
Master’s Thesis

Sum-Product Networks for
Efficient Probabilistic Inference

Richard Prüller
Mat.Nr. 1126814

January 10, 2019

Univ. Ass. Dipl.-Ing.

Rene Repp
Ao.Univ.Prof. Dipl.-Ing. Dr.techn.

Franz Hlawatsch

Institute of Telecommunications
Technische Universität Wien

institute of
telecommunications

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



Abstract

Sum-product networks (SPNs) are a recently proposed probabilistic graphical model
(PGM). Unlike many other PGMs however, many inference tasks are tractable using SPNs.
SPNs are typically learned from data, which puts SPNs in the wider field of machine
learning. The tractable inference tasks an SPN can perform include the evaluation of
marginal and conditional distributions, the computation of the minimum mean square
error (MMSE) estimate and variance, as well as conditional sampling. SPNs are interesting
because once the network is learned, many different inference tasks, conditioned on different
inputs, can be performed. This is in contrast to many other traditional machine learning
models like e.g., deep neural networks (NNs), where a new network needs to be trained if
the task changes e.g., from classification to regression. SPNs are therefore an interesting
topic to study, and the growing number of publications indicates an increasing interest.
In this masters thesis, it is discussed how inference with generalized SPNs works and
how the structure and parameters of the network can be learned from data, in both an
offline and an online manner. At the end some experimental results are presented, based
on publicly available datasets and self conducted 4th generation wireless (LTE) datarate
measurements.
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Kurzfassung

Sum-Product Networks (SPNs) sind ein kürzlich vorgeschlagenes probabilistisches graphis-
ches Modell (PGM). Im Gegensatz zu vielen anderen PGMs können jedoch viele Inferen-
zaufgaben mithilfe von SPNs effizient gelöst werden. SPNs werden in der Regel aus Daten
gelernt, wodurch SPNs in den weiteren Bereich des maschinellen Lernens einbezogen wer-
den. Zu den effizient lösbaren Inferenzaufgaben, die ein SPN durchführen kann, gehören
die Evaluierung von Randverteilungen und bedingten Verteilungen, die Berechnung des
minimum mean square error (MMSE) Schätzers und der Varianz, sowie das Ziehen von
bedingten Realisierungen von der gelernten Verteilung. SPNs sind interessant, da, sobald
das Netzwerk einmal gelernt ist, viele verschiedene Inferenzaufgaben beantwortet werden
können, die auf verschiedenen Eingaben basieren. Dies steht im Gegensatz zu vielen an-
deren traditionellen maschinellen Lernmodellen, wie z.B. tiefe neuronale Netzwerke (NNs),
bei denen ein neues Netzwerk trainiert werden muss, wenn sich die Aufgabe ändert, z.B.
von Klassifizierung zu Regression. SPNs sind daher ein interessantes Thema, und die wach-
sende Anzahl von Publikationen zeigt ein zunehmendes Interesse. In dieser Masterarbeit
wird präsentiert, wie Inferenz mit verallgemeinerten SPNs funktioniert und wie Struktur
und Parameter des Netzwerks sowohl offline als auch online aus Trainingsdaten gelernt
werden können. Am Ende werden einige experimentelle Ergebnisse präsentiert, die auf
öffentlich verfügbaren Datensätzen und selbst durchgeführten LTE-Datenratenmessungen
basieren.
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Chapter 1

Introduction and Outline

This thesis discusses sum-product networks (SPNs), a recently introduced probabilistic
graphical model (PGM). SPNs were first proposed in 2011 [32], and ever since, a growing
number of related publications has been released each year. Like many other PGMs, SPNs
are learned or trained from data, which puts them into the bigger field of machine learning.
The big advantage of SPNs compared to many other PGMs is that they allow for efficient
inference. This puts SPNs in an interesting position. On the one hand, we have very
specialized deterministic machine learning concepts like e.g. neural networks, which are
trained with a very specific task in mind, e.g. classification. Once training is done, however,
they can perform very efficiently. On the other hand, we have traditional PGMs, which
model the distribution of the data directly and can answer various probabilistic queries,
but usually only with a high or even prohibitive computational effort. In a way, SPNs
combine the best of these two worlds, and this makes them an interesting research topic.

The probably biggest advantage SPNs have compared to traditional neural networks
(NNs), is that SPNs do in general not require a re-training once the task changes. A
traditional NN is trained discriminatively, i.e., every training sample is divided into an
input and a corresponding output, and we want to learn the function connecting input
with output. After training, the NN can only predict the output for a given input as it
was trained, and we can not use the NN for any other task without re-training. SPNs on
the other hand are a generative model. This means that rather learning a function, SPNs
learn the distribution underlying the training data. SPNs allow us to access this learned
distribution very efficiently, and to answer many questions related to the distribution
without the need for re-training. For example, a classical machine learning task is image
classification, i.e., estimating the “content” or “label” given a set of pixel values (the
image). Training an NN in this context would mean to use the pixel values as input and
the label as output and learning the function connecting the two. We can use this trained
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NN to classify images, but nothing else. An SPN trained on the same data set allows for
much more however, e.g., we could revert the process and generate images for a given
label, or we could complete an image if only a part of the image is given. Since SPNs are
probabilistic in nature, we can also give an estimation of the variance of our predictions,
which is another advantage over traditional machine learning methods.

SPNs are still a rather new topic and because of that the understanding of what SPNs
actually are can be different from author to author, and while the general idea is always
the same, some aspects can vary. For the most part however, the theoretical foundations
of SPNs are established [6], [20], [29], [31] and newer publications are rather concerned
with better and more efficient training algorithms [12], [13], [28]. State of the art training
algorithms [13], [28] achieve performance that rivals that of NNs in many applications.

The goal of this thesis is to provide an overview of SPNs. This includes the most
important theoretical properties and a derivation of commonly used inference tasks. We
will also provide the necessary methods to learn SPNs based on mixed, i.e., continuous
and discrete, data.

The rest of this Master’s thesis is outlined as follows:

Chapter 2: Some fundamentals of graph theory, machine learning and PGMs are pre-
sented. We discuss the most important nomenclature and concepts of graph theory
in the context of SPNs. We provide a formal definition of graphs and digraphs, a
description of trees, which are traditionally found in computer science, and finally
computational graphs, which are a practical tool to describe SPNs. A brief intro-
duction to machine learning is given, with special attention to the terminology and
common practices of the learning process itself. Finally, PGMs are linked to graph
theory and machine learning.

Chapter 3: The different building blocks of SPNs and how they work together is outlined
and an interpretation of the inner workings of an SPN is given. The most important
inference tasks an SPN can solve exactly are formally described and demonstrated
with the help of a simple toy example. At the end, some additional properties of
SPNs are described.

Chapter 4: Two algorithms to learn SPNs from data are presented. The first, Learn-
SPN [9] is a very general learning algorithm to learn the structure of an SPN in an
offline manner, i.e., all the training data is available at once. The second presented
learning algorithm is used to learn the structure of an SPN in an online manner, i.e.,
only some training data samples are available at a time. Both algorithms require
some additional, mostly exchangeable, internal methods that are separately described
at the end of the chapter.
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Chapter 5: In the final chapter, we present some experimental results. We compare the
performance of the training methods presented in Chapter 4 with each other using
some binary data sets commonly found in the SPN literature [9], [13], [32], [33], [37].
The MNIST data set of handwritten digits [17] is used to demonstrate the sampling
and image completion capabilities of SPNs. Finally, we use 4th generation mobile
datarate measurements for several prediction tasks.
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Chapter 2

Some Fundamentals

This chapter reviews some established definitions and concepts with which the reader may
be already familiar. The goal here is to create some common ground and introduce the
notation and terminology used in later chapters.

2.1 Graph Theory

This section is an overview of some basic terminology and definitions from graph theory
that are used to describe SPNs. Much more detailed descriptions of graphs and digraphs
can be found in [8] and [2], respectively. The standard terminology for trees in computer
science is taken from [15], and a short introduction to computational graphs can be found
in [10].

2.1.1 Graphs and digraphs

An undirected graph or just graph G = (V,E) is a pair of sets V and E. The set V is a
non-empty set of vertices or nodes and the set of edges E ⊆ V× V contains those pairs of

(a) Undirected graph (b) Oriented graph

Figure 2.1: Comparison of an oriented graph and the corresponding undirected graph.
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nodes that are connected in the graph. While the term “vertices” is usually used in the
mathematical literature, “nodes” is much more common in computer science and in the
SPN related literature, which is why it is used in this thesis. An example of a graph can
be seen in fig. 2.1a. The number of edges connected to a node N is called the degree of N .
It is not uncommon that a value is associated with an edge, usually a real valued scalar
called weight. A graph containing such weighted edges is called a weighted graph.

Two nodes N0 and Nk of a graph G = (V,E) are said to be connected by a path of
length k if there exists a set of distinct nodes VP = {N0,N1, . . . ,Nk} ⊆ V and a set of
edges EP = {(N0,N1), (N1,N2), . . . , (Nk−1,Nk)} ⊆ E. A cycle is a path extended by an
edge that connects the last node of the path with the first one. A special case of a cycle is
a loop, which is a single edge that starts and ends in the same node. Graphs containing
cycles are said to cyclic, in contrast to acyclic graphs, which do not contain any cycles.
If every node of a graph is connected to every other node by a path, then the graph is
said to be connected. From here on, all graphs in this thesis are implicitly assumed to be
connected.

A different kind of graph is the directed graph or digraph. A digraph D = (V,A) is
again a pair of sets. The set of nodes V is identical to that of an undirected graph, but
instead of edges E, there is a set of arcs or directed edges A. An arc is an ordered pair
(N1,N2) ∈ V× V, where N1 and N2 are called tail and head, respectively. The in-degree
(out-degree) of a node of a digraph is the number of arcs that have their head (tail) in that
node. If a digraph is depicted like in fig. 2.1b, an arc is usually drawn as an arrow pointing
from tail to head. Usually, the number of arcs that can stretch between two nodes of a
digraph is limited to maximally one. If we additionally forbid loops, i.e, arcs whose head
and tail coincide, then we have an oriented graph. The graph in fig. 2.1b is an example
of an oriented graph. Concepts like edge weights, paths, cycles, and connectivity can be
applied to digraphs as well; however, for paths and cycles the direction of the arcs needs to
be taken into consideration. For example, the graph in fig. 2.1a is cyclic, but the digraph
in fig. 2.1b is not because the directions of the arcs do not allow for cycles. An acyclic
digraph is often abbreviated as DAG (directed acyclic graph). Here, we restrict DAGs to
be oriented graphs, i.e., DAGs are digraphs with at most one arc between two nodes and
no circles or loops.

2.1.2 Trees and rooted DAGs

A tree is a connected acyclic graph, which implies that exactly one path leads from one
node to another. In a similar fashion, an in-branching (out-branching) oriented tree or
arborescence is a connected, acyclic, oriented graph and thus a DAG by our definition,

13



1

2 3

6 7 8 4 5

9 10 11 12

Figure 2.2: In-branching oriented tree

1

2

36 7 8

4 5

9 10 11 12

Figure 2.3: Rooted DAG

with a node R such that exactly one path leads to (from) R from (to) every other node.
This unique node R is called the root of the oriented tree and has out-degree (in-degree)
zero in in-branching (out-branching) trees. All nodes of a tree only connected by one
edge or arc are called leaves of the tree. Figure 2.2 shows an example of an in-branching
oriented tree, where node 1 is the root and nodes 6 to 12 are the leaves.

Trees are important in computer science, and a distinct terminology based on family
trees can be found there, which is also used throughout this thesis. If two nodes N0 and
N1 are connected by an edge or arc and N0 is the node closer to the root, then N0 is called
the parent of N1 and likewise N1 is a child of N0. We denote the set of all children of a
node N by CN . For a node C1 ∈ CN , the nodes in CN \ {C1} are called the siblings of C1.
In fig. 2.2, node 2 would be the parent of nodes 6, 7 and 8, and nodes 7 and 8 would be the
siblings of node 6. In further analogy to a family tree, we have ancestors and descendants.
The ancestors of a node N are all nodes on the path from the root to N , including the
root but excluding the node N itself, while the descendants of N are all nodes of the tree
which have N on their path to the root. The descendants of the root are all nodes of the
tree except for the root. Again in fig. 2.2, nodes 1 and 3 are the ancestors of nodes 4 and
5 while nodes 4, 5 and 9 through 12 are the descendants of node 3. It is easy to see that a
node together with its descendants forms itself a tree, a so-called subtree of the whole tree.
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Figure 2.4: A computational graph computing the Gaussian PDF from eq. (2.1) using
common math operators and functions as admissable operations.

We can conclude that parents are always ancestors and children are always descendants,
and that leaves have no descendants and the root has no ancestors.

The nomenclature of oriented trees can be extended to the more general DAGs. As is
shown in [2], every DAG has at least one node with in-degree zero and out-degree zero.
Based on this, one of these nodes can be designated as root and the DAG becomes a
rooted DAG, which is very similar to a tree. In contrast to an oriented tree, the nodes of a
rooted DAG can have multiple parents, and thus multiple paths can lead from the root
to some other node. The set of parents of a node N of a rooted DAG is denoted by PN .
Similar to trees, the ancestors of N are the nodes on the, possibly multiple, paths from N
to the root. The root is an ancestor of every other node in the graph, except of the root
node itself. The siblings of a node of a rooted DAG are the union of all the siblings of the
multiple parents of the node. An example of a rooted DAG is depicted in fig. 2.3; this is
just the tree from fig. 2.2 with a few arcs added. In this figure, for example, the parents of
node 10 are nodes 3 and 4, its siblings are nodes 4, 5 and 9, and its ancestors are nodes 1,
2, 3, 4 and 7.

2.1.3 Computational graphs

Computational graphs are not a topic of graph theory per se, but are usually found in the
machine learning literature like e.g. [10]. A computational graph represents a computation
by an oriented graph. While cycles are permitted in general, we here restrict ourselves to
rooted DAGs, because many explanations become much simpler and only computational
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graphs corresponding to rooted DAGs are relevant for SPNs. Leaves of a computational
graph are the inputs, while every other node is one of possibly many admissable operations.
The results of the children of a node are the operands of the operation represented by
the node, and every node forwards its result to its parents. The result of the root is the
overall result of the computation, i.e., the output for a given set of inputs. Computational
graphs are usually evaluated bottom-up, i.e., from the leaves to the root, and every node
can be computed as soon as the outputs of its children were computed. Figure 2.4 shows
a computational graph that represents the computation of the univariate Gaussian PDF,
i.e.,

N
(
x;µx, σ

2
x

)
= 1√

2πσ2
x

exp
(
−x− µx

2σ2
x

)
, (2.1)

where the inputs (leaves) are highlighted with a thick border.

2.2 Machine Learning

Since SPNs are trained or learned from data, many concepts known from machine learning
can be applied here as well. This section is intended as a very superficial overview of
the most basic principles of machine learning. A much more in-depth discussion of the
concepts presented here can be found in [10].

The idea of machine learning, or training programs with collected data, can be traced
back to the early days of computers, and by the end of the 1950s, the term machine
learning began to be used [35]. A period of renewed interest began in 2006 when some
important breakthroughs allowing the efficient training of artificial neural networks (or
briefly neural networks, NNs) were achieved. NNs are usually represented by a multi-rooted
computational graph and the nodes are called neurons, in analogy to our understanding of
how a brain works, a NN is structured in layers. In a traditional feed-forward NN, the
outputs from one layer can only be used as inputs for the next layer. NNs typically have
one or more dedicated input layers, i.e., layers only containing leaves, and a dedicated
output layer containing only the roots. One general result is that deep NNs with many
layers have better performance than shallow models with only very few layers but an
identical number of neurons. However, deeper NNs are much more difficult to train. The
past decade of machine learning research was dominated by NNs and in particular by
training ever deeper models (deep learning) and the use of NNs for different applications.

According to [23], machine learning is related to the capability of a program to learn
from experience, which it does by improving some performance measure with respect
to a class of tasks. The experience generally comes from three possible sources, which
in turn characterize how a program learns. One possible source is a labeled data set,
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i.e., samples with a known ground truth. Learning techniques utilizing such a data set
are called supervised; examples include NNs and support vector machines. On the other
hand, unsupervised learning is based on unlabeled samples where a ground truth is not
available or too expensive to obtain. Principal component analysis as well as clustering
algorithms like k-means count among the unsupervised learning techniques. The third
training paradigm is commonly known as reinforcement learning; here a program learns
by interacting with its “environment” and from the feedback of its actions.

Some typical tasks of machine learning are classification, regression, i.e., predicting
a numerical value, and anomaly detection. The performance measure is usually closely
connected to the task. For example, if the task is classification, then a simple ad-hoc
performance measure would be the fraction of correctly classified samples from a given set,
which is sometimes called classification accuracy.

In most cases in machine learning, a model is trained, and this model has a number
of parameters that are subject to optimization during training. Typically, training a
model means finding those model parameters that optimize the performance measure.
The training procedure itself usually has some parameters as well, called hyperparameters,
which are in general not optimized along with the model parameters. This means that
hyperparameters need to be optimized using another procedure on top of the regular
training. Simple yet popular examples of such a procedure are a grid search and a random
search.

It is common to split the available data into two separate data sets. The largest
of the two data sets should be the training set, which is used as input for the training
procedure to find good model parameters. The second data set is the test set, a set of
data samples not used during training, which is used to measure the performance of the
trained model. For hyperparameter training an additional set, the validation set, is split
from the training set. The validation set is used to measure the performance between the
different hyperparameter configurations, and to enable more sophisticated hyperparameter
learning procedures, e.g., gradient descent based algorithms. It is important that all three
data sets have the same distribution as the real data.

A learned model is said to generalize well if it has good performance on previously
unseen data. This can be quantified by computing a performance measure for the training
set and for the test set, and a subsequent comparison of the two. Generalization is
very important in machine learning, and is an aspect distinguishing machine learning
from traditional optimization, where the training and test set coincide. Going back to
our classification example, let us assume we train a model to achieve the best possible
classification accuracy on the training set, i.e., we optimize it with regard to the performance
measure. Let us assume that we optimized our model with regard to the training set or
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validation set if a hyperparameter search was used. In the context of optimization we are
done and we do not care how the trained model performs on unseen data, because unseen
data does not exist in the framework of optimization. For machine learning however,
a good training set performance is not necessarily required, as long as a good test set
performance is achieved.

Generalization is related to the capacity of a model, which is roughly speaking the
amount of information that can be stored in the model. If the capacity is too low, then
the model is underfitting as it will never be able to fully store the dependencies within
the data and no amount of training can fix this, which also means that the training set
performance stays low. On the other hand, if capacity is too high, then the model is
prone to overfitting, i.e., it stores too much information about the training data, which
leads to bad generalization. The usual way around this problem is to take a model with
high capacity and then use some form of regularization, i.e., some measure aiming to
improve the test set performance, possibly at the cost of the training set performance.
Most regularization techniques involve some hyperparameters, but those are usually easier
to fine-tune than optimizing model capacity directly.

2.3 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) have been a topic of research since the late 1970s,
beginning with Markov random fields [14] and Bayesian networks [27]. Based on their
underlying graphs, PGMs may be undirected like Markov random fields, or directed like
Bayesian networks. These models aim to efficiently describe the distribution of random
variables by modeling their dependencies, and they allow for inference directly based on
the model. Typically, inference in these scenarios means drawing samples or computing
an expectation from the distribution while conditioning on some evidence, i.e., known
values of some of the random variables. While the structure of Markov random fields and
Bayesian networks is rather simple, inference is usually not and becomes computationally
prohibitive for larger and more complex distributions. A lot of research has gone into this
still active field, with the goal of improving the quality and speed of inference. A whole
range of other PGMs has been developed to tackle different tasks like temporal prediction
and decision making, accompanied by many approximate inference techniques to make
the computation possible [16].

What all PGMs have in common is that they store the information about the modeled
distribution in a combination of their structure and their internal parameters. This
information is usually learned from observed samples, which means that many principles
from machine learning can be applied in the context of PGMs as well.
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Chapter 3

Sum-Product Networks

SPNs are directed PGMs based on rooted DAGs, and are usually represented with sum
nodes and product nodes. An SPN models a distribution p(x) of a generally mixed (discrete
and continuous) random vector x. Some restrictions on the structure need to be imposed,
in order to guarantee that the SPN is valid, i.e., that the represented distribution is always
non-negative and integrates or sums to one. Once trained, an SPN can be used for different
inference tasks, such as computing the value of the distribution, the mean, the variance,
etc. Another strength of SPNs is that all these inference-related queries can be answered
for marginal distributions and conditional distributions involving the random variables
the SPN was trained on. For example, if an SPN was trained with samples from p(a, b), it
can be used to estimate e.g. p(a), p(a|b), E{b|a}, etc.

3.1 Mixture Models and Independence Assumptions

Before formalizing SPNs in the next section, we dedicate this section to an introduction of
the mixture models and independence assumptions SPNs are based upon.

A mixture model is a structural assumption about a distribution p(x) of a random
vector x of generally mixed (discrete and continuous) random variables. If p(x) is a
mixture, we can express it as

p(x) =
M∑
m=1

wmpm(x), (3.1)

where the wm are the mixture weights and the pm(x) are the mixture components, which
are themselves distributions. The weights wm must be non-negative and sum to one, i.e.,
wm ≥ 0 and ∑M

m=1 wm = 1. Sometimes it is useful to introduce a discrete latent random
variable m ∈ {1, 2, . . . ,M} to express the mixture components pm(x) as conditional
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distributions, i.e.,

p(x) =
M∑
m=1

p(x|m = m)pm(m). (3.2)

By comparing eq. (3.1) with eq. (3.2), we can see that wm = pm(m) and pm(x) = p(x|m =
m).

Another kind of assumption one can make about a distribution is an independence
assumption. If we partition the random vector x into N random sub-vectors xn and we
assume that these random sub-vectors are all statistically independent from one another,
we obtain

p(x) =
N∏
n=1

p(xn). (3.3)

3.1.1 Illustrative example

We now present an example of a distribution and how to express it in terms of mixture
models and independence assumptions, and we will make the link to SPNs. Individually,
mixture models and independence assumptions have limited use when modelling more
general distributions. We will however see that a combination of both can be quite
expressive. To illustrate this we will take a look at a simple example. We assume a
distribution p(a, b, c), where a and b are Gaussian mixtures, i.e., mixture models with
Gaussian components, and c is an arbitrary discrete random variable. Furthermore, we
assume c to be statistically independent from a and b, and according to eq. (3.3) this
implies that

p(a, b, c) = p(a, b)pc(c). (3.4)

Let the joint distribution p(a, b) be a 2-D mixture model with three components M1, M2

and M3, and let the three mixture components be individually uncorrelated (and thus
statistically independent) Gaussians, i.e.,

p(a, b|m = 1) = fa|m(a|1)fb|m(b|1) = N
(
a;µa,1, σ

2
a,1

)
N
(
b;µb,1, σ

2
b,1

)
(3.5)

p(a, b|m = 2) = fa|m(a|2)fb|m(b|2) = N
(
a;µa,1, σ

2
a,1

)
N
(
b;µb,2, σ

2
b,2

)
(3.6)

p(a, b|m = 3) = fa|m(a|3)fb|m(b|3) = N
(
a;µa,2, σ

2
a,2

)
N
(
b;µb,2, σ

2
b,2

)
. (3.7)

The joint distribution p(a, b) is illustrated in fig. 3.1. If we now use eq. (3.2) and insert
eqs. (3.5) to (3.7) into eq. (3.4), we obtain

p(a, b, c) = pc(c)
[
w1N

(
a;µa,1, σ

2
a,1

)
N
(
b;µb,1, σ

2
b,1

)
+

+ w2N
(
a;µa,1, σ

2
a,1

)
N
(
b;µb,1, σ

2
b,1

)
+ w3N

(
a;µa,1, σ

2
a,1

)
N
(
b;µb,1, σ

2
b,1

)]
. (3.8)

20



b

aµa,1

µb,1

µa,2

µb,2

M1

M2 M3

p(a)

aµa,1 µa,2

p(b)

bµb,1 µb,2

Figure 3.1: 2-D Gaussian mixture with three components M1, M2 and M3.
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Figure 3.2: SPN representing p(a, b, c), where a and b are the Gaussian mixtures corre-
sponding to fig. 3.1 and c is a discrete random variable.

Based on eq. (3.8), we can make a number of interesting observations. For example, we
can obtain a computational graph of eq. (3.8) with univariate distributions as inputs, and
with products and weighted sums as admissable operations. The resulting graph is depicted
in fig. 3.2, where wPm = wm. This computational graph is an SPN, or put differently,
SPNs can be interpreted as the computational graphs of equations similar to eq. (3.8).
We can further see that the sum S in the SPN corresponds to a mixture and that the
products P1, P2, and P4 correspond to independence assumptions. The structure of the
SPN is tied to the assumptions we made about the distribution, i.e., when we assumed a
mixture and when we assumed independence. Based on the latent variable interpretation
of mixture models, every descendant of S is conditioned on a value of the latent variable
m. The latent variable m does not show up at the root R, because the sum node sums
it out, as we can see in eq. (3.2). Finally, we can observe that every node in the graph
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represents a distribution, and that the root represents the overall distribution p(a, b, c).

3.2 Generalized SPNs

We will now formalize the observations made at the end of the previous section. Originally,
SPNs were defined not with univariate leaves, but with indicator leaves [32]. This comes
from the fact that SPNs originated from arithmetic circuits [5], a related PGM. Soon
however [9] these indicator leaves were generalized to univariate leaves and the resulting
SPNs are called generalized SPNs, however, the “generalized” is usually omitted. In this
thesis we will focus only on generalized SPNs and we will refer to them as just SPNs from
now on.

An SPN is a representation of a distribution p(x) and it models this distribution using
mixtures and independence assumptions. In general, every distribution p(x) of a random
vector x = (x1, . . . , xN)> can be approximated based on eqs. (3.2) and (3.3) using M
mixture components, i.e.,

p(x) ≈
M∑
m=1

pm(m)
N∏
n=1

p(xn|m = m). (3.9)

The graph of an SPN equals the computational graph of eq. (3.9) with univariate distri-
butions as inputs and products and weighted sums as admissable operations. However,
the problem of eq. (3.9) is that it can require a very large M for a good approximation.
SPNs allow for an elegant reduction of the actually required number of parameters, i.e.,
sum weights, by introducing structure to the graph. We have seen this effect already. If
we compare fig. 3.2 with eq. (3.9), we see that pc(c) was effectively pulled out of the sum,
thus decreasing the complexity of the sum node and the product nodes below. Generally,
it can be proven [6] that a shallow SPN might require up to exponentially more nodes
than a deeper SPN to represent the same distribution.

SPNs can do more than just compute the value of p(x) for a given realization x, and
while the graph stays the same, the exact operations depend on the inference task. It is
thus reasonable to think of an SPN as an ensemble of computational graphs, where every
computational graph has sum, product, and univariate nodes with varying operations.
Rather to view the “sums” and “products” in an SPN as the actual arithmetic operations,
it is better to see them as mixture models and independence assumptions, respectively.

Every node N in an SPN represents a distribution of a random vector x that is
specific to the node, and we will denote this distribution with pN (x). With a more
complicated structure of an SPN comes a more complicated equivalent to eq. (3.9), i.e.,
sums and products might alternate and get nested. Every sum brings with it its own
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latent variable and thus nodes further away from the root are usually conditioned on many
latent variables. As these latent variables are rather a theoretical tool, and practically
not relevant in most cases, we will omit them for notational simplicity. The subscript
N in pN (x) serves as a reminder that in general, due to the latent variables, every node
represents a conditional distribution with different conditional constraints. The scope SN
of a node N that represents pN (x) is the set of all random variables in x. For example, if
we consider the SPN in fig. 3.2, the scope of the root is SR = {a, b, c}, while the scope of
the sum is SS = {a, b}, and the scope of U1 is SU1 = {b}.

An SPN is called valid if it represents a valid distribution, i.e., the distribution is
non-negative and integrates/sums to one. Considering that the weights wm = pm(m) in
eq. (3.9) are non-negative and sum to one, and assuming that the p(xn|m = m) are valid
themselves, it is clear that the distribution p(x) must be valid as well. However, when
training an SPN, we usually have a different situation. We have an SPN, with weights
and conditional univariate leaves that were trained with data, and we would like to make
sure that this SPN is valid. We can guarantee the validity of an SPN by imposing certain
restrictions on its individual nodes. The idea is that every node itself represents a valid
distribution. If this holds, then the root node must also represent a valid distribution and
so the SPN must be valid too. The assumption that every node in an SPN is valid is
obviously stronger than the assumption that just the root is valid. However, in general it
would require an exhaustive search to prove that an SPN is valid if we allow for invalid
nodes within the network. In the following, we will have a look at the different node types
and the conditions for their validity.

3.2.1 Univariate nodes

A univariate node U is a leaf of a generalized SPN. It represents a (conditional) distribution
of a random variable x, and thus SU = {x}. An exemplary univariate node is depicted in
fig. 3.3a. We always write pU(x) for the distribution the node represents, regardless of
whether x is discrete, continuous or mixed. A univariate node is valid if pU(x) is valid.

The distribution pU(x) itself can be modeled in different ways. For example, in fig. 3.2
the distribution of U1, pU(x) is modeled as a Gaussian, i.e., pU1(b) = N

(
b;µb,1, σ

2
b,1

)
. The

distribution parameters µb,1 and σ2
b,1 would usually be estimated during training. Some

possible options for univariate distribution estimators are discussed in Section 4.3.
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Figure 3.3: The three types of nodes in an SPN: (a) Univariate node, (b) Sum node, (c)
Product node.

3.2.2 Sum nodes

Based on eq. (3.1), a sum node S represents a mixture distribution

pS(x) =
∑
C∈CS

wC pC(x), (3.10)

where CS is the set of the children C, and the wC are the mixture weights. A sum node is
shown in eq. (3.10). If x = (x1, x2, . . . , xN)>, then SS = {x1, x2, . . . , xN}. If we assume that
the children C of the sum node are valid, i.e., pC(x) is valid ∀C ∈ CS , then a sum node is
valid if two requirements are fulfilled. The first requirement is that the weights wC are
non-negative and sum to one. These are typical restrictions for mixtures and it is easily
verified that violations will lead to an invalid distribution. Secondly, it is required that
the scope of the children C is equal to the scope of the sum node S, i.e., SC = SS ∀C ∈ CS .
This latter requirement is called completeness [32], and sum nodes fulfilling it are called
complete. For a complete sum node eq. (3.10) directly corresponds to eq. (3.1). If every
sum node in an SPN is complete, then the SPN is called complete as well.

However, completeness is not a strictly necessary requirement for validity, which we
will demonstrate by means of a simple counterexample. Consider an incomplete sum node
S with distribution pS(a, b) = wApA(a) + wBpB(b), where a, b are continuous and a ∈ A,
b ∈ B. Then,∫

a∈A

∫
b∈B

pS(a, b) da db =
∫
a∈A

∫
b∈B

(
wApA(a) + wBpB(b)

)
da db

= wA

∫
a∈A

∫
b∈B

pA(a) da db+ wB

∫
a∈A

∫
b∈B

pB(b) da db

= wA

∫
b∈B

db+ wB

∫
a∈A

da

= wA|B|+ wB|A|,

(3.11)
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which can be different from 1. If wA|B| + wB|A| = 1, however, then S would still be a
valid node, despite its incompleteness.

3.2.3 Product nodes

A product node P models independence assumptions (eq. (3.3)) between the random
variables in the subsets of a partition of its scope. An exemplary product node is shown in
fig. 3.3c. We divide the SP in subsets SC and assign to each subset SC its own child C. It
thus holds that SC ⊂ SP ∀C ∈ CP . We call a product node decomposable if these subsets
SC constitute a partition of SP , i.e.,

SP =
⋃
C∈CP

SC, and SC ∩ SC′ = ∅ ∀C, C ′ ∈ CP s.t. C 6= C ′. (3.12)

A product node models the assumption that the variables in one child’s scope are statisti-
cally independent of the variables in another child’s scope. We can express the distribution
represented by P as

pP(x) =
∏
C∈CP

pC(xC), (3.13)

where the vector xC consists of those components in x that correspond to those random
variables that are in SC.

For example, consider the decomposable root node R from fig. 3.2, which represents
the distribution pR(a, b, c). Since a and b are statistically dependent, but statistically
independent of c, we obtain

SP = {a, b, c}
SS = {a, b}
SU5 = {c}

pR(a, b, c) = pS(a, b)pU5(c).

Analogously to completeness, if every product node in an SPN is decomposable, then
the SPN is called decomposable as well.

3.3 Exact Inference

In this section we will discuss the most important inference tasks that can be addressed
exactly with SPNs. As was mentioned earlier, an SPN can be interpreted as a computational
graph, with different operations depending on the inference task. For all inference tasks,
we will consider an SPN representing p(x), with root R and root scope SR = {x1, . . . , xN}.
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Throughout this section, we will make use of fig. 3.2 as a toy example. The distribution
represented by the SPN can be expressed as

p(a, b, c) = wP1 pU1(b) pU2(a) pU5(c) + wP2 pU2(a) pU3(b) pU5(c)+
+ wP3 pU3(b) pU4(a) pU5(c), (3.14)

and we can verify, that it conforms to the general structure of eq. (3.9).
Throughout this section we will make use of two disjoint sets of random variables

Vy ⊆ SR and Vz ⊆ SR. We will call the set Vy the query set, as it consists of the random
variables for which we would like to obtain values as a result of the inference task. The set
Vz together with a realization of the random variables in Vz, z, will form the inference
task input and z is called the evidence. Consider fig. 3.2, for example, if we would like to
know the conditional expectation of b for a specific value of a, a0, i.e., E{b|a = a0}, then
we would set Vy = {b}, Vz = {a} and z = a0. It is furthermore allowed, that either Vy or
Vz is empty, and that either set equals the entire scope SR. The union of Vy and Vz does
not need to equal SR. If Vz is empty, then z is not required. All the inference tasks in this
section are based on evaluation, i.e., for a given inference task input Vz and z, the SPN
will compute values for the random variables in the query set Vy together with the value
of the marginal distribution p(z). For every task we describe the operation carried out by
the univariate node, sum node and product node, which together define the behavior of
the complete SPN for that task. As we will see, the sum and product nodes have recursive
definitions, i.e., they rely on the outputs of other nodes.

3.3.1 Marginal and conditional distributions

What all inference tasks have in common is that they rely on the evaluation of marginal
distributions. For example, if a node represents the distribution p(y, z), we would like to
be able to compute the marginal distribution

p(z) =
∫
y∈Y

p(y, z) dy. (3.15)

Once we can compute the marginal distribution, we have access to the conditional distri-
bution as well since

p(y|z) = p(y, z)
p(z) . (3.16)

It is thus sufficient to be able to evaluate the joint distribution p(y, z) and the marginal
distribution p(z).

In general, we have an SPN that represents the distribution p(x) with root scope SR,
and we want to compute the value of the marginal distribution p(z) for a given evidence z,
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where Vz ⊆ SR. In the case that Vz = SR and thus z = x, i.e., that the full distribution
is evaluated. As this is a special case of the marginalization task described here it is
not treated separately. The output of a single node N is denoted as pN (z;Vz), which
is the value of the marginal distribution for the given inference task input Vz and z for
node N . The output of the root node equals the value of the marginal distribution, i.e.,
pR(z;Vz) = p(z). We will now present the definitions of pN (z;Vz) for the different node
types.

Univariate nodes: Let U be a univariate node that represents the distribution pU(x)
of random variable x. To compute the output pU(z;Vz) of U for the marginalization task
we have to consider the possible outcomes of eq. (3.15) for a univariate distribution in
the context of the inference task input Vz and z. There are two possibilities. The first is
that x ∈ Vz where we simply proceed with evaluating pU(x) with the corresponding value
z in z. The second possibility is that x /∈ Vz, and this means that we integrate over the
distribution which will yield 1. This can be summarized with

pU(z;Vz) :=

pU(z), x ∈ Vz

1, else,
(3.17)

where z is the realization in z corresponding to random variable x.

Sum nodes: For a sum node, we can simply re-use eq. (3.10) to compute the value of
the marginal distribution for given input Vz and z. For a sum node S, we have

pS(z;Vz) :=
∑
C∈CS

wC pC(z;Vz). (3.18)

Product nodes: Analogously to sum nodes, we base the marginalization output of a
product node P on eq. (3.13) and we obtain

pP(z;Vz) :=
∏
C∈CP

pC(z;Vz). (3.19)

Example: We want to compute the value of p(a0, c0) using the SPN from fig. 3.2. The
input is thus Vz,0 = {a, c} and z = (a0, c0)>, and the different node outputs are

pU1(z0;Vz,0) = 1
pU2(z0;Vz,0) = pU2(a0)
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pU3(z0;Vz,0) = 1
pU4(z0;Vz,0) = pU4(a0)
pU5(z0;Vz,0) = pU5(c0)
pP1(z0;Vz,0) = pU1(z0;Vz,0) pU2(z0;Vz,0) = pU2(a0)
pP2(z0;Vz,0) = pU2(z0;Vz,0) pU3(z0;Vz,0) = pU2(a0)
pP3(z0;Vz,0) = pU3(z0;Vz,0) pU4(z0;Vz,0) = pU4(a0)
pS(z0;Vz,0) = wP1 pP1(z0;Vz,0) + wP2 pP2(z0;Vz,0) + wP3 pP3(z0;Vz,0) =

= (wP1 + wP2) pU2(a0) + wP3 pU4(a0)
pR(z0;Vz,0) = pS(z0;Vz,0) pU5(z0;Vz,0) =

= (wP1 + wP2) pU2(a0) pU5(c0) + wP3 pU4(a0) pU5(c0).

Looking at the root output, we see that it is the same we would get by integrating out b
from eq. (3.14).

3.3.2 Sampling

We are also able to draw samples from the distribution represented by the SPN, making
SPNs a generative model [10]. Additionally to sampling from the distribution, we are able
to sample from marginal and conditional distributions as well. In general, we want to
draw a sample y(z) from the conditional distribution p(y|z). We will again use Vz, z,
and Vy, where Vy ⊆ SR contains the random variables we want to sample. In order to
sample from the non-marginalized, unconditional distribution p(x) = p(x1, x2, . . .), we set
Vz = ∅ and Vy = SR = {x1, x2, . . .}. The output of the sampling operation of a node N , is
again the value of the distribution for the given SPN input pN (z;Vz), and additionally a
node sample yN (z;Vz), which can be scalar-valued in the case of a univariate node. We
will now present the operations of the different nodes for the sampling task.

Univariate nodes: Let U be a univariate node representing the distribution pU(x) of
random variable x. Analogously to the operation when evaluating the marginal distribution
value of a univariate node in eq. (3.17), we have to distinguish two cases when sampling.
However, this time the set Vy is relevant, i.e., if x ∈ Vy, then we are interested in a sample
of x and we draw a sample of the node distribution pU(x). On the other hand if x /∈ Vy,
then we can simply ignore the univariate node. This can be summarized as follows

yU(z;Vz) :=

a sample drawn from pU(x), x ∈ Vy

no value, else.
(3.20)
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The second case, with no output, is used if we do not care about the value of the random
variable represented by the univariate node, and in an actual implementation, a default
value would be used.

Sum nodes: The sampling operation for a sum node S is twofold. First, the re-scaled
and re-normalized weights

w̃C = wC pC(z;Vz)∑
C′∈CS wC′ pC′(z;Vz)

, ∀C ∈ CS (3.21)

are computed. The second step is the standard procedure for drawing samples from a
mixture, i.e., interpreting the re-scaled weights as the probabilities of each child and
randomly drawing a child C∗ according to these probabilities. The sample of the sum node
is the sample of the drawn child, i.e., yS(z;Vz) = yC∗(z;Vz).

Product nodes: The sample yP(z;Vz) of a product node P is simply the vector
stacking the outputs of all of the product nodes children, where “no value” outputs are
ignored. For simplicity, we did not define the order of the variables within the vector here,
but when implementing the sampling procedure described here, care must be taken that
the output sample values are not mixed up.

Example: We go back to the SPN in fig. 3.2, and we want to draw a sample from
p(a|b = b0), for some arbitrary value b0. The input is formulated as Vy,0 = {a}, Vz,0 = {b},
and z0 = b0. For the univariate nodes, we obtain

pU1(z0;Vz,0) = pU1(b0),
pU2(z0;Vz,0) = 1, yU2(z0;Vz,0) = a∗1

pU3(z0;Vz,0) = pU3(b0),
pU4(z0;Vz,0) = 1, yU4(z0;Vz,0) = a∗2

pU5(z0;Vz,0) = 1,

where a∗1 and a∗2 are samples drawn from pU2(a) = N
(
µa,1, σ

2
a,1

)
and pU4(a) = N

(
µa,2, σ

2
a,2

)
,

respectively. In this example, the node samples of the product nodes P1, P2 and P3 is
again just a scalar sample, because we are only interested in the sample values of a. We
thus obtain

pP1(z0;Vz,0) = pU1(z0;Vz,0) pU2(z0;Vz,0) = pU1(b0),
pP2(z0;Vz,0) = pU2(z0;Vz,0) pU3(z0;Vz,0) = pU3(b0),
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pP3(z0;Vz,0) = pU3(z0;Vz,0) pU4(z0;Vz,0) = pU3(b0),

for the marginal distribution values and

yP1(z0;Vz,0) =
(
yU1(z0;Vz,0), yU2(z0;Vz,0)

)>
= a∗1

yP2(z0;Vz,0) =
(
yU2(z0;Vz,0), yU3(z0;Vz,0)

)>
= a∗1

yP3(z0;Vz,0) =
(
yU3(z0;Vz,0), yU4(z0;Vz,0)

)>
= a∗2

for the node samples. Continuing with the sum node S, we compute the re-scaled and
re-normalized weights according to eq. (3.21)

w̃P1 = wP1 pP1(z;Vz,0)∑3
i=1 wPi

pPi
(z;Vz,0)

= wP1 pU1(b0)
wP1 pU1(b0) + wP2 pU3(b0) + wP2 pU3(b0)

w̃P2 = wP2 pP2(z;Vz,0)∑3
i=1 wPi

pPi
(z;Vz,0)

= wP2 pU3(b0)
wP1 pU1(b0) + wP2 pU3(b0) + wP2 pU3(b0)

w̃P3 = wP2 pP2(z;Vz,0)∑3
i=1 wPi

pPi
(z;Vz,0)

= wP2 pU3(b0)
wP1 pU1(b0) + wP2 pU3(b0) + wP2 pU3(b0) .

Now we randomly select a product node P∗ from P1, P2 or P3, according to the probabilities
w̃P1 , w̃P2 and w̃P3 respectively. Since the root node is again a product node, and we are
not interested in a sample of c, the node sample of the selected product node P∗ is the
output of the SPN.

3.3.3 Mean and MMSE Estimate

SPNs are furthermore capable of computing conditional means of the form

µy|z = E{y|z = z} =
∫
y∈Y

y p(y|z) dy, (3.22)

which is also known as the minimum mean square error (MMSE) estimate of y given z.
Using Vy and the input Vz and z, we can compute E{y|z = z}. Here y and z are the
random vectors of the random variables in Vy and Vz, respectively. If we set Vy = SR, we
can compute the unconditional mean µx.

The computations carried out by the different node types are based on eq. (3.22), i.e.,
given a node N we want to compute

EN{y|z;Vz} :=
∫
y∈Y

y pN (y|z;Vz) dy. (3.23)

The overall MMSE estimate of the SPN is again the output of the root node, i.e.,
E{y|z = z} = ER{y|z;Vz}.
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Univariate nodes: Let U be a univariate node, representing the distribution pU(x),
with node specific mean Ex∼pU (x){x}. Analogously to sampling, we have to distinguish
whether x ∈ Vy or not. If x ∈ Vy, then eq. (3.23) collapses to Ex∼pU (x){x}, and if x /∈ Vy,
then we are not interested in a result per definition, and no value is returned. We obtain

EU{y|z;Vz} :=

Ex∼pU (x){x}, xi ∈ Vy

no value, else
(3.24)

for the operation of a univariate node, which is structurally very similar to eq. (3.20).

Sum nodes: The operation of a sum node S deserves a little more attention this time.
The computation of ES{y|z;Vz} can be derived by inserting eq. (3.16) and eq:spns:sum-
node into eq. (3.23), i.e.,

ES{y|z;Vz} :=
∫
y∈Y

y pN (y|z;Vz) dy

= 1
pS(z;Vz)

∫
y∈Y

y pS(y, z;Vz) dy

= 1
pS(z;Vz)

∫
y∈Y

y
∑
C∈CS

wC pC(y, z;Vz) dy

= 1
pS(z;Vz)

∫
y∈Y

y
∑
C∈CS

wC pC(y|z;Vz)pC(z;Vz) dy (3.25)

= 1
pS(z;Vz)

∑
C∈CS

wC pC(z;Vz)
∫
y∈Y

y pC(y|z;Vz) dy (3.26)

= 1
pS(z;Vz)

∑
C∈CS

wC pC(z;Vz) EC{y|z;Vz}. (3.27)

Here we can compute pS(z;Vz) using eq. (3.18) and so eq. (3.27) is again a recursive
definition only depending on the child outputs.

Product nodes: The output of product nodes is again a stacked vector of the
children’s conditional expectations, ignoring “no value” outputs. Again, as with sampling,
care must be taken that the values in the output are not mixed up.

Example: Again we use the SPN in fig. 3.2. We want to compute the MMSE estimate
for a, conditioned on b = b0, i.e., we want to compute E{a|b = b0}. As with the previous
example, we set Vy,0 = {a}, which implies y0 = a, Vz,0 = {b}, and z0 = b0. We do not
care about c. For the univariate nodes and product nodes we obtain

pU1(z0;Vz,0) = pU1(b0),
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pU2(z0;Vz,0) = 1, EU2{y0|z0;Vz,0} = µa,1

pU3(z0;Vz,0) = pU3(b0),
pU4(z0;Vz,0) = 1, EU4{y0|z0;Vz,0} = µa,2

pU5(z0;Vz,0) = 1,
pP1(z0;Vz,0) = pU1(z0;Vz,0) pU2(z0;Vz,0) = pU1(b0), EP1{y0|z0;Vz,0} = µa,1

pP2(z0;Vz,0) = pU2(z0;Vz,0) pU3(z0;Vz,0) = pU3(b0), EP2{y0|z0;Vz,0} = µa,1

pP3(z0;Vz,0) = pU3(z0;Vz,0) pU4(z0;Vz,0) = pU3(b0), EP3{y0|z0;Vz,0} = µa,2

We obtain the node MMSE estimate of the sum node S using eq. (3.27), i.e.,

ES{y0|z0;Vz} = 1
pS(z0;Vz,0)

3∑
i=1

wPi
pPi

(z0;Vz) EPi
{y0|z0;Vz}

= 1
pS(z0;Vz,0)

[
wP1 pU1(b0)µa,1 + wP2 pU3(b0)µa,1 + wP3 pU3(b0)µa,2

]
,

where

pS(z0;Vz,0) =
3∑
i=1

wPi
pPi

(z0;Vz,0) = wP1 pU1(b0) + wP2 pU3(b0) + wP3 pU3(b0).

Finally, since we do not care about c, the last product node P does not carry out any
operation, and thus the sum node output is the final MMSE estimate.

3.3.4 Mean power and variance

We can re-use the procedure we used to compute the mean for different expectations, as
long as we can compute the equivalent to eq. (3.27). The limiting factor here is exchanging
the sum with the integral in the step from eq. (3.25) to eq. (3.26), which is in general not
possible for arbitrary expectations. Fro example, the conditional second moment

Pyi|z = E
{
y2
i |z = z

}
=
∫
yi∈Yi

y2
i p(yi|z) dyi. (3.28)

of the individual random variables yi in random vector y can be computed in this way.
The conditional variance σ2

yi|z, on the other hand, cannot be computed using eq. (3.27),
because when propagating the variance from the child nodes, we cannot exchange the
integral with the sum. However, we can use the well-known relation

σ2
yi|z = Pyi|z − µ2

yi|z, (3.29)

to compute the variance from the mean and the second moment. This is useful, because
in addition to being able to compute the MMSE estimator, we are also able to compute a
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measure of confidence for our estimator, i.e., the variance.
Let us write E{y2|z} = (Py1|z, Py2|z, . . .)

> as a shorthand for the stacked individual
mean powers. For every node N we want to compute the node mean powers EN{y2|z;Vz},
which are defined analogously to eq. (3.23).

Univariate nodes: Let us again assume a univariate node U , representing the
distribution pU(x), and with node specific second moment Ex∼pU (x){x2} We have to adapt
eq. (3.24) to return the second moment instead of the mean, i.e,

EU
{
y2|z;Vz

}
:=

Ex∼pU (x){x2}, x ∈ Vy

no value, else.
(3.30)

Sum nodes: For a sum node S, analogously to eq. (3.27), we obtain

ES
{
y2|z;Vz

}
= 1
pS(z;Vz)

∑
C∈CS

wC pC(z;Vz) EC
{
y2|z;Vz

}
. (3.31)

Product nodes: The operation for product nodes is as before, i.e., stacking the child
outputs.

3.4 VMAP Estimation and Selective SPNs

In the previous section, we discussed some of the inference tasks that are exactly solvable,
including the MMSE estimator. Another popular estimator is the vector maximum a-
posteriori (VMAP) estimator, which is defined as the most probable realization of the
random vector y given the input z, i.e.,

ŷ = argmax
y

p(y|z). (3.32)

Contrary to the MMSE estimator, however, there is generally no efficient algorithm to
compute the VMAP estimate using SPNs. With SPNs, exact VMAP inference is NP-
hard [29], [30], but approximations exist [22], [29], [30], which we will however not present
here. Instead we discuss why VMAP is intractable based on this we explain a special class
of SPNs, i.e., selective SPNs, where VMAP is tractable and the corresponding algorithm
is presented.
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3.4.1 Intractability of VMAP

We will now investigate why we cannot solve eq. (3.32) with an SPN exactly in general,
and we will consider one special case where we can. For univariate nodes representing p(x),
there is no problem; we simply assume that we know the mode of the distribution, i.e.,

x̂ = argmax
x

p(x). (3.33)

The product nodes pose no problem either, because we merely stack the results of a
product node’s children, just as for the MMSE estimator. The intractability of the VMAP
estimator is due to the operation of the sum node. Let us consider as a simple example, two
functions f(x) and g(x). Then, even if we knew x̂f = argmax f(x) and x̂g = argmax g(x),
in general we would have to exhaustively search to find argmax{f(x) + g(x)}. However,
in the special case that f(x) and g(x) have disjoint supports, i.e., f(x) 6= 0 ⇒ g(x) = 0
and g(x) 6= 0⇒ f(x) = 0, the solution is simply

argmax
x
{f(x) + g(x)} = argmax

x∈{x̂f ,x̂g}
{f(x) + g(x)}. (3.34)

3.4.2 Selective SPNs and tractable VMAP

Based on the observation from eq. (3.34), we define selective SPNs [30] to be SPNs where
the supports of the distributions of the children of a sum node are disjoint. We can now
use eq. (3.34) to compute the VMAP estimate of sum nodes, which makes the VMAP
estimator tractable for selective SPNs. The procedure presented below can also be applied
to non-selective SPNs, however then in general the result will not be the VMAP estimator
but an approximation.

Analogously to the operation definitions in the previous section, we want to compute
the VMAP estimate ŷN (z;Vz) for node a N given Vy, Vz and z. The output of the root
R is the overall VMAP estimate, i.e., ŷR(z;Vz) = ŷ = argmaxy p(y|z). We can again use
Vy = SR to compute the unconditional mode x̂ of the distribution p(x) the root, and thus
the SPN, represents.

Univariate nodes: The output of a univariate node U representing distribution pU(x)
with node specific mode x̂U = argmaxx pU(x) is defined as

ŷU(z;Vz) :=

x̂U , x ∈ Vy

no value, else.
(3.35)

Additionally, for the VMAP estimator we have to change the evaluation of the marginal

34



distribution of U (eq. (3.17)) to

pU(z;Vz) :=


pU(z), x ∈ Vz

maxx pU(x) = pU(x̂U), x ∈ Vy

1, else.

(3.36)

Sum nodes: The operation of a sum node S is similar to the sampling operation.
First we have to find the child Ĉ that maximizes the product of weight and marginal
distribution, i.e.,

Ĉ = argmax
C∈CS

wC pC(z;Vz). (3.37)

Since we defined selective SPNs to have disjoint sum child supports, only Ĉ can have a
non-zero marginal distribution value, i.e., pĈ(z;Vz) ≥ 0 and pC(z;Vz) = 0 ∀C ∈ CS \ {Ĉ}.
According to eq. (3.34), the VMAP estimate of S is now defined as the VMAP estimate of
Ĉ, i.e.,

ŷS(z;Vz) := ŷĈ(z;Vz). (3.38)

Product nodes: Product nodes, again, simply stack the values of their children.

Example: To demonstrate the VMAP procedure discussed above we will again use
the SPN in fig. 3.2. However, due to the Gaussian leaves, which have infinite support,
this SPN is not selective, but as we can see in fig. 3.1, the mixture components are well
separated and we can at least assume approximate selectivity. We want to compute
argmaxa,c p(a, c|b = µb,1) and thus we set Vy,0 = {a, c}, which implies y0 = (a, c)>, and
the task input is Vz,0 = {b} and z0 = µb,1. For all the univariate nodes and the first three
product nodes we obtain

pU1(z0;Vz,0) = pU1(µb,1),
pU2(z0;Vz,0) = pU2(µa,1), ŷU2(z0;Vz,0) = µa,1

pU3(z0;Vz,0) = pU3(µb,1),
pU4(z0;Vz,0) = pU4(µa,2), ŷU4(z0;Vz,0) = µa,2

pU5(z0;Vz,0) = pU5(ĉ), ŷU5(z0;Vz,0) = ĉ

pP1(z0;Vz,0) = pU1(z0;Vz,0) pU2(z0;Vz,0) = pU2(µa,1) pU1(µb,1), ŷP1(z0;Vz,0) = µa,1

pP2(z0;Vz,0) = pU2(z0;Vz,0) pU3(z0;Vz,0) = pU4(µa,1) pU3(µb,1), ŷP2(z0;Vz,0) = µa,1

pP3(z0;Vz,0) = pU3(z0;Vz,0) pU4(z0;Vz,0) = pU4(µa,2) pU3(µb,1), ŷP3(z0;Vz,0) = µa,2
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Figure 3.4: The SPN from fig. 3.2 converted to an SPT. Copies of nodes are indicated
with a bar, e.g., U2 and Ū2.

We now continue with the sum node S, and we have to select the product node P̂ that
maximizes wP̂pP̂(z0;Vz,0). Based on visual inspection of fig. 3.1 and the fact that we
conditioned on b = µb,1, we can conclude that only mixture component M1 is relevant and
thus P̂ = P1. And thus the output of the sum node S is

pS(z0;Vz,0) = pP1(z0;Vz,0) = pU2(µa,1) pU1(µb,1), ŷS(z0;Vz,0) = ŷP1(z0;Vz,0) = µa,1.

Finally, we stack the outputs of the children of the root node, and for the overall VMAP
estimate we obtain

ŷR(z0;Vz,0) =
(
ŷ>S (z0;Vz,0), ŷ>U5(z0;Vz,0)

)>
= (µa,1, ĉ)>.

3.5 Sum-Product Trees

Sum-product trees (SPTs) are a special kind of SPN, where the graph is not just a rooted
DAG but an oriented tree, i.e., every node can have at most one parent. SPTs are
important in practice since most structure learning algorithms, including those presented
in chapter 4, learn SPTs and not the more general SPNs. An exception to this is, e.g., [13],
a newly proposed structure learning algorithm capable of directly learning SPNs.

In general, SPTs are not less expressive than SPNs. However, they may require
exponentially more nodes than SPNs to represent the same distribution. For deterministic
inference, where the same input will always yield the same output, SPNs can be converted
to equivalent SPTs. The only non-deterministic inference task we have discussed is
sampling, since it involves a random sampling operation at every sum node. For example,
the SPN from fig. 3.2 converted to an SPT is shown in fig. 3.4.
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Figure 3.5: Model compression: Product node P2 can be removed because its only parent
is another product node P1.
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Figure 3.6: Model compression: Sum node S2 can be removed because its only parent is
another sum node S1.

3.6 Further properties of SPNs

3.6.1 Compression

We can reduce the number of nodes in an SPN by exploiting the structure of eqs. (3.10)
and (3.13). Whenever there is a product node P2 with only one parent, and this parent is
again a product node P1, then we can replace P2 with the children of P2. An example for
the compression of one product node into another is shown in fig. 3.5. The same can be
done with sum nodes, but the weights of the parent sum node need to be adjusted after
merging, this is shown in fig. 3.6. As a consequence of this, every SPT can be compressed
such that no sum node has a sum node as parent and that no product node has another
product node as parent.

3.6.2 Compatibility with other models

Every node in an SPN represents a distribution. The node distributions are distinguished
by their scope and the conditions imposed by the latent variables of the sum nodes on the
path to the root. This allows us to model the distribution represented by any node in the
SPN by different means, e.g. by a different PGM. As long as such a model “behaves” like
a “typical” SPN node, we can insert it in the SPN and use it as a replacement for a node
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and its descendants.
We will now formalize this. We want to replace a node N whose scope consists of

the variables of the random vector x = (x1, . . . , xN)>. In the following, y and z are two
random vectors consisting of arbitrary random variables from x, with the constraint that
variables appearing in y cannot also appear in z. If we want to be able to use the SPN for
the inference tasks presented in Sections 3.3 and 3.4, the model, or method, replacing N
needs to be able to (approximately) compute:

1. the value of the joint distribution p(x);

2. the value of the marginal distribution p(z);

3. the individual conditional expectations E{yi|z = z} and E{y2
i |z = z};

4. the most probable ŷ conditioned on z, i.e., ŷ = argmax
y

p(y|z);

5. samples from p(x) and p(y|z).

A special case of this “model insertion” are univariate nodes, where requirements 1 to
4 can be simplified. A model or method that is used as a univariate node representing the
distribution p(x) of a random variable x needs to be able to (approximately) compute:

1. the value of the distribution p(x);

2. the mean µx and second moment Px;

3. the mode x̂ = argmax
x

p(x);

4. samples from p(x).

3.6.3 Limitations

So far we discussed only complete and decomposable SPNs. We know that these SPNs
represent valid distributions, but neither completeness nor decomposability are necessary
for validity. The question is, whether these conditions limit the representative power of
SPNs. In [31], it was shown that the gain in simplicity obtained by restricting ourselves to
complete and decomposable SPNs is usually worth the loss of representative power, which
is not much.

However, in [20] it was shown that there exist distributions an SPN cannot represent
without requiring an infinite number of nodes, but other PGMs could model these dis-
tributions efficiently. This is mainly due to the fact that SPNs can only model indirect
variable dependencies, but not direct ones. Consider, for example, a Gaussian random
vector x = (x1, x2)> ∼ N (µx,Cx) with a non-diagonal covariance matrix Cx. Figure 3.7a
shows an illustration of the distribution of such a random vector, and we can see that when
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Figure 3.7: (a) Illustration of the distribution of a 2-D jointly Gaussian random vector
x = (x1, x2)> ∼ N (µx,Cx) with non-diagonal Cx. (b) A possibility how an SPN could
approximate the distribution from (a).

x1 grows, x2 tends to grow as well. This is an example of a direct variable dependency,
and SPNs are unable to capture this behavior efficiently. Because SPNs can represent
distributions only with mixtures and independence assumptions, we have to “divide” the
domain x into parts where x1 and x2 are approximately independent. In fig. 3.7b, we can
see a possible approximation of the distribution of x by means of mixture components of
uncorrelated Gaussian distributions. The figure illustrates that an SPN would require an
infinite number of mixture components to fully capture direct variable dependencies.

A possible solution for this problem would be to allow for multivariate leaves, involving
a limited number of random variables, and model them by different means. We could
for example use other PGMs that can model direct variable dependencies, to model
distributions of five random variables or less [33]. However, this approach requires that the
plugged-in model fulfills the requirements stated in Section 3.6.2, especially marginalization.
Without the possibility of marginalization, many inference tasks would not be available.
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Chapter 4

Learning the Structure of SPTs

In this chapter two methods to learn SPTs from data are presented. Both are so called
structure learning methods. This means that the graph is built during learning and that
no prior assumptions about depth, node counts, connections, etc., are required. Another
common approach is weight learning, where a structure is assumed prior to learning and
only the sum weights and univariate distributions are learned. The advantage of structure
learning is that, in general, fewer hyperparameters are required. The downside is that the
structures learned are typically SPTs and not more general SPNs. This leads to larger
graphs than necessary for a given training data set.

The next two sections discuss offline and online structure learning respectively. In
this context offline structure learning means that all the training data is available at the
beginning of the learning procedure, and the learning algorithm can make use of the
complete data. Online structure learning on the other hand only uses a limited number of
training samples, a so called minibatch, at a time. This allows online algorithms to handle
much larger data sets that would not fit into memory. The challenge is to still learn the
dependencies between the different variables without a complete view of the data.

Both algorithms depend on several sub-algorithms that are generally interchangeable.
These are presented in the later sections of this chapter.

It is assumed that every training sample xn comes from the same distribution p(x)
of random vector x = (x1, x2, . . .)>, and we define Vx = {x1, x2, . . .}, the set of all random
variables in x. The exact size of x is of minor importance. The individual random variables
xi can either be discrete, continuous or mixed. The general goal of every learning algorithm
is to learn an SPT with root R that represents distribution pR(x), such that pR(x) is as
close to the true, unknown p(x) as possible. A practical measure for closeness of pR(x) to
p(x) is presented in Section 5.1.
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4.1 Offline Structure Learning

Almost every offline structure learning algorithm for SPTs is derived from LearnSPN [9],
which in turn extends the concept presented in [7]. Algorithm 4.1 is based on LearnSPN,
with adaptations from [37]. The rest of this section is used to explain algorithm 4.1 in
detail, and from here on, LearnSPN refers to the specific algorithm presented here.

4.1.1 LearnSPN

LearnSPN is a recursive algorithm and with every iteration a new node is created. The
inputs are a set of training samples T and a set of random variables V. The goal is to
create a node N that represents a distribution pN (v) of the variables in V, conditioned
such that pN (v) equals the distribution of the samples in T. Of course we never have
access to the true distribution of the samples in T directly, which is why we have to resort
to approximations. To initialize the recursion we call LearnSPN with the set containing
all training samples T0 = {x1, . . . ,xN} and the set of all considered random variables Vx.
The returned node R is the root of our learned SPT and the distribution it represents
pR(x) should, by our assumptions, approximate the true distribution p(x).

Let us now inspect the different parts of algorithm 4.1. At the beginning we check if
only one random variable is in V and if this is the case, we create a univariate node and
estimate its distribution. This corresponds to lines 4 to 8 in algorithm 4.1. Some possible
distribution estimators for this purpose are discussed in Section 4.3. It is possible to use
a different distribution estimator for each random variable, which makes sense, because
some estimators work better for discrete random variables, while others are intended
for continuous random variables. The choice which distribution estimator to use for a
given random variable is an important one and it is a major way to incorporate prior
assumptions into the learning procedure.

If there are multiple random variables in V we continue. On line 9 we decide whether
further clustering of the samples makes sense. If not, we assume that all variables in V
are independent from each other and create a product node. To decide this, we first check
if there are less than NM samples in T, where NM is the minimum number of samples
required for clustering. The hyperparameter NM can be chosen arbitrarily, and it is used to
increase the average number of samples that are used to learn the univariate distributions.
We also check if all samples are equal, because in this case the best clustering outcome is
trivially one cluster containing all samples, and nothing was gained. If any of the above
two conditions is met, we create a product node of univariate nodes, where every univariate
node is based on on the samples in T and a different variable in V.

If we have multiple random variables in V, equal or more than NM samples in T, and
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at least some of these samples are different, then we continue with line 18 in algorithm 4.1.
At this point it must be decided, whether a product node, or a sum node should be created.
We use the IndependentVariables sub-routine to partition V into L subsets of random
variables Vl. The random variables in one subset Vl are at least approximately statistically
independent from the random variables in the other subsets.
A new product node is created, and the L children of this new product node are learned
by recursively calling LearnSPN for every subset Vl.

Typically, statistical dependency is decided pairwise, i.e., any variable within subset Vl

is dependent on at least one other random variable in Vl. This is in general different from
joint statistical dependency between all the random variables within subset Vl, which
would be more desirable. The reason why the pairwise approximation is used is twofold.
For one, some dependency measures presented in Section 4.4 do not scale well to measure
joint dependency, i.e., mutual information and G-test; and even if joint dependency can
be measured efficiently, the count of set comparisons would be exponential in |V|. All
the dependency measures in Section 4.4 have in common, that the output is a real value
and we have to use a threshold TD to decide whether two variables are dependent or not.
Given a set of samples T and a dependency measure D, we say that two random variables
v1 and v2 are approximately statistically dependent, if D(v1, v2,T) ≥ TD.

If there are no independent subsets of random variables, i.e., L = 1, we use a clustering
algorithm to partition the sample set T into K clusters Tk. A new sum node is created and
for every cluster Tk a new child is learned by calling LearnSPN recursively. The weight
of a new child C is given by the fraction of samples in the cluster Tk compared to the
whole sample set T, i.e., wC = |Tk|/|T|. Two possible clustering algorithms are presented
in Section 4.5, but every unsupervised clustering algorithm can be used for this purpose.
The requirement is that K ≥ 2, but typically a value of K needs to be chosen beforehand
and a common choice is K = 2. The reason for this is that K = 2 is rather general and
subsequent sum nodes can be compressed after learning, to form a sum node with more
than two children.

LearnSPN builds on the assumption that samples within a cluster show similar de-
pendencies, and that samples of fewer random variables are easier to cluster. At the end,
the outcome is comparable to fig. 3.7b; differently sized clusters, with locally independent
random variables. Going back to the latent variable model, we can interpret the latent
variable as assignment to a specific cluster, i.e., h = k. Every leaf is conditioned on the
latent variables of the sum nodes on the path connecting the leaf with the root.
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Algorithm 4.1 LearnSPN
1: Inputs: Set of training samples T and set of variables V
2: Output: A learned node
3: procedure LearnSPN(T,V)
4: if |V| = 1 then
5: v← V . v is the only variable in V
6: Create univariate node U
7: pU(v) := EstimateDistribution(T, v)
8: return U
9: else if |T| < NM or AllSamplesEqual(T) then

10: Create product node P with CP := ∅
11: for each vi ∈ V do
12: Create univariate node Ui
13: pUi

(vi) := EstimateDistribution(T, vi)
14: CP ← Ui . Add Ui to CP
15: end for
16: return P
17: else
18: {Vl}1:L := IndependentVariables(T,V)
19: if |{Vl}1:L| > 1 then
20: Create product node P with CP := ∅
21: for each Vl ∈ {Vl}1:L do
22: Cl := LearnSPN(T,Vl) . Recursively learn child Cl
23: CP ← Cl . Add Cl to CP
24: end for
25: return P
26: else
27: {Tk}1:K := ClusterSamples(T,V)
28: Create sum node S with CS := ∅
29: for each Tk ∈ {Tk}1:K do
30: Ck := LearnSPN(Tk,V) . Recursively learn child Ck
31: CS ← Ck . Add Ck to CS
32: wCk

:= |Tk|
|T| . Sum weight of child Ck

33: end for
34: return S
35: end if
36: end if
37: end procedure
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Figure 4.1: (a) An exemplary SPN with only Gaussian leaves. Every leaf is defined by
its variable and the associated mean and variance. (b) An illustration of the marginal
distribution p(a, b).
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Figure 4.2: Illustration of how LearnSPN learns the structure of an SPT.

4.1.2 Example

To illustrate how LearnSPN learns an SPT, we will discuss a simple example. We want to
learn the SPN from fig. 4.1, and we assume that the four random variables a, b, c, d are
distributed as in fig. 4.1. This means that c and d are independent and Gaussian, and
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that a and b have a jointly Gaussian mixture structure with two mixture components. We
further assume that we have a set of samples T0 from the joint distribution p(a, b, c, d).
Throughout this example we will assume ideal hyperparameters.

We learn the root node by initializing algorithm 4.1 with T0 and {a, b, c, d} as inputs.
Since we consider more than one variable and assume that we have more than NM samples
that are not all equal, we have to find sets of approximately independent variables. The
random variables c and d are independent and the used dependency measure should reflect
this. The output of IndependentVariables should therefore be {{a, b}, {c}, {d}}. This
means that we have to learn a product node with three children. The current state we are
in can be seen in fig. 4.2a.

Because the root has three children, algorithm 4.1 is called three times recursively.
Considering the recursive calls with only one random variable, i.e., with c and d, we
immediately see that the condition on line 4 is true, which means that we learn a univariate
leaf for c and d respectively. Since we assume that c and d have a Gaussian distribution,
we can use the sample mean eq. (4.9) and sample variance eq. (4.10) to estimate the
univariate distributions. The third call to algorithm 4.1, with T0 and {a, b} as inputs, is a
little bit more difficult. We follow the different decisions through algorithm 4.1 again, and
this time IndependentVariables should return just {{a, b}}, i.e., no independent sets
of variables could be found, which means that we resort to clustering. A good clustering
algorithm will now partition the samples from T0 into two subsets, T1 and T2, containing
the samples from mixture component one and component two respectively. This results in
a sum node with two children and weights w1 = |T1|/|T0| and w2 = |T2|/|T0|. We can see
this in fig. 4.2b.

Conditioned on a cluster, a and b are independent which leads to two product nodes
again, and the learned SPT at this stage is shown in fig. 4.2c. At this point we need to
learn the conditional univariate nodes for a and b for each cluster. The final SPT can
be seen in fig. 4.2d, and if we compare it with fig. 4.1, we see that the correct SPT was
learned.

One final remark. The procedure described here does not correspond to algorithm 4.1
directly, because we ignored the recursive nature of the algorithm, i.e., the root would
actually be the last node that is finished. It is however not advisable to implement
LearnSPN as a recursive function, but rather based on a loop with a queue. If a queue
is used to avoid recursive function calls, then the procedure described here would be the
actual behavior of the program.
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4.2 Online Structure Learning

In this section an algorithm is presented that builds on the online structure learning
algorithm presented in [12]. The algorithm in [12] uses multivariate Gaussians as leaf
distributions, and the correlation coefficient (Section 4.4.2) to measure the dependency
between two variables. Here we extend this algorithm to arbitrary leaf distributions and
dependency measures. We do not use multivariate leaves however, because this would
make it generally impossible to exactly compute marginal distributions, and in turn most
inference scenarios would not be available in their exact versions.

We will refer to algorithms 4.2 and 4.3 together as online structure learning (OSL). OSL
is a heuristic approach to structure learning and the reason for this is, that the procedure
presented in algorithm 4.3 has no theoretical foundation, but rather an intuition behind it.
In practice however, OSL learns SPTs with size, depth and performance, comparable to
LearnSPN.

In order to use OSL, we need to adapt our model, or more specifically the nodes. Every
node N needs to keep track of the count of samples NN , that were used to train this node.
Additionally, every product node P has a node dependency measure DP associated with
it. This node dependency measure is learned from data in an online manner and it is
used to quantify the dependency between two of the product node’s children. For a given
dependency measure D, the dependency between two child nodes C1 and C2 is given by

DP(C1, C2) := max
v1∈SC1

max
v2∈SC2

D(v1, v2), (4.1)

i.e., the maximum dependency between any two random variables from the children’s
scope. Finally, it is required that the univariate distribution estimators can be learned in
an online manner as well.

Since OSL is an online learning algorithm, it does not require all training samples
at once, which makes it possible to learn from more samples than fit into memory. The
complete sample set is partitioned into smaller subsets (minibatches), and algorithm 4.2
is invoked for every such subset sequentially. Before using OSL for the first minibatch
however, a root node R needs to be initialized. First, a product node is created that will
serve as the root. For every random variable xn ∈ Vx a univariate node is created, and all
univariate node together form the children of the root product node. We now have a root
node with SR = Vx and NR = 0 and we can start learning with OSL.

An OSL update is initialized by using algorithm 4.2 with the root node and a new
minibatch as inputs. With every minibatch the sum weights, dependency measures and
univariate distribution estimates are updated using algorithm 4.2. After a few iterations the
univariate nodes start to learn their respective marginal distributions and the dependencies
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between the variables start to emerge. Based on a dependency threshold TSU and a
minimum number of required samples NSU, a structure update (algorithm 4.3) is triggered.
A mixture is created with the dependent children in one component and a new product
node with unlearned univariate leaves in another component. The hope is that this new
component can now learn a new aspect of the distribution. Over time the tree grows and
ever more specialized sub-trees are learned.

4.2.1 Parameter update

Every OSL iteration consists of a parameter update and structure updates if necessary. We
will now discuss the parameter update procedure shown in algorithm 4.2, which recursively
traverses the SPT. Every node N is updated based on a set of samples T, which can be
either the complete minibatch, or a sub-set of it. The first step is to increment the sample
counter of the node NN by the number of samples in T. The sample count is required to
compute the sum node weights and check whether a structure update is allowed or not.
After this, the parameter update depends on the type of node N is.

In case N is a univariate node, the distribution estimator is updated using the samples
in T.

If N is a sum node, then the sample set is partitioned into sub-sets TC. A sample xi is
put in TC, if the likelihood pC(xi) is maximum among the children of the sum node, i.e., if

Ĉ = argmax
C∈CN

pC(xi), (4.2)

then xi is put in TĈ. Now every child of the sum node is recursively updated with the
samples assigned to it, and the weights are adjusted based on the new child sample counts,
i.e., wC = NC/NN . The reasoning behind sample partitioning is that we cannot use a
clustering algorithm with OSL directly. LearnSPN uses a clustering algorithm to group
similar samples together and mixtures are created based on these clusters. With OSL we
create sum nodes with structure updates, but they still represent mixtures and we update
the parameters of each sum node child only with samples that likely originated from the
child’s mixture component.

Finally, if N is a product node, the first step is to update the parameters of all children.
If the product node is marked as finished, or has only one child, then the parameter update
is done. The algorithm allows that a product node can lose all but one of its children
after several structure updates. These product nodes with only one child can be replaced
by their child either at at specific points during training, or after training is finished.
Product nodes might be marked as finished during a structure update, which means that
further structure updates make no sense for this product node. If the product node is
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not marked as finished and has multiple children, then the node dependency measure
DN associated with the product node is updated. Now it is checked whether NN ≥ NSU,
i.e., if the product node was learned with the minimum number of samples required for
a structure update. The hyperparameter NSU is used to make sure that the learning of
DN has converged such that false positives are avoided. If NN ≥ NSU, we find the two
children Ĉ1 and Ĉ2 with the highest node dependency, i.e.,

Ĉ1, Ĉ2 = argmax
C1,C2∈CN

DN (C1, C2). (4.3)

If DN (Ĉ1, Ĉ2) > TSU, then a structure update is triggered. Similar to LearnSPN, TSU is a
dependency threshold used to determine when a structure update is required.

4.2.2 Structure update

The structure update procedure algorithm 4.3 takes three inputs, a product node P and
two approximately dependent children Ĉ1 and Ĉ2.

First, the two children are removed from the product node and a new product node
P1, with Ĉ1 and Ĉ2 as its children, is created. The sample count of P1, NP1 , is set to the
sample count of P, which in turn is equal to the sample counts of Ĉ1 and Ĉ2. Since we
already know that Ĉ1 and Ĉ2 are dependent, further structure updates of P1 would make
no sense and the new product node P1 is marked as finished.

Secondly, a new product node P2 is created, and its children are new univariate nodes
Ui, one for every random variable in the joint scope of Ĉ1 and Ĉ2. The sample counts
of the newly created nodes are set to zero, since no samples were used to train the new
product node and its univariate children so far. This is very similar to the creation of the
root node, and the intention is the same, i.e., to make “space”, to learn new aspects of the
distribution.

Finally, a sum node S with children P1 and P2 is created. We set NS equal to NP and
the sum weights are one and zero for P1 and P2 respectively, which is consistent with the
sample counts of P1 and P2. The new sum node is added to the children of P and now
replaces the previously removed Ĉ1 and Ĉ2.

The intention behind the structure update is as follows. We know that a part of the
data seen so far indicates that Ĉ1 and Ĉ2 are dependent, but we assume that there might
be a different data cluster with different behavior. So a mixture is created with the already
learned Ĉ1 and Ĉ2 as one component, and “fresh model space” as the other. The overall
distribution of P is still the same right after the update, since the already known mixture
component has weight one.
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Algorithm 4.2 Online Structure Learning: Parameter Update
1: Inputs: Current node N and set of samples T = {x1, . . . ,xI}
2: procedure ParameterUpdate(N ,T)
3: NN := NN + |T|
4: if N is Univariate node then
5: UpdateUnivariate(N ,T)
6: else if N is Sum node then
7: TC := ∅ for each C ∈ CN
8: for each xi ∈ T do . Assign the samples xi
9: Ĉ := argmax

C∈CN
pC(xi) . to the children with

10: TĈ ← xi . the highest likelihood
11: end for
12: for each C ∈ CN do
13: ParameterUpdate(C,TC) . Recursive update with sub-set TC
14: wC := NC

NN

15: end for
16: else if N is Product node then
17: for each C ∈ CN do
18: ParameterUpdate(C,T) . Recursive update of all children
19: end for
20: if |CN | > 1 and N is not Finished then
21: UpdateDependencyMeasure(DN ,T)
22: if NN ≥ NSU then
23: Ĉ1, Ĉ2 = argmax

C1,C2∈CN
DN (C1, C2) . Find the two most dependent children

24: if DN (Ĉ1, Ĉ2) > TSU then
25: StructureUpdate(N , Ĉ1, Ĉ2)
26: end if
27: end if
28: end if
29: end if
30: end procedure

There is however one practical issue. During the parameter update, a sum node assigns
samples to its children based on the likelihood. A sum node child thus needs to be able to
compute a likelihood in order to get samples assigned to it, but all the univariate nodes
of P2 are unlearned so far. We want that P2 receives samples that are unlikely for P1,
because we assume that these samples are from a yet unlearned mixture component. The
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solution is to assign every distribution pUi
(vi) of the new univariate nodes a constant value

PI, which is replaced once the distribution estimators are trained with samples. This has
the effect that the new P2 has pP(x) = |CP2|PI for every sample x, and this is a threshold
to initially detect samples that are not of the other mixture component.

Algorithm 4.3 Online Structure Learning: Structure Update
1: Inputs: Product node P and two children of the product node, Ĉ1 and Ĉ2

2: procedure StructureUpdate(P , Ĉ1, Ĉ2)
3: Ĉ1, Ĉ2 ← CP . Remove Ĉ1 and Ĉ2 from CP
4: Create product node P1 with CP1 := {Ĉ1, Ĉ2} and NP1 := NP

5: Mark P1 as Finished
6: Create product node P2 with CP2 := ∅ and NP2 := 0
7: for each vi ∈ SĈ1

∩ SĈ2
do

8: Create univariate node Ui with NUi
:= 0

9: pUi
(vi) := PI . Initialize pUi

(vi) to constant PI

10: CP2 ← Ui . Add Ui to CP2

11: end for
12: Create sum node S with CS := {P1,P2} and NS := NP
13: wP1 := 1
14: wP2 := 0
15: CP ← S . Add S to CP
16: end procedure

4.2.3 Example

To illustrate OSL, we use the same setup from Section 4.1.2, i.e., we want to learn the
SPT from fig. 4.1 with the four random variables a, b, c and d. We initialize our SPT with
a product node with four children, one univariate node for every random variable. Since
we know that our random variables are Gaussians, we use Gaussian distributions for the
leaves. This effectively means that we estimate the online sample mean eq. (4.20) and
online sample variance eq. (4.21) at every univariate leaf. At the beginning however, all
univariate distributions did not receive any training samples and are thus uninitialized, as
can be seen in fig. 4.3a.

The individual leaf distributions should converge after some minibatches are learned,
however the mean and variance of the leaves of a and b will be those of the whole mixture,
indicated by µ̃ and σ̃2 in fig. 4.3b. At some point, the dependency measure associated with
the root product node should detect, that a and b are dependent. After the subsequent
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Figure 4.3: Illustration of how OSL learns the structure of an SPT.

structure update the SPT looks like fig. 4.3c. The left child product node of the sum
node is marked as finished and no further structure updates are possible. The right child
product node however, is uninitialized so far and has yet to receive any training samples.

What will happen now, is that in a future update, depending on PI (line 9 in algo-
rithm 4.3), a sample from either cluster will achieve higher likelihood for the right product
node than for the left one. Once this happens, the new univariate leaves get initialized and
the sample means of the right product node are now near the cluster the sample was from.
It is now likely that all future training samples from this cluster will get assigned to this
node and the weights of the sum node will approach their true values. Since a and b are
independent given a cluster, no further structure updates will happen and the structure
of the SPT in fig. 4.3d will not change any further. We can again compare fig. 4.3d to
fig. 4.1 and see that both structures are identical. However, because some of the first few
samples got assigned to, what is the wrong node in the end, the weights of the sum node,
the sample mean and the sample variance will be off by some amount.

4.3 Univariate Distribution Estimators

Both learning algorithms, LearnSPN and OSL, require univariate distribution estimators.
If OSL is used, then the distribution estimator must be capable of online learning as well.
Every distribution estimator capable of online learning can be used for offline learning
as well, by partitioning the complete data in minibatches. In this section two possible
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options for online capable distribution estimators are presented, one for discrete and one
for continuous distributions. Both estimators are non-parametric, i.e., no assumptions
about the real data distribution are made, and both have a smoothing parameter that is
used for regularization.

4.3.1 Discrete

The discrete distribution estimator presented here, is a straight forward counting of
occurrences together with Laplace smoothing. Every sample xn can take on one from the
d possible values from set Xd, which is the set of possible outcomes or classes. The count
of samples observed of one class x ∈ Xd during learning is denoted by Nx. The estimated
probability of class x is given by

P̂x = p̂x(x) := Nx + α∑
x′∈Xd

N ′x + α|Xd|
, (4.4)

where α ≥ 0 is the Laplace smoothing parameter. Laplace smoothing can be interpreted
as a prior uniform assumption and the higher α, the higher this assumption is valued
compared to the observed samples. The set Xd can be learned as well, but the estimate
will be different for α > 0, if not all possible classes are present in the observed samples.

A special case of a discrete distribution is the Bernoulli distribution, where the random
variable can take on the values zero or one. In case of a Bernoulli distributed random
variable xB, the estimator from eq. (4.4) is

P̂0 = p̂xB(0) = N0 + α

N + 2α, (4.5)

where N0 is the count of observed zeros and N is the total training sample count. The
probability of a one is trivially P̂1 = 1− P̂0.

4.3.2 Online KDE

Kernel density estimators (KDEs) are well known non-parametric methods to estimate
continuous distributions [26], [36]. The usual setup of a KDE is as follows. Given N

training samples xn, then the estimated distribution is

f̂x(x) = 1
Nh

N∑
n=1

K
(
x− xn
h

)
, (4.6)

where K(·) is the kernel and h is the bandwidth. The kernel must be non-negative and
must integrate to one. Typical choices for the kernel are uniform, triangular, Gaussian,
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etc. The bandwidth is usually dependent on the samples, and generally it should h→ 0
as N →∞. Here we will use Gaussian kernels, i.e.,

1
h
K
(
x− xn
h

)
= 1
h
N
(
x− xn
h

; 0, 1
)

= N
(
x;xn, h2

)
. (4.7)

We see that for Gaussian kernels, the bandwidth equals the standard deviation of the
individual components.

In the following, Silverman’s rule of thumb [36], a simple and common bandwidth
estimator is presented and we will denote it with hS. Assuming that the true distribution
fx(x) and the kernels K(·) are both Gaussians, hS minimizes the mean integrated squared
error

MISE(h) := E
{∫ ∞
−∞

(
f̂x(x)− fx(x)

)2
dx
}
. (4.8)

Together with the sample mean

µ̂x = 1
N

N∑
n=1

xn (4.9)

and the sample variance

σ̂2
x = 1

N

N∑
n=1

(xn − µ̂x)2, (4.10)

the estimated bandwidth is given by

hS := argmin
h

MISE(h) = σ̂x

( 4
3N

) 1
5
. (4.11)

Because hS is optimum for fx(x) Gaussian, it tends to over-estimate the true bandwidth,
resulting in a too smooth f̂x(x), should fx(x) not be Gaussian. To avoid this and to allow
for tunable regularization, we introduce a smoothing parameter α, and the final estimation
of the bandwidth is

hα := αhS. (4.12)

We now have to solve another practical problem. While the distribution estimator
based on eq. (4.6) can be easily learned in an online manner by just adding additional
components to the sum, this requires that all past samples need to be stored. A way
to counteract this problem, is to reduce the number of components by merging similar
components together. An algorithm for reducing the number of components of a Gaussian
mixture by merging is presented in [34], and here we adapt it to work with KDE. In order
to accommodate merged components, we need to change eq. (4.6) to

f̂x(x) =
NC∑
i=1

wiN
(
x;µi, σ2

i h
2
α

)
, (4.13)
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where NC is the maximum component count and wi, µi, σ2
i are the parameters of the ith

mixture component.
If an update occurs with NN new samples xn, a new component with variance one is

added to eq. (4.13) and we initialize the merging algorithm with

f̂x(x) =
NC∑
i=1

wiN
(
x;µi, σ2

i h
2
α

)
+

NN∑
n=1

wNC+nN
(
x;µNC+n, σ

2
NC+n h

2
α

)
. (4.14)

The overall sample count N is increased by NN and the other parameters are set as follows

wi = N −NN

N
wi,old

µi = µi,old

σ2
i,old = σ2

i

wNC+n = 1
N

µNC+n = xn

σ2
NC+n = 1.

(4.15)

After this initialization, we have a new mixture with NC + NN components. The mix-
ture components are now iteratively merged, two components at a time, until only NC

components are left. If components i and j are merged, then the new component has the
moment preserving parameters

wij = wi + wj

µij = wi
wi + wj

[wiµi + wjµj]

σ2
ij = wi

wi + wj

[
wiσ

2
i + wjσ

2
j + wiwj

(µi − µj)2

h2
α

]
.

(4.16)

The components that are merged are selected based on the Kullback-Leibler divergence be-
tween the mixture before merging f̂x(x) and the mixture after merging the two components
i and j, f̂ (ij)

x (x), i.e.,

DKL
(
f̂x(x) ‖ f̂ (ij)

x (x)
)

=
∫ ∞
−∞

f̂x(x) ln f̂x(x)
f̂

(ij)
x (x)

dx. (4.17)

This is however not exactly computable, but for this special case there exists an upper
bound, i.e.,

DKL
(
f̂x(x) ‖ f̂ (ij)

x (x)
)
≤ Bij = 1

2
[
(wi + wj) ln σ2

ij − wi ln σ2
i − wj ln σ2

j

]
. (4.18)

We now compute Bij for all potential mergers, and merge those two components that
minimize Bij.

Now to summarize our online KDE. We use eq. (4.13) to model our distribution
estimator with a maximum of NC components and smoothing α. To update the estimator
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with NN new samples xn, we update the sample mean and sample variance using

N = Nold +NN (4.19)

µ̂x = N −NN

N
µ̂x,old + 1

N

NN∑
n=1

xn (4.20)

σ̂2
x = N −NN

N

(
σ̂2

x,old + µ̂2
x,old

)
− µ̂2

x + 1
N

NN∑
n=1

x2
n. (4.21)

The bandwidth is updated accordingly, i.e.,

hα = ασ̂x

( 4
3N

) 1
5
. (4.22)

Then we initialize the iterative merging using eqs. (4.14) and (4.15). We continue merging
those two components minimizing eq. (4.18), using eq. (4.16), until there are only NC

components left.

4.4 Dependency Measures

This section discusses some dependency measures usable for both, LearnSPN and OSL.
The first two, mutual information and the G-test [21], are closely related and in here
only used for discrete data. The correlation coefficient and its generalization to higher
dimensions, the canonical correlation analysis (CCA) [11], are simple dependency measures
for both discrete, continuous or mixed data. Finally the randomized dependence coefficient
(RDC) [18] is an extension to the CCA with a better ability to detect dependencies. All
dependency measures presented here have in common that a higher value indicates a
higher dependency between the random variables in question. The values of the mutual
information and G-test are positive but in general unbounded, while the correlation
coefficient, CCA and RDC deliver results from the interval [0, 1].

4.4.1 Mutual information and G-test

One of the theoretically most appealing measures for dependency is the mutual informa-
tion, as it is defined as the Kullback-Leibler divergence between the joint and marginal
distributions of random variables. While the mutual information is not restricted to
discrete random variables, we will only consider the discrete mutual information. The
reason for this is that in practice the mutual information is not exactly computable in
general, and estimations need to be used and the simple approximation presented here
only works for discrete random variables.
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For two discrete random variables x ∈ X and y ∈ Y the mutual information is given by

I(x; y) = DKL(p(x, y) ‖ px(x)py(y)) =
∑
x∈X

∑
y∈Y

p(x, y) ln p(x, y)
px(x)py(y) . (4.23)

The problem is, that the true distributions px(x), py(y) and p(x, y) are not available and
need to be approximated. We will use the distribution estimator from Section 4.3.1 without
smoothing and extend it to two dimensions for p(x, y). Given N samples (xn, yn)> from
p(x, y), then we approximate px(x), py(y) and p(x, y) by

p̂x(x) = Nx

N
(4.24)

p̂y(y) = Ny

N
(4.25)

p̂(x, y) = Nx,y

N
(4.26)

respectively, where Nx,y is the count of samples where x and y jointly appeared. Our
approximation of the mutual information thus becomes

Î(x; y) =
∑
x∈X

∑
y∈Y

p̂(x, y) ln p̂(x, y)
p̂x(x)p̂y(y) = 1

N

∑
x∈X

∑
y∈Y

Nx,y ln Nx,yN

NxNy

. (4.27)

The G-test of goodness of fit [21], or simply G-test, was developed as a hypothesis
test, but it is a common dependency measure when learning SPNs. Because the G-test is
closely related to the approximation of the mutual information from eq. (4.27), we can
simply write it as

G = 2N Î(x; y) = 2
∑
x∈X

∑
y∈Y

Nx,y ln Nx,yN

NxNy

. (4.28)

The advantage of the G-test, compared to the mutual information when learning SPNs, is
that the count of samples is factored into the result, and this avoids false positives at low
sample counts to a certain extent.

4.4.2 Correlation coefficient and CCA

In this section two methods are presented to measure the correlation between two random
variables or vectors. While correlation is in general different from dependence, in practice
it can deliver a good estimation for the dependency of two random variables or vectors.
The correlation coefficient of two random variables x and y is given by

ρ(x, y) := E{(x − µx)(y − µy)}√
σ2

xσ
2
y

. (4.29)
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The CCA [11] can be seen as an extension to this for higher dimensions, however the
actual goal of CCA is something different. For two random vectors x and y, the CCA
seeks the two vectors â, b̂ which maximize the correlation between â>x and b̂>y, i.e.,

â, b̂ := argmax
a,b

ρ(a>x, b>y). (4.30)

Here we are however not interested in â and b̂ directly, but we can use them to define the
maximum canonical correlation coefficient

ρ(x, y) := max
a,b

ρ(a>x, b>y) = ρ(â>x, b̂
>

y). (4.31)

In order to compute ρ(x, y), without finding â and b̂ first, we define

K := C
− 1

2x CxyC
− 1

2y (4.32)

and then perform a singular value decomposition on K, i.e.,

K = UΣV H , (4.33)

where Σ = diag(
√
λ1,
√
λ2, . . .) is a diagonal matrix with the square roots of the eigenvalues

of K on its main diagonal. The maximum canonical correlation coefficient is then given as

ρ(x, y) = max
i

√
λi, (4.34)

i.e., as the square root of the maximum eigenvalue of K. In the case of one dimensional
random vectors, the CCA from eqs. (4.32) to (4.34) equals the correlation coefficient from
eq. (4.29). The CCA would allow us to estimate the correlation between groups of random
variables, but as was mentioned above, this would cause a high number of comparisons
when learning SPNs.

So far we have not discussed how to compute the CCA (and thus the correlation
coefficient) from samples. In the context of learning SPNs, we usually have samples from
a random vector x at any given state of the learning process and we want to make a
statement on the dependency of random variables within x. For CCA it is sufficient to
have an estimate of the covariance matrix of x, Ĉx, and we can generalize eq. (4.20) and
eq. (4.21) to higher dimensions to get such an estimate. To update the sample covariance
matrix with NN new samples xn we compute

N = Nold +NN (4.35)

µ̂x = N −NN

N
µ̂x,old + 1

N

NN∑
n=1
xn (4.36)
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Ĉx = N −NN

N

(
Ĉx,old + µ̂x,oldµ̂

>
x,old

)
− µ̂xµ̂

>
x + 1

N

NN∑
n=1
xnx

>
n . (4.37)

Based on the sample covariance matrix, we can rewrite eq. (4.29) to get an estimate of
the correlation coefficient between the ith and jth variable of x, i.e.,

ρ̂(xi, xj) = (Ĉx)ij√
(Ĉx)ii(Ĉx)jj

. (4.38)

To get an estimate of the maximum canonical correlation coefficient between two groups
of random variables within x, we can build the matrix K from eq. (4.32) by using the
corresponding entries in Ĉx.

4.4.3 Randomized dependence coefficient

The RDC was first used to train SPNs in [24]. The argument for using the RDC is that
it allows to efficiently measure the dependency between discrete and continuous random
variables. Another advantage of the RDC is that it is a provably [18] good estimation
for, not just correlation, but the dependency of two random vectors. In the following an
adaptation of the RDC is presented that allows online learning in the context of SPNs.

We have samples from a random vector x = (x1, x2, . . .)>, which are in general provided
in an online manner, and we want to estimate the dependency between single random
variables of that vector. The overall idea of the RDC is to put every sample through a
non-linear, random transformation and then compute the correlation of these transformed
samples. The transformation happens in three stages, which we will discuss now with the
example of a single sample x.

The first stage is, to compute the copula transformation

vi =

Pxi
(xi), xi is discrete

Fxi
(xi), xi is continuous

(4.39)

of the values of x, where Pxi
(·) is the cumulative distribution function (CDF) of xi. The

resulting random variables vi = Pxi
(xi) are continuous and uniformly distributed on the

interval [0, 1]. Of course the true CDFs of the random variables in x are not available, but
need to be estimated. While there are many different CDF estimators available, we will
re-use the distribution estimators from Section 4.3 here. Based on eq. (4.4), for discrete
random variables we use

P̂xi
(xi) =

xi∑
x=−∞

p̂xi
(xi) =

∑xi
x=−∞(Nx + α)∑
x′∈Xd

N ′x + α|Xd|
, (4.40)
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which can be efficiently computed if the cumulative sample counts are stored. Similarly
for continuous random variables, we re-use the online KDE and based on eq. (4.13) and
we get

F̂xi
(xi) =

∫ xi

x=−∞
f̂xi

(x) dx =
NC∑
j=1

wj
2

1 + erf
 xi − µj√

2σ2
jh

2
α

, (4.41)

where erf(·) is the well known error function.
At the second stage, for every vi, J affine transformations

vij = w̃ijvi + b̃ij (4.42)

are computed, where J is a parameter of the RDC. The weights w̃ij and biases b̃ij are
randomly chosen during the initialization of the RDC and then stay constant during the
entire learning procedure. It is reported [18] that,

w̃ij ∼ N
(
0, σ̃2

)
b̃ij ∼ U(0, 2π)

(4.43)

are good choices the distributions of the weights and biases, where σ̃2 is another parameter
of the RDC and U(0, 2π) is the continuous uniform distribution on the interval [0, 2π].

Finally the vij are transformed with L non-linear functions f̃l(·), i.e., for every vij we
compute

vijl = f̃l(vij). (4.44)

The count of non-linear functions L and the functions f̃l(·) themselves, are the final
parameters of the RDC. According to [18], good choices are

f̃1(v) = sin(v)
f̃2(v) = cos(v).

(4.45)

All transformed values vijl for a given i, are now put into a vector vi, which can be
seen as a sample of the random vector vi. For example, let xi be a continuous random
variable, and we use the choices from eqs. (4.43) and (4.45) with J = 2, then we have

vi =


sin(w̃i1F̂xi

(xi) + b̃i1)
cos(w̃i1F̂xi

(xi) + b̃i1)
sin(w̃i2F̂xi

(xi) + b̃i2)
cos(w̃i2F̂xi

(xi) + b̃i2)

. (4.46)

The vectors vi are now stacked to form a large vector v. We now keep track of the sample
covariance of v using eqs. (4.35) to (4.37). The value of the RDC between xi and xj is now
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defined as the estimated maximum canonical correlation coefficient between the random
vectors vi and vj, i.e.,

rdc(xi, xj) := ρ̂(vi, vj). (4.47)

4.5 Clustering Algorithms

In this section two common clustering algorithms, k-means and Gaussian mixture model
(GMM) expectation maximization (EM) are discussed [3]. Both can be used as part of
LearnSPN. Both algorithms share a very similar structure which comes from the fact that
k-means can be interpreted as a special case of GMM EM [3]. Both algorithms are iterative
and every iteration consists of two phases, the expectation and the maximization phase. At
the end of every iteration an objective function is computed and if the change, compared
to the last iteration, is below a threshold, the clustering is stopped. The initialization,
i.e., the initial cluster centers, play a major role in the final outcome, which is why at the
end of the section a widely used initialization technique called k-means++ [1] is presented.
Another straight-forward way to reduce the influence of the initial cluster centers is to
repeat the algorithm several times with different initial cluster centers, and select the
clustering that achieves the best performance with respect to the objective function.

4.5.1 k-means

A very basic clustering algorithm is k-means. It works reasonably well in most scenarios,
is numerically stable and due to its simple structure, k-meansis fast, compared to other
clustering techniques. The downside is that k-means is highly dependent on its initialization,
which makes a good initialization algorithm necessary.

The goal of k-means is to group N samples xn into K clusters, based on a distance
measure d(·, ·). A common choice for the distance measure is the squared L2 norm, i.e.,
d(x,y) = ‖x− y‖2

2. Every cluster defined is by its center µk. These cluster centers are,
what the initialization needs to provide. A simple method to get the initial cluster centers
is to randomly choose K samples, but k-means++ (Section 4.5.3) usually leads to better
results.

Every iteration of k-means starts with a reassignment of the N samples to one of the
K clusters. We have an assignment variable βnk that is either one, if sample xn is assigned
to cluster k, or zero if not. A sample is assigned to that cluster, that has the minimum
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distance from its center to the sample, i.e.,

βnk =

1, argmink′ d(xn,µk′) = k

0, else.
(4.48)

After this reassignment, the new cluster centers are computed using

µk =
∑N
n=1 βnkxn∑N
n=1 βnk

. (4.49)

The objective function of k-means is usually

J =
K∑
k=1

N∑
n=1

βnkd(xn,µk), (4.50)

which is sometimes called the distortion measure [3], and we want to minimize it. If the
change of the distortion measure between two iterations is smaller than a threshold ε,
i.e., |Jnew − Jold| < ε, then the clustering is stopped and the final assignments βnk are the
result of the clustering algorithm.

4.5.2 Gaussian mixture model EM

Another very popular clustering algorithm is GMM EM [3]. The traditional task of GMM
EM is to fit a GMM to a given set of N samples xn using the EM algorithm, but this
can be re-purposed as a clustering algorithm. The GMM considered here consists of K
mixture components, i.e.,

p(x) =
K∑
k=1

wkN (x;µk,Ck), (4.51)

where wk, µk and Ck are the component weights, means and covariance matrices respec-
tively.

The initial component means are provided using the same techniques applicable for
k − means, e.g. k-means++. The initial weights are usually set to wk = 1/K and
the covariances are typically set to identity. The E-step consists of recomputing the
responsibilities γnk, which are comparable to the βnk of k-means, but instead of hard
assignments, GMM EM works with soft assignments, i.e., γnk ∈ [0, 1]. We compute the
responsibilities using

γnk = wkN (xn;µk,Ck)
p(xn) = wkN (xn;µk,Ck)∑K

k′=1 wk′ N (xn;µk′ ,Ck′)
. (4.52)
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During the M-step, the component parameters are re-estimated with

wk = Nk

N
(4.53)

µk = 1
Nk

N∑
n=1

γnkxn (4.54)

Ck = 1
Nk

N∑
n=1

γnk(xn − µk)(xn − µk)
>, (4.55)

where Nk = ∑N
n=1 γnk is the effective number of samples assigned to component k. The

objective function in case of GMM EM is the log-likelihood of the samples, i.e.,

L = ln
(

N∏
n=1

p(xn)
)

=
N∑
n=1

ln
(

K∑
k=1

wkN (xn;µk,Ck)
)
. (4.56)

As is usual for EM algorithms, L increases from iteration to iteration and we stop if the
change of L between two iterations is below a threshold ε.

Once the EM algorithm has finished, the final γnk can be used as soft cluster assignments,
but for LearnSPN we require hard assignments

βnk =

1, argmaxk′ γnk′ = k

0, else.
(4.57)

4.5.3 Initialization

Both, k-means and GMM EM, require initial cluster centers or component means µk. A
provably good way for choosing these is k-means++ [1], which is presented here.

Given are N samples xn that we want to cluster in K clusters. The first center µ1 is
chosen by drawing a sample uniformly from the given xn. For the remaining centers, we
compute a probability Pn for every sample xn using

Pn = dS(xn)∑N
n′=1 dS(xn′)

, (4.58)

where dS(xn) is the distance of xn to the nearest already chosen center µk, i.e.,

dS(xn) = min
k
‖xn − µk‖

2
2. (4.59)

The next center is randomly chosen from the samples xn based on probability Pn. The
computation of Pn and random selection of the next µk is repeated until all K centers are
chosen.
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Chapter 5

Experimental Results

In this final chapter we will present some experimental results. In Section 5.1 we compare
the different methods presented in Chapter 4 using the binary data sets that are also
used in [9], [13], [32], [33], [37]. Section 5.2 is about the MNIST data set of handwritten
digits [17] and the sampling and completion capabilities of SPNs. Finally, in Section 5.3 we
present results based on real world 4th generation mobile wireless datarate measurements.

5.1 Binary Data Sets

In this section we compare the performance of the various SPN learning methods presented
in Chapter 4. As performance measure we will use the test set cross entropy, i.e., the cross
entropy [10] approximated with a set of test samples TT. We can motivate the usage of the
test set cross entropy as follows. Let p(x) be the true, generally unknown, distribution of
the training and test set, and let p̂(x) be the approximation our learned SPN represents.
A perfect approximation is achieved if the Kullback-Leibler divergence between p(x) and
p̂(x) is zero, i.e., DKL(p(x) ‖ p̂(x)) = 0. However, because we do not know p(x) in general,
DKL(p(x) ‖ p̂(x)) cannot be computed. We can express the Kullback-Leibler divergence
in terms of expectations, i.e.,

DKL(p(x) ‖ p̂(x)) = Ex∼p(x){− ln p̂(x)} − Ex∼p(x){− ln p(x)}, (5.1)

where the right expectation is the entropy of x ∼ p(x) and the left expectation is the cross
entropy of our approximation p̂(x). Using our assumption that the samples in the test set
TT are distributed according to p(x), we can do a Monte Carlo integration to approximate
the cross entropy in eq. (5.1), i.e.,

Ex∼p(x){− ln p̂(x)} = −
∫
X
p(x) ln p̂(x) dx ≈ − 1

|TT|
∑
x∈TT

ln p̂(x). (5.2)
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Dataset LearnSPN OSL
Name # Var # Train # Test G/GMM G/k MI/GMM MI/k ρ/GMM ρ/k RDC/GMM RDC/k ρ RDC
NLTCS 16 16181 3236 6.07 6.05 6.37 6.73 6.24 6.05 6.13 6.06 6.30 6.28
MSNBC 17 291326 58265 6.05 6.04 6.77 6.77 6.13 6.06 6.05 6.05 6.22 6.35
KDDCup2K 64 180092 34955 2.16 2.14 2.45 2.45 2.17 2.17 2.18 2.18 2.16 2.16
Plants 69 17412 3482 13.25 12.93 13.58 17.46 13.50 13.00 14.69 13.03 19.66 19.95
Audio 100 15000 3000 40.81 40.08 47.15 49.21 40.93 40.22 40.67 40.28 44.55 45.71
Netflix 100 15000 3000 58.40 56.81 62.79 64.37 60.26 56.85 58.72 56.80 61.69 62.09
Jester 100 9000 4116 53.94 53.04 60.11 58.96 56.14 53.13 54.76 53.08 53.40 53.56
Accidents 111 12758 2551 30.11 30.32 32.93 35.56 32.89 29.59 39.76 35.50 40.75 40.22
Retail 135 22041 4408 11.42 10.94 11.32 11.32 10.98 10.97 11.32 12.09 11.02 11.23
Pumsb-star 163 12262 2452 75.86 23.86 31.30 26.27 71.23 26.84 75.86 30.94 31.31 34.11
DNA 180 1600 1186 99.20 82.75 100.39 82.18 99.22 82.17 99.20 97.84 92.42 100.10
Kosarek 190 33375 6675 13.33 10.81 13.02 13.02 12.08 11.00 13.33 12.15 10.92 11.29
MSWeb 294 29441 5000 11.36 9.97 11.10 11.10 10.70 10.21 11.36 11.24 10.29 10.42
EachMovie 500 4524 591 83.60 52.58 74.46 65.62 83.60 53.59 83.60 54.53 63.09 76.54
Book 500 8700 1739 41.12 34.45 41.12 41.12 39.69 34.82 41.12 40.21 35.47 36.59
WebKB 839 2803 838 179.98 153.96 173.71 173.51 169.89 159.28 179.98 161.05 170.73 178.73
Reuters-52 889 6532 1540 108.10 82.97 103.21 103.13 99.00 87.65 108.10 95.59 98.66 106.54
20Newsgroup 910 11293 3764 172.39 151.97 171.74 171.73 170.57 157.04 172.39 157.84 158.36 160.31
BBC 1058 1670 330 277.08 249.59 272.20 272.29 267.38 252.75 277.10 253.58 270.07 276.62
Ad 1556 2461 491 59.73 19.01 49.56 48.71 49.60 19.41 63.82 24.93 57.84 61.90

Table 5.1: Comparison of the best achieved test set cross-entropy for various binary data
sets and different learning methods. The number of binary variables per sample, the
number of training and test samples of each data set are listed on the left. The results
achieved with LearnSPN for various dependency measures and clustering algorithms
are presented in the middle and the OSL results for different dependency measures are
presented on the right. Legend: G = G-test, MI = Mutual information, ρ = Correlation
coefficient, GMM = GMM EM, k = k-means.

This is the test set cross entropy and while it is no longer an absolute performance measure,
i.e., we do not know the best achievable value, it can be used to compare different methods
to each other. Lower values of the test set cross entropy indicate a better approximation
of p̂(x) with respect to p(x).

A common benchmark in the SPN literature [9], [13], [32], [33], [37] is the average log
likelihood, which is the negative test set cross entropy, of certain binary data sets. The
data sets have a various numbers of binary variables per sample, and different training
set and test set sizes. The results shown in table 5.1 compare the methods presented in
Chapter 4. Here, we compare the performance of LearnSPN using the G-test, mutual
information, correlation coefficient and RDC as dependency measures, and k-means and
GMM EM as clustering algorithms. We further compare the OSL performance using the
correlation coefficient and the RDC as dependency measures. Table 5.1 shows the best
test set cross entropies that we achieved with a grid search over the hyperparameter space.
The results are mostly within variance of what can be found in other publications [9],
[13], [32], [33], [37]. For these binary data sets LearnSPN with the G-test and k-means
performs the best overall, and OSL usually performes similarly to LearnSPN.
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(a) (b)

Figure 5.1: (a) Samples from the MNIST training set. (b) Samples computed with an
SPN.

5.2 MNIST Data Set of Handwritten Digits

We now present some results based on the MNIST data set of handwritten digits [17].
Every sample in the data set consists of a 28 by 28 pixel gray-scale image of a handwritten
digit together with the corresponding label, i.e., the digit that is depicted. The training
set consists of 60000 samples and the test set of 10000. Figure 5.1a shows 16 examples
from the training set.

The typical task for this data set is to classify the images in the test set based on
their pixel values. We achieved 93% accuracy with our LearnSPN implementation. This
is far behind the performance of NNs, which are capable of achieving more than 99%
accuracy [4]. However, SPNs learned by different methods are reported to achieve over
98% accuracy [13], [28].

Additionally to the classification accuracy, we conducted experiments to highlight the
sampling and image completion capabilities of SPNs. For example, the images shown
in fig. 5.1b were generated by sampling from an SPN. While not indistinguishable from
the samples in the training set, the generated samples are well readable and show the
typical style many images in the training set have. Figure 5.2 depicts some exemplary right
half completions performed by an SPN. The task was to predict the pixels of the right
half of the image based on the knowledge of the pixels of the left half. We additionally
investigated the effect the knowledge (or the lack thereof) of the label, i.e., the label,
would have on the completion. We can see in fig. 5.2 for example, that the “9” in the 5th
column is completed to a “4” if the label is not known. Further, it can be observed that
the MMSE estimation tends to smoother images, while the images generated with VMAP
estimation are usually sharp.
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Figure 5.2: Right half completions of samples from the MNIST test set, i.e., the pixel values
of the left half is given as input. We compare the results of MMSE/VMAP estimation
with known/unknown label (i.e., depicted digit). From top to bottom, the five rows depict:
1. The left half of the test set images, i.e., the input of the completion. 2. MMSE and
known label. 3. MMSE and unknown label. 4. VMAP and known label. 5. VMAP and
unknown label.

Anechoic Chamber

UE
Attenuator

Base Station

Internet

Server

Figure 5.3: The LTE data rate measurement setup.

5.3 LTE Data Rate Measurements

Finally, we will present results based on Long Term Evolution (LTE) [19] data rate
measurements.

5.3.1 Measurement setup

The measurements were conducted in a controlled environment and with the goal of better
understanding how different parameters influence the maximum possible datarate. The
setup is shown in fig. 5.3. The user equipment (UE), i.e., a cell phone, is located in an
anechoic chamber to avoid outside interference with the measurement. The UE is directly
connected to a tunable attenuator, which in turn is connected to a base station that only
serves the measured UE. From the base station a measurement server is reachable. We
had two different subscriber identity modules (SIMs) in use, one unlimited and the other
limited to a maximum download data rate of 10 Mbit/s.

All measurements were conducted without interference, which means that the only
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Figure 5.4: Examples of test set measurement time series for different combinations of SIM
card limitations and RSRP values. The horizontal lines indicate the overall data rates.

factor limiting the datarate is the signal to noise ratio (SNR). In our controlled environment,
we can substitute the difficult to measure SNR with the reference signal received power
(RSRP), i.e., the signal power received from a reference signal. The reference signal and
RSRP are defined in the LTE standard [19]. The RSRP is measured in dBm and the
currently measured value is available to the software of modern cell phones.

The program used for testing was Open-RMBT [25]. A test consists of a download and
an upload (UL), both with several parallel streams, in our case 10. At the end of a test,
additionally to the overall computed datarate and the RSRP, the cumulative downloaded
volume of every stream as time series is stored. The time series of the different streams
were combined and re-sampled to form a new 7 seconds long time series with 0.1 seconds
sample rate. We obtained two data sets, one for the download or downlink (DL), and one
for the upload or uplink (UL). Both were randomly partitioned into a training set and a
test set with 2777 and 694 sample vectors respectively. Every sample vector has 73 entries,
i.e., SIM limitation, RSRP, overall rate, and the 70 points long combined re-sampled time
series. Some exemplary time series are shown in fig. 5.4 and scatter plots of the RSRP
values and overall data rates is shown in fig. 5.5.

5.3.2 Time series and overall rate prediction

The first interesting problem is to predict the overall rate and the complete time series
based on the RSRP and the first few values of the time series. This is relevant, because as
the possible data rates increase, so does the downloaded (or uploaded) data volume during
a 7 second test, which usually has to be paid by the end user. Another problem of long
tests is, that the cell the test is conducted in is put under heavy load for the duration of
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Figure 5.5: Scatter plots of the data rates vs. the RSRPs of the test sets. The solid lines
are least squares fits of a piece-wise, linear and constant, function.

the test. Both problems can be mitigated by reducing the duration of the test, and thus a
prediction of the overall rate after 0.5 s or 1 s is desirable. All results in this section are
obtained by selecting the best SPN from a grid search over the various hyperparameters,
i.e., the SPN minimizing the predicted error given the first 5 samples averaged over the
test set sample vectors. Examples for predicted series are shown in fig. 5.6.

A problem poses the SIM limitation, because this information is usually not available
to the measurement software and the limiting algorithm only starts after about 0.5 s in
our tests, as is shown in fig. 5.4. We can jointly estimate the SIM limitation together with
the series and the overall rate and because of our idealized environment, high accuracies
can be achieved. Since the information whether the SIM is limited or not is present in our
test data, we can compare the prediction results as is done in fig. 5.7 and table 5.2. The
relative error in percent e% that is reported in the histograms and table is computed with

e% = ŷ − y
y
· 100%, (5.3)

where y is the “true” overall data rate from the test set and ŷ the MMSE estimate from
the SPN.

We can notice, that the histograms in fig. 5.7 show not much difference depending on
whether the SIM limitation is known or not. If we take a look at table 5.2 however, we
can see that the average error increases. This is due to the fact that a wrongly estimated
SIM limitation will cause a very large error for the predicted overall rate. We can also
observe, that the average error for the UL set is lower than for the DL set, despite the
fact that it is easier to predict the SIM limitation for the DL set. This can be explained
by taking a look at fig. 5.4, where we can see that limited and unlimited series are hardly
distinguishable for the UL set in the low RSRP regions, and thus a miss-classification has
less effect on the estimation of the overall data rate.
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Figure 5.6: MMSE estimations of the time series with −110 dBm RSRP from fig. 5.4. The
predictions start after 0.5 s and 1 s and are based on the RSRP, SIM limitation and the
first few unpredicted values. The dashed lines are ±σ away from the MMSE estimate,
where σ is the square root of the estimated variance. The horizontal lines indicate the
overall data rates, or their MMSE estimates in case of the predicted series.

5.3.3 Prediction of unlimited series and rates

The last task we want to investigate is the prediction of an unlimited series if the first
few samples are from a limited series. The reason behind this is, that this is a first step
towards a more realistic scenario, where we would be limited by interference. The results
for this experiment can be seen in fig. 5.8, fig. 5.9 and table 5.3. These results look not to
promising however, and it seems that the provided time series samples cause more harm
than they help since the errors increase if more samples are provided.
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Figure 5.7: Relative error histograms of the overall rate MMSE estimates for all test set
sample vectors and different inputs. The estimates are based on the RSRP, the first 5 or
10 samples from the time series and in some cases the knowledge of the SIM limitation.
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SIM limit. classification counts / Avg. errors Overall results
Set Samples SIM limit. Learner U + Est. U L + Est. L U + Est. L L + Est. U Lim. acc. Avg. error
DL 5 known LearnSPN 415 / 2.5 279 / 2.8 2.6
DL 5 known OSL 415 / 1.9 279 / 3.6 2.6
DL 5 unknown LearnSPN 413 / 2.4 276 / 3.3 2 / 23.8 3 / 97.3 99.28 3.3
DL 5 unknown OSL 413 / 2.1 261 / 6.3 2 / 38.4 18 / 221.9 97.12 9.5
DL 10 known LearnSPN 415 / 1.0 279 / 2.5 1.6
DL 10 known OSL 415 / 1.4 279 / 5.5 3.1
DL 10 unknown LearnSPN 414 / 1.0 278 / 2.5 1 / 18.1 1 / 131.6 99.71 1.8
DL 10 unknown OSL 415 / 1.4 274 / 3.2 0 / – 5 / 146.0 99.28 3.2
UL 5 known LearnSPN 406 / 1.6 288 / 2.6 2.0
UL 5 known OSL 406 / 77.6 288 / 62.4 71.3
UL 5 unknown LearnSPN 402 / 1.6 281 / 2.7 4 / 2.3 7 / 2.9 98.41 2.1
UL 5 unknown OSL 344 / 5.0 287 / 63.1 62 / 16.3 1 / 124.4 90.92 30.2
UL 10 known LearnSPN 406 / 1.6 288 / 2.7 2.0
UL 10 known OSL 406 / 21.8 288 / 109.3 58.1
UL 10 unknown LearnSPN 400 / 1.6 279 / 2.7 6 / 1.8 9 / 3.3 97.84 2.1
UL 10 unknown OSL 344 / 3.3 288 / 109.5 62 / 42.4 0 / – 91.07 50.8

Table 5.2: Comparison of the overall rate MMSE estimates for all test set sample vectors
and different inputs. The estimates are based on the RSRP, the first 5 or 10 samples
from the time series and in some cases the knowledge of the SIM limitation. The average
estimation errors and the overall limitation classification accuracy are given in percent.
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Figure 5.8: MMSE estimations conditioned on an unlimited SIM of the limited time series
with −110 dBm RSRP from fig. 5.4. The predictions start after 0.5 s and 1 s and are based
on the RSRP and the first few unpredicted values. The dashed lines are ±σ away from
the MMSE estimate, where σ is the square root of the estimated variance. The horizontal
lines indicate the overall data rates, or their MMSE estimates in case of the predicted
series.
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Figure 5.9: Relative error histograms of the overall rate MMSE estimates conditioned on
an unlimited SIM for all limited test set sample vectors and different inputs. The estimates
are based on the RSRP and the first 5 or 10 samples from the time series.

Set Samples Learner Avg. error
DL LearnSPN 5 47.1
DL OSL 5 82.7
DL LearnSPN 10 90.7
DL OSL 10 87.6
UL LearnSPN 5 45.9
UL OSL 5 68.6
UL LearnSPN 10 79.2
UL OSL 10 66.4

Table 5.3: Comparison of the overall rate MMSE estimates conditioned on an unlimited
SIM for all limited test set sample vectors and different inputs. The estimates are based
on the RSRP and the first 5 or 10 samples from the time series. The average estimation
errors are given in percent.
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Chapter 6

Conclusion

We have presented SPNs, a recently introduced PGM that allows for efficient inference.
Like NNs, SPNs are based on computational graphs, while still being interpretable in a
probabilistic way, i.e., SPNs represent a distribution. We are able to evaluate and sample
from marginals and conditionals of this distribution and we can further compute MMSE
and approximate VMAP estimates. Unlike many other machine learning methods, once
trained, an SPN can naturally be used for many different tasks and inputs, and is not
limited to a specific combination of task and input. Some selected theoretical properties
of SPNs were discussed, including validity, completeness, decomposability, the model
limitation to indirect variable dependencies, and the ability to plug-in other models.

Two structure learning algorithms were presented, i.e., LearnSPN for offline learning
and OSL for online learning. Both learning algorithms depend on other methods to model
univariate distributions, to estimate the dependency between random variables and to
cluster data samples. For all these methods we have presented several possibilities with
the goal that we can use SPNs for mixed, i.e., continuous and discrete, data.

Finally, we presented some experimental results. We compared the different learning
methods and showed results based on the widely used MNIST data set and real world
LTE datarate measurements.

There are many SPN related topics this master’s thesis did not discuss, including:

• weight learning, i.e., the other big learning paradigm, next to structure learning,
used to train SPNs;

• the relation of SPNs to other graphical models, especially Bayesian networks;

• better approximations of the VMAP estimator;

• a well founded theoretical examination of the model limitations;

• an efficient implementation of SPNs and the training algorithms.
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PMF, Probability Mass Function, 8
RDC, Randomized Dependence Coefficient, 55
RSRP, Reference Signal Received Power, 67
SIM, Subscriber Identity Module, 66
SNR, Signal to Noise Ratio, 67
SPN, Sum-Product Network, 9
SPT, Sum-Product Tree, 36
UE, User Equipment, 66
UL, Upload, 67
VMAP, Vector Maximum A-Posteriori, 33
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