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Kurzfassung

Tracking Systeme sind eine weit verbreitete Technologie in digitalen Anwendungen. Ohne
Positionsbestimmung könnten viele computer-gestützte Anwendungen wie z.B. Robo-
tersysteme nicht funktionieren. Vor allem aber durch die zunehmende Verbreitung von
Virtual Reality / Augmented Reality Brillen wird eine genaue und schnelle Positions-
bestimmung immer wichtiger. In diesen Anwendungen ist es äußerst wichtig, dass die
Kopfposition des Benutzers genau und latenzfrei erfasst wird, um Nebenwirkungen wie
Übelkeit vorzubeugen. Weiters müssen Tracking Systeme portabel und billig verfügbar
sein, um auf dem Massenmarkt bestehen zu können.
In dieser Arbeit wird eine neuartige Tracking-Methode vorgestellt, die auf der optischen
Fokussierung und Brechung von Licht basiert. Das Herzstück der Methode bildet ein
linearer Bildsensor, der gemeinsam mit einem fix montiertem Linsensystem als Lichtsensor
fungiert. Das Licht wird von im Raum verteilten Leuchtdioden (LEDs) ausgestrahlt,
die von einem Mikrocontroller abwechselnd geschalten werden. Die Lichtkegel der LEDs
müssen überlappend angeordnet sein, damit der lineare Bildsenor mindestens zwei Mes-
sungen unterschiedlicher Lichtquellen aufnimmt. Die Lichtstrahlen werden durch das
Linsensystem auf den Sensor fokussiert. Durch Bewegung des Trackers ändert sich der
Einfallswinkel des Lichts, wodurch die Lichtstrahlen in einem anderen Winkel gebrochen
werden. Der Bereich, in dem Lichtstrahlen auf den Sensor treffen, ändert sich dadurch.
Ein Mikrocontroller kann durch diese Abweichungen eine schnelle und akkurate Positi-
onsänderung berechnen und ausgeben.
Das Projekt lässt sich in zwei Teile unterteilen: Der erste Teil besteht aus einer Simulation
des Tracking Systems. Mittels Matrizenoptik wurde die Lichtbrechung durch verschiede-
ne Linsenanordnungen simuliert. Dadurch konnten die Grenzen des Tracking Systems
berechnet und die passenden Linsen mit korrekten Abständen zueinander angeordnet
werden. Der zweite Teil besteht aus der Umsetzung der Simulation. Dabei wurde ein
funktionierender Prototyp entwickelt, mit dem die Ergebnisse der Simulation in der
Realität getestet und umgesetzt wurden. Ein Mikrocontroller übernimmt das Auslesen
des linearen Bildsensors und die Ansteuerung der LEDs. Die gemessenen Intensitätswerte
des Sensors werden an einen Raspberry Pi geschickt, der aus diesen Daten die Positions-
änderung bestimmt. Das Tracking System kann zweidimensionale Translationen erfassen.
Eine dritte Achse könnte durch einen zusätzlichen Sensor und LEDs hinzugefügt werden.
Im Anschluss an die Entwicklung des Prototyps wurde die Genauigkeit und die Latenz
des Tracking Systems evaluiert.
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Abstract

Tracking systems are a widely used technology in physical computing. Without a
positioning system, many applications like robotic systems could not function properly.
Especially Virtual Reality / Augmented Reality headsets rely heavily on the position
data of such systems. For this emerging technology, accurate and fast position data
is crucial, in order to prevent side effects like motion sickness. Furthermore, tracking
systems have to be cheap and portable to be competitive on the mass market.
In this thesis, a new kind of tracking system is presented, based on the refraction of light
and optical focus. The main part of the system forms a linear image sensor together
with a 4-piece lens system. Light originates from Light Emitting Diodes (LEDs) placed
in the tracking environment. These LEDs are controlled by a microcontroller one at a
time. The LED light cones need to be overlapping, in order to get at least two intensity
measurements by different light sources. Light rays travel through the lens system, which
focuses light on the sensor. When the sensor moves, the angle of the refracted light
changes, thus reaching a different part of the sensor. A microcontroller can then compute
the tracking system’s change of position.
The project can be split into two parts: The first part consists of a tracking system
simulation. The simulation makes use of Ray Transfer Matrix Analysis, a ray tracing
technique utilized in the design of optical systems. Using the simulation, the size of the
tracking area has been calculated and the right lenses with correct distances to each other
have been chosen. The second part consists of the actual implementation. A functional
prototype has been developed, to turn the insights of the simulation into a real-life
solution. A microcontroller is used to read the linear image sensor and control the LEDs.
The intensity values are sent to a Raspberry Pi, which calculates the position change of
the tracker. With only one linear image sensor, the system is able to track translations
in two dimensions. However, through adding an additional sensor with corresponding
LEDs, tracking of a third axis is possible in theory. Finally, the accuracy and latency of
the tracking system prototype have been evaluated.
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CHAPTER 1
Introduction

1.1 Motivation

Tracking systems are a widely used technology in physical computing applications. Many
interactive systems need to be aware of their position in space to perform meaningful com-
putations and return useful results. The size of tracking systems ranges from small scale,
room sized environments, to environments of global scale. Probably the most known and
widely used tracking system operating globally is the Global Positioning System (GPS)
[1]. It is responsible for the functioning of turn-by-turn navigation in cars, geolocation in
smartphones and flight tracking, to name only a few [2]. Areas, where indoor tracking sys-
tems have proven themselves beneficial are robotic systems [3], motion capturing systems
for movie or game animations [4] and Virtual Reality (VR) / Augmented Reality (AR)
applications. There are also examples of very specialized applications of tracking systems:
In [5], a laser-based tracking system for the construction industry is presented.

Especially in the field of VR / AR, tracking systems play a key role. Precise measurements
and low latency data acquistion are crucial to prevent unwanted side effects such as
motion sickness. In recent years, VR / AR headsets became commercially available
and had a rise in popularity. This rise in popularity is mainly due to the fact that
graphics hardware is getting steadily faster and the ambition of Oculus and HTC to
release consumer VR products to the market. HTC has presented the Lighthouse tracking
environment for their Vive head-mounted display [6], based on infrared technology. With
this system it is possible not only to look, but also to move around in a virtual world with
the size of about 5m× 5m. Although Optitrack is a general purpose tracking system,
specific hardware for VR tracking is also available [7]. Optitrack claims high fidelity at
low latencies and motion capturing of large areas.

However, these aforementioned tracking systems are proprietary technologies. None of
its inner workings have been disclosed to the public. Furthermore, the Optitrack system

1



1. Introduction

comes with a huge price tag only big companies or large research institutions can afford.
Although the HTC Vive tracking system is more affordable, it cannot be used in every
environment. Particularly when exposed to direct sunlight, the system seems to have
problems to keep tracking accurate [8].

1.2 Problem Statement
Tracking systems are complex technologies and relatively expensive in purchase. Not all
of them are working under every lighting condition. The HTC Vive, for example, has
problems working in outdoor environments, directly exposed to sunlight [8]. Moreover,
not every tracking systems tracking area can be extended easily. At the day of this writing,
the tracking space of the HTC Vive is limited to room-sized environments. Especially
in outdoor VR tracking, there is still room for improvement: No tracking system can
be found which is cheap in purchase, easily expandable and working under outdoor
conditions, but still giving good tracking accuracy and latency. Tracking systems often
depend on specialized hardware, which can only be bought as proprietary components.

1.3 Aim of the Work
The aim of this thesis is to develop a new kind of tracking system, based on linear image
sensors (line scan cameras) as light sensing devices. Linear image sensors are readily
available and affordable hardware. They have high resolution in one dimension and can
be read out very fast. The tracking system is based on optical data to gather movement
information: Light rays originate from Light Emitting Diodes (LEDs) placed in the
tracking environment. The light cones of the LEDs need to be overlapping, in order to
get at least two measurements of different light sources on the sensor. The LEDs, as
well as the linear image sensor which provides a one-dimensional image, are read and
controlled by a microcontroller. The light rays travel through a lens system which is
directly located before the linear image sensor, converging the light on the sensor. When
the sensor moves, the angle of the refracted light changes, thus reaching a different part of
the sensor. With two measurements of different light sources, an algorithm can calculate
the change of distance to the LEDs and parallel to them, resulting in a two-dimensional
tracking space. Figure 1.1 shows a schematic overview of the functional principles.

The functioning principles of the system are not overly complex and depend on commercial
off-the-shelf components. Due to the small amount of sensor data aggregation, an
embedded system has enough processing power to compute the tracking output. By
adding LEDs, the system can be extended easily.

The main part of this work describes the development of a prototype of the previously
suggested tracking system. In order to focus light on the sensor, optical lenses have to be
arranged in the right order and with the correct distances to each other. Thus, a light
ray simulation has been done prior to the actual prototype implementation, to calculate
the proper lens characteristics. Afterwards, the insights of the simulation have been
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LED 1 LED 2

Lens system

Linear image sensor

Intensity chart of both LEDs

Two-dimensional tracking data  

SPI

Figure 1.1: Overview of the functional principle of the tracking system.
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1. Introduction

turned into a functional prototype. A STM32 microcontroller is used to read out the
linear image sensor and control the LEDs. Finally, the characteristics of the tracking
system have been evaluated.

1.4 Outline
This work is split into six chapters. Chapter 1 gives an introduction to the topic
and states the goal of the project. Chapter 2 gives an overview of related work and
explains concepts similar to the system presented in the thesis. Chapter 3 explains the
theoretical background which is necessary to understand the underlying principles of
the tracking system. In Chapter 4, the simulation, implementation and prototyping
stages are described. Chapter 5 examines the results of the developed prototype with
regard to the systems accuracy and latency. Finally, Chapter 6 summarizes the most
important aspects of this work, gives an overview of unsolved problems and leaves room
for improvements in the future.
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CHAPTER 2
Related Work

2.1 Tracking Systems

Position data produced by tracking systems is crucial information for physical computing
applications. Many interactive systems like robotic applications and VR / AR headsets
need to be aware of their position in space to perform meaningful computations. There
is a wide variety of different tracking systems, each one is made for a different purpose.
Tracking methods can range from large area, global systems to small scale, room sized
environments.

2.2 Taxonomy of Tracking Systems

Ishii [9] divides tracking systems into inside-out and outside-in methods. The difference
between these two methods lies in the location of the tracking sensor. In inside-out
tracking, the sensor is attached to the tracked object. Distinctive features like fiducial
markers or other active or passive markers have to be placed in the surroundings of
the tracking space. In outside-in tracking, on the other hand, the sensors are placed
around the tracking environment. The tracked object has to be equipped with markers
to be detected by the sensors. Figure 2.1 depicts the difference between inside-out and
outside-in tracking methods.

2.3 Satellite Tracking Systems

The most prominent example of a global tracking system is GPS. There are also other
systems like the russian GLONASS, the chinese BEIDOU and GALILEO, operated by
the european union. Hofmann-Wellenhof et al. [11] give an overview of global tracking
systems.

5



2. Related Work

Figure 2.1: Inside-out vs. outside-in tracking systems (retrieved from [10]).

GPS calculates the user’s position by estimating the distance of multiple satellites. At
least four signals from different satellites are necessary to calculate a three-dimensional
pose. Satellites send out their current time and position. The tracker calculates his own
position from the received information and by measuring the signal transit times. GPS
is developed and operated by the US Department of Defense.

2.4 Inertial Sensor Tracking

Inertial sensor tracking utilizes gyroscope and acceleration sensors to provide position
information [9]. No outside markers have to be deployed for this kind of tracking method,
which makes it very convenient. This alleged advantage is also its biggest disadvantage:
Due to the fact that no fixed markers are deployed, the system inevitably starts to drift.
Tracking errors accumulate over time which decreases the tracking accuracy. Without
any base stations to reset the accumulated drift, inertial sensor tracking systems are
not suited for extensive tracking sessions. Another drawback of inertial based tracking
systems is that only relative tracking data can be obtained. To get absolute tracking
positions, some additional method must be deployed.

Foxlin presents in [12] an invention called NavShoe, a tracking system for pedestrians
based on inertial sensing. The system doesn’t depend on external markers or installations.
It can be used to find and rescue members of emergency teams or as a personal navigation
assistant. The NavShoe system uses a tiny inertial / magnetometer bundle package
which can be attached to the user’s shoes. The system can then be wirelessly coupled
to a personal digital assistant to visualize the navigation data. To reduce drift, the
tracking system applies zero-velocity updates to the Extended Kalman Filter (EKF)
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2.5. Ultrasonic-based Tracking Systems

error corrector during the stance phase of a walking person. The EKF can then correct
the velocity error to be linear in the number of steps. To provide more accurate data,
the tracking system can be supported by information from satellite positioning systems.

Inertial sensors are frequently used in sensor-fusion systems together with visual tracking
algorithms. In such systems, the inertial sensors are responsible for capturing fast move-
ment data, while the vision-based algorithms provide absolute reference measurements
to compensate for the drift accumulating in the inertial sensors [13, 14].

2.5 Ultrasonic-based Tracking Systems
According to Ishii [9], ultrasonic tracking systems are accurate and stable. However,
ultrasonic sensors and sources have to be deployed in the tracking environment. It is
possible to obtain a full 6 Degree-of-Freedom (DOF) pose, consisting of position and
rotation data. Ultrasonic sensors don’t cover a high range, therefore a lot of sensors have
to be used to cover a tracking area of reasonable size. The drawbacks of such a system
are unwanted reflections and costs: Ultrasonic equipment is expensive. Also, tracking
accuracy will decrease in complex environments, because of echoes caused by reflecting
surfaces.

Foxlin1998 et al. present in [15] a system called Constellation, an inside-out tracking
system based on inertial sensors and ultrasonic measurements. Ultrasonic beacons have
to be placed in the tracking environment. In the author’s test arrangement, the beacons
were placed on the ceiling. Sensor fusion is used to filter out corrupt measurements and
perform predictions for the ultrasonic system, while at the same time the ultrasonic
tracker corrects the inertial drift. The system claims to achieve resolutions of 1mm to
3mm and an effective latency of 2.5ms.

2.6 Vision-based Tracking Systems
Vision-based tracking systems use cameras as their main sensors [9]. Image processing
algorithms try to detect distinct features on the camera images. Distinct features are
distinguishable image characteristics like corners, edges or planes. The aim is to infer the
change of the camera’s position and orientation from the recognized features. This is
done by solving the perspective n-point problem.

Vision-based tracking systems can be classified into two categories:

• Tracking based on natural features [16]: Pose prediction is solely done on the visual
input and the detected image features thereof. Neither markers have to be placed
in the tracking space nor is prior knowledge of the scene necessary. These systems
are referred to as visual odometry. Visual odometry provides only information on
relative movements. The tracking motions can be fused with other systems (inertial
sensors, GPS) to provide better accuracy. Camera tracking is only stable as long
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2. Related Work

as the environment remains unchanged. If the environment starts changing, the
features change their position too, leading to an unstable tracking performance.
Several visual odometry algorithms have been proposed, focussing on different
techniques for feature extraction and pose estimation [17, 18].

• Tracking based on markers [9]: Marker-based tracking systems detect features on
specifically designed markers. Fiducial markers consist of primitive shapes that can
be easily recognized, such as circles and squares. The dimensions and positions of
these shapes have to be known in advance. The markers have to be placed in the
environment to ensure stable tracking. In [19], a marker-based tracking system for
AR conferencing applications is presented.

Simultaneous Localization and Mapping (SLAM) techniques build a map at the same
time as localization happens [20]. Through sophisticated methods such as loop closure,
the accuracy of the built map can be enhanced drastically.

Various Visual SLAM methods, operating on different features, have been proposed.
Parallel Tracking and Mapping (PTAM) [21], for example, uses Features from Accelerated
Segment Test (FAST) corners for feature detection.

There are also outside-in tracking systems using more than one camera: In [22], an
infrared-optical tracking system is presented. The system consists of 4 - 8 shutter-
synchronized cameras. Each camera has an optical filter and an infrared illuminator
built in. The system tracks targets consisting of passive spheres, which reflect infrared
light. The spheres distances to each other are known by the system. The tracking system
provides 6-DOF tracking with a latency of 20ms to 40ms and an absolute accuracy of
about 0.5 cm.

Ribo et al. [23] present a stereo vision tracking method for VR / AR applications. The
system is based on two cameras, tracking retroreflective targets which can be attached to
any device. By using epipolar geometry, the system computes a 6-DOF pose from the
2D image points. 25 targets positions can be tracked at a rate of 30Hz.

2.7 Linear Image Sensor Tracking
In [24], an outside-in motion capture system based on linear image sensors has been
proposed. In this system, light point devices have a unique identifier by providing a unique
sequence of light pulses. The light point devices are in sync over a wireless communication
channel. Two linear image sensor devices are placed in a room, orthogonal to each other.
Each sensor delivers one-dimensional information. A processing device computes three-
dimensional positions of the light point devices, based on the one-dimensional sensor
information. The motion capture system is comprised of a four-piece cylindrical lens
system, aimed to focus light on the sensor. The lens system is divided into a collimating
and telecentric subsystem. The aim of the collimating lens system is to get as much light
as possible through the telecentric system and on the sensor. However, the collimating

8



2.7. Linear Image Sensor Tracking

subsystem enhances only the range of motion of the non-tracked axis. The telecentric
system converges the light on the sensor, thus providing the actual tracking information.
It is aligned perpendicular to the collimating subsystem.

In [25] and [26], CoSTEL is presented, a 3-dimensional outside-in motion capturing
system, conceived for the analysis of whole body movements. The system consists of
three linear image senors with 2048 pixels, each one is equipped with a cylindrical lens
focussing light on the sensor. The linear image sensors lie on the focal planes of their
corresponding lenses. The tracked person is equipped with active infra-red light emitting
markers, casting light through the lenses and on the linear image sensors. The markers
are toggled one after each other, sychronized with the operating system. The positions of
the markers can then be calculated. 20 markers can be tracked at a frequency of 125Hz
and a spatial resolution of 0.025 %. This would yield a resolution of 1mm in a 4m wide
tracking area. Figure 2.2 illustrates the constellation of the three linear image sensors.

Cylindrical Axis

Cylindrical Axis

Cylindrical Axis

Light Point

Image Line

Image Line

Image Line

Figure 2.2: The tracking method of CoSTEL, utilizing three linear image sensors. The
annotated cylindrical axis is the axis of the cylindrical lenses mounted in front of the
linear image sensors. The cylindrical lens converges light to a line on the linear image
sensor, marked as "Image Line" in the sketch (retrieved from [25]).

9



2. Related Work

Bucholz et al. [27] present a tracking system for computer aided medical devices, similar
to the CoSTEL system. It depends on three linear image sensors and infrared LEDs.
A base ring is attached to the head of the patient during surgery. LEDs, fixed to the
base ring and the hand-held instruments, are used as active markers for the outside-in
tracking system. The position of the instruments are then visualized on three dimensional
computer tomography, positron emission tomography or magnetic resonance imaging
scans, relative to the head’s position. The tracking system has an error of less than
1.5mm.

In the patent filed by [28], a system for tracking whole-body movements is presented.
Taking a similar approach to CoSTEL, the system consists of three linear image sensors
and LED markers. The tracked person is equipped with LED markers, which are lit
sequentially, synchronized with a controller. Therefore, only one infrared marker is lit
during an image capturing process. Using triangulation, the absolute position of each
marker can be calculated.

Bishop [29] presents SELF-TRACKER in his dissertation: An inside-out tracking system
based on custom integrated, one-dimensional sensors, aimed at room-sized tracking of
head-mounted displays. The sensors operate at rates of 1000 - 4000 frames per second.
They operate under the assumption of small changes in the image when the frame rate is
high. Therefore, small deviations can be detected by a simple algorithm. The sensors
are fitted in a cluster, the minimum size of the cluster is given by the focal length of the
lenses. Lenses and sensors are mounted on opposite sides of the cluster box. The tracking
system can be used with artificial markers like blinking LEDs or reflective material. A
natural feature based tracking approach is also described, which eliminates the use of
artifical markers. In this approach, natural intensities of the room are captured by the
linear image sensors and used to measure the user’s motion. This approach doesn’t
measure absolute positions, thus an error accumulates over time, resulting in drift. The
author is also one of the inventors of the HiBall tracker, a tracking system utilizing
lateral effect photodiodes [30].

Fuchs et al. [31] present a lensless outside-in tracking system based on one-dimensional
optical sensors. A number of linear image sensors have to be placed in a room, to detect
the position of a light source. The sensors are partially shadowed by a "knife edge"
covering parts of the sensors. When the user moves the light source, the shadowed and
the illuminated region change. The change of the illuminated region can be detected
by a linear image sensor. When multiple sensors are illuminated, the light source’s
three-dimensional position can be calculated.

In [32], a method for a lane keeping driving assistant using linear image sensors is
described. The linear image sensor and an infrared flash are mounted on a car. On
the side of the road, periodically spaced reflectors are used as road marks. The flash
illuminates the reflectors every 10ms while the linear image sensor captures an image. A
lens system is attached in front of the linear image sensor, to focus the three-dimensional
world intensities to a single line the sensor can read. The system is capable of recognizing
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reflectors up to a distance of 40m. Using an EKF and the information from the linear
image sensor, the longitudinal axis of the vehicle can be measured.

Wu & Wen [33] introduce a positioning system for computer aided surgery systems based
on linear image sensors. Similar to the CoSTEL system, it is based on three linear
image sensors with corresponding cylindrical lenses. Two of the linear image sensors are
oriented horizontally, the third one vertically. To be independent of computer processing
power, the algorithm is implemented on Digital Signal Processors (DSP). The results are
compared with results calculated by computer hardware and showed no difference within
0.01mm.

Hu et al. [34] present an attitude measurement system for flying objects. The system
consists of two Charge-Coupled Device (CCD) arrays and three linear image sensors.
The tracked object has six LEDs attached in a triangular shape. Three of the six lights
emit blue light, while the other three emit red light. The linear image sensors have a
telecentric lens system and red filters attached, to filter out blue LEDs. The two CCD
array sensors perform binocular vision tracking, supported by the linear image sensors.
The linear image sensors improve the systems attitude measurements as well as speed
and precision.

2.8 Other Systems depending on Linear Image Sensors

In [35], different types of Coordinate Measuring Machines (CMM) are examined. These
machines perform dimensional inspection tasks, measuring the dimensions of various
objects. When measuring large objects, mobile CMMs are an ideal solution. Mobile
CMMs are aligned to the reference points on the objects, giving exact object measurements.
Existing mobile CMM solutions use linear image sensors, to measure three angles which
uniquely define the position of a point in space. Each linear image sensor measures one
plane containing the point to be measured.

Linear image sensors are also used in the design of digital spectrometers, measuring
spectral components of physical phenomena. Dominec [36] built a spectrometer using a
NEC µPD3799 linear image sensor, in which the light components are separated by a
lens system and a diffraction grating component. The light spectrum is then recorded by
the linear image sensor.

2.9 Commercially available Tracking Systems

The HTC Vive is a well-known, commercially available VR system. In [37], the output
of the Vive’s position and orientation data is examined, as well as its system latency
measured. Although the HTC Vive has high precision tracking measurements and a
low system latency of around 22ms, it has a tilted coordinate system with respect to
the physical ground plane. Therefore, the authors claim that the HTC Vive VR system
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is currently not suited for scientific experiments, where accurate visual stimulation is
important.
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CHAPTER 3
Theoretical Background

The aim of this chapter is to give the reader an overview of relevant topics needed for
understanding the concepts of the thesis.

3.1 Optics

Optics is a part of physics, investigating the theories behind light and vision [38]. Putting
it in more broad terms, the field of optics studies the phenomena behind electromagnetic
radiation in the optical spectrum, from the generation, to the transmission and detection
of electromagnetic waves. Wavelengths range from one nanometer to approximately one
millimeter in the optical spectrum.

At the beginning of modern science in the 16th and 17th centuries, light has been seen
either as a particle or a wave [39]: In the phenomena of interference, diffraction and
propagation, light behaves like a wave. However, when light exchanges energy with
matter, it shows a particle-like behavior. Each of these seemingly incompatible models
enjoyed a phase of popularity in the scientific community. To solve this contradictory state
of light, referred to as the wave-particle duality, the theory of quantum electrodynamics
was invented. Different fields of physics like electricity, magnetism and atomic physics all
come together in this unified theory. One of the results of quantum electrodynamics is
that light and subatomic particles are both considered as forms of energy, governed by
the same principles.

3.2 Geometrical Optics

In geometrical optics, the wave characteristics of light are ignored, because the wavelength
is considered negligibly small compared to the size of optical components. Therefore,
phenomena like the diffraction of light around the edges of barriers are not considered in
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geometrical optics. Within this approximation, light disperses along straight lines, which
are also referred to as rays. A light ray travels through an optical system comprised of
different homogeneous media along a sequence of straight lines. This section is based on
[39] and [40].

There are two laws guiding the direction of the ray:

• Law of Reflection: When a light ray, travelling through a medium, is reflected
at the interface to another medium, the angle of incidence θ1 is equal to the angle
of the reflection θr.

• Law of Refraction (Snell’s Law): When a light ray, travelling through a medium,
is refracted at another medium, the sine of the angle of incidence θ1 is directly
proportional to the sine of the angle of the refraction θ2:

n1 sin θ1 = n2 sin θ2 (3.1)

n1 and n2 are the refractive indices of two different media.

Figure 3.1 depicts the reflection and refraction of light rays between different media.

There are two important principles conveying the movement of light:

• Huygens’ Principle: Christian Huygens envisioned light as a series of waves.
Every point on a wavefront propagating light in space is the source of secondary
spherical wavelets. These wavelets themselves form the envelope of another wave-
front at some later instant in time. The wavelets have the same speed and frequency
as the wavefront they are originating from. Augustin Fresnel modified Huygens’
principle to add the concept of interference, explaining the diffraction of light at
obstacles or slits. Figure 3.2 shows the principle of wavefront propagation.

• Fermat’s Principle: Fermat’s principle is based on the idea of Hero of Alexandria,
who stated that light always takes the shortest path between two points. Fermat
generalized Hero’s idea to provide an explanation for the refraction of light between
different media. Fermat’s principle claims that light travels the path of least time
instead of least distance. When light would take the shortest path, the angle of
incidence wouldn’t change between different media, yielding a straight line and
violating Snell’s law of refraction. However, according to Fermat’s principle, light
tries to minimize the time it travels in a slower medium, therefore bending at the
interface to follow an optimal path time-wise.
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Incident Ray Reflected Ray

Refracted Ray
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Incident medium n1

Refracting medium n2

Figure 3.1: The reflection and refraction of light rays at the interface of different media.
θ1 is the angle of the incident ray, θr is the angle of the reflected ray and θ2 is the angle
of the refracted ray (retrieved from [39]).

3.2.1 Optical Systems

An optical system consists of different refracting and/or reflecting media, with surfaces of
arbitrary curvature. Each medium in the optical system is assumed to be homogeneous
and isotropic, therefore it can be described by its own refractive index. Light rays leaving
a source point O are altered by the optical system and arrive in image space, converging
to an image point I. Figure 3.3 shows a sketch of an optical system, consisting of light
rays with their corresponding wavefronts emerging at object space and arriving at image
space.

According to Fermat’s principle, every ray starting at O and ending at I has the same
transit time through the system. Light rays that have these property are called isochronous.
By the principle of reversibility, exchanging the light source with the image point I would
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(b)(a)

Figure 3.2: Huygens principle of wavefront propagation. The propagation of plane waves
(a) and spherical waves (b) can be seen (retrieved from [39]).

reverse all rays and result in a new image point O, the previous light source.

Non-perfect images arise mainly because of three reasons:

• Light Scattering or Reflections: Light scattering can occur due to inhomo-
geneities in transparent media. A loss of light rays because of reflections on
refracting surfaces leads to a decreased brightness of the image.

• Diffraction: Diffraction effects which arise from the wave nature of light limit the
sharpness of the image. The effect occurs because only a fraction of the wavefront
goes through the optical system. Only in a perfect geometrical optics scenario with
wave amplitudes approaching zero, diffraction effects can be avoided. This scenario,
however, can never be entirely reached.

• Aberrations: Aberrations occur due to imperfect optical components. If not
every light ray that emerges at a point light source and travels through an optical
system, reaches the same image point in image space, the resulting deviation is
called spherical aberration. In contrast, if all light rays reach the exact same point
in image space, the refracting or reflecting surfaces of the optical system are called
cartesian surfaces. However, cartesian surfaces need a hyperboloid shape and are
hard to produce. Therefore, most optical surfaces are spherical and the introduced
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Optical
systemO I

Object space Image space

Figure 3.3: A typical optical system, with the object source O lying in object space.
The light rays emerge from the object source O, travel through the optical system and
arrive in image space at the point I. The wavefronts of the light rays can be seen as well
(retrieved from [39]).

spherical aberrations are accepted, as a compromise between optical quality and
ease of production.

3.2.2 Cylindrical Lenses

Cylindrical lenses, although not as common as spherical lenses, are important parts
of optical systems. Cylindrical lenses are used for correcting astigmatism, a visual
defect, and for cases where points need to be imaged as lines. A spherical lens can be
rotated around its axis of symmetry without changing the resulting image. In contrast, a
cylindrical lens has asymmetric focusing characteristics, an axis of symmetry doesn’t exist.
Another difference between these two lens types is the type of mapping they produce.
While a spherical lens produces a point image of a point source, a cylindrical lens refracts
a point source to a line image. This property of a cylindrical lens is called astigmatism.

Figure 3.4 shows a variety of convex and concave cylindrical lenses of different types and
sizes. In Figure 3.5, the focusing characteristics of a convex cylindrical lens are shown,
when light rays are emitted from a light source at infinity. When a light source is close
to the lens, the cylindrical lens converges light only in a single dimension: Vertical rays
are refracted by the lens, horizontal rays are left untouched, with respect to this image.

3.3 Ray Transfer Matrix Analysis

Ray transfer matrix analysis is a ray tracing technique, mainly used in the design and
analysis of optical systems [42]. It consists of ray transfer matrices, which describe the
optical system. Each matrix is comprised of a single lens property. Ray transfer matrices
can be multiplied together, yielding a single matrix for a whole optical system. A light
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Figure 3.4: Different types of convex and concave cylindrical lenses (retrieved from [41]).

ray can then be traced through the system by multiplying the resulting matrix by a
vector representing the light ray. This section is based on [42] and [40].

The results of the ray transfer matrix analysis are only valid within the limits of two
approximations:

• The first one is the underlying assumption of all geometric optics: Wave properties
of light are ignored (see section 3.2).

• Secondly, ray transfer matrix analysis is making use of paraxial optics. Paraxial
optics only considers rays which are close to the optical axis and remain nearly
parallel to it. Thus, first-order approximations are used for the sines and tangents
of the involved angles. Using this approximation, optical effects like spherical
aberrations, field curvature and distortion will be ignored.

In mathematical terms, paraxial optics can be written als follows:

sin θ ≈ θ, tan θ ≈ θ and cos θ ≈ 1 (3.2)

In paraxial optics, there are three pairs of cardinal points determining the behavior of
an optical system: focal points, principal points and nodal points. If the initial image
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Line
imageA B

Cylinder
axis

Figure 3.5: The focusing characteristics of a convex cylindrical lens. Light rays emerging
from a section normal to the cylinder axis are converged to a common focus point, while
rays from a section parallel to the cylinder axis are not. Parallel rays converge to a line
image parallel to the cylinder axis of the cylindrical lens (retrieved from [39]).

location and the six cardinal points are known, the final image can be calculated for any
system of refracting spherical surfaces.

3.3.1 Thin Lens and Thick Lens Equations

A thin lens can be seen as a single refracting surface seperating two spaces with the
same refracting index. The thickness of a thin lens is negligible small compared to the
curvature radii of the lens surfaces. Ignoring the thickness will not lead to serious errors.
This section is based on [39] and [40].

The thin lens is defined by the lensmaker’s equation:
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1
f

= n2 − n1
n1

( 1
R1
− 1
R2

)
(3.3)

In this equation, f is the focal length, that is the distance where perfectly parallel rays
are brought into focus. The longer the focal length, the higher the lens’ magnification.
The focal length f is negative for diverging lenses and positive for converging ones. R1
and R2 are the corresponding curvature radii of the lens, n2 and n1 are the refractive
indices of the lens material and its surrounding medium, respectively. The lens’ curvature
radii indicate whether the corresponding surfaces are concave or convex. While R1 > 0
and R2 < 0 indicate convex lens surfaces, R1 < 0 and R2 > 0 indicate concave lens
surfaces. In most cases, the surrounding medium is air, thus n1 = 1.

A thick lens, on the other hand, is a lens where the thickness cannot be ignored without
producing significant errors.

The lensmaker’s equation for a thick lens is defined as follows:

1
f

= (n2 − 1)
( 1
R1
− 1
R2

+ (n2 − 1) dt
n2R1R2

)
(3.4)

In this formula, it is assumed that the surrounding medium is air, therefore, n1 is set
to 1. All other variables have the same meaning as in the thin lens equation (see 3.3).
Additionally, with the variable dt the thickness of the lens is taken into account.

Further, the distance from the object to the lens so and the distance from the image to
the lens si are connected with the focal length f via the following relation:

1
so

+ 1
si

= 1
f

(3.5)

Figure 3.6 shows light rays traveling through a convex lens. The relations between the
different lens variables can be seen.

3.3.2 Ray Transfer Matrices

The elegance of the ray transfer matrix analysis lies in the simplicity of its notation. An
entire optical system can be represented by a simple 2 x 2 matrix. This section is based
on [39].

A light ray travelling through a system of lenses can be expressed by a two-dimensional
vector:

V =
[
y
α

]
(3.6)
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Figure 3.6: A convex lens with light rays traveling through it, showing how the variables
of different lens equations relate to each other.

In this vector, y represents the distance of the ray from the optical axis. α is the angle
the light ray forms with the optical axis.

A light ray can be translated in 2D by the translation matrix T :

T =
[
1 L
0 1

]
(3.7)

In this matrix, L is the translation distance on the optical axis. Furthermore, the paraxial
approximation tanα ∼= α is used in the translation matrix.

The refraction matrix gives the result of a ray refracting at a spherical interface. The
resulting vector is the angle and distance from the optical axis directly after the refraction.
The matrix incorporates the paraxial form of Snell’s law:

n1θ1 = n2θ2 (3.8)

n1 and n2 are the refractive indices of the incident and refracting media, respectively. θ1
and θ2 are the angles of the incoming and outgoing rays with the normal vector of the
hitting point. The refraction matrix S is defined as follows:

S =
[

1 0
n1−n2
Rn2

n1
n2

]
(3.9)
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n1 and n2 are the refractive indices of the surrounding medium and the lens, respectively.
R is the radius of the refracting surface.

The equations for thin and thick lenses result from multiplications of the previously
described matrices. A thick lens can be approximated by using a combination of refraction
and translation matrices:

E = S2 · T · S1 (3.10)

The first matrix S1 represents the refraction of the ray first hitting the lens. The second
matrix T corresponds to a translation of the ray within the lens. The third matrix S2
represents the outgoing ray refraction. The thin lens equation is a special case of the
thick lens equation, where the length of the translation matrix T has a value of 0:

F =
[

1 0
n2−n1
R2n1

n2
n1

] [
1 0
0 1

] [
1 0

n1−n2
R1n2

n1
n2

]
(3.11)

This equation can be reduced to the following matrix:

F =
[

1 0
n2−n1
n1

(
1
R2
− 1

R1

)
1

]
(3.12)

The element in the first column and second row of the matrix equals the lensmaker’s
equation (see 3.3). Thus, the thin lens ray transfer matrix can be simply written as:

F =
[

1 0
− 1
f 1

]
(3.13)

3.4 Linear Image Sensors

Linear image sensors, sometimes also referred to as line scan cameras, linear CCDs
or linear pixel arrays, are linear arrays of light detectors [43]. Compared to a two-
dimensional image sensor, linear image sensors are comprised of only one dimension
of pixels, i.e. one row of a two-dimensional sensor. Linear image sensors are used in
applications where either the sensor or the scanned object is moved perpendicular to
the pixel line of the sensor. Rigid control has to be maintained on the moved objects.
Typical applications of linear image sensors are image scanners, barcode scanners or cash
machines. A linear image sensor is depicted in Figure 3.7. This Section gives an overview
of photosensitive technology and common issues of it. The linear image sensor utilized in
the implementation, the Toshiba TCD1304, is described in more detail.
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Figure 3.7: A linear image sensor (retrieved from [44]).

3.4.1 Charge-Coupled Device (CCD) vs. Complementary
Metal-Oxide Semiconductor (CMOS)

CCD and CMOS image sensors convert light into charge by using the photoelectric effect
[45]. Both technologies collect and measure electrical charge and turn it into an analog
signal proportional to the amount of light they receive. The difference between these
technologies lies in the way charge is collected and carried to the output.

The CCD is a semiconductor, transferring charges through storage areas. It was invented
by Willard Boyle and George Smith at Bell Labs in October 1969 [45]. Boyle and Smith
received the 2009 Nobel Prize in Physics for the invention of the CCD technology. A
CCD combines the three tasks of collecting, transferring and converting charge to a
measurable voltage [43]. Each pixel consists of a Metal-Oxide Semiconductor (MOS)
capacitor with an electrode attached to its silicon dioxide layer [46]. To measure the
intensity values of all pixels, charges are shifted like buckets sequentially to the output of
the CCD, where they are converted to voltage.

In CMOS devices, on the other hand, each pixels converts its charge to a voltage directly
[45]. The pixel outputs the voltage signal when it is selected by row and column busses.
The CMOS technology was invented by Frank Wanlass in 1963.

Until lately, CMOS technology could not rival CCD technology in terms of image quality
[45]. However, due to recent improvements in CMOS manufacturing like lithography
and process control, CMOS sensors are able to compete with CCD sensors qualitywise.
CMOS sensors are found increasingly in Digital Single Lens Reflex (DSLR) cameras and
professional camcorders. Smartphones are one of the main drivers behind increasing sales
of CMOS sensors lately [47].
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3.4.2 Rolling Shutter Effect

The rolling shutter effect characterizes image errors in exposures of moving subjects [45].
The errors occur due to the way camera sensors are exposed and read out. In CMOS
sensors, the pixel rows are read out with a small delay after each other. Because of this
delay, the moving object has time to move further, inducing a shear effect in the resulting
image. While CMOS sensors suffer from the rolling shutter effect, CCD sensors are not
affected, because all pixels are exposed at the same time in CCD technology.

3.4.3 Dark Current

Dark currents are defined as unwanted charges accumulating in the pixel arrays of a
CCD sensor [45]. Dark currents emerge because of thermal processes occuring at any
temperature above absolute zero. Especially during longer integration times, which are
used in low light situations, dark current leakage can arise [43]. Since dark currents are
temperature dependent, they can be reduced by cooling the CCD sensor.

3.4.4 The TCD1304 Sensor

The TCD1304 is a linear CCD sensor with 3648 pixels [48]. The sensor weighs 2.7 g
and has a dimension of 10mm× 42mm, while each pixel of the sensor has a size of
8 µm× 200 µm. It can be driven at a maximum clock rate of 4MHz. However, each
pixel needs 4 clock cycles to be read out. This means that a full readout of the sensor
takes 14 592Hz ≈ 0.0036ms. The TCD1304 sensor is suited for light within the visible
spectrum (380 nm - 750 nm). Figure 3.8 shows the spectral response of the sensor. This
section is based on [48] and [49].

Figure 3.8: The spectral response of the TCD1304 linear image sensor (retrieved from
[48]).
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The sensor needs three driving pulses:

• The Master Clock (fM), it must run at a speed of 0.8MHz - 4MHz.

• The Shift Gate (SH) controls the integration time. The minimum integration
time is 10 µs.

• The Integration Clear Gate (ICG) controls the readout time of the sensor.

In Figure 3.10, a timing chart of the TCD1304 is shown. In this chart, it can be seen
that the ICG and SH pulse must coincide in order to read pixel values from the sensor.
Between two ICG pulses, pixel values can then be digitized by an external ADC. If the
SH pulse has a shorter period than the ICG pulse, the sensor is in electronic shutter
mode. In this mode, the SH pulse controls the integration time tINT . An integration
takes place between two SH pulses, when the second pulse coincides with the ICG pulse.

Looking at the sensor output marked as OS in the chart, it is shown that there are 3694
intensity values to be read out. These additional values are not actual pixels of the sensor,
but dummy output values. There are 32 elements of dummy output before the actual
3648 intensity values, and 14 elements after them.

Figure 3.9 has a more detailed view on the timing requirements of the three pulses.
Several rules have to be followed to get a proper signal from the sensor:

• ICG Pulse Delay: When the SH pulse is low, the ICG pulse goes high with a
minimum delay of 1 µs.

• Pulse Timing of ICG and SH: When the ICG pulse is low, the SH pulse must
go high with a delay of 0.1 µs to 1 µs.

• SH Pulse Width: The SH pulse width has to be at least 1 µs wide.

• Pulse Timing of ICG and fM: The ICG pulse can only go high when fM is
high.

As can be seen on the bottom part of Figure 3.10, the intensity values are reversed. This
means that high light intensities have low output values and vice versa. The baseline is
marked as OS in the chart. It corresponds to the sensors supply voltage and indicates an
unilluminated pixel. Pixel values are in the range of OS and the pixel with the highest
intensity.

Figure 3.11 shows the electrical diagram to drive the linear image sensor. It consists
of resistors and capacitors with different characteristics. The driving pulses are going
through an inverter before arriving at their corresponding pins. The output signal marked
as OS passes through a transistor, before it can be read by an Analog-to-Digital Converter
(ADC). The VDD and VAD pins are connected to the source voltage, which has to be
around 4V. All other pins are pulled to ground.
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Figure 3.9: A more detailed view of the TCD1304 timing requirements (retrieved from
[48]).

26



3.5. LED Technology

Figure 3.10: An overview of the driving pulses of the TCD1304 linear image sensor and
their relation to each other (retrieved from [48]).
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Figure 3.11: The electrical diagram needed for the TCD1304 linear image sensor. IC1
stands for a TC74HC04 inverter chip, TR1 for a 2SA1015-Y transistor (retrieved from
[48]).
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3.5 LED Technology
An LED is a light-emanating semiconductor component. A diode is an electric component
which lets current pass in one direction but blocking it in the other. A semiconductor
consists of a layer with positive carriers consisting mostly of holes (p-layer) and a layer
with negative carriers consisting mostly of electrons (n-layer). This section is based on
[50].

An LED can be in one of two states:

• Unbiased State: In this state, a depletion region is created which extends mainly
into the p-layer, resulting in an insulating condition.

• Biased State: When a forward voltage is applied to an LED, electrons can flow
from the n-layer to the p-layer. Holes are moving in the opposite direction. A hole
and an electron can recombine if they have the same momentum, emitting optical
radiation. The wavelength of the radiation depends on the energy bandgap of the
semiconductor material used.

LED technology provides better energy efficiency and longer life compared to the tungsten
light source. Furthermore, it has a more adjustable spectral power distribution and a
better illuminance. While most semiconductors are made out of silicon, LEDs consist of
some kind of gallium compound. The type of compound controls the spectral wavelength
of the LED. LEDs made out of Indium Gallium Nitride (InGaN) for example are usually
used for ultraviolet, blue and green light with high radiant efficiency. In Figure 3.12, a
high power LED on a breakout board can be seen.

3.6 Microcontrollers
Microcontrollers are small integrated pieces of hardware [52]. They are built into countless
objects of everyday use like smartphones or washing machines. Microcontrollers are
single chip computer systems integrating the periphery needed for a working system.
Components like the processor core, Random-Access Memory (RAM) and flash memory
are all fitted in a single enclosure. Figure 3.13 shows the essential functions of a
basic microcontroller. Some important microcontroller features are described in the
following paragraphs. Advantages of microcontrollers compared to processors are lower
manufacturing cost, higher reliability and lower power consumption. These advantages
come at the expense of slower processing speeds and lower expandability. This section is
based on [52] and [53].

3.6.1 Interrupts

Interrupts are a fundamental mechanism for processors and microcontrollers. They
handle non-periodic, non-deterministic events like keyboard input. Every event that has
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Figure 3.12: A breakout board for a high power LED (retrieved from [51]).
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Figure 3.13: An overview of the basic components of a microcontroller (retrieved from
[52]).

occurred signifies a state change and requires some kind of reaction. When an event
triggers an interrupt, an Interrupt Service Routine (ISR) is called, which handles the
event. The current program flow is stopped and the code from the ISR is executed. The
program execution can be interrupted at any given machine instruction.

The opposite of interrupt handling would be simple signal polling: Periodically checking
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for state changes of the input signal. However, polling has its drawbacks. Central
Processing Unit (CPU) cycles are wasted unnecessarily when the event does not occur
frequently. Furthermore, writing and extending a program which has to poll signals at
a certain period can be a cumbersome endeavor. The polling function has to be called
from several places in the code in order not to miss the event.

A Nested Vectored Interrupt Controller (NVIC) manages situations where multiple
interrupts occur simultaneously. Since it is possible to disable interrupts during critical
situations, an accumulation of interrupts waiting for processing is not unlikely. Deter-
mining the interrupt to process first is the task of the NVIC. The NVIC also handles
nested interrupts, i.e. when an interrupt tries to interrupt an active ISR. By giving
interrupts priorities, the NVIC can determine if an interrupt has the privilege to abandon
an ongoing ISR.

3.6.2 Timers

Timers are important parts of microcontrollers. Timers are essentially counters that
generate or measure various signals. They can generate Pulse-Width-Modulated (PWM)
output or trigger events with a certain amount of delay. Timers raise an interrupt when
they reach a user-defined count value. The ISR can then process periodic tasks. Timers
can have different counter resolutions and clock frequencies.

3.6.3 Analog-to-Digital Converter (ADC)

The ADC converts analog inputs to binary values. The STM32 microcontrollers generate
the corresponding digital value by successive approximation. Essentially by performing
binary search, the ADC generates a discrete set of voltages and compares them against
the sampled input voltage.

3.6.4 Direct Memory Access (DMA)

DMA controllers can handle memory-to-memory, peripheral-to-memory and memory-to-
peripheral transfers. With DMA enabled, the CPU is relieved of the costs of transferring
data between memory and peripherals and can perform other tasks simultaneously.

3.6.5 Serial Peripheral Interface (SPI)

The SPI is a sychronous interface bus using a master-slave architecture. It enables
full-duplex communication between a master, which is normally a microcontroller, and
one or more slave devices. The SPI bus consists of the following four communication
lines:

• Master Out Slave In (MOSI): The master transfers data to the slave on this
line.
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• Master In Slave Out (MISO): The slave transmits data to the master on this
line.

• System Clock (SCK): This line gives a master clock signal to the slave.

• Slave Select (SS): On this line, the master selects a slave for communication.
Every participating slave needs a separate SS-line to the master.

To initiate a communication with a slave, the master sets the corresponding SS-line low.
Master and slave transmit data over the MOSI and MISO line at the same time.

3.6.6 STM32F401RE

The STM32F401RE is a microcontroller based on a 32-bit ARM Cortex-M4 CPU clocked
at 84MHz [54]. It has 512 kB of flash memory and 96 kB of Static Random-Access
Memory (SRAM). Figure 3.14 shows a picture of the microcontroller.

Figure 3.14: The STM32F401RE Nucleo microcontroller (retrieved from [55]).

The STM32F401RE microcontroller features up to four SPI communication channels
in slave and master mode. The maximum data transfer rate is 42Mbit/s. On the
STM32F401RE microcontroller, there are eight multi-purpose timers. They have a counter
resolution of 16 or 32-bit and a maximum timer clock of 84MHz. The microcontroller
features a single ADC. The ADC has a maximum clock frequency of 36MHz and a
resolution of 12 bits. With a typical clock frequency of 30MHz, the ADC has a minimum
conversion and sampling time of 0.5 µs.
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3.7 Raspberry Pi
The Raspberry Pi is a credit card-sized single-board computer based on embedded Linux
[56, 57]. The first Raspberry Pi was released in 2012. The main idea behind the project
is to promote computer programming and information technology to young children. By
keeping the price low, the Raspberry Pi was a huge success and quickly became popular
outside its target market. The current version is the Raspberry Pi 3 Model B+. It
features a 1.4GHz ARM quad-core 64-bit CPU with 1GB of RAM. Figure 3.15 shows a
picture of the microcomputer.

Figure 3.15: The Raspberry Pi single-board computer (retrieved from [57]).

The Raspberry Pi has a High Definition Multimedia Interface (HDMI) port, four Universal
Serial Bus (USB) ports, an ethernet connector as well as onboard Wi-Fi and Bluetooth.
It also features 40 General Purpose Input/Output (GPIO) pins. These pins can be used
for low level tasks like reading sensors or control LEDs. Furthermore, the GPIO pins can
be used to communicate with other devices over the Inter-Integrated Circuit (I2C) or
SPI bus.

There are several flavours of Linux running on the Raspberry Pi. The main Linux
distributions are Raspbian, Ubuntu, OpenELEC and Arch Linux. Raspbian is a Debian-
based distribution specifically developed for the Raspberry Pi and officially supported by
the Raspberry Pi Foundation. The Raspbian distribution is optimized for the Raspberry
Pi’s ARM processor. It features PIXEL, a lightweight desktop environment as well as
several other open-source applications.
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CHAPTER 4
Implementation

4.1 Basic Functionality of the Tracking System
This chapter gives an overview of the basic functionality of the tracking system and the
implementation part.

The system is primarily based on the physical phenomenon of refraction, light’s property
to change its direction at an interface to a different medium. The angle of refraction
depends on the media the light travels through and the incident angle. Light is emitted
by LED light sources, placed in the tracking environment. When the tracking device
alters its position and therefore the refraction angle changes, the change of position
can be computed. The incident light is measured by a linear image sensor. In order to
toggle the LEDs at the right instances in time and read-out the linear image sensor, a
microcontroller is used.

To get a valid measurement, only a single light source can be active at any point in time.
At least two measurements of different lights sources are needed to calculate position
data. Figure 4.1 depicts the tracking space from the xy-plane. Multiple light source are
illustrated, which are arranged parallel to the x-axis. The area where complete tracking
is guaranteed is marked in red, provided that the light sources are near enough to each
other.

To get as much information as possible from light refraction, a sophisticated optical
system is necessary. In order to find the right set of lenses for the optical system, a
light ray simulation has to be conducted. Other parameters, like the distance between
two LEDs and the corresponding beginning of the area where continuous tracking is
guaranteed, can be calculated as well. After the simulation, the prototype can be realized.
It is based on a microcontroller which controls the LEDs and reads the linear image
sensor. The data of the linear image sensor is sent to a Raspberry Pi, which can then
calculate the absolute position based on the intensity values of the sensor. Figure 4.2
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x-axis

y-axis
Tracking Space

Figure 4.1: The tracking area is illuminated by multiple light sources, shown in a view
from above. At each position, at least two light sources have to cast light on the linear
image sensor, to ensure continuous tracking.

shows an intensity chart of two separate light source measurements. The chart’s x-axis
consists of the number of pixels the linear image sensor provides. The higher the amount
of pixels of the linear image sensor, the better the tracking resolution gets. The y-axis
gives the intensity value of each pixel. To compute the current position, the midpoint of
each spike has to be calculated. The distance between these midpoints yields the position
on the y-axis, while the distance’s midpoint itself results in the x-axis value.

When only a single light source is mapped on the tracking device and every other light
source is out of range, the resulting width and position of the spike can be sufficient
to calculate the position data. The tracking quality depends on the proximity of the
tracking device to the light source. The nearer the tracking device is to the light source,
the more accurate the y-axis can be tracked. This approach can be used to enhance the
tracking area closer to the line of LEDs.

4.2 Optics

The optical system is split into two independent parts, each one consisting of two lenses:
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Figure 4.2: Intensity measurements of two different light sources and their corresponding
relations to each other.

• Telecentric Subsystem: This system is responsible for the refraction of light and
therefore for the actual position estimation. It consists of two convex cylindrical
lenses, arranged with their curved surfaces pointing to each other. The aim of
the subsystem is to converge light to a thin line, which is then digitized by a
linear image sensor. The more extreme the angles of the light rays are, which are
still deflected onto the sensor, the less LEDs have to be placed in the tracking
environment. The focal length must remain constant over the whole tracking area.
Two convex cylindrical lenses in series decrease the overall focal length. Therefore,
the lenses can be placed closer to the sensor and different focal lengths can be
designed more easily, by combining convex lenses. The telecentric subsystem also
provides equal focal lengths for all incident angles, so that light at extreme angles
is still in focus at the sensor [24].

• Collimating Subsystem: The purpose of the subsystem is to deflect as much
light as possible through the telecentric subsystem and onto the linear image sensor.
It extends the range of the z-axis, which is not tracked by the system. The tracking
device can therefore be moved more freely without loss of tracking. Moving the
tracking device along the z-axis does not change its position in 2D. The collimating
subsystem consists of a concave and a convex cylindrical lens. The concave lens
diverges the light, while the convex lens converges it. The combination of these two
lenses results in an increase of light hitting the linear image sensor, which otherwise
would not even reach it. Figure 4.3 shows a light ray simulation of the concave
and convex cylindrical lens, forming the collimating subsystem. A side view of the
tracking system is shown, with the z-axis pointing upwards.
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y-axis

z-axis

Figure 4.3: The effect of the collimating subsystem, consisting of a concave and a convex
lens, is simulated by light rays. The simulation is shown in a side view with the z-axis
pointing upwards, compared to the top view of the tracking area in Figure 4.1.

In order to get the right set of lenses for the optical subsystems, extensive calculations
and simulations had to be done. Simulation starts with the establishment of the tracking
area size. The optical system has to be in perfect focus exactly at the borders of the
tracking space. The nearer the tracking system gets to the light source, the wider the
converging light beam gets. Figure 4.4 depicts this characteristic.

The first picture shows the tracking system exactly at the border of the preconfigured
tracking space. The light rays are in perfect focus on the sensor. In the second sketch,
the tracking system is shown somewhere between the light source and the border of
the tracking space. The width of the light rays impinging on the sensor depends on its
distance to the light source. In the third picture, an out-of-bounds tracking system is
depicted. The light rays are out of focus and produce a noisy result on the linear image
sensor.

Jupyter Notebook based on Python 3 has been used as a development environment for
the simulation. In the prototype simulation, a tracking system width of 5m has been
chosen. This means that the chosen lens characteristics and distances of the lenses to
each other should yield a optical system which converges light originating 5m from the
system perfectly on the sensor. Trying to track beyond the 5m tracking system width
results in noisy intensity data and therefore undefined tracking behavior.
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(a)
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Figure 4.4: Different distances of the optical system from the light source produce different
focal points. Three possible focal lengths are depicted: (a) the focal point lies exactly
on the sensor, (b) the focal point lies after the sensor, (c) the focal point lies before the
sensor.

Lenses were obtained from Thorlabs, an online shop for optical equipment. They offer
a variety of plano-convex and plano-concave cylindrical lenses. Due to the fact that
cylindrical lenses are only available in certain sizes with different focal lengths, the lens’
dimensions had to be determined prior to the simulation. The TCD1304 linear image
sensor has an effective sensor length of 29.1mm. This is the minimum length one side of a
lens has to cover. For the telecentric subsystem, the side perpendicular to the cylindrical
axis, the lens’ height, has to measure this length. Thorlabs offers cylindrical lenses with a
height of 30mm, a length of 32mm and a focal length between 50 and 1000mm. For the
collimating subsystem, the lens’ length axis, which is parallel to its cylindrical axis, has
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to measure at least 29.1mm. There is one lens available with a length of 30mm and a
height of 15mm. It has a focal length of 20mm and is available as a convex and concave
lens.

In the ray_transfer.ipynb file, several functions based on ray transfer matrix analysis
(see section 3.3) have been implemented:

• trans_mat( d ): This function returns a translation matrix with distance d.

• refract_mat( n1, n2, R ): This function returns a refraction matrix with
the refractive indices n1 and n2 and radius R. n1 is the refractive index of the
incoming medium while n2 is the refractive index of the outgoing medium.

• flat_mat( n1, n2 ): This functions returns a refraction matrix of a plane
surface. A plane surface can be imagined as a curved surface with R =∞, therefore

lim
R→∞

n1 − n2
Rn2

= 0 (4.1)

and the corresponding element of the refraction matrix is set to 0. The param-
eters n1 and n2 are the refractive indices of the incoming and outgoing media,
respectively.

• input_vec( offset, angle ): The function returns a two-dimensional vec-
tor, representing a light ray. The parameter offset is the distance of the ray from
the optical axis, the parameter angle is the angle the ray forms with the optical
axis.

• cast_rays( lens_width, lens_mat, source_dist, axis_off ): This
function casts rays to the edges of the optical system and calculates the position
of the resulting focal point. It is shown in Listing 4.1. Parameter lens_width
is the lens width of the optical system. lens_mat is the lens system matrix,
which represents the optical system to be tested by the function. It is composed of
several ray transfer matrices, concatenated by matrix multiplication. Parameter
source_dist represents the distance from the light source to the lens on the
optical axis. Parameter axis_off is the offset of the light source from the optical
axis. Figure 4.6 shows all variables in context to each other.
The function uses sympy algebraic equation solvers to solve systems of equations.
The angle needed for setting up the ray has to be determined. By separately solving
the equations

[
1 d
0 1

] [
p
x

]
−
[
l/2
x

]
=
[
0
0

]
(4.2)

and
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[
1 d
0 1

] [
p
x

]
−
[
−l/2
x

]
=
[
0
0

]
(4.3)

for x, the angle of both rays is returned. All variables except for x are given. d is
the parameter source_dist, the distance between the light source and the optical
system. p is the parameter axis_off, the offset between the optical axis and the
light source. l is the parameter lens_width. The lens width has to be divided by
two and negated for the second equation, in order to send rays through the edges of
the optical system. In geometrical optics, however, all rays are travelling through
the same focal point, so the point of the ray hitting the lens does not matter. After
the equation is solved, the rays travel through the optical system by multiplying
them with the lens system matrix, lens_mat. Next, the focal point has to be
found. This is again done by an equation solver:
The equation

[
1 x
0 1

] [
k1
α1

]
−
[
y
β1

]
−
[
1 x
0 1

] [
k2
α2

]
+
[
y
β2

]
=
[
0
0

]
(4.4)

has to be solved, with two unknown variables x and y. The variable x corresponds to
the focal_length, which is the distance between the optical system and the focal

point. The vectors
[
k1
α1

]
and

[
k2
α2

]
are the two rays originating at the light source

and going through the optical system. The vectors
[
y
β1

]
and

[
y
β2

]
are the rays

going out of the optical system. The rays’ angle is known, but the offset from the
optical axis y is unknown. By solving this equation, the resulting focal_length
is used to calculate the focal_offset by multiplying one of the outgoing rays
with the translation matrix of the focal length. Both the focal_length and
focal_offset values are returned by the function.

• cast_rays_to_focal_length(lens_width, lens_mat, source_dist,
axis_off, focal_length): This function casts two rays through a optical
system given by the parameter lens_mat, from a light source of source_dist
distance from the optical system and axis_off from the optical axis. The param-
eter lens_width corresponds to the width of the optical system. The parameter
focal_length is the distance between the end of the optical system and the
plane where the ray tracing ends. On this plane, the distances of the two rays from
the optical axis are calculated and returned by the function.

• plot_ray_cast(lens_width, lens_length, lens_mat, source_dist,
axis_off): This function plots three rays originating at a given point in space,
travelling through the optical system and coming together at the focal point (if
a focal point exists). The rays are sent through the edges and the middle of
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the optical system. The optical system is depicted as a hatched box. In Figure
4.5, a plot of the light ray simulation can be seen. The parameters are the same
as in the previously described cast_rays() function. There is an additional
lens_length parameter, which describes the length of the optical system.
The function utilizes the matplotlib library, which offers MATLAB-like plotting
functionality. Similar to the previously described functions, an equation solver is
used to calculate the angles of the light rays from the light source to the optical
system. After the optical system, the rays end at the distance of the tracing_end
variable.

Figure 4.5: A plot resulting from the plot_ray_cast() function. In this example,
the telecentric subsystem, consisting of two convex 30mm× 32mm lenses with a focal
length 60mm, was simulated. The light source has a distance of 200mm from the optical
system and 50mm from the optical axis.

1 def cast_rays(lens_width, lens_mat, source_dist, axis_off):
2 # defines the symbols used for the solver
3 x,y = symbols(’x y’)
4
5 # solve for angle of top and bottom ray
6 inp = input_vec(axis_off, x)
7 top_ray = input_vec(lens_width/2, x)
8 bottom_ray = input_vec(-lens_width/2, x)
9 translation = trans_mat(source_dist)

10 top_ray_solve = (translation * inp - top_ray).applyfunc(solve)
11 bottom_ray_solve = (translation * inp - bottom_ray).applyfunc(solve)
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12 top_ray_alpha = top_ray_solve[0][0]
13 bottom_ray_alpha = bottom_ray_solve[0][0]
14
15 # send both rays through the optical system
16 top_ray = input_vec(axis_off, top_ray_alpha)
17 bottom_ray = input_vec(axis_off, bottom_ray_alpha)
18 ray1 = lens_mat * trans_mat(source_dist) * top_ray
19 ray2 = lens_mat * trans_mat(source_dist) * bottom_ray
20
21 # solve for focal_length and focal_offset
22 focal_length_mat = trans_mat(x)
23 ray1_fo_vec = input_vec(y, ray1[1])
24 ray2_fo_vec = input_vec(y, ray2[1])
25 offset_solve = (focal_length_mat * ray1 - ray1_fo_vec - \
26 focal_length_mat * ray2 + ray2_fo_vec).applyfunc(solve)
27 focal_length = offset_solve[0][0]
28 focal_offset = trans_mat(focal_length) * ray1
29
30 # return focal_length and focal_offset
31 return (focal_length, focal_offset[0])

Listing 4.1: The function cast_ray_to_edges() calculates a focal point of light rays
going through an optical system

{ { {lens_width

source_dist

axis_off { focal_length

top_ray_alpha

bottom_ray_alpha

beta

top_ray_beta

bottom_ray_beta{

lens_length

{

focal_offset

optical_axis

Figure 4.6: The parameters and variables of the cast_rays() function are shown in
the context of a light ray simulation.

4.2.1 Selection of the Lenses

The lenses of the simulated optical systems are all modeled as thick lenses, which means
that the lens’ thickness is taken into account, in contrast to the thin lens equation. For
the telecentric subsystem, all available lenses of size 30mm× 32mm with a focal length
between 50 and 100mm have been modeled and simulated by the functions described
above.
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The model of the telecentric subsystem with a 60mm focal length of the convex lenses is
shown in Listing 4.2. Each part of the lens is modeled as a distinct section, which consists
of a translation or refraction part. In the case of the telecentric subsystem, a single convex
lens consists of the concatenation of the refraction matrix (function refract_mat())
with the refractive indices 1.0 for air and 1.52 for N-BK7 material and a radius of 31mm,
the translation matrix with a width of 5.9mm and a refraction at a straight interface
(function flat_mat()). The matrices are concatenated from right to left, which means
that the corresponding matrix of the part the light rays traverses first has to be on the
rightmost side.

1 PCX_30_32_60 = \
2 flat_mat(1.52, 1.0) * trans_mat(5.9) * refract_mat(1.0, 1.52, 31)
3 PCX_30_32_60_reversed = \
4 refract_mat(1.52, 1.0, -31) * trans_mat(5.9) * flat_mat(1.0, 1.52)
5
6 lens_system_mat = PCX_30_32_60 * PCX_30_32_60_reversed

Listing 4.2: The model of the telecentric subsystem with a focal length of the convex
lenses of 60mm

For the tracking system’s telecentric subsystem, two planar-convex cylindrical lenses with
a dimension of 30mm× 32mm and a focal length of 60mm were evaluated as the best
choice. These two lenses are arranged as close as possible, both curved surfaces facing
each other. The focal length results in a value of ≈ 26.1mm when the light point is 5m
away from the optical system. When the light source is 0.5m away from the tracking
system, the focal length is ≈ 27.8mm. At a distance of 0.5m, the light beam has a width
of ≈ 1.6mm on the linear image sensor.

By using lenses with different focal lengths, the global focal length of the optical system
changes. Convex lenses with a focal length of 100mm would change the distance to the
linear image sensor to ≈ 46.8mm. Convex lenses with a focal length of 50mm, on the
other hand, would change the distance to the sensor to ≈ 20.5mm. The shorter the
focal length, the more extreme incident angles are still refracted onto the sensor. This
means that the light sources can be placed further apart of each other. At a distance of
5m, lenses with a focal length of 100mm still refract light on the sensor when the light
source is ≈ 1.45m away from the optical axis. Simulating the same experiment with a
focal length of 60mm, light is still refracted when the light source is ≈ 2.42m away from
the optical axis. Another advantage of lenses with a shorter focal length is the smaller
change of focus when the object gets nearer or farther away from the lens.

The collimating subsystem consists of a plano-concave and a plano-convex cylindrical
lens. Lenses with dimensions of 15mm× 30mm were primarily chosen because they have
the same length as the height of the telecentric subsystem, and can therefore be easily
fitted into a lens mounting. The only choice of the focal length for both the convex
and concave lens is 20mm. The concave lens is mounted 40mm above the linear image
sensor and 2.63mm above the telecentric subsystem. The convex lens is mounted 3mm
above the linear image sensor, focussing as much light as possible on the sensor. The
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Type Dimension H x L Focal Length Radius
Plano-Concave Cylindrical Lens 15mm× 30mm −20mm −10.3mm
Plano-Convex Cylindrical Lens 30mm× 32mm 60mm 31mm
Plano-Convex Cylindrical Lens 30mm× 32mm 60mm 31mm
Plano-Convex Cylindrical Lens 15mm× 30mm 20mm 10.3mm

Table 4.1: The list of lenses utilized in the optical system.

collimating subsystem can be simulated by the ray transfer matrix functions. Listing 4.3
shows the simulation model of the collimating subsystem.

1 PCX_15_30_20 = \
2 flat_mat(1.52, 1.0) * trans_mat(5.2) * refract_mat(1.0, 1.52, 10.3)
3 PCV_15_30_20 = \
4 flat_mat(1.52, 1.0) * trans_mat(2) * refract_mat(1.0, 1.52, -10.3)
5
6 lens_system_mat = PCX_15_30_20 * trans_mat(32) * PCV_15_30_20

Listing 4.3: The model of the collimating subsystem with a focal length of 20mm for
both convex and concave lenses

The lens simulation can also be used to simulate the beginning of the tracking area when
the distance between the LEDs is given. For example, when the distance between the
LEDs is 0.5m, continuous tracking starts at ≈ 1.05m from the line of LEDs, given that
a TCD1304 sensor is used. It is calculated by using the cast_rays(lens_width,
lens_mat, source_dist, axis_off) function, with the parameters lens_width
and lens_mat given from the actual optical system. The parameter axis_off is the
known distance between the LEDs. By experimenting with the source_dist parameter,
the function shall return a focal_offset value of ≈ 14.55mm, which is half the length
of the TCD1304’s pixel array. Thus, the optical system refracts light exactly to one end
of the linear image sensor when it is 1.05m from the light source (y-axis) and 0.5m from
the middle of the light source (x-axis).

Figure 4.7 shows the distances of the lenses from the linear image sensor. The distances
are measured from the top cover of the linear image sensor. The space between the top
cover and the actual sensor is 0.7mm. This extra space has to be taken into account
when designing the lens mounting.

Table 4.1 lists the utilized lenses in the optical system from top to bottom. The telecentric
subsystem with the two plano-convex 30mm× 32mm lenses lies between the collimating
subsystem with the 15mm× 30mm plano-concave and plano-convex lenses.

4.3 Software
The implementation is split between the STM32F401RE microcontroller and the Rasp-
berry Pi 3. The microcontroller is responsible for low-level tasks like reading out the
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Figure 4.7: The distances of the lenses from the linear image sensor. The side view (a)
depicts the distances of the collimating subsystem, while the front view (b) displays the
distances of the telecentric subsystem.

linear image sensor and controlling the LEDs. The Raspberry Pi performs high-level
tasks like executing the algorithm and returning an absolute 2D position.

In the following sections, the implementation of the low- and high-level functions are
described.

4.3.1 STM32F401RE microcontroller firmware

The firmware for the STM32F401RE microcontroller is based on the firmware of [49],
who utilizes the TCD1304 sensor for a do-it-yourself spectrometer.

Due to the strict timing requirements of the TCD1304 sensor, the required pins are all
interrupt driven. The STM32F401RE microcontroller is fast enough to read the TCD1304
sensor at a full speed of 4MHz. The maximum speed a GPIO port can be clocked is
42MHz [54]. The ADC is also fast enough to read the ADC at a speed of 1MHz and a
full resolution of 12-bits.

The implementation utilizes the STM32 standard peripheral library [58]. It provides
functions and data structures to access all important peripherals of the microcontroller.
Furthermore, porting the program code to another microcontroller can be done only by
reconfiguring the compiler, because the library is the same for all STM32 devices. As an
alternative to using the standard peripheral library, the registers of a microcontroller can
be changed directly.
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Initializing peripherals with the standard peripheral library consists mainly of creating a
predefined data structure, changing the appropriate fields and committing the changes by
handing the data structures to an initialization function. The main part of the firmware
implementation consists of setting up the peripheral devices correctly.

The corresponding functions are explained in the following sections.

Setting up the LEDs

The function setup_LEDBlink() initializes the GPIO pins C4 and C5 for controlling
the LEDs. Each pin operates a transistor, which in turn toggles an LED. By setting the
pin HIGH, the LED is turned on, while setting it LOW, the LED is turned off. The data
structure GPIO_InitTypeDef is used to set up the pins. The pins are initialized as
digital output pins by setting the GPIO_Mode to GPIO_Mode_OUT.

Interrupt Configuration

The NVIC_InitTypeDef data structure is used to configure the priority of nested
interrupts. With the NVIC_IRQChannel field, the appropriate interrupt channel can be
selected. The NVIC_IRQChannelPreemptionPriority field assigns the interrupt
priority. It can hold an integer value between 0 and 15. A lower priority value corresponds
to a higher interrupt priority. Interrupt Requests (IRQs) with a higher priority can
interrupt IRQs with a lower priority.

Table 4.2 lists the priorities of the interrupts used in the firmware. TIM5 has the highest
priority while TIM2 has the lowest. The NVIC is initialized by the NVIC_Init (
&NVIC_InitStructure ) function call.

Interrupt Priority
TIM5 0
DMA2 1
DMA1 2
TIM2 3

Table 4.2: The interrupt priorities of the STM32F401RE firmware.

Configuring the Timer for the Master Clock

In the function TIM_CCD_fM_conf(), the master clock timer is configured. The
master clock of the TCD1304 sensor is served by TIM3, timer 3 of the microcon-
troller. The function call RCC_APB1PeriphClockCmd ( RCC_APB1Periph_TIM3,
ENABLE ) enables the low speed 42MHz APB1 clock for the TIM3 peripheral. Next,
a GPIO_InitTypeDef is created and initialized as pin PB0. Setting the GPIO_Mode
to GPIO_Mode_AF configures the pin as an alternative function. The function call
GPIO_PinAFConfig ( GPIOB, GPIO_PinSource0, GPIO_AF_TIM3 ) connects
TIM3 to pin PB0.
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The timer itself is initialized by the TIM_TimeBaseInitTypeDef data structure. The
TIM_Prescaler field is set to 0, therefore the maximum timer frequency of 84MHz is
used. The function get_Timer_clocks() calculates the APB1 frequency and assigns it
to the global integer variable apb1_freq. The TIM_Period field is set to apb1_freq
/ CCD_fm - 1 which yields 20 when CCD_fm is set to 4000000. This means that the
fM clock signal needs 21 clock cycles for a full period.

The TIM_OCInitTypeDef structure initializes the output compare signal, needed for
PWM. The TIM_Pulse field is set to apb1_freq / (2 * CCD_fm), resulting in a
value of 10 and a duty cycle of ≈ 50%. By calling the function TIM_OC3Init ( TIM3,
&TIM_OCInitStructure ), the output compare device is enabled. The function
TIM_Cmd ( TIM3, ENABLE ) enables timer 3. After this function call, the pin PB0
outputs a PWM signal serving the master clock of the TCD1304 sensor.

Setting up the ADC

The function TIM_ADC_conf() initializes the timer of the ADC. TIM4 is
used as the ADC timer. By calling the function RCC_APB1PeriphClockCmd
( RCC_APB1Periph_TIM4, ENABLE ), timer 4 is enabled and clocked by
APB1. Similar to the setup of the master clock, the GPIO_InitTypeDef,
TIM_TimeBaseInitTypeDef and TIM_OCInitTypeDef data structures are used.
Pin PB9 is used as an optional output. The timer structure has a TIM_Period of 4 *
apb1_freq / CCD_fm - 1, resulting in a value of 83, or a frequency of 1MHz. The
TIM_Pulse in the TIM_OCInitTypeDef is set to apb1_freq / (2 * CCD_fm),
yielding a duty cycle of ≈ 12.5%.

The function ADC1_conf() configures the actual ADC pin and initializes DMA, to free
the processor of unnecessary workload. The function calls RCC_AHB1PeriphClockCmd
( RCC_AHB1Periph_DMA2, ENABLE ) and RCC_APB2PeriphClockCmd (
RCC_APB2Periph_ADC1, ENABLE ) configure the AHB1 clock for DMA2 and the
APB2 clock for ADC1. The DMA_InitTypeDef structure initializes DMA_Channel_0 for
the ADC. The DMA_PeripheralBaseAddr field is set to (uint32_t) &ADC1->DR,
the base adress of the ADC. DMA_Memory0BaseAddr is set to (uint32_t)
&aTxBuffer, an array of length 3694, which corresponds to the number of pixels
of the TCD1304 sensor. DMA automatically moves each pixel value to its position
in the array. Although the ADC provides only a resolution of 12 bit, the array has
a data-size of 16 bit. Therefore, 4 bits are unused for each array item. The DMA
controller is set to DMA_Mode_Circular, which means that once the aTxBuffer
array is full, the DMA writes new values automatically to the beginning of the array. By
calling the function DMA_ITConfig ( DMA2_Stream0, DMA_IT_TC, ENABLE ),
an interrupt is generated when the DMA transfer is complete.

The ADC input uses pin PC0. The actual ADC configuration is done
with the ADC_InitTypeDef and ADC_CommonInitTypeDef data structures.
ADC_TwoSamplingDelay is set to ADC_TwoSamplingDelay_5Cycles, yielding a
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delay of 5 clock cycles between two samples. The ADC_Resolution is set to 12 bits. The
field ADC_ExternalTrigConv is set to ADC_ExternalTrigConv_T4_CC4, therefore
the ADC is triggered by timer 4.

The ADC runs with a frequency of 30MHz, which means a cycle takes 33 ns. The ADC has
a length of 12 bits, the total conversion time therefore takes 12 · 33 ns ≈ 0.4 µs. The data
rate of the TCD1304 is 1MHz, if the master clock is set to 4MHz. Thus, the ADC’s total
processing time must not exceed 1 µs. Because the conversion time takes 0.4 µs, there is
0.6 µs sampling time left. The equation 0.6 µs/33 ns ≈ 18 results in a maximum of 18 cycles
left for sampling. Therefore, the function call ADC_RegularChannelConfig ( ADC1,
ADC_Channel_10, 1, ADC_SampleTime_15Cycles ) configures the ADC sam-
pling time to 15 cycles.

Setting up the SPI Communication

The function SPI2_conf() initializes the SPI bus. GPIO_InitTypeDef is used
for the initialization of the GPIO pins, DMA_InitTypeDef configures DMA and
SPI_InitTypeDef initializes the SPI communication. The APB1 clock drives the
SPI2 interface at 42MHz, while the AHB1 clock runs DMA at 84MHz. Pins B13, B14
and B15 are used for the SPI communication.

In the SPI_InitTypeDef structure, the SPI_Mode is set to SPI_Mode_Slave, be-
cause the Raspberry Pi insists on being the master in an SPI interaction. Since the
Raspberry Pi can only handle a word length of 8 bits, the SPI_DataSize field is set to
SPI_DataSize_8b.

The DMA_BufferSize of the DMA_InitTypeDef data structure is set to 2 *
CCDSize. The buffer needs to be twice as big as the number of pixels of the TCD1304,
because each 12-bit ADC value is stored in a 16-bit array item, but the SPI configuration
has an 8-bit word length set. The DMA_PeripheralBaseAddr is set to SPI2->DR,
the base address of the SPI bus. The DMA1_Stream4 is used to transfer data from the
aTxBuffer array over to the SPI buffer, while DMA1_Stream3 transfers data received
from the SPI communication to the aRxBuffer array. The DMA interrupt is enabled
by the DMA_ITConfig ( DMA1_Stream4, DMA_IT_TC, ENABLE ) function call.

Configuring the ICG and SH Timers

In the TIM_ICG_SH_conf(void) function, the peripherals for driving the SH and
ICG pulses are initialized. Timer 2 and timer 5 are used for the SH and ICG pulses,
respectively. Both are driven by the APB1 clock and have a frequency of 84MHz, as well
as 32-bit counter size. The SH signal is emitted on pin PA1, while the ICG signal is
emitted on pin PA0. The TIM_Prescaler field is set to apb1_freq / CCD_fm - 1
for both outputs, resulting in a value of 20 and a clock frequency of 84 MHz / 21 =
4 MHz after prescaling.
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The TIM_Period of timer 5 is set to ICG_period - 1, on timer 2 it is set to
SH_period - 1. Both values can be changed by the application running on the
Raspberry Pi. The PWM duty cycle for timer 5 is set to (5 * CCD_fm) / 1000000,
resulting in a value of 5 µs. For timer 2, the duty cycle is set to (2 * CCD_fm) /
1000000, yielding a value of 2 µs. Afterwards, the timers and interrupts are enabled and
all pending flags are cleared. In the last step, the counter values are modified directly. The
counter of the ICG timer is set to ICG_period - ICG_delay, with a ICG_delay
value of 11. The counter of the SH timer is set to SH_period - SH_delay and a
SH_delay value of 12. The counters are set near to their expiration value to accelerate
the process of reading-out the sensor.

Main Loop

After all peripherals are initialized, the main loop is executed. In Listing 4.4, the code of
the main loop is shown.

1 while(1)
2 {
3 if (change_exposure_flag == 1)
4 {
5 change_exposure_flag = 0;
6 flush_CCD();
7
8 /* set new integration times */
9 ICG_period = \

10 aRxBuffer[6]<<24|aRxBuffer[7]<<16|aRxBuffer[8]<<8|aRxBuffer[9];
11 SH_period = \
12 aRxBuffer[2]<<24|aRxBuffer[3]<<16|aRxBuffer[4]<<8|aRxBuffer[5];
13
14 /* set number of integrations to peform */
15 Integration_count = aRxBuffer[11]<<8|aRxBuffer[12];
16
17 /* disable TIM2 and TIM5 */
18 TIM_Cmd(TIM2, DISABLE);
19 TIM_Cmd(TIM5, DISABLE);
20
21 /* reconfigure ICG and SH timers */
22 TIM_ICG_SH_conf();
23 }
24 }

Listing 4.4: The main loop of the TCD1304 firmware.

The variable change_exposure_flag is set to 1 in the
DMA1_Stream4_IRQHandler() ISR. This ISR is invoked when the SPI trans-
mission is completed and the new parameters of the ICG, SH and integration counter
values have been received from the Otterly-rpiCLI application. These values are at
first stored in the aRxBuffer array, afterwards the body of the main loop is executed.

50



4.3. Software

The variable change_exposure_flag is immediately set to 0 in the main loop, there-
fore the code is executed only once after an SPI transmission. The flush_CCD()
function flushes the TCD1304 by executing multiple integrations at a very low integra-
tion time with the ADC turned off (see Listing A.1). The ICG_period, SH_period
and Integration_count variables are set to the values received from the Raspberry
Pi. ICG_period controls the time between two read-outs while SH_period adapts
the integration time. Integration_count controls the number of integrations to be
captured and sent to the Raspberry Pi. The remaining processing steps are adjusted
according to these values.

The timers TIM2 (SH timer) and TIM5 (ICG timer) are disabled before they are recon-
figured with the new ICG and SH variables (see section 4.3.1). After the interrupts have
been configured, the ISRs are responsible for reading out the TCD1304 sensor.

Interrupt Sequences

The first interrupt that is invoked is the ICG ISR (TIM5_IRQHandler(), see Listing
A.2). The variable ICG_pulse_counter is incremented each time the interrupt is
invoked. During CCD flushing, the variable is already incremented four times and has a
value of 4.

When the ICG_pulse_counter variable has a value of 6, the SH ISR
(TIM2_IRQHandler()) gets important (see Listing A.3): The variable
SH_pulse_counter counts how often the ISR has been triggered. Because
the SH_period value has to be an integer factor of the ICG_period, the SH interrupt
triggers simultaneously with the ICG interrupt once. The LEDs are turned on 5
interrupts before the ICG and SH interrupts coincide. Which LED is turned on depends
on the value of the Integration_count variable. In the last SH phase before ICG
and SH signals coincide, the integration takes place. After the integration, the pixels are
shifted to the output register (see Figure 3.10) and are read by the ADC. Therefore,
in the seventh ICG interrupt, the boolean expression ICG_pulse_counter == 6
evaluates to True in the ICG ISR: The SH_pulse_counter is reset and the LEDs
are turned off. Afterwards TIM4 is restarted, which in turn triggers the ADC. After an
integration, the Integration_count variable is decremented.

When the ADC has finished reading the TCD1304, the DMA1_Stream4_IRQHandler()
ISR is invoked. In this ISR, TIM4 together with the ADC is stopped, and the PB1 pin
which intializes a communication with the Raspberry Pi is toggled. On the Raspberry
Pi side, the SPI communication is initiated and the intensity values of the TCD1304
are sent from the STM32F401 microcontroller to the Raspberry Pi. This last part of
integrating, reading the ADC and sending data via SPI to the Raspberry Pi is repeated
as often as the Integration counter number is configured.

Figure 4.8 presents the whole read-out procedure in a sequence diagram. Two integrations
take place during this exemplary process.
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Figure 4.8: A sequence diagram of the whole read-out process is depicted. Two integrations
take place at the end of this sequence, therefore light toggling, integration, ADC reading
and SPI transmission occur twice. The blocks’ dimensions and proportions to each other
do not reflect the actual timings of the interrupts.
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Compilation and Flashing of the Firmware

Ubuntu Linux is recommended as the platform of choice. Ubuntu 14.04 has been used
in the implementation of the tracking system. For the firmware compilation of the
STM32F401RE microcontroller, the gcc-arm-none-eabi cross compiler is necessary.
On Ubuntu platforms, the package can be installed by the apt-get package management
system.

With the command
$ apt-get install gcc-arm-none-eabi

the necessary software will be installed.

To compile the firmware, the Makefile included in the source code has to be invoked.
With a simple

$ make

command in the root folder of the source code, the firmware is compiled. It results in
the creation of several files starting with the filename F401_FW_TCD1304.

To flash the firmware onto the STM32F401RE, the microcontroller has to be connected
to the computer via USB. The system recognizes it as an external USB drive. By copying
the file F401_FW_TCD1304.bin to the USB drive, the firmware is flashed onto the
microcontroller.

4.3.2 Data Evaluation on the Raspberry Pi

On the Raspberry Pi side, the Otterly-rpiCLI application, implemented by [49],
is used to control the STM32F401RE microcontroller and read out the TCD1304 sen-
sor. It handles the complete SPI transfer and initializes the communication when a
RISING_EDGE is detected on GPIO pin 22. The application takes three command line
arguments:

• ICG Period: Using the -i option followed by an integer passes the ICG period
to the microcontroller. The minimum value for this variable is 14776, because the
TCD1304 has 3694 pixels to read out and every pixel takes 4 fM cycles, therefore
3694 · 4 = 14776. In the implementation a value of 30000 is used, to save time for
the data transmission after the read-out.

• SH Period: Using the -s option followed by an integer passes the integration
period to the microcontroller. The minimum value for this variable is 80. The
minimum integration time is 20 µs, thus 4000000 · 0.00002 = 80. The SH value has
to be an integer divider of ICG, in order to guarantee that both interrupts occur
simultaneously at the ICG phase. In the implementation, a value of 100 is used.
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• Integration Count: This value can be passed by using -n option. The value
controls the number of integrations that will be taken in a row without flushing
the TCD1304 sensor.

The application saves each integration in a separate file, starting with the name output,
a consecutive number consisting of a four-digit integration count value and the ending
.dat.

In the prototype implementation, the Otterly-rpiCLI application is invoked in the
while loop of the run.sh bash script, continuously taking measurements of the TCD1304
sensor.

The application is invoked with the following arguments:
$ ./Otterly-rpiCLI -i 30000 -s 100 -n 2

Therefore, an ICG value of 30000, an SH value of 100, corresponding to an integration
time of 25 µs, and 2 integrations are used as command line arguments.

The measurements are saved as output00001.dat and output00002.dat files, cor-
responding to read-outs with different LEDs turned on. Afterwards, both files are
processed by the spike_calc.py python script. Several functions are implemented in
this script:

• tracking_2d(): This function reads both output files with the read_data(
path ) function, processes them with the simple_spike_tracking( data1,
data2 ) function and prints the result. It filters out bad data, which can occur
during the SPI communication, by printing an "invalid data" warning.

• read_data( path ): The function takes the path of the file to read in as an
argument and returns a list data structure of intensity values.

• simple_spike_tracking(): This function is responsible for the tracking data
calculation. It provides a very simple approach for 2D tracking. The minimum
value’s pixel position of each intensity chart is extracted. It corresponds to a spike
in the intensity chart. The extraction only works under the assumption of the
existence of a single spike, which has the least value of the intensity array. The
approach does not eliminate noise, which may occur during the integration process.
By subtracting spike2 from spike1, the y-axis is calculated. In the next step,
the midpoint value between the two spikes is calculated, yielding the x-axis value.
Both values are returned by the function. Figure 4.2 depicts an exemplary intensity
chart of two LED measurements.

• print_tracking_area(): This function evaluates the intensity charts of the
folders lf (an abbreviation for left front), lb (left back), rf (right front) and
rb (right back). The files in these folders are measurements from the edges of a
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predefined tracking space. Tracking within the borders of the premeasured tracking
space maps the tracking data to absolute positions in space.

Numerical differentiation has also been tested for spike extraction, by finding the biggest
value change in the intensity chart. Gaussian filters have been used to filter out noisy
data. By passing paths of measurement files to the out_plot.py python script, an
intensity chart is plotted of all given arguments. Figure 4.9 shows two spikes of an actual
intensity measurement during tracking.
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Figure 4.9: Two read-outs of the TCD1304 sensor are displayed in an intensity chart.
Both measurements were taken during a tracking session and merged into a single diagram.
The spikes of the LEDs can be seen easily.

4.4 Hardware

In this part of the implementation, the prototyping part of the thesis is explained. 3D
prints and Printed Circuit Boards (PCBs) have been designed and manufactured in this
step. The designs are shown in different illustrations and pictures, to give the reader an
insight into the prototyping process.
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4.4.1 3D Printing

Different parts have been designed with Autodesk Inventor, a Computer-Aided Design
(CAD) application for 3D design, simulation and visualization. For the manufacturing of
the actual prototyping parts, a Kossel XL 3D printer has been used. The Kossel XL is a
Fused Deposition Modeling (FDM) 3D printer, a type of additive Computer-Numerical
Control (CNC) machine. The printer fabricates plastic 3D parts from a thermoplastic
filament. The material is heated by a nozzle and deposited on the growing part, yielding
a manufactured part consisting of many layers of molten plastic. The thinner the layer
size is chosen, the more accurate the resulting part will be.

Prior to the printing operation, the CAD model has to be preprocessed or "sliced". The
slicing process results in a list of commands for the 3D printer, telling it step by step
where the nozzle has to be moved to produce a plastic part out of the 3D model. In the
slicing software, a number of settings like layer height, printing speed or wall thickness
can be tweaked, affecting the outcome of the 3D print.

In the 3D prints fabricated for the tracking system prototype, a layer height of 150 µm
was used, producing an accurate result in a reasonable amount of time. Verbatim PLA
transparent filament was used in the printing process, with a diameter of 1.75mm.

The lens mounting model was designed according to the results of the simulation. The
telecentric subsystem has a distance of 25.4mm to the sensor. The lenses of the telecentric
subsystem have their curved sides facing each other, leaving nearly no space between them.
The lenses of the collimating subsystem enclose the lenses of the telecentric subsystem.
The concave lens has a distance of 40mm to the sensor, to focus as much light as possible
onto the sensor. The convex lens of the collimating subsystem has a distance of 3mm to
the sensor.

Figures 4.10 and 4.11 show illustrations of the lens mounting CAD model. It has
dimensions of 45mm× 45mm× 59mm. The lens mounting is kept together by four M3
screws. After the lenses are in place at their corresponding positions, the linear image
sensor PCB was screwed to the lens mounting with four M2.5 screws, together with the
linear image sensor which is attached to the pin connectors.

The motherboard connects all necessary pieces of hardware to get a portable prototype.
It holds the Raspberry Pi, the STM32F401RE microcontroller, the PCB controlling the
LEDs and the lens mounting. The motherboard consists of four seperate parts. The
base part mounts the Raspberry Pi and the STM32F401RE microcontroller, which are
connected by seven M2.5 screws. The feet of the motherboard are all connected by
M2.5 screws. One is holding the PCB controlling the LEDs, another holds the lens
mounting system. Figure 4.12, 4.13 and 4.14 depict the motherboard with its connected
components.

The high power LEDs are mounted to a pole with a diameter of 14.1mm. The LED
breakout boards are attached to the 3D printed mount with two M3 screws. Between these
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two objects, a heatsink with thermal compound is placed, for optimal heat dissipation.
Figure 4.15 shows the LED mounting system.

Figures 4.16, 4.17 and 4.18 show the complete tracking device in action. The LEDs are
connected to the tracking device with a cable. The tracking session can be started by
logging into the Raspberry Pi via Secure Shell (SSH) and running the run.sh shell
script.

4.4.2 PCB Design

KiCad, an open source Electronic Design Automation (EDA) software suite, was used
for designing the PCBs of the prototype. The design process is split into two parts: In
the first part, the electronic schematic is laid out in a diagram. In this diagram, the
functioning principles of the circuit can be seen. Standardized symbols for electrical
components are used together with their corresponding interconnections, to design a
simplified version of the actual circuit. In the second part, the actual PCB is designed,
which can then be fabricated. The footprints of the electrical components are put out
within the boundaries of the board. Afterwards, the connections between the electronic
components have to be routed, to ensure correct functionality. The finished PCBs can
be manufactured, by sending Gerber files of the board to a PCB manufacturer. The
PCBs that were designed for the prototype were fabricated at elecrow, a chinese PCB
manufacturing service. They have a thickness of 1.6mm and consist of two copper layers.
Only Through Hole Technology (THT) parts were used in the assembly of the PCB,
except for the LT1761 voltage regulator, which was only avaible as a Surface-Mount
Device (SMD) component.

For the tracking system prototype, two PCBs were designed and fabricated: The first
one is the circuit needed to read out the linear image sensor. The electronic schematic
was obtained from [49], which corresponds to the schematic of the Toshiba TCD1304
sensor (see Figure 3.11). The electronic schematic is shown in Figure 4.19. In addition to
the circuit necessary for reading-out the TCD1304 sensor, a circuit for an LT1761 voltage
regulator was designed. The voltage regulator’s purpose is to stabilize an unregulated
Direct Current (DC) power supply. However, the voltage regulator is not necessary for
driving the TCD1304 sensor and can be bypassed. Bypassing can be done by soldering a
wire from the 5V pin of the connector P1 to the VCC pin of the capacitor C1. Figure
4.20 depicts the laid out and routed components of the PCB, ready to be manufactured.
The PCB was designed with the linear image sensor in the middle on one side, and
all other necessary electronic components on the other side. Due to this layout it is
possible to attach the PCB together with the linear image sensor directly to the lens
mounting system. The Bill of Materials (BOM) of the TCD1304 PCB is listed in Table
4.3. Optional parts (only needed for the voltage regulator) are marked with an asterisk.

The second PCB is responsible for controlling the LEDs placed around the tracking space.
It consists of six transistors and sockets to connect the LEDs, as well as a socket to
connect an external power supply and pins to control the LEDs by the microcontroller’s
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Type Amount Price (Euro)
150 W Resistor 2 0.32
2200 W Resistor 1 0.12
2700 W Resistor* 1 0.19
1200 W Resistor* 1 0.12
0.1 µF Capacitor 2 0.30
10 nF Capacitor* 1 0.14
10 µF Capacitor* 1 0.14
2SA1015 Transistor 1 0.04
SN74HC04 Hex Inverter 1 0.28
TCD1304 Linear image sensor 1 4.30
6-Pin strip 1 0.40
LT1761IS5-BYP LDO* 1 3.49

Table 4.3: BOM of the TCD1304 PCB.

GPIOs. The BOM is listed in Table 4.4. The electronic schematic is illustrated in Figure
4.21 and the routed PCB is shown in Figure 4.22.

Type Amount Price (Euro)
IRLZ34N Transistor 6 5.16
2-Pin strip 7 2.03
7-Pin strip 1 0.70

Table 4.4: BOM of the LED control PCB.

The BOM for assembling a single LED is shown in Table 4.5. The wire has to be soldered
on one end to the LED and on the other to the pin socket. Thermal compound has to be
applied between the LED and the LED cooler.

Type Amount Price (Euro)
Barthelme High-Power LED 1800mA 1 3.89
fischer elektronik LED cooler 1 1.13
5m two-core wire 1 1.40
2-Pin socket 1 0.52
Thermal compound 1 0.90

Table 4.5: BOM of the LED assembly.

4.4.3 Component Wiring

The different components of the prototype have to be connected together to ensure
proper functionality. For this task, standard jumper wires were used. Table 4.6 lists
the pin associations between the STM32F401RE microcontroller and the Raspberry Pi.
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Table 4.7 show the connections between the STM32F401RE microcontroller and the
LED control PCB. Table 4.8 shows the connections between the TCD1304 PCB and the
STM32F401RE microcontroller.

STM32F401 Raspberry Pi
PB15 MOSI GPIO10
PB14 MISO GPIO09
PB13 SCLK GPIO11
PB2 GPIO18
GND GND

Table 4.6: Pin connections between the STM32F401RE microcontroller and the Raspberry
Pi.

STM32F401 TCD1304 PCB
PB0 fM
PA1 SH
PA0 ICG
PC0 OS
+5V +5V
GND GND

Table 4.7: Pin connections between the STM32F401RE microcontroller and TCD1304
PCB.

STM32F401 LED control PCB
PC5 1
PC4 2
GND GND

Table 4.8: Pin connections between the STM32F401RE microcontroller and the LED
control PCB.
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Figure 4.10: A front view of the lens mounting system.

60



4.4. Hardware

Figure 4.11: A perspective side view of the lens mounting system.
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Figure 4.12: A top view of the motherboard.
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Figure 4.13: A front view of the motherboard.
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Figure 4.14: A perspective side view of the motherboard.
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Figure 4.15: A perspective side view of the LED mounting system.
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Figure 4.16: A front view of the tracking system prototype. The Raspberry Pi, the LED
control PCB with 2 LEDs connected and the lens mounting can be seen.
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Figure 4.17: A view from the back of the tracking system prototype. The lens mounting
with the TCD1304 PCB can be seen.
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Figure 4.18: A view of the complete tracking system. The two LEDs mounted on a pole
are connected to the tracking device via cable.
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Figure 4.19: The electronic schematic of the TCD1304 linear image sensor. The circuit
for reading out the linear image sensor can be seen in the bottom part. In the upper
right corner, the circuit for the LT1761 voltage regulator component is shown (retrieved
from [49]).
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Figure 4.20: The laid out and routed PCB of the TCD1304 linear image sensor, ready
for fabrication. The PCB is based on the electronic schematic shown in Figure 4.19.

Figure 4.21: The electronic schematic of the LED control circuit.
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Figure 4.22: The laid out and routed PCB of the LED control circuit, ready for fabrication.
The PCB is based on the electronic schematic shown in Figure 4.21.
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CHAPTER 5
Evaluation

This Chapter is based on theoretical and practical results from the tracking system
prototype and the light ray simulation.

5.1 Definition of the Evaluation Parameters

According to [59], the quality of tracking systems is defined by several parameters:

• Resolution is defined as the smallest change a tracking system is able to detect.

• Accuracy is the difference between the actual position and the position reported
by the tracking system. The better the accuracy, the closer the tracking system
captures the actual movements of the user. Accuracy usually degrades with
increasing distance of the sensors to the emitters.

• Jitter represents the change in the tracking system’s output when the tracking
device remains stationary. In a perfect system with no jitter, the tracking system
would always report the same value when the tracking device is static. The mean

value µ = 1
N

N∑
i=1

xi and standard deviation σ =
√∑N

i=1(xi−µ)2

N−1 can be calculated.

N is the number of samples and x corresponds to a single sample value.

• Latency characterizes the time period between a movement of the tracking device
and its recognition by the tracking system. Low latencies are mandatory in VR
/ AR tracking systems, in order to give immediate feedback and prevent the user
from simulation sickness.
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5.2 Latency
The TCD1304 sensor is clocked at 4 MHz, but every pixel needs 4 clock cycles to be
read-out. There are 3648 px (pixel) in the pixel array, therefore the linear image sensor
needs at least 4 ·3648 = 14 592Hz, or 14592/4000000 = 3.648ms for a full read-out. Thus,
the TCD1304 sensor can be read-out at a maximum frequency of ≈ 274Hz per second.
Prior to reading-out the sensor with the ADC of the microcontroller, the sensor is flushed,
to reduce signal noise. The flushing process takes 3 read-out cycles, and another 3 cycles
elapse before the actual two read-outs with the corresponding LEDs turned on take place.
A total of 8 read-outs are currently needed to compute the absolute position. With the
ICG set to 30 000Hz, yielding a read-out time of 7ms, 8 read-outs take a total time of
3 · 3.75 + 5 · 7 = 46.25ms. The 3 · 3.75 term in the previous equation yields the flushing
procedure, which is executed at an ICG value of 15000 or a speed of 3.75ms.

Timing a call of the Otterly-rpiCLI application with the
$ time ./Otterly-rpiCLI -i 30000 -s 100 -n 2

shell command results in a timing value of ≈ 50ms. This means that the remaining
≈ 4ms are taken by the SPI communication and writing the measurement files to disk. A
value of ≈ 50ms per position estimate yields a tracking frequency of 20Hz. The execution
of the tracking algorithm consumes also time, but is neglectable compared to the time
the read-out of the sensor and the SPI transmission takes.

However, by implementing the algorithm on the microcontroller itself, the tracking
frequency can be greatly improved. The flushing process of [49] has been adopted in
the prototype implementation. However, a total of 6 flushing cycles may be unnecessary
for the tracking system. Due to the fact that the spikes of the intensity measurements
are easily distinguishable, some signal noise may not deteriorate the tracking process.
Therefore, the number of cycles prior to the actual ADC read-out could be greatly
reduced. The maximum tracking frequency is 274/2 = 137Hz, because at least two light
source measurements have to be taken for a single position computation.

5.3 Theoretical Tracking Resolution
Using the light ray simulation, the resolution of the tracking system can be approximated.
The TCD1304 sensor has 3648 px. Each Pixel has a length of 8 µm, yielding a total
length of 3648 ·8 = 29 184 µm or ≈ 29.2mm. The question is how much a light source has
to be moved to trigger a movement of 8 µm on the sensor. By calling the cast_rays (
lens_width, lens_mat, source_dist, axis_off ) function of the simulation
with the right arguments, the deviation dimension can be computed.

The deviation’s value depends on the distance of the light source to the optical system.
The nearer the tracking system is to the light source, the more accurate it works. The
parameters for the cast_rays() function are 30 for the lens_width parameter, the
optical system matrix of two convex lenses with a focal length of 60mm for the lens_mat
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parameter and 5000 for the source_dist parameter, because the accuracy at 5m from
the optical system is measured. The aim is to find a focal_offset value of 0.008mm.
This is achieved by varying the axis_off parameter. Figure 4.6 shows all parameter in an
optical system sketch.
An axis_off value of 1.35mm yields a focal_offset of 0.008mm. Therefore, the
tracking systems simulated resolution at a distance of 5m is ≈ 1.35mm.
The impact of the collimating subsystem can also be simulated. At a distance of 5m from
the optical system, the tracking system is still able to capture light when the light source
is moving ≈ 2.7m up or down the z-axis (non-tracking axis). At a distance of 0.5m to
the tracking system, this margin is narrowed down to ≈ 0.28m in both directions.

5.4 Tracking Accuracy and Jitter
To test the actual tracking resolution of the prototype, several tests in the field were
conducted. The prototype was aligned manually on millimeter paper, in order to take
accurate measurements.
At a distance of ≈ 130 cm from the line of LEDs, the prototype was moved separately
100mm on the x- and on the y-axis. On the x-axis, a 100mm movement resulted in a
x-value difference of 253 px. Therefore, every millimeter step in the real world yields a
2.53 px x-value displacement in the tracking system. Every value on the x-axis is mapped
to ≈ 0.4mm. In the middle of the two measurements, the tracking system computes a
value of 2224 px. The expected value is 2217 px. Thus, the accuracy of the the tracking
system corresponds to 2224− 2217 = 7 px or ≈ 2.8mm on the x-axis. Figure 5.1 shows
the refracted light sources of the base measurement on the TCD1304 sensor. Figure 5.2
shows the refracted light sources at a 100mm x-axis displacement, compared to the base
measurement.
On the y-axis, a 100mm distance results in a difference of 82 px. Each value is mapped
to a y-axis value of ≈ 1.22mm. The 50mm midpoint of the 100mm distance lies at a
y-axis value of 1536 px, although it should result in a value of 1541 px. Therefore, the
accuracy on the y-axis results in 6.1mm.
Also, tests at a distance of ≈ 415 cm to the LEDs were conducted. The x-axis test resulted
in a difference of 83 px between two measurements taken 100mm apart. This results
in a x-axis tracking resolution of ≈ 1.2mm. The y-axis test showed a value difference
of 12 px in a 100mm displacement, resulting in a y-axis resolution of ≈ 8.3mm. At a
distance of ≈ 415 cm, the tracking system yielded an accuracy of ≈ 6.8mm on the x-axis
and ≈ 16.6mm on the y-axis.
Figures 5.3 and 5.4 show the tracking system’s jitter. 93 samples were taken, with the
tracking device fixed at the same position. On the x-axis, the mean value µ is equal
to a value of ≈ 0.05mm. The standard deviation σ has a value of ≈ 0.436mm. On the
y-axis, the mean value µ is equal to ≈ −0.46mm. The standard deviation σ results in
≈ 1.11mm
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5. Evaluation

5.5 Discussion
Borrego et al. [60] evaluated the tracking systems of the HTC Vive and the Oculus Rift
VR headsets.

For the HTC Vive, they estimated an accuracy of (0.75± 0.69) cm and a jitter of
(0.23± 0.33)mm at a tracking height of 1.3m. The Oculus Rift supplies similar values. It
has an accuracy value of (0.76± 0.53) cm and a jitter of (0.12± 0.18)mm, tested at the
same height as the HTC Vive. Both values were measured in the inside of the tracking
area, leading to more accurate results.

Comparing these values to the results of the presented prototype, it can be seen that
the prototype implementation delivers competitive results. Even at a distance of 415 cm
from the line of LEDs, the tracking prototype yields a better accuracy on the x-axis than
the HTC Vive and Oculus Rift tracking systems. The x-axis jitter is also superior to the
jitter of the reference tracking systems, but there is still room for improvements. A more
robust spike-detection algorithm would reduce noise and further improve tracking jitter.
However, the accuracy of the y-axis decreases drastically with the distance to the LEDs.
At a distance of 415 cm to the LEDs the resolution is only a seventh of the resolution at
130 cm distance. Also, the tracking system is very sensitive to rotation. Small rotational
misalignments of the tracking device lead to severe tracking errors.

Although the prototype is only able to track two dimensions without rotation, a theoretical
system with full 6-DOF pose tracking would fulfill the qualitative requirements of a VR
tracking system, based on the results of the evaluation. The latency can be reduced
drastically by implementing the algorithm on the microcontroller side, and the accuracy
and resolution values are comparable to state-of-the-art tracking technology. A second
sensor could provide three-dimensional tracking and rotation information.
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Figure 5.1: The light intensity chart of the base measurement.
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Figure 5.2: Light intensities measured at a 10 cm displacement on the x-axis relative to
the base measurement.
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Figure 5.3: The histogram shows the tracking system’s jitter on the x-axis, with a sample
size of 93 measurements.
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Figure 5.4: The histogram shows the tracking system’s jitter on the y-axis, with a sample
size of 93 measurements.
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CHAPTER 6
Conclusion and Future Work

In this thesis, a new kind of tracking system has been designed, simulated and implemented.
The resulting prototype is an inside-out tracking system based on a linear image sensor
and a lens system. These parts are readily available and affordable. Positions are
computed by fundamental optical principles. When the tracking device moves, the
refraction angle changes and therefore illuminates a different part of the linear image
sensor. With a single linear image sensor, two dimensional tracking can be realized.

In the simulation part, a light ray simulation using ray transfer matrices has been
implemented. With this simulation, the lens characteristics of a given tracking area can
be calculated and different lens arrangements can be tested. The simulation makes it
also possible to compute other important parameters like the necessary distance between
LEDs and the resolution of the tracking system.

After the necessary components of the optical system were selected and ordered, a
functional prototype has been implemented. The prototype is based on a STM32F401RE
microcontroller, which is able to do the low level tasks like reading-out the linear image
sensor and controlling the LEDs. The LEDs have to be toggled at the sensor’s integration
period. Only one light source is turned on at a given moment in time. A linear image
sensor has been used to read the light intensities of the LEDs. A microcontroller has
been used to drive the linear image sensor and read its pixel values. The pixel values are
sent to a Raspberry Pi via the SPI interface, to run higher-level algorithms and calculate
the current absolute position.

A functional prototype has been designed and fabricated. It consists of several 3D printed
parts and PCBs. The lenses were aligned in a lens mounting system, with the distances
to each other calculated in the simulation step. 3D printed mounting parts were also
designed for the microcontroller, the Raspberry Pi and the PCBs, to build a tracking
device that is easily usable. Two PCBs were designed, one for the electronic components
needed to drive the TCD1304AP linear image sensor and one to toggle the LEDs with
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6. Conclusion and Future Work

transistors. Two LEDs, wired to the prototype, provide the light source for the tracking
device. The tracking device is able to compute absolute two dimensional position data
on a premapped tracking area.

6.1 Possible Improvements

The actual qualities of the tracking system have to be evaluated and tested systematically
with external tracking hardware, to get accurate ground truth data.

Due to fact that the tracking system is still in an early prototyping phase, there is a lot
of room for improvements. To improve the speed of the tracking device, the algorithm
should be implemented on the microcontroller directly. This step removes the need for
the Raspberry Pi and shortens the tracking latency by the time the SPI communication
process takes. The flushing process of the TCD1304, which is implemented in the current
firmware, should also be examined. Flushing is required to get noiseless intensity values
from each reading. However, it might not be necessary to flush the sensor three times
before every sensor read-out.

The spike recognition itself has to be made more robust, potentially by utilizing Gaussian
filters and numerical differentiation instead of just picking the smallest intensity value.
A more sophisticated algorithm would also improve the tracking system’s jitter and
its overall accuracy. Using numerical differentiation for spike recognition would have
the advantage of calculating the width of a single spike (see Figure 4.2), which can
be used as an additional variable in the tracking system. Single spike tracking can
also be utilized to enhance the tracking area to spaces where only single light source
measurements can be taken. When the tracking area is large, many LEDs are needed to
get a continuous tracking experience. Toggling many LEDs, some of them may not even
illuminate the tracking device, reduce the system’s latency and responsiveness. Therefore,
a sophisticated strategy is needed to toggle only the LEDs wich are actually needed for
the position computation. This approach can only work under specific assumptions, like
restraints in the speed the tracking device is allowed to move. The system has to know in
which direction the tracking device is moving, in order to turn on the appropriate LEDs.
Implementing such a feature would result in low latency tracking even in large tracking
areas.

6.2 Different Hardware Components

To make the tracker more independent of wires, the LEDs should be toggled by a wireless
communication protocol. The protocol has to be reliable and communicate fast, in order
not to increase the system’s latency. Fresnel lenses are more compact than their thicker
counterparts, but have the same optical features. These type of lenses can be used to
make the lens system and the overall tracking device more compact.
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6.3. 3D Tracking and Rotation

There are many different linear image sensors on the market. Some of them, like the
Toshiba TCD1703C sensor, have more pixel elements than the TCD1304, but are also
bigger in size. By using such a sensor, the accuracy of the tracking system can be increased.
The tracking area could also be enhanced without sacrificing tracking precision.

6.3 3D Tracking and Rotation
In order to extend its usefulness, the tracking system has to be enhanced to three
dimensions. For three dimensional tracking, a second linear image sensor is required.
It has to be mounted perpendicular to the existing sensor, with an additional optical
system. An additional sensor will be able to track the z-axis and the y-axis. Additional
LEDs have also to be placed in the environment, perpendicular to the LED line of the 2D
tracking environment. This would result in a two dimensional LED wall. The integration
of rotation tracking, although tricky to implement, should be possible with the data of
two linear image sensors and enough tracking information from different light sources.
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APPENDIX A
Listings

1 void flush_CCD()
2 {
3 /* set exposure very low */
4 ICG_period = 15000;
5 SH_period = 20;
6
7 /* disable ICG (TIM5) and SH (TIM2) before reconfiguration */
8 TIM_Cmd(TIM2, DISABLE);
9 TIM_Cmd(TIM5, DISABLE);
10
11 /* reset flags and counters */
12 CCD_flushed = 0;
13 ICG_pulse_counter = 0;
14
15 /* reconfigure TIM2 and TIM5 */
16 TIM_ICG_SH_conf();
17
18 /* block until CCD is properly flushed */
19 while(CCD_flushed == 0);
20 }

Listing A.1: The flush_CCD() function

83



A. Listings

1 void TIM5_IRQHandler(void)
2 {
3 if (TIM_GetITStatus(TIM5, TIM_IT_Update))
4 {
5 /* clear TIM5 update interrupt */
6 TIM_ClearITPendingBit(TIM5, TIM_IT_Update);
7
8 if (ICG_pulse_counter == 6)
9 {

10 /* reset SH_pulse_counter */
11 SH_pulse_counter = 0;
12
13 /* reset LEDs */
14 GPIO_ResetBits(GPIOC, GPIO_Pin_4);
15 GPIO_ResetBits(GPIOC, GPIO_Pin_5);
16
17 /* restart TIM4 as this gets the ADC running again */
18 TIM4->CR1 |= TIM_CR1_CEN;
19 }
20 else if (ICG_pulse_counter == 3)
21 {
22 CCD_flushed = 1;
23 }
24 ICG_pulse_counter++;
25
26 /* prevent overflow */
27 if (ICG_pulse_counter > 10)
28 ICG_pulse_counter = 10;
29
30 /* keep track of integrations to perform */
31 if ((Integration_count > 0) && (ICG_pulse_counter > 6))
32 {
33 /* decrease counter */
34 Integration_count--;
35
36 /* restart ADC at next ICG-pulse*/
37 ICG_pulse_counter = 6;
38 }
39 /* flash the led to the beat of ICG */
40 GPIOA->ODR ^= GPIO_Pin_5;
41 /* reset raspberry pi communication pin */
42 GPIOB->BSRRH = (1<<2);
43 }
44 }

Listing A.2: The ISR of the ICG interrupt (timer 5)
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1 void TIM2_IRQHandler(void)
2 {
3 /* calculate the number of SH pulses */
4 uint16_t SH_pulses = ICG_period / SH_period;
5 if (TIM_GetITStatus(TIM2, TIM_IT_Update))
6 {
7 /* clear TIM2 update interrupt */
8 TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
9 if(ICG_pulse_counter == 6)
10 {
11 SH_pulse_counter++;
12 }
13
14 /* turn on LEDs 5 interrupts before read out */
15 if(SH_pulse_counter == (SH_pulses - 5))
16 {
17 /* toggle PC4 LED */
18 if(Integration_count == 1)
19 {
20 GPIO_SetBits(GPIOC, GPIO_Pin_4);
21 }
22 /* toggle PC5 LED */
23 if(Integration_count == 0)
24 {
25 GPIO_SetBits(GPIOC, GPIO_Pin_5);
26 }
27 }
28 }
29 }

Listing A.3: The ISR of the SH interrupt (timer 2)
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