
Table Extraction for Information
Retrieval

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

BSc. Amin Mirdamadi
Registration Number 0625268

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Allan Hanbury
Assistance: Dr. Florina Piroi

Vienna, 21st July, 2018
Amin Mirdamadi Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

BSc. Amin Mirdamadi
Tullnerbachstraße 66-68 3002 Purkersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. Juli 2018
Amin Mirdamadi

iii

Danksagung

An dieser Stelle möchte ich all jenen danken, die mich im Rahmen dieser Masterarbeit
begleitet haben.

In erster Linie möchte ich Herrn Prof. Allan Hanbury und Frau Dr. Florina Piori herzlich
für ihre enorme und profunde Kenntnis des Feldes Information Retrieval aussprechen,
die es mir ermöglicht hat, wertvolle Einblicke in dieses Thema zu gewinnen. Ihre konti-
nuierliche Unterstützung , Erreichbarkeit und die direkte Kommunikation erlaubte mir
erfolgreich zu arbeiten.

Mein aufrichtiger Dank geht an meine Frau für ihre Geduld und Aufmerksamkeit während
der Zeit meiner Diplomarbeit. Sie ermutigte mich ständig, mein Bestes zu geben.

Mein besonderer Dank gilt meinemr Mutter und meinem Vater, Herrn Prof. Dr. Shamsed-
din Mirdamadi, für ihre Motivation und Unterstützung, die sie mir zeitlebens zukommen
ließen. Mein Dank gilt auch meiner Familie, weil sie mich immer unterstüzt haben.

v

Acknowledgements

Here I take the chance to thank everyone who helped me during my thesis work.

First and foremost, I would like to express my sincere gratitude to Prof. Allan Hanbury
and Dr. Florina Piroi for their enormous and profound knowledge of the field Information
Retrieval that enabled me to gain valuable insights into this subject and also their contin-
uous reachability, support and direct communication provided me with the environment
for successfully working on this thesis.

My deepest and sincere thanks go to my wife for her love and patience during all these
years of my thesis work. She continuously encouraged me to do my best and helped me
to finish my thesis.

My special thanks go to my father Prof. Shamseddin Mirdamadi and my mother for their
motivation and support through my life, and I also want to thank my family because
they are always supportive.

vii

Kurzfassung

Jedes Jahr werden in Information Retrieval wissenschaftliche Arbeiten in verschiedenen
Feldern veröffentlicht, die wertvolle Informationen wie Tabellen enthalten, wobei fast
alle Arbeiten im PDF-Format gespeichert sind [1]. Die unschätzbaren Daten in diesen
Dokumenten und Veröffentlichungen sind in wissenschaftlichen Berichten von entschei-
dender Bedeutung, werden jedoch häufig von Suchmaschinen ignoriert. Die Extraktion
tabellarischer Daten mithilfe moderner Tools und die Indexierung durch Suchmaschinen
ermöglicht Forschern eine einfache Nutzung der extrahierten Informationen in verschiede-
nen Forschungsprojekten und Studien.

In dieser Arbeit evaluieren wir die bekannten Tabellenextraktionswerkzeuge und bewer-
ten ihre Anwendung im Bereich Information Retrieval (IR). Wir haben ein Framework
entwickelt, das die Ergebnisse der verschiedenen Table-Extraction-Tools aufnimmt und
mit Methoden im IR-Evaluationsbereich vergleicht. Aus diesem Grund haben wir die
Tabellenextraktionswerkzeuge ausgewählt, getestet und mit einer manuell erstellten
Grundwahrheit bewertet. Um ein Ranking-System zu erstellen, berechnen wir einen Score
für jedes der ausgewählten Tools, außerdem haben wir die generierte Klassifizierung mithil-
fe von IR-Experimenten ausgewertet. Daher haben wir ein Framework mit drei Schritten
entwickelt und ein Testverfahren für die Analyse von bis zu 5870 PDF-Dateien vorbereitet.
In dieser Arbeit beschränken wir die Verarbeitung von Tabellenextraktionswerkzeugen
auf PDFGenie, PDF2Table und PDF2HTML.

Der erste Teil des Frameworks ist der Vorbeitungsschritt, in dem wir einen Service
bereitstellen, der das Ergebnis der Tabellenextraktionstools verarbeitet, die normalerweise
im XML- oder HTML-Format vorliegen. Dieser Dienst wandelt die bereitgestellten
Tabellen in ein Standard-JSON-Format um und speichert sie in der Datenbank.

Der zweite Teil des Frameworks ist der Validierungsschritt, in dem wir die Leistung
der Tabellenextraktionstools überprüfen. Das Framework bietet die Funktionalität zum
Berechnen eines Wertes zwischen null und eins. Der berechnete Scorewert basiert auf dem
Vergleich der extrahierten Tabellen mit den Extraktionstools und der bereits erstellten
Grundwahrheit. Der Score ermöglicht das Erstellen einer Rangliste von Tabellenextrakti-
onstools, die die Effektivität und Leistung der Tabellenextraktionstools anzeigen.

Der dritte Teil des Rahmens befasst sich mit der Bewertung, indem wir das Ergebnis des
Validierungsteils untersuchen und die Genauigkeit der erzielten Ergebnisse überprüfen.

ix

Hierfür stellen wir eine Reihe von Diensten zur Verfügung, die die von den Tabellenex-
traktionstools extrahierten JSON-Tabellen aus der Testsammlung in die Suchmaschine
Solr indiziert. Der Evaluierungsprozess ähnelt dem Cranfield-Ansatz [2]: Wir definieren
eine Reihe von Fragen und bewerten die Antworten der Suchmaschine.

Abstract

Every year scientific papers and journals publish in different domains (fields) and contain
valuable information embedded in tables, which are digitally stored in PDF format [1].
The invaluable data in these documents and publications are crucial in scientific reviews,
yet are frequently ignored by search engines. Extracting tabular data by using modern
tools and indexing by search engines allows researchers easy usage of the extracted
information in various research projects and studies.

In this thesis, we evaluate the known table extraction tools and assess their application
to the Information Retrieval (IR) field. We have developed a framework that takes the
results of the various table extraction tools and compares them with methods in the IR
evaluation area. For this reason, we selected the table extraction tools, tested and ranked
them with a manually created ground-truth. To create a ranking system, we compute a
score for each of the selected tools, furthermore we evaluated the generated classification
by using IR experiments. Hence, we have developed a framework with three steps and
prepared a test procedure to analyze as many as 5870 PDF files. In this thesis, we limit
the processing of table extraction tools to PDFGenie, PDF2Table and PDF2HTML.

The first part of the framework is the preprocessing step where we provide a service that
processes the outcome of the table extraction tools, which are usually in XML or HTML
format. This service transforms the provided tables by the tools that are in XML or
HTML format into a standard JSON format and stores them in the database.

The second part of the framework is the validation step where we validate the performance
of the table extraction tools. The framework provides the functionality to calculate a
score, which is a value between zero and one. The calculated score value is based on
the comparison of the extracted tables by the extraction tools and the already created
ground-truth. The score allows creating a ranked list of table extraction tools that show
the effectiveness and performance of the table extraction tools.

The third part of the framework deals with evaluation as we examine the outcome of
the validation part of the framework and verify the accuracy of the obtained result. For
this, we provide a set of services that indexes the JSON tables extracted by the table
extraction tools from the test collection into the search engine Solr. The evaluation
process is similar to the Cranfield approach [2]: we define a set of questions and evaluate
the answers provided by the search engine.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Information processing 5
2.1 Information retrieval . 6
2.2 Information Extraction . 12
2.3 Test Collections . 12
2.4 Information Retrieval Evaluation . 13
2.5 The Portable Document Format (PDF) 14

3 Table Classification and Identification 15
3.1 Visual table analysis approach . 16
3.2 Heuristic-based approach . 17
3.3 Machine learning approach . 20
3.4 Conclusion . 21

4 Table Extraction Systems 23
4.1 PDFTOHTML/PDF2HTMLEX . 23
4.2 PDFGenie . 24
4.3 PDFBOX . 25
4.4 PDF2table . 27
4.5 Tabula . 28
4.6 Traprange . 30
4.7 Tableseer . 32
4.8 TAO . 33
4.9 TINTIN . 34
4.10 T-Recs . 36
4.11 TARTAR . 38
4.12 PDF-TREX . 40

xiii

4.13 ABBYY FlexiCapture . 41
4.14 SmartFix . 42
4.15 Conclusion . 42

5 Framework Implementation 45
5.1 Framework Overview . 45
5.2 Preprocessing and JSON Conversion . 47
5.3 Tool Validation . 50
5.4 Tool Evaluation . 54
5.5 Conclusion . 57

6 Experiments done with the framework 59
6.1 Calculate the ranking of the tools . 59
6.2 Assessing the ranking of the tools using IR evaluation 60
6.3 Conclusion . 62

7 Summary 63

List of Figures 69

List of Tables 70

List of Algorithms 70

Bibliography 71

CHAPTER 1
Introduction

Information Retrieval (IR) is a set of techniques and approaches that retrieve relevant
information for a given query when applied to a collection of documents or data [3].

Scientific documents in different domains consist of text, images and tabular data that
could be used in different research area when they could be retrieved by IR systems.
Tables contained in the documents are an effective way to convey structured data, where
a two-dimensional layout serves to communicate, grouping connections and constraints.
The richness of the information conveyed by a table makes extracting material from
tabular data more complex than from a paragraph written in text format. At the same
time, tables embedded in documents do not follow a common language and layout, their
encoding is different depending on the software used to create such document containing
tables. When tabular data is structured, it can easily be extracted from an HTML file;
however, the same extractions process could be evasive when stored in an unstructured
file format like image or pdf.

In systematic reviews, tabular data has a central role in presenting measurement values
and data points provide the ability to manipulate, aggregate and use in different studies,
which gives more to the analysis. The same methodology is applicable to different
empirical domains, such as computer science, and its subdomains, e.g. IR.

Problem statement
Every year scientific papers and journals in different domains are published which also
contain tables. Search engines tend to ignore tables or only use very simple text indexing
to find and use the relevant information imbedded in the documents. One interesting
feature of IR is its ability to explore many different ways of extracting relevant data by
combining table extraction tools with search engines that allow querying table-specific
information.

1

1. Introduction

An integral part of IR research is the evaluation of the retrieval methods (search engines
and extraction tools). The IR evaluation process generally utilizes highly developmental
campaigns such as: TREC [4], NTCIR [5], CLEF [6] and ICDAR [7]. Hence, having
a framework that could evaluate the table extraction tools in an IR evaluation setting
would provide a better understanding of these tools and the algorithms they are based on.
This process can in turn lead to performance and quality enhancement of the extraction
tools.

Aim of the work

The aim of this work is to evaluate the known table extraction tools and assess their
relevance to the IR field. We designed and developed a framework that took the results
of the various table extraction tools and compared them based on methods in the IR
evaluation area.

In order to evaluate the table extraction tools, we made use of a test collection technique,
which has been created as part of this thesis.
A test collection technique consists of a set of documents, a set of topics or queries and a
set of relevant documents to the topics, called relevance assessments.

To accomplish our goal we planned the following steps.

1. Analysis and preparation: We analyzed different table extraction tools and their
outcome. Furthermore, we prepared a test collection containing 5870 PDF docu-
ments.

2. We processed the outcome of the table extraction tool to create a JSON document
for each table and imported them into a database.

3. Validation: Our goal was to create a ranking list of the table extraction tools. For
this we planned the following steps:

• Ground-truth generation: We prepared 40 tables from the PDF documents in
the test collection, converted them into JSON format and imported them into
database for further processing.

• Processing and ranking assignment: We processed the same PDF files as for
ground-truth by the table extraction tools. Furthermore, we transformed the
extracted tables into the JSON tables. We generated a ranking list of the
table extraction tools by comparing the provided JSON tables of the table
extraction tools with the already created ground-truth.

4. Evaluation: In this step, we want to confirm the obtained ranking of the tools in
the previous step. to accomplish this we planned the following:

2

• Processing and indexing: We processed all PDF documents from the test
collection by the table extraction tools. We indexed all the JSON tables for
each table extraction tool.

• Ground-truth generation: We created 25 topics from the tables in the PDF
documents, with the relevant answers to the topics.

• IR evaluation: We evaluated the outcome of the IR using the TREC EVAL tool
and calculated precision, recall, mean average precision and mean reciprocal
rank.

5. Experimenting with the framework: We experimented with the introduced frame-
work and showed the calculated ranking of the table extraction tools. Furthermore,
we provide the results from the IR evaluation.

Methodological approach
The methodological approach to reach the expected results consists of the following steps:

• Chapter 1: Introduction
This chapter provides a short description about the motivation, the problem
statement and the objective of the work.

• Chapter 2: Information processing
This chapter contains a detailed introduction in the fields related to the information
processing such as Information Retrieval, Information Extraction, Test collections,
Information Retrieval Evaluation and processing the PDF files.

• Chapter 3: Table identification and classification
This chapter contains approaches to identification and classification of tables
embedded in documents. Furthermore, the importance of table classification
methods in the IR field discussed and the usage of these methods in the table
extractions presented.

• Chapter 4: Table extraction systems
In this chapter, we analyzed the table extraction tools that are publicly available.
For each available table extraction tool, we operated tests with PDF files and
published the results.

• Chapter 5: Framework development
This chapter contains the development of a framework to create a ranking of table
extraction tools and then evaluate them.

• Chapter 6: Experiments done with framework
This chapter provides information about the experiments we have done on extraction
tools using the framework.

3

CHAPTER 2
Information processing

With the exponential growth of information in digital media, using IR algorithms has
become a vital tool in retrieving stored information. Information is held and accessed
in different formats such as web, text files, pdf files, etc. Storing documents in PDF
format enables users a safe and reliable way to exchange and view electronic documents
independent of the environment in which the files were created and viewed.

Information retrieval (IR) [3] is a distinctive set of techniques and approaches that return
pertinent information based on a given query out of a collection of documents. For
example, a PDF document consist of texts, images, and tabular data, important in the
context of extraction and retrieval of such information. Tabular data in documents is a
means to convey structured data, where the two-dimensional layout serves to communicate,
grouping connections and constraints.

In the Medical domain (field), systematic review of scientific journals provides physicians
and researchers up-to-date answers to complex questions in which tabular data plays
a critical role [8]. Ordinarily, extracted data allows manipulation, aggregation and
application of information to enhance scientific research and new discoveries. The same
methodology is germane to different empirical domains (fields) such as computer science,
and its subdomains, e.g. IR.

The richness of the information conveyed by a table makes extracting information from
tabular data even more complex. At the same time, tables in documents do not always
follow a structured language and layout due to different encoding and the software used
to create the document containing the tables. For example, structured data can easily be
extracted from an HTML file, while the same extraction process is evasive when stored
in an unstructured file format like images or PDF records.

In IR, as well as in other domains, published papers and journals usually contain tables.
Search engines usually ignore tables, or only perform very simple text indexing on them,
which makes it difficult to search, find, and use the relevant information from tables in

5

2. Information processing

documents. Therefore, an interesting subject in IR is to find opportunities to extract the
data in a meaningful way by combining table extraction tools with search engines that
allow querying table-specific information.

2.1 Information retrieval
Information retrieval (IR) [9] is a field that deals with analysis, extraction, storage, search
and retrieval of information. Information is chronicled in many formats such as text files,
image files, sound files, video files and so on. IR is the process of obtaining information
from structured, unstructured, semi-structured or a combination of numerous documents
allowing relevant data to be captured by a user query out of the processed documents.

Structured documents refers to documents that follow a structural logic and a methodical
scheme. Structured data usually follows a standard language within the SGML families
such as XML and HTML. SGML is a Standard Generalized Markup Language defined
in ISO standard 8879:1986 for defining generalized markup languages for documents.
The first use case of the SGML structure was in IR systems that; based on the given
query, the IR system could retrieve parts of documents instead of the whole document.
Documents that follow the SGML standard are considered structured documents [10].

Unstructured documents usually refers to digital information that does not have a data
model or one that is easily usable by a computer program [11]. The common type of
unstructured data is PDF, image and text files. Text mining and Natural Language
Processing (NLP) techniques work with unstructured data. Text mining performs
extraction of useful and interesting text data, however, NLP finds textual and natural
language information using techniques such as text classification, text categorization and
document clustering, finding groups of similar documents, information extraction and
summarization [12].

Semi-structured information does not follow the formal structure of data-models of
relational or data-tables, however, contain markers to separate semantic element of
information or data. Dan Smith and Mauricio Lopez in 1997 defined a framework for
extracting information from unstructured and semi-structured documents. The framework
provides fast and accurate selective access to the extracted information [13].

The main goal of information retrieval systems is to find the relevant information from
documents that satisfy the user questions and user information requirements [14]. There
are three basic processes that information retrieval system has to support, as we can see
in Figure 2.1 [15].

1. Indexing process represents the documents in a summarized content form con-
taining informative terms. Indexing process maps the terms to the respective
documents containing such information. Using indexing, the retrieval process is
simplified since it does not need to do a linear search. The index can be stored
in different data structure such as direct index, inverted index, document index

6

2.1. Information retrieval

and lexicon. Indexing process has four main stages, the content specification,
tokenization of documents, processing of document terms, and index building [16].

2. Query formulation is the processing of information needs called query. Query
formulation is the interactive communication between the user and the system.

3. Matching process is a set of techniques for retrieving the documents that match
with the users (query) requirements. The matching process usually results in a
ranked list of documents. A ranking algorithm helps users by putting the most
relevant documents at the top of the ranked results to help the user to find the
information faster. The ranking algorithm uses the frequency distribution of terms
over documents, and statistical information of the documents to work effectively.

There are two basic measurement systems for assessing the quality of information retrieval
systems, which are precision and recall [17].
Precision is defined as the fraction of retrieved documents that are relevant to a query.
Recall is defined as the fraction of relevant documents to a query that is retrieved.

Figure 2.1: Information retrieval processes [15]

2.1.1 History

Information retrieval did not begin with the internet, its origins date back to the traditional
approach of managing a vast accumulation of information from libraries. The very first
computer-based search engines were built in the late 1940s for public use. The Univac
machine [18], introduced by Holmstrom in 1948, was an information retrieval machine
capable of searching text references related to a subject code. The code and text were

7

2. Information processing

stored on a magnetic steel tape. Indexing is a crucial mechanism in information retrieval.
Librarianship was the classic approach to organizing collections of data using the Dewey
Decimal System, which assigned numerical code to documents, books, journals, papers,
etc. The Uniterm System, which was implemented by Mortimer Taube [19], indexed item
by a list of keywords.

Ranked retrieval is an important point in information retrieval that attempts to resolve
the problem of sorting the information found based on a query in the search engine
such that the best results appear first. The first style used in electro-mechanical and
computer-based IR systems was Boolean retrieval where the results were the exact match
of the query, and the query was a logical combination of terms. Luhn proposed the term
frequency weighting method that uses the frequency of word occurrence in an article as a
measurement for ranking [20].

In the 1960’s, another important innovation in IR proposed by Gerald Salton was the
introduction of relevant feedback [21]; this process was designed to support the iterative
search so that the previously searched articles could be marked as important or relevant
in an IR system.

In the 1970’s, Spärk Jones complimented the Luhn term frequency and introduced the
Inverse Document Frequency theory stating that the frequency of occurrence of a word
in the document collection is inversely proportional to its significance in retrieval [22].

The ranking function BM25 [23] was an innovation based on the probabilistic retrieval
framework still in use in IR systems.
From the 1980’s through to the mid 1990’s, important enhancements to IR systems such
as automatically ranking and learned ranking results. Fuhr describes a method where the
retrieval function was learned based on the relevant documents identified for an existing
set of queries [24].

With the rise of the internet and the web, online searching quickly became very relevant.
Before the web, people searched only selected and specific (terms , words) by IR systems.
Researchers and developers realized the importance of precise searching on the web
and swiftly found that they could crawl web pages by links between them and provide
information to all people using the internet.

In the internet and web era, utilizing the query logs became extremely important when
large volumes of people started using web search engines. Search engines could examine
user clicks along with the queries performed by users and gather valuable information
from the user, then it could apply this information for automated spell correction and
automated query expansion [25].

In recent years, with the increased use of mobile devices, social media and the internet,
new research areas have emerged. Information retrieval communities try to expand search
engines in areas such as filtering and recommendations. User tagging, conversational
retrieval as well as collaborative searches provide the tools necessary to support these

8

2.1. Information retrieval

new fields. Stuff I’ve Seen (SIS) [26] is one of the first tools designed to support these
areas.

2.1.2 Information Retrieval Models

Having a model is important for having a better understanding of the domain. Models
provide the guide and meaning for academic discussion and can be seen as blueprints or
paths to implement the retrieval system.
An IR model specifies the details of the document representation, the query representation,
and the retrieval functionality [27]. IR models can be classified as Boolean model, Vector
Space model, Probabilistic model and Inference Network model [15].

Boolean Model

The Boolean model is the first model of information retrieval and is described as thinking
of a query term as an unambiguous definition of a set of documents. Query terms use
Boole’s mathematical logic operators to form new sets of documents. Boole defined three
operators, the logical product (AND), the logical sum (OR) and the logical difference
(NOT). An example of a query would be the term ’Medical’ that defines a set of documents
that are indexed with the term ’Medical’. Furthermore, we can use the combination of
terms using Boole’s operators such as Medical AND Information AND Technology to
restrict the query and be more precise in the search.
The advantage of Boolean retrieval model is that it gives the user control over the system
to obtain results that are clear for a set of documents. However, the disadvantage of
Boolean retrieval is that it does not provide a ranking of retrieval documents.

Vector Space Model

The Vector Space Model [28] is established on Hans Peter Luhn’s statistical approach
to searching information. Luhn suggested a search method in which the user provides
comparable representative documents, then utilizes the similarities between the documents
to rank search results in the collection.

Gerard Salton and Michael J. McGill suggested the Vector Space Model, they considered
that a document is modeled by a vector of keywords extracted from the data. Next, the
terms are weighted to determine the importance and frequency of each keyword. There
are several approaches to calculate this; however, the most common way is to use the
term frequency-inverse document frequency (tf-idf) which is a two-step method. The
first step is to determine how often the term j occurs in the document i and the second
step is to determine how often it occurs in the whole document collection [15].

Probabilistic model

Stephan Robertson first introduced the Probabilistic Retrieval Model. Probability theory
is based on an approach that tries to define weighting more formally. Robertson describes

9

2. Information processing

probabilistic retrieval as follows: “If a reference retrieval system’s response to each request
is a ranking of the documents in the collections in order of decreasing probability of
usefulness to the user who submitted the request, where the probabilities are estimated
as accurately as possible on the basis of whatever data has been made available to the
system for this purpose, then the overall effectiveness of the system to its users will be
the best that is obtainable on the basis of that data” [15].
Ranking documents by their probability of relevance to a given query are the important
characteristics of the probabilistic model. Based on this model when the relevant
information is available it should improve the overall retrieval performance. However,
when no relevant information is available, then the model behaves like the vector space
model using idf weights [29].

Inference Network Model

The basic document retrieval Inference Network Model consists of a document network
and a query network. Documents retrieved in the Inference Network Model are modeled
as an inference process in an inference network. In the basic implementation of this model,
the document instantiates a term to calculate the equivalent of a score for the document.
The weight of the term can be considered as the strength of the term instantiation for a
document, and the document ranking is similar to ranking in Vector Space Model [30].

2.1.3 Review of some IR systems

This section presents some of the innovative and leading commercial research IR engines.

INQUERY

The INQUERY system was established on a form of probabilistic retrieval model called
inference net, developed at the University of Massachusetts and was designed to work
with large text databases [31]. Bayesian inference networks or Bayes net are probabilistic
models that were used in INQUERY. Bayes net is a directed acyclic graph (DAG) where
the nodes represent propositional variables and arcs represent dependencies.

The INQUERY framework has three major tasks; creation of a document network,
creation of query network and use of networks to retrieve documents. The document
parser is one of the key tasks of the system, it analyzes the structure of the document and
transforms it into a canonical format, and it recognizes sections that require indexing.
By performing the lexical analysis, it extracts words, fields, etc. and indexes the words.
INQUERY offers batch and interactive methods of query processing, and an Application
Programmers Interface (API) in order for developers to implement their customized
front-end user interface to the retrieval engine.

10

2.1. Information retrieval

SMART

The SMART system, developed at Cornell University, is one of the first IR systems
supporting automatic term indexing, query enhancements based on relevance feedback,
and uses weighted term vectors in a term based vector space for documents and queries
[21]. SMART has been widely used in IR research areas and in most cases as a baseline
for comparison with other IR methods.

INDRI

Indri is a search engine that provides state-of-the-art text search and a rich structured
query language, developed by the University of Massachusetts and Carnegie Mellon
University and is written in c++ [32]. The APIs, however, can be used from Java, PHP,
and c++. Indri1 is flexible and supports popular structured query operators such as and-
query, and-not-query, not-query, not-in-query, or-query and can parse several document
types such as PDF, XML, HTML, Word, PowerPoint and TREC documents. Indri
combines the inference network framework with the new theoretical advances in language
modeling. Furthermore, Indri provides new query language constructs incorporating
fields, tags, and numbers to support query activity in question answering and cross-
lingual retrieval. Indri can handle large collections and is capable of scaling up to cluster
machines for efficient retrieval.

LEXIS/NEXIS

LEXIS NEXIS is a commercial IR system for retrieving legal and newspaper documents,
which during the 1970’s, pioneered the electronic accessibility of legal and journal
documents. It supports traditional Boolean queries, which return exact matches only.
Lexis Nexis support combined with traditional Boolean queries and natural language
queries used the vector space approach, where significant terms from the user query were
identified and irrelevant terms removed, then a formula that weighs the importance of
the terms from a query is applied. Terms had high statistical weight when it had low
similarity or was uncommon in the document or file [33].

LUCENE

Lucene, a mature, free, and open source Information Retrieval library developed in Java
in 1997, by Doug Cutting is the most successful open source search engine. Lucene
enables search capabilities to the applications and is based on the concept of fields, every
document is constructed with several fields including document-id, body, URL, and
content. Since the first implementation, it has grown to a global project, and hundreds of
developers and companies are involved in the development. Lucene is currently hosted by
the Apache Foundation and licensed under the liberal Apache Software License 2. Many

1www.lemurproject.org/indri
2lucene.apache.org

11

2. Information processing

enterprises have already integrated Lucene into their applications, such as Wikipedia 3

and Cisco 4 [34].

2.2 Information Extraction
In recent years, we are confronted with rapidly increasing textual information in dig-
ital media in different domains such as online news, government documents, medical
information, and social media. The need to have an effective and efficient technique to
acquire relevant information from the textual data is increasing in demand. Information
extraction (IE) methods try to locate and understand relevant parts of texts, gather
information from the texts related to a particular query, and present the information to
the user [35].

IE systems and IR systems are both challenging and knowledge-intensive to build; however,
we can see both techniques as complementary such that IE can use IR for pre-filtering a
very large document collection to a smaller subset and IR can use IE to identify structures
for intelligent document indexing [36].

Following are some methods of information extraction [35] :

• Named Entity Recognition (NER) addresses the problem of identification and
classification of predefined types of named entities such as persons, places, time,
numerical and currency expressions.

• Relation Extraction (RE) refers to the task of detecting and classifying prede-
fined relationship between the identified entities such as Employees Of (Bill Gates,
Microsoft).

• Event Extraction (EE) is the task of identifying the events inside a text and
concluding detailed and structured information about them. It should handle and
recognize the event correctly through the identification of the where, why, whom,
what. This method usually tries to recognize the events through understanding the
relationship between entities.

2.3 Test Collections
Test collections model uses cases in ways that enable researchers to evaluate information
retrieval systems [37]. The use of test collections and evaluation measures to determine
the information retrieval system validity is important in IR and has been in use since the
1950’s.

There exists different test collections for various purposes. Many of these collections have
been created as part of TREC 5 (Text REtrieval Conference), a series of experimental

3www.wikipedia.org
4www.cisco.com
5trec.nist.gov

12

2.4. Information Retrieval Evaluation

evaluation efforts since 1991, by the U.S. National Institute of Standards and Technology
(NIST). What TREC does, is to provide a forum for researchers and different groups
from universities, industry, and government to test their IR systems on a broad range of
problems.

TREC focuses on common problems and provides a forum for participants to present
and discuss their findings. It also facilitates direct inter-system comparison, such as what
works, and what is not functioning. TREC targets to create reusable test collections
utilized by participants [38].

TREC also inspired others to create similar experiments around the world. These
include the European INEX6 effort for XML retrieval, the CLEF 7 effort for multilingual
information retrieval, the Japanese NTCIR8 effort for Asian Language information
retrieval, and also the Indian FIRE9 effort [39].

2.4 Information Retrieval Evaluation
The process of assessing how well a system supports and meets the information required by
a user is recognized as the evaluation of the information system. To measure information
retrieval effectiveness in the standard way, one uses a test collection encompassing
documents, a test suite of information expressible as queries, and a set of relevance
judgments. A document in the test collection is either relevant or non-relevant with
respect to user informational needs and the decision reached is specified as ground-truth
judgments of relevance [9].

Precision and recall are one of the calculation methods in IR evaluation, where recall
refers to all the appropriate outputs and precisions to only appropriate outputs of the IR
system [35].

We can usually differentiate between two classes of evaluation, the system-based evaluation,
and user-based evaluation, where user-based evaluation calculates the user satisfaction
with the system while the system-based evaluation measures how well an IR system can
rank and retrieve documents [40].

User-based evaluation is much more complicated and extremely expensive to implement
correctly. The reason is that it requires a large representation of users of the retrieval
system. Each IR system must be fully developed and have useful user interface, and each
subject must be well trained on all systems. Such requirements usually leads IR researchers
to use the system-based evaluation, which is less expensive and time-consuming [41].

System-based evaluation instead relies on the abstraction of the retrieval process, which
represents good performance and good document ranking. The abstraction helps re-
searchers control input and configuration variables that affect retrieval performance. We

6inex.mmci.uni-saarland.de/
7www.clef-campaign.org/
8research.nii.ac.jp/ntcir/
9fire.irsi.res.in

13

2. Information processing

call these tests, laboratory examinations; they are much less expensive than user-based
evaluations [41].

Tests first began during the Cranfield 2 experiment [42]. The experiment introduced a
pattern, which has been used by TREC, CLEF, NTCIR, etc [43].

2.5 The Portable Document Format (PDF)
Using the PDF file is, of course, one of the best ways for people to exchange and share
data. PDF files are universal, the content of PDF files are displayed similarly in any
environment. Processing, recognition, and extraction of texts, tables, images and so forth
from PDF files is challenging since most of the PDF documents are untagged and do not
have basic logical document structure [44].

PDF file format underlies the Adobe10 intelligent document platform, facilitating the
process of creating digital content on diverse platforms and devices. The goal of the
PDF file format is to allow users to exchange and view electronic documents easily and
reliably, independent of the environment in which they were created [45].

PDF is a layout-oriented representation format, which means that the human readability
is in the foreground, rather than the machine readability. Furthermore, the PDF file
format has properties that make it one of the most commonly used formats in all
environments [46].

• Font Independence: The biggest problem that other formats are facing is that
people usually like to use different fonts, and this can be problematic, as the receiver
of the file might not have the font of the sender. PDF’s solution provides a technique
to save the font descriptor in the file permitting the receiver to view the file in the
original font.

• Compression: is one the major properties of PDF format. PDF supports some
industrial-standard compression filters such as JPEG, CCITT, and LZW. Com-
pression keeps the file size within limits, which allows an easier exchange for
users.

• Portability: PDF files are characterized as a sequence of 8-bit binary bytes or as
7-bit ASCII character code. However, regardless of representation type, the PDF
file is stored in binary format and not as text. This capability makes the PDF file
extremely portable across assorted hardware and operating systems.

10www.adobe.com

14

CHAPTER 3
Table Classification and

Identification

Tables and forms are important segments of the presentation and organization of infor-
mation in documents. They are widely used to present complex and relevant information.
Tables help to recognize information quickly and with less effort. Tables nowadays are an
important part of any application and used for various purposes, for example: comparing
prices, summarizing business data, showing data from scientific experiments, listing and
showing related and unrelated information [47].

A form is a document that is used to collect information based on a predefined template.
A form can also be identified and recognized as a particular type of table. In figure 3.1
we see a form that can also be identified as a table [48].

Classification of tables and forms is an important part of the computer-supported
recognition of tables and forms. In IR extracting tables is one of the challenges that
scientists are working on, and because of a wide variety of usages, it is crucial to
understand table types, functions and the purpose of them in documents [49].

Automatic identification of tables in documents is useful in IR as well as other information
processing tasks like knowledge extraction, article summarization, data integration, etc.

There are various types of classification approaches; visual table analysis, heuristics-based,
and machine learning [50] described herein below:

15

3. Table Classification and Identification

Figure 3.1: Covered Clinical Study form that can be identified as table [48].

3.1 Visual table analysis approach

Table recognition by human readers is a visual process based on the existing relationship
between the content elements. In this process, alignment among the group of content
elements is observed to recognize final tables. Several methods exist that follow the visual
process classification approach. Below we describe sparse line detection and robust block
segmentation [51].

A table identification method to improve table boundary detection performance by
considering the sparse-line property of table rows is proposed in [52] and has the following
two steps.
The first step of this method is to find the sparse/non-sparse lines from the document. A
document line is sparse if the minimum space gap between a pair of consecutive words
within the line is larger than a threshold and that the length of the line is much shorter
than a threshold. Sparse line covers document components like tables, mathematical
formulas, text in figures, short heading, affiliation, document headers and footers, and
references. Non-sparse usually covers document components like titles, abstracts, and
paragraphs [52].
The second step of this method is removing the noisy lines and correct detection of sparse
lines with feature-based statistical model Conditional Random Field that leads to finding
the table boundaries. The performance of this method has a recall above 99% and a
precision above 98% [52].

16

3.2. Heuristic-based approach

Kieninger proposes an efficient approach to identify tabular structures that focuses on
segmentation, block segmentation [53]. The first step is the correct determination of
textual units understood as segmentation or structure recognition. The second step is
about analyzing geometry arranged blocks entitled structure analysis. The idea is that
instead of explicitly looking for separators it identifies words that belong to the same
logical unit. The classification method mostly concentrates on effectively identifying the
blocks.

3.2 Heuristic-based approach

This approach is established on a set of rules that are created to make decisions.

A table classification method is presented in [54]. The search engine in tableseer for
identification and extraction of tables uses table metadata to be able to characterize
tables occurring in varied and complex documents. The metadata classification categories
are 1) table environment/geography (Document-level). 2) table-frame metadata. 3)
affiliated table metadata. 4) table-layout metadata 5) table cell-content metadata. 6)
table-type metadata.

• Table environment / geography meta data:

The metadata includes information about the document where the table is located,
document type, document page number, document title, document author, docu-
ment origination, document age and the table starting position. It can facilitate
the search by knowing some information about the document.

• Table-frame metadata:

This metadata consists of information about the boundaries of a table like left,
right, top and bottom positions.

• Table affiliation metadata:

This metadata contains the position of affiliate elements like table caption, table
footnote and table reference text.

• Table layout metadata:

This method captures visualization of a table by saving the table width, table
height, number of columns, the number of rows, vertical ruling, horizontal ruling,
column width, row length, column header, row headers and horizontal alignments
as metadata.

• Table cell content data:

It refers to values in each cell of a table and enables searching based on cell contents.

17

3. Table Classification and Identification

• Table cell type metadata:
It captures the type of a table based on the type of its cells. A cell can be
categorized as different types: Numerics, symbols, equations, and text which the
method captures as metadata.

Recently, Kim and King presented research and examination on table understanding
from the functionality perspective and focus on scientific tables in digital libraries [55].
Table extraction and search engine tools like tableseer [54] and biotext [56] try to solve
the problem of accurately extracting tables from documents and filtering the significant
results. Kim and Liu suggest categorization of tables based on two aspects: table content
materials and table function perspective [57].

Considering the table content material and spatial feature of tables, we can classify them
into Background tables, Method/System tables, and experiment tables [55].

• Background tables:
This classification aims to list and analyze the related studies, provide statistics
and data and introduces the paper contribution and implementation agenda to
readers. A sample background table is presented in Figure 3.2.

Figure 3.2: A sample background table that provides a statistical information about the
distribution of different document-element in different conferences [55].

• Method/System tables:
These tables are used to discuss the system details, itemise the tentative steps and
explain the implementation procedures. A sample system table is shown in Figure
3.3

• Experiment Tables:
These tables present commentary of experimental result and organized findings,
and comparing their results with others. A sample of experiment table is presented
in figure 3.4.

Another consideration regarding table classification is the Functional-based classification.
Functional-based table classifications are based on the nature of scientific tables [55]. We
can categorize this classification into two types:

18

3.2. Heuristic-based approach

Figure 3.3: A sample method/system table that shows a sequence of events in the car
wash [55].

Figure 3.4: An example of a table classified as expermiental table [55].

• Commentary tables:
This type of table is used when the author of the table analyses and compares the
contents. An example of comparison table is presented in Figure 3.5.

Figure 3.5: An example of a commentary table [55].

• Comparison tables:
This type of table is used when the author of the table analyses and compares the
contents. An example of comparison table is presented in Figure 3.6.

19

3. Table Classification and Identification

Figure 3.6: An example of a comparison table [55].

3.3 Machine learning approach
In the machine learning classifier domain, different algorithms such as Naive Bayes,
Logistic Regression, Decision Tree and Support Vector Machine (SVM) exist.

The classification method presented in [58] identifies the structure and complexity of a
table based on the table header using two heuristics while also using machine learning
techniques. A table header defined as a line at the top of a table (header row) or the left
of the table (header column).

Identifying table header accurately allows the end-user to query a database containing
the extracted header data, and to compare the data with others or from other documents.
The method proposes two heuristic strategies, local minimum method and machine
learning technique, to detect the table header and to separate it from the data part.

The Local Minimum method Local Minimum method is based on computer header
similarities, the difference between the header row and the data row, and applies a
weighted average score to calculate the similarities between each pair of consecutive rows.

The Machine Learning Technique The machine learning classifier, the Support
Vector Machine (SVM), Logistics regression and Random Forest classifier are utilized for
header row detection in tables [58].

In [59] a deep learning method for table detection is presented. This method uses Faster
R-CNN [60] (a state-of-the-art object detetion networks) as a basic element of deep
network for table identification. The Faster-RCNN computes region proposals itself
and then tries to determine whether the selected area is part of a table or not. The
experiments using this system show that deep learning based system is robust for table
detection as it is not dependent on hand engineered features.

20

3.4. Conclusion

3.4 Conclusion
Classification methods described in this section are the visual table analysis, table function
or role analysis, and machine learning methods that help extraction tools to have better
results.

There is an opportunity to use the table classification outside of the extraction tools
to have a pre analysis of tables in documents and, with the help of classification and
machine learning, advise the best extraction tool for a document. In this way, we can
have overall better results in table extraction methods.

21

CHAPTER 4
Table Extraction Systems

The problem related to understanding table has attracted interest from different areas
such as database and document engineering communities in the last years.
It is commonly recognized that table recognition and extraction consists of solving three
problems [62].

• Locating the regions of a document with tabular content, in short, table detection.

• Reconstruction of the cellular structure of tables, in a nutshell, table structure
recognition.

• Rediscovering the meaning of tabular structure, in short, table interpretation.

As mentioned, the aim of the work part of this thesis, is to evaluate the known table
extraction tools and to understand how they work, as well as to choose some of them
for further experiment within the framework presented in Section 5. We present the
following table extraction tools we found in the literature and online commercial sources.
We tried to find both available open source and commercial tools.

4.1 PDFTOHTML/PDF2HTMLEX
PDFTOHTML [63] is an open source software developed by Gueorgui Ovtcharov and
Rainer Dorsch. It can convert pdf files into HTML as long as it is not an image. This
tool is one of the very first to perform well in information extraction from PDF files. It
is used by other extraction tools to perform additional processes.

Other tools can use the HTML output of PDFTOHTML for further processing. PDF2Table
uses the output of PDFTOHTML and identifies tables from the HTML, then extracts
this part from the whole HTM file.

23

4. Table Extraction Systems

There is a newly reworked version of PDFTOHTML named PDF2HtmlEX [63] developed
by Lu Wang and Wanmin Liu.
It generates HTML presentation documents using modern web technologies such as
HTML5, CSS3, Javascript, in a way that most of the PDF features can be reconstructed.
Their method can retain fonts, mathematical formulas, and images and shows correctly
in HTML format. PDF2HTMLEX can separate resource files (fonts, CSS, Javascript)
from the main HTML file; it reduces the size of the HTML file and improves efficiency.

Text extracted from PDF files is translated to native HTML text element and then put
into the same position as in original pdf format using HTML styles. Fonts can also be
extracted and converted to Web fonts [64] to have similar font looks as in the PDF file.
If the tables are not able to be recognized correctly, they will be extracted as images.

We performed some tests on the PDF2HTMLEX and we observed that in most cases it
converts the PDF file into an HTML containing image data.

4.2 PDFGenie

PDFGenie is a commercial PDF extraction tool that can extract tables, text, and reading
order from PDF files in the form of HTML and XML output [65].

Our tests show that PDFGenie works well with PDF files that contain tables and can
correctly generate HTML files with table tags just in case the PDF file contains Tables.
A sample HTML in 4.1 shows the extracted table from a PDF document. Our tests also
show that PDFGenie has trouble with correctly recognizing words in the older documents.

Listing 4.1: A sample extracted table from a PDF document using PDFGenie
...
<table style="font-size:8.96638pt;color:#000000" class="f5"

bbox="198.24,571.993,385.347,646.38" border="1">
<tr>

<th rowspan="1" bbox="198.24,638.112,280.94,646.38">ModelP@10</th>

<th rowspan="1" bbox="280.94,638.112,340.4,646.38"
dir="ltr">MAP</th>

<th rowspan="1" bbox="340.4,638.112,385.347,646.38"
dir="ltr">NDCG</th>

</tr>
<tr dir="ltr">

<td rowspan="1"
bbox="198.24,626.712,280.94,638.112">DEMO4040<span style="color:#000000"
dir="ltr">.</td>

<td rowspan="1" bbox="280.94,626.712,340.4,638.112"
dir="ltr">0<span

24

4.3. PDFBOX

style="color:#000000" dir="ltr">2666DEMO</td>

<td rowspan="1" bbox="340.4,626.712,385.347,638.112">0<span style="color:#000000"
dir="ltr">3637<span style="color:#000000"
dir="ltr">.</td>

</tr>
...
</table>
...

Another important attribute of PDFGenie is to support the XFDF (XML Forms Data
Format) ISO standard [66]. Using XFDF in the same folder as the original PDF file loads
an annotated layer above the original PDF that can be used to visually highlight regions
in tables. Other structures can be used for easy and quick visual validation of document
recognition. It is useful when generating ground-truth, since PDFGenie could generate
initial labels for hundreds of documents automatically and later any PDF annotator tool
could be used to verify or correct the regions manually.

The main advantage of annotations is that they are decoupled from the content stream
and they are easier to manipulate compared to “tagged PDF”. There are limitations for
using annotation to label PDF regions such that disjointed regions may overlap or nest.
PDFGenie, however, uses a workaround for this problem by adding extra properties to
annotation dictionaries.

PDFGenie can accept ground-truth XFDF files along with the input PDF and can
compute the error rate and other statistics that can be used to evaluate the discrepancy
from the optimal output.

PDFGenie accepts as input various arguments. The argument -o is used for specifying
the output folder to store the output files. It supports as well argument –pass to specify
a password for a PDF file, in case they are password secured. The -x or –xfdf argument
is supported as well for generating the XFDF file.

PDFGenie works on major operating systems such as Linux, Mac OSX and Windows. It
accepts various parameters for different purposes.

4.3 PDFBOX

The Apache PDFBox library is an open source Java tool for working with PDF files.
It can extract texts, split a PDF file into many files or merge PDF files into one PDF
file. It can also extract or fill in data from PDF forms, validate PDF files against the
PDF/A-1b standard [67], save PDF’s as image files such as PNG or JPEG, create a PDF
from scratch with embedded fonts and images and at last digitally sign a PDF file. It
also has the option to extract texts in HTML format.

25

4. Table Extraction Systems

Figure 4.1 is a sample table with low complexity that is extracted with pdfbox and
converted to html. The html result is as follow:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html><head><title></title>
<meta http-equiv="Content-Type" content="text/html; charset="UTF-8">
</head>
<body>
<div style="page-break-before:always;

page-break-after:always"><div><p>
</p>
<p>Label 2000 2001 2002
</p>
<p>Freshman 2200 2150 2000
</p>
<p>Sophomore 2000 2050 2010
</p>
<p>Junior 1992 1987 2000
</p>
<p>Senior 1875 1990 1900
</p>
<p>Graduate 500 475 510
</p>
<p>Total 8566 8652 8420
</p>
<p>

 </p>
</div></div>
</body></html>

As we can see, the extracted result is hard to use for futher processing by another tools,
since there is no specific HTML tags that would represent a table such as <table>.

Figure 4.1: Table extraction with low complexity using PDFBox.

Implementation of an algorithm that identifies keywords in scholarly documents and
makes them searchable is part of the CiteSeer X suite in the preprocessing step of this

26

4.4. PDF2table

algorithm in order to extract texts that use PDFBox1 library [68].

4.4 PDF2table
PDF2table uses the pdf extraction tool PDFTOHTML outcome to extract the table
information. PDFTOHTML provides for each text chunk in the pdf file a text element
in XML with the following attributes:

• top = vertical distance from the top of the page

• left = horizontal distance from the left border of the page

• width = width of the text chunk

• height = height of the text chunk

• font = this attribute describes the size, family, and color of the text chunk

PDF2table tries to decompose a table by utilizing two heuristics groups, the table
recognition, and table decomposition. The table recognition heuristic deals with the
problem of identifying a table from the XML file. Before running the table recognition
algorithms, it first preprocesses the result of PDFTOHTML by sorting all text elements
according to their top values. The recognition heuristics first utilizes the information
from the sort algorithm and classifies the table based on single-line and multi-line objects,
it then detects multi-line objects and merges multi-line block objects that may belong to
the same table.

Table decomposition heuristics is the next step after table recognition and deals with the
problem of identification of header elements and the assignments of data cells to header
elements. It first decomposes the columns of each multi-line block object and then the
second algorithm assigns text element to the columns.

This approach also has some limitations and cannot always return correct results. One of
the main limitations is that it depends on the outcome of the PDFTOHTML tool, which
leads to incorrect extraction whenever PDFTOHTML provides incorrect or inaccurate
results. Other limitations include difficulty with identifying tables without labels and
tables that are positioned vertically. The xml output of tables generated by the Pdf2table
have the following format:

<tables>
<table>
<title></title>
<header>
<header_line>
<header_element></header_element>

1http://pdfbox.apache.org

27

4. Table Extraction Systems

</header_line>
</header>
<tbody>
<data_row></data_row>
<cell></cell>
</tbody>
</table>
</tables>

An evaluation sample of a simple table recognition task with PDF is shown in Figure 4.2
[69].
My tests in a linux environment shows that it works in cases that a PDF page contain
only one table, however in cases where text and tables are combined in PDF pages, it
usually identifies more tables so that this tool recognizes also some part of text as tables.

Figure 4.2: Evaluation result of the table recognition task [69]

4.5 Tabula

Tabula [70] is a tool for extracting data tables from the PDF files. Tabula recognizes
tables by using position (x and y coordinates) of each character on the page. Tabula gets
this data by using the JRuby script that drives the Apache PDFBox java library and
allows extraction of data in CSV format, through a simple web interface.

Tabula-java is the java version of Tabula that allows extraction of tables from PDF files
using the command-line tool; this is helpful for combining with other tools or software.
An important point to mention is that tabula works only with text-based PDF’s and not
scanned documents.

For tables with ruling lines, Tabula clusters are words that vertically overlap each other.
The row boundaries are the bounding boxes of each detected cluster of words. For tables
without graphic separators, Tabula runs an analogous procedure to identifying the column
boundaries and then it clusters the words that overlap horizontally. The bounding boxes
of those clusters are the column boundaries.

Applying Tabula on different tables in PDF files shows that it works well for well-formed
tables that lines have separators and can be easily differentiated by this tool. It works
best with tables that do not contain rows or column spanning several cells.

Tabula, however, cannot correctly extract tables when tables consist of wrapped lines.
Tabula also cannot detect scanned PDF files and only work based on text-based PDF
files.

28

4.5. Tabula

Figure 4.3 is a simple table that is obtained correctly using Tabula, both via the user
interface and java command-line tool. The CSV file is as follows:

Method,Collection,a,B,g,y,Error
LR linear,INEX,0.97,-60.43,,0.12,0.053
LR log,INEX,-9.12,-2,,9.7,0.011
LR quadratic,INEX,0.97,-209.58,41064.69,0.18,0.022
LR linear cnst.=0,INEX,2.59,-23.4,,0,0.060
LR linear,TREC,1.07,-6.93,,0.13,0.091
LR log,TREC,-6.23,-0.5,,3.43,0.012
LR quadratic,TREC,1.07,-28.03,660.81,0.16,0.041
LR linear cnst.=0,TREC,2.65,-2.69,,0,0.094

Figure 4.3: Simple Table extraction using Tabula [71].

Figure 4.4 is a more complex table that could not be extracted correctly by Tabula via
both user interface and java command-line tool. The csv resulted from tabula for Figure
4.4 is as follow:

Method,MAP,P@5,P@10,P@20
Method,MAP,P@5,P@10,P@20
LR linear,0.0729,0.355,0.339,0.334
LR log,0.1004,0.397,0.366,0.315
LR quadratic,0.0668,0.389,0.389,0.359
JM,0.0667,0.303,0.245,0.216
LR linear (cv),0.0862,0.331,0.324,0.299
LR linear,0.0286,0.283,0.253,0.213
LR log,0.0633,0.359,0.312,0.273
LR quadratic,0.0654,0.304,0.247,0.222
JM,0.0307,0.214,0.238,0.231
LR linear (cv),0.0355,0.345,0.339,0.333
Odds,0.0800,0.348,0.348,0.323
ZL,0.0780,0.338,0.324,0.307
BM25,0.0063,0.096,0.087,0.070
Odds,0.0572,0.232,0.211,0.191
ZL,0.0611,0.279,0.233,0.228
BM25,0.0844,0.445,0.432,0.352
...

29

4. Table Extraction Systems

Figure 4.4: Coimplex Table extraction using Tabula [71].

Tabula is a good choice because of its straightforward interface when extracting simple
tables from PDF files and can also be one of the best options for integrating other tools
or frameworks using the java library. The output is CSV or JSON which is very helpful
for further processing.

4.6 Traprange

Traprange [72] is software that functions best with PDF files having a high density of
table data.

The table recognition is to find the table data by identifying table column and row. A
column can be identified as rectangular that does not overlap with other rectangular
spaces of other columns. A row can be identified as words in the same horizontal alignment.
If a column has multi-line, then each line will be on a different row. Considering Figure
4.5 the extraction result from the yellow row would be 2 rows:

• 1: ’LedgerID, ”, ’Sales Ledger Account’, ’FK to this customer’s record in’

• 2: NULL, NULL, NULL, ’Ledgers table’

Figure 4.5: Trap range2 sample extraction

30

4.6. Traprange

The Traprange method is based on results of the PDFBox API which extracts the text
from PDF files. The PDFBox API provides four primary functions:

• PDDocument: provides information about the whole PDF document file.

• PDPage: provides information about each PDF page in the file.

• TextPosition: provides or represents an individual word or character in the docu-
ment.

With these functions Traprange calculates and processes the words by using the TextPo-
sition function from PDFBox API that returns text parts as shown in Figure 4.6 with
the following important attributes:

• x: horizontal distance from the left of the page.

• y: vertical distance from top of the page.

• maxX: equals x + with of the text chunks.

• maxY: equals y + height of the text chunks.

Figure 4.6: Returned text by PDFBox API [72].

The most important part of the Traprange procedure is to detect and identify the bounds
of each row and column in the table to extract the content of the table. The process of
detection has two attributes.

• LowerBound: contains the lower endpoint of the range.

• UpperBound: contains the upper endpoint of the range.

The traprange process loops through all texts of the page to find and assign the range of
each text into horizontal and vertical axis. The second algorithm just loops through all
texts again and classifies them into cells of a table.

For evaluation purpose, experiments were done using PDF files with high density tables.
The evaluation for extracting tables from PDF files show that it works in some ways

2https://dzone.com/articles/traprange-method-extract-table

31

4. Table Extraction Systems

better than other open source tools like PDF2Table, PDFTOHTML and PDF2TEXT
[72].

Traprange can be implemented in other programming languages by replacing PDFBox
by a corresponding PDF library to extract text chunks and using this information as
input data for both algorithms.

4.7 Tableseer

Automatic table extraction and search in digital libraries especially when these libraries
contain PDF files is a challenging problem that Tableseer [73] is trying to solve. This
system detects tables from PDF documents, extracts table metadata, represents the
tables with the metadata file, assigns each table a unique identifier (indexing), and
provides a user-friendly search interface to allow users the possibility to search on tables.
It has been validated on three aspects based on PDF documents: table detection, table
metadata extraction, and table ranking. The ranking method is an innovative algorithm
that ranks the tables based on user queries.

The Tableseer architecture consists of essential components: 1) table crawler, 2) table
metadata extractor, 3) table metadata indexer, 4) table ranking algorithm, and 5) table
searching query interface. The table crawler component in Tableseer crawls online
scientific documents from the open-access digital libraries and scientific web pages. The
table metadata extractor has three main parts: a text information stripper (TIS) that
extracts the words out of the documents based on the position in the pdf file, font size
and other information and construct a new TXT file with all the information of the
words extracted.

Tableseer, by using a novel page box-cutting method, identifies tables in documents.
Tableseer classifies table metadata into six categories and indexes them using the Lucene
toolbox for further search and reuse of the data.

1. Table environment and geography metadata that has information of the exact
location of the table in the document and as well as general information like
document title, author, etc.

2. Table-frame metadata that retrieves the information from the table on whether the
table has frames around it.

3. Table affiliation metadata that consists of information about table caption, table
caption position and table footnotes.

4. Table layout metadata captures the table visualization information that is for
example table width, table length, the number of columns, the number of rows,
column width, row length, column headers, row headers.

32

4.8. TAO

5. Table cell content data enables the search of tables based on the content of their
cells by capturing the information and values in table cells.

6. Table cell type metadata, captures the type of the cell in the table.

TableRank [73] is a new ranking algorithm that returns the matched tables based on a user
query in a descendant order according to their relevant scores. The significant difference
between TableRank and other modern web search engines is that TableRank rates the
<query, table> pairs instead of <query, document> pairs. TableRank determines the
final ranking score based on features of the levels 1) the term level, 2) the table level and
3) the document level. Further, it applies each level separately to weight the terms in
the vector space and then aggregates them to calculate the final score.

Table detection and extraction were experimented on 200 documents with 397 tables and
the results show that Tableseer detected 371 tables. This produces a score of 100% on
precision and a recall value of 93.5% [73].

4.8 TAO
TAble Organization (TAO) [74] tries to address the problems of table detection and
extraction from PDF files. It not only provides automatic table detection and extraction
in digital documents but also generates a detailed representation of table elements for
structural and functional analyses. The TAO framework is shown in Figure 4.7 and is
capable of detecting and recognizing tables within PDF documents. To accomplish this
process, TAO combines a supervised machine learning method with layout heuristics and
consists of three main modules: 1) document conversion, 2) table detection, and 3) table
extraction.

TAO accepts as input a PDF document and using PDFMiner converts the PDF document
into an XML format containing all elements in the document. The table detection module
parses the XML output from the previous module, identifies the table candidates and
stores them. For this TAO performs a structural analysis to determine sets of text boxes
that are likely table candidates.

The table detection process consists of four steps: 1) comprehensive identification of text
boxes within text groups, 2) distance calculation among text boxes, 3) identification of
structural relationships, and 4) finally the generation of table candidates.

The third module, table extraction analyses the table candidates from module 2 and
tries to find particular cells and their content by performing table recognition and table
composition tasks. Table recognition has the function to identify cells in the table
and to detect specific table elements. Table composition performs table separation in
the document and classifies elements of the tables as a header that represents a label
denoting table information and data, which is the content or body of the table. The
table composition task gets all cells on a page and calculates row separation.

33

4. Table Extraction Systems

The output of the TAO system is a document in JSON format that contains table infor-
mation extracted from the PDF document. TAO optionally stores the table information
in a NoSQL database for easy access and search.

An evaluation process is defined in [74] such that detecting tables means identifying
all the tabular elements in a PDF document. One of the experiments performed on
CORNELL Dataset 1 and TAO’s output has achieved an F1-measure of 87.0% for table
detection and 91.1% for table recognition [74].

Figure 4.7: The TAble Organization (TAO) System [74].

4.9 TINTIN

Table INformation-based Text INquery TINTIN [75] is a system that uses heuristic
methods to extract structural elements from the text and separate the tables. TINTIN
can index the extracted and retrieved information to allow users the possibility to query
and search on the extracted data. This system has been validated on retrieving more
than 6,500 tables from the Wall Street Journal database.

The TINTIN architecture is shown in Figure 4.8 and is constructed from a document
preprocessing module and an indexing module.

The preprocessing module is based on two main parts.

34

4.9. TINTIN

Figure 4.8: TINTIN Architecture [75].

The first part is the table extractor that works on the idea of identifying tables based on
aligned white spaces in the document. The underlying data-structure that the extractor
relies on is Character Alignment Graph (CAG) also termed holes and gaps. A hole is
defined as the number of blanks between columns and gap is defined as blanks between
lines. The CAG data-structure is a histogram that stores the number of characters that
appear in a particular location in a line. Gaps and holes will be identified within the
CAG histogram.

The second part of the preprocessing module is component tagger, which distinguishes
between the elements that are the results of the table extractor part such as column
headings, table captions, and legends.

Component tagger uses different syntactic heuristics to tag the extracted information.
Gap Structure Heuristic identifies table lines by large empty gaps in the middle of the
line. Alignment Heuristic identifies table entries by analyzing the gaps and characters
of two or more aligned lines in the middle. Pattern Regularity Heuristic tries to find a
recurring pattern such that when a row is starting after an identified caption, then it is
most probably part of the table.

Differential Column Count Heuristics determine the tables caption by analyzing the first
few lines of the table, in case they have fewer columns than average columns in the table
then these lines are probably table captions. The Differential Gap Structure Heuristic
identifies table captions by analyzing the table lines at the beginning or end of the table.
Cases where the alignment does not match the average gap alignment will be marked
as the caption. For indexing and storing the extracted information, TINTIN uses the
"inbuild" indexing program to index table fields and captions.

TINTIN uses the probabilistic retrieval engine INQUERY to retrieve tables from the
database [31]. INQUERY can weigh the query based on fields allowing for more flexibility
in the search.

The TINTIN table extractor and component tagging were run on the Wall Street Journal
database between 1987 and 1992 and a total of 6509 tables were extracted. The table
extractor method missed around 18 lines and 54 incorrect line extraction out of 6205

35

4. Table Extraction Systems

lines in the 100 documents. The component tagger mistagged 25 lines as table lines and
25 as captions out of 265 lines.

4.10 T-Recs

The table recognizer T-Recs [76] is a system that deals with the identification of tables
within arbitrary documents, the isolation of individual table cells, and the analysis of the
layout to determine a correct row/column mapping. The T-Rec has applied to document
images of mixed text/table content and recognition of business letters.

The recognition process works differently from other approaches by using bottom-up
clustering of word segments. The T-Recs document model was designed based on three
organized structure types and a non-hierarchically embedded structure for text lines.

The first organized structure type is Word which is the primary object of the system.
Formally a word is described as a triple W = (T,G,A), whereas T consists of textual
content, G is the bounding box geometry and A holds the captured font attributes.

The second organized structure type is called Blocks. Blocks are a dynamic aggregation
of words and made by the central clustering algorithm.

The third and last step of the organized structure type is Document. A document as
shown in Figure 4.9 consists of a list of sorted blocks.

Lines are the non-organized structure type and initially built from the aggregation of
words. Lines are specified as quadruples L = (W0,succ,G,A), where W0 is a sorted list of
words and succ is the successor function, G is the bounding box, and A holds the unique
line number and logical row number.

Figure 4.9: Document model of the T-Recs system [76].

Segmentation is characterized in two approaches: the top-down or bottom-up approach.
The top-down approach is to detect separators. The idea behind the bottom-up approach
is, instead of searching for separators the system tries to find words that belong to the
same logical unit. The motivation of this strategy is based on two goals.
First, the top-down systems relies on detection of separators to somehow separate layout
regions from each other and this leads to limited applicability.

36

4.10. T-Recs

Second, is the human way of recognizing a tabular structure based on word segmentation
and not identifying the text lines then to decompose the layouts and regions.

T-Recs limits its search to nearby words in the lines before and after bounding-boxes
which horizontally overlap with the inspected word and uses the so-called segmentation
graph to visualize the clustering as shown in Figure 4.10. The nodes in the graph are the
center points of the bounding-boxes.

Figure 4.10: Neighbors of the word "consists" [76].

T-Recs is capable of identifying and clustering regular blocks as we can see in 4.11.

Figure 4.11: Segmentation of a table [76]

The first advantage of this method compared to top-down is that it does not dependent
on identifying the white spaces that allow accepting any document regardless of table
format. Another advantage of this method is that it is not limited to rectangular shapes.

The output of the system is an HTML document that creates the recognized table as
HTML table tag "<table>" as shown in Figure 4.12.

Figure 4.12: T-Recs HTML output [76].

37

4. Table Extraction Systems

4.11 TARTAR
TARTAR [77] (Transforming ARbitrary TAbles into fRames) is a system that performs
the transformation of arbitrary tables (HTML, PDF, EXCEL, etc.) into logical structures,
which can be used for automated query answering on 2D-tables.

Tables are usually in unstructured or semi-structured documents, and they can be
presented in different formats even when they provide the same content. Tartar tries to
handle this problem by automatic transformation of such data into explicit semantics or
structured data.

Figure 4.13: Tartar framework and functionality [77].

In Figure 4.13 we see the approach of the TARTAR framework and the problem that it
is trying to solve. There is the unstructured or semi-structured information in the form
of arbitrary domain related tables that the tartar framework accepts as input. The task
of the system is to automatically transform semi-structured information into structured
information and then to derive the logical description of input structures.

The goal is to automatically annotate input structures and prepare such data for user
queries.

TARTAR transforms arbitrary tables into explicit semantics based on F-Logic frames.
F-Logic or Frame Logic [78] integrates features from object-oriented programming, frame-
based knowledge representation language and first-order logic.

The overall table transformation is represented in Figure 4.14. This Figure consists of
three parts. Part a) represents a table in an arbitrary domain, part b) represents the
applying of the TARTAR method especially the F-Logic to the table and part c) shows
the two possible queries that could be applied to the result of the part b.

38

4.11. TARTAR

Figure 4.14: Tartar transformation logic in three steps [77].

The implementation approach handles mostly web tables, but can also be expanded to
support tables in arbitrary domains. The table recognition is analyzed based on the
graphical, physical, structural, functional and semantic aspects. The graphical aspect
analyses the image level description of the pixels, lines or other content areas. The
physical aspect analyzes the similarity between cells. The structural aspect analyzes the
relationship and organization of table cells. The functional aspect studies the purpose of
areas regarding data access. The semantic aspect tries to analyze the whole table in the
meaning of understanding the relationship between the interpretation of cell content, the
meaning of structure in the table and meaning of its reading.

The tartar approach classifies tables for identification in three major layout classes:
1-Dimensional, 2-Dimensional, and complex tables.
The 1-Dimensional table layout usually has a box head (table header) and at least one
line body.

39

4. Table Extraction Systems

The 2-Dimensional table layout has a header, a column description and at least one line
of body and the content data is usually rectangular. The complex tables show a variety of
layout structures. They are categorized into partition data labels or over-spanning data
labels between the data and header labels and over-expanded labels such that entries
might be expanded over multiple cells. Another option would be a combination of both
variations.
The TARTAR approach has been applied to 158 web tables, which successfully transformed
and extracted 135 tables with an 85.44% success rate. TARTAR could successfully process
all one-dimensional and two-dimensional tables but had problems with complex tables.

4.12 PDF-TREX

Table recognition and extraction (TREX) [51] is a heuristic (experimental) approach
for table recognition and extraction from PDF documents. The heuristic works in a
bottom-up by applying the algorithm to understand the relationships among the elements
of the tables. The benefits of this approach are that it does not require domain knowledge,
graphical metadata, and ruling lines or predefined table layouts.

The scope of the approach is to recognize tables contained in a PDF document as
2-dimensional grids on a Cartesian plane and extract them as a set of cells with 2-
dimensional coordinates. The heuristic algorithm is founded on eight steps.

Step 1 begins with harvesting the element that identifies the content from the PDF
document, store and compute the horizontal and vertical distance threshold values that
will be used in the next step.

Step 2, Lines building, which attempts to build lines from the stored content elements.
The basic content elements are assigned to lines when their horizontal overlapping ratio is
over a given threshold, or all content elements are in a line when their vertical coordinates
are on the specified line.

Step 3, segments building and line tagging, which tries to combine the lines to segments.
A segment can be of form paragraph or table. This method assigns each line to a cluster
then an algorithm collects the clusters until the horizontal distance is lower than an
amount hT, and the remaining clusters represents the segments. A line is tagged as a
table line when it contains more than one segment and is tagged as text line. When a
segment spans over half a horizontal line length, it can be marked as unknown.

Step 4, Table building, aims to analyze the sequence of lines to identify and build table
areas.

Step 5, blocks and rows building, seeks to structure table rows. Recognition of the rows
in the same algorithm as in step 3 is used; however, the segments are the initial clusters.
The algorithm agglomerates these clusters until the vertical distance is lower than vT
and the final clusters represent the blocks.

40

4.13. ABBYY FlexiCapture

Step 6, column building, aims to create table columns by using the vertical overlapping
ratio between the segments and the distance between columns in the table areas. Recog-
nizing the column header spanning multiple columns is possible with this algorithm by
assigning segments to the same column when they are overlapped.

Step 7, table building, generates the final tables from the information provided in the
previous steps and builds 2-dimensional cells.

Step 8, the extraction step, produces serialized XML table cells from the information
gathered from all of the previous steps as the output of this framework. The important
part here is that the output can be processed or used for further requirements; for
example, understanding table content, storing the data into database, allowing searching
and querying.

PDF-trex is applied to 100 PDF documents from different domains containing 164 tables
and the precision in table areas is 0.8626 and in table cells is 0.7532. The recall for table
areas is 0.9849 and for table cells is 0.9652. It is noteworthy to mention that the recall
and precision for table areas are evaluated for the whole document and for table cells the
precision and recall is assessed for each table [51].

4.13 ABBYY FlexiCapture

Abbyy FlexiCapture, a commercial extraction tool, processes business documents and
can extract data from forms [79]. This extraction is executed automatically after the
form definition and configuration. After the recognition process, some automatic and
manual checking of data is completed before the import into business databases, it uses
positions of words and numbers extracted by OCR [80].

For detecting the structure of the document, it uses a method called FlexiLayout and
consists of three parts. First, is to recognize elements in the document such as keywords,
second, identify the relationship between the objects in the document and third, combine
the elements into a group.

The FlexiCapture defines an algorithm to match the description with the document. In
the process of matching the FlexiLayout with an image, the first step is to find the objects
related to elements in the FlexiLayout, once the necessary information is gathered, the
algorithm starts to look for blocks.

FlexiLayout has a tree structure with nodes as its elements. In the matching process,
hypotheses generate and form a tree. A hypotheses in this regard is an assumption
that the objects detected in the image belong to the elements of the FlexiLayout. After
generating the hypotheses, the algorithm selects the best path in hypotheses for an
element. In the final step, the hypotheses in the best path is used to locate the blocks
described in FlexiLayout.

41

4. Table Extraction Systems

4.14 SmartFix

Smartfix [81], a document extraction tool consisting of two main modules, Document
Manager, and Coordinator. The Document Manager is a graphical editor that enables
users to select documents and to define document classes to configure the document
definition for further processing.
The Coordinator consists of smaller modules such as Analyzer, Matching server and
databases. The coordinator controls an importer process that transfers the document
images from the documents selected and configured in the Document Manager into the
database with all the information that is available to the documents.

Analyzer, with the worker’s architecture, is in idle status will check out, process and
check-in documents in the database. Finished documents are transferred out of the system
by an exporter and with the help of the database, no data is lost during the process.
The analyzer is based on Image-processing, Classification, Information extraction, and
Improvements stages.

Image-preprocessing step verifies and prepares the image for further processing.

Classification runs on documents to search the following features to determine a class.
Features are layout similarity, recognized tables, user-defined or machine-learned pattern,
machine-learned semantic similarity, document size and barcode-like patterns.

Information Extraction is achieved according to scripts that are configured in the Docu-
ment Manager based on the document class.

The Improver module relies on the symbolic AI technique of constraint solving. The
main idea is that the fuzzy and unsafe results of scripts in the previous step can be
step-by-step constrained to more precise and reliable results based on local auxiliary
conditions and interdependency conditions.

SmartFix is a commercial system that is employed by insurance and other companies
where it is embedded in their workflow successfully [81].

4.15 Conclusion

In this chapter, several extraction tools are analyzed and discussed. From the analyzed
tools we can generally identify recognition based on heuristics, Machine learning methods
and layout geometry which also work on tables that are scanned and recognized based on
font, style, lexical and syntactical information extracted from the textual cell contents.
In Table 4.1 we show briefly which methods the table extraction tools use for analyzing
and extracting tables from the PDF documents.

Current methods for automatic table detection and extraction in PDF documents are
useful but still have some restrictions. These limitations include; tables that span in
multiple pages; columns in a table that span in multiple lines; detection relying on

42

4.15. Conclusion

Visual Table Heuristic Machine Learning
PDF2HTML(EX) X

PDFGenie X
PDFBOX X
PDF2table X
Tabula X

Traprange X
Tableseer X
TAO X X

TINTIN X
T-Recs X

TARTAR X X
PDF-TREX X X

ABBYY FlexiCapture X
SmartFix X X

Table 4.1: Table identification and classification types of the table extraction tools.

patterns not present in all tables; and extraction-lacking elements (such as table lines)
needed to reconstruct the information provided in a table accurately.

43

CHAPTER 5
Framework Implementation

This work aims to evaluate the known table extraction tools and assess their appropri-
ateness to the IR field. Furthermore, we analyzed whether these tools can recognize and
extract tables from the documents correctly.

IR evaluation covers different areas such as information-searching behavior, interface
usability, and the computation of IR efficiency. Measuring the effectiveness of an IR
system is accomplished by analyzing the results received from the system and their
relevance to a user’s query and required information.

In order to analyze the performance of a table extraction tool we introduce a framework
that provides services that take the output of the various table extraction tools and
compares them with a ground-truth. For this purpose, the framework provides a ranking
of the table extraction tools.

5.1 Framework Overview
The framework has three main sections: preprocessing, validation, and evaluation. The
framework overview is shown in Figure 5.1.

In chapter 4 some extraction tools are analyzed and described. From the presented
extraction tools, we decided to work with PDFGenie, PDF2table and PDFTOHTML
extraction tools for this thesis, because they allow integration with this framework and
can correctly extract simple tables from the PDF documents. There were as well other
tools with the same attributes, however, in this thesis for demonstration purpose we
chose these tools.

PDFGenie extracts the content of the PDF files and transforms it into an HTML file. It
works especially well with PDF files that contain simple tables. The important aspect of
PDFGenie is that it converts the PDF tables into the HTML table tags. The drawback

45

5. Framework Implementation

Figure 5.1: Framework overview

is that if the PDF texts are not clear, then it will transform the PDF into an image.
PDFGenie also does not work well with older PDF files.

PDF2table transforms the PDF file into an XML document, it then will extract the
tables from the XML file. The drawback of this tool is that it cannot extract the header,
which is an important part of the table since it could contain valuable information about
the table content.

PDFTOHTML extraction tool converts PDF files into an HTML document. The extracted
tables in the HTML file do not follow the HTML table annotation (<table>).

The framework starts at the preprocessing step as shown in Figure 5.1, and processes the
PDF files with table extraction tools and transforms the results into a common JSON
structure and stores them in the database. The next part of the framework is to evaluate
the table extraction tools by comparing the tables extracted by them with a previously
created ground-truth and calculating a score as illustrated in Figure 5.1 part validation.
The third part of the framework is to assess the score result, by indexing all tables with
a search engine and perform a question-answering retrieval task to assess the results of
the validation part as shown in Figure 5.1 part evaluation.

In the following sections, we will describe each framework part and explain how they

46

5.2. Preprocessing and JSON Conversion

work. The source code of the framework is available in github 1.

5.2 Preprocessing and JSON Conversion

The first part of the framework is the preprocessing step. In this step, the PDF files
are provided to the PDF table extraction tools to extract the tables from the PDF files.
The outcome of these tools are different formats such as XML and HTML. For further
processing a so-called standard format for representing the tables is vital. Hence the
results of the extraction tools will be processed and transformed into a standard JSON
format and stored in a database.

5.2.1 Tables in JSON format

JSON stands for "Javascript Object Notation" and is a simple data interchange format.
JSON is designed to be a data exchange language, which is human readable and easy
for computers to parse and use. Because of the readability and ease of use, JSON
is now employed in many different contexts. JSON provides significant performance
improvements over XML, since XML requires an extra library to retrieve data from the
Document Object Model (DOM) articles.

JSON is built on two structures:

• A collection of name/value pairs realized as objects.

• An ordered list of values or objects realised as arrays.

For expressing the table information in JSON format, we propose the following JSON
structure.

• "fileid": the filename of the PDF document containing the table.

• "tableCounter": the number of the table inside the PDF file.

• "header": the description or table header.

• "rows": represents the rows in the table. The column headers are the key of each
row and the value representing the content of the table cell.

This pattern allows describing any table data to compare the tables extracted by the
extraction tools with the ground-truth. Figure 5.2 shows a table example from one PDF
file and following in Code 5.1 the same table in JSON format is presented.

1https://github.com/aminmt1362/TEFIR

47

https://github.com/aminmt1362/TEFIR
https://github.com/aminmt1362/TEFIR

5. Framework Implementation

Code 5.1: Table JSON structure.
1 {
2 "fileid": "CLEF2013wn-CHiC-HallEt2013",
3 "tablecounter": 2,
4 "header": "Table 2. Number of users whose first

action/first search or browse action were as column
one",

5 "rows": [
6 {
7 "Action": "Category select",
8 "# Users first action": "15",
9 "# Users first search/browse action": "20"

10 },
11 {
12 "Action": "Display item",
13 "# Users first action": "3",
14 "# Users first search/browse action": "-"
15 },
16 {
17 "Action": "Next search result page",
18 "# Users first action": "1",
19 "# Users first search/browse action": "-"
20 },
21 {
22 "Action": "Add to book-bag",
23 "# Users first action": "1",
24 "# Users first search/browse action": "-"
25 }
26]
27 }

Using this JSON structure, we have manually created 40 ground-truth tables that are
available on Github for the validation. Furthermore, for IR evaluation, we applied the
JSON structure to all tables from the test collection containing 5870 PDF documents by
extracting them with the extraction tools and converting them to the JSON documents.
PDFGenie extracted 44659 tables and PDF2table extracted 65624 tables. The test
collection contains PDF documents from CLEF, NTCIR and TREC conferences from
multiple years.

48

https://github.com/aminmt1362/TEFIR

5.2. Preprocessing and JSON Conversion

Figure 5.2: Sample table, showing the structure of a table.

5.2.2 Services for preprocessing component

In this section, the services available for the preprocessing component are described and
illustrated in Figure 5.3. The services are established on REST, a lightweight approach
to the communication between different components, which perform the processing of
the PDFGenie, HTML and PDF2TABLE XML files. These services defined as follow:

• ProcessPdf2Table: accepts a JSON String defining a source path, which is the
path of files processed by the PDF2TABLE extraction tool. The process continues
by walking through each file and extracting the tables from the XML file and
converting those tables to JSON format. Each PDF2Table XML file can contain
multiple tables that the processor iterates through the XML tags using XPath
queries, and extract the tables.
After conversion into a JSON document, these documents are introduced into the
MongoDB database for further usage.

Figure 5.3: Process PDF2Table and PDFGenie table extractors.

• ProcessPdfGenie: accepts a JSON string, which contains the path of PDFGenie
processed files. The service walks through each file and processes them. The
processing step of the files continues by reading the HTML files to locate the tables
inside the HTML file, extract and reconstruct them in JSON document format.
The next step of the service is to save the created JSON documents in the database
allowing further usage without reprocessing the files again.

49

5. Framework Implementation

As mentioned earlier we use three PDF table extraction tools for this thesis, however, we
defined only two services, PDFGenie and PDF2TABLE and not PDFTOHTML because
PDFTOHTML is only a PDF extraction tool and not a table extraction tool.

5.3 Tool Validation
In this section of the framework, we developed methods to receive the outcome of the
table extraction tools, and compare those results with the ground-truth presented in
Section 5.2.1 and calculate a score to represent a tool ranking result.

The scoring algorithm calculates a score value based on the provided JSON tables via
services and the existing ground-truth. The score value is a number between zero and
one and help users to assess the table extraction tool.

5.3.1 Framework Services for tool validation

In this section, we define the framework services for tool validation and provide a short
description.

The services are based on Representational State Transfer.

Following is the list of services provided by the framework for validation purposes.

• ImportTable: this service accepts a JSON String defining the extracted tables in
table JSON format as described in the Section 5.2.1. This service stores the tables
in a database and allows for further processing. It uses the HTTP POST method
to receive the data and responds with a simple text formatted message.

• DeleteUserTable: Removes all imported tables from the framework by deleting
the tables from the database. It uses the HTTP DELETE method. The service
responds with a simple JSON message containing information, whether all imported
tables were removed, if not, it responds with an error in case of failure.

• CalculateScore: Calculates the score for imported tables using the existing ground-
truth. The framework imports the ground-truth tables using a predefined path and
not via a service and can be configured via parameters in the configuration file. It
starts the scoring algorithm, then sends the imported tables into the algorithm for
scoring calculation, and finally returns a value that represents the scoring value.
This service uses the HTTP GET method to respond to the client with the scoring
value.

5.3.2 Computing the tool score

Tool Scoring is a subcomponent of the tool validation component that calculates the
table extraction tool score. The scoring algorithm calculates a value between zero and
one based on the extracted table input and the ground-truth.

50

5.3. Tool Validation

In [82] a method for table representation comparison, with the ground-truth presented,
these table comparisons have three main characteristics:

• Table regions: a rectangular area in pages. For comparing table regions, the method
uses the completeness and purity measurements as presented in [83].

• Cell Structure: the matrix of the cell in a table. For all cells in a region, adjacent
relations between cells and their neighbors are generated, which allows comparing
of cell structures with the ground-truth.

• Functional model: a set of access relations that allow easy comparison with the
ground-truth and reflects the way humans would read a table to lookup information.

The methods described in [82] concentrate on comparing the structure of the extracted
tables and can be applied in the implementation of the table extraction tools. This is
however not feasible for this thesis since we are more interested in the output given by
any table extraction tool.

We use a different approach for comparing the JSON table with the ground-truth.
This approach can be applied to the outcome of the table extraction tool without the
requirement of implementation inside the tools.

The score calculation of a table (Stable) consists of four main parts, Cell Scoring (Scell),
Column scoring (Scolumn), Row scoring (Srow) and Structure scoring (Sstructure). Table
score is calculated as

Stable = a∗ · Scell + b∗ · Scolumn + c∗ · Srow + d∗ · Sstructure

where a∗, b∗, c∗ and d∗ are variables to apply weight on the specific sub-score. These
values are calculated based on configurable parameters a, b, c and d where a∗ = a

a+b+c+d ,
b∗ = b

a+b+c+d , c∗ = c
a+b+c+d and d∗ = d

a+b+c+d . The values a, b, c and d can individually
be defined by the users.

• Cell Scoring: The cell scoring as shown in Figure 5.4 is based on the comparison of
JSON table cells between the extracted tables provided by table extraction tools
and the ground-truth tables. The first step is to retrieve the cells from the JSON
ground-truth and the cells from the JSON table given by the extraction tool.
The calculation compares the JSON values (which are cells in the table) of the
ground-truth with the values of the table extraction tool. For each mismatch, we
subtract one point from the max points Scellg , assuming max points Scellg are the
count of all cells in the ground-truth. The final calculation is shown below where
Scelld is the sum of all differences between the JSON table provided by the table
extraction tool and the ground-truth JSON and Scellg is the count of all cells in
ground-truth JSON:

Scell =
Scellg − Scelld

Scellg

(5.1)

51

5. Framework Implementation

Figure 5.4: JSON Cell comparison.

• Column Scoring: The column scoring algorithm compares the JSON keys of the
table extraction tool with the ground-truth as shown in Figure 5.5. The JSON
keys are the columns in a table.
For each column that exists in the ground-truth and not in the extraction tool, we
subtract one point out of the sum of columns in the ground-truth Scolumng . The
final calculation is shown below where Scolumnd

is the sum of all differences between
the JSON table provided by the table extraction tool and the ground-truth JSON
and Scolumng is the count of all columns in ground-truth JSON:

Scolumn =
Scolumng − Scolumnd

Scolumng

(5.2)

Figure 5.5: JSON Column comparison.

• Row Scoring: The row scoring algorithm compares the rows between the JSON
ground-truth tables and the JSON tables provided by table extraction tool as

52

5.3. Tool Validation

shown in Figure 5.6. The row scoring algorithm compares the extracted rows from
the ground-truth JSON and the extraction tool JSON table by comparing the
row based on both the column and cell values. The algorithm subtracts one point
out of max points for any discrepancy between the ground-truth table and the
table provided by the table extraction tool. The max point Srowg is calculated
by counting all rows from the ground-truth. The final calculation is shown below
where Srowd

is the sum of discrepancies between the JSON table provided by the
extraction tools and the ground-truth JSON and Srowg is the count of all rows in
the ground-truth JSON.

Srow =
Srowg − Srowd

Srowg

(5.3)

Figure 5.6: JSON Row comparison

• Structure Scoring: The structure scoring algorithm compares the structure of JSON
tables between the ground truth and the tables by the extraction tools as shown in
Figure 5.7.
The table in JSON format can be seen as a tree structure so the comparison
algorithm checks whether the nodes of the JSON table extraction tool and the
ground-truth JSON have the same structure. The algorithm takes each node from
the ground-truth and checks whether the same node exists in the provided JSON
of the table extraction tool. This process iterates through all nodes of the ground-
truth table and applies the same algorithm. This way, the algorithm compares the
structures between the ground truth JSON and the extraction tool JSON table and
subtracts points for any difference between them. The final score is shown below
where Sstructureg is the count of all nodes in the ground-truth and the, Sstructured

is the sum of discrepancies between the ground-truth and the provided JSON by
the table extraction tool.

Sstructure =
Sstructureg − Sstructured

Sstructureg

(5.4)

53

5. Framework Implementation

Figure 5.7: JSON Structure comparison

The final tool score value is the sum of all score values calculated for all tables provided
by the table extraction tools, divided by the number of tables seen as following where
Cgt is the count of ground-truth tables and Stable is the score value of the tables provided
by the table extraction tool.

Sf =
∑Cgt

t=1 Stable

Cgt
(5.5)

5.4 Tool Evaluation

Tool Evaluation describes the process of confirming the ranking of the table extraction
tools provided in the Section 5.3.

In this section, we briefly discuss the search engines in general and then describe the
configuration we used for this work. Search engines are the key to finding specific
information on the vast expanse of the information, whether it is online such as World
Wide Web or offline such as private libraries.

A search engine is a program that searches documents for specified keywords and returns
a list of documents where the keywords are located. Nowadays, there are several search
engines available on the internet, each with their individual abilities and functionalities.

We provide a solution to evaluate the ranking of the table extraction tools. For this, we
first explain how we created the questions and relevant answers (qrel). Furthermore, we
discuss the search engine and how it was applied to the evaluation. Finally, we introduced
services that provided functionality for this process.
Using the provided services, JSON tables from the table extraction tools, will be imported
into a search engine for indexing and preparing question-answering processes to evaluate
results.

5.4.1 Questions and Answers

One way to assess the performance of an information retrieval system is to perform a
QA tests in a controlled environment [84].

The general process is similar to the Cranfield-like approach in the adoption of a query
topic set and corresponding answers (qrels). We have prepared 25 questions, which are

54

5.4. Tool Evaluation

specified in the annex of this thesis, applied these questions to the specified index in the
search engine and evaluated the results the search engine returned.

The process of creating the questions is to analyze the PDF documents and to find
questions where answers can be found in different files.

We applied the questions to each index and analyzed the first 20 answers (which we
think is an acceptable amount for this work) the search engine produced. For this, we
verified whether the results provided by the search engine are relevant to the question by
manually verifying the document. In case of relevance, we marked the answer as relevant.
After analyzing the results of all questions, we performed the calculation of precision and
recall, mean average precision (MAP) and mean repciprocal rank (MRR) using trec_eval
tool.

5.4.2 Search Engine

The consideration for choosing the appropriate search engine are handling a massive
amount of documents, high availability, and scalability. For this thesis, we decided to use
Solr.

Solr is a portion of the implementation of the framework for which we provide the
following short description: Solr [85] is a modern search engine that is optimized to
handle data.

For this thesis we used three pdf table extraction tools, we created three cores (indexes) in
Solr. In Solr, the term core is referring to a single index and the associated configuration
files and logs. Solr can substantiate more cores at the same time.
Each index in Solr is used for an extraction tool such that we are able to evaluate
each extraction tool separately. A document in Solr may contain multiple fields, which
describes it.

The method to import the JSON tables extracted by PDFGenie is to convert the JSON
documents containing table information into a Solr document as described in the following:

1 {
2 "documentid": "CLEF2003wn-adhoc-vanderWeerd2003_1",
3 "content": "...",
4 "id": "unique_id",
5 "_version_": 1568536242577997824
6 }

Where:

• id: is the identifier of the document and is unique for each the document.

• documentid: is the filename of the document specifying that a table belongs to a
specific file.

55

5. Framework Implementation

• content: contain the JSON table representation.

• version: is the version of the document.

Importing the documents extracted by PDF2TABLE is similar to PDFGenie. The Solr
index document structure of PDF2TABLE is the same as PDFGenie index structure.

For the PDFTOHTML extraction tool, since we want to index the whole HTML file into
Solr, we use the following document structure for Solr index.

1 {
2 "id":"CLEF2003wn-adhoc-vanderWeerd2003.html",
3 "fileLastModified":"Wed May 1717:29:22UTC 2017",
4 "link":"/home/amin/Documents/amin/classification/finalex...",
5 "text":"...",
6 "_version_":1568536242577997824
7 }

Where:

• id: is the identifier of the document and is set to the filename to be able to track
the file this document belongs.

• fileLastModified: this is a self-explanatory field which shows the last time the file
was modified before importing into Solr.

• link: shows the path from where the document was imported into Solr.

• text: contains the content of the file which is based on what we can search.

• version: is specifying the version of the document.

5.4.3 Services and processesses for tool evaluation

In this section, the services required for the evaluation component are described.

The services like other previously defined services are based on REST and are defined as
follows:

• PdfGenieSolrImport: the PdfGenieSolrImport service point retrieves the JSON
documents, which are already preprocessed with the ProcessPdfGenie, from the
database and then using the Solr rest interface these JSON documents are imported
into the Solr search engine for the indexing and evaluation process.

• Pdf2TableSolrImport: the Pdf2TableSolrImport service point works almost the
same as the PdfGenieSolrImport, the difference is just in getting the PDF2TABLE
type of data from the database.

56

5.5. Conclusion

The extracted HTML files by PDF2HTML is imported and indexed in Solr by configuring
the path of the files in the Solr configuration.

5.5 Conclusion
In this chapter, we described the framework that provides a set of services for processing
the tables extracted by the PDF extraction tools and calculate a score that provides a
ranked list of the PDF extraction tools. The calculation is based on the comparison of
the provided tables by table extraction tools with the ground-truth.

The framework also provides a set of services and a process for evaluating the ranking of
the tools.

57

CHAPTER 6
Experiments done with the

framework

In this chapter, we define the steps of the experiments done with the different parts of
the framework to calculate the score for the table extraction tool and the generating the
ranked list of these tools. Furthermore, we evaluate the pdf extraction tools and assess
their application to the IR field.

We divide the experiment into two parts. The first part is the validation step where
we experiment with the Preprocessing and Validation component and show the results
we achieved. The second part is the evaluation step where we experiment with the
Preprocessing and Evaluation part of the framework and provide the results of the
experiment.

6.1 Calculate the ranking of the tools

In this section, we experiment using the framework validation component presented in
the previous chapter and provide the ranking of the PDF table extraction tools. We
divide the process into preprocessing step and calculating the ranking list of the tools.

6.1.1 Preprocessing step

The Preprocessing component is the starting point of the process. We process the 40
tables contained in the PDF files that are selected for the ground-truth purpose with the
PDF2TABLE and PDFGenie extraction tools and store the HTML and XML files.

The next step is to convert the tables inside the HTML and XML files into JSON using
the service “ProcessPdf2Table” and import the tables into the MongoDB database.

59

6. Experiments done with the framework

The process for PDFGenie is similar to PDF2TABLE, by calling the “ProcessPdfGenie”
service that extracts the tables from the HTML files, then converts the tables to JSON
and imports them into the database.

6.1.2 Score calculation

For calculating the score of the extraction tools, we call the “CalculatePdf2TableScore”
service. The service retrieves the PDF2TABLE JSON tables from database and then
calls the “ImportTable” service from the validation component. After importing all JSON
tables, the service continues by calling the “CalculateScore” service from the validation
component to calculate the score as described in Section 5.3.2 and then returns the score
value of PDF2TABLE. Our setting for parameters a,b,c and d were the value one for
every parameter.

We continue the similar process for the PDFGenie extraction tool by calling the “Calcu-
latePdfGenieScore” service that does the same procedure as for PDF2TABLE, but with
the PDFGenie JSON tables.

The calculated score values of the PDFGenie and PDF2TABLE extraction tools provide
a ranking of these tools as shown in the Table 6.1. The ranking list show that the
PDF2TABLE has a much higher score in extracting the tables from the PDF files than
the PDFGenie.

Extraction tool Score
PDFGenie 0.498856

PDF2TABLE 0.907667

Table 6.1: The ranking of the PDFGenie and PDF2Table extraction tools.

We did not calculate the score of the PDF2HTML extraction tool because this tool
cannot extract and convert the tables from the PDF files.

6.2 Assessing the ranking of the tools using IR evaluation

In this section, we perform an experiment using the evaluation component of the framework
presented in the previous chapter and show the values obtained. The preprocessing step
is similar to the preprocessing step in Validation part described in Section 6.1.1 with the
difference that we process 5870 PDF files.

6.2.1 Evaluation process

In this step, we take the JSON tables from the 5870 PDF files processed by PDF2TABLE
and PDFGenie extraction tools from database and index those in the search engine Solr
using the “Importtosolr” service as described in Section 5.4.

60

6.2. Assessing the ranking of the tools using IR evaluation

The HTML files of PDFTOHTML extraction tools import information into Solr for
indexing without using any service since it is configured to take the files in the specified
path using the Solr configuration file.

We used the trec_eval tool to calculate scores for IR evaluation. For this, we created
a ground-truth file formatted for the trec_eval. Furthermore, we created a script to
generate an input file for the trec_eval containing the query number and the score we
received from the Solr.

We further merge the results of the PDFTOHTML with PDFGenie and the results of
PDFTOHTML with PDF2TABLE since PDFTOHTML extracts the whole PDF file
and PDF2TABLE and PDFGenie extract only tables. This approach helps us to verify
whether we could yield better overall results by having merged values.

There exist several merging algorithms such as raw-score merging, round-robin merging
and normalized-score merging [86].
The raw-score or simple method sorts all results by their original similarity scores and
then selects the top-ranked documents. This method assumes that the similarity scores
across collections are comparable.
The round-robin method inserts the results based on the rank by assuming that each
collection has about the same number of relevant documents and the distribution of
relevant documents is similar among the result lists.
The normalized-score method suggests that for each topic, similarity scores of each
document is divided by the maximum score in a topic after adjusting the scores, all
results are placed into the same pool and sorted by the normalized score. This approach
makes the results more comparable by mapping the similarity scores of different result
lists into the same range, from zero to one.

We use the raw-score merging or simple merging method since the results are comparable
because they are from the same test collection and we use the same engine and retrieval
method behind all three indexes PDFTOHTML, PDFGenie and PDF2TABLE. We merge
the results of the PDFTOHTML with the PDFGenie and name it merge-1, the results of
the PDFTOHTML with the PDF2TABLE we designate merge-2.

In the Table 6.2 we show the calculated scores of the IR evaluation. We calculated the
P@10, R@10, mean average precision (MAP) and mean reciprocal rank (MRR) for each
tool and as well for merge-1 and merge-2.

As indicated, the overall score values for PDFGenie is higher than PDF2TABLE, and
PDF2HTML has the highest values. This shows that the calculated ranking presented in
Table 6.1 is not validated.

We see that the overall IR evaluation score for PDFGenie is higher than PDF2TABLE
and this is opposite to the calculated ranking scores in the previous step. We can also
observe that the PDF2HTML has the highest IR evaluation scores among other table
extraction tools.

61

6. Experiments done with the framework

P@10 R@10 MAP MRR
PDF2HTML 0.2400 0.3582 0.2158 0.3522
PDF2TABLE 0.1640 0.3544 0.2717 0.3151
PDFGenie 0.1800 0.3674 0.2652 0.3255
merge-1 0.2400 0.3582 0.2158 0.3522
merge-2 0.2400 0.3582 0.2158 0.3522

Table 6.2: The Precision, recall, MAP and MRR calculation of PDF2HTML,
PDF2TABLE, PDFGenie, merge-1 and merge-2 obtained using Solr and trec_eval
tool.

Since the overall scores of PDF2HTML are better than the other table extraction tools,
it shows that extracting only tables and putting it in an IR tool is not enough. While the
tables contain rich data about a topic, the accuracy of IR tools to retrieve the correct
table based on the asked question is low. One reason is that the table extraction tools
could not extract the table’s caption hence, the question keywords might not be in the
data inside the table.
Even when the table extraction tools could extract the table’s caption, the IR retrieval
accuracy might still be low. This is because the user’s queries to the IR tools are usually
very broad and the query keywords might not contain the caption of the table.

6.3 Conclusion
In this chapter, we experimented with the implemented framework. We used the provided
services of the framework to generate the JSON tables of the tables extracted by the
extraction tools. Furthermore, we imported the JSON table documents into the framework
to calculate a score and generate a ranking list. For evaluation, we employed the services
of the framework to import the tables into the search engine, Solr, and then applied the
already created topics verifying the outcome to obtain the precision, recall, MAP and
MRR.

There are two important points to note; first, the scoring algorithm does not compare the
table caption. This could be an important factor for future research, and in this regard,
we assume that PDFGenie would yield better results since it can extract table captions
correctly. The PDF2TABLE cannot extract the table headers from the PDF files in the
latest version we used.

Second, as indicated from the results of the table extraction tools ranking 6.1, the margin
between the tools is too large. The reason is that the PDFGenie extraction tool that
we used for this thesis is the free trial version. The trial version has the drawback that
cannot extract all words correctly by making deliberate mistakes such as replacing the
actual words with "DEMO". The detection accuracy of PDFGenie is also much lower
than PDF2Table in the older PDF file formats.

62

CHAPTER 7
Summary

To evaluate the known table extraction tools and assess their appropriateness to the IR
field, we developed a framework that consists of two parts, validation and evaluation.
The validation part provides services for importing the tables into the framework and
calculate score, then generate a ranking list of the table extraction tools. The evaluation
part provides services for importing the tables into the search engine Solr. We further
developed an algorithm to convert the extracted tables from the PDF documents by the
table extraction tools into JSON format.

We further experimented with the framework using both parts. For the first part, we
used the services to import the 40 tables that we used for ground-truth tables, into the
framework and generated a ranking of these tools. For the second part, we experimented
with the evaluation part and used the provided services to import the tables extracted
by each tool into the search engine Solr. We further generated a ground-truth containing
25 questions and applied the questions to the search engine and evaluated the outcome.
We calculated the precision, recall, MAP and MRR for each table extraction tool.

A question that arises after this research and experimentation is whether it is enough to
extract only the tables from the PDF documents to support users search requests. Since
user’s questions can be very general and the tables usually have more numbers than text,
hence finding the query keywords by IR tools in the tables can be low.

63

Appendix: Evaluation Questions

Question 1: What are the MAP values for UNINE’s runs in the CHIC 2013 Polish task?

Solr: MAP UNINE’s runs CHIC AND 2013 Polish task.

Question 2: Which parameter settings were used by UNINE submissions at the CHIC 2013
Polish task?

Solr: parameter settings UNINE submissions CHIC AND 2013 Polish task.

Question 3: What are the precision values obtained by the Berkley team 2000 for their multilin-
gual runs?

Solr: precision Berkley team 2000 multilingual runs.

Question 4: Which are the language pairs used in multilingual experiments in CLEF 2001?

Solr: language pairs multilingual experiments in CLEF AND 2001.

Question 5: Which size does the CLEF 2001 collection have per language in the collection?

Solr: size CLEF AND 2001 collection language.

Question 6: What precision values were obtained for the Dutch monolingual task in CLEF
2001?

Solr: precision values obtained Dutch monolingual task in CLEF AND 2001.

Question 7: Wich retrieval systems/methods were used in the Spanish monolingual tasks?

Solr: Which retrieval systems/methods were used in the Spanish monolingual tasks.

Question 8: Which groups of institutions submitted to the CLEF-IP lab in 2009?

Solr: Which groups of institutions submitted to the CLEF-IP AND 2009.

Question 9: What scores were obtained for the AUC metric in the Image Clef photo annotation
task?

Solr: What scores were obtained AUC metric Image AND Clef photo annotation task.

65

7. Summary

Question 10: which AUC scores did the Xerox team obtain in the image classification task, 2011?

Solr: which AUC scores did the Xerox team obtain in the image AND classification task
2011.

Question 11: Which document sets were used for the Patent Mining task in NTCIR?

Solr: Which document sets were used for the Patent Mining task AND NTCIR.

Question 12: what are the comparison performance results of using Indri-word-query with and
without wheighting and expansion IN NTCIR?

Solr: comparison performance results Indri-word-query with and without wheighting and
expansion AND NTCIR.

Question 13: what are the precision and recall values for identifying opinionated sentences under
different runs in NTCIR?

Solr: NTCIR precision recall values identifying opinionated sentences runs.

Question 14: What are the subtonic mining subtask run?

Solr: subtonic mining subtask run.

Question 15: What are the percentage values of source n-grams in the training set for NTCIR
and Gale evaluation?

Solr: percentage source n-grams training set for NTCIR and Gale evaluation.

Question 16: What are the development tuning results and the tuning methods in NTCIR patent?

Solr: NTCIR AND patent development tuning results tuning.

Question 17: What are the performance results using data fusion in ad-hoc task?

Solr: data fusion ad-hoc performance.

Question 18: What are the precision and recall results of ruibsl and runit1/q1 sets?

Solr: precision recall performance ruibsl runit1/q1.

Question 19: What are the average precision of topics vs R5(FBIS) and R4?

Solr: average precision + topic + R5 + R4.

Question 20: What are the evaluation results of DEMIR group in ImageCLEF 2001 medical
image context?

Solr: DEMIR ImageCLEF 2001 medical image context.

Question 21: What are the MAP values for the patent task retrieval track of CLEF-IP 2012?

66

Solr: MAP patent task retrieval track CLEF-IP 2012.

Question 22: What systems are used in the vertical selection of TREC 2014 FedWeb track?

Solr: systems vertical selection TREC AND 2014 FedWeb track.

Question 23: What are the comparison results of ICTNET run1 and ICTNET run2?

Solr: comparison results ICTNET run1 AND ICTNET run2.

Question 24: What are the 6 MRR measures sorted by WGT?

Solr: 6 MRR WGT + measures + sorted.

Question 25: What are the MAP values of BUAA AUDR group participation in photo annotation
retrieval tasks at ImageCLEF 2012?

Solr: BUAA AUDR ImageCLEF AND 2012 photo annotation retrieval tasks.

67

List of Figures

2.1 Information retrieval processes [15] . 7

3.1 Covered Clinical Study form that can be identified as table [48]. 16
3.2 A sample background table that provides a statistical information about the

distribution of different document-element in different conferences [55]. 18
3.3 A sample method/system table that shows a sequence of events in the car

wash [55]. 19
3.4 An example of a table classified as expermiental table [55]. 19
3.5 An example of a commentary table [55]. 19
3.6 An example of a comparison table [55]. 20

4.1 Table extraction with low complexity using PDFBox. 26
4.2 Evaluation result of the table recognition task [69] 28
4.3 Simple Table extraction using Tabula [71]. 29
4.4 Coimplex Table extraction using Tabula [71]. 30
4.5 Traprange sample extraction . 30
4.6 Returned texts by PDFBox API . 31
4.7 The TAble Organization (TAO) System . 34
4.8 TINTIN Architecture . 35
4.9 Document model of the T-Recs system . 36
4.10 Neighbors of the word "consists" . 37
4.11 Segmentation of a tabe . 37
4.12 T-Recs HTML output . 37
4.13 Tartar framework and functionality . 38
4.14 TARTAR transformation logic in three steps 39

5.1 Framework overview . 46
5.2 Sample table, showing the structure of a table. 49
5.3 Process PDF2Table and PDFGenie table extractors. 49
5.4 JSON Cell comparison. 52
5.5 JSON Column comparison. 52
5.6 JSON Row comparison . 53
5.7 JSON Structure comparison . 54

69

List of Tables

4.1 Table identification and classification types of the table extraction tools. . . . 43

6.1 The ranking of the PDFGenie and PDF2Table extraction tools. 60
6.2 The Precision, recall, MAP and MRR calculation of PDF2HTML, PDF2TABLE,

PDFGenie, merge-1 and merge-2 obtained using Solr and trec_eval tool. . . . 62

70

Bibliography

[1] M. Ware, “Stm report 2015 final 2015-02-20,” http://www.stm-assoc.org/2015_02_
20_STM_Report_2015.pdf, March 2015, (Accessed on 02/05/2018).

[2] S. Robertson, “On the history of evaluation in ir,” Journal of Information
Science, vol. 34, no. 4, pp. 439–456, 2008. [Online]. Available: https:
//doi.org/10.1177/0165551507086989

[3] S. Ceri, A. Bozzon, M. Brambilla, E. D. Valle, P. Fraternali, and S. Quarteroni,
Web Information Retrieval. Springer Berlin Heidelberg, 2013. [Online]. Available:
https://doi.org/10.1007/978-3-642-39314-3

[4] (2016) The text retrieval conference. [Online]. Available: https://dzone.com/articles/
traprange-method-extract-table

[5] (2016) NII testbeds and community for information access research. [Online].
Available: http://ntcir.nii.ac.jp/about/

[6] (2016) The CLEF initiative - conference and labs of the evaluation forum. [Online].
Available: http://www.clef-initiative.eu/web/clef-initiative/home

[7] (2016) International conference on document analysis and recognition. [Online].
Available: http://2015.icdar.org/program/competitions/,urldate={2016-10-07}

[8] A. M. Cohen, C. E. Adams, J. M. Davis, C. Yu, P. S. Yu, W. Meng, L. Duggan,
M. McDonagh, and N. R. Smalheiser, “Evidence-based medicine, the essential
role of systematic reviews, and the need for automated text mining tools,” in
Proceedings of the 1st ACM International Health Informatics Symposium, ser.
IHI ’10. New York, NY, USA: ACM, 2010, pp. 376–380. [Online]. Available:
http://doi.acm.org/10.1145/1882992.1883046

[9] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to information retrieval.
Cambridge university press Cambridge, 2008, vol. 1, no. 1.

[10] S. H. Myaeng, D.-H. Jang, M.-S. Kim, and Z.-C. Zhoo, “A flexible model for
retrieval of sgml documents,” in Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, ser.

71

http://www.stm-assoc.org/2015_02_20_STM_Report_2015.pdf
http://www.stm-assoc.org/2015_02_20_STM_Report_2015.pdf
https://doi.org/10.1177/0165551507086989
https://doi.org/10.1177/0165551507086989
https://doi.org/10.1007/978-3-642-39314-3
https://dzone.com/articles/traprange-method-extract-table
https://dzone.com/articles/traprange-method-extract-table
http://ntcir.nii.ac.jp/about/
http://www.clef-initiative.eu/web/clef-initiative/home
http://2015.icdar.org/program/competitions/, urldate = {2016-10-07}
http://doi.acm.org/10.1145/1882992.1883046

SIGIR ’98. New York, NY, USA: ACM, 1998, pp. 138–145. [Online]. Available:
http://doi.acm.org/10.1145/290941.290980

[11] S. Yin, Y. Qiu, J. Ge, and F. Wang, “A chinese text classification approach based on
semantic web,” in 2008 Fourth International Conference on Semantics, Knowledge
and Grid, Dec 2008, pp. 497–498.

[12] F. S. Gharehchopogh and Z. A. Khalifelu, “Analysis and evaluation of unstructured
data: text mining versus natural language processing,” in 2011 5th International
Conference on Application of Information and Communication Technologies (AICT),
Oct 2011, pp. 1–4.

[13] D. Smith and M. Lopez, “Information extraction for semi-structured documents,” in
In Proceedings of the Workshop on Management of Semistructured Data, 1997.

[14] M.-F. Sy, S. Ranwez, J. Montmain, A. Regnault, M. Crampes, and V. Ranwez,
“User centered and ontology based information retrieval system for life
sciences,” BMC Bioinformatics, vol. 13, no. 1, p. S4, 2012. [Online]. Available:
http://dx.doi.org/10.1186/1471-2105-13-S1-S4

[15] R. R. Larson, “Information retrieval: Searching in the 21st century; human
information retrieval,” J. Am. Soc. Inf. Sci. Technol., vol. 61, no. 11, pp. 2370–2372,
Nov. 2010. [Online]. Available: http://dx.doi.org/10.1002/asi.v61:11

[16] H. Kaur and V. Gupta, “Indexing process insight and evaluation,” in 2016 Inter-
national Conference on Inventive Computation Technologies (ICICT), vol. 3, Aug
2016, pp. 1–5.

[17] R. Sagayam, S. Srinivasan, and S. Roshni, “A survey of text mining: Retrieval, extrac-
tion and indexing techniques,” International Journal of Computational Engineering
Research, vol. 2, no. 5, 2012.

[18] S. McCartney, ENIAC: The triumphs and tragedies of the world’s first computer.
Walker & Company, 1999.

[19] M. Taube, C. D. Gull, and I. S. Wachtel, “Unit terms in coordinate indexing,”
American Documentation, vol. 3, no. 4, pp. 213–218, 1952. [Online]. Available:
http://dx.doi.org/10.1002/asi.5090030404

[20] H. P. Luhn, “A statistical approach to mechanized encoding and searching of
literary information,” IBM J. Res. Dev., vol. 1, no. 4, pp. 309–317, Oct. 1957.
[Online]. Available: http://dx.doi.org/10.1147/rd.14.0309

[21] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval. New
York, NY, USA: McGraw-Hill, Inc., 1986.

72

http://doi.acm.org/10.1145/290941.290980
http://dx.doi.org/10.1186/1471-2105-13-S1-S4
http://dx.doi.org/10.1002/asi.v61:11
http://dx.doi.org/10.1002/asi.5090030404
http://dx.doi.org/10.1147/rd.14.0309

[22] K. Sparck Jones, “Document retrieval systems,” P. Willett, Ed. London, UK,
UK: Taylor Graham Publishing, 1988, ch. A Statistical Interpretation of Term
Specificity and Its Application in Retrieval, pp. 132–142. [Online]. Available:
http://dl.acm.org/citation.cfm?id=106765.106782

[23] S. Robertson and H. Zaragoza, “The probabilistic relevance framework: BM25 and
beyond,” Foundations and Trends R© in Information Retrieval, vol. 3, no. 4, pp.
333–389, 2009. [Online]. Available: http://dx.doi.org/10.1561/1500000019

[24] N. Fuhr, “Optimum polynomial retrieval functions based on the probability ranking
principle,” ACM Trans. Inf. Syst., vol. 7, no. 3, pp. 183–204, Jul. 1989. [Online].
Available: http://doi.acm.org/10.1145/65943.65944

[25] M. Sanderson and W. B. Croft, “The history of information retrieval research,”
Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1444–1451, May
2012.

[26] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins, “Stuff i’ve
seen: A system for personal information retrieval and re-use,” in Proceedings of the
26th Annual International ACM SIGIR Conference on Research and Development in
Informaion Retrieval, ser. SIGIR ’03. New York, NY, USA: ACM, 2003, pp. 72–79.
[Online]. Available: http://doi.acm.org/10.1145/860435.860451

[27] M. Sharma and R. Patel, “A survey on information retrieval models, techniques
and applications,” International Journal of Emerging Technology and Advanced
Engineering, ISSN, pp. 2250–2459, 2013.

[28] D. L. Lee, H. Chuang, and K. Seamons, “Document ranking and the vector-space
model,” IEEE Software, vol. 14, no. 2, pp. 67–75, Mar 1997.

[29] D. Hiemstra and A. de Vries, Relating the new language models of information
retrieval to the traditional retrieval models, ser. CTIT Technical report series, 6 2000,
vol. 00, no. 00-09, imported from CTIT.

[30] H. Turtle and W. B. Croft, “Evaluation of an inference network-based retrieval
model,” ACM Trans. Inf. Syst., vol. 9, no. 3, pp. 187–222, Jul. 1991. [Online].
Available: http://doi.acm.org/10.1145/125187.125188

[31] J. Callan, W. B. Croft, and S. M. Harding, “The inquery retrieval system,” in In
Proceedings of the Third International Conference on Database and Expert Systems
Applications. Springer-Verlag, pp. 78–83.

[32] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft, “Indri: A language model-based
search engine for complex queries,” in Proceedings of the International Conference
on Intelligent Analysis, vol. 2, no. 6. Amherst, MA, USA, 2005, pp. 2–6.

[33] E. Greengrass, “Information retrieval: A survey,” 2000. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1855

73

http://dl.acm.org/citation.cfm?id=106765.106782
http://dx.doi.org/10.1561/1500000019
http://doi.acm.org/10.1145/65943.65944
http://doi.acm.org/10.1145/860435.860451
http://doi.acm.org/10.1145/125187.125188
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1855

[34] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action, Second Edition:
Covers Apache Lucene 3.0. Greenwich, CT, USA: Manning Publications Co., 2010.

[35] J. Piskorski and R. Yangarber, “Information extraction: Past, present and future,”
in Multi-source, Multilingual Information Extraction and Summarization, ser.
Theory and Applications of Natural Language Processing, T. Poibeau, H. Saggion,
J. Piskorski, and R. Yangarber, Eds. Springer Berlin Heidelberg, 2013, pp. 23–49.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-28569-1_2

[36] J. Cowie and W. Lehnert, “Information extraction,” Commun. ACM, vol. 39, no. 1,
pp. 80–91, Jan. 1996. [Online]. Available: http://doi.acm.org/10.1145/234173.234209

[37] S. Büttcher, C. Clarke, and G. V. Cormack, Information Retrieval: Implementing
and Evaluating Search Engines. The MIT Press, 2010.

[38] E. M. Voorhees and D. M. Tice, “Building a question answering test
collection,” in Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser. SIGIR
’00. New York, NY, USA: ACM, 2000, pp. 200–207. [Online]. Available:
http://doi.acm.org/10.1145/345508.345577

[39] M. Sanderson, “Test collection based evaluation of information retrieval systems,”
Foundations and Trends R© in Information Retrieval, vol. 4, no. 4, pp. 247–375, 2010.
[Online]. Available: http://dx.doi.org/10.1561/1500000009

[40] C. Peters, Evaluation of Cross-Language Information Retrieval Systems: Second
Workshop of the Cross-Language Evaluation Forum, CLEF 2001, Darmstadt, Ger-
many, September 3-4, 2001. Revised Papers. Springer Science & Business Media,
2002, no. 2406.

[41] E. M. Voorhees, The Philosophy of Information Retrieval Evaluation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 355–370. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45691-0_34

[42] C. Cleverdon, “Readings in information retrieval,” K. Sparck Jones and P. Willett,
Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, ch.
The Cranfield Tests on Index Language Devices, pp. 47–59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=275537.275544

[43] C. CLEVERDON, “The cranfield tests on index language devices,” Aslib
Proceedings, vol. 19, no. 6, pp. 173–194, 1967. [Online]. Available: https:
//doi.org/10.1108/eb050097

[44] H. Chao and J. Fan, “Layout and content extraction for pdf documents,” in Inter-
national Workshop on Document Analysis Systems. Springer, 2004, pp. 213–224.

74

http://dx.doi.org/10.1007/978-3-642-28569-1_2
http://doi.acm.org/10.1145/234173.234209
http://doi.acm.org/10.1145/345508.345577
http://dx.doi.org/10.1561/1500000009
http://dx.doi.org/10.1007/3-540-45691-0_34
http://dl.acm.org/citation.cfm?id=275537.275544
https://doi.org/10.1108/eb050097
https://doi.org/10.1108/eb050097

[45] “Acrobat dc sdk documentation,” https://help.adobe.com/en_US/acrobat/
acrobat_dc_sdk/2015/HTMLHelp/index.html#t=Acro12_MasterBook%2FJS_
Dev_Overview%2FOverview.htm, (Accessed on 12/08/2017).

[46] A. S. Incorporated, “PDF Reference - Adobe Portable Document Format, 5th
edition, http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf,”
2006. [Online]. Available: http://partners.adobe.com/public/developer/en/pdf/
PDFReference16.pdf

[47] R. Rastan, “Towards generic framework for tabular data extraction and management
in documents,” in Proceedings of the sixth workshop on Ph. D. students in information
and knowledge management. ACM, 2013, pp. 3–10.

[48] D. P. Lopresti and G. Nagy, “A tabular survey of automated table processing,” in
Selected Papers from the Third International Workshop on Graphics Recognition,
Recent Advances, ser. GREC ’99. London, UK, UK: Springer-Verlag, 2000, pp.
93–120. [Online]. Available: http://dl.acm.org/citation.cfm?id=645438.652758

[49] S. Mandal, S. P. Chowdhury, A. K. Das, and B. Chanda, “A hierarchical method
for automated identification and segmentation of forms,” in Proceedings of the
Eighth International Conference on Document Analysis and Recognition, ser. ICDAR
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 705–709. [Online].
Available: http://dx.doi.org/10.1109/ICDAR.2005.17

[50] Y. Wang, M. Haralick, R. M. Haralick, and I. T. Phillips, “Document analysis: table
structure understanding and zone content classification,” 2002.

[51] E. Oro and M. Ruffolo, “Pdf-trex: An approach for recognizing and extracting
tables from pdf documents,” in Proceedings of the 2009 10th International
Conference on Document Analysis and Recognition, ser. ICDAR ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 906–910. [Online]. Available:
http://dx.doi.org/10.1109/ICDAR.2009.12

[52] Y. Liu, P. Mitra, and C. L. Giles, “Identifying table boundaries in digital documents
via sparse line detection,” in Proceedings of the 17th ACM Conference on Information
and Knowledge Management, ser. CIKM ’08. New York, NY, USA: ACM, 2008, pp.
1311–1320. [Online]. Available: http://doi.acm.org/10.1145/1458082.1458255

[53] T. G. Kieninger, “Table structure recognition based on robust block segmentation,” in
Document Recognition V, vol. 3305. International Society for Optics and Photonics,
1998, pp. 22–33.

[54] Y. Liu, K. Bai, P. Mitra, and C. L. Giles, “Tableseer: Automatic table
metadata extraction and searching in digital libraries,” in Proceedings of
the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, ser. JCDL
’07. New York, NY, USA: ACM, 2007, pp. 91–100. [Online]. Available:
http://doi.acm.org/10.1145/1255175.1255193

75

https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/HTMLHelp/index.html#t=Acro12_MasterBook%2FJS_Dev_Overview%2FOverview.htm
https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/HTMLHelp/index.html#t=Acro12_MasterBook%2FJS_Dev_Overview%2FOverview.htm
https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/HTMLHelp/index.html#t=Acro12_MasterBook%2FJS_Dev_Overview%2FOverview.htm
http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf
http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf
http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf
http://dl.acm.org/citation.cfm?id=645438.652758
http://dx.doi.org/10.1109/ICDAR.2005.17
http://dx.doi.org/10.1109/ICDAR.2009.12
http://doi.acm.org/10.1145/1458082.1458255
http://doi.acm.org/10.1145/1255175.1255193

[55] S. Kim and Y. Liu, “Functional-based table category identification in
digital library,” 2011 International Conference on Document Analysis and
Recognition, 2011; doi: 10.1109/ICDAR.2011.274. [Online]. Available: https:
//doi.org/10.1109/icdar.2011.274

[56] M. A. Hearst, A. Divoli, H. Guturu, A. Ksikes, P. Nakov, M. A.
Wooldridge, and J. Ye, “Biotext search engine: beyond abstract search,”
Bioinformatics, vol. 23, no. 16, pp. 2196–2197, 2007. [Online]. Available:
+http://dx.doi.org/10.1093/bioinformatics/btm301

[57] L. Lin and S. Evans, “Structural patterns in empirical research articles: A
cross-disciplinary study,” English for Specific Purposes, vol. 31, no. 3, pp. 150 –
160, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0889490611000615

[58] J. Fang, P. Mitra, Z. Tang, and C. L. Giles, “Table header detection and classification,”
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, vol. 26,
2012.

[59] A. Gilani and r. F. Rukh Qasim, Shah and Malik, “Table detection using deep
learning,” 09 2017.

[60] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-
tection with region proposal networks,” in Advances in neural information processing
systems, 2015, pp. 91–99.

[61] S. C. C. D. M. Kavasidis, Isaak and Palazzo, “A saliency-based convolutional
neural network for table and chart detection in digitized documents,” arXiv preprint
arXiv:1804.06236, 2018.

[62] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak, “Towards
domain-independent information extraction from web tables,” in Proceedings
of the 16th International Conference on World Wide Web, ser. WWW
’07. New York, NY, USA: ACM, 2007, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242583

[63] W. L. Lu Wang. (2016, Okt) Pdf2htmlex. [Online]. Available: http:
//coolwanglu.github.io/pdf2htmlEX/doc/tb108wang.html#pfc/

[64] T. Harvey. (2016) Fontforge. [Online]. Available: http://fontforge.github.io/

[65] “Table extraction and pdf to xml with pdfgenie | pdftron blog,” https://blog.pdftron.
com/2014/03/02/table-extraction-and-pdf-to-xml-with-pdfgenie/, (Accessed on
08/20/2017).

[66] “Iso 19444-1:2016(en), document management — xml forms data format — part
1: Use of iso 32000-2 (xfdf 3.0),” https://www.iso.org/obp/ui/#iso:std:64911:en,
(Accessed on 08/10/2017).

76

https://doi.org/10.1109/icdar.2011.274
https://doi.org/10.1109/icdar.2011.274
+ http://dx.doi.org/10.1093/bioinformatics/btm301
http://www.sciencedirect.com/science/article/pii/S0889490611000615
http://www.sciencedirect.com/science/article/pii/S0889490611000615
http://doi.acm.org/10.1145/1242572.1242583
http://coolwanglu.github.io/pdf2htmlEX/doc/tb108wang.html#pfc/
http://coolwanglu.github.io/pdf2htmlEX/doc/tb108wang.html#pfc/
http://fontforge.github.io/
https://blog.pdftron.com/2014/03/02/table-extraction-and-pdf-to-xml-with-pdfgenie/
https://blog.pdftron.com/2014/03/02/table-extraction-and-pdf-to-xml-with-pdfgenie/
https://www.iso.org/obp/ui/#iso:std:64911:en

[67] “Whitepaper – pdf/a – der standard für die langzeitarchivierung,”
https://www.pdf-tools.com/public/downloads/know-how/
whitepaper-pdfa-standard-iso-19005-de.pdf, (Accessed on 10/21/2017).

[68] S. Tuarob, S. Bhatia, P. Mitra, and C. L. Giles, “Automatic detection of pseu-
docodes in scholarly documents using machine learning,” in 2013 12th International
Conference on Document Analysis and Recognition, Aug 2013, pp. 738–742.

[69] B. Yildiz, K. Kaiser, and S. Miksch, “pdf2table: A Method to Extract Table
Information from PDF files,” in 2nd Indian International Conference on Artificial
Intelligence, 2005, Refereed Conference & Workshop Articles. [Online]. Available:
http://ieg.ifs.tuwien.ac.at/pub/yildiz_iicai_2005.pdf

[70] J. B. M. Manuel Aristarán, Mike Tigas, “Tabula: Extract tables from pdfs,” http:
//tabula.technology/, online: (Accessed on 04/06/2017).

[71] M. Atzmueller, D. Benz, A. Hotho, and G. Stumme, Eds., LWA 2010 -
Lernen, Wissen & Adaptivität, Workshop Proceedings, Kassel, 4.-6. Oktober 2010,
2010. [Online]. Available: http://www.kde.cs.uni-kassel.de/conf/lwa10/proceedings/
proceedings.pdf

[72] T. Q. Luong. (2015) TrapRange: a Method to Extract Table Content in PDF Files.
[Online]. Available: https://dzone.com/articles/traprange-method-extract-table

[73] Y. Liu, K. Bai, P. Mitra, and C. L. Giles, “Tableseer: Automatic table
metadata extraction and searching in digital libraries,” in Proceedings of
the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, ser. JCDL
’07. New York, NY, USA: ACM, 2007, pp. 91–100. [Online]. Available:
http://doi.acm.org/10.1145/1255175.1255193

[74] M. O. Perez-Arriaga, T. Estrada, and S. Abad-Mota, “Tao: System for table
detection and extraction from pdf documents,” in FLAIRS Conference, Z. Markov
and I. Russell, Eds. AAAI Press, 2016, pp. 591–596. [Online]. Available:
http://www.aaai.org/Library/FLAIRS/flairs16contents.php

[75] P. Pyreddy and W. B. Croft, “Tintin: A system for retrieval in text tables,” in
Proceedings of the Second ACM International Conference on Digital Libraries, ser.
DL ’97. New York, NY, USA: ACM, 1997, pp. 193–200. [Online]. Available:
http://doi.acm.org/10.1145/263690.263816

[76] T. Kieninger and A. Dengel, The T-Recs Table Recognition and Analysis System.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 255–270. [Online].
Available: http://dx.doi.org/10.1007/3-540-48172-9_21

[77] A. Pivk, P. Cimiano, Y. Sure, M. Gams, V. Rajkovič, and R. Studer,
“Transforming arbitrary tables into logical form with tartar,” Data Knowl.
Eng., vol. 60, no. 3, pp. 567–595, Mar. 2007. [Online]. Available: http:
//dx.doi.org/10.1016/j.datak.2006.04.002

77

https://www.pdf-tools.com/public/downloads/know-how/whitepaper-pdfa-standard-iso-19005-de.pdf
https://www.pdf-tools.com/public/downloads/know-how/whitepaper-pdfa-standard-iso-19005-de.pdf
http://ieg.ifs.tuwien.ac.at/pub/yildiz_iicai_2005.pdf
http://tabula.technology/
http://tabula.technology/
http://www.kde.cs.uni-kassel.de/conf/lwa10/proceedings/proceedings.pdf
http://www.kde.cs.uni-kassel.de/conf/lwa10/proceedings/proceedings.pdf
https://dzone.com/articles/traprange-method-extract-table
http://doi.acm.org/10.1145/1255175.1255193
http://www.aaai.org/Library/FLAIRS/flairs16contents.php
http://doi.acm.org/10.1145/263690.263816
http://dx.doi.org/10.1007/3-540-48172-9_21
http://dx.doi.org/10.1016/j.datak.2006.04.002
http://dx.doi.org/10.1016/j.datak.2006.04.002

[78] M. Kifer, G. Lausen, and J. Wu, “Logical foundations of object-oriented and
frame-based languages,” J. ACM, vol. 42, no. 4, pp. 741–843, Jul. 1995. [Online].
Available: http://doi.acm.org/10.1145/210332.210335

[79] “Document processing automation: Workflow | abbyy flexicapture,” https://www.
abbyy.com/en-eu/flexicapture/how-it-works/, (Accessed on 10/21/2017).

[80] Octav Ivanescu and Ivan Babiy, “Abbyy recognition technologies - ideal alternative
to manual data entry. automating processing of exam tests,” in Proceedings of the
5th International Conference on Virtual Learning (ICVL). Bucharest University
Press, ISSN 1844-8933, 2010, pp. 263–269.

[81] B. Klein, A. R. Dengel, and A. Fordan, smartFIX: An Adaptive System for Document
Analysis and Understanding. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 166–186. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-24642-8_11

[82] M. Göbel, T. Hassan, E. Oro, and G. Orsi, “A methodology for evaluating algorithms
for table understanding in pdf documents,” in Proceedings of the 2012 ACM
Symposium on Document Engineering, ser. DocEng ’12. New York, NY, USA: ACM,
2012, pp. 45–48. [Online]. Available: http://doi.acm.org/10.1145/2361354.2361365

[83] Ana Costa e. Silva, “Metrics for evaluating performance in document analysis:
application to tables,” International Journal on Document Analysis and
Recognition (IJDAR), vol. 14, no. 1, pp. 101–109, Mar 2011. [Online]. Available:
https://doi.org/10.1007/s10032-010-0144-2

[84] A. Peñas, B. Magnini, P. Forner, R. Sutcliffe, Á. Rodrigo, and D. Giampiccolo,
“Question answering at the cross-language evaluation forum 2003–2010,” Language
resources and evaluation, vol. 46, no. 2, pp. 177–217, 2012.

[85] T. Grainger and T. Potter, Solr in Action, 1st ed. Greenwich, CT, USA: Manning
Publications Co., 2014.

[86] W.-C. Lin and H.-H. Chen, “Merging mechanisms in multilingual information
retrieval,” in Workshop of the Cross-Language Evaluation Forum for European
Languages. Springer, 2002, pp. 175–186.

78

http://doi.acm.org/10.1145/210332.210335
https://www.abbyy.com/en-eu/flexicapture/how-it-works/
https://www.abbyy.com/en-eu/flexicapture/how-it-works/
http://dx.doi.org/10.1007/978-3-540-24642-8_11
http://doi.acm.org/10.1145/2361354.2361365
https://doi.org/10.1007/s10032-010-0144-2

	Kurzfassung
	Abstract
	Contents
	Introduction
	Information processing
	Information retrieval
	Information Extraction
	Test Collections
	Information Retrieval Evaluation
	The Portable Document Format (PDF)

	Table Classification and Identification
	Visual table analysis approach
	Heuristic-based approach
	Machine learning approach
	Conclusion

	Table Extraction Systems
	PDFTOHTML/PDF2HTMLEX
	PDFGenie
	PDFBOX
	PDF2table
	Tabula
	Traprange
	Tableseer
	TAO
	TINTIN
	T-Recs
	TARTAR
	PDF-TREX
	ABBYY FlexiCapture
	SmartFix
	Conclusion

	Framework Implementation
	Framework Overview
	Preprocessing and JSON Conversion
	Tool Validation
	Tool Evaluation
	Conclusion

	Experiments done with the framework
	Calculate the ranking of the tools
	Assessing the ranking of the tools using IR evaluation
	Conclusion

	Summary
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

