4.2.2 Cartesian Trajectory Tracking Controller for the Robot
The Cartesian trajectory tracking controller for the robot receives desired values for the
position and orientation of the tool attachment point including the first and second order
time derivative and has the objective to asymptotically stabilize the robot around this
trajectory. For this purpose, the inverse dynamics control law

τ s = Ds(qs)v + Cs(qs, q̇s)q̇s + gs(qs) (4.17)

is used for the system (2.42) with τ ext,s = 0. Due to the positive definiteness of the mass
matrix D(qs), it is always invertible and the closed-loop system results in

q̈s = v , (4.18)

with the virtual input v, which is an exact linearization of the system dynamics by means
of a nonlinear state feedback [43]. As the outer loop provides the desired trajectory in
Cartesian coordinates, (3.15) and (3.16) are used to establish a relationship between
Cartesian and joint acceleration for the complete system

ż = Jt0,sq̇s (4.19a)
z̈ = J̇t0,sq̇s + Jt0,sq̈s . (4.19b)

The desired orientation is denoted as Rt
0,d, the actual orientation is computed via the

forward kinematic and denoted as Rt
0. The orientation error Rt

0
(
Rt

0,d

)T
is expressed as a
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unit quaternion ∆Q = {∆η,∆ε} [43]. This unit quaternion is then used in the position
and orientation error

∆z =
[
r− rd

∆ε

]
. (4.20)

Using (4.18), (4.19b) and (4.20) with a new virtual input

v =
(
Jt0,s

)†(
z̈d −K1(ż− żd)−K0∆z− J̇t0,sq̇s

)
(4.21)

leads to the nonlinear error system

z̈− z̈d + K1(ż− żd) + K0∆z = 0 . (4.22)

If the matrices K0 and K1 are chosen to be diagonal, the rows in (4.22) are decoupled. In
this case, the first three rows describe the position error, the remaining three rows the
orientation error. If the matrices are positive definite, the asymptotic stability around a
desired trajectory can be shown using a Lyapunov argument [43].

The virtual input (4.21) only controls the six degrees of freedom of the three dimensional
space. As the robot is redundant and has seven links, the remaining degree of freedom
needs to be stabilized with a null-space controller. Therefore, (4.21) is extended to

v =
(
Jt0,s

)†(
z̈d −K1(ż− żd)−K0∆z− J̇t0,sq̇s

)
+
(

I9 −
(
Jt0,s

)†
Jt0,s

)
z̈0 (4.23)

whereby the term
(

I9 −
(
Jt0,s

)†
Jt0,s

)
represents a projection of z̈0 onto the null-space of

Jt0,s, along the range-space of
(
Jt0,s

)†
Jt0,s [49, 50]. This representation is used to implement

a null-space controller in the form

z̈0 = −K1,nq̇ −K0,n(q − qd,0) , (4.24)

with a properly chosen value for qd,0 to be consistent with the virtual Cartesian equilibrium
position zd [51]. The value of qd,0 is set to

[(
q0
r

)T 01×2
]T

which is consistent in the
initial position. This null-space controller is then substituted into (4.23), which is then
inserted into the control law (4.17) to receive the final control law

τ s = Ds(qs)
((

Jt0,s
)†(

z̈d −K1(ż− żd)−K0∆z− J̇t0,sq̇s
)

+
(

I9 −
(
Jt0,s

)†
Jt0,s

)
(−K1,nq̇ −K0,n(q − qd,0))

)
+ Cs(qs, q̇s)q̇s + gs(qs) .

(4.25)
The control law is discretized by τ ks = τ s

(
tk
)
and the robot inputs are extracted by

ukcart =
[
I7 07×2

]
τ ks .

For the experimental setup, the elasticity of the drive trains of the robot joints needs to
be considered. These are modeled as linear springs located between the motors and the
subsequent links. For this purpose, the equations of motion (2.42) are extended to

Ds(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = K(θ − qs) + τ ext,s (4.26a)
Bθ̈ + K(θ − qs) = τm,s . (4.26b)
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Here, the rotor angles of the motors divided by the transmission ratios of the gears are
denoted as θ, the motor torques multiplied by the transmission ratios as τm,s, the spring
stiffnesses as K and the inertias of the rotors as B. This system consists of a slow part
(4.26a) and a fast part (4.26b). Using the singular perturbation approach and a new
control law

τm,s = τ d −Kτ (K(θ − q)− τ d)− εDτ

(
θ̇ − q̇

)
(4.27)

with the new control input τ d, the positive definite controller gain matrices Kτ , Dτ and ε
as the singular perturbation parameter, the quasi-static closed-loop system results in


Ds(q̄s) + (I + Kτ )−1B︸ ︷︷ ︸

B̃




︸ ︷︷ ︸
D̃s(q̄s)

¨̄qs + Cs
(
q̄s, ˙̄qs

) ˙̄qs + gs(q̄s) = τ d . (4.28)

Thus, (4.28) has the form of a rigid-body model with the mass matrix D̃s(q̄s). For the
experimental setup, the mass matrix Ds(qs) in (4.25) is replaced by D̃s(qs). The matrix
B̃ is empirically chosen to be I. The detailed steps of the singular perturbation approach
are presented in [51].

4.2.3 Connection of the Inner and Outer Loop
The connection between inner and outer control loop is shown in Figure 4.1. The controller
for stabilizing the pendulum calculates desired Cartesian accelerations r̈x,d and r̈y,d, which
are then integrated twice to receive the desired Cartesian velocities ṙx,d as well as ṙy,d,
and positions rx,d and ry,d. The value of rz,d is fixed to rz,d =

[
0 0 1

]
pt0,r, with the

position of the tool attachment point pt0,r from the initial position q0,r. The desired
orientation of the tool attachment point is chosen to be the same as the orientation of the
tool attachment point used in the model of the pendulum with Cartesian input (2.3). As
the orientation of the tool attachment point is chosen to be fixed during the stabilization
phase, the vectors for desired Cartesian and angular velocity and acceleration result in,
respectively,

żd =
[

ṙd
03×1

]
z̈d =

[
r̈d

03×1

]
. (4.29)

4.3 Transition between Controllers
After the swing-up is finished, the active controller is switched from the time-variant LQR
for swing-up to the cascade controller for stabilization. The connections between the
controllers, the switching and the system are shown in Figure 4.2. The LQR for swing-up
passes a signal to the switching block as soon as the swing-up is finished. The switching
block waits for the tool attachment point to reach the zero-crossing point of the coordinate
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LQR for stabilization
(4.16)

Cartesian
trajectory
tracking
controller
(4.25)

System
(2.42)

rkd, ṙkd, r̈kd ukcart q, q̇

Figure 4.1: Connection of the inner and outer loop.

ry and for

|q8| < 2° (4.30a)
|q9| < 2° (4.30b)

to be satisfied, before the switching is initiated. These measures have proven to reduce
displacements during the switching. As the two controllers have different structures, the
inputs of the Cartesian controller ukcart and the LQR for swing-up uksu are linearly faded
with

uks =





uksu for k < kf
Ts(k−kf )

Tf
ukcart +

(
1− Ts(k−kf )

Tf

)
uksu for k = kf , . . . , kf + Tf

Ts
− 1

ukcart for k ≥ kf + Tf

Ts
,

(4.31)

where the swing-up finishes at k = kf , with the sampling time Ts = 1 ms and the fade
time Tf = 100 ms, which is chosen to reduce displacements during the switching. To avoid
wind-up of the integrators of the cascade controller, this controller is disabled during the
swing-up phase and is enabled by a signal from the switch at k = kf + 1.
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LQR for swing-up
(4.8)

Cascade
controller

(4.16),(4.25)

Switching
(4.31)

System
(2.42)

uksu

swing-up
finished

ukcart

uks

enable
cascade
controller

q, q̇

Figure 4.2: Switching between the LQR for the swing-up trajectory and the cascade
controller for stabilization.



5 Simulation

In this chapter, the swing-up trajectory obtained in Chapter 3 and the designed controllers
from Chapter 4 are used for simulations. The controller parameters used in the simula-
tions are also discussed. First, an open-loop swing-up experiment is performed, which
fails and shows the need for a trajectory tracking controller. Subsequently, successful
simulation results of the swing-up with the LQR from Section 4.1 are shown and discussed.
Additionally, the influence of non-measurable states is discussed and, finally, the transition
to the cascade controller from Section 4.2 and the impact of disturbances and calibration
errors are examined. The simulations are performed using Matlab/Simulink.

5.1 Swing-Up Phase
First, the simulation of the open-loop system, where only the trajectory obtained in
Section 3.3 is used as input for the system (2.42), is performed. The results of the
simulation are shown in Figure 5.1. The states of the system diverge from the desired
trajectory and the states reach values greater than the limits of the robot (see Table A.1)
after less than 0.5 s, which is caused by the discretization of the swing-up trajectory in
the optimization problem. Consequently, a controller which stabilizes the system around
the desired trajectory is already needed for the simulations.

Next, the simulation of the closed-loop system is performed, where in addition the LQR
designed in Section 4.1 is used. The weighting matrices of the LQR are chosen as

Qsu = diag
(
1, 1, 1, 1, 1, 1, 1, 102, 102,

10−1, 10−1, 10−1, 10−1, 10−1, 10−1, 10−1, 10−1, 10−1
)

(5.1a)

Rsu = 10−2 · I7 . (5.1b)

To decrease the deviations from the trajectory of the pendulum angles q8 and q9, their
weights are increased to 102. As the velocities cannot be measured directly, but have
to be derived from the position signal (see Section 6.1.3), the corresponding weights are
decreased to 10−1. This reduces oscillations and noise in the states and inputs. The weights
of the inputs are decreased to 10−2 to allow for larger control inputs. Decreasing the
weights further would cause strong oscillations when steps occur in the desired trajectory.

The results of the simulation of the closed-loop system are shown in Figure 5.2, the
depicted graphs are scaled with (3.23). The LQR stabilizes the system around the
desired swing-up trajectory and there is no significant difference between the desired
trajectory and the simulated time evolution of the states visible. The errors of the angles
eqi = qd,i − qi and joint velocities eq̇i = q̇d,i − q̇i and the deviation from the desired input
∆us,i = us,i−ud,su,i, which is equal to the LQR input uLQR,su until the switching between

42
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Figure 5.1: Simulation results for the states and the inputs when applying the trajectory
input for the swing-up to the system without feedback control. The simulation
results are shown as a solid line, the desired trajectory is shown as a thin,
dashed line. The graphs are scaled with the scaling vectors from (3.23).
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the controllers occurs, are depicted in Figure 5.3. The largest deviations in the joint angles
can be observed in Axis 5 and Axis 7 with 0.021° and 0.022°, respectively. There are spikes
visible in the joint velocity errors at the beginning and the end of the swing-up, which are
caused by the rapid change in the desired velocity trajectory. However, these spikes are
negligible, as the largest spike is less than 1.9 °/s for Axis 6. The necessary control input
of the LQR is less than 0.2 N m in all axes. Small deviations from the operating point can
be observed at around 3.7 s as the switching between the controllers is performed.
As there are non-measurable states in the experimental setup, i. e. the joint velocities,

the influence of these states is examined by simulation. For this purpose, the angles of
q8 and q9 are quantized with 2π

214 to simulate a digital incremental encoder with 14 bit
resolution per revolution. All joint velocities are calculated from the joint angles using a
zero-order hold discretized D-T1 filter, which is derived from the continuous-time filter

G(s) = s

T1s+ 1 , (5.2)

with T1 = 15 ms. The results from the simulation are shown in Figure 5.4. Compared to
the simulation shown in Figure 5.2, large deviations from the desired trajectory can be
observed, which are caused by the phase lag introduced by the D-T1 filter. Additionally,
noise caused by the quantization and filtering is visible. The errors of the angles and the
joint velocities, as well as ∆us are depicted in Figure 5.5. The influence of the weights
of the LQR are visible in the figure, as the maximum errors of the angles of q8 and q9
increase to 1.9° and 1.2°, respectively, while the maximum errors of the angles of the robot
joints increase to 9.7° in Axis 6. The errors of the joint velocities also increase significantly.
The maximum error of Axis 5 increases from 0.41 °/s to 51.0 °/s. The input generated by
the LQR is less than 3 N m in all axes, the noise amplitude is less than 0.4 N m in all axes.
The switching between the controllers is visible at around 4.6 s.

5.2 Pendulum Stabilization Phase
The stabilization phase starts after the switching between the controllers (see Section 4.3).
During this phase, the cascade controller from Section 4.2 is used. To test the closed-loop
behavior of the cascade controller, the forces

Fx = 0.1 N(σ(t− 5 s)− σ(t− 5.05 s)) (5.3a)
Fy = 0.1 N(σ(t− 8 s)− σ(t− 8.05 s)) , (5.3b)

with the step function σ(t), are applied as disturbances to the system (2.42) via (2.18) and
(2.41). The aforementioned quantization and approximate differentiation are neglected
again for this simulation.

The weighting matrices of the LQR stabilizing the pendulum (4.16) are chosen as

Qq8 = diag(1, 1, 15, 1, 5) (5.4a)
Rq8 = 1 (5.4b)
Qq9 = diag(1, 1, 15, 1, 5) (5.4c)
Rq9 = 1 , (5.4d)
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Figure 5.2: Simulation results for the states and the input of the swing-up with LQR
feedback control. The simulation results are shown as a solid line, the desired
trajectory is shown as a thin, dashed line. Due to the almost perfect alignment
between simulation results and the desired trajectory, the thin, dashed line is
barely visible. The graphs are scaled with the scaling vectors from (3.23).
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which results in a stable closed-loop system in the simulation using the nonlinear model.
The weights of rx and ry are increased to 15 to retain the displacements occurring when
disturbances are applied to the system. To decrease the time needed for compensating
model inaccuracies and calibration errors, the weights of the integrator states are increased
to 5.
The control gain matrices of the Cartesian trajectory tracking controller (4.25) are

chosen as

K0 = 484 · diag(1, 1, 1, 1, 1, 1) (5.5a)
K1 = 44 · diag(1, 1, 1, 1, 1, 1) (5.5b)

K0,n = 10 · diag(1, 1, 1, 1, 1, 1, 1, 0, 0) (5.5c)
K1,n = 3 · diag(1, 1, 1, 1, 1, 1, 1, 0, 0) . (5.5d)

The matrices K0 and K1 result from placing all poles of the error system (4.22) to
λi = −22. These values originate from the experiments in Chapter 6 and are the fastest
poles which could be used on the experimental setup. Therefore, these poles are also
used in the simulation. The matrices for the null-space controller K0,n and K1,n have the
dimension 9× 9. However, as the null-space controller only controls the seven joints of
the robot, the last two elements on the diagonal are set to zero. The gains of the matrices
have proven to stabilize the null space in the simulation.
The joint angles, joint velocities and the control input for the stabilizing phase are

shown in Figure 5.6. Due to the pulse-shaped disturbances, the joint angles of the robot
are deflected up to 35° (Axis 4), while the angles of the pendulum are deflected to a
maximum of 3.1° (Axis 8). The deviation of the control input from the operating point
is less than 10.1 N m. The error of the Cartesian controller is shown in Figure 5.7. This
figure depicts the position and orientation error

∆z =
[
erx ery erz eε1 eε2 eε3

]T
(5.6)

and velocity error

ż− żd =
[
eṙx eṙy eṙz eω7

0,x7
eω7

0,y7
eω7

0,z7

]T
(5.7)

from (4.20) and (4.22). The Cartesian trajectory tracking controller achieves errors in the
Cartesian position and velocity of the tool attachment point of less than 0.085 mm and
0.71 mm/s, respectively. The orientation error (4.20) is smaller than 3.4 · 10−3 and the
angular velocity error of the tool attachment point is below 0.095 rad/s.
Next, the impact of offsets in the measurements of joint angles of the robot and the

pendulum axes is examined. These offsets can occur if the sensors of the robot and the
pendulum are not properly calibrated. In the simulation, the offset vector

qo,s =
[
−0.2 0.3 0.1 −0.3 0.2 0.1 0.2 0.1 −0.2

]T
· 1° (5.8)

is added to the measurement of qs. The position r of the tool attachment point is shown
in Figure 5.8 and compared to the position without the added offset. The figure depicts
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the swing-up phase and the stabilization phase. The depicted positions are calculated
from the angle measurements, which include the calibration offsets (5.8). Hence, there
is no offset at the beginning of the simulation. The switching between the controllers is
forced at 2.5 s as the transition condition is not naturally met. After the transition, the
deflection from the desired position r0 can be observed. The controllers for stabilizing the
pendulum manage to move the tool attachment point back to the desired position even if
disturbances occur.
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Figure 5.8: Simulation results for the position of the tool attachment point r. The
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the joint angles q are shown as a solid line, the simulation results without offset
are shown as a thin, dashed line. The swing-up can be seen between t = 0 s
and t = 2 s, the controller switching is performed at 2.5 s and the disturbances
Fx and Fy are acting on the system at t = 5 s and t = 8 s, respectively.



6 Experiments

In this chapter, the experimental setup and the implementation of the controllers are
described and the results from the experiments are discussed. First, an overview of the
experimental setup is given and the data exchange between the components of the setup
is introduced. Moreover, the results from the experimental swing-up using the trajectory
obtained in Section 3.3 and the LQR from Section 4.1 are presented. Finally, the impact
of disturbances on the closed-loop system using the cascade controller from Section 4.2
during the stabilization phase is shown.

6.1 Experimental Setup and Implementation
The experimental setup can be roughly divided into four parts: the computer running
the controller, the robot controller Kuka KR C2 lr, the robot Kuka LWR IV+ and the
spherical inverted pendulum including its sensors and communication interface. After
giving an overview, the connections between the components are discussed. Subsequently,
the robot interface, the sensors of the spherical inverted pendulum, and the velocity filters
are shortly presented.

6.1.1 Overview of the Setup
The overview of the experimental setup is shown in Figure 6.1. The computer is running the
controller used for the experimental setup. The calculations of the controller are performed
with the real-time software TwinCAT. Due to the availability of a communication path
between Matlab/Simulink and TwinCAT, the experimental setup can be controlled
directly with the help of Matlab/Simulink. The computer is equipped with two network
interface cards (NIC). One is connected to the sensors of the pendulum and receives the
measurements from the joint angles of the pendulum. The second NIC is connected via
an Ethernet cable to the robot controller Kuka KR C2 lr. The computer and the robot
controller exchange measurement values of the joint angles of the robot and the calculated
torque control input.
The robot controller Kuka KR C2 lr is connected to the robot Kuka LWR IV+ to

receive the measurements of the joint angles of the robot and to send the control inputs
to the robot. The robot controller also acts as a power source for the robot.

6.1.2 Robot Interface
The computer communicates with the robot controller using the Fast Research Interface
(FRI). This interface provides the measurement values of the joint angle of the robot,
allows the configuration of the sampling time, which is set to Ts = 1 ms, and provides

53
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Figure 6.1: Overview of the experimental setup. The ethernet cables are shown in blue,
the connection between the robot controller and the robot is shown in red.
Dashed lines depict internal cables [47, 52].

different control strategies. In this thesis, the control strategy 30 (joint specific impedance
control) is used [53], which utilizes the control law

τ cmd = kj(qFRI − qmsr) + D(dj) + τFRI + fdynamics(q, q̇, q̈) . (6.1)

This control law is adapted to allow for a direct torque input to implement the controllers
derived in Chapter 4. Therefore, the first two terms in (6.1) are eliminated. By setting kj
to zero, the stiffness term kj(qFRI − qmsr) is eliminated and by setting dj to zero the
damping term D(dj) is also eliminated. The term fdynamics(q, q̇, q̈) in the control law
(6.1) is not documented well and is unknown, but is assumed to compensate the friction
in the joints, the gravity acting on the robot and possibly also Coriolis terms. Hence, the
robot gravity vector gr is subtracted from gs in (4.8) and ukd,su in (4.25). Additionally, the
matrix Cs (2.36) is set to zero in (4.25) as the Coriolis terms are negligible compared to
the terms which stem from the mass matrix during the stabilization phase. Additionally,
this simplification also reduces the compilation time of the controller.

6.1.3 Sensors
Two Rls Orbis rotary encoders [54] are used to measure the pendulum angles q8 and q9.
The rotary encoders consist of diametrically magnetized permanent ring magnets and
printed circuit boards with Hall sensors and a communication interface. As the rotary
encoders are based on a non-contact measurement principle, no additional friction is
introduced to the system. The resolution of the rotary encoders is 14 bit. The rotary
encoders provide relative angles, whereby calibration is required before each experiment.
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The encoders are interfaced by a Beckhoff SSI terminal EL5002 [55] via the synchronous
serial interface (SSI). This terminal is connected to a Beckhoff EtherCAT coupler
EK1100 [56], communicating via the EtherCAT protocol with the computer running
TwinCAT and Matlab. The rotary encoders are powered by a Beckhoff EL9505 [57]
5 V power supply. All three Beckhoff terminals are mounted to the mounting enclosure
of the spherical inverted pendulum (compare Figure 2.2).

6.1.4 Velocity Filters
As the joint velocities of the robot and the pendulum cannot be measured directly, a
zero-order hold discretized D-T1 filter (5.2) is used to numerically form the time derivative
of the angles in order to obtain the joint velocities. The discretized equations of the filter
are

q̇k = xkq̇ + 1
Ts

(
1− e

(
−Ts

T1

))
qk (6.2a)

xk+1
q̇ = e

(
−Ts

T1

)
xkq̇ −

1
Ts

(
1− e

(
−Ts

T1

))2

qk , (6.2b)

with the output of the filter q̇k, the internal state xkq̇ and the initial condition

x0
q̇ = − 1

Ts

(
1− e

(
−Ts

T1

))
q0 (6.3a)

q̇0 = 0 . (6.3b)

The sampling time is Ts = 1 ms and the time constant is chosen as T1 = 15 ms, which has
proven to allow the fastest poles in the closed-loop system for the Cartesian trajectory
tracking controller.

6.2 Swing-Up Phase
The swing-up is performed using the setup described in Section 6.1, the swing-up trajectory
obtained in Section 3.3 and the LQR designed in Section 4.1. For the experimental swing-
up, the weights of the LQR are adapted from (5.1) to

Qsu = diag
(
1, 1, 1, 1, 1, 1, 1, 10−5, 10−2,

10−1, 10−1, 10−1, 10−1, 10−1, 10−1, 10−1, 10−6, 10−4
)

(6.4a)

Rsu = 10−3 · I7 . (6.4b)

To reduce oscillations in the closed-loop system, the weights of q8 and q̇8 are decreased
from 102 to 10−5 and from 10−1 to 10−6, respectively, and the weights of q9 and q̇9 are
decreased from 102 to 10−5 and from 10−1 to 10−4, respectively. This selection also
has the benefit that the controller transition condition in Section 4.3 is naturally met
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and a forced switching in an unfavorable position, as performed in Section 5.2, can be
avoided. Additionally, the weights of the input are decreased from 10−2 to 10−3, whereby
oscillations in the closed-loop system are also reduced.
The joint angles, joint velocities and the input of the swing-up performed on the

experimental setup are shown in Figure 6.2. The depicted graphs are scaled with the
scaling vectors from (3.23). The LQR stabilizes the system around the desired trajectory,
but deviations from the desired trajectory are visible. Additionally, noise caused by the
quantization and filtering is also visible, especially in the inputs and q̇9. Compared to
the simulation, larger deviations from the desired trajectory of q8, q̇8, q9 and q̇9 can be
observed. This roots in the fact that the weights in the LQR were significantly reduced, the
parameters of the experimental setup are not exactly known and friction is neglected in the
simulation. The joint angle of Axis 7 deflects less than 0.007°, as the control input for Axis
7 is too small to overcome the static friction, while the desired trajectory has deviations
from the start point of approximately 0.82°. The switching between the controllers can
be observed at around 3.0 s. Oscillations during and after the transition can be observed.
These oscillations originate from the poorly calibrated robot joint and pendulum rotary
encoders, thus the swing-up controller and the stabilizing controller have very different
actual operating points in the workspace. This means that the stabilizing controller needs
to compensate for a large initial deflection when the transition is performed. The fade
time Tf = 100 ms in (4.31) is chosen to minimize these oscillations.

The errors of the angles and the joint velocities, as well as ∆us are depicted in Figure 6.3.
Noise caused by the quantization and filtering is visible. The maximum error in the joint
angles of the robot can be observed in Axis 1, compared to Figure 5.5 it increases from
4.9° to 7.1°. Conversely, the maximum error in Axis 6 decreases from 9.7° to 6.1°. The
errors of the pendulum angles q8 and q9 increase from 1.9° and 1.2° to 13.6° and 4.0°,
respectively. The maximum joint velocity error can be observed in Axis 8 with 147.2 °/s.
This significant increase of errors in Axis 8 and 9 is caused by the reduced weights of
q8, q̇8, q9, and q̇9. A simulation with the same weights for the swing-up controller shows
smaller errors, which indicates that effects such as parameter uncertainties and friction,
which are neglected in the simulation, increase the errors. The control input increases
in all axes and is largest in Axis 4 with 9.9 N m. This is caused by the reduced weights
of the inputs and the overall larger errors while performing the experiment. After the
swing-up is finished at t = 2 s, constant errors for the joint angles and joint velocities of
zero in Axis 2, 3, 5 and 7 can be observed, as the swing-up controller has too small gains
to overcome the static friction in those joints. During the transition between controllers
large deviations and oscillations can be observed in all axes. As mentioned they are caused
by the poorly calibrated robot joint and pendulum rotary encoders. The most significant
deviations of the operating point of the control input ∆us,i can be observed in Axis 1
with 42.4 N m.

6.3 Pendulum Stabilization Phase
The stabilization phase starts after the switching from the swing-up controller to the
stabilizing controller (see Section 4.3). During this phase, the cascade controller from
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Figure 6.2: Experimental results for the states and the input of the swing-up with LQR
feedback control. The measured signals are shown as a solid line, the desired
trajectory is shown as a thin, dashed line. The graphs are scaled with the
scaling vectors from (3.23). The switching between the controllers is performed
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Section 4.2 is used. The weights of the LQR stabilizing the pendulum (4.16) for the
experiments are

Qq8 = diag(1, 1, 15, 1, 0.1) (6.5a)
Rq8 = 1 (6.5b)
Qq9 = diag(1, 1, 15, 1, 0.1) (6.5c)
Rq9 = 1 . (6.5d)

The weights of the integrator states are decreased from 5 to 0.1 to avoid strong impacts of
disturbances on the integrator state. While the resulting gains provide a stable closed-loop
system, the occurring oscillations have a high enough frequency and a large enough
amplitude to damage the experimental setup including the robot. Therefore, the resulting
gains are further tuned to decrease the oscillation frequency and to thereby avoid any
damage of the experimental setup. The new gain vectors used during the experiments are
chosen as

kq8 = kq9 =
[
25 2 −4 4.8 −0.3

]T
. (6.6)

The gains of the pendulum angle errors and the pendulum joint velocity errors are
decreased from around 30 to 25 and from around 4 to 2, respectively, to avoid quivering
motions of the overall system. The gains for the position and velocity error remain
approximately the same, but are fine tuned to reduce the amplitude of the oscillations.
The gain matrices K0, K1 and K0,n of the Cartesian trajectory tracking controller (4.25)
remain unchanged from (5.5a), (5.5b) and (5.5c), respectively. The gain matrix K1,n is
adapted to

K1,n = 1 · diag(1, 1, 1, 1, 1, 1, 1, 0, 0) (6.7)
due to the damping caused by the friction of the experimental setup.
The position of the tool attachment point is shown in Figure 6.4, the swing-up is

observable between 0 s and 2 s. After the swing-up is finished, the swing-up controller
stabilizes the pendulum and moves the joints of the robot back to their desired position,
such that the transition condition is eventually met. This condition is met at around
3.0 s and the switching between the controllers is performed. In the seconds following
the transition, large deviations of up to 0.23 m in ry from the initial position of the tool
attachment point r0 occur, which are caused by the inaccurate calibration of the robot
joints and the pendulum angles. The accuracy of the robot joint calibration is critical
for the calibration of the rotary encoders of the pendulum, as calibration errors in the
robot joints also cause calibration errors in the two rotary encoders of the pendulum. Due
to the offset in the pendulum angle measurements added by the poor calibration, the
stabilizing controller finds a new working point, where this angle offset is compensated
by a position offset. This results in a mean desired acceleration of the tool attachment
point of zero at the shifted working point. The integrators of the stabilizing controllers
manage to move the tool attachment point back to the initial position r0 even though
disturbances act on the pendulum, as can be seen in the figure. After around 20 s, the
position offset is very close to zero.

The aforementioned oscillations, which can be associated with a limit cycle, can also be
seen in the figure. They are presumably caused by friction in the two pendulum bearings or
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Figure 6.4: Experimental results for the position of the tool attachment point r. The
pendulum swing-up can be seen between t = 0 s and t = 2 s. After the swing-up
is finished, the swing-up controller stabilizes the pendulum until the controller
switching is performed at 3.0 s and disturbances are acting on the system at
t = 12 s and t = 20.5 s.

dead time in the communication path. Multiple attempts to eliminate the oscillations were
performed. The bearing arrangement of Axis 9, which is part of Axis 8, was redesigned to
eliminate the backlash in the original design. Aside from this, decentralized PI velocity
controllers for the joint velocities of the robot were designed and tested on the experimental
setup. However, the velocity controllers showed tracking errors of at least an order of
magnitude larger than the used Cartesian trajectory tracking controller from Section 4.2.2,
hence the velocity controllers were not able to stabilize the pendulum. Additionally, the
internal position controller of the robot controller Kuka KR C2 lr was tested, which,
apart from having smaller tracking errors than the Cartesian trajectory tracking controller
from Section 4.2.2, did not reduce the limit cycle of the closed-loop system. An additional
insight was gained during the tuning of the Cartesian trajectory tracking controller. Using
faster poles than the proposed ones, causes the closed-loop system to oscillate with a
frequency of approximately 60 Hz. While the oscillations are visible in all states and
inputs and are clearly audible, it eliminates the limit cycle, which strengthens the theory
of friction occurring in the pendulum joints causing the limit cycle.

At around 12 s and 20.5 s, disturbance forces in the negative y0 and negative x0 direction,
respectively, are applied to the system. The cascade controller is able to compensate for
these disturbances.

The joint angles, joint velocities and the inputs are shown in Figure 6.5. The depicted
graphs are scaled with (3.23). Due to the fixed orientation of the tool attachment point
and the fixed value of rz, Axis 2, 3, 5 and 7 are not actively used for stabilizing the
spherical inverted pendulum, but only for satisfying these desired values. The oscillations
are indeed observable in all axes, but due to the aforementioned reasons, the amplitude of
the oscillation is significantly larger in Axis 1, 4 and 6. The amplitudes of the oscillation
in q8 and q9 are 3.6° and 0.32°, respectively. While both axes have two bearings, Axis 8 is
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connected to the slip ring, which causes additional friction, which presumably explains
the larger amplitude of the oscillations in q8 and ry. After the first disturbance occurs at
12 s in the negative y0 direction, the joint angles q8 and q9 are deflected, as the force is
not perfectly oriented in the negative y0 direction, while after the second disturbance at
20.5 s in the negative x0 direction, mainly q9 is deflected. Deflections in the robot joints
are mainly observed in Axis 1, 4 and 6, as they are primarily used for stabilizing the
pendulum, as mentioned previously.
The error of the Cartesian controller is depicted in Figure 6.6. Oscillations with the

same frequency as in the other figures from the stabilization phase can be observed. As the
oscillations have a larger amplitude in ry (see Figure 6.4), the errors are also larger in ery .
Larger deflection in erx and ery can be observed at 12.5 s, when a force in approximately
the negative y0 direction is applied. As the force at 20 s is well aligned in the negative x0
direction, an increase is only seen in erx . Deflections of the remaining four error variables
can also be observed when a force is applied, which is in agreement with the simulation.
Compared to the simulation including quantization and velocity filtering, the maximum
position error increases from 2.0 mm to 7.2 mm in erx , the maximum velocity error can
be observed in eṙy with 62.5 mm/s, which is an increase compared to the maximum of
20.2 mm/s. The largest orientation and angular velocity error occur in eε3 and eω7

0,z7
with 6.0 · 10−3 and 0.16 rad/s, respectively. In the simulation including quantization and
velocity filtering, the maximum orientation and angular velocity error are 3.5 · 10−3 in
eε1 and 0.13 rad/s in eω7

0,x7
. The increase of the errors compared to the simulation can be

attributed to the aforementioned parameter uncertainties and friction in the experimental
setup.
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eṙy/(50 mm/s) eε2/

(
5 · 10−3

)
eω7

0,y7/(0.05 rad/s)

erz/(5 mm)
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7 Summary and Conclusions

In this thesis, a swing-up trajectory and a control strategy for swing-up and stabilization
of a spherical inverted pendulum with a 7-DOF robot were presented and validated in
simulation and experiments. A mechatronic design for a spherical inverted pendulum is
proposed, which can be mounted on a Kuka LWR IV+ and other robots with a compatible
end effector.

First, the kinematics and dynamics of the spherical inverted pendulum with Cartesian
input, the kinematics of the robot and the kinematics and dynamics of the complete
system with torque input were derived in Chapter 2. The coordinate frames are placed to
allow for an easy conversion between the kinematic quantities of the different models.
The swing-up trajectory was obtained by solving an optimal control problem. Due

to its benefits in adding equality and inequality constraints and better convergence, a
direct method was used to convert the dynamic optimization problem to a static one. The
equality constraints were used to incorporate the model equations and the initial and
final posture. The kinematic and dynamic limits of the robot were considered through
inequality constraints. A start value for the angles of the robot is found, which provides
sufficient reserve to the angle limits of the robot. A three-step process was utilized,
whereby multiple optimization problems were solved sequentially, while using each solution
as the initial guess of the next problem. This process was necessary as the optimization
problem to find a swing-up trajectory for the complete system with torque input did not
converge without a feasible initial guess. Therefore, the swing-up trajectory was calculated
for the spherical inverted pendulum with Cartesian input, as this simpler problem also
converged for trivial infeasible initial values. This first result was tuned such that the
constraints of the robot were not exceeded during the execution of the trajectory. Using
the inverse kinematics of the robot and the forward dynamics of the complete system
with torque input, the solution was converted to a trajectory for the complete system.
The resulting trajectory was used as the initial value for the optimization problem of the
complete system with torque input. To decrease the sampling time, this optimization
problem was repeatedly solved, while increasing the number of sampling points with each
iteration and using the interpolated trajectory of the previous iteration as initial guess.
This decrease of the sampling time was necessary to receive a trajectory with the same
sampling time that is used by the real-time industrial hardware used in the experimental
setup.

To ensure a successful swing-up, a time-variant LQR was designed in Chapter 4. This
control concept can be utilized for the swing-up trajectory, around which the system is
linearized, is known beforehand and the feedback matrices can be calculated off-line. For
choosing the weights of the LQR, not only the errors, but also the offsets in the angle
measurements have to be considered, to avoid the tool attachment point drifting off and
to avoid that the transition conditions are thereby not naturally met. As soon as the
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pendulum was close to the upright equilibrium posture, a switching to the stabilization
phase was performed. An additional transition condition concerning the position of the
tool attachment point improved the smoothness of the switching. The start value for the
angles of the robot in the optimization problem provides a large workspace during the
stabilization phase when additional constraints for the motion of the robot are introduced
and is therefore used as the operating point during the stabilization phase. During the
stabilization phase, a cascade controller was used. The outer loop consists of two LQRs
with integrators designed for the linearized equations of motion of the spherical inverted
pendulum with Cartesian input. The integrators were added to the LQRs to compensate
for the poorly calibrated robot and pendulum rotary encoders. The two controllers
provide a desired trajectory for the inner loop consisting of a Cartesian trajectory tracking
controller that controls the motion of the tool attachment point of the robot. As the robot
is redundant, a null-space controller was additionally designed.

The swing-up and stabilization phase were simulated in Chapter 5 and the influence of
disturbances, non-measurable states and poorly calibrated joint angles was examined. The
closed-loop system was stable in the simulation, even with the aforementioned non-ideal
influences.
The results of the experiments were presented in Chapter 6. Successful swing-up and

stabilization was performed with the experimental setup, which includes the custom-built
pendulum and the robot Kuka LWR IV+. To eliminate the backlash introduced by the
single bearing arrangement of the original design, the pendulum design was reworked once.
Additional controller concepts were tested to eliminate the limit cycle, which is observable
in the experimental results. A decentralized PI velocity controller for the joint velocities of
the robot was tested, whereas the Cartesian trajectory tracking controller showed better
performance. Neither the PI velocity controller, nor the internal position controller of
the robot controller, which was also tested, were able to eliminate the limit cycle. It was
possible to isolate the root cause of the limit cycle to be the friction introduced by the
bearings and the slip ring. The proposed controller structure turns out to be robust to
model and parameter uncertainties, disturbances and poorly calibrated joint angles.
This thesis presents the swing-up and stabilization of a spherical inverted pendulum

on a 7-DOF robot. For future work, the optimal control problem can be extended to
incorporate time optimality, which would reduce the swing-up time. Friction can be
added to the model and the friction parameters could be identified, e. g., with a nonlinear
observer as in [58], which has the potential to eliminate the limit cycle occurring during
the experiments. Further ideas to extend the control concept could be an implementation
of a trajectory tracking controller for the base point of the spherical inverted pendulum.



A System Parameters

The kinematic and dynamic limits of the robot are shown in Table A.1. The parameters
of the system are listed in Table A.2. The geometric parameters are obtained from [47],
the remaining robot parameters are identified in [59, 60]. The masses of the inverted
pendulum are measured values from the experimental setup. The inertias are extracted
from Solid Edge, after adjusting the masses to the measured values.

Joint Value
angle limits ql,r 1 170°

2 120°
3 170°
4 120°
5 170°
6 120°
7 170°

joint velocity limits q̇l,r 1 112.5 °/s
2 112.5 °/s
3 112.5 °/s
4 112.5 °/s
5 180 °/s
6 112.5 °/s
7 112.5 °/s

torque limits Ml,r 1 200 N m
2 200 N m
3 100 N m
4 100 N m
5 100 N m
6 30 N m
7 30 N m

Table A.1: Limits of the Kuka LWR IV+ [47].
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Parameters Value Unit
d1 0.4 m
d2 0.39 m
d3 0.078 m
d4 0.157 m
d5 0.285 m
m7 1.560 194 kg
m8 0.222 714 kg
m9 0.186 075 kg
c7,x 0.003 744 162 m
c7,y 0.010 787 826 m
c7,z 0.100 607 856 m
c8,x 0.000 031 095 m
c8,y −0.047 241 586 m
c8,z 0.000 865 948 m
c9,x 0.000 00 m
c9,y −0.001 036 458 m
c9,z 0.049 164 415 m
I7,xx 3013.860 599 · 10−6 kg m2

I7,yy 2032.125 341 · 10−6 kg m2

I7,zz 2118.801 210 · 10−6 kg m2

I7,xy 294.699 322 · 10−6 kg m2

I7,xz −174.961 59 · 10−6 kg m2

I7,yz −272.694 32 · 10−6 kg m2

I8,xx 353.874 015 · 10−6 kg m2

I8,yy 27.959 845 · 10−6 kg m2

I8,zz 354.071 411 · 10−6 kg m2

I8,xy 0.435 201 · 10−6 kg m2

I8,xz 0.230 209 · 10−6 kg m2

I8,yz 8.203 600 · 10−6 kg m2

I9,xx 1288.884 845 · 10−6 kg m2

I9,yy 1216.719 951 · 10−6 kg m2

I9,zz 80.024 782 · 10−6 kg m2

I9,xy 0.000 000 · 10−6 kg m2

I9,xz 0.000 000 · 10−6 kg m2

I9,yz 9.476 641 · 10−6 kg m2

g 9.81 m/s2

Table A.2: Parameters of the system. All parameters with the index 7 include the mass
and inertia of link 7 of the robot and of the mounting enclosure of the spherical
inverted pendulum. The remaining robot parameters are used from [59, 60].



B Technical Drawings

The technical drawings were created in Solid Edge on the basis of [41, 42, 54, 61–68].
The parts list is given in Table B.1. The technical drawings are shown in Figure B.1 to
Figure B.10. All distances are given in mm.
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Name Vendor Material quantity
6001-2Z SKF 3
608-2Z SKF 1
Axis 8 stainless steel 1
Axis 9 stainless steel 1

BA 080 AB 01 A A 00 RLS 1
BA 150 AB 02 A A 00 RLS 1
Bearing enclosure 8 aluminium 1
Bearing enclosure 9 aluminium 1

BR10 SC B 14B 12 C D 00 RLS 1
BR10 SC B 14B 16 C D 00 RLS 1

Counterweight stainless steel 1
DIN 912 M2×20 6
DIN 912 M3×10 3
DIN 912 M4×16 2
DIN 912 M4×20 1
DIN 912 M6×10 7
DIN 912 M6×20 9
DIN 913 M3×8 1
DIN 913 M5×5 1
DIN 471 8×0.8 1
DIN 471 12×1 1

DIN EN 50022 35×80 aluminium 1
Distance shell �3.0× 0.4× 8 aluminium 6
Distance ring �15× 1.5× 5 aluminium 1

EK1100 Beckhoff 1
EL5002 Beckhoff 1

End cover aluminium 3
Flange aluminium 1
Frame aluminium 1
KL9505 Beckhoff 1
KMK 1 SKF 1

ISO 10642 M3×10 9
ISO 10642 M5×10 2

ISO 4032 M6 1
Rod aluminium 1

Slip ring mount aluminium 1
SRA-73540-6A Moog Components Group 1

Table B.1: Parts list of the spherical inverted pendulum.
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Figure B.6: End cover.
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Figure B.10: Slip ring mount.
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