
D I P L O M A T H E S I S

Expansion of Models for Heart

Rate Variability beyond the

Autonomic Nervous System

Submitted at the Institute for
Analysis and Scienti�c Computing
Vienna University of Technology

supervised by

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Felix Breitenecker
and

Univ. Lektor Dipl.-Ing. Dr. Martin Bachler

by

Jennifer Maria Yvonne Straub
Gombrichgasse 3/8
A-1100 Vienna

Vienna December 18, 2018 Signature Supervisor Signature

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





i

Statutory Declaration

I hereby declare, that I have written this Master Thesis independently, that
I have completely speci�ed the utilized sources and resources and that I have
de�nitely marked all parts of the work - including tabels and �gures - which
belong to other works or to the internet, literally or extracted, by referencing
the source as borrowed.

Eidesstattliche Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit gemäÿ dem Code of Conduct,
insbesondere ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als
der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen Quellen
direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im
Ausland in gleicher oder in ähnlicher Form in anderen Prüfungsverfahren
vorgelegt.

Vienna, Date Signature



ii



Abstract

According to the World Health Organisation, diseases of the cardiovascular
system (CVS) are currently the main cause of death in high-, middle-, and
low-income countries. Therefore, their understanding, prediction, and pre-
vention with the help of non-invasive, cost e�ective, and quick methods is of
great interest.

Analysis of the heart rate and its change over time can give valuable insight
into the health status of a patient, and is easily derived from electrocardio-
gram data. Reduced heart rate variability (HRV) is associated to an increased
probability of dying after myocardial infarctions and indicates in�ammatory
processes in the body. It is symptomatic of mental disorders such as depres-
sion and even serves as an indicator for the risk of su�ering from burn-out.

Di�erent approaches in modeling and simulation of HRV can provide new in-
sight into the nonlinear interplay of cardiovascular regulation. In this work,
three models for HRV are implemented and compared. They include the
�ring rate of the baroreceptors, respiration, activity of the sympathetic and
parasympathetic nervous system, stroke volume, cardiac noradrenaline and
acetylcholine concentration, as well as a windkessel model including periph-
eral resistance and arterial compliance.

First, an existing model for HRV based on respiration and barore�ex activ-
ity was implemented and analyzed. A second model was created through
adaption of the �rst model. For this purpose, sympathetic activity, as well
as the pressure curve in the aortic arch and the duration of the systole were
adapted. Based on a model for the autonomic response to orthostatic stress,
a third model, including three di�erent types of baroreceptors and a depen-
dence on the mean arterial pressure, was implemented as well.

All three models were realized in Simulink 2017b, and their validation is per-
formed based on two 5 minute electrocardiogram (ECG) recordings from 30
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iv ABSTRACT

subjects. The simulation results are compared to subject data based on the
standards of HRV measurement by the Task Force of the European Society
of Cardiology and the North American Society of Pacing and Electrophys-
iology. Each of the three modeling approaches showed speci�c advantages,
disadvantages, and possibilities for further improvement. Lastly, the results
once more underline the complex and nonlinear modulation of HRV, and
provide basis for extension of HRV models, paving the way for the future
usage of model prediction in the �eld of cardiovascular diseases.



Kurzfassung

Laut Erhebungen der Weltgesundheitsorganisation sind Erkrankungen des
Herzkreislaufsystems derzeit die Haupttodesursache, sowohl in Ländern mit
hohem, mittleren, als auch niedrigem durchschnittlichen Einkommen. Fol-
glich besteht groÿes Interesse an der Analyse, Vorhersage und Vorbeugung
ebendieser mit Hilfe von günstigen, nicht-invasiven Verfahren.

Die Analyse der Herzrate und ihrer zeitlichen Veränderung kann schnell mit-
tels Elektrokardiogrammdaten durchgeführt werden und erlaubt wertvolle
Rückschlüsse auf den derzeitigen Gesundheitsstatus des Patienten. Eine Ver-
ringerung der Herzratenvariabilität (HRV) kann ein Indiz erhöhter Sterblichkeit
nach einem Myokardinfarkt sein, entzündliche Prozesse kennzeichnen oder
psychische Erkrankungen wie Depression und Burn-out prognostizieren.

Die Analyse, Modellbildung und Simulation der Herzratenvariabilität kann
folglich dazu genutzt werden, das nichtlineare Zusammenspiel der kardio-
vaskulären Regulationsmechanismen besser zu verstehen. In dieser Arbeit
werden drei Modelle verglichen, welche die Barorezeptoren, die Atmung, die
Aktivität des sympathetischen und parasympathetischen Nervensystems, das
Herzschlagvolumen, die Acetylcholin- und Norardrenalinkonzentration im Er-
regungsleitungssystem des Herzens, der periphere Gefäÿwiderstand, sowie die
arterielle Compliance berücksichtigen.

Zuerst wurde ein existierendes HRV-Modell, basierend auf Barorezeptorak-
tivität und Atemfrequenz, implementiert. Ein zweites Modell ergab sich
durch Verbesserungen im Bezug auf die Sympathikusaktivität, die generelle
Form der Blutdruckkurve und die Systolendauer. Ein Modell zur Beschrei-
bung der Auswirkung von orthostatischem Stress auf das autonome Nerven-
system diente als Grundlage für ein drittes HRV-Modell. Darüber hinaus
besitzt dieses, im Gegensatz zur den anderen Modellen, drei verschiedene
Typen von Barorezeptoren.
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vi KURZFASSUNG

Die Modelle wurden in Simulink 2017b implementiert und über den Vergle-
ich mit fünfminütigen Elektrokardiogrammaufzeichnungen von 30 Patienten
mit Bluthochdruck validiert. Die Quanti�zierung der Herzratenvariabilität
basiert dabei auf den Vorgaben der Task Force of the European Society of
Cardiology and the North American Society of Pacing and Electrophysiology.

Jedes der präsentierten Modelle wies dabei sowohl spezi�sche Vor-, als auch
Nachteile auf, sowie Möglichkeiten für weitere Verbesserungen. Dies un-
terstreicht erneut die komplexen, nichtlinearen Zusammenhänge der Reg-
ulierung der Herzratenvariabilität und ebnet den Weg für zukünftige Mod-
ellerweiterungen.
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1 Introduction

Heart rate variability (HRV), the change in time intervals between succes-
sive heart beats, re�ects the activity of the autonomous nervous system, and
gives information about the overall condition of the cardiovascular system.
The heart rate does not have the tendency to approximate a steady state,
but keeps on changing as a result of non-static physiological and psycholog-
ical regulatory mechanisms, which are never truly at rest, and interact in a
non-linear way. Regions in the spinal chord and the medulla, which are re-
sponsible for the regulation of the heart beat, are modulated by higher brain
centers and a�erent neurons from the cardiovascular system. The informa-
tion is processed, and from there, the autonomic nervous system regulates
the heart rate accordingly. Quick changes are induced by the parasympa-
thetic nervous system, which is able to react almost instantaneously, while
the sympathetic nervous system can only modulate cardiac activity with a
time delay of a few seconds [34].
HRV is a sign of a healthy cardiovascular system and its ability to adapt to
environmental changes. On the contrary, a reduced change between adja-
cent interbeat times can indicate a multitude of health problems. Numerous
studies have shown its association with diseases such as coronary artheroscle-
rosis, in�ammatory processes, depression, burn-out, autonomic dysfunction,
and many other pathologies. Especially after myocardial infarction, reduced
HRV was shown to be an indicator of mortality. It is important to note that
HRV generally decreases with age, and depends on the heart rate, since a
higher heart rate results in shorter interbeat intervals, and therefore leaves
less time for changes [34].

1.1 Motivation

According to an analysis of the health pro�les of all states of the European
Union conducted in 2017, diseases of the cardiovascular system are the main
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2 CHAPTER 1. INTRODUCTION

cause of death in Austria, as shown in the following �gure 1.1 [40]. The
same picture is presented in studies of the whole European Union, where
approximately 45 percent of all death cases are related to cardiovascular
causes. Similarly, the 2013 Global Burden of Disease study from estimates
17.3 million deaths globally, making it the most common cause of death world
wide [50].
Heart rate variability is a sign of a healthy cardiovascular system and its
ability to adapt to environmental changes. As HRV can be easily derived
from electrocardiogram (ECG) data, great interest lies in attaining a deeper
understanding of its nonlinear regulatory mechanisms, among other methods
by using the help of modeling and simulation. Creating a model which is
complex enough to reproduce important characteristics of HRV, but still
simple enough to maintain applicability, can lead to a deeper physiological
insight [43]. Consequently, the resulting insights open up new possibilities
for diagnostics and therapy [1].

Figure 1.1: Diseases of the cardiovascular system are responsible for the
majority of death cases in Austria in 2014. This concerns both male and
female population. [40].

1.2 Scope of Work

Existing models for heart rate variability mainly focus on the in�uence of
the autonomic nervous system on the heart [14], neglect vascular compo-
nents [35], or do not take respiration into account [20], although it has a
proven in�uence on the heart rate [3].
Therefore, the scope of this work is to expand and implement models for heart
rate variability, based on existing models. After estimating model parameters
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through analysis of given patient data, simulation runs are performed and
their outputs are compared to the underlying data based on standard mea-
sures for heart rate variability. Via investigation of the models themselves
and their simulation results, the following questions shall be addressed:

� Do existing models include physiological processes in a mathematically
and medically reasonable way?

� How can the model performance be rated with the help of established
measures of HRV?

� Which di�erences does the simulation output show, compared to data
from patients with hypertension, if the most in�uential model param-
eters were estimated from the given patient data?

� How can an existing model, which already includes the most common
in�uences on the heart rate, be further expanded and improved, based
on this comparison?

1.3 Aim of the Thesis

The goal of this thesis lies in the mathematical expansion, improvement, and
application of models of the cardiovascular system, as well as their validation.
In the process, the scope mainly lies on creating a realistic representation
of heart rate variability. The resulting models are implemented in Simulink
2017b. In order to assess their validity and to estimate possibilities for further
improvements, their simulation results are compared to electrocardiographic
recordings from patients with hypertension.

1.4 Methodical Approach

In the beginning, a detailed literature research was carried out, as it is not
only necessary to get an overview of existing HRV models, but also acquire
a well-founded knowledge of the physiological processes behind controlling
mechanisms of the heart rate.
A multitude of existing models and submodels of the cardiovascular system
was found, with their structure ranging from very fundamental to highly
complex. Since numerous parameters need to be estimated in any case, some
of the models turned out to be unsuitable for implementation, due to their
richness of detail.
Once the models are improved, expanded, and implemented in Simulink
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2017b, their performance is assessed via comparison to given data from hy-
pertensive patients. First, model parameters are estimated from the given
data, followed by the simulation runs. Their outputs are then analysed based
on established measures of heart rate variability.
Interpretation of the obtained results gives valuable insight into strengths
and weaknesses of the existing models. This lays the foundation for further
improvements and reevaluation.

1.5 Thesis Outline

Chapter 1 speci�es the motivation and aim of this thesis. It is followed by a
description of the cardiovascular system and the most important regulatory
mechanisms of the heart rate in Chapter 2. Chapter 3 deals with the most
common measures of heart rate variability, as well as other mathematical
principles used later in the thesis. Three models of the cardiovascular sys-
tem, including expansion and improvement of existing models, are presented
in Chapter 4. Validation is performed by comparing the model simulation
output to 5 minute heart rate recordings from 30 subjects su�ering from
hypertension. The results are summarized in Chapter 5, followed by their
analysis and interpretation in Chapter 6, which also includes an outlook on
possible further improvements. Ultimately, the Appendix contains additional
simulation outputs and results.



2 Background

The �rst section gives a description of the cardiovascular system (CVS) and
its physiological controlling mechanisms, followed by a basic de�nition of the
terms modeling and simulation. The chapter is closed by an overview of the
current state of the art concerning the modeling and simulation of the CVS.

2.1 The Cardiovascular System

2.1.1 Anatomy and Physiology of the Heart

The human heart consists of two separate pumps: a right heart and a left
heart. Each of these two pumps is again divided into two chambers: the
atrium, serving as a weak primer pump, and the ventricle, applying the main
force to the blood. The right ventricle pumps the blood through the pul-
monary circulation, whereas the left ventricle ejects it into the peripheral
circulation. Tricuspid and mitral valves prevent back�ow from the ventricles
into the atria and aortic and pulmonary artery valves prevent back�ow from
the aorta and pulmonary arteries into the ventricles. The described course of
the blood �ow through the heart and the cardiovascular system is depicted
in �gure 2.1. About 80 percent of the blood from the great veins �ow di-
rectly through the atria into the ventricles, even before the atria contract.
Therefore, the ventricular pumping e�ectiveness is increased by as much as
20 percent by the contraction of the atria. As the heart is capable of pumping
300 to 400 percent more blood than required by the resting body, a malfunc-
tion of the atria can stay largely unnoticed, unless a person exercises [25].

One cardiac cycle consists of all the events occurring between two successive
heartbeats. It can be divided into four di�erent phases: At the beginning of
each cycle, during the contraction phase, the pressure inside the left ventri-
cle rises but is still less than the pressure in the aorta, so the aortic valves
stay closed. The second phase is the so called ejection phase, during which
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6 CHAPTER 2. BACKGROUND

Figure 2.1: Description of the anatomy of the heart and the blood circulation
through the heart [25].

around 90ml of blood are pumped out of the ventricle and into the aorta.
After the aortic valves close again, the relaxation phase starts. It is followed
by the �lling phase, which starts after the pressure inside the left ventricle
falls below the pressure inside the left atrium. This causes the mitral valves
to open and the left ventricle is �lled again [41].
More commonly, the heart cycle is divided into a systolic and a diastolic
part. The systolic part equals the ejection phase and covers the timespan
between the opening and the closing of the aortic valves. On the contrary,
the diastole describes the phase of relaxation until the aortic valves open
again. It covers the same timespan as relaxation, �lling and contraction
phase combined [25]. Changes in left atrial and ventricular pressure, as well
as aortic pressure, ventricular volume, the electrocardiogram and the phono-
cardiogram are depicted in �gure 2.2. The sinus node is a small, �attened,
ellipsoid strip in the posterolateral wall of the right atrium about 3mm wide,
15mm long, and 1mm thick. It is the primary pacemaker of the heart and
possesses the capability of self-excitation, causing 60-80 rhythmical contrac-
tions per minute. Its �bres contain almost no contractile muscle �laments,
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Figure 2.2: Events of the cardiac cycle for left ventricular function [25].

but connect directly with atrial muscle �bers, which leads to an immediate
spreading of action potentials. Each impulse passes from the sinus node to
the atrioventricular (AV) node, where it is delayed, before passing the AV-
bundle and the left and right bundle branches of Purkinje �bers, conducting
it further to all parts of the ventricles. The AV node and the Purkinje �bres
also possess the capability of self-excitation with a frequency of 40-60 and
20-40 excitations per minute. As a result of this special stimulus conduction,
the atria contract �rst, pushing the blood into the ventricles with a delay of
around 0.1 seconds before their contraction begins. This is also referred to
as PQ-duration, due to its depiction on the ECG [25].
As mentioned before, cardiac pacemaker cells have the capability of self-
excitation because of their unstable resting potential. Opposite to the action
potential of skeletal muscle cells, which exists because of stabilising Kalium-
channels (K+-channels), there is a phase of automatic diastolic depolarisation
after each repolarisation. At the end of the repolarisation, when the mem-
brane voltage reaches values below -50mV, the hyperpolarization-activated
cyclic nucleotide-gated cation channels (HCN-channels), also called funny
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channels, open. These are non-selective ion channels allowing cations, mostly
sodium ions (Na+) to �ow into the cell. In combination with the complete
absence of potassium channels, which would normally stabilise the resting
potential, this causes an automatic depolarisation. Another di�erence is the
absence of fast Na+ channels. When the threshold of -55mV is reached, a
new action potential is created by the in�ux of calcium ions (Ca2+). This
Ca2+ in�ux is slower than the Na+ in�ux through fast Na+ channels. The
membrane voltage rises to 30mV, then K+-channels open, K+-ions �ow into
the cell and it is repolarized again [41].
The action potential of the heart muscle cells also di�ers considerably from
the action potential of skeletal muscles. Its resting potential lies at -85mV,
due to its high potassium (K+) conductivity. If the voltage rises to the
threshold potential of -65mV by excitation from the sinus node, the fast Na+

channels open, causing a very rapid in�ux of cations and a rise of the mem-
brane voltage to +40mV. This so called overshoot is followed by a plateau
phase, caused by a slow depolarizing Ca2+ in�ux over a duration of 200ms.
The Ca2+ ions �ow into the cell and result in even more Ca2+ being released
from the intracellular reservoirs. The risen Ca2+ concentration inside the cell
then leads to its contraction. Therefore, the extra- and intracellular Ca2+

concentrations and their changes are the determining factor for the contrac-
tility of the heart muscle cell. After that the Ca2+ channels close again and
K+-channels open. The resulting potassium e�ux repolarizes the cell and
a new action potential can be generated. The whole process takes about
300ms and due to the long refractory period caused by the plateau phase,
the maximum heart rate is limited to around 200 beats per minute (bpm) [41].

2.1.2 Controlling Mechanisms of the Cardiovascular

System

During rest, the heart beats about 70 times per minute and pumps approx-
imately 4 to 6 liters of blood. When a person is exercising, the heart rate
increases up to 180-200 beats per minute and the blood �ow is increased up
to seven times the normal amount. The heart rate is mainly regualted by
the autonomic nervous system and in�uenced by a multitude of factors such
as respiration or stress level. Regulation of the volume pumped by the heart
mainly depends on two factors: the intrinsic cardiac regulation depending
on the volume of blood �owing into the heart (Frank-Starling-Mechanism)
and the control of the heart rate and strength of pumping by the autonomic
nervous system [25].



2.1. THE CARDIOVASCULAR SYSTEM 9

The Frank-Starling-Mechanism

The amount of blood pumped by the heart per minute is largely determined
by the rate of blood �ow into the heart, the so called venous return. The
Frank-Starling mechanism is the intrinsic ability to adapt to increasing vol-
umes of in�owing blood into the heart. A greater stretch of the right heart
during �lling leads to a stronger contraction, resulting in a greater amount
of blood being pumped into the aorta. This is absolutely necessary, because
otherwise the right heart would pump more blood into the lungs than the left
heart ejects, causing high blood pressure in the pulmonary circulation. In
addition to this, the heart rate is further increased by 10 to 20 percent, due
to the right atrial walls reaction to stronger stretching, but this mechanism is
secondary compared to the Frank-Starling mechanism. Another noteworthy
characteristic of this mechanism is its total dependence on the stretch of the
heart muscle and therefore independence from neuronal in�uences [25].

The Autonomic Nervous System

The autonomic nervous system (ANS) consists of two anatomically and func-
tionally distinct divisions: the sympathetic nervous system and the parasym-
pathetic or vagal nervous system. Due to their mostly opposing e�ect, an
increase of sympathetic in�uence on the heart will simultaneously decrease
vagal activity and vice versa, creating a rapid and precise controlling mech-
anism. The sympathetic system is mainly activated during exercise and
emergency situations, preparing the body for physical activity by increasing
the heart rate and the blood �ow through the system. The parasympathetic
system on the other hand is dominant during rest conditions. It regulates
basic body funcions and decreases the heart rate [33].

The axons of the autonomic nervous system start in the brain stem, run
through the spinal cord and are then interconnected to other autonomic
neurons in the peripheral autonomic ganglia. Therefore one di�erentiates
between preganglionic and postganglionic neurons.
The sympathetic ganglia are located pairwise along the the spinal cord as a
so-called paravertebral chain of gangliae. The preganglionic parasympathetic
nerves have their origin in the brain regions of the brain nerves number III
(Nervus oculomotoris), VII (Nervus facialis), IX (Nervus glossopharyngeus)
and X (Nervus vagus), as well as in the sacral segment of the spinal cord.
Their ganglia lie very close or inside of the organ they a�ect. Both divisions
of the ANS release acetylcholine to excite the postganglionic neurons in the
ganglia. The vast majority of sympathic postganglionic neurons then release
noradrenaline to excite their e�ector organs. For vagal postganglionc neu-
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Figure 2.3: Sympathetic and parasympathetic (vagal) nerves of the heart [25].

rons the excitement of their target structures happens through the release of
acetylcholine [41].

E�erent nervous activity of the ANS is mostly regulated by autonomic re-
�exes, for example the baroreceptor re�ex, which transmit sensory informa-
tion to the homeostatic control centers, especially those in the hypothalamus
and brainstem. A response is carried out by the transmission of nerve sig-
nals, that modify the activity of preganglionic autonomic neurons. Heart
rate, blood pressure, and body temperature are only a few of the many vari-
ables in the human body, which are monitored and regulated by ANS [33].
The medulla oblongata also plays a central role, as it contains preganglionic
sympathetic and parasympathetic neurons and acts as a control center. Both
nerve types have a basic activity at all times and show activity �uctuations
synchronously to respiration. They are also in�uenced by a�erences from
the respiratory neurons of the brain stem, mechanoreceptors, nociceptors
and chemoreceptors [25].

The tissues of the heart are innervated by both systems, but opposite to the
sympathetic �bres the vagal �bres are mainly distributed to the atria, the si-
nus node, the AV-node, and not to the ventricles, as shown in �gure 2.3 [25].
Through sympathetic stimulation of the heart muscle cells, noradrenaline is
released regardless of the stretch of the muscle �bres, which a�ects the β1-
receptors of the heart muscles. Through intracellular mechanisms the open-
ing of Ca2+ channels becomes more likely, causing stronger contractions.
Ca2+ is also reabsorbed into the sarcoplasmic reticulum more quickly and
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Figure 2.4: Depolarisation of the sinus node depending on the activity of the
autonomic nervous system [19].

the muscle �bres are able to relax faster. Parasympathetic activity does not
directly in�uence the contractility of the ventricle myocard, it much rather
prevents the release of noradrenaline via presynaptic inhibition and therefore
acts as an antagonist. Sympathetic stimulation of the pacemaker cells causes
faster depolarisation and therefore a faster HR. The parasympathetic HR
reduction comes from a release of acetylcholine at the sinoatrial node and
the AV-node, activating the so-called M2-receptors, which slow down the di-
astolic depolarisation through inhibition of the HCN-channels. On the other
hand, a higher sympathetic tone causes a release of noradrenaline, which
binds to β1 receptors, accelerates the diastolic depolarisation as well as the
excitation of the heart and lowers the threshold for the next depolarisation
(see �gure 2.4).
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Figure 2.5: Cardiac output and its dependency on right atrial pressure and
the ANS activity [25].

The release of sympathetic noradrenaline also a�ects the blood vessels via
α1-receptors. After their activation the sarcoplasmic reticulum releases Ca2+

ions and therefore the vessel contracts [41].
The cardiac output can be more than doubled by sympathetic stimulation or
decreased to as low as almost zero by parasympathetic stimulation, depend-
ing on the input atrial pressure as shown in �gure 2.5. Under normal condi-
tions, the continuous discharge of sympathetic nerve �bres increases pumping
by 30 percent compared to no sympathetic stimulation. The average heart
rate for young adults of 70 beats per minute (bpm) can be increased up to
approximately 200 bpm by strong sympathetic stimulation, while simultane-
ously intensifying the contraction to as much as double normal, increasing
the amount of blood pumped and augmenting the ejection pressure [25].
Strong parasympathetic stimulation of the heart can even stop the heartbeat,
but it normally returns after a few seconds and continues at a rate of 20 to 40
bpm as long as the vagal stimulation lasts. As opposed to the sympathetic
stimulation, parasympathetic stimulation decreases the level of cardiac out-
put as much as 30 percent below normal (�gure 2.5). As the vagal nerves
mainly in�uence the atria and not the ventricles, the contraction strength is
only slightly decreased during parasympathetic stimulation, but even a small
change in intensity combined with reduced heart rate can lead to a decrease
in ventricular pumping of 50 percent or more [25].
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The Barore�ex

The best known subconscious nervous control mechanism for arterial pressure
control is the so called baroreceptor re�ex. The baroreceptors are spray-type
nerve endigns located at speci�c points in the walls of some large systemic
arteries, mainly in an area called the sinus caroticus and in the wall of the
aortic arch. They generate nervous signals when stretched, i.e. when blood
pressure increases, which are then forwarded from the aortic arch to the
medulla oblongata of the brain stem through vagal nerves. From there, sec-
ondary signals inhibit the vasoconstrictor center of the medula and increase
the activity of the vagal parasympathetic center. This leads to a decrease in
heart rate, a weaker heart contraction, and vasodilation, that is the enlarge-
ment of the diameter of the veins and arterioles of the peripheral circulatory
system. This negative feedback re�ex mechanism causes a decrease in arte-
rial pressure. Low blood pressure decreases the number of sensory impulses
transmitted from the baroreceptors to the vasomotor center, therefore heart
rate and vascular resistance increase and blood pressure rises again, causing
the oscillation of the baroreceptor re�ex [33].
Baroceptors respond to changes in arterial pressure in a split-second and the
intensity of their response can double, for example, if the arterial pressure
changes quickly. Variation of arterial pressure is therefore drastically reduced
compared to a system without barore�ex. If arterial blood pressure is chron-
ically increased or decreased, the activity of the baroceptors changes at �rst,
but adapts to the new pressure level in 1 to 2 days. However, their in�uence
on long term blood pressure regulation is still present, since the baroceptor
re�ex interacts with the renal-body �uid-pressure control system, causing a
gradual decrease in blood volume as a countermeasure against hypertension.
If the baroceptors of the aortic sinus are denervated, the range of variation
of the blood pressure extends considerably. Afte denervating the a�erences
from the low-pressure system, an additional rise in mean blood pressure can
be detected [41]. Aside from respiratory waves, a slower cyclic rise and fall
in blood pressure wih a duration of 7 to 10 seconds, the vasomotor waves
or Mayer waves, can be seen in unanesthetized humans. These waves are
caused mainly by oscillations of the baroreceptor re�ex. High pressure ex-
cites the baroreceptors, which cause a decrease in sympathetic activity and
lower the blood pressure with a delay of a few seconds. The baroreceptors
detect the decrease in blood pressure and activate the vasomotor center once
again, elevating blood pressure. The response is delayed until a few seconds
later and another cycle of rising and falling pressure starts [25].
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The E�ect of Respiration on the Heart

The so called respiratory sinus arrhythmia (RSA) is the synchronous varia-
tion of heart rate and respiration. Approximately 10% of the blood in the
vascular system is located in the pulmonary circulation and again 10% of
the blood inside the pulmonary circulation is distributed in the pulmonary
capillary bed, interacting with the alveoli. The stroke volume of the heart is
almost equivalent to the blood volume in the capillary bed, therefore most
of the blood in the capillary bed is exchanged during each heartbeat. As
a consequence, variation of the heart rate during inspiration and expiration
a�ects the e�ciency of the gas exchange [56].
A variety of complexly interacting central and peripheral factors cause RSA,
but neural mechanisms are dominant compared to nonneural ones to an ex-
tent, which allows total RSA elimination by autonomic denervation, as ob-
served for example during heart transplantation [9].
During inspiration, the activity of the e�erent cardiac vagal nerve reaches
a minimum, causing the intervals between successive heartbeats to shorten,
whereas during expiration vagal activity reaches a maximum, resulting in
longer intervals. The change in time between successive heartbeats during
inspiration and expiration can therefore be an indicator of RSA.
RSA can easily be in�uenced by cardiopulmonary function, sleep or wakeful-
ness, age, and many other factors [56].
Each inhalation and exhalation usually causes a wavelike rise and fall of the
arterial pressure of 4-6 mmHg, called respiratoriy waves. These waves are
caused by several di�erent e�ects. During inhalation, the pressure in the
thoracic cavity drops below normal, causing the blood vessels in the chest to
expand, resulting in a reduced blood �ow back to the left side of the heart
and therefore a decrease of cardiac output and atrial pressure. Another in�u-
encing factor is the excitement of vascular and atrial stretch receptors due to
respiration related pressure changes. There are more in�uencing factors caus-
ing respiratory pressure waves, but in summary arterial pressure rises during
the early part of expiration and decreases during the rest of the respiratory
cycle [25].

2.1.3 Further e�ectors of the CVS

Renal regulation

Low blood volume and therefore a lowered blood pressure results in a lower
activity of the baroceptors, causing enhanced sympathetic tone. The sym-
pathetic nerves also regulate the activity of the kidney. During phases of low
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pressure, they are animated to release the enzyme renine. This enzyme sepa-
rates angiotensin I from angiotensin, which is then converted into angiotensin
II by the angiotensin converting enzyme (ACE) in the lung. Angiotensin II
then induces a strong vessel contraction, causing blood pressure to rise again.
It stimulates the release of Aldosteron from the adrenal cortex, which then
enhances the reabsorption of water and Na+ in the kidneys and counteracts
further loss of extracellular volume. In addition, Angiotensin intensi�es the
feeling of thirst. This mechanism makes drugs that inhibit the activity of the
ACE a powerful remedy against high blood pressure.
If blood pressure is high, the walls of the atria are stretched more intensely,
resulting in the release of atrial natriuretic peptide (ANP). It acts as an
opponent of aldosteron by reducing its release from the adrenal cortex and
enhancing the excretion of water and Na+.
Since the variation of blood pressure also a�ects the activity of the barorecep-
tors and the level of sympathetic tone, it can be seen as an indirect in�uence
on the heart rate [41].

The arterial windkessel e�ect

The comparatively high pressure in the arterial system is also caused by the
relatively low elasticity of the peripheral arterial system. On the contrary,
the wall of the thoracic aorta contains a lot of elastic �bres, giving it great ex-
tensibility. Therefore, the blood ejected from the heart during systole causes
the aorta to stretch, which reduces the systolic pressure rise and therefore
has an e�ect on the baroreceptors. The aorta then returns to its original
shape, pushes the blood further into the arterial system and ensures a rather
continuous blood �ow [41].

Thyroid hormone

The most common sign of augmented thyroid hormone levels is an augmented
heart rate during resting conditions. The heart rate usually varies over the
course of 24h, but the variation is even stronger for hyperthyroid patients
than for healthy subjects. A close correlation between thyroid hormone lev-
els and the heart rate at night can be detected. Combined with the fact
that sympathetic tone is at its lowest at night, this indicates a rather direct
in�uence of thyroid hormone on the sino-atrial node activity. Myocardial
relaxation, the venous return, the blood volume inside the left ventricle at
the end of the diastole, and the stroke volume (SV) are increased by hyper-
thyroidism [10].



16 CHAPTER 2. BACKGROUND

Neurovisceral integration

Vagal tone was shown to be an indicator of a persons ability of attentional
control and emotional regulation. It provides information about the e�ciency
of CNS-ANS neural feedback and can therefore be seen as a measure of ones
ability of self-regulation through use of resources and response selection in
goal-driven behaviour.
Goal-driven behaviour is, amongst other things, controlled by the so called
central autonomic network, which consists of a multitude of reciprocally inter-
connected brain structures and mediates its output through the antonomous
nervous system. It is in�uenced by visceral, humoral, and environmental
informations, and responds according to their changes. This results in a
nonlinear dynamical system that mainly a�ects the heart via the stellate
ganglia and the vagus nerve.
Studies have shown that patients su�ering from panic anxiety, ine�ective
emotional regulation, behavioral in�exibility, depression, and anxiety disor-
der have a reduced HRV as a consequence of their inhibited vagal tone [49].

Age and gender

Analysis of 24-h heart rate variability has shown, that HRV continually de-
creases with age and very low levels indicate an increased risk of mortality,
especially in individuals over the age of 65 years. Male subjects show a
greater HRV than age-matched female subjects, especially until the age of
30, but these di�erences become insigni�cant by the age of 50 [51].

2.2 Modeling and Simulation

The following section shall give an overview of the basic de�nitions and prin-
ciples of modeling and simulation, according to the lecture notes of the lecture
'Modeling and Simulation' at the TU Wien in 2017 [12], if not cited di�er-
ently.

Generally, modeling and simulation are important tools for �nding solutions
to scienti�c problems. Real systems are translated into abstract, mathemat-
ical models, making it possible to conduct experiments independent from
reality and create simulation results for a variety of problems.
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2.2.1 System Types

A system is de�ned as an integrated whole, consisting of a set of interacting
or independent components. It is demarcated from its environment, but can
still interact with it via inputs and outputs. The state of a system is char-
acterized by its constants and variables, which can be further divided into
exogenous and endogenous, depending on whether they describe the environ-
ment or the system itself.
If the behaviour of a system changes depending on input signals, distur-
bances, and initial values, it is called dynamic. Otherwise, the system is
called static. The change of a dynamical systems behaviour is generally not
directly proportional to a change in input and disturbances, but dependent
on the systems own dynamics. Also, one can often identify subsystems, which
interact with one another or in�uence themselves via feedback loops.
Aside from dynamic systems, one can further draw a distinction between
time-discrete, discrete event, continuous, and hybrid systems. Discrete event,
continuous and hybrid ones are continuous concerning time, opposite to time-
discrete systems. Discrete states are found in discrete event and time-discrete
systems, whereas continuous ones show continuous states. Consequently, hy-
brid systems are characterised by both, the use of discrete and continuous
states.
The description of continuous systems often happens via di�erential equa-
tions, which can usually not be solved analytically. Therefore, they need to
be discretised, resulting in a discrete computer model, although the under-
lying system is continuous.

2.2.2 Model Design

A model can be de�ned as abstract description of a real system, for the
purpose of making predictions of a systems behaviour or analysing its char-
acteristics. The process of model design includes deduction and induction.
Via deduction, one creates a model based on known laws, such as the laws
of physics, resulting in a structural model. A disadvantage of this technique
is its tendency to create complex, computationally intensive models. In that
case, simpli�cation is achieved with the help of linearisation or removal of
negligible terms. Induction is the modeling approach of making assumptions
about the models structure and estimating the corresponding parameters,
which leads to a so-called behavioral model. The three main principles of
model design can be summarised as:

� Separabiliy: The system is regarded as separated from its environ-
ment and only a part of possible connections are included into the
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model.

� Observability: One needs to select an interaction of system and en-
vironment, which is exact enough to reach the de�ned goal, but not
unnecessarily extensive.

� Causality: One needs to assume a strictly causal relation between
input, output, and state, that needs to be de�ned via mathematical
relations and equations.

Figure 2.6: The main steps of the cycle of modeling and simulation [12].

2.2.3 Simulation

The de�nition of simulation, as given by Shannon [45], reads as:

Simulation is the process of designing a model of a real system
and conducting experiments with this model for the purpose either
of understanding the behavior of the system and its underlying
causes or of evaluating various designs of an arti�cial system or
strategies for the operation of the system.

Beside theory and classical experiments, (computer) simulation represents
the third pillar of science and is included into the process of problem solving.
It is especially relevant if there is not enough theory on the subject, or if one
cannot conduct experiments. In the �eld of medicine, this is often the case
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due to ethical reasons, for example if invasive techniques were indispensable
for the experiment.
The steps of a simulation study are depicted in �gure 2.6. First, the precise
formulation of a model for the given problem is of great importance and al-
most always demands computational implementation, due to its complexity.
After conducting the �rst simulation runs, the model validation is performed.
This is the process of comparing �rst results to the real system to �nd er-
rors and adapt the model accordingly. Once the model is validated and all
parameters are identi�ed, one can perform experiments with it. Finally, the
experimental results are used to draw conclusions about the solution of the
underlying problem.

2.3 State of the Art and Related Work

A lot of e�ort has already been put into the modeling and simulation of
heart rate variability so far. Existing models include various regulating com-
ponents of the cardiovascular system and make use of highly statistical ap-
proaches [7,48], as well as di�erential equations [35], and discrete events [20].
Although all of them try to mimic mechanisms of the human cardiovascular
system, a lack of detailed physiological reasoning is found in a lot of them.
A common feature of all hereinafter mentioned models lies in the use of an
integral pulse frequency modulation (IPFM) model for the generation of a
heart beat time series. There is broad consensus about the physiological rea-
sonableness and mathematical applicability of this type of beat generation.
IPFM models with constant, as well as varying threshold are found and used
in literature [5, 32].
McLernon et al., for example, present a rather simplistic model for generat-
ing RR tachograms, including four coupled di�erential equations of second
order, two for the sympathetic and two for the parasympathetic activity of
the autonomous nervous system, as input for their IPFM model. Still, they
do not give very detailed clari�cation of the physiological assumptions that
led to the respective di�erential equations and coe�cients [35].
Another rather simplistic approach, including the e�ect of respiration on the
heart rate, is presented by Brennan et al. [15]. Aside from two sinusoidal
oscillators for the ANS activity, a so-called saw-tooth-oscillator, based on
three di�erential equations, was used as input for the IPFM model of the
sinus node. This type of oscillator is characterised by a slow up-stroke and a
fast down-stroke, corresponding to slow in- and fast exhalation, as observed
in humans. Although this approach for respiration is physiologically reason-
able, respiratory in�uences on the heart rate are usually included into the
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parasympathetic activity [23].
Aside from respiration, the barore�ex is often part of heart rate variabil-
ity models. Olufsen et al. present a model of barore�ex regulation of the
heart rate during orthostatic stress, based on not only one, but three types
of baroreceptors [39]. Adaptability to di�erent levels of mean blood pres-
sure is given, due to the fact that the baroreceptor di�erential equations are
dependent on previous pressure values. Moreover, this model includes the
in�uence of posture on sympathetic activity via the vestibulo-sympathetic
re�ex. In contrast to the previous model, respiratory in�uences on the heart
rate are not included in this one.
Instead of including more e�ectors than the barore�ex, Ursino proposed a
compartment model, which includes a more detailed description of the left
and right heart, the pulmonary circulation, and their respective resistances
and compliances, which are modulated by the activity of the ANS [52].
A more extensive approach is presented by DeBoer, Karemaker, and Strac-
kee [20]. They propose a model based on di�erence equations, that includes
baroreceptor re�ex, peripheral resistance, respiration, blood pressure accord-
ing to a windkessel model, and RR-interval dependent contractility of the
myocard. Another particular feature of their model is the absence of an
equation for ANS activity. E�ectors such as the baroreceptor activity are
directly integrated into other equations.
A closed loop model, which includes respiration, the baroreceptor re�ex, ANS
activity, a windkessel time constant, contractility, and even incorporates the
release of neurotransmitters, is proposed by Seidel and Herzel [43]. Opposite
to the previously mentioned model, it combines discrete signals, such as the
time series of heart beats, and continuous ones, blood pressure for example,
and does include equations for sympathetic and parasympathetic activity.
Respiration and baroreceptor activity in�uence both branches of the auto-
nomic nervous system. A unique characteristic of this model is the use of
a phase response curve, which modulates the input of the parasympathetic
nervous system depending on its time of occurrence during the heart cycle.
Models which are highly based on statistics and probability theory often show
a lack of interpretability. Barbieri et al. for example suggest an HRV model
based on a history-dependent inverse Gaussian process [7]. This may lead to
deeper insight about the statistical characteristics of HRV data, but since all
regulating e�ects on the HR are included in the formulation of the history-
dependence, little information about the actual physiological processes is
used. Similarly, Stanley and Siegel base the input of their IPFM-model on
a constant plus a sum of stochastic inputs, such as white noise [47]. Other
models include fractal gaussian noise, fractal logonomal noise, fractal bino-
mial noise, and or a source of jitter [48].
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A common feature of all mentioned models lies in their focus on modeling
macroscopic processes, rather than single cells, although other approaches,
especially concerning stimulus conduction in cardiac cells, do exist [18]. This
modeling approach probably did not gain popularity, as it leads to compu-
tationally intensive simulations.
To conclude, a variety of di�erent modeling approaches exists, and for most
parts of the cardiovascular system, no modeling technique was proven to be
superior to others yet.
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3 Methods

In this chapter, time domain as well as frequency domain methods for quan-
tifying heart rate variability are presented, as well as a mathematical method
for solving a �rst-order ordinary di�erential equations. A general description
of the Integral pulse frequency modulation (IPFM) model is given, followed
by the Lilliefors and the Wilcoxon signed rank test, two statistical methods
for hypothesis testing.

3.1 Measures of Heart Rate Variability

The description of the following measures is based on the Guidelines of the
Task Force of The European Society of Cardiology and The North American
Society of Pacing and Electrophysiology [24], if not cited di�erently.

3.1.1 Time Domain Methods

Time domain methods are statistical techniques for quanti�cation of the
change in heart rate, based on the analysis of RR-intervals.

SDNN

An RR-interval is de�ned as the time between two successive R-peaks of
an ECG recording, as shown in �gure 3.1. A normal-to-normal interval
(NN-interval) is an RR-interval, which does not show any signs of abnor-
mality. The most basic measurement of HRV is the standard deviation of
NN-intervals (SDNN), which is equivalent to the square root of variance,
and therefore to total spectral power. It includes the low-, as well as the
high-frequency components, and is dependent on the duration of the ECG-
recording. If a 24h time-interval is analysed, high frequency as well as ultra-
low-frequency components are represented by the SDNN, as opposed to 5min
recordings, where only shorter cycle lengths can be estimated. Moreover, the
total variance of HRV increases with the length of the analysed recording,

23
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Figure 3.1: A schematic representation of an ECG recording over one cardiac
cycle. First the atria depolarize and contract, resulting in the so-called P-
wave. The action potential then spreads through the AV-node, causing the
ventricles to contract, which generates the QRS-complex. Finally, the T-
wave denotes the repolarization of the ventricles, before a new cardiac cycle
starts [22].

which is why only SDNN values derived from recordings of the same length
can be compared. It is calculated as

SDNN =

√
E[NN2

n]−NN2
. (3.1)

RMSSD and SDSD

Two commonly used HRV-measures are the square root of the mean of the
squares of di�erences between adjacent NN-intervals, and the standard devi-
ation of di�erences between adjacent NN-intervals (SDSD), which are de�ned
as follows:

SDSD =

√
E[∆NN2

n]−∆NN
2
. (3.2)

Assuming that ∆NN = E[NNn] − E[NNn+1] = 0, the equation for the
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RMSSD has the following form:

RMSSD =
√
E[(NNn −NNn+1)2]. (3.3)

Both RMSSD and SDSD re�ect high frequency components and correlate to
other measures such asNN50, the number of interval di�erences of successive
NN-intervals longer than 50ms.

3.1.2 Frequency Domain Methods

For the analysis of short-term HRV recordings, the spectrum is divided into
three sections: very low frequency (VLF) below 0.04 Hz, low frequency (LF)
from 0.04 Hz to 0.15 Hz and high frequency (HF) components from 0.15 Hz
to 0.4 Hz. The power distribution and the central frequency of the LF and
HF components change due to autonomic modulation of the heart rate and
is usually measured in absolute values of power (ms2). Describing sympa-
thetic and parasympathetic activity via so-called normalized units (n.u.) is
especially useful to emphasize their opposing behaviour, since their power is
described in relation to the total power minus the VLF components. The
conversion to normalized units also reduces the e�ects of changes in total
power. For short 2 to 5min recordings, the VLF components are not relat-
able to certain physiologically processes, which modulate the heart rate.

Lomb-Scargle Periodogram

The Lomb-Scargle Periodogram is designed to �nd periodic signals in un-
evenly sampled datasets. For a given set of hi, i = 1...N values, measured at
times ti, in order to derive the periodogram, the mean value, as well as the
variance are calculated �rst [26]:

h =
1

N

N∑
1

hi, (3.4)

σ2 =
1

N − 1

N∑
1

(hi − h)2. (3.5)
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For each angluar frequency of interest ω = 2πf > 0, the time-o�set τ is
calculated:

tan(tωτ) =

∑N
i=1 sin(2ωtj)∑N
i=1 cos(2ωtj)

. (3.6)

The �nal spectral power as a function of ω, which gives the Lomb-Scargle-
Periodogram, is de�ned by the following equation:

PN(ω) =
1

2σ2

{
[
∑N

i=1(hi − h) cos(ω(ti − τ))]2∑N
i=1 cos(ω(ti − τ))2

+
[
∑N

i=1(hi − h) sin(ω(ti − τ))]2∑N
i=1 sin(ω(ti − τ))2

}
.

(3.7)

A constant shift of all the ti values has now e�ect on Pn(ω), because the
constant τ compensates the shift along the time-axis [26].

3.2 Poincaré Plots

Poincaré plots allow the geometrical analysis, and quanti�cation of HRV by
plotting each RR-interval against the following one, resulting in a scatterplot
as shown in �gure 3.2. Visual analysis of the resulting scatter plot shape
can, for example, indicate the degree of heart failure in a patient, and give
a quick overview of a large set of RR-interval data [13]. Moreover, ectopic
beats and artefacts can be detected easily. This type of plot simultaneously
gives an overview of the overall beat-to-beat variability, i.e., the scatter in
direction of the x2-axis, as well as long-term HRV, which is illustrated by the
plots length in x1-direction (compare equation 3.8 and �gure 3.2) [27]. To
characterize the shape of a Poincaré plot, the ellipse �tting technique, often
combined with RR-interval histograms, is used. Still, none of these measures
is complex enough to re�ect the nonlinear dynamics of HRV in detail [13].

SD1 and SD2

In order to characterize the Poincaré plot shape by �tting an ellipse to it,
a new set of axis is introduced by rotating the standard axis by θ = 45°
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counterclockwise. SD1 and SD2 are the standard deviations according to
the new coordinate system. SD1 is interpreted as a measure for short-term
HRV, as it quanti�es the width of the scatter plot, and is mathematically
equivalent to SDSD with a scaling factor. Analogous to this, SD2 re�ects
the long-term HRV, and can be derived from SDRR, the standard deviation
of RR-intervals, and SDSD:

[
x1
x2

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
RRn

RRn+1

]
=

[
1√
2
− 1√

2
1√
2

1√
2

] [
RRn

RRn+1

]
, (3.8)

SD12 = V ar(x1) = V ar
( 1√

2
RRn −

1√
2
RRn+1

)
= (3.9)

1

2
V ar(RRn −RRn+1) =

1

2
SDSD2, (3.10)

SD22 = 2SDNN2 − 1

2
SDSD2. (3.11)

Figure 3.2: An ellipse �tted to an exemplary Poincaré plot. X1 and X2
denote the new coordinate system, which equals the standard coordinate
system rotated by 45 degrees. SD1 and SD2 represent the standard deviation
of the points from the corresponding axes [13].
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3.3 Runge-Kutta Methods

The following section is based on the formulatins of Dormand and Prince [21],
if not cited di�erently. Assume a system of �rst-order ordinary di�erential
equations

y′(x) = f(x, y(x)) (3.12)

with y(x0) known. Further, f(x, y(x)) can be rewritten as f(y(x)) without
loss of generality. At given points

xn+1 = xn + hn, (3.13)

with n = 0, 1, 2, ..., and hn de�ned as

hn = θ(xn)h 0 < θ(xn) ≤ 1, (3.14)

the approximation y
n
of the analytical solution y(xn) can be calculated, if

su�cient continuity and di�erentiability is given. The explicit Runge-Kutta
(RK) formula reads as

y
n+1

= y
n

+ hnΦ(y
n
, hn) = y

n
+

s∑
i=1

biki, (3.15)

with k1 de�ned as
k1 = hnf(y

n
), (3.16)

followed by

ki = hnf(y
n

+
i−1∑
j=1

aijkj) i = 2, 3, ..., s. (3.17)

The integer s denotes the number of stages, aij is the Runge-Kutta matrix,
and bi are the number of stages of the given method. The approximation
of the solution at x0 = 0 corresponds to the given initial value by setting
y
0

= y(0). The local truncation error tn+1 at xn+1 is given by

tn+1 = y(xn) + hnΦ(y(xn), hn)− y(xn+1) (3.18)

and applying Taylor expansion about xn to the previous equation, can be
rewritten as

tn+1 = hn
(
Φ(y(xn), hn)−∆(y(xn), hn)

)
, (3.19)
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with ∆ equaling

∆(y(xn), hn) =
∞∑
r=1

hr−1

r!
yr(x). (3.20)

A Runge-Kutta formula of p-th order is given, if the local truncation error
satis�es
t ≤ O(np+1). The equation for t can be rewritten as

tn+1 =
∞∑
j=1

hp+jn φ
p+j−1(y(xn)). (3.21)

With F r+1
i denoting the elementary di�erentials of order r+1 of f , φ

r
equals

φ
r
(y(x)) =

nr+1∑
i=1

ar+1
i F r+1

i (y(x)) r = 1, 2, ..., (3.22)

which results in

ar+1
i = 0, i = 1, 2, ..., nr+1, r = 1, 2, ..., p− 1, (3.23)

due to the fact that φ
r

= 0 for r = 1, 2, ..., p− 1, if the formula is of order p.
For consistency reasons, the following equation has to be satis�ed:

a11 =
s∑
i=1

bi − 1 = 0, (n1 = 1). (3.24)

These last two equations are general conditions for a Runge-Kutta formula
of order p. The Runge-Kutta embedding technique uses two RK formulae
of orders p and q = p + 1, which share the same function evaluations. The
local truncation error in the pth order formula can be calculated, which helps
control the step size.

3.4 Integral Pulse Frequency Modulation Model

Many authors assume a modulating e�ect of the sympathetic and parasym-
pathetic activity on the sino-atrial node, and therefore the heart rate. This
in�uence is summarized as a functionm(t) with zero mean and a rather small
amplitude, compared to the mean of heart rate. In addition, the modulat-
ing function has to be a band-limited signal with negligible power spectral
density for frequencies higher than 0.4 Hz. The beat occurrence times tk
generated by the Integral Pulse Frequency Modulation (IPFM) Model can
then be written as
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k =

∫ tk

0

1 +m(t)

T
dt k = 1, 2, 3..., (3.25)

or in its continuous analogon

x =

∫ t(x)

0

1 +m(t)

T
dt, (3.26)

with T being the mean RR-duration and tk denoting the occurrence time of
the k-th heartbeat for both formulations. This means, that once the integral
reaches a threshold of 1, a new heartbeat is generated and the integrator is
reset to zero. Moreover, it is assumed, that the �rst beat occurs at t = 0.
Although the threshold is usually set to 1, principally any positive function
can be used as threshold [32].

3.5 The Lilliefors Test and theWilcoxon Signed

Rank Test

The Lilliefors test is used to test the null hypothesis, that a one-dimensional
probability distribution equals a reference probability distribution. In most
cases one wants to verify whether or not a given data sample containing N
observations comes from a normal distribution. Therefore, one determines

D = max
X
|F ∗(X)− SN(X)|, (3.27)

with SN(X) being the cumulative distribution of the sample and F ∗(X) being
the cumulative normal distribution function with an estimates mean value
γ = X and a variance equalling that of the sample σ2 = s2. If the value D
exceeds a certain critical value, which is based on results obtained fromMonte
Carlo calculations for di�erent sample sizes, the null hypothesis is rejected
and one can no longer assume that the dataset comes from a distribution
speci�ed by F ∗(X) [28].
The Wilcoxon signed rank test is a two-sided test for the null hypothesis
that X1 − X2 comes from a distribution with zero median. The datasets
X1 and X2 do not need to come from a normal distribution, as would be
necessary for the Students t-test. First, the rank Ri is calculated for the
absolute di�erences Di = |xi,1 − xi,2|, followed by the positive and negative
rank sums

W+ =
n∑
i=1

I(xi,1 − xi,2 > 0)Ri (3.28)
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W− =
n∑
i=1

I(xi,1 − xi,2 < 0)Ri (3.29)

with I being the indicator function. If xi,1 − xi,2 = 0 for some i, half of the
corresponding rank value is added to W+ and W−, respectively. W equals
the minimum of W+ and W− and is then compared to a critical value from
a reference table. The null hypothesis is rejected, if |W | > Wcritical [16].

3.6 The Butterworth Filter

In contrast to other �lters, the Butterworth �lter was designed by Stephen
Butterworth in 1930 for the purpose of signal processing with a maximally
�at frequency response in the passband. Its normalized transfer function
reads as

A[P ] =
A0∏

i(1 + aiP + biP 2)
(3.30)

with P = p
ω0
, ω0 being the cuto� frequency, and A0 being the DC voltage

gain. If n, the order of the �lter, is an even number there holds

i = 1, . . . ,
n

2
, (3.31)

ai = 2 cos
(2i− 1)π

2n
, bi = 1. (3.32)

Analogously, if n is an odd number, the coe�cients are de�ned as

i = 2, . . . ,
n+ 1

2
, a1 = 1, b1 = 0, (3.33)

ai = 2 cos
(i− 1)π

n
, bi = 1. (3.34)

This leads to a uniform sensitivity with respect to the wanted frequencies.
The frequency response rolls of towards zero in the stopband, the faster the
higher the �lter order is chosen [17].
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4 The Models

In the following sections three HRV-models are introduced: First, an HRV-
model by Seidel and Herzel [43], which was designed to simulate HRV due to
respiration, is presented. Secondly, based on their �ndings, an adapted ver-
sion of their model is developed. Thirdly, a model for HRV under orthostatic
stress by Olufsen et al. [39] is presented and expanded.

4.1 Model 1: An HRV model including respi-

ration and barore�ex

In this section, the nonlinear HRV model presented by Henrik Seidel and
Hanspeter Herzel [43] is described. A schematic depiction of the model sub-
systems is given in �gure 4.1.

Model equations

As the �ring rates of �bres of the autonomic nervous system have values
around 4-5s−1, it is di�cult to model neuronal activity on scales which range
from seconds to milliseconds. It is therefore hardly possible to create a model
based on �ring rates and single spikes, especially with insu�cient knowledge
of medullary processes. For those elements highly sensitive to the timing of
the next spike, the exact moment of its occurrence should be derived from a
probability distribution, which is based on the �ring frequency. Since nerves
usually consist of several nerve �bres, which have the same �ring frequency
on greater timescales, an overall nerve �bre activity ν can be approximated
by letting the number of nerve �bres N approach in�nity:

ν = lim
δt→0

1

δt
lim
N→∞

N(δt)

N
. (4.1)

N(δt) denotes the number of nerve �bres �ring during the time interval δt.
This approximation holds as long as N � 1

τf
. Assuming that τ is the impulse

33
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Figure 4.1: Schematic representation of the CVS model in [43].

duration with a value of around 1ms, and that the mean �ring rate f lies at
5s−1, more than 200 nerve �bres per nerve are neccessary. This is generally
assumed in the model bei Seidel and Herzel.

The baroreceptors

The baroreceptors do not only detect the absolute deviation of the current
bloodpressure from the default value p0, but also the rate of change. Hence,
they are modeled as proportional, as well as di�erential sensors, and therefore
their �ring rate can be described as

νb = k1(p− p0) + k2
dp

dt
, (4.2)

with k1 and k2 being model parameters (see table 4.1).

Sympathetic and parasympathetic activity

The medullary processes are not modelled in great detail, and in order to
keep the model as simple as possible, a linear dependence of the acitivity
of the autonomous nervous system on the activity of the baroreceptors is
assumed.
In this model, the interaction between respiration and baroceptor loop is
restricted to only one location, and only medullary neuronal in�uences of
respiration are taken into account. Therefore it is negligible during which
phase of in- or expiration the autonomic activity is augmented or reduced,
as a badly chosen activating phase range of the respiratory cycle only shifts
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the in- and expiration, but leaves the dynamics unchanged. The sympathetic
activity νs and the parasympathetic activity νp,

νs = max(0, νs,0 − ks,bνb + ks,r| sin(πfrt+ ∆φs,r)|), (4.3)

νp = max(0, νp,0 + kp,bνb + kp,r| sin(πfrt+ ∆φp,r)|), (4.4)

both have a resting-tone νs,0 and νp,0, and are in�uenced by the barorecep-
tor activity νb. As the bloodpressure rises, causing the baroreceptors to be
activated, νs is reduced, and νp is increased. The third term represents the
modulaton caused by respiration. Since it is assumed that these three factors
are linearly integrated by neurons of the circulation centers, the maximum
function is applied in order to prevent negative values.

The cardiac noradrenaline concentration

As depicted in �gure 2.2, the vagal nerves mainly in�uence the contrac-
tion of the atria as opposed to the sympathetic nerves, which innervate the
ventricles. The parasympathetic in�uence is therefore neglected. Since no-
radrenaline has slow dynamics, a cardiac noradrenaline concentration ccNa is
introduced, as well as a time delay τcNa. This time lag is necessary, since there
is a �nite nervous conduction velocity from the medulla to the heart, and
noradrenaline itself needs a little time to cause an e�ect on the contraction
of the heart. It is modelled as

dccNa
dt

= −ccNa
τcNa

+ kccNa,sνs(t− θcNa). (4.5)

The contractility

Not only do the cardiac muscles tire at high heart rates, resulting in reduced
contractility, but also does the potassium conductivity change, which speeds
up the next repolarisation, and therefore also reduces contractility Si. The
duration of the last heart cycle is denoted as Ti−1, and Ŝ describes the satu-
ration point of the function de�ned by the fraction in equation 4.7. With S0,
kS,c, and kS,t being model parameters according to table 4.1, the contractility
equations are de�ned as follows:

S
′

i = S0 + kS,cccNa + kS,tTi−1, (4.6)
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Si = S
′

i + (Ŝ − S ′

i)
S

′ns
i

S
′ns
i + Ŝns

. (4.7)

The chronotropic e�ect

In order to create a model which operates on time scales smaller than one
heart cycle, a phase ϕ of the sinus node is introduced. It is in�uenced by the
sympathetic and parasympathetic activity fs and fp. This part of the model
follows the concept of an IPFM-model. Each time ϕ reaches the threshold 1,
a new heart beat is generated, and ϕ is set to zero again. The contractility
Si is then added to the last diastolic bloodpressure before the new hearbeat
was created, resulting in the new systolic pressure. With T0, kϕ, ĉcNa, ncNa,
kϕ,p, ν̂p, and np chosen according to table 4.1, the input for the IPFM reads
as follows:

fs = 1 + kϕ,cNa

(
ccNa + (ĉcNa − ccNa)

( cncNa
cNa

ĉncNa
cNa + cncNa

cNa

))
, (4.8)

fp = 1− kϕ,p
(
νp,θp + (ν̂p − νp,θp)

( ν
np

p,θp

ν̂
np
p + ν

np

p,θp

))
F (ϕ), (4.9)

dϕ

dt
=

1

T0
fs(t)fp(t). (4.10)

Note that νp,θp ≡ νp(t − θp). The phase-e�ectiveness curve F (ϕ) of the
parasympathetic in�uence was chosen as depicted in �gure 4.2. It was pre-
sented by Reiner et al. [54] in a mathematical model of the sinus node:

F (ϕ) = ϕ1.3(ϕ− 0.45)
(1− ϕ)3

(1− 0.8)3 + (1− ϕ)3
. (4.11)

This curve is neccessary to account for the di�erent e�ects of vagal activity,
depending on when during the heart cycle it occurrs. Seidel and Herzel note,
that F (ϕ) shoud actually be a function of the whole history of the modeled
system, but to keep the model simple it was chosen as a function of one heart
phase only.
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Figure 4.2: The phase e�ectiveness curve.

Modeling of the Vascular System

High sympathetic activity also a�ects the blood vessels via an increased re-
lease of noradrenaline. As a consequence, the contraction of the vessels in-
tensi�es, and the peripheral resistance rises. A di�erential equation for the
vascular noradrenaline concentration cvNa, similar to the one introduced for
the cardiac noradrenaline concentration, is formulated:

dcvNa
dt

= −cvNa
τvNa

+ kcvNa,sνs(t− θvNa). (4.12)

The time delay of the sympathetic activity, denoted as τvNa, and the param-
eter kscvNa

are chosen according to table 4.1. The windkessel time constant
τv is then derived from the vascular noradrenaline concentration via

τv = τv,0 + 1.5
(
cvNa + (ĉvNa − cvNa)

cnvNa
vNa

ĉnvNa
vNa + cnvNa

vNa

)
. (4.13)

Again, τv,0, ĉvNa, cvNa are parameters chosen according to table 4.1. During
systole of each heart cycle, the blood pressure is described as follows:

pI = di−1 + Si

(t− ti
τsys

)
exp

(
1− t− ti

τsys

)
. (4.14)

Hereby, di−1 represents the pressure at the end of the last diastole, ti equals
the point in time at which the current cardiac cycle started, and τsys denotes
the systolic duration (see table 4.1). For the diastolic part of the puls wave,
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exponential decay according to the windkessel model is assumed, which is
de�ned by

dpII
dt

= − pII
τv(t)

. (4.15)

Standard model parameters

The following table sums up all the parameters used by Seidel and Herzel.
They were either determined empirically or based on physiological observa-
tions.

Table 4.1: Table of standard parameter set of model by Seidel and Herzel [43].

Parameter Value Parameter Value

p0 50 mmHg kcvNa,s 1.2
k1 0.02 1

mmHg
θvNa 1.65 s

k2 0.00125 s
mmHg

θp 0.5 s

νs,0 0.8 S0 25 mmHg
ks,b 0.7 kS,c 40 mmHg

ks,r 0.1 kS,t 10 mmHg
s

fr 0.2 1
s

ns 2.5

∆φs,r 0.0 Ŝ 70.0 mmHg
νp,0 0.0 T0 1.1 s
kp,b 0.3 kϕ,cNa 1.6
kp,r 0.1 ĉcNa 2.0

∆φp,r 0.0 ncNa 2.0
τcNa 2.0 s kϕ,p 5.8
kccNa,s 1.2 ν̂p 2.5
θcNa 1.65 s np 2.0
τvNa 2.0 s τv,0 2.2 s

θ̃v 1.5 s ĉvNa 10.0
nvNa 1.5 τsys 0.125 s
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4.2 Model 2: An Adapted Seidel and Herzel

Model

The following paragraphs describe a second model, based on the one pre-
sented in the previous section, but with the aim of creating a more physio-
logically accurate model.

Blood pressure and systolic duration

The blood pressure curve generated by the Seidel and Herzel model shows
a very sharp peak at the end of the systole, where the pressure also reaches
its maximum followed by an abrupt, steep exponential decay. This does not
represent physiological reality, since blood pressure starts to decrease even
before the beginning of the diastole due to reduced blood �ow from the heart.
If anything, a discontinuity in the time derivative of the blood pressure func-
tion, as seen at the end of the systole, should not occur at the maximum
pressure, but when the aortic valves close due to a lack of output from the
left ventricle. Moreover, the systolic duration τsys was estimated at 125ms,
which is clearly too short compared to results from in vivo studies, and was
therefore set to 300ms [8]. The presented blood pressure submodel does not
accurately represent physiological realities, and the equation for systolic pres-
sure in equations 4.16 was replaced by the following equation, which does not
show the previously mentioned insu�ciencies:

pI = di−1 + Si

(
1.8(t− ti)

τsys

)
exp

(
1− 1.8(t− ti)

τsys

)
. (4.16)

Sympathetic activity

Equation 4.3 includes the absolute value of a sine function, creating a sharp
change in sympathetic activity every 1

sf
seconds. In order to further improve

the model, the summand was replaced by a standard sinusoidal function with
frequency sf , so that the amplitude still ranges between 0 and 1, but without
discontinuities in the �rst derivative. This leads to the following expression:

νs = max

(
0 , νs,0 − ks,bνb + ks,r

sin(πsf t+ ∆φs,r) + 1

2

)
. (4.17)
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Secondly, a similar problem occurs when ks,bνb is subtracted in eqation 4.3,
since νb directly depends on the blood pressure curve, which shows abrupt
changes at the end of the diastole. To overcome this insu�ciency, a but-
terworth low-pass �lter is introduced, using order 3 and a passband edge
frequency of 0.15 · 2π rad

sec
, corresponding to the low frequency domain, which

represents sympathetic activity according to the Guidelines of the Task Force
of The European Society of Cardiology and The North American Society of
Pacing and Electrophysiology [24]. In addition to this, the �lter output is
multiplied by 0.4, to keep a reasonable level of sympathetic activity.

Parasympathetic activity and respiration

Since parasympathetic activity is closely linked to respiratory sinus arrhyth-
mia, the given breathing pattern is only included into this part of the au-
tonomic nervous system model [3]. Assuming that the breathing pattern is
represented by a continuous function r(t), ranging from -1 at total expiration
to 1 at total inspiration, a linear dependence of parasympathetic activity on
respiration is assumed. The sinusoidal function presented in equation 4.4 is
replaced similar to the sympathetic case, but without the addition of 1 in
the nominator:

νs = max

(
0 , νp,0 + kp,bνb + kp,r

(
sin(πpf t+ ∆φp,r)

2
+
r(t)

2

))
. (4.18)

This is due to the fact, that summation of the non-negative function r(t)
would otherwise lead to an increased overall level of parasympathetic activ-
ity. Moreover, the parasympathetic activity has its own basic frequency pf .

Correction of the mean heart rate

In order to accurately reproduce the mean heart rate de�ned by T0, the prod-
uct of fs and fp as presented in equation 4.10 should equal 1 in the long term.
To ensure this behaviour in a computationally reasonable way, the input of
the IPFM model is scaled in the following way:

m(t) =
1

10

∫ t

t−10
fs(t)fp(t) dt, (4.19)
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dϕ

dt
=

1

T0
· fs(t)fp(t)

m(t)
. (4.20)

The mean level of ANS activity over the last 10 seconds is computed and
used to scale the IPFM input to approximately 1. This way, the ratio of
sympathetic and parasympathetic activity is maintained, while still allowing
ANS activity �uctuations, and keeping approximately the same mean heart
rate as speci�ed by T0.
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Figure 4.3: Schematic representation of the barore�ex model in [39].

4.3 Model 3: An HRV model with di�erent

baroreceptor types

In this section, the model presented by Olufsen et al. [39] is described and
extended. It was designed to derive ANS activity and thus heart rate from
measured blood pressure values during periods of orthostatic stress. Its basic
structure is depicted in �gure 4.3.

4.3.1 Model equations

Baroceptors

Compared to the Seidel and Herzel model, the baroreceptors are modelled
in much greater detail by Olufsen et al. They di�erentiate between three
di�erent types of baroreceptors and use translated �ring rate curves for el-
derly people, since hypertension causes a shift of the pressure-response-curve
to the right along the pressure axis. The model is not based on the rate of
pressure change and its current deviation from a standard value, but on the
rate of change of mean arterial pressure, which is denoted as p:

p(t) = α

∫ t

−∞
p(s)e−α(t−s)ds (4.21)

The parameter α hereby describes how strongly the pressure is dependent
on previous pressure values, and is set as described in table 4.2. From this
de�nition, one can derive a di�erential equation for the mean arterial pressure
as follows, assuming that the function p(s) is continuous and bounded, by
using the integral rule of Leibniz.
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dp

dt
= α

( d
dt

∫ t

−∞
p(s)e−α(t−s)ds

)
= (4.22)

α
(
−
∫ t

−∞
αp(s)e−α(t−s)ds︸ ︷︷ ︸
−p

+p(t)e−α(t−t)− lim
s→−∞

p(s)e−α(t−s)︸ ︷︷ ︸
→0

)
= (4.23)

= α(p− p). (4.24)

The change in p is directly proportional to the change of nS, nI and nL, which
describe the deviation from the average �ring rate N . In this case, S stands
for short, I for intermediate, and L for long time scales. They represent
the variations in threshold for di�erent baroreceptor types and are included
into the equations via τS, τI , and τL. The maximum �ring rate is taken
into account by M , which is set to 120 for all simulations. For the overall
�ring rate n, there holds n = nS + nI + nL +N , with the three baroreceptor
di�erential equations written as follows:

dnS
dt

= kS
dp

dt

n(M − n)

(M/2)2
− nS
τS
, (4.25)

dnI
dt

= kI
dp

dt

n(M − n)

(M/2)2
− nI
τI
, (4.26)

dnL
dt

= kL
dp

dt

n(M − n)

(M/2)2
− nL
τL
. (4.27)

The parameters kS, kI , kL, τS, τI , τL were set according to table 4.2.

The autonomous nervous system

This empirical submodel describes the a�erent e�ect of the baroreceptors on
the ANS, based on well known experminental facts. The parasympathetic
part is linearly dependent on the baroceptor �ring rate, as shown in the
following equation:

Tp(n) =
n(t)

M
. (4.28)

The sympathetic part is indirectly proportional to the baroreceptor �ring
rate and includes a time-delay τd. Studies have shown that this delay varies
between 6 and 10 seconds and is not present in the parasympathetic ANS
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[39]. Additionally, increased vagal activity has an inhibitory in�uence on the
sympathetic �ring rate and is included in the denominator with a damping
factor β (see table 4.2).

Ts(n) =
1− n(t− τd)/M + u(t)

1 + βTp(n)
(4.29)

The function u(t) describes the in�uence of the vestibulo-sympathetic sys-
tem, which accounts for the change in body position. Instead of choosing a
hyperbolic function as in the original work, u(t) is set to zero for the simula-
tions, since no changes from horizontal to upright position, and therefore no
orthostatic stress is investigated in this work.

The Heart as e�ector of the ANS

Similar to the model by Seidel and Herzel, the cardiac noradrenaline con-
centration is modelled as an ordinary di�erential equation based on sym-
pathetic activity [39]. The cardiac acetylcholine concentration is calculated
analogously, with τnor and τach chosen according to table 4.2:

dCnor
dt

=
−Cnor + Ts

τnor
, (4.30)

dCach
dt

=
−Cach + Tp

τach
. (4.31)

In order to generate a new heartbeat, an IPFM model based on the neu-
rotransmitter concentrations, two scaling factors Ms and Mc, as well as an
intrinsic heart rate H0 was developed. Each time ϕ passes 1, a new heartbeat
is generated and the integrator is reset to zero. Without input from the ANS,
for example through denervation, a heartbeat would be generated every 1

H0

seconds. The input function for the IPFM is de�ned as

dϕ

dt
= H0(1 +MsCnor −MpCach). (4.32)

Standard model parameters

Most parameters, such as τS, τI , τL, kS, kI , kL, and M are derived from
animal experiments, others were estimated empirically [39].
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Table 4.2: Table of model parameters, derived from mean values for healthy
young subjects [39].

Parameter Value Parameter Value

kS 3.06 N 100
kI 1.91 α 0.78
kL 2.22 β 4.48
τS 0.6 τnor 0.72
τI 5.26 τach 1.32
τL 250 Ms 0.99
τd 6.12 Mp 0.45
M 120 H0 100 1

min

4.3.2 Model expansion

In order to close the loop from the IPFM-model to the baroreceptors, the
previously presented model had to be further expanded and enhanced.

The arterial Windkessel

In order to generate a blood pressure curve based on the the output of the
IPFM model, which can then be used as an input for the baroreceptor sub-
model, a three-element windkessel was chosen. Compared to its two-element
counterpart, which is only based on the total arterial compliance C and the
peripheral resistance R, this model gives a better relation between �ow and
pressure in the aorta by adding a term for aortic input impedance and de-
picts a more realistic total waveshape. The impedance is denoted as Rc and
accounts for the wave travel aspects, since it equals wave speed times blood
density divided by aortic cross-sectional area [55]. The electrical analogon of
the three-element windkessel is depicted in �gure 4.4. It can be rewritten as:

p(t) = Zcq(t) + pWK(t) + P∞. (4.33)

The arterial pressure p(t) satis�es the following di�erential equation.

dpWK

dt
=

1

Ca
q − 1

RpCa
pWK (4.34)

P∞ denotes the standard pressure in the system, which results in an initial
pressure of pWK(0) = p(0)−P∞. In order to solve the di�erential equation, a
function for the �ow from the aortic root q(t) is needed [38]. It is was chosen
based on �ndings in [42] as
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Figure 4.4: The three-element windkessel model as a part of the cardiovas-
cular system and as electrical circuit [55]

.

q(t) = exp

(
2

(
1− 1

ts

)
+

1

( 2t
ts−1)2 − 1

)
SV

I
(4.35)

The systole duration in milliseconds is denoted as ts, SV is the stroke volume
in milliliters and I equals the integral of the exponential term in q(t) over
the interval [0; ts] [42]. This way, the total �ow from the aortic root during
the systole equals SV .
The �ndings by Boudoulas et al. were used to estimate ts for di�erent heart
rates [11]. They performed minimally stressful diagnostic tests on 20 males
and 20 females, all without a history of cardiovascular diseases. It was shown
that a strong linear correlation between heart rate and systolic duration
exists [11]. According to their results, the following linear function gives a
su�ciently accurate description of the relation between the two:

ts = 540− 2.1 ·HR. (4.36)

Stroke volume

The higher the heart rate, the smaller the ejected stroke volume. This physi-
ological phenomenon was included into the existing model analogously to the
approach presented by van de Vooren et al. [53] (see �gure 4.5). The stroke
volume Vref at 60bpm was assumed to be 70ml and it was increased or de-
creased depending on the preceding RR-interval in milliseconds [8]. For the
computation of the stroke volume of the n-th heartbeat SVn, a left ventricle
�lling factor δn was introduced according to the following equation:

δn = 0.5 + 0.5
RRn−1

1000
, (4.37)

SVn = δnVref . (4.38)



4.3. MODEL 3: AN HRVMODELWITH DIFFERENT BARORECEPTOR TYPES47

Figure 4.5: Relation between systolic duration, heart rate, and diastolic du-
ration according to [8].

Autonomic nervous system activity

Since models for ANS activity usually include a basic oscillating sympathetic
and parasympathetic activity, and are not only dependent on the �ring rate
of the baroreceptors, two sinusoidal functions with typical frequencies fp and
fs were added to Tp(n) (equation 4.28), and Ts(n) (equation 4.29). This
results in the following two equations:

Tp(n) =
n(t)

M
+ Cp sin(2πfp), (4.39)

Ts(n) =
1− n(t−τd)

M
+ u(t)

1 + β n(t)
M

+ Cs sin(2πfs). (4.40)

In order to avoid fast �uctuations in sympathetic nervous system activity,
which could occur due to its linear dependence on the baroreceptor input,
and dependency on the parasympathetic activity in the denominator of the
�rst summand, a butterworth �lter of order 3 and passband edge frequency
of 0.15 · 2π was applied to Ts(n).

IPFM and Respiration

The input of the IPFM model was scaled with a function 1
m(t)

, which was
chosen analogously to the one presented for the second model in equation
4.19 as the mean IPFM input over the last 10 seconds.
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Di�erent to the previously presented models, the respiration was included in
model 3 by using a varying threshold for the IPFM, as proposed by Barbi et
al [6]. Assuming that r(t) is a continuous function, oscillating between -1,
which equals total expiration, and 1, equalling total inspiration, the threshold
i(t) for the IPFM model is not held constant, but chosen as

i(t) = 1 +
r(t)

20
(4.41)

4.4 Simulation

All three simulations were implemented in Simulink 2017b. From there, a
vector containing the series of simulatied RR-intervals is transferred to the
Matlab 2017b workspace for further analysis.
RR-interval data from 30 subjects with essential hypertension was used to
derive parameters for the simulation. Their main characteristics are sum-
marised in table 4.3.
Slow breathing exercises were carried out in a sitting position, allowing ab-
dominal breathing in the most uniform way. Inhalation and exhalation were
guided by a balloon shown on a screen, which rises and sinks, animating the
subject to breath in and out accordingly. One of six di�erent breathing pat-
terns was used for each subject, in order to create slow and even breathing
without overstraining the subject (see �gure 4.6). During the 10min breath-
ing exercise, an ECG was recorded at a sampling rate of 256 Hz [4].

Table 4.3: This table shows the mean baseline characteristics and their stan-
dard deviation for the 30 subjects.

Age (years) 62.9 (7.7)
Gender 11 females / 19 males

Body height (cm) 174.4 (10.4)
Body weight (kg) 87.6 (18.9)

BMI 28.6 (4.7)
Arterial Hypertension since (years) 11.4 (10.2)
Systolic blood pressure (mmHg) 133.0 (17.1)
Diastolic blood pressure (mmHg) 83.8 (10.6)

Spontaneous breathing rate (1/min) 13.6 (1.9)
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Figure 4.6: The prescribed respiratory patterns, with complete exhalation at
−1 and complete inhalation at 1.

As the standard duration for short-term HRV recordings is 5min [30], the
10min were split into two 5min recordings and hence 60 di�erent data sets
were used as basis for the simulation runs of each model.
The mean RR-interval RR is easily derived from the sequence of a patients
RR-intervals. For Model 1 and Model 2, T0 was set to RR and in case of
Model 3 H0 = 1

RR
(compare equations 4.10 and 4.32). Due to motion and

other artifacts, the sequence of recorded RR-intervals contained a few Not-a-
Number (NaN) entries, the same number of corresponding simulation output
entries was randomly set to NaN.
For every model, the frequency components of the autonomic nervous system
were determined, based on the analysis of the 5-min RR-interval recording in
the frequency domain and the prescribed breathing pattern. As the ANS ac-
tivity in the �rst model is exclusively dependent on the respiratory frequency
fr (compare equation 4.3 and 4.4), a periodic function fr(t), representing the
respective prescribed breathing pattern, was chosen. Instead of having a
standard sine function, a periodic function with period length of 8 to 20 sec-
onds was designed. In order to maintain the amplitude of a sine function,
complete exhalation was speci�ed as −1 and complete inhalation as 1 anal-
ogously. The six di�erent functions for the prescribed breathing patterns
are shown in �gure 4.6 for one breathing cycle. During inspiration and ex-
piration, they follow a sinusoidal course, respectively. Patterns 4 to 6 also
include a phase of sustained complete exhalation before the next breathing
cycle starts.
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For model 2 and 3, frequencies for the sympathetic and the parasympa-
thetic branch of the ANS need to be determined. Therefore, a Lomb-Scargle
periodogram of the patients RR-intervals is calculated. The sympathetic
frequency is chosen as the frequency with the highest power in the interval
from 0−0.15 Hz. The same applies for the parasympathetic activity and the
frequency band from 0.15− 0.4 Hz.
For the solution of the various non-sti� di�erential equations, the ode45
solver with variable step size was used. It uses an explicit Runge-Kutta(4, 5)
formula, the Dormand-Prince pair [44].
Every simulation was performed for 1000 seconds, from which only the last
300 seconds were selected for further statistical analysis. This allows the
whole system to reach a stable state. The statistical analysis was per-
formed as described in chapter 3.1 and 3.2. The Lilliefors and the Wilcoxon
signed rank test were performed with the pre-implemented Matlab functions
lillietest and signrank.



5 Results

In the course of the following chapter, the main simulation results are de-
scribed and depicted for all three models. SDNN, SDSD, RMSSD, SD1, SD2,
as well as Poincaré plots are analysed. For further statistical assessment, the
Lilliefors and the Wilcoxon signed rank test are applied.

5.1 Poincaré Plots

The Poincaré plots of the �rst models 60 simulation runs clearly show a
tendency of overestimation of the mean heart rate, equalling an underesti-
mation of mean RR-interval length. This is apparent through the shift of
the whole set of points along the line of identity, compared to the given pa-
tient data, which is visibly detectable without the need for further statistical
quanti�cation at this point (see �gure 5.1).

Figure 5.1: Model 1: Poincaré plot of the �rst 5min recording of subject
number 8, with corresponding simulation output.

51
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Figure 5.2: Model 2: Poincaré plot of the �rst 5min recording of subject
number 23, with corresponding simulation output.

Figure 5.3: Model 2: Poincaré plot of the �rst 5min recording of subject
number 25, with corresponding simulation output.

Another signi�cant mismatch between given data and simulated data lies in
the general shape of the point cloud. As presented in �gure 3.2, a typical
distribution of points has a comet-like shape, whereas the simulated data
presents itself in a more circular shape without any points in the centre of
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the point cloud.
For the second model, in general a considerablyly better Poincaré plot could
be achieved, especially in relation to the mean heart rate. As shown in �gure
5.2, the two point clouds appear mostly overlapping, aside from the outliers
of the patient data. For some cases however, the simulation output resulted
in an atypical, elliptically appearing line, rather than a comet-like cloud of
points (�gure 5.3). This phenomenon occurred mostly in connection with
input data, showing a rather large general dispersion of points.

Figure 5.4: Model 3: Poincaré plot of the �rst 5min recording of subject
number 20, with corresponding simulation output.

The third model showed similar results concerning the mean heart rate, but
a tendency of overestimation of the plots length and width was observed. For
a variety of data sets, the plot showed a lack of points in the centre of the
point cloud, although far less pronounced in comparison to the �rst model
5.4. In contrast, for 7 of the 60 simulation runs, the output of the third
model was similar to the one by model 2 depicted in �gure 5.3.

5.2 Statistical HRV Analysis

Six statistical parameters were used for the quanti�cation of the RR-data:
mean RR-duration, SDSD, SD1, SD2, SDNN, and RMSSD.
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Figure 5.5: Boxplot of mean RR intervals of the subject data and all three
models.

Figure 5.6: Boxplot of di�erences of mean RR intervals between
subject data and each of the three models.
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As the Poincaré plot in the last section already indicates, model 1 tends to
overestimate the RR-interval length drastically. This result is underpinned
by the distribution of the mean RR-duration, which is summarised in �gure
5.5. For model 2 and 3, a very good replication of mean RR-duration could
be reached, as their boxplots are nearly identical to the subjects.
To prove that the 60 mean RR-durations from the simulation runs of model
2 and 3 do not only come close to those of the subjects as a group, but also
individually, their di�erence to the patient data was calculated for every sub-
ject and again summarised in a boxplot (see �gure 5.6). Again, the di�erence
in mean RR-duration resulting from the �rst model is considerable, whereas
model number 2 shows a practically perfect �t. A slight underestimation
of the mean RR-duration by the third model becomes more obvious in this
depiction, but the results still are close to the optimum of zero di�erence.
Analogous to this, boxplots of the other �ve statistical parameters and their
di�erences to subject data were created and are shown in �gure 5.7 and 5.8.
The results for the SDSD show a similar pattern to that of the mean RR-
intervals. Again, the �rst model clearly overestimates the SDSD, opposite
to the second and third model, which show a considerably better �t. When
looking at the di�erences it should be noted, that the second model shows a
slight underestimation, whereas the third model overestimates the SDSD a
little.
SD1, the standard deviation along the X1 axis (compare �gure 3.2), which
accounts for high frequency components, is a scaled version of the SDSD
according to equation 3.9 and therefore shows the same behaviour concern-
ing the boxplot. The according overestimation of SD1 by the third model
can also be observed in 5.4, as the model data deviates more from the line
of identity in X1 direction than the patient data. On the contrary, SD1 is
slightly underestimated by the second model. The �rst model again shows
the least satisfying results.
Analogously to SD1, SD2 equals the standard deviation along the X2 axis.
Model 1 and 2 show a comparable amount of underestimation, opposed to
a considerable overestimation by model 3. Again this behaviour is also ob-
servable in the Poincaré plot in �gure 5.4, as an overly long extension of the
model data along the line of identity.
SDNN, which is a measure of total spectral power according to section 3.1.1,
is most accurately represented by the output of the �rst model, slightly un-
derestimated by the second model and clearly overestimated by the third.
The RMSSD, which re�ects high frequency components (compare section
3.1.1), basically shows the same behaviour as the previously described SD1.
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Figure 5.7: Boxplot of SDSD, SD1, SD2, SDNN, and RMSSD of the subject data and all three models.
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Figure 5.8: Boxplot of SDSD, SD1, SD2, SDNN, and RMSSD di�erences between the subject data and each of the
three models.
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Table 5.1: Results of the Lilliefors Test applied to all statistical parame-
ters derived from subject data and the three models. Results indicating the
rejection of the null-hypothesis are marked grey.

Subject Data Model 1 Model 2 Model 3
mean RR 0.0082 0.0296 0.0074 0.0165
SDSD 0.0030 0.3171 0.5000 0.0393
SD1 0.0030 0.3171 0.5000 0.0393
SD2 0.0900 0.0010 0.5000 0.0134
SDNN 0.1368 0.0010 0.5000 0.0321
RMSSD 0.0030 0.3148 0.5000 0.0395

Table 5.2: Results of the Wilcoxon Signed Rank Test applied to all statistical
parameters from all three models compared to the subject data. Results
indicating the rejection of the null-hypothesis are marked grey.

Model 1 Model 2 Model 3
mean RR 0 0.0031 0
SDSD 0 0.0015 0.0142
SD1 0 0.0015 0.0142
SD2 0.0002 0 0.0002
SDNN 0.2508 0 0.0002
RMSSD 0 0.0015 0.0139

The Lilliefors Test was applied to all the data sets, based on the null-
hypothesis that each of them comes from a normal distribution. The results
are summed up in table 5.1. Each time the null-hypothesis was rejected, the
corresponding table entry was marked grey. Generally, no clear behaviour
was identi�able for the test results.
In order to ensure comparability of the results, all further comparisons were
performed with the non-parametric Wilcoxon Signed Rank test. The null-
hypothesis of this test states, that the di�erence of the two data sets comes
from a distribution with zero median. The results are summed up in table
5.2 and marked grey analogous to the previous test. It is apparent, that the
SDNN in model 1 presents the only case in which the null-hypothesis is not
rejected.
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5.3 Blood Pressure

For Model 1 and 2, blood pressure showed a highly unusual behaviour for
a remarkable number of cases. The systolic blood pressure never reached a
value less than 140mmHg and the diastolic blood pressure never fell below
100mmHg on a noteworthy scale for all of the simulation runs of the �rst
model. For the second model, systolic blood pressure reached values of up to
190mmHg, with diastolic pressure ranging from 80 to as high as 150mmHg.
This behaviour has a severe impact on the sympathetic activity, which is
mainly dependent on the blood pressure function and its �rst derivative (de-
scribed in equation 4.2). It is clearly noticeable, that once systolic blood
pressure levels exceed 160mmHg, sympathetic activity shows phases of zero
activity or even vanishes completely. This absence of neuronal excitation
was observable for 10 of the 60 simulation runs of model 1 and 26 of the
simulation runs of model 2.
The e�ect of this is also apparent regarding the corresponding Poincaé plot.
Figure 5.9 shows a typical distribution of model data points, resulting from
absent sympathetic activity. The inexistence of the sympathetic oscillator
activity results in a very regular pattern of the distribution of points, com-
pared to 5.3 for example.

Figure 5.9: Typical distribution of data, coming from a simulation run of
model 2 (subject 24, �rst 5min recording) with zero sympathetic activity,
due to overestimated levels of blood pressure.
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Another noteworthy result is the context of blood pressure and sympathetic
activity are the rapid changes in systolic, as well as diastolic blood pres-
sure, caused by sympathetic activity in the �rst and second model. Over
the course of a few successive heartbeats, the systolic blood pressure varies
by up to 20mmHg for both models, although less pronounced for the �rst
than the second model (see �gures 5.10 and 5.11). This is due to the impact
of sympathetic nervous activity on the cardiac noradrenaline concentration,
which in�uences contractility, and the vascular noradrenaline concentration,
responsible for the windkessel time constant. Another cause of blood pres-
sure �uctuations of about 10mmHg in both models is presented by respiratory
activity. The changes in pressure are time-delayed in a way, that the peak
in blood pressure appears shortly before a maximum level of inhalation is
reached.
For the third model, blood pressure curves show a di�erent behaviour. Dur-
ing none of the simulation runs, a systolic blood pressure higher than 130mmHg
was reached, and it generally showed only small �uctuations (1-5mmHg) over
time. For the diastolic blood pressure, values from 60-70mmHg were ob-
served, with two exceptional cases of 40mmHg and 50mmHg. In contrast to
the systolic blood pressure, diastolic values showed quick changes of up to
10mmHg over the course of only a few heartbeats, as shown in �gure 5.12 .
Furthermore, the described diastolic variations showed a strong dependency
on the parasympathetic in�uence on the IPFM.

Figure 5.10: Blood pressure �uctuations of Model 1 (subject 2).
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Figure 5.11: Blood pressure �uctuations of Model 2 (subject 2).

Figure 5.12: Blood pressure �uctuations of Model 3 (subject 3).
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Another notable observation about the behaviour of the blood pressure is its
dependence on respiration. For the third model, respiration is included via
variation of the IPFM threshold. It has an instantaneous in�uence on the
occurrence time of the next heart beat, and consequently on blood pressure.
For the �rst and second model, blood pressure variations can be observed,
but due to the fact that respiration is included into the models ANS part,
the time delay in sympathetic and parasympathetic activity results in a time
delay between respiration and blood pressure variations.



6 Discussion

In this chapter, the previously presented simulation outcomes are discussed
in greater detail, allowing a broad comparison of the overall model perfor-
mances. Their advantages and insu�ciencies are addressed, in order to point
out further possibilities for model improvement and expansion.

The Integral Pulse Frequency Modulation Model

The �rst and most obvious result was the signi�cant overestimation of the
mean heart rate by the �rst model. This may be due to the fact that, al-
though IPFM models are widely used in literature (see section 2.3), their
input functions are often designed to mimic physiological processes, but not
further mathematically analysed. The IPFM input should equal 1 over the
whole simulation run, in order to correctly recreate the mean heart rate.
Meste et al. state, that the problem of selecting an adequate model input is
not usually addressed when using an IPFM model, and respiration is widely
neglected as an input, because it is not simply representable by a cosine func-
tion [36]. Although the focus of most models clearly lies more on the correct
representation of heart rate variability than on mean heart rate, they are
both interdependent and show an inverse correlation. The faster the mean
heart rate is, the less room there is for variations, and therefore mean heart
rate should be additionally considered when modeling heart rate variabil-
ity [2].
The original version of the third model showed a similarly false behaviour
when it comes to the mean heart rate. For the second and third model,
the introduction of a function rescaling the IPFM input based on the mean
function value over the last 10 seconds (equation 4.19) did indeed improve
the results considerably, but this approach does not address the root of the
problem. A look at the corresponding boxplots in �gure 5.5 and 5.6 shows
remarkable improvement of the mean heart rate, especially for the second
model. The third model also shows only a minimal underestimation of the
heart rate.

63
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Still, if the mean amplitude of the IPFM model input is, for example, too
low, and therefore upscaled, the amplitude of the periodic input components
is also increased, instead of simply raising the level of activity by a con-
stant value and holding the amplitude of the periodic components constant.
Moreover, the low frequency input signal components, especially those with a
period length of over 10 seconds, are dampened by this kind of signal modi�-
cation. This indirectly excludes the ultra low frequency components of HRV,
which is not a problem regarding short term HRV, but it makes the approach
unsuitable for use in modeling and simulation of HRV over longer periods of
time, such as 24h.
The change in amplitude of periodic signal parts has notable e�ects on the
shape of the Poincaré plot and the measures of HRV. For the third model,
the input of the IPFM was generally underestimated. By upscaling it, �uc-
tuations of the incoming signal were reinforced, resulting in a greater overall
variability. This is evident in the Poincaré plot in �gure 5.4, where the gen-
eral plot shape looks rather decent, but shows too much expansion in every
direction. Consequently, all of the measures for HRV, as depicted in �gure
5.7, are too high compared to subject data. The exact opposite behaviour is
observable for the second model.

The Baroreceptors

Seidel and Herzel already address the problem of adequately modeling barore-
ceptor activity in their work. They state, that it is not reasonable to put
much e�ort into modeling one element of the system [43]. Not aiming to
recreate reality in all its richness of detail is indeed a cornerstone of model
design, but if all following model equations build on the activity of the barore-
ceptors, a more detailed approach would clearly be desirable at this point.
Although baroreceptors can be loosely thought of as controllers, which re-
act proportionally and di�erentially to changes in blood pressure (compare
equation (4.2)), a multitude of other characteristics was consciously ignored
in their model. Those include adaption to changes in mean pressure, sat-
uration at high pressure, dependence on the trend of the pessure change,
di�erent types of baroceptors, and conduction times to the medulla. They
further state that improvements were reasonable, if the physiology of the
medulla was better understood [43], but basic baroreceptor characteristics,
such as the adaption to mean pressure levels should be included, despite
incomplete knowledge of neuronal mechanisms in the brain stem. DeBoer
et al. for example used a scaled arctangent function to mimic saturation
at high and low pressure levels, which does not add an unnecessary amount
of complexity to the model, but still mimics the nervous reaction to blood
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pressure changes much more accurately [20].
For the third model, three di�erent types of baroreceptors were presented,
in order to account for the variation in thresholds for di�erent baroreceptor
types. They also include a maximum �ring rate, which is without doubt a
reasonable and necessary assumption, since the �ring rate is generally limited
by the duration of the absolute refractory phase of baroreceptor ion chan-
nels. Their dependency on mean blood pressure over the last 1, 5, or 250
seconds gives them an adaptability to longer phases of, eg., hypertension,
which is clearly missing in the �rst model [39]. Moreover, this modeling ap-
proach still presents an easily implementable, yet physiologically much more
accurate basis for the input of the autonomic nervous system, since at least
two di�erent types of baroreceptors are known [29]. Potential future models
should at least include the main characteristics of baroreceptor physiology.
A modeling approach on a cellular level, including ion channel dynamics,
might be worth implementing, in order to gain a better understand of the
physiological regulatory mechanisms.

ANS Activity

The �rst model includes the basic characteristics of sympathetic and parasym-
pathetic activity. They both show an oscillating behaviour and are mod-
ulated by baroreceptor activity, giving them a seemingly antagonistic be-
haviour. The basic frequency of both branches of the ANS was set equal
to the respiratory frequency, which is contrary to the fact, that respiratory
changes in heart rate were shown to be modulated mainly by parasympa-
thetic activity [23]. The �rst model also modulates sympathetic activity
proportional to the current baroreceptor activity, which is an assumption in-
compatible to the fact, that sympathetic activity is widely attributed to the
low frequency components of HRV [30]. The erroneous regulation of sym-
pathetic activity proportional to baroreceptor activity is also evident, if one
considers that a maximum function had to be included into the model in
equation 4.3, in order to prevent negative sympathetic activity values. An-
other shortcoming lies in the complete absence of autonomous ANS activity
independent from modulating factors.
The identi�ed shortcomings of the �rst model were addressed in the second
model via inclusion of two oscillators for fundamental ANS activity, a low
pass �lter for sympathetic activity, and the inclusion of respiration only in
the parasympathetic part of the model. The simulation results were superior
to those of the �rst one by far, but still undesirable phases of zero sym-
pathetic activity occurred, resulting in a lack of HRV as depicted in �gure
5.9. This leads to the conclusion, that baroreceptor activity and respiratory
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in�uences should not be included directly into sympathetic activity, if one
locates sympathetic activity in the low frequency spectrum.
For the third model, the absence of independent ANS activity was anal-
ogously evened out by the inclusion of two oscillators. Since sympathetic
activity was again directly dependent on the baroreceptor �ring rate, an-
other low pass �lter was included. This causes a reaction to quick changes
in blood pressure mainly mediated via the parasympathetic nervous system,
which is consistent since this ANS part is attributed to the high frequency
components of HRV. A positive aspect of the third model is the direct de-
pendence of sympathetic on parasympathetic activity, accounting for their
typical antagonistic behaviour.

Respiration

Respiration, as a main in�uence on short term HRV, was included into the
models in two di�erent ways: The �rst and second model include respira-
tion in the central nervous system, which is comprehensible, since changes in
parasympathetic activity exist due to central modulation of respiration [23].
A disadvantage of this technique lies in the resulting temporal shift between
inspiration and augmentation of the heart rate.
The third model avoids this type of shift by varying the IPFM threshold
based on the current level of in- and exhalation, leading to an instantaneous
change of heart rate. An overestimated level of change in threshold may also
account for the overestimation of short term variability by the third model
and could be probably further improved.
It still is questionable, whether respiratory sinus arrhythmia should be mod-
elled via the parasympathetic nervous system, or directly in�uence heart
rate.

Blood Pressure

E�ective blood pressure regulation serves as an indicator of how well the
model is constructed, since controlling mechanisms such as the barorecep-
tor re�ex do regulate the heart rate with the aim of keeping blood pressure
levels within a normal range. In Studies, systolic blood pressure was shown
to increase during phases of exercise and higher heart rate, whereas diastolic
blood pressure was only slightly augmented in all age groups and for all heart
rates [37]. The �rst and second model show signi�cant changes in systolic, as
well as diastolic blood pressure. Additionally, overestimated average blood
pressure levels cause the previously mentioned phases of zero sympathetic
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activity. This is clearly not a desirable outcome and can be attributed to a
combination of inadequacies. Quick changes in blood pressure during systole
are normally evened out by the windkessel e�ect of the aorta. Although the
�rst and second model do include a windkessel time constant, it only e�ects
the diastolic pressure decrease. During systole, only the contractility varies
based on sympathetic activity. This combination results in overly high blood
pressure levels. Also, stroke volume and its dependence on the heart rate
was not included, which further increases blood pressure levels.
In comparison to the �rst two models, the third one showed a very sta-
ble mean systolic blood pressure for all patients and all mean heart rates,
whereas the diastolic pressure showed �uctuations. The model expansion
including heart rate dependent stroke volume and an arterial windkessel,
clearly had a stabilising e�ect on blood pressure. Especially the windkessel
regulates blood pressure during systole, as well as diastole, and gives a more
physiologic shape to the pressure curve. Although the third model behaves
more realistical than the other two, correct selection of compliance and resis-
tance is essential for an accurate calculation of blood pressure. Furthermore,
�uctuations in rapid changes in diastolic blood pressure should be avoided
generally. What is missing in the third model, is not only stroke volume,
but also contractility depending on the �lling of the heart, as described by
the Frank-Starling-Mechanism. Varying peripheral resistance over time also
presents a possibility for further model extension.

Further Remarks

In principle, the third model also includes the option of taking posture into
account via the input from the vestibulo-sympathetic system. This presents
another possibility for model expansion beyond the autonomic system.
Moreover, it is still not clear whether guided respiration di�ers from sponta-
neous respiration in its e�ect on the heart rate.
Another point worth mentioning is that higher levels of sympathetic activ-
ity also lead to decreased oscillations, generating a rather metronomic heart
rate, as found in patients su�ering from burn-out [15].
The results of the Lilliefors test in table 5.1 display an irregular pattern,
concerning the rejection of the null-hypothesis that a dataset comes from a
normal distribution. According to the results of the Wilcoxonn Signed Rank
test in table 5.2, the null-hypothesis has to be rejected for all but one case.
This means that one cannot assume that the di�erence between two data sets
comes from a distribution with zero median in a majority of cases. Although
the models were designed as close to reality as possible, this indicates that
signi�cant statistical di�erences do exist. Consequently, there is still enough
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room for further improvements.

Limitations

Although the presented models do include the most important e�ectors of the
heart rate, other factors still need to be included for further improvement.
The most obvious features of the human body, such as age and gender, are
remarkably uncommon in modeling and simulation of the cardiovascular sys-
tem, although they do play a notable role (compare subsection 2.1.3). Es-
pecially the age-dependent reactiveness of the baroreceptors should be taken
into account.
Not only baroreceptors, but also chemoreceptors control the activity of the
autonomous nervous system, since they transmit information about the cur-
rent oxygen supply to the respiratory centre of the autonomous nervous sys-
tem [46].
Posture also plays a role in heart rate regulation, due to the fact that the
autonomous nervous system has to counteract gravity, when changing from
a horizontal to a vertical position. The vestibulo-sympathetic system was al-
ready included into a model by Olufsen et al. [39], but should still be further
investigated.
A very central, but still largely unmodelled part of the cardiovascular regu-
lators is the medulla, which is probably due to the complexity of neuronal
interplay in the brain stem and the di�culty of examining it clinically. Once
mathematically accurate descriptions of the regulatory mechanisms in the
medulla exist, they should without doubt be included into models for HRV.
If an HRV model should be suitable for simulation over longer periods of
time, ultra low frequency components, eg., circadian rhythms, need to be
included into the model [31].
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6.1 Conclusion

The research questions posed in section 1.2. shall now be addressed once
again.
Although lots of existing models and submodels of the cardiovascular system
already include a variety of regulatory mechanisms of the HRV, they reveal
shortcomings when closer examined. A lot of them do not address physiolog-
ical processes in detail, or are largely based on purely statistical evaluations.
The �rst implemented model includes a variety of regulatory mechanisms,
such as baroreceptors, sympathetic and parasympathetic activity, cardiac as
well as vascular noradrenaline concentration, a winkessel time constant, and
myocardial contractility. Despite the many regulatory mechanisms it failed
to mimic even the mean heart rate of the given subject data correctly, as the
input of the IPFM was not closer examined.
The second model, which resulted from enhancements based on medical con-
siderations of the �rst one, showed signi�cant improvements in model perfor-
mance when compared to subject data. However, it still generates physiolog-
ically untenable outputs for some cases. Phases of zero sympathetic activity
caused by poor modeling of the baroreceptors, high �uctuations in systolic
and diastolic blood pressure, and an incomplete arterial windkessel still pro-
vide starting points for further model enhancements.
The third model, being a combination of physiologically well-founded mod-
els, includes a more accurate description of the baroreceptors, and was also
extended to further enhance its performance. Nevertheless, it overestimates
short term as well as long term variability, which may be due to an inade-
quate choice of input for the IPFM model. In order to adequately recreate
the mean heart rate given by the subject data, the IPFM input had to be
evened out by a correction term analogously to the one used for the second
model.
In summary, models of cardiovascular regulation with an emphasis of correct
represenation of heart rate variability do exist, but only some of them are
able to mimic reality to a satisfying degree. Modeling approaches, although
physiologically valid, often put an emphasis on single aspects of the cardio-
vascular system, and simultaneously neglect others, which leads to a limited
function of the whole model.
Once the existing regulatory mechanisms are accurately modelled, further
enhancements may include age, gender, chemoreceptors, posture, hormonal
regulation or even parts of the central nervous system. Nevertheless, further
research needs to �nd a balance between a models richness of detail and an
excessive amount of uncertain parameters.
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7 Appendix

The appendix includes images of the model implementations in Simulink
2017b.

Figure 7.1: Simulink implementation of Model 3.
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Figure 7.2: Simulink implementation of Model 1 and 2.
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Figure 7.3: Implementation of the IPFM model in Model 2. Aside from the calculation of the mean over the last 10
seconds (visible on the right), it is equivalent to the IPFM model in Model 1.
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