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Kurzfassung

Der verstärkte Einsatz von Software zur Mehrkörpersimulation ermöglicht es die
Anzahl von Prototypen, welche während der Entwicklung eines Produkts benötigt
werden, zu reduzieren. Häufig verursachen ungenaue oder unbekannte Parame-
terwerte große Abweichungen der Simulationsergebnisse von den in der Realität
gemessenen Werten. Die Qualität eines virtuellen Prototyps kann durch Anpassung
der Parameterwerte an die realen Verhältnisse erhöht werden. Durch die Komple-
xität von Mehrkörpersystemen ist es bei einer großen Anzahl von Parametern in
einem Simulationsmodell meist nicht mehr möglich die Parameter manuell anzu-
passen. Aus diesem Grund stellt ein automatisierter und effizienter Abgleich der
Systemausgänge den einzig möglichen Ansatz zur Verbesserung von Simulationser-
gebnissen dar. Darüber hinaus kann durch eine schlecht gewählte Anregung der
Fall eintreten, dass der Einfluss der Parameter auf die Systemausgänge zu gering
ist. In diesem Fall stützt sich die Identifikation auf unzureichende Daten und führt
zu einer nicht zufriedenstellenden Qualität des virtuellen Prototyps.
Zur Automatisierung des Parameteridentifikationsprozesses wird ein sinnvolles Gü-
temaß benötigt, welches erlaubt die Abweichung der Simulation vom Experiment
zu quantifizieren. Erst durch Einführen dieser sogenannten Kostenfunktion wird
die Verwendung eines iterativen Ansatzes zum Lösen des Optimierungsproblems,
welches die skalare Kostenfunktion minimiert, ermöglicht. Der Gradient, welcher
die Konvergenz des Optimierungsverfahrens deutlich verbessert, kann mit Hilfe der
adjungierten Sensitivitätsanalyse berechnet werden. Um den Informationsgehalt in
den zur nachfolgenden Parameteridentifikation verwendeten Messungen zu steigern,
wird ein Ansatz verfolgt, der durch Modifikation der Systemanregung auf eine Op-
timierung der Sensitivität der Kostenfunktion in Bezug auf Parameteränderungen
abzielt.
Für beide Spezialfälle, Gradientenberechnung und Optimierung der Systeman-
regung, werden detaillierte Herleitungen durchgeführt. Neben der Beschreibung
der entwickelten Ansätze werden nachvollziehbare Beispiele gezeigt, welche die
Performance der jeweiligen Methode unterstreichen.
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Abstract

The usage of state-of-the-art software for analyzing the dynamics of multibody
systems allows to reduce the number of prototypes in an product development
process. Often, unknown parameters cause notable deviations of simulation results
compared to measurements taken during experiments. Improving the quality of the
virtual prototype may be achieved by matching the parameters used in the simula-
tion model with the real ones. With an increasing number of parameters, adjusting
their values manually in order to improve the accordance is hardly possible due to
the complexity of the multibody system. Therefore, an automated and efficient
strategy for parameter identification represents the only reasonable approach for
gaining better simulation results. Another problem arises due to the fact, that the
chosen excitations may not cause a sufficient reaction of the components under
consideration. In such a case the result of the identification relies on insufficient
data, and therefore the accuracy of the virtual prototype is not satisfactory.
Automating the process of parameter identification requires a meaningful perfor-
mance measure in order to quantify the deviation of experiment and simulation.
This allows for using an iterative approach that aims at solving the optimization
problem that minimizes a scalar performance measure. The gradient required by
the optimization algorithm is computed by using the adjoint sensitivity analysis.
Addressing the problem raised by insufficient information contained in the measure-
ments is done by adjusting the system inputs in order to maximize the performance
measure’s sensitivity onto parameter changes, usually denoted as optimal input
design.
For both special issues, the computation of the gradient and the optimization of
system inputs, detailed derivations are done. Besides the description of procedures
developed, comprehensible examples are presented for emphasizing the performance
of the respective method.
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CHAPTER 1
Introduction

Modern product development processes crave for efficient methods allowing to pre-
dict a system’s performance prior to its initial operation. In the field of the design
of mechanical components and systems understanding their dynamical behavior is
vital and is typically analyzed using multibody simulation (MBS) software. These
analyses include the chronology of system states for a given time period, or loads
the system components are exposed to during operation. The practical effect of
investing in the development of a so called virtual prototype strongly depends on
the level of detail featured by the simulation results gathered. Often, unknown or
imprecise parameters cause a deviation between simulation results and test bench
samples. Hence, optimizing the quality of virtual prototypes is only possible by
balancing the parameters of the simulation model with the real prototype. With
an increasing number of parameters an automatized balancing method represents
the only possibility for reaching improved simulation results.
This work therefore aims for the derivation of approaches enabling an automated
identification process. Due to reasons concerning the performance and the appli-
cability to multibody systems, the adjoint method is proposed as comprehensive
approach. Throughout the work tailored adaptations of the adjoint concept will be
made in order to find efficient solutions ready for the implementation in modern
MBS software.
In practice, the achieved quality of parameters depends on the measurements taken
during the operation of the real prototype. In optimal input design this issue is
addressed by maximizing the information about a system’s sensitivity to parameter
changes.
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1.1. Literature Review

1.1 Literature Review

1.1.1 Multibody dynamics
Multibody dynamics represents one of the younger domains in natural sciences.
However, the concepts and theory behind rely on a solid base. The dynamics
of a system, consisting out of several bodies, basically is described by equations
of motion based on Lagrangian mechanics, that some sort of include Newtonian
mechanics. A good overview of classical mechanics is given in the work of Goldstein
[26]. The historical development of multibody dynamics itself is given in the work of
Schiehlen [58]. As the importance of multibody dynamics has grown steadily, many
textbooks were published in order to allow the integration into academic courses.
The first textbook available was written by Nikravesh [52]. Other well-known
textbooks originate from Shabana [60], Bauchau [5] and Bremer [10], where also
flexible bodies are considered.

1.1.2 Adjoint method
The adjoint method is probably the most efficient way to solve a variety of optimiza-
tion problems in engineering sciences. Much attention to this approach has been
paid recently in the context of continuous systems for sensitivity analysis (see, e.g.,
[30, 29, 8, 19]). The class of dynamic programming methods for the computation
of gradients in an optimization problem, includes the adjoint method which has
a long history in optimal control theory [40]. The adjoint method is applied in,
e.g., aerodynamic shape optimization by Jameson [33], in which the gradient of an
objective function is determined indirectly by solving an adjoint equation which
has coefficients determined by the solution of the multibody dynamics equations.
This directly corresponds to the gradient technique for trajectory optimization
pioneered by Bryson and Ho [12]. Once the gradient has been calculated, a descent
method can be used to determine the optimal parameters or controls. The fast
calculation of the gradients makes optimization computationally feasible even for
designs in complex three-dimensional multibody systems. For this purpose, the
equations of motion of the multibody system and adjoint equations may either be
separately discretized from their representations as differential-algebraic equations,
or, alternatively, the equations of motion of the multibody system may be dis-
cretized first, and the discrete adjoint equations are then derived directly from the
discrete multibody equations [12]. In the field of aerodynamic design optimization
using the adjoint formulation, the works by Anderson and Venkatakrishnan [2]
and Nadarajah and Jameson [49] have to be mentioned. The work of Oberai et al.
[53] shows the solution of inverse problems in elasticity imaging using the adjoint
method. There, a straightforward calculation of the gradient requires N forward
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solutions of the elasticity problem. This cost is computationally prohibitive for
typical values of N (>= 103). To circumvent this difficulty, [53] presents a new
algorithm based on the adjoint elasticity operator which requires two solutions only
(independent of N) to compute the gradient. Adjoint methods have also been the
subject of studies in fluid dynamics research, as e.g., in the work by McNamara
et al. [41], in which the adjoint method is used for controlling fluid simulations
through gradient-based nonlinear optimization. Taylor et al. [65] present a hybrid
adjoint approach applied to turbulent flow simulations.
Previous work on the adjoint method in multibody dynamics can be found in
the work of Bottasso et al. [9], where the solution of inverse dynamics and tra-
jectory optimization problems for multibody systems is reflected by an indirect
approach combining optimal control theory with control and adjoint equations and
transversality conditions. The inverse solution methodology presented in [9] has
been implemented in the general purpose multibody code ADAMS. Within this
implementation, some simple problems that provide a reasonable test and proof
of concept of the presented methodology have been investigated. The design of
the indirect method for solving optimal control problems for multibody systems
presented by Bertolazzi et al. [6] seems to be familiar with the idea of the adjoint
method. The work by Schaffer [57] presents a numerical algorithm, the piecewise
adjoint method, which formulates the coordinate partitioning underlying ordinary
differential equations as a boundary value problem, which is solved by multiple
shooting methods. Additionally, convergence analysis of backward differentiation
formulas is performed for stabilized differential-algebraic equations of motion in
index 1 form and as well for the adjoint differential-algebraic equations for Cartesian
non-centroidal multibody systems. Numerical studies in [57] compare the direct
differentiation method, the adjoint method and the piecewise adjoint method for a
slider-crank mechanism and a high mobility wheeled vehicle which revealed the
speed-up of multibody systems with a small number of degrees of freedom and the
potential speed-up for larger problems are discussed as well.
The group around Petzold, Cao, Li and Serban [54, 13, 14] describes forward and
adjoint methods for sensitivity analysis for differential-algebraic equations and
partial differential equations and state that the results of sensitivity analysis have
wide-ranging applications in science and engineering, including model development,
optimization, parameter estimation, model simplification, data assimilation, op-
timal control, uncertainty analysis and experimental design [54]. In the work of
Eberhard [19], the adjoint method is used for sensitivity analysis in multibody
systems interpreted as a continuous, hybrid form of automatic differentiation.
In case of an orientation parametrization of a body in multibody dynamics with-
out using angles, as e.g. described in the absolute nodal coordinate formulation
(ANCF) [59], a gradient-based optimization approach using adjoint equations has

3
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been presented by Held and Seifried [31]. Here, two different objective functions are
defined to optimize a flexible slider-crank mechanism. One criterion accounts for
the deformation energy of the flexible body and the second criterion accumulates
the squared deviation of the actual and desired position of the slider block. The
adjoint method is then derived for the sensitivity analyses of the different objective
functions [31]. Due to the structure of the objective functions and the fact that the
ANCF includes a constant mass matrix with vanishing derivative, the equations
reduce to a simpler form [31, Eq. (19)]. The framework of the ANCF is as well
used in the sensitivity analysis using the adjoint method by Pi et al. [55] within
a first order approach, while in [17] a second order adjoint sensitivity analysis of
multibody systems has been presented within the classical multibody formulation.
The optimization strategies employing second order sensitivity information shows
higher accuracy, with the drawback of its complex structure. However, the adjoint
method is utilized in [17] and shows a substantial reduction of computational costs
in case of a large number of design variables. The comparision of the adjoint
method to the direct differentiation is given in Table 4 in [17] method.

1.2 Thesis Objectives
Despite of the great potential of the adjoint sensitivity analysis, it is rarely applied
in multibody dynamics, since the sophisticated structure of the equations of motion,
and the effort to obtain the set of adjoint equations seems tremendously high. Hence,
dealing with the adjoint approach is obviously unattractive for most developers
of multibody simulation software. Therefore, the main goal of this thesis is to
illustrate how the adjoint sensitivity analysis may be embedded in state of the
art multibody system descriptions. First, the sensitivity with respect to system
parameters is computed in order to identify them based on measurements. Second,
a performance measure quantifying the information about parameters contained
in measurements is developed and its variation is derived by using the adjoint
sensitivity analysis. In order to verify the methods, several examples are covered
within the particular sections.

1.3 Thesis Structure
The thesis is organized as follows: In Chapter 2 the equations necessary to describe
the dynamical behavior of a multibody system are derived. Although these equations
are well known and documented in the literature, this chapter helps in understanding
the subsequent derivations and introduces the nomenclature adopted. Analyzing a
system’s sensitivity with respect to its parameters is treated in Chapter 3. First, the
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general approach using the direct differentiation method is applied on the multibody
system. As already mentioned in the review of the existing literature, the adjoint
approach is known to reduce the computational effort for sensitivity analysis.
Therefore in Section 3.3.4 this approach is adopted for the use in multibody system
dynamics. The derivation of an identification method for parameters is carried out in
Chapter 4. In Section 4.2 special emphasis is put on performance measures including
frequency domain information in form of measured spectra, which represents a novel
approach in the field of multibody system dynamics. The topic of optimal input
design discussed in Chapter 5 thematically completes the thesis by investigating
the planning of experiments used for parameter identification.
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CHAPTER 2
Dynamic Analysis of Multibody

Systems

2.1 Lagrangian mechanics
In this section we start with a brief review of the principles of Lagrangian mechanics
which are used in the subsequent sections to derive the equations of motion of
multibody systems. In the Lagrangian approach the configuration of a mechanical
system is described by a set of generalized coordinates q = (q1, . . . , qn)T. The basic
problem is to find a set of equations which describe the time history q(t) of this
generalized coordinates.
Following [26], we start from Newton’s second law for a material point mK

mK~̈rK = ~fK , (2.1)

where ~rK(t) denotes the position of mK in an inertial frame. In Lagrangian
mechanics ~rK is described by a function of the generalized coordinates and eventually
explicitly of time

~rK = ~rK(q1, . . . , qn; t). (2.2)

Moreover in Eq. (2.1) ~fK denotes the total force acting on mK . Forces on mK

which can be expressed explicitly from the generalized coordinates are denoted
as impressed forces ~f

(e)
K , whereas forces which are associated with geometric

restrictions of the particle’s motion and which cannot be described by an explicit
law are denoted as constraint forces ~f (c)

K . These forces can be eliminated with
D’Alembert’s principle which states that the virtual work of all constraint forces in

6



2.1. Lagrangian mechanics

a mechanical system resulting from a virtual variation

δ~rK =
n∑
i=1

∂~rK
∂qi

δqi (2.3)

is zero for arbitrary variations δqi of the generalized coordinates. Hence, multiplying
Eq. (2.1) with δ~rK and summing up over all particles yields

N∑
K=1

mK~̈rKδ~rK =
N∑
K=1

(
~f

(e)
K + ~f

(c)
K

)
δ~rK =

N∑
K=1

~f
(e)
K δ~rK (2.4)

since the virtual work of the constraint forces δW (c) = ∑N
K=1

~f
(c)
K δ~rK is zero due

to D’Alembert’s principle. The term

δW (e) =
N∑
K=1

~f
(e)
K δ~rK =

N∑
K=1

(
~f

(e)
K

n∑
i=1

∂~rK
∂qi

δqi

)

is the virtual work δW (e) of the impressed forces. After rearranging the sums we
obtain

δW (e) =
n∑
i=1

{
N∑
K=1

(
~f

(e)
K

∂~rK
∂qi

)}
δqi :=

n∑
i=1

Qiδqi,

where the generalized force

Qi :=
N∑
K=1

(
~f

(e)
K

∂~rK
∂qi

)
(2.5)

associated to the coordinate qi is introduced.
In order to relate Qi with the inertia part in Eq. (2.4), the left side of Equation (2.4)
must also be written in the form

N∑
K=1

mK~̈rKδ~rK =
n∑
i=1

Xiδqi.

Substituting δ~rK from Eq. (2.3) yields

N∑
K=1

mK~̈rKδ~rK =
N∑
K=1

mK~̈rK
n∑
i=1

∂~rK
∂qi

δqi =
n∑
i=1

{
N∑
K=1

mK~̈rK
∂~rK
∂qi

}
δqi

and obviously the quantity Xi is found to be

Xi =
N∑
K=1

mK~̈rK
∂~rK
∂qi

.

7



2.1. Lagrangian mechanics

As Xi cannot be computed in this form the product rule is applied, which results in

Xi =
N∑
K=1

mK~̈rK
∂~rK
∂qi

=
N∑
K=1

{
d
dt

(
mK~̇rK

∂~rK
∂qi

)
−mK~̇rK

d
dt
∂~rK
∂qi

}

= d
dt

N∑
K=1

(
mK~vK

∂~rK
∂qi

)
−

N∑
K=1

(
mK~vK

d
dt
∂~rK
∂qi

)
.

(2.6)

The velocity ~vK can be derived from Eq. (2.2) by performing the derivation with
respect to time, reading

~vK = ~̇rK =
n∑
j=1

∂~rK
∂qj

q̇j + ∂~rK
∂t

. (2.7)

Having a closer look on Eq. (2.7) allows to find

∂~vK
∂q̇i

= ∂~rK
∂qi

. (2.8)

Inserting this in Eq. (2.6) and using

d
dt
∂~vK
∂qi

=
n∑
j=1

∂2~rK
∂qj∂qi

q̇i + ∂2~rK
∂qj∂t

which is equal to
∂~rK
∂qi

=
n∑
j=1

∂2~rK
∂qi∂qj

q̇j + ∂2~rK
∂t∂qj

results in

Xi = d
dt

N∑
K=1

(
mK~vK

∂~vK
∂q̇i

)
−

N∑
K=1

(
mK~vK

∂~vK
∂qi

)

= d
dt

{
∂

∂q̇i

N∑
K=1

(
mK

2 v2
K

)}
− ∂

∂qi

(
N∑
K=1

mK

2 v2
K

)
.

(2.9)

In both terms of Eq. (2.9) the kinetic energy

T = 1
2

N∑
K=1

mKv
2
K (2.10)

8



2.1. Lagrangian mechanics

can be substituted and finally Eq. (2.4) reads
n∑
i=1

{
d
dt

(
∂T

∂q̇i

)
− ∂T

∂qi

}
δqi =

n∑
i=1

Qiδqi, (2.11)

which can be written also in matrix notation in the form

δqT
{

d
dt

(
∂T

∂q̇

)
− ∂T

∂q

}
= δqTQ. (2.12)

We may now distinguish between minimal sets of generalized coordinates, which
are not constrained by additional geometric relations and redundant sets of gener-
alized coordinates, which are not independent but constrained by equations of the
form C(q) = (C1(q), . . . , Cm(q))T = 0 (only holonomic constraint equations are
considered in this work).
In the first case Eq. (2.12) holds for arbitrary variations δq and hence, the equations
of motion for q(t) are given by

d
dt

(
∂T

∂q̇

)
− ∂T

∂q
= Q.

However, in the latter case the variations δq are also constrained by the relation
∂C
∂q

δq = Cqδq = 0. (2.13)

But now we can add in Eq. (2.12) the zero term

λTCqδq = δqTCT
qλ = 0

where λ = (λ1, . . . , λm)T is a vector of arbitrary Lagrange multipliers, yielding

δqT
{

d
dt

(
∂T

∂q̇

)
− ∂T

∂q
+ CT

qλ

}
= δqTQ.

As we have n−m independent variations in the vector δq and m arbitrary Lagrange
multipliers in λ we may now equate the expressions multiplied with δqT on both
sides. Extending these equations of motion with the constraint equations gives a
set of second-order differential-algebraic equations (second-order DAE)

d
dt

(
∂T

∂q̇

)
− ∂T

∂q
= Q−CT

qλ

C(q) = 0
(2.14)

which have to be solved for q(t) and λ(t) in the case of a system described by a
redundant generalized coordinates. This formulation is used in many multibody
simulation packages and will serve as the basis for the subsequent discussions, too.
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2.2. Kinematics of rigid multibody systems

2.2 Kinematics of rigid multibody systems

2.2.1 Kinematics of a single rigid body
In multibody systems rigid bodies represent the smallest unit and therefore their
kinematics has to be described in detail. In kinematics the body’s motion can
be expressed by geometric relations by just using the quantities time, position,
velocity and acceleration. This section discusses the approaches typically used for
describing the motion of an unconstrained rigid body in three-dimensional space
with six degrees of freedom. The notation used here is taken from [3].

2.2.1.1 Body-fixed coordinate system and generalized coordinates

In rigid body kinematics the motion of any material point P may be expressed by
the use of a body-fixed coordinate system as shown in Fig. 2.1. The relation

~r = ~u+ B~R

gives the transformation from local coordinates ~R with respect to the body-fixed
coordinate system to global coordinates ~r with respect to the inertial frame. The
rotation matrix

B =
(
~bx,~by,~bz

)
(2.15)

assembles all three orientation vectors describing the axes of the body-fixed coor-
dinate system. As the unit-vectors ~bx, ~by and ~bz are perpendicular to each other,
i.e.

~bx ·~bx = 1, ~by ·~by = 1, ~bz ·~bz = 1
~bx ·~by = 0, ~by ·~bz = 0, ~bx ·~bz = 0

(2.16)

the rotation matrix is an orthogonal matrix satisfying the identities

BTB = I or B−1 = BT. (2.17)

Here I denotes the identity matrix. For the definition of the body-fixed coordinate
system the vectors ~u, ~bx, ~by and ~bz defined in an inertial frame are required. Hence,
for a single rigid body we introduce a vector of translational generalized coordinates
qt = ~u and a set of rotational generalized coordinates qr which describe the vectors
~bx, ~by, ~bz forming the columns of the rotation matrix B.

2.2.1.2 Parametrization of the rotation matrix

The nine components of B are constrained by six orthogonality relations Eq. (2.16).
Therefore, the vector of rotational generalized coordinates qr must contain at

10
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�bx

�bz
�by

yx

z

�u

�r

B�R

P

Reference point

Figure 2.1: Position ~r of a material point P in the inertial frame given by ~u+ B~R,
where B is the rotation matrix of the body fixed reference frame ~bx,~by,~bz and ~R
contains the coordinates of P with respect to the body fixed frame.

least three entries. There are different approaches for this parametrization given
in the literature (see e.g., [60]). When considering Euler angles three successive
rotations, first about the z-axis, then about the x-axis and again about the z-axis,
are performed. In contrast to that, Tait-Bryant angles use rotations about the
x-axis, the y-axis and the z-axis. Both parametrizations lead to singularities in
some special configurations. This can be avoided, e.g. if a redundant set of four
parameters, denoted as Euler parameters, is used.
For the subsequent discussion we focus on Euler parameters, since the equations of
motion for a single rigid body can be obtained rather simply in this case. Before
discussing Euler parameters, the rotation vector has to be introduced. In Fig. 2.2
the vector ~r0 is rotated about the axis defined by the unit vector ~a. In order to
compute the rotated vector ~r1, the vectors ~b1 and ~b2 are expressed as function of
the circle radius ρ and the rotation angle θ. Inserting the circle radius

ρ = |~a× ~r0|

in the expressions for the vectors ~b1 and ~b2

~b1 = ρ sin θ ~e1

~b2 = (ρ− ρ cos θ)~e2

11
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~r1
~r0

~b2 ~b1

θ

~e1

~e2

~a

θ ρ

~e1

~e2

~b2

~b1

Figure 2.2: Rotation of vector ~r0 about angle θ

the unit vectors ~e1 and ~e2 form an orthogonal basis with the rotation axis ~a and
therefore

~r1 = ~r0 +~b1 +~b2

= ~r0 + ρ sin θ ~e1 + (ρ− ρ cos θ)~e2

= ~r0 + sin θ (~a× ~r0) + (1− cos θ) [~a× (~a× ~r0)] .
(2.18)

In order to end up with a matrix equation for the rotation of ~r0, the skew symmetric
matrix

â =

 0 −az ay
az 0 −ax
−ay ax 0


is introduced. By using this matrix instead of ~a the cross product can be replaced
by a matrix product. Equation (2.18) therefore reads

~r1 =
[
I + sin θâ+ (1− cos θ) â2

]
~r0 = B~r0

with using the rotation matrix

B = I + sin θâ+ (1− cos θ) â2. (2.19)

12



2.2. Kinematics of rigid multibody systems

When making use of Euler parameters a special parametrization of Eq. (2.19) is
used. First, the trigonometric relations

sin θ = 2 sin θ2 cos θ2 and 1− cos θ = 2 sin2 θ

2

are inserted in Eq. (2.19). This leads to

B = I + 2â sin θ2 cos θ2 + 2â2 sin2 θ

2 .

By using a different skew symmetric matrix ê

ê = â sin θ2 =

 0 −az ay
az 0 −ax
−ay ax 0

 sin θ2 =

 0 −e3 e2
e1 0 −e1
−e2 e1 0


and

e0 = cos θ2
the rotation matrix becomes

B = I + 2ê e0 + 2ê2 =

1− 2e2
2 − 2e2

3 2e1e2 − 2e0e3 2e1e3 + 2e0e2
2e1e2 + 2e0e3 1− 2e2

1 − 2e2
3 2e2e3 − 2e0e1

2e1e3 − 2e0e2 2e2e3 + 2e0e1 1− 2e2
1 − 2e2

2

 . (2.20)

The four parameters

e0 = cos θ2 , e1 = ax sin θ2 , e2 = ay sin θ2 , e3 = az sin θ2 , (2.21)

are called Euler parameters. In contrast to Euler angles or Tait-Bryant angles, B
can be computed without evaluating trigonometric functions. Another advantage
of using Euler parameters is the absence of singularities and therefore the numeric
stability. One disadvantage is that four parameters are used to described three
degrees of freedom and therefore an additional constraint equation has to be taken
into account. Due to the unit vector ~a and the identity sin2 α + cos2α = 1 the
constraint equation

e2
0 + e2

1 + e2
2 + e2

3 = 1
must hold in all configurations of B. Inserting this in Eq. (2.20), the rotation
matrix reads

B =

e
2
0 + e2

1 − e2
2 − e2

3 2e1e2 − 2e0e3 2e1e3 + 2e0e2
2e1e2 + 2e0e3 e2

0 + e2
2 − e2

1 − e2
3 2e2e3 − 2e0e1

2e1e3 − 2e0e2 2e2e3 + 2e0e1 e2
0 + e2

3 − e2
1 − e2

2

 .
13
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2.2.1.3 Velocities

For computing the kinetic energy required for Lagrange’s equations, the velocity of
material points must be considered in kinetics. Differentiation of ~r with respect to
the time

~v = ~̇u+ Ḃ~R (2.22)
gives the velocity ~̇r = ~v. The local coordinate ~R has no time derivative since only
rigid bodies are investigated. It is very common to use the origin of the body-fixed
coordinate system for describing the translational degree of freedom of a rigid body.
Due to this the velocity ~̇u = q̇t will directly appear in the equations of motion and
thus is not considered in detail. However, the time derivative of the rotation matrix
B needs to be investigated. First, the differentiation is performed by applying the
chain rule

Ḃ =
nr∑
i=1

∂B
∂qri

q̇ri

where nr is the number of generalized rotational coordinates qr. Due to Eq. (2.17)
the time derivative

BTḂ + ḂTB = 0
must hold. This gives

BTḂ = −
(
BTḂ

)T

and allows to introduce the skew symmetric matrix Ω̂ in the form

Ω̂ = BTḂ. (2.23)

Using Ḃ = B~Ω in Eq. (2.22) and bearing in mind that the product of a skew
symmetric matrix and a vector corresponds with the cross product of two vectors
leads to

~v = q̇t + BΩ̂~R = q̇t + B
(
~Ω× ~R

)
. (2.24)

This relates Ω̂ with the vector ~Ω commonly denoted as angular velocity vector.
For the usage in the equations of motion the relation between the time derivatives
of the rotational parameters q̇r and the angular velocity vector is desirable. For
this purpose the matrix Gi , which allows to rewrite Eq. (2.23) into

Ω̂ = BTḂ =
nr∑
i=1

BT ∂B
∂qri

q̇ri =
nr∑
i=1

Giq̇ri , (2.25)

is introduced. Due to the skew symmetric property of Ω̂, only the elements of Gi

with positive sign Gi
3,2, Gi

1,3 and Gi
2,1 are necessary to compute ~Ω. Introducing

the vectors
~Gi =

(
Gi

3,2, G
i
1,3, G

i
2,1

)T

14
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and joining them allows to write Eq. (2.25) in vectorial form

~Ω =
nr∑
i=1

~Giq̇ri =
(
~G1 . . . ~Gnr

)
q̇r1
...
q̇rnr

 = Gq̇r (2.26)

where G is the mapping matrix between the time derivatives of the rotational
parameters and the angular velocity vector ~Ω.
Depending on the parametrization of the rotation matrix chosen, the matrix G
is generated by computing the term Gi, picking the three components for ~Gi and
finally assembling them in the matrix G. In case of Euler parameters the first
column of G is made up of the elements of

Gi = BT ∂B
∂e0

= 2

 e0 e3 −e2
−e3 e0 e1
e2 −e1 e0


and similarly for the remaining columns. Finally the matrix G can be presented as

G = 2

−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0

 .
Substituting Eq. (2.26) in Eq. (2.24) and permuting the order of the cross product
gives the handy expression

~v = q̇t −B
(
~R×Gq̇r

)
which can be used for the efficient computation of a material point’s velocity vector
by matrix calculus. Furthermore the expression can be rearranged to

~v = q̇t −BR̂Gq̇r (2.27)

where the skew-symmetric matrix

R̂ =

 0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0


is introduced. Due to this the cross product can be replaced with a matrix
multiplication. The components of R̂ are given by the vector elements ~R =
(Rx, Ry, Rz)T.
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2.2.2 Kinematics of a system of several rigid bodies
Multibody systems are made up of several rigid bodies, which can be interconnected
by different types of joints, such as hinges, linear guides, radial bearings, etc. De-
scribing the kinematics for the entire system is generally speaking a non-trivial task.
Doing so would involve finding a minimal set of coordinates, which is not possible
for a computer program in a systematic manner. One possibility to circumvent
seeking for those coordinates is to consider the kinematics of every rigid body with
all it’s degrees of freedom. The constraints resulting from joining the system’s
bodies are introduced by a set of algebraic equations C.
Another practicable method is trying to find a quasi-minimal set of coordinates
by applying recursive kinematics. This means, that only such degrees of freedom
are introduced, that allow the system to fulfill all constraints. Basically this is
only possible for systems with chain and tree topology. In case of other topologies
additional constraint equations must be introduced. Due to the chosen set of coor-
dinates these equations are of very complex structure and may involve coordinates
which are not directly part of the physical constraint.
In order to illustrate how such constraints may be described in terms of multibody
systems, in the following the revolute joint will be presented as an example. The
physical realization thereof can be a combined radial and axial bearing of a shaft
or a hinge used for mounting car doors, etc. Other representatives would be the
planar, cylindrical or the spherical joint.
Before looking after the equations representing the joint’s geometrical specifications,
first the degrees of freedom have to be clarified. As it can be seen in Fig. 2.3 the
two bodies B1 and B2 are interconnected with a hinge. This only allows the two
bodies to rotate about ~A as the translation along the axis is locked too. Due to this
the number of degrees of freedom is six for one free body plus one for the connected
second body. As there are twelve degrees of freedom in the unconstrained case
and seven in the constrained one, this means the joint constrains five degree of
freedom. Due to this, five equations have to be found. Three equations can be
formed by comparing the position of point P in global coordinates. Application
of the according coordinate transformation on each body and setting them equal
reads

~u1 + B1 ~R
(1)
P −

(
~u2 + B2 ~R

(2)
P

)
= 0. (2.28)

Here, the vectors to the particular coordinate system origin ~u1 and ~u2, the rotation
matrices B1 and B2 and the position P in local coordinates ~R (1)

P and ~R
(2)
P are

used.
The remaining two equations are formed by demanding(

B2 ~G
(2)
)
·
(
B1 ~A

(1)
)

= 0(
B2 ~H

(2)
)
·
(
B1 ~A

(1)
)

= 0
(2.29)
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B2

B1
~R
(2)
P

~R
(1)
P

~H(2)

~G(2)

~A(1)

P

Figure 2.3: Sketch of revolute joint

which means both vectors ~G (2) and ~H (2), described in the body fixed coordinate
system B2, are perpendicular to the rotation axis ~A (1), described in B1. By using
those five algebraic equations, Eq. (2.28) and Eq. (2.29) respectively, both bodies
are constrained to the desired rotational degree of freedom.

2.3 Kinetics of rigid multibody systems

2.3.1 Kinetic energy of a single rigid body
For a solid body the sum in Eq. (2.10) can be replaced by an integral. The kinetic
energy then results in

T = 1
2

∫
m
v2 dm (2.30)

for the body’s mass m. Due to the orthogonality of the rotation matrix BTB = I
the squared velocity

v2 =
(
~̇u−BR̂~Ω

)T (
~̇u−BR̂~Ω

)
= ~̇uT~̇u− 2~̇u BR̂~Ω + ~ΩTR̂TBTBR̂~Ω

can be written as
v2 = ~̇uT~̇u− 2~̇u BR̂~Ω + ~ΩTR̂TR̂~Ω.

Now the kinetic energy can be computed by inserting v2 in Eq. (2.30)

T = 1
2 ~̇u

T~̇u
∫
m

dm− 2~̇u B
(∫

m
R̂dm

)
~Ω + ~ΩT

(∫
m
R̂TR̂ dm

)
~Ω (2.31)

where here all terms, constant for the entire volume, are extracted from the integral.
Obviously the integral in the first term equates to the mass m itself. If the center
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of mass is used for the body-fixed coordinate system’s origin, the second term
vanishes. The integral

IM =
∫
m
R̂TR̂ dm

is denoted as the tensor of inertia and can be evaluated in a straight forward way
for rigid bodies. Using this, Eq. (2.31) reads

T = 1
2m~u

T~u+ 1
2
~ΩTIM~Ω.

Applying the findings of section 2.2.1.3, the kinetic energy for one rigid body reads

T = 1
2m

(
q̇t
)T

q̇t + 1
2 (q̇r)T GTIMGq̇r.

Commonly the kinetic energy is written in terms of the mass matrix,

M =
(
mI 0
0 GTIMG

)

which allows T to be computed as

T = 1
2 (q̇)T Mq̇ (2.32)

where the generalized coordinates are given as q = (qt,qr)T.

2.3.2 Generalized forces for a single rigid body
The equations of motion introduced in section 2.1 employ generalized forces Qi.
Equation (2.5) incorporates the partial derivatives ∂~rK/∂qi, which can be replaced
by ∂~̇rK/∂q̇i due to the equality shown in Eq. (2.8). Performing the differentiation
of Eq. (2.27) gives

∂~v

∂q̇t
= ∂

∂q̇t
(
q̇t −BR̂Gq̇r

)
= I

for the translational generalized coordinates qt and

∂~v

∂q̇r
= ∂

∂q̇r
(
q̇t −BR̂Gq̇r

)
= −BR̂G

for the rotational generalized coordinates qr. In order to find an expression for
Qi in matrix notation, the scalar product from Eq. (2.5) is written as matrix
multiplication

Qi =
N∑
K=1

(
~fK
)T ∂~rK

∂qi
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and the generalized forces therefore read

Q =


Q1
...
Qn

 =
N∑
K=1

(
∂~rK
∂q

)T
~fK .

Hence, the generalized forces for one rigid body can be assembled as external forces:

Q(e) =
(

Qt

Qr

)
=

N∑
K=1

(
~fK

GTR̂KBT ~fK

)
=

N∑
K=1

(
I

GTR̂KBT

)
~fK . (2.33)

2.3.3 Equations of motion for a single rigid body
At this point all equations necessary for performing dynamical analyses of multibody
systems are developed. In this section they are assembled to one differential
algebraic system. Before inserting Eq. (2.32) and Eq. (2.33) in Eq. (2.14) some
partial derivatives of the kinetic energy are computed. The translational part of
the Lagrange equations is simply given by

mIq̈t =
nf∑
i=1

~fi, (2.34)

with I being the identity matrix. More attention must be paid to the rotational
parts of the equations of motion. First the partial derivative of T with respect to
the generalized velocities is specified:

∂T

∂q̇r
= GTIMGq̇r.

This is followed by the differentiation with respect to time, which results in

d
dt

(
∂T

∂q̇r

)
= GTIMGq̈r +

(
ĠTIMG + GTIMĠ

)
q̇r. (2.35)

The second term involving a partial derivative of T is given by
∂T

∂qr
= ∂

∂qr
(1

2 (q̇r)T GTIMGq̇r
)
. (2.36)

Up to this point no specific rotation parametrization has been chosen. Hence, no
further improvements of the equation structure can be performed. In case of using
Euler parameters the equations may be written in an elegant manner. Primarily
the identity

Gqr = 2

−e1e0 + e0e1 + e3e2 − e2e3
−e2e0 − e3e1 + e0e2 + e1e3
−e3e0 + e2e1 − e1e2 + e0e3

 = 0
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is adopted, which holds for Euler parameters only. Because of the structure of
G not only the relation Gqr = 0 but also Ġq̇r = 0 is valid. Furthermore, the
derivative with respect to time

Ġqr + Gq̇r = 0

can be used in the form
Ġqr = −Gq̇r. (2.37)

Due to this Eq. (2.35) simplifies to

d
dt

(
∂T

∂q̇r

)
= GTIMGq̈r − ĠTIMĠqr (2.38)

By making use of Eq. (2.37), Equation (2.36) can also be simplified and reads:

∂T

∂qr
= ∂

∂qr
(1

2 (qr)T ĠTIMĠqr
)

= ĠTIMĠqr.
(2.39)

Assembling the terms Eq. (2.34), Eq. (2.38), Eq. (2.39) and using the external
forces Q(e) from Eq. (2.33) gives(

mI 0
0 GTIMG

)(
q̈t
q̈r

)
=

nf∑
i=1

(
I

GTR̂iBT

)
~fi −

(
0

2ĠTIMĠqr

)
−CT

qλ. (2.40)

By introducing the force vector f(q, q̇, t) combining external forces and gyroscopic
forces,

f(q, q̇, t) =
nf∑
i=1

(
I

GTR̂iBT

)
~fi −

(
0

2ĠTIMĠqr

)
,

and the mass matrix M,

M =
(
mI 0
0 GTIMG

)
, (2.41)

the equations of motion for one rigid body subject to constraints C can be written
in the form

M(q)q̈ = f(q, q̇, t)−CT
qλ

C(q) = 0
(2.42)

where Eq. (2.40) is completed with C(q) = 0 in order to satisfy the constraint
equations.
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2.3.4 Equations of motion for multibody systems
The main goal of this chapter is to develop the equations of motion for an entire
multibody system in the form of Eq. (2.42). Therefore a mass matrix in the form

M =


M1 0
0 M2 0

0 . . . 0
0 MN

 (2.43)

is introduced. Herein M1, . . . ,MN denotes the N rigid body mass matrices in the
form of Eq. (2.41). The generalized coordinates therefore read

q =



qt1
qr1
...

qtN
qrN

 (2.44)

and assemble all translational and rotational generalized coordinates related to all
N bodies. The same applies for the forces f = (f1, . . . , fN)T.
In addition to the equations of inner constraints C(i), resulting from a redundant
set of rotational generalized coordinates, the equations representing the joints
interconnecting the bodies, also called outer constraints C(o), have to be observed.
They are assembled in the form

C(q) =



C(1)(q1)
C(2)(q2)

...
C(N)(qN)
C(o)(q)

 (2.45)

which result in the constraint Jacobian

Cq =



C(1)
q1 0
0 C(2)

q2 0
0 . . . 0

0 C(N)
qN

C(o)
q1 C(o)

q2 . . . C(o)
qN

 . (2.46)

Similar to Eq. (2.42) the equations of motion for a multibody system read
M(q)q̈ = f(q, q̇, t)−CT

qλ

C(q) = 0
(2.47)

using the definitions of Eq. (2.44), Eq. (2.43), Eq. (2.45) and Eq. (2.46) respectively.
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2.4 Numerics
As mentioned at the beginning of this chapter the only approach practicable for
analyzing multibody systems modeled by equations in the form of Eq. (2.47) is to
apply numerical solution strategies. Finding solutions by analytical methods is
hardly possible even for small non-linear systems and therefore not applicable for
multibody systems.
The very first step before applying numerical solution methods is to discretize the
equations of interest. Therefore the state at t = tn is abbreviated with q(tn) =: qn
and similarly this applies to additional Lagrangian multipliers λ(tn) =: λn. Doing
so and using the time tn, the states qn, q̇n and the Lagrangian multiplier λn in
Eq. (2.47) lead to the discretized version of the differential-algebraic equations
reading

M(qn+1)q̈n+1 − f(qn+1, q̇n+1, tn+1) + Cq(qn+1)Tλn+1 = 0
C(qn+1) = 0

which is below written in the simpler form

(Mq̈)n+1 −
(
f −CT

qλ
)
n+1

= 0

Cn+1 = 0.
(2.48)

In the following the Hilber-Hughes-Taylor (HHT) implicit method [32] is chosen
to be investigated in detail as one representation of numeric integrators. In the
field of structural dynamics this method is used for the integration of a linear
set of second order ordinary differential equations (ODE). Due to the artificial
damping introduced by the algorithm, this allows for efficient time integration
without the need for resolving frequencies out of the range of interest. Beyond that
in further derivations the good conditioning of the Jacobian matrix, associated
with the implicit integrator, can be found to be beneficial.

2.4.1 Newmark discretization
Before going into detail in terms of the HHT method the underlying integration
formulas are discussed in advance. These are the Newmark formulas [51]

qn+1 = qn + hq̇n + h2

2 [(1− 2β)q̈n + 2βq̈n+1]

q̇n+1 = q̇n + h [(1− γ)q̈n + γq̈n+1]
(2.49)

depending on two parameters β and γ and utilizing the integration step size
h = tn+1 − tn. Inserting these formulas in Eq. (2.48) the acceleration q̈n+1 remains

22



2.4. Numerics

the only unknown quantity. However, the resulting equations are implicit. When
selecting β = 1/2 and γ = 1/4, this ends up with the trapezoidal rule, which is
known to be A-stable. Expressed in simple words this means the integration formula
provides correct results for the test equation y′(x) = ky for k ∈ C with the initial
condition y(0) = 1. The major drawback of the trapezoidal rule is that it does not
induce any numerical damping and therefore is impractical when thinking about
undamped high-frequency oscillations potentially arising in multibody systems.
This is why the HHT-method was suggested for finding parameters β and γ and
the suitable discrete equations of motion leading to both, A-stability and numerical
damping.

2.4.2 Hilber-Hughes-Taylor method
Following the idea presented in [32] instead of modifying the Newmark formulas
themselves the equations of motion are manipulated and thus reading

1
1 + α

(Mq̈)n+1 −
(
f −CT

qλ
)
n+1

+ α

1 + α

(
f −CT

qλ
)
n

= 0

where the forces of the previous time step, scaled with the factor α, are applied
again. The method is stable for α ∈ [−1/3, 0] and if the parameters of the Newmark
integration formulas are

γ = 1− 2α
2 β = (1− α)2

4 .

As proposed by Hilber, Hughes and Taylor in every discrete time step an error

e1 = 1
1 + α

(Mq̈)n+1 −
(
f −CT

qλ
)
n+1

+ α

1 + α

(
f −CT

qλ
)
n

e2 = 1
βh2 Cn+1

is computed. In order to trim these errors to equate to zero, an iterative update
process for the accelerations and the Lagrange multipliers can be introduced. The
equation system for the updates ∆q̈ and ∆λ reads(

M̂ CT
q

Cq 0

)(
∆q̈
∆λ

)
=
(
−e1
−e2

)
(2.50)

where the Jacobian M̂ is computed by building the total derivative of e1 with
respect to the acceleration q̈n+1:

de1

dq̈n+1
= ∂e1

∂q̈n+1
+ ∂e1

∂q̇n+1

∂q̇n+1

∂q̈n+1
+ ∂e1

∂qn+1

∂qn+1

∂q̈n+1
.
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Inserting the partial derivatives of the Newmark integration formulas Eq. (2.49)

∂qn+1

∂q̈n+1
= βh2 and ∂q̇n+1

∂q̈n+1
= γh

the Jacobian M̂ results in

M̂ = ∂e1

∂q̈n+1
=
(

1
1 + α

M− γh ∂f
∂q̇

+ βh2
[

1
1 + α

(Mq̈)q −
∂f
∂q

+
(
CT

qλ)q
)])

n+1
.

Herein, index q is used to indicate a partial derivative with respect to the generalized
coordinates. By setting q̈n+1 → q̈n+1 + ∆q̈ and λn+1 → λn+1 + ∆λ improved
accelerations and Lagrange multipliers are obtained. Repeating this process should
reduce the residua e1, e2 to approximately zero after several iterations. As initial
guess for q̈n+1 and λn+1 the values from the previous time step q̈n, λn can be used.
The HHT-method is known to be applicable to a wide range of multibody systems.
Using α = 0 the method again coincides with the trapezoidal rule. For the use in
general purpose multibody simulation software Negrut [50] proposed extensions,
such as additional differential equations, user-defined variables, error estimation
and integration step-size control.
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CHAPTER 3
Adjoint Sensitivity Analysis of

Multibody Systems

In the preceding chapter the analysis of multibody systems has been discussed.
Based on a set of parameters ξ the evolution of multibody system states can be
given as time series. Basically these parameters can be included in the mass matrix
M = M(q, ξ), the forces f = f(q, q̇, ξ, t) and in the constraints C = C(q, ξ).
During the design process of systems subject to dynamics the influence of such
parameters on the performance of the system is crucial. Therefore not the actual
response of the system is of particular interest, but the sensitivity of the system
with respect to the set of parameters. Here is where sensitivity analysis comes into
play.

3.1 System Sensitivity Analysis
The starting point of sensitivity analysis is to introduce new states which represent
the sensitivity of every system state at time t. For this reason the differential
equations describing the system to analyze are differentiated with respect to each
parameter of interest. The resulting set of additional differential equation systems
is not coupled and can be solved separately, provided a solution for the system
states is present.
For the sake of simplicity, before operating on the second-order DAE from Eq. (2.47),
a system using minimal coordinates is treated. Furthermore an order reduction
is performed which allows to investigate the ordinary differential equation system
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3.1. System Sensitivity Analysis

(ODE)

ẋ = f(x, ξ, t) x(0) = x0

y = y(x)
(3.1)

where x(t) ∈ Rn denotes the vector of state variables, y ∈ Rm the vector of system
outputs, ξ ∈ Rl the system parameters, and the vector x0 gives the vector of initial
conditions. Differentiating this equation system with respect to the parameters
ξ = (ξ1, ξ2, . . . , ξl)T results in(

∂ẋ
∂ξ1

, . . . ,
∂ẋ
∂ξl

)
=
(
∂f
∂x

∂x
∂ξ1

+ ∂f
∂ξ1

, . . . ,
∂f
∂x

∂x
∂ξl

+ ∂f
∂ξl

)
(
∂y
∂ξ1

, . . . ,
∂y
∂ξl

)
=
(
∂y
∂x

∂x
∂ξ1

, . . . ,
∂x
∂ξl

)
= S

(3.2)

where S denotes the m × l sensitivity matrix. Introducing the sensitivity states
xξi

:= ∂x/∂ξi and assembling them in the matrix xξ := (xξ1 ,xξ2 , . . . ,xξl
) Eq. (3.2)

reads
ẋξ = fxxξ + fξ
yξ = yxxξ = S

(3.3)

where the Jacobians fx := ∂f/∂x, fξ := ∂f/∂ξ, and yx := ∂y/∂x are used. Restrict-
ing oneself to initial conditions x0 that do not depend on parameters, the initial
conditions of the sensitivity differential equations read

xξ(0) = 0.

Equation (3.3) is a linear time-variant matrix differential equation and may be
solved with common numerical integration methods. The time-variant Jacobians fx,
fξ, and yx must be evaluated for a solution of Eq. (3.1). In regards to computation
effort, this means that a differential equation system of the same size as the
equations of motion has to be solved for each parameter ξi of the system.

3.1.1 Illustrative example: Single degree of freedom
oscillator

In order to demonstrate the sensitivity analysis, equations (3.2) are applied to a
mechanical problem, namely the single degree of freedom oscillator (see Fig. 3.1).
After order reduction the equations of motion thereof read(

ẋ
v̇

)
= ẋ =

(
v

−cx− 2dv + sin(t)

)
y =

(
1 0

)
x = x,

(3.4)
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x

F

mc

d

Figure 3.1: Representation of a single degree of freedom oscillator with mass m,
linear stiffness c and linear damping d

where the mass is already set to m = 1. In the following the sensitivity of the
position x(t) with respect to the two parameters c and d, representing the stiffness
and the damping coefficient, will be analyzed. The system is excited with a
harmonic force having the amplitude F = 1 and the frequency Ω = 1. Assuming a
weakly damped system with d2 < c and using the abbreviation ω =

√
c− d2, the

analytical solution for x(t) is given by

x(t) = 1
ω ((c− 1)2 + 4d2)

e−dt
[ (
−c+ 2d2 + 1

)
sin(ωt)

+ 2dω cos(ωt)
]
− ω((1− c) sin(t) + 2d cos(t))

,
(3.5)

where the initial conditions x(0) = 0 and v(0) = 0 were used. Using the abbrevia-
tions xc and xd instead of the partial derivatives ∂x/∂c and ∂x/∂d respectively,
the system sensitivities may be computed by differentiation of the analytic solution
for x(t). Hence, the sensitivity with respect to the parameter c is given by

xc(t) = 1
2((c− 1)2 + 4d2)2ω3

(
e−dtah(t) + ap(t)

)
ah(t) = 2ω2

(
−(c− 1)2 − 4d2

)
sin(ωt)

− 4(1− c)ω2
[ (
c− 2d2 − 1

)
sin(ωt)− 2dω cos(ωt)

]
−
(
(c− 1)2 + 4d2

) [
tω
(
c− 2d2 − 1

)
cos(ωt)

+ sin(ωt)
(
−c+ 2d

(
d+ tω2

)
+ 1

) ]
ap(t) = 2ω3

(
4(c− 1)d cos(t)−

(
c2 − 2c− 4d2 + 1

)
sin(t)

)
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and the sensitivity with respect to the parameter d reads

xd(t) = 1
((c− 1)2 + 4d2)2ω]3

(
e−dtbh(t) + bp(t)

)
bh(t) = sin(ωt)

[
(c− 1)ω2

(
4(c+ 1)d+ (c− 1)2t+ 4d2t

)
+ d

(
−c+ 2d2 + 1

) (
(c− 1)2 + 4d2

) ]
− ω cos(ωt)

{
2ω2

[
−c2 + td

(
(c− 1)2 + 4d2

)
+ 2c+ 4d2 − 1

]
+ td

(
−c+ 2d2 + 1

) (
(c− 1)2 + 4d2

)}
bp(t) = 2ω3

(
−
(
(c− 1)2 − 4d2

)
cos(t)− 4(c− 1)d sin(t)

)
.

Here, both solutions are split up into the decaying terms ah(t) and bh(t) resulting
from the homogeneous equation and the terms oscillating with the excitation
frequency ap(t) and bp(t) resulting from the particular solution.
For the actual choice of parameters c = 1 and d = 1/2 inserting in the analytical
solution gives

x(t) = e−t/2
(

1√
3

sin
(√

3t
2

)
+ cos

(√
3t
2

))
− cos(t)

xc(t) = sin(t) + 1
9e
−t/2

(
3t cos

(√
3t
2

)
−
√

3(3t+ 8) sin
(√

3t
2

))

xd(t) = 2 cos(t) + 2
9e
−t/2

(√
3 sin

(√
3t
2

)
− 3(2t+ 3) cos

(√
3t
2

))
.

(3.6)

Figure 3.2 shows the evaluation of Eq. (3.6) in the time range of t ∈ [0, 6π]s.
Note, that after the homogeneous solution has decayed, the sensitivity for the
damping parameter d oscillates with a pure cosine with double the amplitude of
the sensitivity with respect to the stiffness parameter c oscillating with a pure
sine. In other words, this means that there are points with zero sensitivity for
one parameter, while the sensitivity with respect to the other parameter becomes
maximal or minimal respectively. Drawing conclusions for improving the design of
systems and machines is hardly possible and therefore a more handy description of
a system’s performance has to be found.
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3.1. System Sensitivity Analysis

Figure 3.2: Result of sensitivity analysis for single degree of freedom oscillator

3.1.2 Application to multibody system dynamics
Recalling the equations of motion for general multibody systems given in Eq. (2.47)
and expanding the set of equations by the system outputs y yields

M(q)q̈ = f(q, q̇, t)−CT
qλ

C(q) = 0
y = y(q, q̇).

After performing an order reduction through introducing v := q̇, this equations
read

q̇ = v
M(q)v̇ = f(q,v, t)−CT

qλ

C(q) = 0
y = y(q,v).

(3.7)
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3.2. Performance Measures

Similar to the procedure done in Eq. (3.2), the direct differentiation method is
applied to the equations of Eq. (3.7). The sensitivity differential algebraic equations
therefore read

q̇ξ = vξ
Mv̇ξ + (Mv̇)q qξ + (Mv̇)ξ = fqqξ + fvvξ + fξ

−CT
qλξ −

(
CT

qλ
)

q
qξ −

(
CT

qλ
)
ξ

Cqqξ + Cξ = 0.

(3.8)

which again can be evaluated for a given time range via numerical integration
methods.
In order to initialize a numerical integration method, the initial conditions for
Eq. (3.8) have to be found. The initial states of the multibody system q(0) = q0
and v(0) = v0 are prescribed and therefore the initial conditions for qξ and vξ are
readily given by qξ(0) = 0 and vξ(0) = 0.

3.2 Performance Measures
In order to quantify the results of dynamical and sensitivity analysis, performance
measures are introduced. Basically three different types of performance measures
or cost functions can be distinguished. In the most general case the costs are
computed by

J(ξ) = φ(t0,y(t0), T,y(T )) +
∫ T

0
h(t,y)dt, (3.9)

which is usually denoted as the Bolza form. If only contributions at t0 and T are
present in J , the cost function is in Mayer form and reads

J(ξ) = φ(t0,y(t0), T,y(T )).

In the opposite case, if J only includes the integral component of Eq. (3.9), the
cost function is in Lagrange form and therefore reads

J(ξ) =
∫ T

0
h(t,y)dt. (3.10)

For example one design goal could require one, or several system outputs to follow a
desired trajectory. In this case a root mean square (RMS) error, using the squared
differences of current and desired system outputs, could be utilized in h(t,y, ξ).
The performance of this system may then be described by

J(ξ) = 1
2

∫ T

0
(y− ȳ)T (y− ȳ) dt, (3.11)
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with ȳ being the vector of desired system outputs.
In order to provide information about the sensitivity upon parameter changes, the
expression of J can be used for the computation. Forming the derivative

∂J(ξ)
∂ξ

= (∇J)T =
∫ T

0
(y− ȳ)T S dt (3.12)

leads to the cost function’s gradient ∇J , using the sensitivity matrix S.
Similar to the RMS error in time domain given by Eq. (3.11), an RMS type cost
function may be defined in the frequency domain using Fourier coefficients. For the
sake of simplicity a system featuring a single output is assumed in the following.
This output depends on the system states in the form y(t) := g(x). By applying
classical Fourier analysis, y(t) can be approximated by

y(t) ≈ 1
2A0 +

N∑
k=1

(
Ak cos(ωkt) +Bk sin(ωkt)

)

in which ωk represents the angular frequency of the kth harmonics, each of which
is assigned to the appropriate value of its amplitude

√
A2
k +B2

k. The corresponding
Fourier coefficients Ak and Bk are defined by

Ak = 2
T

∫ T

0
y(t) cos(ωkt)dt

Bk = 2
T

∫ T

0
y(t) sin(ωkt)dt.

Relating the simulation result with measured amplitudes
√
Ā2
k + B̄2

k, k = 1, . . . , N
similar to Eq. (3.11), they may be arranged in a performance measure of the form

J = 1
4

N∑
k=1

[
A2
k +B2

k −
(
Ā2
k + B̄2

k

)]2
.

Again, this may be interpreted as a cost function in generalized Lagrange form.
However, in some applications it seems promising to take advantage of a cost
function in Mayer form (see Section 4.2).

3.2.1 Illustrative example: Single degree of freedom
oscillator

Again the single degree of freedom oscillator, introduced in Section 3.1.1, is used
for displaying the significance of performance measures. Using the system output
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y = x and the desired trajectory ȳ = x̄, the performance measure given as RMS
error may read

J =
∫ T

0

1
2 (x− x̄)2 dt.

Forming the derivatives
∂J

∂c
=
∫ T

0
(x− x̄) ∂x

∂c
dt

and
∂J

∂d
=
∫ T

0
(x− x̄) ∂x

∂d
dt

provides the components of the cost function’s gradient ∇J :

∇J =
∫ T

0

(
xc
xd

)
(x− x̄) dt =

∫ T

0
ST (x− x̄) dt. (3.13)

Choosing x̄ = 0, the current design is compared with a design without any motion.
Therefore the gradient in Eq. (3.13) gives the sensitivity of the system with respect
to changes in the parameters c and d towards less motion. Inserting x(t) and the
sensitivities xc(t), xd(t) from Eq. (3.6) and therefore again using the parameters
c = 1, d = 1/2 and the end time T = 6π results in

J = 1
6

{
9π − 3− e−6π

(
2 + cos

(
6
√

3π
))

+ 2e−3π
(√

3 sin
(
3
√

3π
)

+ 3 cos
(
3
√

3π
))}

≈ 4.2123

and the gradient ∇J = (Jc, Jd)T with

Jc = 1
36e

−6π
{

16− 27e6π + 3
√

3(3 + 8π) sin
(
6
√

3π
)

+ 11 cos
(
6
√

3π
)

+ 8e3π
(
9π cos

(
3
√

3π
)
−
√

3(4 + 9π) sin
(
3
√

3π
))}

≈ −0.7498

Jd = 1
9e
−6π

{
14 + e6π(36− 54π) + 36π − 3

√
3(1 + 2π) sin

(
6
√

3π
)

+ 2(2 + 9π) cos
(
6
√

3π
)

+ 2e3π
(
−5
√

3 sin
(
3
√

3π
)
− 9(3 + 4π) cos

(
3
√

3π
))}

≈ −14.8474

(3.14)

The interpretation of this result is more promising than the interpretation of the
system sensitivities. Increasing the damping coefficient d about ∆d results in a
increase of J about ∆J = Jd∆d. Of course ∇J represents a linearization of J
at the current parametrization ξ = (c, d)T only and therefore ∆J is just valid for
small changes ∆ξ.
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3.3 Adjoint Sensitivity Analysis
In the preceding section the applicability of performance measures is shown. As
the computation of ∇J incorporates the sensitivity matrix S and therefore the
solution of the sensitivity differential equations Eq. (3.2). This requires expensive
computations of the additional sensitivity differential equations. More precisely l
differential equation systems, where l is the number of system parameters, have
to be solved in addition to the original one. Now, in order to circumvent these
computations the adjoint sensitivity analysis can be adopted. Here one cannot
access the sensitivities itself. However, the sensitivity of the performance measure
∇J can still be computed.

3.3.1 Basic considerations on the adjoint approach
In brief, the key idea of the adjoint sensitivity analysis (see [54, 13, 14, 19] for
example) may be summarized as follows. Again, the ordinary differential equation
(ODE) system

ẋ = f(x, ξ, t) x(0) = x0

y = y(x)
(3.15)

is studied and a performance measure or cost function of the form

J(ξ) = φ(y(T )) +
∫ T

0
h(y, t)dt (3.16)

is investigated, where h(y, t) can be any function depending on the system outputs
y and on the time explicitly. The term φ introduced in Section 3.2 depends on
the outputs y(T ) only, as the initial system output is given by prescribed initial
conditions x0. As presented previously, the goal is to compute the partial derivative
of J with respect to the parameters ξ. The adjoint sensitivity analysis is a powerful
alternative to compute the gradient of J(ξ). First, J(ξ) does not change if Eq. (3.15)
is added to the integrand

J(ξ) = φ(y(T )) +
∫ T

0

[
h+ pT(f − ẋ)

]
dt. (3.17)

no matter how the multipliers p(t) are chosen. This is because the equations of
motion Eq. (3.15) must hold and evaluate to zero.
Let us now consider the solution for y(t) according to the system equations from
Eq. (3.15) for a set of parameters ξ. The derivation of J from Eq. (3.17) with
respect to the set of parameters ξ leads to

∂J

∂ξ
= (∇J)T =

∫ T

0

[
hyyxxξ + pT (fxxξ + fξ)− pTẋξ

]
dt+ φyyxxξ

∣∣∣∣
t=T

(3.18)
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where subscript x represents the derivatives with respect to the states ∂/∂x and
subscript ξ denotes the derivatives with respect to the set of parameters ∂/∂ξ.
Applying integration by parts in the last term of Eq. (3.18) yields

(∇J)T =
∫ T

0

[
hyyxxξ + pT (fxxξ + fξ) + ṗTxξ

]
dt

− pTxξ
∣∣∣∣t=T
t=0

+ φyyxxξ
∣∣∣∣
t=T

=
∫ T

0

[(
hyyx + pTfx + ṗT

)
xξ + pTfξ

]
dt+

(
φyyx − pT

)
xξ
∣∣∣∣
t=T

(3.19)

since xξ(0) = 0 as the initial state is assumed to be prescribed and does not depend
on parameters ξ. Key idea of the adjoint sensitivity analysis is to circumvent the
computation of the sensitivities xξ by choosing the adjoint variables p(t) such that

ṗ = −yT
xh

T
y − fT

x p and p(T ) = yT
xφ

T
y (3.20)

holds. This set of ordinary differential equations is called the adjoint system of
Eq. (3.15). It may be solved backwards in time starting at time t = T , once the
original equations have been solved forward for t ∈ [0, T ]. Using the solutions x(t)
and p(t) from Eqs. (3.15) and (3.20), the gradient of J according to Eq. (3.19) is
already given by

∇J =
∫ T

0
fT
ξ p dt. (3.21)

Note, that only two systems of ODEs must be solved for evaluating the gradient
∇J by Eq. (3.21). Compared to the computation of ∇J by using the system
sensitivities and therefore solving Eq. (3.2), this leads to increased efficiency. Unlike
as in the case of computing sensitivities, the number of equations to be solved does
not depend on the number of parameters.

3.3.2 An interpretation of the adjoint variables
Let x(τ) =: xτ be the state at t = τ ∈ [0, T ]. The part of the cost function, which
can be still influenced after t = τ is given by

Jτ =
∫ T

τ
h(x, t)dt

where y = x is used for simplification. If xτ is now disturbed by δx(τ) = δxτ , then
the influence of δxτ onto Jτ may be studied.
Considering a small variation of the equations of motion ẋ = f(x, t) leads to

δẋ = ∂f
∂x

δx = Aδx. (3.22)
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As derived in Eq. (3.20) the adjoint equations are given by

ṗ = −ATp− hT
x and p(T ) = 0 (3.23)

where φ(x) is assumed to be zero and A gives the Jacobian ∂f/∂x. Adding the
product of Eq. (3.22) with pT to the product of Eq. (3.23) with δxT results in the
expression

pTδẋ + δxTṗ = pTAδx− δxTATp− δxThT
x .

By applying the product rule and using the equality

pTAδx =
(
δxTATp

)T
= δxTATp

this results in
d
dt
(
pTδx

)
= −δxThT

x = −hxδx.

Using this relation and inserting in the variation δJτ

δJτ =
∫ T

τ
hxδxdt

gives
δJτ = −

∫ T

τ

d
dt
(
pTδx

)
dt = pT(τ)δxτ − pT(T )δx(T ).

Finally, after inserting the boundary condition p(T ) = 0 the adjoint variables at
t = τ may be interpreted as the sensitivity of the cost function with respect to the
system states at t = τ :

∂Jτ
∂xτ

= pT(τ).

3.3.3 Illustrative example: Single degree of freedom
oscillator

Based on the system equations

ẋ = v

v̇ = −cx− 2dv + sin(t)
y = x

describing the single degree of freedom oscillator presented in Section 3.1.1 and the
performance measure introduced in Section 3.2.1

J =
∫ T

0

1
2 (x− x̄)2 dt (3.24)
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the according adjoint system is derived. Further on, the gradient of the performance
measure is computed as explained in the preceding section.
First, according to Eq. (3.20) the adjoint system can be written the following:

ṗ1 = −(x(t)− x̄) + c p2

ṗ2 = −p1 + 2dp2.
(3.25)

Due to φ = 0 in Eq. (3.24) the boundary terms describing the final state of the
adjoint variables evaluate to zero, p1(6π) = p2(6π) = 0. Inserting x(t) from the
solution of Eq. (3.6) and the according parameter values c = 1, d = 1/2, the
expressions for the adjoint variables read

p1(t) = 1
3e
− t

2−6π

(3e6π − 2et
)

cos
(√

3t
2

)
+ et

[
e3π
(√

3 sin
(1

2
√

3(6π − t)
)

+ 3 cos
(1

2
√

3(6π − t)
))
− cos

(1
2
√

3(12π − t)
) ]+ sin(t)− cos(t),

p2(t) = 1
6e
− t

2−6π

−√3
(
e6π − 2et

)
sin

(√
3t
2

)
+
(
3e6π − 2et

)
cos

(√
3t
2

)

− et
[√

3
(

sin
(1

2
√

3(12π − t)
)
− 4e3π sin

(1
2
√

3(6π − t)
))

+ cos
(1

2
√

3(12π − t)
) ]+ sin(t).

(3.26)

The plot in Fig. 3.3 shows both adjoint variables in the range t = [0, 6π] s.
In order to obtain the gradient of J , Eq. (3.21) has to be evaluated. In case of the
single mass oscillator this reads

∇J =
∫ 6π

0
(−p2(t)x(t),−p2(t)2v(t))T dt.

By inserting x(t), v(t) = ẋ(t) from Eq. (3.6) and p1(t), p2(t) from Eq. (3.26) this
results in the expressions for ∇J = (Jc, Jd)T given in Eq. (3.14) as they may be
found by using the system sensitivities from Eq. (3.6).
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3.3. Adjoint Sensitivity Analysis

Figure 3.3: Solution of the adjoint system for single degree of freedom oscillator

3.3.4 Application to multibody system dynamics
Due to the complexity of a multibody system, many authors focused on two-
dimensional examples or rather general aspects (e.g. [18], [62], [63]). However,
based on highly redundant formulations the adjoint equations Eq. (3.20) for a
multibody system are relatively simple. In this section, the derivation of necessary
equation is shown for general multibody systems. First, the adjoint equations for a
multibody system are derived. Below, the structure of the boundary conditions is
discussed. Secondly, a time discretization method for solving the adjoint equations
numerically is presented. This is done due to the fact that the equations can
hardly be solved analytically and in the case of using Euler parameters for the
parametrization of rotations, singular mass matrices may arise.

3.3.4.1 Adjoint equations

A mechanical system consisting of rigid bodies, forces, and constraints acting
between these bodies can be described by equations of motion in the following form
already given in Eq. (2.47):

M(q)q̈ = f(q, q̇, t)−CT
qλ

C(q) = 0
y = y(q, q̇).

(3.27)

Here, q denotes a vector of redundant generalized coordinates. They are subject to
the holonomic constraints C(q) = 0, which enter the equations of motion via the
Jacobian Cq and the vector of Lagrange multipliers λ representing the constraint
forces in the system. Moreover, the system may incorporate a vector of parameters
ξ. For simplicity, we suppose that ξ appears only in the vector f . However, the
subsequent derivations may be extended to the case, where ξ appears in the mass
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3.3. Adjoint Sensitivity Analysis

matrix and the constraint equations, too.
Using the additional variables v = q̇, the equations of motion can be reformulated
as a first order system of equations reading

q̇ = v
M(q)v̇ = f(q,v, ξ, t)−CT

qλ

C(q) = 0
y = y(q,v).

(3.28)

The state vector x introduced in the previous section now consists of q and v. We
want to derive a gradient formula like Eq. (3.21) for the multibody system. Without
changing the function we may therefore augment J by the system equations in the
following way:

J = φ(y(T )) +
∫ T

0

[
h(y, t) + pT(q̇ − v) + wT(Mv̇− f + CT

qλ) + µTC
]

dt.

At this point, the variables p(t), w(t) and µ(t) may be chosen arbitrarily. The
derivative of the cost function J with respect to the set of parameters ξ is given by
∂J

∂ξ
=
∫ T

0

{
hyyqqξ + hyyvvξ + pT(q̇ξ − vξ)

+ wT
[
(Mv̇)q qξ + Mv̇ξ − fqqξ − fvvξ − fξ +

(
CT

qλ
)

q
qξ + CT

qλξ

]
+ µTCqδq

}
dt+ φy (yqqξ + yvvξ)

∣∣∣∣
t=T

.

(3.29)

Integration by parts of the terms including q̇ξ and v̇ξ is computed by∫ T

0
pT q̇ξ dt = −

∫ T

0
ṗTqξ dt+ pTqξ

∣∣∣∣
t=T∫ T

0
wTMv̇ξ dt = −

∫ T

0

d
dt
(
wTM

)
vξ dt+ wTMvξ

∣∣∣∣
t=T

(3.30)

with qξ(0) = vξ(0) = 0 since initial conditions for the state variables are prescribed
as q(0) = q0 and v(0) = v0. Using Eq. (3.30) and collecting the terms multiplied
with qξ, vξ and λξ, the derivative of the cost function J given by Eq. (3.29) can be
rewritten as
∂J

∂ξ
=
∫ T

0

{[
hyyq − ṗT + wT

(
(Mv̇)q − fq +

(
CT

qλ
)

q

)
+ µTCq

]
qξ

+
[
hyyv − pT −wTfv −

d
dt
(
wTM

)]
vξ +

[
wTCT

q

]
λξ −wTfξ

}
dt

+
(
pT + φyyq

)
qξ
∣∣∣∣
t=T

+
(
wTM + φyyv

)
vξ
∣∣∣∣
t=T

(3.31)
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3.3. Adjoint Sensitivity Analysis

To eliminate the terms involving qξ and vξ, the adjoint variables p, w, and µ may
now be defined by equating the respective expressions in square brackets to zero.
After transposing these expressions one obtains the following system of adjoint
equations:

dp
dt = yT

qh
T
y + Aw + CT

qµ (3.32)
d
dt (Mw) = yT

vh
T
y − p−Bw (3.33)

0 = Cqw (3.34)
p(T ) = −yT

qφ
T
y (3.35)

M(T )w(T ) = −yT
vφ

T
y (3.36)

where the abbreviations

A = (Mv̇)T
q − fT

q + (CT
qλ)T

q (3.37)
B = fT

v (3.38)

and the symmetry of the mass matrix M = MT have been used. If Eqs. (3.32)–(3.36)
are satisfied Eq. (3.31) reduces to

∇J =
(
∂J

∂ξ

)T

= −
∫ T

0
fT
ξ w dt. (3.39)

3.3.4.2 Consistent boundary conditions for the adjoint system

In general, the boundary condition Eq. (3.36) for the adjoint variable w is incom-
patible with the constraint equation Eq. (3.34) at t = T . Only when yT

vφ
T
y = 0,

i. e. when the Mayer term does not depend on v, all equations are satisfied by
setting p(T ) = −yT

qφ
T
y and w(T ) = 0. However, troubles occur if yT

vφ
T
y 6= 0. To

circumvent this problem an approach similar to the idea of Gear-Gupta-Leimkuhler
[23] is applied. Using the constraint equations C(q) = 0 of the original system
Eq. (3.27) at velocity level

Cqq̇ = Cq(q)v = 0

and forming the derivative with respect to the parameters ξ reads

Cqvξ + (Cqv)q qξ = 0.

Considering this relation at time t = T and multiplying it with an arbitrary vector
of numbers ξ results in

ξT
(
Cqvξ + (Cqv)q qξ

)∣∣∣
T

= 0.
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3.3. Adjoint Sensitivity Analysis

Since the expression on the left side is always zero it may be added to Eq. (3.31)
without modifying the actual value of the cost function. Hereby, two additional
boundary terms are generated in Eq. (3.31) transforming Eqs. (3.35) and (3.36)
into

yT
qφ

T
y + p + (Cqv)T

q ξ = 0 ...at t = T (3.40)
yT

vφ
T
y + Mw + CT

qξ = 0 ...at t = T (3.41)

By involving the still undetermined variable ξ, the adjoint variables p(T ) and w(T )
can be computed such that the constraint equation (3.34) is satisfied at t = T . For
that purpose, the following system of equations has to be solved for p(T ), w(T )
and ξ: 

I 0 (Cqv)T
q

0 M CT
q

0 Cq 0




p
w
ξ

 =


−yT

qφ
T
y

−yT
vφ

T
y

0

 ...at t = T (3.42)

In practice, one may first solveM CT
q

Cq 0

 w
ξ

 =
−yT

vφ
T
y

0

 ...at t = T (3.43)

yielding ξ and w(T ), and subsequently compute p(T ) from

p = − (Cqv)T
q ξ − yT

qφ
T
y ...at t = T. (3.44)

Once w(T ) and p(T ) has been determined in this way, the differential-algebraic
set of adjoint equations (3.32)–(3.34) may be solved to obtain w, p and µ at every
time instant in the interval [0, T ].

3.3.4.3 Remarks on the computation of Jacobian matrices A and B

For the adjoint equations of a multibody system the matrices M, Cq, A and B
from Eqs. (3.37) and (3.38) are required along a forward simulation of the equations
of motion. Whereas M and Cq also appear in the equations of motion and are
therefore available, the determination of the Jacobian matrices A and B requires
additional computational effort.
Basically, the Jacobians can be computed in three ways: First, the derivatives are
computed exactly by implementing explicit formulas in the MBS software. Second,
the computation of the derivatives may be done numerically by substituting the
derivatives by finite difference quotients. Finally, the derivatives could also be
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determined by the technique of automatic differentiation, see, e. g., [19]. For
complex multibody systems, the first way seems expensive and susceptible to
programming errors. However, if a highly redundant formulation of the equations
of motion is used, this way becomes attractive. Therefore it is advisable to assign
full rotational and translational degrees of freedom to every body of the system
and to describe the kinematic coupling between the bodies by constraint equations.
Moreover, the use of Euler parameters for the rotational motions simplifies the
system matrices such that programming explicit formulas for A and B becomes the
most efficient strategy. It should also be noted, that the Jacobian matrices (Mv̇)q,
fq, fv and (CT

qλ)q may be required already for the simulation of the multibody
system, if an implicit integration scheme such as, e. g., the HHT-algorithm [32, 50]
is applied, see Section 2.4.2. Hence, an efficient computation of these matrices is
crucial also for solving the equations of motion in forward direction.

3.3.4.4 A backward differentiation scheme for the adjoint system

Since Eqs. (3.32)–(3.34) must be solved backward in the physical time t ∈ [0, T ] it
is advantageous to introduce a new time coordinate τ running also from τ = 0 to
τ = T , before a time discretization scheme is developed. The transformation

τ = T − t, τ ∈ [0, T ], d
dt = d

dτ
dτ
dt = − d

dτ
converts the adjoint Eqs. (3.32–3.34) into

dp
dτ = −yT

q(τ) hT
y(τ)−A(τ)w−CT

q(τ)µ
d
dτ (M(τ)w) = −yT

v(τ) hT
y(τ) + p + B(τ)w

0 = Cq(τ)w

(3.45)

where M(τ), A(τ), B(τ), Cq(τ), yq(τ), yv(τ), and hy(τ) have to be computed for
q(τ) = q(T − t), v(τ) = v(T − t) and λ(τ) = λ(T − t) resulting from a forward
simulation of the equations of motion Eq. (3.28).
For the numerical solution of Eq. (3.45) at the time instances τn = nγ, n = 1 . . . Nt,
γ = T/Nt, a backward differentiation scheme approximating the derivative of a
function F (τ) at a time instance τn by using the function values at τn, τn−1, . . . , τn−k
is proposed. The backward differentiation formula (BDF) reads

dF
dτ

∣∣∣∣∣
τn

≈ 1
γ

k∑
i=0

αiF (τn−i). (3.46)

The coefficients αi result from differentiating an interpolation polynomial through
F (τn), . . . , F (τn−k) and are chosen as the standard coefficients presented, e.g., in
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[64, p.349]. Considering Eqs. (3.45) at τ = τn and inserting the BDF-approximation
for dp/dτ and d(Mw)/dτ , the following set of algebraic equations for p(τn), w(τn)
and µ(τn) is obtained:

1
γ

(
α0p(τn) +

k∑
i=1

αip(τn−i)
)

=

− yT
qh

T
y(τn)−A(τn)w(τn)−CT

q(τn)µ(τn)
(3.47)

1
γ

(
α0M(τn)w(τn) +

k∑
i=1

αiM(τn−i)w(τn−i)
)

=

− yT
vh

T
y(τn) + p(τn) + B(τn)w(τn)

(3.48)

Cq(τn)w(τn) = 0 (3.49)
where p(τn−i), w(τn−i), and µ(τn−i) is supposed to be known for i > 0 from
previous integration steps. Notice that it is not necessary to differentiate the term
d(Mw)/dτ by using the product rule, which would require the additional term
dM/dτ to be computed from the forward simulation.
Since the adjoint system in Eq. (3.45) is linear in p, w, and µ the discretized system
given by Eqs. (3.47)–(3.49) is also linear in p(τn), w(τn), and µ(τn). Moreover,
p(τn) may be eliminated by solving Eq. (3.47) for

p(τn) =− γ

α0

(
yT

qh
T
y(τn) + A(τn)w(τn) + CT

q(τn)µ(τn)
)

− 1
α0

k∑
i=1

αip(τn−i).
(3.50)

Inserting into Eq. (3.48) yields

1
γ

(
α0M(τn)w(τn) +

k∑
i=1

αiM(τn−i)w(τn−i)
)

=

− yT
vh

T
y(τn)− γ

α0

(
yT

qh
T
y(τn) + A(τn)w(τn) + CT

q(τn)µ(τn)
)

− 1
α0

k∑
i=1

αip(τn−i) + B(τn)w(τn)

or after rearranging and multiplying with α0γ(
α2

0M(τn) + γ2A(τn)− α0γB(τn)
)

w(τn) + γ2CT
q(τn)µ(τn) =

− α0γyT
vh

T
y(τn)− γ2yT

yh
T
y(τn)

−
k∑
i=1

αi (γp(τn−i) + α0M(τn−i)w(τn−i)) .

(3.51)
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Using the abbreviations
W(τn) = α2

0M(τn) + γ2A(τn)− α0γB(τn)

r(τn) = −α0γyT
vh

T
y(τn)− γ2yT

qh
T
y(τn)−

k∑
i=1

αi (γp(τn−i) + α0M(τn−i)w(τn−i))

Eqs. (3.51) and (3.49) may be summarized in the following matrix equation for
w(τn) and µ(τn): W(τn) γ2CT

q(τn)
Cq(τn) 0

 w(τn)
µ(τn)

 =
r(τn)

0

 (3.52)

After solving this equation, the second adjoint variable p(τn) may be computed
from Eq. (3.50). The integration process can be started by choosing the integration
order k = 1. The according initial conditions may be computed by invoking the
equation system derived in Section 3.3.4.2. p(τ0) = p(T ) and w(τ0) = w(T ).

3.3.4.5 Summary: The adjoint gradient computation

Finally, the steps necessary to compute the gradient of the cost function J using
the adjoint sensitivity analysis are summarized. Again ξ denotes the given vector
of parameters of a multibody system.

1. Solve the equations of motion Eq. (3.28) forward in time t ∈ [0, T ] yielding
q(t), v(t), λ(t). This may be done, e.g. by choosing the Hilbert-Hughes-
Taylor (HHT) integration scheme, as proposed in [32] and its application for
a differential algebraic system given in an index three formulation in [50].

2. Just for information, the objective function J may already be computed by
inserting q(t) and v(t) into Eq. (3.16). Note, that the integration must be
done numerically.

3. Along the forward simulation of the equations of motion compute the mass
matrix M(t), the constraint Jacobian Cq(t) and the Jacobian matrices A(t),
B(t) from Eqs. (3.37) and (3.38). For lack of computer memory it might
be impossible to store these matrices at a sufficiently high number of time
instances. In this case, one must provide formulas to compute these matrices
from q, v and ξ on demand.

4. Solve the adjoint system Eq. (3.45) for p(τ), w(τ) and µ(τ), where τ = T − t.
A numerical solution at time instances τn can be computed from Eqs. (3.52)
and (3.50), where the integration order k must be chosen equal to one in the
first step and may be increased afterwards. The initial conditions for the
adjoint system may be computed according to Eq. (3.42).
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3.3. Adjoint Sensitivity Analysis

5. Compute the adjoint variables as functions of the original time by setting
p(t) = p(τ = T − t) and w(t) = w(τ = T − t). Moreover, determine fξ(t)
along the forward simulation.

6. From Eq. (3.39) the gradient of J may finally be derived.
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CHAPTER 4
Identification of Multibody

System Parameters

Up to this point the theory for analyzing the sensitivities of dynamical systems
with respect to changes of parameters was treated and derived using different
approaches. As given in the title of the thesis the focus lies in utilizing adjoint
methods for the identification of multibody system parameters. Basically the term
parameter identification indicates that there are correct parameters in terms of a
real system, which should be found. As they have to be identified they are not
directly known, although their influence onto a system’s behavior can be monitored.
Comparing system outputs of the real and the virtual system allows to adjust the
parameters of the virtual system such that they match as good as possible. For
solving this sort of problem many approaches exist. In this chapter the focus will lie
on iterative approaches using the result of the adjoint sensitivity analysis derived
in the preceding chapter. Nevertheless other methods are introduced briefly, too.
In the field of control engineering Recursive least squares filter and Extended Kalman
filter are quite common. Here the main goal is to enable online identification, such
that parameters can be identified during the operation of a controlled machine, etc.
A good review of techniques used in control engineering is given in the work of
Rao and Unbehauen [56]. Although these methods feature fast performance, their
practicability for non-linear differential algebraic equations is limited. Due to this,
these methods hardly occur in the field of multibody dynamics.
Before going into detail with methods typically used for parameter identification in
multibody dynamics, the results derived above are summarized. Using a suitable
performance measure J , the output of the multibody system can be validated
with a single scalar value. Recalling the general definitions from Section 3.2 the
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performance measure may read

J =
∫ T

0
h (t,y(x)) dt,

where h is formulated such that it measures the agreement between real and virtual
system outputs, ȳ and y respectively. By doing so, the set of parameters evaluating
J to a minimum is the identification result in terms of the measurements taken into
account. As the gradient ∇J , computed by use of the adjoint sensitivity analysis,
is demanded to be zero in a local minimum, the optimization problem reads

ẋ = f(x, ξ, t) x(0) = x0

ṗ = −yT
xh

T
y − fpxTp p(T ) = 0 (4.1)

∇J =
∫ T

0
fT
ξ p dt = 0

in case of a dynamical system given in minimal coordinate description. Usually this
type of problem is denoted as two-point boundary value problem. There are solution
strategies aiming at directly solving this kind of problem by using single, or multiple
shooting methods. However, the integral condition 0 =

∫ T
0 fT

ξ p dt contained in
Eq. (4.1) does not allow the application of standard solvers. By introducing the set
of parameters ξ as a time-dependent function ξ(t), the equations of motion read

ẋ = f(x, ξ, t) x(0) = x0

ξ̇ = 0.

Following the idea presented in Section 3.3.4, the extended cost functional reads

J =
∫ T

0

{
h(t,y) + pT (ẋ− f) + wTξ̇

}
dt,

where the arbitrary multipliers p(t) and w(t) are introduced. As J represents a
functional depending on the functions ξ(t), the optimality condition can be derived
by using the Gâteaux derivative (see, e.g. [44, p. 407])

δJ(ξ; η) := lim
ε→0

J(ξ + εη)− J(ξ)
ε

= ∂

∂ε
J(ξ + εη)

∣∣∣∣∣
ε=0

,

where η denotes an admissible test-function. As the optimal set of parameters
results in a variation δJ = 0 and therefore in

δJ =
∫ T

0

{
hyyxδx + pT (δẋ− fxδx− fξδξ) + wTδξ̇

}
dt

=
∫ T

0

{[
hyyx − ṗT − pTfx

]
δx +

[
−pTfξ − ẇT

]
δξ
}

dt

+ pTδx
∣∣∣T
0

+ wTδξ
∣∣∣T
0

= 0

46



4.1. Identification of Parameters using Measurements in Time Domain

the two-point boundary value problem reads:

ṗ = −fT
x p + yT

xh
T
y p(T ) = 0

ẇ = −fT
ξ p w(0) = 0

ẋ = f(x, ξ, t) x(0) = x0

ξ̇ = 0 w(T ) = 0.

Solving this kind of problem may be done by using common solver packages
(Matlab bvp4c, Boundsco). In general, the convergence of such solvers strongly
depends on the initial conditions supplied for x(t), p(t), w(t), and ξ(t). Using
homotopy approaches may help to improve the convergence, nevertheless finding
a valid solution remains tricky. Therefore it seems more promising to adopt an
optimization algorithm for finding the minimum of J iteratively by using the
gradient information ∇J .

4.1 Identification of Parameters using
Measurements in Time Domain

Since both simulated and experimental data are present at discrete time points, it
seems obvious to directly account for deviations between them. In order to quantify
the difference, typically the RMS error, already given in Eq. (3.11), is used. In this
case the cost function used for optimization reads

J(ξ) = 1
2

∫ T

0
(y− ȳ)T (y− ȳ) dt, (4.2)

where y is the vector of system outputs generated by simulation and ȳ denotes
the measured ones. Transforming the integral into a sum of NT = T/∆t finite time
steps yields

J(ξ) ≈ 1
2∆t

NT∑
i=1

[
(yi − ȳi)T (yi − ȳi)

]
,

with yi := y(ti) and ȳi := ȳ(ti) being the evaluations of y and ȳ at a time point ti.
The discrete time step size ∆t is constant, as measurement systems typically use
fixed sampling rates.
Similarly a transformation of the gradient in Eq. (3.39), derived in Section 3.3.4 by
the use of the adjoint sensitivity analysis, may be performed. The sum representing
an approximation of the cost function’s gradient reads

∇J ≈ ∆t
NT∑
i=1

(
−fT

ξ,iwi

)
,
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4.2. Identification of Parameters using Measured Spectra

where wi denotes the evaluation of the adjoint variables at t = ti and fξ,i being the
Jacobian with respect to the parameters evaluated at this time point. Using this
gradient formula within an iterative optimization algorithm and hence locating a
minimum of J results in an identification result ξ∗.

4.2 Identification of Parameters using
Measured Spectra

In many industrial applications, the identification of system parameters by matching
measurements with simulated system outputs in the time domain does not lead
to satisfying results. Especially, this is the case when some low-frequency content
in measured signals cannot be reached by the simulation model. During the
identification process, parameters are modified such that the low-frequency content
reaches a best-fit solution, but other frequencies are not represented well, because of
their negligible impact on to the cost function. Hence, the goal of the identification
is in general to fit a special frequency range. In [7], a system identification for
vehicle dynamic applications has been presented based on impulse–momentum
equations using a transfer function written as a frequency response function in order
to take into account low and high frequency ranges. Spectral element techniques for
parameter identification can also be found in the field of layered media in structural
dynamics [1]. Therein, the characteristic function of the system, combining the
response and impulse force function of the system, is represented in the frequency
domain. The transfer function which characterizes the system in the frequency
domain is then given as a Fourier transformation. The wavelet transform is used in
[39] as a time–frequency representation for the determination of modal parameters
of a vibrating system. Therein, natural frequencies, damping ratios, and mode
shapes are estimated in the time domain from output data only. A wavelet-based
approach for parameter identification is as well presented in [24]. Systems with
cubic nonlinearities and systems undergoing both continuous and stick/slip motion
have been addressed therein.
The latter mentioned works emphasize the importance of the spectral analysis of
the system in order to understand the behavior of the system and consequently
be capable of efficient parameter identification. Considering this situation, a
redefinition of the cost-function, by means of using frequency domain information,
seems meaningful. Within the following section an identification method using
frequency information only is introduced for the use in multibody dynamics. A
combination of the adjoint sensitivity computation and classical Fourier analysis
for the identification of the amplitude response is presented as a novel approach.
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4.2. Identification of Parameters using Measured Spectra

Let us consider the system equations of motion in first order form

ẋ(t) = f(x, ξ, t) x(0) = x0 (4.3)

where ξ may describe the unknown parameters of the system. For the sake of
simplicity we assume the system has only one output which depends on the states
y(t) := g(x). By applying classical Fourier analysis, y(t) can be approximated by

y(t) ≈ 1
2A0 +

N∑
k=1

(
Ak cos(ωkt) +Bk sin(ωkt)

)
in which ωk represents the angular frequency of the kth harmonics, each of which
is assigned to the appropriate value of its amplitude

√
A2
k +B2

k. The corresponding
Fourier coefficients Ak and Bk are defined by

Ak = 2
T

∫ T

0
y(t) cos(ωkt)dt (4.4)

Bk = 2
T

∫ T

0
y(t) sin(ωkt)dt (4.5)

For example, it might be of interest to determine a set of parameters ξ in such a
way that the measured amplitudes

√
Ā2
k + B̄2

k, k = 1, . . . , N are best approximated
by the amplitudes of the system. Therefore, the goal is to find ξ such that an error
function of the form

J = 1
4

N∑
k=1

[
A2
k +B2

k −
(
Ā2
k + B̄2

k

)]2
(4.6)

is minimized. However, the problem may as well be specified in Mayer form (see
Section 3.2). For that purpose, the Fourier coefficients are introduced by the
differential equations

ȧk(t) = 2
T
y(t) cos(ωkt) = 2

T
g(x) cos(ωkt) (4.7)

ḃk(t) = 2
T
y(t) sin(ωkt) = 2

T
g(x) sin(ωkt) (4.8)

with the corresponding initial conditions ak(0) = bk(0) = 0, yielding Ak = ak(T )
and Bk = bk(T ) defined in Eqs. (4.4) and (4.5). Hence, the cost function is
considered as a function of the final values of ak and bk, i.e., J = J(Ak, Bk).

4.2.1 Remark on window functions
Describing a signal y(t) by means of a Fourier series requires the function to be
periodically continuable. Window functions therefore allow to transform non-
periodic into periodic functions. In place of several window functions given in
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the literature [28], the Hanning window and it’s characteristics is presented in the
following.
Let us consider a signal of the form

g(t) = a0

2 +
N∑
k=1

[ak cos(ωkt) + bk sin(ωkt)]

with ωk = kω = k 2π
T

and the period T . Using the Hanning window function given
in [28]

η(t) = 1
2

[
1− cos

( 2π
nT

t
)]
,

the kth Fourier coefficient (k ≥ 1) can be computed by

ãk = 2
nT

∫ nT

0
g(t)η(t) cos(k ω t)dt

where n is the number of periods to be considered. For n = 1 the Fourier coefficient
ãk is

ãk = lim
n→1

2
nT

∫ nT

0
g(t)η(t) cos(k ω t)dt = 1

4 (−ak−1 + 2ak − ak+1) (4.9)

and for n > 1 the Fourier coefficient ãk is

ãk = 2
nT

∫ nT

0
g(t)η(t) cos(k ω t)dt = 1

2ak n > 1. (4.10)

Equations (4.9) and (4.10) show that more than one period T is required when using
the Hanning window function. Otherwise, the amplitude ãi includes information
from other harmonics, which leads to wrong results. Furthermore, the amplitude
ãk has to be corrected by a factor of 2 to be comparable with true amplitudes.

4.2.2 The adjoint gradient computation in terms of
Fourier coefficients

Following the basic idea presented in Chapter 3, the adjoint sensitivity analysis
is applied to the cost function in Eq. (4.6). In a first step, the cost function is
enhanced by the system equations in Eqs. (4.3), (4.7), and (4.8) leading to

J = J(Ak, Bk) +
∫ T

0
pT (f(x, ξ, t)− ẋ) dt

+
N∑
k=1

∫ T

0
αk

( 2
T
g(x) cos(ωkt)− ȧk(t)

)
dt

+
N∑
k=1

∫ T

0
βk

( 2
T
g(x) sin(ωkt)− ḃk(t)

)
dt.

(4.11)
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Herein p represents the vector of adjoint variables corresponding to the state vector.
Moreover, αk and βk with k = 1, . . . , N are the adjoint variables related to the
Fourier coefficients. Note that p(t), αk(t), and βk(t) can be arbitrary time functions
at this point, since J = J , if Eqs. (4.3), (4.7), and (4.8) are satisfied.
Let us now consider a forward solution x(t) of the system equations in Eq. (4.3) for
a set of parameters ξ. Applying direct differentiation with respect to the parameters
ξ onto Eq. (4.11) results in

∂J

∂ξ
=
(
∇J

)T
=

N∑
k=1

∂J

∂Ak
Ak,ξ +

N∑
k=1

∂J

∂Bk

Bk,ξ +
∫ T

0
pT (fxxξ + fξ − ẋξ) dt

+
N∑
k=1

∫ T

0

( 2
T
αkgxxξ cos(ωkt)− αkȧk,ξ

)
dt

+
N∑
k=1

∫ T

0

( 2
T
βkgxxξ sin(ωkt)− βkḃk,ξ

)
dt

(4.12)

where the sensitivities Ak,ξ, Bk,ξ, xξ, ak,ξ, and bk,ξ are introduced. After applying
integration by parts to the terms including ẋξ, ȧk,ξ, and ḃk,ξ, the gradient can be
written in the form
(
∇J

)T
=

N∑
k=1

∂J

∂Ak
Ak,ξ +

N∑
k=1

∂J

∂Bk

Bk,ξ

+
∫ T

0
pT (fxxξ + fξ) dt+

∫ T

0
ṗTxξ dt− pT(T )xξ(T )

+
N∑
k=1

(∫ T

0

2
T
αkgxxξ cos(ωkt) dt+

∫ T

0
α̇kak,ξ dt− αk(T )Ak,ξ

)

+
N∑
k=1

(∫ T

0

2
T
βkgxxξ sin(ωkt) dt+

∫ T

0
β̇kbk,ξ dt− βk(T )Bk,ξ

)
(4.13)

where the initial conditions xξ(0) = 0, ak,ξ(0) = bk,ξ(0) = 0 and end conditions
ak,ξ(T ) = Ak,ξ, bk,ξ(T ) = Bk,ξ are used. The computation of xξ, ak,ξ, and bk,ξ can
be circumvented, if the factors multiplied vanish. First, the terms including ak,ξ and
bk,ξ disappear, if α̇k = β̇k = 0, i.e., if αk = const. = αk(T ) and βk = const. = βk(T ).
Second, the terms including xξ vanish, if the adjoint variables p are defined by

ṗ = −fT
x p− 2

T
gT

x

N∑
k=1

(
αk cos(ωkt) + βk sin(ωkt)

)
. (4.14)

The boundary conditions are chosen such that p(T ) = 0 in order to eliminate the
coefficients of xξ(T ) in Eq. (4.13). Finally, the terms multiplied with Ak,ξ and Bk,ξ
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can be eliminated by defining αk(T ) and βk(T ) from

αk = αk(T ) = ∂J

∂Ak

βk = βk(T ) = ∂J

∂Bk

With x(t) from the forward solution of the system equations in Eq. (4.3) and the
backward solution for p(t) of the adjoint system in Eq. (4.14), the gradient ∇J is
readily given by

∇J =
∫ T

0
fT
ξ p dt. (4.15)

4.2.3 Application to multibody systems
The approach developed above may also be applied onto multibody systems. For
this purpose the system output y(t) = g(q,v), incorporating the system states
q and v of the first order system given in Eq. (3.28), is used. The differential
equations for the Fourier coefficients can be formulated analogously to Eqs. (4.7)
and (4.8) by

ȧk(t) = 2
T
g(q,v) cos(ωkt) with ak(0) = 0 (4.16)

ḃk(t) = 2
T
g(q,v) sin(ωkt) with bk(0) = 0. (4.17)

Again, the goal is to find a set of parameters ξ such that the cost function in Eq. (4.6)
is minimized. The enhancement of the cost function by the system equations in
first order form in Eq. (3.28) and by the additional differential equations for the
Fourier coefficients in Eqs. (4.16) and (4.17) leads to

J = J(Ak, Bk)

+
∫ T

0

{
pT (q̇ − v) + wT

(
Mv̇− f(q,v, ξ, t) + CT

qλ
)

+ µTC(q)
}

dt

+
N∑
k=1

∫ T

0
αk

( 2
T
g(q,v) cos(ωkt)− ȧk(t)

)
dt

+
N∑
k=1

∫ T

0
βk

( 2
T
g(q,v) sin(ωkt)− ḃk(t)

)
dt

(4.18)

in which p and w represent the adjoint variables corresponding to the multibody
system, µ pertains to the constraint equation, and αk and βk with k = 1, . . . , N
are the adjoints corresponding to the Fourier coefficients ak and bk, respectively.
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At this point, the variables p(t), w(t), µ(t), αk and βk may be chosen arbitrarily.
The gradient of the function J is given by

∂J

∂ξ
=
(
∇J

)T
=

N∑
k=1

∂J

∂Ak
Ak,ξ +

N∑
k=1

∂J

∂Bk

Bk,ξ

+
∫ T

0

{
pT(q̇ξ − vξ) + µTCqqξ + wT

[
(Mv̇)q qξ + Mv̇ξ

− fqqξ − fvvξ − fξ +
(
CT

qλ
)

q
qξ + CT

qλξ

]}
dt

+
N∑
k=1

∫ T

0

{ 2
T
αk
(
gq cos(ωkt)qξ + gv cos(ωkt)vξ

)
− αkȧk,ξ

}
dt

+
N∑
k=1

∫ T

0

{ 2
T
βk
(
gq sin(ωkt)qξ + gv sin(ωkt)vξ

)
− βkḃk,ξ

}
dt.

Integrating by parts of the terms with q̇ξ, v̇ξ, ȧk,ξ, ḃk,ξ and assuming that qξ(0) = 0,
vξ(0) = 0, ak,ξ(0) = 0 and bk,ξ(0) = 0, as a consequence of prescribed initial
conditions for q, v, ak and bk, yields

(
∇J

)T
=

N∑
k=1

∂J

∂Ak
Ak,ξ +

N∑
k=1

∂J

∂Bk

Bk,ξ

+
∫ T

0

{
− ṗTqξ − pTvξ + wT (Mv̇)q qξ −

d
dt(w

TM)vξ −wTfqqξ

−wTfvvξ −wTfξ + wT
(
CT

qλ
)

q
qξ + wTCT

qλξ + µTCqqξ
}

dt

+
N∑
k=1

∫ T

0

{ 2
T
αk
(
gq cos(ωkt)qξ + gv cos(ωkt)vξ

)
+ α̇kak,ξ

}
dt

+
N∑
k=1

∫ T

0

{ 2
T
βk
(
gq sin(ωkt)qξ + gv sin(ωkt)vξ

)
+ β̇kbk,ξ

}
dt

+
(
pTqξ + wTMvξ

) ∣∣∣∣∣
t=T
−

N∑
k=1

(
αk(T )Ak,ξ + βk(T )Bk,ξ

)
.

The computation of the sensitivities ak,ξ, bk,ξ, qξ, vξ, and λξ can be circumvented,
if the factors multiplied vanish. In case of the adjoints αk and βk, constant values

αk = αk(T ) = ∂J

∂Ak
and βk = βk(T ) = ∂J

∂Bk

(4.19)
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are used to fulfill α̇k = β̇k = 0. The adjoint variables p(t), w(t), and µ(t) have to
be chosen such that the adjoint equations

ṗ = Aw + CT
qµ+ gqG(t)

d
dt(Mw) = −p− fT

v w + gvG(t)

Cqw = 0

(4.20)

hold. Here the terms
A = (Mv̇)T

q − fT
q +

(
CT

qλ
)T

q

and
G(t) =

N∑
k=1

2
T

(
αk cos(ωkt) + βk sin(ωkt)

)
(4.21)

are used. At this point the adjoints can be chosen arbitrarily at t = T . For the sake
of simplicity, they are set to zero, p(T ) = w(T ) = µ(T ) = 0, in order to eliminate
the corresponding boundary terms.
It has to be mentioned here that the symmetry of the mass matrix M = MT has
been used. If Eqs. (4.20) are satisfied, the gradient ∇J reduces to

∇J =
∫ T

0

(
−wTfξ

)
dt. (4.22)

4.2.4 Summary: The Computation of the Gradient

1. Solve the equations of motion Eq. (3.28) forward in time t ∈ [0, T ] yielding
q(t), v(t), λ(t). This may be done, e.g. by choosing the Hilbert-Hughes-
Taylor (HHT) integration scheme, as proposed in [32] and its application for
a differential algebraic system given in an index three formulation in [50].

2. By inserting g(q(t),v(t)) in Eqs. (4.4) and (4.5) the requested Fourier coeffi-
cients can be computed. At this point the actual value of the performance
measure may be evaluated by utilizing ak and bk in Eq. (4.6).

3. Compute the adjoint Fourier coefficients by raising Eq. (4.19).
4. Generate the function G(t) from Eq. (4.21) by using the resulting adjoint

Fourier coefficients.
5. Solve the adjoint system Eq. (4.20) for p(τ), w(τ) and µ(τ), where τ = T − t.

A numerical solution at time instances τn can be computed by using the
backward differentiation scheme presented in Section 3.3.4.4.

6. Compute the adjoint variables as function of the original time by setting
p(t) = p(τ = T − t) and w(t) = w(τ = T − t). Moreover, determine fξ along
the forward simulation.
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Figure 4.1: Example of an optimization surface – elliptic paraboloid

7. From Eq. (4.22) the gradient of J may finally be derived.

4.3 Iterative Methods for Optimization
Assuming l unknown parameters and therefore l optimization variables, the cost
function J can be seen as representation of a surface in the (l + 1)-dimensional
space. Figures 4.1 and 4.2 show two generic surfaces, an elliptic parabolid and
the Styblinski-Tang function, which both may be seen as result of a performance
measure J depending on the parameters X and Y . Both functions have only one
distinct global minimum, which is marked with a blue dot in each case. Moreover,
the plots show contours of the surfaces, which allow finding the gradient direction
intuitively by forming the normal vector onto a contour. In the following section
both functions depicted are raised for explaining different concepts of iterative
optimization. The point ξ∗ with lowest elevation J corresponds with the optimal
set of parameters. The quality of an identification result given by such an approach
depends on the level of detail the virtual model uses to emulate the real experiment.
Provided that the real behavior is matched well, the parameters found will be
equivalent to those of the physical model. Most of the existing iterative approaches
do not find the optimal point ξ∗ in a finite number of computation steps, but rather
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Figure 4.2: Example of an optimization surface – Styblinski-Tang function

generate a progression reducing the cost function J(ξ), i.e.

J(ξk+1) < J(ξk), k = 0, 1, 2, . . .

and which should converge to ξ∗ for k →∞, i.e.

lim
k→∞

ξk = ξ∗.

As the author’s background and focus lies in modeling of mechanical systems,
optimization methods are understood as mathematical tools and therefore in the
following section no proofs are performed. Proofs, further details and additional
methods can be found in the literature, e.g. the work of Kelley [37]. Nevertheless,
the overview given here allows obtaining an overall picture of the line search
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approach, chosen for the identification of multibody system parameters. Here, in
order to find an admissible update ∆ξk = ξk+1 − ξk resulting in J(ξk+1) < J(ξk),
two different tasks are performed. First, a direction pk is computed such that
the update is given by ∆ξk = pkαk, with αk > 0. Second, a valid step size αk is
determined in order to minimize J along the search direction pk.

4.3.1 Determination of the search direction
The computation of the search direction is limited by the information available,
which is the value of the performance measure to minimize and the gradient thereof.
In the following two approaches for determining pk are presented.

4.3.1.1 Method of steepest descent

The method of steepest descent employs the fact, that the gradient information
can be used for generating a first order approximation of the cost function J in the
form

J(ξk+1) = J(ξk) + pT
k∇J(ξk) +O(p2

k). (4.23)

Using this linearization of J , the maximum possible change is gained using the
direction parallel to ∇J(ξk). As the goal is to minimize J the opposite direction
has to be chosen and therefore p(ξk) = −∇J(ξk).
The plot in Fig. 4.3 shows the search direction according to the method of steepest
descent for two different starting points. Due to linearization of J the minimum
cannot be reached searching along the direction pk in general. As shown in the plot
this can happen by chance but is not the general case. Taking a step in direction of
the steepest descent leads to maximal reduction of the cost function in the vicinity
of the starting point. However, beyond that point the gradient direction does not
lead to maximal minimization, as the higher order terms O(p2

k) are not considered
by the approximation. Practically speaking, this means that a high number of
search direction updates have to be performed in case of complex shaped cost
functions J . A term arising in this context is the so called effect of zigzagging. If
the valley, which contains the minimum, is curved and narrow, the optimization is
performed in a zigzag manner and therefore many iterations are demanded before
ending up in the minimum. The linearization of J given in Eq. (4.23) can be
interpreted as a tangential plane fitted onto the surface. In Fig. 4.4 the tangential
plane at a given point (X0, Y0)T is fitted onto the Styblinski-Tang function.
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Figure 4.3: Two search directions p(1)
0 , p(2)

0 are computed, starting at two different
points (X(1)

0 , Y
(1)

0 )T, (X(2)
0 , Y

(2)
0 )T using the method of steepest descent.

4.3.1.2 Quasi-Newton method

Following the idea of Eq. (4.23) the approximation of J can be extended by a
quadratic term

J(ξk+1) = J(ξk) + pT
k∇J(ξk) + 1

2pT
k∇2J(ξk)pk +O(p3

k), (4.24)

where ∇2J denotes the Hessian matrix. The so called Newton direction results
directly from minimizing the approximating function Eq. (4.24) with respect to pp
and reads

pk = −
(
∇2J(ξk)

)−1
∇J(ξk).

Due to the higher order terms given in Eq. (4.24), the actual update of parameters
is computed by ∆ξk = pkαk and an appropriate method for computing a feasible
step size αk has to be found.
The advantage of using the curvature information of J by including the Hessian
in the update formulation, can easily be seen by means of the example shown in
Fig. 4.5. As the elliptical paraboloid function represented by its contour lines is
quadratic, the global optimum can be reached independently from the starting point
chosen. Figure 4.6 shows the surface of the Styblinski-Tang function and a second
order approximation at the given point (X0, Y0)T. Although the approximation
shows good accordance with the surface, the minimum thereof does not coincide
with the minimum of the actual function J . However, the minimum, marked with a
blue sphere, can nearly be hit by tracking the projection of the search direction onto
the surface, represented by the green curve. Up to this point there is no possibility
to find the Hessian ∇2J , neither with invoking system sensitivity analysis nor
with the adjoint approach presented in the preceding chapters. Nevertheless it
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Figure 4.4: First order approximation for Styblinski-Tang function

is possible to compute a search direction by utilizing an algorithm that provides
a guess for the Hessian. A very common representative is the so called BFGS
algorithm introduced by Broyden [11], Fletcher [21], Goldfarb [25] and Shanno [61].
Using the approximation of the Hessian in combination with the Newton update
step is usually denoted as Quasi-Newton method.
Starting with an initial guess for the Hessian B0, which could be the identity matrix,
the algorithm uses consecutive values of the gradient ∇Jk+1 and ∇Jk, the last
update step sk = ξk+1− ξk and the previous guess of the Hessian Bk for computing
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Figure 4.5: Two search directions p(1)
0 , p(2)

0 are computed, starting at two different
points (X(1)

0 , Y
(1)

0 )T, (X(2)
0 , Y

(2)
0 )T using a Newton step.

Bk+1. The Hessian therefore is given by

Bk+1 = Bk + rkrT
k

rT
k sk
− BksksT

kBk

sT
kBksk

,

where rk describes the difference of gradients

rk = ∇J(ξk+1)−∇J(ξk).

For computing the search direction pk the inverse of Bk is required. Instead of
developing a guess for the Hessian itself, a modification of the BFGS algorithm
intends to find a guess for the inverse B−1

k+1. Making use of the formula

B−1
k+1 = B−1

k +

(
sT
k rk + rT

kB−1
k rk

) (
sksT

k

)
(
sT
k rk

)2 − B−1
k rksT

k + skrT
kB−1

k

sT
k rk

therefore allows to directly compute the demanded inverse and eliminates the costly
matrix inversion.

4.3.2 Step size
Once a search direction pk is found, the remaining task is to solve the scalar
optimization problem

J(ξk + αkpk) = J(αk)→ min.

for αk. The mapping between the multidimensional and the one-dimensional
problem is illustrated in Fig. 4.7, where the search direction computed by the
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Figure 4.6: Second order approximation for Styblinsky-Tang function

Newton method is not only plotted as projection onto the surface of J , but also
projected onto a separate plane. Line search algorithms address this issue by
different approaches. In the following two common representatives, the Golden
Section and the Quadratic Interpolation, are introduced.

4.3.2.1 Nested intervals - golden section

The method of nested intervals helps generating a converging progression of nested
intervals in order to reach the minimum of J(αk). After finding an interval [l0, r0]
for αk including a minimum of J the method can be started at those boundary
points. At iteration step j the interval [lj, rj ], which still contains the optimal step
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Figure 4.7: Reduction of optimization surface to one-dimensional problem using
the example of the Styblinski-Tang function

size α∗k, is treated. By evaluating

l̂j = lj + (1− a)(rj − lj)
r̂j = lj + a(rj − lj)

(4.25)

two new points satisfying lj < l̂j < r̂j < rj are generated. The parameter a is
demanded to be chosen in the interval [0.5, 1].
Once the iteration is started, two different cases may occur. If J(l̂j ≤ r̂j) the point
rj is discarded. The interval for the next iteration is then given by [lj, r̂j]. In case
of J(l̂j > r̂j) the point lj is ignored and the next interval is [l̂j, rj].
The plot in Fig. 4.8 shows the performance measure J(αk) of the Styblinski-Tang
function along the direction found by the Newton method which is also given in
Fig. 4.7. Here two steps of the presented method are displayed. First, in iteration
j the point rj is discarded due to the fact, that l̂j < r̂j. Different from that in
iteration j + 1 the point lj+1 is neglected as l̂j+1 > r̂j+1. With a special choice
of a only one evaluation per iteration has to be performed in order to obtain the
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Figure 4.8: Method of nested intervalls - line search along the search direction

intermediate points l̂j and r̂j. Looking at the example depicted in Fig. 4.8 and
employing Eq. (4.25) the relations necessary can be developed. The equations for
iteration j + 1 read

l̂j+1 = lj+1 + (1− a)(rj+1 − lj+1) = lj + (1− a)a(rj − lj)
r̂j+1 = lj+1 + a(rj+1 − lj+1) = lj + a2(rj − lj),

where here the result of iteration j, lj+1 = lj and rj+1 = r̂j, is already inserted.
Demanding r̂j+1 = l̂j leads to the equation a2 + a − 1 = 0 and therefore to
a = (

√
5−1)/2. This directly relates the number a with the so called golden section

Φ = 1 + a = 1/a.

4.3.2.2 Quadratic interpolation

Another approach for finding the optimal step size is to compute an approximation
of the performance measure along the current search direction pk. Typically a
quadratic interpolation polynomial is built up by three points J(α1), J(α2) and
J(α3). Another approach generates a quadratic polynomial

J(α) ≈ J̃(α) = aα2 + bα + c (4.26)
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from the following conditions at two sampling points αl and αr:

J(αl) = a α2
l + b αl + c = Jl

dJ
dα

∣∣∣∣∣
αl

= 2 a αl + b = J ′l

J(αr) = a α2
r + b αr + c = Jr

where the derivative dJ/dα is computed by the projection of ∇J onto p:

dJ
dα

∣∣∣∣∣
αk

= ∇J(ξk + pkαk)pk.

Solving for a, b and c results in

a = Jl − Jr − J ′l (αl − αr)
(αl − αr)2

b = 2Jlαl − αl (2Jr + J ′lαl) + J ′lα
2
r

(αl − αr)2

c = Jrα
2
l + αr (J ′lαl (αl − αr) + Jl (−2αl + αr))

(αl − αr)2 .

Hence, the optimal point α∗ can be found by demanding

dJ
dα

∣∣∣∣∣
α∗

= 0

which results in the expression for α∗:

α∗ = 2Jlαl − αl (2Jr + J ′lαl) + J ′lα
2
r

2 (−Jl + Jr + J ′l (αl − αr))
.

The plot in Fig. 4.9 shows the interpolating polynomial constructed by using the
points αl and αr. Due to the higher order terms contained in J(α) the optimal
solution of the interpolation polynomial and the actual evaluation of J(α∗k) differ
from each other. Depending on the actual strategy chosen, different actions may
follow. First, α∗k may be used as optimized step size and the next iteration starts
straight away by computing a new search direction pk+1 followed by the next step
size determination. Another possibility is to improve the result by increasing the
order of the interpolating polynomial. As given in Fig. 4.10 the interpolating
polynomial may therefore be extended by the point α∗k and used for computing the
improved point α∗∗k .
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Figure 4.9: Quadratic interpolation method - line search along the search direction

Figure 4.10: Cubic interpolation - line search along the search direction

4.4 Numerical Examples
In this section two examples forming a parameter identification problem for multi-
body systems are studied. First, the triple pendulum system is investigated and
both approaches, in time and frequency domain, are applied. In the second example
the crank drive of a four-cylinder combustion engine is treated. Here, the rotational
oscillations of the crankshaft are investigated in detail. As this oscillations cannot
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d1

xc

dc F

y1 y2 y3

x1

x2

x3

'1

'2

'3

cf , df

cf , df

parameter value unit
mass of cart 1.0 kg
mass of pendulums 0.5 kg
length of pendulums 1.0 m
dc 0.01 Ns/m
d1 0.02 Nms
cf 10.0 Nm
df 0.02 Nms

(a) (b)

Figure 4.11: A system consisting of a cart and three rigid pendula is studied,
where the parameters of the flexible pendulum are identified for a given excitation
F . (a) Geometric description of the cart–pendulum system. (b) Definition of the
parameters used for simulating the system.

be measured directly, they are analyzed by means of order analysis. Hence, only the
Fourier coefficient approach is examined. Both examples have been implemented in
the inhouse toolbox for inverse dynamics, which was presented at the ECCOMAS
2017 [47].

4.4.1 Triple pendulum
In order to present the performance of the identification method, we study a
system of pendula connected to a cart performing a one-dimensional motion. As
it can be seen in Fig. 4.11(a), each pendulum is represented by the redundant
coordinates (xi, yi, ϕi), their interconnection is modelled with rotational springs
and therefore this configuration represents a discretization of a rotating flexible
beam. In this example we assume the parameters of the flexible beam, the stiffness
cf and damping coefficient df , to be unknown. The parameters dc and d1 remain
untouched during the identification process at a prescribed value.

4.4.1.1 Time domain approach

First, the performance of the virtual system is measured by using the time domain
approach introduced in Section 4.1. Therefore a numerical simulation utilizing the
parameters listed in the table in Fig. 4.11(b) is performed in order to obtain some
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kind of virtual measurement. The system output used within the cost function
Eq. (4.2) is given by y = ϕ1(t). In order to include some kind of measurement
noise, a zero-mean gaussian noise is added to the simulation result. The plot in
Fig. 4.12 shows the according signal of this virtual measurement. Moreover, the
solution using the initial parameters cf = 8.5 Nm and df = 0.15 Nms is depicted.
After performing a sufficient number of iterations according to an optimization

Figure 4.12: Virtual measurement and initial solution for pendulum angle ϕ1

strategy presented in Section 4.3, the simulation result is given by the plot in
Fig. 4.13 using the final set of parameters. As given by the convergence history

Figure 4.13: Virtual measurement and final solution for pendulum angle ϕ1

in Fig. 4.14, the optimization process requires 12 iterations to converge to the
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Figure 4.14: Convergence history for optimization of parameters cf and df

minimum at cf = 9.9947205 and df = 0.0200257. The contour plot in Fig. 4.15
gives an impression of the path taken during the optimization of J . Obviously a
Quasi-Newton method was used for computing the update direction, as the search
direction does not point into the direction of steepest descent.

4.4.1.2 Frequency domain approach

In order to apply the frequency domain approach using Fourier coefficients, the
desired spectrum is computed via Fourier transform of the virtual measurement
given in Fig. 4.12. The resulting amplitude spectrum with the given real parameters
is shown in Fig. 4.16.
Again, the actual parameter identification is initiated with the parameters cf =
8.5 Nm and df = 0.15 Nms, and therefore the initial spectrum presented in Fig. 4.17
differs from the desired one. The main advantage of using Fourier coefficients for
the identification of system parameters is the possibility to filter data and perform
the identification in frequency intervals of interest only. In this special case the
parameters of interest cf and df mainly affect the amplitudes occurring around
the eigenfrequency of the first bending mode, which is located in the interval
[1.4,1.9] Hz. Due to this fact, just the amplitudes in this interval are considered as
desired spectrum. When thinking about real applications, this consideration may
help to perform a parameter identification even though some subsystems are not
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Figure 4.15: Contour plot of cost function J for parameters cf and df using RMS
error

known to full extent or to exclude the effects of measurement noise.
By using a quasi-Newton method like the BFGS algorithm for finding a minimum
of J and incorporating the computed gradient of Eq. (4.22), the solution can be
found within 10 iterations. In Fig. 4.18 the convergence history for the optimization
process is shown. The contour plot in Fig. 4.19 gives an impression of the complex
shape of J(cf , df ) and displays the optimization path taken by the BFGS algorithm.
The final parameters gained by using the presented method are cf = 9.9999998 Nm
and df = 0.02 Nms compared to the values used for generating the measure
cf = 10.0 Nm and df = 0.02 Nms.

69



4.4. Numerical Examples

Figure 4.16: Measured, initial and final amplitude spectrum of pendulum angle ϕ1

Figure 4.17: Spectrum of pendulum angle ϕ1 used for identification (interval
highlighted)
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Figure 4.18: Convergence history for optimization of parameters cf and df

Figure 4.19: Contour plot of cost function J for parameters cf and df
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4.4.2 Identification of torsional vibration damper
parameters

In this section the presented method is applied to a model of a four–cylinder engine,
schematically shown in Fig. 4.20. The goal is to identify the parameters of the
engine’s torsional vibration damper (TVD), which is described by two Maxwell
elements. The TVD is installed in order to reduce torsional oscillations of the
crankshaft, which show large amplitudes at the 6th engine order.

4.4.2.1 Model structure

Crankshaft The torsional vibration modes of the crankshaft are crucial for the
the parameter identification process. Therefore, six lumped masses resulting in
six degrees of freedom q1, . . . , q6 (see Fig. 4.21) are introduced in order to model
the structural flexibility of the crankshaft. The masses are interconnected with
linear springs and linear damping elements c1, . . . , c6 and d1, . . . , d5 respectively.
The inertia parameters are given by the moments of inertia J1, . . . , J6.

Conrod For describing the in-plane motion of an engine’s connecting rod (conrod)
three degrees of freedom are introduced. According to Fig. 4.22 two degrees of
freedom are used for the translational motion and one for the rotation about the
rotation axis. The mass of each conrod is given by mcr and the moment of inertia
by Jcr.

DMF

TVD

Piston 1

Piston 2 Piston 3

Piston 4

M(t)

Figure 4.20: Schematics of a four-cylinder engine
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J2

J1

J3J4

J5

J6

ddddd

c1c2c3c4c5

q6 q5 q4 q3 q2 q1

Figure 4.21: Discretization of the crankshaft

x

y

r
q2

q9

q7; q8

q19
l; s

Fp(q2; v2)

Figure 4.22: Slider–crank mechanism (for cylinder 1)

Piston In the used model each piston features only one translational degree of
freedom. The mass of each piston is denoted as mp and the piston’s effective area
as AP .

Dual mass flywheel The primary side of the dual mass flywheel (DMF) is
mounted on the right end of the crankshaft (see Fig. 4.21). Hence, its moment
of inertia is assigned to q1. Instead of introducing a degree of freedom for the
secondary side of the DMF, the prescribed angle qrunup(t) is used. A nonlinear
torsional spring and a linear damping element is used for connecting the primary
with the secondary side.

Torsional vibration damper The torsional vibration damper (TVD) is installed
for reducing the internal torsional vibrations of the crankshaft. Within the housing
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q6

q24 q25

q23

d2d1

cpar

c1 c2

m1 m2

Figure 4.23: Model of the torsional vibration damper

n(t)

n1

n0

t0 t1
t

Figure 4.24: Rotational speed of the engine run-up
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of the TVD a flywheel ring is gliding in a viscous fluid. Usually, the mathematical
model of the TVD is approximated by Maxwell elements. Here, two Maxwell
elements and one parallel spring are used. In Fig. 4.23 the schematic description
of the model and the degrees of freedom used are presented. The accuracy of
the parameters c∗1, c∗2, d∗1, d∗2 and c∗par supplied by the manufacturer may not be
satisfactory, and therefore the values of the four parameters c∗1, c∗2, d∗1 and d∗2 are
adjusted by using parameter identification in the frequency domain. The masses
m∗1 and m∗2 are set to zero.

Pulley wheel The pulley wheel used for driving additional aggregates introduces
another degree of freedom (q26), which is connected to the TVD hub using a linear
spring/damper with parameters cPW and dPW .

Cylinder pressures The cylinder pressure is given by a two-dimensional map
depending on the rotational speed and the crankshaft angle. The pressure is applied
on each piston in accordance with the firing order.

Run-up of the engine In order to simulate the run-up performed on the real
test bench, the rotational speed of the secondary side of the DMF is increased
up to the final rotational speed. The ramp used for the simulation is given in
Fig. 4.24. The run-up to the final rotational speed itself is done within the time
interval [t0, t1] .

4.4.2.2 Model equations

In the following the equations of motion for the given four-cylinder engine are
derived. The vector of redundant degrees of freedom q are given by

q = [q1, q2, ..., q6︸ ︷︷ ︸
crankshaft

, q7, q8, ..., q18︸ ︷︷ ︸
conrod

, q19, q20, ..., q22︸ ︷︷ ︸
piston

, q23, q24, q25︸ ︷︷ ︸
TVD

, q26︸︷︷︸
pulley wheel

]T.

Hence, the resulting global mass matrix is constant and reads

M = diag(m1,m2,m3,m4,m5,m6,mcr,mcr, Jcr,

mcr,mcr, Jcr,mcr,mcr, Jcr,mcr,mcr, Jcr

mp,mp,mp,mp, JTVD, 0, 0, JPW).
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The corresponding force vector is

f =



−FDMF(q, q0(t)) + dDMF(q̇0(t)− v1) + c1(q2 − q1 − 2π) + d(v2 − v1)
c1(q1 − q2 + 2π) + d(v1 − v2) + c2(q3 − q2 + π) + d(v3 − v2)
c2(q2 − q3 + π) + d(v2 − v3) + c3(q4 − q3 − 2π) + d(v4 − v3)
c3(q3 − q4 − 2π) + d(v3 − v4) + c4(q5 − q4 + 3π) + d(v5 − v4)
c4(q4 − q5 + 3π) + d(v4 − v5) + c5(q6 − q5) + d(v6 − v5)

F6(q, q̇)
0
0
0
0
0
0
0
0
0
0
0
0

−p1(q, q̇)AP
−p2(q, q̇)AP
−p3(q, q̇)AP
−p4(q, q̇)AP

c∗par(q6 − q23) + c∗1(q24 − q23) + c∗2(q25 − q23)
c∗1(q23 − q24) + d∗1(v24 − v6)
c∗2(q23 − q25) + d∗2(v25 − v6)

cPW(q6 − q26) + dPW(v6 − v26)



,

where the 6th entry is

F6(q, q̇) = c5(q5 − q6) + d(v5 − v6) + c∗par(q23 − q6)
+ d∗1(v6 − v24) + d∗2(v6 − v25)
+ cPW(q26 − q6) + dPW(v26 − v6).

The first term in the force vector FDMF(q, q0(t)) is given by a nonlinear stiffness
characteristic. The crankshaft, conrods, and the pistons are described with re-
dundant coordinates. Hence, four algebraic constraint equations are introduced
for each cylinder, where rcs is the radius of the crankshaft, lcr is the length of
the conrod, and scr is the distance to the center of mass. Finally, the vector of
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constraint equations C(q) is given by

C(q) =



rcs sin(q2)− lcr sin(q9)
q7 + rcs sin(q2)− scr sin(q9)
q8 − rcs cos(q2)− scr cos(q9)
q19 − rcs cos(q2)− lcr cos(q9)
rcs sin(q3)− lcr sin(q12)

q10 + rcs sin(q3)− scr sin(q12)
q11 − rcs cos(q3)− scr cos(q12)
q20 − rcs cos(q3)− lcr cos(q12)

rcs sin(q4)− lcr sin(q15)
q13 + rcs sin(q4)− scr sin(q15)
q14 − rcs cos(q4)− scr cos(q15)
q21 − rcs cos(q4)− lcr cos(q15)

rcs sin(q5)− lcr sin(q18)
q16 + rcs sin(q5)− scr sin(q18)
q17 − rcs cos(q5)− scr cos(q18)
q22 − rcs cos(q5)− lcr cos(q18)



= 0.

From Fig. 4.22 the constraint equations can be assembled. The first constraint
equation describes the x-component of the big end bearing. The second and third
constraint equation links the center of mass of the conrod with the redundant
generalized coordinates while the fourth constraint equation describes the piston’s
center of mass.

4.4.2.3 Results of the parameter identification

In this section the actual identification of the four parameters c∗1, c∗2, d∗1 and d∗2 of
the torsional vibration damper is presented. The main purpose of the TVD is to
reduce torsional vibrations of the flexible crankshaft caused by the periodic and
dynamic loads (e.g. cylinder pressures). Hence, the twist angle of the crankshaft
y(t) = q6(t) − q1(t) is chosen to be transformed into the frequency domain. As
the measurements performed on a test bench commonly result in spectra for
different engine orders, they are used in this investigation, too. Basically, an engine
order relates the Fourier coefficients with the rotating frequencies of the engine’s
crankshaft. In case of the four cylinder engine, the amplitude of the 6th order
is dominated by the parameter of the torsional vibration damper. In contrast to
Eqs. (4.7), (4.8), the differential equations for computing the Fourier coefficients
are

ȧk = 2
T
η(t)y(t) cos(ωkt)

ḃk = 2
T
η(t)y(t) sin(ωkt)
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Figure 4.25: Window function and twist angle

where η(t) represents a window function and ωk the kth frequency of interest. It
has been shown that the Hanning window given by

η(t) = gc

2

[
1− cos

(
π

tu − tl
(t− tl)

)]
(4.27)

is a good choice for filtering the system output. The upper time limit tu and the
lower time limit tl determine the borders of the window function. Note, that an
amplitude correction factor gc = 2 is required (for further details see Section 4.2.1).
In Fig. 4.25 the system output y(t) is shown for the entire time interval. Moreover,
a small interval t ∈ [tl, tu] of y(t) is depicted in detail. The black line shows the
original system output y(t), while the dashed line shows the Hanning window
function η(t). The blue line is the multiplication of y(t) with η(t), which is used for
the Fourier transformation. Due to the slowly increasing ramp shown in Fig. 4.24
assuming a steady state with constant angular velocity is valid. For the rotational
speed n the time interval [tl, tu] is given by

tl = tk −
2
n

and tu = tk + 2
n

with
tk = n0 t1 − n1 t0 + n (t0 − t1)

n0 − n1
.

Here two periods of the base frequency, which is 2/n for a four stroke engine, are
contained in the Hanning window (for further details see Section 4.2.1).
In Fig. 4.26 the dashed line shows the vibration angle corresponding to the 6th
engine order using initial parameters of the TVD. The dotted–dashed line (green)
represents the measured vibration angle of the 6th engine order on a test bench.
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Figure 4.26: Vibration angle of the 6th engine order

The black line (with the triangle symbol) shows the vibration angle of the 6th
engine order with the identified TVD parameters. In the interval n ∈ [n̂0, n̂1],
highlighted in Fig. 4.26, the deviation between the measured amplitude and the
simulated amplitude is included in the cost function of Eq. (4.6). Hence, a significant
improvement can be seen in this range compared to the simulation utilizing the
initial parameters of the torsional vibration damper. In Fig. 4.27 the engine orders
2, 4, and 8 are depicted, too. On the one hand, the engine orders of the simulation
with the initial parameters and, on the other hand, the engine orders of a simulation
with the identified parameters of the TVD are shown. As expected the spectra of
the orders other than the 6th are only slightly affected.
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Figure 4.27: Comparison of the engine orders
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CHAPTER 5
Design of Optimal Inputs for

Multibody Systems

The problem of optimal input design plays a key role when considering an experiment
in order to perform a parameter identification. Poorly planned experiments can
cause a waste of time and resources and yield little useful information. The linkage
between the experiment and modeling world is called design of experiment (DOE).
If the model knowledge is used for designing the experiments often the term model-
based DOE can be found in the literature [22].
One of the first authors dealing with the topic of designing experiments was R.
A. Fisher in his substantial work The Design of Experiments [20]. Although the
importance and applicability onto the problem of optimal input design was known
only to some extent, many more recent papers refer to his work. Fisher stated
that the basic problem of DOE is to decide which pattern of factor combination
will best reveal the properties of the response and how this response is influenced
by these factors. The term optimal input design emerges from the work of Mehra
[42, 43] who worked on linear discrete-time systems. There, the most important
requirement for designing an input was to generate a system output allowing to
determine system parameters featuring a minimum of variance.
In [45], Morelli develops a method for generating optimal input signals utilizing
basic statistics including the theory of maximum likelihood estimates for parameters.
On this basis Morelli shows the practicability of the method in [46] where system
inputs for flight tests with a F-18 High Alpha Research Vehicle are determined.
Recent publications include different fields of application, e.g. Jauberthie et al.
[34, 35] have considered a model of an aerodynamic problem. Therein the ideas
of Morelli [45] are used to generate an optimal input for identifying aerodynamic
parameters of an aircraft. An extensive work on optimal input design in the field
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of chemistry but also on DOE in general was done by Franceschini [22]. According
to this work model-based DOE is characterized by:

• The explicit use of the model equations (including any constraint) and current
parameters to predict the "information content" of the next experiment
(through the evaluation of some suitable objective function), and

• the application of an optimization framework to find the numerical solution
of the resulting problem.

Another application dealing with optimal input design is that of process control.
Chianeh [16] investigates models of tank systems fed by a pump. The goal is
to determine the flow exponent used in Bernoulli’s law. Keesman [36] considers
optimal input design for choosing between model structures or model discrimination.
A further topic related to optimal input design is that of optimal sensor placement.
In the work by Castro-Triguero [15], several methodologies for computing a minimal
set of sensor locations are investigated in order to get the required information for
health monitoring of bridge structures.
The latter mentioned approaches can not be applied directly to the model of
mechanical systems. Therefore, within this chapter it is shown how the process
of optimal input design can systematically be applied for mechanical systems.
As the adjoint method provides outstanding performance in the field of optimal
control this method is used for computing the update direction during the optimal
input iteration process. First a proper performance measure or cost functional for
determining optimal inputs is defined via statistical context. For further analysis,
the system of sensitivity differential equations is derived and also the adjoint system
of the original system is extended by these new terms.

5.1 Optimal Control Approach for Input
Optimization

For simplicity, the model equations investigated are first order ordinary differential
equations (ODE), and therefore a set of minimal coordinates is used. Nevertheless,
it is possible to formulate the entire process for more general differential algebraic
equations, and therefore for models with redundant coordinates. The model
equations can be written as

ẋ = f(x,u, ξ, t) x(0) = x0

y = y(x),
(5.1)
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where x(t) ∈ Rn is the vector of state variables, u(t) ∈ RNu the vector of model
inputs and ξ ∈ Rl the vector of model parameters. In order to compare the
simulation result with measurements, a vector of model outputs y(x) is defined
such that it matches with measured outputs ȳ(t) ∈ Rm.

5.1.1 System sensitivity analysis
Analyzing a system’s reaction to small changes in the system parameters at a
special timepoint ti results in the sensitivity matrix

S(ti) =
[
yξ1(ti) yξ2(ti) . . . yξl

(ti)
]
. (5.2)

As given in Section 3.1, this analysis can be performed by forming the derivatives of
the output vector y with respect to the system parameters ξ. Therefore, Eq. (5.1)
is differentiated with respect to each parameter. In the following, the abbreviations
xξj

, yx, fξj
and fx are used instead of ∂x

∂ξj
, ∂y
∂x ,

∂f
∂ξj

and ∂f
∂x respectively. Hence, the

sensitivity equations read
ẋξj

= fxxξj
+ fξj

yξj
= yxxξj

,
(5.3)

where yξj
(ti) equals the jth column in the output sensitivity matrix S(ti). In case

of more than one unknown parameter, the system of differential equations for the
state variables and for the sensitivities can be written by

ẋ
ẋξ1

ẋξ2

...
ẋξn


= ż =



f
fxxξ1 + fξ1

fxxξ2 + fξ2

...
fxxξn + fξn


= f̃ . (5.4)

The Jacobian f̃z of the extended system, which is required for further computations,
reads

f̃z =



fx 0 0 . . . 0
(fxxξ1 + fξ1)x fx 0 . . . 0
(fxxξ2 + fξ2)x 0 fx . . . 0

...
(fxxξn + fξn)x 0 0 . . . fx


. (5.5)
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5.1.2 Maximization of the information content in
experimental measurement data

When dealing with optimal input design, first of all the term optimality has to
be clarified. As Morelli defined in [46] optimal inputs minimize the parameter
standard errors during model parameter estimation with a maximum likelihood
estimator. In other words, the information contained in experimental measurement
data has to be maximized. Hence, a proper measure - or cost functional - can be
constructed by using a norm of the Fisher information matrixM, see [45].
When estimating model parameter values from measured data, the minimum
achievable parameter standard errors using an asymptotically unbiased and efficient
estimator (such as maximum likelihood) are called the Cramer-Rao lower bounds
[45]. These quantities are a function of the excitation of the system and the
noise levels, and collectively measure the information content in the data. For a
fixed instrumentation system, the Cramer-Rao lower bounds are influenced by the
excitation of the system, which is determined by the input. The input implicitly
includes the length of the maneuver.
The Cramer-Rao lower bounds for the parameter standard errors are given by the
square root of the diagonal elements of the dispersion matrix D. The dispersion
matrix is defined as the inverse of the information matrixM, the latter being a
measure of the information content of the data from an experiment. The expressions
for these matrices are

M =
Ns∑
i=1

S(ti)TR−1S(ti), (5.6)

D =M−1. (5.7)

Here, Ns is the number of samples taken during the measurement and R the
discrete noise covariance matrix which is unknown prior to the optimization process.
A very common way is to assume no correlation among the system outputs and
moreover that the variance of all system outputs is equal. Using this assumption
R reduces to the identity matrix I.
In [4] several norms or optimality metrics are suggested for optimal input design.
Investigating the determinant (D-optimality) or eigenvalues (E-optimality) ofM
in a cost functional does not allow to apply straightforward variational calculus.
Hence, the so called A-optimality is chosen, which incorporates the trace ofM.
Moreover, common optimization algorithms search for the minimum of a cost
functional J(u). Therefore the maximization of the information content leads to a
cost functional using the negative trace ofM.
For further derivations the cost functional is defined as a continuous function.
Instead of forming the sum in Eq. (5.6) the inner product of columns of S are

84



5.1. Optimal Control Approach for Input Optimization

integrated over time. The resulting cost functional to be minimized then reads

J = −
∫ T

0

l∑
j=1

yξj
(t)Tyξj

(t)dt. (5.8)

Different from the common approach of searching directly for bang-bang solutions
via dynamic programming methods, here a variational approach is chosen.

5.1.3 Adoption of optimal control approach
Calling in mind that the cost functional in Eq. (5.8) uses the system sensitivities,
and hence outputs of the extended system of Eq. (5.4), optimal input design can be
seen as the standard problem of optimal control for the extended system. Similar
to the computation of the gradient ∇J(ξ) presented in Chapter 3, the variation of
the cost functional Eq. (5.8) may be performed using an adjoint approach.
As the cost functional in Eq. (5.8) depends on the system sensitivities and therefore
on the states z of the extended system in Eq. (5.4), the cost functional can be
defined as follows:

J(u) =
∫ T

0
h(z,u, t)dt. (5.9)

The problem is to find control variables u(t) which minimize this function. In order
to provide a search direction for the optimization process the variation of the cost
functional with respect to the parameters has to be evaluated. Again, the starting
point of the adjoint method is to add the system equations in Eq. (5.4) to the
integrand in Eq. (5.9). Hence, the extended cost functional reads

J(u) =
∫ T

0

[
h+ pT(f̃ − ż)

]
dt. (5.10)

Since the system equations are satisfied, the actual value of J does not depend on
the selection of the functions p(t). Introducing the Hamiltonian

H(z,p,u, t) = h(z,u, t) + pTf̃(z,u, t) (5.11)

Eq. (5.10) becomes
J(u) =

∫ T

0

[
H− pTż

]
dt.

For a given forward solution z(t) of the system equations Eq. (5.4) with control
variables u(t) and fixed parameters ξ, the variation of δu will result in variations
of δz(t). This again will result in a variation δJ of the functional. Considering first
order terms only, δJ is given by

δJ =
∫ T

0

[
Huδu +Hzδz− pTδż

]
dt (5.12)

85



5.1. Optimal Control Approach for Input Optimization

where Hu and Hz denote the partial derivatives of H with respect to the vector
of system inputs u and the states of the extended system z respectively. In order
to avoid the computation of the variations of z, the last term of Eq. (5.12) is
integrated by parts, and therefore the variation of the cost functional reads

δJ =
∫ T

0

[
Huδu +Hzδz + ṗTδz

]
dt− pTδz

∣∣∣∣T
0

=
∫ T

0

[
Huδu +

(
Hz + ṗT

)
δz
]

dt− p(T )δz(T ).
(5.13)

Herein, the variation δz(0) = 0 is already neglected as the initial conditions
are prescribed independently from the actual choice of inputs. Now, in order to
eliminate the term multiplied with δz, a system of adjoint equations for the adjoint
variables p(t) can be formed. The adjoint system reads

ṗ = −HT
z and p(T ) = pf . (5.14)

This set of equations may be solved backwards in time, since there is only an initial
condition at time t = T . At this point there is no constraint on the adjoint states at
t = T , and therefore they can be chosen arbitrarily. An option presented in [48] is
to add a further term to the cost function which allows to consider end conditions
for the system states z. This term is commonly denoted as scrap-function. Using
Eq. (5.14) the variation of J is given by Eq. (5.13)

δJ =
∫ T

0
Huδudt.

In order to achieve the largest possible decrease of δJ , δu(t) is chosen in the
direction of HT

u. Due to nonlinearities in the cost functional this direction is only
valid near the current system input u(t). Therefore the update has to be done
incrementally by using

δu(t) = −κHT
u (5.15)

with small numbers κ. Finding a value for κ that minimizes J may be done by
applying one of the optimization schemes presented in Section 4.3.

5.1.4 Considering model input constraints
In most cases, maximizing the information content in measurements leads to a
maximization of the energy put into the system under consideration. Therefore,
the system inputs to be optimized have to be constrained in a way that applicable
optimization results are generated. One main difficulty is the direct influence of
such constraints onto the optimization process. They insert further nonlinearities,
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5.2. Parameter Identification

Figure 5.1: Comparison of constraining functions

and therefore affect the convergence negatively. The approach chosen here is to
transform the input in such a way that the transition from unconstrained input ui
to constrained input ψi(ui) is smooth. In order to satisfy ψi(ui) ∈ [u−i , u+

i ] the
authors in [27] propose to use the function

ψi(ui) = u+
i −

u+
i − u−i

1 + exp(sui)
, s = 4

u+
i − u−i

(5.16)

for constraining the input ui. The term s is introduced in order to correct the slope
at ui = 0 to ψ′i(0) = 1. Another possibility for constraining inputs is to use the
arctangent function

ψi(ui) = u+
i + u−i

2 + s arctan
(1
s
ui

)
, s = u+

i − u−i
π

(5.17)

with again s being the function to correct the slope at ui = 0. In Fig. 5.1 these
two functions are displayed. As a function with distinct slopes in a wide range is
preferred the arctangent function is suggested as constraining function, although
the direct relation between ψi ≈ ui is only valid in a very small region.

5.2 Parameter Identification
The purpose of optimal input design is to generate the excitation for a subsequent
parameter estimation. Application of the computed optimal input onto the real
system leads to an optimal desired trajectory. In the following, an approach utilizing
the system sensitivities derived in Section 5.1.1 is presented therefore.
In direct comparison to the optimization of inputs in the previous section optimizing
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the parameters is less expensive. Choosing the root mean square error

ERMS(ξ) =
Ns∑
i=1

1
2∆yT

i ∆yi, ∆yi =


ȳ1,i − y1(ti)
ȳ2,i − y2(ti)

...
ȳm,i − ym(ti)


as performance measure simplifies further derivations for the optimization procedure.
Here, Ns is the number of sampling points in the measurement and ∆y the deviation
from simulation data y to measured data ȳ at a time point ti. When arranging the
output sensitivities at this timepoint in the form of the sensitivity matrix Eq. (5.2)
the gradient of ERMS(ξ) can be written as

∇ERMS(ξ) = −
Ns∑
i=1

∆yT
i S(ti).

Performing another differentiation on ∇ERMS and neglecting higher order terms,
the Hessian reads

∇2ERMS =
Ns∑
i=1

(
S(ti)TS(ti)−

∂

∂ξ

(
∆yT(ti)S(ti)

))
≈

Ns∑
i=1

S(ti)TS(ti)

in which ∆yT(ti) is considered as constant in the case of the second term. With the
exact solution for ∇ERMS and an approximation for ∇2ERMS the Newton-Method
may be applied. Performing a sufficient number of iterations

∆ξk+1 = −(∇2ERMS(ξk))−1∇ERMS(ξk)

the optimal set of parameters can be determined.

5.3 Illustrative examples
In the preceding chapter a method for finding the optimal excitation of a system
with parameters that are to be identified has been presented. Similar to the
methods for parameter identification shown in Chapter 4 the approach chosen aims
at finding the optimum in an iterative way by using the gradient of a cost function.
Nevertheless, according to Pontryagin’s minimum principle it is possible to find an
optimal solution for the system inputs u that minimize the according cost function
without the need for a numerical iteration scheme. In the following the general
solution for linear systems is derived in order to show how the optimal input may
be computed in such a way. As this is quite hard for systems with more than one
degree of freedom and several parameters, the single mass oscillator is analyzed in
detail. In both examples presented thereafter, the two mass oscillator and the cart
pendulum system, the iterative method is applied.
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5.3.1 Optimal input for a linear system
The general solution of a linear system with a single constant input u is derived in
the following. First, the system equations may be written in the form(

ż
ṗ

)
= A

(
z
p

)
+ bu (5.18)

which results in the general solution(
z(t)
p(t)

)
= eAt︸︷︷︸

Φ(t)

C−A−1b︸ ︷︷ ︸
Ψ

u. (5.19)

Herein, C denotes the vector of integration constants that may be found by inserting
in boundary conditions.
The system input may be chosen such that the cost function J given in Eq. (5.9) is
minimized. Typically the system input has to be chosen in an interval u ∈ [u−, u+]
with the lower bound u− and upper bound u+ respectively. Therefore, according to
Pontryagin’s minimum principle [38] the optimal input u∗ must fulfill the condition

H(z∗,p∗, u∗) ≤ H(z∗,p∗, u) ∀ t (5.20)

where z∗ and p∗ denote the system states and the according adjoint variables
generated by the optimal input u∗. Using the system equations Eq. (5.18) and
inserting in the general definition of the Hamiltonian in Eq. (5.11) results in

H = pT (Az + bu) + h(z)

where h is assumed to depend on the states z only. Hence, the inequality in
Eq. (5.20) may further be simplified, reading

H(z∗,p∗, u∗) ≤ H(z∗,p∗, u)
(p∗)T bu∗ ≤ (p∗)T bu

(p∗)T b (u∗ − u) ≤ 0
(5.21)

and finally leading to the switching condition

(p∗)T b = 0 (5.22)

and the optimal input

u∗ =
{
u−, if (p∗)T b > 0
u+, if (p∗)T b < 0

.
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Assuming n switching points, the interval [0, T ] may be divided into n+ 1 subin-
tervals, with a solution z(i)(t) and p(i)(t). At all switching points ti the states and
adjoint variables must fulfill the transition condition(

z(i)(ti)
p(i)(ti)

)
=
(

z(i+1)(ti)
p(i+1)(ti)

)
.

Inserting the solution from Eq. (5.19) the equation system for the integration
constants C reads

Φ(ti)C(i) + (−1)iΨu(i) = Φ(ti)C(i+1) + (−1)i+1Ψu(i+1)

Φ(ti)
[
C(i) −C(i+1)

]
= −2(−1)iΨu(i)

where u(i+1) is assumed to be −u(i) and therefore u− = −u+. After rearranging the
equation system the integration constants for successive intervals can be computed
by

C(i+1) = C(i) + 2(−1)iΦ−1(ti)Ψu(i).

Additionally, the states at t = 0 must satisfy the initial condition

z(1)(0) = 0

and therefore

z(1)(0) =
(
I 0

)
︸ ︷︷ ︸

L

(
z(1)(0)
p(1)(0)

)
= L

[
Φ(0)C(i) −Ψu(1)

]
= L

[
C(i) −Ψu(1)

]
= 0

must hold. As the adjoint variables at the final time T may be chosen arbitrarily,
they can be set to zero

p(n+1)(T ) = 0,

leading to additional equations for the unknown constants C(i+1):

p(n+1)(T ) =
(
0 I

)
︸ ︷︷ ︸

R

(
z(n+1)(T )
p(n+1)(T )

)
= R

[
Φ(T )C(i+1) −Ψu(n+1)

]
= 0.

Solving the resulting equations for C(1) . . .C(n+1) gives expressions for z(1) . . . z(n+1)

and p(1) . . .p(n+1) in the still undetermined switching points t1 . . . tn and the time t.
By starting with an initial guess for the switching points, the Newton-Raphson
method may be used to compute the switching points by inserting into the switching
condition Eq. (5.22).
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5.3.2 Single mass oscillator
In the following the procedure given above will be applied onto the single mass
oscillator system (see Section 3.1.1) without damping d = 0.
First, the system states and the system sensitivities may be combined in the
extended state vector

z =


x
v
xc
vc


and therefore the equations of motion for the extended system read

ż =


z2

−ω2z1 + u
z4

−ω2z3 − z1

 =


0 1 0 0
−ω2 0 0 0

0 0 0 1
−1 0 −ω2 0

 z +


0
1
0
0

u. (5.23)

The system input u ∈ [u−, u+] may be chosen such that the sensitivity with respect
to the parameter c = ω2 is maximized, leading to the cost function

J = −
∫ T

0

1
2z

2
3 dt

to be minimized. Inserting in Eq. (5.11) the Hamiltonian is given by

H = −1
2z

2
3 − p1z2 + p2(−ω2z1 + u) + p3z4 − p4(ω2z3 + z1). (5.24)

According to Eq. (5.14) the adjoint system reads:

ṗ1 = −∂H
∂z1

= ω2p2 + p4

ṗ2 = −∂H
∂z2

= −p1

ṗ3 = −∂H
∂z3

= z3 + ω2p4

ṗ4 = −∂H
∂z4

= −p3.

(5.25)

For constant u the general solution of Eq. (5.23) and Eq. (5.25) can be determined
in the form of Eq. (5.19).
As given in Eq. (5.21) the optimal input u∗ must fulfill

p∗2(u∗ − u) < 0 ∀ t.
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As the inequality must hold for any admissible u ∈ [u−, u+], this directly leads to a
law for choosing between u− and u+:

u∗ =
{
u−, if p∗2 > 0
u+, if p∗2 < 0 . (5.26)

The general solution for the adjoint variable p2(t) can be found to be

p2(t,C, u) =− 1
48ω8

{[
tω4

(
C6t

2 − 3C5t+ 18C8
)

+ 6tω6 (C7t+ 4C3)− 15C6tω
2

− 48C2ω
8
]

cos(ωt) + ω
[
− ω4

(
C5t

3 − 6C8t
2 + 6C7t+ 24C3

)
+ 24ω6 (C4t+ 2C1) + 3ω2 (t (C5 − 2C6t)− 6C8) + 15C6

]
sin(ωt) + 48u

}
.

Note, that the integration constants C = [C1, . . . , C8]T are different for each time
intervall between two switching points and still depend on the switching points.
Assuming a single switching point t1 in the interval t ∈ [0, T ] and u(1) = u+ for
t ∈ [0, t1], the function

f(t1) := p2(t1,C(1)(t1), u+) (5.27)

may be used for finding the switching point t∗1. The roots of f(t1) = 0 are equivalent
to points where p2(t) changes its sign and therefore, according to Eq. (5.26), the
input u∗(t) is determined. Using the numerical values ω = 1, T = 2π and
u+ = −u− = 1 the function f(t1) can be evaluated. The graph given in Fig. 5.2
may then be used to get an appropriate initial value for finding the root of f(t1)
numerically. The adjoint variable p2(t) may be defined as a piecewise function:

p∗2(t) =
{
p2(t,C(1), u+), if t ≤ t∗1
p2(t,C(2), u−), if t > t∗1

.

In order to fulfill the optimality condition, p∗2(t) must not have further roots in
[0, T ] and u∗ must have the opposite sign of p∗2. This can be checked by analyzing
the plot in Fig. 5.3. By numerical evaluation of J(t1) the cost function may also
be plotted for t1 ∈ [0, T ] and used for verification of the optimal input u∗. As it
can be seen in Fig. 5.4 the switching point t∗1 is a local minimum of J .

5.3.3 Two mass oscillator
Different from the previous example, the optimal excitation of the two mass
oscillator shown in Fig. 5.5(a) should be computed by the iterative approach
proposed in this chapter. The mass m1 is excited by the force F (t), whereas this
force is constrained to a maximum amplitude of Fmax by means of a constraining
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Figure 5.2: Function f(t1) used for estimating t∗1

Figure 5.3: Adjoint variable p∗2(t) and optimal input u∗(t) for one switching point
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Figure 5.4: Cost function J(t1)

x1

F

m1 m2

x2

c1 c2

parameter value unit
m1 1.0 kg
m2 0.1 kg
c1 2000.0 N/m
Fmax 10.0 N

(a) (b)

Figure 5.5: An excitation signal F for the two mass oscillator in (a) is searched. In
(b) parameters necessary for the numerical simulation are specified.

function presented in Section 5.1.4. Assuming that the position x2 is measured
during an experiment (y = x2), a time history F (ti) maximizing the information
content with respect to the stiffness c2 and therefore using a cost functional in the
form of Eq. (5.8) should be computed at discrete timepoints ti = {t0, t1, . . . , T},
with T = 1 s. For starting the iterative optimization process the initial input is set
to a constant value F0(ti) = 1/2 Fmax. The parameter setting used can be found
in Fig. 5.5(b) and c2 is set to 1000 N/m initially. In order to avoid a motion of the
bodies at t > T a scrap function mentioned in Section 5.1.3 is specified such that
the end velocities are set to v1(T ) = v2(T ) = 0. In Fig. 5.6 the convergence history
for the input optimization and in Fig. 5.7 the resulting constrained input signal is
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Figure 5.6: Convergence history for input optimization of two mass oscillator

Figure 5.7: Optimized system input for two mass oscillator

depicted. Due to the linear convergence rate of the gradient method the convergence
history shows quite poor but stable behavior. As this is only an example without a
physical realization the measurements necessary for the parameter identification are
generated by simulation using the optimized excitation force Fopt and an assumed
stiffness coefficient c2 = 1000 N/m. In order to include some kind of measurement
noise the computed system outputs are superimposed with zero-mean Gaussian
noise. In Fig. 5.9, Fig. 5.10 and Fig. 5.11 these measurements are presented for
different standard deviations. For comparison, also the measurement using the
initial excitation signal F0 is displayed, which features smaller amplitudes and
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Figure 5.8: Velocity v1 and v2 for Fopt observing end condition

obviously leads to uncertainties of the parameter identification process. The velocity
plot in Fig. 5.8 shows that the desired end conditions for v1 and v2 are fulfilled in
the case of using Fopt.
Now, the main aim of optimal input design is to improve the quality of the parameter
identification result and as a side benefit some constraints on the system states and
inputs can be regarded. In order to show the advantage of the input generation for
the actual example in Fig. 5.9, Fig. 5.10 and Fig. 5.11 the RMS error evaluated
for parameter values c2 near c̄2 is shown. According to the plot of RMS errors
in Fig. 5.9, utilizing Fopt does not improve the shape of the cost functional in
comparison to F0 when using the unbiased measurements. The more noisy the
sensor recording used for computing ERMS, the more advantageous the optimal
input Fopt influences the shape of the RMS error used for parameter identification
(see Fig. 5.10 and Fig. 5.11). As this is only an one-dimensional optimization
problem, no real benefit with regard to a speed up of the optimization process can
be gained. Advantages may be the increased curvature of ERMS and the possibility
to include end conditions on the system outputs.
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Figure 5.9: Evaluation of ERMS and x2(t) using F0 and Fopt for σ = 0

Figure 5.10: Evaluation of ERMS and x2(t) using F0 and Fopt for σ = 10−6

Figure 5.11: Evaluation of ERMS and x2(t) using F0 and Fopt for σ = 10−4
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5.3.4 Cart pendulum system
A system consisting of a translational moving cart and a pendulum mounted at its
center of mass is studied next. Figure 5.12(a) shows the geometric description of the
cart pendulum system. The cart is only allowed to move along the x-axis leading to
a two-dimensional motion of the pendulum, see again Fig. 5.12(a). The coordinates
chosen to describe the system’s motion are the cart position xc and the absolute
pendulum angle ϕ resulting in the vector of generalized coordinates q = [xc, ϕ]T.
Linear friction torque/force is considered for the revolute joint between cart and
pendulum and also between ground and the cart, defined by friction coefficients dp
and dc. The distance from the revolute joint to the pendulum’s center of gravity
is abbreviated by sp. The numeric values used for simulation are defined in the
table in Fig. 5.12(b). The goal of the optimization is to find the excitation force
F (t) that is best suited to generate measurements ϕ(t) allowing the identification
of sp and dp. Again the force F (t) is constrained to the intervall [−Fmax, Fmax].
Incorporating a scrap function using ϕ(T ) = vc(T ) = ϕ̇(T ) = 0 prevents from
movements at t > T .
In Fig. 5.13 the convergence history for the input optimization is depicted. Fig-
ure 5.14 shows the resulting optimized input signal Fopt, a signal Fcomp used for
comparison purposes and the initial signal F0. In Fig. 5.14 the signal Fcomp is chosen
as a sine wave with the period T and the amplitude equals the force constraint
|Fcomp| = Fmax. The plot of costs over iterations in Fig. 5.13 shows stable behavior
and convergence at n = 200 iterations. At about n = 180 iterations one can observe
a jump, which may result from to the nonlinearity of the model structure. Unlike
the previous example with only one parameter to identify, two parameters are now
searched for. Comparing the error functions thus leads to threedimensional plots
or contour plots, where one can study differences in shapes for different excitation
signals. Although the signals of the considered system output ϕ (see Fig. 5.15) are
comparable in amplitudes for Fopt and Fcomp the RMS errors differ significantly. In
Fig. 5.16 and Fig. 5.17 the contour plots for Fopt and Fcomp are depicted, where
both parameters dp and sp are varied in range of ±10% of the nominal value. The
contours represent values of ERMS at levels, which are chosen equally for both plots
in Fig. 5.16 and Fig. 5.17. Analyzing the plots leads to three main differences. First,
a small rotation of the functional can be detected, where the elliptical contours are
more aligned with the coordinate axes in the case of using Fopt. Further, a slight
compression of the functional can be noticed, which leads to a worse condition of
the optimization problem, and therefore to poorer convergence for Fopt. Finally,
the main difference of both functionals is the curvature, and hence the decreasing
distance of level curves. The RMS error depicted in Fig. 5.17 therefore is flatter
and more sensitive on biased signals of the measurements.
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dp

xc

dc F

'

sp

parameter value unit
mass of cart 2.0 kg
mass of pendulum 0.876 kg
sp 0.162 m
dc 0.1 Ns/m
dp 0.1 Nms
Fmax 10.0 N

(a) (b)

Figure 5.12: An optimal input F is searched for the cart pendulum system in (a).
In (b) parameters necessary for the numerical simulation are specified.

Figure 5.13: Convergence history for input optimization of cart pendulum system
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Figure 5.14: Optimized excitation signal for cart pendulum system

Figure 5.15: Pendulum angle ϕ(t) for Fopt and Fcomp
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Figure 5.16: Contour plot of RMS error ERMS(ξ) for Fopt

Figure 5.17: Contour plot of RMS error ERMS(ξ) for Fcomp
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CHAPTER 6
Conclusions and Outlook

State-of-the-art software tools allow for analyzing the behavior of complex multibody
systems, e.g. crank drives, entire vehicles, or machine tools. The quality thereof
mainly depends on the modeling chosen and the parameters used to quantify
system components. Uncertainties regarding parameters are commonly reduced
by the use of identification methods, that use data from real world experiments
for trimming the virtual system to behave like the real one. In the present
thesis an identification method, using the adjoint sensitivity analysis and an
iterative optimization approach, is derived. First, in order to clarify the multibody
background a short overview of the description of multibody systems and suitable
analyzing techniques are given. Before addressing the identification problem,
the prerequisites, which are the system sensitivity analysis, the introduction of
performance measures and the adjoint sensitivity analysis, are outlined. The
derivation of algorithms is accompanied by an illustrative example that allows to
find symbolic solutions.
Basically, the identification method can use any gradient based optimization tool
available. The results shown in Chapter 4 are gained by employing the quasi-
Newton method in combination with the BFGS algorithm for approximating the
Hessian.
As the identification result mainly depends on the measurements taken from
experiments, the precision of parameters may be increased by making use of
optimized experiments. Therefore, within this theses a method for designing
optimal inputs is proposed that uses the definition of optimality by means of a
minimum standard deviation of identified parameters. Furthermore, it allows to
set end conditions which prescribe states at the end of an experiment. Looking at
the example of the cart pendulum this results in more robust measurement signals.
Even when dealing with biased signals, more accurate parameter estimates are
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generated.
The thesis shows the great potential of using the adjoint sensitivity analysis in the
field of multibody dynamics. However, some points worth thinking about in future
investigations are outlined in the following.

1. Extension of the presented derivations for the case, when parameters appear
in the constraint equations C(q, ξ), the mass matrix M(q, ξ), or in the initial
conditions q0(ξ), v0(ξ). Especially the last two points seem to be of great
significance in the field of identifying inertia parameters.

2. The approach for optimizing system inputs in order to maximize the infor-
mation about parameters is carried out for systems in minimal coordinate
formulation only. In order to allow the inputs of complex multibody systems
to be optimized, further derivations have to be done. Moreover, the proposed
method may also handle different norms of the Fisher matrixM in order to
not only optimize the information content but also the condition of the opti-
mization problem, e.g. the spectral radius of the linearized Hessian computed
from the sensitivities.

3. Currently, all optimization packages available are performing the evaluations
of the performance measure under consideration in a sequential manner. In
particular, the step size computation requires many evaluations of the perfor-
mance measure, and therefore many forward simulations of the multibody
system. This causes a lot of time and may decides whether an engineer makes
use of an identification software or not. Therefore, the implementation of an
optimization algorithm that makes use of distributed computing resources
is suggested as a considerable improvement and may lead to an increased
applicability of the identification method.
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