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Kurzfassung

Semantik in der Sprache ist ein grundlegender Aspekt der menschlichen Erkenntnis
und bestimmt in hohem Maße unser Verständnis und Wissen. Methoden der Wort-
Repräsentation bringen ein Computermodell ein zur Erfassung von Semantik, in dem
Vektoren als Proxys für die Bedeutung von Begriffen bereitgestellt werden, was als “Wort-
Embedding” bekannt ist. Neueste Weiterentwicklungen des Modells durch den Einsatz
neuronaler Netzwerke eröffnen eine spannende Perspektive und drängen auf weitere
Forschung zum Verständnis und zur Verwendung semantischer Repräsentations-Modelle
in der Sprach- und Textverarbeitung.

In dieser Dissertation stellen wir neue Methoden vor für die Nutzung vonWort-Repräsentations
Modellen in verschiedenen Textanalyse Aufgabenstellungen. Wir bieten auch eingehende
Analysen des Konzepts der Begriffs-Verwandtschaft in semantischen Modellen. Die Arbeit
leistet einen Beitrag zur Grundlagenforschung auf dem Gebiet des Informations-Retrieval
und der Interpretierbarkeit von Wort-Repräsentationen, sowie zur angewandten For-
schung in der sprachübergreifenden Wortbedeutungs-Disambiguierung (CL-WSD) und
der Sentiment-Analyse. Wir befassen uns mit verschiedenen Aufgaben des Informations-
managements, wie des Dokumenten-Retrieval, der Gender-Bias-Erkennung, der CL-WSD
für Sprachen, für die kaum Ressourcen vorhanden sind, und mit Volatilitätsprognosen, die
in den Bereichen Nachrichten, Gesundheit, Finanzen, und Sozialwissenschaften erstellt
werden.

In der ersten Aufgabe—des Dokumenten-Retrieval—führen wir einen neuartigen Ansatz
ein, um die Informationen, die von verwandten Begriffen gewonnen werden, in traditionelle
Retrieval-Modelle zu integrieren. Der Ansatz verallgemeinert die Idee der Translations-
Modelle für verschiedene probabilistische Modelle. Im Verlauf der Studie erkennen wir, wie
wichtig es dabei ist, zwei relevante Themen zu beachten: wie man die verwandten Begriffe
in den Repräsentations-Modellen auswählt, und wie man Ähnlichkeiten zwischen Begriffen
an die spezifischen Bedürfnisse von Retrieval-Systemen anpasst. Wir nähern uns ersterem
Thema, indem wir den Raum von Wort-Vektoren untersuchen, und letzterem, indem wir
Ähnlichkeiten von Repräsentationen kombinieren, die auf verschiedenen Annahmen über
die umgebenden Begriffs-Kontexte basieren. Unsere Evaluierung mehrerer Retrieval-Test-
Sammlungen zeigt signifikante Verbesserungen in der Suchleistung durch die Anwendung
der verallgemeinerten Translations-Modelle gegenüber starker Ausgangswerte auf dem
letzten Stand der Technik.
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Das nächste Thema befasst sich mit der Interpretierbarkeit des Wort-Embedding mittels
Einführung eines neuartigen neuronalen Repräsentations-Modells. Das Modell überträgt
dichtes Wort-Embedding auf dünn besetzte Vektoren, für die die semantischen Konzepte
der Repräsentationen explizit bestimmt sind. Als Fallstudie verwenden wir diese expliziten
Repräsentationen, um den Grad von Gender-Bias in Wikipedia-Artikeln zu quantifizieren.
Unsere Analyse zeigt starke Verzerrungen in einigen spezifischen Berufen (z.B. “nurse”)
in Richtung weibliche Konnotation.

Die nächste Aufgabe betrifft CL-WSD für ressourcenarme Sprachen / Domänen (von
Englisch zu Persisch in unserer Arbeit). Wir nähern uns dieser Aufgabe mittels der
semantischen Ähnlichkeit von übersetzten Begriffen in ihren jeweiligen Kontexten und
zeigen die Vorteile der Nutzung von Wort-Repräsentationen für CL-WSD, insbesondere
in Abwesenheit von zuverlässigen Ressourcen.

Schließlich tragen wir zum letzten Stand der Technik in der Sentiment-Analyse bei,
indem wir die verallgemeinerten Translations-Modelle zur Vorhersage der Volatilität an
Finanzmärkten nutzen. In Kombination mit tatsächlichen Marktdaten übertrifft unser
Ansatz andere State-of-the-Art Methoden und zeigt die Vorteile der Verwendung von
textuellen Daten zusammen mit semantischen Methoden für Volatilitätsprognosen.



Abstract

Semantics in language is a fundamental aspect of human cognition and in great ex-
tent defines our understanding and knowledge. Word representation methods suggest
a computational model to capture semantics by providing vectors as proxies to the
meaning of terms, known as word embedding. Recent advancements of the models using
neural network approaches open an exciting perspective, and urge further research on
understanding and making use of semantic representation models in language and text
processing.

In this thesis, we introduce novel methodologies to exploit word representation models
in various text analysis tasks. We also provide in-depth analyses of the concept of term
relatedness in semantic models. The thesis contributes to basic research in the area of
Information Retrieval and word representation interpretability, as well as applied research
in Cross-Lingual Word Sense Disambiguation (CL-WSD), and sentiment analysis. We
cover several tasks in Information Management such as document retrieval, gender bias
detection, CL-WSD for language with scarce resources, and volatility prediction, studied
in the news, health, finance, and social science domains.

In the first task—document retrieval—we introduce a novel approach to integrate the
information of related terms in traditional retrieval models. The approach generalizes
the idea of the translation model to various probabilistic models. In the course of the
study, we realize the importance of addressing two relevant topics: how to select the
related terms in the representation models, and how to adapt the term similarities to the
specific needs of retrieval systems. We approach the former by exploring the space of
word vectors, and the latter by combining similarities of representations, created based on
different assumptions on the surrounding contexts of terms. Our evaluations on various
retrieval test collections show significant improvements in search performance by using
the generalized translation models in comparison to strong, state of the art baselines.

The next topic approaches the interpretability of word embedding by introducing a novel
neural-based representation model. The model transfers dense word embedding to sparse
vectors where the semantic concepts of the representations are explicitly specified. As a
case-study, we use these explicit representations to quantify the degree of the existence
of gender bias in the Wikipedia articles. Our analysis shows strong bias in a few specific
occupations (e.g. nurse) to female.
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The next task regards CL-WSD for low-resource languages/domains (English to Persian
in our work). We approach this task using the semantic similarity of the translation terms
in their contexts, showing the benefits of exploiting word representation for CL-WSD,
specially in the absence of reliable resources.

Finally, we contribute to the state-of-the-art of sentiment analysis, by exploiting the
generalized translation models to predict volatility in financial markets. Our approach,
when combined with factual market data, outperforms state-of-the-art methods, and
shows the advantages of using textual data together with semantic methods for volatility
forecasting.
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CHAPTER 1
Introduction

Language, to a great extent, defines who we are, by forming our fundamental abilities:
thinking, reflecting, communicating, and knowing. Analyzing and understanding text,
a resource encompassing subtleties of human language, is a fascinating yet intricate
challenge in Artificial Intelligence (AI). The complexity of language makes it difficult to
clearly deal with the notion of language understanding in AI and indeed makes it an
intriguing topic for research and contemplating.

An essential building block of understanding language is the comprehension of the
underlying meaning of words—semantics—and of the relations/similarities between
words—relatedness. Studying the semantics of words has been the concern of many
linguists, philosophers, and thinkers throughout history. In the last decades, the com-
putational semantics field brought this concept to the computer science world. In
general, resources in computational semantics are created based on two main approaches:
knowledge annotation and statistical computation.

The knowledge-based approaches mainly rely on encoding the knowledge of experts
in lexical resources. These resources usually contain definitions of terms as well as
their relations, represented in data structures such as graphs, hierarchies, and sets (e.g.
synsets). WordNet [Fel98], BabelNet [NP10], and Dbpedia [ABK+07] are some publicly
available examples of such resources. While these knowledge resources provide a valuable
and (fairly) accurate representation of language, creating and expanding them is highly
expensive and time consuming. This obstacle makes it hard for these resources to cover a
wide range of concepts/words of a language (lack of completeness), adapt to the changes
in languages or the emergence of new concepts, and to be extended to new languages
and domains.

As an alternative approach, statistical semantics suggests a data-oriented solution that
relies on finding patterns of term occurrences in large amounts of text data. Such semantic
models can be easily created from the text in any language or domain with much less
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1. Introduction

Figure 1.1: A sample semantic representation of a limited number of terms, projected
into two-dimensional space.

human resources than knowledge-based approaches. The words in statistical approaches
are commonly represented by real-valued high dimensional vectors, referred to as semantic
representations of words. In these vectors, the dimensions stand for some explicit or
implicit concepts in language. In addition to the term “semantic representations of
words”, several similar names such as “semantic vectors”, “word representations”, and
“word embedding” are widely used in literature. Although these names can refer to
slightly different representations, in this thesis we used them interchangeably unless
the differences are explicitly explained. Also, as the focus of the thesis is on statistical
methods, in general we simply use the term “semantics” instead of “statistical semantics”.

The methods to create a semantic representation generally follow one core idea: terms
that share common contexts (terms surrounding a term) should have similar vector
representations and therefore be semantically related. These methods read the contexts
of the terms in a corpus and eventually represent each term by a vector such that the
semantically related terms are (geometrically) close to each other in the corresponding
high-dimensional space. A sample semantic representation for a small set of terms is
shown in Figure 1.1. For the sake of visualization, the original vectors are projected into
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1.1. Historical Paradigms in AI and Language Processing

a two-dimensional space. As shown, terms with some semantic relations (e.g. months,
countries, verbs about moving, etc.) are close to each other.

Semantic vectors have been widely used in various text analysis applications. The main
application domain in this thesis is Information Retrieval (IR), “a field concerned with the
structure, analysis, organization, storage, searching, and retrieval of information” [Sal68].
Search engines are the most well-known products of this field. In a typical IR scenario, a
user queries information and an IR system retrieves the most relevant documents from
a data collection. IR is an exciting and challenging domain and can benefit from the
information provided by semantics methods. As discussed throughout the thesis, the
relations between terms, provided by semantic models, can be effectively exploited for
search performance.

In addition to IR, this thesis contributes to the state-of-the-art in the Natural Language
Processing (NLP) community. The NLP domain deals with the challenges of analyz-
ing, interpreting, and understanding complexity of human language through computer
programs. Understanding semantics and especially the semantics of words plays an
important role in research in NLP. The studies in this work contribute to NLP topics
such as sentiment analysis, semantic vector interpretability, and cross-lingual word sense
disambiguation.

The rest of the chapter is organized as follows: In Section 1.1, we review the philosophical
ideas, grounding the basis of modern statistical semantics. Section 1.2 points out the
open challenges and describes the motivations of this work. In Section 1.3, we explain in
detail the contributions of the work, followed by Section 1.4 to plot the structure and
road-map of the thesis.

1.1 Historical Paradigms in AI and Language Processing
The history of research in AI, since its birth in 1950s, has experienced three consecutive
eras, each following one of the two main philosophical paradigms of knowledge acquisi-
tion: Empiricism and Rationalism. According to A Dictionary of Philosophy [Lac96],
Empiricism stands for the idea that “knowledge is distilled from one’s experiences”,
while Rationalism refers to “any view appealing to reason as a source of knowledge or
justification”.

In this section, we first review these two paradigms in the perspective of AI history
and language processing—a central research topic of AI. We then briefly study the
linguistic theories on (empirical) computational semantics, followed by a discussion on
the advantages as well as limitations of such approaches. This section considerably owes
its ideas to the following articles: [Wil08,Wil11,Chu11,Ste11].

1.1.1 Rationalism vs. Empiricism

The first era of AI research (1950s–1970s) followed the ideas of Empiricism through
data-oriented approaches. The Empiricism paradigm in AI relies on the exploration of

3



1. Introduction

knowledge in existing data to acquire understanding, to predict the behavior of a system,
or to appropriately react in a situation. Some of the outstanding works of this era are
Shannon’s information theory [Sha48], Harris advocations on the close relation between
grammatical analysis of natural language and information-theoretic principles [Har51],
and Firth positions on context-dependent nature of semantics [Fir57].

In the early 1970’s, the interest in Empiricism faded through significant criticisms
by rationalist positions, specially in the work of Chomsky [Cho57], and Minsky and
Papert [MP69]. The Rationalism paradigm proposes the explicit definition of knowledge
using a set of defined rules, sometimes referred to as rule-based or symbolic AI. Approaches
in this paradigm rely on explicit knowledge definition from human experts. The knowledge
of a particular domain is encapsulated in a knowledge resource, used by an AI agent to
find an answer for a problem/question via applying the set of (pre-defined) rules.

As an example in the area of language processing, the work of Chomsky on formal
linguistics [Cho57] explains language by means of a set of rules, defined through rep-
resentation tools such as automata with formations and transformations. The task of
such rule-based representations is to separate meaningful from meaningless expressions.
A fundamental assumption in this paradigm is that there exists a reliable and general
syntactic well-formedness in every language, based on which we can fully define a language
if we only discover and then formalize all the rules.

During this period (1970s–1990s), the main thrust of work in NLP was in the search for
local and deep, grammatical relations in English but with little concern about words
themselves or their effects in language. The hand-coded lexicographies are some of the
valuable resources of these lines of work, still actively used in research communities.

The third era of AI research, started in the late 1980s and continues to the present day,
witnesses the revival of Empiricism. Specially in the last years due to the exponential
increase of data, the data-oriented paradigm has been particularly attracting more
attention, and is the main direction of this thesis.

1.1.2 Computational Semantics: An Empirical Approach

Before discussing the computational approaches to semantics, let us first gain a better
understanding of the notion of “semantics”, a concept which has been extensively studied
in various disciplines such as philosophy, linguistics, and psychology. A well-known
approach to understand what is semantics is by the use of stick-picture situations; a
method used for decades to teach a new language. The stick-pictures method expresses a
simple proposition in an unambiguous situation. An example of a stick-picture is shown
in Figure 1.2.

The data-oriented algorithms for capturing the notion of semantics generally owe their
core ideas to the work of Firth [Fir57], summarized with the memorable line: “You
shall know a word by the company it keeps.” The spirit of this idea is represented in
the computational semantics field with a view in which words take on meaning from

4



1.1. Historical Paradigms in AI and Language Processing

(a) The door is shut. (b) The door is open.

Figure 1.2: An example of defining semantics with stick-picture situations. Extracted
from [Wil08]

their neighbors (the words that co-occur in a context around a word). Wilks [Wil08]
associates the Empiricism paradigm in computational linguistics to even before the “birth
of AI”, to Wittgenstein’s later work on language, the Philosophical Investigations [Wit53].
Wittgenstein views the meaning of words in regard to their usage in language by turning
the attention to the activity of using language. Wittgenstein encapsulates this idea into
the notion of language games. The idea of language games reflects an analogy between
the rules of language and the rules of games, as if saying a sentence or proposition in a
language is like making a move in a game. Wittgenstein uses this analogy to demonstrate
that the meaning of words depends on their usage in the various and multiform activities
of human. Wittgenstein, of course, did not know about computers in the modern form.
However, the core of his thesis on the nature of language resonates with the modern
data-oriented approaches in computational linguistics.

The Empiricism in computational semantics, interestingly, shares many principal as-
sumptions with IR: a view that language consists only of words with no meta-codings
of concepts, and understanding the meaning of words is embedded in their usage in
the language corpus. The rejection of such meta-coding in IR is summarized by Spark
Jones [Jon03]: “taking words as they stand”. This view of language closely resonates
with our approaches to IR challenges in this thesis.

Despite the promising advancements and perspectives provided by data-oriented meth-
ods to semantics, these approaches also inherit some common issues or inadequacies,
mentioned in the following.

The first challenge is that as the word representation methods fundamentally consider the
related words as the words with similar contexts, they generalize all different representation
relations e.g. antonyms, hypernyms, hyponyms, co-hyponyms, synonyms, antonyms,
etc. into one notion of relatedness. This lack of information can be insufficient in many
application e.g. in IR, using all these types can bias the search to unrelated topics (e.g.
searching for “dog” instead of “cat”!). Kruzewski and Baroni [KB15] notice this by an
example: “[in a statistical semantic model,] ‘animal’, ‘puppy’, and ‘cat’ are all closely
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1. Introduction

related to ‘dog’, but if you tell me that Fido is a dog, I will conclude that he is an animal,
that he is not a cat, and that he might or might not be a puppy.”

The second issue of the semantic word representation methods is that they and their
corresponding mathematical functions can provide an approximation on the relatedness
of any two words, although this relatedness could be perceived as completely meaningless
in the language. Karlgren et al. [KHS08] point it out by examples, showing that word
representation methods are too ready to provide answers to meaningless questions: “What
is more similar to a computer: a sparrow or a star?”, or “Is a cell more similar to a
phone than a bird is to a compiler?”

This last challenge concerns the fundamental characteristics of any statistical method:
the more frequent incidents define the main characteristics of the model. Wilks [Wil08]
describes it with an example: “Imagine asking the audience in a quiz show ‘Who wants to
become a Millionaire?’. The most frequent answer is usually [assumed to be correct], but
not always [necessarily], correct.” This trait is also present in the algorithms that model
semantic representations: in the semantic space, more frequent words tend to become
semantically similar with much more other words in comparison with less frequent ones,
which is due to the existence of more information (contexts) for the frequent words and
not necessarily their intrinsic meanings.

These issues are the natural challenges of empirical approaches.

1.2 Motivations and Research Questions
As mentioned, an established method for quantifying the relatedness between words is
the use of semantic word representations or word embeddings. These representation
vectors are proxies of the meaning of words and distance functions are proxies of semantic
relatedness. Fundamentally, word embedding models exploit the contextual information
of the target words in a corpus to approximate their vectors, and hence their relations to
other words.

It is indeed an exciting time to study word representation learning and its applications
on text analysis tasks. On one hand the extensive amount of available data as well
as computational resources and on the other hand the advancements in algorithms
make research on representation learning and statistical semantics highly interesting. In
particular, recent developments on word embeddings based on neural networks principles
provide a novel source of information for term-to-term relatedness.

A longstanding research question in IR is the problem of introducing semantics into docu-
ment retrieval. Semantic vectors became popular with Latent Semantic Analysis/Indexing
(LSA/LSI) [DDF+90] in the early 1990s. Probabilistic Latent Semantic Indexing [Hof99]
(pLSI), Latent Dirichlet Allocation [BNJ03] (LDA), Random Indexing [RJSK10], and
most recently, word2vec [MCCD13] and GloVe [PSM14] are its successors. Nevertheless,
the “basic” models, based on the Probabilistic Retrieval (PR) Framework [RZ+09], and
Language Modeling (LM) [PC98] have maintained a respectable command of the research
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1.2. Motivations and Research Questions

and practice of IR. Despite the differences between the models, they are all fundamentally
based on terms for establishing topical relevance relationships between documents and
queries. A fundamental assumption in these models is the independence between terms
in documents. One way to challenge this assumption is to go beyond the surface of terms
and consider their semantics and relations in the document and eventually in IR models.
Studying the approaches to combine the recent semantic models with IR models is the
first research question of this thesis; Q1: How can term associations be properly integrated
in the PR Framework and LM while preserving their robustness and effectiveness?

Integrating word embedding with IR models requires a deep understanding of its building
block: term relatedness. While word embedding models promise a quantification of the
similarity between terms, it is not clear to what extent this similarity value can be of
practical use for distinguishing effective terms. Addressing this question has the potential
to improve any other studies that use the related terms of word embedding models in text
analysis tasks. Therefore, we put forward the second research question Q2: Which range
of similarity values is indicative of the actual term relatedness in document retrieval?

While the effective selection of terms based on their similarities is a crucial step, calculating
similarity still primarily depends on the underlying idea of creating semantic models:
terms that share more common window-contexts (some terms around a term) tend
to appear closer in the representation space and therefore are more probable to be
considered as related. This is however not a sufficient assumption, especially for the needs
of information retrieval, as for instance antonyms or co-hyponyms share common window-
context—and therefore are considered as related—but can potentially bias the query to
irrelevant topics. This issue raises the need to adapt the word embedding’s relatedness
in order to more effectively fit to IR tasks. To address it, we explore Q3: Which other
statistical subtleties can enrich window-context word embedding similarities for better IR
performance, and how to exploit such information to effectively select relevant terms?

So far the focus has been on the effectiveness of models. Beside performance, an important
aspect of statistical models is whether they can be intuitively understood and interpreted.
Interpretability particularly becomes increasingly important in data analysis and machine
learning as the algorithms become more complicated and at the same time they gain
greater roles in our life and society. In fact, it is crucial to know why a model suggests
specific results and what the inference process is. In the context of word embedding
models, despite their wide range of applications, the semantic vectors and the meanings
of their corresponding dimensions remain difficult to interpret and hard to analyze. A
natural way to make a semantic representation model understandable is by explicitly
specifying the semantic concept that each dimension of its vectors refers to. Having
such interpretable vectors would enable error resolution and better causal analysis, e.g.
one can investigate the reason for similarity of two terms through tracing the matching
dimensions with high values. In this thesis, we investigate this topic by exploring the
question of Q4: How to make word embedding vectors interpretable while preserving their
effectiveness?

The discussed topics address basic research questions, mainly in the framework of
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1. Introduction

document retrieval. The following topics study the application of the introduced methods
in two other text analysis areas, namely cross-lingual word sense disambiguation, and
sentiment analysis.

Word Sense Disambiguation (WSD) is the task of automatically selecting the most related
sense for a word occurring in a context. Cross-Lingual Word Sense Disambiguation (CL-
WSD) targets disambiguation of one word in a source language while translating to
a target language. The approaches in (CL-)WSD typically require rich information
resources such as structured knowledge resources or large amounts of annotated data i.e.
parallel corpora (supervised methods). While these approaches usually achieve excellent
results in practice, they have to face the knowledge acquisition bottleneck which is a
particular problem in languages with scarce resources (low-density) like Persian. To
address this problem, we approach CL-WSD using only information extracted from
existing corpora as well as a simple dictionary (unsupervised method). In particular, the
thesis explores Q5: How can word embedding and semantic similarity of the terms in
context be exploited for CL-WSD in the scenario of low-density languages, specially with
the application of English to Persian?

Finally, in the last research topic, we explore the use of word embedding-based IR models
in sentiment analysis, and in particular, its application in financial volatility prediction.
Volatility is an essential indicator of instability and risk in financial markets and has
gained considerable attention during the last decades. Volatility prediction is typically
approached using factual market data. However, the significant increase in the quantity
and richness of textual data during the last years encourages the exploration of text
analysis approaches. An interesting resource of textual information is the companies’
annual disclosures, known as 10-K filing reports. The reports contain comprehensive
information about the companies’ business as well as risk factors. Therefore, as the last
research question in this thesis, we investigate Q6: How can we exploit novel IR term
weighting models based on word embedding for sentiment analysis of 10-K reports to
effectively predict financial volatility?

1.3 Contributions
Considering the above mentioned research questions, the main goal of this thesis is
providing an in-depth understanding of semantic word representations in information
retrieval by proposing novel IR models, representation space analysis, and word-context
scope exploration. The thesis also contributes to the topic of word representation
interpretability as well as the state-of-the-art of cross-lingual word sense disambiguation
and document-based sentiment analysis. The proposed methods are applied on various
domains such as news, health, finance, and social science. In the following, we review
each of the contributions in detail.

As mentioned in Section 1.2, the first research question (Q1) concerns the integration
of semantic models in the Probabilistic Relevance Framework by addressing term in-
dependence. To approach it, we consider a form of term-term relation, based on the
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underlying concepts of each term. The concepts related to each term are extracted
from an embedding model. Now in our novel retrieval models, instead of counting the
occurrences of a term, the models count the occurrences of the term’s concepts in the
documents. We exploit this idea to revisit a wide spectrum of existing IR models, namely
Pivoted Document Normalization, BM25, BM25 Verboseness Aware, Multi-Aspect TF,
and Language Modeling. It turns out that this approach is in fact a generalization of the
translation model [BL99] from Language Modeling to the PR Framework; and therefore
we refer to the models as Generalized Translation models. In studying them, we observe a
potential limitation of the translation models: they only affect the term frequency based
components of all the models, ignoring changes in document and collection statistics. To
correct this limitation, we propose extending the translation models with the statistics
of term associations and provide extensive experimental results in Ad-hoc, news, and
health domains to demonstrate the benefit of the newly proposed methods. Additionally,
we compare the translation models with query expansion methods based on the same
term association resources, as well as based on Pseudo-Relevance Feedback (PRF). We
observe that Generalized Translation models always outperform the query expansion
methods, but provide complementary information with PRF, such that by using PRF
and our translation models together we observe results better than the current state of
the art [RLHZ16].

The second contribution concerns the selection of related terms to a term in word
embedding by analyzing similarity ranges (Q2). We hypothesize that the related words
can be identified by a threshold on similarity values which separates the semantically
related words from the non-related ones. To indicate such a threshold, we first observe
and quantify the uncertainty of word embedding models with respect to the similarity
values they generate. Based on this, we introduce a general threshold which effectively
filters related terms. We particularly explore the effect of dimensionality on this general
threshold by conducting the experiments in different vector dimensions. The effectiveness
of the general threshold is evaluated on several Ad-hoc and news collections using various
Generalized Translation models. The evaluation shows that using the proposed threshold
leads to significantly better results than the baseline while being equal to, or statistically
indistinguishable from, the best achieved results by parameter tuning [RLH17,RLH16].

As mentioned before, regardless of a high potential of word embedding as a resource
for related terms, the incidence of several cases of topic shifting deteriorates the final
performance of the applied retrieval models (Q3). To address this issue, we revisit the
use of global context (i.e. the term co-occurrences in documents) to measure the term
relatedness. We hypothesize that in order to avoid topic shifting among the terms with
high word embedding similarity, they should often share similar global contexts as well.
We therefore study the effectiveness of post filtering of related terms by various global
context relatedness measures. Experimental results show significant improvements in
two test collections, and support our initial hypothesis regarding the importance of
considering global context in retrieval [RLHZ17].

The next topic contributes to the interpretability of word embedding models (Q4) by
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transferring low-dimensional semantic vectors (dense vectors) of words to explicit repre-
sentations. Explicit representations of words i.e. vectors with clearly-defined dimensions,
which can be words, windows of words, or documents are easily interpretable, and recent
methods show competitive performance to the dense vectors. In this contribution, we
propose a method to transfer a state-of-the-art neural-based embedding model to its
explicit representation model. The method provides interpretable explicit vectors while
keeping the effectiveness of the original model, tested by evaluating the model on several
word association collections. As a case study on the use of our explicit representation,
we propose a novel method to quantify the degree of the existence of gender bias in the
English language (used in Wikipedia) with regard to a set of occupations. By measuring
the bias towards explicit Female and Male factors, the work demonstrates a general
tendency of the majority of the occupations to male and a strong bias in a few specific
occupations (e.g. nurse) to female [RMLH17].

As discussed before, the thesis also explores the application of the word embedding-based
methods on CL-WSD and sentiment analysis (Q5). The proposed approach in CL-WSD
exploits semantic similarity to find the best Persian translation of an ambiguous English
term in an English sentence. In this approach, the method first uses a lexicon to translate
the ambiguous English term to candidate Persian terms. It then calculates the semantic
similarity values between each candidate and a Persian translation of the sentence,
and finally selects the candidate term with the highest similarity value. The semantic
similarity is calculated using a generated Persian word embedding model. We evaluate
this approach on a recent evaluation benchmark and compare it to the state-of-the-art
unsupervised system. The results show that the proposed method outperforms the
state-of-the-art system in various evaluation metrics [RLHD17,RSL+16].

For sentiment analysis of financial reports mentioned in Q6, the thesis proposes the
exploitation of the Generalized Translation models. To estimate the sentiment of a
report, we use a lexicon of financial terms and calculate their weights in the report using
the embedding-based translation models. By extensive evaluation of various sentiment
analysis methods, we observe significant improvement with the proposed approach over
state-of-the-art methods on volatility prediction accuracy. In addition, since factual
market data have been widely used as the mainstream approach to forecast volatility,
we study different fusion methods to combine text and market data resources. The final
result achieves better performance than using each of the resources alone and shows the
promising effectiveness of exploiting text resources for volatility prediction [RLB+17].

1.4 Structure of Thesis

The thesis is structured as follows: in Chapter 2, we explain in detail various algorithms
to create word embedding models, followed by reviewing related studies.

The next six chapters respectively discuss the six research questions of the thesis (Q1-Q6),
mentioned in Section 1.2.
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The first four chapters (Chapter 3 to Chapter 6) discuss basic research on integration,
adaptation, and interpretability of word embedding in IR. Chapter 3 studies the Gener-
alized Translation models and reports their performances on document retrieval tasks.
The novel translation models are then used in Chapter 4 to analyze the space of word
embedding models in different dimensions and to propose a general threshold on similarity
values for selecting the related terms. Chapter 5 continues this direction by examining
the idea of combining window-context with global-context embeddings. In Chapter 6, we
explore the interpretability of word embedding, followed by providing a case study on
gender bias in Wikipedia.

The two chapters afterwards discuss the application of the introduced methods in two other
text analysis tasks. Chapter 7 explains our unsupervised method for cross-lingual word
sense disambiguation and evaluates it on the English-Persian test collection, described
in Appendix A; Chapter 8 thoroughly studies sentiment analysis methods for financial
volatility prediction using the Generalized Translation models.

Finally in Chapter 9, we conclude the thesis and discuss open research questions.
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CHAPTER 2
Background and Related Work

This chapter provides an in-depth background on word representation models and their
position in Information Retrieval. We start with studying various methods of creating
word representations, followed by a comprehensive review on the state-of-the-art of
applying word embedding in IR.

2.1 Word Representation Models

Word representation models and their applications has been a focus of NLP and IR
communities for decades. In this section, we explain well-known and widely used methods
for creating semantic word representations. As discussed before, the dimensions of the
word vectors stand for some forms of semantic concepts in language which can be explicit
(i.e. documents, or terms) or implicit (i.e. determined from the data, but not matching
any existing terms or phrases).

In the following, we start with discussing an explicit representation model, followed by
explaining two matrix factorization approaches for creating low-dimensional vectors. Two
alternatives to matrix factorization are discussed afterwards: first an iterative method
using random vectors, and then a prediction-based model based on neural networks.
Finally, we discuss unobvious relations between the word representation models as well
as their performance differences in practice.

Before explaining the word representation models, let us define some basic notations
and operations: Any word representation model results to a set of vector representations
of terms, denoted as V , in the size of |W | × d where W is the collection of terms in a
language, and d is the dimension of the vectors. Using such vectors, one can calculate the
semantic relation between two terms based on some measures of vector similarity/distance.
We use the cosine function throughout the thesis:
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2. Background and Related Work

sim(w,w′) = cosine(w,w′) = Vw · Vw′
|Vw| |Vw′ |

(2.1)

where Vw and Vw′ are the vectors of the terms w and w′, respectively. While the use of
cosine may be arguable, it is the current practice and an investigation in this sense is
outside the scope of this thesis.

2.1.1 Explicit Word Representations: Point Mutual Information

Let us start with explicit word representation models, i.e. the models where each
dimension of every term vector refers to a specific language entity e.g. a term in the
short window-contexts around the original term, or a document containing the term.
The explicit word representations could become very high-dimensional (upto the number
of terms/documents in the collection), and also highly sparse (as an arbitrary term
generally does not co-occur with many other terms or appear in many documents).
Despite these facts, as mentioned in the introduction, explicit representation vectors have
the benefit of being interpretable and are also the starting point for creating some of
the low-dimensional word representations (discussed later in the section). It is therefore
important to thoroughly discuss and understand them.

For the sake of brevity, in the following we only discuss the explicit semantic vectors
based on window context terms (i.e. any term in the given window context of a term at
hand), while the approaches can be easily generalized to bigger contexts i.e. paragraphs
or documents.

Following this setting, in our explicit vectors, the number of dimensions is equal to the
number of words in the collection: d = |W |. We define X as the set of all co-occurrence
pairs (w, c), captured from window-contexts of the corpus, where w ∈ W and c ∈ W
denote an arbitrary term and context term.

An explicit representation model uses the statistics extracted from X to define the co-
occurrence relation between two terms, known as first-order or syntagmatic relation [SP93].
A well-known approach for the first-order relation is based on Point Mutual Information
(PMI) [CH90,DPL94,NN94]. PMI measures how distinguishable is the probability of
co-occurrence of two terms from their independent occurrence probabilities, defined as
follows:

PMI(w, c) = log p(w, c)
p(w)p(c) (2.2)

where p(w, c) is the probability of (w, c) in the co-occurrence collection: #(w, c)/|X| and
p(w) is the probability of the appearance of w with any other term: #(w, .)/|X| (same
for p(c)).

A widely-used alternative is Positive PMI (PPMI) which replaces the negative values
with zero:

PPMI(w, c) = max(PMI(w, c), 0) (2.3)
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2.1. Word Representation Models

Given either of the first-order relation methods, we define the explicit vector representation
of term w as a vector with |W | dimensions, where the value of each dimension is the
PMI/PPMI between w and the corresponding term c of the dimension. As discussed
at the beginning of the section, having vector representations of two terms (w and w′),
we calculate the semantic similarity between the terms using Eq. 2.1. This semantic
similarity is also known as second-order or paradigmatic relation between the terms.

2.1.2 Matrix Factorization: Latent Semantic Indexing, GloVe

As mentioned, the explicit word representations are generally in very high dimensions
(∼ 10K − 500K when terms as dimensions) and therefore inefficient for storing and
computing. This can especially be a problem when the vectors are used as features for
machine learning applications. Dimensionality reduction methods address this problem
by providing low-dimensional or dense vectors (∼ 10− 1000). Although the dimensions
in dense word vectors are hardly interpretable, in practice they are more efficient than
explicit word representations. In addition, due to the elimination of noise through
dimensionality reduction processes, dense representations are in general expected to be
more effective in downstream applications or term-similarity benchmarks.

In the text analysis community, one well-known approach for creating dense vectors
is Latent Semantic Analysis/Indexing (LSA/LSI) [DDF+90], initially applied on the
term-document matrix and later on the term-term PMI matrix [Sch92]. To be consistent
with the previous subsection, we only discuss the application of the LSI method on the
term-term PPMI/PMI matrix, as applying it on the term-document matrix follows the
same principle.

Calculating LSA is based on the Singular Value Decomposition (SVD), a mathematical
matrix factorization technique broadly used in signal processing and statistics. To create
the Latent Semantic Index, SVD is applied on the PMI/PPMI matrix V (with size of
|W | × |W |), resulting to the following matrices:

V = UΣCT (2.4)

where U is the term matrix with size of |W | ×m, m is the rank of V (number of linearly
independent rows), Σ is an m×m diagonal matrix with singular values along the diagonal,
expressing the importance of each dimension, and finally CT is the context matrix in
m× |W |.

The singular values in Σ provide a quantification of the importance of each dimension,
sorted from the most to least important one. To reduce dimensionality, we keep d (e.g.
300) top values on the diagonal of Σ and set the rest to zero. This method is referred to
as truncated SVD where the parameter d < m is the size of the embedding vectors. In
practice, we simply truncate d first dimensions of the U matrix, resulting to a |W | × d
words representation matrix.
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2. Background and Related Work

Recently, Pennington et al. [PSM14] introduce the GloVe representation by following
the idea of factorizing an explicit representation matrix to dense vectors. In GloVe, the
explicit matrix is a term-term co-occurrence matrix Y of |W | × |W | size, factorized to
two dense matrices: V , and Ṽ , the set of term and context vectors, respectively. Both
dense matrices are of |W | × d size and randomly initialized. GloVe aims to find some
optimal values for the dense vectors by optimizing the following objective function:

J =
|W |∑
i=1

|W |∑
j=1

f(Yij)(V T
wi
Ṽwj + bi + b̃j − log Yij)2 (2.5)

where bi and b̃j are bias for the ith term, and jth context term respectively, and f is the
weighting function, defined as follows, that assigns relatively lower weights to rare and
frequent co-occurrences:

f(Yij) =
{

( Yij

Ymax
)α if Yij < Ymax

1 otherwise
Ymax = max

i,j
Yij (2.6)

As suggested by the authors, the parameter α is set to 0.75 and the final representations
are the average of the term vectors V and context vectors Ṽ .

2.1.3 Iterative Vectors: Random Indexing

The introduced matrix factorization methods achieve the dense vectors from an explicit
representation matrix, and in principle require large memory for storing the explicit
matrix as well as high computational resources. As an alternative, Sahlgren [Sah05]
introduces Random Indexing, a highly efficient method to generate dense word vectors.
Random Indexing only stores two sets of dense vectors: index vectors and context vectors;
and iteratively trains them in the following steps:

• In the first step, the index vectors are randomly generated and assigned to each
context. These index vectors are sparse so that just a small number of their elements
are randomly set to +1 or -1, and the rest are 0.

• Then, while reading the text, every time a given term occurs, the index vectors of
the terms in its context are added to the context vector of the term. Terms are thus
represented by context vectors that are effectively the sum of the terms’ contexts.

The fact that Random Indexing only maintains two sets of low-dimensional matrices in
the memory and does not require creating a large explicit matrix, provides considerable
practical benefits. This is also a characteristic of the prediction-based methods, discussed
below.
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2.1.4 Prediction Instead of Counting: word2vec

Prediction-based representation models are rooted in the idea of language modeling:
predicting the probability of occurrence of a term, given the observation of another
term when they co-occur in a context window. Several studies have approached the
estimation of these probabilities using neural networks techniques [BDVJ03, CW08].
More recently, Mikolov et al. [MSC+13] introduce word2vec, an efficient and effective
neural network-based approach. The word2vec method suggests two prediction models:
SkipGram, which predicts the context terms of a term from the occurrence of the term,
and CBOW, which predicts the occurrence of a term, given its context terms. In the
following, I only explain the SkipGram model as the CBOW is conceptually similar.

As in GloVe and Random Indexing, the SkipGram model starts with two randomly
initialized sets of vectors: term (V ) and context (Ṽ ) vectors, both of size |W | × d. The
objective of SkipGram is to find a set of V and Ṽ—as the parameters of an optimization
algorithm—by increasing the conditional probability of observing a context term c given
another term w when they co-occur in a window, and decreasing it when they do not. In
theory, this probability is defined as follows:

p(c|w) = exp(VwṼc)∑
c′∈W exp(VwṼc′)

(2.7)

where as before, Vw and Ṽc are the term vector of the term w and the context vector of
the term c, respectively.

Obviously, calculating the denominator of Eq. 2.7 is highly expensive and a bottleneck for
scalability. One proposed approach for this problem is the Noisy Contrastive Estimation
(NCE) [MT12] method. The NCE method, instead of computing the probability in Eq. 2.7,
measures the probability which contrasts the genuine distribution of the term-context
pairs (given from the corpus) from a noisy distribution. The noisy distribution N is
defined based on the unigram distribution of the terms in the corpus. Formally, it defines
a binary variable y, showing whether a given pair belongs to the genuine distribution:
p(y = 1|w, c). Further on, Mikolov et al. [MCCD13] proposed the Negative Sampling
method by some simplifications in calculating p(y = 1|w, c), resulting in the following
formula:

p(y = 1|w, c) = exp(VwṼc)
exp(VwṼc) + 1

= σ(VwṼc) (2.8)

where σ is the sigmoid function (σ(x) = 1/(1 + exp(−x))). Based on this probability, the
cost function of the SkipGram method is defined as follows:

J = −
∑

(w,c)∈X

[
log p(y = 1|w, c) + k E

či∼N
log p(y = 0|w, či)

]
(2.9)

where či is each of the k sampled terms from the noisy distribution N , X—as in
Secion 2.1.1—is the set of all co-occurrences, and E denotes expectation value, calculated
as the average for the k sampled terms.
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In addition, two preprocessing steps dampen the dominating effect of very frequent terms:
First is subsampling which randomly removes an occurrence of term w in the corpus when
the term’s corpus frequency #(w) is more than some threshold t, with a probability value
of 1−

√
t/#(w). The second is context distribution smoothing (cds) which dampens the

values of the probability distribution N by raising them to power α < 1. Experimental
results show an optimal value of α = 0.75 for the SkipGram model which is the same as
the optimal value of the α parameter in GloVe. Finally, suggested by the authors, only
the V vectors are used for the word representations and the Ṽ set is discarded.

2.1.5 Relations and Comparison

Levy and Goldberg [LG14] show an interesting relation between PMI and SkipGram
representations, i.e. when the dimension of the SkipGram vectors is set to very high (as
in explicit representations), the achieved representation from the SkipGram objective
function (Eq. 2.9) is equal to PMI shifted by log k. They call this representation Shifted
Positive PMI (SPPMI):

SPPMI(w, c) = max(PMI(w, c)− log(k), 0) (2.10)

They further integrate the ideas of subsampling and cds into SPPMI. Subsampling is
applied during the creation of the X set by randomly removing very frequent words. The
cds method adds a smoothing on the probability of the context term, as follows:

PMIα(w, c) = log p(w, c)
p(w)pα(c) pα(c) = #(w, .)α∑

w′∈W #(w′, .)α (2.11)

Interestingly, such explicit word representation demonstrates competitive performance to
word2vec models when evaluated on various term-similarity benchmarks.

Comparing the subtleties as well as performance of the introduced semantics represen-
tation models has been the topic of several studies. Schnabel et al. [SLMJ15] report
that despite sharing a common fundamental idea between various representation models,
in practice, they show considerably different performance in downstream tasks such as
sentiment classification, and noun phrase chunking. Baroni et al. [BDK14] evaluate the
models for term-to-term similarity and report better performance of context-predicting
methods (such as SkipGram) compared to the traditional context-counting methods.
More recently, Levy et al. [LGD15] benchmark the models by taking into account their
hyper-parameters as well as preprocessing steps. They show that there is no fundamental
performance difference between the recent word embedding models and that the per-
formance gain observed by one model or another is mainly due to the setting of the
hyper-parameters of the models. They finally conclude: “SkipGram is a robust baseline.
While it might not be the best method for every task, it does not significantly underperform
in any scenario.” This conclusion motivates us to focus on word2vec SkipGram as the
studied representation model in the thesis.
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2.2. Word Embedding in Information Retrieval

2.2 Word Embedding in Information Retrieval
As mentioned in the introduction, a contribution of this thesis is the integration of word
embedding in retrieval models based on the idea of translation models. Translation
models were introduced by Berger and Lafferty [BL99] almost two decades ago as an
extension to language modeling, specifically the Query Likelihood model [PC98]. In
the Query Likelihood model, the score of a document d with respect to a query q is
considered to be the probability of generating the query with a model Md estimated
based on the document:

score(q, d) = P (q|Md) (2.12)

The method to estimate P (q|Md) is therefore the essence here. This implies two issues:
defining what kind of model Md should be, and estimating the probability of q given the
chosen model type. Typically, the model is a multinomial distribution and the probability
is computed with a maximum likelihood estimator, together with some form of smoothing.
Translation models as introduced by Berger and Lafferty essentially extend the P (q|Md)
probability by including a translation probability PT between all the terms td of the
document d and each term tq of the query:

P (q|Md) =
∏
tq∈q

∑
td∈d

PT (tq|td)P (td|Md)

 (2.13)

This adds a third issue to the two above, the translation probability. Berger and Lafferty
had used for computing PT the Expectation Maximization approach inspired by machine
translation approaches. Karimzadehgan and Zhai [KZ10] explore translation models using
mutual information. Zuccon et al. [ZKBA15] use word2vec on translation language models,
showing potential improvement in applying word embedding. Fang and Zhai [FZ06]
explore the implementation of semantic matching for the axiomatic model, followed by
Kraimzadehgan and Zhai [KZ12a] to extend it to translation models.

Other recent studies have combined language modeling and semantic word vectors:
Ganguly et al. [GRMJ15] expand the classic language models through word embedding-
based noisy channels which aim to discover the hidden dependencies between terms.
Vulić and Moens [VM15] essentially provide a linear combination between language
modeling and word embedding-based scores, calculated by generating an aggregated
vector for the query. Tu et al. [TLLH14] directly apply a log-bilinear approach to learn
semantic similarity into language modeling, expanding on previous work done by Wei
and Croft [WC06] who used LDA and language modeling.

In general, while query likelihood models have demonstrated excellent performance in
standardized benchmarking, a recurrent critique has been that they do not model the
concept of relevance. Lafferty and Zhai [LZ03] introduced a formal way to relate language
modeling to relevance, but the relation has been disputed by Robertson [Rob05] and
others. Research in the context of the Probabilistic Relevance Framework has continued
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in parallel to that on language modeling, with recently introduced models like the Multi
Aspect TF (MATF) [Pai13], BM25 Verboseness Aware (BM25VA) [LLHA15].

There have been repeated efforts to expand methods of the probabilistic relevance
framework with information about term-term relatedness. For instance, Zheng and
Callan [ZC15] address query term weighting by exploiting word embedding as a feature
vector to train a model for the optimal term weights. However, keeping the changes
limited to the set of terms in the original query significantly limits the impact of their
method. Zhao et al. [ZHY14] define a set of methods for distance-based cross term
dependence and use them to modify the IR components, i.e. document term frequency,
and document frequency, for boosting retrieval. The focus of their study was terms
appearing in proximity of each other in terms of their locations in the documents, not in
terms of their semantic representations. More recently, Lioma et al. [LSLH15] further
explore the issue of identification of non-compositional phrases (i.e. a phrase with n
terms, the meaning of which can not be explained by the composition of the meaning of
the n terms), when they are composed of frequently co-occurring terms. These studies,
addressing fundamentally the disadvantages of the unigram bag-of-words models are
complementary to this work.

Expanding existing retrieval models with term-term similarity using translation models
has an intuitive connection with direct query expansion methods, where terms are actually
added to the query and/or weights are being recalculated. Xu and Croft [XC96], in one of
the earlier papers in this area divide query expansion methods into global techniques and
local feedback. That is, we can either use general knowledge about the terms, extracted
from external resources such as logs [CWNM02,GN12], manual or automatic knowledge-
bases [XJW09,KZ12b,XC15], word embedding models [ZC16,DMC16], or we can use
some form of Pseudo-Relevance Feedback (PRF) [Roc71,LC01,ACR04].

For the global techniques, more than for the local feedback methods, attention has to
be paid to the proper weighting of the new terms, as they come from outside the model
used to rank documents. Cui et al. [CWNM02] and later Gao and Nie [GN12] use a
logarithm to weight a term with respect to the query and the term-term similarities.
Another way to define the weights on some set of candidate terms to be added to the
query is by normalizing over all the added terms. This is done for instance by Xiong and
Callan [XC15] when considering Freebase as a source of external knowledge and Zamani
and Croft [ZC16] when using a word embedding model.

In terms of Pseudo Relevance Feedback (PRF), the probabilistic relevance framework
has a built-in concept of relevance and therefore can naturally incorporate information
provided through feedback [RZ+09]. For language modeling, Lavrenko and Croft [LC01]
introduce the Relevance Model (RM), which selects expansion terms from top ranked
documents and weights them based on the score of document ranking. The divergence
from randomness (DFR) framework [AVR02] also allows a relatively straight-forward
inclusion of feedback information: Amati et al. [ACR04] study the robustness of QE by
two factors: divergence of the distribution of the query term in the retrieved documents
from a random distribution and the frequency of the term in the whole document.
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In a parallel line of work, word vectors are used for semantic similarity of two texts (i.e.
paragraphs, documents, etc.). For instance, Kusner et al. [KSKW15] introduce Word
Mover’s Distance that is a direct extension of term-term similarity to text-text semantic
similarity, applied on the vector representations of terms in documents. Their experiments
show the effectiveness of the method on document classification tasks. However—to our
knowledge—there is little evidence of robustness and effectiveness of such methods for
retrieval tasks. In the next section, we introduce two text semantic similarity methods
and briefly discuss their limitations for document retrieval.

Word embedding models have been also used as input for training neural retrieval
models [SM15,GFAC16,XDC+17,MDC17]. These methods can be seen as the successors
of the Learning to Rank models (a complete review at [L+09]), as they aim to model the
concept of relevance in a supervised manner and usually require considerable amount of
annotated data. In a recent study, Dehghani et al. [DZS+17] address the issue of need for
sufficient training data by proposing the exploitation of top retrieved documents from
established IR models.

Regarding the topic of exploration of word embedding space, Karlgren et al. [KBE+14]
investigate the semantic topology of the Random Indexing vector space. Based on their
previous observations that the dimensionality of the semantic space appears different
for different terms [KHS08], Karlgren at al. now identify the different dimensionalities
at different angles (i.e. distances) for a set of specific terms. They claim that in the
embedding space “‘close’ is interesting and ‘distant’ is not” [KHS08]. In this thesis, we
further explore this claim, focusing on IR-related criteria in vector space.

More recently, Gyllensten and Sahlgren [CGS15] follow a graph mining approach to
represent the term relatedness by a tree structure and suggest traversing the tree as a
potential approach for word sense induction tasks. They also point out that applying a
nearest neighbor approach, where for every word we use the top k most similar words, is
not theoretically justifiable.

In general, different characteristics of term similarities have been explored in several
studies: the concept of relatedness [KB15,KHC15], the similarity measures [KZB+12],
or intrinsic/extrinsic evaluation of the models [SLMJ15,TFL+15,BDK14,DVZK+14].
However, there is a lack of understanding on the internal structure of word embedding,
specifically how the similarity distribution of representation vectors reflects the relatedness
of terms. This is a contribution of this thesis.

While the mentioned studies generally use the existing word embedding models, some
recent work focuses on training IR-specific representations. Diaz et al. [DMC16] suggest
training separate word embedding models on a large set of top retrieved documents per
query, while Zamani and Croft [ZC17] train query-level vectors using a smaller set of
the top retrieved documents. This thesis follows these studies by exploring the effect of
incorporating global context in word embedding similarity.

Exploiting global context for IR tasks has studied in several works: Tao and Zhai [TZ07]
and later Lv and Zhai [LZ09] define measures of term proximity based on local and global
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contexts, Bai et al. [BNCB07] combine global information with user profiles to specify
the scope of queries, and Peterson et al. [PLSL15] propose novel local- and global-level
coherence measures based on discourse entities and show the effectiveness of the coherence
measures for document retrieval. Our work complements these studies by exploring the
effects of combining word similarity achieved from global context with the window-context
based similarity.

2.3 Summary
In this chapter, we provide the background on semantic representations and discuss
related topics to the thesis. We first explain various word representation models, from
explicit to neural network-based representation models. We discuss their characteristics
as well as relations. Among them, based on a recent benchmark, we select word2vec
SkipGram as the main word representation model, used in the rest of the thesis. We
then review the related studies with special focus on the work about the exploitation of
word embedding in information retrieval.
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CHAPTER 3
Extended and Generalized

Translation Models

In Information Retrieval, terms are still the fundamental building blocks for establishing
topical relevance relationships between documents and queries. This is not a limitation
of the research, nor of the machines, but rather a fact of human communication. We
count terms because we cannot otherwise quantify meaning.

Despite the longstanding research on semantic models [DDF+90,Hof99,BNJ03,RJSK10],
the “basic” models based on the Probabilistic Retrieval (PR) Framework [RZ+09], and
language modeling [PC98] have maintained a respectable position in IR research. In
spite of their differences in estimating probabilities, they are all fundamentally based on
term frequency (tf ) as a representation of the importance of a term within a document,
and document frequency (df ) as a representation of the specificity of a term, potentially
normalized, pivoted, or smoothed by collection statistics (e.g. average document length,
average term frequency, collection frequency).

The extension of these models with some form of semantic models receives continuous
attention in IR community. Li and Xu [LX14] published a survey on the topic, grouping
the various approaches into 5 categories:

1. Matching by Query Reformulation

2. Matching with Translation Model

3. Matching with Term Dependency Model

4. Matching with Topic Model

5. Matching with Latent Space Model
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3. Extended and Generalized Translation Models

Both Topic Modeling and Latent Space Models are still to be conclusively proven
competitive in terms of both efficiency and effectiveness with probabilistic and language
models.

Term Dependency Models address one of the fundamental assumptions in IR, i.e. the
occurrences of the terms in a document (or query) are independent from each other.
Recently, Huston and Croft [HC14] presented a systematic comparison of such models.
This line of research is complementary to the current study, as we consider the semantic
relation of terms as a building block of our models.

Of the five categories, we focus here on Translation Models and Query Reformulations.
The two are in fact related, because one may argue that a translation model acts as if the
query had been reformulated. Both have a considerable history behind them. Considering
Pseudo-Relevance Feedback (PRF) as a form of query reformulation, we can trace this
back to the the late 60s [Roc71], while translation models have appeared immediately
after the introduction of language models in the late 90s [BL99].

While translation models have been further investigated in the context of language
modeling (reviewed in Section 2.2), the idea has not been considered in the context of
the Probabilistic Relevance Framework [RZ+09]. In the context of the current advances
of statistical semantic methods, it is therefore interesting to revisit these models, and
potentially extend them towards the probabilistic models.

To address this, we propose to expand the PR Framework-based IR models in a way
that does not affect their core tenets, but still takes advantage of the newly available,
high-quality results in term-term similarity.

As in the classical PR Framework-based models, we consider the terms as the represen-
tations of concepts. A query “information management” is the composition of the two
concepts denoted by the two terms. When to compute a tf /df score we count occurrences,
we implicitly assume that a document containing the term “information” will be to some
extent (proportional to the tf ) about the concept denoted by this term. Equally, if the
term “information” appears in many documents, we implicitly assume that it is not a
discriminative term (proportional to df ). A document containing the term “knowledge”
however, is also related to the concept “information”, yet it does not contribute to the
sense of a document not containing “information”. If we think of “information” however
not as a term, but as a concept, we are entitled to replace the term “knowledge” with
“information” and assign it a lower weight. It is here that the term-term similarity
comes into play: the similarity is used to compute such a weight. Essentially, we are not
even expanding the meaning of term frequency, because there was always an implicit
assumption that we are counting concepts (this is why we normally do stemming). We
propose to simply give tf the possibility to have fractional values above zero (instead of
only natural numbers), when terms are conceptually related but are not the same.

This change, while coming from a different perspective on the nature of text documents,
can be viewed as a generalization of the translation model idea from LM to the PR
Framework.
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3.1. Novel Translation Models

However, when observed from the PR Framework perspective, this change has some
implications on the other statistics used in IR models: document length, document
frequency, and collection frequency. For instance, if we change the tf , then the length of
a document, which is the sum of the tf values of its terms, changes as well. We set out
to investigate the effects of these changes as well.

In summary, the main contributions of the current chapter are:

1. a generalization of the idea of translation models into the PR framework models (we
consider four models: Pivoted Document normalization [SBM96], BM25 [RZ+09],
BM25 Verboseness Aware [LLHA15], and Multi-Aspect TF [Pai13])

2. an extension of the translation models in PR Framework by considering the effects
of changing tf on all other term, document, and collection statistics.

3. extensive experimental results comparing the traditional translation model, the
newly proposed ones, as well as query expansion methods, including Pseudo-
Relevance Feedback.

The proposed models go beyond the state of the art in experimental results, and maintain
the simplicity and robustness of the existing models, despite the fact that, we do not
perform any optimization on existing parameters (e.g. b, k1 in BM25).

The remainder of this chapter is structured as follows: First, we introduce the generalized
as well as extended translation IR models in Section 3.1. Next, we present our experimental
setup in Section 3.2, followed by discussing the results in Section 3.3. Section 3.4
summarizes our observations and concludes the chapter.

3.1 Novel Translation Models

We now introduce our approach to integrate the ideas of the translation model in the
Probability Relevance Framework. We call it Generalized Translation Model. We put the
focus of this study on four models: two classical: Pivoted Length Normalization [SBM96]
and BM25, and two state-of-the-art schemes: Multi Aspect Term Frequency [Pai13] and
BM25 Verboseness Aware [LLHA15].

While translation models only focus on changing the tf components, when we consider
the relation between tf and other document and collection statistics in the probabilistic
relevance framework, a valid hypothesis to investigate is that simultaneously changing
the other components (e.g. df , document length) would further improve the final models.
Our assumption is that these new models benefit from semantic relations of the terms
while the robustness of the original models has been preserved. We call this approach
Extended Translation Model and integrate it in the probabilistic relevance as well as the
language modeling framework.
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In what follows, first we explain the approach to extend the basic components of the
models (tf , df) and then use the extended components to introduce the translation
models in the four probability relevance models as well as in language modeling. Finally,
we briefly revisit query expansion, explaining the approach for combining it with any
translation model.

3.1.1 Basic Components

The fundamental idea of the introduced translation methods is, for each term t of a
query q, to replace any existing related terms t′ in a document d with the term itself,
but counting its occurrence as a real number between zero and one. Consequently, a set
of changes will appear in the definitions of tfd, df , and Td (term frequency, document
frequency, and the set of terms in a document).

In order to define the new components, we first denote the set related terms to a given
term as R(t). The similarity value of each term in this set is expected to be between 0
and 1. As mentioned in Chapter 2, we calculate the value by using the cosine function of
the vector representations of the terms from a word embedding model. To create this
set, we follow two approaches: 1. using the top-N most similar terms and 2. filtering
the terms with similarity values higher than a threshold. The details of each will be
discussed in the next sections.

Let us start with Td : the set of terms associated with a document d changes with respect
to a query q by replacing each related term with the term of the query to which it is
related:

T̂d = Td \
⋃
t∈q

{
t′ ∈ R(t)

}
∪ {t ∈ q : R(t) ∩ Td 6= ∅} (3.1)

As a consequence of this redefinition of the documents, we must change the document
frequency statistic accordingly:

d̂f t =
∣∣{d ∈ D : t ∈ Td ∨ ∃t′ ∈ R(t), t′ ∈ Td}

∣∣ (3.2)

where D is set of the documents in the collection. As defined here, the extended document
frequency d̂f t considers the documents containing similar words in addition to the ones
with the term itself. The hypothesis is that it prevents over-scoring of the documents
that have terms with many similar terms in the query.

Finally, and most importantly, given the set of the related terms to the query, we define
the extended term frequency as follows:

t̂f d(t) = tfd(t) +
∑

t′∈R(t)
PT (t|t′)tf d(t′) (3.3)

As in translation models (Eq. 2.13), PT is interpreted as the probability of observing
term t, having observed term t′. Similar to Zuccon et al. [ZKBA15], we estimate this
probability by using the semantic similarity of the two terms (Eq. 2.1). The new t̂f d(t)
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3.1. Novel Translation Models

extends the basic tfd(t) by similar terms and therefore rewards the documents with more
related terms.

Given the above three fundamental building blocks, the other remaining components are
defined as follows:

L̂d =
∑
t∈T̂d

t̂f d(t) document length
âvgdl = 1

|D|
∑
d∈D L̂d average document length

t̂f c(t) =
∑
d∈D t̂f d(t) term collection frequency

L̂c =
∑
t∈T t̂f c(t) collection size

âvgtf d = 1∣∣T̂d
∣∣ ∑t∈T̂d

t̂f d(t) average term frequency

m̂avgtf = 1
|D|
∑
d∈D âvgtf d mean average term frequency

where their original forms are denoted as Ld , avgdl, tfc(t), Lc, avgtfd , and mavgtf
respectively.

3.1.2 Generalized and Extended Translation Models

Based on the extended factors we just defined, we revisit the IR models and replace their
components with the introduced extended ones. Since the logarithm function is regularly
used as the dampening function, we use Λ(x) = log(1 + x) to shorten notations.

Pivoted Length Normalization

Singhal et al. [SBM96] identify a bias in the cosine normalization as it favors long
documents in retrieval. They then propose the pivoted length normalization (PL) schema
by introducing a correction factor on the document length normalization. By replacing
the elements of the original model, we define the Generalized Translation model (GT)
and Extended Translation (ET) model as follows:

PLGT (q, d) =
∑

t∈T̂d∩Tq

Λ(Λ(t̂f d(t)))
1− s+ s Ld

avgdl
tfq(t)log |D|+ 1

dft
(3.4)

PLET (q, d) =
∑

t∈T̂d∩Tq

Λ(Λ(t̂f d(t)))

1− s+ s L̂d
âvgdl

tfq(t)log |D|+ 1
d̂f t

(3.5)

We should note that the original formulation uses 1 + log(1 + log(tf d)) in the numerator,
while in our formula above we use log(1+ log(1+ tf d)). For values of tf d > 1 there is little
difference between the two variations, and they have both been used in the literature.
In our case, as it is theoretically possible that tf d < 1, the formulation 1 + log(tfd) may
give negative values, hence we prefer the log(1 + tf d) variant.
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BM25

BM25 is a widely popular and well-studied weighting model, rooted in the 2-Poisson prob-
abilistic model of term frequencies in documents [RZ+09]. The Generalized Translation
model (BM25GT ) replaces the t̂f d(t) and T̂d components in the classical version:

BM25GT (q, d) =
∑

t∈T̂d∩Tq

(k1+1)tf GT
d (t)

k1+tf GT
d (t)

(k3+1)tfq(t)
k3+tfq(t) log |D|+0.5

dft +0.5 (3.6)

with

tf GT
d (t) = t̂f d(t)

B(d) , B(d) = (1− b) + b
Ld

avgdl (3.7)

The extended version of the BM25 translation model is shown in Eq. 3.8 and 3.9:

BM25ET (q, d) =
∑

t∈T̂d∩Tq

(k1+1)tf ET
d (t)

k1+tf ET
d (t)

(k3+1)tfq(t)
k3+tfq(t) log |D|+0.5

d̂f t +0.5
(3.8)

tf ET
d (t) = t̂f d(t)

B̂(d)
, B̂(d) = (1− b) + b

L̂d

âvgdl
(3.9)

Multi Aspect TF

Recently, Paik [Pai13] addresses the limitations of the pivoted length normalization by
exploiting new statistical factors in the Multi Aspect TF (MATF) schema. The first
component is Term Frequency Factor (TFF) which consists of two factors: Relative
Intra-document tf (RI) measures the importance of a term regarding to the average tf of
the document and Length Regularized tf (LR) that considers the length of the document
in relation to the average document length in the collection. Paik [Pai13] then mentions
the different tendency of the factors to long and short queries and combines them using
the parameter ω which promises a reasonable balance between the factors based on the
query length. Both factors are dampened first by the log and then by f(x) = x

1+x . We
therefore revisit the TFF component for the Generalized Translation model as follows:

R̂I (t, d) = Λ(t̂f d(t))
Λ(âvgtf d)

(3.10)

L̂RGT (t, d) = t̂f d(t)Λ
(avgdl

Ld

)
(3.11)

T̂FFGT (t, d) = ω
R̂I (t, d)

1 + R̂I (t, d)
+ (1− ω) L̂RGT (t, d)

1 + L̂RGT (t, d)
(3.12)
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As suggested by the paper, the ω parameter can be estimated by the following function
where |q| is the length of the query:

ω = 2
1 + Λ(|q|) (3.13)

Respectively, the TFF component for the Extended Translation model is defined as
follows:

L̂RET (t, d) = t̂f d(t)Λ
(

âvgdl
L̂d

)
(3.14)

T̂FFET (t, d) = ω
R̂I (t, d)

1 + R̂I (t, d)
+ (1− ω) L̂RET (t, d)

1 + L̂RET (t, d)
(3.15)

The second component is the Term Discrimination Factor (TDC) which uses inverse
document frequency as well as average elite set term frequency (AEF) based on the total
occurrence of a term in the entire collection, defined as follows:

AEF(t) = tfc(t)
dft

(3.16)

TDC (t) = log
|D|+ 1

dft
AEF(t)

1 + AEF(t) (3.17)

We formulate the extension of the factor as follows:

ÂEF(t) = t̂f c(t)
d̂f t

(3.18)

T̂DC (t) = log
|D|+ 1

d̂f t

ÂEF(t)
1 + ÂEF(t)

(3.19)

Finally, the Generalized and Extended MATF Translation models are defined by inte-
grating the corresponding components:

MATFGT (q, d) =
∑

t∈T̂d∩Tq

T̂FFGT (t, d)TDC (t) (3.20)

MATFET (q, d) =
∑

t∈T̂d∩Tq

T̂FFET (t, d)T̂DC (t) (3.21)
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BM25 Verboseness Aware

Most recently, Lipani et al. [LLHA15] address the document length normalization factor
of BM25 by proposing a novel parameter-free length normalization method that removes
the need for the b parameter of BM25, called BM25 Verboseness Aware (BM25VA). The
method leverages the mean of the average occurrences of a term in the documents to
discover and supervise the effect of verboseness in the documents. The BM25VA defines
the B factor of the original BM25 model as follows:

BV A(d)=mavgtf−2 Ld
Td

+(1−mavgtf−1) Ld
avgdl (3.22)

We define the Generalized BM25VA Translation model by replacing the BV A with the
B(d) component of the Generalized BM25 Translation model (Eq. 3.6 and Eq. 3.7),
shown in the following formulas:

BM25V AGT (q, d) =
∑

t∈T̂d∩Tq

(k1+1)tf GT
d (t)

k1+tf GT
d (t)

(k3+1)tfq(t)
k3+tfq(t) log |D|+0.5

dft +0.5 (3.23)

tf GT
d (t) = t̂f d(t)

BV A(d) (3.24)

The Extended Translation model also replaces the B component of the Extended BM25
Translation model (Eq. 3.8 and Eq. 3.9), with a modified version of the BV A(d):

BM25V AET (q, d) =
∑

t∈T̂d∩Tq

(k1+1)tf ET
d (t)

k1+tf ET
d (t)

(k3+1)tfq(t)
k3+tfq(t) log |D|+0.5

d̂f t +0.5
(3.25)

tf ET
d (t) = t̂f d(t)

B̂V A(d)
(3.26)

where

B̂V A(d)=m̂avgtf
−2 L̂d

T̂d
+(1−m̂avgtf

−1
) L̂d

âvgdl
(3.27)

Language Model

The translation model has been introduced in the framework of language modeling [BL99],
so in this case we only point out that the Generalized Translation model is the original
one, as introduced by Berger and Laferty (i.e. it is Generalized from language modeling
to the Probabilistic Relevance Framework). For completeness, we also introduce the
Extended Translation model for the LM framework.

In order to unify the notation, we can rewrite the translation LM in Eq. 2.13 as follows:

LMGT (q, d) =
∏
tq∈q

PT (t|d) (3.28)
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where PT (t|d) =
∑
td∈d PT (tq|td)P (td|d) is the translation probability of generating term

t in document d. Similar to related studies [KZ10,ZKBA15] , we define P (td|Md) as the
maximum likelihood estimation and inject PT (t|d) into a Dirichlet smoothing function
obtaining:

PT (t|d) = Ld
Ld + µ

 ∑
t′∈Td

PT (t|t′)tfd(t′)
Ld

+ µ

Ld + µ
p(w|C) (3.29)

Now we can select the alternative terms t′ based on the set of related terms R(t) and
rewrite the element in the square brackets above by explicitly exposing the term t where
its translation probability to itself is one:

tfd(t) +
∑

t′∈R(t)
PT (t|t′)tf d(t′) (3.30)

Eq. 3.30 is in fact identical to our definition of t̂f d(t) (Eq. 3.3) and therefore we can
formulate the translation language model based on t̂f d(t) factor as follows:

LMGT (q, d) =
∏
tq∈q

∑
td∈d

Ld
Ld + µ

t̂f d(t) + µ

Ld + µ

tfc(t)
Lc

 (3.31)

Finally we define the Extended Translation model by replacing the other components
with their extended versions:

LMET (q, d) =
∏
tq∈q

∑
td∈d

L̂d

L̂d + µ
t̂f d(t) + µ

L̂d + µ

t̂f c(t)
L̂c

 (3.32)

3.1.3 Translation Models with Query Expansion

Translation models have an intuitive connection with direct query expansion methods.
A natural question arising from generalizing translation models into the probabilistic
relevance framework is how they compare with query expansion methods and whether
they benefit from pseudo relevance feedback (PRF).

Considering a query expansion method φ and the new set of terms as φ(q), the general
query expansion models is defined as:

S∗(q, d) =
∑
t∈φ(q)

wt(q)S(t, d) (3.33)

where each of the new terms has a coefficient of wt, S∗ is the final document score, and
S is a scoring schema. If φ is based on a word embedding model, then S must be one
of the basic methods (i.e. not using either the Generalized, nor Extended Translation
models) because we would be using the same set of terms in both cases. If φ is based a
PRF method, then S can be any of the methods previously described because the set of
terms would be with very high probability different.
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When using word embedding for query expansion, φ(q) is defined as the union of the set
of related terms to each query term:

φ(q) =
⋃

tq∈Tq
{t ∈ R(tq)} (3.34)

To define the weight of each expanded term wt(q) with word embedding, we follow the
weighting models of two recent studies. The first model, used in Gao and Nie [GN12],
applies the logarithm weighting. We call it LOG, defined as follows:

wt(q) = ln

 ∏
tq∈Tq

PT (t|tq) + 1

 (3.35)

The second expansion model [XC15] normalizes the PT value (term-term similarity) over
the sum of all expanded terms’ similarities. We refer to this model as NORM, defined in
the following formula:

wt(q) =
∑
tq∈Tq PT (t|tq)∑

t′∈φ(q)
∑
tq∈Tq PT (t′|tq)

(3.36)

Both the LOG and NORM expansion models calculate the final score using Eq. 3.33,
while their weighting methods are only for the expanded terms and the weights of the
original terms of the query are one (t ∈ Tq : w = 1).

3.2 Experiment Setup

In order to evaluate the performance of the introduced Generalized Translation (GT) and
the Extended Translation (ET) models, we evaluate them based on each of the mentioned
relevance models (Section 3.1.2) on six test collections. In addition, we combine and
test both translation models with the PRF query expansion method as described in
Section 3.1.3. We denote the Generalized Translation and Extended Translation models,
combined with PRF as PRF-GT and PRF-ET respectively.

In the following, we introduce our experimental methodology, including test collections,
baselines, parameter settings, and evaluation metrics.

Data Resources We conduct the experiments on six collections: combination of
TREC 1 to 3 (TREC 123), TREC 6, TREC 7, and TREC 8 of the Ad-hoc track, TREC
2005 HARD track, and CLEF eHealth 2015 Task 2 User-Centred Health Information
Retrieval [PZG+15]. For the TREC tasks we always used the title of the queries for
retrieval. Table 3.1 summarizes the statistics of the test collections. For pre-processing,
we apply the Porter stemmer and remove stop words using a small list of 127 common
English terms.
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Table 3.1: Test collections for evaluating the Generalized and Extended Translation
models

Name Collection # Doc Topics
TREC 123 Disc1&2 740088 51-200 Ad-hoc
TREC 6 Disc4&5 551873 301-350 Ad-hoc

TREC 7, 8 Disc4&5 without CR 523951 351-400, 401-450 Ad-hoc
HARD AQUAINT 1033461 2005 Track (50 topics)
eHealth as defined in [PZG+15] 1104337 CLEF-eHealth 2015 Task 2 (67 topics)

We train the word embedding model for the Ad-hoc and Hard tracks using the Wikipedia
dump file for August 2015. For the eHealth task, similar to Koopman et al. [KZB+12]
that train word embeddings based on the domain corpora, we use the corpus extracted
from the task’s collection. For both the word embeddings, we use the word2vec SkipGram
method with vectors of 300 dimensions, sub-sampling parameter set to 10−5, context
windows of 5 terms, epochs of 25, and term count threshold 20. Our own experiments
(not reported here) as well as those reported by Zuccon et al. [ZKBA15], indicate these
parameters as reasonable as a general baseline.

Baselines In order to test the performance of the introduced translation models (GT
and ET), for each IR schema we define three baselines: STD (the original version of
the models), LOG (Eq. 3.35), and NORM (Eq. 3.36). In addition to LOG and NORM
expansion methods, we experiment with the direct use of translation probability PT (t|tq)
as the weight for expansion. However due to the extremely weak performance observed,
we remove it from the baselines.

In the experiments also using Pseudo Relevance Feedback query expansion (PRF-GT and
PRF-ET), we test them against two baselines: original PRF, and original model (STD).

Finally, in both basic and with PRF modes, we test the performance of Extended
Translation model (ET/PRF-ET) against the Generalized Translation model (GT/PRF-
GT) respectively.

All the baselines as well as their corresponding symbols for the significance test are
summarized in Table 3.2. Statistical significance tests are done using the two sided paired
t-test and statistical significance is reported for p < 0.05.

Related Terms An essential part of all our extended models is the definition of “the
set of related terms”. In order to find this set for a given term (R(t) in Section 3.1.1), we
consider two approaches: 1. selecting the top-N similar terms in the collection, and 2.
selecting the set of terms whose similarity values to the term t are above a threshold θ.

Normally, the first approach is the common method for defining the related terms, used
in several studies [ZKBA15,GRMJ15]. However, as shown by Karlgren et al. [KHS08],
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3. Extended and Generalized Translation Models

Table 3.2: Baselines and their symbols for the significance tests

Baseline Tested from Sig. Test
STD All the models and baselines †
LOG GT, ET `
NORM GT, ET ν
PRF PRF-GT, PRF-ET ρ

GT / PRF-GT ET / PRF-ET §

the distribution of the distances of the neighboring terms is different for various terms,
i.e. some words have more/less neighbors in a specific boundary. Inspired by this study,
we observe the neighboring terms of the term ‘excursion’ in the word2vec model and
spot the term ‘tourist’ is the 4th most similar (closest) neighbor. However, looking at
the top neighbors of ‘tourist’, the term ‘excursion’ is the 17th one1. We assume that as
‘tourist’ is a more frequent term with more contexts in the language, its neighborhood
is richer than ‘excursion’ and in other words has more related terms. This observation
motivates us to investigate the effect of selecting the related terms based on a threshold
θ in addition to the top-N approach.

Parameter Setting Since the basic parameters of each model are shared between the
Generalized/Extended Translation models and original methods, the choice of parameters
is not explored in this study and a standard set of parameters is used. For BM25 and
BM25 Verboseness Aware (BM25VA), we set b = 0.6 (only for BM25), k1 = 1.2, and
k3 = 1000, for Pivoted Length Normalization (PL), the parameter s is set to 0.05, and
for Language Modeling (LM), we set µ to 1000. The Multi Aspect TF (MATF) does not
require any parameter setting. For PRF we arbitrarily fixed the number of top-ranked
documents to 3 and the number of expanded terms to 10.

In filtering related terms, for the top-N approach, following the related studies, we try
N with 2, 5 and 10. For the threshold approach, we simply choose θ = 0.7 for all the
collections as a generally stable threshold parameter. The full discussion about the reason
behind this choice as well as the stability in retrieval performance using this parameter
is presented in the next chapter.

Evaluation Metrics The evaluation of retrieval effectiveness is done with respect to
MAP and NDCG@20, as standard measures. However, our initial experiments showed
that the extended methods retrieved a substantial proportion of unjudged documents.
Looking at some of these unjudged retrieved results, we find different documents that
seem relevant to the query. For example, as shown in Table 3.3, the document does not
contain the term ‘espionage’ requested by the query, but there are many occurrences
of the similar words like ‘spy’, ‘intelligence service’, or ‘agent’. We assume that it is

1Noted that, the Cosine similarity is symmetric and in this case its values is equal to 0.54.
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3.3. Results and Discussion

Table 3.3: Example of conceptually related document, found by our approach, while not
judged in the TREC 6 Ad-hoc track

Query 311 Industrial Espionage

Document
FBIS4-23903

... recruited last year by the intelligence service
once more ... were indicted for high treason in the
form of spying, including ... agent was in particular
in charge of financing ...

due to the essential difference between the extended models and the standard term
frequency-based methods which contributed to the creation of the relevance assessments
used in the collections. Therefore, in order to provide a fairer evaluation framework,
we consider MAP and NDCG over the condensed lists, which are proposed as better
solutions to the incompleteness problem than BPREF in [Sak07]2.

3.3 Results and Discussion

We evaluate the performance of the introduced Generalized as well as Extended Transla-
tion models on the mentioned IR models (Section 3.1.2) with θ = 0.7, as discussed in the
previous section.

The evaluation results of the MAP and NDCG@20 measures on the six test collections
are shown in Figure 3.1. Each line in the plots shows the result of one IR model in
two sections: from STD to ET the standalone version, and from PRF to PRF-ET when
combined with the Pseudo Relevance Feedback query expansion. Significant differences
of the results against the respective baselines are marked on the plots using the symbols,
defined in Table 3.2. Table 3.4 shows the detailed results.

Starting with the results of the MAP measure, we observe that using the Generalized
as well as Extended Translation models we gain significantly better performance in 4
of 6 collections, compared to the original models as well as compared with the LOG
and NORM expansion methods. Only in the TREC 123 and TREC 7 collections, there
is no statistically significant improvement, although there is no deterioration of results
either. Looking at the expansion methods, the LOG and NORM models also improve
the baseline only slightly.

The results of combining PRF query expansion with the Generalized and Extended
Translation models shows significant improvement over the original as well as PRF
models (except in TREC 123 and TREC 7), achieved by both translation models. This
improvement over PRF is similar to the improvement achieved by the models without
PRF over the original models, showing indeed that global techniques and local feedback
can effectively complement each other.

2The condensed lists are used by adding the -J parameter to the trec_eval command parameters
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3. Extended and Generalized Translation Models

(a) TREC Ad-hoc 123 (b) TREC Ad-hoc 6 (c) TREC Ad-hoc 7

(d) TREC Ad-hoc 8 (e) TREC HARD (f) CLEF eHealth 2015

(g) TREC Ad-hoc 123 (h) TREC Ad-hoc 6 (i) TREC Ad-hoc 7

(j) TREC Ad-hoc 8 (k) TREC HARD (l) CLEF eHealth 2015

Figure 3.1: MAP and NDCG@20 evaluation of the TREC 123, TREC 6, TREC 7, TREC
8 Ad-hoc, TREC 2005 HARD, and CLEF eHealth 2015 task 2. The baselines and the
signs for significance difference tests are shown in Table 3.2. The related terms are filtered
when the similarities of the neighboring terms are higher than the threshold θ = 0.7
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Table 3.4: MAP and NDCG@20 evaluation of the TREC 123, TREC 6, TREC 7, TREC
8 Ad-hoc, TREC 2005 HARD, and CLEF eHealth 2015 task 2. In the models that need
a set of related terms, the set is calculated based on the threshold approach with θ = 0.7.
The corresponding baselines for each model and their signs for the test of significance are
shown in Table 3.2.

Collection Method PTFIDF BM25 BM25VA LM MATF
MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG

TREC 123

STD 0.304 0.577 0.303 0.557 0.311 0.572 0.302 0.566 0.290 0.560
LOG 0.304 0.577 0.304 0.551 0.311 0.569 0.304 0.570 0.295 0.563

NORM 0.305 0.573 0.306 0.552 0.311 0.564 0.303 0.566 0.296 0.559
GT 0.310 0.590 0.314 0.577 0.320 0.588 0.316 0.583 0.304 0.572
ET 0.315 0.593 0.319 0.585`ν 0.326 0.595 0.320 0.588 0.304 0.574

PRF 0.322† 0.572 0.326† 0.562 0.330† 0.564 0.324† 0.572 0.328† 0.560
PRF-GT 0.313 0.565 0.322 0.547 0.326 0.560 0.320 0.559 0.326† 0.559
PRF-ET 0.320 0.571 0.326† 0.557§ 0.330 0.564 0.327† 0.560 0.323† 0.559

TREC 6

STD 0.240 0.424 0.250 0.440 0.254 0.449 0.250 0.428 0.260 0.460
LOG 0.246 0.425 0.258† 0.443 0.265† 0.457 0.253 0.438 0.267 0.455

NORM 0.247 0.422 0.258 0.442 0.264 0.451 0.256 0.434 0.267 0.450
GT 0.265† 0.429 0.279† 0.457 0.287†ν 0.470 0.275†`ν 0.439 0.288†`ν 0.477
ET 0.268†`ν 0.434 0.283†`ν 0.461 0.290†`ν 0.474 0.275†`ν 0.440 0.287†` 0.479

PRF 0.258† 0.436 0.268† 0.451 0.273† 0.458 0.271† 0.448 0.274 0.464
PRF-GT 0.276† 0.439 0.288† 0.457 0.293†ρ 0.468 0.289† 0.449 0.295†ρ 0.476
PRF-ET 0.281†ρ 0.444 0.292†ρ 0.459 0.299†ρ 0.472 0.288† 0.447 0.298†ρ 0.479

TREC 7

STD 0.190 0.397 0.194 0.404 0.201 0.418 0.200 0.399 0.194 0.415
LOG 0.191 0.395 0.198† 0.410 0.204 0.417 0.202 0.405 0.197 0.419

NORM 0.189 0.381 0.197 0.396 0.202 0.405 0.200 0.392 0.196 0.399
GT 0.199 0.374 0.211 0.398 0.217 0.402 0.209 0.376 0.209 0.403
ET 0.200 0.376 0.213 0.400 0.219 0.407 0.208 0.373 0.209 0.404

PRF 0.213† 0.408 0.214† 0.402 0.221† 0.422 0.222† 0.410 0.226† 0.422
PRF-GT 0.221† 0.388 0.231† 0.408 0.235† 0.420 0.231† 0.398 0.239† 0.419
PRF-ET 0.222† 0.393 0.230† 0.406 0.234† 0.421 0.229† 0.396 0.239† 0.424§

TREC 8

STD 0.243 0.428 0.253 0.446 0.261 0.463 0.261 0.446 0.262 0.468
LOG 0.245 0.437 0.257† 0.450 0.263 0.461 0.262 0.454 0.264 0.476

NORM 0.243 0.430 0.256 0.446 0.262 0.458 0.262 0.449 0.263 0.472
GT 0.257†`ν 0.441 0.274†`ν 0.453 0.281†`ν 0.472 0.277`ν 0.457 0.275ν 0.474
ET 0.255ν 0.438 0.273†`ν 0.451 0.280†`ν 0.473 0.274 0.455 0.272 0.471

PRF 0.256 0.427 0.272† 0.456 0.277 0.461 0.274 0.461 0.289† 0.475
PRF-GT 0.274†ρ 0.440 0.298†ρ 0.469 0.300†ρ 0.472 0.295†ρ 0.473 0.311†ρ 0.484
PRF-ET 0.274†ρ 0.440 0.299†ρ 0.476ρ§ 0.300†ρ 0.478ρ§ 0.292†ρ 0.469 0.311†ρ 0.485

HARD

STD 0.221 0.336 0.214 0.308 0.222 0.330 0.218 0.330 0.214 0.350
LOG 0.224 0.340 0.218 0.318 0.223 0.337 0.223 0.340 0.217 0.349

NORM 0.227 0.344 0.220 0.321 0.226 0.341 0.227 0.348 0.220 0.355
GT 0.253†`ν 0.362 0.252†`ν 0.341 0.260†`ν 0.361 0.259†`ν 0.368†` 0.244†` 0.379†`
ET 0.255†`ν 0.362† 0.253†`ν 0.341 0.261†`ν 0.365† 0.259†`ν 0.365†` 0.242†` 0.376†`

PRF 0.250† 0.345 0.253† 0.339 0.257† 0.356 0.255† 0.357 0.258† 0.356
PRF-GT 0.279†ρ 0.370 0.285†ρ 0.360† 0.290†ρ 0.379† 0.291†ρ 0.380† 0.286†ρ 0.377
PRF-ET 0.278†ρ 0.365 0.285†ρ 0.361† 0.289†ρ 0.373† 0.287†ρ 0.375† 0.285†ρ 0.378

eHealth

STD 0.302 0.361 0.296 0.354 0.293 0.352 0.296 0.342 0.299 0.356
LOG 0.304 0.363 0.299 0.358 0.297 0.355 0.296 0.339 0.304 0.361

NORM 0.307 0.365 0.304 0.365 0.299 0.362 0.299 0.344 0.308 0.364
GT 0.310 0.370 0.306 0.366 0.303 0.360 0.306 0.353 0.308 0.372†
ET 0.317†` 0.381† 0.309† 0.370† 0.307† 0.369† 0.311†` 0.362†` 0.310†§ 0.373†

PRF 0.309 0.362 0.306 0.363 0.304 0.356 0.310 0.358 0.316 0.371
PRF-GT 0.316 0.371 0.310 0.372 0.307 0.362 0.310 0.358 0.322 0.378
PRF-ET 0.322†ρ 0.380ρ 0.317ρ§ 0.376 0.312†ρ 0.366 0.319†ρ§ 0.367 0.325†§ 0.381§
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3. Extended and Generalized Translation Models

(a) Related terms with best performing thresh-
old (θ = 0.7)

(b) Related terms with best performing top-N
(N = 2)

Figure 3.2: The gain of the models with the MAP measure regarding to their original
versions, aggregated over all the collections.

Comparing the Extended Translation model with the Generalized one, in general ET/PRF-
ET brings only a slight improvement to GT/PRF-GT. In some cases, notably the eHealth
collection, the PRF-ET model provides a significant improvement over all the other
models including PRF-GT.

The trends in the results of the NDCG@20 measure are generally similar to the ones of
MAP, except in some rare cases such as the LM and PTFIDF methods in the TREC 7
collection.

In order to have an overview on all the models, we calculate the gain of each model over
its original form and average the gains on the six collections. As the results for MAP are
depicted in Figure 3.2a, GT and ET show significance improvement over the baselines.
Also, while PRF has improved the baselines, its performance has then significantly been
boosted by the Generalized and Extended Translation models. In addition, ET/PRF-ET
show overall slight improvement to GT/PRF-GT. In some cases, e.g. for the BM25 and
BM25VA models, this is significant.

In order to compare with previously reported results, Table 3.5 shows the best achieved
results in each collection with the typical evaluation (i.e. not considering only the
condensed lists, but rather considering the retrieved unjudged documents as non-relevant).
Identifying the state-of-the-art for each collection by reviewing the literature is difficult
and potentially controversial. TREC 8 Ad-hoc is however one of the most widely
reported benchmarks, and regardless of whether we consider the condensed lists or
not, the generalized and extended translation models proposed here show considerable
improvements with respect to reports of the most recent experiments in our field [GRMJ15,
Pai13,ZKBA15,LLHA15].
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3.3. Results and Discussion

Table 3.5: The best results per collection

Collection Eval. Measure Method Scoring Value

TREC 123 MAP PRF BM25V 0.306
NDCG@20 ET BM25V 0.571

TREC 6 MAP PRF-ET BM25V 0.270
NDCG@20 PRF-ET BM25V 0.455

TREC 7 MAP PRF-ET MATF 0.226
NDCG@20 PRF-ET MATF 0.424

TREC 8 MAP PRF-ET MATF 0.295
NDCG@20 PRF-ET MATF 0.481

HARD MAP PRF-GT BM25V 0.241
NDCG@20 PRF-GT BM25V 0.375

Threshold or Top-N As mentioned before, we considered two approaches for selecting
the related terms: threshold-based and top-N. Figure 3.2b shows the aggregated gain
of the best performing top-N approach (N = 2) over all the collections. Comparing
it with Figure 3.2a, we see that while the selection of related terms from the top N
terms generally improves the baselines, the performance of GT and ET and respectively
PRF-GT and PRF-ET models using the threshold method considerably outperforms the
top-N approach.

By having a closer look at the number of selected terms per term in the threshold
approach with θ = 0.7, we see a wide range of numbers, from 0 (no expansion) in several
cases to a maximum of 63 terms. The average number of terms is 1.4, but the standard
deviation is 3.7.

On the other hand, the LOG and NORM models are only marginally affected by changing
the approaches and keep the results close to the baseline. This is due to their conservative
approaches for weighting the expanded terms—aggregating over all weights in NORM
and dampening in LOG.

Limitations As with any method relying on a numerical value to represent the simi-
larity of two terms, our extended components are limited by the definition of similarity.
Analysing the cases where the extended model results were lower than the optimal showed
that sometimes the extended terms introduce bias in search as they represent related
terms but not similar ones. For example, the word embedding models indicate ‘Alzheimer’
as highly related to ‘Multiple sclerosis (MS)’ (as they usually appear in very similar
contexts), although they are not similar in the sense that a query on one of them is
hardly presumed to be satisfied by a document on the other. However, this is a general
issue in query expansion, when the expanded words introduce bias to the original query.
We address some of these limitations in Chapter 5 of the thesis.
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Efficiency Before concluding, it is worth noting that the Generalized as well as the
Extended Translation models do not impose significant query-time overheads on the
existing IR engines. Given the threshold, the set of related terms can be precomputed.
The overhead of changing the statistics of the collection for the Extended model is
computationally similar to the query time which makes it similar to the overhead of using
PRF. Further optimization in this area is certainly possible. An implementation of the
novel translation models for Solr and Lucene is available on Github3.

3.4 Summary
In this chapter, we propose a generalization and an extension of translation models
in the probabilistic relevance framework models in order to take advantage of word
representation resources.

Concretely, we introduce changes in the calculation of core elements of probabilistic
relevance framework models (term frequency, document frequency), following the implicit
assumption that query terms denote concepts and that counting the presence of these
terms in the documents and the collection is a surrogate for counting the presence of the
concepts. By simply replacing the occurrence of similar terms with that of the query
terms we maintain the simplicity and robustness of the existing models, while improving
retrieval performance. We compare this approach with query expansion and also combine
it with PRF based methods, observing the complementary effect of these two approaches,
resulting in boosted performance.

This improvement in retrieval effectiveness is demonstrated on six test collections and
five IR models, by achieving state-of-the-art results.

In the process, we also observe the effectiveness of selecting the “related terms” based
on similarity boundary around the neighboring space of a term. This approach shows
competitive performance compared with selecting the top-N most similar terms.

3https://github.com/sebastian-hofstaetter/ir-generalized-translation-models
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CHAPTER 4
Similarity Threshold for Terms

Relatedness

As discussed in the introduction, word embedding methods provide vectors that are
proxies to the meaning of terms, and their semantic similarities. Fundamentally, word
embedding models exploit the contextual information of the target terms to approximate
their meaning, and hence their relations to other terms.

Given the vectors representing terms, these models provide an approximation of the
similarity of any two terms, although this similarity relation could be perceived as
completely arbitrary in the language. In this chapter, we address this issue by exploring
how to identify whether the similarity score obtained from word embedding is actually
indicative of term relatedness.

We hypothesize that the “similar” terms can be identified by a threshold on similarity
values which separates the semantically related terms from the non-related ones. This
threshold is general for the word embedding model and defined on all the terms. Using such
a threshold, each term selects a number of similar terms, positioned in its neighborhood
space.

Such a threshold has the potential to improve all studies that use similar/related terms in
different tasks i.e. query expansion [GDR+15], query auto-completion [Mit15], document
retrieval [ZKBA15], learning to rank [SM15], language modelling in IR [GRMJ15], or
Cross-Lingual IR [VM15]. It should be noted though, that the meaning of “similar” also
depends on the similarity function. As mentioned before, in this thesis we consider the
cosine function as it is by far the most widely used term similarity function and leave
the exploration of other functions for further studies. In fact, regardless of the similarity
function, a threshold that separates the semantically related terms from the rest will
always be an essential element to identify.
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4. Similarity Threshold for Terms Relatedness

We explore the estimation of this potential threshold by first quantifying the uncertainty in
the similarity values of embedding models. This uncertainty is an intrinsic characteristic
of the recent models, because they all start with some random initialization and eventually
converge to a (local) solution. Therefore, even by training with the same parameters and
on the same data, the created word embedding models result in slightly different term
distributions and hence slightly different relatedness values. In the next step, using this
observation, we provide a novel representation on the expected number of neighbors of
an arbitrary term as a continuous function over similarity values, which is later used to
estimate the general threshold.

In order to evaluate the effectiveness of the proposed threshold, we use the novel translation
models, introduced in Chapter 3, and test them on four test collections. In the experiments,
we apply the threshold to identify the set of terms to extend the query terms using both
the Generalized Translation Model and the Extended Translation Model. In fact, we
follow the study in the previous chapter by exploring an effective threshold value via
studying the uncertainty in the embedding space. The results of using the proposed
threshold are compared with the optimal threshold, achieved—as before—by exhaustive
search on the spectrum of threshold parameters. We show that in general using the
proposed threshold performs either exactly the same as, or statistically indistinguishable
from the optimal threshold.

In summary, the main contributions of this chapter are:

1. exploration of the uncertainty in word embedding models in different dimensions
and similarity ranges.

2. introducing a general threshold for separating similar terms in different embedding
dimensions.

3. extensive experiments on four test collections comparing different threshold values
on different retrieval models.

The remainder of the chapter is structured as follows: We introduce the proposed
threshold in Section 4.1. We next present our experimental setup in Section 4.2, followed
by discussing the results in Section 4.3. Section 4.4 summarizes our observations and
concludes the study.

4.1 Global Term Similarity Threshold

We are looking for a threshold to separate the related terms from the rest. For this
purpose, we start with an observation on the uncertainty of similarity in word embedding
models, followed by defining a novel model of the expected number of neighbors for an
arbitrary term, before we define our proposed threshold.
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Figure 4.1: (a) Comparison of similarity values of the terms Book and Dwarfish to 580K
terms between models M and P . (b) Histogram of similarity values of an arbitrary term
to all the other terms in the collection for 100, 200, 300, and 400 dimensions.

4.1.1 Uncertainty of Similarity

In this section, we make a series of practical observations on word embeddings and the
similarities computed based on them.

To observe the uncertainty, let us consider two models P and M . To create each instance,
we train word2vec SkipGram models similar to the way we did in Chapter 3 with the
sub-sampling parameter of 10−5, context windows of 5 terms, epochs of 25, and term
count threshold 20 on the Wikipedia dump file for August 2015, after applying the Porter
stemmer. Each model has a vocabulary of approximately 580k terms. They are identical
in all ways except their random starting point.

Figure 4.1a shows the distances between two terms and all other terms in the dictionary, for
the two models, in this case of dimensionality 200. For each term, we have approximately
580k points on the plot. As we can see, the difference between similarities calculated in
the two models, appears (1) greater for low similarities, and (2) greater for a rare term
(Dwarfish) than for a common term (Book). We can also observe that there are very few
pairs of terms with very high similarities.

Let us now explore the effect of dimensionality on similarity values and a uncertainty.
Before that, in order to generalize the observations to an arbitrary term, we had to
consider a set of “representative” terms. What exactly “representative” means is of
course debatable. We took 100 terms recently introduced in the query inventory method
by Schnabel et al. [SLMJ15]. They claim that the selected terms are diverse in frequency
and part of speech over the collection terms. In the remainder of the chapter, we refer to
arbitrary term as an aggregation over the representative terms i.e. each value related to
the arbitrary term is the average of the values of the representative terms.
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Figure 4.2: (a) Standard deviation for similarity values. Points are the average over
similarity intervals with equal lengths of 2.4×10−4 (b) Probability distribution of similarity
values for the term Book to some other terms.

Figure 4.1b shows the fitted curve to the histogram of similarity values for models of
different dimensionalities. As we can see, similarities are in the [−0.2, 1.0] range and have
positive skewness (the right tail is longer). As the dimensionality of the model increases,
the kurtosis also increases (the histogram has thinner tails).

Let us first suggest a concrete definition for uncertainty: We quantify the uncertainty of
the similarity between two terms as the standard deviation σ of similarity values obtained
from a set of identical models. We refer to identical models as the models created using
the same method, parameters, and corpus. However as shown before, the similarity
values of each term pair in each model are slightly different. The uncertainty of similarity
between the terms x and y is therefore formulated as follows:

σx,y =
√√√√ 1
|M |

∑
m∈M

(sim(~xm − ~ym)− µ)2, where µ =
∑
m∈M sim(~xm − ~ym)

|M |
(4.1)

where M is the set of identical models, ~xm is the vector representation of term x in model
m, and sim is a similarity function between two vectors.

To observe the changes in standard deviation, for every dimensionality, we create five
identical SkipGram models (|M | = 5).

Figure 4.2a plots the standard deviation, against the similarity values, for different model
dimensionalities. For the sake of clarity in visualization, we split the similarity values
into 500 equal intervals (each 2.4×10−4) and average the values in each interval. The
plots are smooth in the middle and scattered on the head and tail as the majority of
similarity values are in the middle area of the plots and therefore the average values are
consistent. However, we can observe that overall, as the similarity increases, the standard
deviation, i.e. the uncertainty, decreases.
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Figure 4.3: (a) Mixture of cumulative probability distributions of similarities in different
dimensions (b) Expected number of neighbors around an arbitrary term with confidence
interval. The average number of synonyms in WordNet (1.6) is shown by the dash-line.

We also observe a decrease in standard deviation as the dimensionality of the model
increases. On the other hand, the differences between models decrease as the dimension
increases such that the models of dimension 300 and 400 seem very similar in comparison
to 100 and 200. The observation shows a probable convergence in the uncertainty at
higher dimensionalities.

These observations show that the similarity between terms is not an exact value but can
be considered as an approximation whose variation is dependent on the dimensionality
and similarity range. We use the outcome of these observations in the following.

4.1.2 Continuous Distribution of Neighbors

We have demonstrated that the similarity values of a pair of terms obtained from identical
embedding models are slightly different. In the absence of additional information, we
assume that these similarity values follow a normal distribution.

To estimate this probability distribution, we use the mean and standard deviation values
in Section 4.1.1. Figure 4.2b shows the probability distribution of similarities for term
Book to 25 terms in different similarity ranges1. As observed before, by decreasing
similarity, the standard deviation of the probability distributions increases.

We use these probability distributions to provide a representation of the expected
number of neighbors around an arbitrary term in the spectrum of similarity values:
We first calculate the Cumulative Distribution Functions (CDF) of the probability
distributions. We then subtract the CDF values from 1 which only reverses the direction
of the distributions (from increasing left-to-right on X-axis to right-to-left). Finally, we

1we do not plot all the terms in the model to maintain the readability of the plot
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Table 4.1: Proposed thresholds for various dimensionalities

Dimensionality Threshold Boundaries
Lower Main Upper

100 0.802 0.818 0.829
200 0.737 0.756 0.767
300 0.692 0.708 0.726
400 0.655 0.675 0.693

accumulate all the cumulative distribution functions by summing all the values, shown in
Figure 4.3a. The values on this plot indicate the number of expected neighbors that have
greater or equal similarity values to the term than the given similarity value. We can
see the number of all the terms in the model (580k) in the lowest similarity value (−0.2)
which then rapidly drops as the similarity increases. This representation of the expected
number of neighbors in Figure 4.3a has two benefits: (1) the estimation is continuous
and monotonic, and (2) it considers the effect of uncertainty based on five models.

As noted before, the notion of arbitrary term is in fact an average over the 100 repre-
sentative terms. Therefore, in calculating the representation of the expected number
of neighbors, we also consider the confidence interval around the mean. This interval
is shown in Figure 4.3b. Here, the representation is zoomed on the lower right corner
of Figure 4.3a. The shaded area around each line shows the confidence interval of the
estimation.

This continuous representation is used in the following for defining the threshold for the
semantically related terms.

4.1.3 Similarity threshold

Given the expected number of neighbors around the arbitrary term, represented in
Figure 4.3a and Figure 4.3b, the question is “what is the best threshold for filtering the
related terms?”. In order to address the question, we hypothesize that since this general
threshold tries to separate related from unrelated terms, it can be estimated from the
average number of synonyms over the terms. Therefore, we transform the above question
into a new question: “What is the expected number of synonyms for a term in English?”

To answer this, we exploit WordNet. We consider the distinct terms in the related
synsets to a term as its synonyms, while filtering the terms containing multiple words (e.g.
Natural Language Processing, shown in WordNet as Natural_Language_Processing form)
since in creating the word embedding models such terms are considered as separated
terms (one word per term). The average number of synonyms over all the 147306 terms
of WordNet is 1.6, while the standard deviation is 3.1.

Using the average value of the synonyms in WordNet, we define our threshold for each
model dimensionality as the point where the estimated number of neighbors in Figure 4.3b
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is equal to 1.6. We also consider an upper and lower bound for this threshold based on
the points on the similarity axis at which the confidence interval plots cross the horizontal
line of the average value. The results are shown in Table 4.1.

In the following sections, we validate the hypothesis by evaluating the performance of
the proposed thresholds with an extensive set of experiments.

4.2 Experiment Setup

We test the effectiveness of our threshold in an Ad-hoc retrieval task on IR test collections
by evaluating the results of applying various thresholds to retrieve the related terms.

We use two relevance scoring approaches: query language model [PC98] and BM25
methods as two widely used and established methods in IR. As mentioned before, to
exploit the set of related terms provided by word embeddings, we use the Generalized
Translation Model and Extended Translation Model for BM25 and language modeling
(Section 3.1.2).

We evaluate our approach on four test collections: TREC 6, TREC 7, and TREC 8 of
the Ad-hoc track, and TREC 2005 HARD track (statistics available in Table 3.1). For
pre-processing, we apply the Porter stemmer and remove stop words using a small list of
127 common English terms.

In order to compare the performance of the thresholds, we test a variety of threshold
values for each model. The thresholds cover a set of values on both sides of our introduced
thresholds: for 100 dimension {0.67, 0.70, 0.74, 0.79, 0.81, 0.86, 0.91, 0.94, 0.96}, 200
dimension {0.63, 0.68, 0.71, 0.73, 0.74, 0.76, 0.78, 0.82}, 300 dimension {0.55, 0.60, 0.65,
0.68, 0.70, 0.71, 0.73, 0.75}, and 400 dimension {0.41, 0.54, 0.61, 0.64, 0.66, 0.68, 0.70,
0.71, 0.75}.

We set the basic models (language model or BM25) as baseline and test the statistical
significance of the improvement of the translation models with respect to their basic
models (indicated by the symbol †). Since the parameter µ for Dirichlet smoothing of
the translation language model and also b, k1, and k3 for BM25 are shared between the
methods, the choice of these parameters is not explored as part of this study and we use
the same set of values as the previous chapter. The statistical significance test are done
using the two sided paired t-test and statistical significance is reported for p < 0.05.

The evaluation of retrieval effectiveness is done with respect to Mean Average Precesion
(MAP) and Normalized Discounted Cumulative Gain at cut-off 20 (NDCG@20), as
standard measures in Ad-hoc information retrieval. Similar to Chapter 3, we consider
MAP and NDCG over the condensed lists [Sak07].
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Figure 4.4: MAP (above) and NDCG@20 (below) evaluation of the BM25 Extended
Translation model on TREC 6, TREC 7, TREC 8 Ad-hoc, and TREC 2005 HARD for
different thresholds (X-axes) and word embedding dimensions. Significance is shown by
†. Vertical lines indicate our thresholds and their boundaries in different dimensions.
The baseline is shown by the horizontal line. To maintain visibility, points with very low
performance are not plotted.
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Figure 4.5: Percentage of improvement of the relevance scoring models BM25 and
Language Model (LM), combined with the Generalized Translation (GT) and Extended
Translation (ET) models with respect to the baselines (standard LM and BM25) with
the MAP (above) and NDCG@20 (below) evaluation measures for different thresholds,
and word embedding dimensions, aggregated over all the collections.
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Table 4.2: Examples of similar terms, selected with our threshold

book: publish, republish, foreword, reprint, essay
eagerness: hoping, anxious, eagerness, willing,wanting
novel: fiction, novelist, novellas, trilogy
microbiologist: biochemist, bacteriologist, virologist
shame: ashamed
guilt: remorse
Einstein: relativity
estimate, dwarfish, antagonize: no neighbors

4.3 Results and Discussion

The evaluation results of the MAP and NDCG@20 measures of the BM25 Extended
Translation (BM-ET) model on the four test collections, with vectors in 100, 200, 300,
and 400 dimensions are shown in Figure 4.4. We only show the detailed results of the
BM-ET model as it has shown the best overall performance among the other translation
models in the previous chapter. For each dimension, our threshold and its boundaries
(the interval between the lower and upper bound in Table 4.1) are shown with vertical
lines. The baseline (basic BM25) is shown as the horizontal line. Significant differences
of the results to the baseline are marked by the † symbol.

The plots show that the performance of the translation models are highly dependent
on the choice of the threshold value. In general, we can see a trend in all the models:
the results tend to improve until reaching a peak (optimal threshold) and then converge
to the baseline. Based on this general behavior, we can assume that including the
terms whose similarity values are less than the optimal threshold introduces noise and
deteriorates the results while using the cutting point greater than the optimal threshold
filters the related terms too strictly2. We test the statistical significance of the differences
between the results of the optimal and proposed threshold in all the experiments (both
evaluation measures, all relevance scoring models, collections, and dimensions), observing
no significant difference in any of the cases.

In order to have an overview of the improvements for all the models, we calculate the
gain of each relevance scoring model for different thresholds and dimensionalities over
its corresponding baseline and average the gains on the four collections. The scoring
models are BM25 and Language Model (LM), combined with the Generalized Translation
(GT) and Extended Translation (ET) models. The results for MAP and NDCG are
depicted in Figure 4.5. In all the translation models, our proposed threshold is optimal
for dimensions 100, 200, and 300. In dimension 400, the significance test between the
best results and the results achieved from our threshold does not show any significant
difference. This justifies the choice of the proposed threshold as a generally stable and
effective cutting-point for identifying related terms.

To observe the effect of the proposed threshold, let us take a closer look at the terms,
2A more in-depth analysis is provided in Section 5.2
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filtered as related terms. Table 4.2 shows some examples of the retrieved terms when
using the word embedding model with 300 dimensions with our threshold (same as
optimal in this dimension for all the translation models). As expected, the examples
show the strong differences in the number of similar terms for various terms. The mean
and standard deviation of the number of similar terms for all the query terms of the
tasks is 1.5 and 3.0 respectively. Almost half of the terms are not expanded at all. We
can observe the similarity between this calculated mean and standard deviation and
the aggregated number of synonyms we observed in WordNet in Section 4.1.3—mean of
1.6 and standard deviation of 3.1. It appears that although the two semantic resources
(WordNet and word2vec) cast the notion of similarity in different ways and their provided
sets of similar terms are different, their values of mean and standard deviation for the
number of similar terms are very close.

4.4 Summary
In this chapter, we analytically explore the thresholds on similarity values of word
embedding to select related terms. Based on empirical observations on various models
generated by different instances of an identical model, we estimate the variance of the
cosine similarity value between two term vectors, allowing practical use of similarity values.
The proposed threshold is estimated based on a novel representation of the neighbors
around an arbitrary term, taking into account the empirically-measured variance of
similarity values.

We extensively evaluate the application of the introduced threshold on four information
retrieval collections using four relevance scoring models. The results show that the
proposed threshold is identical to the optimal threshold (obtained by parameter scan)
in the sense that its results on Ad-hoc retrieval tasks are either equal to or statistically
indistinguishable from the optimal results.
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CHAPTER 5
Fusion of Semantic Models with

Window and Document Contexts

The effective model for choosing related terms to enrich queries has been explored
for decades in information retrieval literature and approached using a variety of data
resources. Early studies explore the use of collection statistics. They identify the global
context of two terms either by directly measuring term co-occurrence in a context (i.e.
document) [PW91] or after applying matrix factorization as in the LSI method [DDF+90].
Later studies show the higher effectiveness of local approaches (i.e. using pseudo-relevant
documents) [XC96]. As shown in Chapter 3 and also other recent studies [ZC16,ZC17],
approaches to exploit word embedding for IR are not only competitive to the local
approaches but also that combining the approaches brings further improvements in
comparison to each of them alone.

Word embedding methods capture the co-occurrence relations between the terms, based
on an approximation of the likelihood of their appearances in similar window-contexts.
However, since the concept of term relatedness is defined as a similarity proximity between
such vector representations, some related terms might not fit to the retrieval needs and
eventually deteriorate the results. For instance, antonyms (‘cheap’ and ‘expensive’) or
co-hyponyms (‘schizophrenia’ and ‘alzheimer’, ‘mathematics’ and ‘physics’, countries,
months) share common window-contexts and are therefore considered as related in the
word embedding space, but can potentially bias the query to other topics.

In this chapter, we address this problem by studying the effect of similarity achieved
from global (document) context as a complement to the window-context based similarity.
In fact, similar to the earlier studies [PW91,SM83], we assume each document to be a
coherent information unit and consider the co-occurrence of terms in documents as a
means of measuring their topical relatedness. Based on this assumption, we hypothesize
that to mitigate the problem of topic shifting, the terms with high word embedding
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Table 5.1: Test collections used in this chapter

Name Collection # Queries # Documents
TREC Ad-hoc 1&2&3 Disc1&2 150 740449
TREC Ad-hoc 6&7&8 Disc4&5 150 556028
HARD AQUAINT 50 1033461

similarities also need to share similar global contexts. In other words, if two terms appear
in many similar window-contexts, but they share few document-contexts, they probably
reflect different topics and should be removed from the related terms.

To examine this hypothesis, we analyze the effectiveness of each related term, when added
to the query. Our approach is similar to that of Cao et al. [CNGR08] on pseudo-relevance
feedback. Our analysis shows that the set of related terms from word embedding has
a high potential to improve state-of-the-art retrieval models. Based on this motivating
observation, we explore the effectiveness of using word embedding’s similar term when
filtered by global context similarity. Our evaluation on three test collections shows
the importance of using global context, as combining both the similarities significantly
improves the results.

The chapter is organized as follows: Section 5.1 analyses the effectiveness of the extended
terms, followed by describing our post-filtering methods in Section 5.2. We discuss the
retrieval results in Section 5.3 and finally conclude the work in Section 5.4.

5.1 Preliminary Analysis

In this section, we investigate the retrieval effectiveness of the similar terms to the
query terms, when incorporated in a retrieval model. We set up our experiment similar
to the previous chapters. Since TREC Ad-hoc 6, 7, and 8 share the same collection
of documents, to have a possible higher number of queries per collection required for
cross-validation in the next section, we merge these there collections into one (TREC 678).
We therefore conduct the experiments on three test collections, shown in Table 5.1. For
word embedding vectors, we train the word2vec SkipGram model with 300 dimensions
and the same parameters in the previous two chapters on the Wikipedia dump file for
August 2015. We use the Porter stemmer for the Wikipedia corpus as well as retrieval.
Similar to Chapter 4, we use the novel BM25 translation model and translation Language
Modeling (Chapter 3) for retrieval, denoted as B̂M25 and L̂M . We specifically focus
on the Extended Translation models as they have shown relatively better performance
than the Generalized Translation models in the previous experiments. To explore the
effectiveness of less similar terms, we consider the threshold values of {0.60, 0.65..., 0.80},
used for filtering the related terms of the word embedding model. However, for the final
results we only consider threshold of 0.7 as introduced in Chapter 4.
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Table 5.2: The percentage of the good, bad and neutral terms. #Rel averages the number
of related terms per query term.

Collection Threshold 0.60 Threshold 0.80
#Rel Good Neutral Bad #Rel Good Neutral Bad

TREC 123 8.2 7% 84% 9% 1.3 19% 68% 13%
TREC 678 8.8 9% 78% 14% 1.2 34% 48% 18%
HARD 10.3 8% 77% 15% 1.1 39% 44% 17%
ALL 8.1 8% 81% 11% 1.2 27% 58% 15%

The rests of the experiment settings are the same as the previous chapters: The parameters
µ for Dirichlet prior of the Language Modeling (LM), b, k1, and k3 for BM25 are set to
the same values as in Chapter 3. The statistical significance tests are done using the two
sided paired t-test and significance is reported for p < 0.05, and finally, the evaluation
of retrieval effectiveness is done with respect to NDCG at 20 and MAP both over the
condensed list.

We start with an observation on the effectiveness of each individual related term. To
measure it, we use the L̂M model as in Chapter 3 it has shown slightly better results
than the B̂M25 model. Similar to Cao et al. [CNGR08], given each query, for all its
corresponding related terms, we repeat the evaluation of the IR models where each time
the set of related terms R(t) (Section 3.1.1) consists of only one of the related terms. For
each term, we calculate the differences between its Average Precision (AP) evaluation
result and the result of the original query and refer to this value as the retrieval gain or
retrieval loss of the related term.

Similar to Cao et al. [CNGR08], we define good/bad groups as the terms with retrieval
gain/loss of more than 0.005 for the AP measure, and assume the rest with smaller gain
or loss values than 0.005 as neutral terms. Table 5.2 summarizes the percentage of each
group for the lowest (0.6) and highest (0.8) threshold. The average number of related
terms per query term is shown in the #Rel field. As expected, the percentage of the
good terms is higher for the larger threshold, however—similar to the observation on
pseudo-relevance feedback [CNGR08]—most of the expanded terms (58% to 81%) have
no significant effect on performance.

Let us imagine that we had a priori knowledge about the effectiveness of each related
term and were able to filter terms with negative effect on retrieval. We call this approach
Oracle post-filtering as it shows us the maximum performance of each retrieval model.
Based on the achieved results, we provide an approximation of this approach by filtering
the terms with retrieval loss.

Figure 5.1 shows the percentage of relative MAP and NDCG improvement of the L̂M
model with and without post-filtering with respect to the original LM model1. The

1the B̂M25 models show similar trend and are depicted later in the chapter in Figure 5.4b
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Figure 5.1: The percentage of relative improvement of L̂M models to the basic LM ,
aggregated over all the collections for MAP and NDCG@20 measures. The b and ρ signs
show the significance of the improvement to the basic models and the extended models
without post filtering respectively.

results are aggregated over the three collections. For each threshold the statistical
significance of the improvement with respect to two baselines are computed: (1) against
the basic LM , shown with the b sign and (2) against the translation models without post
filtering, shown with the ρ sign.

As observed in Chapter 4, for the thresholds less than 0.7 the retrieval performance of
the translation models (without post filtering) decreases as the added terms introduce
more noise. However, the models with the Oracle post filtering continue to improve
over the baselines further for the lower thresholds with high margin. These demonstrate
the high potential of using related terms from word embedding but also show the need to
customize the set of terms for IR. We propose an approach to this customization using
the global-context of the terms in the following.

5.2 Global-Context Post Filtering

Looking at some samples of retrieval loss, we can observe many cases of topic shifting:
e.g. Latvia as query term is expanded with Estonia, Ammoniac with Hydrogen, Boeing
with Airbus, and Alzheimer with Parkinson. As mentioned before, our hypothesis is that
for the terms with high window-context similarity (i.e. word2vec similarity) when they
have high global context similarity (i.e. co-occurrence in common documents), they more
probably refer to a similar topic (e.g. USSR and Soviet) and with low global context
similarity to different topics (e.g. Argentina and Nicaragua).

To capture the global context similarities, we examine several term semantic similarity
methods based on document context. In the following, we explain each method.

56



5.2. Global-Context Post Filtering

Our first set of measures, applied in some older studies [PW91], use the document set of
a term, namely the set of documents that term t appears in, denoted as DSt. Using the
document sets of query term q and an extended term t (DSq and DSt respectively), we
define the Dice, Jaccard, and PMI (denoted as PMIDS to avoid confusion with Eq. 2.2)
global similarity measures as follows:

Dice(q, t) = 2 |DSq ∩DSt|
|DSq| |DSt|

(5.1)

Jaccard(q, t) = |DSq ∩DSt|
|DSq ∪DSt|

(5.2)

PMIDS(q, t) = log
(
p(DSq ∩DSt)
p(DSq)p(DSt)

)
(5.3)

where p(DS) = |DS| / |D|, and |D| is the number of documents in the collection.

The second set of measures first define a vector representation of a term based on its
document context, and then compute the similarity between two term vectors using
the Cosine function. These methods are conceptually the same as some of the word
representation models explained in Section 2.1, but they use document context instead
of window context. The first two methods consider term vectors with dimensionality of
the number of documents in the collection (explicit representation), with weights given
either as simple incidence (i.e. 0/1), or by TFIDF. The third method applies Singular
Value Decomposition on the TFIDF weighted term-document matrix, resulting in the
Latent Semantic Indexing (LSI) method [DDF+90], described in Section 2.1.2. Similar
to the word2vec vectors, we create the LSI vectors with 300 dimensions.

Finally, we compute these measures using the statistics of each collection as well as
the Wikipedia collection. This results in 12 sets of similarities (Dice, Jaccard, PMIDS,
Incidence Vectors, TFIDF Vectors, LSI Vectors)×(collection, Wikipedia). We refer to
these similarity value lists as global context features.

Let us first observe the relationship between one of these feature, namely LSI when using
collection statistics, and word2vec similarities. Figure 5.2 plots the retrieval gain/loss
of the terms of all the collections based on their word2vec similarities as well as LSI.
The size of each circle shows the amount of gain (green) or loss (red) in the retrieval
performance by using a term. For clarity, we only show the terms with the retrieval
gain/loss of more than 0.01. The area with high word2vec and LSI similarity (top-right)
contains most of the terms with retrieval gain. On the other hand, regardless of the
word2vec similarity, the area with lower LSI tend to contain relatively more cases of
retrieval loss. This observation encourages the exploration of a set of thresholds for global
context features to post filter the terms retrieved by embedding.

To find the thresholds for global context features, we explore the highest amount of total
retrieval gain after filtering the related terms with similarities higher than the thresholds.
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Figure 5.2: Retrieval gain or loss of the related terms for all the collection. The red
(light) color indicate retrieval loss and the green (dark) retrieval gain.

We formulate it by the following optimization problem:

argmin
Θ

N∑
i=1

1

 F⋂
j=1

xj > θj

 gi (5.4)

where 1 is the indicator function, N and F are the number of terms and features
respectively, Θ indicates the set of thresholds θj , xj the value of the features, and finally
g refers to the retrieval gain/loss.

We consider two approaches to selecting the datasets used to find the optimum thresholds:
per collection, and general. In the per collection scenario (Col), for each collection we
find different thresholds for the features. We apply 5-fold cross validation (folds are
formed randomly) by first using the terms of the training topics to find the thresholds
(solving Eq. 5.4) and then applying the thresholds to post filter the terms of the test
topics. To avoid overfitting, we use the bagging method by 40 times bootstrap sampling
(random sampling with replacement) and aggregate the achieved thresholds.

In the general approach (Gen), we are interested in finding a ‘global’ threshold for each
feature, which is independent of the collections. As in this approach the thresholds are
not specific to each individual collection, we use all the topics of all the test collections
to solve the optimization problem.

5.3 Results and Discussion
To find the most effective set of features, we test all combinations of the 12 discussed
features using the per collection (Col) post-filtering approach. Given the post-filtered
terms with each feature set, we evaluate the L̂M and B̂M25 models. Our results show
that by only using the combination of LSI and TFIDF features defined on the collections
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Figure 5.3: Evaluation results of the LM and BM25 Extended Translation models
with/without post filtering for MAP and NDCG@20 measures. The b and ρ signs show
the significance of the improvement to LM/BM25 and L̂M/B̂M25 without post filtering
respectively.

statistics, we achieve the best performance among various combinations, and adding
any of the other features (containing the ones based on Wikipedia) does not bring any
improvement. Therefore in the following, to simplify our computations for post filtering,
we only use the combination of LSI and TFIDF similarity features with both using the
collections statistics.
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5. Fusion of Semantic Models with Window and Document Contexts

Table 5.3: MAP and NDCG@20 of the Extended Translation models (ET) when terms
are filtered with word embedding threshold of 0.7 and post filtered with the Gen and
Col approach, using the LSI and TFIDF features.

Collection Method MAP NDCG@20
LM BM25 LM BM25

TREC 123

Basic 0.302 0.301 0.566 0.552
ET 0.320 0.318 0.587 0.580

ET+Gen 0.321 b 0.321 b 0.592 b 0.582 b
ET+Col 0.328 bρ 0.322 b 0.594 b 0.587 b

TREC 678

Basic 0.261 0.252 0.446 0.442
ET 0.274 0.270 0.455 0.444

ET+Gen 0.275 0.269 b 0.458 0.457
ET+Col 0.277 b 0.272 b 0.461 b 0.461 bρ

HARD

Basic 0.218 0.214 0.330 0.306
ET 0.259 b 0.254 b 0.365 b 0.336

ET+Gen 0.259 b 0.255 b 0.360 b 0.328
ET+Col 0.261 b 0.256 b 0.368 b 0.340

Figure 5.3 shows the evaluation results of the original Extended Translation models
(L̂M and B̂M25) and the Extended Translation models with post filtering based on the
general (Gen) and per collection (Col) approaches. As before, statistical significance
against the basic models is indicated by b and against the translation models without
post filtering by ρ.

The results for both evaluation measures show the improvement of the Extended Trans-
lation models with post-filtering in comparison with the original ones. The models with
post-filtering approaches specifically improve in lower word embedding thresholds, how-
ever similar to the original Extended Translation models, in average the best performance
is achieved on word embedding threshold of 0.7. The results with word embedding
threshold of 0.7 are summarized in Table 5.3. Comparing the post-filtering approaches,
Col shows better performance than Gen as with the proposed word embedding threshold,
it achieves significant improvements over both baselines in two of the collections.

Let us look again to the relative improvements, aggregated over the collections, shown in
Figure 5.4. The figure is similar to Figure 5.1 but contains the results of the post filtering
approaches. As shown, the Col approach shows better results than other models on both
evaluation measures and IR models, and except in LM with MAP, the Col approach
achieves significant improvement over both baselines.
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Figure 5.4: The percentage of relative improvement to the basic models, aggregated over
all the collections for MAP and NDCG@20 measures. The plot is similar to Figure 5.1
but contains the results of Col and Gen approaches.

5.4 Summary

Word embedding methods use (small) window-context of the terms to provide dense
vector representations, used to approximate term relatedness. In this chapter, we study
the effectiveness of related terms, identified by both window-based and global (document)
contexts, in document retrieval. We use two state-of-the-art translation models to
integrate word embedding information for retrieval.

Our analysis shows a great potential to improve retrieval performance, damaged however
by topic shifting. To address it, we propose the use of global context similarity, i.e. the co-
occurrence of terms in larger contexts such as entire documents. Among various methods
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5. Fusion of Semantic Models with Window and Document Contexts

to measure global context, we identify the combination of LSI and TFIDF as the most
effective feature set in eliminating related terms that lead to topic shifting. Evaluating
the IR models using two post-filtering approaches shows a significant improvement in
comparison with the basic models as well as the Extended Translation models with no
post-filtering. The results demonstrate the importance of global context for selecting the
related term when combined with the window-context similarities.
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CHAPTER 6
Interpretability in Word

Embedding

Word embedding models provide significant benefit to information processing tasks.
While easy to construct based on raw unannotated corpora, these dense representations
and their estimation of term-term relatedness remain difficult to interpret and hard to
analyze. In fact, when using word embedding, it remains opaque what the dimensions
of the vectors refer to, or to what extend a semantic concept is present in the vector
representation of a term.

As discussed in Section 2.1.1, a natural solution to this problem is using explicit repre-
sentations of words i.e. vectors with clearly-defined dimensions, where each dimension
represents an explicit concept such as a term, window of terms, or document. Such an
explicit vector of a word is easily interpretable, as each dimension stands for the degree
of relation between the word and the corresponding concept.

We also discussed the effectiveness of the explicit representations in Section 2.1.5. As
shown by Levy et al. [LGD15], the recent explicit representation models such as Shifted
Positive Point Mutual Information (SPPMI), explained in Eq. 2.10, show competitive
performance in comparison to the state-of-the-art word embeddings on a set of term
association test collections. Regarding efficiency, the explicit representations often require
much bigger memory space in comparison to the low-dimensional dense vectors. However,
in practice the memory issue can be mitigated by suitable data structures if the vectors
are highly sparse.

As an alternative approach to improve interpretability, some recent work [FTY+15,
SGL+16] propose methods to increase the sparsity of the dense vectors. The rationale
of these approaches is that by having more sparse vectors, it becomes more clear which
dimension of the vectors might be referring to which concepts in language.
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6. Interpretability in Word Embedding

In contrast to this approach, our first contribution in this chapter is in line with previous
studies [LG14, LGD15] on providing fully interpretable vectors by proposing a novel
explicit representation for the word2vec SkipGram model. We propose a method to
transfer the low-dimensional (dense) vectors of a trained SkipGram model to explicit
vector representations in a high-dimensional space. Our approach is in the opposite
direction to the methods such as LSI or GloVe (discussed in Section 2.1.2), where they
start from a high-dimensional matrix and result in low-dimensional embeddings. In
contrast, the main objective of our work is to provide an interpretable variation of the
SkipGram vectors, enabling error resolution and better causal analysis.

We evaluate our explicit SkipGram model on 6 term-to-term association benchmarks,
showing results on par with the SPPMI model as the state of the art of explicit repre-
sentation vectors. These results support the reliability of our approach to create high
quality interpretable vectors of the SkipGram model.

To show an application of our explicit SkipGram representation, in our next contribution,
we propose a novel approach based on explicit vectors to quantify the degree of gender
bias in a corpus. We particularly focus on the inclination of a set of gender-neutral
occupations to male or female in a Wikipedia English corpus.

As a study close to our work, Bolukbasi et al. [BCZ+16] quantify the gender bias of
an occupation by calculating the semantic similarity of the vectors of the terms ‘she’
and ‘he’ (Vshe and Vhe), as the representative of female and male, to the vector of the
occupation using the SkipGram model. We point out an intrinsic issue in this approach,
by arguing that Vshe and Vhe are not precise representatives of female and male concepts,
since due to bias in language they also contain other types of concepts, specially the ones
related to occupations. For instance, if ‘nurse’ is biased to female, we expect that Vnurse
contains many concepts related to female. However, it also means that Vshe contains
high relation to the concept ‘nurse’. We refer to this characteristic of word embedding
as circularity. Considering this trait, given that Vnurse naturally contains the concept
‘nurse’, calculating the semantic similarity between Vshe and Vnurse (as the degree of bias
of ‘nurse’ to female) is wrongly inclined by the ‘nurse’ concept.

To address the issue caused by circularity, we exploit the interpretability characteristic
of the explicit SkipGram representations, by selecting only the gender-related concepts
(dimensions) of the gender vectors. In our approach, the bias towards female is quantified
by defining a new gender vector VSHE , where its female-related dimensions are explicitly
set to the ones of Vshe and the rest to zero (the same process for bias towards male by
defining the vector VHE).

The proposed gender vectors VSHE and VHE therefore only consist of gender-specific
concepts which arguably provide a more precise approach to gender bias quantification.
These results specially demonstrate the high bias of some specific jobs to female-specific
concepts. This inherent bias in data and therefore word representations can potentially
be propagated to information systems, leading to biased decisions.

In the following, first we introduce our novel explicit representation model in Section 6.1,
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6.1. Explicit SkipGram

followed by evaluating the performance of the introduced representation. We then discuss
our approach to quantifying the degree of gender bias in Wikipedia using the explicit
SkipGram representation and report the results in Section 6.2. Finally, we conclude the
chapter in Section 6.3.

6.1 Explicit SkipGram

In this section, we first explain our approaches to create explicit representations of the
SkipGram model, followed by evaluation and comparison of the proposed representations.

6.1.1 Definition

To define our novel explicit representations, let us first revisit the p(y = 1|w, c) probability
in the word2vec SkipGram model (referred to as SG in the rest of this chapter), explained
in Section 2.1.4 and Eq. 2.8. p(y = 1|w, c) measures the probability that the co-occurrence
of two terms w and c comes from the training corpus and not from a random distribution.
The purpose of this probability is in fact related to the conceptual goal of the PMI-based
representations i.e. to distinguish a genuine from a random co-occurrence (Section 2.1.1).
Indeed, both of these probabilities aim to capture the first-order relationship between two
terms, based on the corpus at hand. Based on this idea, an immediate way of defining
an explicit representation would be to use Eq. 2.8 as follows:

ExpSGc(w) = p(y = 1|w, c) = σ(VwṼc) (6.1)

where as in Section 2.1, V and Ṽ are the set of term and context vectors, and σ is the
sigmoid function.

This Explicit SkipGram (ExpSG) representation assigns a value between 0 to 1 to the
first-order relation of each pair of terms. It is however intuitive to consider that the very
low values do not represent a genuine relation and can potentially introduce noise in
computation. Such very low values can be seen in the relation of a term to very frequent
or completely unrelated terms. We can extend this idea to all the values of ExpSG, i.e.
some portion (or all) of every relation contains noise.

To measure the noise in ExpSG, we use the definition of noise probabilities in the Negative
Sampling approach: the expectation value of p(y = 1|w, c) where c (or w) is randomly
sampled from the dictionary for several times. Based on this idea, we define the Reduced
Explicit SkipGram (RExpSG) model by subtracting the two expectation values from
ExpSG:

RExpSGc(w) = ExpSGc(w)− E
č∼N

p(y = 1|w, č)− E
w̌∼N

p(y = 1|w̌, c) (6.2)

where E is the expectation value over any č term, sampled from the noisy distribution N .
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6. Interpretability in Word Embedding

Since the expectation values can be calculated off-line, in contrast to Negative Sampling
(restricted to a set of k sampled terms), we compute it over the entire vocabulary:

E
w̌∼N

p(y = 1|w̌, c) =
∑|W |
i=1 #(w̌i) · σ(Vw̌i Ṽc)∑|W |

i=1 #(w̌i)
(6.3)

For the sampling of the context term č, similar to SG and PMIα (Eq. 2.11), we apply
the cds method (Section 2.1.4) by raising frequency to the power of α, as follows:

E
č∼N

p(y = 1|w, č) =
∑|W |
i=1 #(či)α · σ(VwṼči)∑|W |

i=1 #(či)α
(6.4)

Similar to PPMI (Eq. 2.3), our last proposed representation removes the negative values.
The Positive Reduced Explicit SkipGram (PRExpSG) is defined as follows:

PRExpSGc(w) = max(RExpSGc(w), 0) (6.5)

Setting the values to zero in PRExpSG facilitates the use of efficient data structures i.e.
sparse vectors. We analyze the efficiency and effectiveness of the explicit representations
in the next section.

6.1.2 Evaluation

To analyze the representations, we create a SkipGram model similar to the previous
chapters with 300 dimensions on the Wikipedia dump file for August 2015 using the
gensim toolkit [ŘS10]. As suggested by Levy et al. [LGD15], we use a window of 5 terms,
negative sampling of k = 10, down sampling of t = 10−5, a cds value of α = 0.75, trained
on 20 epochs, and filtering out terms with frequency less than 100. The final model
contains 199851 terms. The same values are used for the common parameters in the
PPMI and SPPMI representations.

We conduct our experiments on 6 term association benchmark collections. Each collec-
tion contains a set of term pairs where the association between each pair is assessed
by several human annotators (annotation score). The evaluation is done by calculating
the Spearman correlation between the list of pairs scored by similarity values versus
by annotation scores. The collections used are: WordSim353 partitioned into Similar-
ity and Relatedness [AAH+09]; MEN dataset [BTB14]; Rare Words dataset [LSM13];
SCWS [HSMN12]; and SimLex dataset [HRK15]. The statistics of the collections are
shown in Table 6.1.

The evaluation results for the explicit representations as well as SG are reported in
Table 6.2. The bold values show the best performing explicit representation and the
values with underline refer to the best results among all representations. Based on the
results, PRExpSG and SPPMI show very similar performance (in 3 benchmarks PRExpSG
and in the other 3 SPPMI shows the best performance), both considerably outperforming
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Table 6.1: Term association benchmarks.

Collection # of Pairs
WordSim Similarity 203
WordSim Relatedness 252
MEN 3000
Rare 2034
SCWS 2003
SimLex 999

Table 6.2: Term association evaluation. Best performing among explicit/all embeddings
are shown with bold/underline.

Method Sparsity WS Sim. WS Rel. MEN Rare SCWS SimLex
PPMI 98.6% .681 .603 .702 .309 .601 .284
SPPMI 99.6% .722 .661 .704 .394 .571 .296
ExpSG 0% .596 .404 .645 .378 .549 .231
RExpSG 0% .527 .388 .606 .311 .507 .215
PRExpSG 94.1% .697 .626 .711 .406 .614 .272
SG 0% .770 .620 .750 .488 .648 .367

the other explicit representations. As also shown in previous studies [LGD15], SG in
general performs better than the best performing explicit representations. The results
confirm the quality of the PRExpSG model as a well-performing representation on term
association benchmarks. Also looking at the sparsity ratio of the explicit representations,
reported in Table 6.2, we observe that the PRExpSG and SPPMI representations are
highly sparse, making them amenable to storage in volatile memory in practical scenarios.

In this section, we introduced the PRExpSG model and showed its strong performance in
practice. In the next section, we use PRExpSG for gender bias quantification, and compare
our results to the approach of Bolukbasi et al. [BCZ+16] conducted on SkipGram vectors.
Using PRExpSG—an explicit representation variation of the SkipGram model—enables
comparison between the two gender quantification approaches, since the PRExpSG
representation exploited in our method is created from the SkipGram embedding, used
in the approach of Bolukbasi et al..

6.2 Gender Bias Quantification with Explicit SkipGram

To study the gender bias in occupations, we prepare a list of 343 occupations, from which
26 are female-specific (e.g. ‘congresswoman’), and 22 male-specific (e.g. ‘congressman’),
and the rest are gender neutral (e.g. ‘nurse’, ‘dancer’, ‘bookkeeper’), listed in Table B.1,
Table B.2, and Table B.3 respectively. In the following, we first explain in detail our
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approach to gender bias quantification using the PRExpSG representation as well as
the one used in Bolukbasi et al.. We then visualize the degrees of inclinations of the
mentioned occupations to female and male by processing a corpus of Wikipedia.

6.2.1 Method

In Bolukbasi et al. [BCZ+16], the degree of gender bias of a word is measured using the
following approach:

λ̂f (w) = cosine(Vshe, Vw), λ̂m(w) = cosine(Vhe, Vw) (6.6)

where λ̂f (λ̂m) denotes the degree of bias of a word w (occupation in our case) to female
(male), and Vshe (Vhe) is the vector representation of word ‘she’ (‘he’), using the (dense)
SkipGram model.

As mentioned in the introduction, due to the circularity in word embedding, using Vshe
and Vhe does not provide a precise quantification of bias, as these vectors also contain
concepts related to the occupations. To validate the existence of circularity, we calculate
the value of PRExpSG(she, c) and PRExpSG(he, c) for each occupation (c indicating
an occupation). Among the 343 occupations, we observe 123, and 168 values higher than
zero for Vshe and Vhe respectively, indicating significant existence of occupation-related
concepts in the gender vectors.

To address the issue raised by circularity, we use the set of gender-specific terms, provided
by Bolukbasi et al. (refered to as equalize pairs in their work), to represent the gender-
related concepts in language. We manually shortlist the terms by removing occupations
(e.g. ‘businessman’ and ‘businesswoman’) and animals (e.g. ‘colt’ and ‘filly’). The
final list contains 32 female-specific terms (e.g. ‘she’, ‘her’, ‘woman’) and 32 equivalent
male-specific terms (e.g. ‘he’, ‘his’, ‘man’), denoted as Sf and Sm, shown in Table B.4,
and Table B.5 respectively.

Using these lists of gender-concepts, we then create two new gender vectors VSHE and
VHE in explicit space, defined as follows:

V c
SHE =

{
PRExpSGc(she) c ∈ Sf
0 c /∈ Sf

(6.7)

V c
HE =

{
PRExpSGc(he) c ∈ Sm
0 c /∈ Sm

(6.8)

where V c denotes the value of the dimension (concept) c of the vector.

Given the new gender vectors, similar to Eq. 6.6 we define the new gender factors as
follows:

λf (w) = cosine(VSHE , Vw), λm(w) = cosine(VHE , Vw) (6.9)

68



6.2. Gender Bias Quantification with Explicit SkipGram

As the values of λ appear in a different range than the ones of λ̂, to make the approaches
comparable, we apply Min-Max normalization on each approach, calculated over the
gender factor values of all terms of the corpus.

Another important consideration in our analysis is to distinguish between truly gender-
biased terms from low range values of gender factors (which can occur for every random
term). To indicate the terms with no considerable inclinations to genders, we define
gender-neutrality for a term when the difference between its gender factors is less than a
threshold:

|λf − λm| < ζ, |λ̂f − λ̂m| < ζ̂ (6.10)
To find such a threshold for each approach, since the number of gender-specific terms in
English are limited, we assume that a randomly sampled term from the vocabulary is a
gender-neutral term. This approach is similar to the one used in the Negative Sampling
method. We can repeat this sampling for all the terms and calculate the expected values
of ζ and ζ̂ by averaging |λf (w)−λm(w)| and |λ̂f (w)− λ̂m(w)| respectively over the terms.
In our experiments, this results in ζ = 0.046 and ζ̂ = 0.038.

6.2.2 Quantification of Gender Bias in Wikipedia

The results of gender bias quantification methods, applied on the Wikipedia corpus are
shown in Figure 6.1. Figures 6.1a and 6.1b depict the method used in Bolukbasi et al.
and our approach to gender bias quantification method, respectively. In both figures,
the gender-specific occupations are colored green, the gender-neutral ones red, and the
gender-neutrality area gray.

Comparing the two figures, we observe considerable differences between the gender bias,
measured by the two approaches. To compare the approaches, we use WinoBias [ZWY+18],
a recently introduced dataset which reports the degree of gender bias in 40 occupations,
using the statistics gathered from the US Department of Labor. The degree of bias
of each occupation to female in the dataset is the percent of people in the occupation
who are reported as female (e.g. 90% of nurses are women). The dataset is shown in
Table B.6.

We compare the results of the two approaches by calculating the correlation of female bias
of these 40 occupations, quantified by each approach, with the values in the WinoBias
dataset. The degree of bias to female for occupation w in our and Bolukbasi et al.’s
approach is computed by λf (w)−λm(w), and λ̂f (w)−λ̂m(w), respectively. The evaluation
makes the assumption that the bias in the real world is reflected in the text of Wikipedia.

The results of Spearman and Pearson correlations are shown in Table 6.3. For both
Spearman and Pearson correlations, our approach shows higher correlation to the female
bias values, provided by the WinoBias dataset. The results show that our approach more
accurately resonates the state of gender bias in the real world, and is therefore a more
precise method for bias quantification. In fact, our approach corrects the algorithmic
bias in Bolukbasi et al.’s method, by addressing the issue of circular effect in word
representations using explicit definition of gender-related concepts.

69



6. Interpretability in Word Embedding

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Female factor (λ̂f)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
al

e 
fa

ct
or

 (λ̂
m

)

Assistant

Journalist

Actor
Performer

Nurse

Housekeeper
Midwife

Dancer

Nanny

Actress

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Female factor (λf)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
al

e 
fa

ct
or

 (λ
m

)

Stonemason
Bricklayer

Bootmaker

Tailor

Plumber
Steelworker

Healer

Dancer

Embroiderer

Hairdresser

Mistress

Beautician

StewardessWaitress

Housekeeper

NurseManicurist
Midwife

Nanny

(b)

Figure 6.1: The inclination of occupations towards male and female genders. Gender-
specific occupations are shown in green (light) and gender-neutral ones in red (dark). The
gray area indicates gender-neutrality. (a) Method proposed in Bolukbasi et al. [BCZ+16]
using dense SkipGram vectors. (b) Our approach to gender bias quantification using
explicit SkipGram vectors.
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Table 6.3: Spearman and Pearson Correlation results of female bias, quantified by
our approach using PRExpSG representation and Bolukbasi et al.’s approach using
SkipGram, to the female bias statistics of 40 occupations, provided by the WinoBias
dataset [ZWY+18].

Method Correlation
Spearman Pearson

Bolukbasi et al. [BCZ+16] 0.38 0.39
Our Approach 0.42 0.50

Looking at the results of our approach in Figure 6.1b, it reveals an interesting pattern in
gender bias for the gender-neutral occupations. The majority of these occupations are
inclined towards the male factor while in general having weak bias. ‘Bootmaker’, ‘tailor’,
and ‘stonemason’ are some of the male-biased occupations. On the other hand, there
exist relatively few occupations with inclination to the female factor while some of them
have very strong gender bias, for example gender-neutral occupations like ‘housekeeper’,
‘nurse’, and ‘manicurist’. These observations provide a quantification of gender bias in
machine learned representations and enable future automated gender debiasing.

6.3 Summary
In this chapter, we propose a method to create an explicit representation of the word2vec
SkipGram model by capturing the probability of genuine co-occurrence of the terms. The
proposed representation performs on par with the state of the art explicit representations
on a set of term association benchmarks, and suggests a novel approach to interpret the
vector embeddings of the SkipGram model.

We propose a method for quantifying gender bias using our explicit SkipGram represen-
tation, which addresses the problem of circular effect in word embeddings. Comparing
our approach with the state of the art, we observe higher correlation between the values
of female bias, quantified by our approach, and the actual statistics of gender bias of 40
occupations in the US labor market. Finally, looking at the gender bias results provided
by our explicit SkipGram method, we observe a general tendency of the majority of jobs
to the male factor while there is strong bias in a few specific occupations to the female
factor. This study enables further research on algorithmic gender debiasing, especially
by using explicit vectors.
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CHAPTER 7
Cross-Lingual Word Sense
Disambiguation with Word

Embedding

In this chapter, we study an application of word embedding-based semantic approaches for
Cross-Lingual Word Sense Disambiguation (CL-WSD). CL-WSD is the task of correctly
translating an ambiguous term in a source language to a target language.

Typically, CL-WSD methods are classified into knowledge-based, supervised, and unsu-
pervised. Knowledge-based approaches use available structured knowledge. Supervised
approaches learn a computational model based on large amounts of annotated data.
While these two approaches show excellent results in practice, they both have to face the
knowledge acquisition bottleneck. This is a particular problem in specific domains or
low-density languages. As an alternative, unsupervised approaches address CL-WSD us-
ing only information extracted from existing corpora, such as various term co-occurrence
indicators.

For CL-WSD, two publicly available benchmarks, SemEval-2010 [LH10] and SemEval-
2013 [LH13], provide an evaluation platform for word disambiguation from English
to Dutch, German, Italian, Spanish, and French. We expand the SemEval-2013 test
collection to the Persian (Farsi) language by creating a novel collection based on the
CL-WSD SemEval format (explained in Appendix A).

Many participating systems in the SemEval tasks exploit parallel corpora, mainly Eu-
roparl [Koe05], to overcome the knowledge acquisition bottleneck [LHDC11,RLG13].
However, the approaches used in the tasks are not applicable for many languages and
domains due to the scarcity of bilingual corpora. Persian, for instance, suffers from the
lack of reliable and comprehensive knowledge resources as well as parallel corpora (Sec-
tion A.1 reviews the available resources in Persian). In such cases, unsupervised methods
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based on monolingual corpora (together with bilingual lexicon) are preferable, if not the
only available option [SVT12]. For example, Bungum et al. [BGLM13] find the probable
translations of a context in the source language and identify the best translation using a
language model of the target language. Duque et al. [DAMR15] build a co-occurrence
graph in the target language, and test a variety of graph-based algorithms for identifying
the best translation match.

In terms of combining Word Sense Disambiguation (WSD) and word embedding, Chen
et al. [CLS14] use knowledge-based WSD to identify distinct representations for different
senses of the same term. Our approach for CL-WSD is the opposite of this: starting from
word embedding representations, it identifies the similarity of the potential translations
to the terms in their contexts and chooses the translation with the highest semantic
similarity to its context.

In order to evaluate our approach, we use our new benchmark of English to Persian
CL-WSD, and compare our approach and the CO-Graph system [DAMR15], observing
the advantages of using word embedding in CL-WSD.

In terms of related work addressing the CL-WSD problem in Persian, Sarrafzadeh
et al. [SYCA11] follows a knowledge-based approach by exploiting FarsNet [SHF+10].
However, since their evaluation collection is not available, the results are impossible to
compare with other possible approaches.

The remainder of this chapter is organized as follows: Section 7.1 explains our unsupervised
approach to English to Persian CL-WSD. We explain our experiment setup in Section 7.2,
followed by discussing the results in Section 7.3. Finally, the study is concluded in
Section 7.4.

7.1 Unsupervised CL-WSD Method

Our approach follows the main idea of the Lesk algorithm [Les86], namely that terms
in a given context tend to share a common topic. We use word embedding to compute
the semantic similarity between terms. We measure the similarity of each candidate
translation of an ambiguous term to the translations of the context (the paragraph given
by the task) and select the most similar translation to its context. Our CL-WSD approach
is conceptually similar to the semantic matching algorithms, discussed in our previous
studies [RBI+15,RBLH17,RBLH15].

To formulate our CL-WSD approach, let us define T as the list of translation sets for the
terms in a context: T = {T1, T2, .., Tn} where n is the number of terms in the context,
and Ti is the set of possible translation terms for the ith term in the context. For each
translation term t ∈ Ti, we also have P (t) as priori knowledge—an indicator of how
frequent this particular translation is.

Given an embedding model in the target language, we compute the similarity of two
translation terms t and t̄ using their embedding vectors. However, in some cases the
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translation t of one term in English may be two or more words in Persian (multi-word
term), and since our word embedding model is generally created on the word level, we
will have more than one vector. Therefore, assuming every term t as a set words w, we
define a general similarity function between two translation terms as follows:

sim(t, t̄) = max
w∈t,w̄∈t̄

(cos(Vw, Vw̄)) (7.1)

where Vw is the vector representation of the word, and cos is the cosine function.

Having a definition of similarity between two translation terms, we now move to defining
the similarity between a candidate translation term of the ambiguous term and the list
of translation sets T . We consider two ways to approach it:

The first, denoted as RelAgg, uses the ContextVec function to create a vector, representing
the translated context terms in the target language. The ContextVec function is defined
in Algorithm 7.1.

Algorithm 7.1: ContextVec
Input: translation term t, and the list of translation sets T
Output: vector representation of the context

1 sumV ec← [];
2 for Ti ∈ T do
3 t∗ ← arg maxt̄∈Ti

(
sim(t, t̄)

)
;

4 maxV ec← Vt∗ ;
5 sumV ec← sumV ec+maxV ec;
6 end
7 return norm(sumV ec);

The norm function in Algorithm 7.1 applies the Euclidean norm.

Given the vector representation of the context, RelAgg calculates the cosine between the
vector of each candidate translation term t to the ContextVec(t, T ), multiplied by the
probability of the translation candidate P (t), shown as follows:

RelAgg(t, T ) = cos(Vt,ContextVec(t, T ))P (t) (7.2)

The second approach, denoted as RelGreedy, searches among all the translation terms
in all the sets Ti, and returns the value of the most similar translation term to the
translation candidate. Similar to RelAgg, the final score is multiplied by the probability
of the translation candidate. The RelGreedy approach is defined as follows:

RelGreedy(t, T ) = max
Ti∈T

(
max
t̄∈Ti

(
sim(t, t̄)

))
P (t) (7.3)
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Finally, given the score of the similarity of each translation candidate ti to its context
using either RelAgg or RelGreedy, we can select the best translation among the candidates,
as follows:

Result = arg max
ti

(Rel∗(ti, T )) (7.4)

where ti is a translation candidate for the term with ambiguity, and Rel∗ is either RelAgg
or RelGreedy.

7.2 Experiment Setup

Resources Similar to Jadidinejad et al. [JMD10], we use the PerStem tool [DL08]
for stemming and TagPer [SMN12] for POS tagging of Persian language. We create a
word2vec SkipGram model on a stemmed corpus of the Hamshahri collection [AAD+09],
containing 323616 documents of the Hamshahri newspaper (written in Persian). We use
sub-sampling at t = 10−4, the context windows of 5 terms, epochs of 25, term count
threshold of 5.

Beside the monolingual word embedding, a bilingual lexicon is required for our unsuper-
vised CL-WSD approach. While using parallel corpora is considered as a more effective
method for creating lexica [DMRA15], due to the lack of reliable parallel corpora, we
have to use a simple English to Persian dictionary. To have it in digital form, we use the
online API of one of the Google Translate services1. The lexica also provides a translation
probability rate, which we use as the P (t) value2.

Benchmark We use the novel English to Persian CL-WSD collection, described in
Appendix A, which follows the format of SemEval-2013 test collection. The collection
consists of 20 nouns, each with 50 cases (paragraphs) in English where the sense of each
noun in its corresponding paragraphs is ambiguous. The aim of the benchmark is to find
the correct Persian translations of the ambiguous terms.

Evaluation As the official evaluation measure of the SemEval 2013 CL-WSD task [LH13],
we use the F score (harmonic mean of precision and recall), applied in two settings:

• Best Result (Best), in which a system suggests any number of translations for
each target term, and the final score is divided by the number of these translations.

• Out-Of-Five (OOF) as a more relaxed evaluation setting, in which the system
provides up to five different translations, and the best one among them is selected.

1Accessed on June 2015
2Available in https://github.com/navid-rekabsaz/wsd_persian/tree/master/

resources/dictionary
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7.3. Results and Discussion

Table 7.1: Results of F-measure on OOF and Best evaluation settings.

Setting Method F-measure

OOF

RelAgg 0.502
RelGreedy 0.493
CO-Graph Dijkstra [DAMR15] 0.441
STD 0.418

Best

RelAgg 0.188
RelGreedy 0.183
CO-Graph Dijkstra [DAMR15] 0.174
STD 0.158

Baselines The first—STD—is introduced in the SemEval 2013 CL-WSD task as a
basic baseline. Similar to the original collection paper, to create the baseline we select
the most common and the five most common translations for the Best and OOF settings
respectively.

For the second baseline, we evaluate the Persian benchmark on the state-of-the-art
unsupervised CL-WSD system, called CO-Graph [DAMR15]. The initial hypothesis for
the CO-Graph system relies on the idea that words in a document tend to (statistically)
adopt a related sense. The system first creates a graph of connections between the words,
using the documents in the collection, and then applies different algorithms (Dijkstra,
Community-based, Static PageRank, Personalized PageRank) to disambiguate the words
based on their contexts. The construction of the graph is based on the statistical
significance (p-value) of the co-occurrences of the words in the same documents.

The CO-Graph system offers competitive results in the SemEval 2013 CL-WSD tasks, for
all the proposed languages. It outperforms all of the unsupervised participating systems
using only monolingual corpora, and even most of the ones which use parallel corpora
or knowledge resources. As our English-Farsi test collection is also created based on
the SemEval 2013 task, we find this system as a strong baseline for our experiments.
To evaluate the CO-Graph system on the Persian benchmark, we first create the graph
using the articles of the Hamshahri collection, each as a document. In the construction
of the graph, we only take into account the nouns by POS tagging. After evaluating
various algorithms, we find the Dijkstra algorithm together with p-value=10−6 as the
best performing approach.

Preprocessing We apply POS tagging on the English sentences of the SemEval 2013
CL-WSD task and only select the verbs and nouns as the context of the ambiguous terms.
We then lemmatize the context terms using WordNetLemmatizer of the NLTK toolkit.
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Figure 7.1: F-measure results (multiplied by 100) of the Best evaluation setting for 20
ambigous terms of the SemEval 2013 CL-WSD task

7.3 Results and Discussion
Table 7.1 shows the F-measure results of RelAgg and RelGreedy as well as the baselines
on the OOF and Best evaluation settings. The results for both evaluation settings show
that our approach outperforms the standard and the CO-Graph baselines. Comparing
the approaches, we observe similar results for the RelAgg and RelGreedy methods, while
RelAgg has slightly better performance, specially in the OOF evaluation setting.

In Figure 7.1, we compare the effectiveness of our methods for each ambiguous term of
the task with the baselines in the Best setting as the more challenging one. The results
show that while for most terms, our approach outperforms the standard baseline as well
as the CO-Graph system, none of the systems can outperform the standard baseline for
the terms ‘mood’ and ‘side’. Analyzing the results of these terms, we observe that in
some sentences, none of the nouns and verbs in the context share any common topic with
senses of the ambiguous terms. For example, using only the semantics of the nouns and
verbs in the context, the correct sense of ‘mood’ cannot be distinguished in either of the
sentences: ‘it reflected the mood of the moment’ (state of the feeling) and ‘a general mood
in Whitehall’ (inclination, tendency) . Similar cases are observed for the term ‘side’: e.g.,
‘both sides reaffirmed their commitment’ (groups opposing each other) in comparison
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7.4. Summary

to ‘at the side of the cottage’ (a position to the left or right of a place). While these
examples show the limitations of the context-based methods, the overall results show
the ability of word embedding and statistical-based approaches for the CL-WSD tasks,
specially in the absence of reliable resources.

7.4 Summary
In this chapter, we study the application of word embedding-based methods in unsu-
pervised Cross Language Word Sense Disambiguation (CL-WSD) when translating an
English noun, appeared in a paragraph, to Persian. Our semantic approach uses embed-
ding of the candidate translations as well as translated context terms to calculate the
semantic similarity of each translation to its context. The proposed approach outperforms
both the CO-Graph system—a state-of-the-art system in unsupervised CL-WSD—as
well as the standard baseline.

We however observe fundamental limitations of the methods based exclusively on context
as bag of words when none of the context terms share any semantic topic with the
ambiguous terms. Despite this fact, the current work offers a possible solution for
all languages/domains with scarce knowledge-based or parallel corpora resources, by
exploiting the use of a monolingual corpus together with a simple bilingual lexicon.
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CHAPTER 8
Sentiment Analysis with

Generalized Translation Models

In this chapter, we investigate the application of our word embedding-based methods
in another domain, namely in the financial sentiment analysis for volatility prediction.
Financial volatility is an essential indicator of instability and risk of a company, sector
or economy. Volatility forecasting has gained considerable attention during the last
three decades. In addition to using historic stock prices, recent approaches to volatility
prediction use sentiment analysis to exploit various text resources, such as financial
reports [KLR+09,WTLC13,TW14,NH15], news [KZP14,DZLD15], message boards [NS15],
and earning calls [WH14].

An interesting resource of textual information are U.S. companies’ annual disclosures,
known as 10-K filing reports. They contain comprehensive information about the
companies’ business as well as risk factors. Specifically, section Item 1A - Risk Factors of
the reports contains information about the most significant risks for the company. These
reports are however long, redundant, and written in a style that makes them complex
to process. Dyer er al. [DLSL16] notes that: “10-K reports are getting more redundant
and complex [...] (it) requires a reader to have 21.6 years of formal education to fully
comprehend”. Dyer et al. also analyse the topics discussed in the reports and observe
a constant increase over the years in both the length of the documents as well as the
number of topics. They claim that the increase in length is not the result of economic
factors but is due to verboseness and redundancy in the reports. They suggest that only
the risk factors topic appears to be useful and informative to investors. Their analysis
motivates us to study the effectiveness of the Risk Factors section for volatility prediction.

The research in this chapter builds on previous studies on volatility prediction and
information analysis of 10-K reports using sentiment analysis [KLR+09,TW14,WTLC13,
NH15,Li10,CCD+14], in the sense that since the reports are long (average length of 5000
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terms), different approaches are required, compared with studies of sentiment analysis
on short-texts. Such previous studies on 10-K reports have mostly used the data before
2008 and there is little work on the analysis of the informativeness and effectiveness of
the recent reports with regards to volatility prediction. We will indeed show that the
content of the reports changes significantly not only before and after 2008, but rather in
a cycle of 3-4 years.

In terms of use of the textual content for volatility prediction, the work in this chap-
ter shows that the Generalized Translation model as a term weighting scheme has a
significantly positive impact on prediction accuracy. The most recent study on the
topic [TW14] used related terms obtained by word embeddings to expand the lexicon
of sentiment terms. In contrast, as described in Chapter 3, we define the weight of
each lexicon term by extending it to the similar terms in the document. The significant
improvement of this approach for document retrieval by capturing the information of
similar terms motivates us to apply it on sentiment analysis. We extensively evaluate
various state-of-the-art sentiment analysis methods to investigate the effectiveness of our
approach.

In addition to text, factual market data (i.e. historical prices) provide valuable resources
for volatility prediction e.g. in the framework of GARCH models [Eng82]. An emerging
question is how to approach the combination of the textual and factual market information.
We propose various methods for this issue and show the performance and characteristics
of each.

The financial system covers a wide variety of industries, from daily-consumption products
to space mission technologies. It is intuitive to consider that the factors of instability
and uncertainty are different between the various sectors while similar inside them. We
therefore also analyze the sentiment of the reports of each sector separately and study
their particular characteristics.

The present study shows the value of information in the 10-K reports for volatility
prediction. Our proposed approach to sentiment analysis significantly outperforms state-
of-the-art methods [KLR+09,TW14,WTLC13]. We also show that performance can be
further improved by effectively combining textual and factual market information. In
addition, we shed light on the effects of tailoring the analysis to each sector: despite
the reasonable expectation that domain-specific training would lead to improvements,
we show that our sector-agnostic model generalizes well and outperforms sector-specific
trained models.

The remainder of the chapter is organized as follows: in the next section, we review the
state-of-the-art and related studies to sentiment-based volatility prediction. Section 8.2
formulates the problem, followed by a detailed explanation of our approach in Section 8.3.
We explain the dataset and settings of the experiments in Section 8.4, followed by the full
description of the experiments in Section 8.5. We conclude the chapter in Section 8.6.
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8.1 Related Work to Volatility Prediction
Market prediction has been attracting much attention in recent years. Kazemian et
al. [KZP14] use sentiment analysis for predicting stock price movements in a simulated
security trading system using news data, showing the advantages of the method against
simple trading strategies. Ding et al. [DZLD15] address a similar objective while using
deep learning to extract and learn events in the news. Xie et al. [XPW13] introduce a
semantic tree-based model to represent news data for predicting stock price movement.
Luss et al. [Ld15] also exploit news in combination with return prices to predict intra-day
price movements. They use the Multi Kernel Learning (MKL) algorithm for combining
the two features. The combination shows improvement in final prediction in comparison to
using each of the features alone. Motivated by this study, we investigate the performance
of the MKL algorithm as one of the methods to combine the textual with non-textual
information. Other data resources, such as stocks’ message boards, are used by Nguyen
and Shirai [NS15] to study topic modeling for aspect-based sentiment analysis. Wang
and Hua [WH14] investigate the sentiment of the transcript of earning calls for volatility
prediction using the Gaussian Copula regression model.

While the mentioned studies use short-length texts (sentence or paragraph level), ap-
proaching long texts (document level) for market prediction is mainly based on n-gram
bag of words methods. Nopp and Hanbury [NH15] study the sentiment of banks’ annual
reports to assess banking systems risk factors using a finance-specific lexicon, provided
by Loughran and McDonald [LM11], in both unsupervised and supervised manner.

More directly related to the informativeness of the 10-K reports for volatility prediction,
Kogan et al. [KLR+09] use a linear Support Vector Machine (SVM) algorithm on the
reports published between 1996–2006. Wang et al. [WTLC13] improve upon this by
using the Loughran and McDonald lexicon, observing improvement in the prediction.
Later, Tsai and Wang [TW14] apply the same method as Wang et al. [WTLC13] while
additionally using word embedding to expand the financial lexicon. We reproduce all the
methods in these studies, and show the advantage of our sentiment analysis approach.

8.2 Problem Formulation
In this section, we formulate the volatility forecasting problem and the prediction
objectives of our experiments. Similar to previous studies [CSS12, KLR+09, TW14],
volatility is defined as the natural log of the standard deviation of (adjusted) return
prices in a window of τ days. This definition is referred to as standard volatility [LH11]
or realized volatility [LT13], defined as follows:

v[s,s+τ ] = ln

√∑s+τ
t=s (rt − r̄)2

τ

 (8.1)

where rt is the return price and r̄ the mean of return prices. The return price is calculated
by rt = ln(Pt)− ln(Pt−1), where Pt is the (adjusted) closing price of a given stock at the
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trading date t.

Given an arbitrary report i, we define a prediction label yki as the volatility of the stock
of the reporting company in the kth quarter-sized window starting from the issue date of
the report si:

yki = v[si+64(k−1),si+64k] (8.2)
Every quarter is considered as per convention, 64 working days, while the full year is
assumed to have 256 working days.

We use 8 learners for labels y1 to y8. For brevity, unless otherwise mentioned, we report
the volatility of the first year by calculating the mean of the first four quartiles after the
publication of each report.

8.3 Methodology
We first describe our text sentiment analysis methods, followed by the features obtained
from factual market data, and finally explain the methods to combine textual and market
feature sets.

8.3.1 Sentiment Analysis

Similar to previous studies [NH15,WTLC13], we extract the keyword set from a finance-
specific lexicon [LM11] using the positive, negative, and uncertain groups, stemmed using
the Porter stemmer. We refer to this keyword set as Lex. Tsai et al. [TW14] expanded
this set by adding the top 20 related terms to each term to the original set. The related
terms are obtained using the word2vec model, built on the corpus of all the reports, with
cosine similarity. We also use this expanded set in our experiments and refer to it as
LexExt.

The following term weighting schemes are commonly used in IR and we consider them as
well in our study:

TC : log(1 + tfd(t))

TF : log(1+tfd(t))
‖d‖

TFIDF : log(1+tfd(t))
‖d‖ log

(
1 + |d|

df(t)

)
BM25 : (k+1)tfd(t)

k+tfd(t)
, tfd(t) = tfd(t)

(1−b)+b |d|
avgdl

where as before, tfd(t) is the number of occurrences of keyword t in report d, ‖d‖
denotes the Euclidean norm of the keyword weights of the report, |d| is the length of
the report (number of the terms in the report), avgdl is the average document length,
and finally k and b are parameters. For them, we use the settings used in Chapter 3, i.e.
k = 1.2 and b = 0.65.
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In addition to the standard weighting schemes, we use the Generalized Translation models
(presented in Chapter 3). We define the extended versions of the standard weighting
schemes as T̂C, T̂F , ̂TFIDF , and B̂M25 by replacing tfd(t) with t̂fd(t) (Eq. 3.3) in
each of the schemes. As in the previous chapters, we select the list of similar terms to
the keyword t from a word embedding model, using cosine as similarity measure and
threshold of 0.70.

We also test the effectiveness of the Extended Translation models as weighting schemes.
However, in practice we observe very similar results to the Generalized Translation
models, and due to the smaller complexity of the latter, we only report the results of the
weighting schemes based on the Generalized Translation models.

The feature vector generated by the weights of the Lex or LexExt lexicons is highly
sparse, as the number of dimensions is larger than the number of data-points. We
therefore reduce the dimensions to 400 by applying Principle Component Analysis (PCA).
The dimension size 400 shows the best result from a range of dimensions from 50 to
1000 when evaluating on a randomly selected validation set with 20% of the size of the
training data.

Given the final feature vector x with l dimensions, we apply SVM as a well-known
method for training both regression and classification methods. Similar to previous
studies [TW14,KLR+09], we set the parameters of the SVM to C = 1.0 and ε = 0.1. We
evaluate the performance of various kernels on the mentioned validation set, observing
better performance of the Radial Basis Function (RBF) kernel in comparison to linear
and cosine kernels and is therefore used in this work.

In addition, motivated by Moraes et al. [MVN13], we tested the effectiveness of neural
network methods for volatility prediction. We tried neural network architectures with
one or two hidden layers, each layer with either 400 or 500 nodes. For regularization, we
tried the early-stopping, regularization term, and dropout methods. All the networks use
tanh for activation function, and learning rate of 0.001 in gradient decent. However, none
of the mentioned variations of the neural networks models could provide better results
than the SVM regressors. Therefore, for this work, we only report the SVM methods.

8.3.2 Market Features

In addition to textual features, we define three features using the factual market data
and historical prices—referred to as market features—as follows:

Current Volatility is calculated on the window of one quartile before the issue date of
the report: v[si−64,si].

GARCH [Bol86] is a common econometric time-series model used for predicting stock
price volatility. We use a GARCH (1, 1) model, trained separately for each report on
intra-day return prices. We use all price data available before the issue date of the report
for fitting the model. GARCH (1, 1) predicts the volatility of the next day by looking
at the previous day’s volatility. When forecasting further than one day into the future
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Table 8.1: The financial sectors of companies and their abbreviations.

Energy ene Basic Industries ind Finance fin
Technology tech Miscellaneous misc Consumer Non-Durables n-dur
Consumer Durables dur Capital Goods capt Consumer Services serv
Public Utilities pub Health Care hlth

one needs to use the model’s own predictions in order to be able to make predictions for
more than one day ahead. When forecasting further into the future these conditional
forecasts of the variance will converge to a value called unconditional variance. As our
forecast period is one quarter, we will approximate the volatility of future quarters with
the unconditional variance.

Sector is the sector that the corresponding company of the report belongs to. The
sectors and their abbreviations used in this paper, are listed in Table 8.11. The feature is
converted to numerical representation using one-hot encoding.

8.3.3 Feature Fusion

To combine the text and market feature sets, the first approach, used also in previous
studies [KLR+09,WTLC13] is simply joining all the features in one feature space. In the
context of multi-model learning, the method is referred to as early fusion.

In contrast, late fusion approaches first learn a model on each feature set and then
use/learn a meta model to combine their results. As our second approach, we use
stacking [Wol92], a special case of late fusion. In stacking, we first split the training set
into two parts (70%-30% portions). Using the first portion, we train separate machine
learning models for each of the text and market feature sets. Next, we predict labels of
the second portion with the trained models and finally train another model to capture
the combinations between the outputs of the base models. In our experiments, the final
model is also trained with SVM with RBF kernel.

Stacking is computationally inexpensive. However, due to the split of the training set,
the base models or the meta model may suffer from lack of training data. A potential
approach to learn both the feature sets in one model is the Multi Kernel Learning (MKL)
method.

The MKL algorithm (also called intermediate fusion [Nob04]) extends the kernel of
the SVM model by learning (simultaneous to the parameter learning) an optimum
combination of several kernels. Lanckriet et al. [LCB+04] formulates the MKL algorithm
as follows:

K∗ =
∑
i

diKi where
∑
i

di = 1, di ≥ 0 (8.3)

1We follow the NASDAQ categorization of sectors.
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Table 8.2: Number of reports in the dataset per year.

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Sum
# of Reports 646 664 697 800 863 927 887 959 1051 1090 8584

where Ki is a predefined kernel. Gönen and Alpaydın [GA11] mention two uses of MKL:
learning the optimum kernel in SVM, and combining multiple modalities (feature sets)
via each kernel. Our objective in this work is the latter, namely combining text and
market modalities (two kernels). To keep it consistent with other SVM-based approaches,
we use the RBF kernel function for both the text and market feature sets.

The optimization of the MKL approach however can be computationally challenging.
We use the mklaren method [SC16] which has linear complexity in the number of data
instances and kernels, and has shown better performance in comparison with the recent
multi kernel approximation approaches.

8.4 Experiment Setup

In this section, we first describe the data, followed by introducing the baselines. We
report the parameters applied in various algorithms and describe the evaluation metrics.

Dataset We download the reports of companies of the U.S. stock markets from 2006
to 2015 from the U.S. Securities and Exchange Commission (SEC) website2. We remove
HTML tags and extract the text parts. We extract the Risk Factors section using term
matching heuristics. Finally, the texts are stemmed using the Porter stemmer. The
statistics of the collection per year is shown in Table 8.2.

We calculate the volatility values (Eq 8.1) and the volatility of the GARCH model based
on the stock prices, collected from the Yahoo website. Similar to Kogan et. al [KLR+09],
we assume the volatility values greater/smaller than the mean plus/minus three times
the standard deviation of all the volatility values as outliers and filter them out3.

Baselines GARCH: as the GARCH model only uses historical prices of the stocks
for prediction, we use it as a baseline to compare the effectiveness of text-based methods
with mainstream approaches.

Market: uses all the market features, listed in Section 8.3.2. We train a SVM model
with RBF kernel on these features to predict volatility.

2https://www.sec.gov
3The complete dataset is available in http://ifs.tuwien.ac.at/~admire/

financialvolatility
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Wang et al. [WTLC13]: they use the Lex keyword set with TC weighting scheme
and the SVM method. They combine the textual features with current volatility using
the early fusion method.

Tsai et al. [TW14]: similar to Wang et al. [WTLC13], while they use the LexExt
keyword set.

Evaluation Metrics As a common metric in volatility prediction, we use the r2 metric
(square of the correlation coefficient) for evaluation:

r2 =

 ∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2
√∑n

i=1(yi − ȳ)2

2

(8.4)

where ŷi is the predicted value, yi denotes the labels and ȳ, their mean. The r2 metric
is between 1 and 0, indicating the proportion of variance in the labels explained by the
prediction. An alternative metric, used in previous studies [WTLC13,TW14,KLR+09]
is Mean Squared Error MSE =

∑
i(ŷi − yi)2/n. However, especially when comparing

models, applied on different test sets (e.g. performance of first quartile with second
quartile), r2 has better interpretability since it is independent of the scale of y. We use
r2 in all the experiments while the MSE measure is reported only when the models are
evaluated on the same test set.

8.5 Experiments and Results
In this section, first we analyse the contents of the reports, followed by studying our
sentiment analysis methods for volatility prediction. Finally, we investigate the effect of
sentiment analysis of the reports in different industry sectors.

8.5.1 Content Analysis of 10-K Reports

Let us start our experiment with observing changes in the feature vectors of the reports
over the years. To compare them, we use the state-of-the-art sentiment analysis method,
introduced by Tsai and Wang [TW14]. We first represent the feature vector of each
year by calculating the centroid (element-wise mean) of the feature vectors of all reports
published that year and then calculate the cosine similarity of each pair of centroid
vectors, for the years 2006–2015.

Figure 8.1a shows the similarity heat-map for each pair of the years. We observe a
high similarity between three ranges of years: 2006–2008, 2009–2011, and 2012–2015.
These considerable differences between the centroid reports in years across these three
groups hints at probable issues when using the data of the older years as training data
for predicting the volatility of more recent years.

To validate this, we apply 5-fold cross validation (folds are formed randomly), first on
all the data (2006–2015), and then on smaller sets by dropping the earliest year i.e. the
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Figure 8.1: (a) Cosine similarity between the centroid vectors of the years. (b) Volatility
prediction performance when using reports from the specified year to 2015

next subsets use the reports 2007–2015, 2008–2015 and so forth. The results of the r2

measure are shown in Figure 8.1b. We observe that by dropping the oldest years one by
one (from left to right in the figure), the performance starts improving. We argue that
this improvement is due to the reduction of noise in data, noise caused by conceptual
drifts in the reports as also mentioned by Dyer et al. [DLSL16]. In fact, although in
machine learning in general using more data results in better generalization of the model
and therefore better prediction, the reports of the older years introduce noise.

As shown, the most coherent and largest data consists of the subset of the reports published
between 2012 to 2015. This subset is also the most recent cluster and presumably more
similar to the future reports. Therefore, in the following, we only use this subset, which
consists of 3892 reports, belonging to 1323 companies.

8.5.2 Volatility Prediction

Given the dataset of the 2012–2015 reports, we try all combinations of different term
weighting schemes using the LexExt keyword set. All weighting schemes are then
combined with the market features with the introduced fusion methods. The prediction
is done with 5-fold cross validation. The averages of the results of the first four quartiles
(first year) are reported in Table 8.3. To make showing the results tractable, we use the
best fusion (stacking) for the weighting schemes and the best scheme (B̂M25) for fusions.

Regarding the weighting schemes, B̂M25, BM25, and T̂C show the best results. In
general, the extended schemes (with hat) improve upon their normal forms. For the
feature fusion methods, stacking outperforms the other approaches in both evaluation
measures. MKL has better performance than early fusion on r2 and close results with
MSE, while it has the highest computational complexity among the methods.
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Table 8.3: Performance of sentiment analysis methods for the first year.

Component Method Text Text+Market
(r2) (MSE) (r2) (MSE)

Weighting Schema
(+Stacking)

B̂M25 0.439 0.132 0.527 0.111
BM25 0.433 0.136 0.523 0.114
T̂C 0.427 0.136 0.517 0.115
TC 0.425 0.137 0.521 0.114
̂TFIDF 0.301 0.166 0.502 0.118

TFIDF 0.264 0.189 0.497 0.119
T̂F 0.218 0.190 0.495 0.120
TF 0.233 0.200 0.495 0.120

Feature Fusion
(+B̂M25)

Stacking - - 0.527 0.111
MKL - - 0.488 0.126

Early Fusion - - 0.473 0.125

Table 8.4: Performance of the methods using 5-fold cross validation.

Method (r2) (MSE)
GARCH 0.280 0.170

Text
Wang [WTLC13] 0.345 0.154
Tsai [TW14] 0.395 0.142
Our method 0.439 0.132
Market 0.485 0.122

Text+Market
Wang [WTLC13] 0.499 0.118
Tsai [TW14] 0.484 0.122
Our method 0.527 0.111

Based on these results, as our best performing approach in the remainder of the chapter,
we use B̂M25 (with LexExt set), reduced to 400 dimensions and stacking as the fusion
method. Table 8.4 summarizes the results of our best performing method compared with
previously existing methods. Our method outperforms all state-of-the-art methods both
when using textual features only as well as a combination of textual and market features.

Let us now take a closer look at the changes in the performance of the prediction in
time. The results of 5-fold cross validation on the dataset of the reports, published
between 2012–2015 are shown in Figure 8.2a. The X-axis shows eight quartiles after the
publication date of the report. For comparison, the GARCH and only market features
are depicted with dashed lines.

As shown, the performance of both GARCH and Market methods (approaches without
text features) decrease faster in the later quartiles since the historical prices used for
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Figure 8.2: (a) Performance of our approach on 8 quartiles using the Text and
Text+Market feature sets. The dashed lines show the market-based baselines. (b)
Performance of volatility prediction of each year given the past data. CV indicates the
cross validation scenario. The hashed areas show corresponding methods without text
data (GARCH for Text, Market for Text+Market).

prediction become less relevant as time goes by. Using only text features (Text), we
see a roughly similar performance between the first four quartiles (first year), while the
performance, in general, slightly decreases in the second year. By combining the textual
and market features (Text+Market), we see a consistent improvement in comparison to
each of them alone. In comparison to using only market features, the combination of
the features shows more stable results in the later quartiles. These results support the
informativeness of the 10-K reports to more effectively foresee volatility in long-term
windows.

While the above experiments are based on cross-validation, for the sake of completeness
it is noteworthy to consider the scenarios of real-world applications where the future
prediction is based on past data. We therefore design three experiments by considering
the reports published in 2013, 2014, and 2015 as test set and the reports published
before each year as training set (only 2012, 2012–2013, and 2012–2014 respectively). The
results of predicting the reports of each year together with the cross validation scenario
(CV) are shown in Figure 8.2b. The hashed areas indicate the corresponding methods
without text features, namely GARCH and Market for the Text and Text+Market feature
sets, respectively. While the performance becomes slightly worse in the target years
2013 and 2015, in general the combination of textual and market features can explain
approximately half of volatility in the financial system.
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Figure 8.3: Performance per sector. Abbreviations are defined in Section 8.3.2

Table 8.5: Number of reports per sectors

ene ind hlth fin tech pub n-dur dur capt serv misc
187 160 305 847 408 217 151 115 255 639 153

8.5.3 Sectors

Corporations in the same sector share not only similar products or services but also
risks and instability factors. Considering the sentiment of the financial system as a
homogeneous body may neglect the specific factors of each sector. We therefore set out
to investigate the existence and nature of these differences.

We start by observing the prediction performance on different sectors: We use our method
from the previous section, but split the test set across sectors and plot the results in
Figure 8.3. As before, the hashed areas indicate the GARCH and Market methods for
the Text and Text+Market feature sets, respectively. We observe considerable differences
between the performance of the sectors, especially when using only sentiment analysis
methods (i.e. only text features).

Given these differences and also the probable similarities between the risk factors of the
reports in the same sector, a question immediately arises: can training different models
for different sectors improve the performance of prediction?

To answer it, for each sector, we train a model using only the subset of the reports in
that sector and use 5-fold validation to observe performance. We refer to these models
as sector-specific in contrast to the general model, trained on all the data. Figures 8.4a
and 8.4b compare their results: we can see that the sector-specific bars are lower than
the general model ones. This is to some extent surprising, as one would expect that
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Figure 8.4: Results when retraining on sector-specific subsets versus the general model
and versus subsets of the same size but sector-agnostic. The hashed area in (a) indicates
the GARCH and in (b) the Market baseline.

domain-specific training would improve the performance of sentiment analysis in text.
However, we need to consider the size of the training set. By training on each sector we
have reduced the size of our training sets to those reported in Table 8.5. To verify the
effect of the size of training data, we train a sector-agnostic model for each sector. Each
sector-agnostic model is trained by random sampling of a training set of the same size as
the set available for its sector from all the reports, but evaluated–similar to sector-specific
models–on the test set of the sector. Figures 8.4a and 8.4b also plot the results of the
sector-agnostic models.

The large performance differences between sector-agnostic and -specific show the impor-
tance of sector-specific risk factors. Since the data for training in each sector is too small,
we expect that as additional data is accumulated, we can further improve on the results
by training on different sectors independently.

We continue by examining some examples of essential terms in sectors. To address this,
we have to train a linear regression method on all the reports of each sector, without
using any dimensionality reduction. Linear regression without dimensionality reduction
has the benefit of interpretability: the coefficient of each feature (i.e. term in the lexicon)
can be seen as its importance with regards to volatility prediction. After training, we
observe that some keywords e.g. ‘crisis’, or ‘delist’ constantly have high coefficient values
in the sector-specific as well as general model. However, some keywords are particularly
weighted high in specific-sector models.

For instance, the keyword ‘fire’ has a high coefficient in the energy sector, but very low in
the others. The reason is due to the problem of ambiguity i.e. in the energy sector, ‘fire’
is widely used to refer to ‘explosion’ e.g. ‘fire and explosion hazards’ while in the lexicon,
it is stemmed from ‘firing’ and ‘fired’: the act of dismissing from a job. This latter sense
of term is however weighted as a low risk-sensitive keyword in the other sectors. Such
an ambiguity can indeed be mitigated by sector-specific models since the variety of the
terms’ senses are more restricted inside each sector. Another example is an interesting
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observation on the term ‘beneficial’. The term is introduced as a positive sentiment in
the lexicon while it gains highly negative sentiments in some sectors (health care and
basic industries). Investigating in the reports, we observe the broad use of the expression
‘beneficial owner’ which is normally followed by risk-full sentences since the beneficial
owners can potentially influence shareholders’ decision power.

8.6 Summary
In this chapter, we study the sentiment of recent 10-K annual disclosures of companies
in stock markets for forecasting volatility. Our bag-of-words sentiment analysis approach
benefits from the Generalized Translation models which use word embeddings to extend
the weight of the terms to the similar terms in the document. Additionally, we explore
fusion methods to combine the text features with factual market features, achieved
from historical prices i.e. GARCH prediction model, and current volatility. In both
cases, our approach outperforms state-of-the-art volatility prediction methods with 10-K
reports and demonstrates the effectiveness of sentiment analysis in long-term volatility
forecasting.

In addition, we study the characteristics of the companies’ reports in each financial sector
with regard to risk-sensitive terms. Our analysis shows that reports in same sectors
considerably share particular risk and instability factors. However, despite expectations,
training different models on different sectors does not improve performance compared
to the general model. We trace this to the size of the available data in each sector, and
show that there are still benefits in considering sectors, which could be further explored
in the future.

94



CHAPTER 9
Conclusion

Statistical word representation models are an essential pillar of text and language process-
ing, and have been the focus of research for decades. Motivated by recent advancements
in neural representation models, in this thesis, we investigate novel methodologies to
exploit word representation models in various text analysis tasks such as Information
Retrieval (IR), sentiment analysis, gender bias detection, and Cross-Lingual Word Sense
Disambiguation (CL-WSD). Our basic and applied research on word representation
models provides remarkable insights on the statistical semantics approaches in text and
language processing.

The first part of the thesis carries out basic research on the integration of word embedding
in IR models, the selection of related terms through exploration of the embedding space,
and the fusion of similarities from window- and document-context embedding models.
The mentioned studies are evaluated on various retrieval test collections. The concept
of interpretability of the embedding vectors is the next topic of this thesis; we show an
application of such interpretable representations in gender bias indication of the Wikipedia
text. In the last part of the thesis, we investigate the application of our embedding-based
methods in two Natural Language Processing (NLP) tasks: CL-WSD for English to
Persian, and sentiment analysis of companies’ financial reports for volatility prediction
of stock markets. In the following, we first summarize each study in turn, followed by
discussing the open questions and proposing potential future research direction.

9.1 A Summary of Contributions
In the first study, we address the first research question of the thesis (Q1), namely
integrating term associations in the retrieval models. We propose the Generalized and
Extended Translation Models, two novel methods to exploit word representations in
various models, by expanding the idea of translation model from language modeling to
the PR Framework models. The novel translation models assume each query term as a
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concept, use the embedding models to find the related terms with common concepts, and
finally use this assumption to apply changes in the calculation of core elements of relevance
models. We evaluate our models as well as their combinations with Pseudo Relevance
Feedback (PRF) on six test collections. The results show a significant improvement of
using our approach in comparison to embedding-based query expansion methods, and
also the complementary effect of the introduced approaches with PRF.

In the course of the above mentioned study, we observe the importance of selecting the
related terms for retrieval performance, and approach it by applying a threshold on the
similarity values of the neighboring terms. The optimal value for the threshold is found
by a brute-force parameter search. In the next work, as formulated by Q2, we set out
to identify the value of such a threshold, by analytically exploring the space of word
embedding models. To do it, we first measure the variance of similarity values—referred
to as uncertainty—of two arbitrary terms, where the values are determined from different
instances of identical embedding models. Using this measure of uncertainty, we then
propose the threshold value, estimated based on a novel representation of the neighbors
around an arbitrary term. Our evaluation on Ad-hoc retrieval tasks shows that the
results using the proposed threshold are either equal to or statistically indistinguishable
from the optimal results in the first study. This addresses the second research question
of the thesis, namely exploring the range of similarity values as indicative of the actual
term relatedness in document retrieval.

We continue the topic of semantic term relatedness in IR, by analyzing the effects of
the underlying assumptions in creating embedding models on the sets of related terms.
Since word embedding methods use (small) window-context of the terms—as observed
in our preliminary experiments—the set of related terms can easily cause topic shifting,
when used in document retrieval. This problem is the topic of our third research question
Q3: how to enrich window-context word embedding similarities to avoid topic shifting
and improve retrieval. To address this question, we study the effectiveness of using
the similarities of two embedding models to select the related terms; one based on
window-context (word2vec), and the other based on document context (an LSI model
created from the term-document matrix). Our evaluation on Ad-hoc retrieval tasks
shows the significant improvement of the combined approach. These results demonstrate
the importance of considering global context as a complement to the window-context
similarities, and motivates future research on learning IR-specific word representation in
one embedding space.

The next study investigates our research question, concerning the interpretability of
word embedding vectors (Q4). In this work, we propose a novel explicit representation
of words (each dimension refers to a term), created based on the word2vec SkipGram
model. The proposed representation uses the estimation of the first-order relation in the
SkipGram model to create the explicit vectors. The evaluation results on several term
association benchmarks show that our explicit SkipGram vectors perform on par with the
state-of-the-art explicit representation, confirming the performance of our approach to
create explicit representation of the SkipGram model. Further on, we propose a method
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using the explicit SkipGram representation to identify and visualize the extent of gender
bias, related to a set of occupations in the Wikipedia text. We observe a general tendency
of the majority of jobs to the male-related term contexts while strong bias in a few
specific occupations to the female-related ones. This observation enables further research,
specially on analyzing the effects of such implicit biases on downstream tasks (e.g. job
recommendation) as well as algorithmic debiasing of the embedding models.

The next studies investigate our last two questions (Q5 and Q6), regarding the exploitation
of the introduced methods in the previous work, in NLP applications. The first one
studies the application of semantic-based methods on the CL-WSD task for English to
Persian. We propose two unsupervised methods to calculate the semantic similarity of a
candidate translation of each ambiguous term, to some translations of the context terms.
We use an embedding model in Persian for semantic similarity and a simple bilingual
lexicon for achieving the translations. The evaluation of the introduced methods is done
on our novel benchmark, created and made available in parallel to the study. Based on
the results, our approach outperforms a state-of-the-art system in unsupervised CL-WSD,
offering a possible solution for all low-density languages/domains.

In the second application and the last study, we investigate the use of Generalized
Translation Models as term weighting schemes for financial sentiment analysis. We
explore the benefits of our methods for forecasting volatility, using recent 10-K annual
disclosures of companies in stock markets. We also study fusion methods to combine the
features of the sentiment analysis method with factual market data. The evaluation shows
that our IR-based approach outperforms state-of-the-art volatility prediction methods
with 10-K reports and demonstrates the effectiveness of sentiment analysis in long-term
volatility forecasting. In addition, we study the extent of the impact of each risk-sensitive
term on the sector-specific models, i.e. the models created from the reports of the
companies of a specific financial sector. The analysis shows that reports in same sectors
considerably share particular risk and instability factors. Despite this fact, due to small
size of the available data in each sector, the sector-specific models still do not consistently
outperform the general model. This observation highlights the importance of sectors in
this context and enables further explorations in the future.

9.2 Open Questions
Regarding the IR topics discussed in the thesis, we see two research areas as open
questions and potential future directions.

The first is learning IR-specific word representation from supervised data. In this thesis,
specifically in Chapter 5, we highlighted the importance of adapting word embedding
for document retrieval tasks. An interesting area for further investigation is learning
a neural IR model based on large amount of relevance information, captured specially
from abundant log files. A challenging question in this direction is the design of the
architectures of such neural approaches in the way that they effectively model the basic
components of the classical IR models, discussed in Chapter 3.
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The second IR-related direction is learning novel compositional representations as building
blocks of neural IR models. We focus in this thesis on word-level representations. An
interesting research question is the study of the models to compose document-level
representations from word vectors, such as hierarchical neural attention models. In such
models, an attention mechanism, conditioned on query and applied on the terms of a
section of a document (i.e. a paragraph), first captures the degree of importance of the
terms of the section, and then such section-based representations are combined through
an hierarchical architecture to compose the final relevance score. This direction is in-line
with the study of neural IR models, but also is tightly related to the tasks such as
query-based summarization, question answering, and aspect-based sentiment analysis.

We proposed a method to quantify bias in language using explicit word representations.
Considering the pervasive use of word embedding in IR and NLP tasks, it is crucial to
understand the effects of such bias on downstream tasks. How can bias be measured
on task level, and how can it be removed? To what extend does debiasing influence
the performance of a system on a specific task? Exploring these questions is indeed an
exciting and also crucial research direction.

Finally, the last open question is related to the topic of transfer learning, concerning
the task of financial sentiment analysis discussed in Chapter 8. As shown, the financial
sectors of the reports play an important role in the performance of sentiment analysis,
though the sector-specific models generally suffer from lack of data. Given this issue, how
can we design sector-specific models that share a common parameter space for learning
the common characteristics among the sectors? To address this question, a potential
direction is exploring neural document-level sentiment analysis with parameter sharing.
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APPENDIX A
English-Persian Cross-Lingual

Word Sense Disambiguation Test
Collection

In this appendix, we explain our work on creating a new benchmark for English to Persian
Cross-Lingual Word Sense Disambiguation (CL-WSD). In creating the benchmark, we
follow the format of the SemEval 2013 CL-WSD task [LH13]. In fact, the new benchmark
expands the set of languages of SemEval-2013 CL-WSD task to the Persian language.

We first review the related work and resources for the Persian language in Section A.1,
followed by explaining the novel collection in Section A.2.

A.1 Resources in the Persian Language

Persian is a member of the Indo-European language family, and uses Arabic letters for
writing. Seraji et al. [SMN12] provide a comprehensive overview of the main characteristics
of the language. For instance, the diacritic signs are not written—it is expected that the
reader can read the text in the absence of the short vowels. This characteristic causes a
special kind of ambiguity in writing, such that some words are pronounced differently
while their written forms are the same.

Methods for approaching WSD and CL-WSD highly rely on knowledge and data resources
in the language. In the following, we briefly review the main Persian language resources
for addressing CL-WSD challenges.

The main knowledge resource in Persian is FarsNet [SHF+10]—the Persian WordNet.
Its structure is comparable to WordNet and goes by the same principles while containing
significantly fewer terms (∼13K versus ∼147K). Also, most of its synsets are mapped

99



A. English-Persian Cross-Lingual Word Sense Disambiguation Test Collection

to synsets in WordNet using equal or near-equal relations. Exploiting parallel corpora
is another effective method for CL-WSD. In our knowledge, existing parallel corpora
(English-Persian) are as follows:

• Tehran English-Persian Parallel (TEP) [PFP11]: a free collection extracted from
1600 movie subtitles.

• Parallel English-Persian News (PEN) [Far11]: the collection aligns 30K sentences
of news corpora but is not yet available.

• The collection provided by European Language Resource Association (ELRA) with
approximately 100K aligned sentences: ELRA-W0118.

In the absence of reliable and comprehensive resources, some CL-WSD methods exploit
the use of a monolingual corpora together with a lexicon. The main available text
collections in Persian are Hamshahri [AAD+09], dotIR1, Bigjekhan2, and the Uppsala
Persian Corpus (UPEC) [SMN12].

In terms of work on WSD and CL-WSD, Saedi et al. [SMS09] exploits the use of
WSD in their English-Persian machine translator by first sense disambiguation in the
source language and then translating it to the target language. For English-to-Persian
translation, they use WordNet in combination with the Lesk algorithm [Les86], while for
Persian-to-English, they consider the probability of the co-occurrence of the common
senses in a context, learned from a monolingual corpus. More recently, Sarrafzadeh et
al. [SYCA11] follow a knowledge-based approach by exploiting FarsNet together with
leveraging English sense disambiguation. Their model consists of three phases of: English
sense disambiguation, utilizing WordNet and FarsNet to transfer the sense, and selecting
the sense from FarsNet. As another method, they investigate direct WSD by applying
the extended Lesk algorithm for Persian WSD. They count the number of shared terms
between two FarsNet glosses, the gloss of each sense of the target term with the gloss
of other terms in the phrases. The one with larger number of common terms is chosen.
They test on parallel pages of Wikipedia in English and Persian evaluated by experts.
Finally, they show that the first approach works better since they can use the state of
the art disambiguator for the English language and the direct approach suffers from lack
of NLP tools and ambiguity of Farsi terms.

However, the evaluation resources are not publicly available, which makes it hard to
compare their method with other possible approaches. In this work, we address this
shortage by creating the new CL-WSD benchmark for Persian, based on the format of
the SemEval 2013 CL-WSD task.

1http://ece.ut.ac.ir/DBRG/webir/index.html
2http://ece.ut.ac.ir/dbrg/Bijankhan
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A.2 Persian CL-WSD Evaluation Benchmark

In this section, we describe the process of creating the CL-WSD evaluation benchmark
from English to Persian. The novel test collection completely matches the output format
of the SemEval 2013 CL-WSD task [LH13] and adds a new language to this multilingual
benchmark. In addition, we follow the approach of the original task for creating the gold
standard, with only minor alterations necessary in view of the available Persian language
resources.

A.2.1 SemEval 2013 CL-WSD

The SemEval 2013 CL-WSD task aims to evaluate the viability of multilingual WSD on
a benchmark lexical sample data set. Participants should provide correct translations of
English ambiguous nouns, appearing in paragraphs, into five target languages: German,
Dutch, French, Italian, and Spanish. The task contains a test set of 20 nouns, each with
50 cases (paragraphs).

Lefever and Hoste [LH13] create the gold standard of the task by first constructing a
sense inventory, based on the possible translations of the ambiguous terms. In order to
find the target translations, they run term alignment on aligned sentences of the Europarl
Corpus [Koe05] and manually verify the results. In the next step, they cluster the
resulting translations by meaning per focus terms. Finally, annotators use this clustered
sense inventory to select the correct translation for each term, for up to three translations
per term.

A.2.2 New Persian Collection

Similar to Lefever and Hoste [LH13], we create our CL-WSD benchmarks in two steps:
1) Creating the sense inventory and 2) Annotation of the translations (ground truth).

In the first step, to create the sense inventory for the 20 nouns, due to the lack of
a representative parallel corpora, we leverage three main dictionaries of the Persian
language—Aryanpour, Moein, and Farsidic.com—to obtain as large a coverage as possible
for their translations. The translations themselves are added by a Persian linguist. In
order to provide a thorough set of translations, in addition to different meanings of nouns,
their idiomatic meanings (in combinations) are also considered. When the ambiguous
word is a part of an idiom (e.g. ‘pot’ in ‘melting pot’), the idiomatic translations are
also added to the sense inventory. The number of translations for the terms ranges from
13 to 42, with lowest and highest for the terms ‘mood’ and ‘ring’ respectively.

In the next step, the linguist clusters the translations based on their meanings. It results
in sense clusters, ranging from 2 to 6 for various nouns. Table A.1 shows the statistics in
detail3.

3The sense inventory is available in https://github.com/navid-rekabsaz/wsd_persian/
tree/master/resources/sense-inventory
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A. English-Persian Cross-Lingual Word Sense Disambiguation Test Collection

Table A.1: The statistics of the English to Persian CL-WSD test collection

Term # clusters # translation % clusters consensus
coach 4 18 98

education 2 15 98
execution 3 14 92
figure 5 33 92
job 3 21 98
letter 4 29 96
match 3 19 96
mission 3 19 98
mood 2 13 100
paper 3 32 98
post 6 38 100
pot 4 34 96
range 5 36 96
rest 4 40 100
ring 6 42 98
scene 4 25 98
side 3 32 96
soil 3 18 100

strain 4 39 98
test 2 13 100

In the second step, the sense inventory is used to annotate the sentences in the test set
(50 sentences for each ambiguous term), done by three Persian native-speakers. Via a
web-based application, annotators choose the appropriate translations by first selecting
the related meaning cluster and then choosing up to three translations from the available
list of translations. In case of no related translation, they choose nothing and continue to
the next question. Table A.1 shows the number of clusters, number of translation, and
the agreement between annotators for selecting the clusters.

Finally, using the annotated data, we create the gold standard in the same format as the
SemEval CL-WSD tasks. The gold standard is available in https://github.com/
navid-rekabsaz/wsd_persian/tree/master/resources/golden/Persian.
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APPENDIX B
Gender-Related Terms and

Occupations

This appendix contains the full list of female-specific, male-specific, and gender neutral
occupations as well as female- and male-specific terms.

Table B.1: Female-specific occupations.

actress artiste barmaid boatwoman chambermaid
chairwoman clergywoman congresswoman masseuse midwife
mistress nanny draughtwoman forewoman furnacewoman
landlady policewoman postmistress postwoman seawoman

sportwoman stewardess stuntwoman trainwoman usherette
waitress

Table B.2: Male-specific occupations.

actor barman congressman clergyman draughtsman
fisherman foreman boatman chairman furnaceman
handyman landlord masseur postman policeman
seaman sportsman steward stuntman trainman
usher waiter
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B. Gender-Related Terms and Occupations

Table B.3: Gender neutral occupations.

accountant adviser analyst animator announcer
anthropologist apprentice archeologist architect archivist

artist assessor assistant astrologer astronomer
athlete attendant auctioneer auditor bailiff
baker barber bargee bartender basketmaker

beautician beekeeper bibliographer biochemist biologist
biotechnologist blacksmith boilerfitter boilermaker bookbinder
bookkeeper bookmaker bootmaker botanist breeder

brewer bricklayer broadcaster broker butcher
butler buyer cabinetmaker captain caretaker

carpenter cartographer cashier ceramicist chief
choreographer cleaner clerk coach collector
commentator composer concreter conductor confectioner
conservator consultant cook cooper coremaker
counsellor courtier critic croupier crusher
curator cutler dancer decorator dentist
designer detective dietician digger diplomat
director dispatcher diver doorkeeper draughtsperson
dresser dressmaker driller drycleaner dyer
ecologist economist editor educator electrician

embroiderer engineer engraver environmentalist ergonomist
ethnographer expert farmer farrier fitter

furrier gardener geneticist geographer geologist
geophysicist gilder glassmaker glazier goatherd
goldsmith gravedigger grinder guard guide
gunsmith hairdresser handler hardener harpooner
hatter healer herbalist historian housekeeper

hydrologist inspector instructor insulator interpreter
investigator jeweller joiner journalist judge

knitter labourer lacemaker lawyer lecturer
librarian lifeguard lithographer maltster manager
manicurist master mathematician mechanic melter

merchandiser metallurgist metalworker meteorologist metrologist
microbiologist miller miner model modeller

musician musicologist naturalist nurse nutritionist
obstetrician officer operator optician optometrist
organizer orthotist owner packer paediatrician
painter palmists paperhanger paramedic patternmaker
paver pawnbroker pedicurist performer pharmacist

philosopher photographer physicist physiotherapist pilot
planner plumber pollster porter postmaster
potter poulterer priest producer programmer

projectionist prompter prosecutor prosthetist psychiatrist
psychologist psychotherapist publisher radiographer radiotherapist
receptionist referee refiner registrar repairer
reporter representative rescuer researcher retoucher
rigger roaster roofer sausagemaker scaffolder

scientist scriptwriter sculptor secretary senior
shepherd shoemaker shunter singer smith
soldier solicitor songwriter specialist spinner
staff statistician steelworker steeplejack stockbroker

stonecutter stonemason storekeeper surgeon surveyor
sweep tailor tamer tanner tannery
teacher technician technologist telecaster teller
therapist tinsmith toolmaker tracklayer trainer
translator traveller tuner turner tutor
typesetter tyrefitter upholsterer valuer varnisher
vendor viniculturist warden washer weaver
weigher whaler wigmaker worker zookeeper
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Table B.4: Female-specific terms.

daughter daughters female females fiancee
gal gals girl girls granddaughter

granddaughters grandma grandmother grandmothers her
hers herself lady madam mama
mom mommy moms mother mothers
she sister sisters stepmother stepdaughter

woman women

Table B.5: Male-specific terms.

boy boys brother brothers dad
dads father fathers fiance gentleman

gentlemen godfather grandfather grandpa grandson
grandsons guy he him himself

his lad lads male males
man men sir son sons

stepfather stepson

Table B.6: WinoBias dataset [ZWY+18]. The percent of people in an occupation in the
US job market who are reported as female.

Occupation % Occupation %
carpenter 2 editor 52
mechanician 4 designer 54
worker 4 accountant 61
laborer 4 auditor 61
driver 6 writer 63
sheriff 14 baker 65
mover 18 clerk 72
developer 20 cashier 73
farmer 22 counselor 73
guard 22 attendant 76
chief 27 teacher 78
janitor 34 sewer 80
lawyer 35 librarian 84
cook 38 assistant 85
physician 38 cleaner 89
ceo 39 housekeeper 89
analyst 41 nurse 90
manager 43 receptionist 90
supervisor 44 hairdresser 92
salesperson 48 secretary 95
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