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2230 Gänserndorf
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Abstract

Airborne LiDAR (Light Detection And Ranging) and airborne photogrammetry
are both proven and widely used techniques for the 3D topographic mapping of
extended areas. Although both techniques are based on different reconstruction
principles (polar measurement vs. ray triangulation), they ultimately serve the same
purpose, the 3D reconstruction of the Earth’s surface. It is therefore obvious for
many applications to integrate the data from both techniques to generate more
accurate and complete results. Many works have been published on this topic of
data fusion. However, no integrated solution existed prior to this work for the first
steps that need to be carried out after data acquisition, namely (a) the lidar strip
adjustment and (b) the aerial triangulation. A consequence of solving these two
optimization problems independently can be large discrepancies (of up to several
decimeters) between the lidar block and the image block. This is especially the case
in challenging situations, e.g. corridor mapping with one strip only or in case few
or no ground truth data is available. To avoid this problem and thereby profit from
many other advantages, a first rigorous integration of these two tasks, the hybrid
orientation of lidar point clouds and aerial images, is presented in this thesis.

The main purpose of the presented method is to simultaneously optimize the
relative orientation and absolute orientation (georeference) of the lidar and image
data. This data can be used afterwards to generate accurate and consistent 3D or
2D mapping products. The orientation of the lidar and image data is optimized
by minimizing the discrepancies (a) within the overlap area of this data and (b)
with respect to ground truth data, if available. The measurement process is thereby
rigorously modelled using the original measurements of the sensors (e.g. the polar
measurements of the scanner) and the flight trajectory of the aircraft. This way,
systematic measurement errors can be corrected where they originally occur. Both,
lidar scanners and cameras, can be fully re-calibrated by estimating their interior
calibration and mounting calibration. Systematic measurement errors of the flight
trajectory can be corrected individually for each flight strip. For highest accuracy
demands, time-dependent errors can be modelled by natural cubic splines.

The methodological framework of the hybrid adjustment was adapted from the
ICP algorithm. Consequently, correspondences are established iteratively and on
a point basis to maintain the highest possible resolution level of the data. Four
different strategies are presented for the selection of correspondences within the
overlap area of point clouds. Thereby, the Maximum Leverage Sampling strategy
is newly introduced. It automatically selects those correspondences that are best
suited for the estimation of the transformation parameters.

The various aspects of the hybrid adjustment are discussed on the basis of four
examples. It is demonstrated, that the integration of the lidar strip adjustment and
aerial triangulation leads to many synergetic effects. Two of the major advantages
are an increased block stability (avoiding block deformations, e.g. bending) and an
improved determinability of the parameters.
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Kurzfassung
Airborne Laserscanning (auch LiDAR, Light Detection And Ranging) und Luftbild-
photogrammetrie sind zwei bewährte und weit verbreitete Technologien um dreidi-
mensionale topographische Daten zu erfassen. Obwohl beide Technologien auf unter-
schiedlichen Rekonstruktionsprizipien basieren (Polarmessung bzw. Triangulierung
von Sehstrahlen), dienen beide im Endeffekt dem gleichen Zweck, der dreidimension-
alen Rekonstruktion der Erdoberfläche. Es ist daher naheliegend die Daten dieser
beiden Technologien zu kombinieren um genauere und vollständigere Endproduk-
te zu erzeugen. Zu diesem Thema der Datenfusion wurden in der Vergangenheit
bereits viele Arbeiten publiziert. Dies gilt jedoch nicht für eine integrierte Lösung
der ersten beiden Schritte die unmittelbar nach der Datenerfassung durchzuführen
sind, nämlich (a) die Streifenausgleichung der Laserscanning-Daten und (b) die
Aerotriangulation der Luftbilder. Eine mögliche Folge der getrennten Handhabung
dieser beiden Probleme sind große Abweichungen (von bis zu mehreren Dezime-
tern) zwischen dem ausgeglichenen Laser- und Bildblock. Diese Gefahr besteht vor
allem in verhältnismäßig schwierigen Situationen wie z.B. Korridorflügen mit nur
einem Streifen oder falls wenige oder gar keine Bodenreferenzdaten zur Verfügung
stehen. Um derartige Probleme zu vermeiden, und dabei noch von vielen anderen
Vorteilen zu profitieren, wurden diese beiden Schritte in der vorliegenden Arbeit
in einer gemeinsamen hybriden Orientierung von Laserscanning-Punktwolken und
Luftbildern zusammengeführt.

Das vordergründige Ziel der vorgestellten Methode ist die gleichzeitige relative
und absolute Orientierung (Georeferenzierung) der Laser- und Bilddaten. Diese
Daten können in der Folge für die Erstellung von sehr genauen und in sich kon-
sistenten zwei- oder dreidimensionalen topographischen Produkten verwendet wer-
den. Die Orientierungen der Laserscanning-Daten und Luftbilder wird durch die
Minimierung der Abstände (a) innerhalb der Überlappungsbereiche der Daten und
(b) gegenüber etwaig vorhandenen Bodenreferenzdaten optimiert. Der Messprozess
wird dabei möglichst akkurat modelliert indem die Originalmessungen der Sen-
soren (z.B. die Polarmessungen des Scanners) und die Trajektorie der Flugplattform
berücksichtigt werden. Sowohl Laserscanner, als auch die Kameras, können durch
die Schätzung interner Kalibriergrößen und der Montageparameter vollständig neu
kalibriert werden. Systematische Fehler der Flugtrajektorie können individuell für
jeden einzelnen Streifen korrigiert werden. Bei sehr hohen Genauigkeitsansprüchen
können sogar zeitvariierende Trajektorienfehler durch deren Modellierung in Form
von natürlichen kubischen Splines kompensiert werden.

Das methodische Rahmenwerk für die hybride Ausgleichung wurde vom ICP-
Algorithmus übernommen. Daher werden Korrespondenzen iterativ und auf Punkt-
basis hergestellt. Letzteres ermöglicht die Nutzung der höchstmöglichen Auflösung
der Daten. Für die Selektion der Korrespondenzen in den Überlappungsbereichen
der Punktwolken, stehen vier Strategien zur Auswahl. Neu eingeführt wurde dabei
die Maximum Leverage Sampling Methode. Mit dieser können automatisch jene Ko-
rrespondenzen gewählt werden, die sich für die Schätzung der Transformationspa-
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rameter am besten eignen.
Die verschiedenen Aspekte der hybriden Ausgleichung werden in vier Beispielen

beleuchtet. Dabei wird gezeigt, dass die Integration der Streifenausgleichung und
Aerotriangulation zu vielen Synergien führt. Hervorzuheben sind dabei eine erhöhte
Blockstabilität (wobei Blockdeformation, z.B. eine Durchbiegung, besser vermieden
werden können) und eine genauere Schätzung der Parameter.
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1 Introduction

1.1 Motivation
Airborne LiDAR (Light Detection And Ranging), also referred to as Airborne Laser
Scanning (ALS), and airborne photogrammetry are both proven and widely used
techniques for the 3D topographic mapping of extended areas. Although both tech-
niques are based on different principles (polar measurement vs. ray triangulation),
they ultimately serve the same purpose, the 3D reconstruction of the Earth’s sur-
face. It is therefore obvious for many applications to integrate both techniques to
generate more accurate and complete results (Baltsavias, 1999). Thus, many works
have been published on the integration of lidar and photogrammetry, e.g. for the
generation of true orthophotos (Habib, 2018) or the modeling of buildings (Brenner,
2005). However, this is not the case for the first steps that need to be carried out
after data acquisition, namely the calibration and orientation of the sensors and
their data. These are (a) the strip adjustment of lidar point clouds and (b) the
triangulation of aerial images. This work aims to provide a first rigorous integration
of these two tasks, the hybrid adjustment of lidar point clouds and aerial images.
Thereby the orientation of lidar point clouds and aerial images is simultaneously
optimized. This is achieved by correcting the aircraft’s flight trajectory (which is
shared by the lidar point clouds and aerial images), by fully re-calibrating the lidar
scanner(s) and camera(s), and by considering ground truth data if available, e.g.
ground control points, cf. Figure 1.1.

Up to approximately 15 years ago, image-based methods were predominately used
for 3D topographic modeling. This rapidly changed with the advent of the lidar
technology, mainly due to its ability to penetrate vegetation through small gaps
in the foliage and thereby measure the underlying ground. However, over the last
10 years, advanced Dense Image Matching (DIM) methods have been developed
(Hirschmuller (2008), Rothermel et al. (2012), Remondino et al. (2014)), which can
generate automatically dense and colorized 3D point clouds from overlapping im-
ages. A comparison between lidar and DIM point cloud is shown in Figure 1.2. In
Mandlburger et al. (2017) a comprehensive description of the main characteristics of
lidar and DIM point clouds is given. The two main advantages of DIM point clouds
in comparison to lidar point clouds are (a) the typically higher point density, as a
3D point can be reconstructed for each image pixel, and (b) the color information
for each point. On the other side, lidar point clouds are typically more accurate,
especially in vegetated areas, at edges (e.g. of buildings), in case of occlusions and
other areas of abrupt changes. In the past often either a lidar scanner or an aerial
camera was used on an airborne platform for topographic modeling. The trend now
goes clearly towards multi-sensor systems, i.e. the integration of laser scanner(s)
and aerial camera(s) on a single sensor platform. Even on UAVs, despite the limited
payload, the integration becomes increasingly common, mainly due to the minia-
turization of the sensors. Such multi-sensor systems enable the fusion of lidar and
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strip 1

terrain

strip 2

image tie point

GCP

CPC

Before hybrid adjustment After hybrid adjustment

Figure 1.1: The aim of the hybrid adjustment is to simultaneously optimize the
orientation of lidar point clouds and aerial images considering ground-
truth-data, e.g. control point clouds (CPCs) or ground control points
(GCPs). This is achieved by correcting the aircraft’s flight trajectory and
by fully re-calibrating the laser scanner(s) and camera(s). The minimized
distances are shown in blue.

image-based data, e.g. lidar and DIM point clouds, whereby the advantages of both
technologies can be exploited to generate optimized products (Mandlburger et al.,
2017). However, a basic prerequisite for the fusion of lidar and image-based data is
an accurate relative and absolute orientation (georeference). This can be achieved
through the hybrid adjustment presented in this thesis.

A comparison between airborne lidar and airborne photogrammetry is given in
Table 1.1. Lidar is an active polar measurement system. The range is thereby
measured by the time-of-flight principle: a laser pulse is emitted and scattered on
one or more objects along its path producing echoes which are then registered by
the scanner’s detector. Consequently, a single sight is sufficient to determine the
3D coordinates of an object point. The main components of a lidar system are a
laser scanner and a GNSS/INS navigation system. The GNSS and INS measure-
ments are integrated with a Kalman filter (Kalman, 1960) or a variant thereof to
produce an accurate estimate of the platform’s trajectory, i.e. its position (three
coordinates: x, y, z) and orientation (three angles: roll, pitch, yaw) as a function
of time. The so-obtained trajectory is combined with the mounting calibration pa-
rameters (which describe the positional and rotational offsets between the scanner
and the GNSS/INS system) to determine the orientation of the laser scanner (direct

8



1 Introduction

Lidar Dense Image Matching

Merged point cloud

Profile
Lidar Dense Image Matching( ),

Figure 1.2: Top: Lidar (z-colored) and Dense Image Matching (rgb-colored) point
clouds. Middle: Merged point clouds. Botton: Profile through merged
point clouds. These point clouds are taken from the example in section
4.4.
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Airborne
lidar

Airborne
photogrammetry

da
ta

ac
qu

is
it

io
n

• sensors scanner(s)
+ GNSS/INS

camera(s)
(+ optional GNSS/INS)

• light source active (laser) passive (solar radiation)
• measurement principle time-of-flight capturing of visible light
• measurement rays

per point
1 (polar system) ≥ 2 (multi-view stereo)

• radiometry mono-spectral
(laser-wavelength)

multi-spectral
(R-G-B)

• preconditions (diffuse) object
reflectance

texture (image contrast)

• geodata recording continuous at exposure times
of images

• in-strip redundancy no yes

ad
ju

st
m

en
t

• method strip adjustment
of lidar strips

aerial triangulation
of aerial images

• typical
ground-truth-data

surfaces points (GCPs)

• estimated
parameters

scanner calibration
mounting calibration
trajectory correction

interior orientation
(mounting calibration)
trajectory correction

• typical
correspondences

homologous planes homologous points

Table 1.1: Comparison between airborne lidar and photogrammetric triangulation
(adapted partly from Mandlburger et al. (2017)).

sensor orientation). Finally, the polar measurements of the laser scanner (range
and angle(s)) are added to the orientation of the laser scanner to obtain the final
product, the georeferenced 3D point cloud (direct georeferencing). Generally, the so-
generated point clouds contain systematic georeferencing errors. These errors can
be recognized as discrepancies between overlapping strips and as discrepancies be-
tween strips and ground-truth data, e.g. ground control points (GCPs) or reference
planes. Experience shows that the major parts of these discrepancies stem from the
GNSS/INS navigation system and the rotational part of the mounting calibration
(boresight misalignment). To re-calibrate the entire lidar system and correct the
trajectory errors, strip adjustment (also known as integrated sensor orientation) can
be performed. This is done by refining the point cloud generation process after the
trajectory estimation by additional (calibration and correction) parameters. These
parameters are estimated by exploiting the redundancy contained in the overlapping
areas of the strips and by considering the ground-truth data. The estimated param-
eters can be divided into three categories: (a) the scanner calibration parameters
(e.g. range finder offset), (b) the mounting calibration parameters (lever-arm and
misalignment), and (c) the trajectory correction parameters.

In aerial photogrammetry the 3D reconstruction is based on the spatial intersec-
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tion of rays. Consequently, the reconstruction of a single object point needs at least
two intersecting rays, i.e. two aerial images taken from different positions showing
the same object point. Consequently, the triangulation of ground points through
dense vegetation is very unlikely. A single ray is thereby defined by the exterior
orientation of an image (three coordinates, three angles describing its position and
rotation) and the interior orientation of a camera (principal distance, principal point,
distortion parameters). In contrast to a lidar system, a GNSS/INS navigation sys-
tem is not strictly mandatory, but highly recommended for the direct measurement
of the six elements of the exterior orientation. However, especially if imagery is
captured from UAVs, often only the onboard low-cost GNSS/INS systems are avail-
able, giving relatively inaccurate estimates of the aircraft’s trajectory (Colomina
(2015), Cucci et al. (2017)). An aerial triangulation (bundle block adjustment of
aerial images) has much in common with the strip adjustment of lidar strip de-
scribed above. The parameters of the exterior and interior orientation of the aerial
images are estimated by exploiting the redundancy contained in the image overlap
and by considering ground-truth-data, e.g. ground control points. If a GNSS/INS
trajectory is given, the similarities get even more obvious. The parameter of the
exterior orientation can then be obtained by combining the flight trajectory and the
mounting calibration of the cameras (direct sensor orientation or direct georeferenc-
ing). In this (standard) case, the parameters estimated in the aerial triangulation
can be divided into the same three categories: (a) the parameters of the interior ori-
entation (camera calibration parameters), (b) the mounting calibration parameters
(lever-arm and misalignment), and (c) the trajectory correction parameters.

Despite all these similarities, strip adjustment of lidar point clouds and aerial
triangulation of aerial images are carried out independently in practice. Both opti-
mization problems on their own have been thoroughly studied over the last decades
and sophisticated methods exist for the lidar strip adjustment (Toth and Koppanyi,
2018) and the aerial triangulation (Förstner and Wrobel (2016), Kraus (1997)). It
is important to stress that the separation of these two orientation problems is not
a problem per se. If proven flight configurations with longitudinal and cross strips
are used and sufficient ground-truth-data is available, a very accurate relative and
absolute orientation of lidar and image block can be achieved. However, many sit-
uations exist, where an isolated orientation of lidar and images is very challenging,
e.g. corridor mapping with one lidar or image strip only, areas with unfavorable
distribution of homologous image points, large non-textured areas, structureless ar-
eas, dynamic areas (e.g. water), in case of low lidar strip and/or image overlap,
or if insufficient ground-truth-data is available. Many problems can arise in such
situations, stemming primarily from a low redundancy and weak geometrical con-
straints. One of the best-known problems is – despite the direct observation of the
flight trajectory by GNSS/INS – an inaccurate absolute orientation of the entire
lidar/image block (e.g. bending), mostly due to the accumulation of non-modeled
systematic measurement errors. We show that the integration of lidar, image, and
GNSS/INS observations into a common adjustment can mitigate such problems, as
both data types benefit from each other. This benefit stems primarily from the
incorporation of additional geometric constraints. One example is the correction of
the aircraft’s trajectory: to minimize the discrepancies between overlapping lidar
point clouds, a very flexible correction model is needed for the GNSS/INS trajec-
tory (we will propose a correction model based on cubic splines for this, cf. section
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3.1.4.1). However, the flexibility of such a model involves many risks. In case of
wrong stochastic modeling (weighting), or in case overfitting occurs, the whole lidar
block may get deformed. We show, that when lidar and images are combined, this
problem is strongly mitigated, as the lidar measurements are subject to geometric
constraints formulated through the image measurements and vice versa. Thus, the
symbiotic relationship between these two techniques enhances each other to provide
a better solution.

1.2 Contributions
In this thesis a new method for the rigorous integration of (a) the strip adjustment of
lidar strips and (b) the triangulation of aerial images into a single hybrid adjustment
is presented. However, the hybrid adjustment marks only the end of a long journey,
in which practical solutions have been found for many subproblems. These solutions
might be useful also in a different context. Therefore, the three main contributions
can be summarized as follows:

1. Correspondence framework We present a framework, inspired by the well-
known ICP algorithm, for the selection of correspondences within the overlap
area of point clouds. Thereby, correspondences are established iteratively and
on a point basis. Four different strategies are presented for the selection of
correspondences: Random Sampling, Uniform Sampling, Normal Space Sam-
pling, and Maximum Leverage Sampling. The latter is based on the theory of
least squares adjustment and selects correspondences automatically in areas
that are best suited for the estimation of transformation parameters.

2. Comprehensive parameter model A comprehensive parameter model is
presented for the adjustment of lidar strips and aerial cameras. This includes
parameters for the calibration of these sensors, parameters for the orientation
of their data, and four different parameter models for the correction of the
flight trajectory: Bias Trajectory Correction model, Linear Trajectory Cor-
rection model, Quadratic Trajectory Correction model, and Spline Trajectory
Correction model. With the latter, strong varying time-dependent systematic
trajectory errors can be corrected significantly.

3. Integration of lidar strip adjustment and aerial triangulation of aerial
images We show that joint processing of lidar and image data offers many
advantages, especially for high accuracy applications and other challenging
situations, e.g. corridor mapping. The main advantages are:

a) Inherent optimization of the relative orientation between lidar
point clouds and images The discrepancies between the lidar point
clouds and the image tie points are inherently minimized in the hybrid
adjustment. This leads to an optimal relative orientation between the li-
dar block and the image block. This can be of great advantage if products
are derived from both data types, e.g. a merged lidar/DIM point cloud
or true orthophotos.

b) More precise and reliable parameter estimation due to higher
redundancy As both, lidar and images, jointly observe the Earth’s sur-
face, a higher redundancy for the parameter estimation is given. This, in
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turn, improves the a posteriori precision of the estimated parameters and
increases the potential to identify gross errors in the observation data.

c) More reliable absolute orientation of lidar and image block We
show that due to the integration of lidar and image observations in a
single adjustment, block deformations become more unlikely. The main
reason for this is the incorporation of additional geometric constraints
that lead to an increased overall block stability.

d) Need of fewer ground-truth-data (points or surfaces) Ground-
truth-data can be introduced into the adjustment in two forms: as control
point clouds (CPCs) and as ground control points (GCPs). As both of
these types can be used to define the datum of the lidar and image block
simultaneously, fewer ground-truth-data is needed in total. For instance,
in the presence of CPCs no GCPs need to be measured, as the CPCs are
solely defining the datum of the lidar and the image data.

1.3 Related work
Literature on the integration of lidar and photogrammetry A general comparison
between photogrammetry and lidar is given in Baltsavias (1999). Despite the age of
this paper, most of the discussed aspects are still relevant. The author stresses that
the two techniques are fairly complimentary and their integration can lead to more
accurate and complete final products. On the topic of lidar strip adjustment, the
lack of standards or commonly accepted guidelines on how to perform calibration
is criticized, a point which is still valid today. In Ressl et al. (2016) a comparison
between lidar and DIM point clouds is presented, especially concerning the capability
of retrieving terrain data. It is also shown that one must be very cautious when
matching lidar and image data in object space, as the height of the lidar point cloud
can be systematically lower with respect to the triangulated image points due to the
capability of the laser to penetrate objects through small openings, e.g. in case of
low vegetation.

Many publications prove the potential of an integrated processing of lidar and
image data for the derivation of final products, e.g. Habib (2018) demonstrates
the advantages of an integrated approach for the generation of true orthophotos,
Brenner (2005) combine lidar and image data for the modeling of buildings, Beger
et al. (2011) combine lidar and high-resolution image data for the automatic railroad
centerline reconstruction, Bork and Su (2007) integrate lidar data and multi-spectral
images to improve the classification of rangeland vegetation, and Mandlburger et al.
(2017) use lidar and image data for point cloud fusion and digital surface model
derivation.

Literature on co-registration of lidar point cloud and images Many papers have
also been published on the topic of co-registration of lidar and image data. However,
none of these works addresses the rigorous integration – i.e. considering the flight
trajectory, the mounting calibration parameters, and sensor calibration parameters
– of lidar strip adjustment and aerial triangulation. Instead, most studies start from
an adjusted lidar block and provide solutions to optimize the co-registration of the
images only. Yang and Chen (2015) present a multi-step approach to minimize sig-
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nificant discrepancies between aerial images and lidar data. The method is based on
the matching of building outlines and therefore limited to urban areas. In contrast
to our approach, no rigorous modeling of the measurement process is conducted.
Instead, the lidar and image block are matched applying a rigid body transforma-
tion only, leading to a comparatively moderate georeference accuracy. Similarly,
Abayowa et al. (2015) present a framework for the registration of lidar and image
data. Thereby, the ICP algorithm is used to minimize the discrepancies between two
DSMs, one derived from the lidar point cloud, the other derived from a DIM point
cloud. The main contribution is the ability to find an initial relative orientation
between the lidar and image block by matching salient, invariant features derived
from the two DSMs. However, in aerial lidar and aerial photogrammetry, an approx-
imative relative orientation is generally known due to the usage of GNSS/INS. In
Parmehr et al. (2014) an approach for the registration of lidar and image data based
on mutual information is presented. Thereby, the matching between lidar and image
data does not rely on the presence of physical correspondences (e.g. edges, corner),
but exploits the statistical dependencies between the two datasets, e.g. between the
aerial images, the lidar point cloud, and the lidar intensity data.

Literature on lidar strip adjustment A rigorous error analysis of kinematic scan-
ning systems is presented in Glennie (2007). This includes a discussion of the mag-
nitudes of the major error sources and their effect on the horizontal and vertical
precision of the ground points. The publication demonstrates how difficult it is
to find reliable error estimates, since they are either based on the manufacturer’s
technical specifications, on a previously performed least squares adjustment, or on
relatively arbitrary empirical values. The overall precision of the ground points, as
well as the contribution of the single error sources, are examined for three different
measurement scenarios. It is demonstrated that for a fixed-wing aircraft at high
altitudes (> 500 m), the horizontal precision of the ground points is at least three
times worse than the vertical precision. More specifically, the horizontal precision
primarily depends (60% to 75%) on the precision of the rotation measurements,
i.e. the INS and misalignment values, whereas the influence of these measurements
on the vertical precision is decisively smaller (25% to 50%). The error model pre-
sented in this publication was validated with ground truth data. Possible sources for
random and systematic errors and their effect on ground points are also discussed
extensively in Habib and Rens (2007). Additionally, a review of the existing strip
adjustment methods at that time is given.

In Skaloud et al. (2010) a method for the real-time registration of lidar data is
presented. This includes not only the direct georeferencing of the data, but also a
slightly time-delayed estimation of the precision of each point. In a mathematically
rigorous way, the direct georeferencing process considers the random errors of all
involved measurements: the time-dependent precisions of the position and rotation
measurements are obtained from a loosely-coupled Extended Kalman Filter (EKF),
the lever-arm and misalignment precisions come from a previous calibration, and
the manufacturer provides the scanner precisions. As the final point precision is
also affected by the incidence angle, the terrain normals are estimated at the end of
each flight line. Afterwards, the effect of the incidence angle is added to the point
precisions obtained previously by error propagation within the direct georeferencing
process. The publication proves that the so obtained point coordinates have an
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accuracy better than 1 dm, which is sufficient for many applications. However, for
high accuracy demands, a lidar strip adjustment is still necessary to eliminate these
systematic errors.

Basically, two types of lidar strip adjustment methods exist: (a) approximate so-
lutions, which can be described as rubber-sheeting co-registration methods that use
the 3D terrain points as input only, and (b) rigorous solutions that start from the
original scanner and trajectory observations. The main drawback of approximative
solutions in comparison to rigorous solutions is depicted in Figure 1.3. Here, the
lidar strips are bent across the flight direction before the adjustment. Such a strip
deformation, sometimes also denoted as the smiley effect, stems from a constant
range measurement error of the scanner, cf. Figure 3.4. This type of error can only
be corrected by adjustment if the 3D coordinates of the ground points are formu-
lated through the original scanner measurements and the flight trajectory (direct
georeferencing). Consequently, with the rigorous approach, the error can be cor-
rected and – most important – no absolute deformation of the lidar block occurs.
However, approximative solutions use a rather simple transformation model to min-
imize discrepancies within the overlap area of lidar strips, e.g. a rigid body or affine
transformation. The constant range offset cannot be corrected with these models,
instead, the block is deformed due to the uncorrected systematic range errors. Of
course, such an effect can be mitigated through the usage of ground-truth-data or by
introducing fictional observations into the adjustment. However, for high accuracy
applications, a rigorous approach is highly recommended, as errors can be corrected
where they originally occur.

before

after

before

after

Approximative strip adjustment Rigorous strip adjustment

Figure 1.3: Comparison between strip adjustment methods using the 3D points only
as input (left) and methods using the flight trajectory and the original
scanner measurements as input (right).

An approximative approach was presented by Kraus et al. (2006). It suggests a
robust Least Squares Matching (LSM) method to minimize height differences be-
tween overlapping strips. The focus lies on the estimation of the 3D translation
vector of one strip, i.e. no other transformation parameters are considered in this
approach. Since the LSM method originates from photogrammetry, where it is used
for matching the intensities of aerial images, the strips have to be rasterized before.
It is proposed to derive three raster models from each strip: a Digital Surface Model
(DSM), a Digital Terrain Model (DTM), and a Digital Intensity Model. The DSM
and DTM are used to estimate the horizontal and vertical components of the trans-
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lation vector, whereas the DIM only contributes on the horizontal components. The
latter is especially useful in flat areas with less height variation but a high contrast in
the laser intensity. As raster models are not well suited to represent vertical objects
such as vegetation or vertical walls, the disturbing influence of these raster cells is
eliminated using a robust least squares adjustment method.

Rigorous solutions, like the one presented in this thesis, differ mainly regarding the
estimated parameters and the used correspondences. Many methods concentrate on
the estimation of the misalignment between the scanner and the Inertial Navigation
System (INS) (Hebel and Stilla, 2012; Toth, 2002). The most extensive parameter
models are presented in Kager (2004) and Friess (2006). Correspondences are either
generated from the original point cloud or a derivate of it (e.g. interpolated grids or
triangulations). Most approaches use planes as corresponding geometric elements.
They can be of fixed size or variable size found by segmentation (e.g. rooftops).
Kersting et al. (2012) use higher order primitives as correspondences. An overview
of strip adjustment methods is presented in Toth (2009) and Habib and Rens (2007).

In the following, a description of some rigorous strip adjustment methods is given.
Toth (2002) concentrates on the estimation of the three misalignment angles. The
motivation behind this is that the effect of angular errors is proportional to the
object distance, while the effect of positional errors does not depend on it, i.e. it is
constant. Suitable regions for correspondences are found by a (not further specified)
segmentation process. Following the Gruber point distribution in stereo models,
these regions are predominantly selected near the borders of the overlapping area
of two strips, where differences are more noticeable. For each pair of corresponding
segments, a 3D difference vector is determined by correlation matching. These 3D
differences are minimized within a Least Squares Adjustment (LSA). Since the
vertical coordinate of ground points is usually more reliable than the horizontal
ones, a higher weight is assigned to the vertical differences than to the horizontal
ones. Similar to the ICP algorithm, the misalignment angles are refined iteratively.

Skaloud and Lichti (2006) present a semi-automatic method for the estimation of
the three misalignment angles and the range offset. The aim of this method is not
necessarily an area-wide minimization of discrepancies, but rather the estimation
of these four calibration parameters with a minimal correlation between them. As
further calibration parameters (e.g. lever-arm) are not estimated, the authors rec-
ommend to optimize the flight conditions and to choose the calibration area in such
a way that the systematic influence of these parameters is minimal. A pre-requisite
of the method is the manual identification of a sufficient number of suitable planes
within the overlap area of the strips. The calibration parameters are then estimated
by conditioning the points from overlapping strips to lie in these planes. The ad-
justment (Gauß-Helmert model) is formulated rigorously, i.e. the functional model
includes the scanner, Global Navigation Satellite System (GNSS), and INS measure-
ments as observations, the stochastic model considers their precision (but neglecting
correlations), and the plane parameters are estimated together with the calibration
parameters. It is demonstrated that the range offset parameter is highly correlated
with the misalignment angles and that the planes should vary in slope and orien-
tation to achieve a sufficient de-correlation between the calibration parameters and
the plane parameters.

In Habib et al. (2010) two strip adjustment methods are presented: an approx-
imative and a quasi-rigorous method. The approximate method is based on some
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restrictive assumptions (such as nearly flat terrain, parallel flight lines, roll and pitch
angles equal to zero, profile scanners), which strongly restrict the universality of the
method. Some of these restrictions are omitted in the quasi-rigorous method where
parts of the flight trajectory are used. However, variations of the pitch and roll angles
are not considered, i.e. they are assumed to be zero. Furthermore, the misalign-
ment is formulated through a rotation matrix for small angles, and thus only small
misalignment angles can be handled. Both strip adjustment methods minimize the
orthogonal distances between points and triangles, whereby the triangles are derived
from a Triangular Irregular Network (TIN). Appropriate correspondence areas have
to be selected manually. The parameters are estimated by a LSA. Parameters are
refined iteratively.

Hebel and Stilla (2012) states that erroneous misalignment angles have the highest
impact on the overall accuracy of ground points. Thus, a strip adjustment method
which is limited to the estimation of the three misalignment angles is presented. Only
flat areas are considered for the minimization of discrepancies between overlapping
strips. Within these smooth areas, building facades and roofs are extracted by a
RANSAC based segmentation process, whereas ground points are omitted to reduce
the overall runtime of the strip adjustment. Corresponding segments are found
by comparing their centroids, eigenvalues and normals. Possibly remaining false
correspondences are eliminated by a RANSAC approach. In the LSA the point-to-
plane distances between corresponding planes are minimized. Although the initial
discrepancies between strips are in the range of several meters, parameters are not
refined iteratively.

Literature on aerial triangulation Recently, Cucci et al. (2017) proposed to include
the raw inertial observations directly into the aerial triangulation instead of using
the flight trajectory from a separate GNSS/INS filtering step. It is shown that this
is of particular advantage if cheap and lightweight inertial sensors are employed, e.g.
on UAVs, and in challenging situations such as mapping in corridors and areas with
no GNSS signal reception. We have to acknowledge that this seems to be a valid and
useful extension for the hybrid adjustment too. However, this might be very difficult
in case of lidar, mainly due to the facts that it is – in contrast to photogrammetry
– a continuous measurement system with no redundancy within a single strip.

1.4 Resulting publications
The following publications resulted from the work presented in this thesis:

• First-authorship, peer-reviewed papers:
1. Glira et al. (2015a): Glira, P., Pfeifer, N., Briese, C., Ressl, C., 2015. A

correspondence framework for ALS strip adjustments based on variants
of the ICP algorithm. PFG Photogrammetrie, Fernerkundung, Geoinfor-
mation 2015, 275–289.
→ awarded with the “Hansa-Luftbild-Preis 2016”

2. Glira et al. (2015b): Glira, P., Pfeifer, N., Briese, C., Ressl, C., 2015.
Rigorous strip adjustment of airborne laserscanning data based on the
ICP algorithm. ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences II-3/W5, 73–80.
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3. Glira et al. (2016): Glira, P., Pfeifer, N., Mandlburger, G., 2016. Rig-
orous strip adjustment of UAV-based laserscanning data including time-
dependent correction of trajectory errors. Photogrammetric Engineering
& Remote Sensing 82, 945–954.

• Co-authorship, peer-reviewed papers:
4. Milenković et al. (2015): Milenkovic, M., Pfeifer, N., Glira, P., 2015.

Applying terrestrial laser scanning for soil surface roughness assessment.
Remote Sensing 7, 2007–2045.

5. Wieser et al. (2017): Wieser, M., Mandlburger, G., Hollaus, M., Otepka,
J., Glira, P., Pfeifer, N., 2017. A case study of UAS-borne laser scanning
for measurement of tree stem diameter. Remote Sensing 9, 1154.

6. Vehling et al. (2017): Vehling, L., Baewert, H., Glira, P., Moser, M.,
Rohn, J., Morche, D., 2017. Quantification of sediment transport by rock-
fall and rockslide processes on a proglacial rock slope (Kaunertal, Austria).
Geomorphology 287, 46–57.

7. Zlinszky et al. (2017): Zlinszky, A., Boergens, E., Glira, P., Pfeifer, N.,
2017. Airborne laser scanning for calibration and validation of inshore
satellite altimetry: A proof of concept. Remote Sensing of Environment
197, 35–42.

• Co-authorship papers:
8. Mandlburger et al. (2015b): Mandlburger, G., Glira, P., Pfeifer, N.,

2015. UAS-borne lidar for mapping complex terrain and vegetation struc-
ture. GIM International - the Worldwide Magazine For Geomatics 29,
30–33.

9. Mandlburger et al. (2015c): Mandlburger, G., Hollaus, M., Glira, P.,
Wieser, M., Milenkovic, M., Riegl, U., Pfennigbauer, M., 2015. First
examples from the RIEGL VUX-SYS for forestry applications. In: Proc.
SilviLaser 2015; 28–30 Sep. 2015, La Grande Motte, France.

10. Mandlburger et al. (2015a): Mandlburger, G., Pfennigbauer, M., Riegl,
U., Haring, A., Wieser, M., Glira, P., Winiwarter, L., 2015. Comple-
menting airborne laser bathymetry with UAV-based lidar for capturing
alluvial landscapes. In: Remote Sensing for Agriculture, Ecosystems,
and Hydrology XVII, International Society for Optics and Photonics. p.
96370A.

11. Pfeifer et al. (2015): Pfeifer, N., Mandlburger, G., Glira, P., Roncat,
A., Mücke, W., Zlinszky, A., 2015. Lidar: Exploiting the versatility of a
measurement principle in photogrammetry. 55th photogrammetric week
, 105–118.

12. Wieser et al. (2016): Wieser, M., Hollaus, M., Mandlburger, G., Glira,
P., Pfeifer, N., 2016. ULS lidar supported analyses of laser beam pen-
etration from different ALS systems into vegetation. ISPRS Annals of
Photogrammetry, Remote Sensing & Spatial Information Sciences 3.

13. Mandlburger et al. (2017): Mandlburger, G., Wenzel, K., Spitzer, A.,
Haala, N., Glira, P., Pfeifer, N., 2017. Improved topographic models via
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concurrent airborne lidar and dense image matching. ISPRS Annals of
Photogrammetry, Remote Sensing & Spatial Information Sciences 4.

• Co-authorship, peer-reviewed book contributions:
14. Pfeifer et al. (2016): Pfeifer, N., Mandlburger, G., Glira, P., 2016. Laser-

scanning. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 1–51.
15. Hilger et al. (2019) Hilger, L., Dusik, J., Heckmann, T., Haas, F., Glira,

P., Pfeifer, N., Vehling, L., Rohn, J., Morche, D., Baewert, H., et al.,
2019. A Sediment Budget of the Upper Kaunertal. Springer Nature
Switzerland. pp. 289–312.

• First-authorship poster presentations:
16. Glira et al. (2013): Glira, P., Briese, C., Kamp, N., Pfeifer, N., 2013.

Simultaneous relative and absolute orientation of point clouds with TLS
radomes. In: EGU General Assembly Conference Abstracts, p. 13116.

17. Glira et al. (2014): Glira, P., Briese, C., Pfeifer, N., Dusik, J., Hilger,
L., Neugirg, F., Baewert, H., 2014. Accuracy analysis of height difference
models derived from terrestrial laser scanning point clouds. In: EGU
General Assembly Conference Abstracts.
→ awarded with the “EGU Poster Award 2015”

• Co-authorship poster presentations:
18. Briese et al. (2013) Briese, C., Glira, P., Pfeifer, N., 2013. Integration of

multi-temporal airborne and terrestrial laser scanning data for the anal-
ysis and modelling of proglacial geomorphodynamic processes. In: EGU
General Assembly Conference Abstracts.

19. Zlinszky et al. (2015) Zlinszky, A., Glira, P., Boergens, E., Pfeifer, N.,
2015. Comparing airborne lidar water surface heights with synchronous
envisat altimetry over lake Balaton, Hungary. In: EGU General Assem-
bly Conference Abstracts.

Note on authorship It is noted, that the sections 2.1, 3.1.1, 3.1.4, 3.2.1, 3.2.2,
4.1, 4.2, and 4.3 are taken largely from the papers Glira et al. (2015a), Glira et al.
(2015b), and Glira et al. (2016).

1.5 Thesis organization
The remainder of this thesis is organized in the manner outlined below:

• Section 2: The methodological framework of the hybrid adjustment is based
on the ICP algorithm. Thus, a brief introduction of the algorithm, including
a solution for a simplified version of the algorithm, is presented first.

• Section 3: This section summarizes all aspects of the hybrid adjustment.
Particular emphasis was laid on providing all the information needed for an
own implementation of the proposed method. The section is divided into:
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– Section 3.1: This section first describes the geometric relations between
the sensor measurements and the object points, namely the direct georef-
erencing equations for lidar and images, as well as the collinearity equa-
tions. These equations are extended by sensor calibration parameters,
e.g. for the correction of the polar measurements of the scanner. Then,
four models for the correction of the GNSS/INS trajectory are presented.
Finally, a summary and categorization of the previously introduced pa-
rameters is given.

– Section 3.2: This section is dedicated to the correspondence selection
problem. This includes the selection, the matching, and the rejection
of correspondences. For the selection step, four different strategies are
presented. Finally, the correspondences between the different data types,
e.g. between lidar strips and aerial images, are described including the
respective objective functions.

• Section 4: The various aspects of the hybrid adjustment are demonstrated
on the basis of four examples.

• Section 5: Summary of the proposed method and conclusions that are drawn
from its application.

1.6 Notation
To facilitate the following considerations, some notation is introduced here.

Coordinate systems
s scanner coordinate system
c camera coordinate system
i INS coordinate system
n navigation coordinate system
e ECEF coordinate system
m mapping coordinate system, e.g. UTM

Vectors and matrices
va vector v expressed in coordinate system with index a
Rba rotation matrix from coordinate system a to coordinate system b
x′ reduced coordinates, e.g. image coordinates reduced to the

principal point of a camera

Sets
N set of points, i.e. a point cloud, N = {1, . . . , n, . . . , N}
S set of lidar/image strips, S = {1, . . . , s, . . . , S}
K set of overlapping lidar strip pairs, K = {1, . . . , k, . . . ,K}
L set of laser/lidar scanner, L = {1, . . . , l, . . . , L}
C set of cameras, C = {1, . . . , c, . . . , C}
I set of aerial images, I = {1, . . . , i, . . . , I}
T set of object points, T = {1, . . . , t, . . . , T}
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P set of STR-to-STR correspondences, P = {1, . . . , p, . . . , P}
Q set of CPC-to-STR correspondences, Q = {1, . . . , q, . . . , Q}
V set of IMG-to-STR correspondences, V = {1, . . . , v, . . . , V }
R set of IMG-to-IMG correspondences, R = {1, . . . , r, . . . , R}
U set of IMG-to-GCP correspondences, U = {1, . . . , u, . . . , U}

In the hybrid adjustment many different data types are used. To better differ-
entiate between coordinate system indices and objects belonging to one of the sets
above, the index of a specific object is surrounded by square brackets. For instance,
the transformation of the t-th object point from the n-system to the e-system is
denoted by:

xe[t] = Renxn[t]
Another example are the image observations of the t-th object point in the i-th

image, given in the coordinate system of the camera, which are denoted by:

x̄c[i][t], ȳ
c
[i][t]
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2 The ICP algorithm as methodological
framework

2.1 The ICP algorithm
The methodological framework of the hybrid adjustment presented herein is formed
by the Iterative Closest Point (ICP) algorithm (Besl and McKay (1992), Chen and
Medioni (1992)). This algorithm is used to improve the alignment of two (or more)
point clouds (Figure 2.1). Nowadays the term ICP does not necessarily refer to the
algorithm presented in the original publications, but rather to a group of surface
matching algorithms which have in common the following aspects:

I : correspondences are established iteratively
C : as correspondence the closest point, or more generally, the

corresponding point, is used
P : correspondences are established on a point basis.

The hybrid adjustment of lidar point clouds and aerial images presented in this
work is methodologically built upon these three basic aspects.

initial state after 2 iterations final alignment
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Figure 2.1: Matching of two overlapping lidar point clouds with the ICP algorithm.

The basic version of the ICP algorithm is applicable to two point clouds only. As
can be seen in Figure 2.2, these point clouds initially don’t match very well, i.e.
there are discrepancies within the overlapping area of the point clouds. The goal
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of the ICP algorithm is to minimize these discrepancies. This can be achieved by
transforming iteratively the so called movable point cloud, whereas the position of
the other point cloud remains fixed. It is noted that to apply the algorithm, a good
estimate of the initial relative orientation of the point clouds is necessary. This
main requirement is typically fulfilled in airborne lidar, especially if priors for the
mounting calibration of the laser scanners are known.

The framework of the ICP algorithm can be broken down into five main steps (see
Figure 2.2):

1. Selection: A subset of points is selected within the overlap area in one point
cloud.

2. Matching: Find the corresponding points of the selected subset in the other
point cloud.

3. Rejection: False correspondences (outliers) are rejected on the basis of the
compatibility of points.

4. Minimization: Estimation of transformation parameters (for the movable
point cloud) by minimizing the distances between corresponding points.

5. Transformation: Transformation of the movable point cloud with the esti-
mated parameters.

Finally, a suitable convergence criterion is tested. If it is not met, the process
restarts from step 1 (or step 2 if point selection is not repeated iteratively).

2.2 A basic implementation of the ICP algorithm
In this section the solution for a simplified1 version of the ICP algorithm is described.
This serves as a basis for section 3, where the modifications and extensions that have
been made to the ICP framework will be presented.

Let p[n] and q[n], n ∈ N = {1, . . . , n, . . . , N}, be two point clouds with the same
number of points N (Figure 2.3). In its initial state the point clouds are already
roughly aligned, i.e. the discrepancies within the overlap area of the two point clouds
are small in relation to their object size. The point cloud p[n] is defined as fixed in
object space. The aim of the ICP algorithm is to find a transformation T for the
movable point cloud q[n] such that the discrepancies between the two point clouds
are minimized. In this basic implementation, a rigid body transformation is used to
transform the movable point cloud q[n]. Thus, the transformation T is defined by

T (q[n]) = Rq[n] + t (2.1)

where t denotes a 3-by-1 translation vector and R denotes a 3-by-3 orthogonal
rotation matrix.

The correspondences between the two point clouds are established by pairing
each point in p[n] to the nearest neighbour (nn) in q[n]; this gives a set P of N
correspondences, p ∈ P = {1, . . . , p, . . . , N}.

1It is noted that the selection and rejection steps described above are skipped in this example.
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Initial State

1. Selection

2. Matching

3. Rejection

4. Minimization

5. Transformation

fixed

movable

Converged?

(here: point-to-point error metric)

return to step 1
no:

yes: final alignment found!

Figure 2.2: Visualization of the five basic ICP steps for two overlapping point clouds
(blue = fixed, red = movable, green = correspondence).

To describe the discrepancies between these corresponding points different error
metrics can be chosen. Often the euclidean distance, also denoted as point-to-point
distance, is used for this purpose:

d[p] = ||p[p] − q[p]|| (2.2)

Now the objective of the ICP optimization problem can be formulated as

Ω = argmin
R,t


N∑

[p]=1
d2

[p]

 (2.3)

As the sum of squared point-to-point distances is minimized here, this corresponds
to a least squares problem. A closed form solution for this problem – i.e. a solution
without iterations and no need for initial parameter values – has been proposed by
Horn (1987). We will use this solution to directly estimate the rotation matrix R and
the translation vector t for the movable point cloud from our set of correspondences.
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fixed

movable

Figure 2.3: A single iteration of the ICP algorithm: Initial state of the point clouds
(left), established correspondences (center), and point clouds after trans-
formation (right). A video of the ICP alignment process can be found
at https://youtu.be/uzOCS_gdZuM.

We start by computing the centroids of both point clouds by

pc =
∑N
n=1 p[n]
N

qc =
∑N
n=1 q[n]
N

(2.4)

Now the reduced coordinates are given by

p′[p] = p[p] − pc q′[p] = q[p] − qc p ∈ P = {1, . . . , p, . . . , N} (2.5)

where the points are ordered in both point clouds according to the previously estab-
lished correspondences. Now the covariance matrix can be computed by

S = PQ> (2.6)

where P and Q are 3-by-N matrices that have p′[p] and q′[p] as columns, respectively.
From the singular value decomposition of the covariance matrix

S = UΣV > (2.7)

the rotation matrix R and the translation vector t can now be directly computed by

R = V

1
1

1
det(UV >)

U> (2.8)

t = qc −Rpc (2.9)

It should be noted, that the ICP algorithm presented in this section has several
limitations and is therefore limited in practice to a few special applications. Most
importantly the point clouds need to have the same number of points and need to be
fully overlapping, i.e. they must describe the same object. Due to these limitations,
a huge number of modifications were derived from the original works of Besl and
McKay (1992) and Chen and Medioni (1992). They refer to the selection of points,
the weighting of correspondences, the metric for measuring the distance between
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corresponding points (error metric), and other aspects. A summary has been given
by Rusinkiewicz and Levoy (2001), who suggest that a better expansion of the
acronym ICP would be iterative corresponding point instead of the original iterative
closest point. Planitz et al. (2005) summarize methods based on intrinsic surface
parameters for solving the correspondence problem.
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3 Hybrid adjustment

The hybrid adjustment simultaneously optimizes the orientation of lidar strips (STR)
and aerial images (IMG) considering ground truth data in the form of control point
clouds (CPC) and ground control points (GCP). Different types of correspondences
are thereby used as links between these data types (Figure 3.1).

lidar strips aerial images Ground Control PointsControl Point Clouds
STR IMG GCPCPC

correspondences
CPC-to-STR

correspondences
IMG-to-STR

correspondences
IMG-to-GCP

correspondences
IMG-to-IMG

correspondences
STR-to-STR

Figure 3.1: Input data and correspondences used in the hybrid adjustment.

The methodological basis of the hybrid adjustment is formed by the correspon-
dence framework of the ICP algorithm described in the previous chapter. On this
basis, several extensions have been made:

• While the original ICP algorithm is restricted to two point clouds only, the
method presented in this work can handle an arbitrary number of point
clouds. These point clouds are either lidar strips, point clouds derived from
image observations (image tie points), or point clouds that are fixed in object
space (ground truth data). The alignment of all point clouds is optimized si-
multaneously in a single least squares adjustment (opposed to e.g. a sequential
alignment of overlapping point clouds pairs).

• Instead of using each point as correspondence, four different correspondence
selection strategies have been developed. The main differences among these
strategies are their computational complexity and their suitability for different
terrain types. They are denoted as:

– Random Sampling (RS)
– Uniform Sampling (US)
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– Normal Space Sampling (NSS)
– Maximum Leverage Sampling (MLS)

These strategies are described in section 3.2.1. The thereby selected corre-
spondences are restricted to the overlapping areas of the point clouds.

• As error metric the point-to-plane distance is used instead of the point-to-
point distance (section 3.2.4). As a consequence, corresponding points do not
need to be identical in object space, but they only need to belong to the same
(tangent) plane (e.g. roof or street). Moreover, the point-to-plane distance can
be better adapted to different point densities and fewer iterations need to be
computed due to a faster convergence behavior.

• Several correspondence rejection criteria have been defined for the a priori
detection and elimination of false correspondences (outliers) (section 3.2.3). As
these rejection criteria do not guarantee that all outliers are removed, a robust
adjustment method is used for the removal of the remaining ones.

• Instead of using a rather simple transformation model (e.g. a rigid body trans-
formation), point clouds are modelled in a rigorous way considering
the original sensor measurements, cf. section 3.1. For instance, the point
cloud of a lidar strip is modelled by the original flight trajectory, the original
polar measurements of the scanner and its mounting on the sensor platform.

• The integration of the bundle adjustment of aerial images (aerial tri-
angulation) into the ICP framework allows the simultaneous orientation and
calibration of lidar point clouds and aerial images. The images are thereby
connected to the lidar point clouds by the sparse feature point cloud (image
tie points) and by the common flight trajectory.

• The calibration parameters of the lidar scanner and the cameras can be
estimated by adjustment, i.e. the systematic range and angle measurement
errors of the scanners as well as the focal length, principal point, and distor-
tion parameters of the cameras (interior orientation). Thereby an arbitrary
number of different scanners and cameras can be handled.

• Depending on the systematic errors of the flight trajectory, four different mod-
els can be chosen for the correction of the flight trajectory (section 3.6):

– Bias Trajectory Correction Model (BTCM)
– Linear Trajectory Correction Model (LTCM)
– Quadratic Trajectory Correction Model (QTCM)
– Spline Trajectory Correction Model (STCM)

• Ground truth data is considered in the form of ground control points (GCP)
for the imagery or control point clouds (CPC) for the lidar strips. The ground
truth data is used to define the absolute orientation of the lidar and the image
block.

• In contrast to the original ICP algorithm, observations are weighted in the
adjustment according to their measurement precision.
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The remainder of this chapter is organized as follows: basic equations and the
parameter model of the adjustment is discussed in the following section 3.1. The
various types of correspondences which define the adjustment’s observations is de-
scribed in section 3.2. Finally, the whole workflow and the solution of the hybrid
adjustment are summarized in section 3.3.

3.1 Mathematical foundation and parameter model
We start in this section by describing the equations that form the core of the hybrid
adjustment of lidar point clouds and aerial images. These are the equations that
relate the measurements of the sensors on the aircraft (laser scanner(s), camera(s),
GNSS, INS) to the observed object points on the ground (Figure 3.2). We will need
these equations in section 3.2 to establish the correspondences and thereby formulate
the adjustment’s observations.

In the case of lidar point clouds, the relation between sensor measurements and
ground points is given by the direct georeferencing equation, which we will describe
together with its extension by additional sensor calibration parameters in section
3.1.1. In the case of aerial images the relation is given by the direct georeferencing
equation (section 3.1.2) and the collinearity equations (section 3.1.3), extended by
additional image distortion parameters. For the correction of the GNSS/INS flight
trajectory – which is shared by lidar strips and aerial images through the respective
direct georeferencing equations – four different models are described in section 3.1.4.
Finally, a summary of the complete parameter model is given in section 3.1.5.
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Figure 3.2: Schematic representation of a minimal set of sensors on an aircraft.
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3.1.1 Direct georeferencing of lidar point clouds
The direct georeferencing equation is used to generate georeferenced point clouds
from the measurements of a lidar multi-sensor system. This requires three types of
input data (Hebel and Stilla, 2012; Skaloud and Lichti, 2006):

1. the polar measurements of the scanner,

2. the flight trajectory of the aircraft and

3. the mounting calibration parameters.

Combining all these measurements, the point coordinates of an object point [t],
measured by a laser scanner [l] at time t are given by

xe[t](t) = ge(t) +Ren(t)Rni (t)
(
ai[l] +Ris[l] x

s
[t]

)
(3.1)

whereby we assume to have in the hybrid adjustment later on a set L of L laser
scanners and a set T of T object points:

l ∈ L = {1, . . . , l, . . . , L}, t ∈ T = {1, . . . , t, . . . , T}

In equation (3.1) the superscript of a vector denotes the coordinate system in which
it is defined, whereas the notation Rtarget

source is used to denote a transformation from
a source coordinate system to a target coordinate system (cf. section 1.6). Conse-
quently, four coordinate systems appear in equation (3.1):
s-system scanner coordinate system
i-system INS coordinate system, often also denoted as body coordinate sys-

tem
n-system navigation coordinate system, equal to a local-level coordinate sys-

tem (x = north, y = east, z = nadir)
e-system Earth-Centered, Earth-Fixed (ECEF) coordinate system

Definitions of these coordinate systems can be found in Bäumker and Heimes
(2001). Furthermore, equation (3.1) includes:

xs[t] . . . 3-by-1 vector with the coordinates of the laser point [t] in the s-
system. Generally, these coordinates can be expressed as a function
of the range ρ[t] and two angles α[t] and β[t]:

xs[t](t) = xs[t](ρ[t], α[t], β[t]) (3.2)

Ris[l] . . . 3-by-3 rotation matrix describing the rotation from the s-system
to the i-system, i.e. from the coordinate system of the laser scan-
ner [l] to the INS. This rotation is usually denoted as (boresight)
misalignment and is parametrized through three Euler angles:

Ris[l] = Ris[l](α1[l], α2[l], α3[l]) (3.3)
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ai[l] . . . 3-by-1 vector describing the positional offset between the GNSS an-
tenna and the origin of the s-system. This vector is usually denoted
as lever-arm:

ai[l] =
[
aix[l] aiy[l] aiz[l]

]T
(3.4)

Rni (t) . . . 3-by-3 rotation matrix describing the rotation from the i-system
to the n-system as first part of the trajectory data. This rota-
tion can be estimated from the GNSS/INS measurements and is
parametrized through three Euler angles roll φ, pitch θ, and yaw ψ:

Rni (t) = Rni (φ(t), θ(t), ψ(t)) (3.5)

Ren(t) . . . 3-by-3 rotation matrix describing the rotation from the n-system
to the e-system. This rotation is not observed, but is a function of
the longitude λ and latitude ϕ corresponding to the actual value of
ge(t):

Ren(t) = Ren(λ(t), ϕ(t)) (3.6)

ge(t) . . . 3-by-1 vector describing the position of the GNSS antenna in the
e-system as second part of the trajectory data:

ge(t) =
[
gex(t) gey(t) gez(t)

]T
(3.7)

It should be noted at this point, that the hybrid adjustment method presented
herein is fully performed in the e-system. Only afterwards, the points obtained by
equation (3.1) are projected from the e-system to an arbitrary mapping coordinate
system (m-system), e.g. UTM. This has the main advantage that the surface distor-
tions applied in the m-system have not to be considered in the adjustment (Zhang
and Shen, 2013).

Side note Often a provided flight trajectory already relates to the s-system (in
contrast to the definition given above). In this case

• the angles roll φ, pitch θ, and yaw ψ directly describe the rotation from the
s-system of the laser scanner [l] to the n-system:

Rns[l](t) = Rni (t)Ris[l] = Rns[l](φ(t), θ(t), ψ(t)) (3.8)

• ge(t) relates to the origin of the s-system,

• and the lever-arm ai[l] can be omitted in equation (3.1).

As a result, equation (3.1) simplifies to:

xe[t](t) = ge(t) +Ren(t)Rns[l](t) xs[t] (3.9)

It is emphasized that any measurement in equation (3.1) can be affected by sys-
tematic errors, which in turn cause a systematic (nonlinear) deformation of the lidar
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strip (Glennie, 2007; Habib and Rens, 2007). To minimize these errors within the
adjustment, additional calibration and correction parameters have to be introduced
into the direct georeferencing equation (3.1).

Mounting calibration parameters The six mounting calibration parameters are
represented in equation (3.1) by the rotation matrix Ris[l], defined by the three mis-
alignment angles α1[l], α2[l], α3[l], and by the lever-arm ai[l], defined by the three
components aix[l], aiy[l], and aiz[l]. In most of the cases, the mounting calibration pa-
rameters are already known in advance, e.g. from a previously performed calibration
or construction plans of the sensor platform. However, these values may be inaccu-
rate or outdated. The effect of an erroneous mounting calibration is visualized in
Figure 3.3. Especially an incorrect misalignment, which is difficult to determine by
terrestrial measurements, can cause very large point displacements because the effect
of angular errors is directly proportional to the object distance ρ. For this reason
many strip adjustment methods concentrate on the estimation of Ris[l], neglecting
other parameters (e.g. Toth (2002), Hebel and Stilla (2012)). We recommend to fully
re-estimate the mounting calibration parameters by adjustment. It is noted that due
to correlations, especially to the trajectory correction parameters (cf. section 3.1.4),
the estimated values are usually not transferable to other flight missions.

Effect of error in α1[l]

correct
wrong

Effect of error in aix[l]

ys xs

zs

xs

ys

zs

xs

zs
ys ys

−zs

zs

Effect of error in α2[l] Effect of error in α3[l]

Effect of error in aiy[l] Effect of error in aiz[l]

Figure 3.3: Effect of an erroneous mounting calibration (top: misalignment angles,
bottom: lever-arm) on the georeference of lidar strips.

3.1.1.1 Extension by scanner calibration parameters

The scanner calibration parameters compensate for the systematic errors of the lidar
scanner’s measurements xs[t]. A comprehensive analysis of scanner-related errors and
their causes can be found in Katzenbeisser (2003). The specific choice of parameters
primarily depends on the construction type of the scanner, especially on its beam
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deflection mechanism. For example, the parameters required to appropriately model
the errors of scanners that deflect the laser beam only in one direction (linear scan-
ners), differ from those that deflect the laser beam in a circular pattern (nutating
scanners or Palmer scanner). Hence, it is difficult to give a general recommendation.
Instead, we propose a calibration model which is universally applicable, although it
may not be the optimal choice in any case. Therefore we formulate xs[t], according
to equation (3.2), for an object point [t] as a function of the polar coordinates ρ[t],
α[t], and β[t]:

xs[t] =

ρ[t] cosα[t] sin β[t]
ρ[t] sinα[t]

ρ[t] cosα[t] cosβ[t]


s

(3.10)

For each polar coordinate two calibration parameters are introduced, an offset (bias)
and a scale parameter. This yields to three offset parameters (∆ρ[l], ∆α[l], ∆β[l])
and three scale parameters (ερ[l], εα[l], εβ[l]) which are defined by

ρ[t] = ∆ρ[l] + ρ0[t] · (1 + ερ[l]) (3.11)
α[t] = ∆α[l] + α0[t] · (1 + εα[l]) (3.12)
β[t] = ∆β[l] + β0[t] · (1 + εβ[l]) (3.13)

where the original scanners’s measurements are denoted by ρ0[t], α0[t], and β0[t]. The
corrections of the scanner measurements are shown in Figure 3.4 exemplarily for a
constant range offset ∆ρ[l] and a constant scan angle offset ∆α[l].

Correction of range offset ∆ρ[l]

”smiley effect”

Correction of scan angle offset ∆α[l]

correct
wrong

ys

zs

ys

zs

∆ρ

Figure 3.4: The scanner calibration parameters correct for systematic errors of range
and angle measurements. This figure shows (on the left) the correction
of a constant range offset, which leads to a bending of the lidar strip
across the flight direction, and (on the right) the correction of a scan
angle offset, e.g. due to a zero-point error of the angular encoder.

Example Linear scanners deflect the laser beam only in one direction (usually
across the flight track). Thus, α[t] can be interpreted as the beam deflection angle,
whereas β[t] is equal to zero. The parameters associated with β[t], i.e. ∆β[l] and
εβ[l], can be omitted in this case. The remaining parameters compensate for a range
finder offset error (∆ρ[l]), a range finder scale error (ερ[l]), a zero-point error of the
angular encoder (∆α[l]), and a scale error of the angular encoder (εα[l]). However,
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these parameters may also compensate for other correlated (and possibly unknown)
effects. For example, the parameter εα[l] not only serves to correct an angular
scale error but also minimizes the influence of the atmospheric refraction. Similarly,
the parameter ερ[l], which primarily corrects a range finder scale error, may also
compensate range errors caused by the atmospheric propagation delay.

3.1.2 Direct georeferencing of aerial images
The exterior orientation of an image – also denoted as image pose in the field of
computer vision – is defined by the position of the projection center of the camera
and the rotation of the image with respect to the object coordinate system, often
described in form of a rotation matrix. Under the assumption that the exposure
time t of an image is known, the exterior orientation of an image can be directly
derived from:

1. the flight trajectory of the aircraft and

2. the mounting calibration parameters

We denote this type of images as coupled images, as their exterior orientation is
coupled to the flight trajectory. The projection center and the rotation matrix of
these images are given for an image [i] at time t by:

xe0[i](t) = ge(t) +Ren(t)Rni (t) ai[c] (3.14)
Rec[i](t) = Ren(t)Rni (t)Ric[c] (3.15)

whereby the camera coordinate system (c-system) is newly introduced here (cf. sec-
tion 1.6). In addition to the entities already introduced in equation (3.1), we further
specify:

xe0[i](t) . . . 3-by-1 vector with the coordinates of the projection center of the
image [i] in the e-system:

xe0[i](t) =
[
Xe

0[i](t) Y e
0[i](t) Ze0[i](t)

]T
(3.16)

Rec[i] . . . 3-by-3 rotation matrix describing the rotation from the c-system
to the e-system. Thus, this rotation matrix describes the three-
dimensional rotation, or attitude, of the camera with respect to the
object coordinate system, defined as e-system in this work. It is
parametrized through three Euler angles ω[i], ϕ[i], κ[i]:

Rec[i] = Rec[i](ω[i], ϕ[i], κ[i]) (3.17)
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Ric[c] . . . 3-by-3 rotation matrix describing the rotation from the c-system to
the i-system, i.e. from the camera to the INS. In analogy to the laser
scanner case, this rotation is denoted as (boresight) misalignment
and is parametrized through three Euler angles:

Ric[c] = Ric[c](β1[c], β2[c], β3[c]) (3.18)

ai[c] . . . 3-by-1 vector describing the positional offset between the GNSS
antenna and the projection center of the camera. This vector is
denoted as lever-arm:

ai[c] =
[
aix[c] aiy[c] aiz[c]

]T
(3.19)

In the hybrid adjustment the mounting calibration parameters of the camera Ric[c]
and ai[c] are estimated. However, if the residuals show systematic patterns, more
flexibility for each image might be necessary. For this, additional correction param-
eters for the exterior orientation of an image are introduced, i.e. three correction
parameters ∆Xe

0[i],∆Y e
0[i],∆Ze0[i] for the position of the projection center and three

correction parameters ∆ω[i],∆ϕ[i],∆κ[i] for the rotation of an image. These param-
eters must be observed through fictional observations (section 3.3) to honor their
zero expectation and to keep the coupling to the trajectory intact.

Exception loose images In practice often the time stamps t of the images are
unknown or no GNSS/INS trajectory is available, e.g. if the imagery was collected
independently from the lidar point clouds. In such cases the direct georeferencing
equation can not be used. Instead, the six elements of the exterior orientation of
the images – that is Xe

0[i], Y e
0[i], Ze0[i], ω[i], ϕ[i], κ[i] – can directly be estimated by

adjustment (cf. Table 3.3). We denote these type of images in the following as loose
images.

3.1.3 Collinearity equations
The collinearity equations relate the 2D image coordinates with the 3D object co-
ordinates of a single point (Figure 3.5). They can be written for an object point [t],
which was observed in an image [i] taken by a camera [c] as:

x̄c[i][t] = xc0[c] − c
c
[c]
r11(Xe

[t] −X
e
0[i]) + r21(Y e

[t] − Y
e

0[i]) + r31(Ze[t] − Ze0[i])
r13(Xe

[t] −X
e
0[i]) + r23(Y e

[t] − Y
e

0[i]) + r33(Ze[t] − Ze0[i])
(3.20)

ȳc[i][t] = yc0[c] − c
c
[c]
r12(Xe

[t] −X
e
0[i]) + r22(Y e

[t] − Y
e

0[i]) + r32(Ze[t] − Ze0[i])
r13(Xe

[t] −X
e
0[i]) + r23(Y e

[t] − Y
e

0[i]) + r33(Ze[t] − Ze0[i])
(3.21)

whereby we assume to have in the hybrid adjustment later on a set C of C cameras,
a set I of I images and a set T of T object points:

c ∈ C = {1, . . . , c, . . . , C}, i ∈ I = {1, . . . , i, . . . , I}, t ∈ T = {1, . . . , t, . . . , T}
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The superscript e denotes the ECEF coordinate system and the superscript c the
camera coordinate system. Furthermore, the collinearity equations include:

x̄c[i][t], ȳ
c
[i][t] . . . undistorted image coordinates of object point [t] in image [i]

xc0[c], y
c
0[c] . . . coordinates of the principal point of camera [c]
cc[c] . . . principal distance of camera [c]

Xe
0[i], Y

e
0[i], Z

e
0[i] . . . coordinates of the projection center of image [i]
rij . . . the elements of the rotation matrix Rec[i]

Xe
[t], Y

e
[t], Z

e
[t] . . . coordinates of the object point [t]

τ
τ

τ ′
cc [xc0 y

c
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Figure 3.5: The collinearity equations describe the relation between image and object
coordinates. The deviation from an ideal perspective is described by the
image distortion parameters.

In most of the cases it is necessary to extend the collinearity equations with addi-
tional parameters, e.g. to deal with distorted imagery or to account for distortions
due to cartographic projections (Kraus, 1997, p. 280). In this work, we exemplify
in the next section the extension of the collinearity equations by introducing image
distortion parameters.

3.1.3.1 Extension by image distortion parameters

The collinearity equations, as stated above, are valid for an ideal perspective camera
only. The deviation from this ideal perspective is modeled by the image distortion
coefficients. They form, together with the coordinates of the projection center and
the principal distance, the camera calibration parameters.

The estimation of a proper camera calibration in a self-calibrating bundle adjust-
ment is a main requirement for the accurate reconstruction of the Earth’s surface,
mainly because residual systematic camera calibration errors propagate onto the re-
constructed earth surface. However, the choice of a specific image distortion model
strongly depends on the deployed camera, but also on the purpose of the flight mis-
sion, e.g. parameters should be as distinct as possible if camera calibration is the
main purpose. A very popular, physically motivated image distortion model was
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introduced by Brown (1971). Following the definition given in Förstner and Wro-
bel (2016), the image distortion can thereby be modeled, by substituting the image
coordinates x̄c[i][t], ȳc[i][t] in (3.20) and (3.21) according to

x̄′ = x′ + x′(K ′1[c]r
′2 +K ′2[c]r

′4 +K ′3[c]r
′6 + . . .)+

+ (P ′1[c](r′2 + 2x′2) + 2P ′2[c]x
′y′)(1 + P ′3[c]r

′2 + . . .)
(3.22)

ȳ′ = y′ + y′(K ′1[c]r
′2 +K ′2[c]r

′4 +K ′3[c]r
′6 + . . .)+

+ (2P ′1[c]x
′y′ + P ′2[c](r′2 + 2y′2))(1 + P ′3[c]r

′2 + . . .)
(3.23)

with
x̄′, ȳ′ . . . reduced undistorted image coordinates:

x̄′ = x̄c[i][t] − x
c
0[c], ȳ′ = ȳc[i][t] − y

c
0[c] (3.24)

x′, y′ . . . reduced distorted image coordinates:

x′ = xc[i][t] − x
c
0[c], y′ = yc[i][t] − y

c
0[c] (3.25)

r′ . . . radial distance defined as r′ =
√
x′2 + y′2

K ′n[c] . . . n-th radial distortion coefficient of camera [c]
P ′n[c] . . . n-th tangential distortion coefficient of camera [c]

The most popular phenomenological motivated alternatives to the Brown model
are the Ebner model (12 parameters) (Ebner, 1976) and the Gruen model (44 pa-
rameters) (Grün, 1986). More about the choice of an appropriate camera calibration
model can be found in (Förstner and Wrobel, 2016, p. 684) and Blázquez and Colom-
ina (2010).

3.1.4 Trajectory correction parameters
The trajectory of the aircraft is assumed to be estimated in advance by the inte-
gration of GNSS and INS measurements in a Kalman filter (Kalman, 1960). As a
result, the original position and orientation estimates are given, together with their
precisions, as a function of the flight time t:

Original position Original orientation

gex0(t). . . x-coordinate
gey0(t). . . y-coordinate
gez0(t). . . z-coordinate

φ0(t). . . roll angle
θ0(t). . . pitch angle
ψ0(t). . . yaw angle

The original flight trajectory forms the basis for the direct georeference of lidar
strips (section 3.1) and aerial images (section 3.14). However, Skaloud et al. (2010)
pointed out that GNSS and INS measurements are strongly affected by external in-
fluences (e.g. satellite constellation, flight maneuvers) and consequently their accu-
racy can not be assumed to be constant in time. This in turn leads to time-dependent
errors of the estimated trajectory, which should be corrected by adjustment. In this
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work, it is proposed to correct each of the six trajectory elements, individually for
each lidar/image strip [s], by a correction function ∆(·)[s](t). Additionally, three
datum correction parameters ∆gex, ∆gey, ∆gez are applied to correct for a global shift
of the whole block:

Corrected position Corrected orientation

gex(t) = gex0(t)+∆gex[s](t)+∆gex
gey(t) = gey0(t)+∆gey[s](t)+∆gey
gez(t) = gez0(t)+∆gez[s](t)+∆gez

φ(t) = φ0(t)+∆φ[s](t)
θ(t) = θ0(t) +∆θ[s](t)
ψ(t) = ψ0(t)+∆ψ[s](t)

whereby we assume to have in the hybrid adjustment later on a set S of S strips:

s ∈ S = {1, . . . , s, . . . , S}

Depending on the systematic errors of the original flight trajectory, four different
correction models (cf. Figure 3.6) for the strip wise correction functions ∆(·)[s](t)
can be chosen:

• Bias Trajectory Correction Model (BTCM)

• Linear Trajectory Correction Model (LTCM)

• Quadratic Trajectory Correction Model (QTCM)

• Spline Trajectory Correction Model (STCM)

0

-0.02

-0.04

[◦ ]

Bias TCM Linear TCM

Spline TCMQuadratic TCM

flight time t [s]ts

Figure 3.6: Schematic comparison of the different trajectory correction models for a
single strip and a single trajectory element, e.g. the roll angle correction.

The simplest model is the BTCM. It corrects a bias (by 0-degree polynomials)
for each of the six trajectory elements, individually for each strip. The LTCM and
QTCM additionally can mitigate the effect of linear and quadratic INS drifts (by 1-
or 2-degree polynomials), respectively. However, in practice such drifts are mostly
already corrected to a large extent in the Kalman filter by other measurements,
especially GNSS measurements (Colomina, 2015). The correction models for BTCM,
LTCM and QTCM are for a single strip [s], e.g. for the roll angle correction:

BTCM : ∆φ[s] = a0[s] (3.26)
LTCM : ∆φ[s](t) = a0[s] + a1[s](t− ts[s]) (3.27)
QTCM : ∆φ[s](t) = a0[s] + a1[s](t− ts[s]) + a2[s](t− ts[s])2 (3.28)

38



3 Hybrid adjustment

where ts[s] is the starting time of the strip [s] and t is the time stamp of the tra-
jectory estimate. The correction of the remaining five trajectory elements is carried
out in the same way. The coefficients a0[s], a1[s], and a2[s] are estimated by adjust-
ment. That gives for a total number of S strips, 6S coefficients for the BTCM, 12S
coefficients for the LTCM, and 18S coefficients for the QTCM.

3.1.4.1 The spline trajectory correction model

Due to its simplicity, the correction models described in the previous section are
often insufficient, especially if a very high georeferencing accuracy is demanded, e.g.
for deformation monitoring or modelling of complex objects like buildings or trees.
For such cases, we propose the usage of natural cubic splines with constant segment
length ∆t in time domain for modelling these correction functions (Figure 3.7). This
model choice is inevitably somewhat arbitrary, as the true pattern of the residual
trajectory errors is unknown. However, using cubic splines has some justifiable
grounds:

• The residual trajectory errors are expected to be smoothed in forward and
backward direction after Kalman filtering. Due to their smoothness and high
flexibility, cubic splines are an appropriate counterpart to the long-term com-
ponents of these residual errors.

• In comparison with higher-degree polynomials, the risk of overfitting is rela-
tively small for cubic splines. However, if a too small segment length ∆t (e.g.
0.5 s) is chosen, overfitting may still occur.

• Due to their straightforward mathematical formulation, cubic splines can be
easily incorporated (together with the appropriate constraints) into the func-
tional model of an adjustment.

end of stripstart of strip

Roll angle correction ∆φ[s](t)

∆t flight time t

Figure 3.7: Example of roll angle correction ∆φ[s](t) for a single flight strip [s]. The
correction is modelled as natural cubic spline with constant segment
length ∆t. At the beginning and the end of a strip, the first and second
derivatives are constrained to zero. The continuity and smoothness of the
spline function are ensured by the C0, C1, and C2 continuity constraints.

Correction model This section contains the equations required for the incorpora-
tion of the proposed correction model into the adjustment. It is emphasized that
an individual correction function is estimated for each trajectory element and for
each flight strip [s]. If we denote the start and end time of the s-th strip with ts[s]
and te[s] respectively, the total number of polynomial segments for each trajectory
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element of this strip is defined by

n[s] =
⌈
te[s] − ts[s]

∆t

⌉
(3.29)

where ∆t is the segment length of a single polynomial in time domain. The k-th
cubic polynomial (k = 1, . . . , n[s]) of the s-th strip is represented – e.g. for the roll
angle correction – by

∆φ[s][k](t) = a0[s][k]

+ a1[s][k] (t− ts[s][k])
+ a2[s][k] (t− ts[s][k])2

+ a3[s][k] (t− ts[s][k])3

(3.30)

whereby the start time of the polynomial is

ts[s][k] = ts[s] + (k−1) ·∆t (3.31)

and the polynomial is defined for the time interval

for k = 1, . . . , n[s]−1 → t ∈ [ts[s][k], ts[s][k+1]]
for k = n[s] → t ∈ [ts[s][k], te[s]]

However, if the last polynomial is very short, e.g. smaller than ∆t/2, it should be
merged with the previous one.

The coefficients a0[s][k], a1[s][k], a2[s][k], and a3[s][k] of each polynomial (eq. 3.30) are
estimated by adjustment; a summary can be found in Table 3.3.

Constraints To ensure that the splines are continuous and smooth at the junctions
of the polynomials, the following constraints have to be incorporated for the inner
knots (k = 1, . . . , n[s]−1) into the adjustment:

• the C0 continuity expresses that the polynomials are continuous at the in-
ternal knots:

∆φ[s][k](ts[s][k+1]) = ∆φ[s][k+1](ts[s][k+1]) (3.32)

• the C1 continuity expresses that the first derivative of the polynomials is
continuous at the internal knots:

∆φ′[s][k](ts[s][k+1]) = ∆φ′[s][k+1](ts[s][k+1]) (3.33)

• the C2 continuity expresses that the second derivative of the polynomials is
continuous at the internal knots:

∆φ′′[s][k](ts[s][k+1]) = ∆φ′′[s][k+1](ts[s][k+1]) (3.34)
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The required first and second derivatives of eq. (3.30) are

∆φ′[s][k](t) = a1[s][k]

+ 2 a2[s][k] (t− ts[s][k])
+ 3 a3[s][k] (t− ts[s][k])2

(3.35)

∆φ′′[s][k](t) = 2 a2[s][k]

+ 6 a3[s][k] (t− ts[s][k])
(3.36)

Additionally, boundary conditions are introduced to avoid steep slopes of the correc-
tion function at the beginning and at the end of each flight strip (Figure 3.7). This
is accomplished by setting the first and second derivatives to zero at the beginning
(t = ts[s] = ts[s][1]) of each strip

∆φ′[s][1](ts[s]) = 0 ⇒ a1[s][1] = 0 (3.37)
∆φ′′[s][1](ts[s]) = 0 ⇒ a2[s][1] = 0 (3.38)

and at the end (t = te[s]) of each strip

∆φ′[s][n[s]](te[s]) = 0 (3.39)

∆φ′′[s][n[s]](te[s]) = 0 (3.40)

The equations (3.32) – (3.34) and (3.37) – (3.40) are incorporated as constraints into
the adjustment.

Fictional observations If a single strip is not fully overlapping with other strips,
some polynomials can not be estimated due to lack of correspondences. As a conse-
quence the equation system becomes singular. To overcome this problem, fictional
observations (sometimes also denoted as zero-observations) are added for the 0-
degree polynomial coefficients a0[s][k] to the equation system. They have the form

a0[s][k] = 0 + v[s][k] (3.41)

where v[s][k] denotes the residual of the observation. As a priori precision of these ob-
servations σa0[s][k] the trajectory precision estimates from the Kalman filter should
be used. If this information is not available, the measurement precisions, as de-
clared by the manufacturers, can be used alternatively. Besides removing the rank
deficiency, these observations have also other important effects: they avoid a high
unmotivated oscillation of the trajectory correction functions and ensure that they
converge steadily to zero in areas without redundancy, i.e. in areas without overlap.
The objective function for these additional observations is:

ΩSTCM = argmin


S∑
s=1

n[s]∑
k=1

(w[s][k] a
2
0[s][k])

 (3.42)
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where S denotes the total number of strips, and the weight w[s][k] is defined by

w[s][k] = 1
σ2
a0[s][k]

(3.43)

It should be noted that no fictional observations are needed for the remaining coeffi-
cients a1[s][k], a2[s][k], and a3[s][k], as their determination is ensured by the constraints
described in the previous section. We will discuss the usage of fictional observations
for parameters in general in section 3.3.

[cm]

-10
-8
-6
-4
-2
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median = 0.0 cm
std.dev. = 2.2 cm

median = -0.1 cm
std.dev. = 2.6 cm

median = 1.7 cm
std.dev. = 10.9 cm

Bias TCM Spline TCMSpline TCM

∆t = 60 s ∆t = 30 s

Figure 3.8: Comparison between Bias TCM (left) and Spline TCM with segment
lengths ∆t of 60 s (middle) and 30 s (right). Top: height differences
within the overlap area of two lidar strips (red and blue boundaries).
Bottom: Histograms of height differences.

Possible problems Some problems may arise by using the STCM :

• Absolute deformation of the block: Due to the high flexibility of the tra-
jectory correction model, systematic discrepancies between overlapping strips
can almost completely be eliminated, especially if a small segment length ∆t
is used. However, an absolute deformation of the whole lidar and image block
might occur if ∆t is too small (model overfitting), as in such cases the esti-
mated trajectory correction parameters compensate not only trajectory errors,
but also the effect of other error sources (e.g. a wrongly calibrated laser scan-
ner). Thus, an appropriate choice of ∆t is very important and will be discussed
on the basis of real data in section 4.3. Alternatively, block deformations can
also be avoided – almost independent from the actual choice of ∆t – by using
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a large number of ground control points that are homogeneously distributed
over the whole block. We will also show in section 4.4 that the incorpora-
tion of aerial images strongly mitigates the oscillation of the spline correction
functions.

• Local effect of ground control points: Usually, single ground control
points can be used to correct the datum of the whole block. However, by
using a time-dependent trajectory correction model only, such widely isolated
points can have a local effect only, i.e. the datum is corrected in the vicinity of
these points only. This problem can be avoided by using the datum correction
parameters ∆gex, ∆gey, ∆gez, which have been introduced at the beginning of this
section. As they correct a global shift of the whole block, e.g. due to systematic
GNSS errors, the strip wise trajectory corrections correct predominately the
residual local error patterns. Alternatively this problem can also be avoided
– since it is closely related to the previous one – by using a dense network of
ground control points.

• Determinability of trajectory correction functions: For a reliable es-
timation of the time-dependent trajectory correction functions, a dense and
homogeneous distribution of the correspondences is needed. Furthermore, the
determinability of the correction functions depends on the terrain geometry
and can therefore not be guaranteed in any case, e.g. over completely feature-
less, flat terrain; however, practical experience has shown that this is a rather
theoretical problem.

3.1.5 Summary
Table 3.3 gives a summary of the parameters that can be estimated by adjustment.
It should be noted that depending on the assembly of the sensors, the flight con-
figuration, and the terrain geometry, some of these parameters may be completely
correlated and therefore not estimable. Besides that, model overfitting should be
avoided, i.e. only the parameters that are needed for modeling systematic errors
should be estimated. The parameters introduced in the previous sections can be
categorized as follows:

1. Laser scanner calibration parameters
The sensor calibration parameters correct for systematic errors of the scan-
ner’s range and angle measurements by estimating an offset (bias) and scale
parameter for each polar coordinate. These parameters might be omitted if
the scanner is already well-calibrated. An exception to this are flights with
long ranges and almost horizontal angle measurements. In such cases, the
atmospheric refraction has a not negligible effect on the range and angle mea-
surements. As the sensor calibration parameters are formulated in a very
general way, they can also be applied to partly compensate these effects.
The mounting calibration parameters are formed by three angles (misalign-
ment), describing the rotation of the scanner w.r.t. the INS, and a 3D vector
(lever-arm) describing the positional offset between GNSS antenna and the
origin of the scanner. The estimation of the misalignment angles is recom-
mended in any case, as erroneous angles can cause due to the leverage effect
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Parameters

category name #

la
se

r
sc

an
ne

r

sensor
calibration

range offset (bias) ∆ρ[l] L
range scale ερ[l] L
angle offsets (biases) ∆α[l],∆β[l] 2L
angle scales εα[l], εβ[l] 2L

mounting
calibration

misalignment angles α1[l], α2[l], α3[l] 3L
lever-arm components aix[l], a

i
y[l], a

i
z[l] 3L

ca
m

er
as

interior
orientation

2D coordinates of principal point xc0[c], y
c
0[c] 2C

principal distance cc[c] C

image distortion parameters K ′
n[c], P

′
n[c] C(nr + nt)

mounting
calibration

misalignment angles α1[c], α2[c], α3[c] 3C
lever-arm components aix[c], a

i
y[c], a

i
z[c] 3C

im
ag

es

coupled
images

correction of 3D coordinates ∆Xe
0[i],∆Y e0[i],∆Ze0[i] 3I

of projection centers
correction of rotation angles ∆ω[i],∆ϕ[i],∆κ[i] 3I

loose
images

3D coordinates Xe
0[i], Y

e
0[i], Z

e
0[i] 3I

of projection centers
rotation angles ω[i], ϕ[i], κ[i] 3I

tie points 3D coordinates Xe
[t], Y

e
[t], Z

e
[t] 3T

of image tie points

tr
aj

ec
to

ry

position
x correction coefficients ∆gex[s] S

y correction coefficients ∆gey[s] S

z correction coefficients ∆gez[s] S

rotation
roll correction coefficients ∆φ[s] S
pitch correction coefficients ∆θ[s] S
yaw correction coefficients ∆ψ[s] S

datum datum correction parameters ∆gex,∆gey,∆gez 3
for s ∈ S = {1, . . . , s, . . . , S}, l ∈ L = {1, . . . , l, . . . , L}, c ∈ C = {1, . . . , c, . . . , C}

i ∈ I = {1, . . . , i, . . . , I}, t ∈ T = {1, . . . , t, . . . , T }

Table 3.3: Overview of the parameters estimated by adjustment. S = no. of strips,
L = no. of laser scanners, C = no. of cameras, I = no. of images, nr =
no. of radial distortion coefficients, nt = no. of tangential distortion coef-
ficients, T = no. of image tie points. The number of trajectory correction
parameters is given for the Bias Trajectory Correction Model.
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very large point displacements on the ground. This is not necessarily true
for the lever-arm, where errors are propagated 1:1 to the ground. Thus, a
re-estimation of the lever-arm components is only recommended if terrestrial
measurements of the lever-arm are not available or inaccurate.

2. Camera calibration parameters
The parameters of the interior orientation include the principal point, the
principal length, and the image distortion parameters. If these parameters are
already known in advance, or if undistorted images are used, the estimation of
some of these parameters might be omitted.
The mounting calibration parameters are analogous to the laser scanner
case described above. It is emphasized that for the estimation of the mounting
calibration parameters the exposure times of the images must be known. Un-
fortunately in practice, in contrast to lidar measurements, the exposure times
are often not recorded. Such images can not be coupled to the flight trajectory
and have to be treated as loose images in the adjustment (see next point).

3. Image parameters
We differentiate between coupled and loose images.
Coupled images are coupled to the flight trajectory, i.e. the exterior orien-
tation of these images can be formulated through the direct georeferencing
equation as function of the flight trajectory and the camera’s mounting cali-
bration (cf. section 3.14). However, it might be necessary to further correct the
image’s position and rotation obtained this way, e.g. if the time stamps of the
images are inaccurate or in case the residuals show systematic patterns. Thus,
the elements of the exterior orientation can be corrected individually for each
image by three coordinate correction parameters and three angle correction pa-
rameters. These parameters must be observed through fictional observations
to keep the coupling to the trajectory intact.
Loose images are images for which the relation to the flight trajectory can
not be established, e.g. images that have been collected without GNSS/INS
system or images without recorded time stamps. In such cases the elements
of the exterior orientation are directly estimated by adjustment. Some of the
advantages of the hybrid adjustment get thereby lost, e.g. the estimation of
the trajectory corrections is far less supported by loose images than by coupled
images.
Finally, the image tie points form the numerically largest parameter group
in the hybrid adjustment. For each tie point the 3 coordinates are estimated.

4. Trajectory correction parameters
The flight trajectory estimated in advance from GNSS and INS measurements
is corrected individually for each strip and trajectory element, as well as glob-
ally for the whole block.
For the strip wise correction of the trajectory among four different Trajec-
tory Correction Models (TCM) can be chosen:

• Bias TCM → correction by 0-degree polynomials
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• Linear TCM → correction by 1-degree polynomials
• Quadratic TCM→ correction by 2-degree polynomials
• Spline TCM → correction by natural cubic splines

A suitable correction model needs to be chosen individually for each flight
campaign depending on the systematic errors of the original flight trajectory.
The block wise correction of the trajectory is applied to correct for a global
shift of the whole block, e.g. due to systematic GNSS errors. Such a shift can
only be estimated by introducing ground-truth data into the adjustment.

3.2 Correspondences
We have discussed the adjustment’s parameter model in the previous section. To
estimate these parameters and improve the georeference of the lidar strips and the
aerial images at once, various types of correspondences are used. These correspon-
dences are established between the following input data types (cf. Figure 1.1 and
3.1):

• lidar strips (STR): given by the measurements of the scanner, the trajectory
of the aircraft, and priors for the mounting calibration.

• aerial images (IMG): imagery, either coupled to the trajectory by a time
stamp and the mounting calibration (coupled images), or with priors for the
exterior orientation (loose images).

• control point clouds (CPC): datum-defining point clouds with known co-
ordinates in object space (e-system), e.g. point clouds from Terrestrial Laser
Scanning (TLS) or a DEM from an earlier flight campaign.

• ground control points (GCP): datum-defining points with known coordi-
nates in object space (e-system), e.g. measured by GNSS or total stations, and
image space (c-system).

Five different correspondence types can be established between these data inputs;
a summary is given in Figure 3.1, 3.9, and Table 3.4. As can be seen, two correspon-
dence types can be associated to the strip adjustment of lidar strips and the bundle
adjustment of aerial images respectively, whereas the fifth type is newly introduced
in this work to establish a link between the laser scans and the aerial images. The
various correspondences serve to define the observations used for parameter estima-
tion in the hybrid adjustment.

Three distinct steps are needed to establish the correspondences in object space:
the selection, the matching, and the rejection step, cf. section 2.1. For each of these
steps different variants will be described in the sections 3.2.1–3.2.3. Thereby, a
special focus lies on the large amounts of data, as they typically occur in topographic
mapping. An appropriate error metric for the minimization of discrepancies between
overlapping point clouds will be proposed in section 3.2.4. Finally, in section 3.2.5,
the various correspondence types will be described in detail.
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Correspondences

type correspondences between where section
STR-to-STR lidar strip & lidar strip object space 3.2.5.1
CPC-to-STR control point cloud & lidar strip object space 3.2.5.2
IMG-to-STR image points & lidar strip object space 3.2.5.3
IMG-to-IMG image points & image points image space 3.2.5.4
IMG-to-GCP image points & ground control points image space 3.2.5.4

Table 3.4: Overview of the correspondences established in the hybrid adjustment.

3.2.1 Selection strategies
The correspondence selection strategies presented in this section refer to the selection
step of the ICP framework discussed in section 2.1. It is proposed to select the
correspondences on a point basis, the main reasons for this are: the highest possible
resolution level of the data is exploited, no time-consuming pre-processing of the
data is required (in contrast to correspondences which are found by segmentation
and/or interpolation), and no restrictions are imposed on the object space (e.g. the
presence of rooftops or horizontal fields).

In the original version of the ICP algorithm each point is selected as correspon-
dence. However, for lidar data this is not feasible. This is particularly true for strip
adjustments of a complete data acquisition campaign, in which hundreds of strip
pairs have to be processed simultaneously. Thus, compared to the full amount of
available data (up to several million points), only a comparatively small number (a
few thousands) of points can be selected within the overlap area of each strip pair.
Since the selected subset heavily affects the final alignment accuracy, the selection
of relevant points is crucial.

We consider four different strategies for the selection of correspondences within
the overlap area of two point clouds. The main difference between these strategies is
the information used as input for the point selection, cf. Table 3.5. It is noted, that
these strategies can be applied to all correspondences established in object space,
namely STR-to-STR correspondences, CPC-to-STR correspondences, and IMG-to-
STR correspondences.

The four selection strategies, sorted by increasing computational complexity, are:

• Random Sampling (RS) This is the fastest strategy, because points are
simply selected randomly, without considering the coordinates or the normal
vectors of the points. For airborne lidar point clouds, in which the point density
is usually nearly constant (in contrast to terrestrial lidar point clouds), this
option can be considered as an approximation of Uniform Sampling.

• Uniform Sampling (US) The aim of this strategy is to select points in object
space as uniformly as possible. This leads to a homogeneous distribution of
the selected points, where regions of equal area are equally weighted within the
adjustment. On the contrary, if a normal direction is predominating (e.g. flat
terrain), many redundant points with approximately parallel normal vectors,
which do not contribute significantly to the parameter estimation, are selected.
This option can be implemented by dividing the overlap area into a voxel
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structure and selecting the closest point to each voxel center. Consequently,
the edge length of a single voxel can be interpreted as the mean sampling
distance along each coordinate direction.

• Normal Space Sampling (NSS) The aim of this strategy is to select points
such that the distribution of their normals in angular space is as uniform as
possible (Rusinkiewicz and Levoy, 2001). For this the angular space (slope vs.
aspect) is divided into classes (e.g. 2.5°x10°), and points are randomly sampled
within these classes. This strategy does not consider the position of the points.

• Maximum Leverage Sampling (MLS) This strategy selects those points,
which are best suited for the estimation of the parameters. For this, the effect
of each point on the parameter estimation, i.e. its leverage, is considered. The
points with the maximum leverage (= the lowest redundancy) are selected.
This strategy considers the coordinates and the normal vectors of the points.
This algorithm is described in detail in section 3.2.1.1.

RS US NSS MLS

coordinates of points no yes no yes
normal vectors of points no no yes yes

Table 3.5: Information used by the selection strategies.

Sometimes it can be advantageous to combine the presented strategies. For ex-
ample, in case of high-density lidar data it might be useful to first select points
with the Uniform Sampling strategy and further select a subset from these with the
Maximum Leverage Sampling strategy, cf. Figure 3.12.

Figure 3.10 compares the selection strategies on the basis of a (in terms of ori-
entation) rather difficult dataset. For this, a synthetic point cloud made of 10201
points (=1012) was generated by sampling a plane with two orthogonal ditches. For
each strategy 10% of the original points were selected. It is noted that only the two
ditches can constrain all transformation parameters (rotation and shift) at its finest
level. As RS and US do not consider the orientation of the normal vectors, many
redundant points are selected on the flat terrain and only a few points are selected
within the ditches. As a consequence, both strategies are only recommended for
terrain with steady height variations (e.g. urban area, hilly or mountainous terrain).
However, NSS considers the normal vectors and thus a sufficient number of points is
selected within the ditch. MLS additionally evaluates the coordinates of the points
in order to estimate the leverage of each point on the parameter estimation. As a
result, points are primarily selected in the ditch and towards the edges of the overlap
area.

3.2.1.1 Maximum Leverage Sampling

The quality of the parameter estimation heavily depends on the selected subset of
points. For example, if too many correspondences come from featureless regions, the
adjustment can fail to converge because of lack of constraints. Herein a new method
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Random Sampling

Uniform Sampling Maximum Leverage Sampling

Normal Space Sampling

Figure 3.10: Comparison of different selection strategies. With each strategy 10%
of points are selected. An animation of this scene can be found at
https://youtu.be/ZTGRw3C73PQ.

is proposed for the selection of points which minimizes the uncertainty of the esti-
mated transformation parameters, i.e. those points are selected which constrain the
transformation the most. As a consequence, a very small number of correspondences
is sufficient for the alignment of overlapping lidar strips. This is of particular ad-
vantage when hundreds of strip pairs have to be processed simultaneously in a strip
adjustment.

We start from some basic formulas of the Gauß-Markow adjustment model. Then
we derive the hat matrix H on which the presented method is based on, including
some brief explanations of its properties. Subsequently, an example of the hat matrix
for a specific case (point-to-plane error metric and rigid body transformation model)
is given. Finally, the point selection algorithm is presented.

The hat matrix H We consider a system of linear equations given by

l = Ax (3.44)

where the u unknown transformation parameters x are linked with the n origi-
nal observations l by the full-column rank n-by-u coefficient matrix A. This over-
determined equation system (n > u) is solved by introducing n residuals v for the
observations l

l + v = Ax̂ (3.45)

and minimizing the least squares objective function E = vTv. By substituting
v with Ax̂ − l and setting the partial derivative ∂E/∂x̂ = 0, the estimates for the
parameters x̂ are determined by

x̂ = (ATA)−1AT l (3.46)
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The unknown σ̂0 can be estimated by

σ̂0 =

√
vTv
n− u

(3.47)

The covariance matrix Σx̂x̂ of the estimated unknown parameters x̂ is then given
by

Σx̂x̂ = σ̂0Qx̂x̂ (3.48)

Qx̂x̂ = (ATA)−1 (3.49)

If we write l̂ = l + v for the estimated observations, (3.45) can be rewritten
together with (3.46) as

l̂ = A(ATA)−1AT l (3.50)

To emphasize the fact that each l̂i is a linear combination of the original observa-
tions l, (3.50) can be written as

l̂ = Hl (3.51)

with

H = A(ATA)−1AT (3.52)

The n-by-n matrix H is known as the hat matrix, as it “puts a hat on l”. On
the one hand H is a projection matrix, as it projects l into l̂. On the other hand
H describes the amount of leverage or influence each observed value in l has on
each fitted value in l̂. For instance, the i-th row of H contains the influence of the
original observations l on the estimated observation l̂. More precise, the element
hij can be interpreted as the influence of the observation lj on l̂i. This value is
independent from the actual value of lj , since H depends (for uncorrelated and
unweighted observations) only on A.

Due to these properties, the hat matrix can be used to identify observations which
have a large influence on the parameter estimation. Such influential observations
are defined according to Belsley et al. (2005) as:

“An influential observation is one which, either individually or together
with several other observations, has a demonstrably larger impact on the
calculated values of various estimates (. . .) than is the case for most of
the other observations.”

For a specific observation li, the influence on the parameter estimates is most di-
rectly reflected in its leverage on the corresponding estimated observation l̂i (Hoaglin
and Welsch, 1978). This information is precisely contained in the corresponding di-
agonal element hii of the hat matrix. Thus, we focus our analysis on the diagonal
elements of H, the so called leverages. They can be directly computed by

hii = ai(ATA)−1aTi (3.53)

where ai denotes the i-th row of A. This way the memory-intensive computation
of the off diagonal elements of H can be avoided.
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The leverages have two important properties. According to Belsley et al. (2005),
for the leverages hii it holds that

0 ≤ hii ≤ 1 (3.54)

Further, as a projection matrix, H is symmetric and idempotent (H2 = H). The
trace of an idempotent matrix is equal to its rank, i.e. trace(H) = rank(H). From
(3.52), it can be seen that rank(H) = rank(A) = u, and hence trace(H) = u, i.e.

n∑
i=1

hii = u (3.55)

where u denotes the number of parameters. The redundancy numbers, which are
commonly used in adjustment theory, are linked to the leverages by

rii = 1− hii (3.56)

According to Förstner and Wrobel (2016), the redundancy number describes the
contribution of a single observation to the overall redundancy r = n − u, i.e.∑n
i=1 rii = r.

Side note on partial leverages The leverages discussed so far, assume that all
parameters are of equal interest. However, an observation may be influential only
for one or a few parameter. For instance, a point on horizontal terrain is especially
important for the estimation of the vertical component of the translation vector,
but at the same time it is entirely redundant for the estimation of its horizontal
components. Thus, the influence of an observation on a single parameter may be of
interest. It is given by the partial leverages.

The partial leverage hj,i describes the influence of the i-th observation on the
estimation of the j-th parameter and is defined according to Chatterjee and Hadi
(1986) as

hj,i =
v2
j,i

vTj vj
(3.57)

vj = (I −H[j])Aj (3.58)

with
I . . . n-by-n identity matrix

H[j] . . . hat matrix calculated by omitting the j-th column of A
Aj . . . j-th column of A
vj,i . . . i-th element of vj
As their name already implies, the partial leverages measure the contribution of

an individual parameter j to the overall leverage of an observation

hii =
u∑
j=1

hj,i (3.59)

To be complete, it should be noted that in presence of a stochastic model for the
observations P = Q−1

ll the hat matrix becomes
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H = A(ATPA)−1ATP (3.60)

i.e. H depends now on A and P . If the observations are correlated, i.e. the weight
matrix P is not a diagonal matrix, the leverages are not restricted to the range [0,1].

Leverages hii

αx
αy

αz tx

ty tz

Partial leverages h j,i

3d view of point cloud

Figure 3.11: Partial leverages (left) and leverages (right) of the synthetic point cloud
introduced in Figure 3.10. (red = high leverage, blue = low leverage).
An animation of the point selection in this scene can be found at https:
//youtu.be/5Dbe4H5w8HQ.

Example: Calculation of leverages This example shows how to calculate the (par-
tial) leverages depicted in Figure 3.11. It is noted, that the points selected by the
MLS strategy are strongly influenced by the parameter model used for the trans-
formation of the point clouds. In section 3.1 a comprehensive parameter model,
including several calibration and correction parameter, was presented. However,
for a better understanding, a simpler transformation model is chosen as parameter
model in this example, namely the rigid body transformation model.

We can formulate the rigid body transformation T for a georeferenced point cloud
pi, i ∈ I = {1, . . . , i, . . . , I}, e.g. a directly georeferenced lidar strip, by

T (pi) = Rpi + t (3.61)

where t denotes a 3-by-1 translation vector and R denotes a 3-by-3 orthogonal
rotation matrix. Due to the good initial relative orientation of the point clouds, the
rotation matrix R can be linearized substituting cos(α) ≈ 1 and sin(α) ≈ α. Thus
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(3.61) can be written as
T (pi) = pi + r× pi + t (3.62)

where r = (αx αy αz)T is the vector containing the rotation angles around the x, y,
and z axes, and t = (tx ty tz)T . After a few algebraic steps, the n-by-6 coefficient
matrix A can be found for the parameter vector xT = (rT tT ) as

A =


(p1 × n1)T ) nT1
(p2 × n2)T ) nT2

...
...

(pI × nI)T ) nTI

 (3.63)

As can be seen, each point pi contributes one row in A, i.e. corresponds to one
observation. It is clear, that not all points have an equal importance in the least
squares adjustment. Thus, with (3.53) the leverage hii of each point pi can be
computed. This tells us how much influence a point pi has on the estimation of the
transformation parameters.

In Figure 3.11 the partial leverages and the leverages are visualized for the syn-
thetic point cloud introduced in section 3.2.5.1. It can be clearly seen, that the par-
tial leverages (left) identify those points which are most influential for the estimation
of a single transformation parameter. For instance, for the rotation parameter αx,
points with larger distance from the rotation axis x are more influential than points
next to it. The leverages (right), as the sum of the partial leverages, represent the
influence of each point on the simultaneous estimation of all six transformation pa-
rameters. As expected, the points in the ditches and on the edges of the point cloud
have the largest impact on the parameter estimation.

Summarizing, the diagonal elements of the hat matrix, called leverages, describe
the influence of an observation on the parameter estimation. For uncorrelated and
unweighted observations, the hat matrix can be calculated exclusively from the coef-
ficient matrix A, see (3.52). Otherwise also the weight matrix P must be considered,
see (3.60). Using the ICP methodological framework introduced in section 2.1, each
point corresponds to one observation and therefore the leverages can be used to de-
scribe the influence of each point on the estimation of the transformation parameter.
In the next section we show how points are selected on the basis of this information.

The selection algorithm Usually the leverages are used for the identification of
potential blunders in the observation data. However, we use the leverages to iden-
tify those points which are best suited for the estimation of the transformation
parameters, i.e. have the largest impact on the parameter estimation. In terms
of redundancy numbers (3.56), the points with the lowest redundancy are selected.
Table 3.6 provides a description of the algorithm.

The selection algorithm starts with the indices of all n points in s, i.e. at the
beginning all points are selected. Based upon this, the points with the lowest lever-
ages are removed iteratively from s until m points are left. It is noted, that due
to the correlation of the leverages (see (3.52)), they have to be recomputed in each
iteration.

To speed up the algorithm, instead of removing only one single point, k points
with the lowest leverages may be removed from s in each iteration. We found out
that for a comparative small value of k (e.g. k = 10), this has a negligible effect on
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Algorithm Maximum leverage sampling

Inputs:
Point cloud: P = {p1,p2, . . . ,pn}
Normals: N = {n1,n2, . . . ,nn}
No. of points to select: m

Initialize vector with indices of all points: s = (1, 2, . . . , n)T
Compute coefficient matrix A
while rows(A) > m do

Qx̂x̂ = (ATA)−1 (3.49)
for i = 1 to rows(A) do
hii = aiQ−1

x̂x̂aTi (3.53)
end for
Find index j of point with lowest hii: j = find(min(hii))
Delete row aj from A
Delete j-th element from s

end while
Return s with indices of selected points

Table 3.6: The Maximum Leverage Sampling algorithm.

the final selection of points, but leads to a substantial reduction in runtime.

3.2.2 Matching
In this step the correspondences are established, i.e. each point previously selected
by one (or a combination) of the selection strategies presented in section 3.2.1 is
paired to one point in the overlapping point cloud. This task refers to the matching
step of the ICP framework discussed in section 2.1.

The simplest strategy is to match the selected points to their closest points (near-
est neighbours) as proposed by Besl and McKay (1992). We found that for lidar
and image data this is an adequate choice, mainly due to the good initial relative
orientation and the high point density of lidar strips. The search for closest points
can be realized efficiently using k-d trees.

Further matching methods are either computationally too expensive, e.g. normal
shooting (Chen and Medioni, 1992), reverse calibration (Blais and Levine, 1995), or
not necessary (Planitz et al., 2005) due to the good initial orientation of the point
clouds, e.g. closest compatible point (Sharp et al., 2002). Thus, within this work,
no other variants were investigated for this step.

3.2.3 Rejection of correspondences
The aim of this step is the a priori detection and rejection of false correspondences
(outliers), as they may have a large effect on the result of the adjustment. This
task refers to the rejection step of the ICP framework discussed in section 2.1.
For the following considerations we assume that a set P of P correspondences,
p ∈ P = {1, . . . , p, . . . , P}, have been established in the selection and matching step.

The proposed correspondence rejection criteria are:
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[m]
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Normal vectors of selected correspondences

Precision σp of normal vectors

Random Samping

Uniform Sampling

Normal Space Sampling

Maximum Leverage Sampling
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Figure 3.12: (a) and (b): Normal vectors of selected correspondences with their
precision. It is recommended to establish correspondences in smooth
areas only, thus all points with σp ≤ 0.2 m have been rejected here.
(c) to (f): Selection of correspondences with different (combinations of)
selection strategies.

56



3 Hybrid adjustment

• Rejection based on the reliability of the normal vectors of corre-
sponding points For the recommended point-to-plane error metric (section
3.2.4) the normal vectors of corresponding points are needed. The normal
vectors can be estimated for each point using a principal component analysis
of the covariance matrix of the coordinates of neighbouring points (Shakarji,
1998). It is recommended to select a neighbourhood based on a fixed radius
search, where the search radius should be chosen in dependence of (a) the point
density and (b) the topography of the strips. Considering the point density
in selecting the search radius should ensure that a sufficient number of neigh-
bouring points is used for the normal vector estimation, e.g. n ≥ 8, whereas
the topography has to be considered so that the radius does not exceed the
size of the available smooth surface areas. Usually, a search radius in the range
of 1–3 m is appropriate in the case of lidar strips. Given this set of N three
dimensional points p[n], n ∈ N = {1, . . . , n, . . . , N}, the 3-by-3 covariance
matrix of its coordinates is denoted by C(p[n]). The principal components of
the covariance matrix are its eigenvectors and form an orthogonal basis. The
associated eigenvalues correspond to the variance in the directions of the eigen-
vectors. Assuming a descending ordering of the eigenvalues (λ1 ≥ λ2 ≥ λ3),
the third eigenvector e3 is a least-squares estimate for the normal vector of
the adjusting plane (n = e3). The square root of the third eigenvalue can be
used as a reliability measure for the normal vector. This value corresponds
to the standard deviation of the selected points from the estimated plane and
can therefore be interpreted as a measure for the roughness of the adjusting
plane

σp =
√
λ3 (3.64)

To ensure a high reliability of the normal vectors, corresponding points within
rough areas should be rejected for the alignment process, e.g.

σp ≥ 0.1 m (3.65)

Figure 3.12 shows the overlap area of two lidar strips in a mountainous region
where correspondences have been established within smooth areas only.

• Rejection based on the angle between the normal vectors of corre-
sponding points This criteria rejects correspondences with strongly differing
plane orientations. For this the angle between the normals of two correspond-
ing points p[p] and q[p] is used:

α = arccos(nTp[p]
· nq[p]) for ||np[p] || = ||nq[p] || = 1 (3.66)

To ensure that two corresponding points belong to the same plane, e.g. a roof
or street, we recommend to reject all correspondences with α larger than

α ≥ 5° (3.67)

• Rejection based on the distance between corresponding points For
this strategy the distribution of the a priori distances between corresponding
points is analyzed. For the recommended point-to-plane error metric (section
3.2.4) the signed distances d[p], p ∈ P, are assumed to have a Gaussian distri-
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bution. A robust estimator for the standard deviation (Hampel, 1974) of this
contaminated normal distribution is given by

σmad = 1.4826 ·mad (3.68)

where mad is the median of the absolute differences (with respect to the me-
dian)

mad = median(|d[p] − d̃|) for p ∈ P (3.69)

where d̃ denotes the median of the point-to-plane distances. We propose to
reject all correspondences with distances outside the range

dmax = d̃± 3σmad (3.70)

• Rejection of correspondences in non-stable areas If multiple flight mis-
sions are carried out at different measurement epochs, the terrain might have
been changed between these measurements. An example is shown in the
Figures 4.7 and 4.8 where six lidar missions have been carried out between
2006 and 2015 to monitor the temporal development (change detection) of the
Gepatschferner glacier (Oetztal alps, Austria) for geomorphological analysis.
For multi-epoch adjustments it is necessary to restrict the correspondences to
stable areas. As can be seen Figure 3.13 (left), bedrock areas have been cho-
sen as stable areas for multi-epoch correspondences in this case. However, it
may also be necessary to mask correspondences within a single flight mission.
An example is shown in Figure 3.13 (right), where correspondences within the
dynamic water areas have been rejected.

water

Correspondences in bedrock areas only Correspondences in non-water areas only

Figure 3.13: Limitation of correspondences to stable areas (left) and non-dynamic
areas (right). The Uniform Sampling strategy was chosen for the selec-
tion of correspondences here.

Additionally, a rejection based on additional attributes can be performed if in-
variant attributes are available for the correspondences (Sharp et al., 2002). For
example, if reflectance values are available from lidar measurements, false corre-
sponding points can possibly be detected by comparing their reflectance values.

It is not guaranteed that with these strategies all outliers in the observation data
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are rejected a priori. Thus, a robust adjustment method is highly recommended for
the detection and removal of the remaining ones.

3.2.4 Error metric
The aim of the hybrid adjustment is to simultaneously improve the relative and ab-
solute orientation of the lidar strips and the aerial images. This is achieved by min-
imizing some kind of distance measure (error metric) between the correspondences
established in the previous steps. For this, two types of distances are commonly
used (Figure 3.14):

1. Point-to-point error metric This error metric minimizes the Euclidean
(unsigned) distance between corresponding points (Besl and McKay, 1992).
The least squares objective function is thereby defined by

Ωpoint-to-point = argmin


P∑

[p]=1
d2
s[p])

 (3.71)

with the point-to-point distance defined as

ds[p] = ||p[p] − q[p]|| (3.72)

where p[p] and q[p] are the corresponding points of the [p]-th correspondence.
This error metric should be avoided in lidar, as generally, due to the different
ground sampling of two lidar strips, no real point-to-point correspondences
exist. Moreover, the convergence speed is somewhat slow (Rusinkiewicz and
Levoy, 2001).

2. Point-to-plane error metric Perpendicular (signed) distance of one point
to the tangent plane of the other point (Chen and Medioni, 1992). The least
squares objective function for this error metric is:

Ωpoint-to-plane = argmin


P∑

[p]=1
d2
p[p])

 (3.73)

The point-to-plane distance can thereby be conveniently expressed by the Hes-
sian normal form:

dp[p] = (p[p] − q[p])T n[p] (3.74)

where n[p] is the normal vector associated to the point p[p] (with ||n[p]|| = 1).
In contrast to the point-to-point error metric, it is not necessary that the
corresponding points are identical in object space. The only requirement is
that the corresponding points belong to the same plane in object space (e.g.
roof or street). This error metric is characterized by a high convergence speed,
as flat regions can slide along each other without costs, i.e. without increasing
the value of the objective function Ωpoint-to-plane.

In Figure 3.15 a comparison between the two error metric is shown. It can clearly
be seen that the convergence of the point-to-plane error metric performs significantly
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Figure 3.14: The point-to-point error metric minimizes the euclidean distance be-
tween two corresponding points (red). In contrast, the point-to-plane
error metric minimizes the perpendicular distance from one point to
the tangent plane of the other point.

better. Whilst the final alignment is reached with the point-to-point error metric
only after 20 iterations, the convergence is approximately 4 times faster using the
point-to-plane error metric.
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Figure 3.15: Comparison of convergence between point-to-point (top) and point-to-
plane (bottom) error metric. A video of this comparison can be found
at https://youtu.be/LcghboLgTiA.

3.2.5 Types of correspondences
3.2.5.1 STR-to-STR correspondences

These correspondences are established within the overlap area of two overlapping
lidar strips (STR-to-STR), cf. Figure 3.9. We assume to have a set K of K overlap-
ping lidar strip pairs, K = {1, . . . , k, . . . ,K}. The correspondences are established
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for each of these pairs by the selection (section 3.2.1), matching (section 3.2.2), and
rejection step (section 3.2.3). This leads to a set P of P STR-to-STR correspon-
dences:

p ∈ P = {1, . . . , p, . . . , P} (3.75)

As shown in the previous chapter, a single correspondence is defined by two points
from overlapping strips and their normal vectors (estimated from the neighbouring
points). As a point and its normal vector define a tangent plane, consequently, a
correspondence represents two homologous tangent planes in object space. In the
adjustment the weighted sum of squared point-to-plane distances is minimized:

ΩSTR-to-STR = argmin


P∑

[p]=1

(
w[p] d

2
[p]

) (3.76)

whereby, w[p] denotes the weight and d[p] the point-to-plane distance of the [p]-
th correspondence defined by the lidar points p[p] and q[p]. It should be noted,
that these points are determined by the direct georeferencing equation (3.1), i.e. in
consideration of the scanner measurements, the trajectory, the mounting calibration
parameters, and the additional parameters described in section 3.1.

The weights of the correspondences w[p] could be estimated in a mathematically
rigorous way by propagating the errors of the original measurements on the point-
to-plane distances d[p]. For that, the influencing factors (especially on the range
measurement) need to be considered, e.g. the precision of the scanner and trajectory
measurements, the precision of the mounting calibration parameters, the roughness
of the ground, the material of the ground (especially its porosity and its water
content), the incidence angle, the beam divergence, and the energy distribution
within the footprint. In order to model these influences, many inputs are required,
from which some parts may not be available or stem from unreliable sources. Instead,
we propose to estimate the precision of the point-to-plane distances from the point
clouds itself or, more specifically, from the previously established correspondences.
Let us assume that the correspondence [p] belongs to the strip pair [k], then its
weight is determined by

w[p] = 1
σ2

mad[k]
(3.77)

with
σmad[k] = 1.4826 ·mad[k] (3.78)

where mad is the median of the absolute differences (with respect to the median)
(Hampel, 1974) of all point-to-plane distances belonging to the strip pair [k] and
σmad[k] is a robust estimator for the standard deviation of this possibly contaminated
set of correspondences (due to false correspondences), cf. section 3.2.3.

3.2.5.2 CPC-to-STR correspondences

These correspondences are established within the overlap area of a control point
cloud and a lidar strip (CPC-to-STR), cf. Figure 3.9. CPCs are fixed in object space
(e-system) and therefore serve to define the datum. They can be provided in many
forms, e.g. as georeferenced point clouds from Terrestrial Laser Scanning (TLS), as
a DEM from an earlier flight campaign to which the new acquired block should fit,
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or even as single (widely isolated) points from total station or GNSS measurements.
Thus, a flexible concept, that can handle all these possibilities, is needed. We propose
to treat the various forms of CPCs simply as further point clouds, whose orientations
are fixed in object space. The correspondences are established by matching each
CPC point to its nearest neighbour in the overlapping strips; this leads to a set Q
of Q CPC-to-STR correspondences:

q ∈ Q = {1, . . . , q, . . . , Q}

In the adjustment, like in the previous section, the weighted sum of squared point-
to-plane distances is minimized

ΩCPC-to-STR = argmin


Q∑

[q]=1

(
w[q] d

2
[q]

) (3.79)

whereby the point-to-plane distances are defined by

d[q] = (p[q] − q[q])Tn[q] (3.80)

and the lidar strips and the CPCs are represented by the points p[q] and q[q], respec-
tively. It is recommended to estimate the normal vector n[q] from the lidar points,
as this gives the possibility to use also isolated points (with unknown normal vector)
as CPCs.

3.2.5.3 IMG-to-STR correspondences

These correspondences are established within the overlap area of the (coupled or
loose) aerial images and the lidar strips (IMG-to-STR), cf. Figure 3.9. When inte-
grating lidar and image measurements the specific characteristics of both measure-
ment techniques must be considered. Even tough both techniques ultimately serve
the mapping of the Earth’s surface, they have a slightly different view on it. Lidar
is an active measurement system operating at a single wavelength (mono-spectral),
usually in the near infrared range. It relies on the diffuse backscattering of the
emitted laser pulse. Usually lidar gives a rather uniform sampling of the Earth’s
surface. In contrast, photogrammetry is a passive measurement system capturing
the scattered solar radiation in the optical spectrum. The photogrammetric recon-
struction process relies on sufficient texture variance. Consequently, corners and
edges can be well reconstructed, whereas the accuracy decreases in areas with low
texture or a bad signal-to-noise ratio, e.g. shadowed areas. The main geometrical
differences between the two techniques stem from the ability of the lidar pulse to
penetrate small-scale structures (e.g. vegetation), whereas the photogrammetric re-
construction leads mostly to points from the topmost surface (Figure 3.16). For
instance, in case of a grass field, the laser penetrates the grass layer to a certain
extent, whereas the triangulated image points describe the top of the grass layer.
Geometrical differences may also arise in case of dynamic areas (e.g. water) or ob-
jects (e.g. vehicles) due to different measurement times; while lidar is a continuous
measurement system, images are captured at single points in time, thereby covering
a larger area. These are some of the aspects that need to be considered in the hy-
brid adjustment. This particularly applies to the correspondences discussed in this
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section, where only areas in which the scanner and the cameras have the same view
on the Earth’s surface should be taken into account.

Figure 3.16: Reconstruction of points with (a) lidar and (b) DIM (from Mandlburger
et al. (2017)).

In the above context, correspondences between lidar strips and images should
be limited to smooth and textured areas. The IMG-to-STR correspondences are
established (as usual) by the selection step, the matching step, and the rejection
step. This leads to a set V of V IMG-to-STR correspondences:

v ∈ V = {1, . . . , v, . . . , V }

In Figure 3.17 a set of IMG-to-STR correspondences is shown in object and image
space. The depicted scene includes relatively flat areas (roads, roofs, facades, bare
soil) and rough areas (low and high vegetation). In the first step a subset of image
tie points can be selected by one of the selection strategies presented in section 3.2.1
(selection step). If feasible (e.g. in terms of computer memory), this step can be
skipped so that all tie points are used for matching, as we did in this example.
The correspondences are then established by matching the image tie points with the
nearest neighbour in the lidar point clouds (matching step), cf. section 3.2.2. Finally,
potentially wrong correspondences (outliers) are rejected by the criteria described in
section 3.2.3 (rejection step). We rejected in this example all correspondences with
an estimated roughness σp ≥ 0.02 m (cf. equation 3.64) and with point-to-plane
distances outside the range d̃ ± 3σmad (cf. equation 3.70). As can be seen, the re-
sulting correspondences are predominately in smooth areas, e.g. on streets, terraces,
roofs, and bare soil. Based on the roughness measure of each correspondence [v], an
individual weight (0 ≤ wp[v] ≤ 1) is defined for each correspondence by

wp[v] = 1−
σp[v]
σp,max

(3.81)

whereby σp,max is the maximum allowed roughness measure (0.02 m in the current
example). In the adjustment, the weighted sum of squared point-to-plane distances
is minimized

ΩIMG-to-STR = argmin


V∑

[v]=1

(
w[v]wp[v] d

2
[v]

) (3.82)

whereby w[v] is the weight defined by the measurement precision of the image tie
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points and lidar points. We propose to estimate w[v] from the set of correspondences
V in accordance to equation 3.77. The point-to-plane distances are defined by

d[v] = (p[v] − q[v])Tn[v] (3.83)

where the image tie points and the lidar strips are represented by the points p[v]
and q[v], respectively. It is recommended to estimate the normal vector n[v] from
the lidar points, as the point density of the tie points is usually to low to ensure a
reliable estimation of the normal vector.

Finally it is noted that in case of coupled images the lidar strips and the aerial
images are not just linked by the IMG-to-STR correspondences, but they also share
the same flight trajectory. This is especially important in areas where only few
correspondences can be established (e.g. in case of dense vegetation or water) as the
common trajectory prevents in such cases a divergence of the lidar block and the
image block.

3.2.5.4 IMG-to-IMG and IMG-to-GCP correspondences

These two types of correspondences form the core of each bundle block adjustment
of images (cf. Figure 3.9), therefore only a short summary is given here. The mathe-
matical model for both types of correspondences is given by the collinearity equations
(cf. eq. (3.20) and (3.21)).

Local features and their descriptors are used to establish correspondences between
overlapping images (IMG-to-IMG). Many different feature detectors (e.g. SIFT,
SURF, FAST) and descriptors (e.g. FREAK, BRISK, HOG) have been proposed
in the past; a comparison addressing some of them can be found in Mikolajczyk
and Schmid (2005). The object points – denoted as image tie points here – have
unknown coordinates Xe

[t], Y
e

[t], Z
e
[t] that are estimated by adjustment (cf. Table 3.3).

These unknown coordinates usually represent the largest parameter block.
If object points with observed coordinates – i.e. Ground Control Points (GCPs)

– are observed in image space, we denote this as IMG-to-GCP correspondences.
At this point, it is worth mentioning that in the proposed hybrid adjustment the
datum can be defined in different ways: (a) by CPCs, (b) by GCPs, (c) by fixing
the trajectory of one ore more laser strips, or (d) by fixing the given orientation
of a subset of images. Of course, options can be combined. The optimal choice of
options depends largely on the specific project. For instance, if change detection
among different measurement epochs is the aim of the project, it might be the best
choice to introduce the DEM of one epoch as CPC for the other ones. A main
benefit of the hybrid adjustment is that, e.g. in the presence of CPCs, the datum of
the images can be adjusted without the explicit need of GCPs, whose measurement
in object and image space is usually quite time-consuming. Of course this applies
in reverse as well, i.e. the datum of the laser scanner block can be adjusted with
GCPs only. However, due to this high flexibility, options are manifold and further
investigations are necessary to fully understand the mutual influence between these
options.

The objective is to minimize for both types of correspondences the weighted sum
of squared residuals (= reprojection errors). Having a set R of R IMG-to-IMG
correspondences and a set U of U IMG-to-GCP correspondences
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(a) Roughness σp of lidar points

filtering

(c) IMG-to-STR correspondences, colored by weight wp[v]

(b) Image tie points

0.2 0.80.4 0.6

filtering

0 0.050.01 0.02 0.03 0.04

Figure 3.17: Correspondences between image tie points and lidar strips (IMG-to-
STR) in object space (left) and image space of a single image (right).
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Figure 3.18: Example of IMG-to-IMG matches. Here, only every 500-th correspon-
dences is shown of the 16377 correspondences that have been found in
total. This image pair is taken from the example in section 4.4.

r ∈ R = {1, . . . , r, . . . , R}, u ∈ U = {1, . . . , u, . . . , U}

we can therefore formulate the two objective functions by

ΩIMG-to-IMG = argmin


R∑

[r]=1

(
wx[r] r

2
x[r]

+ wy[r] r
2
y[r]

) (3.84)

ΩIMG-to-GCP = argmin


U∑

[u]=1

(
wx[u] r

2
x[u]

+ wy[u] r
2
y[u]

) (3.85)

whereby the weights w are derived from the covariance matrix of the uncertain
image measurements and r are the reprojection errors, i.e. the discrepancies between
the modeled and the measured image coordinates.

3.3 Workflow and solution
A simplified flowchart of the hybrid adjustment is shown in Figure 3.19. For the
sake of simplicity, we thereby omitted all I/O-steps, i.e. the import and export of
the data. The workflow can be divided into three stages: the pre-processing, the
main iteration loop, and the post-processing stage.

The pre-processing stage includes three image-based steps. The two objectives of
this stage are to establish the IMG-to-IMG correspondences and to get a first esti-
mate of the 3D coordinates of the image tie points. These coordinates are estimated
in a pure aerial triangulation (i.e. without consideration of lidar strips and CPCs)
and are used for the IMG-to-STR matching in object space later on.

The main iteration loop starts with the direct georeferencing of the lidar strips.
Thereby the current parameters are used, i.e. the priors of the parameters in the first
iteration and the parameters estimated by the hybrid adjustment for all subsequent
iterations. Then, as in the ICP algorithm, the correspondences in object space (STR-
to-STR, CPC-to-STR, IMG-to-STR) are newly established in each iteration. After
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the hybrid adjustment a convergence criteria is tested, e.g. the relative change of
the weighted sum of squared errors. If it is not met, a new iteration starts. Usually,
due to the high convergence speed of the point-to-plane error metric (cf. Fig. 3.14)
only 3 to 5 iterations are needed until convergence is reached.

Finally, the lidar strips are georeferenced with the last parameter estimates in the
post-processing stage.

The observations and respective objective functions for each type of correspon-
dence have been defined in the previous sections by the equations 3.76, 3.79, 3.82,
3.84, and 3.85. Additionally, if parameters have been directly observed, fictional
observations are introduced into the adjustment. This is done by minimizing

ΩFO = argmin

∑
j=1

wj∆x2
j

 (3.86)

with
∆xj = x̂j − x0,j (3.87)

where x0,j is the initial value of the parameter with the index j, x̂j its estimated value
by adjustment, and wj = 1/σ2

j the weight defined by the measurement precision σj .
We already discussed the fictional observation of the polynomial coefficients for the
Spline Trajectory Correction Model in section 3.1.4.1 and the fictional observations
for the correction parameters of the image’s exterior orientation in section 3.1.2.
Besides that, direct observations of parameters are typically introduced for terrestrial
measurements of the mounting calibration parameters (misalignment angles and
lever-arm) and the object coordinates of the GCPs.

Summarizing, the objective function of the hybrid adjustment is defined by

ΩHA = argmin{ΩSTR-to-STR +ΩCPC-to-STR +
ΩIMG-to-STR +ΩIMG-to-IMG +
ΩIMG-to-GCP +ΩFO}

(3.88)

That is, the least squares adjustment is expected to minimize the weighted squared
sum of the following quantities:

• STR-to-STR: The point-to-plane distances between overlapping lidar strips.

• CPC-to-STR: The point-to-plane distances between the datum-defining CPCs
and the overlapping lidar strips.

• IMG-to-STR: The point-to-plane distances between the image tie points and
overlapping lidar strips.

• IMG-to-IMG: The reprojection errors of the image tie points in image space.

• GCP-to-IMG: The reprojection errors of the datum-defining observed GCPs
in image space.

• FO: The differences between the parameter’s initial and estimated values for
a subset of parameters.

By minimizing these quantities, the parameters described in section 3.1 are esti-
mated, cf. Table 3.3.
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INPUT DATA

• scanner measurements

• flight trajectory

• control point clouds (CPCs) • ground control points (GCPs)

• timestamps of coupled images

• priors for ext. ori. of loose images

• priors for mounting calib. of camera(s)

• IMG-to-GCP correspondences• coupled and loose images

• priors for mounting calib. of scanner(s)

for each image: detect feature points, e.g. SIFT

for each image pair: sparse feature matching for IMG-to-IMG correspondences

aerial triangulation to estimate 3D coordinates of tie points

(needed for subsequent matching of IMG-to-STR correspondences)

for each strip: direct georeferencing with current parameters

for each strip pair: selection, matching, rejection of STR-to-STR correspondences

for each CPC: selection, matching, rejection of CPC-to-STR correspondences

for each image: selection, matching, rejection of IMG-to-STR correspondences

HYBRID ADJUSTMENT

for each strip: direct georeferencing with final parameters

converged?

yes

no

OUTPUT DATA

• corrected scanner measurements

• corrected flight trajectory

• ext. ori. of loose images

• mounting calib. of camera(s)

• mounting calib. of scanner(s)

• ext. ori. of coupled images

• int. ori. of camera(s)

• priors for int. ori. of camera(s)

• georeferenced lidar strips

n
ew

it
er
a
ti
o
n

Figure 3.19: Flowchart of hybrid adjustment method. Blue: lidar related steps/data.
Red: image related steps/data. Purple: lidar and image related
steps/data.
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We will show the practical benefits and limits of the hybrid adjustment on the basis
of four examples.

4.1 Correspondence framework: comparison of variants
In this example, the introduced correspondence framework is demonstrated on the
basis of synthetic lidar data. The motivation for using synthetic data is that the
correct orientation is known exactly, and the correctness of the estimated trans-
formations can be evaluated relative to this ground truth orientation. A digital
elevation model (DEM) of the selected lidar scene, which consists primarily of al-
most flat terrain intersected by a narrow ditch, is shown in Figure 4.1. This dataset
was chosen because it is a rather difficult scene for most surface matching algorithms,
as there is only one feature – the ditch – which can constrain the transformation at
the finest level. Thus, this dataset is used to emphasize the differences among the
presented variants.

d
it

ch

almost flat terrain

Shaded DEM of one point cloud

←
1
0
0
m
→

← 1000m →

y

xcog

-315 -310 -305 -300 -295

x(m)

-2
-1
0
1

-3

z(m)

-315 -310 -305 -300 -295

x(m)

-2
-1
0
1

-3

z(m)

cross-section before strip adjustment cross-section after strip adjustment

Figure 4.1: Top: digital elevation model of lidar test scene, bottom: cross-section
through ditch before and after the strip adjustment.

The two synthetic point clouds were generated by the following steps:

1. Extraction of a 1000×100 m2 area from a real lidar strip.

2. Derivation of a DEM from this point cloud (least squares moving planes inter-
polation, grid size = 0.5 m).

3. Generation of the two synthetic lidar strips: bilinear interpolation of the DEM
at randomly distributed positions in the xy plane for each of the two point
clouds (mean point density = 5 points/m2).

4. Transformation of one of the two point clouds by a rigid body transformation.
For the first two experiments (comparison of selection strategies and error
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metric) a translation vector t = (0.5 0.5 0.5)T m and a rotation about the z axis
with αZ = 0.1° were chosen. This leads to point displacements at the edges
of the point cloud of about 1 m, which is far more than usual displacements
between real lidar strips. For the third experiment (convergence analysis),
each of the 6 transformation parameters was varied within a specific range,
whereas the other 5 transformation parameters were set to zero.

The ICP algorithm (section 2) applied in this experiment tries to bring back
the transformed point cloud to its original position. After each iteration, for each
point the euclidean distance between its actual position and its original position
can be computed. We denote the root-mean-square of these distances as alignment
error and use this error metric for the comparison of different ICP variants. As
transformation model the rigid body transformation (3 rotations, 3 translations)
was chosen.

Comparison of Selection Strategies First, we examine the effect of the selection
strategies (introduced in section 3.2.1) on the convergence of the ICP algorithm. For
this purpose, with each strategy about 300 points are selected for the estimation of
the 6 transformation parameters.

As can be seen in Figure 4.2, with Random Sampling (RS) and Uniform Sampling
(US), most of the points are selected in flat regions, containing a lot of redundant
information for the alignment process. From these points the translation in x and y,
as well as the rotation around the z axis, can only hardly be estimated. For these 3
parameters, points within the ditch would be most useful, but since these strategies
don’t focus on local terrain features, only a few points are selected within this area.

However, Normal Sampling (NS) and Maximum Leverage Sampling (MLS) con-
sider the usefulness of points for the alignment process. Especially the MLS strategy
selects the points with the highest leverage on the estimation of the transformation
parameters. Thus, for the test scene, points are predominantly selected within the
ditch and – in order to constrain the rotation about the ditch axis – in a perpen-
dicular direction to it. It can also be recognized that the algorithm prefers points
towards the edges, as they better constrain the transformation.

Translation Rotation
[mm] [(′′) = 1/3600 °]

σtx σty σtz σαx σαy σαz

RS 38.0 29.6 0.3 0.033 0.003 0.410
US 30.5 23.8 0.2 0.024 0.003 0.314
NS 17.8 47.9 0.7 0.079 0.009 0.661
MLS 11.5 22.2 0.6 0.059 0.007 0.261

Table 4.1: Precision of estimated transformation parameters for different sampling
strategies in first ICP iteration. RS = Random Sampling, US = Uniform
Sampling, NS = Normal Sampling, MLS = Maximum Leverage Sampling.

The convergence of the ICP algorithm for different selection strategies can be
compared in Figure 4.2. Here, one can see that with RS and US the convergence
rate is rather slow and, even worse, the final alignment error is 2-3 times larger than
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Random sampling (305 selected points)

Uniform sampling (306 selected points)

2

4

8

Alignment error (cm)

1 2 3 4 5

Random sampling
Uniform sampling
Maximum leverage sampling
Normal space sampling

→ 2.0 cm
→ 2.2 cm
→ 0.8 cm
→ 1.3 cm

Iteration

Condition number of N = ATA

0

0.5

1

1.5

2

1 2 3 4 5

Iteration

×109

final error:

Normal space sampling (305 selected points)

Maximum leverage sampling (305 selected points)

6

0

Figure 4.2: Effect of different correspondence selection strategies on convergence and
condition number.

with MLS. NS performs relatively well, but since points are not selected optimally,
the final error is considerably larger than with MLS. The point selection not only
influences the convergence of the ICP algorithm, but also the a posteriori stochastic
of the parameters. The standard deviations of the transformation parameters for
the first ICP iteration can be compared in Table 4.1. For further iterations, the
ratios between different selection strategies remain similar. This is also confirmed
by a comparison of the condition numbers of the normal equation matrix N = ATA,
which indicate if the equation system is ill-conditioned (high condition number) or
well-conditioned (low condition number).

Comparison of Error Metrics In section 3.2.4 the point-to-point and point-to-plane
error metric were introduced. As shown in Figure 4.3, the convergence speed of the
point-to-point error metric is very slow, and even for a good initial alignment many
ICP iterations are necessary until the final alignment is reached. However, with
the point-to-plane metric flat regions can slide along each other within one iteration
without causing costs and therefore speed of convergence is improved dramatically.

Convergence Analysis The errors to be minimized by a strip adjustment have typ-
ically magnitudes of up to a few dm. Only in exceptional cases the displacement
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Figure 4.3: Effect of different error metrics on the convergence of the strip adjust-
ment. The results are based on the Uniform Sampling strategy for cor-
respondence selection.

of lidar strips are affected by gross errors, e.g. due to a wrong processing of the
trajectory. Such errors can cause point displacements in the range of several meters.
With this experiment we tried to find out if the presented method converges also
with such bad initial orientations, and if so, how many iterations are necessary until
the global minimum is reached. For this purpose, each of the six transformation
parameters was varied for the transformation of one point cloud within a specific
range, whereas the remaining five parameters were set to zero. For each transfor-
mation parameter the range limits were selected so that they cause maximum point
displacements of about 10 m. In Figure 4.4 the numbers of iterations which are nec-
essary to reach an alignment error smaller than 1 cm (stop criterion) are reported
for each experiment. For example, for tx = 6 m (and ty = tz = αx = αy = αz = 0)
the presented method needs 7 iterations to fulfill the stop criterion. It can be seen
that even for this difficult scene, all adjustments converged to the right solution.
However, it should be noted that if the initial alignment is very bad, a relatively
high number of iterations can be necessary, e.g. 9 iterations for tx = −10m. In
our experience, gross errors in airborne lidar are always far below the selected range
limits and therefore a divergence of the strip adjustment can almost be excluded.
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Figure 4.4: Convergence analysis by variation of transformation parameters.
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4.2 Lidar strip adjustment for geomorphological studies
In this example, we demonstrate the application of the strip adjustment method on
an airborne lidar block measured in July 2012 which is located in the Austrian Alps
(Tyrol, Kaunertal, Gepatschferner) (46°51’85” N, 10°42’79” E; WGS 84). This block
is one of a total of 6 blocks acquired between 2006 and 2015 for geomorphological
studies. The block consists of 95 longitudinal strips and 8 cross strips (Figure
4.5 (a)); the cross strips were flown in both directions. The lidar system was carried
by a helicopter that flew over the terrain in a constant height above ground of approx.
600 m. Further information about the flight campaign is summarized in Table 4.2.
A quality control of the delivered data revealed large systematic discrepancies (of
up to several dm) in the overlap area of neighbouring strips. For this reason, an
improvement of the georeferencing of the data by means of strip adjustment, was
absolutely necessary.
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(a) ALS block: 103 strips and 4 ground-truth data areas (c) Position of the correspondences (total number = 345205)

(d) Distribution of the a posteriori point-to-plane distances(b) Convergence of std.dev. of residuals over iterations

std.dev. = 0.054 m
mean = -0.0005 m

no. of corr. = 345205

Figure 4.5: Strip adjustment results for an airborne lidar block covering an area of
approx. 119 km2 in the Austrian Alps (Kaunertal).

Next to the georeferenced strips, also the original scanner measurements and the
trajectory data were provided. However, no a priori information about the mount-
ing calibration was available. Thus, approximate values for these parameters were
determined so that the misalignment Ris approximately rotates the s-system into the
i-system, whereas the lever-arm ai was approximated by the null vector. In total,
627 parameters were estimated in the adjustment; this includes 3 scanner calibra-
tion parameters (range offset ∆ρ, range scale ερ, scan angle scale εα), 6 mounting
calibration parameters, and 6 trajectory correction parameters for each of the 103
strips (Bias Trajectory Correction Model, cf. Figure 3.6). As it can be seen in Figure
4.5 (b), five correspondence iterations (cf. Figure 3.19) were performed within the
strip adjustment, although three iterations would have been sufficient. The reason
for this is that we used, instead of a convergence criteria based e.g. on the change of
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Lidar data specifications

scanner model Riegl LMS-Q680i
area of lidar block approx. 119 km2

no. of strips 103
no. of ground-truth data areas 4
size of input data 58.8 GB
overall no. of points 1 455 111 768
mean point density (single strip) 2.5 points/m2

mean point density (block) 12.2 points/m2

frequency of trajectory data 256 Hz
terrain elevation 2100 to 3450 m

Table 4.2: Key parameters of the lidar data used.

the parameter estimates x̂ after each iteration, a fixed number of 5 correspondence
iterations.

In total, 748 pairs of overlapping strips were identified. The STR-to-STR corre-
spondences between each of these strip pairs were selected by the Uniform Sampling
strategy with a mean sampling distance of 50 m. In this mountainous region, this
strategy led to a broad and relatively homogeneous distribution of the normal vec-
tor directions. The normal vectors were estimated by considering all neighbouring
points within a fixed search radius of 2 m. In order to ensure the reliability of the
normal vector estimation, correspondences were rejected in rough areas (e.g. veg-
etation) with σp > 10 cm. The positions of the correspondences are visualized in
Figure 4.5 (c). The distribution of the a posteriori point-to-plane distances d[p] is
shown in Figure 4.5 (d). The residuals are normally distributed, which indicates
that systematic errors were widely eliminated by strip adjustment and confirms the
appropriateness of the applied transformation model. In Figure 4.6 the mean and
the standard deviation of these residuals are visualized individually for each strip
pair. The strip pairs are thereby ordered by decreasing number of correspondences.
As expected, the magnitude of the mean values is increasing by decreasing no. of cor-
respondences (which is equivalent to a decreasing weight of the strip pairs), whereas
the standard deviation remains, mainly due to the homogeneity of the terrain and
of the surveying conditions, nearly constant.

The datum of the lidar block was defined by 4 control point clouds (Figure 4.5 (a)).
Altogether, these areas consist of 205 points, which were chosen predominantly on
roofs and streets and were determined by a combination of static GNSS and total
station measurements. These points were matched with 24 overlapping strips, giving
in total 632 datum-defining CPC-to-STR correspondences.

Change detection In total, six lidar blocks of the Gepatschferner glacier have
been measured between 2006 and 2015. The main aim of these missions was to
study the geomorphological processes in this area on the basis of height difference
models. An overview about the lidar missions is shown in Figure 4.7. One can see,
that the amount of data almost tripled within 10 years. Each of these blocks has
been adjusted by the method presented herein. The bedrock areas of the lidar block
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Figure 4.6: Strip adjustment results for all 748 overlapping strips pairs. The strip
pairs are ordered according to the no. of correspondences.

described above (2012/07) have been used as control point clouds in the adjustments
of the remaining lidar blocks. The changes of the glacier tongue over the years is
visualized as shaded DEMs in Figure 4.8. A 3D visualization of the height changes
from 2012/07 to 2014/07 is shown in Figure 4.9. Here, it can be recognized that
height differences within stable areas are within ±4 cm.

Results

no. of estimated parameters 627
no. of iterations 5
no. of overlapping strip pairs 748
no. of correspondences (STR-to-STR) 345205
→ mean of residuals -0.0005 m
→ std.dev. of residuals 0.054 m

no. of correspondences (CPC-to-STR) 632
→ mean of residuals -0.0002 m
→ std.dev. of residuals 0.053 m

Table 4.3: Strip adjustment results.
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2006
57 lidar strips, 29 GB

2012/07
103 lidar strips, 58 GB

2012/09
72 lidar strips, 44 GB

2014/07
38 lidar strips, 11 GB

2015/07
67 lidar strips, 109 GB

2015/08
63 lidar strips, 93 GB

Figure 4.7: Lidar blocks of the Gepatschferner glacier measured between 2006 and
2015.
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2006
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glacier tongue

Figure 4.8: The tongue of the Gepatschferner glacier from 2006 to 2015.
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Figure 4.9: Height changes between the measurement epochs 2012/07 and 2014/07.
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4.3 Correction of time-dependent trajectory errors
In this example the correction of time-dependent trajectory errors using the Spline
Trajectory Correction Model is demonstrated. The study site Neubacher Au is a
Natura2000 protection area located at the lower course of the Pielach River (Lower
Austria) near the confluence with the Danube River (48°12’50” N, 15°22’30” E; WGS 84).
Due to the complex topography and vegetation structure, the alluvial area was cap-
tured under leaf-off conditions by a UAV-mounted laser scanner (Figure 4.10, top
right). The manufacturer’s specifications about the UAV, the laser scanner, and the
GNSS/INS solution are reported in Table 4.4.
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Figure 4.10: The trajectory correction model is demonstrated on the basis of a single
pair of strips (flight trajectories in blue/orange). These two strips were
acquired by following the course of the Pielach river in 25 m flying al-
titude. The magenta points were taken from a simultaneous (manned)
lidar campaign and introduced as control point cloud into the strip ad-
justment. The point clouds within the rectangle are depicted at the
bottom right corner (yellow points = position of STR-to-STR corre-
spondences in this area). Top right: Riegl RiCopter.

Data capturing was carried out with 14 longitudinal, 4 cross strips, and 2 strips
along the Pielach river1. The regular distance between longitudinal strips was 40 m
and the flying altitude was 25–50 m above ground. Depending on the sensor-to-target
range the resulting laser footprint diameter is 1.0–2.5 cm, enabling the detection
of small vegetation objects. The UAV was autonomously flying the programmed
path (based on waypoints) with a speed of 8 m/s. The mission parameters and the
large scanner field of view resulted in a mean laser pulse density of 1500 points/m2

and in multiple strip overlaps so that the vegetation was captured from multiple
sides (cf. Figure 4.11). The point clouds acquired in this flight campaign were
already used in other publications: in Mandlburger et al. (2015b) the potential

1An animation of the captured point clouds after strip adjustment can be seen here: https:
//youtu.be/GwyNhUjFr2I
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Measurement system
la

se
r

sc
an

ne
r

model Riegl VUX-1UAV
pulse repetition rate 350 kHz
range accuracy 10 mm
range precision 5 mm
scan angle resolution 0.001°
field of view 230°
beam divergence 0.5 mrad
wavelength 1550 nm

G
N

SS
/ I

N
S model Trimble Applanix AP20

roll accuracy 0.015°
pitch accuracy 0.015°
yaw accuracy 0.035°
position accuracy 5-30 cm
INS sampling rate 200 Hz

U
A

V

model Riegl RiCopter
max. payload 16 kg
max. flight time 30 min
size 192 x 182 x 47 cm

Table 4.4: Key features of the deployed measurement system as declared by the
manufacturers.

of the data for vegetation modelling was investigated and in Mandlburger et al.
(2015c) a comparison between airborne and bathymetric lidar data was presented.
For these works, strip adjustment was performed for all strips. However, for a better
understanding, the presented Spline Trajectory Correction Model is demonstrated
in the following on the basis of a single pair of strips only (Figure 4.10).

In this minimal example we compare the results of the Spline Trajectory Correction
Model with the simple Bias Trajectory Correction Model (Table 4.5). With the latter
only a bias is estimated for each trajectory element per strip; looking at the equations
(3.29) and (3.30) this corresponds to

n[s] = 1 ⇒ ∆t = te[s] − ts[s] (4.1)
a1[s][k] = a2[s][k] = a3[s][k] = 0 (4.2)

and the coefficient a0[s][k] is the bias estimated by adjustment.
The two investigated strips were acquired by following the course of the Pielach

river in 25 m flying altitude. These two strips were later used to investigate short
term water level differences, thus a very high strip registration accuracy was re-
quired to distinguish signal (i.e. water level differences) from noise. To minimize the
discrepancies between these two strips, approx. 29000 STR-to-STR correspondences
were established (cf. Figure 4.12) . . .

• within the overlap volume of the two strips,
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before strip adj.

after strip adj.

Figure 4.11: Top: Point cloud captured during an airborne lidar campaign after
strip adjustment (different colors correspond to different flight strips).
Below: horizontal section through the stems of a tree (height = 0.5 m)
before and after strip adjustment.

• inside the area of interest,

• outside the river area due to the water dynamics, and

• only on relatively smooth surface areas (details later).

The Normal Space Sampling method (section 3.2.1) was used for the selection of the
correspondences. Thereby, the correspondences are selected so that the distribution
of their normals in angular space (slope vs. aspect) is as uniformly as possible. As
can be seen in Figure 4.10 (bottom right), this leads to a broad distribution of the
correspondences in 3D object space, i.e. correspondences are not only established on
the terrain, but also on thicker stems and branches.

The datum of the strip adjustment was defined by a control point cloud containing
5630 homogeneously distributed points, which have been extracted from a simulta-
neous manned airborne lidar flight campaign (Figure 4.10, left). These points were
matched with the two overlapping strips, giving in total approx. 7900 datum-defining
CPC-to-STR correspondences. The large number of ground truth points avoid the
problem of block deformation, which was discussed in section 3.1.4.1.
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Strip adjustment results

Bias TCM Spline TCM

# parameters
• scanner calibration 4 4
• mounting calibration 6 6
• trajectory correction coefficients 11 504

# observations
• correspondences
• STR-to-STR (Figure 4.12, 4.13) 29180 28662
→ std. dev. residuals 1.83 cm 1.38 cm
→ mean residuals 0.01 cm 0.00 cm
• CPC-to-STR 7888 7866
→ std. dev. residuals 1.82 cm 1.65 cm
→ mean residuals 0.00 cm 0.00 cm

• coefficients (eq. 3.41) 0 126
# constraints 0 390
redundancy 37047 36530

Table 4.5: Comparison of strip adjustment results for both trajectory correction
models (TCM).

To minimize the point-to-plane distances, the normal vector is needed for each
correspondence (cf. Figure 3.14). The normal vectors were estimated by considering
a maximum no. of 20 neighbouring points within a maximum search radius of 0.5 m.
However, if the estimated normal vector is unreliable – i.e. if the standard deviation
of the points from the adjusting plane exceeds σp,max – the associated correspon-
dence was rejected. As a result, correspondences are established within relatively
smooth areas only (in this example we used σp,max = 2 cm). All parameters, i.e. the
search radius, the no. of neighbouring points, and σp,max, were chosen empirically
by considering the point density, the topography, and the measurement accuracy of
the laserscanner (Table 4.4).

In Figure 4.12 and 4.13 the residual point-to-plane distances of each STR-to-STR
correspondence can be inspected in object space and time domain, respectively. As
can clearly be seen, using the Bias Trajectory Correction Model the residuals show
a strong systematic pattern, with amplitudes of up to 3-4 cm. As these errors are
significantly larger than the measurement accuracy of the laser scanner (Table 4.4),
it can be concluded that time-dependent trajectory errors are the dominant remain-
ing error source. If we take a closer look at the error pattern in time domain (upper
part of Figure 4.13), it can be recognized that the systematic part of these errors
can be well-modelled by smooth and continuous functions, e.g. by cubic splines, as
we propose here. Thus, with the Spline Trajectory Correction Model the system-
atic errors could be widely eliminated, leading to residuals that are mainly random
distributed over time (lower part of Figure 4.13). We have chosen in this example
a segment length ∆t of 10 s for the estimation of the spline correction functions,
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Bias Trajectory Correction Model Spline Trajectory Correction Model
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[cm]end
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end
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Figure 4.12: Residual point-to-plane distance for each STR-to-STR correspondence
after strip adjustment (total no. of correspondences ≈ 29000). A sys-
tematic pattern of the residuals can be recognized for the simple Bias
Trajectory Correction Model. These systematic errors are eliminated
to a large extent by using the Spline Trajectory Correction Model pre-
sented in this article.

which leads to 10 segments for strip 1 and 11 segments for strip 2 (Figure 4.15). By
using this correction model, the relative orientation of the strips – defined as std.
dev. of the residual point-to-plane distances for all STR-to-STR correspondences,
cf. Table 4.5 – was improved by 25%, i.e. from 1.83 cm to 1.38 cm. Accordingly,
the absolute orientation of the strips was improved by 10%, i.e. from 1.82 cm to
1.65 cm. A comparison with Table 4.4 shows that these values, as well as the esti-
mated correction functions are widely in conformity with the accuracies declared by
the manufacturers.

An appropriate choice of the segment length ∆t is of great importance. On the one
hand, a too small segment length increases the model complexity without improving
significantly the goodness of fit of the model. As can be seen in Figure 4.14, this
applies to ∆t <10 s in the current case. On the other hand, systematic errors of the
trajectory can not be fully compensated if the segment length is too long. Thus, a
good balance between goodness of fit and the complexity of the model – i.e. the no.
of unknown parameters – has to be found. Several statistical tests can be applied to
this purpose, e.g. the Akaike Information Criterion (AIC) or Minimum Description
Length (MDL) tests (Burnham and Anderson, 2002). In this example, a good trade-
off was found for ∆t =10 s.

83



4 Experimental results

start

Bias Trajectory Correction Model:

re
si

d
u

a
ls

[c
m

]

flight time of strip 1 [s] end

std. dev. = 1.83 cm
mean = 0.01 cm

re
si

d
u

a
ls

[c
m

]

rel. freq.

start

Spline Trajectory Correction Model:

re
si

d
u

a
ls

[c
m

]

flight time of strip 1 [s] end

std. dev. = 1.38 cm
mean = 0.00 cm

re
si

d
u

a
ls

[c
m

]

rel. freq.

Figure 4.13: Residual point-to-plane distance for each STR-to-STR correspondence
after strip adjustment depending on the flight time of strip 1. Bias
Trajectory Correction Model: the systematic error pattern in object
space (cf. Figure 4.12, left) is also clearly visible in time domain. Spline
Trajectory Correction Model: the residuals are predominantly random
distributed, i.e. systematic errors are minimized by the estimated spline
functions (cf. Figure 4.15).
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Figure 4.14: Goodness of fit vs. model complexity for different segment lengths ∆t.
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Figure 4.15: Estimated trajectory correction functions for both strips.
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4.4 Hybrid adjustment of high resolution lidar and image
data

The aim of this example is to show the potential of the hybrid adjustment for terrain
modeling on the basis of high-resolution data captured by UAVs. It is demonstrated
that using the method presented herein, lidar and image data can be simultaneously
georeferenced with a relative precision of 1 cm (std. dev.). In our experience, this
level of accuracy can only be achieved by a thorough and simultaneous calibration
of all sensors, i.e. of the lidar scanner, the camera(s), GNSS, and INS. It is noted,
that preliminary results from the same flight campaign have been published by
Cramer et al. (2018). Thereby, the lidar point clouds have been adjusted by the
strip adjustment method presented in this work.

The study area is located in Hessigheim, Germany, (48°59’67” N, 9°11’20” E;
WGS 84), cf. Figure 4.16. The lidar data was collected by a Riegl RiCopter UAV and
the Riegl VUX-1LR scanner (Figure 4.18). The mean point density within a lidar
strip is ≈ 350 points/m2. As GNSS-inertial solution an Applanix APX-20 board was
used. The accuracy of the post-processed flight trajectory is 2–5 cm for the position
coordinates, 0.015° for the roll and pitch angles, and 0.035° for the yaw angle. The
data was collected in a flying height of about 40 m above ground and a flying speed
of about 8 m/s. Oblique imagery with an average GSD of 20 mm was captured from
two Sony Alpha 6000 cameras together with the lidar data. As precise time stamps
are available for these images, they are handled as coupled images in the adjustment.
A second flight campaign with the CopterSystems CS-SQ8 copter and a PhaseOne
iXU-RS 1000 camera was carried out for the acquisition of high-resolution nadir
images with an average GSD of 4 mm and 80/60 overlap. Due to inaccurate time
stamps, these images are introduced as loose images into the adjustment. Ground
truth data was measured by a combination of GNSS static baseline and tacheom-
etry measurements (Figure 4.17). The accuracy of the thereby measured points is
between 2 and 4 mm. As control point clouds (CPC) gable roof shaped structures,
fixed on tripods, are used. A dense point cloud was derived from the observed corner
points of these structures. Checkerboard targets with a diameter of 27 cm are used
as ground truth data for the aerial images. These points were either used as ground
control points (GCP) or as check points (CP) in the following experiments. In sum,
4 longitudinal lidar strips, 506 oblique images (coupled images), and 76 nadir images
(loose images) have been chosen for this example to demonstrate the capabilities of
the hybrid adjustment.

Computation parameters The following provides a detailed summary of the com-
putation parameters used in the hybrid adjustment:

• Lidar: For the alignment of the lidar point clouds only the last echoes within a
scan angle of ±35° are used. As no initial mounting calibration was provided,
the scanner coordinate system (s-system) is initially aligned with the INS
coordinate system (i-system). Thus, the mounting calibration parameters of
the scanner (Ris,ai) and a subset of the scanner calibration parameters (range
offset ∆ρ, range scale ερ, and scan angle scale εα) are estimated by adjustment.
The planes used to establish the correspondences involving lidar data (STR-to-
STR, IMG-to-STR, CPC-to-STR) are estimated from points within a search
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flight trajectory

coupled images

loose images

ground control points

control point clouds

check points

lidar data Legend

Figure 4.16: Overview of the data used in the final version of the hybrid adjust-
ment (experiment no. 7). The area covered by the lidar data is colored
according to the strip overlap.
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ground control points

and check points

control point clouds

Figure 4.17: Ground-truth-data for images and lidar. On the right, the alignment
of the lidar points (orange) and the control point cloud (blue) is shown
after the hybrid adjustment.

Figure 4.18: UAVs used for data capturing. Left: Riegl RiCopter with VUX-1LR
scanner and two Sony Alpha 6000 cameras. Right: CopterSystems CS-
SQ8 copter with PhaseOne iXU-RS 1000 camera.

radius of 0.50 m, whereby a plane is only used if at least 15 points are found
within the sphere defined by this search radius.

• Images: A distinction must be made here between the oblique images of
the two Sony Alpha 6000 cameras and the nadir images of the PhaseOne
iXU-RS 1000 camera. As the images of the Sony cameras are coupled to the
flight trajectory, the mounting calibration parameters are estimated for these
two cameras (Ric[1], R

i
c[2],a

i
[1],a

i
[2]). Additional correction parameters of the six

parameters of the exterior orientation (∆Xe
0[i],∆Y e

0[i],∆Ze0[i],∆ω[i],∆ϕ[i],∆κ[i])
are estimated for each image [i]. These correction parameters are (fictionally)
observed to zero with an a priori precision that corresponds to the above
reported precision of the flight trajectory. These observations honor the zero-
expectation of these parameters and maintain the coupling of the cameras to
the flight trajectory, cf. section 3.1.2. In contrast, the images of the PhaseOne
camera are treated as loose images, i.e. the initial six parameters of the exterior
orientation are free to change, i.e. not coupled to a flight trajectory and not
observed through fictional observations. The camera calibration parameters of
all three cameras are estimated by adjustment, including the image distortion
parameters. The a priori precision of the image measurements was set for all
cameras to 0.5 px.
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• Trajectory: After using the Bias Trajectory Correction Model the quality
control of the lidar strips showed systematic time-dependent residuals (we will
address this point in experiment no. 4 later on). Thus, the Spline Trajectory
Correction Model is applied to correct these errors. Thereby, a segment length
∆t of 5 s is used. The 0-degree polynomial coefficients of the spline function are
fictionally observed to zero, again according to the above reported precision of
the flight trajectory. A single set of datum correction parameters (∆gex, ∆gey,
∆gez) is used to correct for a global shift of the entire lidar and image block.

• Ground truth data: Within the used image block, five points, used either as
ground control points or check points, are available. The a priori precision of
these points is assumed to be 4 mm. Only two control point clouds are present
in the southern part of the block. This suboptimal distribution was chosen
intentionally to highlight some of the risks and benefits of the hybrid adjust-
ment concerning an absolute deformation of the lidar and image block. For
the CPC-to-STR correspondences the planes are estimated from the control
point clouds with a search radius of 5 cm, where a minimum of 5 points are
needed.

• Correspondences: The STR-to-STR correspondences are selected in two
steps. First, points are selected with the Uniform Sampling strategy with
a mean sampling distance of 1 m. Then, a subset of 50% of these points is
selected by the Normal Space Sampling strategy. Correspondences with a
roughness σp > 2 cm and with an angle of α > 5° between the normals of
corresponding points are rejected. For the IMG-to-IMG correspondences only
points depicted in at least 3 images are used. As IMG-to-STR correspondences
a subset of these tie points was selected with the Uniform Sampling strategy
using a mean sampling distance of 2 m. All correspondences with roughness
σp > 2 cm are rejected, cf. Figure 3.17.

• General: The correspondences have been re-established in five iterations.
In order to identify wrong correspondences (outliers) a l1-norm minimization
is imitated within the adjustment by iteratively re-weighting the observations
(Kraus, 1997, p. 218). After the removal of the detected outliers, a final regular
least squares adjustment is performed with the remaining correspondences
(inliers).

In the following, a series of 7 experiments, in which we gradually increase the
complexity by adding new parameters and new input data, will be described to
explain the different aspects of the hybrid adjustment. An overview showing the
input data, the observations, and the chosen parameter model for each experiment
can be found in Table 4.6. The results of each experiment are summarized in the
Figures 4.21 – 4.27.
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Experiment no. 1 We start with the adjustment of the 4 lidar strips only, i.e.
without images. The datum of the lidar block is thereby defined by the two control
point clouds in the southern part of the block. Only six parameters are estimated in
total: the three misalignment angles of the mounting calibration of the scanner and
the three datum correction parameters. As pointed out in section 1.3, many of the
works previously published on the topic of lidar strip adjustment aim to estimate
the three misalignment angles only (e.g. Toth (2002), Hebel and Stilla (2012)), as
they have a major impact on the georeference of the lidar strips. However, large
residual errors are still observable after the adjustment within the overlap area of
neighboring lidar strips. These errors are visualized in the upper left image of
Figure 4.21 (relative orientation between lidar strips). We use this mosaic to check
the relative orientation between overlapping lidar strips. To generate this mosaic,
first a DSM is derived from each lidar strip. Thereby, a mask, marking only the
smooth parts (e.g. streets, roofs) of the observed area, is also generated. The height
differences between overlapping lidar strips are then calculated for each overlapping
strip pair, whereby only smooth areas are considered (Ressl et al., 2008). The final
mosaic is derived from these strip height differences by choosing at each grid point
the height difference with the maximum absolute value. Due to imperfections of
the above mentioned smoothness masks, robust estimators are used to describe the
distribution of these residual errors. The median and σmad values of these errors
are 1.8 ± 3.9,cm for the current experiment. In the upper right image of Figure
4.21 (height differences of lidar block to final version) the height difference of the
adjusted lidar block is shown with respect to the final version of the adjustment, i.e.
experiment no. 7, which is assumed to be the optimal solution. Here, one can see that
differences are small at the position of the control point clouds, however, towards
north differences are steadily increasing. The a posteriori statistics in the lower part
of Figure 4.21 show the number and distribution of the established correspondences
(top) and the residuals at the GCPs and check points (CPs) (bottom). Summarizing,
the relative and absolute orientation of the lidar strips is far from satisfactory for
this experiment. We will try to improve the results by extending the parameter
model in the subsequent experiments.

Experiment no. 2 In this experiment, the full set of mounting calibration param-
eters is estimated for the scanner, i.e. the three lever-arm components are added to
the parameter model with respect to the previous experiment. We can see in Figure
4.22 that the residuals slightly improve for both, the relative and absolute orienta-
tion of the lidar strips. However, still very large residual systematic discrepancies
can be observed.

Experiment no. 3 In this experiment, the three scanner calibration parameters,
used to correct the polar measurements of the scanner, are estimated additionally.
Again, the relative and absolute orientation of the lidar strips can be slightly im-
proved, but residuals are still very large and show a strong bias (Figure 4.23).

Experiment no. 4 The first three experiments showed large systematic residual
errors, especially due to the inability of the individual lidar strips to be moved and
rotated in object space. In this experiment the Bias Trajectory Correction Model
is additionally used to individually correct the flight trajectory of each lidar strip.
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Thereby, the relative orientation of the lidar strips can be significantly improved from
2.1± 3.2,cm to 0.1± 1.0 cm (Figure 4.24). Such a level of accuracy is acceptable for
most applications. However, locally, still errors with a magnitude of up to 2–3 cm
can be recognized in the upper left image; we will try to mitigate these errors in
the next experiment. The upper right image and the a posteriori statistics show
that the lidar block fits very well to the two control point clouds. However, height
differences grow towards north due to lack of ground truth data.

Experiment no. 5 This experiment shows that using the Spline Trajectory Cor-
rection Model, systematic discrepancies between overlapping lidar strips can widely
be eliminated (Figure 4.25). The residual height differences are within ±1 cm al-
most over the entire lidar block, having a distribution of 0.0± 0.4 cm. However, as
pointed out in section 3.1.4.1, the usage of splines for the correction of the flight
trajectory elements, involves also some risks, especially if the ground truth data
is not well distributed over the boundaries of the block. The latter applies to the
current experiment, where control point clouds are situated in the southern part of
the block only. Thus, it can be observed, that the quality of the absolute orienta-
tion of the lidar block decreases toward north, showing a maximum discrepancy of
approximately -10 cm at the northernmost point.

Experiment no. 6 The hybrid adjustment of lidar and image data is first carried
out in this experiment. It is noted, that no ground truth data was used as GCPs
for the images here, i.e. all points are used as check points only. In the upper cen-
tral image of Figure 4.26 (relative orientation between images and lidar strips) the
residual point-to-plane distances of the IMG-to-STR correspondences are shown.
No systematic patterns of the residual errors can be recognized here. The mean
and standard deviation of these residuals are 0.00± 0.6 cm, i.e. the lidar block and
the image block are well aligned to each other. In the top right image it can be
seen that the absolute discrepancies can be strongly mitigated by the incorporation
of aerial images, but the maximum discrepancy is still approximately -4 cm at the
northernmost point due to missing ground truth data in this region. However, most
important, the images avoid through the incorporation of additional geometric con-
straints an overcompensation of the flight trajectory errors. This is considered as
one of the main benefits of the hybrid adjustment, as it allows to use the Spline
Trajectory Correction Model without the risk of causing unmotivated local block
deformations. As an example, the trajectory corrections for a single strip are de-
picted in Figure 4.19. Using the lidar data only, the correction functions oscillate
to a relatively high degree. However, by supporting the estimation of the trajectory
correction functions with the coupled images, the oscillation can be mitigated. The
main reason for this is that a single image, which is recorded at a single point in
time, covers a relatively large area on the ground. This is not the case in lidar, where
at a single point in time only a few ground points (when using multi-echo scanners)
are generated. Thus, the stability of the lidar and image strip can be strongly in-
creased through the incorporation of images, making strong local deformations more
unlikely. The stability of the strips is thereby correlated with the area covered by a
single image and the overlap of the images. Another important synergetic effect of
the hybrid adjustment is shown in Figure 4.20. Here, the estimated precision σx̂ of
some parameters is shown for experiment no. 5 and 6, i.e. for the adjustment without
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and with aerial images. As it can be seen, the determinability of the parameters
increases by adding the aerial images to the adjustment due to a higher redundancy
and due to additional geometric constraints newly added through the images. From
the a posteriori statistics it can be seen that the residuals at the five check points
are within ±3 cm. This is in line with the expected theoretical reconstruction errors
of the coupled images (GSD = 20 mm), being σZ = 3.4 cm and σXY = 0.8 cm.

Experiment no. 7 This is the final version of the hybrid adjustment, in which all the
available data and the most comprehensive parameter model is used. Compared to
the previous experiment, three GCPs are used additionally for the datum definition,
so that the ground truth data is well distributed from south to north. Moreover,
the loose images of the PhaseOne camera are added to the adjustment. The spatial
distribution of the correspondences established in object space is shown in Figure
4.28. The quality control of the adjustment reveals a good relative and absolute
alignment of the lidar and image data (Figure 4.27). The appropriateness of the
functional model of the adjustment is confirmed by the random character of the
residual errors. The newly added PhaseOne images with a GSD of 4 mm have been
used to generate a dense image matching (DIM) point cloud. A comparison between
this point cloud and the lidar point cloud can be seen in Figure 1.2 and 4.29.

Conclusions In this example the benefits of an integrated orientation of lidar strips
and aerial images have been shown. The major advantage is the direct optimization
of the relative orientation between lidar and image data. However, it was shown
that the hybrid adjustment has other synergetic effects as well. The estimation
of time-dependent trajectory errors using the Spline Trajectory Correction Model
strongly benefits from the integration, mainly due to an increased geometric stability
of the strips and due to the higher redundancy. In this context, also an absolute
deformation of the block can be mitigated in case of an unfavorable distribution
of the ground truth data. Moreover, it was shown that the determinability of the
parameters increases by the simultaneous adjustment of lidar and image data. This
is especially useful when estimated calibration parameters should be transferred to
other flight campaigns.
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for Photogrammetry of the University of Stuttgart. This is highly appreciated.
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Figure 4.19: Comparison of spline trajectory corrections for strip no. 2 between lidar
strip adjustment (experiment no. 5) and hybrid adjustment (experiment
no. 6).
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Figure 4.20: Comparison of a posteriori precisions of estimated parameters between
lidar strip adjustment (experiment no. 5) and hybrid adjustment (ex-
periment no. 6).
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Rel. ori. between
lidar strips

Rel. ori. between
images and lidar strips

Height diff. of lidar
block to final version

Quality control of experiment no. 1

A posteriori statistics

correspondences unit n mean σ

STR-to-STR residuals [m] 35850 0.006 0.033
CPC-to-STR residuals [m] 644 0.000 0.015
IMG-to-IMG residuals x/y (cam1) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam2) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam3) [px] 0 —/— —/—
IMG-to-STR residuals [m] 0 — —

GCPs and control points (CPs) mean min max

GCP residuals x/y [m] 0 —/— —/— —/—
GCP residuals z [m] 0 — — —
CP residuals x/y [m] 0 —/— —/— —/—
CP residuals z [m] 0 — — —

no images

no images

-0.02 0.020 -0.04 0.040

Figure 4.21: Quality control of experiment no. 1.
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Rel. ori. between
lidar strips

Rel. ori. between
images and lidar strips

Height diff. of lidar
block to final version

Quality control of experiment no. 2

A posteriori statistics

correspondences unit n mean σ

STR-to-STR residuals [m] 35158 0.005 0.028
CPC-to-STR residuals [m] 653 0.000 0.008
IMG-to-IMG residuals x/y (cam1) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam2) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam3) [px] 0 —/— —/—
IMG-to-STR residuals [m] 0 — —

GCPs and control points (CPs) mean min max

GCP residuals x/y [m] 0 —/— —/— —/—
GCP residuals z [m] 0 — — —
CP residuals x/y [m] 0 —/— —/— —/—
CP residuals z [m] 0 — — —

no images

no images

-0.02 0.020 -0.04 0.040

Figure 4.22: Quality control of experiment no. 2.
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Rel. ori. between
lidar strips

Rel. ori. between
images and lidar strips

Height diff. of lidar
block to final version

Quality control of experiment no. 3

A posteriori statistics

correspondences unit n mean σ

STR-to-STR residuals [m] 36041 0.008 0.027
CPC-to-STR residuals [m] 654 0.000 0.010
IMG-to-IMG residuals x/y (cam1) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam2) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam3) [px] 0 —/— —/—
IMG-to-STR residuals [m] 0 — —

GCPs and control points (CPs) mean min max

GCP residuals x/y [m] 0 —/— —/— —/—
GCP residuals z [m] 0 — — —
CP residuals x/y [m] 0 —/— —/— —/—
CP residuals z [m] 0 — — —

no images

no images

-0.02 0.020 -0.04 0.040

Figure 4.23: Quality control of experiment no. 3.
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Rel. ori. between
lidar strips

Rel. ori. between
images and lidar strips

Height diff. of lidar
block to final version

Quality control of experiment no. 4

A posteriori statistics

correspondences unit n mean σ

STR-to-STR residuals [m] 37089 0.000 0.013
CPC-to-STR residuals [m] 767 0.000 0.005
IMG-to-IMG residuals x/y (cam1) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam2) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam3) [px] 0 —/— —/—
IMG-to-STR residuals [m] 0 — —

GCPs and control points (CPs) mean min max

GCP residuals x/y [m] 0 —/— —/— —/—
GCP residuals z [m] 0 — — —
CP residuals x/y [m] 0 —/— —/— —/—
CP residuals z [m] 0 — — —

no images

no images

-0.02 0.020 -0.04 0.040

Figure 4.24: Quality control of experiment no. 4.
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Rel. ori. between
lidar strips

Rel. ori. between
images and lidar strips

Height diff. of lidar
block to final version

Quality control of experiment no. 5

A posteriori statistics

correspondences unit n mean σ

STR-to-STR residuals [m] 35662 0.000 0.009
CPC-to-STR residuals [m] 769 0.000 0.004
IMG-to-IMG residuals x/y (cam1) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam2) [px] 0 —/— —/—
IMG-to-IMG residuals x/y (cam3) [px] 0 —/— —/—
IMG-to-STR residuals [m] 0 — —

GCPs and control points (CPs) mean min max

GCP residuals x/y [m] 0 —/— —/— —/—
GCP residuals z [m] 0 — — —
CP residuals x/y [m] 0 —/— —/— —/—
CP residuals z [m] 0 — — —

no images

no images

-0.02 0.020 -0.04 0.040

Figure 4.25: Quality control of experiment no. 5.
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Rel. ori. between
lidar strips

Rel. ori. between
images and lidar strips

Height diff. of lidar
block to final version

Quality control of experiment no. 6

A posteriori statistics

correspondences unit n mean σ

STR-to-STR residuals [m] 35721 0.000 0.009
CPC-to-STR residuals [m] 769 0.000 0.004
IMG-to-IMG residuals x/y (cam1) [px] 96193 0.00/0.00 0.35/0.35
IMG-to-IMG residuals x/y (cam2) [px] 73760 0.00/0.00 0.36/0.34
IMG-to-IMG residuals x/y (cam3) [px] 0 —/— —/—
IMG-to-STR residuals [m] 14480 0.000 0.006

GCPs and control points (CPs) mean min max

GCP residuals x/y [m] 0 —/— —/— —/—
GCP residuals z [m] 0 — — —
CP residuals x/y [m] 5 -0.016/0.006 -0.017/-0.025 0.006/0.026
CP residuals z [m] 5 0.013 -0.030 0.029

-0.02 0.020 -0.04 0.040-0.02 0.020

Figure 4.26: Quality control of experiment no. 6.
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Rel. ori. between
lidar strips

Rel. ori. between
images and lidar strips

Height diff. of lidar
block to final version

Quality control of experiment no. 7

A posteriori statistics

correspondences unit n mean σ

STR-to-STR residuals [m] 35765 0.000 0.009
CPC-to-STR residuals [m] 769 0.000 0.004
IMG-to-IMG residuals x/y (cam1) [px] 93456 0.00/0.00 0.35/0.35
IMG-to-IMG residuals x/y (cam2) [px] 71549 0.00/0.00 0.36/0.34
IMG-to-IMG residuals x/y (cam3) [px] 18689 0.00/0.00 0.43/0.35
IMG-to-STR residuals [m] 15155 0.000 0.006

GCPs and control points (CPs) mean min max

GCP residuals x/y [m] 3 0.003/0.001 -0.002/-0.003 0.008/0.004
GCP residuals z [m] 3 -0.013 -0.021 0.007
CP residuals x/y [m] 2 -0.002/0.004 -0.006/0.002 0.003/0.006
CP residuals z [m] 2 0.018 0.005 0.031

-0.02 0.020 -0.02 0.020 -0.04 0.040

Figure 4.27: Quality control of experiment no. 7.
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correspondences
STR-to-STR
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Density maps of correspondences
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Figure 4.28: Density of correspondences in object space for STR-to-STR, IMG-to-
IMG (= tie points), and IMG-to-STR correspondences.
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Lidar Dense Image Matching
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Figure 4.29: Top: Lidar and dense image matching (DIM) point cloud in top view.
The image tie points are visualized in as red points. Middle: 3D view.
Bottom: Profiles showing the alignment of lidar and image data.
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Airborne lidar and airborne photogrammetry are both proven techniques for the 3D
mapping of the Earth’s surface. Both techniques have their own advantages and
drawbacks. Airborne lidar typically generates very precise 3D point clouds and has
the key ability to penetrate vegetation through small gaps and thereby measure the
underlying ground. However, in addition to the laser scanner, expensive (and in
former times bulky) GNSS/INS navigation sensors are needed, as the georeferencing
accuracy of the generated 3D point clouds strongly depends on the accuracy of the
observed flight trajectory. Airborne photogrammetry in turn has the major advan-
tage to capture images at a single point in time that cover large areas and contain
spectral information in at least three channels. From these images, very dense and
colored point clouds can be derived by means of dense image matching methods
(DIM) (Figure 1.2). As the data is not continuously measured (in contrast to lidar),
a GNSS/INS navigation system is not strictly mandatory, however, it is mostly used
to directly measure the six elements of the exterior orientation of each image. The
requirements regarding the accuracy of the flight trajectory are thereby lower com-
pared to lidar systems. The main drawback of the photogrammetric principle is that
the reconstruction of a 3D point needs at least two images, which is e.g. rarely the
case for points in lower vegetation layers. Due to the complementary strengths of
both techniques, many works have been published on the integration of aerial lidar
and aerial photogrammetry for the derivation of final products, e.g. true orthophoto,
DSM, merging and colorization of point clouds, modeling of buildings. However, this
is not the case for the lidar strip adjustment and the aerial triangulation, i.e. for the
orientation and calibration of lidar strips and aerial images.

In this thesis a rigorous integration of the lidar strip adjustment and the aerial
triangulation, herein denoted as hybrid adjustment, was presented (section 3). The
main purpose of the hybrid adjustment is to simultaneously optimize the relative
and absolute orientation of the lidar and image data. This optimization problem was
solved by a least squares adjustment. The methodology of the hybrid adjustment
was adapted from the ICP algorithm (section 2). This implies two important as-
pects: (a) correspondences are established not just once, but in an iterative manner
and (b) correspondences are established on a point basis to maintain the highest
possible resolution level of the data (instead of using e.g. 2.5D gridded, interpolated
data). In total, four types of point clouds are aligned to each other in the hybrid
adjustment: lidar strips (STR), image tie points (IMG), control point clouds (CPC),
and ground control points (GCP). The point cloud generation process is rigorously
modelled within the adjustment for the lidar strips and the image tie points. This
means, that not the georeferenced point clouds are used as data input, but the
point clouds are modelled by using the original sensor measurements. In case of the
lidar strips, the point clouds are generated by combining the original polar measure-
ments of the scanner, the aircraft’s flight trajectory, and the mounting calibration
parameters of the scanner. The image tie points are modelled in a very similar way,
namely by combining the image measurements of homologous points, the aircraft’s
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flight trajectory, and the mounting calibration parameters of the camera. The flight
trajectory is thereby assumed to be estimated in advance by a Kalman filter. The
datum (absolute orientation) of the lidar and image block is defined by the remain-
ing two point cloud types: the lidar strips are aligned to the control point clouds
and the images are aligned to the ground control points. However, as the lidar
and image block are aligned to each other in the hybrid adjustment, both types of
ground truth data simultaneously define the datum of the lidar and the image block.
In consequence, fewer ground truth data is needed in total. This is considered as
one of the main benefits of the hybrid adjustment, as time-consuming terrestrial
measurements can be reduced.

The functional model of the adjustment is based on three main equations: (a)
the lidar direct georeferencing equation (section 3.1.1), (b) the direct georeferencing
of images (section 3.1.2), and (c) the collinearity equations (section 3.1.3). These
equations establish the relation between the sensor measurements and the points ob-
served in object space. The formulation of this relation through the original sensor
measurements, makes it possible to correct the errors where they originally occur.
For instance, calibration parameters can be estimated to correct a bias and scale
error of the polar measurements of the scanner. This would not be possible if the
georeferenced point clouds are used only. Furthermore, the mounting calibration
parameters (misalignment angles and lever-arm) of the scanners and the cameras,
as well as the camera calibration parameters (including the image distortion param-
eters), can be estimated. In conclusion, the hybrid adjustment allows the on-the-job
calibration of an entire multi-sensor platform by solving a single optimization prob-
lem.

The aircraft’s flight trajectory plays a central role in the hybrid adjustment. The
exterior orientation of the lidar strips and the images is derived from the trajectory
in consideration of the corresponding mounting calibration parameters. Four differ-
ent models have been proposed in section 3.1.4 to individually correct each of the
six elements (x, y, z, roll, pitch, yaw) of the trajectory in time domain: (a) the Bias
Trajectory Correction Model, (b) the Linear Trajectory Correction Model, (c) the
Quadratic Trajectory Correction Model, and (d) the Spline Trajectory Correction
Model. With the latter, being the most flexible model, time-dependent trajectory
errors are modelled by natural cubic splines (section 3.1.4.1). Due to the high flexi-
bility of this model, discrepancies between overlapping point clouds can be strongly
mitigated. However, if only lidar data is used these correction functions tend to
oscillate in some challenging situations (e.g. in absence of ground truth data, or in
case of corridor mapping). As a consequence, the lidar block gets locally deformed
in these areas, typically with magnitudes of up to 10 cm. It was demonstrated that
such deformations can strongly be mitigated by the simultaneous orientation of lidar
and image data. This is mainly due to the fact that the images cover a large area
on the ground at a single point in time.

Five types of correspondences are established between the various types of point
clouds (section 3.2). A distinction can be made between correspondences in object
space and image space. In object space three types of correspondences exist: (a)
correspondences between overlapping lidar strips (STR-to-STR, section 3.2.5.1), (b)
correspondences between control point clouds and lidar strips (CPC-to-STR, section
3.2.5.2), and (c) correspondences between image tie points and lidar strips (IMG-
to-STR, section 3.2.5.3). A single correspondence in object space is given by two
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points and their normal vectors, i.e. two corresponding planes. In the adjustment,
the point-to-plane distance of all correspondences is minimized simultaneously, i.e.
the distance between the two corresponding planes (section 3.2.4). It was shown
that for lidar and image data this error metric is better suited than the often used
point-to-point error metric; there are two reasons for this: (a) the point-to-plane
error metric has a higher convergence rate and (b) generally no point-to-point cor-
respondences exist due to the random ground sampling of the laser scanner. Special
emphasis was placed on the selection of correspondences between lidar strips and
image tie points, as the specific characteristics of both measurement techniques must
be considered in this case. A rather simple, but in practice well working approach
is to limit this type of correspondences to smooth and textured areas (e.g. roofs,
streets, or facades) and weight each correspondence according to its plane’s smooth-
ness. However, this approach may not work in every situation, e.g. over forest.
Thus, further investigations should be conducted on this subject. In image space
two types of correspondences exist: (a) correspondences between homologous points
and (b) correspondences between image points and ground control points (IMG-to-
IMG, IMG-to-GCP, section 3.2.5.4). These correspondences are typically used in an
aerial triangulation.

In the ICP algorithm each point is used as correspondence. This is simply not
feasible for large flight campaigns with potentially hundreds of lidar strips and thou-
sands of aerial images. Thus, four different strategies have been presented for the
selection of correspondences in object space: (a) Random Sampling, (b) Uniform
Sampling, (c) Normal Space Sampling, and (d) Maximum Leverage Sampling. The
main differences among these strategies are their computational complexity and
their suitability for different terrain types. The Maximum Leverage Sampling strat-
egy is newly introduced in this thesis (section 3.2.1.1). It is based on theory of least
squares adjustment and selects automatically correspondences in areas that are best
suited for the estimation of transformation parameters. It was demonstrated that
in situations rated as difficult on the subject of orientation (e.g. flat terrain with
few geometric features), MLS shows a higher convergence rate, improves the deter-
minability of parameters, and leads to smaller residuals.

It was already stated at the beginning of this thesis, that the separation of the
lidar strip adjustment and the aerial triangulation is not considered as a problem
per se. The main advantage of such a separation is that a rather complex problem
is split into two smaller, easier manageable problems. One of the reasons for this
separation is that in the past predominately either laser scanners or cameras have
been used on airborne platforms. However, due to the miniaturization of the sensors
and decreasing prices, a trend towards multi-sensor systems is observed. This applies
not only to manned aerial platforms, but also to the fast increasing number of UAVs.
Although these multi-sensor systems simultaneously record lidar and image data,
their orientation is carried out independently. A wide range of proven commercial
software exists to solve each of these two problems on its own, e.g. Riegl RiProcess,
TerraSolid TerraMatch for lidar strip adjustments, and Agisoft Photoscan, Pix4D,
Trimble Inpho Match-AT for aerial triangulations. However, large discrepancies
between the lidar block and the image block can be the consequence of solving these
two optimization problems independently. This is especially the case in challenging
situations, e.g. corridor mapping with one lidar/image strip only, if no or very few
ground truth data is available, if ground truth data is not well distributed, in case

106



5 Summary and conclusions

of mapping of non-textured or dynamic areas, if the flight trajectory is temporarily
very inaccurate (e.g. due to unfavorable satellite constellation or flight maneuvers)
and many more. Such situations are characterized by a low block stability and low
or no (e.g. in case of a single lidar strip) redundancy. Depending on the application,
the resulting discrepancies between the lidar and image block may be acceptable.
However, if this is not the case, these discrepancies can be inherently minimized by
the hybrid adjustment presented in this thesis.

It should also be mentioned that there is still a lot of room for improvements. By
combining the orientation of lidar and image data, not only the complexity increases,
but also the data amounts. A commercial version1 of the hybrid adjustment exists
in the software package OPALS (Pfeifer et al., 2014). This software has been devel-
oped on the basis of lidar strips with a mean density of approximately 10 points/m2

and with a maximum number of a few hundreds of aerial images. However, point
densities, the number of images and their resolutions increased dramatically in re-
cent time, especially if UAV s are used as sensor carriers. Therefore, one of the main
challenges is to reduce the amount of data used in the adjustment without impair-
ing the final orientation. This is especially challenging if time dependent trajectory
errors should be modelled, as the estimation of the correction functions need a dense
and uniform set of correspondences in time domain. Thus, a trade-off between accu-
racy, processing speed, and memory consumption must be found when choosing the
computation parameters for the hybrid adjustment. Up to now, no automatic solu-
tion has been found to this problem. As a consequence, the processing time or the
accuracy may become unacceptable for the user. Another related issue is the choice
of the parameters to be estimated by adjustment. For this, a very comprehensive
parameter model was presented in section 3.1. It offers an extensive set of weapons
to fight any systematic errors. However, these extensive possibilities also increase
the risk of overfitting by estimating unnecessary parameters. The main drawback
thereby is that each parameter potentially weakens the overall block stability and
may contribute to a global block deformation (e.g. bending). It was demonstrated
that this problem can be strongly mitigated by (a) the joint orientation of lidar and
image data and (b) by using fictional observations for some parameters. However, in
some cases, these two measures can not completely avoid a block deformation, e.g.
if the Spline Trajectory Correction Model with a very short segment length is used.
Unfortunately, our experiments on using statistical tests like the Akaike Information
Criterion (AIC) or Minimum Description Length (MDL) for the automatic selection
of the parameter model were not conclusive. For the above reasons, the practical
usage of the hybrid adjustment in its current form needs expertise in the field of
photogrammetry/lidar and sufficient time (and patience) to gain experience with
the manifold options that are offered.

Over the last few years, the method introduced in this thesis has been applied
to the data of many flight missions. Its usefulness can be considered as practically
proven. The adjusted lidar and image data made a contribution to many inter-
esting applications, e.g. the quantification of geomorphic processes observed over a
period of approximately 10 years (Hilger et al. (2019), Figures 4.7, 4.8, 4.9), the
estimation of soil surface roughness (Milenković et al., 2015), the estimation of tree
stem diameters (Wieser et al., 2017), the usage of lidar data to calibrate and correct
data from satellite altimetry (Zlinszky et al., 2017), the modeling of complex terrain

1http://www.geo.tuwien.ac.at/opals/html/ModuleStripAdjust.html
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and vegetation structures on the basis of high-resolution data captured from a UAV
(Mandlburger et al., 2015a), and the fusion of point clouds from lidar and dense
image matching (Mandlburger et al., 2017). However, the complexity of the hybrid
adjustment opened also the door to a wide range of new investigations. Above all,
a more detailed analysis of the differences between the camera’s and laser’s view
on the Earth’s surface would be of interest. Other investigations could cover such
aspects as the automatic choice of computation parameters, the scalability of the
problem, the refinement of the measurement process, the application on mobile data,
and the improvement of the efficiency of the method. It is hoped that the hybrid
adjustment presented in this thesis provides a solid basis for such studies.
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Acronyms

AIC Akaike Information Criterion

ALS Airborne Laser Scanning

CPC Control Point Cloud

DEM Digital Elevation Model

DIM Dense Image Matching

DSM Digital Surface Model

DTM Digital Terrain Model

ECEF Earth-Centered, Earth-Fixed

GCP Ground Control Point

GNSS Global Navigation Satellite System

ICP Iterative Closest Point

INS Inertial Navigation System

LSA Least Squares Adjustment

LSM Least Squares Matching

MDL Minimum Description Length

RANSAC Random Sample Consensus

TIN Triangular Irregular Network

TLS Terrestrial Laser Scanning

UAV Unmanned Aerial Vehicle

UTM Universal Transverse Mercator
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