
DIPLOMA THESIS

Proof-Of-Concept For A Smart Grid Controller
Blockchain Platform For Virtual Power Plants

With Focus On Blockchain-Integrated Privacy Technologies

Submitted at the Faculty of Electrical Engineering and Information Technology, TU Wien
in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur (equals Master of Sciences)

under supervision of

Ao. Univ.Prof. Dipl.-Ing. Dr.techn. Thilo Sauter
Univ.Ass. Dipl.-Ing. Marcus Meisel, Bakk.techn.

by

Andrija Goranović
Matr.Nr. 1225182

Wohnpark 2/4, 7022 Schattendorf

Vienna, January 21st 2019

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Kurzfassung

Steigender Energieverbrauch und der Klimawandel stellen globale Herausforderungen dar. Die
Europäische Union hat in ihrer Klima- und Energiepolitik Ziele festgelegt, die sie bis 2030 zu
erfüllen versucht. Neben der Verringerung der Treibhausgasemissionen um mindestens 40 % im
Vergleich zu 1990 sollte der Anteil erneuerbarer Energiequellen auf mindestens 27 % erhöht wer-
den und die Energieeffizienz um mindestens 27 %.

Die Umstellung von fossilen Brennstoffen auf erneuerbare Energiequellen schafft neue Chan-
cen, aber auch Herausforderungen. Für die Integration erneuerbarer Energiequellen wurden
verschiedene Konzepte entwickelt, wie beispielsweise Microgrids oder virtuelle Kraftwerke, die
ständig untersucht und verbessert werden. Wesentlich für diese Ansätze ist jedoch der Ausbau
des bestehenden Energienetzes mittels Kommunikationstechnik zu einem intelligenten Strom-
netz, dem Smart Grid. Der Endbenutzer übernimmt eine aktive Rolle in einem Smart Grid,
z. B.: können Lastspitzen können in Zusammenarbeit reduziert werden. Dies wird durch die
Digitalisierung der EndbenutzerInnen mit intelligenten Stromzählern, den Smart Metern, und
dem Übergang zum Smart Home erleichtert.

Eine vielversprechende Technologie, die derzeit in Smart Grids erforscht wird, ist die Blockchain,
mit der verschiedene Prozesse in Smart Grids realisiert werden, die sich durch eine dezentrale
Struktur auszeichnen. Die bekannteste Anwendung ist der lokale P2P-Energiehandel.

Das Ziel der Diplomarbeit war, eine Blockchain-Plattform als Proof-of-Concept aufzubauen, deren
Schwerpunkt auf der Protokollierung der Energieerzeugung, des Energieverbrauchs und des En-
ergiehandels liegt. Die TeilnehmerInnen der Plattform können ein Portfolio verschiedener Anlagen
besitzen, beispielsweise aus Photovoltaikanlagen, Batterien, Elektroautos und Dieselgeneratoren.

In einer realen Umgebung wären die TeilnehmerInnen mit intelligenten Stromzählern oder IoT-
Geräten ausgestattet, die mit der Plattform verbunden sind. Eine zentrale Instanz, die von
einem Energieunternehmen oder einer Gemeinde kontrolliert wird, würde für die Verwaltung der
Plattform verantwortlich sein, d.h., verantwortlich für die Registrierung der Smart Meter und
IoT-Geräte sowie für die Weiterverarbeitung der Daten. Die Blockchain-Plattform ist erweiter-
bar, so dass auf deren Basis andere Anwendungen realisiert werden können, z. B.: die Begleichung
von Pönalezahlungen bei Nichteinhaltung der Spannungsgrenzen. Aufgrund des Inkrafttretens
der Datenschutz-Grundverordnung (DSGVO) am 25. Mai 2018 in der Europäischen Union liegt
ein besonderer Schwerpunkt dieser Diplomarbeit auf dem Datenschutz.

Für die Validierung der Funktionen des Proof-of-Concept, wurde eine Modellregion mit Raspberry
Pis simuliert. Um ein realistisches Szenario zu simulieren, wurden Last- und Erzeugungsprofile
verwendet. Mit Hilfe der realisierten Plattform ließ sich eine Bewertung in Bezug auf Performance
und Datenschutz durchführen. Abschließend werden Schlussfolgerungen gezogen, um Empfehlun-
gen für die Integration der Blockchain-Plattform in eine ”reale” Umgebung geben zu können, z. B.:
Großschönau, Green Energy Lab oder Act4.energy im Burgenland.

II

Abstract

Rising energy consumption and climate change pose global challenges. The European Union has
set three targets in its climate and energy policy that it aims to meet by 2030. In addition
to reducing greenhouse gas emissions by at least 40 % compared to 1990 levels, the share of re-
newable energy sources should be increased to at least 27 % and energy efficiency by at least 27 %.

The shift from fossil fuels to renewable sources of energy creates new opportunities, but also chal-
lenges. For the integration of renewable energy sources, different concepts have been developed,
such as microgrids or virtual power plants, which are constantly being investigated and improved.
Essential for these approaches, however, is the expansion of the existing energy network by means
of communication technology to form an intelligent power grid, the Smart Grid. The end user
assumes an active role in a smart grid, f.e., load peaks can be reduced in cooperation. This will
be facilitated by the digitization of end users using smart meters and the transition to the smart
home.

One promising technology, that is currently being explored in smart grids is the blockchain, which
is used to realize different processes in smart grids, that are characterized by a decentralized struc-
ture, of which the best-known application is the local P2P energy trading.

The aim of the diploma thesis was to build a blockchain platform as a proof-of-concept whose
focus is on the protocolling of energy production, energy consumption and energy trading. The
participants of the platform can own a portfolio of different installations, such as photovoltaic
systems, batteries, electric cars and diesel generators.

In a real-life environment, participants would be equipped with smart meters or IoT devices that
interface with the platform. A central authority, under the control of an energy company or a
municipality, would be responsible for the administration of the platform, i.a. responsible for the
registration of the smart meters and IoT devices as well as the further processing of the data. The
blockchain platform is extensible so that other applications can be realized, f.e., the settlement
of penalty payments in case of non-compliance with voltage limits. Due to the enforcement of
the General Data Protection Regulation (GDPR) on 25th May 2018 in the European Union, this
thesis lays a special focus on privacy.

To validate the features of the proof-of-concept, a model region was simulated using Raspberry
Pis. In order to simulate a realistic scenario, existing load and generation profiles were used. With
the help of the implemented platform, an evaluation was made regarding performance and data
protection. Finally, conclusions are drawn to be able to provide recommendations for integrating
the blockchain platform into a real-life environment, such as Großschönau, Green Energy Lab, or
Act4.energy in Burgenland.

III

Acknowledgements

Thank you!

IV

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Methodology . 3

2 State of the Art and Related Work 5

2.1 Current Demonstration Areas . 5

2.1.1 Green Energy Lab . 5

2.1.2 Act4.energy . 6

2.1.3 Smart Community Großschönau . 6

2.2 Relevant Smart Grid Concepts . 6

2.2.1 Smart Grid . 6

2.2.2 Virtual Power Plant . 7

2.2.3 Related Smart Grid Control Approaches . 8

2.3 Privacy . 9

2.3.1 General Data Protection Regulation . 9

2.3.2 Privacy Design Strategies . 9

2.4 Blockchain . 10

2.4.1 Basics . 11

2.4.2 Blockchain Types . 12

2.4.3 Privacy & Blockchain . 12

2.4.4 Blockchain Projects For Energy . 14

2.5 Hardware and Tools . 15

2.5.1 Hyperledger Fabric SDK . 15

2.5.2 Node.js . 16

2.5.3 React . 16

2.5.4 Advanced Encryption Standard . 16

2.5.5 Cipher Block Chaining . 17

2.5.6 Containers . 17

2.5.7 Raspberry Pi . 18

3 Selection Of Hyperledger Fabric 20

3.1 Evaluation Of Blockchain Implementations . 20

3.1.1 Blockchain Requirements . 20

3.1.2 Blockchain Implementations . 21

V

3.1.3 Comparison . 25

3.2 Nodes . 27

3.2.1 Peer . 27

3.2.2 Orderer . 27

3.2.3 Client . 27

3.3 Hyperledger Fabric Specific Constructs . 27

3.3.1 Ledger . 28

3.3.2 Channels . 28

3.4 Membership Service Provider . 29

3.5 Chaincode . 30

3.5.1 Chaincode Development . 30

3.5.2 System Chaincodes . 31

3.5.3 Chaincode Lifecycle . 32

3.6 Transaction Flow . 32

4 Models, Concepts and Hardware 34

4.1 Hardware Concept . 34

4.1.1 Docker . 34

4.1.2 Kubernetes . 35

4.1.3 OLED Display For Raspberry Pis . 36

4.2 System Analysis . 36

4.2.1 Intra-VPP Analysis . 36

4.2.2 Inter-VPP Analysis . 36

4.3 Platform Model . 37

4.3.1 Components . 37

4.3.2 Matching . 38

4.3.3 Privacy Design Strategies . 39

4.3.4 Encryption . 39

4.4 Simulation Model . 40

5 Implementation, Simulation and Results 43

5.1 Hyperledger Fabric Components For ARMv7 . 43

5.2 Chaincodes . 49

5.2.1 Chaincode sgcbpintra . 50

5.2.2 Chaincode sgcbpinter . 52

5.3 Applications . 55

5.3.1 API . 55

5.3.2 Simulation . 56

5.3.3 Dashboard . 61

5.3.4 Docker Images . 64

5.4 Setup Of Raspberry Pi microSD Image . 65

5.4.1 Raspberry Pi Basic Setup . 65

5.4.2 Configuration Steps After Flashing . 66

5.5 Smart Grid Controller Container Services . 68

5.6 Simulation . 72

5.7 Measurements . 73

5.7.1 Platform Operation . 73

5.7.2 Platform Stability . 76

VI

5.7.3 Deployment Process . 77
5.8 Simulation Results . 78

6 Discussion & Outlook 79
6.1 Summary . 79
6.2 Future Development With Hyperledger Fabric . 80
6.3 Discussion Of Blockchain And The General Data Privacy Regulation 81
6.4 Model For A Future Platform Version . 82
6.5 Outlook & Vision For Smart Energy Systems . 84

Literature 92

VII

Abbreviations

ABAC Attribute-Based Access Control
ACL Access Control List
AES Advanced Encryption Standard
AMCL Apache Milagro Cryptographic Library
AMI Advanced Metering Infrastructure
AMR Automated Meter Reading
APCS APCS Power Clearing and Settlement AG
API Application Programming Interface
APT Advanced Packaging Tool
ARMv6 ARM version 6
ARMv7 ARM version 7
BCCSP Blockchain Crypto Service Provider
BFT Byzantine Fault Tolerance
CA Certificate Authority
CBC Cipher Block Chaining
CC Chaincode
cgroups CPUset Control Groups
CLI Command Line Interface
configtx Configuration Transaction
CPU Central Processing Unit
CRL Certificate Revocation List
CSCC Configuration System Chaincode
CVPP Commercial Virtual Power Plant
DER Decentralized Energy Resources
DES Data Encryption Standard
DNS Domain Name System
DSGVO Datenschutz-Grundverordnung
DSM Demand-Side Management
DSO Distribution System Operator
E-Control Energie-Control Austria für die Regulierung der Elektrizitäts- und Erdgaswirtschaft
ECDSA Elliptic Curve Digital Signature Algorithm
EMS Energy Management System
EPRI Electric Power Research Institute
ESCC Endorsement System Chaincode
EU European Union
EV Electric Vehicle
EVM Ethereum Virtual Machine
EWF Energy Web Foundation
GAVE Municipality Großschönau As Virtual Energy Storage
Geth Go-Ethereum

VIII

GDPR General Data Protection Regulation
GND Ground
GPIO General Purpose Input/Output
GUI Graphical User Interface
HDMI High Definition Multimedia Interface
HLF Hyperledger Fabric
HMAC Keyed-Hash Message Authentication Code
HSM Hardware Security Modules
HTTP Hypertext Transfer Protocol
I2C Inter-Integrated Circuit
IBM International Business Machines Corporation
ICA Intermediate Certificate Authority
ICS IBM Container Services
ICT Information And Communication Technology
IoT Internet-Of-Things
IT Internet Protocol
IT Information Technology
IV Initialization Vector
JSON Java Script Object Notation
JVM Java Virtual Machine
LAN Local Area Network
LLL Low-level Lisp-like Language
LSCC Lifecycle System Chaincode
MSP Membership Service Provider
NFS Network File System
NIST National Institute Of Standards And Technology
NPM Natural Polyglot Machine
OLED Organic Light Emitting Diode
OS Operating System
OTG On The Go
OU Organizational Unit
QSCC Query System Chaincode
P2P Peer-to-Peer
PBFT Practical Byzantine Fault Tolerance
PEM Privacy Enhanced Mail
PET Privacy Enhancing Technologies
PoET Proof-Of-Elapsed-Time
PoS Proof-Of-Stake
PoW Proof-Of-Work
PV Photovoltaic
PWM Pulse-Width Modulation
RAM Random Access Memory
RCA Root Certificate Authority
RES Renewable Energy Sources
RPI Raspberry Pi
RPI2B Raspberry Pi 2 Model B
RPI3B Raspberry Pi 3 Model B
RSA Rivest-Shamir-Adleman
SBFT Simplified Byzantine Fault Tolerance
SD Secure Digital
SCL Serial Clock
SDA Serial Data
SDK Software Development Kit
SGC Smart Grid Control

IX

SGCBP Smart Grid Controller Blockchain Platform
SGCCS Smart Grid Controller Container Services
SHA Secure Hash Algorithm
SignedCDS Signed Chaincode Package
SSH Secure Shell
SSID Service Set Identifier
TAG-e TransActive Grid Element
TLS Transport Layer Security
TPSGA Technology Platform Smart Grids Austria
TSO Transmission System Operator
TVPP Technical Virtual Power Plant
USB Universal Serial Bus
VCC Voltage At The Common Collector
VDEW Verband der Elektrizitätswirtschaft e. V.
VM Virtual Machine
VPP Virtual Power Plant
VSCC Validation System Chaincode
Wi-Fi Wireless Fidelity (IEEE 802.11)
YAML YAML Ain’t Markup Language
zk-SNARKs Zero-Knowledge Succinct Non-Interactive Arguments Of Knowledge
ZKP Zero Knowledge Proof
ZSL Zero-Knowledge Security Layer

X

1 Introduction

This chapter first introduces the motivation for this master thesis, beginning with the global
energy challenges and required technologies to solve these. Second, the Smart Grid Control
(SGC) project proposal and the deduced problem statement for the thesis are described. This
work is concluded with the presentation of the approach of this thesis to solve this problem
statement and the required steps.

1.1 Motivation

Rising energy consumption and climate change pose global challenges. The European Union
(EU) has set three targets in its climate and energy policy [Cou14] that it should meet by 2030.
In addition to reducing greenhouse gas emissions by at least 40 % compared to 1990 levels, the
share of renewable energy sources (RES) should be increased to at least 27 % and energy efficiency
increased by at least 27 %.

The shift from fossil fuels to renewable sources of energy creates new opportunities but also chal-
lenges. For the integration of renewable energy sources, different concepts have been developed,
such as virtual power plants (VPP) (see Section 2.2.2), which are constantly being investigated
and improved. Essential for these approaches, however, is the expansion of the existing energy
network by means of communication technology to form an intelligent power grid, the smart
grid. The end user assumes an active role in a smart grid, e.g., load peaks could be reduced in
cooperation with the end user. This will be facilitated by the digitization of devices installed at
end users using smart meters and the synergetic combination of the transition to the smart home
done by end users on their own.

One promising technology currently being explored in smart grids is the Blockchain. In 2008,
the Bitcoin white paper [Nak08] was released with the aim of creating a peer-to-peer (P2P)
currency that would eliminate the need for a trusted third party such as a bank. Since then, the
underlying blockchain technology has attracted the attention of various industries. The financial
sector expects blockchain to disrupt banking, insurance and asset management. The healthcare
industry wants to use the blockchain technology to securely store data. In the energy industry,
the blockchain tries to realize different processes in smart grids, which are characterized by a
decentralized structure, of which the best-known application is the local P2P energy trading.

1

Introduction

As part of the Green Energy Lab innovation project1, companies and research partners in the
SGC project proposal are suggesting the research of the use of blockchain technology for the
integration of renewable energy into the energy system with a focus on local energy communi-
ties. End consumers should be allowed to participate in the electricity market, for which various
business models should be evaluated, improved, and simulated. The goal is to implement a plat-
form for local energy trading, based on blockchain technology and to integrate the end users
into it using digital consumer devices. Furthermore, on the Smart Grid Controller Blockchain
Platform (SGCBP), various applications are to be implemented, e.g., the remuneration of lo-
cal self-consumption. Based on the results, recommendations for local, regional, and EU-wide
political and regulatory frameworks will be developed.

1.2 Problem Statement

This diploma thesis aims to build a blockchain platform as a proof-of-concept which has the main
focus on the logging of energy production and consumption inside VPPs, and the settlement of
energy surplus and demand between multiple VPPs. The participants of the platform can have
various combinations of electrical devices, such as photovoltaic (PV) systems, batteries, electric
cars or diesel generators, see Fig. 1. In a real-life environment, participants would be equipped
with smart meters or novel Internet-of-Things (IoT) devices that interface with the platform. A
central authority, under the control of an energy company or a municipality, would be responsible
for the administration of the platform, i.a., responsible for the registration of the smart meters
and IoT devices as well as the further processing of the data. The blockchain platform should
be extensible so that, based on this, other applications can be realized, e.g., the settlement of
punitive duties in case of non-compliance with voltage limits.

Figure 1: The figure shows an example of a virtual power plant with three participants. Participant A
has solar panels on their roof, participant B owns two electric vehicles and participant C has
a wind turbine and a battery system.

1Green Energy Lab Home - Green Energy Lab https://www.greenenergylab.at/ (accessed: January 8th 2019)

2

https://www.greenenergylab.at/

Introduction

Choosing a suitable blockchain implementation as the basis for the platform is critical. The
blockchain implementation used must fulfill different criteria, e.g., light energy-footprint. Due to
the enforcement of the General Data Protection Regulation (GDPR) [Reg16] on May 25th 2018
in the European Union, in this thesis a special focus is put on privacy.

In Austria several energy model regions exist, which target the independence of fossil fuels. In
these model regions new concepts and research ideas can be developed and tested. For the proof-
of-concept, a model region should be simulated using Raspberry Pis (RPI). These represent all
members involved in the operation of the platform. In order to simulate a realistic scenario,
defined standard load and generation profiles should be used. Each member should be able to see
data according to their role, visualized on a dashboard. For example, these dashboards display
energy production and consumption, and transactions in the form of tables and charts.

In addition, the platform deployment process and platform operation in the simulation environ-
ment is to be examined with respect to various performance criteria. Depending on the process
of creating the platform, as well as the platform deployment and operation evaluation, conclu-
sions are drawn to provide recommendations for the integration of the implemented blockchain
platform, for future validation in a real-life environment, e.g., the research and development
environment Großschönau.

1.3 Methodology

In a first step, currently active demonstration environments in Austria are presented such as
the Green Energy Lab, Act4.energy or Großschönau, followed by the underlying theory. This
theory includes relevant smart grid concepts, privacy, blockchain, hardware and tools. In order
to select a suitable blockchain implementation for the platform, criteria have to be deduced from
requirements. Based on the selected criteria, a comparison and evaluation of existing blockchain
implementations has to be done. The chosen blockchain implementation is then presented.

In a second step, a concept for the blockchain platform is developed. For this, the targeted
environment has to be analyzed and data of interest for the platform identified. Based on this
a model for the platform has to be described, which includes platform components, business
logic and privacy mechanisms. Regarding the simulation, a design is needed that describes the
simulated environment and the data used for the simulation.

Then, software packages, such as different Node modules, for the development of the blockchain
platform are described. This part is followed by the description of the container technology and
tools for the deployment of the platform. Further, the hardware, in this case the Raspberry Pi,
is presented.

Next, the implementation of the blockchain platform is described, starting with the porting of the
blockchain implementation to the Raspberry Pi and the creation of necessary smart contracts.
Then the platform applications, such as dashboards and simulations, are depicted. For the
deployment of the platform and its applications onto Raspberry Pis, the platform components
and applications have to be built into Docker images. Further, the setup of the operating system
(OS) and the required software packages for Raspberry Pis are presented, upon which a microSD
image is created for an easier setup. After flashing this image, configuration steps are required.
As last step of the implementation, the deployment of the platform and required components are
described. This is followed by an examination of the SGCBP, in case of a simulated environment.

3

Introduction

Thereby, the deployment of the platform onto the Raspberry Pis, and the platform operation and
stability are analyzed.

The last chapter provides a summary of the thesis and an outlook on future blockchain develop-
ments. Based on the findings from the implementation and the simulation evaluation, recommen-
dations, and suggestions for the next version of the platform and implementation on hardware in
a production environment are given. The chapter concludes with an outlook and vision for smart
energy systems regarding blockchain technology.

4

2 State of the Art and Related Work

In this chapter, first, the demonstration areas Green Energy Lab, Act4.Energy, and Großschönau,
and the Smart Grid Control project proposal are presented. Second, relevant smart grid concepts,
such as the virtual power plant concept, are described. Third, the blockchain technology is
explained, its basics and the different blockchain types. Further, different research papers and
projects with focus on blockchain technology in the energy sector are presented, which range from
P2P energy trading platforms to blockchain-prepaid-meters. Finally, relevant hardware and tools
for this thesis are characterized.

2.1 Current Demonstration Areas

This section describes the Austrian demonstration areas and model regions Green Lab Energy,
Act4.energy and Großschönau. A model region targets primarily independence of fossil fuels.
Thereby, it should focus on local resources to meet energy demands and involve local stakeholders
in the development process. This includes utilizing renewable energy sources, increasing energy
efficiency, and utilizing new technologies, such as control mechanisms[CF18].

2.1.1 Green Energy Lab

The Green Energy Lab1 is a flagship region of energy in Austria improving the use of green energy
technologies with focus on renewable electricity and heat. It includes the four federal states of
Burgenland, Lower Austria, Styria and Vienna, thereby reaching around five million energy users,
supported by Energie Burgenland, Energie Steiermark, Energieversorgung Niederösterreich and
Wien Energie. Further, 150 million euro are invested in 31 subprojects, where more than 100
corporate and research partners develop solutions to reach 100 % renewable electricity and heat
in Austria.

Individual solutions of research institutions and technology providers from Austria, which have
a leading role in the renewable energy and heat sector, will be integrated into solutions for
the flexible generation and storage of electricity and heat including the smart involvement of
consumers. The project focuses on the innovation fields flexibility, digitalization, integrated
systems, customer integration and business models. Subprojects focus, e.g., on technologies such
as a blockchain platform for energy exchange, grid-friendly hydropower, and intelligent plug-and-
play electricity storage for PV.

5

State of the Art and Related Work

The applications for subprojects will be submitted in February 2019 and the Green Energy Lab
and its subprojects are expected to start in summer 2019.

2.1.2 Act4.energy

The innovation laboratory Act4.energy2 focuses on PV self-consumption optimization and energy
stability based on renewable energy. Further, it focuses on the interconnection of electricity,
heat and transport as well as e-mobility. The innovation laboratory environment comprises ten
communities in southern Burgenland, which already offers a well-developed PV infrastructure.
As part of the innovation laboratory, innovative solutions should be developed and tested with
the involvement of the population. Act4.energy is funded by the Austrian Research Promotion
Agency FFG as part of the research and technology program City of Tomorrow.

2.1.3 Smart Community Großschönau

The municipality Großschönau in Lower Austria’s Waldviertel has been dealing with topics in
the energy sector since the 1980s. In 2011 the research center for construction and energy in
Großschönau opened, which is located in the first European passiv house village3. Until 2017
it enabled interested guest to test passiv houses for two to seven days4. The project Munici-
pality Großschönau as virtual energy storage (GAVE) analyzed consumer energy management,
especially automated electric load management. It focused not only on the implementation of
necessary technologies but further on the acceptance by the local residents5.

2.2 Relevant Smart Grid Concepts

In this section, the smart grid concept and virtual powerplant concept, their development, and
several definitions are presented. This section concludes with a description of the Smart Grid
Control project proposal.

2.2.1 Smart Grid

The integration of renewable energy sources, the need for demand response, and energy conserva-
tion are just some challenges, which today’s energy systems are confronted with. The traditional
electricity grids carried the power unidirectionally from power plants to the customers. Due to
the unidirectional information flow, gathering information about the grid in real-time was not
possible. To avoid blackouts, grids had to be built to withstand rarely occurring maximum de-
mand peaks. This lead to an inefficient utilization of the grid, which is still present today with
many opportunities to increase the hosting capacity [Far10].

2Detailansicht - Energie Kompass GmbH https://www.act4.energy/nc/de/projekt/projektdetail/

innovationslabor-act4energy/ (accessed: January 8th 2019)
3Sonnenplatz Großschönau http://www.sonnenplatz.at/page.asp/lang%3Den/Forschung-Projekte (ac-

cessed: January 8th 2019)
4Sonnenplatz Großschönau - 1. European Passivhausdorf http://www.sonnenplatz.at/page.asp/lang%3Den/

passivhausdorf (accessed: January 8th 2019)
5GAVE – Municipality Großschönau as virtual Energy Storage – ICT Energy&IT Group https://energyit.

ict.tuwien.ac.at/projects/gave (accessed: January 8th 2019)

6

https://www.act4.energy/nc/de/projekt/projektdetail/innovationslabor-act4energy/
https://www.act4.energy/nc/de/projekt/projektdetail/innovationslabor-act4energy/
http://www.sonnenplatz.at/page.asp/lang%3Den/Forschung-Projekte
http://www.sonnenplatz.at/page.asp/lang%3Den/passivhausdorf
http://www.sonnenplatz.at/page.asp/lang%3Den/passivhausdorf
https://energyit.ict.tuwien.ac.at/projects/gave
https://energyit.ict.tuwien.ac.at/projects/gave

State of the Art and Related Work

The biggest problem for utilities was the distribution network, which was like a blackbox to them.
Without information from the distribution network and control methods, generation capacities
could not be efficiently expanded to satisfy the rising electricity demand. Therefore, solutions
have to be developed, to further integrate information and communication technology into the
grid. Especially the distribution network and the possibility for demand-side management (DSM)
need to be extended [Far10].

Automated meter reading (AMR) in distribution networks allow to remotely read consumption
and status information but do not include any control over the devices or DSM. The next step
was the development of the advanced metering infrastructure (AMI), which utilized a two-way
communication. On one hand, it enabled to remotely gather information about the network
and demand. On the other hand, it allowed to react based on the collected information and set
actions in the distribution network. The AMI serves as basis for the development of the smart
grid [Far10].

Due to different focuses in research, a unique definition on the term ”smart grid” has not yet
surfaced [FMXY12]. The Electric Power Research Institute (EPRI) [VD+09] defines the smart
grid as following: ”The term ”Smart Grid” refers to a modernization of the electricity delivery
system so it monitors, protects, and automatically optimizes the operation of its interconnected
elements – from the central and distributed generator through the high-voltage transmission
network and the distribution system, to industrial users and building automation systems, to
energy storage installations, and to end-use consumers and their thermostats, electric vehicles,
appliances, and other household devices.”

A very early definition of smart grids was found by the members of the Technology Platform
Smart Grids Austria (TPSGA): ”Smart Grids are power grids, with a coordinated management,
based on bi-directional communication between grid components, generators, energy storages and
consumers to enable an energy-efficient and cost-effective system operation that is ready for future
challenges of the energy system.” [LFP08]

By using bidirectional flow of electricity and information in every level of the grid, the smart
grid should be able to provide quality, reliability, and efficiency by dynamic optimization. As
a self-healing system, it should be able to respond to events, e.g., failures or demand peaks,
irrespective of their location. While supporting all energy generation and storage possibilities,
consumer involvement in the operation of the grid and energy market should be enhanced. Instead
of instantaneously replacing the existing grid, the smart grid should be developed parallel to the
existing electricity grid and gradually replace it [Far10].

2.2.2 Virtual Power Plant

Increase of decentralized energy resources (DER) introduces new challenges to power systems.
First, most DER units, e.g., PVs, are weather-dependent and therefore intermittent, which means
that their output is fluctuating and only partially controllable. Second, the participation of DERs
on the energy market is aggravated due to the small size and intermittency. Finally, most DER
units are operated isolated to only satisfy local needs, without contributing to the grid. To
overcome these challenges, multiple DER units are aggregated and actively controlled in a VPP
[PRS07].

Still, there does not exist a unique definition for VPPs. Generally, a VPP can be described
as in [PDVBD15]: ”A portfolio of DERs, which are connected by a control system based on

7

State of the Art and Related Work

information and communication technology (ICT). The VPP acts as a single visible entity in the
power system, is always grid-tied and can be either static or dynamic.” This definition includes
the following DERs: distributed generation units, energy storage units, and flexible loads. Due
to the aggregation, the VPP can be characterized like a transmission-connected generating plant,
by parameters, e.g., the scheduled output, output limits, or reserve capacity.

An Energy Management System (EMS) [SMT11] controls the generation units, storage units, and
controllable loads according to specific targets, such as the maximization of profits. Therefore,
a bidirectional communication is necessary. The EMS has to be able to receive information, like
generatio forecasts, from all units, and send commands to them. It can be realized as a centralized
system with a control center or as a decentralized system, where every unit is controlled by a
separate local controller or as a mixed system.

Derived from the VPP’s main activities, the participation in the energy market and the trans-
mission system management, two different VPP roles exist, the commercial VPP (CVPP) and
the technical VPP (TVPP).

The CVPPs [SMT11] represent DERs, which can be located in several distribution and transmis-
sion grids, in energy markets as one generating power plant, connected through the transmission
grid. Therefore, it has a profile, aggregated from operating and cost characteristics of each DER
unit. Its tasks are energy trading, optimization and scheduling of energy production depending
on forecasted demand and passing information about the DER units to the TVPP. The CVPP
facilitates the visibility and participation of each DER unit in the energy market. Further, the
operation of the network is not of concern for the CVPP.

The TVPP [SMT11] represents DERs, which are located in the same network, to system operators.
It is responsible for distribution system operator’s (DSO) system management and to provide
services like system balancing to the transmission system operator (TSO) by optimally using the
capacity of the DER units. Therefore, the TVPP has to receive information, e.g., operating and
cost parameters, about the local network and the DER units from the representing CVPPs and
aggregate these. Often DSOs act as TVPP, thereby optimizing the operation of their network by
using the DER units.

2.2.3 Related Smart Grid Control Approaches

In demonstration areas, such as the Green Energy Lab, new concepts and research ideas for smart
energy systems are being developed and tested. The Smart Grid Control project is a possible
subproject for the Green Energy Lab. It aims at increasing the integration of renewable energy
generation into the energy system with a focus on the local market and customer involvement.
Thereby, different market platform concepts will be evaluated and a platform for local energy
exchange trading based on blockchain will be developed, which will assist the integration of
renewable energy sources by, e.g., valorising ancillary services using a hybrid battery energy
storage system. For the implementation of the platform the integration of the end-consumers with
digital end-user devices, such as smart meters, is crucial. Further, RES, storages, flexible demand
and other energy system technologies will be combined into commercially viable products, thereby
developing new business models, which enhance the involvement of prosumers and consumers.
Based on the assessment, simulation and evaluation of these business models and the platform,
recommendations and proposals for local, regional and EU-wide policy and regulatory frameworks
will be given.

8

State of the Art and Related Work

2.3 Privacy

In this section, first, the General Data Protection Regulation and its consequences are presented.
This regulation has been enforced in the European Union (EU) on May 25th 2018. Thereby,
privacy by design has been implemented as legal requirement. Therefore, this section describes
privacy design strategies and provides examples for these.

2.3.1 General Data Protection Regulation

Due to the increasing number of privacy scandals, like the Facebook Cambridge Analytica data
scandal6, and emerging technologies, like cloud storage and IoT, a detailed regulation of privacy
became crucial. While the Data Protection Directive, Directive 95/46/CE [C+95], was adopted
in 1995 in the European Union, to unify data privacy laws of the member states. As directive
it left space for interpretation. Since 1995, the number of data-driven applications extremely
increased, e.g., the evolution of social media, and cases regarding privacy, e.g., the invalidation
of the Safe Harbour [EU15], were raised. Therefore, the regulatory environment of the European
Union had to be updated.

On April 14th 2016 the EU Parliament approved the General Data Protection Regulation [Reg16],
which replaces the Directive 95/46/CE. GDPR was enforced in EU member states on May 25th
2018, thereby establishing a unique privacy law in the EU to fulfill their aim of protection of EU
citizens’ data privacy.

Any information, which can be used to identify a person like name and email address, is considered
as personal data. Companies, regardless of their location, which process personal data of data
subjects residing in the EU have to comply to GDPR. GDPR does not refer only to data processing
entities, called data processors, but further to entities on whose behalf the data is processed, called
data controllers. Organizations violating GDPR, are fined according to a tiered approach, with
fines going up to 4 % of the annual global turnover or 20 million euro minimum.

Besides strengthening conditions for consent, e.g., by requiring intelligible requests for consent,
data subjects have been entitled with the Right to Access and Right to be Forgotten. While
the Right to Access gives data subjects the right to obtain information on their personal data
from data controllers, e.g., which data is being processed, the Right to be Forgotten among other
things authorizes the data subject to request the erasure of its personal data by the data controller.
Further, GDPR demands notification within 72 hours in case of data breaches.

Especially, due to the implementation of privacy by design as legal requirement, data controllers
and data processors have to change their existing systems and build new systems accordingly to
it, by using techniques like data minimization and anonymization.

2.3.2 Privacy Design Strategies

GDPR specifies privacy by design as legal requirement. For privacy by design, eight privacy
design strategies are presented in [Hoe14]. These privacy design strategies can be grouped into
two categories. The first category is comprised of data-oriented strategies as:

6The Cambridge Analytica Files https://www.theguardian.com/news/series/cambridge-analytica-files

(accessed: January 8th 2019)

9

https://www.theguardian.com/news/series/cambridge-analytica-files

State of the Art and Related Work

• Minimise: Only necessary data should be collected, thereby minimizing the amount of
processed personal data. An example is select before you collect, where instead of collecting
all available data and afterwards selecting which data is necessary, the necessary data is
first selected and then only this necessary data is collected.

• Hide: By hiding personal data and their interrelationships from plain view, unlinkability
and unobservability should be achieved. Encryption, anonymization and pseudonyms fall
under this strategy.

• Separate: Personal data should not be processed centrally, but rather distributedly. This
means, that data from separate sources should be stored separately and these storages
should not be linkable.

• Aggregate: To reduce the amount of detail and thereby the data sensitivity, data should be
aggregated before being processed. In context of energy systems, this can be achieved by
logging energy production or consumption in intervals.

Besides data-oriented strategies, there exist process-oriented strategies, which are:

• Inform: Regarding transparency, informing data subjects about the processing of their
personal data is crucial. The data subject should have access to information, such as the
purpose of the processing, the processing parties, and data access rights. An example are
notifications in case of data breaches, as demanded by the GDPR.

• Control: Complementary to the inform strategy, the control strategy allows the user to
control the use of their personal data. Privacy settings in applications, which can be changed
by the user, belong to this strategy.

• Enforce: If a privacy policy exists for the system, the policy should be enforced by imple-
menting mechanisms to prevent policy violations. An example for this strategy is access
control.

• Demonstrate: Data controllers should be able to give disclosure about their implementation
of privacy policies. For this purpose, logging and auditing systems can be used.

Rather than only using one strategy, multiple of these strategies should be applied together. For
example, privacy enhancing technologies (PET) try to combine multiple privacy strategies to
achieve goals, such as transparency and data minimization.

2.4 Blockchain

This section first explains the basics of the blockchain technology and the distributed ledger
technology. Then the different types of blockchain are listed and described. Essential for the
blockchain is the consensus mechanism, of which various versions are described here. In order to
be able to select one blockchain implementation for the thesis, different blockchain implementa-
tions are described and compared according to certain criteria. Based on the comparison, one
blockchain implementation is selected.

10

State of the Art and Related Work

2.4.1 Basics

The blockchain technology was first introduced in 2008 in the Bitcoin white paper [Nak08], with
the aim to establish a peer-to-peer currency without the need for a trusted third party, e.g.,
banks. Since then different use cases of the blockchain have been researched and realized, e.g., a
healthcare record system.

The blockchain can be described as a distributed ledger, which stores records in blocks. These
blocks are chained together by referencing the previous block using cryptographic hashes, as
shown in Figure 2. This leads to a tamper-proof ledger. Every node in the blockchain network
has a copy of the blockchain and a public/private key pair. The public key is used to address
the node and the private key to sign transactions. When making a transaction, it is first signed
and then broadcasted to the neighboring nodes. These nodes then validate the transaction and
forward it only if it is valid. Thereby validated transactions get broadcasted to the network and
collected by the nodes. Repetitively nodes group received validated transactions into a block to
be added to the blockchain. These blocks can differ from each other, e.g., due to propagation
of the transactions through the network, which leads to different copies of the blockchain in the
network and different views on the current state [TS16].

Figure 2: The figure shows a visualization of the generic blockchain data structure. A block contains the
hash of the previous block header and a merkle root. The merkle root represents the block’s
transactions.

Therefore, a consensus mechanism is needed to achieve a common view within the network.
Multiple consensus mechanisms with different approaches exist. Which one to choose depends
primarily on the blockchain type. Public networks mainly adopt Proof-of-Work (PoW) or Proof-
of-Stake (PoS) as consensus mechanism. PoW, which is used by Bitcoin, is solving cryptographic
puzzles by brute-forced cryptographic hashing. The node, which solves this puzzle, is rewarded
and its block is added to the blockchain. The biggest point of criticism of PoW is its high energy
consumption due to the extensive cryptographic hashing. In contrast, in PoS, where the node’s
chance to create the next block is proportional to its balance, the number of needed computations
is reduced. Most of the consensus mechanisms used in private networks, where the participants
are known, are based on solving the Byzantine Generals Problem, whereby the most prominent
one is the Practical Byzantine Fault Tolerance (PBFT) algorithm [TS16].

11

State of the Art and Related Work

The blockchain enables participants to securely interact in a distributed P2P system without
having to trust each other. Further, the network is able to withstand node faults and to agree
on a common view. Additionally, it is tamper-proof, transparent, and verifiable. Combined
with Internet-of-Things (IoT), the blockchain could transform several industries and create new
business models and applications [CD16].

Smart contracts were first mentioned in 1994 in [Sza94] by Nick Szabo with the vision to realize
legal contracts as computer code. With the upcoming of the blockchain technology, smart con-
tracts gained interest too. Running atop of the blockchain, smart contracts can be used to reach
and enforce agreements automatically according to specified rules, such as energy trading based
on a smart contract. The use of smart contracts leads to cost reduction, especially for low-value
transactions, and trust-free agreements7.

2.4.2 Blockchain Types

For different use cases and requirements some blockchain types are more suitable than others, e.g.,
for the financial industry primarily private blockchains are being researched. Still, a consensus
on the classification of blockchain types does not exist8.

One approach is to differentiate blockchains into public, private, and consortium blockchains.
In public blockchains everyone can send transactions, read transactions, and participate in the
consensus process. Consortium blockchains are under control of a group, e.g., a group of banks.
The consensus process is restricted to selected participants, and the permission to read can be
restricted too. Compared to public blockchains, consortium blockchains are faster and offer
more privacy. In private blockchains the permission to write is restricted to one entity, e.g., an
organization. Further, the permission to read may be restricted8.

Another approach is to differentiate blockchains into permissioned and permissionless blockchains.
In permissionless blockchains the user permissions to read data from and write data to the ledger
are not restricted. Further, in reaching consensus each member can participate. While permis-
sionless blockchains deliver transparency and a trust-free environment, these are often slower
than permissioned blockchains due to consensus mechanisms like PoW. In contrast, permissioned
blockchains are owned by some entity and therefore reaching consensus is carried out by trusted
members. Due to its private membership permissioned blockchains are faster than permissionless
blockchains and of particularly interest for banks9.

The distinction between the presented approaches is not always clear and sometimes they are
treated as the same, e.g., public blockchains are often seen equal to permissionless blockchains
and private blockchains to permissioned blockchains9.

2.4.3 Privacy & Blockchain

Due to the power grid as critical system and laws, such as the GDPR in the European Union,
privacy and data protection have to be taken into account. In public blockchains, the transac-
tion data is publicly stored at every node which raises privacy issues. Although Bitcoin uses

7Smart Contracts https://blockchainhub.net/smart-contracts/ (accessed: January 8th 2019)
8Blockchains & Distributed Ledger Technologies https://blockchainhub.net/

blockchains-and-distributed-ledger-technologies-in-general/ (accessed: January 8th 2019)
9Private Vs. Public and Permissioned Vs. Permission-less http://blocktonite.com/2017/06/27/

private-vs-public-and-permissioned-vs-permission-less/ (accessed: January 8th 2019)

12

https://blockchainhub.net/smart-contracts/
https://blockchainhub.net/blockchains-and-distributed-ledger-technologies-in-general/
https://blockchainhub.net/blockchains-and-distributed-ledger-technologies-in-general/
http://blocktonite.com/2017/06/27/private-vs-public-and-permissioned-vs-permission-less/
http://blocktonite.com/2017/06/27/private-vs-public-and-permissioned-vs-permission-less/

State of the Art and Related Work

pseudonymization, through statistical analysis de-anonymization can be achieved. Therefore,
solutions are needed to ensure privacy and data protection by design of the blockchain [HP17].

To ensure, that only involved participants can read the transaction data, while still being able to
verify transactions and ensure that the transaction data exists, different cryptographic techniques
are used. The simplest approach would be to only store encrypted data on the blockchain10.
Thereby, only participants with an encryption key would be able to decrypt the data. Even if
the data is encrypted, metadata could be used for statistical analysis11.

Another approach is to mix transactions from different users, thereby obscuring the origin of
payments. Due to the dependence on a third party, called mixer, a decentralized approach, called
CoinJoin, was proposed. Still mixers are not a suitable solution if the privacy set, the number of
involved participants in the mixing, is too small, because de-anonymization is possible. Therefore,
it would be needed that every user participates in the mixing12.

State channels are a solution, which additionally tackles scalability issues. These are off-chain and
only known to its participants. These allow to perform some operation off-chain and when closing
them to put the result on-chain. For example, state channels can be used for micro-payments,
where when closing the channel, micro-payments are aggregated and with one transaction put
on-chain13.

Confidential transactions enable to obscure transaction amounts and balances. Thereby, only
participants involved in the transaction can see the transferred amount. The use cases of these
confidential transactions are limited13.

Ring signatures do not obscure the transferred amount but disguise the connection between
sender and receiver. Thus, participants form a group, called ring, enabling every participant
to sign transactions on behalf of the group, without revealing which participant signed it. A
restricting factor is the number of involved participants, called ring size, whereby a small ring
size is more prone to de-anonymization12.

The most promising technology are zero knowledge proofs (ZKP), which allows parties to prove a
proposition, e.g., change of state, without revealing any other information. A non-interactive type
of ZKPs are zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge).
While the proofs are small and can be verified fast, their generation requires resource intensive
computation13. Due to this, zk-SNARKs are not suitable for less powerful devices and still show
scalability issues. Another drawback is the setup phase, which is needed for secret generation.
On one hand, for every Turing-complete smart contract a new setup phase is required. On the
other hand, if the setup phase is compromised, the security cannot be maintained14.

Applications already using zk-SNARKs are the Bitcoin protocol extension Zcash, and the smart
contract system Hawk. In Zcash the Bitcoin transaction format has been changed to integrate
encrypted transactions, where the data is encrypted by using zk-SNARKS and only authorized

10Differentiating Between Privacy and Secrecy on the Blockchain https://bitcoinmagazine.com/articles/

differentiating-between-privacy-and-secrecy-blockchain/ (accessed: January 8th 2019)
11Privacy on the Blockchain https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/ (ac-

cessed: January 8th 2019)
12Mixers and ring signatures https://blog.keep.network/mixers-and-ring-signatures-51f3f125485b (ac-

cessed: January 8th 2019)
13The Trend Towards Blockchain Privacy: Zero Knowledge Proofs http://sammantics.com/blog/2016/8/23/

the-trend-towards-privacy-how-blockchains-plan-to-accomplish-this (accessed: January 8th 2019)
14Zero-knowledge proofs, Zcash, and Ethereum https://blog.keep.network/

zero-knowledge-proofs-zcash-and-ethereum-f6d89fa7cba8 (accessed: January 8th 2019)

13

https://bitcoinmagazine.com/articles/differentiating-between-privacy-and-secrecy-blockchain/
https://bitcoinmagazine.com/articles/differentiating-between-privacy-and-secrecy-blockchain/
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://blog.keep.network/mixers-and-ring-signatures-51f3f125485b
http://sammantics.com/blog/2016/8/23/the-trend-towards-privacy-how-blockchains-plan-to-accomplish-this
http://sammantics.com/blog/2016/8/23/the-trend-towards-privacy-how-blockchains-plan-to-accomplish-this
https://blog.keep.network/zero-knowledge-proofs-zcash-and-ethereum-f6d89fa7cba8
https://blog.keep.network/zero-knowledge-proofs-zcash-and-ethereum-f6d89fa7cba8

State of the Art and Related Work

participants are able to see it. Thereby, users can perform private transactions, where sender,
receiver and transferred amount can be obscured. Hawk offers private smart contracts, thereby
obscuring the code of the smart contract and any data sent to and received from the smart
contract, e.g., transferred amounts. To not put a strain on the network, resource-intensive com-
putations in Hawk are done off-chain13.

2.4.4 Blockchain Projects For Energy

The use of the blockchain technology in the energy system related areas is currently being ex-
tensively researched. The most prominent use case of the blockchain technology is P2P energy
trading, where energy trading between two parties is processed directly via the blockchain, with-
out the involvement of third parties, as can be compared with [SW17] and [MPM17]. Researched
topics related to P2P energy trading are further transactive energy auctions in [HSLC17], elec-
tricity trading with digital-grid routers [TNA17] and energy trading for industrial IoT [LKY+18].
In [SDSG+17] and [DSGI+18] blockchain is used to track energy losses and thereby improving
attribution of these. The blockchain-based green certificate market presented in [CCMN17] and
[MMM17] introduces a blockchain platform for distributed optimization and control of energy re-
sources in microgrids. The use of blockchain technology for micro-payments is of special interest
for IoT [LBA17], which could be an important part in building smart cities, e.g., in the smart
district model in [LR17]. Furthermore, there are different use cases of blockchain for electric vehi-
cles (EV), such as EV-P2P trading in smart grids [KYH+17], EV and charging pile management
system [HXWL18], or an autonomous selection of an EV charging station [PKS16].

Some projects have been already developed or are at time of writing object of research. A
technical overview of projects can be found in [GMF+17] and [PMG+18]. Most of them are
based on scenarios with a focus on peer-to-peer energy trading. With Brooklyn Microgrid, a
community energy market was established, in which residents of the Brooklyn neighbourhood
can trade energy with each other. Similarly, PWR.Company enables P2P trading in microgrids
by equipping the participants with deep cycle batteries. With WePower, a blockchain-based green
energy trading platform, energy producers can issue own energy tokens, which ensure that the
producer delivers the energy to the buyer. The Key2Energy concept describes tenant electricity
platforms where tenants can buy energy directly from self-generating residential buildings at
cheaper prices. Share & Charge has already developed a charging stations network for electric
vehicles, including public and private charging stations. Dajie produces IoT devices, which are
used in combination with a blockchain-based platform for P2P energy exchange and to pay energy
and services to energy companies. Wholesale P2P energy trading with blockchain technology is
provided by PONTON Enerchain.

Other projects aim to increase the use of renewable energy sources. With the help of blockchain,
the production and consumption of renewable energy are logged and rewarded accordingly.
NRGcoin rewards producers of renewable energy per kWh if the production is in line with local
demand. GrünStromJeton reviews the electricity mix used and rewards the consumers when re-
newable energy sources are used. SolarCoin remunerates PV system owners per MWh produced
to reduce long payback times.

Some projects have a rather specific focus, like Bankymoon and TheSunExchange. Bankymoon
develops blockchain-aware prepaid meters that can be recharged remotely by using cryptocur-
rencies. These are of particular interest to African countries that already use prepaid meters.
TheSunExchange offers blockchain-crowdfunding, through which solar cells are purchased and

14

State of the Art and Related Work

then leased. This facilitates the electrification of rural, less industrialized areas without access to
the grid.

Particular of interest for system operators are Electron, PONTON’s Gridchain and PowerLedger.
Electron developed a meter registration platform, which enables switching the energy-supplier in
near real-time, and an exchange platform for demand-side response actions. PONTON’s Grid-
chain focuses on processes for the real-time grid and PowerLedger provides market trading and
clearing mechanisms.

All-in-one platforms are developed by GridSingularity and LO3 Energy. GridSingularity wants
to create a distributed data exchange platform based on an agent, which serves as the basis
for a wide range of applications, from P2P trading to registration platforms. LO3 Energy’s
Transactive Grid can be described as a blockchain-based microgrid intelligence system consisting
of TransActive Grid elements (TAG-e). It targets various business models for the distributed grid
and the transactive energy space, such as P2P energy transactions and the control of DERs for
grid balancing.

Further, the Energy Web Foundation (EWF), a non-profit organization, whose goal is to accelerate
the use of blockchain technology in the energy sector, is implementing various activities:

• development of an open-source IT infrastructure

• development of an EWF Blockchain

• analysis of different use cases

• development of use cases for proof-of-concepts and commercial applications

2.5 Hardware and Tools

In this section the used hardware, which is the Raspberry Pi, and tools are described. These
tools comprise software packages and encryption technologies.

2.5.1 Hyperledger Fabric SDK

To interact with a Hyperledger Fabric network the Hyperledger Fabric SDK can be used. Until
October 2018, the SDK has been released for Node.js15 and Java16 and is still in development
for Python, REST and Go. The SDK consists of the three modules api, fabric-client and fabric-
ca-client. Developers can implement their own versions of the SDK’s key interfaces by using the
module api, e.g., own cryptographic algorithms. The module fabric-client enables applications to
interact with the HLF network in multiple ways to15:

”• create channels,

• ask peer nodes to join the channel,

• install chaincodes in peers,

15Hyperledger Fabric SDK for node.js Index https://fabric-sdk-node.github.io/ (accessed: January 8th
2019)

16Java SDK for Hyperledger Fabric 1.3 https://github.com/hyperledger/fabric-sdk-java (accessed: January
8th 2019)

15

https://fabric-sdk-node.github.io/
https://github.com/hyperledger/fabric-sdk-java

State of the Art and Related Work

• instantiate chaincodes in a channel,

• invoke transactions by calling the chaincode, and

• query the ledger for transactions or blocks.”

The SDK requires user certificates signed by a CA for signing requests made to the HLF network.
Therefore, the module fabric-ca-client offers functions to register and enroll a user in order to
retrieve the user’s enrollment certificate15.

2.5.2 Node.js

Node.js17,18 is a ”production grade” asynchronous JavaScript runtime, for server-side network
applications. Due to its event-based model and input/output methods, which are available as
asynchronous non-blocking functions, Node.js is suitable for scalable systems and real-time ap-
plications. Further, modules for Node.js can be installed by using the package manager npm19.
There exists a broad range of modules including modules for networking, file system operations
and cryptographic functions. Some organizations, which use Node.js for their applications, are
PayPal, Netflix, eBay, or NASA20.

2.5.3 React

React21,22 is a JavaScript library for creating user interfaces, which was developed by Facebook
and open-sourced in May 2013 to the public. The user interface is composed of independent
and reusable components. When developing a React application, it has to be taken into account
that the data flow between the components is unidirectional23. The implemented reconciliation
algorithm24, which is used in React’s virtual DOM, improves the speed of re-rendering compo-
nents on updates. Therefore, it is suitable for high-performance applications. Based on React,
Facebook released in March 2015 React Native25, a library for the development of native mobile
applications26.

2.5.4 Advanced Encryption Standard

Due to its short key length of 56 bits, the Data Encryption Standard (DES) became vulner-
able to brute-force-attacks and inadequate for protecting sensitive information. Therefore, the

17Node.js https://nodejs.org/en/ (accessed: January 8th 2019)
18nodejs/node: Node.js JavaScript runtime https://github.com/nodejs/node (accessed: January 8th 2019)
19npm https://www.npmjs.com/ (accessed: January 8th 2019)
2010 best Node.js app examples from Uber to NASA https://thinkmobiles.com/blog/node-js-app-examples/

(accessed: January 8th 2019)
21React – A JavaScript library for building user interface https://reactjs.org/ (accessed: January 8th 2019)
22A declarative, efficient, and flexible JavaScript library for building user interfaces. https://github.com/

facebook/react (accessed: January 8th 2019)
23Thinking in React – React https://reactjs.org/docs/thinking-in-react.html (accessed: January 8th

2019)
24Reconciliation – React https://reactjs.org/docs/reconciliation.html (accessed: January 8th 2019)
25React Native: A framework for building native apps using React https://facebook.github.io/

react-native/ (accessed: January 8th 2019)
26A brief history of React Native – React Native Development – Medium https://medium.com/

react-native-development/a-brief-history-of-react-native-aae11f4ca39 (accessed: January 8th 2019)

16

https://nodejs.org/en/
https://github.com/nodejs/node
https://www.npmjs.com/
https://thinkmobiles.com/blog/node-js-app-examples/
https://reactjs.org/
https://github.com/facebook/react
https://github.com/facebook/react
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/reconciliation.html
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://medium.com/react-native-development/a-brief-history-of-react-native-aae11f4ca39
https://medium.com/react-native-development/a-brief-history-of-react-native-aae11f4ca39

State of the Art and Related Work

National Institute of Standards and Technology (NIST) decided to develop the Advanced Encryp-
tion Standard (AES). As part of the development, a call for algorithms was issued on September
12th 199727. Thereby, the Rijndael algorithm for a block length of 128-bit was selected as AES
algorithm. It can be used with three different cipher key lengths: 128, 192 and 256 bits. De-
duced from this, the different forms of the algorithms are named AES-128, AES-192 and AES-256
[Sta01].

Multiple attacks on the AES algorithm are known, like [Rij10] and [BKR11]. Nevertheless,
as of October 2018, besides side-channel attacks, which do not attack the algorithm but its
implementations, only impractical attacks for a correctly implemented AES implementation are
known to the public. An example for such a side-channel attack, which is based on monitoring
the cache, and its application on OpenSSL are described in [OST06].

2.5.5 Cipher Block Chaining

Block cipher algorithms, such as AES, encrypt only one fixed-sized block. For the encryption of
multiple blocks, a mode of operation is needed. The mode defines how to apply the block cipher
to multiple blocks. The Cipher Block Chaining (CBC) mode was invented by Ehrsam, Meyer,
Smith and Tuchman in 1976 [EMST76]. In the CBC mode, each plaintext block is XORed with
the previous ciphertext block and then encrypted. For the first plaintext block, an initialization
vector (IV) for XORing is required. Due to the use of different IVs, the encryption of the same
plaintext with the same key produces different ciphertexts. The IV does not need to be kept
secret, but it should be unpredictable and not reused with the same key. Otherwise an attacker
could gather necessary information for an attack. Because the IV is necessary for decrypting, the
IV is usually stored together with the ciphertext. Due to fixed block sizes and variable plaintext
lengths, the last plaintext block has to be padded before encryption, if it is smaller than the fixed
block size [Dwo01].

2.5.6 Containers

Containers are similar to virtual machines (VM), both enable to package applications and depen-
dencies, e.g., libraries and runtimes. Thereby the applications are run in an isolated environment.
In contrast to heavy-weight VMs, where the hardware is virtualized and atop the host operating
system another OS has to be run, the light-weight containers virtualize resources at OS-level (see
Figure 3). The advantages of containers are their capability to run independently of the underly-
ing system, which requires less memory than VMs, and start faster. Further, multiple containers
running on the same system, are isolated from each other, which eliminates dependency and
resource conflicts28,29.

27AES Development https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/

archived-crypto-projects/aes-development (accessed: December 15th 2018)
28Get Started, Part 1: Orientation and setup https://docs.docker.com/get-started/ (accessed: January 8th

2019)
29What are containers and their benefits — Google Cloud https://cloud.google.com/containers (accessed:

January 8th 2019)

17

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://docs.docker.com/get-started/
https://cloud.google.com/containers

State of the Art and Related Work

Figure 3: The figure shows the architecture of virtual machines and containers. (based on 29)

Due to the predictability of the container environment and independence from the target en-
vironment, the development of applications can be improved. Because of the container’s inter-
changeability, which enables to update and upgrade applications, and portability, which enables
containers to be deployed to any environment, the development of applications is decoupled from
their deployment. Additionally, containers are highly scalable and transparent, which allows to
monitor and manage applications. To create container images different container formats can be
used, such as the Docker container format29.

2.5.7 Raspberry Pi

In 2006 at the University of Cambridge, the idea of a small cheap computer for schools and
universities to promote computer sciences was born. To realize such a device, the Raspberry Pi
Foundation was founded. The Raspberry Pi 1 Model A and Model B were created and released
to the market in 201230. Since then various models, with support for Ethernet, USB hubs and
Wireless LAN, and components, e.g., camera modules, have been created. Thereby, extending
the number of possible use cases of the Raspberry Pis. For example, a Raspberry Pi can be used
as office computer, as network attached storage or for home automation31.

For the operation of the Raspberry Pis an operating system is needed, which is played on a SD
card or microSD card. Several operating systems are available, such as the officially recommended
Raspbian, which is based on Debian. Furthermore, operating systems that are optimized for
certain requirements exist, e.g., OpenWrt, which is optimized for routing network traffic30.

30RPi General History https://www.elinux.org/RPi_General_History (accessed: January 8th 2019)
31Raspberry Pi: Top 35 projects to try yourself http://www.itpro.co.uk/mobile/21862/

raspberry-pi-top-31-projects-to-try-yourself-1/page/0/1 (accessed: January 8th 2019)

18

https://www.elinux.org/RPi_General_History
http://www.itpro.co.uk/mobile/21862/raspberry-pi-top-31-projects-to-try-yourself-1/page/0/1
http://www.itpro.co.uk/mobile/21862/raspberry-pi-top-31-projects-to-try-yourself-1/page/0/1

State of the Art and Related Work

2.5.7.1 Raspberry Pi Zero W

The Raspberry Pi Zero W32, shown in Figure 4, is the smallest computer in the Raspberry Pi
family. It has a single-core CPU with a clock speed of 1 GHz, 512 MB RAM, a micro USB power
supply and the interfaces, like Mini HDMI and USB OTG. For the simulation, the Raspberry
Pi Zero W is used, which was introduced in February 2017 as an extended Raspberry Pi Zero.
Unlike the Raspberry Pi Zero, the Raspberry Pi Zero W has advanced connectivity options such
as 802.11 b/g/n Wi-Fi, Bluetooth 4.1 and Bluetooth Low Energy.

Figure 4: The figure shows a picture of the Raspberry Pi Zero W

2.5.7.2 Raspberry Pi 3 Model B

The Raspberry Pi 3 Model B (RPI3B)33, shown in Figure 5, was introduced in February 2016 as
successor of the Raspberry Pi 2 Model B (RPI2B). It has a quad-core CPU with a clock speed of
1.2 GHz, 1 GB RAM, and different interfaces, like one Ethernet, one HDMI and four USB ports.
Compared to the RPI2B, the RPI3B has advanced connectivity options such as 802.11 b/g/n
Wi-Fi, Bluetooth 4.1 and Bluetooth Low Energy already built-in. Due to the RPI3B’s ARMv7
architecture, it supports 64-bit operating systems.

Figure 5: The figure shows a picture of the Raspberry Pi 3 model B

32Raspberry Pi Zero W https://www.raspberrypi.org/products/raspberry-pi-zero-w/ (accessed: January
8th 2019)

33Raspberry Pi 3 Model B https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ (accessed:
January 8th 2019)

19

https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

3 Selection Of Hyperledger Fabric

For selection of an appropriate blockchain implementation for the SGCBP, multiple blockchain
implementations are introduced and compared in this chapter. Then the selection of Hyperledger
Fabric as blockchain implementation for the SGCBP is argued. Furthermore, this chapter de-
scribes Hyperledger Fabric and its architecture, by starting with the different nodes, the ledger
and the channels. Then the Membership Service Provider component, chaincodes and transaction
workow are presented. The information on Hyperledger Fabric is taken from the official HLF v1.1
documentation [Hyp18].

3.1 Evaluation Of Blockchain Implementations

In this section, first the requirements for the selection of a blockchain implementation, which acts
as basis of the blockchain platform, are described. Second, different blockchain implementations
and their features are presented. Last, the presented blockchain implementations are compared
and one is selected for the implementation of the blockchain platform.

3.1.1 Blockchain Requirements

Besides increasing the share of RES, the EU aims to increase energy efficiency by at least 27 %.
With regard to this, the use of the extremely energy-consuming consensus mechanism Proof-
of-Work, as for Bitcoin, is not suitable. The platform should take this into account and use a
consensus mechanism with a light energy-footprint.

It should be possible to integrate smart meters and IoT devices into the platform. Their resources,
such as processor power and memory space, are limited. Therefore, the selected blockchain
implementation needs to be resource-aware.

Although, the blockchain enables multiple parties to interact securely in a distributed P2P system
without trusting each other, the power grid is a highly-critical infrastructure and should not be
accessible to everybody. Therefore, the access to the platform has to be restricted. Only selected
participants should be able to read from and write to the ledger.

The platform has to process the energy production and consumption data of the participants,
which is by definition personal data. This requires privacy mechanisms, such as confidential

20

Selection Of Hyperledger Fabric

transactions and encryption for the platform. Therefore, a blockchain implementation, already
integrating privacy mechanisms is necessary.

Processes, such as logging of energy production and consumption and the settlement of these, are
to be integrated into the platform. To integrate these functionalities, the blockchain implemen-
tation has to support the integration of a business logic, e.g., with smart contracts.

Furthermore, for optimization purposes, the blockchain implementation should be modular and
offer possibilities to integrate other components, e.g., a new consensus algorithm. This modularity
would facilitate, e.g., upgrading components of the blockchain implementation to newer versions.

In respect of these requirements, following criteria have been chosen for the selection of a
blockchain implementation for the SGCBP:

• Light energy-footprint

• Modular

• Permissioned

• Privacy mechanisms

• Resource-aware

• Smart contracts

3.1.2 Blockchain Implementations

On the following pages, the blockchain implementations Ethereum, Quorum, Hyperledger Fabric,
Hyperledger Sawtooth and Corda are described. The descriptions focus on their architecture,
features, and privacy mechanisms, having the requirements in mind.

3.1.2.1 Ethereum

Ethereum developed as a blockchain platform with the ability to be reprogrammable is available
as an open-source project. It does not focus on any specific field, and therefore is of interest for
a variety of use cases34.

As a permissionless public blockchain, it allows everybody to participate in the network. Every
Ethereum node runs the Ethereum Virtual Machine (EVM) and the nodes communicate via a
P2P network protocol. The blockchain tracks the state of every account, which are public/private
key pairs and serve as identity in the blockchain network34.

Smart contracts in Ethereum are comparable to an autonomous agent and run in the EVM. A
smart contract can read and write data, perform computations, or call other contracts. They can
be written in the programming languages Solidity, Serpent, and LLL34.

Currently Ethereum uses Proof-of-Work as consensus algorithm. Participants, called miners,
have to solve cryptographic puzzles and create new blocks, which are then verified by other
participants34. The biggest drawback of PoW is its high energy consumption. Therefore, Ethereum

34What is Ethereum? http://www.ethdocs.org/en/latest/introduction/what-is-ethereum.html (accessed:
January 8th 2019)

21

http://www.ethdocs.org/en/latest/introduction/what-is-ethereum.html

Selection Of Hyperledger Fabric

plans to switch to Proof-of-Stake, where the consensus building process does not rely on solving
cryptographic puzzles. In PoS only participants with a legitimate stake can participate, which
leads to an increase in performance and scalability35.

In Ethereum every node gets a copy of the transactions, thereby creating privacy and confi-
dentiality issues. Currently the only option to solve these is by encrypting data locally on the
application-level before broadcasting it to the Ethereum network. There are plans to integrate
mechanisms, like zk-SNARKS, but it cannot be predicted when these mechanisms will be imple-
mented36.

Ethereum has the build-in crypto-currency Ether, which is used to pay transaction fees and
as reward for miners. Further with Ethereum custom tokens can be created, e.g., to define
cryptocurrencies34.

3.1.2.2 Quorum

Quorum is a permissioned Ethereum implementation, which was developed by J.P. Morgan,
focusing on the needs of the financial services industry, but nevertheless, can be used for other
industries too. It extends the public Ethereum implementation by following features37:

• Transaction and contract privacy38: Quorum extends the Ethereum transaction model by
the parameter privateFor and the transaction type by the new method IsPrivate. With
the parameter privateFor transaction senders can mark who the transaction is private to.
The method isPrivate can be used to identify private transactions. In contrast to public
transactions the payload of private transactions can only be seen by specific network partic-
ipants. Therefore, the payload is replaced by a hash of the encrypted payload. Authorized
participants replace the hash with the original payload by using Constellation instances.

• Multiple voting-based consensus mechanisms: Quorum currently provides two consensus
algorithms, Raft-based consensus and Istanbul BFT, which both lead to better scalability.

• Network/Peer permissions management39: In Quorum it can be controlled to which nodes
a node can connect to and accept connections from. Currently, this whitelisting is done at
node-level with a file on the node.

The Quorum architecture consists of the components Quorum Node and Constellation (see Fig. 6).
Quorum Node is a fork of the Go-Ethereum (Geth) client with modifications, like replacement of
PoW by a vote-based consensus mechanism, node permissioning and support for private transac-
tions. Constellation, consisting of the two modules Transaction Manager and Enclave, is a system
for securely submitting information. The Transaction Manager’s task is to ensure transaction
privacy and confidentiality. Every node’s Transaction Manager distributes encrypted transaction

35Frequently Asked Questions http://www.ethdocs.org/en/latest/frequently-asked-questions/

frequently-asked-questions.html (accessed: January 8th 2019)
36Ethereum Adoption of zk-SNARK Technology https://blog.z.cash/ethereum-snarks/ (accessed: January

8th 2019)
37Quorum Overview https://github.com/jpmorganchase/quorum/wiki/Quorum-Overview (accessed: January

8th 2019)
38Transaction Processing https://github.com/jpmorganchase/quorum/wiki/Transaction-Processing (ac-

cessed: January 8th 2019)
39Security https://github.com/jpmorganchase/quorum/wiki/Security (accessed: January 8th 2019)

22

http://www.ethdocs.org/en/latest/frequently-asked-questions/frequently-asked-questions.html
http://www.ethdocs.org/en/latest/frequently-asked-questions/frequently-asked-questions.html
https://blog.z.cash/ethereum-snarks/
https://github.com/jpmorganchase/quorum/wiki/Quorum-Overview
https://github.com/jpmorganchase/quorum/wiki/Transaction-Processing
https://github.com/jpmorganchase/quorum/wiki/Security

Selection Of Hyperledger Fabric

data to authorized participants, stores the encrypted transaction data and manages access to it.
Enclave acts as an isolated security module, which is responsible for cryptographic work, e.g.,
managing of private keys, data encryption, and decryption. With separation of the Transaction
Manager and Enclave the performance is improved compared to Ethereum38.

Figure 6: The figure shows the Quorum components. Right is the Quorum Node, a fork of the Go-
Ethereum client, and left is the Constellation, consisting of the modules Transaction Manager
and Enclave. (based on 37)

Furthermore, Quorum offers a zero-knowledge security layer (ZSL) with help of Zcash, which
is based on zk-SNARKS. ZSL-enabled public smart contracts, called z-contracts, can be used
to issue digital assets, called z-tokens. These z-tokens are kept private and can be transacted
privately40.

3.1.2.3 Hyperledger Fabric

Hyperledger Fabric is a general-purpose distributed ledger platform implemented by the Linux
Foundation. As a permissioned private blockchain it supports a Membership Service Provider
(MSP) for managing the network members. Its modular design features pluggable consensus
mechanisms, MSPs and encryption mechanisms. Further access control lists (ACL) can be used
as an additional permission layer.

Smart contracts in Hyperledger Fabric are realized as chaincodes. Transactions are operations
invoked on a chaincode. The chaincode execution is separated from transaction ordering, thereby
increasing scalability and performance. Currently chaincodes can be written using the program-
ming languages Go and NodeJS, and are executed by validating nodes inside a Docker container.
HLF does not have a built-in cryptocurrency, but currencies and digital tokens can be developed
by using chaincodes.

To reach consensus in HLF, two aspects have to be fulfilled, the transaction order and the trans-
action validity. In HLF, nodes are differentiated by their roles and associated tasks for reaching
consensus, however, a single server can run multiple nodes with the different roles, clients, peers,
and orderers. While clients act on behalf of the end-user and peers maintain the ledger, orderers
are responsible for the transaction order.

40ZSL https://github.com/jpmorganchase/quorum/wiki/ZSL (accessed: January 8th 2019)

23

https://github.com/jpmorganchase/quorum/wiki/ZSL

Selection Of Hyperledger Fabric

In HLF, privacy and confidentiality can be achieved with channels, where a ledger is only shared
between the participants of the channel. This means, that the transactions of a channel are only
visible to its participants and not to every participant in the network. Additionally, data can
be obfuscated, by encrypting it in a chaincode. A still experimental feature, the Private Data
Channel can be used to obscure private data from the network while proving its existence to the
network and keeping the data only visible to a specific group of peers41.

3.1.2.4 Hyperledger Sawtooth

Hyperledger Sawtooth is an open source enterprise blockchain platform under the Hyperledger
umbrella. It supports permissioning, where permission settings like roles and identities are
stored on the blockchain and every participant can access it. Sawtooth has a highly modu-
lar design, thereby enabling application-specific transaction rules, permissioning, and consensus
algorithms42.

In Hyperledger Sawtooth the application level and core system are separated, which eases the
development and deployment of applications. Developers can build transaction families, which
define transaction types and operations, e.g., smart contracts. Transaction families can be written
in a programming language of the developer’s choice. Transaction processor software develop-
ment kits (SDK) are available in multiple programming languages, e.g., Python, JavaScript, Go,
C++, Java, and Rust. Further, the Seth project enables interoperability between Sawtooth and
Ethereum. It allows the deployment of Ethereum smart contracts to Sawtooth42.

In Sawtooth, transactions can be processed serially or in parallel, which leads to an improved
performance. Sawtooth supports pluggable consensus algorithms, allowing the on-the-fly change
of the consensus with a transaction. Currently supported consensus algorithms are Proof-of-
Elapsed-Time (PoET), PoET simulator and Dev mode, that are especially optimized for energy-
efficiency and scalability42.

3.1.2.5 Corda

Corda was developed by R3 with the goal to create a global logical ledger for the financial industry.
The developers classify Corda not as a blockchain but as a distributed ledger technology. It is a
permissioned system, where nodes enforce a peer-to-peer communication [BCGH16].

Smart contracts in Corda can be written in Kotlin, and are validated and run in an augmented
Java Virtual Machine (JVM). The smart contract function and data are associated to a legal
prose, to make financial agreements legally enforceable. Corda has no built-in cryptocurrency
and currently there is no opportunity to define tokens [Hea16].

The transaction data is only shared with associated participants, which results in improved pri-
vacy. Therefore, no global consensus is required, only the parties involved in a transaction have
to reach consensus over the transaction, which leads to a performance increase compared to other
mechanisms. Consensus involves the two aspects of transaction validity and transaction unique-
ness. On transaction validity parties agree by running the same contract code and validation logic.

41Side DB - Channel Private Data - experimental feature https://jira.hyperledger.org/browse/FAB-1151

(accessed: January 8th 2019)
42Introduction https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html (ac-

cessed: January 8th 2019)

24

https://jira.hyperledger.org/browse/FAB-1151
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html

Selection Of Hyperledger Fabric

The transaction is valid if the contract code runs successfully, the transaction has all required
signatures, and any referring transactions are valid. For transaction uniqueness notary nodes are
responsible. Transaction uniqueness means that only the transaction consumes its input states
and no other transaction. Therefore, the uniqueness services do not have to see the transaction
contents, which improves privacy and scalability. For the uniqueness service, different pluggable
consensus algorithms can be used, e.g., BFT, or a single approving machine. In some cases no
uniqueness service at all is required[BCGH16][Hea16].

3.1.3 Comparison

As described in Section 3.1.1, as criteria for the selection of a suitable blockchain implementation,
following have been chosen:

• Light energy-footprint

• Modular

• Permissioned

• Privacy mechanisms

• Resource-aware

• Smart contracts

While the criteria permissioning, privacy mechanisms, modularity and smart contracts can be
evaluated directly, for the light energy-footprint and resource consumption, the consensus mech-
anism has been considered as indicator. Based on the available information and comparison of
the presented blockchain implementations, summarized in Table 1, Hyperledger Fabric seems to
present itself as the best choice for the implementation of the SGCBP, because it fulfills the
criteria.

The disadvantages of PoW, its openness and no privacy mechanisms disqualify Ethereum as
candidate for the platform. While Sawtooth is interesting for IoT devices due to the energy-
effcient and highly scalable PoeT consensus mechanism, its lack of privacy mechanisms makes
it not suitable for the platform. Corda, with its privacy features, seems like an interesting
approach but due to its specific focus on financial use cases is being out of scope. While Quorum
as a permissioned fork of Ethereum with implemented PoS and privacy features is interesting,
Hyperledger Fabric’s advantages prevail.

Hyperledger Fabric as a general-purpose solution is appropriate for the implementation of the
platform. The support of a Membership Service Provider and access control lists suits the re-
quirement of permissioning. Further, its modular design and pluggable consensus mechanisms
provide the possibility to test different components, such as the consensus mechanism. Includ-
ing the experimental features, Hyperledger Fabric offers the most possibilities related to privacy.
Additional benefits are a good documentation, the community and the use of Docker for running
nodes. Using Docker facilitates the development and deployment of the platform. Docker enables
to run applications and their dependencies inside containers, which are lightweight and portable
across machines. With the opportunity to create tokens, applications involving financial aspects
could be implemented into the platform.

On the following pages Hyperledger Fabric and its architecture, by starting with the different
nodes, the ledger, and the channels, are described in detail. Then the Membership Service
Provider component, chaincodes and the transaction workflow are explained.

25

Selection Of Hyperledger Fabric

T
a
b
le

1
:

T
h

e
tab

le
sh

ow
s

a
n

overv
iew

o
n

th
e

co
m

p
a
red

b
lo

ck
ch

ain
im

p
lem

en
tation

s.

C
h

aracteristic

Implementation

Ethereum

Quorum

HL Fabric

HL Sawtooth

R3 Corda

U
se

C
a
se

G
en

eric
G

en
eric

an
d

G
en

eric
G

en
eric

F
in

an
cial

in
d

u
stry

fi
n

an
cial

in
d

u
stry

B
lo

ckch
ain

T
y
p

e
P

erm
issio

n
less

P
erm

ission
ed

P
erm

ission
ed

P
erm

ission
ed

P
erm

ission
ed

P
erm

ission
less

M
o
d

u
la

rity
n

o
n

o
yes

yes
n

o

C
o
n

sen
su

s
P

oW
R

aft-b
ased

P
B

F
T

P
oE

T
V

alid
atin

g
n

o
d

es
A

lgorith
m

C
asp

er
P

o
S

(p
lan

n
ed

)
Istan

b
u

l
B

F
T

S
IE

V
E

P
oE

T
sim

u
lator

N
on

-valid
atin

g
n

o
d

es
D

ev
m

o
d

e
D

istrib
u

ted
R

aft

P
rivacy

N
o

P
rivate

tran
saction

s
P

rivate
ch

an
n

els
N

o
P

rivate
ch

an
n

els
Z

S
L

P
rivate

d
ata

ch
an

n
els

26

Selection Of Hyperledger Fabric

3.2 Nodes

As already mentioned in Section 3.1.2.3, in Hyperledger Fabric the communication entities of the
network are called nodes. These do not represent a physical device, but rather a logical function.
This means that on a physical server several nodes can be located. These nodes are classified into
the three types clients, peers, and orderers, which are explained in this section.

3.2.1 Peer

Peers are the basic building block of a Hyperledger Fabric network. These are usually owned by
organizations and can join multiple channels. Furthermore, peers are responsible to maintain the
ledger of each channel. Therefore, each peer keeps a copy of the ledger for each of its channels.
When the peer receives blocks from the ordering service with transactions, it commits the changes
to its ledger copies. A detailed explanation of channels is given in Section 3.3.2.

Further, peers can be endorsing peers, which host chaincodes. As part of the transaction workflow
(described in Section 3.6), these endorsing peers receive transaction proposals from clients and
endorse them. This happens by executing chaincode functions according to the proposal and
returning the signed chaincode results.

In Hyperledger Fabric, each peer has an identity. Therefore, a digital certificate is required, which
is used to identify the peer and its organization. For example, when interacting with a channel,
the peer’s permissions are retrieved by using the associated identity.

3.2.2 Orderer

The ordering service, consisting of one or multiple orderers, receives transactions, which are then
ordered into blocks and sent to the peers to commit to the ledger. The ordering service can
be realized in multiple ways, e.g., as centralized orderer or distributed protocol. As of writing,
Hyperledger Fabric offers the ordering services SOLO and Kafka, while a third, called Simplified
Byzantine Fault Tolerance (SBFT), is planned. The SOLO ordering service is comprised of a
single ordering node and mainly used for development. The distributed and fault-tolerant Kafka
ordering service, which utilizes Apache Kafka, is recommended to be used for production.

3.2.3 Client

Clients are the applications in the network, which are used by an end-user to connect to the
network and read data from or write data to the ledger. Therefore, clients have to communicate
with peers. For this purpose, Hyperledger Fabric provides a SDK, which, e.g., enables to create
transactions or register for transaction events.

3.3 Hyperledger Fabric Specific Constructs

In this section the two fundamental constructs of HLF, ledgers and channels, are described. A
ledger stores information in a blockchain, and channels separate the blockchain network into
smaller ones.

27

Selection Of Hyperledger Fabric

3.3.1 Ledger

The ledger in Hyperledger Fabric consists of two related data structures, the state and the chain.
The chain is equivalent to the blockchain structure explained in Section 2.4.1. In Hyperledger
Fabric it comprises blocks, which contain valid and invalid transactions. Thereby, transactions
read and write data on a key-basis. While valid transactions lead to a state change, invalid
transactions are stored for audit purposes. Further, a hash over these transactions is part of
the block header. Additionally, the block header contains the hash of the previous block header,
thereby linking each block to its previous block. The blocks are created by the ordering service,
which guarantees that transactions inside a block are totally ordered.

The state represents the recent state of the ledger and is comprised of the recent values for all
keys, which are present in the ledger. These key-value pairs are stored in a state database, which
is only used by peers. This enables to execute chaincode without the need to process the complete
ledger.

Each peer keeps a ledger copy for each of its channels. For state databases two options are imple-
mented, the default LevelDB and the optional CouchDB. In contrast to LevelDB, in CouchDB any
binary data can be stored. Further, due to the JSON modelling in CouchDB, data can be stored
as JSON and rich queries can be used to query it. These should only be used in transactions,
which update data, if it can be guaranteed that the queried data does not change between the
chaincode execution and the transaction commit. Furthermore, the CouchDB enables to imple-
ment security on field-level by utilizing transaction attributes. Besides LevelDB and CouchDB,
there are plans to integrate other databases in Hyperledger Fabric.

3.3.2 Channels

Channels in Hyperledger Fabric separate the blockchain network and allow members to keep their
transactions private and confidential. Each channel has its own ledger, which is hosted by the
participating peers. To join a channel, the peer has to possess an identity, which is given by a
MSP.

Channels are created by using channel configurations, which define all required information,
such as the participating organizations, access policies, block size, used hashing algorithm, and
orderer addresses. A new channel is created by a genesis block, which contains the initial channel
configuration. To change the configuration of a channel, a new configuration block is required.
For both cases a configuration transaction (configtx) has to be created. The tool configtxgen can
be used to create configtx based on a provided configuration file, the configtx.yaml.

If different versions of Hyperledger Fabric exist in a network, transactions would be processed
differently. Therefore, capability requirements have been introduced. These define which capabil-
ities are necessary to process transactions and are set for each channel in its channel configuration,
e.g., in the configuration file configtx.yaml. Three types of capability requirements exist:

• channel capability requirements for peers and orderers,

• orderer capability requirements only for orderers, and

• application capability requirements only for peers.

28

Selection Of Hyperledger Fabric

3.4 Membership Service Provider

Membership Service Providers are responsible for the management of identities. In Hyperledger
Fabric these identities are available as X.509 certificates. The MSP defines how these identities
can be validated and authenticated. In Hyperledger Fabric two MSP types can be differentiated,
local MSPs and channel MSPs. While local MSPs are responsible for clients, peers, and orderers,
channel MSPs are used for channels. For each client and node (peer or orderer), a local MSP is
used, which is hosted on the client’s or node’s file system. This local MSP defines administra-
tive and participatory permissions at client or node level, e.g., who has permission to install a
chaincode on the peer. In contrast to a local MSP, a channel MSP is stored on each participat-
ing node’s file system. A channel MSP defines administrative and participatory permissions at
channel level, e.g., who has permission to instantiate a chaincode on the channel.

For a MSP several elements are necessary, which can be grouped into following nine directories
(depicted in Figure 7):

• Root CAs (RCA): This directory contains self-signed certificates of trusted Root CAs.

• Intermediate CAs (ICA) (optional): This optional directory contains certificates of trusted
Intermediate CAs, which have to be signed by a trusted Root CA or Intermediate CA.
These Intermediate CAs can be used, e.g., for organization subdivisions.

• Organizational Units (OU) (optional): An optional list of organizational units, which are
represented by the MSP, is located in this folder.

• Administrators: In this directory are certificates located, which define the MSP’s adminis-
trators.

• Revoked Certificates (optional): This optional folder contains a list of certificate revocation
lists (CRL). CRLs define which certificates have been revoked and are no further valid.

• Signing Certificates (only for local MSP): This directory contains the node’s certificate,
which is, e.g., used by an endorsing peer for endorsing a transaction proposal.

• Keystore (only for local MSP): Corresponding to the previous presented directory, it includes
the node’s signing key, which, e.g., is required for signing transaction proposal responses.

• TLS Root CAs (TLS RCA) (optional): TLS communication requires certificates. This
directory contains self-signed certificates of trusted Root CAs used for this purpose.

• TLS Intermediate CAs (TLS ICA) (optional): Similar to the previous directory, located in
this directory there are certificates of Intermediate CAs for TLS communication.

29

Selection Of Hyperledger Fabric

Figure 7: This figure shows the nine MSP directories: Root CAs, Intermediate CAs, Organizational
Units, Administrators, Revoked Certificates, Signing Certificates, Keystore, TLS Root CAs,
and TLS Intermediate CAs. (based on [Hyp18])

To create the necessary X.509 certificates for the MSP, Hyperledger Fabric provides two op-
tions, the cryptogen tool and the Hyperledger Fabric CA. While the cryptogen tool speeds up
development and testing, it should only be used for the generation of key material in testing
environments. For production, it is advised to use the Hyperledger Fabric CA, which can act as
Root CA for the setup of MSPs and enables to dynamically generate and revoke certificates.

3.5 Chaincode

In Hyperledger Fabric smart contracts are realized as chaincodes, which read from or write to
the ledger depending on transaction proposals. The created state is thereby only accessible to
the specific chaincode. If a chaincode needs access to another chaincode’s state on the same
channel, the other chaincode needs to be invoked. Further, utilizing chaincodes on other channels
is restricted to reading data.

3.5.1 Chaincode Development

As of writing, chaincodes can be written in the programming languages Go and NodeJS. The
support of other languages, e.g., Java, is planned. Chaincodes are built into Docker images on
endorsing peers and executed in Docker containers.

Each chaincode needs to implement the interfaces Chaincode and ChaincodeStubInterface from
the Hyperledger Fabric shim package43. The interface Chaincode contains the methods Init and
Invoke, which are called when a transaction is received. The Init method instantiates the
chaincode’s internal data and is executed when an instantiate or upgrade transaction is passed
to the chaincode. Further, when an invoke transaction is passed to the chaincode, the method
Invoke is executed. It requires the name of the chaincode function, which has to be invoked. The
interface ChaincodeStubInterface contains methods to access the state of the ledger. These
methods can be used to read data from the ledger, e.g., with the method GetState, and write
data to the ledger, e.g., with the method PutState.

43package shim https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim (accessed: Jan-
uary 8th 2019)

30

https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim

Selection Of Hyperledger Fabric

Further, Hyperledger Fabric provides the Blockchain Crypto Service Provider (BCCSP)44 pack-
age, which implements cryptographic standards and algorithms. The offered functions can be
grouped into three categories: key lifecycle functions, sign and verify functions, and encrypt and
decrypt functions. The implemented cryptographic standards and algorithms are:

• Advanced Encryption Standard (AES)

• Elliptic Curve Digital Signature Algorithm (ECDSA)

• Keyed-Hash Message Authentication Code (HMAC)

• Rivest-Shamir-Adleman (RSA)

• Secure Hash Algorithm (SHA)

When encrypting a value, the invoke transaction has to contain an encryption key in the transient
field. Regarding decryption the same key has to be provided, when querying the ledger.

If packages outside the Go standard library, e.g., the BCCSP package, are used, these have to be
packaged together with the chaincode. Therefore, the tool govendor can be used, which stores
these dependencies in a local directory.

3.5.2 System Chaincodes

A special type of chaincodes are system chaincodes, which are part of the peer. This means, that
system chaincodes are deployed together with the peer and do not run in isolated containers.
These system chaincodes are following:

• Lifecycle system chaincode (LSCC) for chaincode lifecycle requests

• Configuration system chaincode (CSCC) for peer’s channel configuration

• Query system chaincode (QSCC) for querying of ledger data

• Endorsement system chaincode (ESCC) for transaction proposal response signing

• Validation system chaincode (VSCC) for transaction validation

To determine if transactions are correctly endorsed, each peer locally utilizes the VSCC, which
checks if received endorsements are valid, their number is sufficient, and their sources are correct.
Therefore, endorsement policies are required. These define conditions, based on the identity
and role of the signer within the MSP. For example, an endorsement policy could restrict the
endorsement of a transaction to specific roles, such as administrators.

44package bccsp https://godoc.org/github.com/hyperledger/fabric/bccsp (accessed: January 8th 2019)

31

https://godoc.org/github.com/hyperledger/fabric/bccsp

Selection Of Hyperledger Fabric

3.5.3 Chaincode Lifecycle

Before a chaincode can be installed, the chaincode needs to be packaged into a chaincode package.
A chaincode package contains the source code of the chaincode, the signatures of the chaincode
owners, and optionally an instantiation policy. The default instantiation policy authorizes only
admins of the peer’s MSP to instantiate the chaincode. Further, if a chaincode has multiple
owners, a signed chaincode package (SignedCDS) has to be created and signed by each owner.

To install a chaincode, an install transaction has to be issued by a local MSP administrator of
the peer. The transaction puts the source code into a ChaincodeDeploymentSpec and installs it
on a specified peer. Thereby, it has to be taken care of the chaincode location, which should be
inside the user’s GOPATH.

To initialize the chaincode, an instantiation transaction needs to be issued. Thereby, it is checked
if the transaction creator satisfies the instantiation policy and has write permissions on the
channel. During initialization, the chaincode is bound to a specific channel and the endorsement
policy setup. After instantiation, transaction proposals can be sent to the chaincode.

Afterwards, the chaincode can be upgraded with upgrade transactions, which set a new chaincode
version, which has to be installed on the peer. For all these operations (install, instantiate, and
upgrade) the SDK or the CLI on the peers can be used.

3.6 Transaction Flow

A crucial part of HLF is its transaction workflow, which is described in this section. The trans-
action workflow starts with an application constructing a transaction proposal by using the Hy-
perledger Fabric SDK. The transaction proposal contains a chaincode invocation request to read
data from the ledger, write data to the ledger, or do both, and is signed by the user. This trans-
action proposal is sent to specific endorsing peers, which are chosen according to the chaincode’s
endorsement policy. The endorsement policy defines which organizations need to endorse the
proposal.

Each endorsing peer inspects the received transaction proposal. To prevent replay-attacks it
reviews if the proposal has already been submitted. Further, it checks the signature and if the
application is allowed to invoke the chaincode function. If all checks succeeded, each endorsing
peer invokes the chaincode according to the transaction proposal. Instead of updating the ledger,
the resulting read-write set is signed by the endorsing peer and returned as proposal response
to the application. This read-write set consists on one hand of a read set, which contains all
read keys and their latest committed values, and on the other hand a write set, which contains
all written keys and their new values. Attention has to be paid to the fact, that if the value
of a specific key is updated and afterwards read inside the same transaction. Thereby, not the
updated value, but rather the last committed value will be read. Further, if a key has to be
deleted, a delete marker will be set as value. Nevertheless, the previous committed values for this
key will stay in the ledger. To improve scalability, only the endorsing peers have to execute the
chaincode during the transaction workflow. To update the ledger, only the returned read and
write sets are sufficient.

32

Selection Of Hyperledger Fabric

If the endorsing peers produce different results, e.g., due to different states or a non-deterministic
chaincode, the application will receive conflicting transaction proposals. In this case, the appli-
cation should discard the received proposals and end the transaction workflow. Otherwise, the
transaction workflow continues.

In the case of only reading data from the ledger, the application would obtain the queried data
from the proposal response and would end the transaction workflow. If data is written to the
ledger, the application should check if the endorsement policy has been satisfied. Then it should
send a transaction containing the transaction proposal and the proposal responses to the orderer
for updating the ledger.

Because multiple applications from several channels can send concurrently transactions to the
orderer, the orderer has to order these and bundle them into blocks for each channel. Thereby, the
orderer does not inspect the transaction data. This allows the application to encrypt the chaincode
input and ouput data or exclude the chaincode input data from the transaction. Further, the
transaction order does not need to be equal to the transaction arrival order. In contrast to the
general blockchain approach, where ledger forks are possible, this is prevented in Hyperledger
Fabric due to the orderer and blocks, which ensure transaction finality.

A created block is then sent to the channel’s peers including the endorsing peers. Thereby, it is
possible that some peers are not connected to the orderer. Therefore, peers can broadcast the
received block to other peers on the channel.

The peers independently handle the block’s transactions according to their order in the block. For
each transaction the peer checks, if the endorsement policy is satisfied, and if the transaction’s
read set corresponds to the peer’s ledger state to prevent, e.g., double spending threats. More
concrete, in case of several transactions updating the same asset, only the first update would be
valid and applied. This ensures that each peer has the same ledger. Thereby, the transaction
validity is recorded and the block committed to the chain. While valid transactions, in specific
their write sets, are applied to the peer’s ledger, invalid transactions are only kept for auditing.

If an application is registered for events of a channel, it will receive event notifications for block
events and transaction events. For example, an application could register for transaction events,
to get notified, e.g., when transactions are committed to the ledger and act upon the received
event. A visualization of the complete transaction workflow is depicted in Figure 8.

Figure 8: The figure shows the transaction workflow in Hyperledger Fabric from transaction creation to
commitment. (based on [Hyp18])

33

4 Models, Concepts and Hardware

This chapter first introduces the used hardware concepts, and then analyzes a generic system
consisting of multiple virtual power plants. The members and processes, relevant to the platform,
are being identified and based on this, a model of the platform is developed. This model serves
as the basis for the platform implementation. Then the simulation model is described, which
includes the simulated environment and data.

4.1 Hardware Concept

This section describes Docker and Kubernetes, which enable to utilize the container technology to
create the SGCBP components, such as HLF components and SGCBP applications, and deploy
these onto the RPIs. Further, each RPI is connected to a OLED display, which is presented at
last.

4.1.1 Docker

Docker is a software written in Go, which enables to create, distribute, and run applications using
containers. To run an application in a container, Docker images have to be created, that contain,
e.g, the required application code, software libraries, configuration files. These images are then
executed within a container45.

Docker is based on a client-server architecture consisting of the Docker client, the Docker API
and the Docker daemon. The Docker daemon is responsible for the Docker objects, like the
distribution of containers. The Docker client sends CLI commands to the Docker daemon by
using the Docker API. Further, Docker images can be stored in a Docker registry, e.g., the public
Docker Hub or an own registry, from which the images can be pulled, which eases the deployment
of newer application versions45. Due to Hyperledger Fabric utilizing Docker, Docker’s advantages,
e.g., portability, and compatibility with the Raspberry Pi, Docker is used to run the platform.

45Docker overview https://docs.docker.com/engine/docker-overview/ (accessed: January 8th 2019)

34

https://docs.docker.com/engine/docker-overview/

Models, Concepts and Hardware

4.1.2 Kubernetes

In 2014 Google open-sourced its Kubernetes project, which is a platform for the management
of containers and related workloads and services, such as networking and load-balancing. It
automates deploying, scaling, and managing container-based applications on multiple physical or
virtual machines. Further, applications can be automatically rolled out and rolled back, monitored
and addons used, e.g., DNS and logging mechanisms46.

Administrators can instruct the master machine with kubectl, which is the Kubernetes command
line tool. The master is responsible to control the Kubernetes nodes and assign tasks to them.
With pods containers can be grouped and deployed to the nodes. Due to the pod abstracting net-
work and storage from the underlying containers, the pod’s containers share network properties,
such as IP addresses, and storage. Kubernetes can be used in combination with various container
technologies, including Docker. This Kubernetes architecture is shown in Figure 9. Furthermore,
services can be used to define access policies for a set of pods48,28.

Figure 9: The figure shows a Kubernetes architecture example, consisting of the command line tool
kubectl, the master and three nodes. (based on 47)

As Docker is used for the SGCBP components, it can be combined with Kubernetes. Kuber-
netes enables to roll the SGCBP components out to the RPIs and monitor them. Components,
which are realized as containers, can be grouped into a pod and deployed as unit. Furthermore,
configuration files can be shared between pods, which eases the setup.

46What is Kubernetes? – Kubernetes https://kubernetes.io/docs/concepts/overview/

what-is-kubernetes/ (accessed: January 8th 2019)
47Introduction to Kubernetes https://www.mirantis.com/blog/introduction-to-kubernetes/ (accessed:

January 8th 2019)
48What is Kubernetes? – Red Hat https://www.redhat.com/en/topics/containers/what-is-kubernetes (ac-

cessed: January 8th 2019)

35

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.mirantis.com/blog/introduction-to-kubernetes/
https://www.redhat.com/en/topics/containers/what-is-kubernetes

Models, Concepts and Hardware

4.1.3 OLED Display For Raspberry Pis

To monitor the operation of the SGCBP each RPI will be equipped with an Organic Light Emit-
ting Diode (OLED) display with white pixels and a resolution of 128 x 64 pixels49. Raspberry Pi’s
General Purpose Input/Output (GPIO) pins can be used to interact with external components,
e.g., displays, motors and sensors. Some functionalities, e.g., pulse-width modulation (PWM)
and inter-integrated circuit (I2C), are only available on dedicated pins.

4.2 System Analysis

The system analysis can be divided into two parts, the Intra-VPP analysis and the Inter-VPP
analysis. Whereas, the Intra-VPP analysis focuses only on one VPP and its members and pro-
cesses, the Inter-VPP analysis considers the processes between multiple VPPs. The mentioned
timeslots are fifteen minutes long.

4.2.1 Intra-VPP Analysis

A VPP can include any number of participants with different configurations, e.g., different com-
binations of devices such as PV systems, battery storages, EVs, and household appliances. These
participants, regardless of their configuration, can be classified into producers, consumers, and
prosumers. The SGCBP should enable VPP participants to track their energy production and
consumption. Therefore, following data has to be stored:

• The timeslot, when the energy was produced or consumed.

• The producing or consuming participant.

• The type, indicating if it is an energy production or consumption.

• The amount of produced or consumed energy in kWh.

Concerning the data granularity, the platform does not focus on processes and devices inside a
participant’s building. Therefore, the energy production or consumption is aggregated at partic-
ipant level and only the surplus or deficit is stored on the platform. Further, each VPP has a
central instance, the controller, which is responsible for the administration of the platform for the
VPP and for aggregating the VPP’s energy surplus and demand, based on the reported energy
production and consumption data of the participants. Due to the use of personal data on the
platform, it has to be ensured that only the participant and their controller have access to the
participant’s data.

4.2.2 Inter-VPP Analysis

As already mentioned, the controller calculates the VPP’s energy surplus or demand and records
it on the platform. Therefore, following information is required:

490.96 inch I2C OLED display - AZ-Delivery https://www.az-delivery.de/products/0-96zolldisplay (ac-
cessed: January 8th 2019)

36

https://www.az-delivery.de/products/0-96zolldisplay

Models, Concepts and Hardware

• The timeslot of the energy surplus or demand.

• The supplying or demanding VPP.

• The type, indicating if it is an energy surplus or demand.

• The amount of supplied or demanded energy in kWh.

The recorded energy surpluses and demands are then matched together by the platform by cre-
ating transactions. This means, that the available energy surpluses of VPPs should satisfy the
energy demands of other VPPs, as far as possible. If after the matching an energy supply still
exists, the energy is sold to the grid. Otherwise if an energy demand remains, it is satisfied by
buying energy from the grid. This matching should be executed for each timeslot and thereby
following data should be saved:

• The timeslot of the transaction.

• The selling VPP or the grid.

• The buying VPP or the grid.

• The amount of transacted energy in kWh.

4.3 Platform Model

Based on the system analysis, a model for the SGCBP has been developed. This model defines
the underlying Hyperledger Fabric network, the matching algorithm for the energy surpluses and
demands, and the used privacy mechanisms for participant data.

4.3.1 Components

To keep the participant’s data of a VPP confidential, for each VPP an organization and a channel
have to be created. Thereby, members of other VPPs do not have access to it. Further, to each
member, in this case a participant or a controller, a peer will be provided. These peers have to
join the corresponding channel. Furthermore, per organization a Certificate Authority (CA) is
required, which will be hosted by the controller. For the Intra-VPP processes a chaincode has
to be developed, which provides the functions to log the participant’s energy production and
consumption and to query the ledger data by different parameters. To enhance the privacy, the
chaincode should enable to encrypt the participant’s data in such a way, that only the participant
and their controller are able to read the participant’s data.

For the Inter-VPP processes, an additional organization and channel have to be setup. This
means, that each controller has a second peer, only for the Inter-VPP channel. Regarding the
Inter-VPP processes a chaincode is required to enable the logging of VPP energy surplus or
demand, the matching of these and the querying of the ledger data. Because chaincode functions
need to be invoked, an additional member is necessary to trigger the matching. To this member,
the master, a peer is provided, which also joins the Inter-VPP channel. The CA for the Inter-VPP
organization and the orderer for the whole HLF network are hosted by the master.

Besides the HLF network, dashboards for the participants, the controllers and the master need to
be developed. In their dashboard a participant should see an overview of ones energy production

37

Models, Concepts and Hardware

and consumption. In contrast, the controller’s dashboard should show the energy production and
consumption of all its participants, and the VPP’s energy surpluses, demands, and transactions.
The master dashboard should display the logged energy surpluses, demands, and transactions of
all VPPs.

4.3.2 Matching

The Inter-VPP chaincode has to implement the functionality to match the logged VPP energy
surpluses and demands. Thereby, the highest energy surplus should always be matched to the
highest energy demand. Any energy surplus or demand, which remains after the matching, should
be matched to the grid. For clarification, the matching algorithm is explained along the following
example. In this example, the VPP A provides 5kWh, the VPP C supplies 10 kWh, the VPP B
demands 8 kWh and the VPP D requires 7 kWh. This initial situation is summarized in Table 2.

Table 2: The table shows the reported energy surpluses and demands of all VPPs for one timeslot.

VPP Type Amount

VPP A Demand 5 kWh
VPP D Demand 10 kWh
VPP B Supply 9 kWh
VPP C Supply 7 kWh

As described, the highest supply is always matched to the highest demand. In this case, VPP B
has the highest supply of 9 kWh, which is matched to the energy demand of 10 kWh of VPP D.
Thereby, VPP D’s energy demand is reduced to 1 kWh, which can be seen in Table 3.

Table 3: The table shows the remaining energy surpluses and demands after the first matching round,
where VPP B’s energy supply of 9 kWh was matched to VPP D’s energy demand of 10 kWh.

VPP Type Amount

VPP A Demand 5 kWh
VPP D Demand 1 kWh
VPP C Supply 7 kWh

After the first matching round, VPP A has the highest energy supply of 5 kWh and VPP C
the highest energy demand of 7 kWh. Therefore, they are matched together, whereby an energy
supply of 2 kWh for VPP C remains, shown in Table 4.

Table 4: The table shows the remaining energy surpluses and demands after the second matching round,
where VPP A’s energy demand of 5 kWh was matched to VPP C’s energy surplus of 7 kWh.

VPP Type Amount

VPP D Demand 1 kWh
VPP C Supply 2 kWh

The last remaining energy supply of 2 kWh of VPP C is matched with the last remaining energy
demand of 1 kWh of VPP D. The available energy supply of VPP C is thereby reduced to 1 kWh
(see Table 5).

38

Models, Concepts and Hardware

Table 5: The table shows the last remaining energy surplus, in this case 1 kWh of VPP C, which is
matched to the grid.

VPP Type Amount

VPP C Supply 1 kWh

Finally, the remaining energy supply of 1 kWh of VPP C is sold to the grid. A complete table of
all energy transactions is given in Table 6.

Table 6: The table shows all energy transactions between the VPPs and the grid, which have been created
as a result of the matching algorithm.

Seller Buyer Amount

VPP B VPP D 9 kWh
VPP C VPP A 5 kWh
VPP C VPP D 1 kWh
VPP C Grid 1 kWh

A workflow diagram of a chaincode function implementing the matching algorithm can be seen
in Figure 12.

4.3.3 Privacy Design Strategies

As described in Section 2.3.2, for the implementation of privacy by design multiple privacy design
strategies exist. The proof-of-concept puts focuses on data-oriented strategies, which are mini-
mization, hiding, separation, and aggregation. These strategies are applied to personal data, in
this case the participant data, and are implemented into the platform as follows:

• Minimization: Only participant’s data, which is necessary for the platform operation, should
be stored. Therefore, as part of an energylog, only a participant identifier, the date, time,
type and amount are stored.

• Hide: To achieve unlinkability and unobservability, encryption and pseudonymization are
applied. Pseudonyms are used as participant identifiers and the type and amount of each
energy production and consumption is encrypted.

• Seperation: Channels are used for each VPP and an additional channel for the Inter-VPP
processes. This enables separation between the VPPs, and the Intra-VPP and Inter-VPP
processes. Thereby, the data is kept confidential inside a VPP.

• Aggregation: Only the participant’s energy production and consumption, aggregated at par-
ticipant level, is stored on the platform. More detailed data, such as the energy production
or consumption of specific devices, is kept secret by the participant.

4.3.4 Encryption

As described in Section 4.3.3, encryption will be used as one privacy mechanism for the platform.
Therefore, symmetric encryption is applied to participant data in the Intra-VPP environment.
When an energy production or consumption is recorded, an encryption key has to be passed to

39

Models, Concepts and Hardware

the chaincode. This key is then used by the chaincode to encrypt the type and amount, before
writing the data to the ledger. For reading data from the ledger, the key should be passed to the
chaincode for decryption.

Further, if the encryption of a text would always return the same result, compare Table 7, this
determinism could be used by an attacker to, e.g., execute a known-plaintext attack. In a known-
plaintext attack, the plaintext and ciphertext are known to an attacker and they attempt to find
out the key by guessing or using an algorithm [TJ11].

Table 7: The table shows the encryption of the text ’hallo’ without ciphertext indistinguishability pro-
ducing always the same output.

Plaintext Ciphertext

hallo 8labbl0otatspq3xa72k
hallo 8labbl0otatspq3xa72k

Therefore, the encryption method should provide ciphertext indistinguishability. This means, the
encryption of a text should never produce the same output, see Table 8. Although, the encryption
returns different outputs, they should be decryptable by the same key.

Table 8: The table shows the encryption of the text ’hallo’ with cipher indistinguishability producing
different outputs.

Plaintext Ciphertext

hallo 8labbl0otatspq3xa72k
hallo viumvbprnld4ki9yuqn9

Further, it is advised to use additional encryption on the application-level with an additional
encryption key. Thereby, the data should be encrypted before sending it to the chaincode. This
approach ensures, that if the encryption key for the chaincode is known to the attacker, the
data cannot be read without the encryption key for the application and vice versa. Only the
participant and its VPP controller, should know the participant’s encryption keys. Furthermore,
the controller must have access to the encryption keys of all its participants.

4.4 Simulation Model

The platform is tested by simulating a VPP environment. Simulation applications for the partic-
ipants, the controllers and the master, are developed. Further, generation and load profiles are
required as simulation data for the participants.

Therefore, the standard load profiles utilized by APCS Power Clearing and Settlement AG

(APCS)50 will be used. APCS applies these synthetic load profiles for small consumers in fore-
casting the balancing energy demand of balance groups. These load profiles have been defined
by Verband der Elektrizitätswirtschaft e. V. (VDEW) and Energie-Control Austria für die Reg-
ulierung der Elektrizitäts- und Erdgaswirtschaft (E-Control) [EC]. From these profiles, following
are used for the simulation:

50Synthetische Lastprofile https://www.apcs.at/de/clearing/technisches-clearing/lastprofile (accessed:
January 8th 2019)

40

https://www.apcs.at/de/clearing/technisches-clearing/lastprofile

Models, Concepts and Hardware

• Load profile for feed-in from hydro, wind and biogas plants (E0)

• Load profile for feed-in from PV plants (E1)

• Load profile for retail stores and hairdressers (G4)

• Load profile for bakeries with a bakehouse (G5)

• Load profile for households (H0)

• Load profile for households with hot water tanks (HA)

Additionally, the load profile from Mainzer Netze GmbH 51 for non-switchable electric vehicle
charging stations (EL1) is included. All profiles include quarter-hourly values for a year, that are
normalized to an annual energy consumption of 1000 kWh.

The simulated environment consists of three VPPs, called Consumers, Mixed, and Producers.
Thereby, each VPP includes three participants.

The VPP Producers encompasses only participants with energy sources. A PV farm is operated
by participant Alpha, a biogas power plant by participant Bravo and a small wind power plant
by participant Charlie. The detailed configuration and used profiles are given in Table 9.

Table 9: The table shows the participants of the VPP Producers, their system configuration and therefore
used load profiles.

Participant Description Used load profiles

Alpha 3x PV E1
Bravo Biogas E0
Charlie 3x Wind E0

The VPP Mixed contains an industrial park, consisting of Delta’s retail store, Echo’s bakery and
Foxtrot’s PV system. The details of the park and thereby applied load profiles are depicted in
Table 10.

Table 10: The table shows the participants of the VPP Mixed, their system configuration and therefore
used load profiles.

Participant Description Used load profiles

Delta Retail store G4
Echo Bakery with a bakehouse G5
Foxtrot PV E1

The VPP Consumers represents a residential street with three households. While participant
Golf only has a general household, Hotel’s household is equipped with a hot water tank, and
India’s household with a non-switchable electric vehicle charging station. This configuration and
used load profiles are summarized in Table 11.

51Synthetische Lastprofile https://www.mainzer-netze.de/stromnetze/netzzugang/lastprofile/ (accessed:
January 8th 2019)

41

https://www.mainzer-netze.de/stromnetze/netzzugang/lastprofile/

Models, Concepts and Hardware

Table 11: The table shows the participants of the VPP Consumers, their system configuration and there-
fore used load profiles.

Participant Description Used load profiles

Golf Household H0
Hotel Household with hot water

tank
HA

India Household with non-
switchable EV charging
station

H0, EL1

This configuration was chosen due to the restricted number of available Raspberry Pis and to show
the diversity of participants and VPPs. This is done by including consumers and producers as
participants, and by grouping, e.g., only consumers or only producers into one VPP. Furthermore,
this diversity and normalized profiles enable to thoroughly test the platform operation, especially
the matching algorithm.

42

5 Implementation, Simulation and Results

This chapter describes the implementation of the platform by starting with the adaption of the
Hyperledger Fabric components to the Raspberry Pi. Then the developed chaincodes and appli-
cations for the platform and simulation are being characterized. This is followed by descriptions
of the microSD image for the RPI and the Smart Grid Controller Container Services (SGCCS),
which are used to deploy the platform and simulation onto the RPIs. Then it describes the real-
ization of the simulation model, that is described in Section 4.4. Further, the platform operation
and stability, and the deployment process were evaluated by using measurements.

5.1 Hyperledger Fabric Components For ARMv7

The RPI is based on the ARM architecture, which HLF does not support out of the box. Further,
HLF does not support 32-bit operating systems. This means that the HLF Docker images and
binaries have to be created for the RPI. Therefore, the HLF code needs to be modified, which
can be found on the following three GitHub repositories:

• hyperledger/fabric-baseimage52

• hyperledger/fabric53

• hyperledger/fabric-ca54

For the thesis, Hyperledger Fabric version 1.1 was used, which corresponds to the tag 1.1.0 on
the GitHub repositories.

The initial idea was to use the Raspberry Pi Zero W for the platform. Therefore, HLF had to
be ported onto the ARMv6 architecture. Thereby, all attempts have been unsuccessful due to
missing dependency support of the ARMv6 architecture. Therefore, it was necessary to opt for
a Raspberry Pi model with the ARMv7 architecture, in this case the Raspberry Pi 3 model B,

52GitHub repository hyperledger/fabric-baseimage https://github.com/hyperledger/fabric-baseimage (ac-
cessed: January 8th 2019)

53GitHub repository hyperledger/fabric https://github.com/hyperledger/fabric (accessed: January 8th
2019)

54GitHub repository hyperledger/fabric-ca https://github.com/hyperledger/fabric-ca (accessed: January
8th 2019)

43

https://github.com/hyperledger/fabric-baseimage
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric-ca

Implementation, Simulation and Results

where previous HLF versions have been successfully ported onto55,56. Furthermore, the Docker
Hub frbrkoala57 contains HLF v1.1 Docker images for the ARMv7 architecture. It was tried
to use these images for the SGCBP. But running the basic-network example from the fabric-
samples58 with these images failed due to a runtime error in the fabric-peer container, shown in
Code Snippet 1.

panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x4 pc=0x8a38]

goroutine 107 [running]:

sync/atomic.storeUint64(0x143c9e9c, 0xef46a58c, 0x155e27ee)

/opt/go/src/sync/atomic/64bit_arm.go:20 +0x3c

github.com/hyperledger/fabric/gossip/identity.(*storedIdentity).fetchIdentity(0

↪→ x143c9e90, 0x143a11e0, 0x131c0380, 0x20)

/opt/gopath/src/github.com/hyperledger/fabric/gossip/identity/identity.go

↪→ :237 +0xa8

Code Snippet 1: The code snippet shows the error in the fabric-peer container, when using the Hyper-
ledger Fabric images from the Docker Hub frbrkoala on a 32-bit operating system.

This runtime error is common when using the atomic package59 on a 32-bit operating system. It
can be solved by arranging the 64-bit words for 64-bit alignment. As consequence the fabric code
needed to be modified and afterwards the HLF images and binaries built. The build process can
be divided, corresponding to the HLF repositories, into three stages. A complete overview of the
repositories, their binaries and images is given in Table 12.

55Hyperledger Fabric on Raspberry pi 3 https://stackoverflow.com/questions/45800167/

hyperledger-fabric-on-raspberry-pi-3/45804324 (accessed: January 8th 2019)
56HYPERLEDGER FABRIC V1.0 ON A RASPBERRY PI DOCKER SWARM - PART 2 http://www.

joemotacek.com/hyperledger-fabric-v1-0-on-a-raspberry-pi-docker-swarm-part-2/ (accessed: January
8th 2019)

57frbrkoala’s Profile – Docker Hub https://hub.docker.com/u/frbrkoala/ (accessed: January 8th 2019)
58Hyperledger Fabric Samples github.com/hyperledger/fabric-samples (accessed: January 8th 2019)
59Package atomic https://golang.org/pkg/sync/atomic/ (accessed: January 8th 2019)

44

https://stackoverflow.com/questions/45800167/hyperledger-fabric-on-raspberry-pi-3/45804324
https://stackoverflow.com/questions/45800167/hyperledger-fabric-on-raspberry-pi-3/45804324
http://www.joemotacek.com/hyperledger-fabric-v1-0-on-a-raspberry-pi-docker-swarm-part-2/
http://www.joemotacek.com/hyperledger-fabric-v1-0-on-a-raspberry-pi-docker-swarm-part-2/
https://hub.docker.com/u/frbrkoala/
github.com/hyperledger/fabric-samples
https://golang.org/pkg/sync/atomic/

Implementation, Simulation and Results

Table 12: The table contains an overview of the Hyperledger Fabric GitHub repositories, the correspond-
ing binaries and Docker images.

HLF GitHub repository Binaries Docker images

fabric-baseimage52 fabric-baseimage
fabric-baseos
fabric-basejvm
fabric-couchdb
fabric-kafka
fabric-zookeeper

fabric53 gotools
peer
orderer
configtxgen
cryptogen
configtxlator

fabric-ccenv
fabric-javaenv
fabric-peer
fabric-orderer
fabric-tools
fabric-buildenv
fabric-testenv

fabric-ca54 fabric-ca-server
fabric-ca-client

fabric-ca
fabric-ca-peer
fabric-ca-orderer
fabric-ca-tools

Regarding the repository fabric-baseimage, the images from the Docker Hub frbrkoala function
properly. Therefore, these were used as basis and only the repositories fabric and fabric-ca were
modified.

Based on a previous attempt to port HLF onto the RPI55 changes were made to the fabric
repository. The first change concerns the file \fabric\core\container\util\dockerutil.go and the
discrepancy between the command uname -m, used in the images, and GOARCH, used in the code,
when retrieving the architecture. On the RPI the command uname returns the value arm, while
GOARCH returns the value armv7l. Therefore, an additional entry in the variable archRemap was
required, as seen in Code Snippet 2.

Version Code

old
var archRemap = map[string]string{

"amd64": "x86_64",

}

new

var archRemap = map[string]string{

"amd64": "x86_64",

"arm": "armv7l",

}

Code Snippet 2: The code snippet shows the change to the file \fabric\core\container\util\dockerutil.go
due to the discrepancy between the command uname and GOARCH.

Next, in the configuration file \fabric\sampleconfig\core.yaml, which contains runtime settings,
the memory limit for Docker containers had to be reduced. In this case, to 16 GB for the RPIs,
as seen in Code Snippet 3. The same modification was also applied to the file \fabric\examples
\cluster\config\core.yaml.

45

Implementation, Simulation and Results

Version Code

old Memory: 2147483648

new Memory: 16777216

Code Snippet 3: The code snippet shows the changes to the files \fabric\sampleconfig\core.yaml and
\fabric\examples\cluster\config\core.yaml due to the Raspberry Pi’s memory limit.

To solve the runtime error, appearing in the frbrkoala images, 64-bit words have to be arranged for
64-bit alignment. In Golang the first field in an allocated struct is automatically 64-bit aligned59.
Therefore, the position of the field lastAccessTime in the struct storedIdentity in the file
\fabric\gossip\identity\identity.go was changed to the first field, as shown in Code Snippet 4.

Version Code

old

type storedIdentity struct {

pkiID common.PKIidType

lastAccessTime int64

peerIdentity api.PeerIdentityType

expirationTimer *time.Timer

}

new

type storedIdentity struct {

lastAccessTime int64

pkiID common.PKIidType

peerIdentity api.PeerIdentityType

expirationTimer *time.Timer

}

Code Snippet 4: The code snippet shows the first change to the file \fabric\gossip\identity\identity.go
due to the 64-bit alignment of 64-bit words in Golang.

Due to this change, the function newStoredIdentity in the same file, which creates objects of
the struct storedIdentity, was changed accordingly, which is depicted in Code Snippet 5.

46

Implementation, Simulation and Results

Version Code

old

func newStoredIdentity(pkiID common.PKIidType, identity

↪→ api.PeerIdentityType, expirationTimer *time.Timer)

↪→ *storedIdentity {

return &storedIdentity{

pkiID: pkiID,

lastAccessTime: time.Now().UnixNano(),

peerIdentity: identity,

expirationTimer: expirationTimer,

}

}

new

func newStoredIdentity(pkiID common.PKIidType, identity

↪→ api.PeerIdentityType, expirationTimer *time.Timer)

↪→ *storedIdentity {

return &storedIdentity{

lastAccessTime: time.Now().UnixNano(),

pkiID: pkiID,

peerIdentity: identity,

expirationTimer: expirationTimer,

}

}

Code Snippet 5: The code snippet shows the second change to the file \fabric\gossip\identity\identity.go
due to the 64-bit alignment of 64-bit words in Golang.

Another necessary change concerns the used Apache Milagro Cryptographic Library (AMCL).
When the function pmul is called in the file \fabric\vendor\github.com\milagro-crypto\amcl
\version3\go\amcl\FP256BN\FP.go, an overflow error occurs on the RPI. This happens due to
the use of the 64-bit constant MConst as int, which on the ARMv7 architecture is only 32-bit
wide. Therefore, instead of pmul the function pmul64 will be called, which is a modified version
of pmul. The function pmul64 uses the type int64 instead of the type int for the constant, as
in Code Snippet 6.

Version Code

old v:=t.pmul(int(MConst))

new v:=t.pmul64(int64(MConst))

Code Snippet 6: The code snippet shows the change to the file \fabric\vendor\github.com\milagro-
crypto\amcl\version3\go\amcl\FP256BN\FP.go due to the use of the 64-bit constant
MConst on a 32-bit operating system.

The function pmul64 was added to the file \fabric\vendor\github.com\milagro-crypto\amcl
\version3\go\amcl\FP256BN\BIG.go, as can be seen in Code Snippet 7.

47

Implementation, Simulation and Results

Version Code

new

func (r *BIG) pmul64(c int64) Chunk {

carry:=Chunk(0)

for i:=0;i<NLEN;i++ {

ak:=r.w[i]

r.w[i]=0

carry,r.w[i]=muladd(ak,Chunk(c),carry,r.w[i])

}

return carry

}

Code Snippet 7: The code snippet shows the change to the file \fabric\vendor\github.com\milagro-
crypto\amcl\version3\go\amcl\FP256BN\BIG.go due to the use of the 64-bit constant
MConst on a 32-bit operating system.

To build the Docker images of the fabric repository, the Docker images of the fabric-baseimage
repository are required. These are pulled from the Docker Hub Hyperledger Fabric as part of
the build process but are not compatible with the RPI. Therefore, the Docker images from the
Docker Hub frbrkoala should be used, which requires to disable the pulling from the Docker Hub
Hyperledger Fabric. This is done by changing the Makefile, as shown in Code Snippet 8.

Version Code

old docker: docker-thirdparty $(patsubst %,build/image/%/$(

↪→ DUMMY), $(IMAGES))

new docker: $(patsubst %,build/image/%/$(DUMMY), $(IMAGES))

Code Snippet 8: The code snippet shows the change to the Makefile to disable the pulling of Docker
images from the Docker Hub Hyperledger Fabric, which are not compatible with the
Raspberry Pi.

After the changes were completed, the fabric binaries and images had to be created, by running
the commands make native and make docker. Thereby, the build process had to be restarted
several times, due to a lack of memory on the RPI.

As next, the binaries and images of the fabric-ca repository, which comprises the HLF certificate
authority components, had to be created. During the build process of the images, although
it should, the version of the fabric-ca-client and the fabric-ca-server was not passed to the file
\fabric-ca\lib\metadata\version.go. As workaround, the version was hardcoded into this file, as
in Code Snippet 9.

Version Code

old var Version

new var Version string = "1.1.0"

Code Snippet 9: The code snippet shows the change to the file \fabric-ca\lib\metadata\version.go due
to the missing version of the fabric-ca-client and fabric-ca-server.

48

Implementation, Simulation and Results

The fabric-ca-server uses the libltdl library, which can be found in the libtool package60. There-
fore, the libtool package has to be installed when building the fabric-ca-server image. For this pur-
pose, the argument FABRIC CA DYNAMIC LINK has to be set to true when the fabric-ca binaries and
images are created by running the commands make fabric-ca-server, make fabric-ca-client

and make docker. Similar to the build process for the fabric repository, steps of the build process
needed to be repeated several times due to memory limits of the RPI.

The created images were tested by running the basic-network example and the first-network
example from the fabric-samples repository. All HLF images were pushed to the Docker Hub
goranovic61. Furthermore, the modified GitHub repositories are available under the following
links:

• goranovic/fabric62

• goranovic/fabric-ca63

After the HLF binaries and images, the chaincodes and applications had to be developed. After
considering Hyperledger Composer64, a development toolset and framework for the development
of HLF blockchain applications, due to the missing support of multi-channel access, which is
required for the creation of the platform, instead of using the Hyperledger Composer the chaincode
and applications were developed manually65.

5.2 Chaincodes

As explained in Section 4.3.1, two chaincodes are required for the platform. The Intra-VPP
chaincode sgcbpintra is responsible for processes inside a VPP and the Inter-VPP chaincode
sgcbpinter for processes between VPPs. Chaincodes in HLF can be written in NodeJS or Golang.
Due to experiences with NodeJS, the chaincodes were first written in NodeJS. But executing the
chaincodes on the RPI failed with a timeout error, shown in Code Snippet 10.

[chaincode] launchAndWaitForRegister -> DEBU 54f[0m stopping due to error while

↪→ launching: timeout expired while starting chaincode

Code Snippet 10: The code snippet shows the appearing timeout error when using chaincode written
in NodeJS.

The source of this problem could not be identified. Therefore, the chaincodes were ported to
Golang, where the error did not appear again.

60GNU Libtool - GNU Project - Free Software Foundation https://www.gnu.org/software/libtool/ (accessed:
January 8th 2019)

61goranovic’s Profile – Docker Hub https://hub.docker.com/u/goranovic (accessed: January 8th 2019)
62goranovic/fabric https://github.com/goranovic/fabric (accessed: January 8th 2019)
63goranovic/fabric-ca https://github.com/goranovic/fabric-ca (accessed: January 8th 2019)
64Hyperledger Composer - Create business networks and blockchain applications quickly for Hyperledger —

Hyperledger Composer https://hyperledger.github.io/composer/latest/ (accessed: January 8th 2019)
65Multi-Channel Support https://github.com/hyperledger/composer/issues/2103 (accessed: January 8th

2019)

49

https://www.gnu.org/software/libtool/
https://hub.docker.com/u/goranovic
https://github.com/goranovic/fabric
https://github.com/goranovic/fabric-ca
https://hyperledger.github.io/composer/latest/
https://github.com/hyperledger/composer/issues/2103

Implementation, Simulation and Results

As described in Section 3.5.1, each chaincode has to implement the interface Chaincode and
its methods Init and Invoke. The method Init is called when a chaincode is instantiated or
upgraded and initializes the chaincode on a channel. The method Invoke represents the entry
point of the chaincode and is called each time a chaincode is invoked by an invoke transaction,
e.g., when updating or querying the ledger. Based on the transaction, which includes the identifier
of the targeted chaincode method, the Invoke method calls the corresponding method and passes
the arguments from the transaction to it.

Furthermore, each chaincode has to implement the interface ChaincodeStubInterface, which
contains multiple methods to read from and write to the ledger. The developed chaincodes
sgcbpintra and sgcbpinter only utilize the methods GetState, PutState, and GetQueryResult.

Data is written as key-value pair with the method PutState. The method puts the data as a
data-write proposal into the writeset of the transaction. This means, as long as the transaction is
not committed, the data will not be written to the ledger. To read from the ledger, the method
GetState is used, which returns the value corresponding to the passed key.

Due to the use of a CouchDB state database, rich queries can be performed [Hyp18]. Therefore, all
query methods in the chaincodes use the method GetQueryResultForQueryString, which takes
a CouchDB query string as argument. An example for a query string for querying energylogs by
a timeslot, is provided in Code Snippet 11.

{"selector":{"docType":"energylog","date":<DATE>,"time":<TIME>"}

Code Snippet 11: The code snippet shows a CouchDB query string for querying energylogs by date and
time.

The method GetQueryResultForQueryString passes the query string to the method GetQueryResult

of the interface ChaincodeStubeInterface, which performs a rich query against the state database
and returns an interator over the query result set. The query result set is then iterated and a
JSON array created, which contains the query results. Finally, this array is returned as a byte
buffer.

Because chaincodes are executed in Docker containers, Docker images for the chaincodes are
necessary. These are built the first time when the chaincode is executed on a peer. If a chaincode
execution is triggered, e.g., a chaincode function needs to be invoked, while the chaincode image
is built and the building takes too long, the execution will be aborted. This situation is called
premature execution. To prevent it, each chaincode requires an initialization method, that is only
called to trigger the building of the chaincode image. This initialization method should be called
as part of the deployment, before the applications start to operate66.

5.2.1 Chaincode sgcbpintra

The Intra-VPP-chaincode sgcbpintra focuses on the participant’s energy production and con-
sumption. As described in Section 4.2.1, following information has to be stored: participant,
timeslot, type, and amount. Therefore, the struct Energylog, depicted in Code Snippet 12, is
created.

66Chaincode image (accessed: January 8th 2019)

50

Implementation, Simulation and Results

type Energylog struct {

ObjectType string ‘json:"docType"‘

Participant string ‘json:"participant"‘

Date string ‘json:"date"‘

Time string ‘json:"time"‘

Etype string ‘json:"etype"‘

Amount string ‘json:"amount"‘

}

Code Snippet 12: The code snippet shows the struct Energylog from the chaincode sgcbpintra.

To create an energylog the method createEnergylog has to be called. It creates an energylog
with the key format PARTICIPANT DATE TIME. For querying existing energylogs multiple methods
exist, as can be seen in the sgcbpintra class diagram from Figure 10.

Figure 10: The figure shows the class diagram for the sgcbpintra chaincode.

In contrast to the sgcbpinter chaincode, the sgcbpintra chaincode integrates encryption and de-
cryption for the amount and the type in the struct Energylog. Therefore, following Hyperledger
packages are utilized:

• Blockchain Crypto Service Provider (BCCSP) (see Section 3.5.1)

• BCCSPFactory67: creates instances of BCCSP

• Entities68: contains methods for cryptographic operations

When creating an energylog, an encryption key has to be passed as transient field. As encryption
algorithm, AES-256 is used. Therefore, an AES256EncrypterEntity object is created with the
encryption key as argument. While the encryption key is a mandatory argument, an initialization

67package factory https://godoc.org/github.com/hyperledger/fabric/bccsp/factory (accessed: January
8th 2019)

68package entities https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim/ext/entities

(accessed: January 8th 2019)

51

https://godoc.org/github.com/hyperledger/fabric/bccsp/factory
https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim/ext/entities

Implementation, Simulation and Results

vector can be passed optionally. If an IV is not provided, the AES256EncrypterEntity object
generates the IV randomly. In an environment, where multiple endorsing peers receive a chaincode
invoke request for the creation of an energylog and the IV is generated randomly by the chaincode,
the creation would fail. Each endorsing peer would generate a different IV and thereby encrypt
the plaintext differently. Because transaction proposals are only sent to one endorsing peer in
the case of the SGCBP, this limitation does not apply. Therefore, only the encryption key is
passed and the IV is generated randomly by the chaincode, which is then stored together with
the ciphertext. When querying the ledger, the same encryption key has to be used for decrypting
the ciphertexts. Furthermore, when querying energylogs of multiple participants, a mapping of
the participants and their keys has to be provided.

5.2.2 Chaincode sgcbpinter

The Inter-VPP chaincode sgcbpinter handles the energy surplus or demand of the VPPs and
the transactions between them. As characterized in Section 4.2.2, for the energy production and
consumption, VPP, timeslot, type and amount have to be recorded. This is realized by using the
struct Vpplog, which is shown in Code Snippet 13.

type Vpplog struct {

ObjectType string ‘json:"docType"‘

Vpp string ‘json:"vpp"‘

Date string ‘json:"date"‘

Time string ‘json:"time"‘

Etype string ‘json:"etype"‘

Amount int ‘json:"amount"‘

}

Code Snippet 13: The code snippet shows the struct Vpplog from the chaincode sgcbpinter.

For the transactions, which require buyer, seller, timeslot, and amount, the struct Vpptransaction
has been created, as depicted in Code Snippet 14.

type Vpptransaction struct {

ObjectType string ‘json:"docType"‘

Seller string ‘json:"seller"‘

Buyer string ‘json:"buyer"‘

Date string ‘json:"date"‘

Time string ‘json:"time"‘

Amount int ‘json:"amount"‘

}

Code Snippet 14: The code snippet shows the struct Vpptransaction from the chaincode sgcbpinter.

For the creation of a vpplog the method createVpplog has to be called, and for the generation
of vpptransactions the method createSettlement is called by the master. For vpplogs the
key format is VPP DATE TIME and for vpptransactions SELLER BUYER DATE TIME. The method

52

Implementation, Simulation and Results

createSettlement executes the matching of energy surpluses and demands of the VPPs for a
given timeslot. It checks if a settlement already exists for the specified timeslot. If no settlement
exists, all vpplogs for the specified timeslot are retrieved. These vpplogs are then split into
energy surpluses and demands. Then the matching algorithm, as described in Section 4.3.2, is
executed. Finally, the generated vpptransactions are written to the ledger. The workflow of
createSettlement is visualized as a flow diagram in Figure 12.

Furthermore, the vpplogs and vpptransactions can be queried with multiple methods, which are
listed in the sgcbpinter class diagram in Figure 11.

Figure 11: The figure shows the class diagram for the sgcbpinter chaincode.

The source code of both chaincodes is available on the GitHub repository goranovic/sgcbp69.

69GitHub repository goranovic/sgcbp https://github.com/goranovic/sgcbp (accessed: January 8th 2019)

53

https://github.com/goranovic/sgcbp

Implementation, Simulation and Results

Figure 12: The figure shows the workflow of the function createSettlement, which is used to match
VPP’s energy surpluses and demands.

54

Implementation, Simulation and Results

5.3 Applications

The applications for the platform and the simulation, which operate on top of the HLF network,
can be divided into following three categories:

• Application Programming Interface (API) server: acts as connector to the HLF network by
providing endpoints for the chaincode functions.

• Simulation: simulates the functionalities of the participant, the controller or the master.

• Dashboard: displays different data depending on the role in the platform, e.g., participant’s
energy consumption and production.

All applications were written in NodeJS and built into Docker images. On the following pages,
the developed applications are described in detail.

5.3.1 API

To provide access to the HLF network, API applications for the sgcbpintra chaincode (sgcbpintra-
API) and the sgcbpinter chaincode (sgcbpinter-API) were developed. For the development of the
API applications an online article70 was used as starting point. These applications offer endpoints
to the functions of the chaincodes. For the development, Express71, a web framework for NodeJS,
was used, which eases the development of APIs by providing HTTP utility methods. Further,
to parse JSON request bodies into objects the Node module body-parser72 is utilized. These
objects are passed as arguments to functions of the class SGCBPNetwork. These functions create
transaction proposals based on the passed objects by adding necessary data, such as the chaincode
id, the transaction id and the chaincode function name.

To submit a transaction or to query the ledger, the transaction is passed to the class FBClient,
which extends the Node module fabric-client15. When submitting a transaction, first a transaction
proposal is sent to an endorsing peer. Then the endorsing peer executes the chaincode according
to the received transaction proposal and returns a proposal response, indicating if the proposal
should be endorsed. If it should be endorsed, the proposal and proposal response are sent to
the orderer. By using a ChannelEventHub object, a transaction listener for the transaction is
registered. Thereby, the application will be notified, when the transaction is finally commited to
the ledger. When querying the ledger, a transaction proposal is sent to an endorsing peer. The
endorsing peer invokes then the required chaincode function and returns the result.

Connection profiles are required for the connection to the HLF network. A connection profile
contains a description of the HLF network, which the client wants to access73. Furthermore, the
connection profile contains the path to the user certificates, which are used for interacting with
the HLF network. The users have to be registered and the user certificates have to be created in
advance.

70Setting up RESTful API Server for Hyperledger Fabric With NodeJS SDK https://hackernoon.com/

setting-up-restful-api-server-for-hyperledger-fabric-with-nodejs-sdk-a4642edaf98e (accessed: Jan-
uary 8th 2019)

71Express - Node.js web application framework https://expressjs.com/ (accessed: January 8th 2019)
72body-parser - npm https://www.npmjs.com/package/body-parser (accessed: January 8th 2019)
73How to use a common connection profile https://fabric-sdk-node.github.io/tutorial-network-config.

html (accessed: January 8th 2019)

55

https://hackernoon.com/setting-up-restful-api-server-for-hyperledger-fabric-with-nodejs-sdk-a4642edaf98e
https://hackernoon.com/setting-up-restful-api-server-for-hyperledger-fabric-with-nodejs-sdk-a4642edaf98e
https://expressjs.com/
https://www.npmjs.com/package/body-parser
https://fabric-sdk-node.github.io/tutorial-network-config.html
https://fabric-sdk-node.github.io/tutorial-network-config.html

Implementation, Simulation and Results

Besides the provided endpoints, the sgcbpintra-API and sgcbpinter-API differ in their requests.
For example, the sgcbpintra-API requires encryption and decryption keys, which are passed to
the sgcbpintra chaincode as transient field, whereas the sgcbpinter-API does not. A list of all
API endpoints and their request type is given in Table 13.

Table 13: The table lists all endpoints for the chaincodes sgcbpintra and sgcbpinter, which are provided
by the API applications.

sgcbpintra API endpoints sgcbpinter API endpoints

POST createEnergylog
POST queryAllEnergylogs
POST queryEnergylogsByDate
POST queryEnergylogsByDateAndTime
POST queryEnergylogsByParticipantAndDate
POST queryEnergylogs

POST createVpplog
GET queryAllVpplogs
POST queryVpplogsByDate
POST queryVpplogsByVppAndDate
POST queryVpplogsByDateAndTime
POST queryVpplogsByVppAndDateAndTime
POST createVpptransaction
POST createSettlement
GET queryAllVpptransactions
POST queryVpptransactionsByDate
POST queryVpptransactionsByDateAndTime
POST queryVpptransactionsByVppAndDate
POST queryVpptransactionsBySeller
POST queryVpptransactionsBySellerAndDate
POST queryVpptransactionsByBuyer
POST queryVpptransactionsByBuyerAndDate
POST queryByString

5.3.2 Simulation

The simulation applications simulate the functionality of a participant, a controller or a master.
The basic workflow of each simulation application is the same and is executed at a set interval.
Therefore, the Node module Cron74 is used, which allows to schedule tasks to run at a specified
interval.

Each interval, the application retrieves the current time by using the Node module moment75.
The retrieved timestamp in the format MM:ss, e.g., 00:15, is used as index in the corresponding
dataset. As a consequence of this specification, the maximum simulation duration is one hour.
The dataset should be provided as a CSV file. For reading and querying the CSV file by the
index, the Node module node-csv-query76 is utilized.

Depending on the simulated behavior, the simulation application sends requests to the API
applications, e.g., to create an energylog. For the requests to the API applications the HTTP
client Axios77 is used. Furthermore, the Node module rpi-oled78 enables to display messages on

74cron - npm https://www.npmjs.com/package/cron (accessed: January 8th 2019)
75Moment.js — Home http://momentjs.com/ (accessed: January 8th 2019)
76node-csv-query - npm https://www.npmjs.com/package/node-csv-query (accessed: January 8th 2019)
77axios - npm https://www.npmjs.com/package/axios (accessed: January 8th 2019)
78NodeJS library and command line tools for controlling SSD1306 compatible I2C OLED screens on the Raspbery

Pi https://github.com/normen/rpi-oled (accessed: January 8th 2019)

56

https://www.npmjs.com/package/cron
http://momentjs.com/
https://www.npmjs.com/package/node-csv-query
https://www.npmjs.com/package/axios
https://github.com/normen/rpi-oled

Implementation, Simulation and Results

the connected OLED display. An example is shown in Figure 13, where the participant simulation
displays energylog data on the OLED display.

Figure 13: The figure shows a picture of a participant’s OLED display, which is displaying information
about an energylog.

5.3.2.1 Participant-Simulation

The participant simulation simulates a participant, who periodically logs their energy production
or consumption. Therefore, the provided dataset consists of a table of energylog data. An example
of such a dataset can be seen in Table 14.

Table 14: The table shows a sample of a participant dataset.

index date time type amount

00:00 2018-01-01 00:00:00 Consumption 4
00:15 2018-01-01 00:15:00 Consumption 5
00:30 2018-01-01 00:30:00 Production 7
00:45 2018-01-01 00:45:00 Consumption 3

Before sending a POST request to the sgcbpintra-API with the energylog data, the simulation
encrypts the type and amount of the energylog. As in the sgcbpintra-CC, the simulation uses AES-
256 as encryption algorithm. While the encryption key, called APP-encryption-key, is provided,
the IVs are randomly generated. For the encryption and decryption, the Node module crypto79

is used. Thereby, each ciphertext and its IV are stored together in the format IV:ciphertext.

The application then sends a POST request to the sgcbpintra-API endpoint createEnergylog

with the energylog data as argument in the request body. Thereby, another encryption key, the
CC-encryption-key, has to be passed as transient field to the chaincode for chaincode encryption.

If the data has been written successfully to the ledger, the energylog details will be displayed
on the console and the display. Otherwise, an error message will appear. A flow diagram of the
participant simulation workflow can be seen in Figure 14.

79Crypto — Node.js v11.6.0 Documentation https://nodejs.org/api/crypto.html (accessed: January 8th
2019)

57

https://nodejs.org/api/crypto.html

Implementation, Simulation and Results

5.3.2.2 Controller-Simulation

The controller’s task is to calculate its VPP’s energy surplus or demand and log it on the ledger.
Therefore, the controller operates after the participants have logged their energy consumption
and production. The controller only requires the date and time for its operation, as the example
of a controller dataset in Table 15 shows.

Table 15: The table shows a sample of the controller dataset.

index date time

00:07 2018-01-01 00:00:00
00:22 2018-01-01 00:15:00
00:37 2018-01-01 00:30:00
00:52 2018-01-01 00:45:00

After reading a dataset record, the application sends a POST request to the sgcbpintra-API
endpoint queryEnergylogsByDateAndTime to retrieve energylogs for the specified timeslot. Due
to encryption of the energylogs, the POST request has to include a mapping of all participants
and their CC-encryption-keys.

Furthermore, the retrieved energylogs have to be additionally decrypted by the simulation.
Thereby, the same Node module crypto, as for the participant simulation, is used. As with
the chaincode decryption, the controller requires for the decryption, a mapping of participants
and their APP-encryption-keys. Depending on the field participant of an energylog, it finds
the corresponding APP-encryption key and decrypts the fields type and amount.

The application then calculates the VPP’s energy surplus or demand and creates a vpplog by
sending a POST request with the vpplog data to the sgcbpinter-API endpoint createVpplog.
The details of the vpplog will be printed on the console and the display, if the vpplog has been
written successfully to the ledger, otherwise an error message will be displayed. The workflow of
the controller simulation can be seen in Figure 14.

5.3.2.3 Master-Simulation

The master is only responsible to trigger the matching, which creates vpptransactions. Compa-
rable to the controller dataset, the master dataset contains date and time values. The master
triggers the matching after controllers have logged their VPP’s energy surpluses and demands.
Therefore, compared to the participant dataset, the master dataset is shifted by one timeslot, as
depicted in Table 16.

Table 16: The table shows a sample of the master dataset.

index date time

00:15 2018-01-01 00:00:00
00:30 2018-01-01 00:15:00
00:45 2018-01-01 00:30:00
01:00 2018-01-01 00:45:00

To trigger the matching, the application sends a POST request to the sgcbpinter-API endpoint
createSettlement with date and time provided in the request body. If the matching has been

58

Implementation, Simulation and Results

successful, the application queries the created vpptransactions by the same date and time. There-
fore, a POST request is sent to the sgcbpinter-API endpoint queryVpptransactionsByDateAndTime
with the date and time in the request body. If vpptransactions exist and no error occurred, the
queried vpptransactions will be displayed on the console and display, otherwise an error message
is shown. The master simulation workflow is summarized as a flow chart in Figure 14.

59

Im
p
lem

en
ta
tion

,
S
im

u
la
tio

n
an

d
R
esu

lts

Figure 14: The figure shows the workflows of the simulations, starting with the (a) participant simulation workflow, then the (b) controller simulation
workflow is depicted and finally the (c) master simulation workflow.

60

Implementation, Simulation and Results

5.3.3 Dashboard

The dashboard displays data from the ledger to a participant, a controller or the master. For
the development of the dashboards ReactJS, a library for building UI, was used. Further, for
the development of the dashboard applications an online article80 was used as starting point.
The dashboard is composed of different components, which can be individually adopted. For the
different dashboards following components were developed:

• Calendar component: With the calendar component the user can set the date, which is used
as parameter for querying data from the ledger. Therefore, it utilizes the reactdatepicker81

component. Further, the dashboard can operate in two modes, the LIVE mode and the
DATE mode. While in the LIVE mode the dashboard is periodically refreshed and data
requeried, this refreshing is disabled in the DATE mode. To be able to switch the mode a
button was added.

• Table component: The table component is used to display data in a table, e.g., energylog
data of participants. The data can be sorted ascending or descending by the columns. For
the implementation the bootstrap-table82 component was used.

• Logo component: The SGCBP logo is displayed by using the logo component.

• Bar component: To display data over a period as a bar chart, like participant’s energy
production and consumption, the bar component can be used. It utilizes the React wrapper
for Chart.js 283. When the user hovers over a bar, a box with corresponding information
appears.

• Pie component: With the pie component, data can be displayed as a pie chart, e.g., the
VPP’s overall energy production per participant. Comparable to the bar component, the
pie component uses the React wrapper for Chart.js 2. When hovering over a segment of
the pie, further details are shown in a box.

The calendar and logo component are present in every dashboard. In the following, the dashboards
for the different roles and the displayed data are presented.

5.3.3.1 Participant-Dashboard

The participant dashboard displays information about the participant’s logged energy produc-
tion and consumption, as can be seen in Figure 15. The dashboard is composed of following
components:

• Table component shows the energylog data of the set date.

• Bar component displays the energy production and consumption over the specified date.

80How to create a dashboard app with React — Creative Bloq https://www.creativebloq.com/how-to/

create-a-dashboard-app-with-react (accessed: January 8th 2019)
81ReactJS Datepicker crafted by HackerOn https://reactdatepicker.com/ (accessed: January 8th 2019)
82Components – React-Bootstrap https://react-bootstrap.github.io/components/table/ (accessed: Jan-

uary 8th 2019)
83React wrapper for Chart.js https://github.com/jerairrest/react-chartjs-2 (accessed: January 8th 2019)

61

https://www.creativebloq.com/how-to/create-a-dashboard-app-with-react
https://www.creativebloq.com/how-to/create-a-dashboard-app-with-react
https://reactdatepicker.com/
https://react-bootstrap.github.io/components/table/
https://github.com/jerairrest/react-chartjs-2

Implementation, Simulation and Results

Regarding the future development, two pie components were added for energy production and
consumption data on device-level. While the first pie component shows the amount of energy
production per device, the other pie component illustrates the amount of energy consumption
per device. For the proof-of-concept, the pie components display only dummy data.

Figure 15: The figure shows the participant dashboard, which displays information about the partici-
pant’s energy production and consumption.

5.3.3.2 Controller-Dashboard

The controller dashboard shows information regarding its VPP participants, their logged energy
production and consumption and the VPP’s transactions, as shown in Figure 16. It consists of
following components:

• Two table components:

– the first portrays the energylogs of the VPP participants, and

– the other displays the VPP’s transactions.

• Bar component represents the VPP participant’s energylog data.

• Four pie components:

– the first illustrates the amount of the VPP’s energy production per participant,

– the second shows the amount of VPP’s energy consumption per participant,

– the third represents the amount of bought energy per seller, and

– the last visualizes the amount of sold energy per buyer.

62

Implementation, Simulation and Results

Figure 16: The figure shows the controller dashboard, which displays information about the VPP par-
ticipant’s energy production and consumption, and the VPP’s transactions.

5.3.3.3 Master-Dashboard

The master dashboard, shown in Figure 17, displays information regarding all VPPs, like their
logged energy surplus and demand data and transactions. The dashboard contains following
components:

• Table component shows all transactions.

• Bar component represents the vpplogs of all VPPs.

• Two Pie components:

– the first displays the amount of energy surplus per VPP, and

– the second shows the amount of energy demand per VPP.

63

Implementation, Simulation and Results

Figure 17: The figure shows the master dashboard, which displays information about the VPP’s energy
surpluses and demands, and their transactions.

5.3.4 Docker Images

To deploy the applications onto the RPIs, the applications were built into Docker images. Docker
images are built from a Dockerfile, which contains all necessary instructions84. Each instruction
creates a layer of the Docker image.

For all applications, the Docker image node:8-alpine85, which is based on the Alpine Linux
project86, was used as base image. The biggest advantage of this image is the small size. Because
all required node modules were installed by running the command yarn install as part of build-
ing the image, it was not needed to copy the directory node modules to the image. Therefore,
the file .dockerignore was created, which contains all directories and files, which are ignored by
the build process.

To create an image the command docker build was executed. Thereby, the image was tagged by
using the parameter -t, e.g., docker build -t goranovic/participant-frontend. The source
code of the applications is available on the GitHub repository goranovic/sgcbp69 and the images
on the Docker Hub goranovic61.

84Best practices for writing Dockerfiles https://docs.docker.com/develop/develop-images/dockerfile_

best-practices/ (accessed: January 8th 2019)
85nodejs/docker-node: Official Docker Image for Node.js https://github.com/nodejs/docker-node (accessed:

January 8th 2019)
86index — Alpine Linux https://alpinelinux.org/ (accessed: January 8th 2019)

64

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://github.com/nodejs/docker-node
https://alpinelinux.org/

Implementation, Simulation and Results

5.4 Setup Of Raspberry Pi microSD Image

For the deployment of the platform, the RPIs had to be setup and configured. This means, for
each RPI the operating system Raspbian needed to be flashed to a microSD card and all necessary
components installed, such as NodeJS, Golang and Docker images. This section describes the
process of setting up the Raspbian system and its components.

5.4.1 Raspberry Pi Basic Setup

The first step was to download the operating system Raspbian from the official repository87. Due
to the support of graphical user interfaces (GUI), Raspbian Stretch with desktop was used in this
thesis. To flash the downloaded image onto a microSD card, the tool Etcher88 was used. After
flashing the image, the microSD card was inserted into the RPI and the RPI powered on.

To activate the wireless network and Secure Shell access (SSH), the RPI configuration tool raspi-
config89 was used. After starting the tool, multiple menu items were shown, such as Network
Options, Interface Options and Boot Options. The wireless network was configured in the Wi-fi
options, located under the menu item Network Options. It required to enter the network service
set identifier (SSID) and passphrase. For the thesis, a wireless network with the SSID SGCBP
and passphrase SGCBP1234 was used, which provides access to the internet. SSH was enabled
with the menu SSH in the Interfacing Options. This eased the deployment process, by allowing
remote access to each RPI. After an internet connection was established, existing packages were
upgraded to new versions by using the Advanced Packaging Tool (APT)90 and pip91.

For the installation of Docker, the Docker convenience scripts92 were used, which are meant for
development environments. The script detects the OS and the version, and then installs the latest
Docker version and all required dependencies and recommendations93. Further, to use Docker as
standard user, which is not a root user, the standard user had to be added to the user group
docker. Due to Kubernetes’ missing swap support, the swap had to be disabled after Docker was
installed94. Further, the memory and CPUset control groups (cgroups) had to be enabled for
Kubernetes and Docker.

Next, Golang was downloaded from the official repository. The thesis used the Golang version
1.9.2 for the ARMv6 architecture95. To install the downloaded archive, it was extracted to the
path /usr/local. The paths to the extracted directory go and sub-directory bin were added to
the environment variables GOROOT and PATH.

87Download Raspbian for Raspberry Pi https://www.raspberrypi.org/downloads/raspbian/ (accessed: Jan-
uary 8th 2019)

88balenaEtcher - Home https://www.balena.io/etcher/ (accessed: January 8th 2019)
89raspi-config - Raspberry Pi Documentation https://www.raspberrypi.org/documentation/configuration/

raspi-config.md (accessed: January 8th 2019)
90apt(8) – apt – Debian stretch – Debian Manpages https://manpages.debian.org/stretch/apt/apt.8.en.

html (accessed: January 8th 2019)
91pip - PyPI https://pypi.org/project/pip/ (accessed: January 8th 2019)
92Docker convenience scripts https://get.docker.com (accessed: January 8th 2019)
93Get Docker CE for Ubuntu https://docs.docker.com/install/linux/docker-ce/ubuntu/ (accessed: Jan-

uary 8th 2019)
94K8s on Raspbian https://gist.github.com/alexellis/fdbc90de7691a1b9edb545c17da2d975 (accessed: Jan-

uary 8th 2019)
95Go v1.9.2 for ARMv6 https://dl.google.com/go/go1.9.2.linux-armv6l.tar.gz (accessed: January 8th

2019)

65

https://www.raspberrypi.org/downloads/raspbian/
https://www.balena.io/etcher/
https://www.raspberrypi.org/documentation/configuration/raspi-config.md
https://www.raspberrypi.org/documentation/configuration/raspi-config.md
https://manpages.debian.org/stretch/apt/apt.8.en.html
https://manpages.debian.org/stretch/apt/apt.8.en.html
https://pypi.org/project/pip/
https://get.docker.com
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://gist.github.com/alexellis/fdbc90de7691a1b9edb545c17da2d975
https://dl.google.com/go/go1.9.2.linux-armv6l.tar.gz

Implementation, Simulation and Results

After Golang, NodeJS was installed by using the same procedure, as is to download the NodeJS
archive and extract it to the path /usr/local. For the thesis, the Node version 8.9.4 for the ARMv7
architecture96 was used. The paths to the extracted directory node and sub-directory bin were
added to the environment variables NODEROOT and PATH. As part of NodeJS, the javascript package
manager Natural Polyglot Machine (NPM)19, was installed. To prevent permission errors, the
default NPM directory97 was changed and added to the environment variable PATH.

Kubernetes can be installed by using APT. Therefore, the Kubernetes repository list had to be
added to APT. Afterwards kubelet, kubectl and kubeadm were installed, for the thesis the version
1.9.6 was used. Further, with APT the command-line JSON processor jq98 and the NFS kernel
server99 were installed.

As described in Section 4.1.3, each RPI is equipped with an OLED display. The simulations
display messages on these displays, e.g., the participant simulation displays information about
its energylogs. The used OLED display has four pins, which are connected to the RPI’s GPIO
pins. While the pins VCC and GND are required for the power supply, the pins SDA and SCL
are used for the I2C interface. The detailed pin configuration is summarized in Table 17.

Table 17: The table contains the mapping of Raspberry Pi’s GPIO pins to display pins.

OLED Pin RPI GPIO Pin Function

VCC 1 3.3 V power supply
GND 6 Ground
SCL 5 I2C Serial Clock
SDA 3 I2C Seria Data

By default, the I2C interface is disabled on the RPI. The I2C interface was enabled in raspi-
config’s Interfacing Options. Further, for the Node module rpi-oled the libraries i2c-tools and
libi2-dev were installed.

To complete the RPI setup the Docker images of the HLF components and the platform appli-
cations were pulled from the Docker Hub goranovic. The complete setup script is available on
the GitHub repository goranovic/sgcbp69. To ease the process of deployment, an image of the
configured microSD card was created. In this way, the time-consuming process of installing the
components on each RPI manually could be avoided. Only the pre-configured microSD image
had to be flashed onto each RPI’s microSD card and the configuration steps, which are described
in the following section, had to be executed.

5.4.2 Configuration Steps After Flashing

After flashing the created image onto the microSD card, some steps were still necessary. First,
the hostname, which was used as node identifier for the deployment, was changed to a unique
hostname. This was done in the network options with raspi-config. For example, for the simulated

96Node v8.9.4 for ARMv7 https://nodejs.org/download/release/v8.9.4/node-v8.9.4-linux-armv7l.tar.

gz (accessed: January 8th 2019)
97Resolving EACCES permissions errors when installing packages globally https://docs.npmjs.com/

getting-started/fixing-npm-permissions (accessed: January 8th 2019)
98jq https://stedolan.github.io/jq/ (accessed: January 8th 2019)
99Debian - Details of package nfs-kernel-server in stretch https://packages.debian.org/en/stretch/

nfs-kernel-server (accessed: January 8th 2019)

66

https://nodejs.org/download/release/v8.9.4/node-v8.9.4-linux-armv7l.tar.gz
https://nodejs.org/download/release/v8.9.4/node-v8.9.4-linux-armv7l.tar.gz
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://stedolan.github.io/jq/
https://packages.debian.org/en/stretch/nfs-kernel-server
https://packages.debian.org/en/stretch/nfs-kernel-server

Implementation, Simulation and Results

environment the hostname of the RPI, containing peer1 of org1, was changed to org1peer1. Fur-
ther, because the microSD image was used for each RPI, the machine-id needed to be changed.
Otherwise, the communication in the Kubernetes cluster does not work, because the communica-
tion protocol have assigned the same MAC address to each RPI. This can be done by executing
the commands in Code Snippet 15.

sudo rm /etc/machine-id

sudo systemd-machine-id-setup

cat /etc/machine-id

Code Snippet 15: The code snippet contains commands to change the machine-id for a Raspberry Pi.

The kubemaster acts as master of the Kubernetes cluster, which should not to be confused with
the master of the platform. Before creating the cluster, the shared folder, containing files which are
necessary for all RPIs, like connection profiles for the API applications and simulation datasets,
had to be created and shared. Therefore, the nfs-kernel server package was used. The commands
to share the shared folder, e.g., to the hosts of the IP network 192.168.0.0/24 are shown in Code
Snippet 16.

sudo chmod ugo+rwx /shared

sudo chown nobody:nogroup /shared

"/shared 192.168.0.0/255.255.255.0(rw,sync,no_root_squash)" >> /etc/exports

sudo exportfs -ra

sudo service nfs-kernel-server restart

Code Snippet 16: The code snippet contains commands to setup the shared folder /shared.

The next step was to create the Kubernetes cluster, which was done on the kubemaster. Therefore,
the commands in Code Snippet 17 had to be executed on the kubemaster, whose IP address in
this example was set to 192.168.0.7.

sudo kubeadm init --token-ttl=0 --apiserver-advertise-address=192.168.0.7 --pod-

↪→ network-cidr=10.244.0.0/16

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

Code Snippet 17: The code snippet contains commands for the kubemaster to create the Kubernetes
cluster.

After the creation of the cluster, a Kubernetes join command was outputted on the console. This
command had to be executed on the other RPIs. An example is depicted in Code Snippet 18.

67

Implementation, Simulation and Results

sudo kubeadm join --token 1a87d6.d70426bb4ce1686a 192.168.0.7:6443 --discovery-

↪→ token-ca-cert-hash sha256:

↪→ b5c1966591a72d3a1056fe6ca73a048521bb1fe93c6993fae6dab757a1b699a9

Code Snippet 18: The code snippet contains an example command to join the Kubernetes cluster.

Further, a communication protocol was required for the Kubernetes cluster. First, it was tried
to use Weave100, but this lead to RPI crashes. Therefore, the communication protocol was
switched to flannel101. To install flannel as communication protocol for the Kubernetes cluster,
the command in Code Snippet 19 was executed on the kubemaster.

curl -sSL https://rawgit.com/coreos/flannel/v0.9.1/Documentation/kube-flannel.

↪→ yml | sed "s/amd64/arm/g" | kubectl create -f -

Code Snippet 19: The code snippet contains the command to setup flannel as communication protocol
for the Kubernetes cluster.

In the meantime of the development of the SGCBP, the bug, regarding the use of Weave as
communication protocol for the cluster, was fixed by its developers102.

5.5 Smart Grid Controller Container Services

The next step was the deployment of the platform onto the RPIs. The IBM Container Services
(ICS)103 are normally used to launch an IBM Blockchain network on the IBM Blockchain Plat-
form104. For the deployment onto the RPIs, a modified version of the ICS was created, called
Smart Grid Controller Container Services.

According to the platform model in Section 4.3, a HLF network was built. For each VPP and for
the Inter-VPP processes an organization and a channel was created. Regarding the HLF network
entities, a participant’s RPI hosts a peer and its CouchDB state database. The controller’s RPIs
host two peers and their CouchDB state databases, one for the Intra-VPP and one for the Inter-
VPP organization. Further, the controller contains the CA for its Intra-VPP organization. On
the master’s RPI are a peer, its CouchDB state database, the CA for the Inter-VPP organization
and the network’s orderer located. An overview of this setting can be seen in Figure 18.

100Weave Net: Network Containers Across Environments — Weaveworks https://www.weave.works/oss/net/

(accessed: January 8th 2019)
101flannel is a network fabric for containers, designed for Kubernetes https://github.com/coreos/flannel (ac-

cessed: January 8th 2019)
102Weave-Net Addon causing kernel panics on RPI 3B+. https://github.com/weaveworks/weave/issues/3314

(accessed: January 8th 2019)
103IBM Blockchain Platform for Developers on IBM Container Service https://github.com/IBM-Blockchain/

ibm-container-service (accessed: January 8th 2019)
104Getting Started with Blockchain. IBM. https://www.ibm.com/blockchain/getting-started (accessed: Jan-

uary 8th 2019)

68

https://www.weave.works/oss/net/
https://github.com/coreos/flannel
https://github.com/weaveworks/weave/issues/3314
https://github.com/IBM-Blockchain/ibm-container-service
https://github.com/IBM-Blockchain/ibm-container-service
https://www.ibm.com/blockchain/getting-started

Implementation, Simulation and Results

Figure 18: The figure gives an overview of deployed HLF network entities and applications for the dif-
ferent platform nodes.

The creation of the HLF network involved the generation of the certificates and signing keys for
the network entities and the configuration artifacts for the orderer and the channels [Hyp18].
Therefore, the tools cryptogen and configtxgen were used, which have been created as binaries.
Cryptogen creates the cryptographic material, such as the certificates and keys, from the file
crypto-config.yaml, which defines the orderer and peer organizations. It creates the directory
crypto-config, which contains the certificates and keys. Configtxgen generates the configuration
artifacts, e.g., the orderer genesis block and the channel configuration transactions, from the file
configtx.yaml, which defines the network.

Before deploying the components to the RPIs, the Kubernetes cluster had to be active and the
shared folder had to be populated. Therefore, following files and directories had to be located in
the directory:

• chaincodes: the source code of the sgcbpintra and sgcbpinter chaincodes,

• configuration artifacts: the orderer genesis block and the channel configuration transactions,
which have been generated with configtxgen,

• connection profiles: required by the APIs to connect to the HLF network,

69

Implementation, Simulation and Results

• crypto-config: contains the certificates and keys for the HLF network entities, which have
been generated with cryptogen, and

• datasets: all datasets for the simulation applications.

Further, as part of the deployment the directory hfc-key-store was created in the shared directory,
which contains the certificates and key material, which are used by the APIs for interacting with
the HLF network.

All components of the SGCBP, including the HLF network entities and the applications, were
deployed by using the SGCCS. The SGCCS utilizes kubectl105, which is a command line interface
for managing Kubernetes clusters. It enables to create Kubernetes objects, like pods and services,
by providing a YAML-file with object specifications.

The SGCCS requires a JSON configuration file to create all necessary object specifications. This
JSON configuration file contains all necessary information for the deployment, like IP-adressess,
hostnames, chaincodes and channels. The command line JSON-processor jq is used to process
this JSON configuration file. The configuration data is filled into pre-defined YAML object
specification templates for the HLF network entities and applications. The templates contain
placeholders, which are replaced by the values from the configuration file by using the command
sed106. The SGCCS is structured into the two directories kube-configs and scripts. While the
directory kube-configs contains the object specifications and templates, all scripts have been
placed into the directory scripts. To start the deployment, the script createAll.sh has to be
executed.

In the following, the different steps of the deployment, visualized in Figure 19, are described.
The source code of the SGCCS is available on the GitHub repository goranovic/sgcbp-container-
services107.

Figure 19: The figure shows the workflow of the deployment by using the SGCCS.

105Overview of kubectl - Kubernetes https://kubernetes.io/docs/reference/kubectl/overview/ (accessed:
January 8th 2019)
106sed, a stream editor https://www.gnu.org/software/sed/manual/sed.html (accessed: January 8th 2019)
107GitHub repository goranovic/sgcbp-container-services https://github.com/goranovic/

sgcbp-container-services (accessed: January 8th 2019)

70

https://kubernetes.io/docs/reference/kubectl/overview/
https://www.gnu.org/software/sed/manual/sed.html
https://github.com/goranovic/sgcbp-container-services
https://github.com/goranovic/sgcbp-container-services

Implementation, Simulation and Results

The first step is to integrate the shared folder into the cluster by creating a persistent volume
and a persistent volume claim108. The persistent volume claim enables pods to use the persistent
volume, in this case the shared folder, as volume and access its files. The second step is the
deployment of the orderer, CAs, CouchDBs and peers. For each entity a pod and a service are
created on the specified RPI.

The next steps require the Docker image fabric-tools, which provides a command line interface
for the peers. The third step is the creation of the channels. Therefore, for each channel the
command peer channel create is executed. As next, every peer has to join its channels. First
the command peer channel fetch config is executed to retrieve the channel transaction block
from the orderer and then the command peer channel join to join the channel.

As next, the chaincodes are installed on each peer. Before the installation, it has to be ensured
that the chaincodes are available in the GOPATH of the container. To install a chaincode, the
command peer chaincode install is required. After the chaincodes have been installed on
all peers, they need to be instantiated. This must be done once per chaincode and channel
by executing the command peer chaincode instantiate, which calls the method Init of the
chaincode.

Chaincodes run in Docker containers on the RPIs. The first time a function of a chaincode
is invoked, a Docker image for the chaincode is built. This process takes time and to prevent
premature execution, as described in Section 5.2, the chaincode image should be built before the
applications are started. Therefore, on each RPI the chaincodes have to be initially invoked to
trigger the building of the chaincode image. This is done by using the command peer chaincode

query and the function Initialize as parameter.

As described in Section 5.3.1, the API requires certificates and keys to interact with the HLF
network. Therefore, for each organization an admin user is enrolled, which is used to register
users for the applications. These users are then enrolled. Thereby the user’s certificate and keys
are stored in the directory hfc-key-store in the shared directory.

Finally, the application pods for the master, controllers, and participants are deployed. The
deployed pods consist of the needed APIs, the simulation, and the dashboard. Services are
created for the API and the dashboard, to make them accessible from other devices. This is
necessary, because the Raspberry Pis are not connected to an external display and dashboards
need to be called from another device, e.g., a computer or smartphone.

The object specifications for the simulation applications, which display data on connected OLED
displays, differ slightly from the object specifications for other components. Due to the simulations
accessing the GPIO pins, the simulation containers have to run in privileged mode and the pins
need to be exposed to the containers109.

After the SGCBP has been deployed to the RPIs, the pods and their status can be seen by
executing the command kubectl get pod --show-all on the kubemaster. To get more details
on a pod the command kubectl logs <podname> can be used, which prints the pod’s container
output. If a pod should contain more than one container, the name of the container has to
be provided, as in kubectl logs <podname> <containername>. To open a dashboard in a
browser, the IP address of the RPI hosting it and the port of the dashboard service need to be
used.
108Persistent Volumes - Kubernetes https://kubernetes.io/docs/concepts/storage/persistent-volumes/

(accessed: January 8th 2019)
109PiKube anyone? Yes please!! https://imhotep.io/k8s/iot/2016/12/03/pikubee.html (accessed: January

8th 2019)

71

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://imhotep.io/k8s/iot/2016/12/03/pikubee.html

Implementation, Simulation and Results

5.6 Simulation

The SGCBP was tested by simulating the three VPPs: Consumers, Mixed and Producers. Each
of them had three participants. For this setup, 14 RPIs were required:

• the kubemaster RPI

• one master RPI

• three controller RPIs

• nine participant RPIs

For the communication of these RPIs a wireless network with the SSID SGCBP was used, which
was established by using a router. A photograph of the used setup is visible in Figure 20.

Figure 20: The figure shows the complete setup, including the router, the RPIs, the OLED displays and
power sources.

The HLF network for the simulated environment consisted of four organizations, each with its
own channel. Each RPI has been assigned a hostname corresponding to its organization and role,
and for the deployment, a static IP address in the router settings by using MAC-IP bindings was
assigned. This configuration is summarized in Table 18.

Based on this configuration, corresponding to Section 5.5 the files crypto-config.yaml and con-
figtx.yaml for the creation of certificates and artifacts for the simulated environment were gen-
erated. Furthermore, following files were created for the deployment of the HLF network and
SGCBP onto the RPIs:

• configuration artifacts generated with configtxgen,

• connection profiles for the API applications,

• cryptographic material generated with cryptogen,

• datasets for the simulation applications, and

• JSON configuration file for the SGCCS.

72

Implementation, Simulation and Results

These files can be found on the GitHub repository goranovic/sgcbp-simulation110. After the
shared folder had been populated with the required files, the deployment was executed.

Table 18: The table shows the simulation configuration, including the role, the hostname and IP address
for each RPI.

VPP Role Pseudonym Hostname IP address

- Kubemaster - kubemaster 192.168.0.7
- Master - master 192.168.0.100
Producers Controller - org1peer0 192.168.0.101
Producers Part. Alpha P1 org1peer1 192.168.0.111
Producers Part. Bravo P2 org1peer2 192.168.0.112
Producers Part. Charlie P3 org1peer3 192.168.0.113
Mixed Controller - org2peer0 192.168.0.102
Mixed Part. Delta P4 org2peer1 192.168.0.121
Mixed Part. Echo P5 org2peer2 192.168.0.122
Mixed Part. Foxtrot P6 org2peer3 192.168.0.123
Consumers Controller - org3peer0 192.168.0.103
Consumers Part. Golf P7 org3peer1 192.168.0.131
Consumers Part. Hotel P8 org3peer2 192.168.0.132
Consumers Part. India P9 org3peer3 192.168.0.133

5.7 Measurements

In this section, the platform operation is evaluated based on the displayed data in the dashboards.
As part of the simulation, log files were created, which are used for evaluating the stability of
the platform for the simulated environment. Further, to gain an insight on the deployment, the
deployment time was measured.

5.7.1 Platform Operation

In this section, it is analyzed if the SGCBP works as expected by looking at the simulation results
for the date 2018-01-01 and further by focusing on the timeslot 07:30, which was chosen randomly.
First, the displayed bar charts on the controller dashboards, which show a VPP’s energy demand
or energy supply course over a day, are analyzed. The participants of VPP Producers are only
producers, which results for each timeslot in a VPP energy supply. The bar chart of the controller
dashboard for this VPP shows only yellow bars, which represent timeslots with an existing energy
surplus, as can be seen in Figure 21.

110GitHub repository goranovic/sgcbp-simulation https://github.com/goranovic/sgcbp-simulation (accessed:
January 8th 2019)

73

https://github.com/goranovic/sgcbp-simulation

Implementation, Simulation and Results

Figure 21: The figure shows the bar chart of the controller dashboard for VPP Producers with the hover
box for the timeslot 07:30.

VPP Consumers consists only of consumers, which leads always to an energy demand. This is
characterized in the controller dashboard, as shown in Figure 22, by only blue charts in the bar
chart. These blue charts represent timeslots with an existing energy demand.

Figure 22: The figure shows the bar chart of the controller dashboard for VPP Consumers with the hover
box for the timeslot 07:30.

In VPP Mixed consumers and producers are combined, which results into alternating energy
demand and energy surplus timeslots. Thereby, the controller dashboard in Figure 23 shows a
mix of blue and yellow bars in the bar chart.

74

Implementation, Simulation and Results

Figure 23: The figure shows the bar chart of the controller dashboard for VPP Mixed with the hover
box for the timeslot 07:30.

As next the correctness of the displayed values should be proved for the timeslot 07:30. Therefore,
the participant datasets for this timeslot are used as basis, which are summarized in Table 19 for
VPP Producers, Table 20 for VPP Mixed, and Table 21 for VPP Consumers.

Table 19: The table shows the records of the participant datasets for the timeslot 07:30 of VPP Producers.

Participant Type Amount

Alpha Production 0.17124
Bravo Production 0.02854
Charlie Production 0.08562

Table 20: The table shows the records of the participant datasets for the timeslot 07:30 of VPP Mixed.

Participant Type Amount

Delta Consumption 0.01529
Echo Consumption 0.01396
Foxtrot Production 0.05708

Table 21: The table shows the records of the participant datasets for the timeslot 07:30 of VPP Con-
sumers.

Participant Type Amount

Golf Consumption 0.02528
Hotel Consumption 0.01767
India Consumption 0.03802

Based on these energylog data, the expected type and amount of the vpplogs for this timeslot
have been determined, which are displayed in Table 22. These values correspond to the data in
the hover boxes in Figure 24, which display the vpplog data for the chosen timeslot bar.

75

Implementation, Simulation and Results

Table 22: The table shows the calculated vpplogs for the timeslot 07:30.

VPP Type Amount

VPP Producers Supply 0.28540
VPP Mixed Supply 0.02783
VPP Consumers Demand 0.08097

Figure 24: The figure shows the hover boxes of the controller dashboards for the timeslot 07:30.

The settlement should match these vpplogs according to the presented matching algorithm in
Section 4.3.2 and create vpptransactions. Executing the settlement results in the creation of the
vpptransactions in Table 23.

Table 23: The table shows the determined vpptransactions for the timeslot 07:30.

Seller Buyer Amount

VPP Producers VPP Consumers 0.08097
VPP Producers Grid 0.20433
VPP Mixed Grid 0.02783

By comparing the vpptransactions in Table 23 and the created transaction in the simulation,
which are shown in Figure 25, it can be deduced that the matching works proper.

Figure 25: The figure shows the transaction table of the master dashboard with transactions for the
timeslot 07:30.

5.7.2 Platform Stability

To measure the platform stability, log files were created by the simulation applications. These
log files contain information about submitted transactions, e.g., about creating an energylog.
Therefore, they consist of the simulated timeslot and the transaction status. A sample log file
can be seen in Table 24.

76

Implementation, Simulation and Results

Table 24: The table shows a sample log file of a participant.

Date Time Status

2018-01-01 00:00 success
2018-01-01 00:15 success
2018-01-01 00:30 eventhub down

Corresponding to the simulation datasets, each log file contains 240 entries. The total number
of log file entries is 3120 with 114 errors, which is an error rate of 3.65 %. All errors are of
the same type, which is eventhub down. This indicates that the eventhub, which is responsible
to inform an application about the transaction commitment to the ledger, was not reachable.
Nevertheless, the transactions have been committed to the ledger, only the applications have not
been notified. The source of these eventhub errors remains unknown. The occurrence of multiple
eventhub errors for one timeslot indicates that network errors could be responsible. The log file
entries with status success indicate that these have been written successfully to the ledger.

5.7.3 Deployment Process

The deployment process was evaluated by measuring its execution time. Therefore, the line
in Code Snippet 20 was added to the script createAll.sh of the SGCCS, which executes the
deployment process. This instruction prints additionally the execution timestamp for each line
of the script.

PS4=’+ $(date "+%s.%N")’

Code Snippet 20: The code snippet shows the instruction to display the execution time per line.

Based on the timestamps the execution times of the deployment steps were calculated, which
are shown in Table 25. The complete deployment took 4,017.09 seconds, whereby the setup of
chaincodes, including installation, instantiation and initialization, was responsible for 79.94 % of
the execution time.

Table 25: The table contains the execution times of the deployment process steps in seconds.

Step Duration in seconds

Setup storage 12.06
Create orderer, CAs, CouchDBs and peers 154.32
Create channels 64.14
Join channels 266.06
Install chaincodes 953.26
Instantiate chaincodes 523.65
Initialize chaincodes 1,734.22
Register and enroll users 186.31
Create applications 123.07

77

Implementation, Simulation and Results

5.8 Simulation Results

As can be concluded from the platform operation analysis, the SGCBP behaves as expected.
The bar chart figures of the controller dashboards display the expected shapes of the energy
demand and supply for the different VPPs. Furthermore, the transaction table in the master
dashboard listens the expected vpptransactions. This shows that the creation of the vpplogs
based on recorded energylogs, and the settlement of the vpplogs works proper.

Although, the simulation logs show some errors, these all are eventhub errors, which do not have
an impact on the platform operation. Therefore, it can be concluded that the platform operates
stable for the simulated environment. Nevertheless, it has to be taken into account that for a
production environment the number of participants and controllers would be much higher. Fur-
ther, another timescale would be used, because the simulation compresses fifteen minutes into
fifteen seconds. An extended timeslot would increase the available time for the Intra- and Inter-
VPP processes, and the transaction ordering service. For example, by increasing the time for the
settlement process a higher number of VPPs could be integrated on the platform. Currently, the
platform integrates a SOLO orderer as ordering service. In a production environment deploy-
ing a distributed ordering service, e.g., Kafka, the transaction processing is more complex and
takes more time. Therefore, in future work it is necessary to further evaluate the platform in
combination with a distributed ordering service and growing numbers of participants.

The measurements of the deployment process show that most time is consumed by setting up the
chaincodes. Especially, the building of the chaincode images, which takes place during instan-
tiation and initialization of the chaincodes, consumed 58.3 % of the deployment time. Several
deployment steps target the RPIs separately, such as the building of the chaincode images. These
steps should be parallelized, as far as possible, which would reduce the deployment time.

For example, by using the maximum execution times for the chaincode instantiation and initial-
ization, which can be seen in Table 26, instead of the execution times in Table 25, to calculate
the deployment time, a deployment time of 2,230.44 seconds is calculated. This indicates that
by only parallelizing the building of the chaincode images, the execution time of the deployment
process could be reduced by 44.47 %.

Table 26: The table contains the maximum execution times of the chaincode instantiation and initializa-
tion in seconds.

Step Duration in seconds

Instantiate chaincodes 141.46
Initialize chaincodes 329.76

78

6 Discussion & Outlook

This chapter starts with a brief summary of the thesis, focusing on the developed SGCBP and
simulation. An outlook on Hyperledger Fabric and blockchain technology in regard to the GDPR
follows. Based on this, a model and recommendations for a future version of the platform are
presented. Finally, an outlook and vision for smart energy systems in regard to blockchain
technology are given.

6.1 Summary

The thesis presents a blockchain-based Smart Grid Controller for local and regional consumer
driven decentralized virtual power plants. It provides an overview of VPPs, smart grids, GDPR
and privacy design strategies, blockchain technology and multiple blockchain implementations.
For the comparison of these blockchain implementations, multiple criteria, such as light energy-
footprint and integration of privacy mechanisms, have been deduced from various Smart Grid
Controller platform requirements. Based on the comparison, HLF presented itself as most suitable
blockchain implementation for the development of the SGCBP.

For a generic VPP environment, a platform model has been developed. Thereby, the platform
differentiates Intra-VPP from Inter-VPP processes. Intra-VPP processes include the logging of
energy production and consumption by the participant and the calculation of the VPP’s energy
surplus and demand. Inter-VPP processes focus on the reported energy surplus and demand of
all VPPs. They are matched together according to the presented matching algorithm. Further,
the platform model enhances privacy by integrating pseudonyms and encryption.

The first step in the development of the platform was to port the Hyperledger Fabric components
onto the Raspberry Pi 3B. Therefore, the source code of HLF v1.1 was adapted to suit the
ARMv7 architecture of the RPI3B. For the platform processes, e.g., protocolling and matching,
the chaincodes sgcbpintra and sgcbpinter have been created. These implement methods to query
the ledger or to create energylogs, vpplogs, and vpptransactions. As part of the platform, API,
dashboard, and simulation applications have been created. The APIs provide endpoints to connect
to the HLF network. The dashboards display ledger data in different forms, such as pie and bar
charts. The simulations are used to simulate the master, the controllers and the participants of
the VPP environment.

Encryption is applied in the chaincode sgcbpintra and in the applications. Thereby, AES-256 in
CBC-mode is used. This double-encryption in chaincode and applications guarantees, that if an

79

Discussion & Outlook

attacker should get knowledge of one encryption key, they would not be able to decrypt the data
without the other encryption key.

The setup of the created demonstration and simulation hardware is described in detail. The de-
scriptions include the necessary configuration steps for the operating system Raspbian, including
the installation of necessary software packages and their configuration. To simplify the setup
process, the creation of a microSD image has been described, which includes a pre-configured
operating system. After this image is flashed onto a microSD card, required post-configuration
steps are described.

The thesis describes the SGCCS, which was created for the deployment of the platform. It
consists of a modified version of the IBM Container Services. Based on a configuration file, the
HLF network and the platform applications are deployed onto the Rasbperry Pis.

For testing the platform, an environment consisting of three VPPs, each with three participants,
was simulated. Therefore, the SGCCS and developed applications were used. The deployment
process and the stability of the SGCBP in the simulation environment, have been evaluated. For
the small number of platform nodes in the simulation environment, the platform operates stable.
The deployment of the platform in the simulated environment takes around 70 minutes. This
could be improved by utilizing parallelization. First calculations indicate, that by parallelizing
the building of chainode images on the RPIs, the execution time can almost be cut in half.

The complete code of the thesis can be found on the following GitHub repositories:

• goranovic/fabric62

• goranovic/fabric-ca63

• goranovic/sgcbp69

• goranovic/sgcbp-container-services107

• goranovic/sgcbp-simulation110

All created Docker images are located on the Docker Hub goranovic. The created HLF compo-
nents and the SGCCS can be used to deploy a HLF network onto a Kubernetes cluster of Rasp-
berry Pis. Further, the SGCBP includes all necessary applications, such as API for connection
to the HLF network, dashboard for querying the ledger and visualizing the data, and simulations
for writing data to the ledger. Now, the platform can be used as basis to gather knowledge about
the setup of blockchain applications in the smart grid domain and for the development of these.

6.2 Future Development With Hyperledger Fabric

The progress in the development of HLF seems very promising. Some features, which have been
added since HLF version 1.1, are:

• Private Data Collections to keep data confidential between channel members,

• Service Discovery for orderers, peers, chaincode and endorsement policies,

• Chaincode written in Java is supported, or

• Identity Mixer enables anonymous and unlinkable identities by using zero-knowledge proofs.

80

Discussion & Outlook

Still, there is space for improvements, e.g., with the private data feature, introduced in HLF
v1.2. While data can be kept confidential, this is limited to organization-level. This means, that
it is not possible to keep data confidential between specific members in the same organization.
Another feature, which is planned, is the possibility of a chaincode calling another chaincode on
a different channel to write data111. Regarding the platform, this feature could be used, e.g., to
integrate a part of the controller functionality directly into the chaincode.

The development of HLF networks and applications could be improved by the creation of a HLF
development toolchain. For example, the Hyperledger Composer eases the development of HLF
applications. But it is only recommended for proof-of-concepts, due to the lack of features, as
the support of multiple channels64.

Officially HLF does not support the ARM architecture. While creating this thesis, there has been
another attempt to get HLF onto the RPI112. This attempt focused on the Raspberry Pi 3B’s
support of 64-bit operating systems. Although the official operating system Raspbian is only a
32-bit OS, there exist experimental 64-bit OS for the RPI, like pi64113. As part of this attempt,
Docker images of the HLF components have been created for the AARCH64 architecture, which
are available on the Docker Hub pesicsasa114.

6.3 Discussion Of Blockchain And The General Data Privacy
Regulation

As presented in Section 2.4.3, solutions to ensure privacy and data protection by design on the
blockchain, such as state channels and zero knowledge proofs, are being developed. Regarding the
GDPR, a lot of challenges still exist for the development of blockchain applications. On October
16th 2018 the European Union Blockchain Observatory & Forum released a report [OF18] focusing
on the relationship between blockchain technology and the GDPR. The authors identified three
main issues:

• Identification and obligations of data controllers and processors: In contrast to centralized
systems, the identification of data controllers and processors in decentralized systems, such
as blockchain networks, is difficult. This is especially the case for public, permissionless
blockchain networks, where everyone can be a validating and participating node.

• Anonymization of personal data: Applications storing personal data, have to comply to the
GDPR. For anonymized data the GDPR does not apply. Therefore, an option would be
to anonymize personal data and store it on the blockchain. The problem thereby is, that
there does not exist a consensus on when data is sufficiently anonymized to be stored on
the blockchain. On one hand, anonymized data should not be reversable to the personal
data. For example, only hashes of the personal data could be stored on the blockchain and
the personal data stored off-chain. Still hashes could be reversed to personal data with
brute force attacks. It cannot be guaranteed that current encryption techniques will not be
cracked in the future, e.g., by quantum computers. On the other hand, anonymized data
should not be linkable to personal data, e.g., by using pattern analysis.

111Chaincode calling chaincode https://jira.hyperledger.org/browse/FAB-1788 (accessed: January 8th 2019)
112Hyperledger Fabric for ARM https://jira.hyperledger.org/browse/FAB-10382 (accessed: January 8th

2019)
113A 64-bit OS for the Raspberry Pi 3 https://github.com/bamarni/pi64 (accessed: January 8th 2019)
114pesicsasa’s Profile - Docker Hub https://hub.docker.com/u/pesicsasa (accessed: January 8th 2019)

81

https://jira.hyperledger.org/browse/FAB-1788
https://jira.hyperledger.org/browse/FAB-10382
https://github.com/bamarni/pi64
https://hub.docker.com/u/pesicsasa

Discussion & Outlook

• Excercise of data subject rights: The GDPR empowers data subjects with multiple rights,
such as the Right to Access and Right to be Forgotten. A main challenge for the blockchain
technology is the erasure of data from the blockchain, whose key feature is its immutability.
Because the GDPR does not define, what erasure of data means, different approaches have
been proposed, like key-destruction, which may not comply to a strict interpretation of
the GDPR. In key-destruction, data is stored encrypted on the blockchain and instead of
erasing the data, the encryption key is deleted. Thereby, the data remains encrypted on
the blockchain and cannot be decrypted anymore.

Because of that the authors propose four rule-of-thumb principles for developing applications,
which implement blockchain technology[OF18]:

• Evaluate if the blockchain is needed.

• Do not store personal data, or use privacy design strategies to anonymize it.

• Store personal data off-chain or on private, permissioned blockchains.

• Innovate and provide transparency to users.

While these principles are a good guideline for the development of blockchain applications, nev-
ertheless improvements are needed, especially with regard to public, permissionless blockchains.
Decentralized networks, like blockchain networks, have not been in the focus when the GDPR was
created. Further, the GDPR is missing important definitions, e.g., the erasure of data. Therefore,
the GDPR can be revised or supplemented with the involvement of lawyers, regulation bodies
and experts from the blockchain scene. Although, a hype around blockchain technology exists,
it is still in its early stages. There are a lot of challenges, which need to be solved, such as the
detection of breaches.

6.4 Model For A Future Platform Version

For the development of a next platform version there exist multiple ideas, which are presented
in this section. These ideas focus on several aspects, covering platform architecture, security and
testing.

The developed Smart Grid Controller Blockchain Platform assumes that the energy production
or consumption is aggregated at participant level and only the difference is stored on the plat-
form. For a next version, the platform should be extended to include processes inside buildings.
This means, the participants should have the opportunity to log their energy production and
consumption at device level. This data should be kept private to the participant and stored in
a local database. Currently each RPI is equipped with a small OLED display. This OLED dis-
play should be replaced by a larger touchscreen. The device-level information could be processed
and displayed on the participant’s dashboard, for example, the participant’s energy consump-
tion per device. This could raise the participant’s awareness regarding their energy production
and consumption. Thereby, a middleware application could be responsible to synchronize the
database with the ledger. This means, it would aggregate the participant’s energy production
and consumption, and save the difference as energylog on the ledger. Additionally, the energylog
could be stored in the local database. The participant’s dashboard would only have to access
the database to retrieve necessary information. This would increase the performance of the dash-
board and reduce the number of requests to the HLF network. The model of this setup is shown
in Figure 26.

82

Discussion & Outlook

Figure 26: The figure shows the participant architecture of the future platform model.

To trigger the settlement the SGCBP requires a master, which represents a central instance. This
should be avoided, and it should be evaluated how the master could be replaced by a distributed
solution. An option would be to use controllers for triggering the settlement. Thereby, a policy
could be enforced, e.g., that more than 50 % of the controllers have to agree to the triggering.

For the proof-of-concept a single SOLO ordering service has been applied. The failing of this
centralized ordering service would have major implications on the HLF network. For a production
environment, the ordering service should be changed to a distributed fault-tolerant ordering
service, e.g., the recommended Kafka ordering service. Depending on the number of participants
and transactions to order, the timeframe has to be evaluated for these distributed solutions.

A necessary step towards a market-ready product, is the compliance to the GDPR and the imple-
mentation of additional privacy design strategies, especially process-oriented strategies. There-
fore, extending privacy mechanisms to controllers should be considered. Some questions, that
should be clarified are e.g.:

• Should pseudonyms be used for VPPs?

• Do vpplogs have to be encrypted?

• Do vpptransactions have to be encrypted?

• Is it necessary to keep transactions confidential between VPPs?

Further, it should be considered using asymmetric encryption, thereby enhancing security and
empowering the participant. For the proof-of-concept, private keys for the HLF network are
stored in PEM-encoded files. This is a security issue, which can be solved by using supported
Hardware Security Modules (HSM)115. Especially, if considering the use of RPIs, where all files
are stored on a microSD card. This microSD card could be removed and cloned. Therefore, the
RPIs should be equipped with a HSM to manage private keys.

Chaincodes should implement Attribute-Based Access Control (ABAC)115 and use an attribute
role for access control. Each user certificate would contain this attribute role, indicating if the
user is a participant or controller. This enables to restrict access to chaincode functions by role,
e.g., querying all energylogs should only be allowed to controllers. Additionally, instead of using

115Fabric CA User’s Guide https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html

(accessed: January 8th 2019)

83

https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html

Discussion & Outlook

cryptogen to create the required certificates for the HLF network, a production-ready solution,
like the Hyperledger Fabric CA should be utilized. Further to enhance security, the HLF network
should use Transport Layer Security (TLS) [Hyp18]. TLS would provide secure communication
and client authentication by using TLS handshakes.

As operating system the 32-bit Raspbian was used for the proof-of-concept. It should be evaluated
if the OS should be switched to a 64-bit OS, due to the partial support of HLF for 32-bit operating
systems. A switch would enable to use newer HLF versions without the need for extensive
modifications.

For the proof-of-concept Docker was installed by using the Docker convenience scripts, as de-
scribed in Section 5.4.1. These scripts are only meant for development environments and not for
production. Therefore, Docker should be installed by using APT and the official Docker Hub93.
Furthermore, an issue regarding Docker which was encountered, was the disappearance of multi-
ple Docker images on the RPIs. A pattern for occurrence and the source of this problem could not
be identified. This issue has to be analyzed thoroughly and solved for production environments.

The simulation applications are developed to run only one hour, to run longer simulations these
would need to be adapted, and corresponding datasets provided. In a production environment
instead of the participant simulations, devices, e.g., smart meters, would log their energy con-
sumption or production, and the simulation would not be restricted to a specific duration. This
would require to modify the controller and master simulations, and integrate mechanisms for
HLF entities, e.g., to extend the memory for the peers with growing ledger size.

As already suggested in Section 5.8, the deployment process should be improved by parallelization.
Another essential improvement would be to use hostnames instead of hardcoded IP addresses.
This would allow to reach some degree of abstraction between the Kubernetes cluster and the
SGCBP, but would require the integration of a DNS, like Kube-DNS116.

Alternatively, instead of hosting the HLF network on the RPIs, the HLF network could be hosted
in the cloud. For example, the IBM Cloud Blockchain Platform provides HLF as a service.
This separation of the HLF network and the applications, would enable to use devices with
lower requirements to performance and thereby reduce costs. A suitable candidate is e.g., the
Raspberry Pi Zero W, which could be used for the local applications inside future Smart Grid
Control devices.

For in-depth testing of HLF networks several different tools exist, like fabric-test117, Hyperledger
Caliper118 and Gauge119. A next platform version should integrate one of these. Therefore, the
mentioned tools should be evaluated and compared.

6.5 Outlook & Vision For Smart Energy Systems

Regulations will play an important role in the adoption of blockchain technology. Not only data
regulations, such as the GDPR, are of importance, but also technical regulations. The regula-
tion of emerging technologies, e.g., the blockchain technology, is a complex and time-consuming

116DNS for Services and Pods - Kubernetes https://kubernetes.io/docs/concepts/services-networking/

dns-pod-service/ (accessed: January 8th 2019)
117Welcome to fabric-test https://github.com/hyperledger/fabric-test (accessed: January 8th 2019)
118Hyperledger Caliper - Blockchain performance benchmarking for Hyperledger Burrow, Fabric, Iroha & Saw-

tooth https://hyperledger.github.io/caliper/ (accessed: January 8th 2019)
119Gauge - Performance benchmarking tool for Hyperledger Fabric and Quorum https://github.com/

persistentsystems/gauge (accessed: January 8th 2019)

84

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://github.com/hyperledger/fabric-test
https://hyperledger.github.io/caliper/
https://github.com/persistentsystems/gauge
https://github.com/persistentsystems/gauge

Discussion & Outlook

process. It requires the participation of several interest groups of the government, lawyers, trans-
mission system operators, distribution system operators, developers, and end users. Nevertheless,
regulations should not be obstacles for the development of beneficial blockchain applications.

Reaching consensus is a crucial element of blockchain networks. Different consensus algorithms
exist, Proof-of-Work or Proof-of-Stake to name a few. In case of energy systems, the consensus
algorithm should fulfill several requirements such as a respectfully low energy consumption, or
scalability. Incentive mechanisms for validating nodes are a related but often ignored aspect.
Validating nodes, which are responsible for the consensus in blockchain networks, require pro-
cessing power and memory to process and store the ledger. This produces costs, which need to
be compensated. Therefore, it is important to give an incentive to operate a validating node. For
example, Bitcoin does this by offering transaction fees to reward miners.

Regarding energy systems, which are highly critical infrastructure, a cyberattack could cause
severe consequences, e.g., damage equipment or endanger people’s lives. Therefore, special focus
needs to be put on cybersecurity. Besides integrating permissioning, it has to be thought of
mechanisms to detect cyberattacks and limit their scope. Furthermore, it needs to be specified
how a system should act when errors occur. This is especially challenging due to blockchain’s
immutability, which is in contrast to reversing or deleting a transaction.

The variety of blockchain implementations, such as Ethereum and Hyperledger Fabric, leads to
new challenges, for example, interoperability. Another option would be to use blockchain imple-
mentations, which focus on the energy sector, e.g., the Energy Web Foundation’s Energy Web
Chain. The Energy Web Chain is based on Ethereum but uses a Proof-of-Authority consensus
algorithm, called Aura. Furthermore, the Energy Web Chain integrates smart contracts, private
transactions, and a permissioning system to comply with regulations and requirements of the
energy sector.

Currently, a hype around blockchain and distributed ledger technologies does exist. It generates
a perception, where blockchain technology seems to be the holy grail for decentralized systems
by providing a decentralized trustless system to store and process information. The number of
projects, which work on solutions and applications based on blockchain technology is rising, but
one needs to be aware, that some projects only misuse the existing blockchain hype for marketing
purposes.

Although blockchain technology and proof-of-concepts have been bubbled up for some years,
the realization of applications has just begun. Before blockchain technology can reach its full
potential, it will need to mature and overcome several challenges, e.g., technological, but also
regulatory problems. Therefore, it is difficult to predict, which impact it will have on the energy
sector and when. As most projects focus on P2P energy trading, these applications will likely
be the first to be market-ready. Nevertheless, other use cases should not be ignored, especially
regarding grid management, which is of interest for grid operators.

85

List of Figures

1 The figure shows an example of a virtual power plant with three participants.
Participant A has solar panels on their roof, participant B owns two electric vehicles
and participant C has a wind turbine and a battery system. 2

2 The figure shows a visualization of the generic blockchain data structure. A block
contains the hash of the previous block header and a merkle root. The merkle root
represents the block’s transactions. 11

3 The figure shows the architecture of virtual machines and containers. (based on 29) 18

4 The figure shows a picture of the Raspberry Pi Zero W 19

5 The figure shows a picture of the Raspberry Pi 3 model B 19

6 The figure shows the Quorum components. Right is the Quorum Node, a fork of
the Go-Ethereum client, and left is the Constellation, consisting of the modules
Transaction Manager and Enclave. (based on 37) 23

7 This figure shows the nine MSP directories: Root CAs, Intermediate CAs, Orga-
nizational Units, Administrators, Revoked Certificates, Signing Certificates, Key-
store, TLS Root CAs, and TLS Intermediate CAs. (based on [Hyp18]) 30

8 The figure shows the transaction workflow in Hyperledger Fabric from transaction
creation to commitment. (based on [Hyp18]) . 33

9 The figure shows a Kubernetes architecture example, consisting of the command
line tool kubectl, the master and three nodes. (based on 47) 35

10 The figure shows the class diagram for the sgcbpintra chaincode. 51

11 The figure shows the class diagram for the sgcbpinter chaincode. 53

12 The figure shows the workflow of the function createSettlement, which is used
to match VPP’s energy surpluses and demands. 54

13 The figure shows a picture of a participant’s OLED display, which is displaying
information about an energylog. 57

86

LIST OF FIGURES LIST OF FIGURES

14 The figure shows the workflows of the simulations, starting with the (a) participant
simulation workflow, then the (b) controller simulation workflow is depicted and
finally the (c) master simulation workflow. 60

15 The figure shows the participant dashboard, which displays information about the
participant’s energy production and consumption. 62

16 The figure shows the controller dashboard, which displays information about the
VPP participant’s energy production and consumption, and the VPP’s transactions. 63

17 The figure shows the master dashboard, which displays information about the
VPP’s energy surpluses and demands, and their transactions. 64

18 The figure gives an overview of deployed HLF network entities and applications
for the different platform nodes. 69

19 The figure shows the workflow of the deployment by using the SGCCS. 70

20 The figure shows the complete setup, including the router, the RPIs, the OLED
displays and power sources. 72

21 The figure shows the bar chart of the controller dashboard for VPP Producers with
the hover box for the timeslot 07:30. 74

22 The figure shows the bar chart of the controller dashboard for VPP Consumers
with the hover box for the timeslot 07:30. 74

23 The figure shows the bar chart of the controller dashboard for VPP Mixed with
the hover box for the timeslot 07:30. 75

24 The figure shows the hover boxes of the controller dashboards for the timeslot 07:30. 76

25 The figure shows the transaction table of the master dashboard with transactions
for the timeslot 07:30. 76

26 The figure shows the participant architecture of the future platform model. 83

87

List of Tables

1 The table shows an overview on the compared blockchain implementations. 26

2 The table shows the reported energy surpluses and demands of all VPPs for one
timeslot. 38

3 The table shows the remaining energy surpluses and demands after the first match-
ing round, where VPP B’s energy supply of 9 kWh was matched to VPP D’s energy
demand of 10 kWh. 38

4 The table shows the remaining energy surpluses and demands after the second
matching round, where VPP A’s energy demand of 5 kWh was matched to VPP
C’s energy surplus of 7 kWh. 38

5 The table shows the last remaining energy surplus, in this case 1 kWh of VPP C,
which is matched to the grid. 39

6 The table shows all energy transactions between the VPPs and the grid, which
have been created as a result of the matching algorithm. 39

7 The table shows the encryption of the text ’hallo’ without ciphertext indistin-
guishability producing always the same output. 40

8 The table shows the encryption of the text ’hallo’ with cipher indistinguishability
producing different outputs. 40

9 The table shows the participants of the VPP Producers, their system configuration
and therefore used load profiles. 41

10 The table shows the participants of the VPP Mixed, their system configuration
and therefore used load profiles. 41

11 The table shows the participants of the VPP Consumers, their system configuration
and therefore used load profiles. 42

12 The table contains an overview of the Hyperledger Fabric GitHub repositories, the
corresponding binaries and Docker images. 45

13 The table lists all endpoints for the chaincodes sgcbpintra and sgcbpinter, which
are provided by the API applications. 56

88

LIST OF TABLES LIST OF TABLES

14 The table shows a sample of a participant dataset. 57

15 The table shows a sample of the controller dataset. 58

16 The table shows a sample of the master dataset. 58

17 The table contains the mapping of Raspberry Pi’s GPIO pins to display pins. . . . 66

18 The table shows the simulation configuration, including the role, the hostname and
IP address for each RPI. 73

19 The table shows the records of the participant datasets for the timeslot 07:30 of
VPP Producers. 75

20 The table shows the records of the participant datasets for the timeslot 07:30 of
VPP Mixed. 75

21 The table shows the records of the participant datasets for the timeslot 07:30 of
VPP Consumers. 75

22 The table shows the calculated vpplogs for the timeslot 07:30. 76

23 The table shows the determined vpptransactions for the timeslot 07:30. 76

24 The table shows a sample log file of a participant. 77

25 The table contains the execution times of the deployment process steps in seconds. 77

26 The table contains the maximum execution times of the chaincode instantiation
and initialization in seconds. 78

89

List of Code Snippets

1 The code snippet shows the error in the fabric-peer container, when using the
Hyperledger Fabric images from the Docker Hub frbrkoala on a 32-bit operating
system. 44

2 The code snippet shows the change to the file \fabric\core\container\util\dockerutil.go
due to the discrepancy between the command uname and GOARCH. 45

3 The code snippet shows the changes to the files \fabric\sampleconfig\core.yaml
and \fabric\examples\cluster\config\core.yaml due to the Raspberry Pi’s memory
limit. 46

4 The code snippet shows the first change to the file \fabric\gossip\identity\identity.go
due to the 64-bit alignment of 64-bit words in Golang. 46

5 The code snippet shows the second change to the file \fabric\gossip\identity\identity.go
due to the 64-bit alignment of 64-bit words in Golang. 47

6 The code snippet shows the change to the file \fabric\vendor\github.com\milagro-
crypto\amcl\version3\go\amcl\FP256BN\FP.go due to the use of the 64-bit con-
stant MConst on a 32-bit operating system. 47

7 The code snippet shows the change to the file \fabric\vendor\github.com\milagro-
crypto\amcl\version3\go\amcl\FP256BN\BIG.go due to the use of the 64-bit con-
stant MConst on a 32-bit operating system. 48

8 The code snippet shows the change to the Makefile to disable the pulling of Docker
images from the Docker Hub Hyperledger Fabric, which are not compatible with
the Raspberry Pi. 48

9 The code snippet shows the change to the file \fabric-ca\lib\metadata\version.go
due to the missing version of the fabric-ca-client and fabric-ca-server. 48

10 The code snippet shows the appearing timeout error when using chaincode written
in NodeJS. 49

11 The code snippet shows a CouchDB query string for querying energylogs by date
and time. 50

12 The code snippet shows the struct Energylog from the chaincode sgcbpintra. . . . 51
13 The code snippet shows the struct Vpplog from the chaincode sgcbpinter. 52
14 The code snippet shows the struct Vpptransaction from the chaincode sgcbpinter. 52
15 The code snippet contains commands to change the machine-id for a Raspberry Pi. 67
16 The code snippet contains commands to setup the shared folder /shared. 67
17 The code snippet contains commands for the kubemaster to create the Kubernetes

cluster. 67
18 The code snippet contains an example command to join the Kubernetes cluster. . . 68

90

19 The code snippet contains the command to setup flannel as communication proto-
col for the Kubernetes cluster. 68

20 The code snippet shows the instruction to display the execution time per line. . . . 77

Literature

[BCGH16] Brown, Richard G. ; Carlyle, James ; Grigg, Ian ; Hearn, Mike: Corda: An
introduction. In: R3 CEV, August (2016)

[BKR11] Bogdanov, Andrey ; Khovratovich, Dmitry ; Rechberger, Christian: Biclique
cryptanalysis of the full AES. In: International Conference on the Theory and
Application of Cryptology and Information Security Springer, 2011, S. 344–371

[C+95] Commission, European C. [u. a.]: Directive 95/46 EC of the European Parliament
and of the Council of 24 October 1995 on the protection of individuals with regard
to the processing of personal data and the free movement of such data. (1995)

[CCMN17] Castellanos, Alejandro ; Coll-Mayor, Debora ; Notholt, Antonio: Cryp-
tocurrency as guarantees of origin: simulating a green certificate market with the
ethereum blockchain. (2017)

[CD16] Christidis, Konstantinos ; Devetsikiotis, Michael: Blockchains and smart con-
tracts for the internet of things. In: Ieee Access 4 (2016), S. 2292–2303

[CF18] Climate ; Fund, Energy: Climate and Energy Model Regions –
An Austrian blueprint for a successful bottom-up approach in the
field of climate change and energy. (2018). – https://www.

klimaundenergiemodellregionen.at/assets/Uploads/Publikationen/

2018-Fact-Sheet-Climate-and-Energy-Model-Regions-EN-final.pdf (ac-
cessed: January 8th 2019)

[Cou14] of the Council, General S.: European Council (23 and 24 October 2014) – Conclu-
sions. In: EUCO 169/14 (2014). – https://www.consilium.europa.eu/uedocs/

cms_data/docs/pressdata/en/ec/145397.pdf (accessed: January 8th 2019)
[DSGI+18] Di Silvestre, Maria L. ; Gallo, Pierluigi ; Ippolito, Mariano G. ; Sanseverino,

Eleonora R. ; Zizzo, Gaetano: A Technical Approach to the Energy Blockchain in
Microgrids. In: IEEE Transactions on Industrial Informatics 14 (2018), Nr. 11, S.
4792–4803

[Dwo01] Dworkin, Morris: Recommendation for block cipher modes of operation. meth-
ods and techniques / NATIONAL INST OF STANDARDS AND TECHNOLOGY
GAITHERSBURG MD COMPUTER SECURITY DIV. 2001. – Forschungsbericht

[EC] E-Control: Electricity Market Code - Chapter 6 - Meter Readings, Data For-
mats and Standardised Load Profiles. . – https://www.e-control.at/documents/

20903/-/-/90219f4d-ba76-41d6-948f-3d82c82a42e3 (accessed: January 8th
2019)

[EMST76] Ehrsam, William F. ; Meyer, Carl H. ; Smith, John L. ; Tuchman, Walter L.:
Message verification and transmission error detection by block chaining. (1976). –

92

https://www.klimaundenergiemodellregionen.at/assets/Uploads/Publikationen/2018-Fact-Sheet-Climate-and-Energy-Model-Regions-EN-final.pdf
https://www.klimaundenergiemodellregionen.at/assets/Uploads/Publikationen/2018-Fact-Sheet-Climate-and-Energy-Model-Regions-EN-final.pdf
https://www.klimaundenergiemodellregionen.at/assets/Uploads/Publikationen/2018-Fact-Sheet-Climate-and-Energy-Model-Regions-EN-final.pdf
https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf
https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf
https://www.e-control.at/documents/20903/-/-/90219f4d-ba76-41d6-948f-3d82c82a42e3
https://www.e-control.at/documents/20903/-/-/90219f4d-ba76-41d6-948f-3d82c82a42e3

LITERATURE LITERATURE

US Patent 4,074,066
[EU15] of Justice of the European Union, Court: The Court of Justice declares that

the Commission’s US Safe Harbour Decision is invalid. In: PRESS RELEASE No
117/15 (2015). – https://curia.europa.eu/jcms/upload/docs/application/

pdf/2015-10/cp150117en.pdf (accessed: January 8th 2019)
[Far10] Farhangi, Hassan: The path of the smart grid. In: IEEE power and energy

magazine 8 (2010), Nr. 1
[FMXY12] Fang, Xi ; Misra, Satyajayant ; Xue, Guoliang ; Yang, Dejun: Smart grid-The

new and improved power grid: A survey. In: IEEE communications surveys &
tutorials 14 (2012), Nr. 4, S. 944–980

[GMF+17] Goranović, Andrija ; Meisel, Marcus ; Fotiadis, Lampros ; Wilker, Stefan ;
Treytl, Albert ; Sauter, Thilo: Blockchain applications in microgrids an overview
of current projects and concepts. In: Industrial Electronics Society, IECON 2017-
43rd Annual Conference of the IEEE IEEE, 2017, S. 6153–6158

[Hea16] Hearn, Mike: Corda: A distributed ledger. In: Corda Technical White Paper
(2016)

[Hoe14] Hoepman, Jaap-Henk: Privacy design strategies. In: IFIP International Informa-
tion Security Conference Springer, 2014, S. 446–459

[HP17] Halpin, Harry ; Piekarska, Marta: Introduction to Security and Privacy on
the Blockchain. In: Security and Privacy Workshops (EuroS&PW), 2017 IEEE
European Symposium on IEEE, 2017, S. 1–3

[HSLC17] Hahn, Adam ; Singh, Rajveer ; Liu, Chen-Ching ; Chen, Sijie: Smart contract-
based campus demonstration of decentralized transactive energy auctions. In: Power
& Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2017
IEEE IEEE, 2017, S. 1–5

[HXWL18] Huang, Xiaohong ; Xu, Cheng ; Wang, Pengfei ; Liu, Hongzhe: Lnsc: A secu-
rity model for electric vehicle and charging pile management based on blockchain
ecosystem. In: IEEE Access, vol. PP (2018), Nr. 99, S. 1–1

[Hyp18] Hyperledger: hyperledger-fabricdocs Documentation – Release master. (2018).
– https://media.readthedocs.org/pdf/hyperledger-fabric/release-1.1/

hyperledger-fabric.pdf (accessed: January 8th 2019)
[KYH+17] Kang, Jiawen ; Yu, Rong ; Huang, Xumin ; Maharjan, Sabita ; Zhang, Yan ;

Hossain, Ekram: Enabling localized peer-to-peer electricity trading among plug-in
hybrid electric vehicles using consortium blockchains. In: IEEE Transactions on
Industrial Informatics 13 (2017), Nr. 6, S. 3154–3164

[LBA17] Lundqvist, Thomas ; de Blanche, Andreas ; Andersson, H Robert H.: Thing-
to-thing electricity micro payments using blockchain technology. In: Global Internet
of Things Summit (GIoTS), 2017 IEEE, 2017, S. 1–6

[LFP08] Lugmaier, Andreas ; Fechner, Hubert ; Pruggler, Wolfgang: National tech-
nology platform-smart grids austria. (2008)

[LKY+18] Li, Zhetao ; Kang, Jiawen ; Yu, Rong ; Ye, Dongdong ; Deng, Qingyong ; Zhang,
Yan: Consortium blockchain for secure energy trading in industrial internet of
things. In: IEEE transactions on industrial informatics 14 (2018), Nr. 8, S. 3690–
3700

[LR17] Lazaroiu, Cristian ; Roscia, Mariacristina: Smart district through IoT and
Blockchain. In: Renewable Energy Research and Applications (ICRERA), 2017
IEEE 6th International Conference on IEEE, 2017, S. 454–461

[MMM17] Münsing, Eric ; Mather, Jonathan ; Moura, Scott: Blockchains for decentralized

93

https://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf
https://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf
https://media.readthedocs.org/pdf/hyperledger-fabric/release-1.1/hyperledger-fabric.pdf
https://media.readthedocs.org/pdf/hyperledger-fabric/release-1.1/hyperledger-fabric.pdf

LITERATURE LITERATURE

optimization of energy resources in microgrid networks. In: Control Technology and
Applications (CCTA), 2017 IEEE Conference on IEEE, 2017, S. 2164–2171

[MPM17] Mannaro, Katiuscia ; Pinna, Andrea ; Marchesi, Michele: Crypto-trading:
Blockchain-oriented energy market. In: AEIT International Annual Conference,
2017 IEEE, 2017, S. 1–5

[Nak08] Nakamoto, Satoshi: Bitcoin: A peer-to-peer electronic cash system. (2008)
[OF18] Observatory, European Union B. ; Forum: Blockchain and the GDPR.

(2018). – https://www.eublockchainforum.eu/sites/default/files/reports/

20181016_report_gdpr.pdf (accessed: January 8th 2019)
[OST06] Osvik, Dag A. ; Shamir, Adi ; Tromer, Eran: Cache attacks and countermeasures:

the case of AES. In: Cryptographers’ Track at the RSA Conference Springer, 2006,
S. 1–20

[PDVBD15] Plancke, Glenn ; De Vos, Kristof ; Belmans, Ronnie ; Delnooz, Annelies: Vir-
tual power plants: Definition, applications and barriers to the implementation in the
distribution system. In: European Energy Market (EEM), 2015 12th International
Conference on the IEEE, 2015, S. 1–5

[PKS16] Pustisek, Matevz ; Kos, Andrej ; Sedlar, Urban: Blockchain Based Autonomous
Selection of Electric Vehicle Charging Station. In: 2016 International Conference on
Identification, Information and Knowledge in the Internet of Things (IIKI) IEEE,
2016, S. 217–222

[PMG+18] Pichler, Mario ; Meisel, Marcus ; Goranović, Andrija ; Leonhartsberger,
Kurt ; Lettner, Georg ; Chasparis, Georgios ; Vallant, Heribert ; Mark-
steiner, Stefan ; Bieser, Hemma: Decentralized Energy Networks Based on
Blockchain: Background, Overview and Concept Discussion. In: International Con-
ference on Business Information Systems Springer, 2018, S. 244–257

[PRS07] Pudjianto, Danny ; Ramsay, Charlotte ; Strbac, Goran: Virtual power plant
and system integration of distributed energy resources. In: IET Renewable power
generation 1 (2007), Nr. 1, S. 10–16

[Reg16] Regulation, General Data P.: Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46. In: Official Journal of the European Union (OJ) 59
(2016), Nr. 1-88, S. 294

[Rij10] Rijmen, Vincent: Practical-Titled Attack on AES-128 Using Chosen-Text Rela-
tions. In: IACR Cryptology ePrint Archive 2010 (2010), S. 337

[SDSG+17] Sanseverino, Eleonora R. ; Di Silvestre, Maria L. ; Gallo, Pierluigi ; Zizzo,
Gaetano ; Ippolito, Mariano: The Blockchain in Microgrids for Transacting En-
ergy and Attributing Losses. In: Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), 2017 IEEE Interna-
tional Conference on IEEE, 2017, S. 925–930

[SMT11] Saboori, H ; Mohammadi, M ; Taghe, R: Virtual power plant (VPP), definition,
concept, components and types. In: Power and Energy Engineering Conference
(APPEEC), 2011 Asia-Pacific IEEE, 2011, S. 1–4

[Sta01] Standard, NIST-FIPS: Announcing the advanced encryption standard (AES). In:
Federal Information Processing Standards Publication 197 (2001), S. 1–51

[SW17] Sabounchi, Moein ; Wei, Jin: Towards resilient networked microgrids: Blockchain-
enabled peer-to-peer electricity trading mechanism. In: Energy Internet and Energy

94

https://www.eublockchainforum.eu/sites/default/files/reports/20181016_report_gdpr.pdf
https://www.eublockchainforum.eu/sites/default/files/reports/20181016_report_gdpr.pdf

LITERATURE LITERATURE

System Integration (EI2), 2017 IEEE Conference on IEEE, 2017, S. 1–5
[Sza94] Szabo, Nick: Smart contracts. (1994). – http://www.fon.hum.uva.nl/rob/

Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/

szabo.best.vwh.net/smart.contracts.html (accessed: January 8th 2019)
[TJ11] van Tilborg, Henk C. ; Jajodia, Sushil: Encyclopedia of Cryptography and Secu-

rity. Bd. 1. Springer Science & Business Media, 2011
[TNA17] Tanaka, Kenji ; Nagakubo, Kosuke ; Abe, Rikiya: Blockchain-based electricity

trading with Digitalgrid router. In: Consumer Electronics-Taiwan (ICCE-TW),
2017 IEEE International Conference on IEEE, 2017, S. 201–202

[TS16] Tschorsch, Florian ; Scheuermann, Björn: Bitcoin and beyond: A technical
survey on decentralized digital currencies. In: IEEE Communications Surveys &
Tutorials 18 (2016), Nr. 3, S. 2084–2123

[VD+09] Von Dollen, Don [u. a.]: Report to NIST on the smart grid interoperability
standards roadmap. In: Electric Power Research Institute (EPRI) and National
Institute of Standards and Technology (2009)

95

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

	Titlepage
	Introduction
	Motivation
	Problem Statement
	Methodology

	State of the Art and Related Work
	Current Demonstration Areas
	Green Energy Lab
	Act4.energy
	Smart Community Großschönau

	Relevant Smart Grid Concepts
	Smart Grid
	Virtual Power Plant
	Related Smart Grid Control Approaches

	Privacy
	General Data Protection Regulation
	Privacy Design Strategies

	Blockchain
	Basics
	Blockchain Types
	Privacy & Blockchain
	Blockchain Projects For Energy

	Hardware and Tools
	Hyperledger Fabric SDK
	Node.js
	React
	Advanced Encryption Standard
	Cipher Block Chaining
	Containers
	Raspberry Pi

	Selection Of Hyperledger Fabric
	Evaluation Of Blockchain Implementations
	Blockchain Requirements
	Blockchain Implementations
	Comparison

	Nodes
	Peer
	Orderer
	Client

	Hyperledger Fabric Specific Constructs
	Ledger
	Channels

	Membership Service Provider
	Chaincode
	Chaincode Development
	System Chaincodes
	Chaincode Lifecycle

	Transaction Flow

	Models, Concepts and Hardware
	Hardware Concept
	Docker
	Kubernetes
	OLED Display For Raspberry Pis

	System Analysis
	Intra-VPP Analysis
	Inter-VPP Analysis

	Platform Model
	Components
	Matching
	Privacy Design Strategies
	Encryption

	Simulation Model

	Implementation, Simulation and Results
	Hyperledger Fabric Components For ARMv7
	Chaincodes
	Chaincode sgcbpintra
	Chaincode sgcbpinter

	Applications
	API
	Simulation
	Dashboard
	Docker Images

	Setup Of Raspberry Pi microSD Image
	Raspberry Pi Basic Setup
	Configuration Steps After Flashing

	Smart Grid Controller Container Services
	Simulation
	Measurements
	Platform Operation
	Platform Stability
	Deployment Process

	Simulation Results

	Discussion & Outlook
	Summary
	Future Development With Hyperledger Fabric
	Discussion Of Blockchain And The General Data Privacy Regulation
	Model For A Future Platform Version
	Outlook & Vision For Smart Energy Systems

	Literature

