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Sühan Altay, MSc.

Matrikelnummer: 0827926
Kirchberggasse 18–20/8, A-1070 Wien

Wien, 26. November 2018

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 



ii



Kurzfassung der Dissertation

Thematisch befasst sich die vorliegende Dissertation mit zwei benachbarten Gebieten der
Finanzmathematik. Im ersten Teil entwickeln wir ein analytisch nachvollziehbares Zinsstruk-
turmodell in reduzierter Form für ausfallgefährdete Anleihen. Unser Modell berücksichtigt
sowohl empirisch stilisierte Fakten (negative momentane Korrelation zwischen Kreditspread
und risikofreiem Zinssatz) als auch mathematische und ökonomische Erfordernisse (Aus-
fallintensität und risikofreier Zinssatz sind nicht-negativ), um ein besseres Verständnis
der Kredit- und Zinsmärkte zu ermöglichen. In den verbleibenden Teilen analysieren wir
optimale Handelsstrategien für Finanzmarktmodelle, bei welchen den Aktienkursen be-
stimmte Abhängigkeitsstrukturen auferlegt werden, für die nicht alle Modellparameter direkt
beobachtbar sind. In diesem Zusammenhang analysieren wir dynamische Portfoliooptimie-
rungsprobleme unter Teilinformationen, die sich auf den Paarhandel (Teil II) bzw. einen
Großinvestor (Teil III) beziehen, der die Marktstimmung beeinflussen kann.

In Teil I präsentieren wir ein neuartiges Zinsstrukturmodell für ausfallgefährdete Anleihen,
das in der Lage ist, negative momentane Korrelationen zwischen Kreditrisikozuschlag und ri-
sikofreiem Zinssatz zu erfassen, die in der empirischen Literatur dokumentiert sind, während
die Positivität der Ausfallintensität und des risikofreien Zinssatzes erhalten bleibt. Für einen
multivariaten Jacobi-Prozess (eindimensional auch als Wright-Fisher-Prozess bekannt) und
ein geeignetes Funktional sind wir in der Lage, die Preise sowohl für ausfallfreie als auch
ausfallbehaftete Nullkuponanleihen in relativ geschlossener Form zu berechnen, indem wir
die Technik des exponentiellen Maßwechsels mit Hilfe des carré-du-champ-Operators sowie
die Übergangsdichtefunktion aus der dualen Darstellung des Jacobi-Prozesses verwenden.
Die resultierende Formel beinhaltet Reihen mit Quotienten von Gamma Funktionen und
schnell abfallenden Exponentialfunktionen. Der Hauptvorteil des vorgeschlagenen Zinsstruk-
turmodells in reduzierter Form besteht darin, dass es eine flexiblere Korrelationsstruktur
zwischen Zustandsvariablen bietet, die innerhalb eines relativ nachvollziehbaren Rahmens
die zeitliche Zinsstruktur und somit die Preisentwicklung von Anleihen und Derivaten
bestimmen. Darüber hinaus ist man in höheren Dimensionen nicht auf numerische Metho-
den für Differentialgleichungen angewiesen, die schwierig zu handhaben sein können (z.B.
mehrdimensionale Riccati-Gleichungen in affinen und quadratischen Zinsstrukturmodellen),
da die Übergangsdichtefunktion der Zustandsgrößen explizit bekannt ist. Dieser Teil basiert
auf dem Preprint [10], das zur Veröffentlichung eingereicht werden soll.

In Teil II untersuchen wir ein dynamisches Problem der Portfoliooptimierung im Zu-
sammenhang mit dem Paarhandel, also einer Anlagestrategie, die eine Long-Position in
einem Wertpapier mit einer Short-Position in einem anderen Wertpapier mit ähnlichen
Eigenschaften verbindet. Die Preisdifferenz bei derartigen Paaren, meist kurz als Spread
bezeichnet, wird durch einen Gaußprozess modelliert, der stets zu seinem Mittelwert tendiert
und dessen Driftrate durch einen nicht beobachtbaren, zeitkontinuierlichen Markovprozess
mit endlich vielen Zuständen bestimmt wird. Mit Hilfe der klassischen stochastischen Fil-
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tertheorie reduzieren wir dieses Problem mit Teilinformationen auf ein Äquivalentes mit
vollständigen Informationen und lösen es für die logarithmische Nutzenfunktion. Hierbei
wird das Endvermögen durch die Risikoexposition des Portfolios bestraft, welche wiederum
durch die realisierte Volatilität des Vermögensprozesses gemessen wird. Wir charakterisie-
ren optimale dollarneutrale Handelsstrategien sowie optimale Wertfunktionen unter Voll-
und Teilinformationen und zeigen, dass das Prinzip der Sicherheitsäquivalenz für optimale
Portfolio-Strategien gilt. Schließlich präsentieren wir eine numerische Analyse für einen
einfachen Markovprozess mit zwei Zuständen. Dieser Teil stimmt im wesentlichen mit der
Publikation [8] überein, die im International Journal of Theoretical and Applied Finance
erschienen ist.

In Teil III analysieren wir ein Problem der Portfoliooptimierung für einen Investor, des-
sen Anlageentscheidungen einen indirekten Einfluss auf die Wertpapierpreise haben. Dazu
betrachten wir ein Finanzmarktmodell mit einem zufallsbehafteten Preisprozess, dessen
Dynamik nur aus Sprüngen besteht, deren Intensität durch einen nicht beobachtbaren konti-
nuierlichen Markovprozess mit endlichem Zutandsraum moduliert wird. Wir gehen davon
aus, dass Entscheidungen des Investors den Generator des Markovprozesses beeinflussen,
was zu einer indirekten Auswirkung auf den Preisprozess führt. Mit Hilfe der stochastischen
Filtertheorie reduzieren wir dieses Problem mit Teilinformationen auf eines mit vollständigen
Informationen und lösen es für logarithmische und Potenz-Nutzenfunktionen. Insbesondere
wenden wir die stochastische Kontrolltheorie für stückweise deterministische Markovprozesse
an, um die Optimalitätsgleichung abzuleiten und die Wertfunktion als eindeutige Visko-
sitätslösung der zugehörigen dynamischen Hamilton-Jacobi-Bellman-Optimalitätsgleichung
zu charakterisieren. Als Beispiel betrachten wir schließlich einen einfachen Markovprozess
mit zwei Zuständen und diskutieren, wie sich die Befähigung des Investors, die Intensität
des Markovprozesses zu beeinflussen, auf die optimalen Portfoliostrategien sowie den opti-
malen Vermögenswert unter vollständigen und partiellen Informationen auswirkt. Dieser
Teil stimmt hauptsächlich mit dem Preprint [6] überein, das zur Veröffentlichung eingereicht
wird (noch in Bearbeitung).
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Abstract

This dissertation deals thematically with two neighboring areas of financial mathematics. In
Part I we consider a tractable defaultable term-structure model in a reduced-form setting
that takes care of empirical stylized facts (negative instantaneous correlation between credit
spread and risk-free rate) coherent with the mathematical and economics-related facts
(non-negative intensity and risk-free rate) with an aim towards better understanding of the
dependence structure between credit and interest rate markets. In the remaining parts, we
want to analyze optimal trading portfolios with specific dependence structures imposed on
the stock prices with the view that not every model parameters are directly observable. In
that respect, we analyze dynamic portfolio optimization problems under partial information
related to a pairs trading in Part II and a market model with a large investor who can affect
market sentiments in Part III.

In Part I, we provide a novel defaultable term structure model that is capable of capturing
negative instantaneous correlation between credit spreads and risk-free rate documented
in the empirical literature while sustaining the positivity of the default intensity and risk-
free rate. Given a multivariate Jacobi (known also as Wright–Fisher in one-dimension)
process and a certain functional, we are able to compute the zero-coupon bond prices, both
defaultable and default-free, in a relatively tractable way by using the exponential change
of measure technique with the help of carré du champ operator as well as by using the
transition density function obtained from the dual representation of the multivariate Jacobi
process. The resulting formula is represented by series involving ratios of gamma functions
and fast converging exponential decay functions. The main advantage of the proposed
reduced form model is that it provides a more flexible correlation structure between state
variables governing the (defaultable) term structure within a relatively tractable framework
for bond and derivative pricing. Moreover, in higher dimensions one does not need to rely on
numerical schemes related to the differential equations, which may be difficult to handle (e.g.,
multi-dimensional Riccati equations in affine and quadratic term structure frameworks),
because transition function of the state variables is known. This part is based on a preprint
[10], which is to be submitted for publication.

In Part II, we study a dynamic portfolio optimization problem related to pairs trading,
which is an investment strategy that matches a long position in one security with a short
position in another security with similar characteristics. The relationship between pairs,
called a spread, is modeled by a Gaussian mean-reverting process whose drift rate is
modulated by an unobservable continuous-time, finite-state Markov chain. Using the
classical stochastic filtering theory, we reduce this problem with partial information to an
equivalent one with full information and solve it for the logarithmic utility function, where
the terminal wealth is penalized by the riskiness of the portfolio according to the realized
volatility of the wealth process. We characterize optimal dollar-neutral strategies as well as
value functions under full and partial information and show that the certainty equivalence
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principle holds for the optimal portfolio strategy. Finally, we provide a numerical analysis
for a toy example with a two-state Markov chain. This part is mainly from [8] published in
International Journal of Theoretical and Applied Finance.

In Part III, we analyze a portfolio optimization problem for an investor whose actions
have an indirect impact on prices. We consider a market model with a risky asset price
process following a pure-jump dynamics with an intensity modulated by an unobservable
continuous-time finite-state Markov chain. We assume that decisions of the investor affect
the generator of the Markov chain, which results in an indirect impact on the price process.
Using stochastic filtering theory, we reduce this problem with partial information to one
with full information and solve it for logarithmic and power utility preferences. In particular,
we apply control theory for piecewise deterministic Markov processes (PDMP) to derive
the optimality equation and characterize the value function as the unique viscosity solution
of the Hamilton–Jacobi–Bellman (HJB) equation. Finally, we provide an example with
a two-state Markov chain and discuss how investor’s ability to control the intensity of it
affects the optimal portfolio strategies as well as the optimal wealth under full and partial
information. This part is mainly from a pre-print [6] that is submitted for publication (under
revision).
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Chapter 1

Introduction

Understanding and quantifying dependence relations is crucial in the modeling of financial
phenomena. Therefore, in this thesis, we would like to analyze certain dependence structures
arising in reduced-form setting of defaultable term structure models as well as in dynamic
portfolio optimization problems related to pairs trading and large investors. The dependence
structure manifests itself as negative instantaneous correlation (or covariation) in the former,
and as co-integration and dependence of optimal controls to an unobservable Markov chain
in the latter. Below, we would like to give a synopsis of what we have studied in that
respect by focusing on our contribution to the literature. More detailed introductions and
motivations for the individual research topics can be found in respective parts of the thesis.
We also provide an outline of the thesis at the end of this section.

In the first part, we introduce a novel dynamic defaultable yield curve (term structure
of interest rates) model that can capture negative instantaneous correlation between credit
spreads and risk-free rate documented in the empirical literature while sustaining the
positivity of the default intensity and the risk-free rate. In the most simplistic case, the yield
curve is a graph that represents the relationship between short and long-term interest rates,
specifically in government securities (generally referred as default-free) or debt securities
of companies (defaultable). By observing the yield curve, or more precisely the shape of
the yield curve, economic agents can draw conclusions about the market expectation of the
future of the economy. So the yield curve can be regarded as one of the most important
tools for economic agents when they are making their decisions (i.e., when central bankers
set their monetary policy, or when individuals deposit their savings to a bank or decide to
take out a mortgage loan, or when insurance companies set their premiums etc.). Credit
spread (or yield spread) of a given corporate bond is defined to be the difference between its
yield and the yield of a government bond, or more generally (and more accurately after the
recent debt crisis) a reference bond, which is assumed to be risk-free and has the same time
to maturity. The raison d’etre of credit spreads is the risk of default inherent in corporate
bonds, in which case the bond holders receive only the partial payment or no repayment at
all. Therefore, to price corporate bonds, or more generally any defaultable bond and other
credit sensitive instruments, it is necessary to consider the evolution of term-structure of
credit spreads and the risk-free rate, as well as the correlation structure between two under
the condition that both are given stochastically.

In a structural credit risk framework, as it is documented by [128] there is an unambiguous
economic relation between the credit spread and the risk-free rate, manifesting itself as a
negative correlation. On the other hand, in a reduced-form setting, this kind of negative
correlation is captured by imposing negative instantaneous correlation between the state
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Chapter 1. Introduction

variables that drive the defaultable and non-defaultable term structures. However, in a
setting where the risk-free rate and credit spread are given by affine diffusions although one
has the analytical tractability of the bond prices, due to the admissibility conditions, one
cannot simultaneously have the positivity of the spreads (or intensities) and the risk-free rate
while sustaining negatively correlated increments of them. Non-negativity of the spread is a
great concern due to the impossibility to construct a Cox process with a negative intensity
rate. Similarly, it can be shown that in the presence of negative nominal interest rates,
arbitrage opportunities arise if cash is available. Although, non-positivity of the interest rates
and intensity process are ignored in the literature by assuming that its probability is close
to zero, it might be a concern especially in term-structure modeling and complex derivative
pricing. Motivated by the above discussion, we have these objectives :(a) to come up with a
tractable (defaultable) term-structure model in a reduced-form setting that takes care of
empirical stylized facts (negative instantaneous correlation between credit spreads and risk-
free rate) coherent with the mathematical and theoretical facts (non-negative intensities and
risk-free rate) with an aim towards better understanding of the credit markets and interest
rate markets, (b) to understand better in a general setting the notion of instantaneous
correlation in term-structure and credit risk models.

Our contribution in this part is the following. Given a multivariate Jacobi process, we are
able to compute the zero-coupon bond prices (both defaultable and risk-free) in a tractable
way by using the exponential change of measure technique as well as by using the transition
density function obtained from the dual representation of the Jacobi process (see [69] or
[67]). The resulting formula only involves series sum involving ratios of gamma functions
and they are rapidly converging due to the terms involving functions with exponential decay.
In the resulting model, instantaneous correlation between spreads of different credit classes
and the risk-free term structure can be both negative and positive while sustaining the
positivity assumption of the rates in contrast to the very well-established models of the affine
framework. Moreover, in higher dimensions one does not need to rely on numerical schemes
related to the differential equations, which may be difficult to handle (e.g., multi-dimensional
Riccatti equations in affine and quadratic term-structure frameworks). Similarly, credit
default-swaps and any general interest-rate derivatives can be easily priced since we have
the relatively tractable bond prices from the procedure described above.

In the second part, we analyze a portfolio allocation problem related to pairs trading.
Pairs trading is an investment strategy that attempts to capitalize on market inefficiencies
arising from imbalances between two or more stocks. This kind of strategy involves a long
position and a short position in a pair of similar stocks that have moved together historically.
Examples of such pairs can be given: ExxonMobil and Royal Dutch and Shell for the oil
industry, or Pfizer and GlaxoSmithKline for the pharmaceutical industry. The underlying
rationale of pairs trading is to buy the underperformer, and sell the overperformer, in
anticipation that the security that has performed badly will make up for loss in the coming
periods, perhaps even overperform the other, and vice-versa. For this reason, it is also
classified as a convergence or mean-reversion strategy. The pair of stocks is selected in a
way that it forms a mean-reverting portfolio referred to as the spread. We consider the
portfolio optimization problem of a trader with a logarithmic utility from risk penalized
terminal wealth investing in a pair of assets whose dynamics have a certain dependence
structure in a Markov regime-switching model. More precisely, we model the spread process
(log-price differential) as an Ornstein–Uhlenbeck process with a partially observable Markov
modulated drift. Our proposed model is an extended version of the model given by [135],
who found the optimal pairs trading strategies in a dollar-neutral setting for an investor
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with power utility. Although investing equal dollar amount (as a proportion of wealth) in
pairs seems to be restrictive, it is meaningful when CAPM (Capital Asset Pricing Model)
betas of the selected stocks are very close to each other. Our model extends the work of
[135] by allowing partially observed Markov-modulated drifts both for the price processes
and the spread, hence enabling them to change with respect to different conditions. As the
second extension, to find the optimal trading strategies, we use a risk-penalized terminal
wealth as it is suggested in [146, Section 2.22].

To sum up, our key contributions in this part are the following. First, we characterize
the optimal dollar-neutral strategies both in full and partial information settings with
risk-penalized terminal wealth for a log-utility trader and show that optimal strategies
depend on both the correlation between two assets and the mean-reverting spread. The
effect of risk-penalization on optimal strategies is an increase in risk-aversion uniformly in a
constant proportion that does not depend on time. Second, we characterize the optimal
value function via Feynman–Kac formula. Third, using the innovations approach, we provide
filtering equations that are necessary to reduce the problem with partial information to the
one with full information. A nice feature of the solution in the partial information setting
is that the optimal strategy is a linear function of the filtered state and hence it can be
considered as a projection of the strategy in full information on the investor’s information
filtration. We also present numerical results for a toy example with a two-state Markov chain
in both full and partial information settings. Our analysis shows that average data does
not contain sufficient information to obtain the optimal value for the pairs trading problem
for logarithmic utility preferences. This result is in contrast with the one for the classical
portfolio optimization problem with Markov modulation; see [14, Section B]. Furthermore,
our toy example suggests that there is always a gain from filtering due to the convexity
arising from using filtered probabilities instead of constant ones.

In the third part, we analyze a market model that take care of the influence of large
investors. The influence of large investors, such as hedge funds, mutual funds, and insurance
companies, on prices of risky assets, can be studied from very different viewpoints ranging
from direct price impact of order execution (selling or buying) to feedback effects from
trading to hedge portfolios of derivatives written on the underlying. However, there is
also an influence of large investors on the overall market sentiment that arises from their
perceived informational superiority. That is, most of the time, the rest of the market takes
large investors’ portfolio decisions as signals revealing an important insider information
not available to small or price-taking investors. Therefore in this study, we solve a finite-
time utility maximization problem by considering a partially observable regime-switching
environment, in which there is a large investor (or group of institutional investors) that
has control over the intensity matrix of the continuous-time finite state Markov chain
governing the state of the environment. We allow large investor’s portfolio choices, as a
fraction of the wealth invested in the risky asset, to have an indirect but persistent effect
on the price process, through dependence on the controlled intensity of the Markov chain
with next-neighborhood-type dynamics. We call this effect market impact. By taking the
generator matrix of the unobservable Markov chain as a function of portfolio holdings of the
large investor, and focusing on the price process with pure-jump dynamics affected by the
unobservable Markov chain, we solve the problem of utility maximization from terminal
wealth for logarithmic and power utility preferences. The idea to model market impact
through an intensity-based framework is due to [28] where the authors deal with a control
problem for optimal investment and consumption for a large investor in the full information
case with asset prices following jump-diffusion dynamics and a market with two possible
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Chapter 1. Introduction

states.

To summarize our contributions in this part, firstly we solve the utility maximization
problem for logarithmic and power utility preferences with indirect impact arising from
controlling the intensity of the Markov chain both under full and partial information settings.
For comparison purposes, we also give solutions to those problems without impact, that
is, when there is no control of the intensity. Even for the simple logarithmic utility case,
the presence of indirect impact makes pointwise maximization impossible and hence we
need to rely on dynamic programming techniques. Secondly, we transform the partial
information problem to a full information problem by using stochastic filtering and apply
control theory for piecewise deterministic Markov processes (PDMP) to our problem to
derive the optimality equation for the value function. We rely on the results given in [36] and
characterize the value function as the unique viscosity solution of the associated dynamic
programming equation. Thirdly, by focusing on a two-state Markov chain example, we show
that there is always a gain for a large investor from controlling the intensity of the Markov
chain both in full and partial settings albeit it is smaller in the latter one. In particular, the
large investor can take advantage of the “bear” state of the market by short-selling. Also
optimal strategies are more aggressive in the presence of market impact such that the large
investor buys more in the “bull” state and short sells more in the “bear” state compared
to the corresponding no-impact case. Also it is evident from numerical examples that, as
time approaches to the maturity, optimal portfolio strategies with and without impact from
intensity control converges to each other under both full and partial information settings.

Outline of the thesis

Part I is structured as follows. Chapter 1 introduces the problem and gives the related
literature review. In Chapter 2, we try to formalize the notion of instantaneous correlation.
Chapter 3 gives the general (defaultable) zero-coupon bond price formula, focusing on the
exponential change of measure. In Chapter 4, we start modeling with multivariate Jacobi
processes, by presenting different representations and discussing general properties of it.
Then we give boundary unattainability conditions related to the multivariate Jacobi process.
We continue then on computation of transition density functions via spectral methods and
dual process representation. Then we state our bond pricing formula as well as certain
applications such as credit default swap pricing. Finally in Chapter 5, as an Appendix, we
provide a modest generalization of the Yamada–Watanabe condition that is needed to show
pathwise uniqueness of certain stochastic differential equations (SDE) and we conclude with
an example related to the trapped Jacobi process, which might be of independent interest
on its own.

Part II is structured as follows. Chapter 1 introduces the pairs trading model that we
analyze. In Chapter 2 we analyze the portfolio optimization problem in a full information
setting. In Chapter 3 we solve the utility maximization problem under partial information.
In Chapter 4, we provide the numerical analysis of our toy example with a two-state Markov
chain. We give proofs related to the dynamic programming approach as an Appendix in
Chapter 5.

Part III is structured as follows. In Chapter 1, we introduce the underlying framework
and the main assumptions. We also provide a rigorous construction of the model. In
Chapter 2, we study the optimization problem under full information. Chapter 3 contains
the optimization problem under partial information and reduction of the problem to full
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information via stochastic filtering as well as the PDMP techniques to solve the problem and
characterization of the optimal value function via unique viscosity solution of the related
HJB equation. Finally, in Chapter 4, we present a two-state Markov chain example and
discuss model implications for a large investor. We also provide an Appendix in Chapter 5,
containing technical proofs.
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Chapter 1

Introduction

Credit spread (or yield spread) of a given corporate bond is defined to be the difference
between its yield and the yield of a government bond, or more generally (and more accurately
after the recent debt crisis) a reference bond, which is assumed to be risk-free and has the
same time to maturity. The raison d’etre of credit spreads is the risk of default inherent in
corporate bonds, in which case the bond holders receive only partial payment or no payment
at all. Therefore, in order to price corporate bonds, or more generally any defaultable bond
and other credit sensitive instruments, it is necessary to consider the evolution of credit
spreads and the risk-free term structure, as well as the correlation structure between these
assuming that both are given stochastically. The dynamic credit risk models that try to
capture the dependence structure include but are not limited to [128], [44], [54], [57], [131]
and [106] (in chronological order), in which different assumptions are in place regarding to
the default event, recovery process or underlying state variables, etc. In what follows, we
will briefly summarize the previous literature on defaultable term structure of interest rates
with special emphasis on the correlation structure between the risk-free rate and the credit
spreads.

Apart from the empirical studies (see for example, [53], [37], and recently [88] and
references therein), there are mainly two strands of research for corporate bond valuation
and defaultable term-structure modeling: structural models and reduced-form models.
Structural models assume a stochastic process for the dynamics of the value of the firm
and default occurs when the value process reaches a predetermined level, which might be
determined endogenously in the model (see [20, Ch. 2 and Ch. 3] for a comprehensive review
on structural models). On the other hand, reduced-form models treat the default as a
random event following a hazard process with certain intensity, which may depend on the
state variable process describing the economy, the default-free rate and other contingent
claims (see [120], or [20] for the complete treatment of reduced-form models).

Longstaff and Schwartz [128] examine the dependence structure between default-free and
defaultable term structures in a structural setting. In this setting, there are two effects at
play determining the correlation between changes in credit spreads and changes in Treasury
yields. The first effect is related to an increase in the risk-free rate, which leads to an
increase in the drift of the firm value under the risk-neutral probability. This eventually
leads to the lower default probability because the default event is defined to be the first
time the value of the firm hits a predetermined barrier. The second effect is coming from
the assumed correlation between the value of the firm and the risk-free interest rate. Of
course when this correlation is negative, a positive interest rate change leads to an increase
in the credit spread, and when it is positive it even amplifies the impact of the first effect,
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Chapter 1. Introduction

that is, more negative correlation between the credit spread and the risk-free rate. By
applying 30-year government yield as a proxy of the default-free rate and the return on the
S&P 500 index as a proxy for the asset value, they conclude that the correlation between
changes in the asset value and changes in the credit spread is negative, and the stronger
the negative relationship, the greater the correlation between the risk-free rate and the firm
value. Therefore, there is an unambiguous economic relation between the credit spread and
the risk-free rate, manifesting itself as the negative correlation in the structural framework.
This observation is also evidenced by the empirical findings in [53], [37] and [88].

Contrary to the structural framework where modeling of the firm value is the primary
concern, in a reduced-form setting default is modeled exogenously with the random time
(mathematically by a totally inaccessible stopping time τ) and its hazard rate process
possibly with a certain intensity. It is very well known that under the doubly stochastic
framework for the default time, the instantaneous credit spread (st)t≥0 coincides with the
intensity of the default event given by a stochastic process (λt)t≥0, provided that there
is no recovery. More generally, (st)t≥0 equals the product of hazard rate and percentage
loss given default under various recovery schemes such as recovery of market value (RM),
recovery of treasury value (RT) or recovery of face value (RF) (see [132, Ch. 9]). By using a
reduced-form model, Duffee [53, 54], and Duffie and Singleton [57] documented negative
correlation between changes in the credit spreads and the level as well as the slope of the
term structure of risk-free interest rate. In those reduced-form models, the default-free
short rate (rt)t≥0 and the credit spread (st)t≥0 are given as correlated square-root processes
providing analytically tractable bond prices due to affine properties (see [55] or [76, Ch. 10]).
However, due to the implications of admissibility conditions on affine processes (see [43],
[78]), one cannot simultaneously have a positive spread (or intensity) and risk-free rate
while sustaining negatively correlated increments of (rt)t≥0 and (st)t≥0 in these models.
Non-positivity of the intensity is a great concern due to the impossibility to construct a Cox
process with a negative intensity rate. Actually, in an affine diffusion models, in which the
state is the canonical one, Rm+ × Rn, there is a strict trade-off between the instantaneous
correlation structure and the stochastic volatility components of the state variable processes
used in modeling. To be more precise, let us assume that the default-free rate (rt)t≥0 and
the credit spread (st)t≥0 are modeled as correlated square-root processes

drt = µr(θr − rt) dt+ σr
√
rt dW

1
t , (1.1)

dst = µs(θs − st) dt+ σs
√
st(ρ dW

1
t +

√
(1− ρ2) dW 2

t ), (1.2)

where ρ ∈ [−1, 1] is interpreted as instantaneous correlation between r and s, and W 1 and
W 2 are independent standard Brownian motions. By a direct computation, it is seen that
the off-diagonal entry of the diffusion matrix σσ> is non-null unless ρ = 0, implying that
even the processes (rt)t≥0 and (st)t≥0 are Cox–Ingersoll–Ross (CIR) processes, which are
typical examples of affine processes, they are not jointly affine (see [76, Ch. 10]). Hence
the corresponding analytical tractability of the model is lost. The only way to include
instantaneous correlation in an affine diffusion case (with standard canonical state space) is
to choose one of the driving factor (state variable) processes as a Gaussian one such as a
Vaš́ıček process, however in that case the positivity of the interest rate or the intensity process
can not be sustained anymore. For example, by using a three-dimensional affine diffusion
on R2

+ × R1 (which is a A2(3) model in the terminology of Dai and Singleton [43]), Duffie
and Singleton [57] propose a model with more flexible correlation structure by imposing
restrictions on the parameters (other than the admissibility conditions), however due to the
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inclusion of a Gaussian factor this model still allows for negative risk-free short rates to
occur with small probability. Although, non-positivity of the interest rates and intensity
process are disregarded in the literature by assuming that its probability is close to zero, it
might be a concern especially in term-structure modeling and complex derivative pricing.
For example, in a recent study by Feldhütter [71], it is shown that in the Gaussian affine
term-structure model, which offers a maximal flexibility in modeling correlations between
the state variables, the probability of negative 1-year yields amounts to be a non-negligible
5.98 percent, which might become a more concerning issue during the current very low and
near zero interest rates environment. For the implications of the negative interest rates in
terms of pricing of zero-coupon bonds and interest rate derivatives, the reader is referred to
an expository paper by L.C.G. Rogers [144]. In particular, L.C.G. Rogers showed that even
if the parameters of an interest rate model that is governed by a Vaš́ıček process are chosen
in such a way that the probability of negative interest rate is close to zero, with the same
set of parameters the bond price grows exponentially, which is counterfactual. It is also
worth mentioning here the paper by F. Black [23], which explains the economic reasons of
the impossibility of the negative interest rates and proposes to see nominal interest rates as
options. For further studies addressing this issue in non-defaultable term-structure setting,
we refer the reader to the works of [81], [145] and [91].

Of course one important issue while addressing the positivity of the risk-free rate and
the intensity process is also not to restrict the domain of the processes, (rt)t≥0 and (st)t≥0 in
order to obtain negative correlation. Or to put it differently, one should postulate a model
that does not lead to restrictions on the joint distribution of (rt)t≥0 and (st)≥0 in such a
way that they are not supported by the data. We choose to model the defaultable term
structure in a setting where the default time τ is given by a doubly stochastic random time
under the risk neutral pricing measure Q, where all the uncertainty in the model is driven
by an d-dimensional Markovian state process X := (Xt)t≥0 taking values in a state space
E ⊆ Rd. This line of defaultable term-structure models can be traced back to [119], [130],
[131] and [57]. Modeling the whole economy by some state variables can be justified by the
empirical observation of Longstaff and Schwartz [128], since they found that changes in the
level of interest rates are found to be more important for the variation in credit spreads
than changes in the value of the firm. In other words, we can say that the general state
of the economy is more important than the firm specific issues to capture the dependence
structure between different term structures. In this respect, the economic background
filtration represents the information generated by an arbitrage-free model for default-free
security prices. More precisely, let (Ω,F , (Ft)t≥0,Q) denote a filtered probability space,
where Q is a equivalent martingale measure and the default-free security prices are assumed
to follow (Ft)t≥0-adapted processes as well as the instantaneous risk-free rate (rt)t≥0. If we
let Ht = I{τ≤t} be the associated default indicator process and set Ht = σ(Hs, s ≤ t) and
Gt = Ft ∨Ht for every t ≥ 0, we can assume that default is observable and that investors
have access to the information contained in the background filtration (Ft)t≥0, so that the
information available to investors at time t is given by Gt. Assuming zero recovery in case
of default, at time t the valuation formula of the pre-default value of the promised payoff
of a defaultable contingent claim with maturity T ≥ t represented by an FT -measurable
bounded or non-negative random variable Y is given by the conditional expectation

EQ

[
exp

{
−
∫ T

t
(r(Xu) + s(Xu)) du

}
Y
∣∣∣ Ft] , (1.3)

where the short rate process satisfies rt = r(Xt) for some measurable function r : E → R+
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Chapter 1. Introduction

and the intensity of the Cox process (credit spread), in which τ is the first jump time of
it, satisfies st = s(Xt) for some measurable s : E → R+. In order to have an analytically
tractable zero-coupon bond price formula or a derivative price depending on XT , in which
Y ≡ 1 in the former case and Y ≡ g(XT ) for some measurable function g in the latter,
one needs to impose additional conditions on the functions r and s and the state process
X (and possibly on g for derivative pricing). Without including Gaussian factors, it is
impossible to introduce negative correlation while sustaining the positivity of the short rate
and the intensity process in a term-structure model, where the state processes are affine
diffusions on a canonical state space Rm+ × Rn and r and s are linear functions of these.
Even the inclusion of jump components in the state process does not alleviate the problem
because of the non-negativity requirements of the processes r and s. One possible solution
to this with a relatively tractable bond price formula is using quadratic term-structure
models (see e.g., [2] and [125]), in which generally the state processes are given by quadratic
functions of Gaussian affine processes (see [56] and [33] for applications in credit risk),
however in these cases only in a part of the domain of the processes negative correlation is
captured. That is, quadratic term-structure models might capture negative instantaneous
correlation with certain probability, but not all the time (see the discussion in [120, Ch. 5]).
Although, affine diffusions on the standard canonical state space have shortcomings in
capturing correlation while sustaining the positivity, recent studies about affine processes on
non-canonical state spaces such as conic, parabolic subspaces of Rd [152] or affine process
on positive semi-definite matrices [40] are promising and worth to explore.

To circumvent problems mentioned above and propose a model capturing negative
instantaneous correlation in a reduced-form setting, one starting point is to posit dependence
between the default-free rate and the credit spread in a functional way. Before, we give our
concrete modeling approach, in the next chapter we give what it means by instantaneous
correlation and try to formalize it in a Markovian setting.
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Chapter 2

Modeling Instantaneous
Correlation

We introduce a time-homogeneous Markov process X as the state process and its extended
generator A. We also assume that paths of X are càdlàg. Let E be an open or closed subset
of Rd (more generally a locally compact Hausdorff and second-countable regular space1) and
denote the σ-algebra of Borel sets over E by E . We denote the vector space of measurable
functions f : E → R by M(E) and the subset of (strictly) positive functions f : E → R+(+)

by M+(+) (E). Similarly, the subsets of bounded functions and (strictly) positive bounded

functions are denoted by Mb(E) and Mb
+(+)(E), respectively, with ‖f‖ = supx∈E |f(x)|.

We will work in the canonical setup, in which the probability space Ω is the space of càdlàg
functions ω : R+ → E, equipped with the Skorohod topology and the coordinate process
(Xt)t≥0 is defined by

Xt(ω) := ω(t), t ≥ 0.

The natural filtration is defined by FX = (FXt )t≥0 where FXt = σ(Xs : 0 ≤ s ≤ t). We also
take the right-continuous filtration, that is, FXt = FXt+ for t ≥ 0. Obviously, X is adapted
to its natural filtration. Also define that FX∞ =

∨
t≥0FXt . So the filtered probability space

is given by the quadruple (Ω,FX∞,FX ,Q). To be more precise on the probability measure Q,
for any initial distribution ν on E , we denote it by Qν . If ν = δ{x} (unit mass at x ∈ E), we
denote it by Qx.

Now, let (Pt)t≥0 be the corresponding semigroup of X acting on a closed subspace
L ⊂Mb(E) with an initial distribution ν, that is

EQν [f(Xs+t)|FXs ]
a.s.
= Ptf(Xs)

for all s, t ≥ 0 and f ∈ L. We know that if L is separating (or measure determining),
then the semigroup (Pt)t≥0 and ν determine the finite-dimensional distributions of the
process ([70, Prop. 4.1.6]). Therefore, if we can identify the generator of the corresponding
semigroup, the finite-dimensional distributions of a Markov process can be determined.
Hence, determination of the generator(s) and their domains are crucial for characterizing
Markov processes. However, our aim is to use the generator concept to define instantaneous
correlation in a succinct way for certain Markov processes.

1By Urysohn’s metrization theorem (see [82, Thm. 4.58], every Hausdorff, second-countable regular space
is metrizable.
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Chapter 2. Modeling Instantaneous Correlation

Sometimes we work with special Markov processes, called C0-Feller processes23, whose
semigroup has the following properties; (1) P0 = 1 (the identity operator), (2) 0 ≤ Ptf ≤ 1
for all t ≥ 0 and f ∈ C0(E) such that 0 ≤ f ≤ 1, (3) Ps+t = PsPt, for s, t ≥ 0, (4)
limt↘0 Ptf(x) = f(x) for all f ∈ C0(E) and x ∈ E.

2.1 Extended generator and opérateur carré du champ

We begin with two definitions related to generators, namely the full and the extended
generator of the Markov process X. In general, the full generator Â of a measurable
contraction semigroup4 (Tt)t≥0 on L ⊂Mb(E) is defined by

Â = {(f, g) ∈ L× L : Ttf − f =

∫ t

0
Tsg ds, t ≥ 0}. (2.1)

Generally, the full generator is not single-valued (e.g., take right-shift operator, Ttf(x) :=
f(x+t) onMb(R), since (0, g) ∈ Â for every g ∈Mb(R)). We can say that the full generator
is single valued if (0, g) ∈ Â implies that g = 0. In this case, one can interpret Â as an
operator on a subset of Mb(E) that maps f to the unique function g, hence we can denote
the domain of this operator by D(Â), and write for a pair (f, g) = (f, Âf) for f ∈ D(Â).
One important property of functions in the domain of the full generator is the following,

Proposition 2.2 ([70, Prop. 4.1.7]). Let X be a (time-homogenous) Markov process taking
values in E with the full generator Â. Then for (f, g) ∈ Â the process defined by

Mf
t = f(Xt)− f(X0)−

∫ t

0
g(Xs) ds, t ≥ 0, (2.3)

is an (FX ,Qx)-martingale for every x ∈ E.

Remark 2.4. The function g is uniquely defined up to sets of zero potential (see [143,
Chp. VII]. Note that a Borel set A ⊂ E is said to be of zero potential if for every x ∈ E,

Qx

[∫ ∞
0

IA(Xs) ds = 0

]
= 1.

This condition is equivalent to that the process spends almost surely no time in A when
it starts at x ∈ E. We will identify all versions of the function g and we denote all these
versions by Âf if (f, g) ∈ Â.

From the above proposition, we can give the stochastic definition of the full generator of
a Markov process and its domain by using the associated process Mf given by (2.3).

Definition 2.5 (Full generator). The full generator Â of an E-valued (time-homogeneous)
Markov process (Xt)t≥0 is defined by

Â = {(f, g) ∈Mb(E)×Mb(E) : (Mf
t )t≥0 is an (FX ,Qx)-martingale ∀x ∈ E}. (2.6)

2C0(E) is the Banach space of continuous functions vanishing at infinity with the norm ‖f‖ =
supx∈E |f(x)|.

3See [70, pg. 164].
4See [70, pg. 23] for the definition of a measurable semigroup.
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2.1. Extended generator and opérateur carré du champ

Definition 2.7 (Domain of the full generator). A function f ∈ Mb(E) belongs to the

domain D(Â) of the full generator Â if there exists a function g ∈Mb(E) such that (Mf
t )t≥0

is a (FX ,Qx)-martingale for every x ∈ E.

Although the definitions above are enough for most of the applications, we should note
that there may be some measurable functions f not in the domain of the full generator Â.
A natural extension is to relax the conditions that the functions in D(Â) be bounded and
also to have a weaker requirement on Mf than to be a martingale. More precisely, we have,

Definition 2.8 (Extended generator). The extended generator A of a E-valued (time-
homogenous) Markov process (Xt)t≥0 is defined by

A = {(f, g) ∈M(E)×M(E) : (Mf
t )t≥0 is a (FX ,Qx)-local martingale ∀x ∈ E}, (2.9)

such that Qx almost surely
∫ t

0 |g(Xs)| ds <∞ for every t ≥ 0, and x ∈ E.

Similarly, we can define the domain of the extended generator; see also [46, Def. 14.15].

Definition 2.10 (Domain of the extended generator). A function f ∈M(E) belongs to the
domain of the extended generator D(A) if there exists a measurable function g ∈M(E) such

that Qx almost surely
∫ t

0 |g(Xs)| ds <∞ for every t ≥ 0 and (Mf
t )t≥0 is an (FX ,Qx)-local

martingale for every x ∈ E.

Remark 2.11. Similar to the case of a full generator, the function g is uniquely defined up
to set of zero potential, and we denote all versions of g by Af := g.

The advantage of the extended generator over the full generator, where bounded measurable
functions are taken to be in the domain, is that the possible easy specification of its domain.
Also, it can be a non-trivial concept for Markov processes that are also strict local martingales.
Furthermore, as every martingale is a local martingale, it holds that Â ⊂ A and hence
D(Â) ⊂ D(A) showing that the extended generator do really “extend” the full generator.
Similar to the martingale problem, the extended generator can also be used to characterize
Markov processes uniquely, which is called the (local) martingale problem.

Now we give an example that we borrowed from [46] showing that why it might be
convenient to work with the extended generator in terms of local martingales. Let’s take a
Poisson process N := (Nt)t≥0. For t > 0, the random variable Nt has the Poisson distribution
P [Nt = n] = e−λt(λt)n/n!, for some constant λ > 0. We let (FNt )t≥0 denote the natural
filtration, FNt = σ{Ns, s ≤ t}. N has independent increments, implying that N is a Markov
process. In particular, for any bounded function f and s ≤ t,

E[f(Nt)|FNt ] =
∞∑
i=0

f(i+Ns)
e−λ(t−s)(λ(t− s))i

i!
.

One can also consider N as a Markov family on the state space E = {0, 1, . . .} with the
measure Px being such that N0 = x ∈ E and Nt − x is a Poisson process. Now take the
generator AN of N . One can show that for a bounded f ,

Ex[f(Nt)] = f(x)(1− λt+ o(t)) + f(x+ 1)(λt+ o(t)) + o(t),

where o(t) refers to a function g with lim
t→0

g(t)
t = 0 and therefore,

AN = lim
t→0

Ex[f(Nt)]− f(x)

t
= λ(f(x+ 1)− f(x).
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The domain D(ÂNS ) of the (strong) infinitesimal generator5 ÂNS , is the set of functions
for which the above limit exists uniformly in x. However, it can be shown that for every
function f such that Ex[|f(Nt)|] <∞ for all x ∈ E, t ∈ R+, the process

Mf
t = f(Nt)− f(N0)− λ

∫ t

0
(f(Ns + 1)− f(Ns)) ds, t ≥ 0,

is an (FNt )t≥0 martingale. From the optional sampling theorem, the process Mf,n :=

Mf
t∧n∧Tn , where Tn, n ≥ 1 are jump times of N , is a martingale, since τn := n ∧ Tn is a

bounded stopping time. Note that Px almost surely the process Mf,n involves only the values

of f on the set A = {x, x+ 1, . . . , x+ n} and therefore Mf,n = M f̂ ,n with f̂ = f(y)IA(y).
Now since τn →∞ as n→∞, Px-a.s, Mf is a local martingale for any finite-valued function
f . This shows that D(AN ), the domain of the extended generator, consists of all functions
f : E → R without any restrictions.

One important property of the extended generator, its domain and the angle bracket
processes (predictable quadratic variation) (see [103, pg. 38] or [141, pg. 124] for the
definition) associated with the process is summarized as ;

Proposition 2.12. Let f, g ∈ D(A) such that f2, g2 ∈ D(A). Then for local martingales Mf

and Mg defined as in (2.3), the signed measure related to the predictable quadratic covariation
(angle bracket process) 〈Mf ,Mg〉 is absolutely continuous with respect to Lebesgue measure
if the quadratic covariation process [Mf ,Mg] is locally integrable.

Proof. For f ∈ D(A), the process
∫ t

0 Af(Xs) ds is a continuous process of finite variation,
hence (f(Xt))t≥0 is a special semimartingale, being sum of a local martingale and a finite
variation process. In particular, since the local martingale Mf is càdlàg, this process is
càdlàg. By applying Itô’s formula for the semimartingale Z := f(X),

(f(Xt))
2 = (f(X0))2 + 2

(∫ t

0
fAf(Xs) ds+

∫ t

0
Zs−dM

f
s )

)
+ [Mf ,Mf ]t, t ≥ 0. (2.13)

Since [Mf ,Mf ] is locally integrable, we know that the predictable quadratic variation exists
([141, pg. 124] and one can define it as the dual predictable projection of [Mf ,Mf ]. Hence
we can conclude that

(f(Xt))
2 − (f(X0))2 − 2

∫ t

0
fAf(Xs) ds− 〈Mf ,Mf 〉t, t ≥ 0, (2.14)

is a local martingale. Now by assumption f2 ∈ D(A),

(f(Xt))
2 − (f(X0))2 −

∫ t

0
Af2(Xs) ds, t ≥ 0, (2.15)

is a local martingale. Since the difference of two local martingales is again local martingale,
this implies that∫ t

0
Af2(Xs) ds− 2

∫ t

0
fAf(Xs) ds− 〈Mf ,Mf 〉t, t ≥ 0, (2.16)

is a predictable local martingale of finite variation hence it is constant at 0 since Mf
0 = 0.

We can then conclude that 〈Mf ,Mf 〉 is absolutely continuous with respect to Lebesgue
measure. Similar computation yields the same for 〈Mg,Mg〉 and the rest follows from the
polarization identity.

5See [46, Sec. 14.2] for the definition of a strong generator.
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Remark 2.17. If the domain of the extended generator is an algebra, that is, if f, g ∈ D(A)
then fg ∈ D(A), this naturally implies f2, g2 ∈ D(A) and hence;

Corollary 2.18. Let f, g ∈ D(A), where D(A) is assumed to be an algebra. Then for the
local martingales Mf and Mg defined as in (2.3), the signed measure 〈Mf ,Mg〉 is absolutely
continuous with respect to Lebesgue measure if [Mf ,Mg] is locally integrable.

Remark 2.19. In the above, one can alternatively assume Mf and Mg be locally square-
integrable since locally square-integrable local martingales have locally integrable quadratic
covariation process.

One related result, which ensures that for every law ν on E , for every (Qv,FX) square-
integrable martingales M and N , the signed measure 〈M,N〉 is absolutely continuous with
respect to Lebesque measure if and only if the extended generator is an algebra when the
given process is C0-Feller process. This is first shown by [133].

Proposition 2.20. Let X be a C0-Feller process. Then for every law ν on E and for every
(Qv,FX) square-integrable martingales M and N , the signed measure 〈M,N〉 is absolutely
continuous with respect to Lebesgue measure if and only if the domain of the extended
generator D(A) is an algebra.

Proof. See e.g., [26, Chp. 4] and references therein, especially [133], [75] and [24]).

Now, we can define the opérateur carré du champ for functions f, g ∈ D(A) such that their
product fg ∈ D(A).

Definition 2.21 (Opérateur carré du champ for a domain assumed to be an algebra). Let
X be an E-valued Markov process. If D(A) is an algebra, then the opérateur carré du
champ is given by

Γ(f, g) := A(fg)− fAg − gAf, (2.22)

for f, g ∈ D(A).

For the computation of predictable quadratic variation (angle bracket) process related
to certain Markov processes, we have,

Proposition 2.23. Let X be an E-valued (time-homogenous) Markov process with its
extended generator A and its domain D(A), which is assumed to be an algebra. For any
f ∈ D(A) and the associated local martingale with h = Af ,

Mf
t = f(Xt)− f(X0)−

∫ t

0
h(Xs) ds, t ≥ 0, (2.24)

if the quadratic variation process [Mf ,Mf ] is locally integrable then, Mf has the predictable
quadratic variation (angle bracket) process

〈Mf ,Mf 〉t =

∫ t

0
Γ(f, f)(Xs) ds, t ≥ 0. (2.25)

Proof. Note that the since [Mf ,Mf ] is locally integrable, 〈Mf ,Mf 〉 exists. By applying
Itô’s formula for the semimartingale Z := f(X),

(f(Xt))
2 = (f(X0))2 + 2

(∫ t

0
f(Xs)h(Xs) ds+

∫ t

0
Zs−dM

f
s )

)
+ [Mf ,Mf ]t, t ≥ 0. (2.26)
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Since 〈Mf ,Mf 〉 is absolutely continuous with respect to Lebesgue measure as it is shown in
Proposition 2.12, from the Motoo’s theorem ([134] or [149, Thm. 66.2]) that an absolutely
continuous additive functional is of the form

∫ t
0 u(Xs) ds for some measurable function u, we

can write 〈Mf ,Mf 〉t =
∫ t

0 u(Xs) ds. Noting that [Mf ,Mf ]−〈Mf ,Mf 〉 is a local martingale,
the process

(f(Xt))
2 − (f(X0))2 − 2

∫ t

0
f(Xs)h(Xs) ds+

∫ t

0
u(Xs) ds (2.27)

is a local martingale. Now, notice that Af2 = u + 2fh and hence u = Af2 − 2fAf =
Γ(f, f).

Corollary 2.28. Let X be an E-valued (time-homogenous) Markov process, in which the
domain of the extended generator D(A) is assumed to be an algebra. For local martingales
Mf and Mg (defined as in 2.3) for f, g ∈ D(A), if the quadratic variation process [Mf ,Mg]
is locally integrable then the predictable quadratic covariation (angle bracket) process between
Mf and Mg is given by

〈Mf ,Mg〉t =

∫ t

0
Γ(f, g)(Xs) ds, t ≥ 0.

Proof. It follows from the polarization identity

〈Mf ,Mg〉 =
1

2
(〈Mf +Mg,Mf +Mg〉 − 〈Mf ,Mf 〉 − 〈Mg,Mg〉).

2.2 Instantaneous correlation

By the same reasoning, with the help of the “carré du champ” operator, we can also give the
definition of instantaneous correlation between two processes f(X) and g(X) for f, g ∈ D(A).

Definition 2.29 (Instantaneous correlation). Let X be a E-valued (time-homogenous)
Markov process, in which the domain of the extended generator D(A) is assumed to be an
algebra and assume that local martingales Mf and Mg (defined as in 2.3) for f, g ∈ D(A)
have locally integrable quadratic variation process [Mf ,Mg]. Then the instantaneous
correlation between processes f(X) and g(X) for f, g ∈ D(A) is defined as

ρt(f(X), g(X)) :=
Γ(f, g)(Xt)√

Γ(f, f)(Xt)
√

Γ(g, g)(Xt)
, t ≥ 0.

Remark 2.30. If either Γ(f, f)(Xt) = 0 or Γ(g, g)(Xt) = 0 for some t ≥ 0, we set

ρt(f(X), g(X)) := 0.

If the state process X is given by a d-dimensional diffusion process that satisfies the
stochastic differential equation dXt = µ(Xt) dt+ σ(Xt) dWt, where the functions µ and σ
are assumed to satisfy certain conditions such that the SDE has a unique weak solution,
then the extended generator A of X is equal on C2(E)-functions to

A =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

µi(x)
∂

∂xi
,
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2.2. Instantaneous correlation

where a(x) = σ(x)σ>(x) ([143, Ch. VII]). Hence for f, g ∈ C2(E), the “carré du champ”
operator is given by

Γ(f, g)(x) =
d∑

i,j=1

aij(x)
∂f

∂xi
(x)

∂g

∂xj
(x).

Therefore, the instantaneous correlation between (f(Xt))t≥0 and (g(Xt))t≥0 can be computed
similarly by the help of that operator.

Remark 2.31. For a d-dimensional diffusion X, instantaneous correlation between components
X(i) and X(j) is

ρt(X
(i), X(j)) =

aij(Xt)√
aii(Xt)

√
ajj(Xt)

, t ≥ 0.

As it is evident from the discussion above, the idea of the “carré du champ” operator
arises from the generator of a Markov process. Actually, the origin of “carré du champ”
operators traces back to the work of P.A. Meyer [133] and F. Hirsch [98]. The use of this
tool in the mathematical finance literature is relatively scarce, see for example Davis [47] for
its use in identifying the generator of the forward measure, Bouleau and Lamberton [25] for
finding the hedging strategies in a Markovian setting, or De Waegenaere and Delbaen [48]
for its use in dynamic insurance theory. It also deserves further examination because of
its capability to reveal certain useful relationships in models where the state variables are
represented in a Markovian setting. More precisely, we will utilize the “carré du champ”
operator in computing the bond price formula in the next chapter.
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Chapter 3

General Zero-Coupon Bond Price
Formulation

We start with a summary of what we have done in this chapter. Suppose for simplicity
assume we are at t = 0. By an appropriate equivalent change of measure from risk-neutral
Q to some equivalent pricing measure Q∗ one can show that, for R(·) := r(·) + s(·),

EQ

[
exp

{
−
∫ T

0
R(Xu) du

} ∣∣∣ X0 = x

]
= EQ∗

[
h(x)

h(XT )

∣∣∣ X0 = x

]
(3.1)

for some h ∈ D(A), where the relation between R and h is given by

R =
Ah
h

= Af +
1

2
Γ(f, f),

in which Γ is the “carré du champ” operator associated with the diffusion X and f := log h.
Moreover, the extended generator of the process X under Q∗ is given by A + Γ(f, ·) :=

A+ Γ(h,·)
h .

The utmost important thing here is of course to justify the equivalent change of measure,
which is dependent on the process X. More precisely, we don‘t know a priori whether
we can find f ∈ D(A) (or h ∈ D(A)) that justifies the formal statements above. Our
major contribution in this work is to substantiate this idea and to put it in a clear setting
with the aim of finding the pair of functions (R = r + s, f) that allows flexible correlation
structure and also enables us to compute the right-hand side of (3.1) easily. The method
explained here is applied to find the Laplace transforms of stochastic integrals of certain
one-dimensional diffusions by Hurd and Kuznetsov [101]. In particular, a formula similar to
(3.1) is computed for the univariate Jacobi (Wright–Fisher) process where

R(x) = α1
x

1− x
+ α2

1− x
x

for α1 and α2 in a set determined by the parameters of the process. In this case, the function
h turns out to be equal to xβ1(1− x)β2 , and enables the computation of the expectation by
a fast converging series of hypergeometric functions. In the next chapter we will show how
to extend this result to a multivariate Jacobi diffusion setting. The crucial point that leads
to this result is that for appropriately chosen (R, h), the process remains a Jacobi process
under the new measure Q∗ and since the transition densities are known for (multivariate)
Jacobi processes (see [94], [93], [154]) the computation of the expectation turns out to be a
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relatively tractable integral over a simplex including hypergeometric functions. This kind of
exponential change of measures are investigated in a very general setting also by [35] for
jump-diffusions and by [139] for Markov processes. Basically this kind of locally equivalent
change of measures puts certain restrictions on the parameters of the model to prevent the
process to reach the boundary of the state space in finite time (for example, in a simple
CIR process setting, this condition is given by a Feller condition, see e.g. [35, Sect. 6]).
Similar questions are also answered in terms of affine term-structure models (see e.g [34]
and references therein), however the focus in those works is to specify the market price of
risk (or equivalently the Girsanov kernel) so that under the risk-neutral measure the state
processes are affine and hence allow tractable bond prices.

In this section, we assume R ∈ M+(E) for defaultable and/or default-free short-rate
process (or more precisely bank account process) to be well-defined (see [11]). This condition
can be relaxed for computation of the bond price under certain parameter choice so that
the related expectation is finite.

3.1 Exponential change of measure for bond pricing

Suppose that given a pair of functions (R, h) ∈M+(E)×M++(E) such that

Dt =
h(Xt)

h(X0)
exp

{
−
∫ t

0
R(Xs) ds

}
, t ≥ 0, (3.2)

is a (FX ,Q) martingale, then we can define a new probability Qh on FX∞ by Qh = Dt ·Q on
FXt . One important problem is that whether after change of measure the process still stays
Markovian. The answer to this question is positive and proved by [114] in a general case,
(see also [143, Chp. VIII] for diffusion case or below). Remember that the shift operators θt
for t ≥ 0 are defined by Xs(θt(ω)) = Xs+t(ω) where X is the coordinate process, ω ∈ Ω and
these operators have the semi-group property θs ◦ θt = θs+t.

Theorem 3.3 (General bond pricing formula). Let X be a (time-homogeneous) E-valued
Markov process (conservative, non-explosive and without killing) and (R, h) ∈ M+(E) ×
M++(E) and (Dt)t≥0 given by (3.2) is a (FX ,Qx) martingale. Then X is Markov under
Qh
x and the price of the (defaultable) zero-coupon bond with fixed time of maturity T > 0 is

given by,

P (t, T ) = EQx

[
exp

{
−
∫ T

t
R(Xu) du

} ∣∣∣ Ft] = EQhx

[
h(Xt)

h(XT )

∣∣∣ Xt

]
a.s., (3.4)

for t ∈ [0, T ].

Proof. First the Markov property of X under Qh. Let g be a positive measurable function
and Z an FXt measurable random variable. Since Ds+t = Dt ·Ds ◦ θt, we have

ExQh [Z g(Xs+t)] =ExQ[ZDs+tg(Xs+t)] (3.5)

=ExQ[Z DtEXtQ [Dsg(Xs)]] (3.6)

=ExQh [Z EXtQh [Zg(Xs)]] (3.7)

implying the Markov property of X under Qh. The formula then follows from the martingale
property of D, Bayes rule and the Markov property.
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3.1. Exponential change of measure for bond pricing

Now, we will show the relationships between functions R and h and the extended
generator of X under Qh, if X is a diffusion process (without killing and explosion) by the
help of “carré du champ” operator. However, before doing it so, we will briefly remind
what we mean by a diffusion process (in literature there are various definitions) and local
martingale problem associated with it.

In the sequel, a and µ will denote a matrix field and a vector field on E satisfying the
conditions,

Assumption 3.8. a and µ will denote a matrix field and a vector field on E satisfying the
conditions

i. the maps x 7→ a(x) and x 7→ µ(x) are Borel measurable and locally bounded,

ii. for each x ∈ E, the matrix a(x) is symmetric and non-negative definite.

Hence with such a pair (a, µ), we can associate the second order differential operator

A =
1

2

n∑
i,j=1

aij(·)
∂2

∂xi∂xj
+

n∑
i=1

µi(·)
∂

∂xi
. (3.9)

Definition 3.10. A Markov process X with state space E is said to be a diffusion process
with an (extended) generator A if all paths are continuous and for any f ∈ C2(E),

Mf
t := f(Xt)− f(X0)−

∫ t

0
Af(Xs) ds, t ≥ 0,

is an FX -local martingale for any Qx (see Def. 2.1 and Prop. 2.2 in [143], pg. 294-295).

Remark 3.11. Note that the state space E is locally compact and separable, so there exists an
increasing sequence of {Un}n≥1 of open relatively compact sets in E such that Ūn ⊂ Un+1 for
every n ∈ N such that E =

⋃∞
n Un and hence, since the life-time η of the process is infinity

almost surely (remind our assumption that X is Markov without killing and explosion),
there exist stopping times τn = inf{t ≥ 0 : Xt ∈ Ū cn} for n ∈ N such that limn→∞ τn =∞.

Remark 3.12. The process Mf for f ∈ C2(E) is continuous and locally bounded because a
and µ are locally bounded and hence it is bounded on [τn ∧ n]. One can also show that a
Markov process X with state space E is a diffusion if it has continuous paths and for any
f ∈ C∞c (E) 1,

Mf
t := f(Xt)− f(X0)−

∫ t

0
Af(Xs) ds, t ≥ 0,

is an FX -martingale for any Qx (see Prop. 2.2 in [143], pg. 295).

Remark 3.13. Note also that from the definition 3.10 of a diffusion process, it is evident
that any function in C2

b (E) 2 , is in the domain of the extended generator of X.

Definition 3.14. A probability measure P on the canonical construction (Ω,FX) is a
solution of the (local) martingale problem for A if for all f ∈ C2(E),

Mf
t := f(Xt)− f(X0)−

∫ t

0
Af(Xs) ds, t ≥ 0,

1C∞c (E) is the space of smooth (having continuous derivatives of all orders) functions on E with compact
support.

2C2
b (E) is the space of bounded two times continuously differentiable functions on E.
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is a P-(local) martingale with respect to FX . We say that the (local) martingale problem for
A is well posed if for every probability distribution ν on E , there exists a unique solution P
of the (local) martingale problem for A such that P ◦X−1

0 = ν.

Proposition 3.15. Let A be the extended generator of a diffusion process X given by (3.9)
that satisfies Assumption (3.8) and acts on the domain D(A) = C2(E). Moreover suppose
for (R, h) ∈M+(E)×M++(E), the process (Dt)t≥0 given by (3.2) is a (FX ,Qx) martingale,
then

R =
Ah
h

= Af +
1

2
Γ(f, f),

with f := log h.

Proof. Since X is a diffusion with extended generator whose domain is C2(E), if h ∈ D(A)
then f ∈ D(A) and therefore from the definition of the extended generator

Mf
t = f(Xt)− f(X0)−

∫ t

0
Af(Xs) ds, t ≥ 0,

is a continuous local martingale. Using the integration by parts, one can show that

(Mf
t )2 −

∫ t

0
Γ(f, f)(Xs) ds, t ≥ 0,

is a local martingale with

〈Mf ,Mf 〉t =

∫ t

0
Γ(f, f)(Xs) ds, t ≥ 0.

Since Dt = Et(M) for some local martingale M , we can write

Et(Mf ) = exp

{
f(Xt)− f(X0)−

∫ t

0
Af(Xs) ds−

1

2

∫ t

0
Γ(f, f)(Xs) ds

}
, (3.16)

=
h(Xt)

h(X0)
exp

(
−
∫ t

0

(
Ah(Xs)

h(Xs)

)
ds

)
. (3.17)

Proposition 3.18. Let A be the extended generator of a diffusion process X given by (3.9)
that satisfies Assumption (3.8) and acts on the domain D(A) = C2(E). Moreover suppose
for (R, h) ∈M+(E)×M++(E), the process (Dt)t≥0 given by (3.2) is a (FX ,Qx) martingale.

Then the extended generator of the process under Qh is equal on C2(E) to Ah = A+ Γ(h,·)
h .

Proof. It follows from the Theorem 4.2 of [139]; see also [143, Chp. VIII, Sec. 3].

Now, generally we may not know that the process D, defined by

Dt =
h(Xt)

h(X0)
exp

{
−
∫ t

0
R(Xs) ds

}
, (3.19)

is a true martingale. That is, it may be a strict local martingale and hence we may not
define the change of measure defined by Qh = Dt · Q on FXt . Now we will give sufficient
conditions for D be true martingale. For the remaining, we assume R = Ah

h . That is,

Dt =
h(Xt)

h(X0)
exp

{
−
∫ t

0

Ah(Xs)

h(Xs)
ds

}
, t ≥ 0.
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Let O be an open subset of E, that is O = Ô for some open subset Ô of RN . Let
O1 ⊂ O2 ⊂ · · · be an increasing sequence of open subsets of E such that O = ∪n≥1On and
define the following stopping times

Rn = inf{t : Xt /∈ On}, n ≥ 1.

and set Sn = Rn ∧ n for n ≥ 1. Then

Λn =
1

2

∫ Sn

0
∇T f(x)α(x)∇f(x) ds, (3.20)

where f := log h is well defined for n ≥ 1.

Theorem 3.21. Let Q be a solution of the martingale problem for A given by

A =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

µi(x)
∂

∂xi
.

Suppose that the martingale problem for Ah = A + Γ(h,.)
h is well posed on Qh such that

Qh
|F0
� Q|F0

and

EQ[eΛn ] <∞, (3.22)

for all n ≥ 1. Then for any FX-stopping time τ , if Qh
|F0
∼ Q|F0

and Q[τ < S∞] = Qh[τ <

S∞] = 1, then Qh
|Fτ ∼ Q|Fτ .

Proof. The proof is is based on a simplified version of [35, Theorem 2.4]. Take the localizing
sequence of bounded stopping times S1 ≤ S2 ≤ . . .↗∞ such that

Λn =
1

2

∫ Sn

0
∇T f(x)α(x)∇f(x) ds (3.23)

is uniformly bounded. From [126], Et∧Sn(Z) is a martingale where

Zt =

∫ t

0
∇T f(Xs)α(Xs)∇f(Xs)dWs, t ≥ 0.

Girsanov’s theorem implies that for any f ∈ C2(E)

f(XSn
t )− f(X0)−

∫ t∧Sn

0
Ahf(XSn

s ) ds (3.24)

is a ESn(Z) ·Q-martingale. Uniqueness of the stopped martingale problem [70, Thm. 4.6.1]
implies that ESn(Z) ·Q = Qh on FXSn , where Qh is the solution of the martingale problem

for Ah with Qh = Q on FX0 . From monotone convergence theorem and {T < Sn} ∈ FT∧Sn ,

1 = lim
n→∞

Qh[T < Sn]

= lim
n→∞

EQ[ET∧Sn(Z)IT<Sn ]

= lim
n→∞

EQ[ET (Z)IT<Sn ]

=EQ[ET (Z)].

Remark 3.25. For (3.22) to hold, the following assumption is sufficient.

Assumption 3.26. For every n ≥ 1, there exists a finite constant Cn such that for all x ∈ On,

∇T f(x)α(x)∇f(x) < Cn.
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Chapter 4

Modeling with Jacobi Processes

In this chapter, we apply the general bond pricing formula to a measure-valued diffusion
processes, commonly known as Jacobi or Wright–Fisher processes, which are used in
population genetics for the modeling of the gene frequencies in a certain population; see
for example [109, Chp. 15] and [68]. Apart from the huge literature related to population
genetics that studies these types of processes extensively, starting from the works of S. Wright
[159], R. A. Fisher [79] and W. Feller [73], Jacobi processes are also featured as examples of
polynomial processes recently; see [77] and references therein. However, we should mention
here the first finance related works of [49] who used Jacobi process for interest rate modeling
and [92] that studied smooth transitions in financial applications.

One can also interpret those processes as discrete probability distribution valued processes
since these type of processes are random motions on the (d − 1)-dimensional simplex in
Rd−1:

∆d =
{

(x1, . . . , xd−1) ∈ [0, 1]d−1
∣∣ 1− x1 − · · · − xd−1 ≥ 0

}
.

The corresponding diffusion operators act on functions on this simplex, however, sometimes
it seems more natural to consider the following the standard (d− 1)-dimensional simplex in
Rd

∆+
d =

{
(x1, . . . , xd) ∈ [0, 1]d

∣∣ x1 + · · ·+ xd = 1
}
,

which can be interpreted as the set of all probability measures on {1, . . . , d}. This choice
enables to treat the diffusion operators as degenerate elliptic differential operators acting on
functions in a neighborhood of ∆+

d . Moreover analysis becomes symmetric with respect to
the coordinates. By projecting ∆+

d on ∆d, one can have equivalent results.

Definition 4.1. Given α, σ > 0 as well as γ = (γ1, . . . , γd) and x = (x1, . . . , xd) in the

interior of ∆+
d , the multivariate Jacobi process X = (X

(1)
t , . . . , X

(d)
t )t≥0 with the state space

∆+
d satisfies the system of coupled stochastic differential equations (SDE)

dX
(i)
t = α(γi −X(i)

t ) dt+ σ

√
X

(i)
t dW

(i)
t − σX

(i)
t

d∑
j=1

√
X

(j)
t dW

(j)
t , t > 0, (4.2)

X
(i)
0 = xi, (4.3)

where W = (W
(1)
t , . . . ,W

(d)
t )t≥0 is a d-dimensional standard Brownian motion.
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Remark 4.4. The diffusion matrix of the multivariate Jacobi process a(x) = (aij(x))i,j∈{1,...,d}
is of the form

aij(x) =

{
σ2xi(1− xi) if i = j

−σ2xixj otherwise.

Remark 4.5. X
(1)
t + · · ·+X

(d)
t = 1 and the diffusion is degenerate.

For d = 2 the Jacobi process is also known as “Wright–Fisher” diffusion and (4.2) reduces
to an one-dimensional SDE by using Pythagorean theorem.

Definition 4.6. For d = 2, Jacobi process is governed by a one-dimensional SDE,

dXt = α(γ −Xt) dt+ σ
√
Xt(1−Xt) dW̄t, t ≥ 0, (4.7)

where W̄ is a standard Brownian motion and α > 0 is the mean reverting parameter,
γ ∈ [0, 1] is the long-run mean of the process and σ > 0 is the parameter controlling the
volatility.

By the Yamada–Watanabe theorem [160], there is a unique strong [0, 1]-valued solution
(Xt)t≥0 of (4.7) for every starting value x ∈ [0, 1], and it is intuitively clear that increments
of Xt and 1−Xt are negatively correlated. Indeed they are even countermonotonic. From
the Feller’s classification of boundary points [109, Sect. 15.6], if α1 := 2αγ/σ2 ≥ 1 and
α2 := 2α(1− γ)/σ2 ≥ 1, {0, 1} are entrance boundaries that cannot be reached from the
interior of the state space, but can begin there and quickly move to the interior never to
return back. Moreover, in this case it has the unique stationary distribution (has the strong
ergodic property) given by the beta distribution with density

fα1,α2(x) =

{
Γ(α1+α2)

Γ(α1)Γ(α2)x
α1−1(1− x)α2−1 for x ∈ (0, 1),

0 otherwise,

where Γ denotes the gamma function. The stationary density has also meaningful when
0 < α1 < 1 and 0 < α1 < 1. In that case {0, 1} are regular boundary points that a diffusion
process can both enter and leave from and hence the behavior at those points need to be
specified.

For the general case, we can write the SDE that govern the multivariate Jacobi process
taking values on ∆d.

Remark 4.8. φ given below is a function that is defined on ∆o
d and is extendable continuously

to ∆d such that φ(x)φT (x) = a(x) on ∆d, we denote this extension by the same φ (see [148,
Lemma 5.2]).

Definition 4.9. Given α, σ > 0 as well as γ = (γ1, . . . , γd−1) and x = (x1, . . . , xd−1) in ∆d,

the multivariate Jacobi process X = (X
(1)
t , . . . , X

(d−1)
t )t≥0 with the state space ∆d satisfies

the system of stochastic differential equations (SDE)

dX
(i)
t = α(γi −X(i)

t ) dt+

d−1∑
j=1

φij(Xt) dW̃
(j)
t , t > 0, (4.10)

X
(i)
0 = xi, (4.11)
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where W̃ = (W̃
(1)
t , . . . , W̃

(d−1)
t )t≥0 is a (d− 1)-dimensional standard Brownian motion and

φ(x) = (φij(x))i,j∈{1,...,(d−1)} is the following lower triangular matrix,

φij(x) = 0, j > i,

φ11(x) = σ
√
x1(1− x1),

φ21(x) = −σ
x2
√
x1√

1− x1
, φ22(x) = σ

√
x2 (1− x1 − x2)√

1− x1
, (4.12)

φ31(x) = −σ
x3
√
x1√

1− x1
, φ32(x) = −σ

x3
√
x2√

(1− x1 − x2)(1− x1)
,

φ33(x) = σ

√
x3 (1− x1 − x2 − x3)√

1− x1 − x2
,

. . .

As it is evident from the related SDE (4.10), the second order differential operator
defined by

Jd =
1

2

d−1∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d−1∑
i=1

µi(x)
∂

∂xi
, (4.13)

where the diffusion matrix a(x) = (aij(x))i,j∈{1,...,(d−1)} is of the form

aij(x) =

{
σ2xi(1− xi), if i = j

−σ2xixj , otherwise,

and µi : ∆d → R for i ∈ {1 . . . , (d−1)} is Lipschitz continuous and satisfy suitable conditions
so that X never leaves the simplex, generates the multivariate Jacobi process. More precisely,

Theorem 4.14 ([68, Theorem 1]). Let ∆d be an (d− 1)-dimensional simplex and define Jd
as in (4.13) where the diffusion matrix a : ∆d → Sd where a(x) = (aij(x))i,j∈{1,...,(d−1)} is
of the form

aij(x) =

{
σ2xi(1− xi), if i = j

−σ2xixj , otherwise.

and µi : ∆d → R for i ∈ {1, . . . , (d− 1)} is Lipschitz continuous and satisfy

µi(x) ≥ 0 if x ∈ ∆d and xi = 0, i ∈ {1, . . . , (d− 1)},
d−1∑
i=1

µi(x) ≤ 0 if x ∈ ∆d and

d−1∑
i=1

xi = 1.

Then with Jd defined by (4.13), the closure of {(f,Jdf) : f ∈ C2(∆d)} is single-valued and
generates a Feller semigroup on C(∆d). And the space of a polynomials on ∆d is a core for
the generator.

Proof. See [70, pg. 375] or [68].

Instead of providing the existence and uniqueness of the multivariate Jacobi diffusion via
solution of a martingale problem as in [70, pg. 375] or [68], one can also follow the stochastic
differential equations approach so that pathwise uniqueness of the solution to SDE (4.10)
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Figure 4.1: Random partition of the unit interval with a multivariate Jacobi process starting
at its center x = γ = (0.4, 0.3, 0.2, 0.1) ∈ ∆+

4 with drift strength α = 0.5 and volatility
σ = 0.3.

leads to the strong uniqueness of the solution of (4.10). In order to do that, we can follow
the representation of a multivariate Jacobi diffusion process as the unique solution of the
SDE in Definition 4.9. Now, we state a theorem without giving the proof. It states the
pathwise uniqueness of a multivariate Jacobi diffusion process, and its proof is based on an
iterative application of Yamada–Watanaba condition. For Yamada–Watanabe condition
related to the pathwise uniqueness of solutions to certain stochastic differential equations,
we refer to the Appendix. In the following theorem, note that φ, given by (4.12), is a lower
triangular matrix and drift coefficients are Lipschitz continuous, hence by a diagonalization
argument one can apply the Yamada–Watanabe condition to the individual components
starting from the first component. Since the drift µi for the i-th component is a function
of only xi and the diffusion matrix is lower triangular so that aij is dependent only on
x1, . . . , xi for i ≤ j, an iterative application of Yamada–Watanabe condition leads to the
result (see also [148]). A similar problem, which might have an independent importance
involving a trapped Jacobi process, is tackled in the Appendix.

Theorem 4.15. Let X be a multivariate Jacobi diffusion process governed by (4.10). Then
the solution to the (4.10) is pathwise unique.

It is intuitively clear that for i 6= j the increments of the components X(i) and X(j)

are negatively correlated, indeed the covariation equals −σ2X(i)X(j) < 0. The Dirichlet
distribution D(α1, . . . , αd) with density

Γ(α1 + · · ·+ αd)

Γ(α1) . . .Γ(αd)

d∏
i=1

xαi−1
i , (x1, . . . , xd−1) ∈ ∆◦d,
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4.1. Boundary classification of the multivariate Jacobi process

where xd := 1 − x1 − · · · − xd−1 and αi := 2αγi/σ
2 > 1 for i ∈ {1, . . . , (d − 1)}, is the

stationary distribution.

4.1 Boundary classification of the multivariate Jacobi pro-
cess

In this section, we give results related to the boundary conditions of a multivariate Jacobi
process. Basically these conditions are needed to prevent the multivariate Jacobi process
to reach the boundary of the simplex. Also they are needed for the equivalent change
of measure in computation of the zero-coupon bond prices, since they prevent the newly
defined state processes from exploding. We choose to examine the boundary conditions in
a two-dimensional simplex since it is notationally and didactically more comprehensible.
Generalization to an any finite dimension is straightforward. This part closely follows the
lines of [148] and it is adapted to our setting.

Let us take a multivariate Jacobi process taking values in ∆3. Denote ∆o
3 as the interior

and ∂∆3 as the boundary of the simplex ∆3. Since all the three sides of ∆3 are similar, it
is enough to study Σ1 = {(x1, 0) : 0 < x1 < 1}. Let us define the regular and repulsive
boundary points and unattainable and pure entrance boundary segments.

Suppose x ∈ Σ1 and let U be a neighborhood in ∆3 of x with |x − z| > 0 for every
z ∈ ∆3 − Σ1. For λ > 0, let Uλ = U ∩ {(x1, x2) : x2 > λ}.
Let us define the stopping time

Tλ = inf{t ≥ 0 : Xt /∈ Uλ}

and
T = lim

λ↘0
Tλ.

Let ΣT,U
1 (ω) be set of all accumulation points of Xt(ω) when t↗ T .

Definition 4.16 (Regular boundary points). x is called regular if, for every U and for every
neighborhood N ⊂ ∆3, we have

lim
y∈∆o

3, y→x
Qy[Σ

T,U
1 (ω) ⊂ N ∩ Σ1] = 1

Let ∂Uλ = U ∩ {y = (y1, y2) : y2 < λ}, ∂ U being the boundary in R2 of U .

Definition 4.17 (Repulsive boundary points). x is called repulsive if for some U and for
some λ > 0, we have

lim inf
y∈∆o

3, y→x
Qy[Σ

T,U
1 (ω) ⊂ ∂ Uλ] < 1.

Definition 4.18 (Unattainable segment). Let Σ be an open interval in Σ1. Σ is called
unattainable if for every x ∈ Σ, there exists a neighborhood U in ∆3 such that

Qy[Σ
T,U
1 (ω) ∩ Σ = ∅] = 1

for every y ∈ U ∩∆o
3.

Definition 4.19 (Pure entrance boundary segment). Let Σ be an open interval in Σ1. Σ
is called a pure entrance boundary segment if Σ is unattainable and of every x ∈ Σ has a
neighborhood U such that Qy[TU <∞] = 1 for every y ∈ U , where TU = inf{t : Xt /∈ U}.
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Proposition 4.20. If α2 > 1, then Σ1 is a pure entrance boundary segment and every point
x ∈ Σ1 is repulsive.

Proof. See [148] that follows Khasminsky’s results on boundary classification of degenerate
diffusions [110].

Corollary 4.21. Let X be a multivariate Jacobi process on ∆d. If αi := 2αγi/σ
2 > 1 for

i = 1, . . . d and X starts in the interior of ∆d, i.e., x ∈ ∆o
d, then X almost surely never

reaches ∂∆d.

Remark 4.22. Alternative to using Khasminsky’s results on boundary classification of
degenerate diffusions, one can also apply the one-dimensional Feller’s classification to find
boundary conditions due to the concatenation property of multivariate Jacobi processes.
This is due to the special structure of the state space, ∆+

d , which is a (d− 1)-dimensional
standard simplex. The concatenation property for ∆+

d states that the convex hull of any
d1 < d points (xd1,1, . . . , xd1,d1) in ∆+

d is again a simplex, called d1-face. Hence, we can
represent individual components of a multivariate Jacobi process on ∆+

d as one-dimensional
diffusions on 1-faces (edges) of ∆+

d . Therefore, once we find the (unattainability of boundary)
conditions for each univariate Jacobi process living on a 1-face of ∆+

d by applying the one-
dimensional result of Feller, we can characterize the boundary conditions that are sufficient
for a multivariate Jacobi process not reaching the boundary of ∆+

d . This gives exactly the
same result as in Corollary 4.21.

4.2 Equivalent measure change for multivariate Jacobi pro-
cess

Theorem 4.23. Let Jd be the second order differential operator acting on C2(∆d)

Jd =
1

2

d−1∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d−1∑
i=1

µi(x)
∂

∂xi
, (4.24)

where the diffusion matrix a(x) = (aij(x))i,j∈{1,...,(d−1)} is

aij(x) =

{
σ2xi(1− xi), if i = j

−σ2xixj , otherwise,

with σ > 0 and the drift is µi(x) = α(γi − xi) where α > 0, 1 > γi > 0 for i ∈ {1, . . . , d}
with γd := 1−

∑d−1
i=1 γi. Moreover assume that the conditions for the unattainability of the

boundary of ∂∆d are satisfied (given by the Corollary 4.21), that is, αi > 1 for i ∈ {1, . . . , d}
and (x1, . . . , xd−1) ∈ ∆◦d. Let the function h ∈ C2(∆o

d) be given by

h(x) =
d∏
i=1

xaii

where ai = 1
2

(
1 − αi +

√
(αi − 1)2 + 8ki

σ2

)
such that ki > − (αi−1)2σ2

8 where we set xd :=

1−
∑d−1

1 xi. Then FX-adapted process defined by

Dt =

∏d
i=1(X

(i)
t )ai∏d

i=1 x
ai
i

exp

{
−
∫ t

0

(
d∑
i=1

ki
1−X(i)

s

X
(i)
s

− Ca1,...,ad
α,γ,σ

)
ds

}
, t ≥ 0, (4.25)
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4.3. (Defaultable) zero-coupon bond pricing formula

with

Ca1,...,ad
α,γ,σ = α

d∑
i=1

ai(1− γi) +
σ2

2

(( d∑
i=1

ai

)2

−
d∑
i=1

a2
i

)
(4.26)

is a true FX-martingale and Qx is equivalent to Qh
x.

Proof. By direct computation

Jdh
h

=

d∑
i=1

ki
1− xi
xi

− Ca1,...,ad
α,γ,σ (4.27)

where ki = aiαγi + 1
2σ

2ai(ai − 1) for i ∈ {1, . . . , d} and the constant Ca1,...,ad
α,γ,σ given above.

From Proposition 3.18 (note that when we are using this theorem, we still do not know D is
a true martingale, hence we formally calculate the generator) the extended generator under
Qh is given by

J hd =
1

2

d−1∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d−1∑
i=1

µ̂i(x)
∂

∂xi
, (4.28)

where the drift function is given by µ̂i(x) = α̂(γ̂i − xi) with

α̂ = α+ σ2
d∑
i=1

ai and γ̂i =
αγi + σ2ai

α+ σ2
∑d

i=1 ai
,

for i ∈ {1, . . . , d}. Hence J hd solves the Qh
x martingale problem (it is again a Jacobi process

on ∆d) and this problem is well posed (solution is unique) due to Theorem 4.14. Moreover,
from assumptions on ki observe that ai can be chosen as real numbers while fixing ki on
a domain determined by the parameters of the process (σ, α, γ1, . . . , γd) for i ∈ {1, . . . , d}.
Hence the conditions for unattainability of the boundary of ∆d under the new measure
are satisfied. In fact 2α̂γ̂i > σ2 since 2α̂γ̂i − σ2 = σ2(αi − 1 + 2ai) > 0 for i ∈ {1, . . . , d}.
Therefore ∂∆d is the union of unattainable segments, that is 2-faces of a d-dimensional
simplex. Moreover Assumption 3.26 holds since drift function µi for i = i ∈ {1, . . . , d}
become linear under Qh

x therefore bounded on compacts. Then from the Theorem 3.21, D
is a true martingale and hence Qx is equivalent to Qh

x.

4.3 (Defaultable) zero-coupon bond pricing formula

Now, we will give the the zero-coupon bond price formula for a multivariate Jacobi process.
X(1), . . . , X(d) are bounded by 1, however, we can remove the bound by choosing new state
process as

Y (i) :=
1−X(i)

X(i)

for i ∈ {1, . . . , d}, instead. Notice that this choice keeps the negative instantaneous
correlation.

If we consider the risk-free interest rate as well as the credit spreads (risk-free→AAA,
AAA→AA, AA→A, . . .) as linear combinations of Y (1), . . . , Y (d), (see Figure 4.2 and
Figure 4.3) then given

ki > −
1

8
(αi − 1)2σ2
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sAA
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Figure 4.2: Default-free short rate process r and additive credit spread processes sAA, sA,
sB given by kiY

(i) := ki(1 − X(i))/X(i) with k1 = 0.01 and k2 = k3 = k4 = 0.001, other
parameters as in Figure 4.1

for i ∈ {1, . . . , d}, initial value x ∈ ∆◦d and fixed time to maturity T > 0, we can define the
defaultable zero-coupon bond price process by (the continuous version of)

P (t, T ) = EQx

[
exp

(
−
∫ T

t

d∑
i=1

ki
1−X(i)

s

X
(i)
s

ds

) ∣∣∣∣ Ft], t ∈ [0, T ]. (4.29)

Remark 4.30. Since the instantaneous correlation ρ(Y i, Y j) is negative for i, j ∈ {1, . . . , d}
and for i ∈ {1, . . . , d} ki can take negative values, our model has a flexible correlation
structure. That is, not only negative instantaneous correlation between state variables but
also positive instantaneous correlation can be captured.

Theorem 4.31. Let the state process X is given by a multivariate Jacobi process with the
extended generator acting on C2(∆d) and given by

Jd =
1

2

d−1∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d−1∑
i=1

µi(x)
∂

∂xi
, (4.32)

where the diffusion matrix a(x) = (aij(x))i,j∈{1,...,(d−1)} is

aij(x) =

{
σ2xi(1− xi), if i = j

−σ2xixj , otherwise,

with σ > 0 and the drift is µi(x) = α(γi − xi) where α > 0, 1 > γi > 0 for i ∈ {1, . . . , d}
with γd := 1−

∑d−1
i=1 γi. Moreover assume that the conditions for the unattainability of the

boundary of ∂∆d are satisfied (given by the Corollary 4.21), that is, αi > 1 for i ∈ {1, . . . , d}
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Figure 4.3: Default-free short rate process r and defaultable short rate processes rAA, rA, rB

given by
∑i

j=1 kj(1−X(j))/X(j) with k1 = 0.01 and k2 = k3 = k4 = 0.001, other parameters
as in Figure 4.1.

and (x1, . . . , xd−1) ∈ ∆◦d. If the short-rate is given by (R(Xt))t≥0 where R(x) =
∑d

i=1 ki
1−xi
xi

with ki > − (αi−1)2σ2

8 for i ∈ {1, . . . , d}, then the price of a (defaultable) zero-coupon with
fixed time to maturity T > 0 is for t ∈ [0, T ] by,

EQx

[
exp

{
−
∫ T

t

(
d∑
i=1

ki
1−X(i)

s

X
(i)
s

)
ds

} ∣∣∣ Ft] = EQhx

[
e−(T−t)Ca1,...,ad

α,γ,σ
∏d
i=1(X

(i)
t )ai∏d

i=1(X
(i)
T )ai

∣∣∣ Ft] ,
(4.33)

where ai = 1
2

(
1− αi +

√
(αi − 1)2 + 8ki

σ2

)
for i ∈ {1, . . . , d} and

Ca1,...,ad
α,γ,σ = α

d∑
i=1

ai(1− γi) +
σ2

2

(( d∑
i=1

ai

)2

−
d∑
i=1

a2
i

)
.

Proof. It is immediate from the general change of measure Theorem 4.23.

As it is seen from the right hand side of (4.33), in order to compute the bond price
we have to compute the mixed power moments of X under Qh

x. Note that due to the
measure change X stays as a Jacobi process. Hence computation of the right hand side is
achieved by an integral over simplex ∆d if we know the probability transition density of the
process X. Luckily, the transition density function of a Jacobi process is available and can
be characterized by multi-dimensional orthogonal polynomials. Alternatively, it can also
be characterized by using a dual process approach that simplifies the computation of the
related bond price in dimensions d > 2. In the following, first we will give a brief overview
and results related to the transition density of Jacobi processes by following the spectral
expansion approach. Although dual process approach gives more tractable transition density
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Chapter 4. Modeling with Jacobi Processes

for our purposes, we still prefer to give results related to spectral approach utilizing multi-
dimensional orthogonal polynomials since it is easy to see the relation between orthogonal
polynomials (Jacobi polynomials) and the transition density. Also this method can be seen
as a natural generalization of the previous literature, specifically the work of [101]. Similar
accounts on the spectral approach can be found in [94], [93], [19] and more recently in [153]
and [150], from which we will refer to certain results below.

In what follows, for notational simplicity, we reparametrize multivariate Jacobi process
by setting θi = αi + 2ai for i ∈ {1, . . . , d} and |θ| =

∑d
i=1 θi leading to the the drift function

µi(x) = |θ|
2 ( θi|θ| − xi), for i ∈ {1, . . . , d}, and the new stationary distribution given by the

Dirichlet distribution D(θ1, . . . , θd). Note that this parametrization makes drift pointing to
relative interior of the simplex.

4.4 Transition density function by spectral expansion

Let p(t;x, y) dy = Q(Xt ∈ dy|X0 = x) for x, y ∈ ∆d be the transition density function of
multivariate Jacobi process. It satisfies the Kolmogorov backward equation

∂

∂t
p(t;x, y) = Jdp(t;x, y)

with the initial condition δ̂x=y, where Jd is the extended generator associated with X and δ̂
is the Dirac delta. Also it can be shown shown by using integration by parts that for all
f, g ∈ C2(∆d), the operator Jd is symmetric with respect to their stationary distribution
Π, which is given by the Dirichlet distribution. By [65, Theorem 1.4.4], Jd has countably
many non-positive eigenvalues {−Λ0,−Λ1,Λ2, · · · } such that 0 < Λ0 ≤ Λ1 ≤ Λ2 ≤ · · ·
and Λn ↗ ∞ as n → ∞. Let ψn denote the eigenfunctions with eigenvalue −Λn. An
eigenfunction ψn satisfies

Jdψn = −Λnψn.

Moreover eigenfunctions are elements of L2(∆d,Π), Hilbert space of the square integrable
functions with respect to Π that has a inner product 〈·, ·〉 and they satisfy

〈ψn, ψm〉 =

∫
∆d

ψn(x)ψm(x)Π(dx) = δn,mκn

where κn is some constant and δ is the Kronecker delta. Now since exp(−Λnt)ψn(x) is a
solution to the Kolmogorov backward equation, one can reach the spectral representation of
the transition density function as,

p(t;x, y) =

∞∑
n=0

1

κn
e−Λntψn(x)ψn(y)Π(y). (4.34)

Now we briefly remind univariate Jacobi polynomials (known also as hypergeometric
polynomials), which are class of orthogonal polynomials that generalize Gegenbauer, Legendre
and Chebyshev polynomials (see [1, Chp.22]).

Univariate Jacobi polynomials

The Jacobi polynomials p
(α,β)
n (z), for z ∈ [0, 1] satisfy the differential equation

(1− z2)
d2f(z)

dz2
+ [β − α− (α+ β + 2)z]

df(z)

dz
+ n(n+ α+ β + 1)f(z) = 0.
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4.4. Transition density function by spectral expansion

If α, β > −1, the set {pn}∞n=0 forms an orthogonal system on [−1, 1] with respect to the
weight function (1− z)α(1 + z)β . For our purposes, we can use the following modification of
these polynomials on ∆2. For x ∈ [0, 1] and α, β > 0

P (α,β)
n (x) = p(β−1,α−1)

n (2x− 1).

Modified Jacobi polynomials P
(α,β)
n (x), x ∈ [0, 1] satisfy the differential equation

x(1− x)
d2f(x)

dx2
+ [α− (α+ β)x]

df(x)

dx
+ n(n+ α+ β − 1)f(x) = 0,

and for fixed α, β > 0 {P (α,β))
n }∞n=0 forms an orthogonal system on [0,1] with respect to the

xα−1(1− x)β−1. In fact,∫ 1

0
P (α,β)
n (x)P (α,β)

m (x)xα−1(1− x)β−1 dx = δm.nc
(α,β)
n

where

c(α,β)
n =

Γ(n+ α)Γ(n+ β)

(2n+ α+ β − 1)Γ(n+ α+ β − 1)(Γ(n+ 1)
. (4.35)

Multivariate Jacobi polynomials

Let N0 = {0, 1, 2, . . .} be the set of non-negative integers. Also denote n = (n1, . . . , nd−1) ∈
Nd−1

0 and θ = (θ1, . . . , θd) ∈ Rd++. Moreover define the norm of n as |n| :=
∑d−1

i=1 ni. One
can define the multivariate Jacobi polyomials as in [153] or [96]. We mainly follow [153] for
this section.

Definition 4.36. For every n and θ, the multivariate Jacobi polynomial Rθn is defined by

Rθn(x) =
d−1∏
i=1

(1− xi

1−
∑i−1

j=1 xj

)Ni
P (θi,Θi+2Ni)
ni

(
xi

1−
∑i−1

j=1 xj

) , (4.37)

where Ni =
∑d−1

j=i+1 nj and Θi =
∑d

j=i+1 θi.

Proposition 4.38. For all n ∈ Nd−1
0 the multivariate Jacobi polynomials Rθn(x) satisfy

JdRθn(x) = −λθ|n|R
θ
n(x), (4.39)

where

λθ|n| =
1

2
|n|(|n| − 1 + |θ|).

Proof. See [153] or [94].

Proposition 4.40. Transition density function of the multivariate dimensional Jacobi
process with parameters θ = (θ1, . . . , θd) ∈ (0,∞)d is given by

pθ(t;x, y) =
∑

n∈Nd−1
0

1

Kθ
n

e
−λθ|n|tRθn(x)Rθn(y)Πd

i=1y
θi−1
i , (4.41)

where Kθ
n =

∏d−1
i=1 c

(θi,Θi+2Ni)
ni , and xd = 1− |x|.
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Chapter 4. Modeling with Jacobi Processes

Proof. The transition density function pθ(t;x, y) is obtained by substituting the eigenvalues
and eigenfunctions obtained in Proposition (4.38) to the spectral expansion (4.34).

So the right hand side of (4.33) is computed via

EQhx

[
e−(T−t)Cγ1,...,γd

α,σ
∏d
i=1(X

(i)
t )ai∏d

i=1(X
(i)
T )ai

∣∣∣ Ft]

= e−(T−t)Cγ1,...,γd
α,σ

(
d∏
i=1

(X
(i)
t )ai

)∫
∆d

∑
n∈Nd−1

0

1
Kθ

n
e
−λθ|n|(T−t)Rθn(Xt)R

θ
n(y)∏d

i=1 y
ai−θi+1
i

dy, (4.42)

One can compute the integral on the right hand side of (4.42) and hence bond price explicitly
in the case of d = 2. Let

H(t, T, x, k1, k2) := EQhx

[
1

Xk1
T (1−XT )k2

∣∣∣ Xt = x

]

Lemma 4.43. Let X be a Jacobi process on ∆1 (or ∆+
2 ), for the parameter set and

conditions given as in 4.31. For 0 ≤ t ≤ T , T > 0, 0 < x < 1 and ki > − (αi−1)2σ2

8 for
i = 1, 2, H(t, T, x, k1, k2) <∞.

Proof.

EQhx

[
1

Xa1
T (1−XT )a2

∣∣∣ Xt = x

]
=

∫ 1

0
y−a1(1− y)−a2pθ(T − t;Xt, y)dy (4.44)

The transition density function given by (4.41) under Qh
x reduces to

pθ(t;x, y) =
yθ1−1(1− y)θ2−1

B(θ1, θ2)

∞∑
n=0

e−n(n+θ1+θ2−1) t
2

h2
n

P θ1−1,θ2−1
n (2x− 1)P θ1−1,θ2−1

n (2y − 1),

(4.45)

where

h2
n =

(θ1)n(θ2)n
(θ1 + θ2)n−1(θ1 + θ2 − 1 + 2n)n!

with

(x)n :=
Γ(x+ n)

Γ(x)
=

(x+ n− 1)!

(x− 1)!

denoting the Pochhammer symbol and Γ and B is the gamma and beta functions, respectively.
Now it is easy to see that the integral in (4.44) is finite if and only if θ1 > a1 and θ2 > a2,
and it can be computed by the fact that

∫ 1

0
yθ1−a1−1(1− y)θ2−a2−1P θ1−1,θ2−1

n (2y − 1) dy = B(θ1 − a1, θ2 − a2)
(θ2)n
n!

rn, (4.46)

where rn are hypergeometric functions of matrix arguments and computed by the a three
term recurrence relation pertaining to the Hahn polynomials (see [101, Theorem 4.1]). Note
that θi > ai for i = {1, 2}, by the boundary conditions of the multivariate Jacobi process on
the new measure Qh

x.
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4.5. Transition density function by dual process representation

Corollary 4.47. Let X be a Jacobi process on ∆1 (or ∆+
2 ), for the parameter set and

conditions given as in 4.31. Then the zero-coupon bond price P (t, T ) for 0 ≤ t ≤ T , T > 0,

0 < x < 1 and ki > − (αi−1)2σ2

8 for i = {1, 2} is given by,

P (t, T ) = e−(T−t)Cα,γ,σXa1
t (1−Xt)

a2H(t, T,Xt, k1, k2), (4.48)

where Cα,γ,σ = (a1α(1 − γ) + a2αγ + σ2a1a2) and ai = 1
2

(
1 − αi +

√
(αi − 1)2 + 8ki

σ2

)
for

i = 1, 2.

4.5 Transition density function by dual process representa-
tion

Alternative and more convenient way to compute the transition density of multivariate
Jacobi process is proposed by [69] and uses the (moment) dual process representation of
the Jacobi processes (see page 188 and thereon for dual process representation of a Markov
process in [70]). In fact, the transition density function of the Jacobi process is given by the
mixture of (dual) pure-death process with sampling distribution given by a multinominal
distribution and where the observations are taken from a Dirichlet distribution. As it is well
known in population genetics literature, the process X can be seen as proportions evolving in
time of d traits, types or etc. in a population. Therefore, probabilistically one can interpret

those proportions (X
(1)
t , . . . , X

(d)
t ) to be equivalent to first sampling from the dual process

L that starts from infinity and characterize the number of line of descents at time t > 0,
then given the value of Lt sampling from a multinomial distribution characterizing different
types of individuals and lastly generating an observation (proportions used in multinomial
distribution) from a Dirichlet distribution. To be complete in our exposition we now give the
derivation of the transition density function of X. Consider a multivariate Jacobi process X
taking its values on the (d− 1)-dimensional standard simplex ∆+

d and characterized by the
second order differential operator,

J +
d =

1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

µi(x)
∂

∂xi
, (4.49)

acting on C2(∆+
d ). The diffusion matrix a(x) = (aij(x))i,j∈{1,...,d} is of the form

aij(x) =

{
σ2xi(1− xi), if i = j

−σ2xixj , otherwise,

with σ > 0 and the drift is given by

µi(x) = α(γi − xi),

with α > 0, 0 < γi < 1 for i = {1, . . . , d}, such that
∑d

i=1 γi = 1.
We denote the transition function of X with parameter set θ = (θ1, . . . , θd) as Pθ(t, x, y).

It is known that the reversible stationary distribution of X is given by a Dirichlet distribution
whose density with respect to (d− 1) dimensional Lebesgue measure on ∆+

d ,

D(x, θ) =
Γ(|θ|)

Γ(θ1) . . .Γ(θd)
xθ1−1

1 . . . xθd−1
d .
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Chapter 4. Modeling with Jacobi Processes

Also we use the multi-index notation,

|m| =
d∑
i=1

mi,

(
|m|
m

)
=

|m|
m1! . . . ,md!

, xm =
d∏
i=1

xmii

for m ∈ Nd0 and x ∈ ∆d, with 00 := 1 and ei is the unit basis vector, whose i-th entry is 1.
Furthermore,

m(n) = m(m+ 1) . . . (m+ n− 1), n ≥ 1; m(0) = 1,

m[n] = m(m− 1) . . . (m− n+ 1), n ≥ 1; m[0] = 1.

Let us define test functions fl ∈ C2(∆+
d ) for each l ∈ Nd0 by fl(x) = xl. Applying the

generator to test these functions, we obtain

J +
d fl =

σ2

2

d∑
i=1

li(li − 1 + θi)fl−εi −
σ2

2
|l|(|l| − 1 + |θ|)fl, l ∈ Nd0. (4.50)

By setting for all l,m ∈ Nd0,

β(l,m) =


σ2

2 li(li − l + θi), if m = l − ei,
−σ2

2 |l|(|l| − 1 + |θ|), if m = l,

0, otherwise

(4.51)

we can write (4.50) as,

J +
d fl =

∑
m∈Nd0

β(l,m)fm, l ∈ Nd0. (4.52)

Note that β(l,m) ≥ 0 for all l 6= m and β(l, l) ≤ 0 for all l. Also define mixed moments of
Dirichlet distribution

µl :=

∫
∆d

fl dD(θ) =
Γ(|θ|)

Γ(θ1) . . .Γ(θd)

Γ(l1 + θ1) . . .Γ(ld + θd)

Γ(|l|+ |θ|)
. (4.53)

By (4.53) µl > 0 for all l ∈ Nd0. Now, if we take the expectation of J +
d fl for l ∈ Nd0 with

respect to the stationary distribution of X, we have

0 =

∫
∆d

Jd fl dD(θ) =
∑
m∈Nd0

β(l,m)µm, (4.54)

due to the fact that the we can change the integration and summation since every summand
in (4.52) except one of them is non-negative. If we define

q(l,m) :=
β(l,m)µm

µl
,

with

q(l, l − εi) =
σ2

2
li(|li| − 1 + |θ|),

40



4.5. Transition density function by dual process representation

then by (4.54) ∑
m∈Nd0

q(l,m) = 0, l ∈ Nd0.

Therefore, {q(l,m)} is the infinitesimal generator matrix for a pure death process L :=
(Lt)t≥0, starting at infinity and taking values in Nd0 with transition probabilities plm(t).
plm(t) can be found by the help of a related one-dimensional death process K := (Kt)t≥0

that takes values in N0 and has death rates ρ(k, k − 1) := σ2

2 k(k − 1 + |θ|). For the process
K, the distribution

P[Kt = k |K0 = n] = d
|θ|
nk(t)

is given by ([74, Thm. 4.3]),

d
|θ|
nk(t) =

l∑
m=k

ρ|θ|m (t)
(−1)m−k(2m+ |θ| − 1)(k + |θ|)(m−1)n[m]

k!(m− k)!(n+ |θ|)(m)
, 1 ≤ k ≤ n

d
|θ|
n0(t) = 1 +

l∑
m=1

ρ|θ|m (t)
(−1)m|θ|(m−1)n[m](2m+ |θ| − 1)

m!(n+ |θ|)(m)
, k = 0,

(4.55)

where ρ
|θ|
m (t) = e−ρ(m,m−1)t. By taking the limit n→∞, one can also compute

P[Kt = k] = d
|θ|
k (t), k ≥ 0, t > 0, (4.56)

where

d
|θ|
k (t) =

{
1−

∑∞
m=1 ρ

|θ|
m (t)(−1)m−1 (2m+|θ|−1)|θ|(m−1)

m! , if k = 0,∑∞
m=k ρ

|θ|
m (t)(−1)m−k

(2m+|θ|−1)(k+|θ|)(m−1)

k!(m−k)! , if k ≥ 1.
(4.57)

From the probabilities given by (4.55), one can find transition probabilities plm(t) of d-
dimensional pure death process (Lt)t≥0, since there is an hypergeometric sampling in
selecting, that is, for l,m ∈ Nd0,

plm(t) := P[Lt = m |L0 = l] = d
|θ|
|l| |m|(t)

(
l1
m1

)
· · ·
(
ld
md

)( |l|
|m|
) , l ≥ m, t ≥ 0. (4.58)

Furthermore, if we define the function

gl =
fl
µl
,

(4.50) becomes

J +
d gl =

∑
m∈Nd0

q(l,m)gm, l ∈ Nd0.

Hence we have shown that

Proposition 4.59. The pure death process (Lt)t≥0 taking values in Nd0 with infinitesimal
generator matrix given by {q(l,m)}l,m∈Nd0 is dual to the multivariate Jacobi process with the
duality relation

Ex[gl(Xt)] = El[gLt(x)], (l, x) ∈ Nd0 ×∆+
d , t ≥ 0. (4.60)
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Chapter 4. Modeling with Jacobi Processes

Remark 4.61. On the left hand side of (4.60), expectation is taken with respect to the
distribution of Xt, and on the right hand side with respect to the distribution of Lt. More
precisely,

1

µl

∫
∆+
d

fl(y)Pθ(t, x, dy) =
∑
m∈Nd0

plm(t)

µm
fm(x), (x, k) ∈ ∆+

d × Nd0, t ≥ 0. (4.62)

Now, we show how to represent Pθ(t, x, ·) in terms of transition probabilities plm(t) of
dual process L and related one-dimensional process K. In order to achieve this, we need the
following lemma showing that how we can use moments to define a sampling distribution
converging weakly to the distribution we are looking for.

Lemma 4.63. Let λ be a probability measure on ∆+
d and define

λn :=
∑

l∈Nd0: |l|=n

(
n

l

)∫
∆+
d

fl dλ δl/n, (4.64)

then λn ⇒w λ(converges weakly).

Proof. For an open set O ⊂ ∆+
d ,

lim inf
n→∞

λn(O) = lim inf
n→∞

∫
∆d

∑
l∈Nd0: |l|=n

(
l

k

)
fl(y)δl/n(O)dλ(y)

≥
∫

∆+
d

lim inf
n→∞

∑
l∈Nd0: |l|=n

(
n

l

)
fl(y)δl/n(O)dλ(y)

≥
∫

∆+
d

δy(O)dλ(y)

= λ(O),

(4.65)

where the first inequality is due to Fatou’s Lemma and the second is due to weak law of
large numbers for an i.i.d sequence of multinomial random vectors.

Now notice that

lim
(|l|,l/|l|)→(∞,x)

plm(t) = d
|θ|
|m|(t)

(
|m|
m

)
xm =: d|θ|m (t, x)

by (4.58). One can also show that d
|θ|
m (t, x) defines a probability distribution on Nd0 for each

t > 0 and x ∈ ∆+
d ; see [74, Sec. 4]. Fix t > 0 and x ∈ ∆+

d , then by (4.62), we have for
y ∈ ∆+

d ,

lim
(|l|,l/|l|)→(∞,y)

1

µl

∫
∆d

fl(z)Pθ(t, x, dz) = lim
(|l|,l/|l|)→(∞,y)

∑
m∈Nd0

plm(t)fm(x)

µm

=
∑
m∈Nd0

d
|θ|
m (t, y)fm(x)

µm

=: φ(t, x, y).

(4.66)

The following lemma is the consequence of the fact that d
|θ|
m (t, x) defines a probability

distribution on Nd0 for each t > 0 and x ∈ ∆+
d .

42



4.5. Transition density function by dual process representation

Lemma 4.67. φ is a probability density with respect to D(θ). That is,∫
∆k

φ(t, x, y)D(θ, dy) = 1, for D(θ) a.e, x ∈ ∆+
d .

Let us define

φn(x) :=


∫
∆+
d
flP (t,x,dy)∫

∆+
d
flD(θ,dy)

, if x = l
n , |l| = n, l ∈ Nd0

0, otherwise .

(4.68)

For the following, Pθ,n(t, x, .) and Dn(θ) are defined as δn in Lemma 4.63. Then, for
g ∈ C(∆+

d ) with g ≥ 0,∫
∆+
d

g Pθ(t, x, dy) = lim
n→∞

∫
∆+
d

g Pθ,n(t, x, dy)

= lim
n→∞

∑
l∈Nd0:|l|=n

g

(
l

n

)(
n

l

)∫
∆+
d

fl Pθ(t, x, dy)

= lim
n→∞

∑
l∈Nd0:|l|=n

g

(
l

n

)
φn

(
l

n

)(
n

l

)∫
∆+
d

flD(θ, dy)

= lim
n→∞

∫
∆+
d

g φnDn(θ, dy) ≥
∫

∆+
d

g φ dD(θ).

(4.69)

This implies that Pθ(t, x, dy) ≥ φ(t, x, y)D(θ, dy) and since by Lemma 4.67, φ is a probability
density with respect to the stationary distribution Π of X,

P (t, x, dy) = φ(t, x, y)D(θ, dy), D(θ) almost everywhere, x ∈ ∆+
d .

Now, because X is a reversible process, that is, Pθ(t, x, .) is reversible with respect to D(θ),
we conclude that

φ(t, x, y) = φ(t, y, x) =
∑
m∈Nd0

d
|θ|
m (t, x)fm(y)

µm

and hence we can write

Pθ(t, x, dy) =
∑
m∈Nd0

d
|θ|
m (t, x)fm(y)

µm
D(θ, dy)

=
∑
m∈Nd0

d|θ|m (t, x)D(k + θ, dy).

(4.70)

for D(θ) almost everywhere, x ∈ ∆+
d . Also it can be shown that Pθ(t, x, dy) satisfy the Feller

property and weakly continuous in y ∈ ∆+
d . Therefore (4.70) holds for all x ∈ ∆+

d .

Proposition 4.71. The transition probability measure of the multivariate Jacobi process
with parameters θ = (θ1, . . . , θd) ∈ (0,∞)d is given by

pθ(t;x, ·) =
∑
k∈N0

d
|θ|
k (t)

∑
l∈Nd0
|l|=k

M(l; k, x)D(θ + l), t > 0, x ∈ ∆+
d ,
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Chapter 4. Modeling with Jacobi Processes

where D(θ + l) are Dirichlet distributions, M( · ; k, x) are multinomial distributions, and

d
|θ|
k (t) with k ∈ N0 are the transition probabilities of the (dual-related) pure death process K

“starting from infinity” with death rates %(k, k− 1) = 1
2k(k− 1 + |θ|)σ2 for k ∈ N, and given

by

d
|θ|
k (t) =

{
1−

∑∞
m=1 ρ

|θ|
m (t)(−1)m−1 (2m+|θ|−1)|θ|(m−1)

m! , if k = 0,∑∞
m=k ρ

|θ|
m (t)(−1)m−k

(2m+|θ|−1)(k+|θ|)(m−1)

k!(m−k)! , if k ≥ 1,

with ρ
|θ|
m (t) = e−m(m+|θ|−1)t/2.

Corollary 4.72. The transition function of the bivariate Jacobi process with parameters
(θ1, θ2) ∈ (0,∞)2 is given by

pθ(t;x, y) =
∑
n∈N2

d
|θ|
|n|(t)

(
|n|
n1

)
xn1(1− x)n2B(θ1 + n1, θ2 + n2)−1yn1+θ1−1(1− y)n2+θ2−1,

where B denotes the Beta function.

Remark 4.73. To have a meaning of the transition density, one can think of the infinite
number of individuals that make up L0 as the leaves in a forest of trees. Each tree either
grows from a founder at time t (corresponding to time zero in the diffusion process) or its
root arose through a new mutation.This subdivides the leaves into families and leads to
the Dirichlet mixture. If there are k founder lineages, then their types are determined by
sampling k individuals from the diffusion at time zero, and hence the probability that the
numbers of founder lineages of types {1, . . . , d} are given by M(l; k, p) with |l| = k.

Now we are ready to give the bond price formula.

Theorem 4.74. Given α, σ > 0 and γ = (γ1, . . . , γd) ∈ (∆+
d )◦, assume that αi := 2αγi/σ

2 >
1 for i = 1, . . . , d (boundary unattainable). Take any ki > −1

8(αi − 1)2σ2 for i ∈ {1, . . . , d}.
Define ai = 1

2

(
1 − αi +

√
(αi − 1)2 + 8ki/σ2

)
and θi = αi + 2ai for i ∈ {1, . . . , d}. Then,

for t ∈ [0, T ),

P (t, T ) = exp
(
−(T − t)Ca1,...,ad

α,γ,σ

)( d∏
i=1

(X
(i)
t )ai

) ∑
k∈N0

d
|θ|
k (T − t)

×
∑
l∈Nd0
|l|=k

M(l; k,Xt)
Γ(|θ + l|)∏d
i=1 Γ(θi + li)

∏d
i=1 Γ(αi + ai + li)

Γ
(∑d

i=1(αi + ai + li)
) ,

where | · | denotes the sum of components and

Ca1,...,ad
α,γ,σ = α

d∑
i=1

ai(1− γi) +
σ2

2

(( d∑
i=1

ai

)2

−
d∑
i=1

a2
i

)
,

M( · ; k, p) the multinomial distribution with k ∈ N0 trails and probabilities p = (p1, . . . , pd) ∈
∆+
d ,

M(l; k, p) =
k!

l1! . . . ld!
pl11 . . . p

ld
d , l ∈ Nd0, |l| = k,
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4.5. Transition density function by dual process representation

and d
|θ|
k (τ) for k ∈ N0 are the transition probabilities of a (dual) related total population

pure death process and given by

d
|θ|
k (τ) =

{
1−

∑∞
m=1 ρ

|θ|
m (τ)(−1)m−1 (2m+|θ|−1)|θ|(m−1)

m! , if k = 0,∑∞
m=k ρ

|θ|
m (τ)(−1)m−k

(2m+|θ|−1)(k+|θ|)(m−1)

k!(m−k)! , if k ≥ 1,

with ρ
|θ|
m (τ) = e−m(m+|θ|−1)σ2τ/2 and the rising factorial.

Proof. Zero-coupon bond price P (t, T ) boils down to the computation of the integral given
by,

EQhx

[
1∏d

i=1(X
(i)
T )ai

∣∣∣ Ft] =

∫
∆d

d∏
i=1

y−aii

∞∑
k=0

d
|θ|
k (T − t)

∑
|l|=k

M(l; k,Xt)D(y, θ + l)dy

=
∞∑
k=0

d
|θ̂|
k (T− t)

∑
|l|=k

M(l; k,Xt)

∫
∆d

Γ(|θ + l|)∏d
i=1 Γ(θi + li)

d∏
i=1

yθi+li−1−ai
i dy

(4.75)

where in the second equality due to Fubini–Tonelli theorem, one can change the order of
sum and integral. Since θi > ai for i ∈ {1, . . . , d}, the integral is finite and can be computed
as, ∫

∆d

Γ(|θ + l|)∏d
i=1 Γ(θi + li)

d∏
i=1

yαi+ai+lii dy =
Γ(|θ + l|)∏d
i=1 Γ(θi + li)

∏d
i=1 Γ(αi + ai + li)

Γ(
∑d

i=1(αi + ai + li))

Remark 4.76. As it is seen from Theorem 4.74, computation of the bond price involves just
series sum involving ratios of gamma functions. The series are rapidly converging due to

the terms involving d
|θ|
k .

Simulation of the multivariate Jacobi process

The dual process representation has a natural interpretation in terms of Kingman’s coalescent,
which is the moment dual to the Jacobi diffusion. The ancestral process K := |L| represents
the number of lineages surviving a time t back in an infinite-leaf coalescent tree, when
lineages are lost both by coalescence and by mutation. As it is also explained in Remark
4.73, this leads to a simulation algorithm

Algorithm 4.77 (Simulation of the multivariate Jacobi process).

i. Simulate the random variable Kt from the transition probabilities d
|θ|
k (t) with k ∈ N0.

ii. Given Kt = k, simulate Lt ∼M(·, k, x).

iii. Given Lt = l = (l1, . . . , ld), simulate Xt ∼ D(θ + l).

iv. Return Xt.

For the algorithm, the crucial part is the first step, simulation the dual-related process
Kt, since the transition function of the dual process is explicit but rather complicated. One
can use the numerical approximation as in [95]. Another possibility is to use an alternating
series method as in [107]. This approach gives exact sampling.
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Chapter 4. Modeling with Jacobi Processes

4.6 Credit default swap (CDS) pricing

A credit default swap is a credit derivative that offers insurance against default, in which
two counter-parties agree to exchange cash flows according to the following. An investor,
who wants to be protected against default, will make fixed premium payments in arrears
proportional to the fixed rate of sCDS, which is called CDS spread, at dates T1, . . . , Tn
to the protection seller as long as default has not occurred. On the other hand, in case
of default before Tn, the protection seller will make a payment to the protection buyer
depending on the recovery scheme. Those cash flows are denoted premium leg and protection
leg, respectively. Like in the classical swap agreements, the CDS spread sCDS is found
by equating the discounted premium and protection leg payments. More precisely, in a
reduced-form setting sCDS is given by assuming T0 = 0 [118, Ch. 8],

sCDS =
(1− V )

∫ Tn
0 EQ

[
λ(Xs) exp

{
−
∫ s

0 (r(Xu) + λ(Xu)) du
}]

ds∑n
i=1(Ti − Ti−1)EQ

[
exp

{
−
∫ Ti

0 (r(Xu) + λ(Xu)) du
}] , (4.78)

where (λ(Xt))t≥0 is the intensity of the default and 1− V is the payment obligation of the
protection seller, where V is the deterministic recovery rate that might be different than
the actual recovery rate. As it is seen from (4.78), in order to have a tractable formula
for sCDS, expectations both in the numerator and the denominator should be computable
in a tractable way. Since, the expectation in the denominator is similar to the bond price
formula, it can be computed by Theorem 4.74. Similarly, expectations such as

EQ

[
λ(Xt) exp

{
−
∫ t

0
(r(Xu) + λ(Xu)) du

}]
can be computed by modifying

EQ

[
exp

{
−
∫ T

0
R(Xu) du

}
g(XT )

∣∣∣ X0 = x

]
= EQ∗

[
h(x)g(XT )

h(XT )

∣∣∣ X0 = x

]
,

which can be computed easily for appropriately chosen g. More precisely, let R(·) be given
by R(·) = r(·) + λ(·), where

r(x) =

d1∑
i=1

ki
1− xi
xi

and λ(x) =

d∑
i=d1+1

ki
1− xi
xi

,

where d1 denotes the number of factors used for the risk-free rate. The rest of the factors,
d− d1 many, are used for the credit spread. Therefore assuming t = 0, we need to calculate

EQx

exp

{
−
∫ t

0

(
d∑
i=1

ki
1−X(i)

s

X
(i)
s

)
ds

} d∑
i=d1+1

ki
1−X(i)

t

X
(i)
t

 ∣∣∣ X0 = x


= EQhx

e−(T−t)Cγ1,...,γd
α,σ

∏d
i=1 x

ai∏d
i=1(X

(i)
t )ai

 d∑
i=d1+1

ki
1−X(i)

t

X
(i)
t

 ∣∣∣ X0 = x

 (4.79)

Right-hand side can be computed explicitly by using the transition density function as
in the case of bond-price formula. Let

G(0, T, x, a1, . . . , ad) = EQhx

[ ∏d
i=1 x

ai
i∏d

i=1(X
(i)
T )ai

∣∣∣ X0 = x

]
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4.6. Credit default swap (CDS) pricing

Then the right-hand side of (4.79) is finite and can be given by

G(T ) :=
d∑

i=d1+1

G(0, T, x, a1, . . . , ai + 1, . . . , ad)−G(0, T, x, a1, . . . , ad)−
d∑

i=d1+1

ki (4.80)

Hence the CDS spread is

sCDS =
(1− V )

∫ Tn
0 e−C

a1,...,ad
α,γ,σ sG(s) ds∑n

i=1(Ti − Ti−1)P (0, Ti)
. (4.81)
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Chapter 5

Appendix:
Yamada–Watanabe Condition for
Pathwise Uniqueness

Here we briefly explain the Yamada–Watanabe condition1, which relaxes the Lipschitz
condition for the pathwise uniqueness of solutions of stochastic differential equations (SDEs)
of the type

dXt = b(t,Xt) dt+ σ(t,Xt) dWt , t ≥ 0.

Hence, this condition can be used to show the strong uniqueness of solutions of a SDE with
certain non-Lipschitz coefficients. The main references for this part are [58], [102], [160]
and [157]. In mathematical finance, this is of particular interest for the Cox–Ingersoll–Ross
model (CIR model for short), which describes the stochastic evolution of interest rates
(rt)t≥0 by the SDE

drt = α(µ− rt) dt+ σ
√
rt dWt, t ≥ 0,

with r0 ≥ 0, where α, µ with αµ ≥ 0 and σ denote real constants.
Before stating the main theorem, we start with some definitions necessary for the sequel.

Definition 5.1. Given two jointly Borel measurable functions b: [0,∞) × Rn → Rn and
σ: [0,∞)×Rn → Rn×d and a probability measure µ on (Rn,Bn), a solution of the stochastic
differential equation

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, t ≥ 0, (5.2)

with initial distribution µ is a pair (W,X) of continuous adapted processes defined on a
filtered probability space (Ω,F ,F ,P) with F = (Ft)t≥0 such that

1. W = (Wt)t≥0 is a standard (F ,P)-Brownian motion with values in Rd,

2. the initial value X0 has distribution µ,

3. the integrals implicitly given by (5.2) are well defined, i.e., for all t ≥ 0, i ∈ {1, . . . , n}
and j ∈ {1, . . . , d}, the corresponding component functions of b and σ satisfy∫ t

0
σ2
ij(s,Xs) ds

a.s.
< ∞ and

∫ t

0
|bi(s,Xs)| ds

a.s.
< ∞,

1The extended version of this appendix can be found as lecture notes under [9].
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4. for every i ∈ {1, 2, . . . , n}, the i-th component process of

X =
(
(X

(1)
t , . . . , X

(n)
t )>

)
t≥0

satisfies, up to indistinguishability,

X
(i)
t = X

(i)
0 +

∫ t

0
bi(s,Xs) ds+

d∑
j=1

∫ t

0
σij(s,Xs) dW

j
s , t ≥ 0. (5.3)

Definition 5.4. We say that there is pathwise uniqueness for the SDE (5.2) with initial
distribution µ, if whenever (W,X) and (W̃ , X̃) are two solutions of (5.2) defined on the
same filtered probability space with W = W̃ (same Brownian motion) and X0

a.s.
= X̃0 (same

F0-measurable initial condition with distribution µ), then X and X̃ are indistinguishable,
that is, there exists a set N ∈ σ(

⋃
t≥0Ft) with P[N ] = 0 such that {Xt 6= X̃t} ⊂ N for all

t ∈ [0,∞).

In this section, we give the main result, which combines the one- and multi-dimensional
case. However, we mention that the Yamada–Watanabe condition is essentially a one-
dimensional result (see Remarks 2 and 3 in [157]). For the one-dimensional setting, there is
also an approach to pathwise uniqueness using local times, see [122].

The following theorem is the main result of this appendix; for its proof we assume that
the filtration is right-continuous. We use | · | for the n-dimensional Euclidean norm and
‖ · ‖F for the Frobenius matrix norm.

Theorem 5.5. Consider the stochastic differential equation (5.2). Assume that there exist
a constant γ > 0 and functions κ, %: [0, γ]→ [0,∞) satisfying κ(0) = 0,

|b(t, x)− b(t, y)| ≤ κ(|x− y|), (5.6)

and

‖σ(t, x)− σ(t, y)‖F ≤ %(|x− y|) (5.7)

for all t ∈ [0,∞) and x, y ∈ Rn with |x − y| ≤ γ. Furthermore, assume that % is non-
decreasing, %(u) > 0 for all u ∈ (0, γ] and its square satisfies the Osgood condition2, i.e.,∫ γ

0

du

%2(u)
=∞. (5.8)

In addition, assume that there exists a non-decreasing, concave and continuous function
G: [0, γ]→ [0,∞) with G(0) = 0, strictly positive on (0, γ], such that

G(u) ≥ κ(u) +
n− 1

2u
%2(u) ∀u ∈ (0, γ] (5.9)

and it also satisfies the Osgood condition∫ γ

0

du

G(u)
=∞. (5.10)

Then the pathwise uniqueness of solutions of (5.2) holds for every initial distribution µ.

2Named after William Fogg Osgood, cf. [137]
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Remark 5.11. Note that for n = 1 with the choice G(u) = κ(u) for u ∈ [0, γ], the conditions
on G are actually conditions on κ, in particular (5.10) reduces to the Osgood condition∫ γ

0

du

κ(u)
=∞. (5.12)

For n ≥ 2 and vanishing drift b, we can choose κ to be the zero function. With the choice
G(u) = n−1

2u %
2(u) for u ∈ [0, γ], the condition (5.10) is equivalent to∫ γ

0

u

%2(u)
du =∞, (5.13)

which is substantially more restrictive than (5.8).

Proof of Theorem 5.5. The main idea of the proof is to construct a sequence (fk)k∈N of
C2-functions fk: Rn → [0,∞) approximating the Euclidean norm Rn 3 z 7→ |z|, such that
Itō’s multi-dimensional formula can be applied to fk(Xt − Yt), where X and Y are two
solutions of the SDE (5.2) with X0

a.s.
= Y0. By then passing to the limit k →∞, the aim is

to show that E [|Xt − Yt|] = 0 for all t ≥ 0, which implies pathwise uniqueness.

The first step is to construct such approximations. Due to assumption (5.8), there exists
a sequence

γ = a0 > a1 > a2 > · · · > ak ↘ 0

such that ∫ ak−1

ak

du

%2(u)
= k, k ∈ N.

For every k ∈ N, we can construct a continuous function φk: [0,∞)→ [0,∞) such that

φk(u)

{
≤ 2

k%2(u)
for u ∈ (ak, ak−1),

= 0 otherwise,
(5.14)

and ∫ ak−1

ak

φk(u) du = 1,

because the upper bound (5.14) of φk integrates to 2 over (ak, ak−1). Next we define the
auxiliary function ϕk: [0,∞)→ [0,∞) by

ϕk(w) =

∫ w

0

∫ v

0
φk(u) du dv, w ≥ 0.

Note that ϕk is a twice continuously differentiable function with ϕk(w) = 0 for w ∈ [0, ak].
Furthermore,

ϕ′k(w) =

∫ w

0
φk(u) du


= 0 for w ∈ [0, ak],

≤ 1 for w ∈ (ak, ak−1),

= 1 for w ∈ [ak−1,∞).

(5.15)

Therefore, the sequence (ϕk)k∈N is monotone increasing with w − ak−1 ≤ ϕk(w) ≤ w for all
w ∈ [ak−1,∞). Finally, we can define the approximating sequence (fk)k∈N by

fk(z) := ϕk(|z|), k ∈ N, z ∈ Rn.

51



Chapter 5. Appendix:
Yamada–Watanabe Condition for Pathwise Uniqueness

It follows that each fk is a twice continuously differentiable function on Rn and that
fk(z)↗ |z| uniformly in z ∈ Rn as k →∞.

Now, let X and Y be two solutions of (5.2) with X0
a.s.
= Y0, driven by the same d-

dimensional Brownian motion, and define the difference process Z by

Zt := Xt − Yt =

∫ t

0
bs ds+

∫ t

0
σs dWs, t ≥ 0,

where we simplified the notation by defining the Rn-valued stochastic process

bs = b(s,Xs)− b(s, Ys), s ≥ 0,

and the matrix-valued stochastic process

σs = σ(s,Xs)− σ(s, Ys), s ≥ 0.

Define τ = inf{t ≥ 0 : |Zt| ≥ γ}. Since {z ∈ Rn : |z| ≥ γ} is closed and Z has continuous
paths, τ is a stopping time. By assumption (5.6),

|bs∧τ | ≤ κ(|Zs∧τ |), s ≥ 0. (5.16)

We note that the definition of the Frobenius matrix norm and assumption (5.7) imply

tr[σs∧τσ
>
s∧τ ] = ‖σs∧τ‖2F ≤ %2(|Xs∧τ − Ys∧τ |) = %2(|Zs∧τ |), s ≥ 0. (5.17)

Fix k ∈ N. Applying Itō’s multi-dimensional formula to fk(Zt), we obtain up to
indistinguishability,

fk(Zt) = Ik(t) + Jk(t), t ≥ 0, (5.18)

with

Ik(t) :=

∫ t

0
∇fk(Zs)σs dWs, t ≥ 0, (5.19)

and

Jk(t) :=

∫ t

0

(
∇fk(Zs) bs +

1

2
tr[Hk(Zs)σsσ

>
s ]

)
ds, t ≥ 0, (5.20)

where ∇fk(z) and Hk(z) denote the gradient vector and the Hessian matrix of fk at
z = (z1, . . . , zn) ∈ Rn, respectively. We will now fix t ≥ 0 and define suitable stopping times,
so that we can treat the expectation of these two terms.

The stochastic process Ik is a local martingale starting at zero, hence there exists an
increasing sequence (Tk,l)l∈N of stopping times with Tk,l →∞ as l→∞ such that, for every
l ∈ N, the process Mk,l(s) := Ik(s ∧ Tk,l) with s ≥ 0 is a uniformly integrable martingale.
By Doob’s optional stopping theorem [, ],

E[Ik(t ∧ τ ∧ Tk,l)] = 0, l ∈ N. (5.21)

Note that ∇fk(z) = 0 for |z| ≤ ak and ∇fk(z) = ϕ′k(|z|)z/|z| for |z| ≥ ak, hence
|∇fk(z)| ≤ 1 for all z ∈ Rn by (5.15). Therefore, by the Cauchy–Schwarz inequality and
estimate (5.16),

|∇fk(Zs∧τ ) bs∧τ | ≤ |∇fk(Zs∧τ )| |bs∧τ | ≤ κ(|Zs∧τ |), s ≥ 0. (5.22)
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The diagonal components of the Hessian matrix are given by

(Hk(z))i,i =
∂2fk(z)

∂z2
i

= φk(|z|)
z2
i

|z|2
+ ϕ′k(|z|)

|z|2 − z2
i

|z|3
, i ∈ {1, . . . , n},

(remember that ϕ′k and φk are zero in a neighborhood of the origin). Since ϕ′k is uniformly
bounded by one, see (5.15), the above equation implies that

tr[Hk(z)] = φk(|z|) + ϕ′k(|z|)
n− 1

|z|
≤ φk(|z|) +

n− 1

|z|
I{z 6=0}, z ∈ Rn. (5.23)

Note that ϕk is convex on [0,∞) by construction, also the Euclidean norm is convex on Rn,
hence fk is convex. Therefore, the Hessian Hk of fk is positive semi-definite everywhere.
Since also σs∧τσ

>
s∧τ is positive semi-definite,

0 ≤ tr[Hk(Zs∧τ )σs∧τσ
>
s∧τ ] ≤ tr[Hk(Zs∧τ )] tr[σs∧τσ

>
s∧τ ], s ≥ 0. (5.24)

Combining this inequality with (5.17) and (5.23) in the first step and using (5.14) in the
second one implies that

0 ≤ tr[Hk(Zs∧τ )σs∧τσ
>
s∧τ ] ≤ φk(|Zs∧τ |)%2(|Zs∧τ |) +

n− 1

|Zs∧τ |
%2(|Zs∧τ |)I{Zs∧τ 6=0}

≤ 2

k
+
n− 1

|Zs∧τ |
%2(|Zs∧τ |)I{Zs∧τ 6=0}, s ≥ 0.

(5.25)

Inserting the estimates (5.22) and (5.25) into (5.20) and using the upper bound (5.9) given
by G, it follows that

|Jk(t ∧ τ)| ≤ t

k
+

∫ t∧τ

0
G(|Zs∧τ |) ds, t ≥ 0.

It follows from (5.18) that, for all l ∈ N and t ≥ 0,

E[fk(Zt∧τ∧Tk,l)] = E[Ik(t ∧ τ ∧ Tk,l)] + E[Jk(t ∧ τ ∧ Tk,l)].

The first expectation on the right-hand side vanishes due to (5.21). Noting that G is
non-negative, it follows that

E[fk(Zt∧τ∧Tk,l)] ≤
t

k
+

∫ t

0
E[G(|Zs∧τ |)] ds, l ∈ N, t ≥ 0.

Since by assumption G is concave on [0, γ], Jensen’s inequality implies that

E[G(|Zs∧τ |)] ≤ G(E[|Zs∧τ |]), s ≥ 0. (5.26)

Letting l→∞, using Fatou’s lemma, it follows that

E[fk(Zt∧τ )] ≤ t

k
+

∫ t

0
G(E[|Zs∧τ |]) ds.

Letting k → ∞ and using monotone converge theorem, we obtain for the difference
process Z the estimate

E[|Zt∧τ |] ≤
∫ t

0
G(E[|Zs∧τ |]) ds, t ≥ 0. (5.27)
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The stopping at τ makes sure that [0,∞) 3 s 7→ E[|Zs∧τ |] is [0, γ]-valued and continuous
(apply the dominated convergence theorem). Due to (5.10) and Bihari’s inequality (see
Theorem 5.28(2) below with β ≡ 1, u(s) = E[|Zs∧τ |] and w(x) = G(x ∧ γ) for all x ≥ 0),
estimate (5.27) implies that E[|Zt∧τ |] = 0. Since Zt∧τ = Zt1{τ>t}+Zτ1{τ≤t} and |Zτ | = γ > 0
on {τ <∞}, it follows that P[τ ≤ t] = 0, hence E[|Zt|] = 0, therefore Xt

a.s.
= Yt. Since this

holds for all rational t ≥ 0 and since the processes X and Y have continuous paths, they
are indistinguishable.

Bihari’s inequality

Bihari’s inequality [21, 138], proved by Hungarian mathematician Imre Bihari (1915–1998),
is a nonlinear generalization of the Grönwall–Bellman inequality. It is an important tool to
obtain various estimates in the theory of ordinary and stochastic differential equations.

Theorem 5.28. Let I denote an interval of the real line of the form [a,∞), [a, b] or [a, b)
with a < b. Let β, u: I → [0,∞) and w: [0,∞)→ [0,∞) be three functions, where u and w
are continuous on I, β is continuous on the interior I◦ of I with

∫ t
a β(s) ds < ∞ for all

t ∈ I, and w is non-decreasing and strictly positive on (0,∞).

1. If, for some α > 0, the function u satisfies the inequality

u(t) ≤ α+

∫ t

a
β(s)w(u(s)) ds, t ∈ I, (5.29)

then

u(t) ≤ F−1

(∫ t

a
β(s) ds

)
, t ∈ [a, T ), (5.30)

where F−1 is the inverse function of

F (x) :=

∫ x

α

dy

w(y)
, x > 0,

and

T := sup

{
t ∈ I

∣∣∣∣ ∫ t

a
β(s) ds <

∫ ∞
α

dy

w(y)

}
.

2. If the function u satisfies the inequality (5.29) with α = 0 and∫ x

0

dy

w(y)
=∞ for all x > 0, (5.31)

then u(t) = 0 for all t ∈ I.

Remark 5.32. If
∫∞
α

dy
w(y) =∞, then (5.30) is valid on [0,∞). An example of such a function

is w(y) = y for y ∈ [0,∞).

Remark 5.33. The assumptions on the function β allow for a singularity at the left end point
a of the interval I, for example β(s) = (s− a)−γ for s > a with γ ∈ (0, 1). The integrability
assumption for β ensures that T > a in (5.30).
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Proof of Theorem 5.28. (1) Denoting the right-hand side of (5.29) by

v(t) := α+

∫ t

a
β(s)w(u(s)) ds, t ∈ I,

we have u ≤ v on I by (5.29), which implies that w(u(s)) ≤ w(v(s)) for all s ∈ I since w is
non-decreasing. Using α > 0, the definitions of F and v as well as this inequality, it follows
that

dF (v(s))

ds
=

v′(s)

w(v(s))
=
β(s)w(u(s))

w(v(s))
≤ β(s), s ∈ I◦.

Integrating this between a and t and using F (v(a)) = F (α) = 0,

F (v(t)) = F (v(t))− F (v(a)) ≤
∫ t

a
β(s) ds, t ∈ I.

Since F is strictly increasing,

v(t) ≤ F−1

(∫ t

a
β(s) ds

)
, t ∈ [a, T ).

Since u(t) ≤ v(t), the inequality (5.30) follows.
(2) Consider any t ∈ I and x > 0. Due to (5.31) there exists α ∈ (0, x] such that∫ x

α

dy

w(y)
=

∫ t

a
β(s) ds.

Since u also satisfies (5.29) with this α, (5.30) implies that

u(t) ≤ F−1

(∫ t

a
β(s) ds

)
= x.

Since x > 0 was arbitrary, u(t) = 0 follows.

5.1 Trapped Jacobi process

Here, we give an example where we can apply an iterative procedure to obtain the pathwise
uniqueness of the trapped Jacobi process.

Definition 5.34. The trapped Jacobi process X = (X1
t , . . . , X

d
t )t≥0 with the state space

∆+
d satisfies the stochastic differential equations (SDE) with σ > 0 for i = {1, . . . , d}

dXi
t = mi(Xt) dt+ σ

d∑
j=1

{
(δij −Xi

t)

√
Xj
t

}
dW j

t , t > 0, (5.35)

Xi
0 = xi0, (5.36)

whereW = (W 1
t , . . . ,W

d
t )t≥0 is a d-dimensional standard Brownian motion, x = (x1

0, . . . , x
d
0) ∈

∆+
d and drift functions mi’s are Lipschitz continuous on ∆+

d satisfying:

1.
∑d

i=1mi(x) = 0, x ∈ ∆+
d ,

2. mi(x) ≤ Kxi for i = {1, . . . , d}, and x ∈ ∆+
d .
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Theorem 5.37. The pathwise uniqueness of the solution of the d-dimensional stochastic
differential equation (SDE) (5.35) holds. Hence there is strong existence and uniqueness for
(5.35).

Before giving the detailed proof of the Theorem (5.37), the crucial steps that lead to the
argument are worth mentioning. First of all, since the (local) Lipschitz continuity holds for
the diffusion part of the equation (5.35) in the interior of the ∆+

d , it is fairly standard to
show that the pathwise uniqueness holds until the process hits the boundary of ∆+

d , which
we denote as ∂∆+

d . On the other hand, conditions given for the drift part allows us to keep
the process in the ∆+

d (condition i.) or stick to the ∂∆+
d (condition ii.) once one of the

components of the process hits to it. Although the diffusion part is not a symmetric or a
triangular matrix, its form allows us to use induction as the main tool in the proof. That is,
once one of the components hits to the boundary, the remaining components move on a
simplex with dimension reduced by one until the process end up at the unit vectors.

Proof. The first step is to show that the pathwise uniqueness holds up to the first hitting
time of ∂∆+

d of two solutions, X and Y , of (5.35).
Let us define τX := inf{t ≥ 0, Xt ∈ ∂∆+

d } and τY := inf{t ≥ 0, Yt ∈ ∂∆+
d } as (Ft)t≥0

stopping times.
Also define τ εX := inf{t ≥ 0, Xt ∈ N (∂∆+

d , ε)} and τ εY := inf{t ≥ 0, Yt ∈ N (∂∆+
d , ε)},

where N (∂∆+
d , ε)} is the ε > 0 open neighborhood of ∂∆+

d . Moreover, τ ε := τ εX ∧ τ εY , is
again a stopping time and hence we can write for any i ∈ {1, . . . , d},

Xi
t∧τε − Y i

t∧τε =

∫ t∧τε

0
(mi(Xs)−mi(Ys)) ds

+ σ

d∑
j=1

∫ t∧τε

0

{
(δij −Xi

s)

√
Xj
s − (δij − Y j

s )
√
Y i
s

}
dW j

s

(5.38)

Since the drift and diffusion functions are Lipschitz on ∆+
d \N (∂∆+

d , ε), we have the estimate

E
[
|Xt∧τε − Yt∧τε |2

]
≤ AT,ε

∫ t

0
E [|Xs∧τε − Ys∧τε |] ds (5.39)

for t ≤ T <∞ where AT,ε is a constant depending on T and ε. From this we can conclude that
Xt∧τε = Yt∧τε almost surely for all t ≤ T and τ εX = τ εY almost surely. By letting ε↘ 0, we

can conclude that τX
a.s.
= τY =: τ and Xt

a.s.
= Yt for t < τ . Also, Xτ = Yτ =: Z = (Z1, . . . , Zd)

on the event {τ <∞}.
Now, the next step is to show that once one component of the process hits the associate

boundary, remaining components are still on the simplex yet the component that hits to
boundary sticks to it. Mathematically, it is sufficient to show that

Xi
t = Y i

t
a.s.
= 0, t ≥ τ (5.40)

on the event {τ <∞, Zi = 0} := Si for i ∈ {1, . . . , d}. It can be seen that if (5.40) holds,
then Xi

t = Y i
t ∈ ∆+,i

d almost surely for t ≥ τ on the event {τ <∞, Z ∈ ∆+,i
d } where ∆i,+

d is
the (d− 2)-dimensional simplex generated by setting xi = 0 on ∆+

d . In order to show (5.40),
write the dynamics of X as if it starts at Z at τ , i.e,

Xi
τ+t = Zi +

∫ τ+t

τ
mi(Xs) ds+ σ

d∑
j=1

∫ τ+t

τ

{
(δij −Xi

s)

√
Xj
s

}
dW j

s . (5.41)
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for all i ∈ {1, . . . , d} and t ≥ 0. Now let’s define a d-dimensional standard Brownian motion
by (W̃t)t≥0) = (Wτ+t)t≥0 and rewrite (5.41) as

Xi
τ+t = Zi +

∫ t

0
mi(Xτ+s) ds+ σ

d∑
j=1

∫ t

0

{
(δij −Xi

τ+s)

√
Xj
τ+s

}
dW̃ j

s . (5.42)

for all i ∈ {1, . . . , d} and t ≥ 0. Taking the expectation on the event Si, by the second
property on the drift function, that is, mi(x) ≤ Kxi, we have,

0 ≤ E
[
Xi
τ+t;Si

]
≤ K

∫ t

0
E
[
Xi
τ+s;Si

]
ds (5.43)

implying that Xi
t

a.s.
= 0 on Si for t ≥ τ . Since above computations are same for Y , we have

Xi
t = Y i

t ∈ ∆+,i
d almost surely for t ≥ τ on the event {τ <∞, Z ∈ ∆+,i

d }. Now we show by
induction that

Lemma 5.44. Xt
a.s.
= Yt for t ≥ τ on {τ <∞}.

Proof of the Lemma 5.44. First of all assume that the (5.35) holds for (d− 1)-dimensional
system. If we can show that Xt

a.s.
= Yt for t ≥ τ on every Si for i ∈ {1, . . . , d}, it is immediate

that the claim holds. Now take i = d, since x ∈ ∆+,d
d the diffusion part of (5.35) has the

same form but the last row and the column vanishes, hence (5.42) can be written with
one-dimension less (pay attention to the summation)

Xi
τ+t = Zi +

∫ t

0
mi(Xτ+s) ds+ σ

d−1∑
j=1

∫ t

0

{
(δij −Xi

τ+s)
√
Xi
τ+s

}
dW̃ j

s . (5.45)

However, by the induction hypothesis (5.45) holds for i ∈ {1, . . . , (d−1)}, hence the argument
holds for Sd. For the other Si‘s, the argument also holds for similarly, the only difference
being the dimension of the simplex reduced more than one. Hence Xt

a.s.
= Yt for t ≥ τ on

every Si for i = 1, . . . , d and the claim holds.

From Lemma 5.45 holds and the arguments given above are valid for d = 2 (for the
initialization of the induction hypothesis), we have the pathwise uniqueness and by the
Yamada-Watanabe theorem [160, Prop. 1], strong existence and the uniqueness of the
solution of (5.35) holds.
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Pairs Trading under Drift
Uncertainty and Risk Penalization
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Chapter 1

Introduction and the Underlying
Framework

Pairs trading is an investment strategy that attempts to capitalize on market inefficiencies
arising from imbalances between two or more stocks. This kind of strategy involves a long
position and a short position in a pair of similar stocks that have moved together historically.
Examples of such pairs can be given: ExxonMobil and Royal Dutch and Shell for the oil
industry, or Pfizer and GlaxoSmithKline for the pharmaceutical industry. The underlying
rationale of pairs trading is to buy the underperformer, and sell the overperformer, in
anticipation that the security that has performed badly will make up for loss in the coming
periods, perhaps even overperform the other, and vice-versa. For this reason, it is also
classified as a convergence or mean-reversion strategy. The pair of stocks is selected in a way
that it forms a mean-reverting portfolio referred to as the spread. By forming an appropriate
spread, pairs traders try to limit the directional risk that arises from the market’s up or down
movements by simultaneously going long on one stock and short in another. Since market
risk is mitigated, profits depend only on the price changes between the two stocks and they
can be realized through a net gain on the spread. Therefore,one can also see pairs trading
in the class of market-neutral trading strategies. To achieve market neutrality, traders can
choose corresponding strategies so that the resulting portfolio has zero (CAPM) beta, hence
it is beta-neutral. Alternatively, one can use a dollar-neutral strategy, which is investing an
equal dollar amount in each stock. However, we should remark that market neutrality does
not imply either risk-free return or arbitrage in the classical sense. The risk inherited in pair
strategies is different from the risk in investment strategies involving only a long or short
position in a specific stock or market. Indeed, pairs trading is a form of statistical arbitrage,
which can be defined broadly as a long-horizon trading strategy that generates riskless profits
asymptotically (see [99] for the definition of the statistical arbitrage and [90] for the existence
of statistical arbitrage for pairs trading strategies). As it is empirically documented by [87],
coupled with a simple pairs selection algorithm, such statistical arbitrage strategies may
yield average annualized excess returns of up to 11 percent, which still remains profitable
after compensated by the most conservative transaction costs.

In this work, we consider the portfolio optimization problem of a trader with a logarithmic
utility from risk penalized terminal wealth investing in a pair of assets whose dynamics have
a certain dependence structure in a Markov regime-switching model. More precisely, we
model the spread process (log-price differential) as an Ornstein–Uhlenbeck process with a
partially observable Markov modulated drift. Our motivation for modeling the drift of the
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spread and drifts of both assets as a function of an unobservable finite-state Markov chain
has certain advantages. Firstly, drifts of financial assets are hardly constant and observable,
especially if we think of the convergence-type investment strategies that are usually valid
for longer periods. Secondly, although pairs are selected in such a way that they have
similar characteristics, the dynamics of the spread between them might be prone to different
regimes. For example, if one leg of the pair is selected to be listed in an index such as the
S&P 500 while the other is not, this might increase the demand for the one that is listed.
Hence, that would eventually increase the level of the spread, at least until the one listed
in the index is deleted from the index or the other leg of the pair is also added. Moreover,
in reality, it is difficult to observe or characterize both microstructure (market-based) or
macrostructure (economy-wide) state variables changing with respect to different regimes.
That would necessitate using a partial information framework to model such state processes.

Numerous studies analyze portfolio selection problems in a full or partial information
and/or Markov regime-switching framework, see, for example, [162], [14], and [151] for the
full information case with Markov regime switching or [15], [84], and [22] for the partial
information case. However, to the best of our knowledge, identification of optimal pairs
trading strategies in a Markov-modulated setting under partial information is new.

Our proposed model is an extended version of the model given by [135], who found
the optimal pairs trading strategies in a dollar-neutral setting for an investor with power
utility. Although investing equal dollar amount (as a proportion of wealth) in pairs seems
to be restrictive, it is meaningful when CAPM betas of the selected stocks are very close to
each other. Our model extends the work of [135] by allowing partially observed Markov-
modulated drifts both for the price processes and the spread, hence enabling them to change
with respect to different conditions. As the second extension, to find the optimal trading
strategies, we use a risk penalized terminal wealth as it is suggested in Section 2.22 of
[146]. By penalizing the terminal wealth according to the realized volatility of the wealth
process, the investor hopes to prevent the pairs trader pursuing risky strategies. Using risk
penalization seems to be appropriate in pairs trading as most such strategies are executed
by hedge funds and proprietary trading houses, which engage in high-risk transactions on
behalf of investors. Risk penalization effectively increases the risk aversion of the trader
and makes her take a less risky position. Apart from certain mathematical convenience, our
choice of logarithmic utility function can be justified on several financial grounds. Firstly,
although an investor can choose any utility function, representing her risk tolerance, a
repetitive situation such as the one reflected in mean-reversion type trading strategies tends
to force the utility function into the one that is close to a logarithmic one. For instance, in
the power utility case it can be shown in a very simple example that too aggressive or too
conservative choices for the risk-aversion parameter imply unrealistic preferences such as
betting on strategies that have large losses with high probability and hence not suitable if
the investor is focused in a long sequence of repeated trials, see e.g., Chapter 15 of [129]).
This can only be alleviated when the risk-aversion parameter γ, in power utility 1, is close
to zero, behaving more like the logarithmic utility. Therefore, we can argue that utility
functions that are close to the logarithmic ones are appropriate for our setting. Secondly,
by penalizing the terminal wealth with the realized volatility of the portfolio and using
logarithmic utility, we can capture the intertemporal risk factor in our model more easily
with just one parameter.

Although both the empirical and theoretical literature on pairs trading has been growing,

1U(x) = xγ

γ
for γ ≤ 1.
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published research on optimal portfolio problem is rather limited. [135] solve the stochastic
control problem for pairs trading with power utility for terminal wealth. [156] develop an
optimal portfolio strategy to invest in two risky assets and the money market account,
assuming that log-prices are co-integrated, as in the option pricing model of [52]. [29] extend
[156] to allow the investor to trade in multiple co-integrated assets and provide an explicit
closed-form solution of the dynamic trading strategy while assuming that the drift of asset
returns consists of an idiosyncratic and common drift component. [123] solve the optimal
pairs trading problem within a power utility setting, where the drift uncertainty is modeled
by a continuous mean-reverting process. Here we should also remark that the work of [7]
that characterizes the optimal delta-neutral and beta-neutral strategies in a converge trading
model with regime-switching under full and partial information. It is also worth mentioning
here the work of [64], which proposes a pairs trading strategy based on stochastic filtering
of a mean-reverting Gaussian Markov chain for the spread, which is observed in Gaussian
noise.

Apart from identification of optimal trading strategies through utility maximization
from terminal wealth, there is also recent literature on optimal liquidation and optimal
(entry-exit) timing strategies related to pairs trading. For example, studies by [60], [121], and
[161] focus on how to liquidate optimally a pairs trade by incorporating stop-loss thresholds.
Moreover, [127] study an optimal double-stopping problem to analyze the timing for starting
and subsequently liquidating the position, subject to transaction costs, and [124] analyze a
multiple entry-exit problem of a pair of co-integrated assets. An extensive list of references
and a literature review on pairs trading and statistical arbitrage can be found in the recent
survey paper by [113].

To sum up, our contributions in this part can be stated as follows. First, we characterize
the optimal dollar-neutral strategies both in full and partial information settings with
risk-penalized terminal wealth for a log-utility trader and show that optimal strategies are
dependent on both the correlation between two assets and the mean-reverting spread. The
effect of risk-penalization on optimal strategies is an increase in risk-aversion uniformly in a
constant proportion that is not dependent on time. Second, we characterize the optimal
value function via Feynman–Kac formula. Third, using the innovations approach, we provide
filtering equations that are necessary to reduce the problem with partial information to the
one with full information. A nice feature of the solution in the partial information setting
is that the optimal strategy is a linear function of the filtered state and hence it can be
considered as a projection of the full information one on the investor’s information filtration.

We also present numerical results for a toy example with a two-state Markov chain in
both full and partial information settings. Our analysis shows that average data does not
contain sufficient information to obtain the optimal value for the pairs trading problem
for logarithmic utility preferences. This result is in contrast with the one for the classical
portfolio optimization problem with Markov modulation, see Section B in [14]). Furthermore,
our toy example suggests that there is always a gain from filtering due to the convexity
arising from using filtered probabilities instead of constant ones.

1.1 The pairs trading model

We consider a finite time interval [0, T ] and a continuous-time finite-state Markov chain
Y defined on the filtered probability space (Ω,G,G,P), where G = (Gt)t≥0 is the global
filtration that satisfies the usual conditions; all processes we consider here are assumed
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to be G-adapted. Suppose Y has the state space E = {e1, e2, ..., eK} where, without loss
of generality, we assume that ek is the basis column vector of RK . Y has the intensity
matrix Q = (qij)i,j∈{1,...,K} and its initial distribution is denoted by Π = (Π1, · · · ,ΠK). The
semimartingale decomposition of Y is given by

Yt = Y0 +

∫ t

0
Q>Ysds+Mt, (1.1)

for every t ∈ [0, T ], where M is a (G,P)-martingale.
We consider a market with a risk-free asset and two stocks. We assume that the dynamics

of the risk-free asset is given by

dS
(0)
t = rS

(0)
t dt, S

(0)
0 > 0, (1.2)

where r ∈ R is the risk-free interest rate. The stocks have prices S(1) and S(2), and the price
process of the first stock is assumed to follow a Markov-modulated diffusion given by

dS
(1)
t

S
(1)
t

= µ(Yt) dt+ σ dW
(1)
t , S

(1)
0 > 0, (1.3)

with σ > 0 and where W (1) is a G-Brownian motion independent of Y . Since the Markov
chain takes values in a finite state space we have that for every t ∈ [0, T ], µ(Yt) = µYt with
µ = (µ1, . . . , µK)> and µi = µ(ei) ∈ R for every i ∈ {1, . . . ,K}.

It is assumed that the spread St = logS
(1)
t − logS

(2)
t , t ∈ [0, T ], follows a Markov-

modulated Ornstein–Uhlenbeck process:

dSt = κ(θ(Yt)− St) dt+ η dWt, S0 ∈ R, (1.4)

where κ > 0 and η > 0, W is a G-Brownian motion with 〈W (1),W 〉t = ρt, ρ ∈ (−1, 1), and
θ(Yt) = θYt, t ∈ [0, T ] with θ = (θ1, . . . , θK)> and θi = θ(ei) ∈ R for every i ∈ {1, . . . ,K}.
It follows from (1.3) and (1.4) that

dS
(2)
t

S
(2)
t

=

(
µ(Yt)− κ(θ(Yt)− St) +

1

2
η2 − ρση

)
dt+ σ dW

(1)
t − η dWt, S

(2)
0 > 0. (1.5)

Let X be the value of a self-financing portfolio and let h(1) and h(2) denote fractions of the
wealth invested in S(1) and S(2), respectively.

Admissible Investment Strategies. We consider dollar-neutral pairs trading strategies.
This corresponds to take h(1) and h(2) such that

h
(1)
t = −h(2)

t , t ∈ [0, T ]. (1.6)

In the sequel we are going to use the notation h = h(1). Note that ht ∈ R for every t ∈ [0, T ]
and the portfolio weight on the risk-free asset is always 1. In order to ensure that the wealth
process is well defined, we consider investment strategies that satisfy

E
[∫ T

0
h2
u du

]
<∞. (1.7)
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1.1. The pairs trading model

Definition 1.8. A G-progressive self-financing investment strategy which satisfy (1.6) and
(1.7) is called an admissible investment strategy. We denote the set of admissible strategies
by A.

For every h ∈ A, the dynamics of the pairs-trading portfolio is given by

dXh
t

Xh
t

=

(
ht

(
κ(θ(Yt)− St)−

η2

2
+ ρση

)
+ r

)
dt+ htη dWt, Xh

0 > 0. (1.9)

Notice that for a given h ∈ A, Xh is a controlled process. In what follows, for the sake of
notational simplicity we suppress h dependency and write X instead of Xh. The objective
of the trader is to maximize expected utility from terminal wealth. However, in the risk-
penalized setting, the goal is to prevent the trader from pursuing risky strategies at the
expense of the investor; see Section 2.22 of [146]. The investor agrees to pay the trader at
time T the risk-penalized amount

ZT = XT exp

(
−1

2
ε

∫ T

0
η2h2

s ds

)
, ε ≥ 0. (1.10)

Hence the terminal value of the wealth process is ‘discounted’ by its realized volatility. It
follows from Itô’s formula that the dynamics of Z is given by:

dZt
Zt

=

(
ht

(
κ(θ(Yt)− St)−

η2

2
+ ρση

)
+ r − εη2h2

t

2

)
dt+ htη dWt, Z0 > 0. (1.11)

In what follows, we study the optimization problem for a trader who is endowed with a
logarithmic utility in case of regime switching and risk penalization. First, we consider the
situation where the trader may observe the Markov chain Y that influences the dynamics
of price processes and the spread. Subsequently, we assume that the Markov chain is not
observable and solve the optimization problem under partial information.
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Chapter 2

Optimization Problem under Full
Information

In this section, we suppose that the trader can observe all sources of randomness in the
market. Her penalized wealth at time T is given by

ZT = z exp

{∫ T

t

(
hu

(
κ(θ(Yu)− Su)− η2

2
+ ρση

)
− h2

uη
2(1 + ε)

2
+ r

)
du

+

∫ T

t
huη dWu

}
, (2.1)

for every h ∈ A. Note that, condition (1.7) guarantees that the stochastic integral in the
above expression is a true martingale and hence has a zero expected value.

Formally the trader faces the following optimization problem

max Et,z,s,i[logZT ], (2.2)

where Et,z,s,i denotes the conditional expectation given Zt = z, St = s and Yt = ei. We
define the value function of the trader by

V (t, z, s, i) := sup
h∈A

Et,z,s,i [logZT ] . (2.3)

From now on, we use the following notation for the partial derivatives: for every function
g : [0, T ]× R+ × R→ R, we write, for instance, gt for the partial derivative with respect to
time.

In the following theorem we characterize the optimal strategy and the corresponding
value function.

Theorem 2.4. Consider a trader with a logarithmic utility function with risk penalization
parameter ε ≥ 0. Then the optimal portfolio strategy h∗ ∈ A is

h∗(t, s, i) =
1

1 + ε

(
κ (θi − s)

η2
+
ρσ

η
− 1

2

)
. (2.5)

The value function is of the form

V (t, z, s, i) = log(z) + r(T − t) + d(t)s2 + c(t, i)s+ f(t, i), (2.6)
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where the function d(t) is given by

d(t) =
κ

4η2(1 + ε)

(
1− e−2κ(T−t)

)
, (2.7)

and the functions c(t, i) and f(t, i) for i ∈ {1, . . . ,K} solve the following system of ordinary
differential equations

ct(t, i)− κc(t, i) + 2κθid(t)−
κ2θi − κη

2

2 + κρση

η2(1 + ε)
+

K∑
j=1

c(t, j)qij = 0, (2.8)

ft(t, i) +d(t)η2 + κθic(t, i) +

(
κθi − 1

2η
2 + ρση

)2
2η2(1 + ε)

+
K∑
j=1

f(t, j)qij = 0 (2.9)

with terminal conditions c(T, i) = 0 and f(T, i) = 0 for all i ∈ {1, . . . ,K}.

Proof. We first apply pointwise optimization to obtain the optimal portfolio strategy. By
computing the expectation in (2.2), we get

Et,z,s,i[logZT ] = log(z) + r(T − t)− Et,s,i
[∫ T

t

h2
uη

2(1 + ε)

2
du

]
+ Et,s,i

[∫ T

t
hu

(
κ(θ(Yu)− Su)− η2

2
+ ρση

)
du

]
, (2.10)

where, according to the previous notation, Et,s,i denotes the conditional expectation given
St = s and Yt = ei. The first order condition given by

−h∗t η2(1 + ε) + κ(θ(Yt)− St)−
η2

2
+ ρση = 0, (2.11)

provides the following candidate for the optimal strategy

h∗(t, s, i) =
1

1 + ε

(
κ (θi − s)

η2
+
ρσ

η
− 1

2

)
. (2.12)

The second order condition, −η2(1 + ε) < 0, ensures that h∗ is the well defined maximizer
and hence the optimal portfolio strategy. By inserting the optimal strategy into (2.10), we
get a stochastic representation for the optimal value, that is,

log(z) + r(T − t) + Et,s,i
[∫ T

t

(κ(θ(Yu)− Su)− η2

2 + ρση)2

2η2(1 + ε)
du

]
. (2.13)

Next, we characterize the value function by means of Feynman-Kac formula for Markov-
modulated diffusion processes; see [13] and [66]. To this, for every i ∈ {1, . . . ,K} we define
functions u(·, ·, i) : [0, T ]× R→ R+ by

u(t, s, i) = Et,s,i
[∫ T

t

(κ(θ(Yu)− Su)− η2

2 + ρση)2

2η2(1 + ε)
du

]
. (2.14)
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Then for every i ∈ {1, . . . ,K}, functions u(·, ·, i), satisfy

ut(t, s, i) + κ(θi − s)us(t, s, i) +
η2

2
uss(t, s, i)

+

K∑
j=1

u(t, s, j)qij +
(κ(θi − s) + η2

2 + ρση)2

2η2(1 + ε)
= 0, (2.15)

with the terminal condition u(T, s, i) = 0. Suppose that function u(t, s, i) is of the form
u(t, s, i) = d(t)s2 + c(t, i)s+ f(t, i). By using this ansatz, we get the following equation

0 =ct(t, i)s+ dt(t)s
2 + ft(t, i) + η2d(t) +

(κ(θi − s)− η2

2 + ρση)2

2η2(1 + ε)

+ κ(θi − s)(c(t, i) + 2d(t)s) +
K∑
j=1

(c(t, j)s+ f(t, j))qij . (2.16)

Collecting together the terms with s2, s and the remaining ones we get that the function
d(t) solves

dt(t)− 2κd(t) +
κ2

2η2(1 + ε)
= 0, d(T ) = 0, (2.17)

and for every i ∈ {1, . . . ,K}, c(t, i) and f(t, i) solve the system of ODEs in (2.8) and (2.9),
respectively; see, e.g., Theorem 3.9 in [155].

Remark 2.18.

i) Note that the optimal value is always positive provided that z > 1, and the expectation
in (2.13) can also be evaluated by computing the first and second moments of the
Markov-modulated Ornstein–Uhlenbeck process. This can be achieved, for example as
given in [100], by solving a non-homogeneous linear system of differential equations.

ii) In the current setting the market is in general incomplete implying that, for instance,
we can not rely on the martingale approach; see, for example, [22].

The optimal portfolio strategy h∗ has three components. The component related to
dollar-neutrality is given by 1/2(1 + ε). This is intuitively clear considering “non-pairs” in
the sense that there is no correlation (ρ = 0) and no-cointegration (κ = 0). The other two
components are arising from the dependence structure between two stocks. Namely, the first
component κ (θi − s) /(1 + ε)η2 is related to the co-integration between two stocks, whereas
the second component ρσ/η(1 + ε) is related to the correlation structure. To wit, suppose
now that the current spread is equal to the long-term mean of the current regime, that is
(θi − s) = 0 or κ = 0, then the optimal strategy for a given ε > 0 is determined by only the
correlation ρ between first stock and spread scaled by the ratio of volatilities of both. One
can interpret this case as the dollar-neutral investment strategy in assets with correlated
returns. On the other hand, if ρ is zero, the optimal strategy is determined only by the
spread dynamics.

Remark 2.19. Suppose that, instead of a dollar-neutral strategy, the trader wants to use a
beta-neutral strategy, that is a strategy of the form β1h

(1) + β2h
(2) = 0, where β1 and β2
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denote CAPM betas of S(1) and S(2), respectively. Then the optimal strategy is given by

h∗(t, s, i) =
1

1 + ε

(
µiβ2(β2 − β1) + β1β2κ (θi − s)− β1β2

η2

2 + β1β2ρση

(σ(β2 − β1)− β1η)2

)
, (2.20)

and the value function has the similar structure as in the dollar-neutral case given above.
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Chapter 3

Optimization Problem under
Partial Information

We assume now that the state process Y is not directly observable by the trader. Instead,
she observes the price processes S(1) and S(2) and she knows the model parameters. Hence,
information available to the trader is carried by the natural filtration of S(1) and S(2). This
is equivalent to the set of information carried by S(1) and the spread S, that is,

F = (Ft)t≥0, Ft = σ{Su, S(1)
u , 0 ≤ u ≤ t}, Ft ⊂ Gt. (3.1)

In the sequel we assume that filtration F satisfies the usual hypotheses.

Admissible Investment Strategies. Decisions of the trader should depend only on
the information available to her at time t. That is, we consider self-financing investment
strategies such that h is F-progressive. Then we have the following definition of admissible
strategies under partial information.

Definition 3.2. An F-progressive self-financing investment strategy h that satisfies (1.6)
and (1.7) is an F-admissible investment strategy. We denote the set of F-admissible strategies
by AF.

The partially informed trader aims to maximize the expected utility E[logZT ], over
the class AF. In this case, we naturally end up with an optimal control problem under
partial information. In the next part, to solve such a problem we will derive an equivalent
control problem under full information via the so-called reduction approach; see, e.g., [80].
This requires the derivation of the filtering equation for the unobservable state variable.
After reduction, the corresponding control problem can be interpreted as one with smooth
transitions governed by the dynamics of filtered probabilities. We discuss this aspect in
Chapter 4 for the case of a two-state Markov chain.

3.1 The filtering equation

In this section we address the problem of characterizing the conditional distribution of
the unobservable Markov chain Y , given the observation. In our setting, the observations
process is given by the pair

(dRt, dSt)
> = A(t, Yt, St)dt+ ΣdBt, (3.3)
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where process R is the log-return of S(1), i.e., dRt = dS
(1)
t /S

(1)
t with R0 = 0, B =

(W (1),W (2))> is a 2-dimensional G-Brownian motion independent of Y and

A(t, Yt, St) =

(
µ(Yt)

κ(θ(Yt)− St)

)
, Σ =

(
σ 0

ρη
√

1− ρ2η

)
, t ∈ [0, T ]. (3.4)

Note that processes R and S(1) generate the same information.

For any function f , we denote by f̂(Y ) the optional projection with respect to filtration

F, that is f̂(Yt) = E [f(Yt)|Ft], a.s., for every t ∈ [0, T ]. Process f̂(Y ), for every function f ,
provides the filter. By the finite state property of the Markov chain we get that

f̂(Yt) =

K∑
j=1

f(ej)p
j
t , t ∈ [0, T ], (3.5)

where pjt = P(Yt = ej |Ft), t ∈ [0, T ]. Then, in order to characterize the conditional
distribution of Y , it is sufficient to derive the dynamics of the processes pj , j ∈ {1, . . . ,K}.
To this, we will use the so-called innovations approach. This method is based on finding a
suitable F-progressive process that drives the dynamics of the filter; see, e.g., [158] and [61]
for more details. We define the 2-dimensional process I = (I(1), I(2))> by

It = Bt +

∫ t

0
Σ−1(A(u, Yu, St)− ̂A(u, Yu, St)) du, t ∈ [0, T ]. (3.6)

Explicitly we have

I
(1)
t = W

(1)
t +

∫ t

0

µ(Yu)− µ̂(Yu)

σ
du, (3.7)

I
(2)
t = W

(2)
t +

∫ t

0

σκ(θ(Yu)− θ̂(Yt))− ρη(µ(Yu)− µ̂(Yu))

ση
√

1− ρ2
du, (3.8)

for every t ∈ [0, T ].

Remark 3.9. The process I is called innovation process and it is well known that I is an
(F,P)-Brownian motion; see Proposition 2.30 in [12].

Note that, since the signal Y and the Brownian motion B driving the observation process
are assumed to be independent, the filtration F coincides with the natural filtration of the
innovation process; see Theorem 1 in [3]. Then, by Theorem III.4.34-(a) in [103] every
(P,F)-local martingale M admits the following representation:

Mt = M0 +

∫ t

0
Hu dIu, t ∈ [0, T ], (3.10)

for some F-predictable 2-dimensional process H such that∫ T

0
‖Hu‖2 du <∞ P− a.s. (3.11)

We recall the notation µ = (µ1, . . . , µK)>, where µi = µ(ei) ∈ R, and θ = (θ1, . . . , θK)>,
where θi = θ(ei) ∈ R. Also introduce f = (f1, . . . , fK)>, where fi = f(ei) ∈ R. The next
theorem provides the filter dynamics.
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3.1. The filtering equation

Theorem 3.12. For every i ∈ {1, . . . ,K}, the filter process pi satisfies

pit = pi0 +

∫ t

0

K∑
j=1

qjipju du+
1

σ

∫ t

0
piu(µi − µ>pu) dI(1)

u

+
1

ση
√

1− ρ2

∫ t

0
piu

(
σκ
(
θi − θ>pu

)
− ηρ

(
µi − µ>pu

))
dI(2)
u , pi0 = Πi, (3.13)

for every t ∈ [0, T ].

Proof. Consider the semimartingale decomposition of f(Y ) given by

f(Yt) = f(Y0) +

∫ t

0
〈Qf , Yu−〉 du+M

(1)
t , t ∈ [0, T ], (3.14)

where M (1) is a (G,P)-martingale. Now, projecting over F leads to

f̂(Yt)− f̂(Y0)−
∫ t

0
〈Qf , Ŷu−〉 du = M

(2)
t , t ∈ [0, T ], (3.15)

where M (2) is an (F,P)-martingale. Using the martingale representation in (3.10) we get

f̂(Yt)− f̂(Y0)−
∫ t

0
〈Qf , Ŷu−〉 du =

∫ t

0
Hu dIu, t ∈ [0, T ]. (3.16)

Let mt = It +
∫ t

0 Σ−1 ̂A(u, Yu) du, for every t ∈ [0, T ]. Computing the product f(Y ) ·m and
projecting on F, we obtain

̂f(Yt) ·mt =

∫ t

0
mu〈Qf , Ŷu〉 du+

∫ t

0
Σ−1 ̂f(Yu)A(u, Yu) du+M

(3)
t , t ∈ [0, T ], (3.17)

for some (F,P)-martingale M (3). We now compute the product f̂(Y ) ·m as

f̂(Yt) ·mt =

∫ t

0
mu〈Qf , Ŷu〉 du+

∫ t

0
Σ−1f̂(Yu) ̂A(u, Yu) du+

∫ t

0
Hu du+M

(4)
t , (3.18)

for every t ∈ [0, T ], where M (4) is an (F,P)-martingale. Comparing the finite variation
terms in (3.17) and (3.18), we get

H
(1)
t =

̂f(Yt)µ(Yt)− f̂(Yt)µ̂(Yt)

σ
, (3.19)

H
(2)
t =

σκ( ̂f(Yt)θ(Yt)− f̂(Yt)θ̂(Yt))− ηρ( ̂f(Yt)µ(Yt)− f̂(Yt)µ̂(Yt))

ση
√

1− ρ2
, (3.20)

for every t ∈ [0, T ]. Finally choosing f(Yt) = 1{Yt=ei}, we obtain the result.

Remark 3.21. Here notice that the drift and diffusion coefficients in (3.13) are continuous,
bounded and locally Lipschitz. This implies that p is the unique strong solution of the
filtering equation (3.13).
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3.2 Reduction of the optimal control problem

The semimartingale decompositions of Z and S with respect to the observation filtration
are given by

Zt =Z0 +

∫ t

0
Zu

(
hu

(
κ(θ>pu − Su)− η2

2
+ ρση

)
+ r − εη2h2

u

2

)
du

+ η

∫ t

0
huZu

(
ρ dI(1)

u +
√

1− ρ2 dI(2)
u

)
, t ∈ [0, T ], (3.22)

and

St = S0 +

∫ t

0
κ(θ>pu − Su) du+ η

∫ t

0

(
ρ dI(1)

u +
√

1− ρ2 dI(2)
u

)
, t ∈ [0, T ]. (3.23)

Thanks to uniqueness of the solution of the filtering equation we can consider the
(K + 2)-dimensional process (Z, S, p) as the state process and introduce the equivalent
optimal control problem under full information; see, e.g., [80]. We have

max Et,z,s,p[logZT ], (3.24)

where Et,z,s,p denotes the conditional expectation given Zt = z, St = s and pt = p, where
(z, s,p) ∈ R+ × R×∆K , with ∆K denoting the (K − 1)-dimensional simplex. We define
the value function of the trader by

V (t, z, s,p) := sup
h∈AF

Et,z,s,p [logZT ] . (3.25)

To obtain the optimal strategy it is possible to apply pointwise maximization, which also
leads to an explicit characterization for the value function. This is given in the next theorem.

Theorem 3.26. Consider a trader with a logarithmic utility function with risk penalization
parameter ε ≥ 0. Then the optimal portfolio strategy h∗ ∈ AF under partial information is

h∗(t, s,p) =
1

1 + ε

(
κ
(
θ>p− s

)
η2

+
ρσ

η
− 1

2

)
. (3.27)

The value function is of the form

V (t, z, s,p) = log(z) + r(T − t) + d(t)s2 + c(t,p)s+ f(t,p), (3.28)

where the function d(t) is given by

d(t) =
κ

4η2(1 + ε)

(
1− e−2κ(T−t)

)
, (3.29)

and the functions c(t,p) and f(t,p) solve the following system of partial differential equations:

ct(t,p)+
1

2

K∑
i,j=1̃

αij(p)cpipj (t,p)+

K∑
i,j=1

cpi(t,p)qjipj+κ
(
2d(t)θ>p− c(t,p)

)
−γ(p)=0,

(3.30)

ft(t,p) +
1

2

K∑
i,j=1

α̃ij(p)fpipj (t,p) +

K∑
i,j=1

fpi(t,p)qjipj + η

K∑
i=1

cpi(t,p)β̃i(p)

+ c(t,p)κθ>p + η2d(t) +

(
κθ>p− 1

2η
2 + ρση

)2
2η2(1 + ε)

= 0, (3.31)
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with terminal conditions c(T,p) = 0 and f(T,p) = 0 for every p ∈ ∆K , and where

α̃i,j(p) = H(i,1)(p)H(j,1)(p) +H(i,2)(p)H(j,2)(p), i, j ∈ {1, . . . ,K}, (3.32)

β̃i(p) = ρH(i,1)(p) +
√

1− ρ2H(i,2)(p), i ∈ {1, . . . ,K}, (3.33)

H(i,1)(p) = pi
(µi − µ>p)

σ
, H(i,2)(p) = pi

σκ
(
θi − θ>p

)
− ηρ

(
µi − µ>p

)
ση
√

1− ρ2
, (3.34)

γ(p) =
κ

η2(1 + ε)

(
θ>p− 1

2
η2 + ρση

)
. (3.35)

Proof. The proof of Theorem 3.26 follows the same lines of that of Theorem 2.4 and it
is provided here for completeness. Here, as in the case of full information we maximize
pointwisely. We first write

Et,z,s,p[logZT ] = log(z) + r(T − t)− Et,s,p
[∫ T

t

h2
uη

2(1 + ε)

2
du

]
+ Et,s,p

[∫ T

t
hu

(
κ(θ>pu − Su)− η2

2
+ ρση

)
du

]
, (3.36)

where, Et,s,p denotes the conditional expectation given St = s and pt = p. The first and
second order conditions imply that the optimal strategy is given by

h∗(t, s,p) =
1

1 + ε

(
κ
(
θ>p− s

)
η2

+
ρσ

η
− 1

2

)
. (3.37)

This leads to the following stochastic representation for the optimal value,

log(z) + r(T − t) + Et,s,p
[∫ T

t

(κ(θ>pu − Su)− η2

2 + ρση)2

2η2(1 + ε)
du

]
. (3.38)

We define the function u : [0, T ]× R×∆K → R+ by

u(t, s,p) = Et,s,p
[∫ T

t

(κ(θ>pu − Su)− η2

2 + ρση)2

2η2(1 + ε)
du

]
. (3.39)

By applying the Feynman–Kac formula and plugging the ansatz u(t, s,p) = d(t)s2 +c(t,p)s+
f(t,p) in the resulting equation leads to the system of linear partial differential equations
in (3.30)-(3.31) and the following linear ordinary differential equation

dt(t)− 2κd(t) +
κ2

2η2(1 + ε)
= 0, d(T ) = 0. (3.40)

Note that the system (3.30) and (3.31) admits a unique solution; see Chapter 9 of [86].

Comments and discussion. By Theorem 2.4 and Theorem 3.26, optimal strategies
depend on both the correlation between two assets and the mean-reverting spread. Moreover,
they do not depend on the risk-free rate r because a priori we restrict ourselves to the
dollar-neutral pairs trading strategies. Comparing optimal strategies under full and partial
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Chapter 3. Optimization Problem under Partial Information

information, we can say that the so-called certainty equivalence principle holds1, i.e., the
optimal portfolio strategy in the latter case can be obtained by replacing the unobservable
state variable with its filtered estimate.

The effect of risk-penalization on optimal strategies is to increase the risk-aversion
uniformly in a constant proportion that is not dependent on time. It effectively decreases the
proportion of wealth invested in pairs and increases the proportion of wealth invested in the
risk-free asset. Considering the optimal value functions, in both cases, they are quadratic
functions of the current value of the spread. However, in both cases, coefficients (factor
loadings) on the quadratic term, s2, depend only on time. This result is worth to mention
since it means that the trader does not really consider the effect of the partial information
on the quadratic level of the current spread. Finally, note that similar results hold true for
beta-neutral strategies.

1This unorthodox definition of certainty equivalence principle is due to [115] and used in literature related
to partial information models; see, e.g., [14].
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Chapter 4

Toy Example: Two-State Markov
Chain

In this chapter, we give a toy example of our proposed model, where the unobservable
Markov chain has only two states. Here our main aim is to demonstrate certain qualitative
features of the model that are difficult to verify analytically. During our analysis, we set
z = 1, θ1 = 0.1, θ2 = 0.6, µ1 = 0.2 and µ2 = 1. In the first step, we consider the full
information case, where the trader knows the state of the Markov chain. Then, we investigate
the case with partial information.

4.1 The full information case

In this part, we employ Theorem 2.4 where we solve the corresponding system of ODEs
numerically. In the following, since we set z = 1 we suppress the dependence of the value
function on z and write V (t, s, i) for i ∈ {1, 2}.

In Figure 4.1, we illustrate optimal values with respect to time to maturity for a given
initial state and for different values of initial spread (s = 0.1, s = 0.3 and s = 0.7). It
suggests that for all initial states and for all values of the initial spread, the optimal value
increases in time to maturity since trading possibilities increase as there would be more
time to trade. Moreover, as it is expected from a pairs trading strategy, the wider the gap
between the initial spread and the long-run mean of the initial state’s spread, the higher
the optimal value provided that there is enough time to have the spread close with high
probability. For example, in Figure 4.1 (left panel), we observe V (t, 0.1, 2) > V (t, 0.1, 1) for
all t . This corresponds to the case where the trader could exploit the wide enough gap
between initial spread, s = 0.1, and the long-run mean of the second state, θ2 = 0.6. A
similar behaviour is observed in Figure 4.1 (right panel), where in this case the gap between
the initial spread, s = 0.7 and the long-run mean of the first state, θ1 = 0.1, is large enough
for V (t, 0.7, 1) > V (t, 0.7, 2) for all t.

However in Figure 4.1 (middle panel), there is no clear dominance between optimal
values corresponding to different initial states. This can be explained by the following
observation. The initial spread, which is 0.3, is approximately at the same distance to both
states’ long-run means hence the intersection point of the two functions V (·, 0.3, 1) and
V (·, 0.3, 2) depends more on the transition intensities of the Markov chain q12 and q21. In
particular, for this example, fixing all other parameters, the intersection point moves to the
right as q12 gets larger. Overall we can conclude that the main determinants of the observed
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Chapter 4. Toy Example: Two-State Markov Chain

dominance are the gap between initial spread and the long-run mean of states, transition
probabilities as well as remaining time to maturity.

0 1 2 3
0

0.5

1

1.5

2

2.5

Time to maturity (T−t)

O
p

ti
m

a
l 
v
a

lu
e

0 1 2 3
0

0.5

1

1.5

Time to maturity (T−t)

O
p

ti
m

a
l 
v
a

lu
e

 

 

0 1 2 3
0

0.5

1

1.5

2

2.5

Time to maturity (T−t)

O
p

ti
m

a
l 
v
a

lu
e

Figure 4.1: Optimal value as a function of time to maturity for different values of initial
spread, s, when the initial state is e1 (dashed line) or e2 (solid line). Left panel s = 0.1.
Middle panel s = 0.3. Right panel s = 0.7. Other parameters: z = 1, r = 0.01, θ1 = 0.1,
θ2 = 0.6, κ = 1, ρ = 0.9, σ = 0.2, η = 0.2, ε = 0.3, q12 = 0.7 and q21 = 0.2.

Next in Figure 4.2, we compare the value of the current optimal portfolio problem
with the optimal value computed using the averaged data. Let (π, 1 − π) denotes the
stationary distribution of the Markov chain Y . Suppose we have two traders, one of which
ignores the Markov modulated nature of the underlying spread and considers the averaged
data θ = πθ1 + (1 − π)θ2 as the long-run mean spread. On the other hand, the second
trader assumes our proposed Markov modulated model, that is, she acts in line with what
Theorem 2.4 suggests. We want to compare the value function V (t, s) obtained in the model
assuming averaged data with the value function in the Markov-modulated case. In this way,
we intend to see whether the knowledge of averaged data is sufficient to obtain the optimal
value for the current pairs trading problem. To this, we set q12 = 1 and q21 = 2, and compute
π = q21/(q12 + q21) = 0.67. Then, we get θ = 0.27. In Figure 4.2 we plot V (t, s) versus
Eπ[V (t, s, Yt)] = πV (t, s, 1) + (1 − π)V (t, s, 2). We observe that Eπ[V (t, s, Yt)] > V (t, s).
This implies that the averaged data does not contain sufficient information to obtain the
optimal value for the pairs trading problem and hence on the average, the second trader
performs better than the first one. This result is in contrast with the one for the classical
portfolio optimization problem with Markov modulation in the case of logarithmic utility
preferences; see Section B of [14]. We attribute this to the mean-reverting nature of the
underlying state variable.

Figure 4.3 depicts the behavior of the value function with respect to the mean-reversion
speed κ, for correlation values ρ = 0.1 and ρ = 0.9. In the case without Markov switching
one would expect higher values of κ to yield higher optimal values since that would imply
more visits to the long-run mean generating profit opportunities from pairs trading more
frequently. Here, we observe that higher values of κ not necessarily lead to larger portfolio
values since there is the risk of a regime switch which would result in a sudden change in
the long-run mean value.
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Figure 4.2: Left panel: Optimal value as a function of initial spread for time to maturity
T − t = 0.1 years. Right panel: Optimal value as a function of time to maturity for initial
spread s = 0.3. The solid line (resp. dashed line) indicates the optimal value corresponding
to Markov switching case (resp. averaged data case ). Other parameters: z = 1, r = 0.01,
θ1 = 0.1, θ2 = 0.6, κ = 1, ρ = 0.9, σ = 0.2, η = 0.2, ε = 0.5, q12 = 1 and q21 = 2.
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Figure 4.3: Impact of mean reversion speed κ on optimal value. Dashed line (resp. solid
line) corresponds to the optimal value when the initial state is e1 (resp. e2). Grey line:
ρ = 0.1, black line: ρ = 0.9. Other parameters: T − t = 3 years, z = 1, r = 0.01, θ1 = 0.1,
θ2 = 0.6, s = 0.3, η = 0.9, σ = 0.2, ε = 0.3, q12 = 0.7 and q21 = 0.2.
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4.2 The partial information case

In the partially observable setting, having only two states enables us to reduce the number
of state variables for our filtered control problem since p := p1 = 1− p2. Then we only need
the dynamics of p, given, after arrangement, by

dpt = (q12 + q21)

(
q21

q12 + q21
− pt

)
dt+

√
ν2

1 + ν2
2pt(1− pt) dI

(3)
t , (4.1)

where

ν1 =
(µ1 − µ2)

σ
, (4.2)

ν2 =
σκ(θ1 − θ2)− ηρ(µ1 − µ2)

ση
√

1− ρ2
, (4.3)

and

I(3) =
ν1√
ν2

1 + ν2
2

I(1) +
ν2√
ν2

1 + ν2
2

I(2) (4.4)

is an F-Brownian motion. We can write the semimartingale decomposition of wealth and
spread processes with respect to filtration F as

dZt =Zt

(
ht

(
κ(θ2 + (θ1 − θ2)pt − St)−

η2

2
+ ρση

)
+ r − εη2h2

t

2

)
dt

+ ηhtZt dĨt, (4.5)

and

dSt = κ (θ2 + (θ1 − θ2)pt − St) dt+ η dĨt, (4.6)

where Ĩ is a F-Brownian motion with

〈Ĩ , I(3)〉t =
ν1ρ+ ν2

√
1− ρ2√

ν2
1 + ν2

1

t. (4.7)

Note that one can interpret the reduced control problem with state variables (Z, S, p)
given by (4.5), (4.6) and (4.1) as a pairs trading model with smooth transitions. More
precisely, one can see p as a state variable process governing smooth transitions between
two regimes with different long-term means for the spread, that is, θ1 and θ2. The dynamics
of p is also very similar to a mean-reverting Jacobi-type (or Wright–Fisher) diffusion used in
population genetics to model allele frequencies1; see, e.g., [68], [148] or Chapter 4 of Part I.

In this case the value function can be written as V (t, z, s, p1, p2) = Ṽ (t, z, s, p), and, as
in Theorem 3.26, the optimal value is given by Ṽ (t, z, s, p) = log(z) + r(T − t) + d(t)s2 +
c̃(t, p)s+ f̃(t, p), where the function d(t) is given by

d(t) =
κ

4η2(1 + ε)

(
1− e−2κ(T−t)

)
, (4.8)

and the functions c̃(t, p) and f̃(t, p) solve the following system of partial differential equations:

1For the Jacobi or Wright–Fisher diffusion, the diffusion coefficient is given by
√
p(1− p).
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c̃t(t, p)−
κ2(θ2 + (θ1 − θ2)p)− κ(−η

2

2 + ρση)

η2(1 + ε)
− κc̃(t, p) + 2κ(θ2 + (θ1 − θ2)p)d(t)

+ (q12 + q21)

(
q21

q12 + q21
− p
)
c̃p(t, p) +

1

2
(ν2

1 + ν2
2)p2(1− p)2c̃pp(t, p) = 0, (4.9)

f̃t(t, p) +
κ2(θ2 + (θ1 − θ2)p)2 + (ρση − η2

2 )2 + 2κ(θ2 + (θ1 − θ2)p)(ρση − η2

2 )

2η2(1 + ε)

+ η2d(t) + κ(θ2 + (θ1 − θ2)p)c̃(t, p) + (q12 + q21)

(
q21

q12 + q21
− p
)
f̃p(t, p)

+
1

2
(ν2

1 + ν2
2)p2(1− p)2f̃pp(t, p) + κ(θ1 − θ2)p(1− p)c̃p(t, p) = 0, (4.10)

with terminal conditions c̃(T, p) = 0 and f̃(T, p) = 0 for every p ∈ [0, 1],
We use an explicit finite-difference method to solve the system of PDEs given in (4.10)

numerically. In order to guarantee the positivity of the scheme we use forward-backward
approximation for the first order derivatives. The value function in the partial information
case has a similar behavior with respect to the parameters as the one in the full information
case. However, we stress that in the partial information setting, also the drift parameters µ1

and µ2 play a role. In particular, the relative values of µ1, µ2 and the noise parameters σ
and η control for the precision of the filtered probability estimates.

In Figure 4.4 we illustrate that the trader benefits from using filtered estimates instead
of average data. As it can be seen clearly, gains from filtering increase in time to maturity.
On the other hand, gains get smaller as p moves towards 0.5, which represent the most
uncertain situation.

Figure 4.4: Gains from filtering as a function of p and time to maturity. Other parameters:
z = 1, r = 0.01, θ1 = 0.1, θ2 = 0.6, µ1 = 0.2, µ2 = 1, κ = 1, ρ = 0.9, σ = 0.2, η = 0.2,
ε = 0.5, s = 0.3, q12 = 1 and q21 = 2.

We can summarize the findings of this section as follows: (a) the wider the gap between
the initial spread and the long-run mean of the initial state’s spread, the higher the optimal
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value provided that there is enough time to have the spread close with high probability, (b)
the average data does not contain sufficient information to obtain the optimal value for the
current pairs trading problem, (c) higher values of the mean reversion speed κ does not
necessarily imply higher optimal values, and (d) in the partial information setting, there is
a gain from filtering due to the convexity originating from using filtered probabilities.
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Appendix

In this appendix, we give the proofs of Theorem 2.4 and Theorem 3.26 via dynamic
programming approach, alternative to the pointwise optimization given before. In particular,
we give the existence and verification results for the corresponding problems under full and
partial information.

5.1 Existence and verification for the problem under full in-
formation

Define b(s, i) = κ(θi − s)− η2

2 + ρση and denote by Lh the generator of the process
(t, Z, S, Y ), that is

LhF (t, z, s, i) = Ft(t, z, s, i) +

K∑
j=1

F (t, z, s, j)qij

+
1

2

(
h2η2z2Fzz(t, z, s, i) +η2Fss(t, z, s, i) + 2hη2zFzs(t, z, s, i)

)
+

(
b(s, i)h− εη2h2

2
+ r

)
zFz(t, z, s, i) + κ(θi − s)Fs(t, z, s, i), (5.1)

for every function F (·, i) ∈ C1,2,2([0, T ]× R+ × R), for every i ∈ {1, . . . ,K}. Suppose that
the value function V (·, i) ∈ C1,2,2([0, T ]×R+ ×R) (i.e. bounded, differentiable with respect
to t and twice differentiable with respect to z and s) for every i ∈ {1, . . . ,K}, then it solves
the Hamilton–Jacobi–Bellman (HJB) equation given by

0 = sup
h∈A
LhV (t, z, s, i) (5.2)

for every i ∈ {1, . . . ,K}, subject to the terminal condition V (T, z, s, i) = log(z), for all
(z, s) ∈ R+ × R and i ∈ {1, . . . ,K}.

Proof. (Theorem 2.4). Existence: Consider the HJB equation (5.2). By the first order
condition, the candidate for an optimal strategy is given in the feedback form

h∗(t, z, s, i) = −η
2Vzs(t, z, s, i) + b(s, i)Vz(t, z, s, i)

η2(zVzz(t, z, s, i)− εVz(t, z, s, i))
. (5.3)
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It follows from the form of the utility function that for all i ∈ {1, . . . ,K} the value function
can be rewritten as V (t, z, s, i) = log(z) + u(t, s, i), for some function u(t, s, i) such that
u(T, s, i) = 0. Since V (t, z, s, i) is concave and increasing in z, the second order condition,
given by zVzz−εVz < 0, holds true for ε > 0 and therefore (5.3) is the well defined maximizer
and hence the optimal portfolio strategy.

Inserting the ansatz for the value function in equations (5.3) and (5.2) leads to

0 =ut(t, s, i)+
1

2
η2uss(t, s, i)+κ(θi − s)us(t, s, i) +

K∑
j=1

u(t, s, j)qij+
1

2

b2(s, i)

η2(1 + ε)
+r, (5.4)

and the optimal strategy becomes

h∗(t, z, s, i) =
b(s, i)

η2(1 + ε)
. (5.5)

Suppose now that the function u(t, s, i) is of the form u(t, s, i) = d(t)s2 + c(t, i)s+ f(t, i).
Computing the derivatives and plugging into (5.4) we get the following equation

0 =r + ct(t, i)s+ dt(t)s
2 + ft(t, i) + η2d(t) +

(
κ(θi − s)− η2

2 + ρση
)2

η2(1 + ε)

+ κ(θi − s)(c(t, i) + 2d(t)s) +
K∑
j=1

(c(t, j)s+ f(t, j))qij . (5.6)

Collecting together the terms with s2, s and the remaining ones we get that the function
d(t) solves

dt(t)− 2κd(t) +
κ2

2η2(1 + ε)
= 0, d(T ) = 0, (5.7)

and for every i ∈ {1, . . . ,K}, c(t, i) and f(t, i) solve the system of ODEs in (2.8) and (2.9),
respectively (see e.g., [155, Theorem 3.9]). Therefore V (·, i) ∈ C1,2,2([0, T ] × R+ × R) for
every i ∈ {1, . . . ,K}.
Verification: In order to conclude that V is the value function, we need to show a verification
result. Let v(t, z, s, i) be a solution of the HJB equation (5.2). Given an admissible control
h ∈ A, let Zh be the solution to equation (1.11). Applying Itô’s formula we get

v(T,ZhT , ST , YT ) = v(t, z, s, i) +

∫ T

t
Lhv(r, Zhr , Sr, Yr) dr

+

∫ T

t

(
vz(r, Z

h
r , Sr, Yr)Z

h
r hrη + vs(r, Z

h
r , Sr, Yr)η

)
dWr

+

∫ T

t

K∑
j=1

(
v(r, Zhr , Sr, j)− v(r, Zhr , Sr, Yr−)

)
(m− ν)(dr × {j}), (5.8)

Since v satisfies equation (5.2) we get

v(T,ZhT , ST , YT ) ≤ v(t, z, s, i)

+

∫ T

t

(
vz(r, Z

h
r , Sr, Yr)Z

h
r hrη + vs(r, Z

h
r , Sr, Yr)η

)
dWr

+

∫ T

t

K∑
j=1

(
v(r, Zhr , Sr, j)− v(r, Zhr , Sr, Yr−)

)
(m− ν)(dr × {j}). (5.9)

84



5.2. Existence and verification for the problem under partial information

The form of v, together with the fact that h is an admissible strategy provides that integrals
with respect to Brownian motion and the compensated jump measure are indeed true
martingale. Taking the expectation on both sides of the inequality (5.9) we get that

V (t, z, s, i) ≤ v(t, z, s, i). (5.10)

If h is a maximizer of equation (5.2) then we obtain the equality in the expression above.

5.2 Existence and verification for the problem under partial
information

Proof. (Theorem 3.26). Existence: Denote by b(s,p) = κ(θ>p− s)− η2

2 + ρση. For the
current setting we have the following HJB equation

0 =LhFV (t, z, s,p)

= sup
h∈AF

{
Vt(t, z, s,p) +

(
−εη

2h2

2
+ b(s,p)h+ r

)
zVz(t, z, s,p)

+ κ
(
θ>p− s

)
Vs(t, z, s,p) +

K∑
i,j=1

qjipjVpi(t, z, s,p)

+
1

2

(
h2η2z2Vzz(t, z, s,p) + η2Vss(t, z, s,p) + 2hη2zVzs(t, z, s,p)

)
+

K∑
i=1

Vspi(t, z, s,p)ηβ̃i(p) +
K∑
i=1

hηzβ̃i(p)Vzpi(t, z, s,p)

+
1

2

K∑
i,j=1

α̃ij(p)Vpipj (t, z, s,p)

}
, (5.11)

subject to the terminal condition V (T, z, s,p) = log(z), for all z > 0, s ∈ R and for every
p ∈ ∆K , where LhF the (F,P)-generator of the process (Z, S, p).

From the first order condition, the candidate for an optimal strategy is given in the
feedback form

h∗(t, z, s,p) = −
η2Vzs(t, z, s,p)+b(s,p)Vz(t, z, s,p) +

∑K
i=1ηβ̃

i(p)Vzpi(t, z, s,p)

η2(zVzz(t, z, s,p)− εVz(t, z, s,p))
.

(5.12)

It follows from the form of the utility function that the value function can be rewritten
as V (t, z, s,p) = log(z) + u(t, s,p), for some function u(t, s,p) such that u(T, s,p) = 0 for
all (s,p) ∈ (R ×∆K). Since V (t, z, s,p) is concave and increasing in z, the second order
condition, given by zVzz−εVz < 0, holds true for ε > 0 and therefore (5.12) is the maximizer
and the optimal portfolio strategy.

Here, we choose u of the form u(t, s,p) = d(t)s2 + c(t,p)s+ f(t,p). Inserting this ansatz
in equations (5.11) and (5.12) leads to the system of linear partial differential equations in
(3.30)-(3.31) and the following linear ordinary differential equation

dt(t)− 2κd(t) +
κ2

2η2(1 + ε)
= 0, d(T ) = 0. (5.13)
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Chapter 5. Appendix

Note that the system (3.30) and (3.31) admits a unique solution (see e.g., [86, Chp. 9]).
This implies that V ∈ C1,2,2,2([0, T ]× R+ × R×∆K).

Verification: To conclude that V is the value function, we show a verification result. Let
v(t, z, s,p) be a solution of (5.11) with the boundary condition v(T, z, s,p) = log(z). Let
h ∈ AF be an F-admissible control, let Zh the solution to equation (3.22). Applying Itô’s
formula we get

v(T,ZhT , ST , pT ) = v(t, z, s,p) +

∫ T

t
LhFv(u, Zhu , Su, pu) du

+

∫ T

t
ρη
(
vz(u, Z

h
u , Su, pu)Zhuhu + vs(u, Z

h
u , Su, pu)

)
dI(1)
u

+

∫ T

t

√
1− ρ2η

(
vz(u, Z

h
u , Su, pu)Zhuhu + vs(u, Z

h
u , Su, pu)

)
dI(1)
u

+

∫ T

t

K∑
i=1

H(i,1)(pu)vpi(u, Z
h
u , Su, pu) dI(1)

u +

∫ T

t

K∑
i=1

H(i,2)(pu)vpi(u, Z
h
u , Su, pu) dI(2)

u . (5.14)

By equation (5.11) we get

v(T,ZhT , ST , pT ) ≤ v(t, z, s,p)

+

∫ T

t
ρη
(
vz(u, Z

h
u , Su, pu)Zhuhu + vs(u, Z

h
u , Su, pu)

)
dI(1)
u

+

∫ T

t

√
1− ρ2η

(
vz(u, Z

h
u , Su, pu)Zhuhu + vs(u, Z

h
u , Su, pu)

)
dI(1)
u

+

∫ T

t

K∑
i=1

H(i,1)(pu)vpi(u, Z
h
u , Su, pu) dI(1)

u +

∫ T

t

K∑
i=1

H(i,2)(pu)vpi(u, Z
h
u , Su, pu) dI(2)

u .

(5.15)

Note that stochastic integrals with respect to I(1) and I(2) are true martingales. Indeed,
by the form of the solution of the HJB equation v(t, z, s,p) = log(z) + d(t)s2 + c(t,p)s+
f(t,p), the fact that h is an F-admissible strategy and boundedness of the functions
d(t), c(t,p), f(t,p) and their derivatives over the compact interval [0, T ]×∆K , we get that

E
[∫ T

t

(
h2
u + c2(u, pu) + d2(u)S2

u

)
du

]
<∞, (5.16)

E

[
K∑
i=1

(
c2
pi(u, pu)S2

u + f2
pi(u, pu)

)((
H(i,1)(pu)

)2
+
(
H(i,2)(pu)

)2
)
du

]
<∞. (5.17)

Then taking the expectation on both sides of inequality (5.15) implies that V (t, z, s,p) ≤
v(t, z, s,p). Moreover if h∗ is a maximizer of equation (5.11), then we obtain the equality
V (t, z, s,p) = v(t, z, s,p).
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Chapter 1

Introduction and Problem
Formulation

The influence of large investors, such as hedge funds, mutual funds, and insurance companies,
on prices of risky assets, can be studied from very different viewpoints ranging from direct
price impact of order execution (selling or buying) to feedback effects from trading to hedge
portfolios of derivatives written on the underlying. However, there is also an influence of
large investors on the overall market sentiment that arises from their perceived informational
superiority. That is, most of the time, the rest of the market takes large investors’ portfolio
decisions as signals revealing important insider information not available to small or price-
taking investors. Moreover, due to the herding behavior, this effect can be intensified when
markets are caught up in certain extreme situations like speculative bubbles or market
downturns. Of course, by knowing that they have such an influence on the market, large
investors can exploit this fact by changing their portfolio and consumption choices during
those times and try to gain an advantage1. However, it is difficult, even for a large investor,
to observe the exact state of the overall market and its effect on the price of the risky asset
and hence to act accordingly. Not knowing the exact state of the environment naturally
necessitates a partial information setting, in which the large investor only observes the price
process of the risky asset.

Therefore in this study, we solve a finite-time utility maximization problem by considering
a partially observable regime-switching environment, in which there is a large investor (or
group of institutional investors) that has control over the intensity matrix of the continuous-
time finite state Markov chain governing the state of the environment. We allow large
investor’s portfolio choices, as a fraction of the wealth invested in the risky asset, to have an
indirect but persistent effect on the price process, through dependence on the controlled
intensity of the Markov chain with next-neighborhood-type dynamics. We call this effect
market impact. By taking the generator matrix of the unobservable Markov chain as a
function of portfolio holdings of the large investor, and focusing on the price process with
pure-jump dynamics affected by the unobservable Markov chain, we solve the problem of
utility maximization from terminal wealth for logarithmic and power utility preferences.
The idea to model market impact through an intensity-based framework is due to [28] where

1For example in the US large institutional investor needs to fill the SEC Form 13F, a form with the
Securities and Exchange Commission (SEC) also known as the Information Required of Institutional
Investment Managers Form. It is a required form from institutional investment managers with over 100
million in qualifying assets. It contains information about the investment manager and a list of their recent
investment holdings.
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Chapter 1. Introduction and Problem Formulation

the authors deal with a control problem for optimal investment and consumption for a large
investor in the full information case with asset prices following jump-diffusion dynamics and
a market with two possible states.

We start with a rigorous construction of the underlying setting by using a change of
measure argument. This provides existence of the model under partial information. As a
first step towards the characterization of the optimal strategy in the partial information
setting, we solve the corresponding filtering problem via reference probability approach.
Then, we reduce the optimal control problem under partial information to a full information
one, as e.g., in [16, 31] where unobservable variables are replaced by their filtered estimates.
Since the state of the resulting optimal control problem is piecewise deterministic, we resort
to the theory of optimal control for piecewise deterministic Markov processes (PDMP) given
in [45] (see also [46] for more details). The idea is that a control problem for PDMPs can be
recast as a Markov decision process, in which the value function is characterized by a fixed
point argument. Here we should note that, although identifying the optimal control problem
for PDMP with a Markov decision process is well studied (see [46, 51, 5, 83, 17, 39] and
references therein), to the best of our knowledge, a concrete application of optimal control
of PDMP that covers the control of the intensity of an unobservable Markov chain is novel.
To this extent, we use suitable modifications of certain results from [36], where the main
motivation is to study optimal liquidation in a partial information setting with asset prices
having pure-jump dynamics directly affected by the control (see also Section 3.2 for a deeper
discussion). This allows us to write the value function as the unique fixed point of the reward
operator and represent it as the unique viscosity solution of the Hamilton–Jacobi–Bellman
(HJB) equation.

In our setting, the state of the environment with regime-switches can be interpreted in
various ways. One natural interpretation, for example in a two-state case, is that states
can be characterized as “bear” or “bull” market sentiments so that the large investor try
to change the direction (uptrend or downtrend) of the market by her portfolio choices.
Similarly, one may also explain those states as different levels of market “liquidity” in a
market microstructure framework, or different stages of a business cycle in a more general
macrostructure framework. In the former one, a large investor can be seen as a liquidity
provider or a market maker, whereas in the latter, she can be considered as a central planner
such as a central bank or government2.

We should also remark that manipulation-type strategies pursued by large investors, in
which there is an uncertainty coming from a market reaction against those manipulation
attempts, can be modeled in this partially observed control framework. In a similar vein
to the credit risk modeling, our framework can be considered as a reduced-form modeling
of market manipulation since the impact of large investor on prices is indirect via her
influence on market sentiments as opposed to models with direct impact on structural
variables such as drift or volatility of the asset price process (see, e.g., [104, 105] for market
manipulation models with large investors having a direct impact on asset price dynamics
in discrete and continuous time). In particular, our setting allows for a large investor to
change the probability of being in a “bull” or “bear” market by her actions. For example,
by short-selling, a large investor may prevent the market going to a “bull” state and hence
gain advantage of a “bear” market sentiment. Similarly, one can use the proposed model to
analyze herding and momentum like behavioural effects on stock prices arising from large

2Certain central banks (Japan and Swiss) around the word have recently invested heavily in stock markets.
Although their objective is different than utility maximization from terminal wealth, the same setting
(indirectly influencing the economy to give a boost) can be analyzed in the same way.
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investors’ portfolio choices, since for example, in our proposed setting with pure-jump type
asset price dynamics, one can mimic a market situation, in which a large investor try to
influence the market sentiment by changing her portfolio and hence switch it from “bear”
to “bull”, where upward jumps are observed more likely, or vice-versa.

Considering the high-frequency nature of the markets that large investors are involved
with (see [111, 63] for asset prices with Markov modulated pure-jump dynamics), we choose
to work with a pure-jump process modulated by a Markov chain. Here we emphasize
that our analysis covers the case of finite-activity price dynamics. As we strongly use the
properties of PDMPs to solve the optimal control problem, generalizing the current setting
into one with infinite-activity jump processes or continuous dynamics is not straightforward
and would require a different theory.

There is ample amount of literature related to the optimal decision of a large investor,
analyzed in various settings. The most related work to ours is [28] that studies the optimal
consumption-portfolio choice problem, in which the asset price dynamics are given by a
jump-diffusion affected by the regime-switching environment controlled by a large investor in
a full information setting. They show that optimal strategies have significant deviations from
the strategies obtained in the classical Merton problem. More importantly, they show that
there can be situations (market manipulations) such that the large investor can consume
even though she has no gain in utility from consumption. Generally, in the literature,
the effect of large investors on asset prices are direct in the sense that decision variables
(such as portfolio holdings, the speed of trading, etc.) have shown up in the drift or the
volatility of the risky asset price process). For instance, the models of [42], [41], [112] and
[59] examine optimal consumption and investment problem of a large investor with portfolio
choices affecting the instantaneous expected returns in various settings. In the context of
optimal order execution problems where the stock price process is driven by a diffusion,
investors impact is modeled by volume or speed of trading affecting directly the drift (see,
e.g., Almgren–Chriss model [4] and its variants).

There is also a large strand of literature concerning the portfolio optimization problems
with Markov modulated price dynamics under partial information. [116] and [117] coonsder
the case in which the drift uncertainty is modeled by a linear Gaussian process. [108] has
studied the similar problem with a constant but unknown drift. [147] and [97] have treated
the portfolio optimization problem in a multi-asset setting under partial information, and
found the optimal portfolio strategy with martingale approach. On the other hand, [15] have
addressed the portfolio optimization problem with unobservable Markov chain modulated
drift process by using a dynamic programming approach. [22] considers a general setting
and provides explicit representations of the optimal wealth and investment processes for the
utility maximization problem under partial information by using the martingale approach.
[84] solves the portfolio optimization problem under partial information by including expert
opinions. Regarding portfolio optimization problems under partial information, one can
finally refer to [140] giving a very broad overview of previous studies on the subject. For
the full information case, there are also studies analyzing portfolio selection problems in a
Markov regime-switching framework (see for example [162], [14], and [151]).

To summarize our contributions, firstly we solve the utility maximization problem for
logarithmic and power utility preferences with indirect impact arising from controlling
the intensity of the Markov chain both under full and partial information settings. For
comparison purposes, we also give solutions to those problems without impact, that is, when
there is no control of the intensity. Even for the simple logarithmic utility case, the presence
of indirect impact makes point-wise maximization impossible and hence we need to rely on
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dynamic programming techniques. Secondly, we transform the partial information problem
to a full information problem by using stochastic filtering and apply control theory for
piecewise deterministic Markov processes (PDMP) to our problem to derive the optimality
equation. We rely on the results given in [36] and characterize the value function as the
unique viscosity solution of the associated dynamic programming equation. Thirdly, by
focusing on a two-state Markov chain example, we show that there is always a gain for a
large investor from controlling the intensity of the Markov chain both in full and partial
settings albeit it is smaller in the latter one. In particular, the large investor can take
advantage of the “bear” state of the market by short-selling. Also optimal strategies are
more aggressive in the presence of market impact such that the large investor buys more in
the “bull” state and short sells more in the “bear” state compared to the corresponding
no-impact case. Also it is evident from numerical examples that, as time approaches to
the maturity, optimal portfolio strategies with and without impact from intensity control
converges to each other under both full and partial information settings.

1.1 Underlying framework

We consider a finite time interval [0, T ] and continuous trading in the market. We are given
the probability space (Ω,F ,F,P), where F = {Ft, t ∈ [0, T ]} satisfies the usual conditions;
all processes we consider here are assumed to be F-adapted.

We have an investor with a given initial wealth w ∈ R>0, and whose objective is to
form a self-financing portfolio over the finite period [0, T ] in order to maximize the expected
utility from terminal wealth by investing in a risky asset and in a risk-free bond. Let
h = {ht, t ∈ [0, T ]} be the F-predictable process denoting the fraction of wealth invested in
a risky asset. Then, 1 − ht gives the fraction of the wealth invested in the bond at time
t ∈ [0, T ]. We allow for the short-selling of the risky asset and the risk-free bond. That is,
ht ∈ R for every t ∈ [0, T ]. We work under the following assumption.

Assumption 1.1. ht ∈ [−L,L], for some L > 0, for every t ∈ [0, T ].

This assumption implies that controls take values in a compact space. In section 4 we
will discuss an example where Assumption 1.1 is naturally satisfied. We denote by Y (h) a
continuous-time finite-state Markov chain representing the state of the market. Y (h) takes
values in the canonical state space E = {e1, e2, ..., eK} where ek is the kth basis column
vector of RK . The initial distribution of the Markov chain is given by π0 = (π1

0, · · · , πK0 ).
The notation Y (h) stands for the fact that we assume that the action of the investor has an
impact on the state of the market. Formally, we have that the infinitesimal generator of Y (h)

is of the form Q(ht) = (qi,j(ht))i,j∈{1,...,K}
3. To keep the notation simple, in the following we

restrict to the case with next-neighbour dynamics that is qi,j(·) = 0 if |i− j| > 1. However,
results can be extended to the general case, see, e.g. Remark 2.16. This implies the following
structure for the generator

Q(ht) =


−q1,2(ht) q1,2(ht) 0 . . . 0 0
q2,1(ht) −q2,1(ht)− q2,3(ht) q2,3(ht) . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . qK,K−1(ht) −qK,K−1(ht)

 (1.2)

3Note that the generator is well defined since h is assumed to be predictable.
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1.1. Underlying framework

where qi,j : [−L,L] → R≥0 is a nonnegative continuous function for i 6= j and i, j ∈
{1, . . . ,K}.

We consider a risk-free bond and a risky asset as available instruments in the market,
with price processes B = {Bt, t ≥ 0} and S = {St, t ≥ 0}, respectively. The bond price is
assumed to follow

dBt = ρBtdt, B0 ∈ R>0,

where ρ > 0 is the instantaneous risk-free rate. The risky asset price process has pure-jump
dynamics that is affected from the state of the market. This gives a way to model risky
asset price process with an indirect impact arising from the dependency of the switching
intensity of the Markov chain on the trading strategy. Formally, it evolves according to the
following equation

dS
(h)
t = S

(h)
t−

∫
Z
G(t, Y

(h)
t− , ζ)N (dt, dζ), S0 ∈ R>0, (1.3)

where N (dt, dζ) is a Poisson random measure on R≥0 ×Z, with Z ⊆ R, having an intensity
ς(dζ)dt independent of the Markov chain Y (h) such that ς(Z) <∞ and G : [0, T ]×E×Z → R
is a measurable function, continuous in time and satisfying

E
[∫ T

0

∫
Z
G2(t, Y

(h)
t− , ζ)ς(dζ)dt

]
<∞.

In order to ensure the non-negativity of the stock price process S(h) we further assume that
1 +G(t, ei, ζ) > 0 for every (t, ζ) ∈ [0, T ]×Z and i ∈ {1, . . . ,K} and moreover we assume
that equation (1.3) has a unique solution. A set of sufficient conditions for uniqueness of
the solution is given, for example, in [136, Theorem 1.19].

Let R(h) := {R(h)
t , t ∈ [0, T ]} be the return process,

dR
(h)
t =

∫
Z
G(t, Y

(h)
t− , ζ)N (dt, dζ),

and introduce the random measure µ(dt, dz) associated to its jumps

µ(dt, dz) :=
∑

s:∆R
(h)
s 6=0

1{s,∆R(h)
s }

(dt, dz). (1.4)

Then the following equality holds

R
(h)
t =

∫ t

0

∫
Z
G(t, Y

(h)
t− , ζ) N (dt, dζ) =

∫ t

0

∫
R
z µ(dt, dz),

for every t ∈ [0, T ]. For every A ∈ B(R), we denote

ηP(t, Y
(h)
t− , A) = ς(DA

t ),

where DA
t := {ζ ∈ Z : G(t, Y

(h)
t− , ζ) ∈ A \ {0}} . Then ηP(t, Y

(h)
t− , dz)dt provides the

(F,P)-dual predictable projection of the measure µ see, e.g. [27, Chapter 8]. Assumptions
on G and ς imply that ηP(t, ei, z) is continuous in time,

E
[∫ T

0

∫
R
z2ηP(t, Y

(h)
t− , dz)dt

]
<∞, (1.5)
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the counting process associated to the jumps of R is P-nonexplosive and R has a finite

mean and variance. Let W (h) = {W (h)
t , t ∈ [0, T ]} be the wealth process corresponding to a

self-financing strategy h = {ht, t ∈ [0, T ]}. The dynamics of W (h) is given by

dW
(h)
t = W

(h)
t−

(
(1− ht)ρdt+ ht

∫
R
zµ(dt, dz)

)
, W0 ∈ R>0. (1.6)

In order to ensure that the wealth process is positive we make the assumption

Assumption 1.7. 1+htz > 0 P-a.s. for every (t, z) ∈ [0, T ]× supp(ηP), where supp(ηP) ⊂
R is the support of the measure ηP(t, e, dz).

This implies we can write the solution for (1.6) as,

W
(h)
t = W0 exp

{∫ t

0

(
(1− hs)ρ+

∫
R

log(1 + hsz)η
P(s, Y

(h)
s− dz)

)
ds

+

∫ t

0

∫
R

log(1 + hsz)ν(ds, dz)

}
,

for every t ∈ [0, T ], where

ν(dt, dz) := µ(dt, dz)− ηP(t, Y
(h)
t− , dz)dt (1.8)

indicates the compensated jump measure associated with µ.
In the following, we always work under the standing assumptions made in Section 1.1.

1.2 Existence of the model

There is a non-trivial dependence between the stock price process S(h) given in (1.3) and
Markov chain Y (h) with the generator (1.2). Hence it is not a priori clear that the pair
(Y (h), S(h)) exists. A rigorous construction of such a setting under full information is provided
in [28, Section 2] by using a change of measure argument. In the case of partial information
there is an additional type of circularity through the observation filtration. Precisely, the
stock price process is affected by the decision of the trader which is adapted to the filtration
generated by the price process itself. In the following part to tackle with this problem we
also use a change of measure argument and provide the existence of the model in the case of
partial information.

We start with a probability space (Ω,F ,Q) endowed with a filtration F = {Ft, t ∈ [0, T ]},
that supports a Markov chain Y (h) with generator Q(ht) of the form (1.2) and a random
measure µ as in (1.4) associated with the jumps of the return process. We assume that µ
has (F,Q)-dual predictable projection ηQ(t, dz)dt, independent of the Markov chain, that is
for every F-predictable process H(·, z) = {H(t, z), t ∈ [0, T ]}, indexed by z, we have that∫ t

0

∫
R
H(s, z)(µ(ds, dz)− ηQ(s, dz)ds), t ∈ [0, T ]

is an (F,Q)-martingale. Using the typical terminology from filtering we refer to Q as the
reference probability. Then we define FS := {FSt , t ∈ [0, T ]} as the right-continuous filtration
generated by the stock price process, augmented with Q-null sets. Note that, since the
compensator ηQ does not depend on the trading strategy h, so does FS . Thus the filtration
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1.2. Existence of the model

is exogeneously defined. We assume that for every (t, e) ∈ [0, T ]× E , the measure ηQ(t, dz)
is equivalent to ηP(t, e, dz), with Radon-Nikodym derivative

Ψ(t, e, z) + 1 :=
dηP(t, e, z)

dηQ(t, z)
, (1.9)

that satisfies

EQ

[
exp

∫ T

0

∫
R

Ψ2(t, Y
(h)
t− , z)ηQ(t, dz)dt

]
<∞, (1.10)

where EQ[·] indicates expectation under the measure Q. For every strategy h, we now define
the process Z(h) by

Z
(h)
t = 1 +

∫ t

0

∫
R
Z

(h)
s− Ψ(s, Y

(h)
s− , z)(µ(ds, dz)− ηQ(s, dz)ds), t ∈ [0, T ]. (1.11)

Condition (1.10) guarantees that Z(h) is an (F,Q)-martingale with EQ[Z
(h)
T ] = 1, see, e.g.

[142, Theorem 9]. Then we set

dP

dQ

∣∣∣∣
Ft

= Z
(h)
t , t ∈ [0, T ].

Similarly to [36, Lemma 3.1], it can be proved that P and Q are equivalent and that for
every admissible strategy h, a pair (Y (h), S(h)) exists and it is unique in law. Note that the
measure P depends on h, and that for any choice of h the resulting measures are equivalent.
Therefore we suppress the dependence.
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Chapter 2

Optimization Problem under Full
Information

In this part we assume that the investor has the full knowledge of the market. Formally this
means that the available information is given by the filtration F. This leads to the following
definition of admissible strategies.

Definition 2.1. A portfolio strategy h is F-admissible if it is F-predictable and Assumptions
1.1 and 1.7 hold. We denote the set of F-admissible strategies by H.

Suppose we are given a strictly increasing, strictly concave and continuously differentiable
utility function U : R>0 → R satisfying Inada conditions, i.e. limw→0

∂U
∂w (w) = ∞ and

limw→∞
∂U
∂w (w) = 0. The goal of the investor is to solve the following optimization problem

max Et,w,i
[
U(W

(h)
T )

]
, (2.2)

over all admissible strategies, subject to the initial value of the wealth W
(h)
t = w and initial

state Y
(h)
t = ei for some i ∈ {1, . . . ,K}.

The value function for the current optimization problem is

V (t, w, ei) = sup
h∈H

Et,w,i[U(W
(h)
T )].

If V is continuous and differentiable with respect to the first two arguments, i.e. V ∈
C1,1
b ([0, T ]× R>0 × E), then it can be characterized as the unique classical solution of the

HJB equation given by

0 = sup
h∈[−L,L]

{
L(h)V (t, w, ei)

}
,

with L(h) being the (F,P)-Markov generator of the pair (W (h), Y (h)). Explicitly, we have

0 = sup
h∈[−L,L]

{
∂V

∂t
(t, w, ei) +

∂V

∂w
(t, w, ei)w(1− h)ρ (2.3)

+
K∑
j=1

(V (t, w, ej)− V (t, w, ei))q
i,j(h)

+

∫
R

[V (t, w(1 + hz), ei)− V (t, w, ei)] η
P(t, ei, dz)

}
,
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Chapter 2. Optimization Problem under Full Information

with the final condition V (T,w, ei) = U(w), for every w ∈ R>0 and i ∈ {1, . . . ,K}. A
similar problem including a diffusion part under full information has been studied in [28] in
detail. In the sequel, for comparison purposes we provide results for the logarithmic and
power utility. For the verification result we refer to [28, Theorem 3.1].

2.1 Logarithmic utility

We consider the portfolio optimization problem for a large investor with logarithmic utility
preference. That is, we have U(w) = log(w). For comparison purposes, we first study the
degenerate case, where the generator of the Markov chain does not depend on the actions of
the investor. This is the case where the investor has no market impact. Then we move to
our primary interest, the case with market impact. Normally the logarithmic utility is the
simplest case and can be solved by pointwise maximization. However, with the inclusion
of the market impact this is not possible anymore since the current actions of the investor
have an influence on the future states of the market and therefore may change the jump
intensity of the asset price process.

Logarithmic utility - No market impact

To begin with we provide a characterization of the optimal strategy and a stochastic
representation for the value function in the setting where the intensity of the Markov chain
does not depend on the portfolio strategy, that is, qi,j(h) ≡ qi,j , for i, j ∈ {1, . . . ,K} and
every control h. In this case the optimal control problem can be solved directly. First note
that by applying the Itô’s formula we get

V (t, w, ei) = log(w) + sup
h∈H

β̃(t, ei;h),

where

β̃(t, ei;h) = Et,i
[∫ T

t

(
(1− hs)ρ+

∫
R

log(1 + hsz)η
P(s, Ys− , dz)

)
ds

+

∫ T

t

∫
R

log(1 + hsz)ν(ds, dz)

]
.

Proposition 2.4. Suppose U(w) = log(w) for w > 0.

i) Let h∗(t, ei) satisfy either ∫
R

z

1 + h∗(t, ei)z
ηP(t, ei, dz) = ρ (2.5)

or h∗(t, ei) ∈ {−L,L}, for every i ∈ {1, . . . ,K}. Then the optimal strategy h∗t =
h∗(t, ei) for every t ∈ [0, T ] and i ∈ {1, . . . ,K}.

ii) The value function is of the form

V (t, w, ei) = log(w) + Et,i
[∫ T

t

(
(1− h∗s)ρ+

∫
R

log(1 + h∗sz)η
P(s, Ys− , dz)

)
ds

]
.

Proof. The result follows by computing directly log(W
(h)
T ), taking expectation and maxi-

mizing pointwisely.
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2.2. Power utility

We will see that for the case study of Section 4, equation (2.5) always admits a solution
h∗(t, ei) ∈ (−L,L). An extensive study of the utility maximization with logarithmic
preferences in the classical case (i.e. without market impact) is given by [89], where the
optimal strategy is characterized in terms of the local characteristics (drift, volatility and
jump intensity) of the semimartingale driving the asset price process (see, e.g., [89, Theorem
3.1]).

Logarithmic utility - Market impact

In the case with market impact the above procedure does not apply. This is due to the fact
that at any point in time the decision of the investor may change the future state of the
Markov chain. Therefore here we address the problem via dynamic programming. Precisely,
we study the solution to equation (2.3) with the terminal condition V (T,w, ei) = log(w).
We consider the ansatz V (t, w, ei) = log(w) + β(t, ei). Then we have the following system of
equations for (t, ei)

−∂β
∂t

(t, ei) = sup
h∈[−L,L]

{
(1− h)ρ+ (β(t, ei+1)− β(t, ei))q

i,i+1(h) (2.6)

+ (β(t, ei−1)− β(t, ei))q
i,i−1(h) +

∫
R

log(1 + hz)ηP(t, ei, dz)
}
. (2.7)

for every t ∈ [0, T ] and i ∈ {2, . . . ,K − 1}, and

dβ

dt
(t, e1) =− sup

h∈[−L,L]

{
(1− h)ρ+ (β(t, e2)− β(t, e1)) q1,2(h) (2.8)

+

∫
R

log(1 + hz)ηP(t, e1, dz)
}
, (2.9)

dβ

dt
(t, eK) =− sup

h∈[−L,L]

{
(1− h)ρ+ (β(t, eK−1)− β(t, eK)) qK,K−1(h) (2.10)

+

∫
R

log(1 + hz)ηP(t, eK , dz)
}
, (2.11)

respectively, with boundary conditions β(T, ei) = 0 for i ∈ {1, . . . ,K}. Equations (2.7),(2.9)
and (2.11) imply that given an optimizer h∗, β(t, ei), i ∈ {1, . . . ,K}, is the unique solution
of this system of ordinary differential equations (ODEs). This follows from the continuity of
the coefficients [155, Theorem 3.9]. In principle, one can solve the system numerically using,
for instance, backward Euler method. In particular, as pointed out in [28], at each time
step tn of the numerical procedure one should find the maximizer h∗(tn), and then solve the
resulting ODE.

From (1.5) and the boundedness of qi,j(h) the verification result in [28, Theorem 3.1]
applies.

2.2 Power utility

In this part we work under the assumption of power utility, that is, U(w) = 1
θw

θ, θ < 1, θ 6= 0.
We address the corresponding optimization problem by dynamic programming technique.

99
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In what follows we investigate the solution to the equation (2.3) with the terminal condition

V (T,w, ei) = wθ

θ . To this, we suggest the following ansatz for the value function

V (t, w, ei) =
wθ

θ
eθγ(t,ei), i ∈ {1, . . . ,K}. (2.12)

Inserting (2.12) into (2.3) leads to equations

dγ

dt
(t, ei) = − sup

h∈[−L,L]

{
(1− h)ρ+

1

θ

(
eθ(γ(t,ei−1)−γ(t,ei)) − 1

)
qi,i−1(h)

+
1

θ

(
eθ(γ(t,ei+1)−γ(t,ei)) − 1

)
qi,i+1(h) +

1

θ

∫
R

(
(1 + hz)θ − 1

)
ηP(t, ei, dz)

}
(2.13)

for every t ∈ [0, T ] and i ∈ {2, . . . ,K − 1}, and

dγ

dt
(t, e1) =− sup

h∈[−L,L]

{
(1− h)ρ+

1

θ

(
eθ(γ(t,e2)−γ(t,e1)) − 1

)
q1,2(h)

+
1

θ

∫
R

(
(1 + hz)θ − 1

)
ηP(t, e1, dz)

}
, (2.14)

dγ

dt
(t, eK) =− sup

h∈[−L,L]

{
(1− h)ρ+

1

θ

(
eθ(γ(t,eK−1)−γ(t,eK)) − 1

)
qK,K−1(h)

+
1

θ

∫
R

(
(1 + hz)θ − 1

)
ηP(t, eK , dz)

}
, (2.15)

respectively, with final conditions γ(T, ei) = 0 for i ∈ {1, . . . ,K}. Given an optimizer h∗,
γ(t, ei), every i ∈ {1, . . . ,K}, is the unique solution of the system of first order ODEs given by
equations (2.13),(2.14) and (2.15). Note that a simple transformation, i.e., F (t, ei) = eθγ(t,ei),
yields to a system of linear ODEs. One can follow the same procedure as in the case of
logarithmic utility and solve the system numerically.

Moreover by boundedness of qi,j(h) and condition (1.5), the verification result in [28,
Theorem 3.1] applies.

Remark 2.16. Suppose that matrix Q has a general form, that is entries qi,j(h) are not
necessarily null for |i− j| > 1. Then, with the same procedure we get that the value function
is of the form (2.12) where functions γ(t, e1) solve the system

dγ

dt
(t, ei) = − sup

h∈[−L,L]

(1− h)ρ+
1

θ

K∑
j=1

(
eθ(γ(t,ej)−γ(t,ei)) − 1

)
qi,j(h)

+
1

θ

∫
R

(
(1 + hz)θ − 1

)
ηP(t, ei, dz)

}
(2.17)

for every t ∈ [0, T ] and i ∈ {1, . . . ,K}.
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Chapter 3

Optimization Problem under
Partial Information

In the current section we assume that the state process Y is not directly observable by the
investor. Instead, she observes the price process S and knows the model parameters. Hence,
the available information is represented by the natural filtration generated by the risky asset
price process, FS .

At any time t ∈ [0, T ] the decision of the investor depends only on the available
information. Accordingly, we define the set of admissible strategies as follows.

Definition 3.1. A portfolio strategy h is FS-admissible if it is FS-predictable and assump-
tions 1.1 and 1.7 hold. We denote the set of FS-admissible strategies by H̃.

Considering FS-predictable investment strategies results in an optimal control problem
under partial information. In a Markovian setting as the one outlined here we can reduce
the control problem under partial information to an equivalent control problem under full
information where the unobservable state variable, namely the Markov chain Y (h), is replaced
by the filtered estimates, see, for example, [16, 31]. This requires to solve a filtering problem
where the unobservable signal is given by the Markov chain Y (h) and the observation process
is the pure jump process S(h). The literature on filtering problem with pure jump process
observation is relatively large. A brief list of results includes for instance [27, 32, 62, 85, 30].
In the upcoming part, we deal with the filtering problem corresponding to our setting by
using the so called reference probability approach. The idea is to consider a probability
measure equivalent to P under which, the dynamics of the observation process S(h) and the
unobservable Markov chain Y (h) become independent, and then determine the dynamics
of the unnormalized filter. The construction of the model provided in section 1.2 offers a
natural candidate to be the reference probability. This approach has also been used in [36]
to break the circularity of information, due to a direct dependence of the jump intensity of
the stock price on the control. In the current setting the circularity arises from an indirect
dependence on the strategy h.

3.1 Filtering and reduction to full information

For every function f : E → R and every control h we define the filter π(h)(f) := {π(h)
t (f), t ∈

[0, T ]} by

π
(h)
t (f) = E

[
f(Y

(h)
t )|FSt

]
, t ∈ [0, T ],
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Chapter 3. Optimization Problem under Partial Information

and denote by π
(h)
t− (f) its predictable version.

By the Kallinapur-Striebel formula, we get that

π
(h)
t (f) =

EQ
[
Ztf(Y

(h)
t )|FSt

]
EQ
[
Zt|FSt

] , t ∈ [0, T ]. (3.2)

Denote by p
(h)
t (f) := EQ

[
Ztf(Y

(h)
t )|FSt

]
for every t ∈ [0, T ]. The process p(h)(f) =

{p(h)
t (f), t ∈ [0, T ]} is called the unnormalized filter.
In the sequel we compute the dynamics of the process p(h)(f), and then derive the

filtering equation by applying (3.2). The main results are stated in Proposition 3.3 and
Proposition 3.7.

Proposition 3.3 (The Zakai equation). Let f : E → R. Then, for every t ∈ [0, T ], the
unnormalized filter solves the equation

p
(h)
t (f) = π0(f) +

∫ t

0
p(h)
s (Qf)ds+

∫ t

0

∫
R
p

(h)
s− (Ψ(z)f) (µ(ds, dz)− ηQ(s, dz)ds), (3.4)

where

p
(h)
t− (Ψ(z)f) := EQ

[
f(Yt−)Zt−Ψ(t, Y

(h)
t− , νt− , z) | FSt

]
,

p
(h)
t (Qf) := EQ

[
Zt〈Qf , Y

(h)
t 〉 | FSt

]
,

and 〈·, ·〉 denotes the scalar product of vectors on RK .

The proof of this result is provided in Appendix 5.1.
Process π(h) is infinite dimensional, in general. However, when the unobservable signal

is a Markov chain with finite state space we have that

π
(h)
t (f) =

K∑
j=1

f(ej)π
j
t , t ∈ [0, T ],

where for every i ∈ {1, . . . ,K} and every fixed strategy h,

πit := E
[
1{Y (h)

t =ei}
|FSt

]
, t ∈ [0, T ],

denote the conditional state probability of the Markov chain Y (h). Here for the ease of
notation we suppress the dependence of processes πi, for i ∈ {1, . . . ,K} on the trading
strategy h. Then, clearly, conditional state probabilities πi, for i ∈ {1, . . . ,K} fully
characterize the filter, which becomes finite dimensional.

In order to obtain dynamics of πi, for i ∈ {1, . . . ,K}, we introduce the following notation

π
(h)
t− (ηP(dz))dt :=

K∑
i=1

πit−η
P(t, ei, dz)dt. (3.5)

It is not difficult to show that for every nonnegative (FS ,P)-predictable process indexed by
z, Φ := {Φ(t, z), t ∈ [0, T ]} such that

E
[∫ T

0

∫
R
|Φ(s, z)|π(h)

t− (ηP(dz))dt

]
<∞,
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the following holds (see, [50, V T28])

E
[∫ T

0

∫
R

Φ(t, z)µ(dt, dz)

]
= E

[∫ T

0

∫
R

Φ(t, z)
K∑
i=1

πit−η
P(t, ei, dz)dt

]
,

which implies that (3.5) provides the (FS ,P)-dual predictable projection of the measure

µ and that the process
∫ t

0

∫
R Φ(s, z)

(
µ(ds, dz)− π(h)

s− (ηP(dz))ds
)

, t ∈ [0, T ], is an (FS ,P)-

martingale.

Let νπ(dt, dz) denote the (FS ,P)-compensated measure, that is

νπ(dt, dz) := µ(dt, dz)− π(h)
t− (ηP(dz))dt. (3.6)

Proposition 3.7. The process πi, for all i ∈ {1, . . . ,K} solves the equation

dπit =
K∑
j=1

qj,i(ht)π
j
t dt+

∫
R
πit−u

i(t, π
(h)
t− , z)ν

π(dt, dz), (3.8)

where ui(t, π
(h)
t , z) :=

1∑K
j=1 π

j
t
dηP(t,ej ,z)

dηP(t,ei,z)

− 1 and
dηP(t, ej , z)

dηP(t, ei, z)
denotes the Radon-Nikodym

derivative of the measure ηP(t, ej , dz) with respect to ηP(t, ei, dz) and π(h) is the vector
process (π1, . . . , πK) which takes values on the (K − 1)-dimensional simplex ∆K .

Proof. First, note that p(h)(1) satisfies

p
(h)
t (1) = 1 +

∫ t

0

∫
R
p

(h)
s− (Ψ(z)))(µ(ds, dz)− ηQ(s, dz)ds), t ∈ [0, T ].

By applying Kallianpur-Striebel formula (3.2) we get that

dπ
(h)
t (f) = π

(h)
t (Qf)dt+

∫
R

(
π

(h)
t− (fΨ(z))

π
(h)
t− (Ψ(z)

− π(h)
t− (f)

)
(µ(dt, dz)− π(h)

t− (ηP(dz))dt),

where π
(h)
t (Qf) = E

[
〈Qf , Y

(h)
t 〉 | FSt

]
. Finally, the result follows by choosing f(y) =

1{y=ei}.

Uniqueness of the solution of the filtering equation is necessary to transform the optimal
control problem stated in (3.10) into an equivalent one involving only observable processes.
Therefore, in the rest of this section we assume that the system of equations (3.8) has a
unique solution.

Remark 3.9. A sufficient condition for the uniqueness of the solution of the system of
equations (3.8) is, for example,

sup
t∈[0,T ]

ηP(t, ei,R) <∞,

for every i ∈ {1, . . . ,K}, see, e.g., [30]. This is satisfied in our model since ς is a finite
measure.
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Note that the asset price process S(h) as well as the wealth process W (h) have a
representation with respect to investor’s information, given by

S
(h)
t =S0 +

∫ t

0

K∑
i=1

∫
R
zS(h)

s πisη
P(s, ei, dz)ds+ +

∫ t

0

∫
R
zS(h)

s νπ(dt, dz),

W
(h)
t =W0 +

∫ t

0
W (h)
s

(
(1− hs)ρ+

K∑
i=1

∫
R
zηP(s, ei, dz)

)
dt+W

(h)
s− hs

∫
R
zνπ(dt, dz),

for every t ∈ [0, T ]. In the partial information framework we can write the objective of the
investor as

maxEt,w,π
[
U(W

(h)
T )

]
, (3.10)

over the set of FS-admissible controls, where Et,w,π denotes the conditional expectation

given W
(h)
t = w and π

(h)
t = π for (w,π) ∈ R>0 ×∆K . The control problem is characterized

by the (K + 1)-dimensional state process (W (h), π(h)). We define the reward and the value
functions as

J(t, w,π;h) = Et,w,π
[
U(W

(h)
T )

]
,

V (t, w,π) = sup
h∈H̃

J(t, w,π;h).

3.2 Solution via piecewise deterministic Markov processes
approach

The state process of the optimization problem, consisting of the wealth process and the
filter, augmented by the time variable, is a piecewise deterministic Markov process (PDMP),
see [46]. A PDMP is a combination of a deterministic flow, characterized as the solution of
an ordinary differential equation, and random jumps.

To identify the proper structure of the problem and the appropriate conditions to apply
the theory of control for PDMP, we start by introducing some notation. Let X = R>0×∆K

be the state space and X̃ = [0, T ]× R>0 ×∆K be the augmented one and denote the state
process and the augmented state process by X(h) := (W (h), π(h)) and X̃(h) := (t,W (h), π(h)),
respectively. Denote by {Tn}n∈N the sequence of jump times of the state process X̃(h), with
T0 = 0. Then between two consecutive jump times before time T , i.e. t ∈ [Tn ∧T, Tn+1 ∧T ),

the state process X̃(h) is described by the ODE dX̃
(h)
t = g(X̃

(h)
t , ht)dt, where the vector

field g : X̃ × [−L,L]→ R is given by

g(1)(x̃, h) = 1, g(2)(x̃, h) = w(1− h)ρ,

g(i+2)(x̃, h) =

K∑
j=1

πj
(
qj,i(h) +

∫
R
πiui(t,π, z)ηP(t, ej , dz)

)
, i ∈ {1, . . . ,K}.

The jump rate of the state process is given by λ(x̃), x̃ ∈ X̃ where

λ(x̃) = λ(t, w,π) =

K∑
i=1

πiηP(t, ei,R),
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3.2. Solution via piecewise deterministic Markov processes approach

and it is independent of w. According to [46], the transition kernel that governs the jumps

of the state process is described by the operator Q
X̃

: X̃ × [−L,L]→ X̃ such that for any

continuous and bounded function f defined on X̃ we have

QX̃f(x̃, h) :=

∫
X̃
f(ỹ)QX̃(dỹ | x̃, h)

= λ(x̃)

K∑
j=1

πj

∫
R
f
(
t, w(1 + hz), π1(1 + u1(t,π, z)), . . . , πK(1 + uK(t,π, z))

)
ηP(t, ej , dz) .

The state process of the optimal liquidation problem is a PDMP with characteristics
given by the vector field g, the jump rate λ and the transition kernel Q

X̃
. It is standard in

control theory for PDMPs to work with so-called open-loop controls.

Denote by A the set of measurable mappings α : [0, T ]→ [−L,L] and define an admissible
open loop portfolio strategy as a sequence of measurable functions {hn}n≥0 : X̃ → A, such
that the portfolio weight at time t is given by

ht = hn (t− Tn, In) , for t ∈ (Tn ∧ T, Tn+1 ∧ T ], (3.11)

where In := X
(h)
Tn

denotes the post jump state. Since at any jump time the evolution of the
state process is known up to the next jump time, the idea is that an optimal investment
strategy consists of a sequence of choices hn taken at each jump time Tn < T and to be
followed up to Tn+1 ∧ T . Note that jump times and the post jump state depend on the
strategy via the intensity of jump arrivals. However there is no ambiguity or ill-defined
notion, since the pair (Tn, In) depends on the decision hn−1, made at time Tn−1. Although
in the most general form of admissible strategies hn should depend on the whole past history,
it is possible to show that this larger class of policies does not increase the value of the
control problem,, see, e.g. [18, Section 2.2]. Therefore in the sequel we consider admissible
strategies of the form (3.11).

From now on, we use the notation without emphasizing the dependence on the admissible
strategy h, that is, for example we write X̃ instead of X̃(h). Given an admissible strategy

{hn}n≥0 and an initial state x ∈ X , we denote by P
{hn}
(t,x) (equiv. P

{hn}
x̃ ) the law of the state

process provided that Xt = x and that the investor uses the strategy {hn}n∈N. The reward
function associated to an admissible strategy {hn}n∈N is given by

J (t, x, {hn}) = E{h
n}

(t,x) [U(WT )] ,

and the value function of the optimization problem under partial information is

V (t, x) = V (x̃) = sup {J (t, x, {hn}) : {hn}n∈N admissible strategy} . (3.12)

The corresponding Markov decision model

The optimization problem in (3.12) can be reduced to an optimization problem in an infinite
horizon Markov decision model (MDM). Here we use the same techniques as in [36], to solve
the utility maximization problem from terminal wealth. To give an idea, we show that the
value function of the piecewise deterministic control problem can be identified as the value
function of a certain Markov decision problem that can be solved by a fixed point argument,
see [18, Chapter 8] for details.
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Chapter 3. Optimization Problem under Partial Information

Although the main technique used to handle the optimization problem is similar to that
developed in [36], there are a few differences which are worth explaining. In [36], the authors
study an optimal liquidation problem for an investor whose actions directly affect the stock
price dynamics by increasing the intensity of downward jumps in a partial information
setting. The stock price dynamics is given by a pure-jump process. The goal is to maximize
the expected total reward represented by a functional consisting in a combination of running
profits, which linearly depend on the liquidation rate (that is the control), and terminal
value representing the price of a block transaction at the final time. The first difference with
our setup is the model, as here we consider an indirect effect on prices through the generator
of the unobservable Markov chain. Secondly, objectives are different, because we aim to
maximize the expected utility from terminal wealth. We stress that, on the other hand,
unfortunately we cannot directly rely on the results in [17, 18], since the jump intensity of
the PDMP is stochastic. By mimicking the argument in [36, Section 5], we characterize the
optimal value function as the unique viscosity solution of the (generalized) HJB equation.
This notion also has the advantage to permit a numerical study, compared to [18] where
optimal strategies and optimal value functions are obtained by a policy iteration procedure,
which has a fast convergence rate.

We recall that, in for a piecewise deterministic control problem, decisions are made only
at the jump times of the state process. With this idea in mind, the infinite horizon Markov
decision model corresponding to the PDMP can be introduced as follows. We consider the
sequence {Ln}n∈N of random variables defined by

Ln = (Tn, XTn) = X̃Tn for Tn < T, n ∈ N ,

and set Ln = ∆ for Tn ≥ T where ∆ is some cemetery state. In other words a state
x̃ = (t, x) = (t, w,π) represents a jump time t and the wealth w and filter π just after the
jump.

For a function α ∈ A, we denote by ϕ̃αt (x̃) the flow of the initial value problem d
dsX̃(s) =

g
(
X̃(s), αs

)
with initial condition X̃(0) = x̃. Equivalently, the piecewise deterministic process

X̃ is given by X̃t = ϕ̃αt−Tn(X̃Tn), for every t ∈ [Tn, Tn+1) before time T . We use the notation
ϕ̃αt = (t, ϕα) to stress the dependence on time.

In the sequel we define two fundamental quantities for the MDM {Ln}n≥0, which are

the jump intensity λα(x̃) and the transition kernel QLf(x̃, α), for every α ∈ A and x̃ ∈ X̃ .
Precisely we have

λαs (x̃) = λ(ϕ̃αs (x̃), αs) := λ((t+ s, ϕαs ), αs), (3.13)

Λαs (x̃) = Λα(s; x̃) :=

∫ s

0
λαu(x̃)du.

The distribution of the interarrival times Tn+1 − Tn given Ln = (t, x) and hn = α is
equal to λα(x̃)e−Λαu(x̃)du, where x̃ = (t, x). Then, for any bounded measurable function
f : X̃ ∪ {∆} → R, the transition kernel of the MDM is given by

QLf
(
(t, x), α

)
=

∫ T−t

0
λαu(x̃)e−Λαu(x̃)Q

X̃
f(u+ t, ϕu(x̃), αu

)
du+ e−ΛαT−t(x̃)f(∆̄),

with QL1{∆}(∆, α) = 1.
We indicate by wt, the wealth component of the flow ϕ̃α. A one-stage reward function

r : X̃ × A → R≥0 is defined by

r(x̃, α) = e−ΛαT−t(x̃)U(wT−t), r(∆) = 0.
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3.2. Solution via piecewise deterministic Markov processes approach

It is clear that the expected reward of a policy {hn}n≥0 is given by

J{h
n}

∞ (x̃) = E{h
n}

x̃

[ ∞∑
n=0

r (Ln, h
n(Ln))

]
,

and

J∞(x̃) := sup
{
J{h

n}
∞ (x̃) : {hn} FS − admissible strategy

}
. (3.14)

The next step is to verify that this construction of an infinite-stage Markov decision
model leads to an optimal control problem which is equivalent to the original PDP control
problem. Lemma 3.15 below shows that the value functions corresponding to the MDM and
the control problem for PDMP coincide. The proof uses a similar argument to [18, Theorem
9.3.1] and is provided in Appendix 5.2.

Lemma 3.15. It holds for all FS-admissible strategies {hn}n∈N that V {h
n} = J

{hn}
∞ and

hence V = J∞, that is, control problems (3.12) and (3.14) are equivalent.

Define the operator T of the Markov decision model as

T v(x̃) := sup
α∈A

{
e−ΛαT−t(x̃)U(wT−t) +

∫ T−t

0
λαu(x̃)e−Λαu(x̃)Q

X̃
v(t+ u, ϕu(x̃), αu

)
du
}
.

Then the idea is to characterize the value function as the unique fixed point of the
operator T . This is provided in the next theorem. In the sequel we assume the following.

Assumption 3.16. Mappings (x̃, α) 7→ r(x̃, α) and (x̃, α) 7→ QLv(x̃, α) for every v ∈ Bb,
are continuous on X̃ × Ã with respect to the Young topology on Ã.

A sufficient condition is given by Assumption 5.5 in Appendix 5.2.

Theorem 3.17. Suppose that Assumption 3.16 holds, let b(x̃) = b(t, x) := ec(T−t)s, for some
c ≥ 0, and b(∆̄) = 0 and define the set Bb of functions v : X̃ → R such that v(x̃) ≤ Cb(x̃),
C ≥ 0. Then we have that

i) the value function V is continuous on X̃ and satisfies the boundary conditions
V (T,w,π) = U(w).

ii) V is the unique fixed point of the operator T in Bb.

Proof. First note that by Lemma 5.4 in Appendix 5.2 the MDM is contracting and by
Proposition 5.6 reward function r and transition kernel QL are continuous. By applying
[18, Theorem 7.3.6] we obtain that V is the fixed point of the maximal reward operator
extended to the class of the relaxed controls and finally the result of the theorem follows
from the second part of [36, Theorem 4.10].

In order to characterize the optimal value function in terms of the solution of a suitable
HJB equation, we resort to the viscosity solution analysis. This also legitimates the numerical
study which will be done in the next chapter.

As a first step we want to reduce the problem to the case where the state process takes
values in a compact set. Since the case of logarithmic utility is a limiting case of the power
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Chapter 3. Optimization Problem under Partial Information

utility we only write the reduction for the latter. By using positive homogeneity we have
that

V (t, w,π) =
wθ

θ
V (t,π).

Define the compact set Ỹ := [0, T ]×∆K .
We now define g : Ỹ × [−L,L]→ RK+2 by identifying

g(1) = g(1), and g(k+1) = g(k+2) , k = 1, . . . ,K .

and denote by ϕu(α, ỹ) the flow of g.
Since the jump intensity λ introduced in (3.13) is independent of w, by Theorem 3.17,

the optimality equation for V is given by

V (ỹ) = sup
α∈A

{∫ T−t

0
λαu(ỹ)e−Λαu(ỹ)Q V

(
u+ t, ϕu(α, ỹ), αu

)
du+

1

θ
e−ΛαT−t(ỹ)

}
,

where, for h ∈ [−L,L], ỹ ∈ Ỹ, and any measurable function Ψ: Ỹ → R≥0, Q defines the
new transition kernel

QΨ(ỹ, h) := λ(ỹ)

K∑
j=1

πj
∫
R

(1 + hz)θΨ
(
t, (πi(1 + ui(t,π, z)))i=1,...,K

)
ηP(t, ej , dz).

This, in turn, implies that the value function V satisfies V = T V , with the reward
operator T given by

T Ψ(ỹ) = sup
α∈A

{∫ T−t

0
λαu(ỹ)e−Λαu(ỹ)QΨ

(
u+ t, ϕu(α, ỹ), αu

)
du+

1

θ
e−ΛαT−t(ỹ)

}
.

In the sequel we aim to show that V solves, in the viscosity sense, the equation

FV
(
ỹ, V (ỹ),∇V (ỹ)

)
= 0, for ỹ ∈ Ỹ0, V (ỹ) =

1

θ
for ỹ ∈ ∂Ỹ, (3.18)

where, for Ψ: Ỹ → R≥0, the function FΨ : Ỹ × R>0 × RK+1 → R if given by

FΨ(ỹ, v, p) = − sup
ν∈[−L,L]

{
− λ(ỹ, ν)v + g(ỹ, ν)p+QΨ(ỹ, ν)

}
.

The following result, proven in [36, Theorem 4.10] applies.

Theorem 3.19. Suppose that Assumption 3.16 holds. Then the value function V is the
unique continuous viscosity solution of (3.18) in Ỹ and a comparison principle holds.

Explicitly, the HJB equation for the value function in the partial information setting is
given by

0 = sup
h∈[−L,L]

{
∂V

∂t
(t, w,π) + w(1− h)ρ

∂V

∂w
(t, w,π) (3.20)

+
K∑

k,j=1

∂V

∂πk
(t, w,π)πj

(
qjk(h)−

∫
R
πkuk(t,π, z)ηP(t, ej , dz)

)

+

K∑
j=1

πj
∫
R

[
V
(
t, w(1 + hz), (πi(1 + ui(t,π, z)))i∈{1,...,K}

)
−V (t, w,π)

]
ηP(t, ej , dz)

}
.

In the next sections we analyze the case of logarithmic and power utility functions in
detail, in the partial information framework.

108



3.3. Logarithmic utility under partial information

3.3 Logarithmic utility under partial information

According to analysis conducted in the full information framework, we study the optimization
problem with and without impact. For the logarithmic utility preferences this leads to
two different approaches: in the first case pointwise maximization applies, while in the
second one we need to use a dynamic programming approach. We also provide a comparison
between the optimal strategies under full and partial information.

Logarithmic utility - No market impact

We first assume that the investor has no impact, that is entries in the generator of the
Markov chain do not depend on the trading strategy, and we solve the optimal control
problem directly. For a fixed strategy h ∈ H̃ by applying the Itô formula we get

V (t, w,π) = log(w) + sup
h∈H̃

B̃(t,π;h),

where

B̃(t,π;h) = Et,π
[∫ T

t

(
(1− hs)ρ+

K∑
i=1

πis

∫
R

log(1 + hsz)η
P(s, ei, dz)

)
ds

+

∫ T

t

∫
R

log(1 + hsz)ν
π(ds, dz)

]
.

The following result follows from [16, Lemma 4.1].

Proposition 3.21. Suppose U(w) = log(w) for w > 0.

i) Let h∗(t,π) satisfy either

K∑
j=1

πjt

∫
R

z

1 + h∗(t,π)z
ηP(t, ej , dz) = ρ (3.22)

or h∗(t,π) ∈ {−L,L}. Then the optimal strategy h∗t = h∗(t,π) for every t ∈ [0, T ] and
π ∈ ∆K .

ii) The value function is of the form

V (t, w,π) = log(w) + Et,π

[∫ T

t

(
(1− h∗s)ρ+

K∑
i=1

πj
s

∫
R

log(1 + h∗sz)η
P(s, ei, dz)

)
ds

]
.

Remark 3.23. Comparing the results in Proposition 2.4 and Proposition 3.21 we observe
similar structures for the optimal strategies. Precisely in the partial information case the
optimal strategy solves an equation of the form (3.22) where (F,P)-compensator of the
jump measure is replaced by the (FS ,P)-compensator. Intuitively this is due to the myopic
property of the logarithmic utility; the agent replaces the unobserved local characteristics
of the return process by their filtered estimates ignoring the extra risk associated with the
information uncertainty (see, for example, [72]).
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Logarithmic utility - Market impact

According to full information, when there is an impact on the state of the Markov chain we
cannot apply pointwise maximization, but we can characterize the value function as the
solution of the HJB equation, in the viscosity sense. Here we propose the following ansatz
V (t, w,π) = log(w) +B(t,π), for some function B with the terminal condition B(T,π) = 0,
for all π ∈ ∆K . Substituting this form of the value function into (3.20), we obtain the
following equation

0 = sup
h∈[−L,L]

{
∂B

∂t
(t,π) + (1− h)ρ (3.24)

+

K∑
k,j=1

∂B

∂πk
(t,π)πj

(
qjk(h)−

∫
R
πkuk(t,π, z)ηP(t, ej , dz)

)

+

K∑
j=1

πj

∫
R
log(1 + hz) +

[
B
(
t, (πi(1 + ui(t,π, z)))i∈{1,...,K}

)
−B(t,π)

]
ηP(t, ej , dz)

}
. (3.25)

By Theorem 3.19, the value function is the unique viscosity solution of problem (3.25).
Given the form of the compensator ηP, the equation can be solved, for instance using a
numerical scheme.

3.4 Power utility under partial information

In this part we will work under the assumption of power utility, that is, U(w) = 1
θw

θ, θ < 1,
θ 6= 0. Then the value function of the investor is

V (t, w,π) = sup
h∈H̃

Et,w,π
[

1

θ
(WT )θ

]
,

where Et,w,π[·] denotes the conditional expectation given Wt = w and πt = π. By positive
homogeneity, the value function can be rewritten as V (t, w,π) = 1

θw
θΓ(t,π), for some

function Γ : [0, T ]×∆K → R>0 with Γ(T,π) = 1, for all π ∈ ∆K . Substituting this form of
the value function into (3.20), we obtain the equation

0 = sup
h∈[−L,L]

{
∂Γ

∂t
(t,π) + Γ(t,π)θ(1− h)ρ

+
K∑

k,j=1

∂Γ

∂πk
(t,π)πj

(
qjk(h)−

∫
R
πkuk(t,π, z)ηP(t, ej , dz)

)

+
K∑
j=1

πj
∫
R

[
(1 + hz)θΓ

(
t, (πi(1 + ui(t,π, z)))i∈{1,...,K}

)
− Γ(t,π)

]
ηP(t, ej , dz)

}
.

Therefore, after reduction, we deal with a problem having a bounded state space
[0, T ]×∆K . Theorem 3.19 ensures existence and uniqueness of a viscosity solution for this
problem. We solve it numerically in case of a two-state Markov chain in the next section.
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Chapter 4

A Model with a Two-State Markov
Chain

Suppose that we have a state process Y described by a Markov chain with the state space
E = {e1, e2}. Without loss of generality we may assume that e1 represents the good (bull)
state of the market and e2 is representing a bad (bear) state. We consider the situation
where the investor’s assets holdings are taken as a signal for the rest of the market that
tends to behave accordingly. Then for the market, intensities of switching between the bull
and the bear state depend on the portfolio weights of the reference “large” investor. In the
current setting, we also assume that the impact of the portfolio choices on the Markov chain
is linear, and assume that the infinitesimal generator has the form

q12(ht) = a1 − b1ht, q21(ht) = a2 + b2ht.

To guarantee that the entries q1,2 and q2,1 of the matrix stay positive we take a1, a2 > 0,
b1 ∈ (0, a1/L) and b2 ∈ (0, a2/L).

This choice for the generator has the following motivation. If the investor buys, then she
tends to increases the probability for the market to stay in (resp. switch to) the bull state,
provided that the current state of the market is bull (resp. bear). Conversely, when the
investor sells, the probability to stay in or jump to the bear state increases. This mechanism
reflects certain real world situations such as manipulation and herding, which are frequently
observed in markets where large investors are involved.

We assume that the return process may have two possible jump sizes, ∆R(h) ∈ {−ϑ,+ϑ}.
Formally, it is given by

R
(h)
t := N−

(h)

t +N+(h)

t , t ∈ [0, T ],

where

dN−
(h)

t =

∫
R
−ϑ1

[−λ−(Y
(h)

t−
),0]

(ζ)N (dt, dζ), dN+(h)

t =

∫
R
ϑ1

[0,λ+(Y
(h)

t−
)]

(ζ)N (dt, dζ)

are two Poisson processes with jump sizes ϑ and intensities λ+(ei) = λ+
i , λ

−(ei) = λ−i ,
i ∈ {1, 2}, for some constants λ+

1 , λ
+
2 , λ

−
1 , λ

−
2 > 0 and such that λ+

1 > max{λ−1 , λ
+
2 } and

λ−2 > max{λ−1 , λ
+
2 }. This conditions imply that the intensity of an upward jump is larger

in the bull state of the market compared the bear one. Moreover in the bull state it is
more likely to observe an upward jump then a downward jump. In this example we take
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Chapter 4. A Model with a Two-State Markov Chain

the Poisson random measure N (dt, dζ) with intensity ς(dζ)dt = 1[−λ−2 ,λ
+
1 ]dζdt. Then the

compensator has the form

ηP(t, ei, dz) = λ+
i δ{ϑ}(dz) + λ−i δ{−ϑ}(dz),

where δ{x}(dz) is the Dirac mass at point x. Notice that here Assumption 1.7 is satisfied for

− 1
ϑ < ht <

1
ϑ .

In the reminder of this section we are going to compare the results for logarithmic and
power utility choices for the full and the partial information settings.

4.1 Logarithmic utility

First we consider a investor with full information on the market. Starting with the case of no
market impact, applying Proposition 2.4 and checking the first and second order conditions
we obtain the optimal strategy

h∗(t, ei) =
λ+
i + λ−i

2ρ
−

√(
λ+
i + λ−i

2ρ
+

1

ϑ

)2

− 2
λ+
i

ϑρ
.

In particular, if λ+
i = λ−i = λi we get that h∗(t, ei) = λi

ρ −
√

λ2
i
ρ2 + 1

ϑ2 . Finally we can
characterize the value function as

V (t, w, ei) = log(w) + Et,i
[∫ T

t

(
(1− h∗(s, e1))1{Ys=e1}ρ+ (1− h∗(s, e2))1{Ys=e2}ρ

)
ds

+

∫ T

t

∫
R

log(1 + h∗(s, e1)z)1{Ys−=e1}η
P(ds, e1, dz)

+

∫ T

t

∫
R

log(1 + h∗(s, e2)z)1{Ys−=e2}η
P(ds, e2, dz)

]
.

For the case where the impact is non-zero, the value function can be characterized as
V (t, w, ei) = log(w) + β(t, ei), i ∈ {1, 2} with the functions β(t, e1) and β(t, e2) solving

dβ

dt
(t, e1) =− sup

h∈[−L,L]

{
(1− h)ρ+ (β(t, e2)− β(t, e1)) (a1 − b1h)

+

∫
R

log(1 + hz)ηP(t, e1, dz)

}
,

dβ

dt
(t, e2) =− sup

h∈[−L,L]

{
(1− h)ρ+ (β(t, e1)− β(t, e2)) (a2 + b2h)

+

∫
R

log(1 + hz)ηP(t, e2, dz)

}
,

respectively, with boundary conditions β(T, ei) = 0, for i = {1, 2}.
Assume now that the investor’s information is given by the filtration FS . There, by

Proposition 3.21, the optimal strategy in case of no market impact turns out to be

h∗(t,π) =
π>Λ+ + π>Λ−

2ρ
−

√(
π>Λ+ + π>Λ−

2ρ
+

1

ϑ

)2

− 2
π>Λ+

ϑρ
.
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4.2. Power utility

where (Λ+)> = (λ+
1 , λ

+
2 ) and similarly (Λ−)> = (λ−1 , λ

−
2 ). This is the classical case where

the optimal strategy has the same structure of that under full information in which the
unobserved components are replaced by their filtered estimates. The stochastic representation
of the value function is given by

V (t, w,π) = log(w) + Et,π
[∫ T

t
(1− h∗(s, πs))ρds

+

∫ T

t
π1
s

∫
R

log(1 + h∗(s, πs)z)η
P(s, e1, dz)ds

+

∫ T

t
π2
s

∫
R

log(1 + h∗(s, πs)z)η
P(s, e2, dz)ds

]
.

In the partial information case, the value function has the form V (t, w, π) = log(w) +
B′(t, π) where B′(t, π) = B(t, π, (1− π)) is the solution of the HJB equation

0 = sup
h∈[−L,L]

{
∂B′

∂t
(t, π) + (1− h)ρ+

∂B′

∂π
(t, π)

(
πq11(h) + (1− π)q21(h)

)
− ∂B′

∂π
π(1− π)(λ+

1 + λ−1 − λ
+
2 − λ

−
2 )

+ (πλ+
1 + (1− π)λ+

2 ) log(1 + hz) + (πλ−1 + (1− π)λ−2 ) log(1− hz)

+ π(λ+
1 + λ−1 )

[
B′
(
t,

πλ+
1

πλ+
1 + (1− π)λ+

2

)
−B′(t, π)

]
+(1− π)(λ+

2 + λ−2 )

[
B′
(
t,

πλ+
1

πλ+
1 + (1− π)λ+

2

)
−B′(t, π)

]}
.

An explicit solution of the above equation is difficult to find. In general, it is possible to
apply numerical experiments to get the qualitative behavior of both the value function and
the optimal strategy. Since the logarithmic utility case do not provide any simplification,
for numerical study we only consider the power utility case.

4.2 Power utility

In the power utility case, when the investor has a full information on the state of the market,
analysis of the optimization problem leads to solving the system

dγ

dt
(t, e1) =− sup

h∈[−L,L]

{
(1− h)ρ+

1

θ

(
eθ(γ(t,e2)−γ(t,e1)) − 1

)
(a1 − b1h)

+
λ+

1

θ

(
(1 + hϑ)θ − 1

)
+
λ−1
θ

(
(1− hϑ)θ − 1

)}
,

dγ

dt
(t, e2) =− sup

h∈[−L,L]

{
(1− h)ρ+

1

θ

(
eθ(γ(t,e1)−γ(t,e2)) − 1

)
(a2 + b2h)

+
λ+

2

θ

(
(1 + hϑ)θ − 1

)
+
λ−2
θ

(
(1− hϑ)θ − 1

)}
,

with the final condition γ(T, e1) = γ(T, e2) = 0.
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Chapter 4. A Model with a Two-State Markov Chain

For the solution we use the following algorithm. Let (t0, . . . , tN ) be the sequence of
discretized time points with t0 = 0 and tN = T . Knowing the final conditions allows to
compute easily the control h∗T at time T . Then, using a backward scheme we solve the
corresponding ODE at tN−1. Given the value at tN−1, now we can compute the control
h∗tN−1

and we proceed until t0 = 0.
In the numerical analysis we use the set of parameters: T = 1 year, w = 1, ρ = 0,

ϑ = 0.02, λ+
1 = 10, λ−1 = 5, λ+

2 = 5, λ−2 = 20, θ = 0.5, a1 = 5, b1 = −0.1, a2 = 5, b2 = 0.1.
In Figure 4.1 we plot the optimal investment strategies for cases where the initial state

of the Markov chain is bull (lighter line) or bear (darker line) both with (solid line) and
without (dashed line) market influence. Firstly, we observe that in all cases the optimal
strategies never reach the values {−L,L} corresponding to L = 50, meaning that there
is always an interior solution. Secondly, we can see that as time approaches to maturity,
the optimal strategy in the case with impact converges to the one in the no-impact case.
Moreover, actions of the investor are very different when we compare cases with and without
impact. Consider for instance the situation where the initial state is bull. We observe
that in the no-impact case the strategy is constant and always positive, meaning that the
investor always buys. On the other hand, in the case with impact the investor short-sells if
time to maturity is large. This kind of an action might be interpreted in the following way.
The investor tries to produce a jump in the Markov chain and make advantage of lower
prices that would prevail in a future time. Clearly, she switches her behavior as time to
maturity becomes shorter, since there is not enough time to make such a change. For the
case of initial bear state, we see that the investor always short-sells. This is reasonable for
the current parameter choice as on average the prices tend to go down. For the case with
impact, the strategy turns out to be more aggressive.
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Figure 4.1: Optimal strategy under full information. The solid line (resp. dashed line)
corresponds to the case with (resp. without) impact. Other parameters: T = 1 year, w = 1,
ρ = 0, ϑ = 0.02, λ+

1 = 10, λ−1 = 5, λ+
2 = 5, λ−2 = 20, θ = 0.5, a1 = 5, b1 = 0.1, a2 = 5,

b2 = 0.1.

The different behavior for investors with market influence results in positive gains from
utility maximization. Indeed, as we see in Figure 4.2, the value functions corresponding
to the impact cases are sensibly larger than those corresponding to no-impact cases. The
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optimal value corresponding to the bad state is larger than the optimal value for the initial
good state. This is a consequence of the fact that the investor is allowed to short-sell, and
clearly this also depends on our choice of the intensities of upward and downward jumps. In
other words, we see that there is no absolute good and bad state.
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Figure 4.2: Optimal value under full information. The solid line (resp. dashed line)
corresponds to the case with (resp. without) impact. Other parameters: T = 1 year, w = 1,
ρ = 0, ϑ = 0.02, λ+

1 = 10, λ−1 = 5, λ+
2 = 5, λ−2 = 20, θ = 0.5, a1 = 5, b1 = 0.1, a2 = 5,

b2 = 0.1.

Suppose now that the available information for the investor is given by FS . Note that,
for a two-state Markov chain we have π1 + π2 = 1, then denote π1 with π, we can define
Γ′(t,π) := Γ(t, π, (1− π)) and reduce the dimension of the optimization problem. In this
case the function Γ′ can be characterized as the solution of the HJB

0 = sup
h∈[−L,L]

{
∂Γ′

∂t
(t, π) + Γ′(t, π)θ(1− h)ρ+

∂Γ′

∂π
(t, π)

(
πq11(h) + (1− π)q21(h)

)
− ∂Γ′

∂π
π(1− π)(λ+

1 + λ−1 − λ
+
2 − λ

−
2 )

+ (πλ+
1 + (1− π)λ+

2 )

(
(1 + hϑ)θΓ′

(
t,

πλ+
1

πλ+
1 + (1− π)λ+

2

)
− Γ′(t, π)

)
+(πλ−1 + (1− π)λ−2 )

(
(1− hϑ)θΓ′

(
t,

πλ−1
πλ−1 + (1− π)λ−2

)
− Γ′(t, π)

)}
.

Since, in general it is not possible to find an explicit solution to the above maximization
problem we deepen our analysis through numerical experiments. In the case of partial
information, we use an explicit finite difference method to solve the corresponding partial
integro-differential equation. In order to guarantee the positivity of the scheme we use
forward-backward approximation for the first order derivatives (see, for instance, [38]).
Also, to ensure the convergence of the scheme we verify the usual consistency and stability
conditions.
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Chapter 4. A Model with a Two-State Markov Chain

As in the full information case we study both the optimal strategy and the value function,
and obtain results that are consistent with those in the full information setting. We observe
in Figure 4.3 that optimal strategies in the impact case converge, for values of time close to
maturity, to optimal strategies in the no-impact cases. Moreover the interesting behavior of
the investor with an impact is preserved: for the initial bull state she short-sells when the
time is far from maturity and in the initial bear state the strategy is always more aggressive.
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Figure 4.3: Optimal strategy under partial information for different values of the conditional
probability of being in the bull state π. The solid line (resp. dashed line) corresponds to the
case with (resp. without) impact. Other parameters: T = 1 year, w = 1, ρ = 0, ϑ = 0.02,
λ+

1 = 10, λ−1 = 5, λ+
2 = 5, λ−2 = 20, θ = 0.5, a1 = 5, b1 = 0.1, a2 = 5, b2 = 0.1.

The value function is consistently larger for the investor with an impact, see Figure 4.4.
Finally, we analyze the gains from filtering. In order to do that we compare the

value functions corresponding to two investors. The first one uses the optimal strategy
obtained in the partial information setting, while the second one ignores the presence of
two different regimes in the market. Instead the second one uses the average parameters,
λ+ = λ+

1 π̄+λ+
2 (1− π̄), λ− = λ−1 π̄+λ−2 (1− π̄), where π̄ = a2

a1+a2
. In Figure 4.5, we observe

that the investor’s gains from using filtered estimates, instead of the average parameters,
are always non-negative. Those profits justify the additional complexity induced by partial
information.
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Figure 4.4: Optimal value under partial information for different values of the conditional
probability of being in the bull state π. The solid line (resp. dashed line) corresponds to the
case with (resp. without) impact. Other parameters: T = 1 year, w = 1, ρ = 0, ϑ = 0.02,
λ+

1 = 10, λ−1 = 5, λ+
2 = 5, λ−2 = 20, θ = 0.5, a1 = 5, b1 = 0.1, a2 = 5, b2 = 0.1.
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Figure 4.5: Gains from filtering as a function of time for different values of the conditional
probability of being in the bull state π. Parameters: T = 1 year, w = 1, ρ = 0, ϑ = 0.02,
λ+

1 = 10, λ−1 = 5, λ+
2 = 5, λ−2 = 20, θ = 0.5, a1 = 5, b1 = 0.1, a2 = 5, b2 = 0.1.
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Chapter 5

Appendix: Technical Results and
Proofs

5.1 Filtering

The following result is needed in the proof of Proposition 3.3 given below.

Lemma 5.1. For t ∈ [0, T ] let U be an integrable Ft-measurable random variable and let
FS :=

∨
t≥0FSt . Then EQ

[
U | FSt

]
= EQ

[
U | FS

]
.

Proof. The result can be obtained by applying the same idea of [12, Proposition 3.15] to
jump processes.

Proof of Proposition 3.3. This proof follows the same argument of that of [36, Theorem 3.2]

and it is given here for completeness. The idea is to compute the product Z
(h)
t f(Y

(h)
t ), for

every t ∈ [0, T ], and then its projection onto FSt . However, in order to be rigorous we need
some technical steps. Consider a function f : E → R. For every FS- predictable control h,
using the semimartingale decomposition of Y (h) and applying the Itô’s formula we get

df(Y
(h)
t ) = Q>(ht)f(Y

(h)
t )dt+ dM

(f)
t ,

where M (f) is an (F,P)-martingale and Q> denotes the transpose of the generator matrix
Q. For every t ∈ [0, T ] we introduce the process Zε = {Zεt , t ∈ [0, T ]}, where

Zεt :=
Z

(h)
t

1 + εZ
(h)
t

, t ∈ [0, T ].

Note that 0 < Zε < 1/ε and that as ε→ 0, Zεt converges to Z
(h)
t for every t ∈ [0, T ]. The

dynamics of Zε is given by

dZεt =Zεt−

∫
R

Ψ(t, Y
(h)
t− , z)

1 + εZ
(h)
t (1 + Ψ(t, Y

(h)
t− , z))

µ(dt, dz)− Zεt−
∫
R

Ψ(t, Y
(h)
t− , νt−, z)

1 + εZ
(h)
t−

ηQ(t, dz)dt.
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We apply Itô’s product rule to compute Zεf(Y (h)). Precisely, we get

d
(
Zεt f(Y

(h)
t )

)
=Zεt−Q

>(ht)f(Y
(h)
t )〉dt+ Zεt−dM

f
t (5.2)

− f(Y
(h)
t− )Zεt−

∫
R

Ψ(t, Y
(h)
t− , z)

1 + εZ
(h)
t−

ηQ(t, dz)dt

+ f(Y
(h)
t− )Zεt−

∫
R

Ψ(t, Y
(h)
t− , z)

1 + εZ
(h)
t− (1 + Ψ(t, Y

(h)
t− , z))

µ(dt, dz).

Taking conditional expectation with respect to FSt from (5.2) and applying Lemma 5.1 and
Fubini theorem we get for every t ∈ [0, T ], that

EQ
[
Zεt f(Y

(h)
t ) | FSt

]
=
π0(f)

1 + ε
+

∫ t

0
EQ
[
Zεs−Q

>(hs)f(Y (h)
s ) | FS

]
ds

+

∫ t

0

∫
R
EQ

[
f(Y

(h)
s− )Zεs−

Ψ(s, Y
(h)
s− , z)

1 + εZ
(h)
s− (1 + Ψ(s, Y

(h)
s− , z))

| FS
]
µ(ds, dz)

−
∫ t

0

∫
R
EQ

[
f(Y

(h)
s− )Zεs−

Ψ(s, Y
(h)
s− , z)

1 + εZ
(h)
s−

| FS
]
ηQ(s, dz)ds .

Note that here we also use the fact that EQ
[∫ t

0 Z
ε
s−dM

f
s | FSt

]
= 0, which follows from the

definition of conditional expectation and the fact that S and Y (h) have no common jump
times. Finally, for ε→ 0, by applying dominated convergence theorem we obtain

EQ
[
Z

(h)
t f(Y

(h)
t ) | FS

]
= π0(f) +

∫ t

0
EQ
[
Z

(h)
s− Q

>(hs)f(Y (h)
s ) | FS

]
ds

+

∫ t

0

∫
R
EQ
[
f(Y

(h)
s− )Z

(h)
s− Ψ(s, Y

(h)
s− , z) | F

S
] (
µ(ds, dz)− ηQ(s, dz)

)
,

for every t ∈ [0, T ]. Expression 3.4 follows by Lemma 5.1.

5.2 Markov decision models

This section contains proofs and some additional results on Markov decision models.

Proof of Lemma 3.15. The proof follows the same lines of [18, Theorem 9.3.1]. Let {Tn}n≥0

be the sequence of jump times of the PDMP X̃. Then we have, for every admissible strategy
{hn}n≥0 that

V {h
n} = E{h

n} [U(WT )] = E{h
n}

[ ∞∑
n=0

1Tn<T<Tn+1U(WT )

]

=
∞∑
n=0

E{h
n}
[
E{h

n} [1Tn<T<Tn+1U(WT )|Tn < T,XTn∧T
]]

=

∞∑
n=0

E{h
n}
[
E{h

n}
[
e−Λh

n

T−Tn (Ln)U(wT−Tn)
]
1Tn<T

]
= E{h

n}

[ ∞∑
n=0

1Tn<T r(Ln, h
n)

]
= J{h

n}
∞ .
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In the following we want to ensure continuity for the reward function and the transition
kernel over a class of admissible controls which is compact. Therefore, according to the
general theory, we enlarge the action space introducing the set of relaxed controls, and
define a suitable topology, called the Young Topology. We refer to [46, 18] for more details.

The set of relaxed controls is given by

Ã := {α : [0, T ]→M1([−L,L]) },

where M1([−L,L]) is the set of probability measures on [−L,L].
In the context of relaxed control, we define an admissible relaxed strategy as a sequence

of mappings {νn} : X̃ → Ã.
To make the set Ã compact, we introduce the Young topology as the coarsest topology

such that all mappings of the form

α→
∫ T

0

∫ L

−L
f(t, u)αt(du)dt

are continuous for all functions f : [0, T ]× [−L,L]→ R that are continuous in the second

argument, measurable in the first one and
∫ T

0 maxu∈[−L,L] |f(t, u)|dt < ∞ (see, e.g [18,
Chapter 8]).

We remark that the set of non-relaxed controls is a dense subspace of relaxed controls,
see e.g. [18, 36],.

For a measurable function v : [−L,L] → R and some measure ξ ∈ M1([−L,L]), we

define 〈ξ, v〉 :=
∫ L
−L v(ν)ξ(dν). In order to use the properties of the set Ã we now extend

some definitions for α ∈ Ã. First, the vector fields g of the PDMP becomes

g(x̃, α) = 〈α, g(x̃, ·)〉 =

∫ L

−L
g(x̃, ν)αs(dν),

the jump intensity is given by λαs (x̃) = 〈αs(dν), λ(t + s, ϕαs , ν)〉, and Λα
s = Λα

s (x̃) =∫ s
0 λ

α
u(x̃)du, the reward function

r(x̃, α) = e−ΛαT−tU(wT−t) ,

and finally the transition kernel is

QLv
(
x̃, α

)
=

∫ T−t

0
λαu(x̃)e−Λαu 〈αu(dν), Q

X̃
v(t+ u, ϕu(x̃), ν

)
〉du+ e−ΛαT−tv(∆̄) ,

for every measurable function v : [−L,L]→ R.
Moreover we have the following extension of the operator T

T φ(x̃) = sup
α∈Ã

(
r(x̃, α) +QLφ

(
x̃, α

))
.

In the next lemma we show that there exists a bounding function for the MDM and the
MDM is contracting. This is essential to prove that the value function is the unique fixed
point of the operator T .
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Definition 5.3. A function b : X̃ → R≥0 is called a bounding function for a MDM, if
there are constants cr, cb > 0 such that |r(x̃, α)| ≤ crb(x̃) and QLb(x̃, α) ≤ cbb(x̃) for all
(x̃, α) ∈ X̃ × A. If moreover cb < 1, the MDM is contracting.

We define for a bounding function b the set Bb of functions v : X̃ → R such that
v(x̃) ≤ Cb(x̃).

Lemma 5.4. Let b(x̃) = b(t, x) = ec(T−t)s, c ≥ 0, and b(∆̄) = 0. Then b(x̃) is a bounding
function and the MDM with the kernel QL is contracting for sufficiently large c.

Proof. Since e−Λαu(x̃) < 1 we get r(x̃, α) ≤ w. Next we turn to estimating QLb(x̃, α) =∫
X̃ b(x

′)QL(dx′|x̃, α). It holds that∫
X̃
b(x′)QL(dx′|x̃, α)

=

∫ T−t

0
ec(T−s−t)e−Λαs (x̃)

∫ L

−L

∫
R
w(1 + hz)

K∑
j=1

πjη
j(t+ s, dz)αs(dh)ds

≤ b(x̃)cη

∫ T

0
e−crdr = b(x̃)cη

1

γ
(1− e−cT ) ≤ cη

γ
b(x̃),

where we define

cη = sup
h∈[−L,L]

j∈{1,...,K}
t∈[0,T ]

{∫
R

(1 + hz)ηP(t, ej , dz)

}
<∞.

Clearly
cη
c < 1 for sufficiently large c, so that the MDM is contracting.

We now make an assumption that ensures the continuity of the reward function and
the transition kernel. This guarantees that the optimality operator T maps continuous
functions into continuous functions.

Assumption 5.5. For any real sequence {(tn, σn)}n∈N, with (tn, σn) ∈ [0, T )×∆K , such
that (tn, σn) −−−→

n→∞
(t, σ), the functions ui(t, σ, z) given in Proposition 3.7 satisfy

lim
n→∞

sup
z∈supp(ηP)

|ui(tn, σn, z)− ui(t, σ, z)| = 0 ,

where supp(ηP) indicates the set {z ∈ R : ηP(t, ei, z) 6= 0, t ∈ [0, T ], i ∈ {1, . . . ,K}}.

Proposition 5.6. Under Assumption 5.5, the mappings (x̃, α) 7→ r(x̃, α) and (x̃, α) 7→
QLv(x̃, α) for every v ∈ Bb, are continuous on X̃ × Ã with respect to the Young topology on
Ã.

Proof. Let (x̃n, αn) be a sequence converging to (x̃, α) as n→∞. Then by [45, Theorem
43.5] we have that

lim
n→∞

sup
u∈[0,T ]

|ϕ̃αnu (x̃n)− ϕ̃αu(x̃)| = 0.

This implies the continuity of the reward function r. Moreover the continuity of the mapping
(x̃, α) 7→ QLv(x̃, α) follows from the fact that, for every function v ∈ Bb, by Assumption 5.5
the mapping

(x̃, α) 7→
∫
R
v(t, w(1 + hz), π1(1 + u1(t,π, z)), . . . , π1(1 + u1(t,π, z)))ηP(t, ei, dz)
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is continuous. To prove this we can follow the same lines of [36, Lemma B.1] since, in our
setting, t 7→ ηP(t, ei, z) is continuous and λmax := sup

i∈{1,...,K}
t∈[0,T ]

ηP(t, ei, dz) <∞.
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[41] D. Cuoco and J. Cvitanić, Optimal consumption choices for a “large” investor, Journal
of Economic Dynamics and Control 22 (1998), no. 3, 401–436.
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[96] R. C. Griffiths and D. Spanò, Multivariate Jacobi and Laguerre polynomials, infinite-
dimensional extensions, and their probabilistic connections with multivariate Hahn
and Meixner polynomials, Bernoulli 17 (2011), no. 3, 1095–1125.

[97] U. G. Haussmann and J. Sass, Optimal terminal wealth under partial information,
Mathematics of Finance: Proceedings of an AMS-IMS-SIAM Joint Summer Research
Conference on Mathematics of Finance, June 22-26, 2003, Snowbird, Utah, vol. 351,
American Mathematical Soc., 2004, pp. 171–185.

130



BIBLIOGRAPHY
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