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Kurzfassung

Der Fadenwurm C. elegans ist, mit dem vollständig abgebildeten Konnekotm und das
sequenzierte Genom, das am besten erforschte Tier weltweit. Dennoch, wie genau die
Eigenschaften einzelner Neuronen und die Wechselwirkungen mit verbundenen Zellen
unterschiedliche Verhaltensweisen hervorrufen, wie zum Beispiel die Fortbewegung, ist
noch nicht bekannt. Aufgrund der hohen Nummer an noch nicht bekannten Parametern
des Nervensystems, können verschiedene Hypothesen, über die notwendigen Bedingungen
für das Einleiten von Verhalten, aufgestellt werden.

In dieser Arbeit stellen wir ein neues, biologisch grundiertes, Modell eines neuronalen
Netzwerkes vor, verantwortlich für die Generierung koordinierter Muskelaktivität, die
dazu führt, dass sich der Wurm vorwärts bewegt. Das Modell umfasst, neben den
Muskeln, einen Teil des Nervensystems des Wurms, welcher bekannt dafür ist für das
Indizieren der Fortbewegung verantwortlich zu sein. Neuronen und Muskeln sind als
Single-Compartment Zellen modelliert. Ihr Membranpotential wir mithilfe eines Hodgkin-
Huxley Modell berechnet, welches beschreibt, wie sich das Membranpotential ändert,
wenn sich Ionen durch die Membran hindurch bewegen.

Wir implementieren unser neues Modell innerhalb der OpenWorm Plattform, um das
Nervensystem und den Körper des Wurms zu Simulieren und zeigen, dass unser Modell
in der Lage ist Vorwärtsbewegung einzuleiten.

Um Wissenschafter zu Helfen ihre eigenen in silico Experimente mit OpenWorm zu definie-
ren, erstellen wir ein Docker image welches eine Toolchain von OpenWorm Programmen
und Skripten beinhaltet. Die generierten Daten über das Verhalten eines simulierten
Wurms können mit Daten echter Würmer verglichen werden, um die Ergebnisse der
Experimente zu Validieren.
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Abstract

With a completely mapped connectome and a sequenced genome, the nematode C. elegans
is the world’s best understood animal. Nevertheless, how the dynamics of single cells
and interactions with coupled cells give rise to high-level behavior, like locomotion, is
poorly understood. It is the high number of not yet known parameters of the nervous
system leading to various hypotheses about how a certain behavior gets induced.

In this work, we introduce a new, biologically grounded, neural circuit model, responsible
for generating coordinated muscle activity leading to forward-crawling locomotion of C.
elegans. The model incorporates a subset of neurons of the nervous system of C. elegans,
known to be involved in forward locomotion, and body-wall muscles. Neurons and muscles
are modeled as single-compartmental cells, with the soma as the only compartment. Their
membrane potential dynamics are governed by a modified version of the Hodgkin-Huxley
model, describing how the membrane potential changes over time based on ionic currents
flowing across the membrane.

We implement our new model within the OpenWorm platform, to simulate the nervous
system and the body of the worm, and show that our model is able to create forward
crawling movement of a simulated worm inside a bounded environment.

To help scientists to design their own in silico experiments using OpenWorm, we create
a Docker image containing a pipeline of tools to run the simulations. The generated
worm behavior data can be used to validate the underlying model of the experiment, by
statistically comparing the data with data extracted from videos of real worms.
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CHAPTER 1
Introduction

The nervous system of the adult hermaphrodite nematode Caenorhabditis elegans (C.
elegans) comprises only 302 neurons. Although the nervous system of this worm is very
small, compared to other organisms like humans with approximately 86 billion neurons
[ACG+09], it shows a surprisingly high variety of behaviors. The reason for that is the
complexity of neurons and neuronal circuits within the nervous system of C. elegans. A
single neuron can be part of multiple neuronal circuits, responsible for inducing different
behaviors. For example, C. elegans’ nervous system comprises a type of motor neurons
which play a role in forward and backward locomotion [ZS15]. A single sensory neuron
can respond differently, depending on the input stimulus, e.g., gentle or harsh touch
[SKB+03, COL+18].

To study the behavior of a complex system, like the nervous system of an organism,
computational models are being used. A proper computational model of C. elegans’
nervous system and its simulated output can help to analyze a high-level behavior, e.g.,
locomotion, based on low-level interactions of neurons, or other components within the
nervous system, and how modifications to neuronal or synaptic parameters can change
the behavioral output. Without such a model, one has to work with real worms what
is not always helpful to answer a specific question. To modify properties of neurons, or
to remove or silence synapses, genetic modifications must be done and can be a very
challenging task, or not possible at all. With a computational model, on the other hand,
one can simply modify one of its parameters, rerun the simulation, and analyze the
changed output. Unfortunately, there are still too many unknown parameters within the
nervous system of C. elegans and scientists have constructed multiple models of the same
behavior. Those models are all equally valid until they get proven false based on genetic
experiments and electrophysiological measurements using real worms.

Computational model at different levels of details have been created, for addressing
different sets of questions, including questions about the behavior of single neurons
[KD17] and muscles [BC08a], subcircuits, comprising only a subset of neurons within
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1. Introduction

the nervous system, responsible for generating a specific behavior, e.g. locomotion
[RAL+16, WRR96, App14, RSSK13], or the whole nervous system [KMK17, YVT+17].

In this thesis, we construct a new single-compartment conductance-based neuron network
model, incorporating a few simplifying, although biologically plausible assumptions,
responsible for generating rhythmic muscle activity of C. elegans in a way that induces
forward crawling locomotion. We implement this model within the OpenWorm platform
and verify whether the output of our model is indeed able to induce forward crawling,
by using OpenWorm’s body simulation framework. To validate the accuracy of the
movement of the simulated worm, we can create a Turing-like test [TUR50]. Two videos,
one shows the recorded movement of a real worm, the other one shows the output of our
simulation, must be compared by a person (figure 1.1). If the person cannot distinguish
between the real worm and the simulation, our model passes the Turing test and can be
certified valid, until newly gained insights, from experiments with real worms, prove the
model to be wrong.

Figure 1.1: C. elegans Turing-like test - which worm is real? The figure is a snapshot
of a video showing a real worm on one side, and a simulated worm using our forward
crawling network model implemented within the OpenWorm platform, on the other side.
The video was created by Matteo Cantarelli, a co-founder of the OpenWorm project.

The remainder of this work is structured as follows: In chapter 2, we give background
information about the model organism C. elegans, describe state of the art tools for
simulating dynamics of neurons and give an overview of existing models related to the
locomotion of C. elegans. In chapter 3, we describe the computational models and tools
we used to implement and to run ours in silico experiments. We also introduce a simplified
neural circuit model responsible for inducing forward crawling of C. elegans. In chapter 4,
we show and explain the results of our experiments. In the last chapter (5) we summarize
and discuss our work, and describe possible future steps.
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CHAPTER 2
State of the Art

In this chapter, we introduce the model organism C. elegans, state of the art simulation
frameworks and existing models for generating locomotion in C. elegans. In section
2.1, we give biological background information about C. elegans and talk about the
advantages of using this animal for all kinds of experiments. In section 2.2, we describe
state of the art software for simulating neural networks. In section 2.3, we describe
different models of C. elegans behavior with focus on locomotion.

2.1 The Model Organism C. elegans

Caenorhabditis elegans (C. elegans) is a tiny nematode with approximately 1 mm length
living in soil all over the world [FF15]. It is transparent and non-parasitic what makes
it easy to observe and manipulate the inner workings and safe to use in the laboratory.
C. elegans can be cultured on petri dishes with agar and are usually fed with E. coli
bacteria [AY12]. Due to the small size, it is possible to cultivate up to ten thousand
individuals on a single petri dish what makes it also cheap for laboratories to work with
this organism. C. elegans has a very short life cycle, depending on the temperature of the
environment, of around three days from an embryo to a fertile adult [CWC15]. C. elegans
was the first multicellular organism with a completely sequenced genome [eSC98] and
the only one with a completely mapped connectome so far [WSTB86, VCP+11]. There
are two sexes of C. elegans nematodes; hermaphrodites and males. The self-fertilizing
adult hermaphrodites have precisely 959 somatic cells [SSWT83]. The relatively simple
nervous system of the adult hermaphrodite consists of only 302 neurons and around 7000
synapses. [WSTB86, VCP+11] Male worms, with 1031 somatic cells, have some anatomic
and behavioral differences, whereas the main difference is that they express mating
behavior. [RBMP97]. In this thesis, we will only focus on the adult hermaphrodite C.
elegans nematode.
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2. State of the Art

Due to the simplicity of the nervous system and ..., many researchers use this worm for
experiments on different topics like neuronal development, aging, learning, or memory.

C. elegans is also used for studies aiming in understanding neural circuits and behavior.
How do neural circuits induce coordinated muscle activity and how can this activity be
modulated from sensory input?

Although we know the genome and how many connections there are between a pair of
neurons - we even know the exact location of the synapses - many important properties
are still not known. For example, we do not know the polarity for most of the chemical
synapses, whether they are excitatory or inhibitory, or the weight (the strength) of the
synapses. Due to the unknowns, one can create different models for a single behavior of
the worm, whereas, as long as we lack more detailed information about the parameters
of the nervous system, each of them can be equally valid.

2.1.1 Anatomy of C. elegans

Like in other nematodes, C. elegans’ body is unsegmented, cylindric and tapered at the
ends. The body shape is maintained by internal hydrostatic pressure. The worm’s body
has two separated tubes. The outer tube consists of cuticle, hypodermis, muscles, and
neurons. The pharynx, intestine, and gonad are located in the inner tube [RBMP97].

C. elegans has 95 body wall muscles divided into four longitudinal bundles, one quadrant
with 23 muscle cells, the others with 24. Other muscles are located around the vulva
and the pharynx [WSTB86, AH02]. In this thesis, only body wall muscles are of interest,
because it is the activity of these muscles relevant for locomotory behavior.

2.1.2 Behavior of C. elegans...

Although C. elegans’ nervous system is relatively simple, compared to other animals, it
shows a surprisingly high variety of diverse behaviors. The worms can move to other
locations, also known as locomotion. In soil, they crawl, while they swim in liquids with a
low viscosity like water. They can move forward and backward, or change their direction.
Experiments have shown that after tapping the petri dish, containing the worms, they
start to move backward for a brief time before they move forward again. This behavior
is known as tap withdrawal reflex [WR95]. With such an experiment, one can also show
nonassociative learning or habituation; e.g., repeated taps result into responses with
reduced amplitude and frequency [RBC90, WR97]. C. elegans can also sense chemicals;
thus they may steer gradually towards a location of a higher concentration of chemicals, or
away from it, which is known as chemotaxis [War73]. There is a similar behavioral output
as a response for changes in temperature (thermotaxis [HR75]), oxygen concentration
(aerotaxis, [GKL+04, ZGP+09]), or stiffness of the environment (durotaxis [PP16]). C.
elegans’ capacity to learn environmental properties is a form of associative learning.
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2.2. Neuron and Neural Network Simulation Frameworks

2.2 Neuron and Neural Network Simulation Frameworks
For understanding the brain, the numerical simulation of single neurons and neural
networks has become a critical part of research projects. Thus, many software tools have
been developed to support research in the field of computational neuroscience.

NEURON [CH06] is a prevalent tool used in many neuroscience projects for simulating
single neurons and networks of neurons. The focus of NEURON is on more detailed
models, e.g., multi-compartmental neuron models; thus it is better suited for small
networks of neurons. NEURON simulations can be run on one core machines or clusters,
but code written for a single machine might require some modifications to enable cluster
support.

NEST (NEural Simulation Tool) [GD07, PSV+17] is a simulator, optimized for large-scale
neural networks using threads, or MPI-communication. It is one of the main simulators
of the Human Brain Project and supports multiple neurons and synapse models limited
to a small number of compartments.

Brian 2 [GB08, GB09, SGBB14] is a simulator, primarily, for networks of single-compartmental
neuron models. Neuron models are defined by giving their differential equations as Python
strings, unlike in other neural simulation tools where the user choose a predefined model.
As another difference to other simulators, simulations using Brian can only run on a
single machine.

SIM-CE is a MATLAB-Simulink implementation of single-compartmental, conductance-
based neuron models and synapses within the nervous system of C. elegans [HBF+17].
It can be used to design and simulate small neural circuits composed of multiple neurons
and synapses, but it has not been optimized for running large-scale networks, i.e., it can
only utilize cores of a single machine, to run a simulation of the entire nervous system.

2.3 Models of C. elegans Locomotion
Locomotion, the task of an animal to move its body from one location to another one
inside an environment, is an essential behavior of every animal. C. elegans move to find
food or conspecifics, to flee from predators, or because they sense chemical concentrations
indicating a toxic environment, which they need to avoid.

The form of motion (gait) of many animals depends on the environment. An animal can
change its gait, to move more efficiently, if it gets into an environment with different
properties. C. elegans crawl in an undulatory way, like snakes, in an environment with
high viscosity (like agar gel). They crawl forward by propagating dorso-ventral bends
from head to tail with an average frequency, wavelength, and amplitude of around 0.5 Hz,
0.8 mm, and 0.1 mm, respectively [SSK+12]. In an environment with low viscosity (like
water), they swim and take "C"-shaped postures. The traveling waves during forward-
swimming behavior propagate from head to tail with different properties. The average
frequency, wavelength, and amplitude is around 2 Hz, 2.1 mm, and 0.26 mm, respectively
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2. State of the Art

[SSK+12]. Other values for frequency, wavelength, and amplitude can be observed using
physical surroundings with different viscosities [KCG+07, FYWX+10].

Forward crawling is often accompanied by foraging behavior and pharynx pumping (as
well as egg laying and defecation). These behaviors are suppressed during swimming or
backward locomotion [VGTY+11, VGDBPS12, MPS10].

One of the first attempts of modeling the worm’s crawling behavior on agar was made
by Niebur and Erdös [EN90, NE91, NE93]. In their model, a central pattern generator
(CPG), located in the head, induced periodic dorsoventral bends of the head to initiate
movement with a fixed frequency of undulation based on the output of the CPG. Due to
local stretch receptors, muscles got excited based on the level of excitation (contraction)
of anteriorly neighboring muscle cells. Therefore the rest of the body followed the bends of
the head. They only modeled crawling locomotion because they thought that swimming
is a separate gait and with their model, the worm would not be able to move in an
environment with reduced viscosity.

In the work of Suzuki et al. [STO05] they used a simplified version of the nervous system
that was able to respond to gentle touch. The body of the worm was modeled as a chain
of rigid links. Neuronal oscillators controlled each joint angle. Locomotory behavior
could be generated including forward and backward crawling, rest and turns (omega
type turn and coil type turn). Although the model was able to reproduce locomotion,
biological evidence was not taken into account.

Bryden and Cohen [Bry03, BC04, BC08b] introduced a model of the worm’s nervous
system without a CPG and a simplified model for the physical body of the worm. While
their model could generate waves of muscle activity propagating from head to tail inducing
forward locomotion, with the help of a proprioceptive mechanism, it failed to generate
realistic speed and amplitude of undulation.

Rönkkö and Wong [RW08] modeled the body of worms and different environments (gel,
liquid, and soil), including food and repellents, as a particle system. In their work, the
worm’s undulatory locomotion could be generated by only simulating physical forces of
particles of the worm interacting with other particles of the environment. Although the
result was impressive, their model missed a biologically grounded neural circuit.

Based on biological evidence for crawling and swimming being part of a single gait, Boyle
created a model [Boy09] of a biologically realistic neural circuit within a more realistic
body model than used in the work of Bryden and Cohen [BC08b]. Instead of a CPG,
muscle activity got modulated, depending on the viscosity of the environment, due to a
proprioceptive effect through stretch receptors. The model was able to generate crawling
and swimming, as well as intermediate movements, based on the environment which
modulated the speed and amplitude of undulation.

In this thesis, we introduce a new, biologically grounded although simplified, neural
network model, responsible for generating staggered activation of body-wall muscles
posterior to the neck. We assumed the existence of two CPGs, one CPG located in head

6
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inducing head movements, and another CPG inducing body bends posteriorly to the
head, which gets propagated along the body from neck to tail due to a proprioceptive
effect. We used OpenWorm’s physical 3D model of the body of the worm which got fed
with the output of our new neural network model to generate forward crawling movement
based on physical forces of the worm interacting with its environment.

7





CHAPTER 3
Methodology

In this chapter, we will describe the components of neural circuits, a structure which
is responsible for inducing behavior. It can also be seen as a subgraph of the nervous
system of an animal. First, we will introduce a model of a single biological neuron,
including the anatomy, different roles of neurons and the computational model we used
to simulate the activity of neurons (section 3.1). Then we will describe how neurons
are interconnected by different types of synapses enabling the communication of those
neurons and the computational model simulating the synaptic current going into a target
neuron (section 3.2). Building on that, we will talk about neural circuits composed of a
population of neurons connected by synapses. We will also introduce a new model with
a few simplifying assumptions, we designed, responsible for generating forward crawling
movement of C. elegans (section 3.3). At the end of this chapter (section 3.4), we will
describe some tools of the OpenWorm platform we used to simulate the neural circuit and
the body of the worm. We will also describe how we created a toolchain based on these
tools using a virtualization software, called ’Docker’, to pack the tools and dependencies
enabling users to run in silico experiments with minimal effort.

3.1 Neuronal Modeling

In this section, we give an overview of neurons, the primary components of the nervous
system in almost all animals including C. elegans. We describe the anatomy of a biological
neuron, different roles of neurons, and the computational neuron model we used for our
experiments to simulate the membrane potential and the internal calcium concentration.

3.1.1 Biological Background of Neurons

Neurons, also known as nerve cells, are electrically excitable cells which can receive,
integrate and process incoming signals, and transmit information to other cells via

9



3. Methodology

structures called synapses 3.2. Neurons, but also other cells like glia or muscle cells,
are surrounded by a plasma membrane, impermeable to charged ions. Ions can only
pass through ion channels. Ion channels are special membrane proteins forming a pore
connecting the intracellular with the extracellular fluid allowing specific ions to flow into
or out of the cell and are (unevenly) distributed across the cell membrane. Neurons are
the primary components of the nervous system in animals. Nevertheless, a single neuron
does not induce behavior, but they are interconnected to form neural circuits 3.3. The
neural circuits receive specific information from the environment or internal state of the
animal. After a neural circuit got activated, it responses with behavior, e.g., locomotion,
or avoiding obstacles. While the nervous system consists not only of neural cells but also
of glial cells, another cell type, we focus only on neurons, since the primary function of
glial cells is to support neurons.

Anatomy of a Neuron

Neurons can be divided into three distinct parts: the soma, dendrites, and the axon.

• The soma (or cell body) contains the nucleus where the proteins, which are required
from the neuron, are produced. Two types of processes, dendrites and the axon,
extend from the soma, where dendrites are usually shorter than axons. In a
specialized region of the soma, the axon hillock, action potentials are initiated and
get propagated along the axon.

• In general, neurons receive signals at the dendrites which get propagated to the
soma. Neurons can have multiple dendrites, each of them with up to several
thousands of branches.

• Action potentials get propagated along the axon. At its end, the axon branches
multiple times, to make synapses with other cells. Usually, the end of the axonal
branch of the presynaptic neuron synapses onto a dendrite of the postsynaptic cell,
but other locations are also possible.

Classes of Neurons

One way how to classify neurons is based on the function they fulfill. There are 3 groups
of neurons: sensory neurons, interneurons, and motor neurons.

• Sensory neurons receive signals from sensory receptors, which are connected with
the sensory neurons, and transmit information to other neurons in the nervous
system. These receptors are located almost everywhere, e.g., in the mouth, the
nose, in ears, in eyes, the skin, or internally.

• Interneurons receive information from sensory neurons or other interneurons and
transmit information to other interneurons or motor neurons. In the C. elegans
literature, interneurons connected to motor neurons are often called command
neuron.

10



3.1. Neuronal Modeling

• Motor neurons receive information from other neurons and send signals to the
connected muscles. When a muscle cell receives an excitatory/inhibitory signal
from a neuron, it can lead to contraction/relaxation of the muscle.

3.1.2 Computational Neuron Model

Integrate-and-Fire Model

More then one century ago, in 1907, Lapicque modeled a neuron using an electric circuit
of a capacitor and a resistor connected in parallel, representing the capacitance and the
resistance of the membrane, respectively. Besides, Lapicque’s model generates action
potentials (a delta function spike) after the membrane capacitor got charged to a constant
threshold value. Subsequently, the capacitor discharges and the membrane potential gets
reset to a constant resting value [Abb99].

The change of the membrane potential in time can be described as a ordinary differential
equation:

Cm
dVm
dt

= Iext (3.1)

where Vm is the membrane potential, Cm is the membrane capacitance, and Iext is the
synaptic or externally injected current.

Leaky-Integrate-and-Fire Model

The leaky-integrate-and-fire (LIF) model extends the integrate-and-fire (3.1) model,
by adding a term reflecting the diffusion of ions (ions passing through a leak channel)
occurring when the cell is not in a resting state.

The LIF model can be described as a ordinary differential equation:

Cm
dVm
dt

= −GLeak(Vm − ELeak) + Iext (3.2)

where Vm is the membrane potential, Cm is the membrane capacitance, and Iext is the
synaptic or externally injected current. GLeak and ELeak are the conductance and reversal
potential of the leak channel, respectively.

Hodgkin-Huxley Model

We simulated the activity (membrane potential and internal calcium concentration) of
a neuron and muscle cell with a conductance-based model, also known as the Hodgkin-
Huxley (HH) model. In fact, it is a modified version of the HH model because, unlike the
original version, C. elegans neurons and muscles do not undergo Na+ (sodium) induced
action potentials, because they lack voltage-gated Na+-channels. Instead, C. elegans
neurons show graded potentials where Ca2+ (calcium) acts as the major current for
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3. Methodology

the depolarization of the cell [GHAL98, Bar98]. In C. elegans, only body-wall muscle
cells have been shown to generate action potentials [LGC+11, GZ11]. The cells were
modeled as single-compartmental neurons with the soma as the only compartment, since
C. elegans neurons are very small, and many neurons have been shown to be isopotential
[GHAL98].

The set or ordinary differential equations describing the conductance-based neuron model
is the following:

Cm
dVm
dt

= IKf + IKs + ICa + ILeak + Iext (3.3)

where Vm is the membrane potential, Cm is the total membrane capacitance, and Iext
represents the synaptic or externally injected current. IKf , IKs , ICa, and ILeak represent
the currents passing through a fast and slow potassium, calcium and leakage channel,
respectively.

Cm = Cspec ∗ surfaceArea (3.4)

surfaceArea =
{

4 ∗ (diam/2)2 ∗ π, if length = 0.
2 ∗ (diam/2) ∗ π ∗ length, if length > 0.

(3.5)

where Cspec is the specific capacitance per unit area, surfaceArea is the surface area of
the cell (the single compartment of neurons are modeled as spheres, as cylinders in the
case of muscle cells). diam is the diameter of the cell, length is the length of muscles
(not used for neurons).

IKf = p4qGKf (EKf − Vm) (3.6)

IKs = nGKs(EKs − Vm) (3.7)

ICa2+ = e2f(1 + (h− 1)α)GCa2+(ECa2+ − Vm) (3.8)

ILeak = GLeak(ELeak − Vm) (3.9)

GKf , GKs , GCa2+ , and GLeak are the maximum conductance of the fast potassium,
slow potassium, calcium, and leakage channel, respectively. EKf , EKs , ECa2+ , and
ELeak are the reversal potentials of the fast potassium, slow potassium, calcium, and
the leakage channel, respectively. Potassium channels are voltage-gated, opening and
closing depending on the membrane potential, while the leakage channel has a constant
conductance. In addition to the voltage-dependent gates, the calcium channel is modeled
with a calcium-dependent inactivation gate.

p, q, n, e, and f , are gating variables describing the probability of ion channel gates
being in an open state and are as follows:
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dx

dt
= x∞ − x

τx
(3.10)

x∞ = 1

1 + e−
Vm−Vmidx

κx

(3.11)

where x stands for p, q, n, e, and f .
p, n, and e are activation gates, q, and f are inactivation gates.

As described above, the calcium channel is not only voltage-gated but also calcium-gated.
Thus, h (the calcium mediated inactivation gate) is modeled with a calcium concentration
dependency as the following:

h = 1

1 + e
[Ca2+]half−[Ca2+]

κ

(3.12)

Izhikevich Model

Izhikevich’s model [Izh03] is a simple spiking neuron model. It is a simplification of
the HH model, able to reproduce spiking and bursting behavior of cortical neurons. A
result of the simplification of the model is computational efficiency, comparable to the
integrate-and-fire model. Unlike the HH model, the Izhikevich model is not biophysical
meaningful. For that reason, we used the HH model to simulate the cells.

The Izhikevich model is a set of two ordinary differential equations:

dv

dt
= 0.04v2 + 5v + 140 − u+ Iext (3.13)

du

dt
= a(bv − u) (3.14)

with a after-spike resetting:

if v ≥ 30mV, then
{
v = c

u = u+ d
(3.15)

where v represents the membrane potential, u a recovery variable related to the activation
of K+ currents and the deactivation of Na+ currents. Iext is the synaptic or externally
injected current. By tuning the parameters a, b, c, and d, 20 firing patterns of a cortical
neuron can be reproduced [Izh04].
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Intracellular Calcium Concentration Model

In C. elegans, calcium is the major ionic current responsible for the depolarization of a
cell. Calcium is also needed for synaptic transmission through chemical synapses, because
it triggers the process inside the presynaptic end of the synapse leading to the release of
neurotransmitter into the synaptic cleft. Especially for muscle cells, the internal calcium
concentration plays a vital role because it is responsible for muscle contraction. When
the internal calcium concentration reaches a threshold, a process inside the muscle gets
activated leading to contraction. The amount of calcium ions inside a muscle determines
how often this process gets activated, and thus also the strength of contraction. That is
why calcium transients and internal calcium concentration is considered as an indicator
for the level of activation of cells in C. elegans.

The intracellular calcium concentration pool was modeled with an ordinary differential
equation as the following:

d[Ca2+]
dt

= ICa2+

surfaceArea
ρ− [Ca2+] − [Ca2+]rest

decayConstant
(3.16)

where ICa2+ is the current of calcium ions entering the cell, surfaceArea is the surface
area of the cell, ρ is a factor scaling the incoming calcium current, [Ca2+] is the internal
calcium concentration of the cell, and [Ca2+]rest is the internal calcium concentration
the cell will reach at rest with a time course of decayConstant.

To simulate the membrane potential and internal calcium concentration of muscle cells,
we used the same equations from above (equation 3.3 and 3.16) with a different set of
parameters.

3.2 Synaptic Modeling
In this section, we will describe synapses, structures which enables cells to communicate
with each other. We will describe the structure of a synapse, two different types of
synapses, chemical and electrical, and how they work in general. We will also describe
the computational model we used to simulate the communication of cells.

3.2.1 Biological Background of Synapses

Neurons can communicate with other cells. A signal of a neuron can change the global
state of the neural network leading to a behavioral change of an organism. In the case
of a neuron-to-neuron communication, the connection between the presynaptic neuron
(source neuron) and the postsynaptic neuron (target neuron) is called synapse, while a
neuron-to-muscle communication takes place at the so-called neuromuscular junction
(NMJ). Most of the synapses (and NMJs) are chemical synapses where information is
transmitted by chemical messengers called neurotransmitters. Electrical synapses (or
gap junctions) on the other hand do not need these chemicals. The presynaptic and the
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postsynaptic cells are directly connected, to make it possible for molecules and ions to
flow directly from one cell to another one. If not explicitly stated, we will use the term
synapse for both, neuron-to-neuron and neuron-to-muscle connections, from now on.

Chemical Synapses

Chemical synapses transmit information from the presynaptic cell to the postsynaptic
cell by releasing chemicals called neurotransmitters. The synapses are usually between
the presynaptic axonal terminal and the postsynaptic dendrite or the soma. Inside
the axonal terminal, there are many structures called synaptic vesicles containing the
neurotransmitter which get released with a certain probability, when the membrane
potential of the presynaptic cell reaches some threshold. Between the presynaptic cell
and the postsynaptic cell, there is a small gap called synaptic cleft. At the postsynaptic
side, receptor proteins are located where the released neurotransmitters bind to with a
certain probability, leading to excitation or inhibition of the postsynaptic cell, depending
on the neurotransmitter and the receptor type. Due to the neurotransmitter-receptor
mechanism, also known as the key-lock model, chemical synapses are unidirectional. This
means that a chemical synapse only transmits information in one direction.

A chemical synapse also has a specific strength referring to the probability of neuro-
transmitter getting released into the synaptic cleft and the number of the transmitter.
The synaptic strength can change over time what is called synaptic plasticity. Synaptic
plasticity is widely assumed to be an essential mechanism of the learning and memory
process. For example, after touching the nose of a forward moving C. elegans, the worm
starts to reverse [KH93]. If this touch gets repeated several times with a pause of a
few seconds between the stimuli, the probability, and duration of the reverse movement
decrease [CC14]. This behavior is called habituation and can be seen as a form of learning.
This could be due to synaptic depression (decreased synaptic strength) of the synapse
connecting the sensory neuron, which gets activated when the nose of the worm gets
touched, and an interneuron. During this thesis, we did not model synaptic plasticity.

Synaptic transmission steps:

1. An action potential gets propagated along the presynaptic axon to the axon terminal.

2. Depolarization of the axon terminal leads to opening of voltage-gated calcium
channels and thus to an influx of calcium (Ca2+) ions.

3. Due to the high Ca2+ concentration, vesicles inside the axon terminal fuse with
the membrane of the axon and release their available neurotransmitter into the
synaptic cleft.

4. Neurotransmitter bind to receptors on the membrane of the postsynaptic cell
leading, in general, to the opening of receptor channels followed by ions flowing into
or out of the cell, resulting into excitation or inhibition of the postsynaptic cell.
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Electrical Synapses

Besides chemical synapses, C. elegans uses electrical synapses, or gap junctions for direct
cell-to-cell communication by forming a channel connecting the intracellular fluids of the
cells. Such a channel is formed by innexin proteins. The genome of C. elegans encodes
25 different types of innexin genes [eSC98, SMN14, Hal17]. Based on the composition of
innexins, different types of gap junctions, with up to 4 different innexin proteins for a
single channel, are possible [Hal17]. In contrast to chemical synapses, electrical synapses
transmit information much more rapidly. They are mostly bidirectional, allowing ions to
flow in both directions. Depending on the structure of the gap junction (the combinations
of the innexin proteins forming the gap junction channel), unidirectional connections
are also possible and have been shown to exist in C. elegans [LCMW17]. Electrical
synapses are less versatile than chemical synapses because the various combinations of
neurotransmitter and receptors can induce all kinds of responses. Exciting/Inhibiting
a presynaptic cell of an electrical synapse always excites/inhibits the postsynaptic cell,
respectively. The reason for this behavior is the electrical gradient. Due to this gradient,
ions - which are electrical charges - move from one cell to the connected cell through the
gap junction, leading to a more balanced state of the membrane potentials of both cells.
Therefore, bidirectional gap junction is often interpreted as a synchronization mechanism,
synchronizing the activity of two cells. We modeled gap junctions as bidirectional
connections, in our experiments.

3.2.2 Computational Synaptic Models

Chemical Synapse Models

The synaptic current of the chemical synapse is calculated as:

Ichem1 = gss(Es − Vpost) (3.17)

where gs is the maximum conductivity of the synapse, Vpost is the membrane potential of
the postsynaptic cell, Es is the reversal potential of the synapse, determining the polarity
of the synapse, it can be either excitatory or inhibitory, and s is a synaptic activity
variable, corresponding to the probability of a receptor channel of the postsynaptic cell
being in an open state, thus s is also related to the release of neurotransmitter.

s is governed by:

ds

dt
= s∞ − s

τs
(3.18)

with:
s∞ = 1

1 + e
Vth−Vpre

δ

(3.19)

and
τs = 1 − s∞

κ
(3.20)
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where Vth is the half-activation voltage of the synapse, Vpre is the membrane potential of
the presynaptic cell, δ is the slope of the activation function, and κ is the dissociation
rate (when the transmitter dissociates from the receptor, the channel switches to a closed
state again)

We used a different model for the chemical synapses within the B-type motorneuron
group, i.e. the synapses between DB1 and DB2 or VB1 and VB2 are modeled as:

Ichem2 = gss(Es − Vpost) (3.21)

where gs is the maximum conductivity of a specific synapse, Vpost is the membrane
potential of the postsynaptic cell, Es is the reversal potential of the synapse, and s is a
synaptic activity variable governed by:

ds

dt
= arφ(1 − s) − ads (3.22)

where ar, and ad is the synaptic activity’s rise time and decay time, respectively, and φ
is a sigmoidal activation function:

φ = 1

1 + e
Vth−Vpre

κ

(3.23)

where Vpre is the membrane potential of the presynaptic cell, Vth is the half-activation
voltage, and κ is the slope of the sigmoid function.

Electrical Synapse (Gap Junctions) Model

Electrical synapses or gap junctions are bidirectional connections between two cells
modeled as ohmic resistances:

Ielec = gs(Vpre − Vm) (3.24)

where gs is the conductance of the synapse, Vpre, and Vm are the membrane potentials of
the presynaptic and the postsynaptic cells, respectively.

For some of our experiments, where we wanted to create a propagating wave in a sequence
of muscles (section 4.2), we used an uncommon type of gap junction with a sigmoid
function modulating the conductance.

IdelayedGJ = gss(Vpre − Vm) (3.25)

s = 1
1 + eσ(µ−Vpre) (3.26)
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where gs is the conductance of the synapse, Vpre and Vm are the membrane potentials of
the presynaptic and the postsynaptic cells, and s is a sigmoid function modulating the
conductance with σ as the slope, and µ as the half-activation voltage.

3.3 Neural Circuits
In the sections above, we described what a neuron is and how two neurons are inter-
connected by synapses enabling a neuron to send information to the connected neuron.
In the nervous system of C. elegans (but also in general), neurons never function in
isolation; instead, populations of neurons interconnected by synapses form neural circuits
responsible for inducing all kinds of behavior. For example, a neural circuit composed
of sensory neurons, interneurons, and motor neurons can be responsible for sensing
touch leading to acceleration or backward movement. Different neural circuits can be
overlapping; thus a single neuron can be a member of multiple neural circuits and the
activity of a single neuron can induce or modulate multiple behaviors.

In C. elegans, based on the wiring diagram, electrophysiological experiments, genetic
manipulations, and cell ablation techniques, several circuits have been proposed to be
responsible for generating a specific type of behavior upon activation. However, the
circuits which have been described are just models and one could come to a more accurate
version of a circuit after some experiments. As an example, it could be possible that the
result of well-designed neuron ablation experiments shows that a specific neuron which
was a member of the circuit, responsible for steering, is not relevant at all. Locomotion
is another example of a model which was changed over time. Due to the many unknown
parameters of the nervous system in C. elegans, multiple different models of locomotion
were developed. The main distinction between these models is the existence and location
of a CPG. While one model uses multiple phase-shifted CPGs generating phase-shifted
activity of muscle cells, distributed along the body of the worm, another model does not
use a CPG at all.

3.3.1 New Forward Crawling Neural Circuit - Description

We constructed a new model for the forward crawling locomotion comprising the following
cells: left and right pair interneurons AVB (AVBL, AVBR), 18 excitatory B-type motor
neurons including 7 dorsal (DB1-DB7) and 11 ventral (VB1-VB11), 19 inhibitory D-
type motor neurons consist of 6 dorsal (DD1-DD6) and 13 ventral (VD1-VD13), as
well as 95 body-wall muscle cells. We used a single-compartmental conductance-based
HH like model to simulate the activity of the cells (3.1.2), and the wiring data of the
adult hermaphrodite C. elegans generated by the WormWiring1 project. The circuit is
illustrated in figure 3.1.

To generate the alternating dorso-ventral activity of muscle cells, we used the following
simplifying assumptions, while constructing the neural network:

1wormwiring.org
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• Synapses share the same weight - The weights of the synaptic connections in
the C. elegans connectome has not yet been defined [YVT+17]. Thus, a simplified
version of the network will be used, by assuming that all the synaptic connections
share the same weight in the network, even if multiple connections are present in
the connectome.

• AVB neurons synapse onto DB and VB motor neuron groups mainly by gap-
junctions. We assume that cholinergic B-type motor neurons excite their down-
stream cells with excitatory synapses while GABAergic D-type motor neurons
inhibit their downstream cells with inhibitory synapses. DB motor neurons excite
dorsal muscle cells and VD motor neurons inhibiting the opposing ventral muscles
while inhibiting DD motor neurons to stop the inhibition of dorsal muscles. VB
motor neurons excite ventral muscle cells and DD motor neurons inhibiting the
opposing dorsal muscles while inhibiting VD motor neurons to stop the inhibition
of ventral muscles.

• AVB neurons are active during forward-crawling locomotion - During
forward locomotion, AVB neurons are active, observable with calcium imaging
techniques [KKS+15]. They can induce or accelerate the forward movement. Synap-
tic inputs from upstream neurons (sensory neurons or other interneurons) were
approximated by an input current into AVB neurons during the simulation to keep
these neurons active.

• Muscles located in the head are directly stimulated by periodic input
pulses - Upstream neurons of head muscle cells (the first seven muscle cells in each
quadrant) are not included in this model. To generate alternating dorso-ventral
bends of the head muscles, we directly stimulated these muscles with injected
input pulses. The input pulses were adjusted to generate head bends of the same
frequency as for the rest of the body.

• First B-type motor neurons are directly stimulated by periodic input
pulses - A central pattern generator (CPG) mechanism was assumed to induce the
activity of B-type motor neurons leading to dorso-ventral body bends posteriorly
to the neck. We approximated the input from this hypothetical CPG mechanism
by injecting input pulses to the first B-type motor neurons, DB1 and VB1.

• A proprioceptive mechanism within B-type motor neurons - Experiments
have shown that the worm recognizes body bends, due to stretch receptors, which
results into additional excitatory current going into B-type motor neurons posterior
the bent region of the worm during forward-locomotion [WPH+12]. The result
of such a chain of proprioceptive-coupled motor neurons is the propagation of
the bends along the body. We approximated the proprioceptive effect by adding
additional excitatory synapses between neighboring B-type motor neurons.

The result of the simulation of this model is described in section 4.3.
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Figure 3.1: Symbolic representation of the neural circuit composed of AVB interneuron,
B-type and D-type motor neurons, and muscle cells for generation of the forward crawling
activity. Gap junction connections represented by black lines, excitatory chemical
synapses by black arrows, inhibitory synapses by red connections.

3.4 C. elegans Simulation Platform

In this section, we describe the toolset we used to run ours in silico experiments. We
give an overview of some of the core tools of the OpenWorm platform for simulating
the nervous system and the body of C. elegans. At the end of this section, we explain
the virtualization platform Docker we used to create a simulation pipeline. One of the
advantages of using Docker is to enable users to run simulations more easily avoiding
dependency hell.

3.4.1 OpenWorm

OpenWorm, launched in 2011, is an open-science project with the goal of building a
detailed biophysical computational model of C. elegans and a powerful tool to understand
the behavior of the worm, based on its biology. [SGV+14, GCC+15, SLP+18].

The approach of OpenWorm is to create different models for individual neurons, operating
at multiple scales, based on insights collected from the research community, integrated
into an unified computational platform.

One goal of neuroscientists is to determine how behavior of an organism arises from
interactions with its environment. Without physical or chemical input from the external
environment to the sensory system of the organism, an important link is missing [THC11].
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That is why the OpenWorm community has agreed to incorporate biomechanics and
interactions of the worm with its environment as critical components for understanding
this organism. Therefore, a biomechanical model of the C. elegans body, Sibernetic
(section 3.4.3), to simulate the interactions with a fluid or gel environment, and a modeling
infrastructure for complex neuronal networks, c302 (section 3.4.2), has been developed.

The C. elegans research community has created multiple datasets about the nervous
system, ranging from anatomical and structural data of the location of somatic cells and
their interconnections [WSTB86, VCP+11], to data sets of cholinergic and GABAergic
neurons [PKSS+15, GAH16], to the extrasynaptic connectome of neuropeptides [BBB+16].
These heterogeneous datasets and other related data have been collected and merged into
a graph database and a Python application programming interface has been developed
by OpenWorm, to enable users to query this database to easily find information about
the neuronal structure of C. elegans [SLP+18].

OpenWorm is organized into a number of subprojects, all of them can be found on
GitHub2. The simulation stack, i.e. the set of integrated tools to run an in silico
experiment, of OpenWorm uses ion channel models and connectomes at the lowest level.
At the next level there are models of neuromuscular coupling. At the top level, output
from lower levels are fed into a 3D simulation of the physical body of the worm and
the environment. The output of the body simulator can then be fed into a movement
validation software system which compares the simulated worm with data of real worms
[SLP+18]. The simulation stack, including planned features, is illustrated in figure 3.2.

3.4.2 c302 - OpenWorm’s Nervous System Simulation Framework

A crucial part of the OpenWorm project will be an accurate model of the worm’s nervous
system including all known cell types and connections.

It is still not clear, what level of biophysical detail is needed, to reproduce observed
high-level behavior like locomotion. Therefore OpenWorm has developed a Python
framework, c3023, for generating models of the nervous system with different levels of
anatomical and biophysical detail [GLG+18] (figure 3.3).

The varying levels of detail range from simple single-compartmental leaky integrate-and-
fire, to multi-compartmental conductance-based cell models (figure 3.3, y-axis). Based on
the network configuration file (usually created by the user), model instances generated
with c302 can include single individual neurons or muscles, two cells connected by a single
synapse, neural circuits, which are known or believed to generate a specific behavior, or
the whole nervous system including all cells and connections of the connectome (figure
3.3, x-axis).

The creation of models with different level of complexity helps the user to address a
specific set of questions. For example, a model which should be able to predict neuronal

2https://github.com/openworm
3https://github.com/openworm/c302
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(a)

(b)

Figure 3.2: Overview of the simulation stack of OpenWorm. (a) A component diagram
of the current state of OpenWorm subprojects with connections between the different
subprojects representing input and output. (b) A simplified overview of the dynamics
simulated within the OpenWorm platform. Figure was taken from [SLP+18]

membrane potential dynamics could incorporate ion channels, whereas for predicting
spikes over time, a simpler model can be sufficient and should be preferred, due to the
reduced computational resources which are needed to run the simulation. For simulating a
high-level behavior like locomotion, the model must incorporate a neural circuit, composed
of neurons which are believed to be responsible for inducing locomotion, as well as muscle
cells.

Model instances generated with c302, are saved as NeuroML files, a XML-based model
description language for specifying the components, i.e. models of cells, ion channels,
synapses, input stimuli, and 3D populations of synaptically connected cells, of a neural
network as a hierarchical structure [GCC+10, CGC+14, GLG+18]. Models expressed in
NeuroML format can be converted to formats of other preexisting tools and libraries,
e.g. to the native format of NEURON, so the models can be visualized, simulated, and
analyzed with these tools. After an instance of the network model got generated, it
can be simulated using pyNeuroML. The output of the simulation are raw data of the
membrane potentials and internal calcium concentrations over time of cells, and graphs
visualizing these data (figure 3.4).

After installing c302 (with its dependencies), the following shell commands generate the
NeuroML files of the model instance and run the simulation:
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Figure 3.3: Graphical representation of the anatomical and biophysical level of details
which can be chosen for simulations of neural networks using c302. The increasing
complexity of networks is shown on the x-axis, ranging from networks with a single
synapse, to the whole nervous system including muscles. On the y-axis, different levels
of biophysical neuronal models are shown, ranging from simple LIF, to multicompart-
mental conductance-based cell models. Chemical synapses are represented by orange,
electrical synapses by red lines. LIF neurons/muscles are represented by blue/light
green, conductance-based neurons/muscles by dark orange/dark green circles. Black lines
represent dendrites and axons of multicompartmental cell models. Figure was taken from
[GLG+18]

# X is a placeholder for an arbitrarily chosen name of the network
configuration, e.g. ’FW’
# Y is a placeholder representing the level of biophysical detail and
refers to the name of the parameters file, e.g. ’C2’ referring to
parameters_C2.py

$ cd C302_PATH # Change current working directory to the location of c302
$ python c302/c302_X.py Y # generates the model instance

# To run the simulation with pyNeuroML
$ pynml examples/LEMS_c302_Y_X.xml

# To run the simulation with NEURON
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$ cd examples
$ pynml LEMS_c302_Y_X.xml -neuron # Generate the Neuron files (Python/hoc
/mod)
$ nrnivmodl # Compile the mod files (used for cell/ion channel
definitions)
$ nrngui LEMS_c302_Y_X_nrn.py # Run the main Python file for the
simulation using NEURON

The commands above will run the simulation and show the results using the GUI of
pyNeuroML or NEURON.

c302 provides a script, runAndPlot.py, for generating figures visualizing the results of
the simulation, instead of displaying the results inside an GUI, what should take less
time. To use that script for starting the simulation of a new network model instance, it
has to be extended by a function call handling a new argument, which can be chosen
arbitrarily, e.g. :

...

if __name__ == "__main__":
if ARGUMENT in sys.argv:
run_c302(...)

elif OTHER_ARGUMENT in sys.argv:
run_c302(...)

...

elif "-fw" in sys.argv:
run_c302("FW", "C2", "", 5000, 0.05, "jNeuroML", data_reader="

UpdatedSpreadsheetDataReader", save=True, show_plot_already=True)

elif "-fw_neuron" in sys.argv:
run_c302("FW", "C2", "", 5000, 0.05, "jNeuroML_NEURON", data_reader="

UpdatedSpreadsheetDataReader", save=True, show_plot_already=True)

The simulation, using runAndPlot.py with the new argument, can then be started
with:

$ cd C302_PATH # Change current working directory to the location of c302
# Run the simulation using pyNeuroML, as defined inside runAndPlot.py
$ python c302/runAndPlot -fw

# Run the simulation using NEURON, as defined inside runAndPlot.py
$ python c302/runAndPlot -fw_neuron

A more detailed description of the installation and usage of c302 can be found online in
the ’README’ of the GitHub repository of c3024.

4https://github.com/openworm/c302
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Figure 3.4: Overview of scripts and libraries used in the c302 framework and files created
during the generation and simulation of a neural network model. Green boxes are files
created or modified by the user, blue boxes are scripts/libraries used within c302, light
brown/orange boxes are the files used as input, or created during the simulation of the
network. X is an identifier of the neural network model and can be chosen arbitrarily,
and Y refers to the level of biophysical detail of cells of the network, e.g. A for LIF
model, or D for multicompartmental conductance-based models. Figure was taken from
https://github.com/openworm/c302/

Modeling with c302

To create a new network configuration (c302_X.py) for our forward crawling neural
circuit (c302_FW.py) model, we copied a preexisting one and modified its setup function
accordingly. While it was possible to modify some of the parameters of the network,
e.g. which neurons to include, if muscles should be included as well, or the number of
connections of a synapse, we modified c302 in order to make the generation of networks
more customizable.

We applied the following changes to c302, in order to make the generation of neural
networks more configurable, using different parameters within the network configuration
file. Below every bullet point, we provide a code snippet about the usage of the parameter
inside the setup function of the network configuration file:

• data_reader - In our experiments we used the wiring data (connectome) of the
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adult hermaphrodite C. elegans generated by the WormWiring project. The format
of that dataset did not match the format of the default dataset used within c302,
e.g. the naming convention of cells differed from each other, thus we had to create
a Python script to convert the data. We also had to add a new parameter to c302,
enabling it to make use of our script reading the new connectome and using it as
input for generating the network.
def setup(...):
# Use UpdatedSpreadsheetDataReader.py for reading the ’WormWiring’-
connectome
data_reader = "UpdatedSpreadsheetDataReader"
...
nml_doc = c302.generate(..., data_reader, ...)

• muscles_to_include - To enable the user to define only a subset of muscles to
simulate instead of simulating all muscles, what makes a huge difference regarding
computational resources needed for the simulation, we changed an existing parame-
ter from taking a boolean value, defining if muscles should get simulated or not, to
accept also a list as value, defining which muscles should get included during the
simulation.

def setup(...):
# To include all muscle cells
muscles_to_include = True
# To include only a subset of muscle cells, e.g.
muscles_to_include = ["MDL10", "MDR10", "MVL10", "MVR10"]
...
nml_doc = c302.generate(..., muscles_to_include, ...)

• conn_number_override - This parameter was already available but it had a little
flaw. While it was possible to override the number of connections of synapses, e.g.
with conn_number_override={"AVAL-DA1": 1} for changing the chemical
synapse between the presynaptic cell ’AVAL’ and the postsynaptic cell ’DA1’ to
have one connection only, an existing gap junction connecting AVAL and DA1 also
got modified. We changed that, by introducing a new convention to define gap
junctions differently. Now, the user can override the number of connections of
chemical and electrical synapses separately.
def setup(...):
# Override the number of connections of specific synapses
conn_number_override = {"AVAL-DA1": 2, "AVAL-DA1_GJ": 1}
...
nml_doc = c302.generate(..., conn_number_override, ...)

• conns_to_include/conns_to_exclude - Before we applied our changes to c302, the
user defined a list of cells and all connections of the connectome, between cells from
the list, got used for a simulation. We changed this behavior, by adding parameters
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in the form of lists, enabling the user to define a subset of connections which gets
used during a simulation. We want to stress out that, in general, a connection
will not get added to the network, unless the presynaptic and postsynaptic cells
are part of the network as well, i.e. the non-empty include from below effects the
generation of the network, only if VB2 and VB4 are part of the network.
def setup(...):
# Include all but the (bidirectional) gap junction between the
neurons ’VB2’ and ’VB4’:
conns_to_include = []
conns_to_exclude = ["VB2-VB4_GJ", "VB4-VB2_GJ"]
# Include the (bidirectional) gap junction only:
conns_to_include = ["VB2-VB4_GJ", "VB4-VB2_GJ"]
conns_to_exclude = []
...
nml_doc = c302.generate(..., conns_to_include, conns_to_exclude,
...)

• conn_polarity_override - The polarity of most of the synapses, whether they are
excitatory or inhibitory, is not known in C. elegans. We added a parameter in the
form of a dictionary, to override the default polarity of specific connections, e.g.
def setup(...):
# Override the polarity of specific synapses
conn_polarity_override = {"AVAL-DA1": "inh"}
...
nml_doc = c302.generate(..., conn_polarity_override, ...)

• param_overrides - The default parameters, depending on the biophysical level of
detail, are specified in the parameters file, e.g. parameters_C2.py. Inside that
file, the user only could change the parameter of a collection of synapses, e.g.
the conductance of all excitatory synapses. To override parameters of a specific
synapse inside the file defining the neural network, we introduced the parameter
param_overrides in the form of a dictionary. Now, it is possible to change the
conductance of a specific excitatory synapse, e.g. the conductance of the excitatory
chemical synapse from AVBR to VD3
def setup(...):
# Override specific parameters of synapses
param_overrides = {"AVBR_to_VD3_exc_syn_conductance", "0 nS"}
...
nml_doc = c302.generate(..., param_overrides, ...)

• mirrored_elec_conn_params - Gap junctions are modeled as bidirectional connec-
tions. Inside the NeuroML files, generated by c302, there are two elements defining
the bidirectional connection, one from cell A to cell B, and another one from cell B
to cell A. In order to enable the user to make the same changes to both elements,
instead of having to change the same parameter of both elements separately, we
introduced the parameter mirrored_elec_conn_params (a dictionary inside the
param_overrides dictionary).
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def setup(...):
# Override the conductance of gap junction elements ’AVBL-VB1’ and ’
VB1-AVBL’
param_overrides = {

"mirrored_elec_conn_params": {
"AVBL_to_VB1_GJ_elec_syn_gbase": "0.001 nS"

}
}
...
nml_doc = c302.generate(..., param_overrides, ...)

• Regular expressions - We made it possible to override parameters using regular
expressions, to modify a group of specific synapses with just one line, e.g. changing
synapses from DB (DB1-DB7) motor neurons to DD (DD1-DD6) motor neurons,
which are excitatory by default, to be inhibitory.

# Override the polarity of a group of synapses (DB-DD)
conn_polarity_override = {r"^DB\d+-DD\d+$": "inh"}

# Change the weights of all synapses to 1
conn_number_override = {r"^.+-.+$": 1}

# Override the conductance of a group of gap junction elements (AVB-DB
and DB-AVB)

param_overrides = {
"mirrored_elec_conn_params": {

r"^AVB._to_DB\d+\_GJ$_elec_syn_gbase": "0.001 nS",
}

}

• Multiple inputs for one cell - We made it possible to define multiple external inputs
for one cell during the simulation.
def setup(parameter_set, ...):
exec (’from parameters_%s import ParameterisedModel’ % parameter_set
, globals())
params = ParameterisedModel()
...
input_list = []

input_list.append(("DB1", "190ms", "250ms", "3pA"))
input_list.append(("DB1", "990ms", "250ms", "3pA"))
...
nml_doc = c302.generate(..., param_overrides, ...)
for (cell, start, dur, current) in input_list:

c302.add_new_input(nml_doc, cell, start, dur, current, params)

We implemented our simplified neural circuit responsible for inducing forward crawling,
described in section 3.3.1, within the OpenWorm platform. Hence, we created a Python
file, c302_FW.py (listing A.1), to define the neural circuit and the simulation properties.
In that file, the structure of the network is defined in line 35-37, the parameters of the
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synapses are modified in line 45-56 and 125-180, and the external currents, which get
injected into different cells during the simulation, are specified in line 58-123.

3.4.3 Sibernetic - OpenWorm’s Body Simulation Framework

Sibernetic is a 3D computational biomechanical model of the C. elegans body and muscles
converted into a 3D particle system and a simulator [PKL16, PKL18]. The simulation
engine of Sibernetic implements the Predictive–Corrective Incompressible Smoothed
Particle Hydrodynamics (PCISPH) algorithm [SP09] written in OpenCL and has a 3D
visualization which builds on top of OpenGL. Sibernetic can simulate different predefined
environments, e.g., filled with a gel or a fluid, for the simulation of crawling or swimming
worms. The output of the simulation, e.g., a curvature plot, can then be compared to
measurements of experiments using real worms. While writing this thesis, the feature for
comparing simulated data with data of real worms was still under development.

After installing Sibernetic and its dependencies, a simulation of the body of the worm
can be started as follows:

$ cd SIBERNETIC_PATH # Change current working directory to the location
of Sibernetic
$ ./Release/Sibernetic -f worm # Run the body simulator with ’worm’
configuration

The following commands will run a Sibernetic simulation in combination with c302
providing the activity of muscle cells (generated by NEURON), as input:

$ cd SIBERNETIC_PATH # Change current working directory to the location
of Sibernetic
$ export C302_HOME=PATH_TO_C302/c302
$ export PYTHONPATH=$PYTHONPATH:$C302_HOME:./src
$ python sibernetic_c302.py

Inside the sibernetic_c302.py script, there are several parameters defining the
simulation, which can be changed by modifying the file directly or by executing the script
with arguments overriding the default values of these parameters.

To following command will run a 5-second simulation of the body of the worm using the
output of the forward crawling circuit as input:

$ cd SIBERNETIC_PATH # Change current working directory to the location
of Sibernetic
$ python sibernetic_c302.py -duration 5000 -reference FW -c302params C2 -
datareader UpdatedSpreadsheetDataReader2 -configuration
worm_crawl_half_resolution

Executing sibernetic_c302.py will generate NEURON code for the c302 simulation
(using pyNeuroML), run Sibernetic with the simulation of c302, using NEURON, running
in the background, and save the resulting files inside a directory with a unique name (no
Sibernetic GUI will be shown). The simulation directory will be created automatically
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with a name composed of the name of the parameter set, e.g. ’C2’, the name of the
network configuration, e.g. ’FW’, and a timestamp of the start of the simulation. The
simulation can then be rerun as follows (displayed using the Sibernetic GUI):

$ cd SIBERNETIC_PATH # Change current working directory to the location
of Sibernetic
# Displaying the result of a simulation with the Sibernetic GUI
$ ./Release/Sibernetic -l_from lpath=simulations/C2_FW_TIMESTAMP

A more detailed description of the installation and usage of Sibernetic can be found
online in the ’README’ of the GitHub repository of Sibernetic5.

3.5 Virtualization Platform
Computational work becomes more and more part of scientific research projects while
reproducing the outcome of scientific work has always considered being critical. Due
to the rapidly changing and heterogeneous computer environments, reproducing some
results can be a challenging task. Different platforms or operating systems, but also
different versions of the same operating system running on the same platform can lead to
the failure of running necessary software for reproducing the results. Different versions
of software dependencies are often the source of such an issue. However, even within the
very same environment, it can be hard to install the necessary software, e.g., due to the
lack of documentation regarding the installing process [Boe15].

With Docker6, a virtualization platform, it is possible to run software with all the
dependencies on specific versions in an isolated environment, known as ’docker container’.
The isolation of the environment can help to make software portable. Docker containers
are comparable to virtual machines, but the containers are more lightweight and have a
better performance [Boe15, RBA17].

We created a docker container7, containing a pipeline of OpenWorm tools, which can be
used to run OpenWorm simulations. The start of the container simulates the nervous
system of C. elegans, feeds the output (the calcium concentration of the muscles) to the
simulation of the worm’s body and creates a movie of the behaving worm. In addition to
the movie, different plots get generated, e.g., traces and heatmaps of membrane potential
dynamics and intracellular calcium concentration, or a curvature plot. Datasets of raw
data over time, generated during the simulation, are accessible and can also be analyzed
with other tools.

For the automated setup of the Docker container, a ’Dockerfile’ is needed containing all
the necessary commands of the installation process of the OpenWorm tools, tools for
creating a video of the output of the Sibernetic simulation, and their dependencies.

The installation process of the container can be summarized as follows:
5https://github.com/openworm/sibernetic
6www.docker.com
7https://github.com/openworm/OpenWorm
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1. Install and update base operating system.

2. Install dependencies.

3. Install NEURON with Python support.

4. Clone and install OpenWorm tools:

4.1. pyNeuroML
4.2. PyOpenWorm
4.3. c302
4.4. Sibernetic

5. Set environment variables.

6. Copy main Python script (master_openworm.py), containing the commands for
executing the simulation, into the container.

The commands inside master_openworm.py, for executing the simulation, are as follows:

1. Run Sibernetic simulation with parameters defined inside master_openworm.py -
This will execute Sibernetic with c302 running in the background.

2. Move generated plots to a directory accessible from outside the docker container.

3. Rerun the latest Sibernetic simulation while displaying the graphical output of the
behaving worm on a virtual screen.

4. Create a video of the simulation, by recording the output of the virtual screen.

5. Remove black frames at the beginning of the video.

6. Create a speed up version of the video.

A simulation of our forward crawling circuit, which is the default network model, can be
started within the docker container as follows:

$ git clone https://github.com/openworm/openworm # Clone GitHub
repository of OpenWorm
$ cd openworm # Change current working directory to the location of
OpenWorm
$ ./build.sh # Create the docker container (create the isolated
environment)
$ ./run.sh # Run a 15 ms (default duration) simulation of our simplified
forward crawling network model using Sibernetic in combination with c302
running in the background.

# To change the duration, the argument ’-d’ can be used
$ ./run.sh -d 5000 # Run a 5 sec simulation
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At the time of writing this thesis, only the duration of the simulation could be specified
using a parameter. Other parameters, e.g., the name of the network configuration,
or the parameter set, could only be changed directly inside the Python script ’mas-
ter_openworm.py’

A more detailed description of the installation and usage of the docker container can be
found online in the GitHub repository of OpenWorm8.

8https://github.com/openworm/openworm

32

https://github.com/openworm/openworm


CHAPTER 4
Experiments and Results

In this chapter we describe the in silico experiments we run, using the OpenWorm
platform, and their results. In section 4.1, we modified the preexisting computational
neuron model to change the dynamics of the membrane potential. The goal of this
experiment was to get a neuron model generating graded membrane potentials instead
of burst firing. In section 4.2, we describe experiments we run using an optimization
algorithm. In this series of experiments, the goal was to get a wave of dorsal body-wall
muscle activities propagating from head to tail, an essential part for forward-movement
of C. elegans. At the beginning of these experiments, we let the optimizer optimize given
a parameter space including all synapses. In subsequent experiments, we included only a
subset of synapses to get a better outcome. In section 4.3, we describe the output of our
new forward crawling neural circuit incorporating a few assumptions, implemented within
the OpenWorm platform, and show the result of a moving worm using the OpenWorm’s
body simulator. We also show the output generated by the same circuit while sequentially
omitting one of the assumptions.

4.1 Modifying OpenWorm’s Neuron Model

At the beginning of our experiments, the single-compartmental neuron model, used within
the OpenWorm platform, the membrane potential of neurons showed bursting behavior.
One of our goals was to create a more biologically realistic model of C. elegans neurons.
There is evidence that some neurons of C. elegans generate graded membrane potentials,
rather than all-or-none action potentials, or burst firing. [LGF09]. Thus, as one of
our first experiments, we started to modify parameters of the OpenWorm parameter
set of the single-compartmental conductance-based neuron model (parameters_C1.py).
We did this with a simple heuristic approach where we picked a single parameter and
checked the output of the simulation after modifying the parameter a little bit. The
resulting file (parameters_C2.py) contains a different set of parameters, mainly with
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modified conductance and reversal potential of ion channels. The membrane potential
of the neuron PVCL, after receiving current pulses with increasing amplitude as input
(current-clamp experiment), is shown in figure 4.1. In figure 4.1 (a), the membrane
potential of PVCL, using the old parameters, starts to show heavy burst firing, with an
input current pulse of 4 pA over 800 ms. Figure 4.1 (b) shows PVCL generating graded
membrane potentials with increased amplitude, using the same input protocol and our
new parameter set. Because all neurons share the same computational model, it did not
matter which neuron we used for the simulation. The values of the parameters and the
equation with the occurrence of the parameters are shown in table 4.1.

We want to note that while the output of the membrane potential using the new neuron
model is probably more realistic, the parameters of that model are most likely unrealistic.
To get accurate parameters, one needs to do electrophysiological experiments to measure
the currents going throw all different kinds of ion channels of every neuron, because the
combination of ion channels differs from neuron to neuron. Without these experiments,
parameters can only be guessed, because it is possible to create the same output with
different sets of parameters.

(a) (b)

Figure 4.1: Comparison of simulated current-clamp experiments with different parameters.
6 different current pulses, from 1 pA to 6 pA with a duration of 800 ms, got injected into
the neuron. (a) Membrane potential traces of neurons generated with the parameter set
’C1’. (b) Membrane potential traces of neurons generated with our parameter set ’C2’

4.2 Optimization of a C. elegans’ brain cell network

In the early experiments, the goal was to create a propagating wave in a sequence of dorsal
body wall muscles in the C. elegans, what is needed for locomotion. In this experiments,
automatic optimization was used to optimize parameters. However, too many parameters
to optimize along creates the problem of being stuck in a local minimum. Therefore,
further experiments used a targeted approach to select a subset of parameters to allow
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Table 4.1: Neuron model parameters

Parameter Value Used in equation X

Cspec 5 uF_per_cm2 3.4

diam 5 3.5

initVm -60 mV

GKf 0.042711643917483308 mS_per_cm2 3.6

EKf -70 mV 3.6

τp 2.25518 ms 3.10

Vmidp -8.05232 mV 3.11

κp 7.42636 mV 3.11

τq 149.963 ms 3.10

Vmidq -15.6456 mV 3.11

κq -9.97468 mV 3.11

GKs 0.45833751019872582 mS_per_cm2 3.7

EKs -60mV 3.7

τn 25.0007 ms 3.10

Vmidn 19.8741 mV 3.11

κn 15.8512 mV 3.11

GCa2+ 1.812775772264702 mS_per_cm2 3.8

ECa2+ 10 mV 3.8

τe 0.100027 ms 3.10

Vmide -3.3568 mV 3.11

κe 6.74821 mV 3.11

τf 150.88 ms 3.10

Vmidf 25.1815 mV 3.11

κf -5.03176 mV 3.11

αh 0.282473 3.8

[Ca2+]halfh 6.41889e-8 mM 3.12

κh -1.00056e-8 mM 3.12

GLeak 0.002 mS_per_cm2 3.9

ELeak -60 mV 3.9 35
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optimization to occur over. Some results from automated optimization are being fed into
future experiments that used a heuristic approach where we picked a single parameter
and modified it until we could observe a better result.

The cell network model, we used for the simulation, comprised the two command
interneurons AVBL and AVBR, 7 DB motor neurons, and 95 dorsal body wall muscles
(figure 4.2 and 4.3). Aside from 3 excitatory chemical synapses, the neurons are connected
by forming gap junctions. One of the three chemical connections, from AVBR to DB4, has
only one synapse; thus it is possible that it is of not much importance for the functioning
of the network. The other two chemical connections, from AVBL to AVBR and vice
versa, as well as the gap junction between the command neurons, most likely play a
role in synchronizing their activity. Interestingly, there is a gap junction with only one
synapse connecting DB3 and DB4. This could indicate, that the DB motor neurons can
be divided into two subgroups. DB motor neurons activate dorsal body wall muscles
exclusively via excitatory chemical synapses. As shown in figure 4.3, body wall muscles
located in the head of C. elegans don’t receive input coming from DB motor neurons.
Instead, there is another subcircuit within the nervous system of C. elegans responsible
for the activation of body wall muscles located in the head.

The rationale for the subsets of circuits that are being chosen is partially based on the
goal, but also based on a decomposition process for simplicity of optimization.

The first goal was to go from simultaneous activation of muscles to get the first spike
time to be staggered.

The first experiment (section 4.2.1) did not produce good results for first spike time
because it hit a local minimum. The next experiment (section 4.2.2) used a subset of
parameters but produced reasonable first spike times. The experiment on (section 4.2.3)
attempted to optimize the spike frequency of the muscles, and was successful in spike
frequency but then spike timing of subsequent spikes had jitter. In later experiments
(section 4.2.4 and 4.2.5) we began hand tuning the spike timing of subsequent spikes.

4.2.1 Step 1: Optimization of the whole network

In our first optimization experiment, the goal was to get staggered activation of DB
motor neurons (table 4.3), what should result in staggered activation of dorsal body wall
muscles.

A more abstract representation of the neural network, used for the optimization experi-
ments, is shown in figure 4.4.

We let the optimizer optimize along all synaptic parameters with the termination con-
dition of 2000 evaluations. The parameters with valid ranges and a reference to the
computational synapse models are listed in table 4.2.

During 1 second of real-time simulation, a current pulse with an amplitude of 15pA got
injected into AVB command interneurons, with an offset of 50ms and duration of 850ms.
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AVB(L/R)

DB1 DB2 DB3 DB4 DB5 DB6 DB7

4/3 9/2
4/5

3/4 4/3 13/30/15 0/1

5 14 1 5 5 5

17/176/2

Figure 4.2: C. elegans’ neural subcircuit comprising AVB command neuron pair and DB
motor neurons. Green lines represent gap junctions, the blue arrow a chemical synapse.
The labels, in the form of x/y, indicate the number of synapses connecting the neurons,
e.g. ’0/15’ denotes that, within the nervous system of C. elegans, there is no gap junction
from AVBL to DB1 but one with 15 synapses from AVBR to DB1.
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Figure 4.3: C. elegans’ neural subcircuit comprising DB motor neurons (circles) and
dorsal body wall muscles (rectangles). Green lines represent gap junctions, blue arrows
chemical synapses. The labels indicate the number of synapses connecting the cells.

We did not choose to inject current for the whole simulation time, because we wanted to
check whether the membrane potential decreases again after the end of the input current.

The resulting time of activation of the DB motor neurons, with a 139 ms - 147 ms range,
are listed in table 4.4. The resulting cell dynamics after the optimization are shown in
table 4.5. Column 1 and 3 show the membrane potentials of neurons and muscles in the
form of a heatmap, column 2 and 4 show the same data as traces. Column 5 and seven
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show internal calcium concentration of neurons and muscles in the form of a heatmap,
column 6 and 8 show the same data as traces. The results show that the outcome of
the optimization was not good, probably because the optimization got stuck in a local
minimum with the given number of maximal evaluations. It can be seen that DB motor
neurons got activated almost at the same time, thus, also muscle cells, innervated by DB
neurons, got activated at the same time.

AVB

DB1 DB2 DB3 DB4 DB5 DB6 DB7

DL6 DL8

DR8 DR9 DR23 DR24

DL23 DL24

I

Figure 4.4: Neural network used for the optimization. Network comprises AVB command
neuron pair, DB motor neurons, and dorsal muscle cells (not all are shown). Black arrows
represent chemical synapses. Black lines represent gap junctions. Gap junctions from
AVB to DB neurons use our ’delayed’ gap junction model. During the optimization, AVB
neurons receive an ongoing input pulse.

4.2.2 Step 2: Partial Optimization: AVB-DB, DB-DB

In the previous experiment, the parameter space includes parameters of connections from
AVB to DB neurons and DB to dorsal muscles. That means the optimization is running
for all parameters (conductances of synapses motor neurons to muscles, interneurons to
motor neurons, delay functions). The previous experiment is stuck in a local minimum,
defined by hitting the maximum number of evaluations. In that experiment, we are
optimizing for the first spike time of the DB motor neurons, while introducing a delay to
try to get a sequence of spike times.

In this experiment, AVB to DB delayed gap junction, and DB-DB gap junction connections
were the only thing that was able to be optimized among, all other parameters were fixed
(4.6). We also increased the maximum number of evaluations to 4000. Same target of
optimization, first spike time of motor neurons, was made (table 4.7). This is shown on
the diagram by the darker lines between AVB and the DB motor neurons, and the lines
between DB motor neurons, gray lines are connections with fixed parameters (figure 4.5).
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Table 4.2: Parameter ranges for the optimization (step 1)

Parameter Range Equation

AVB-DB
gs [0.00052, 0.06252] nS 3.25
σ [0.1, 0.9] per_mV 3.26
µ [-70, 20] mV 3.26

DB-DB
gs [0.00002, 0.04252] nS 3.24

DB-Muscle
gs [0.02, 2] nS 3.17

Muscle-Muscle
gs [0.00002, 0.00050] nS 3.24

Table 4.3: Targets of the optimization (step 1)

First spike time
DB1 115 ms
DB2 125 ms
DB3 135 ms
DB4 145 ms
DB5 155 ms
DB6 165 ms
DB7 175 ms

Table 4.4: Result of the optimization (step 1)

First spike time
DB1 138.55 ms
DB2 143.35 ms
DB3 143.7 ms
DB4 147.05 ms
DB5 145.95 ms
DB6 146.8 ms
DB7 144.9 ms
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Table 4.5: AVB-DB-DorsalMuscles optimization 1

Neurons Neurons Muscles Muscles Neurons Neurons Muscles Muscles
(Voltage) (Voltage) (Voltage) (Voltage) ([Ca2+]) ([Ca2+]) ([Ca2+]) ([Ca2+])
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Figure 4.5: Neural network used for the optimization. The network comprises AVB
command neuron pair, DB motor neurons, and dorsal muscle cells (not all are shown).
Black arrows represent chemical synapses. Black lines represent gap junctions. Gap
junctions from AVB to DB neurons use our ’delayed’ gap junction model. During the
optimization, AVB neurons receive an ongoing input pulse. Gray lines (chemical synapses
from DB neurons to dorsal muscles) indicate connections (parameters thereof) which are
set to a fixed value during the optimization.

The result was some success (116 ms - 170 ms range). However, the very last DB neuron
showed a spike somewhat before the second to last DB neuron (table 4.8).

The resulting cell dynamics after the optimization are shown in table 4.9. It can be seen
that, compared to the previous experiment, there is more delay between the activation of
anterior and posterior muscle cells. Also, the muscle cells generate multiple spikes.
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4.2. Optimization of a C. elegans’ brain cell network

Table 4.6: Parameter ranges for the optimization (step 2)

Parameter Range Equation

AVB-DB
gs [0.00052, 0.06252] nS 3.25
σ [0.1, 0.9] per_mV 3.26
µ [-90, 40] mV 3.26

DB-DB
gs [0.00002, 0.04252] nS 3.24

Table 4.7: Targets of the optimization (step 2)

First spike time
DB1 115 ms
DB2 125 ms
DB3 135 ms
DB4 145 ms
DB5 155 ms
DB6 165 ms
DB7 175 ms

Table 4.8: Result of the optimization (step 2)

First spike time
DB1 115.55 ms
DB2 130.6 ms
DB3 135.05 ms
DB4 153.25 ms
DB5 155.4 ms
DB6 169.95 ms
DB7 166.55 ms
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4. Experiments and Results

Table 4.9: AVB-DB-DorsalMuscles optimization 2
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4.2.3 Step 3: Partial Optimization: DB1-Muscles, DB2-Muscles

In the previous experiment, we narrowed the parameter space and optimized only the
gap junction connections between AVB command interneurons to DB motor neurons,
and between DB to DB neurons. In this experiment, we are taking the parameters that
came out of the previous experiment for those connections, and we are fixing them in
this experiment. We were optimizing over the conductance of DB to muscle excitatory
chemical connections only. We have focused on DB1 and DB2 muscle connections only
because to do it over all the DBs would still be too many parameters (table 4.10).

AVB

DB1 DB2 DB3 DB4 DB5 DB6 DB7

DL6 DL8

DR8 DR9 DR23 DR24

DL23 DL24

I

DR10

DL9 DL10

Figure 4.6: Neural network used for the optimization. Network comprises AVB command
neuron pair, DB motor neurons, and dorsal muscle cells (not all are shown). Black arrows
represent chemical synapses. Black lines represent gap junctions. Gap junctions from
AVB to DB neurons use our ’delayed’ gap junction model. During the optimization, AVB
neurons receive an ongoing input pulse. Gray lines (gap junctions) indicate connections
(parameters thereof) which are set to a fixed value during the optimization.
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4.2. Optimization of a C. elegans’ brain cell network

Table 4.10: Parameter ranges for the optimization (step 3)

Parameter Range Equation

DB-Muscle
gs [0.02, 2] nS 3.17

Table 4.11: Targets of the optimization (step 3)

Mean spike frequency
MDL06 4.0 Hz
MDL08 4.0 Hz
MDL09 4.0 Hz
MDL10 4.0 Hz
MDR08 4.0 Hz
MDR09 4.0 Hz
MDR10 4.0 Hz

Table 4.12: Result of the optimization (step 3)

Mean spike frequency
MDL06 4.077 Hz
MDL08 4.011 Hz
MDL09 3.962 Hz
MDL10 3.960 Hz
MDR08 4.101 Hz
MDR09 3.990 Hz
MDR10 4.032 Hz

Here we were targeting the spike frequency of the muscles to be 4 HZ (table 4.11), with
a maximum number of evaluations, used as the stopping criterion, of 4000. The result
was the muscles spiking within 3.9 - 4.1 HZ range (table 4.12). However, as it can be
seen in the result, the first spike time looked good, but the subsequent spikes had a jitter
in them (table 4.13).

4.2.4 Step 4: Hand-tuning DB-Muscle conductance

In these experiments, we were hand-tuning the conductances of excitatory synapses
between DB motor neurons and muscle cells (only dorsal left). Because the results from
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4. Experiments and Results

Table 4.13: AVB-DB-DorsalMuscles optimization 3
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the optimizer were not satisfactory, doing some hand-tuning allowed for the development
of intuitions of the effects of changing specific parameters. In this case, we are starting
from only the parameters that provide a delayed spike time for the DB neurons from
section 4.2.2, but not using the results of optimizing the spike frequencies from the
previous experiment from section 4.2.3. The target for the hand tuning is an improved
version of having multiple spikes staggered without the jitter that was found in the
experiment in section 4.2.3. The strategy, to begin with, was to begin picking connections
between motor neurons and muscles and changing conductances in a trial and error
approach.

In case01-case05 we made some minor changes of the delayed GJs between AVB and
DB neurons with the resulting parameters of a previous optimization, we also changed
the conductance to muscles. Although we could observe a wave of action potentials
propagating from neck to tail (case05), there was an issue with these parameters.

We were optimizing the wave of the first spikes, and after we increased the simulation
duration, we noticed that there was only one complete wave (case06) because motor
neuron activity still changed after the first spike had occurred. That meant there was
jitter. Looking at the problem, the motor neurons do not have steady-state behavior
until later in the simulation.

In subsequent experiments, we were trying to create a wave propagating from neck to tail,
but this time we only had a look at the muscle output after motor neurons had reached
steady state. This is done by changing the conductance between the motor neuron and
muscle cell. If there is a muscle spiking too early or too late for the sequence, then we
are shifting it by changing the weight of the synaptic conductance from DB to muscle.
In order to take into account the jitter in later spikes, instead of targeting the first spike
time, we are looking at the timing of the second, third or fourth spike and adjusting the
conductance to get it to be at the right time in sequence.

In case 30 – they are well aligned in the DL muscles. The DRs are not optimized, so
they act as control by using the default values. Increasing perfection was happening after
that. By case 38 they are very well aligned, but the timings are not as linear as desired.
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4.2. Optimization of a C. elegans’ brain cell network

Some of the resulting cell dynamics after the hand-tuning experiments are shown in
table 4.14. The entire table with all the experiments, as well as the NeuroML file of the
network containing the parameters of ion channels and synapses, can be found online1

AVB

DB1 DB2 DB3 DB4 DB5 DB6 DB7

DL6 DL8

DR8 DR9 DR23 DR24

DL23 DL24

I

DR10

DL9 DL10

Figure 4.7: Neural network used for hand-tuning experiments. The network comprises
AVB command neuron pair, DB motor neurons, and dorsal muscle cells (not all are
shown). Black arrows represent chemical synapses. Black lines represent gap junctions.
Gap junctions from AVB to DB neurons use our ’delayed’ gap junction model. During
the hand-tuning experiments, AVB neurons received an ongoing input pulse. Gray
lines indicate connections (parameters thereof) which are set to a fixed value. Only the
conductance of chemical synapses to dorsal left muscles was modified.

4.2.5 Step 5: Hand-tuning DB-Muscle conductance

In these experiments, we continued fine-tuning the conductance of DB-muscle excitatory
synapses by hand (we only modified the conductance of connections to dorsal left muscles),
while making use of the ’delayed’ GJs between AVB and DB neurons. We also increased
the simulation duration, even more, to check whether later spikes propagate as desired
from neck to tail.

The result of case34 (table 4.15) is still not perfect yet - posterior muscles do not receive as
much excitatory synaptic input as anterior muscles, resulting in different spike frequencies
- but it could already be used as a basis of further experiments.

The entire table with all the experiments, as well as the NeuroML file of the network
containing the parameters of ion channels and synapses, can be found online2

1https://github.com/lungd/openworm-experiments/tree/master/2017-07-31
2https://github.com/lungd/openworm-experiments/tree/master/2017-08-05
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4. Experiments and Results

Table 4.14: 7-31 results. The rows show the result of different experiments after the
hand-tuning of some parameters.
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Muscle cells do not receive only excitatory input from motor neurons; they also receive
inhibitory input coming from other motor neurons (D-type motor neurons). One role
of D-type motor neurons could be to balance out the excitatory input coming from DB
neurons, to get the same frequency of muscle spikes. Thus, we decided to stop this series
of experiments at this point.
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4.3. New Forward Crawling Neural Circuit - Implementation

Table 4.15: 8-05 results

Case Neurons Neurons Muscles Muscles Neurons Neurons Muscles Muscles
(Voltage) (Voltage) (Voltage) (Voltage) ([Ca2+]) ([Ca2+]) ([Ca2+]) ([Ca2+])
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4.3 New Forward Crawling Neural Circuit -
Implementation

In this experiment, we implemented our simplified neural circuit inducing forward crawling
(described in section 3.3.1) within the OpenWorm platform.

This circuit was designed, with a few assumptions, with the purpose of generating
alternating dorso-ventral waves of muscle bends propagating from head to tail, leading
to forward locomotion.

The output of the circuit, incorporating all our assumptions, is shown at the end of this
section. Before that, we want to show the output of the circuit after weakening our
assumptions by sequentially omitting one of them.

AVB command interneurons are known to be active during forward locomotion. They
receive excitatory input coming from sensory neurons and other interneurons. Because
we did not include those neurons, we injected current into AVB neurons directly, to keep
AVB neurons active during the simulation of the forward crawling. The output of the
circuit without input coming from AVB is shown in figure 4.8. Without active AVB
neurons, the activity of B-type motor neurons posterior to DB1 and VB1 is reduced, due
to the gap junctions between AVB and B-type neurons. Thus, also the activity of muscle
cells is reduced.

Another assumption that we used while constructing the circuit was the proprioceptive
effect approximated by additional excitatory chemical synapses (using the computational
synapse model 3.21) between neighboring B-type motor neurons. Because it was not
possible to add new connections, using c302, we had to add those connections to the
connectome file containing all the synapses of C. elegans. We adjusted the parameters of
the synapse model, by hand, to get a propagation wave of B-type neuron spikes, as shown
in figure 4.13 (a). Due to the different number of B-type motor neurons in C. elegans, 7
DB and 11 VB motor neurons, the wave in VB neurons must propagate faster, what we
took into account while adjusting the parameters of those synapses. We defined phase
shifted inputs only for DB1 and VB1 neurons, i.e., we chose the starting time of the
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input going into VB1 so that it gets activated when DB1 is not active anymore and vice
versa. The input into the first B-type motor neurons then gets propagated via our newly
added chemical synapses to approximate the proprioceptive effect. The output of the
circuit without periodic input into DB1 and VB1 is shown in figure 4.9. Besides directly
stimulated cells, the network is entirely silent, because of weak gap junctions between
AVB and B-type neurons and without activating B-type neurons the body-wall muscles
do not receive any excitatory input. The output of the circuit without the additional
chemical synapses between neighboring B-type motor neurons is shown in figure 4.10.
DB1 and VB1 get activated, due to the directly injected input pulses, what can be seen
in figure 4.10 (a). Due to the weak gap junctions connecting neighboring B-type motor
neurons, the input from the first B-type neurons does not get propagated to the next
neurons within the B-type neuron group. Thus, only body-wall muscles innervated by
DB1 and VB1 get activated, as shown in figure 4.10 (b).

By default, all chemical synapses coming from B-type motor neurons are excitatory,
synapses coming from D-type motor neurons are inhibitory. For example, DB motor
neurons synapse onto VD and DD motor neurons. After a DB motor neuron gets
activated, it excites VD and DD neurons at the same time through chemical synapses,
resulting into inhibition of different ventral and dorsal muscle cells. Therefore, we decided
to modify the polarity of chemical synapses from DB to DD and from VB to VD neurons
to be inhibitory. The output of the circuit with inhibitory synapses from DB to DD and
from VB to VD is shown in figure 4.11. As shown in figure 4.11 (b), ventral body-wall
muscles receive almost no input, due to the reduced activity of VB motor neurons and
the increased activity of VD motor neurons (figure 4.11 (a)). The activity of muscles
on the dorsal side of the worm is also reduced although not as much as the activity of
muscles on the ventral side. The reduced activity of dorsal muscles can be explained by
the increased activity of DD motor neurons (figure 4.11 (a)).

Muscles located in the head (first seven muscles in each quadrant) don’t receive input
from B-type motor neurons; thus, we directly stimulated these muscles with periodic,
phase shifted input pulses. We adjusted the input pulses, to generate head bends of the
same frequency and aligned with the rest of the body. The output of muscle cells located
in the head can be seen, for example in figure 4.9 (b). At the beginning of the simulation,
some muscles left and right ventral body-wall muscles (10-15), as well as left and right
dorsal muscles (21-22), also receive a single input pulse, because we did not want to start
with a wholly straightened worm body.

We set the weight of all synapses to 1 because the actual weights are not known and
by doing so we got a simplified circuit which was easier to analyze. The result of the
circuit using the number of synapses as weight, taken from the connectome file we used, is
shown in figure 4.12. We adjusted the output of our forward crawling circuit model while
using equal weights. Thus, if we keep the original weights, as defined in the connectome,
different neurons receive too much current via synapses, resulting in an undesired output.

The output of c302 of a 5 second of real-time simulation, incorporating all our assumptions,
is shown in figure 4.13. Figure 4.13 (a) shows the simulated membrane potential of the
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neurons as a heatmap. Each line represents the membrane potential of a neuron over the
simulated time. Yellow colored regions indicate high, dark blue low membrane potential.
Figure 4.13 (b) shows the simulated internal calcium concentration inside all 95 muscle
cells as a heatmap. Each line represents the internal calcium concentration of a body-wall
muscle cell. Yellow colored regions indicate high internal calcium concentration. Dark
blue indicates no calcium inside the muscle cell.

For the simulation of the body of the worm, we used Sibernetic in combination with c302.
In this mode, the internal calcium concentration of muscle cells is governed by a neural
network model generated with c302, and Sibernetic uses the calcium concentration of
the muscles as input to determine how much a muscle should contract. The output of
Sibernetic was a forward crawling worm inside a bounded environment, filled with a layer
of agar. We took screenshots of Sibernetic’s 3D visualization which are shown in figure
4.14.
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Figure 4.8: Simulation of the worm’s neural circuit and muscles, without input injected
into AVB, during 5 seconds of real time simulation of the forward locomotion using c302.
(a) Neuron membrane potential dynamics. (b) Internal calcium concentration of the 95
body-wall muscle cells.
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Figure 4.9: Simulation of the worm’s neural circuit and muscles, without input injected
into DB1 and VB1, during 5 seconds of real time simulation of the forward locomotion
using c302. (a) Neuron membrane potential dynamics. (b) Internal calcium concentration
of the 95 body-wall muscle cells.
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Figure 4.10: Simulation of the worm’s neural circuit and muscles, without chemical
synapses connecting neighboring B-type neurons, during 5 seconds of real time simulation
of the forward locomotion using c302. (a) Neuron membrane potential dynamics. (b)
Internal calcium concentration of the 95 body-wall muscle cells.
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Figure 4.11: Simulation of the worm’s neural circuit and muscles, with excitatory synapses
from DB to DD and from VB to VD neurons, during 5 seconds of real time simulation
of the forward locomotion using c302. (a) Neuron membrane potential dynamics. (b)
Internal calcium concentration of the 95 body-wall muscle cells.
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Figure 4.12: Simulation of the worm’s neural circuit and muscles, with weighted synapses,
during 5 seconds of real time simulation of the forward locomotion using c302. (a) Neuron
membrane potential dynamics. (b) Internal calcium concentration of the 95 body-wall
muscle cells.
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Figure 4.13: Simulation of the worm’s neural circuit and muscles during 5 seconds of real
time simulation of the forward locomotion using c302. (a) Neuron membrane potential
dynamics. (b) Internal calcium concentration of the 95 body-wall muscle cells.
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Figure 4.14: Simulation of the worm’s crawling in Sibernetic worm simulator. Seven
time-elapses in the 5-second forward crawling is represented from I to VII. The pink
colored regions of the worm’s body indicate contracted body wall muscles.
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CHAPTER 5
Conclusion

5.1 Summary/Discussion

In this thesis, we improved the process of generating neural network models, using
c302, one of the subprojects of OpenWorm, by adding different parameters, to make the
definition of components and properties of the network more customizable.

We modified the parameters of the preexisting single-compartmental conductance-based
neuron model, so it generates graded membrane potentials instead of burst firing. Al-
though the modified neuron model was able to generate graded membrane potentials,
the output of the simulated internal calcium concentration was not as desired because
the internal calcium concentration decreases after increasing the input current, as shown
in figure 5.1. The output of the simulation was generated, by injecting input pulses into
a neuron with increasing amplitude, from 1 pA to 6 pA.

We run experiments while making use of a genetic algorithm, for automatic optimization
of the activation time of motor neurons and the spike frequency of muscle cells. Due to
the not-desirable result of the first experiment, we reduced the number of parameters, in
subsequent experiments. This could be achieved, by sequentially optimizing parameters
of different synapses.

The predominant part of this thesis is the design and implementation of a new single-
compartmental conductance-based neuron circuit model responsible for generating phase-
shifted activities of dorsal and ventral body-wall muscles, propagating from neck to tail,
resulting into forward-crawling locomotion of C. elegans. We implemented our new model
within the OpenWorm platform to induce forward crawling of the worm while making use
of the output of our neural circuit model, instead of using a simple sine-wave generator,
as before.
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Figure 5.1: Internal calcium concentration of a single neuron, using our modified parameter
set, after injecting 6 current pulses with increasing amplitude, from 1 pA to 6 pA, and a
duration of 800 ms. It shows a decreased calcium concentration using an input current
with increased amplitude.

To make it easier for users to design and run their own in silico experiments within the
OpenWorm platform, we created a docker container integrating different OpenWorm
projects, and their dependencies.

5.2 Future work

The neuron and muscle model we used has still some flaws. While it is able to generate
graded membrane potentials, as desired, the amplitude of the internal calcium concen-
tration reduces after increasing the amplitude of the input current. Thus, one of the
next steps would be to change this behavior. This could be achieved, by modifying the
parameters of the neuron model.

Muscle cells also generate graded membrane potentials, with our model. There is evidence
that they rather generate all-or-none action potentials [LGC+11, GZ11]. Thus, we can
implement a more realistic behaving muscle cell, based on the recordings of the muscles
and ion channels.

Within the OpenWorm platform, all neurons share the same computational model. Based
on electrophysiological experiments, we know that the activity of neurons within the
nervous system of C. elegans show different dynamics. Thus, we can apply changes to
c302, to enable the user to define different neuron models.

Gap junctions are modeled as bidirectional connections, within the OpenWorm platform.
There is evidence that antidromic-rectifying gap junctions, i.e., current flow only in one
direction, away from axon terminals to the soma, exist within the nervous system of C.
elegans. Besides the rectifying aspect, it has been shown that they act as an amplifier of
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chemical synapses connecting the same pair of neurons as the gap junctions [LCMW17].
Although the recordings were made for neurons known to be part of a circuit responsible
for inducing backward locomotion of the worm, rectifying gap junctions could also play
an important role for proper functioning of the forward locomotion circuit. To analyze
the importance of such gap junctions within our new forward crawling neuron circuit
model, we can implement unidirectional gap junctions.

To generate a more biologically realistic model, for generating forward crawling of the
worm, the next future steps are the relaxation of the assumptions that we incorporated
during the design of our neural circuit model. AVB command neurons get activated
with a directly injected pulse. In real worms, they receive input coming from multiple
sensory neurons and other interneurons. Thus, we can include these neurons in our
model. Instead of injecting current directly into muscle cells located in the head, we can
include another circuit which is able to generate oscillating activity of those muscles. The
periodic input into the first B-type motor neurons, DB1 and VB1, can be replaced by an
oscillating network, or intrinsically oscillating motor neurons. The chemical synapses,
for approximating the proprioceptive effect, can be removed, after the state of muscles,
as calculated by Sibernetic, can be fed back to c302. To get forward crawling behavior
without changing the synaptic weights, we can change the conductances of different
synapses.

As another future work, we can implement a neuron circuit model responsible for generat-
ing backward crawling behavior of C. elegans. We can incorporate similar assumptions as
used while we designed the forward crawling neuron circuit model. After we can generate
forward and backward crawling behavior, we can combine the circuits and include input
coming from sensory neurons, to simulate the tap-withdrawal reflex.
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APPENDIX A
Supplementary material

A.1 Network Configuration File - c302_FW.py
1 import sys
2 import os
3
4 sys.path.insert(0, os.path.abspath(’.’))
5
6 import c302
7
8 import neuroml.writers as writers
9

10 range_incl = lambda start, end:range(start, end + 1)
11
12
13 def setup(parameter_set,
14 generate=False,
15 duration=2000,
16 dt=0.05,
17 target_directory=’examples’,
18 data_reader="UpdatedSpreadsheetDataReader2",
19 param_overrides={},
20 verbose=True,
21 config_param_overrides={}):
22
23 exec (’from parameters_%s import ParameterisedModel’ % parameter_set,

globals())
24 params = ParameterisedModel()
25
26 params.set_bioparameter("unphysiological_offset_current", "0pA", "Testing

TapWithdrawal", "0")
27 params.set_bioparameter("unphysiological_offset_current_del", "0 ms", "

Testing TapWithdrawal", "0")
28 params.set_bioparameter("unphysiological_offset_current_dur", "2000 ms",

"Testing TapWithdrawal", "0")

61



A. Supplementary material

29
30 VB_motors = ["VB%s" % c for c in range_incl(1, 11)]
31 DB_motors = ["DB%s" % c for c in range_incl(1, 7)]
32 DD_motors = ["DD%s" % c for c in range_incl(1, 6)]
33 VD_motors = ["VD%s" % c for c in range_incl(1, 13)]
34
35 cells = list([’AVBL’, ’AVBR’] + DB_motors + VD_motors + VB_motors +

DD_motors)
36
37 muscles_to_include = True
38
39 cells_to_stimulate = []
40
41 cells_to_plot = list(cells)
42 reference = "c302_%s_FW" % parameter_set
43
44
45 conns_to_include = []
46 conns_to_exclude = [
47 ’VB2-VB4_GJ’,
48 ’VB4-VB2_GJ’,
49 ]
50 conn_polarity_override = {
51 r’^DB\d+-DD\d+$’: ’inh’,
52 r’^VB\d+-VD\d+$’: ’inh’,
53 }
54 conn_number_override = {
55 ’^.+-.+$’: 1,
56 }
57
58 input_list = []
59
60 input_list.append((’MVR10’, ’0ms’, ’150ms’, ’1pA’))
61 input_list.append((’MVR11’, ’0ms’, ’150ms’, ’2pA’))
62 input_list.append((’MVR12’, ’0ms’, ’150ms’, ’3pA’))
63 input_list.append((’MVR13’, ’0ms’, ’150ms’, ’3pA’))
64 input_list.append((’MVR14’, ’0ms’, ’150ms’, ’2pA’))
65 input_list.append((’MVR15’, ’0ms’, ’150ms’, ’1pA’))
66
67 input_list.append((’MVL10’, ’0ms’, ’150ms’, ’1pA’))
68 input_list.append((’MVL11’, ’0ms’, ’150ms’, ’2pA’))
69 input_list.append((’MVL12’, ’0ms’, ’150ms’, ’3pA’))
70 input_list.append((’MVL13’, ’0ms’, ’150ms’, ’3pA’))
71 input_list.append((’MVL14’, ’0ms’, ’150ms’, ’2pA’))
72 input_list.append((’MVL15’, ’0ms’, ’150ms’, ’1pA’))
73
74 input_list.append((’MDL21’, ’0ms’, ’250ms’, ’3pA’))
75 input_list.append((’MDL22’, ’0ms’, ’250ms’, ’3pA’))
76 input_list.append((’MDR21’, ’0ms’, ’250ms’, ’3pA’))
77 input_list.append((’MDR22’, ’0ms’, ’250ms’, ’3pA’))
78
79
80 amp = ’4pA’
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81 dur = ’250ms’
82
83 for stim_num in range(15):
84 for muscle_num in range(7):
85 mdlx = ’MDL0%s’ % (muscle_num + 1)
86 mdrx = ’MDR0%s’ % (muscle_num + 1)
87 mvlx = ’MVL0%s’ % (muscle_num + 1)
88 mvrx = ’MVR0%s’ % (muscle_num + 1)
89
90 if muscle_num >= 9:
91 mdlx = ’MDL%s’ % (muscle_num + 1)
92 mdrx = ’MDR%s’ % (muscle_num + 1)
93 mvlx = ’MVL%s’ % (muscle_num + 1)
94 mvrx = ’MVR%s’ % (muscle_num + 1)
95
96 startd = ’%sms’ % (stim_num * 800 + muscle_num * 30)
97 startv = ’%sms’ % ((stim_num * 800 + 400) + muscle_num * 30)
98
99 input_list.append((mdlx, startd, dur, amp))

100 input_list.append((mdrx, startd, dur, amp))
101 if muscle_num != 6:
102 input_list.append((mvlx, startv, dur, amp))
103 input_list.append((mvrx, startv, dur, amp))
104
105 d_v_delay = 400
106
107 start = 190
108 motor_dur = ’250ms’
109
110 input_list.append((’AVBL’, ’0ms’, ’%sms’%duration, ’15pA’))
111 input_list.append((’AVBR’, ’0ms’, ’%sms’%duration, ’15pA’))
112 input_list.append((’DB1’, ’%sms’%(start), motor_dur, ’3pA’))
113 input_list.append((’VB1’, ’%sms’%(start+d_v_delay), motor_dur, ’3pA’))
114
115 i = start + 2 * d_v_delay
116 j = start + 3 * d_v_delay
117 for pulse_num in range(1,15):
118 input_list.append((’DB1’, ’%sms’%i, motor_dur, ’3pA’))
119 input_list.append((’VB1’, ’%sms’%j, motor_dur, ’3pA’))
120 i += d_v_delay * 2
121 j += d_v_delay * 2
122
123 config_param_overrides[’input’] = input_list
124
125 param_overrides = {
126 ’mirrored_elec_conn_params’: {
127
128 r’^AVB._to_DB\d+\_GJ$_elec_syn_gbase’: ’0.001 nS’,
129 r’^AVB._to_VB\d+\_GJ$_elec_syn_gbase’: ’0.001 nS’,
130
131 r’^DB\d+_to_DB\d+\_GJ$_elec_syn_gbase’: ’0.001 nS’,
132
133 r’^VB\d+_to_VB\d+\_GJ$_elec_syn_gbase’: ’0.001 nS’,
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134
135 r’^DB\d+_to_VB\d+\_GJ$_elec_syn_gbase’: ’0 nS’,
136 r’^DB\d+_to_DD\d+\_GJ$_elec_syn_gbase’: ’0 nS’,
137 r’^VB\d+_to_VD\d+\_GJ$_elec_syn_gbase’: ’0 nS’,
138
139 ’DD1_to_MVL08_elec_syn_gbase’: ’0 nS’,
140 ’VD2_to_MDL09_elec_syn_gbase’: ’0 nS’,
141 },
142
143 r’^VB\d+_to_VB\d+$_exc_syn_conductance’: ’18 nS’,
144 r’^VB\d+_to_VB\d+$_exc_syn_ar’: ’0.19 per_s’,
145 r’^VB\d+_to_VB\d+$_exc_syn_ad’: ’73 per_s’,
146 r’^VB\d+_to_VB\d+$_exc_syn_beta’: ’2.81 per_mV’,
147 r’^VB\d+_to_VB\d+$_exc_syn_vth’: ’-22 mV’,
148 r’^VB\d+_to_VB\d+$_exc_syn_erev’: ’10 mV’,
149
150 r’^DB\d+_to_DB\d+$_exc_syn_conductance’: ’20 nS’,
151 r’^DB\d+_to_DB\d+$_exc_syn_ar’: ’0.08 per_s’,
152 r’^DB\d+_to_DB\d+$_exc_syn_ad’: ’18 per_s’,
153 r’^DB\d+_to_DB\d+$_exc_syn_beta’: ’0.21 per_mV’,
154 r’^DB\d+_to_DB\d+$_exc_syn_vth’: ’-10 mV’,
155 r’^DB\d+_to_DB\d+$_exc_syn_erev’: ’10 mV’,
156
157 ’initial_memb_pot’: ’-50 mV’,
158
159 ’AVBR_to_DB4_exc_syn_conductance’: ’0 nS’,
160
161 ’AVBL_to_VB2_exc_syn_conductance’: ’0 nS’,
162
163 ’AVBR_to_VD3_exc_syn_conductance’: ’0 nS’,
164
165 ’DD1_to_VB2_inh_syn_conductance’: ’0 nS’,
166
167 ’neuron_to_muscle_exc_syn_conductance’: ’0.5 nS’,
168 r’^DB\d+_to_MDL\d+$_exc_syn_conductance’: ’0.4 nS’,
169 r’^DB\d+_to_MDR\d+$_exc_syn_conductance’: ’0.4 nS’,
170 r’^VB\d+_to_MVL\d+$_exc_syn_conductance’: ’0.6 nS’,
171 r’^VB\d+_to_MVR\d+$_exc_syn_conductance’: ’0.6 nS’,
172 ’neuron_to_muscle_exc_syn_vth’: ’37 mV’,
173 ’neuron_to_muscle_inh_syn_conductance’: ’0.6 nS’,
174 ’neuron_to_neuron_inh_syn_conductance’: ’0.2 nS’,
175
176 ’AVBR_to_MVL16_exc_syn_conductance’: ’0 nS’,
177 ’ca_conc_decay_time_muscle’: ’60.8 ms’,
178 ’ca_conc_rho_muscle’: ’0.002338919 mol_per_m_per_A_per_s’,
179
180 }
181
182
183 nml_doc = None
184 if generate:
185 nml_doc = c302.generate(reference,
186 params,
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187 cells=cells,
188 cells_to_plot=cells_to_plot,
189 cells_to_stimulate=cells_to_stimulate,
190 conns_to_include=conns_to_include,
191 conns_to_exclude=conns_to_exclude,
192 conn_polarity_override=conn_polarity_override

,
193 conn_number_override=conn_number_override,
194 muscles_to_include=muscles_to_include,
195 duration=duration,
196 dt=dt,
197 target_directory=target_directory,
198 data_reader=data_reader,
199 param_overrides=param_overrides,
200 verbose=verbose)
201
202 for stim_input in input_list:
203 cell, start, dur, current = stim_input
204 c302.add_new_input(nml_doc, cell, start, dur, current, params)
205
206 nml_file = target_directory + ’/’ + reference + ’.net.nml’
207 writers.NeuroMLWriter.write(nml_doc, nml_file) # Write over network

file written above...
208
209 print("(Re)written network file to: " + nml_file)
210
211
212 return cells, cells_to_stimulate, params, muscles_to_include, nml_doc
213
214
215 if __name__ == ’__main__’:
216 parameter_set = sys.argv[1] if len(sys.argv) == 2 else ’C2’
217 data_reader = sys.argv[2] if len(sys.argv) == 3 else ’

UpdatedSpreadsheetDataReader2’
218
219 setup(parameter_set, generate=True, data_reader=data_reader)

Listing A.1: c302_FW.py
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