
DIPLOMARBEIT

A Dynamic System Simulation Approach
for Biomechanical Models

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Biomedical Engineering

eingereicht von

Ruth Leskovar
Matrikelnummer 0726512

ausgeführt am Institut für Analysis und Scientific Computing
der Fakultät für Mathematik und Geoinformation der TU Wien

Betreuer: Ao.Univ.Prof.i.R. Dipl.-Ing. Dr.techn. Felix Breitenecker
Mitwirkung: Dipl.-Ing Dipl.-Ing Dr.techn. Andreas Körner

Wien, 18. Dezember 2018
Unterschrift Studentin Unterschrift Betreuer

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Człowiek nigdy nie ogląda się na to, co
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Zusammenfassung

In der Biomechanik werden mathematische Modelle unter anderem eingesetzt, um
kinematische und kinetische Analysen durchzuführen. Daraus gewonnene Erkennt-
nisse werden beispielsweise verwendet, um die Form von Prothesen individuell anzu-
passen oder die Funktionalität von aktiven Prothesen zu verbessern. Der Entwurf
einer modellbasierten Simulation erlaubt mehr Flexibilität in den Anwendungen der
biomechanischen Modelle. Die unterschiedlichen Modellbildungsansätze, welche in
der Biomechanik eingesetzt werden, gaben Anstoß diese als dynamische Systeme
zu betrachten um anschließend in einen geschlossenen Simulationskreislauf einzu-
binden. Dies ist durch Einsatz der Systemtheorie möglich.
Diese Arbeit analysiert das dynamische Verhalten von biomechanischen Modellen
für menschliche Gelenke. In der Biomechanik werden hauptsächlich zwei Model-
lierungsansätze verwendet. Einerseits basieren diese auf gewöhnlichen, andererseits
auf partiellen Differentialgleichungen. Ausgehend von der Systemtheorie gilt es nun
beide Modellbeschreibungen als dynamische Systeme darzustellen. Dies erfordert
den Einsatz von unterschiedlichen Methoden.
Nach der Einführung in die beiden inhaltlichen Säulen der Arbeit, Modellbildung
und Simulation sowie Systemtheorie, wird ein Modell vorgestellt, das die Flexion
eines menschlichen Knies simuliert. Dieses Modell ist in drei Simulationsumgebun-
gen implementiert, welche hinsichtlich ihrer Möglichkeiten, die sie für Simulationen
bieten, beleuchtet werden. Zwei Simulationsmodelle basieren auf gewöhnlichen Dif-
ferentialgleichungen, eines ist durch partielle Differentialgleichungen beschrieben.
Ziel war es für beide Modellansätze eine ähnliche Beschreibungsform ihres dynamis-
chen Verhaltens zu finden, was durch die Zustandsraumdarstellung möglich war.
Somit konnten verschiedene geschlossene Simulationskreisläufe entworfen und das
Verhalten der beiden Modellansätze in diesen untersucht werden.
Mehrkörpermodelle, welche auf gewöhnlichen Differentialgleichungen basieren, kön-
nen direkt als dynamische Systeme angesehen werden. Bei Modellen, welche durch
partielle Differentialgleichungen beschrieben werden, sind Einschränkungen notwendig,
bevor sie als dynamische Systeme formuliert werden können.
Diese Arbeit zeigt Ansätze in der mathematischen Modellbildung und Simulation
auf, welche es ermöglichen geschlossene Simulationskreisläufe für unterschiedliche
mathematische Modellbeschreibungen zu entwerfen.
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Abstract

Modelling and simulation is an important tool in the development and validation
of new technologies in many research fields. In biomechanics mathematical models
are used for example analysing kinematics and kinetics in the human body. These
insights are used to improve prostheses in their usability and wearing comfort. The
design of a feedback loop with biomechanical models as plant provides more flexibil-
ity in these applications. The system simulation approach allows to handle mathe-
matical models as dynamic systems and to design feedback loops.
This thesis analyses biomechanical models for anatomic joints regarding their dy-
namics. Biomechanical models are based on two different modelling approaches
mostly, ordinary and partial differential equations. Having these two different math-
ematical descriptions leads to the task of describing biomechanical models as dy-
namic systems in a simulation loop.
After an introduction on the basic principles of modelling and simulation as well as
system theory, the structure of a mathematical model for the flexion of a human knee
is presented. This model is implemented in three different simulation environments
and after compared and benchmarked regarding simulation qualities. Two simula-
tion models are multibody models, one is described by partial differential equations.
Both mathematical descriptions are analysed with respect to their dynamics in order
to describe their behaviour in similar forms, e.g. state space representation. Various
control designs are investigated and compared regarding the different behaviour of
the biomechanical models.
The usage of two different modelling approaches in the field of biomechanics was the
incitement to investigate their different behaviour in a feedback loop. As multibody
models are based on ordinary differential equations, they are dynamic systems and
therefore it is easy to establish a simulation in a loop. Models based on partial dif-
ferential equations what implies their dependence on time and space, respectively,
require restrictions to get a description as dynamic system. In conclusion, it can be
said that system simulation theory gives the possibility to examine different math-
ematical modelling descriptions on their behaviour. This allows to design closed
simulation circuits which are suitable for both modelling approaches. Insights from
this work can be extended to other research fields using modelling and simulation.
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1. Introduction

Mathematical models are used in biomechanical research to describe and analyse the
interactions in the human body. This comprises two main points, kinetics on the
one hand and kinematics on the other hand. These two different research questions
enable the application of different modelling approaches, multibody modelling and
describing models by partial differential equations.
From a system theoretical point of view, the description as dynamic system for
two different modelling approaches is an interesting challenge. This leads to the
application of various modelling techniques and finally to the development of a
simulation loop.
A short introduction to different applications of biomechanical models distinguished
by their modelling approaches is given and followed by the description of the purpose
of this thesis.

1.1. Overview of Biomechanical Models and their
Application

The two modelling approaches used in biomechanics differ regarding their mathe-
matical classification. Following that, as well their application fields differ, as it is
stated more in detail in [21] and [20], two contributions which build the substantial
base for the motivation of this work. This thesis focuses on the analysis of biome-
chanical models for anatomic joints. Due to their complex structure which is caused
by the interaction of different components, as soft and rigid tissues, it is challenging
to describe these systems mathematically.
Since multibody models describe relative motion between multiple bodies connected
by joints, they analyse kinematics. This gives the possibility to use multibody mod-
els for the analysis of gross motion and interactions between a number of compo-
nents. Mathematically, these models are represented by ordinary differential equa-
tions following the Lagrange formalism. Partial differential equations give the oppor-
tunity to analyse kinetics as they depend on time and as well on space. Furthermore,
the analysis of local deformation can be investigated in detail. In biomechanics, they
are applied for the investigation of adaptations in soft tissue under loads in the hu-
man body.
The development of multibody models for anatomic joints is still in focus of biome-
chanical research as it is done for the shoulder joint in [2] and the knee joint in
[21]. Those joints show the most complex joint structures in the human body due to
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their composition and high demands. Multibody models for anatomic joints help to
analyse the interactions during motion between the ligaments and bones of the joint.
Furthermore, the multibody modelling approach gives the possibility to analyse the
entire human body during movement. This includes gait cycle analysis which gives
insight to interactions in conventional conditions, but it can be extended to special
situations. For example, the work of [31] analysed the interactions in the human
body under various falling scenarios.
Although, the theory of multibody models can be extended to consider flexible bod-
ies as it is explained in [13], adaptations in human structures which occur under
applied loads, require a more detailed description. The adaptation of bone under
load was investigated by [33]. The mathematical formulation for describing such
problems can be accomplished by PDE models. A common application is the anal-
ysis of shape designs for prostheses in the human body as it is done in [17] for hip
prostheses. Moreover, in recent times the development of materials used in pros-
theses are a challenging research question. The analysis of a functionally graded
material for a femoral component in knee prostheses was established by [3] using
finite element analysis.

(a) Multibody model of the human knee
developed in [21].

(b) Finite element analysis for knee replace-
ment in [3].

Figure 1.1.: Different modelling approaches applied in biomechanics.

This leads to a common application of biomechanical models in the field of prosthet-
ics. This research field shows multidisciplinary aspects, as medicine, biomechanics,
biomaterials and electronics. Due to the fact that prostheses have to fulfil various
tasks and the requirements are different, the development of new technologies rep-
resent a challenge. The requirements on lower limb prostheses can be summarised

2



in three main points:
• Replacement of the static and dynamic function of the leg
• Adaptation to various activities
• Optical representation

The consideration of individual requirements is investigated in the work of [5] and
[6]. This approach combines biomechanical analysis with psychological studies.

1.2. Scope of the Thesis

The incitement of this work is the application of two different modelling approaches
in biomechanical research. This provides the challenge to describe both models as
dynamic systems. The use of system theory gives the possibility to design simula-
tion loops which gives flexibility in the application of biomechanical models. For
example, the investigation of prostheses adapting to various activities, as walking
on different grounds or running, can be accomplished using a feedback loop.
In the first step, it is necessary to deduce a biomechanical model for the human
knee joint. The task is to analyse the behaviour of the simulation models regarding
their different mathematical descriptions. Therefore, this conceptual model is im-
plemented in two different simulation environments. The solution of the simulation
model is calculated on the one hand using ODE solvers, on the other hand using
FEM.
The focus of this work is the application of system theory to these simulation models.
Various techniques should be applied in order to represent both simulation models
as dynamic systems, e.g. using state space representation. The final aim is the com-
bination of the simulation model and a feedback loop. This gives the possibility to
simulate various purposes and scenarios, as for example the definition of a reference
signal which determines the movement of the knee.

Figure 1.2.: Sketch of the human gait cycle.
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2. Basics of Modelling and
Simulation

This chapter gives an overview about basic methods in modelling and simulation.
Various modelling approaches are discussed which are based on different mathemat-
ical theories. Furthermore, different possibilities of simulation are analysed. The
field of modelling and simulations is wide due to the fact that it is used in many
research fields. Hence, a selection of modelling approaches and corresponding sim-
ulation environments is given.

2.1. Modelling and Simulation Circle

As the application of modelling and simulation is widely used in many research fields,
there exist various definitions, procedures and approaches which differ slightly. The
presented methods are based on [36] and [10].
Before the modelling process is explained, some reasons applying simulation as
problem-solving tool are given. The main reason to build a model, is to find solu-
tions for a problem. This implies to define a system, where this problem is present.
In engineering, simulation models are used instead of performing experiments which
are either not feasible or too costly. Moreover, simulation models are applied in
combination with experiments in order to extend their usage. For example, closed
simulation loops give the possibility to suppress disturbances as measuring noise or
to get access to all state variables which are not quantifiable in the real system.
The structure for the development of a new model has various focus in literature
due to its different stages. The following description is mainly based on [26] and
[4]. In the process of building a new model, three entities are considered. First, a
system has to be defined, where the problem can be formulated, whose solution is
the goal of the process. It is important to distinguish between two models which
are built outgoing from the system. Different designations are used in literature. In
this work, a distinction is made between the conceptual and the simulation model.
The construction of a valid model requires interaction between the involved entities.
Therefore, the modelling process is often compared to a circle as it is depicted in
Figure 2.1.
Analysing the underlying system, performing experiments if possible, leads to a
verbal description of the system which ideally can be extended to a mathematical
representation of the system. The goal of this modelling phase is the conceptual or
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Figure 2.1.: Graphical illustration of the modelling and simulation circle.

mathematical model, respectively, which is the analytical base for further investiga-
tions.
Proceeding from the conceptual model, a simulation model is built. This comprises
various possibilities of implementations which depend on the model structure but
as well on the system and demands of applications.
The implementation process entails a verification between the mathematical model
and its simulation model, a step dealing with models only. This ensures that the
simulation model is implemented correctly and fulfils the structure of the conceptual
model. This verifies, that the model is built right.
Obviously, the verification does not ensure that the conceptual model fulfils the
dynamics of the system and undergoes true hypotheses. This is verified by a vali-
dation process which interacts between model and its underlying system. Since two
models can be build, a distinction between two different validations has to be made.
First, the conceptual model is validated against the system ensuring that the ap-
plied theories and assumptions are correct and reasonable. Second, the solution of
the simulation model is analysed. This verifies if the simulation model is sufficient
accurate and if the intended purpose of applications is reached. This stage describes
the building process of the right model regarding the intended system’s behaviour.
For validation, many techniques exist. Their application depends on the used simu-
lation and model. For example, it is reasonable to use an animation of the simulator
for validation. Some other models require more analytical tests, as statistical tech-
niques. It is common to examine simulations under extreme conditions to verify the
accuracy of the results.
The modelling process yields to a valid and verified model whos results can be used to
find solutions of the underlying problem. Of course, this implies many experiments
and analysis of the simulation results.

6



2.2. Modelling Methods

Since modelling is applied in various fields of research and engineering, there exist
many methods to derive a conceptual model from an underlying system. A com-
mon distinction is made between the so-called white box and black box modelling
approach. A graphical illustration is given in Figure 2.2, where two possible ap-
proaches are depicted to formulate a conceptual model.

System

Analytical
Modelling

Structure
& Data

Behaviour
Modelling

Conceptual
Model

Figure 2.2.: Illustration of white, gray and black box modelling.

The white box modelling approach is based on mathematical analysis of the system.
A mathematical model is formulated following already known laws and rules, such
as physical, mechanical or electrical laws. This mathematical model is fitted to ex-
perimental measurement data, if available. In contrast to this, there is the black
box modelling approach where a mathematical model description by observation and
available data. The behaviour of the system is analysed and following this dynamic,
an adequate model is formulated.
It depends on the underlying system which particular modelling approach fits best.
Analysing a physical or engineering problem, allows to apply well known laws and
rules. Observing systems where the behaviour can not be described by principles,
the application of black box modelling is needed. Human behaviour is an example
of processes which can not be described following some rules, so sociology, economy,
etc. are examples for this.
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A combination of both approaches lead to the grey box modelling approach, where
a structure of the conceptual model is defined and the experimental data completes
the formulation.

2.3. Types of Mathematical Models

A conceptual model can be described by various types of mathematical formulation.
As it is written more in detail in [10], a distinction is made between continuous-time
and discrete-time models. Trajectories from these two model types are illustrated
in Figure 2.3.

π
−1

0

1

(a) Continuous-time trajectory.

π
−1

0

1

(b) Discrete-time model trajectory.

Figure 2.3.: Trajectory behaviour of a dynamic model.

The behaviour of continuous-time models is described by a system of differential
equations. Two classes are here again distinguished. One the one hand, systems,
which are described by ordinary differential equations f : Rn ×Rl ×Rp ×R→ R,

ẋ = f(x,u,p, t),

where the change of the states x ∈ Rn depends on the input u ∈ Rl, parameters
p ∈ Rp and time t ∈ R. One the other hand, systems described by partial differential
equations, as for example the heat equation

∂u

∂t
= α

(
∂2u

∂x
+

∂2u

∂y
+

∂2u

∂z

)
,

for the change of temperatur u = u(x, y, z) regarding the space coordinates x, y, z
and time t.
For systems described by ODEs, a state space representation can be formulated as it
is explained more in detail in chapter 3. This state space representation is finite di-
mensional and therefore, they are called lumped parameter models. The state space
representation for systems described by PDEs in general is infinite dimensional due
to the dependence on time and as well space. This is the reason why they are called
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distributed parameter models.
Regarding discrete-time models, the solution of the system is given at fixed time
steps. Their behaviour can be represented through difference equations for equidis-
tant time steps,

xk+1 = f(xk,uk,pk, tk),

as counterpart to ODEs. Analogously, cellular automata allows a description dis-
tributed over space but discrete in time, the correspondence to PDEs. It is important
to notice that ODE solvers and finite element analysis are calculating the solution
for a continuous model by discretisation. This leads to a discrete representation of
a continuous model.
For the sake of completeness, there exist two more classes of mathematical models,
qualitative and discrete-event models.

2.4. Selected Overview of Modelling Approaches

The formulation of a mathematical description can be derived using different mod-
elling approaches. Some systems allow the direct derivation of mathematical for-
mulas by relying on more simple systems where the mathematical descriptions are
already known or by combining already established mathematical model structures.
More complex systems need further analysis before a mathematical description can
be formulated.
Analysing causalities leads to the application of system dynamics, a method devel-
oped by [12]. This technique is based on the identification of feedback loops between
entities which form a dynamical system. Analysing the positive and negative loops
leads to a qualitative description of the system as it is depicted in Figure 2.4(a), in
the example of a population model.

Births Population Deaths

+ +

+ −

+ −

(a) Representation of system dynamics.

quantity
u y

(b) Simple compartment model.

Figure 2.4.: Illustration of system dynamics and compartment modelling.

A similar description is given by compartment models which describes the flow of
quantities from one entity to another as it is depicted in Figure 2.4(b). This mod-
elling approach is often used in biomedicine, e.g. describing the blood flow in the
human body divided in compartments as it is done in [23]. Both, compartment mod-
elling and system dynamics approach, lead to a set of ordinary differential equations.
Basically, they are based on the same hypotheses, as the system theory. This means,
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these modelling approaches are looking on a system as a whole, a so-called macro-
scopic modelling approach. Describing a system not only by one entity but as an
entire system consisting of individual subsystem leads to the microscopic modelling
approach as it is depicted in Figure 2.5. The agent based modelling approach is one
example. Defining laws for individuals gives the opportunity to describe the entire
system as combination of all single dynamics.

Population
births deaths

(a) Macroscopic modelling approach.

births deaths

(b) Microscopic modelling appraoch.

Figure 2.5.: Representation of macroscopic and microscopic modelling appraoch.

In this work, a physical modelling approach is used. As it was mentioned above, this
modelling approach is based on fundamental physical laws. Basically, this modelling
approach builds the bridge to the simulation environments because the modelling
process can be done in a simulation environment directly. The process in a simula-
tor is done by the connection of pre-implemented components, which form a system
model. Each component follows pre-defined functions and its dynamic can be influ-
enced by parameters.
One derived method is the multibody modelling approach which is mainly used in
this work. This approach gives the opportunity to analyse motion between multiple
bodies. Given a global coordinate system allows to describe rotational and transla-
tional movements of bodies in respect to each other as it is depicted in Figure 2.6.
Multibody models consists of bodies which are connected through joints. The bodies
are described by their physical properties, e.g. mass, density and inertial rotation.
The joints linking the bodies have various degrees of freedom, including rotational
and translational degrees of freedom. Moreover, the bodies can be connected by
flexible elements, as for example spring damper elements. Multibody modelling fo-
cuses on rigid bodies but it can be extended to flexible bodies as it is stated in [13].
The equations describing the dynamics in a multibody system can be derived fol-
lowing the Lagrange formalism L = T − V for the kinetic energy T and potential
energy V . Using the Lagrange’s equations of the second kind

dL

dt

∂L

∂q̇k
− ∂L

∂qk
= 0, k = 1, 2, . . . , n,

where qk are the considered generalised coordinates, allows to describe the motion
resulting under an applied force F in multibody systems by

Mq̈ + JT
q λ = F,
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with M , the mass matrix of the system, the Jacobian J in respect to the generalised
coordinates q and the Lagrangian multipliers λ.

x0

y0

z0

x1

y1

z1

x2

y2

z2

Figure 2.6.: Illustration of a multibody system and their local and the global coor-
dinate system.

2.5. Selected Overview of Simulation
Environments

The choice of the right simulation environment is an important question before the
implementation of a conceptual model. This depends on various aspects which de-
termine the entire implementation process. The structure of the conceptual model
often requires special tools, e.g. ODE solver. Of course, this is influenced by the real
system as well because the system limits the possibilities of the conceptual model
structure. The application and usability of the simulation model for final experi-
ments determine the choice as well. Furthermore, the usage of the simulation model
by other people than the programmer itself or questions about infrastructure, as
license e.g. can influence the software options.
In the following, three different simulation environments are introduced which are
used in this work. The simulation environments are chosen due to their capabilities
of multibody dynamics simulation. All of them contain modelling elements based on
physical properties which are connected in the framework, forming the simulation
model. This means, the implementation phase in these environments is supported
by a visualisation of the simulation model. Furthermore, all of them offer anima-
tions of simulation results. These visualisations can be used for verification and
validation. Obviously, the usage of visualisation is important in further work due to
the importance of the underlying geometry of the bones in the knee in the models.

2.5.1. Simscape

Mathworks developed in the Simulink environment the Simscape library. It com-
prises various elements for physical modelling, including the Simscape multibody
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library, formerly known as SimMechanics, which is used for modelling mechanical
systems. In addition to the multibody blocks, elements for electrical circuits, ther-
mal and fluid components exist.
The elements in the library are in their usage similar to the blocks in Simulink.
Moreover, it is possible to use Simulink and Simscape elements in the same model.
This combination requires blocks which convert the signal, PS-Simulink Converter
from Simscape to Simulink and Simulink-PS Converter vice versa. The applica-
tion of them is necessary, because the physical signals from Simscape differ in their
format to the Simulink signals.
The embedment of Simscape in Simulink allows the usage of the powerful control
tools offered in Simulink and MATLAB, one of the main reason to build the multi-
body model in Simscape in this work. Furthermore, the post processing of results
in MATLAB and using numerical capabilities are important properties of Simscape.
All Simscape models are based on ordinary differential equations which are solved
by numerical ODE solvers. All seven solvers which are available in Simulink can
be applied to Simscape models as well since the solving process is executed in the
Simulink environment. Table 2.1 gives an overview about the available solvers and
their used methods. Generally, the time steps of the solver can be chosen to be fixed
or variable and the choice of the solver is done automatically.

ODE solver Method

ode45 Dormand-Prince, Runge-Kutta, (4,5)

ode23 Bogacki and Shampine, Runge-Kutta, (2,3)

ode113 PECE Implementation of Adams-Bashforth-Moutlon

ode15s Numerical Differentiation Formulas

23s Second-order, modified Rosenbrock formula

23t Trapezoidal rule

23tb TR-BDF2

Table 2.1.: ODE solver in Simulink and Simscape.

The first three solvers ode45, ode23 and ode133 are explicit solvers, the following
four are implicit solvers which are applicable for stiff systems.

2.5.2. MapleSim

Another simulation environment which provides a multibody library is MapleSim,
developed by Maplesoft and based on Modelica. In contrast to Simscape, MapleSim
is not directly embedded in Maple but has its own user interface. Similar to Sim-
scape, MapleSim is intended for physical modelling. Therefore, the library contains
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ODE solver Method

Fixed time steps

Euler Forward Euler

Implicit Euler Backward Euler

RK2 2nd order Runge-Kutta

RK3 3rd order Runge-Kutta

RK4 4th Runge-Kutta

Variable time steps

RKF45 Fehlberg, Runge-Kutta, (4,5)

CK45 Cash-Karp, Runge-Kutta, (4,5)

Rosenbrock Implicit Rosenbrock, RK, (3,4)

Table 2.2.: ODE solver in MapleSim.

elements for thermal, hydraulic and electrical models as well.
The code of the models built in MapleSim is based on Modelica, an object-oriented
modelling language for component-oriented modelling of complex systems. In con-
trast to Simscape, MapleSim offers Modelica code of the models. In the Modelica
editor, the code describing the individual elements can be modified. Additionally,
MapleSim offers the programming of custom defined components. This allows a lot
more flexibility in model building than Simscape.
For all models built in MapleSim, the equations describing the model can be ex-
tracted. The equations can be calculated for the entire model or a subsystem only.
If parameters are defined as symbolic variables using a parameter block, the equa-
tions are extracted with symbolic variables as well. The equations can be extracted
as differential algebraic, ordinary differential or algebraic equations. The format
depends on the model structure, not each form is supported for any model.
Furthermore, MapleSim offers control elements for designing feedback loops. The
control tools are not that developed as in Simulink. Therefore, the design of the
closed simulation loop is considered in Simulink henceforth.
As in Simscape, the models are solved using ODE solvers. They are distinguished
by fixed and variable step time solvers. Table 2.2 gives an overview about the ODE
solver in MapleSim.
The variable time-step solvers CK45 and Rosenbrock are able to solve semi-stiff and
stiff systems, respectively. The others are applicable to non-stiff systems only.

2.5.3. COMSOL Multiphysics

COMSOL Multiphysics is a software for modelling physical system which are solved
by finite element analysis. The origin from COMSOL is FEMLAB, the former
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partial differential equation toolbox in MATLAB. The structure of COMSOL con-
sists of modules, divided into various application fields, such as electrical, chemi-
cal, fluid and heat, structural and acoustic. The simulation models are built from
pre-implemented components which vary in the modules, similar to the libraries in
Simscape and MapleSim. The model structure is not visible as block diagram but
as a model tree whose structure remains the same for each module. This means, the
procedure of model building is the same, independent from the chosen module. After
the development of the simulation model, studies can be performed representing the
simulation experiments. COMSOL offers here a wide variety of studies which differ
between the modules. For example, not only time-dependent, but as well eigenvalue
studies for linear analysis can be performed. This expands the application fields of
the simulation models due to its usability.
Since all models are solved by FEA, each model is defined on a geometry. An im-
portant step in the modelling process is the meshing of the geometry. Dependent on
the quality of the mesh, the solution is more or less accurate. Various mesh designs
which differ in size and shape can be chosen and evaluated.
The solution is calculated in discrete time steps on the defined mesh, the finite ele-
ments. Therefore, the solution depends for any study on time and space. A lot of
post-processing tools for the solution are available, including plotting and anima-
tion.
COMSOL simplifies the model building process by LiveLinks to other software envi-
ronments, e.g. MATLAB and Solidworks. This makes it possible to import geome-
tries defined in Solidworks easily or to use simulation results for further investigations
in MATLAB.
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3. Basics of Control

This chapter presents aspects of basic control theory. After an introduction to the
basic structure of a general control circuit and the applications of control, some
mathematical tools for the analysis of the dynamics of systems are introduced.
These techniques are needed to choose an appropriate design for the control cir-
cuit. Dependent on the structure of the underlying system, which will be controlled,
different control designs are used. The main point in the choice of a control circuit
is the difference between linear and nonlinear systems. Hence, various structures of
control circuits, first for linear and afterwards for nonlinear systems, are introduced.
Each method is illustrated by a basic example to outline different usage.
Unless stated otherwise, this chapter is based on [18], [19] and [11].

3.1. Dynamic Systems

In system theory and consequently in control theory, dynamic systems, as shown
in Figure 3.1, are considered. A dynamic system is a set of dynamically interact-
ing and independent components forming an integrated whole. Multiple influences
coming from outside are acting on the dynamic system and consequently changing
the behaviour of the system. Different input functions u : R+

0 → R
m, initial values

x0 and parameters p ∈ Rp influence the internal state variables x ∈ Rn and lead to
a particular system behaviour and thus to output functions y ∈ Rl.

S
x(t)

u(t) y(t)

p

x0

Figure 3.1.: Block diagram representing a dynamic system.

The behaviour of dynamic systems is not direct proportional to the input and dis-
turbance adaption because it changes its behaviour dependent on its own dynamics.
Nevertheless, it is possible to describe the behaviour of dynamic systems mathemat-
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ically by functions in the form

ẋ = f(x,u,p, t), x(t0) = x0 (3.1a)
y = h(x,u, t). (3.1b)

The two functions f and h describe the dynamic of the system and the output,
whereby the function f is a set of first order ordinary differential equations, and its
solution is in the following indicated by x(t) = ϕ(x0,u, t).

3.2. The general Structure of Control Circuits and
the Purpose of Control

The composition of a general control circuit can be seen in Figure 3.2. A control
circuit is a closed loop system which consists of multiple parts. The aim of the closed
loop is to influence the behaviour of a dynamic system, which is denominated as the
plant. The output y is fed back to the origin of the circuit and therefore closes the
simulation loop. The difference e between the output y and the reference input r
is evaluated and defines the input of the controller. Depending on to the difference
e, the controller calculates an appropriate input for the plant.

controller plant
r(t) e(t) u(t) y(t)

−

Figure 3.2.: A general control circuit consisting of a plant and one controller.

Control has to fulfil various tasks. The most obvious is to introduce a reference signal
in order to influence the dynamics of the system in such way that the output matches
the desired signal. Additionally, control can be applied for the stabilisation of an
instable plant. Furthermore, in some cases it is possible to suppress the sensitivity
to parameters with the help of control.
Thus, three points summarise the main tasks of control:

• Output y(t) should follow the reference signal r(t).
• Stabilisation of an instable system is possible.
• Suppress the sensitivity of a system to some parameters.

The last two points offer the possibility to include control theory in the context of
modelling and simulation.
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3.3. Control of linear Plants

This section introduces techniques for the control of linear systems. In the beginning,
the definition of a linear system is given and its characteristics are investigated.
This includes as well the properties of the solution of linear dynamic systems. Next,
three important qualities of linear systems are introduced in order to investigate
if a linear system fulfils all necessary conditions to include it in a closed feedback
loop. To conclude, this section ends with three different designs of a control circuit
for linear systems. These foundations give the opportunity to extend the theory of
control for nonlinear systems in the next section.
Analysing a dynamic linear system includes determining the functions describing
the behaviour and dynamics of the system. A dynamic system is linear with respect
to the state variables, the input and time. Mathematically, this can be described by
the following

Definition 3.3.1 (Linear dynamic system). A dynamic system given by the equations
3.1 is a linear dynamic system if for all input values u and each starting time t0 ≥ 0,
the output y(x0,u, t) = h(ϕ(x0,u, t),u, t) ∈ Rm fulfils the following conditions

y(α1 x0,1 + α2 x0,2,0, t) = α1 y(x0,1,0, t) + α2 y(x0,2,0, t) (3.2a)
y(0, β1 u1 + β2 u2, t) = β1 y(0,u1, t) + β2 y(0,u2, t) (3.2b)

y(x0,u, t) = y(x0,0, t) + y(0,u, t) (3.2c)

for αi, βi ∈ R, i = 1, 2.

Subsequently, also linear time-invariant systems are investigated in detail. The
dynamic behaviour of these systems is independent on time delays. This property
can be described as follows.

Definition 3.3.2 (Time-invariant System). A dynamic system is called time invariant
if for all input values u and each starting time t0 ≥ 0 the following condition holds.
If y(t) indicates the output of the system at time t for the initial value x(t0) = x0 and
the input value u(τ), t0 ≤ τ ≤ t, then y(t − T ) is the output of the system with the
initial value x(t0 + T ) = x0 and the input value u(τ − T ), t0 + T ≤ τ ≤ t+ T .

Since the behaviour of linear dynamic systems is described by linear mappings,
it is possible to use transform matrices. Consequently, four matrices are needed
to represent a linear dynamic system. This description is called the state-space
representation.

Theorem 3.3.3 (State-space representation). A system as denoted in 3.1 is linear if
and only if it can be written as

ẋ = A(t)x+B(t)u, x(t0) = x0 (3.3a)
y = C(t)x+D(t)u. (3.3b)
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Hereby, A(t) ∈ Rn×n designates the state or system matrix, B(t) ∈ Rn×m is the input
matrix, C(t) ∈ Rl×n denotes the output matrix and D(t) ∈ Rl×m the feedthrough
matrix.

Furthermore, this description can be found as well for linear time-invariant systems.
The only difference is that the four matrices are constant and not dependent on
time anymore.

Theorem 3.3.4. A system is linear and time invariant if it can be convicted to

ẋ = Ax+Bu, x(0) = x0 (3.4a)
y = Cx+Du. (3.4b)

The four matrices are called as before in theorem 3.3.3.

3.3.1. Laplace Transform

In control engineering as well as in mathematical modelling and simulation, the
Laplace Transform is a common tool used to describe LTI systems. The Laplace
Transform is a transformation of functions given in time t to functions in the fre-
quency domain s. Therefore, this mapping is a function from the real numbers to
the complex numbers. The following is based on [16] and [24]. In order to simplify
the area of existence for the Laplacian, a set containing functions is defined.

Definition 3.3.5. Let I = [0,∞). The set P(I,R) contains all functions f : I → R

which

(i) are piecewise continuous on any finite subinterval of I and

(ii) fulfils |f(t)| ≤ Ceγt, for C, γ ∈ R.

This gives the possibility to define the Laplacian.

Definition 3.3.6. Given a function f : I → R. For f ∈ P(I,R) the integral

F (s) = L(f)(s) =
∞∫
0

e−stf(t) dt, s = α + iω (3.5)

is convergent for all s with Re s = α > γ. This function F (s) = L(f)(s) is called the
Laplace Transform of the function f(t) and the domain Γ = {s ∈ C : Re s > γ} the
area of existence of L(f)(s).

Therefore, the Laplace Transform is a function with the following domains

L : P(I,R) → M(C,C),

f(t) 7→ F (s),
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whereby M(C,C) describes the space, which contains all functions from C to C.
The original function f in time-domain can be calculated by the Inverse Laplace
Transform, given by

f(t) = L−1(F )(t) =
1

2π i

∫
Γ

estF (s) ds, (3.6)

with the convergence area Γ := {s ∈ C : s = r + i t, r ≥ γ, t ∈ R}. Following this
calculation and the definition before shows that the inverse Laplacian is a function

L−1 : img (P(I, R)) → P(I, R),

F (s) 7→ f(t).

The image of the Laplace Transform is denoted as img (P(I, R)).
Some of the most important properties of the Laplace Transform are summarised
below.

Theorem 3.3.7 (Properties of the Laplace Transform). The following properties are
valid for the Laplacians L(f)(s) = F (s),L(f1)(s) = F1(s),L(f2)(s) = F2(s).

(i) Linearity.
L(c1f1 + c2f2) = c1F1(s) + c2F2(s), c1, c2 ∈ R

(ii) Differentiation.

L
(

dn

dtn
f

)
(s) = L(f (n))(s) = snF (s)−f(0) sn−1−f (1)(0)sn−2− . . .−f (n−1)(0)

(iii) Integration.

L
(∫ t

0

f(τ) dt

)
=

1

s
F (s)

(iv) Convolution theorem.

L(f1 ∗ f2)(s) =L

 t∫
0

f1(τ)f2(t− τ) dτ

 (s)

=L

 t∫
0

f1(t− τ)f2(τ) dτ

 (s) = F1(s)F2(s)

(v) Displacement.

L(f(t+ a)) = eas

F (s)−
a∫

0

f(t)e−st dt

 , a > 0

19



f(t) F (s) f(t) F (s) f(t) F (s)

t 1
s2

sin(bt) b
s2+b2

eat sin(bt) b
(s−a)2+b2

tn eat n!
(s−a)n+1 cos(bt) s

s2+b2
eat cos(bt) s−a

(s−a)2+b2

Table 3.1.: Laplace Transforms of common used functions.

The Laplacians of common functions are listed in Table 3.1. Not only for univariate
but also for multivariate functions f the Laplace Transform is defined.

Definition 3.3.8 (Laplace Transform for vectorial functions). Consider a vector field
f : Rn → R

n. The Laplace Transform of this function is calculated by the Laplace
Transform for each entry, as follows

L(f)(s) =


L(f1)(s)
L(f2)(s)

...
L(fn)(s)

 .

3.3.2. Transfer Functions

Given a LTI system as in (3.4), it is possible to apply the Laplace Transform in order
to obtain the description by multiplications only. Hence, the solution of the system
of differential equations is calculated easily. In order to reproduce this calculation,
the state space representation of an LTI system is given with

ẋ = Ax+Bu, x(0) = x0,

y = Cx+Du.

The Laplace Transforms of the state vector, the input and the output are denoted
in the following as L(x) = X,L(x0) = X0, L(u) = U and L(y) = Y . Applying
the Laplace Transform on the LTI system (3.4), it converts to

sX −X0 = AX +BU (3.7)
Y = CX +DU . (3.8)

Equation (3.7) can now be transferred to

X(sIn − A) = BU +X0

X = (sIn − A)−1(BU +X0), (3.9)
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with the identity matrix In ∈ Rn×n. Substitution of this result in equation (3.8)
gives

Y = C(sIn − A)−1BU + C(sIn − A)−1X0 +DU

Y = C(sIn − A)−1X0 + (C(sIn − A)−1B +D)U , (3.10)

which leads to the following

Definition 3.3.9 (Transfer function). Considering the LTI system (3.4) with the Laplace
Transforms of the input L(u) = U ∈ Rm, output L(y) = Y ∈ Rl and the initial value
x(0) = x0 = 0. The function G satisfying the equation

Y (s) = G(s)U(s), (3.11)

is called the transfer function G ∈ Rl×m of the LTI system.

In the case of a single input-single output (SISO) system, the transfer function is a
scalar function describing the transmission behaviour of the output y with respect
to the input u. For a multiple input-multiple output (MIMO) system, a matrix
filled with transfer functions is considered. Each entry of this matrix describes the
transmission behaviour for one entry of the output vector y and the corresponding
entry in the input vector u as it is stated in more detail in [30]. The matrix G has
the form

G(s) =

G11(s) · · · G1m(s)
... . . . ...

Gl1(s) · · · Glm(s)

 .

The elements of the matrix G can be calculated following

Theorem 3.3.10. The transfer function Gij of a LTI system defined in 3.4 is calculated
by

Gij(s) = (cTi (sIn − A)−1bj + di) (3.12a)

=
cTi (sIn − A)adjbj
det(sIn − A)

+ di =
pij(s)

qij(s)
, (3.12b)

with the polynomials pij, qij and i = 1 . . . l, j = 1 . . .m. The vectors ci,di contain the
values of the i-th row of the matrix C respectively D and the vector bj the values of
the j-th column of the matrix B. The zeros of the denominators qij are the poles of
the transfer function Gij and simultaneously eigenvalues of the state matrix A. The
polynomial degree of the nominator pij defines the order of the transfer function Gij.

It is important to notice that not all eigenvalues of the matrix A are poles of one
transfer function Gij due to cancellations with the nominator. Given a transfer
function G and calculating the describing system leads to the realisability problem.
If the transfer function fulfils some requirements, this realisation is unique. This is
stated in detail in the following
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Theorem 3.3.11. Consider the univariate transfer function

G =
p

q
.

This transfer function is realisable if

deg p ≤ deg q.

The transfer function is called strictly proper if deg p < deg q, otherwise proper. Equiv-
alent, the inequation

lim
s→∞

‖G(s)‖ < ∞

is fulfilled.

If this condition is not satisfied, the polynomial division would lead to derivations
of the input u and therefore to a non-unique structure of the system.
Considering two dynamic systems, described by transfer functions as

Y1(s) = G1(s)U1(s),

Y2(s) = G2(s)U2(s),

leads to various options of combinations. The first possibility is to place them in
series, therefore that Y1 = U2. This leads to a system with the input u = U1 and
the output y = Y2, as depicted in Figure 3.3. Calculating the transfer function for

G1(s) G2(s)
u = u1 y1 = u2 y2 = y

G(s)

Figure 3.3.: Block diagram of two transfer functions connected in series.

the entire system leads to the equations for the input u and the output y,

Y1(s) = G1(s)U1(s)

Y2(s) = G2(s)U2(s) = G2(s)G1(s)U1(s) = G2(s)G1(s)U(s).

The resulting transfer function G can be calculated by component multiplication of
the two transfer functions G1 and G2.

Y (s)

U(s)
= G(s) = G2(s)G1(s) (3.13)
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G1(s)

G2(s)

u y

G(s)

Figure 3.4.: Block diagram of two transfer functions connected in parallel.

Another possibility to combine transfer functions would be the connection in parallel
as it is depicted in Figure 3.4 with two transfer functions G1 and G2. Again, it is
possible to calculate the transfer function for the whole system, considering first the
equation for the Laplacian of the output y,

Y1(s) + Y2(s) = G1(s)U(s) +G2(s)U(s) = (G1(s) +G2(s))U(s).

The resulting transfer matrix G is calculated by adding the two transfer matrices
G1, G2.

Y (s)

U(s)
= G(s) = G1(s) +G2(s) (3.14)

Two transfer functions can be implemented in a closed feedback loop as it is depicted
in Figure 3.5 and again, the resulting transfer matrix can be calculated easily. The

G1(s)

G2(s)

u u1 y

y2

G(s)

Figure 3.5.: Transfer functions switched in feedback.

input u1 for the transfer function G1 is the difference between the input u and the
output y2 of the transfer function G2. In view of this relationship, the following
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calculations can be derived.

U1(s) = U (s) + Y2(s) = U(s) + Y (s)G2(s)

Y (s) = U1(s)G1(s) = (U(s) + Y (s)G2(s))G1(s)

Y (s)(1−G2(s)G1(s)) = U (s)G1(s)

For the transfer function G, the following equation holds

Y (s)

U(s)
= G(s) =

G1(s)

1−G2(s)G1(s)
. (3.15)

Concluding this, the transfer functions are forming an algebra, which means that
for all transfer functions G1, G2, G3 and s ∈ C, the following equations are fulfilled.

(G1 +G2)G3 = G1G2 +G2G3 (3.16)
G1(G2 +G3) = G1G2 +G1G3 (3.17)

s(G1G2) = (sG1)G2 = G1(sG2) (3.18)

These equations allow to combine transfer functions in such a way that the resulting
transfer function still fulfils all required conditions.
Concluding the theory of transfer functions leads to the possibility to define some
standard elements included in linear control, following [22]. Of course, it is possible
to combine all these presented elements to create more complex control structures.
These connections follow the rules introduced in section 3.3.2. In Tables 3.2 and
3.3, the mathematical formulas and the corresponding transfer function for dynamic
systems with the input u and the output y are illustrated. Moreover, the cor-
responding step responses to the Heaviside function are illustrated to show their
acting behaviour. In most of the cases, the reaction of the output related to the
input is clear, e.g. implementing the proportional controller leads to a proportional
reaction of the output to the constant C. Consider in the following, the constant
C ∈ R and time constants T, T1, T2 > 0. It is important to notice that the transfer
function for the differentiator

G(s) = Cs

is not realisable due to the fact that a transfer function requires

lim
s→∞

‖G(s)‖ < ∞

in order to represent a unique structure of the state space representation. In other
words, the degree of the nominator must be lower or equal than the degree of the
denominator. This leads to an extension of the denominator with an additional
term, resulting in the final transfer function of the differentiator of

G(s) =
Cs

Ts+ 1
.
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f(t) G(s) Step response

Proportional y(t) = Cu(t) C

t

y(t)

Integrator y(t) = C
t∫
0

u(τ) dτ
C

s

t

y(t)

Differentiator y(t) = Cu̇(t)
Cs

Ts+ 1

t

y(t)

Delay y(t) = u(t− T ) e−sT
← T →

t

y(t)

Table 3.2.: Basic control elements.

Of course, it is possible to combine these standard elements, ensuing control elements
with more properties. An important and often used element is the well-known
PID element which combines the proportional, the integrator and the differentiator
element. These three elements are connected in parallel which implies for the entire
transfer function the summation of all three elements. In the time domain, the
output is calculated by

y(t) = C

u(t) +

t∫
0

u(τ) dτ + u̇(t)

 .
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Therefore, the transfer function in the s-domain is given as

G(s) = C

(
1 +

1

TIs
+ TDs

)
, (3.19)

with two time constants TI , TD and two constants CI , CD depending on the propor-
tional constant with CP = CITI and CD = CPTD. Simplifying the equation 3.19 and
redefining two time constants T1, T2 depending on TI and TD leads to the equation

G(s) = C
(T1s+ 1)(T2s+ 1)

s
.

However, this transfer function is not realisable. Therefore, the denominator is
substituted by the term Ts + 1, leading to the final transfer function of the PID
element

G(s) = C
(T1s+ 1)(T2s+ 1)

Ts+ 1
.

The step response of the PID element is depicted in Figure 3.6 and shows a re-

t

y(t)

Figure 3.6.: Step response for the PID element.

action of all three included elements. In conclusion, two more standard elements
are presented in Table 3.3, the P-T1 and P-T2 element. One additional note may
be taken, that the element P-T2 allows to implement an oscillating reaction of the
output according to the input.
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f(t) G(s) Step response

P-T1 T ẏ(t) + y(t) = Cu(t)
C

Ts+ 1

t

y(t)

P-T2 T 2ÿ(t) + T ẏ(t) + y(t) = Cu(t)
C

(sT )2 + 2ξsT + 1

t

y(t)

Table 3.3.: Standard control elements.

3.3.3. Properties of the Solution of linear Systems

Considering linear systems gives the opportunity to describe their analytical solu-
tions and further to analyse them in respect to their properties. The solution can be
calculated easily because the behaviour can be described by a first order differential
equation.

Theorem 3.3.12 (Transition matrix for autonomous systems). Let A ∈ Rn×n,x ∈ Rn.
Considering the linear autonomous system

ẋ = Ax, x(t0) = x0, (3.20)

the solution can be calculated by

x(t) = Φ(t)x0, (3.21)

where Φ(t) ∈ Rn×n is defined as

Φ(t) =
∞∑
k=0

Ak t
k

k!
(3.22)

which is called the transition matrix.

Following the definition for the exponential series, the transition matrix can be
written as

Φ(t) = eAt. (3.23)
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Theorem 3.3.13 (Characteristics of the transition matrix). As a consequence of the
calculus for the exponential function, four characteristics can be formulated for the
transition matrix.

(i) Φ(0) = In

(ii) Φ(t+ s) = Φ(t)Φ(s)

(iii) Φ−1(t) = Φ(−t)

(iv) d
dt
Φ(t) = AΦ(t)

The solution can be found analogously for LTI systems, it is only extended by the
dependence on the matrix B.

Theorem 3.3.14 ( Transition matrix for LTI systems). For the linear time-invariant
system of the form 3.4, the solution can be written as

x(t) = Φ(t)x0 +

∫ t

0

Φ(t− τ)Bu(τ)dt (3.24)

y(t) = Cx(t) +Du(t) (3.25)

with the transition matrix Φ(t) ∈ Rn×n as in (3.23).

By applying the Laplace Transform on LTI systems, the transition matrix can be
calculated with the state matrix A. Using formula 3.24 and applying the Laplace
Transform leads to

x(t) = Φ(t)x0 +

∫ t

0

Φ(t− τ)Bu(τ)dt

x(t) = Φ(t)x0 +B

∫ t

0

Φ(t− τ)u(τ)dt

X(s) = L(Φ)(s)x0 +BL
(∫ t

0

Φ(t− τ)u(τ)dt

)
. (3.26)

The convolution theorem, introduced in 3.3.7, can be utilised and finally leads to

X(s) = L(Φ)(s)x0 +BL(Φ)(s)U (s). (3.27)

Comparing this equation to

X(s) = (sIn − A)−1x0 + (sIn − A)−1BU(s), (3.28)

which directly results from 3.9, leads to the conclusion, that the transition matrix
Φ in the s-domain can be calculated by

L(Φ)(s) = (sIn − A)−1. (3.29)

The knowledge of the eigenvalues of the matrix A allows to describe the solutions
of a linear system as linear combinations which is stated in the following
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Theorem 3.3.15 (Solution properties). Considering the linear autonomous system (3.20),
each solution xj(t), j = 1, . . . , n is a linear combination of the functions

tk1eλt, tk2eαt cos (βt), tk3eαt sin (βt)

for real eigenvalues λ of A, conjugated eigenvalues α± iβ of A and km = 0, . . . , (r− 1)
with r as the multiplicity of the corresponding eigenvalues and m = 1, 2, 3.

With the help of this description for the solution of linear systems, it is now easy to
determine if this system is stable or not. For further analysis, an equilibrium state
of an autonomous system has to be defined.

Definition 3.3.16 (Equilibrium state). xE ∈ Rn is an equilibrium state of the system
ẋ = f(x) if f(xR) = 0 holds for all t ≥ 0.

Theorem 3.3.17 (Global asymptotic Stability). Consider LTI autonomous systems as
in (3.20). If all eigenvalues of A have a negative real part, then the equation

lim
t→∞

x(t) = lim
t→∞

Φ(t)x0 = 0,

holds for all initial values x0 ∈ Rn. In this case, the equilibrium state xE = 0 is called
global asymptotic stable.

This theorem is not only valid for the equilibrium state xE = 0 but also for all
equilibrium states. This can be proven by state space transformation in the form of
x(t) = V z(t) with a regular matrix V ∈ Rn. Applying this transformation to a LTI
system of the form (3.4) leads to the system

ż = V −1AV x+ V −1Bu, z(0) = z0 = V −1x0 (3.30a)
y = CV z +Du. (3.30b)

Both descriptions of an LTI system are equivalent and the matrices A and V −1AV
are similar. The following theorems are formulated for the equilibrium state xE = 0.
With the transformation (3.30) it is possible to extend them for all equilibrium
states.
For LTI systems, an additional stability is introduced which is valid for the entire
system and not only locally on the equilibrium states anymore. This stability is
only valid for a scalar input or output u, y, respectively.

Definition 3.3.18 (BIBO Stability). Considering linear time-invariant systems with A ∈
R

n×n,x, b, c ∈ Rn, a scalar input u ∈ R and output function y ∈ R as well as d ∈ R
of the form

ẋ = Ax+ bu, x(0) = x0, (3.31a)
y = cTx+ du. (3.31b)

A linear time-invariant single input-single output system is called bounded-input, bounded-
output stable if for all bounded input functions |u(t)| ≤ r exists a bounded output
function |y(t)| ≤ s for all r, s > 0.
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Analogously to the global asymptotic stability, a theorem can be formulated to verify
the BIBO stability just by knowing the eigenvalues of the matrix A.

Theorem 3.3.19. A system of the form (3.31) is BIBO stable if and only if all poles
sj = αj + iωj of the transfer function G(s) have Re sj = αj < 0 ∀j, where Y (s) =
G(s)U(s).

These definitions and theorems provide the basis for the design of a closed feedback
loop so that an instable system can be stabilised.

3.3.4. Stability, Observability, Controllability

Three terms are introduced to ensure that the given system is suitable for an em-
bedment to a closed feedback loop. In order to integrate a dynamic system in a
closed feedback loop, the system has to fulfil some requirements.
Firstly, the system needs to be defined in such way that all states x can be reached,
independent from the initial state x0. This property is called Reachability and only
concerns the state variables of a LTI system.

Definition 3.3.20 (Reachability). A LTI-system of the form (3.4) is called fully reach-
able if each state x(T ) ∈ Rn can be reached for the initial state x0 = 0 and a piecewise
steadily input function u(t), whereby 0 ≤ t ≤ T .

This property can be verified by the matrices A and B which define the state of the
system.

Theorem 3.3.21. A LTI-system of the form (3.4) is fully reachable if and only if the
reachability matrix

R(A,B) =
(
B AB A2B . . . An−1B

)
has full rank.

Secondly, the ability to calculate the initial state x0 only with the knowledge of
the input u and the output y is required to define the control principle. Therefore,
the next characteristic, called observability, affects not only the state but also the
output.

Definition 3.3.22 (Observability). A system of the form (3.4) is called fully observable
if the initial state x0 can be calculated knowing the input u(t), the output y(t) in
0 ≤ t ≤ T and the matrices A,B,C and D.

Again, this property can be checked by matrices, in this case only the matrices A
and C are needed.
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Theorem 3.3.23. The system of the form (3.4) is fully observable if and only if the
observability matrix

O(C,A) =


C
CA
CA2

...
CAn−1


has full rank n.

Both, the reachability and the observability matrix can be calculated using MAT-
LAB with the command ctrb and obsv, respectively. Finally, it is possible to define
the term controllability.

Definition 3.3.24 (Controllability). A system of the form (3.4) is called fully control-
lable if for all initial states x0 an input function u(t) exists so that x(T ) = 0, whereby
0 ≤ t ≤ T .

In conclusion, the reachability is equivalent to the controllability for continuous
systems which follows the definition. An example will show the calculation of the
matrices.

Example 3.3.25. A given transfer function

G(s) =
9

s2 + s

describing a dynamic system leads to the question how to calculate the system
matrix A. Rewriting and expanding the given term allows to express the output Y
directly as done in

Y

U
=

9

s2 + s

s2(
1

s
Y − Y ) = 9U

Y = 1
s2
9U − 1

s
Y.

Introducing two new variables given by

X1 := 1
s
9U,

X2 := Y = 1
s
(1
s
9U − Y ) = 1

s
(X1 −X2),

enables to rewrite the equation into

s

(
X1

X2

)
=

(
0 0
1 −1

)(
X1

X2

)
+

(
9
0

)
U.
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The application of the inverse Laplacian on this system leads to a first order differ-
ential equation system as

d

dt

(
x1

x2

)
=

(
0 0
1 −1

)(
x1

x2

)
+

(
9
0

)
u. (3.32)

Calculating the state space representation out of a transfer function is the so-called
realisability problem. The equation 3.32 gives the system matrix A and the input
matrix B. The output matrix C is given by the transformation

Y =
(
0 1

)(X1

X2

)
y =

(
0 1

)(x1

x2

)
. (3.33)

Due to the scalar input and therefore scalar output, the matrices B and C are both
vectors in R2. Equation (3.33) directly shows that the feedthrough matrix D = 0.
Knowing these matrices gives the possibility to analyse the system for reachability
and observability. The reachability matrix is calculated by

R(A,B) =
(
B AB

)
=

(
0 9
9 0

)
,

which has full rank. Analogously the observability matrix is given by

O(C,A) =

(
C
AC

)
=

(
0 1
1 −1

)
,

which has again full rank. This proves the controllability of the system.

3.3.5. Control with one Degree of Freedom

Describing the closed loop system, more precisely the plant and the controller by
transfer functions leads to a clear characterisation of designs for closed loop systems.
This implies the consideration of linear systems only. In the following, three different
designs are presented.
The most simple design of a control circuit consists of one controller and a plant.
This concept was already introduced in the beginning of chapter 3.2 and the diagram
can be seen in Figure 3.2. The transfer function describing the output y for the
reference signal r can be calculated analgously to (3.15)

Tr,y(s) =
Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
, (3.34)

whereby the transfer function for the controller is C and the transfer function de-
scribing the plant is G.
The implementation of a control circle with one degree of freedom is shown in the
next
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Example 3.3.26. Consider a continuous system described by

G(s) =
9

s2 + s
,

where G(s) describes the dynamic behaviour of the plant. For this system, various
controllers are implemented in Simulink, following the design of a controller with one
degree of freedom. A constant signal was chosen as reference signal for this closed
feedback loop. First, a proportional transfer function C(s) = 9 is investigated. In
Figure 3.7(a) the results for this simulation are depicted. In the beginning of the
simulation, an oscillation of the dynamic system can be observed which is a common
reaction of a dynamic system in a closed feedback loop. After the excitation time,
the system strives to the reference signal. Further, a continuous controller of the
form

C(s) = 9s+1
s+1

is considered. In Figure 3.7(b) the results for this more complex controller are shown
and illustrate the same dynamic behaviour as for the simple controller. The only
difference is the shorter excitation time, i.e. the controller is faster in regulating
the system. Finally, a PID element as controller was investigated. The three cor-
responding constants are chosen by CP = 0.7, CI = 0.5, CD = 0.17 and the time
constant for the differentiator is T = 1

10
. As presented in Figure 3.7(c) the con-

troller again reacts faster than before. It only needs two flashovers until the output
of the dynamic system follows the reference signal.

t

(a) C(s) = C.

t

(b) C(s) = T1s+1
T2s+1

.

t

y(t)

r(t)

(c) PID.

Figure 3.7.: Control with one degree of freedom.

3.3.6. Control with two Degrees of Freedom

In the next step, instead of one, two controllers will be introduced in the closed loop
to create a more flexible and adaptable design. The output y of the plant is fed
back multiplied by one transfer function C and is compared with the reference signal
r multiplied by another transfer function V . The two transfer functions C and V
represent the controller elements. This control design is illustrated in Figure 3.8.
The transfer function for the output y with the input r is similar to the one with
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V (s) G(s)

C(s)

r1 r2 u y

−

Figure 3.8.: Block diagram of a control circuit with two degrees of freedom.

one degree of freedom in equation (3.34). The only difference is the modification of
the reference signal with the help of one transfer function.

Tr,y(s) =
Y (s)

R(s)
=

V (s)G(s)

1 + C(s)G(s)
(3.35)

Again, one example illustrates the implementation of this control design.

Example 3.3.27. The dynamic system in Example 3.3.26 is extended to a con-
trol with two degrees of freedom. The prefilter V is considered in all investigated
examples as

V (s) = 9s+1
s+1

.

Different elements are analysed for the controller C. First, a proportional element is
considered as controller. The results of the simulation can be seen in Figure 3.9(a).
Since the constant reference signal r1, which is a scalar function, is now a continuous
decreasing function R2(s) = R1(s)V (s) due to the influence of the prefilter V . The
proportional controller adapts the scalar output y to follow the difference between
the reference signal and the feedback C(s)Y (s). Second, a continuous controller of
the form

C(s) = 9s+1
s+1

is considered. The results are plotted in Figure 3.9(b). The more complex structure
of the controller leads to a faster adaptation to the desired signal. It is interesting to
remark that the output follows the reference signal and not the difference between
reference and output e = y − r. This results due to the fact that the sum V (s) −
C(s)Y (s) is set to 0 because of V = C. Thirdly, the PID element is investigated.
Once again, this more complex structure of the controller leads to a fast adaptation
of the system to the reference signal as it can be seen in Figure 3.9(c).

3.3.7. Cascade Control

Another way of designing a control loop would be the connection of two closed loop
systems as shown in Figure 3.10. This combination of an inner closed loop system
to an outer loop allows to calculate an appropriate controller C2 after fitting the
inner controller C1.
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t

(a) C(s) = C.

t

(b) C(s) = T1s+1
T2s+1

.

t

y(t)

r(t)

(c) PID.

Figure 3.9.: Control with two degrees of freedom.

F (s) C2(s) C1(s) G1(s) G2(s)
r2 r1 y1 y2

−−

T1(s)

Figure 3.10.: Block diagram for cascade control.

The transfer function of the inner circuit, marked in Figure 3.10 as T1, is calculated
as in (3.34) and therefore given by

T1(s) = Tr1,y1(s) =
Y1

R1

=
C1(s)G1(s)

1 + C1(s)G1(s)
.

The transfer function for the entire circle can now be calculated by expressing the
output y2 as follows

R1(s) = (R2(s)F (s)− Y2(s))C2(s)

Y2(s) = (R2(s)F (s)− Y2(s))C2(s)T1(s)G2(s)

Tr2,y2(s) =
Y2(s)

R2(s)
=

1 + C2(s)T1(s)G2(s)

F (s)C2(s)T1(s)G2(s)
. (3.36)

Example 3.3.28. For the design of the cascade control a dynamic system is con-
sidered using two transfer functions G1(s) = 9 and G2(s) =

1
s2+s

. The prefilter and
the controllers are considered as F (s) = C1(s) = C2(s) =

9s+1
s+1

. As it can be seen in
Figure 3.11, the resulting controller of the whole circuit acts very fast and leads the
output of the dynamic system to the reference signal again.

3.3.8. Full State Feedback Control

Another possibility for the design of a control circuit is the full state feedback which
directly implies an influence on the state variables. This combines two aims for the
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t

y(t)

r(t)

Figure 3.11.: Cascade control for transfer functions.

resulting closed loop. First, it is possible to stabilise an instable system by replacing
the eigenvalues of the state matrix. Second, it is again possible to control the limit
of the output to follow a reference signal. In the following, LTI systems of the form

ẋ = Ax+Bu, (3.37a)
y = x, (3.37b)

are considered. This form guarantees the output of all state variables and therefore
the possibility to feedback and influence all state variables. This implies an output
matrix C = In. Introducing the input u = Kx+Lr with the reference signal r ∈ Rp

and the matrices K ∈ Rm×n, L ∈ Rm×p, system (3.37) can be written as

ẋ = (A−BK)x+BLr, (3.38a)
y = x. (3.38b)

The corresponding block diagram is illustrated in Figure 3.12. Let the system

L G(s)

K

r(t) u(t) y(t)

−

Figure 3.12.: Block diagram of full state feedback.

(3.37) be instable which implies a matrix A with eigenvalues having positive real
part. In order to calculate the eigenvalues of the new system (3.38) the characteristic
polynomial

χ = det(λIn − (A−BK)) =
n∏

j=1

(λ− λj)
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with the desired eigenvalues λj has to be solved. This leads to n equations. In
the case of a SISO system, K is a vector with n entries and therefore, a solution
can be calculated, if the system is fully reachable. In the case of a MIMO system,
the equation system has no unique solution because K ∈ Rm×n and therefore the
system is under-determined. For the calculation of the gain L, the equation

lim
t→∞

y(t) = lim
t→∞

x(t)

is considered. The gain L should be calculated in that way, that

lim
t→∞

y(t) = lim
t→∞

r(t) = r0

is fulfilled. This includes, that lim
t→∞

x(t) = xE is a constant value and therefore
lim
t→∞

ẋ(t) = 0. This allows to express lim
t→∞

x(t) following the equation (3.38) as

0 = (A−BK)xE +BLr0

BLr0 = −(A−BK)xE.

This shows that the calculation of L depends on the matrix K and is therefore not
unique, especially for MIMO systems. An example demonstrates the implementation
of the full state feedback. Of course, it is possible to design the full state feedback
for systems where the output matrix is not the identity matrix but then it is required
to introduce state observer which are not considered in this work.

Example 3.3.29. In Example 3.3.25 the state space representation for a given
transfer function was calculated. For this state space, a full state feedback is im-
plemented which implies an adaptation of the given LTI system in order to have a
output vector y with all state space variables x. This leads to the output matrix
C = I2 and further to the LTI system(

ẋ1

ẋ2

)
=

(
0 0
1 −1

)(
x1

x2

)
+

(
9
0

)
u(

y1
y2

)
=

(
1 0
0 1

)(
x1

x2

)
with the eigenvalues λ1,2 = {−1, 0} of the matrix A. Introducing the vector K =(
1, 1

)
leads to the eigenvalues λ1,2 = {−7.6,−2.4} and therefore to a stable system.

3.4. Selected Aspects of nonlinear Control

The theory and applications of control are now extended to nonlinear systems of the
form

ẋ = f(x,u), x(t0) = x0 (3.39a)
y = h(x,u). (3.39b)

This section is based on [1] and [19].
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3.4.1. Linearisation

Controlling nonlinear systems has various approaches. Often, it is sufficient to con-
sider a control circuit with a constrained model only for the plant. Hence, the
nonlinear system can be linearised and afterwards the well-known approaches of
controlling linear systems can be applied. There exist two different methods for the
linearisation of a nonlinear system. First, the linearisation in the neighbourhood of
an equilibrium state xE,yE is introduced.

Theorem 3.4.1 (Linearisation at an equilibrium state). Considering a time-invariant
nonlinear system of the form 3.39a with an equilibrium state at xE,yE. Small changes
∆x = x − xE of the solution of this system can be written as a linear time-invariant
system of the form

∆x = A∆x+B∆u, ∆x(t0) = ∆x0 = x0 − xE,

∆y = C∆x+D∆u,

whereby the matrices are calculated by the corresponding Jacobi matrices

A =
∂

∂x
f(xE,uR), B =

∂

∂u
f(xE,uR),

C =
∂

∂x
h(xE,uR), D =

∂

∂u
h(xE,uR).

The following example illustrates the linearisation at an equilibrium state.

Example 3.4.2.

(a) Consider the nonlinear system describing a double pendulum as it is depicted
in Figure 3.13. Using Lagrangian mechanics allows us to derive a system of

ϕ1

ϕ2

m1

m2

s1

s2

Figure 3.13.: Illustration for the double pendulum.

nonlinear differential equations for the two angles ϕ1, ϕ2 of the pendulum. This
leads to a system

M

(
ϕ̈1

ϕ̈2

)
= b.
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The mass matrix M and the right hand side b are given by

M(ϕ1, ϕ2) =

( s1
l1

)2
+ J1

m1l21
+ m2

m1

m2s2
m1l1

cos(ϕ1 − ϕ2)

m2s2
m1l1

cos(ϕ1 − ϕ2)
m2

m1

(
s1
l1

)2
+ J2

m1l21

 ,

b =

(
−m2s2

m1l1
ϕ̇2
2 sin(ϕ1 − ϕ2)−

(
m2

m1
+ s1

l1

)
g
l1
sinϕ1

m2s2
m1l1

ϕ̇2
1 sin(ϕ1 − ϕ2)− m2s2g

m1l21
sinϕ2

)
.

The parameters m1 = m2 = 0.0295 kg stand for the mass of the pendulums,
l1 = l2 = 0.2 m represent their lengths, s1 = s2 = 0.1 m are the centroidal
distances of each pendulum, J1 = J2 = 9.83 · 10−5 kg m2 are the moments
of inertia and g the gravitation constant with 9.81 ms−2. This system has
the equilibrium state (ϕ1, ϕ2) = (0, 0) because the right hand side equals 0.
For the linearisation of the system one function, describing the dynamics, is
required. Therefore, the matrix M is inverted and multiplied with the vector
b. This leads to the form (

ϕ̈1

ϕ̈2

)
= f(ϕ1, ϕ̇1, ϕ2, ϕ̇2).

In order to get a first order differential equation system the state variables are
chosen by the angles and their derivatives. Hence, the state vector is given by

x =


ϕ1

ϕ̇1

ϕ2

ϕ̇2

 .

Calculating the Jacobian of M−1 and substituting the parameters leads to a
LTI system with the system and output matrix

A =


0 1 0 0

−126.12 0 63.06 0
0 0 0 1

189.19 0 −168.17 0

 , C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Hence, there is no input acting on this system, the matrices B and D do not
exist.

(b) Since the state space representation is not unique, it is possible to find addi-
tional representations. Due to the fact that there is no acting input and no
output in this system, the state space representation for the double pendulum
in the previous example is not suitable for control. Considering the angle ϕ1
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as input and ϕ2 as output, allows to linearise the system once again around
the equilibrium state (ϕ1, ϕ2) = (0, 0). The state matrix A is calculated by
the multiplication of the Jacobian of the inverted mass matrix M−1 in respect
to ϕ̇1, ϕ2, ϕ̇2 and the vector b. The Jacobian of the right hand side vector b
for the input ϕ1 leads to the input matrix B.

A =

0 63.06 0
0 0 1
0 −168.17 0

 , B =

−126.12
0

189.19

 .

The given output function y = ϕ2 permits the calculation of the output and
the feed–through matrices by the Jacobians. This leads to

C =

0
1
0

 , D =
(
0
)
.

This state space representation allows the design of a closed control circle
with a reference signal for ϕ2 and the controller calculating the input ϕ1. The
constant value ϕ2 = π is considered as reference signal and a PID control
design is chosen. The block diagram for the control design is illustrated in

PID(s)
ẋ = Ax+Bu
y = Cx+Du

r = π u = ϕ1 y = ϕ2

−

(a) PID control design for the double pendulum.

π

t

ϕ2

(b) Output ϕ2 following the reference signal π.

Figure 3.14.: Control design and simulation results of the linearised double pendu-
lum.

Figure 3.14(a) and the results of the simulation are depicted in Figure 3.14(b).
Here, the plot shows the reference signal and the output of the angle ϕ2. It can
be seen that, after the excitation, the PID controller calculates the required
input resulting in the equilibrium state for the angle ϕ2.

Further, the linearisation of a nonlinear system at a trajectory ϕ is defined.

Theorem 3.4.3 (Linearisation at a trajectory). Consider a time-invariant nonlinear sys-
tem of the form (3.39a) with a trajectory ϕ(t) for an input u = ũ(t). Small changes
∆x(t),∆y(t) in the solution of this system can be written as a linear time-variant system
of the form

∆x = A(t)∆x+B(t)∆u, ∆x(t0) = ∆x0 = x0 − xE,

∆y = C(t)∆x+D(t)∆u,
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whereby the matrices are calculated by the corresponding Jacobi matrices

A(t) =
∂

∂x
f(ϕ, ũ), B(t) =

∂

∂u
f(ϕ, ũ)

C(t) =
∂

∂x
h(ϕ, ũ), D(t) =

∂

∂u
h(ϕ, ũ).

The technique of linearisation enables the application of the linear control theory
for nonlinear systems. Of course, this is only valid for the neighbourhood of an
equilibrium state or a trajectory. Therefore, it is necessary to obtain the nonlinear
control theory.

3.4.2. The Lyapunov Theory

Lyapunov theory is used commonly in control theory of nonlinear systems. This
theory provides methods for analysing the stability of dynamic nonlinear systems.

(a) Stable equilibrium
state.

(b) Increasing potential
energy.

(c) Change of the poten-
tial energy.

Figure 3.15.: Sphere in a gravitational field for the motivation of Lyapunov func-
tions.

Analogously to linear systems, an equilibrium state of a nonlinear system as in (3.2)
is given, if f(xE) = 0, xE ∈ Rn is fulfilled. An illustration for the criteria needed
for the stability of equilibrium states of nonlinear systems is given in Figure 3.15.
Consider a sphere in a gravitational field, as it is illustrated in Figure 3.15. The
equilibrium state of any system is only stable if the potential energy has a minimum
in the equilibrium state and decreases or remains constant along the trajectories
around the equilibrium state. This case is illustrated in Figure 3.15(a). The other
two scenarios in Figures 3.15(b) and 3.15(c) show an increasing potential energy
around the equilibrium state or a change of the behaviour of the energy, respectively.
The analysis of nonlinear systems leads to different definitions for the stability of
equilibrium states. In the following, the definition for the stability in the sense of
Lyapunov and asymptotically stable are given.

Definition 3.4.4 (Stability for nonlinear systems). Consider a dynamic system of the
form ẋ = f(x,u) with an equilibrium state xE. The equilibrium state xE is called
Lyapunov stable if for all ε > 0 exists δ(ε) > 0 such that

‖x0 − xE‖ < δ =⇒ ‖x(t)− xE‖ < ε (3.40)
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for all t > 0. Furthermore, the equilibrium state xE is attractive if ζ > 0 exists such
that

‖x0 − xE‖ < ζ =⇒ lim
t→∞

‖x(t)− xE‖ = 0. (3.41)

Finally, the equilibrium state xE is asymptotically stable if it is Lyapunov stable and
attractive.

Since the verification of stability for an equilibrium state for a nonlinear system is
often complex, it is easier to check it by the use of a Lyapunov function. This theory
is motivated by energy dissipation in physical processes. Even if it is formulated for
the equilibrium state xE = 0, it is valid for all equilibrium states xE 6= 0, which can
be easily proven by the state transformation x̃ = x− xE ⇒ x̃E = 0.

Theorem 3.4.5 (Lyapunov’s direct method). Given the autonomous nonlinear system
ẋ = f(x) with the equilibrium state xE = 0 and an open neighbourhood D ⊂ Rn of
0. If there exists a function V (x) : D → R, fulfilling the conditions

(i) V (x) is continuously differentiable,

(ii) V (0) = 0,

(iii) V (x) > 0 for all x 6= 0,

(iv) V̇ (x) ≤ 0 for all x 6= 0,

then the equilibrium state xE = 0 is Lyapunov stable. If (iv) is replaced by

(v) V̇ (x) < 0 for all x 6= 0,

the equilibrium state xE = 0 is asymptotically stable. The function V (x) is called
Lyapunov function.

This theorem shows that Lyapunov functions are positive definite and their deriva-
tion V̇ negative semi-definite or even negative definite in the case of asymptotic
stability. The second and third points ensure that the function V has a minimum
in x = 0 and the fourth condition satisfies that the function V decreases or stays
constant.
One consequence of these definitions is to specify the domain where the equilibrium
state is stable.

Definition 3.4.6 (Positive invariant set). Let xE = 0 be an asymptotically stable
equilibrium state of the autonomous system ẋ = f(x). The set

P = {x0 ∈ Rn : lim
t→∞

x(t) = xE}

is called the positive invariant set of xE. If P = Rn holds, then the equilibrium state
xE is global asymptotically stable.
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As before, this domain can be expressed with the help of Lyapunov functions.

Theorem 3.4.7 (Positive invariant set). Is V (x) a Lyapunov function of the autonomous
system ẋ = f(x) with the equilibrium state xE = 0. Under the condition that the set

P = {x ∈ Rn : V (x) < c},

is bounded and for all x ∈ P holds that

V̇ (x) < 0,

then P is a positive invariant set of the equilibrium state xE.

To verify the global asymptotic stability, an additional definition is needed.

Definition 3.4.8 (Radially unbounded). A function f(x) is called radially unbounded
if

lim
‖x‖→∞

f(x) = ∞. (3.42)

In conclusion, this can be formulated to

Theorem 3.4.9 (Global asymptotic stability). Given the autonomous system ẋ = f(x)
with the equilibrium state xE = 0. If a function V (x) : Rn → R exists therefore, that
V (x) is positive definite and radially unbounded and V̇ (x) is negative definite, then the
equilibrium state xE = 0 is global asymptotically stable.

This theoretical introduction allows to formulate control laws for nonlinear systems.

3.4.3. PD Control Law

Another control design is introduced which is applicable on systems describing mo-
tion of mechanical systems. Mostly, those models are derived following the Newton-
Euler equations and Lagrange formalism. In the following, systems of the form

M(x)ẍ+ C(x, ẋ)ẋ+ f(x) = τ , (3.43)

are considered. The vector x ∈ Rn contains the state variables and M(x) ∈ Rn×n is
the mass matrix of the system. The matrix C(x, ẋ) ∈ Rn×n consists of the coriolis
and centrifugal terms, the vector field f ∈ Rn holds the potential forces and τ ∈ Rn

the generalised moments.
A control law should be defined so that a desired constant position of the coordinates
xd is stabilised asymptotically. Consider a control law

τ = KP (xd − x)−KDẋ+ f(x), (3.44)

with positive definite matrices KP , KD ∈ Rn so that xd is an equilibrium state of
the closed circle. Due to the fact that the matrix KP is acting on the state variables
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as proportional factor and the matrix KD is acting on the derivatives of the state
variables only, this definition resembles the design of a proportional-differentiator.
Analysing the new system on stability leads back to the Lyapunov functions. The
considered positive definite Lyapunov function is defined by

V (x, ẋ) = 1
2
ẋTM(x)ẋ+ 1

2
eT
xKPex,

whereby ex = xd − x. The derivative w.r.t. time can be calculated by

d

dt
V (x, ẋ) = ẋTM(x)ẍ+ 1

2
ẋTṀ(x)ẋ+ eT

xKP ėx.

Applying the control law in the system of differential equations and replacing the
mass matrix with M(x)ẍ = KP (xd − x)−KDẋ− C(x, ẋ)ẋ leads to

d

dt
V (x, ẋ) = ẋT (KP (xd − x)−KDẋ− C(x, ẋ)ẋ) + 1

2
ẋTṀ(x)ẋ+ eT

xKP ėx.

Since the derivative of the desired coordinates xd are constant, the derivative of the
difference results in ėx = −ẋ. The derivative of the Lyapunov function is calculated
by

d

dt
V (x, ẋ) = ẋT (1

2
Ṁ(x)− C(x, ẋ))ẋ︸ ︷︷ ︸

=0

+ ẋTKPex − eT
xKP ẋ︸ ︷︷ ︸

=0

−ẋTKDẋ,

which finally leads to −ẋTKDẋ ≤ 0. For the last step, it is necessary to notice that
1
2
Ṁ(x)−C(x, ẋ) is skew symmetric. Concluding the Lyapunov theory, this control

law assures asymptotic stability for the desired position of the coordinates xd. This
control law is illustrated in

Example 3.4.10. Expanding Example 3.4.2 leads to the inverted double pendulum
on a cart as it is illustrated in Figure 3.16. This system is already in the desired

mm

ϕ1

ϕ2

F

m1

m2

Figure 3.16.: Illustration for the inverted double pendulum.

formulation for the PD control law, given by (3.43). The vector b has to be splitted
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into the matrix C, containing the coriolis and centrifugal forces, and the vector f
holding the potential forces. The vector τ contains only the external force F acting
on the cart. The mass matrix M is the same as in A.2.4. This leads to the final set
of equations

C =

0 −
(
m1

2
+m2

)
l1 sinϕ1ϕ̇1 −m2

2
l2 sinϕ2

0 0 −m2

2
l1l2 sin(ϕ2 − ϕ1)

0 −m2

2
l2l1 sin(ϕ1 − ϕ2)ϕ̇1 0

 ,

f =

 0
−
(
m1

2
+m2

)
gl1 sinϕ1

−m2

2
l2g sinϕ2

 ,

τ =
(
F, 0, 0

)T
.

The desired positions of the state variables in the control design are(
x, ϕ1, ϕ2

)T
=
(
0, π, π

)T
.

Hence, the new input can be defined, following equation (3.44), as

τ = KP

 x− 0
ϕ1 − π
ϕ2 − π

−KD

 ẋ
ϕ̇1

ϕ̇2

+ f

 x
ϕ1

ϕ2

 ,

with two positive definite matrices KP , KD. Applying this input to the system of
the differential equations leads to the form ẍ

ϕ̈1

ϕ̈2

 = M−1

KP

 x− 0
ϕ1 − π
ϕ2 − π

−KD

 ẋ
ϕ̇1

ϕ̇2

− C

 ẋ
ϕ̇1

ϕ̇2

 .

The simulation results for the closed loop are plotted in Figure 3.17 including all
three state variables x, ϕ1, ϕ2. The results show the stabilisation of the equilibrium
state for all three state variables. After the excitation of the controller according
to the system, the pendulums stay in the horizontal position, whereby the cart
remains at x = 0. The simulation was executed for various matrices in order to find
appropriate parameters for a good control. The final matrices are chosen as

KP =

8 0 0
0 2 0
0 0 2

 , KD =

5 0 0
0 0.07 0
0 0 0.07

 .
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Figure 3.17.: PD control for the inverted double pendulum.
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4. Modelling and Simulation of
the Human Knee

In the following, four simulation models for the human knee joint are presented.
In the last decades, the biomechanical research was focused on the development
of valid models for the human knee joint. Many different models were developed
using various modelling approaches and software tools. Furthermore, the models
vary in complexity concerning their structure and depending on the aim of the
model different components are included. The implemented models in this thesis
are based on a validated multibody model for the knee joint which is established
by biomechanical researchers in [8], [14] and [15] and will be summarised in the
following. After that, three simulation models are presented in order to compare
different software tools regarding their possibilities. The models use two different
modelling approaches. Two multibody models, implemented in different simulation
frameworks, are compared against one simulation model based on partial differential
equations. In the beginning, some basic anatomical and biomechanical principles of
the human knee joint are introduced.

4.1. Anatomical and Biomechanical Basics of the
Human Knee Joint

To build a valid model of a system, basic knowledge of the underlying system is
required. This section gives an overview about the anatomy of the human knee
joint, the kinematics and some biomechanical principles of soft tissues.

4.1.1. Anatomy of the Human Knee Joint

The following description of the anatomy of the human knee joint is based on [27].
The human knee joint contains three bones, femur, tibia and patella. Figure 4.1
shows a sketch of the right human knee. The three bones are depicted and their
connections by ligaments and the patellar tendon.
The human knee joint is, apart from the shoulder joint, the most complex joint in
the human body. This is caused by various biological structures interacting together
and forming a joint having multiple degrees of freedom. Due to the shape of the
bones, the knee joint is divided in three sections.
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Figure 4.1.: View of a right knee with ligaments, tendon and bones [27].

Those are joint areas connecting
• Medial femur condyle and tibia plateau,
• Lateral femur condyle and tibia plateau,
• Femur and patella.

The contact between femur and tibia is divided due to two eminences at the lower
end of the femur, which are both covered by cartilage. They are called condyles.
One is situated at the inner side of the body, anatomically called medial and the
other at the outer side, lateral. Between the condyles, the crucial ligaments have
their attachment points. Analogously, the tibia has three condyles. Two on the
sides, covered by cartilage and a third one is raising in between, not covered with
cartilage. This eminence builds together with the crucial ligaments a lock. The
patella is incorporated in the patellar tendon of the quadriceps, which connects
femur and tibia. The quadriceps is located at the front of the femur and applies the
force, which is responsible for the extension of the leg. On top of the tibia plateau,
two moon shaped cartilages are situated. Those are called menisci and they divide
the articular capsule. Synovial fluid in the joint cavity between the bones improves
sliding. The menisci fulfil the task as shock absorbers, optimise the rolling-sliding
motion and stabilise the joint.
The ligaments play an important role for the position and stabilisation of the joint
bodies, as they prevent extreme motions in the knee. The collateral ligaments are
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based on the lateral and medial sides of the bones. They have onion-like layers of
fasciae and support the joint capsule with their thick structure. The medial collateral
ligament arises from the medial femoral condyle and ends at the medial side of the
tibia. It supports the joint structure preventing valgus stress, rotational motion in
medial direction about the motion axis. The lateral collateral ligament runs from
the lateral femoral condyle to the fibula which is situated laterally to the tibia. It
prevents before varus stress, rotational motion in lateral direction perpendicular to
the joint axis.
The intercondyloid notch is situated between the femoral condyles, where the crucial
ligaments extend. The anterior crucial ligament is situated lateral and attaches to
the anterior side of the intercondylar area of the tibia. Likewise, the posterior crucial
ligament runs at the medial side to the posterior aspect of the intercondylar area
of the tibia. Due to this course, the ligaments cross each other remaining distinct.
They stabilise the knee in anterior and posterior directions or rotations.
The motion of the joint bodies is actuated by muscles. The quadriceps is a muscle
group responsible for the extension of the knee. The muscles are situated at the
front side of the femur. The antagonists, the muscles responsible for squatting, are
situated on the back of femur and tibia.

4.1.2. Degrees of Freedom in the Human Knee Joint

A more detailed description of the kinematics in the human knee joint is found in
[34]. The ligaments and constraints of the geometries determine the movements that
take place in the human knee joint. Three principal axes in the knee specify where
motion is applied, the tibial shaft axis, the epicondylar axis and the anteroposterior
axis. They correspond to the longitudinal, transversal and sagittal axis in the human
body. Each axis provides two types of movement, translation and rotation. This
results in six degrees of freedom. The movements are referred to three rotations and
three translations, which are

1. Flexion and Extension,
2. Valgus and Varus rotation,
3. External and Internal rotation,
4. Anterior and Posterior translation,
5. Medial and Lateral translation,
6. Proximal and Distal translation.

The axes and their corresponding movements are depicted in Figure 4.2. The knee
enables flexion of up to 120◦ − 140◦ actively, but 150◦ passively. In this position,
the collateral ligaments are relaxed while the crucial ligaments stay taught. The
extension of the knee is possible until 0◦ actively and up to 5◦−10◦ passively. Passive
motion is applied by external help, the action is not actuated by own muscles. The
collateral ligaments remain taught with the anterior cruciate ligament. Internal and
external rotation of the knee are both possible up to 30◦−40◦. In the following, only
flexion and extension are considered which is accompanied by proximal and distal
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translation.

Tibia

Femur

6. Proximal-Distal

3. Internal-External

2. Varus-Valgus

4. Anterior-Posterior

1. Flexion-Extension

5. Medial-Lateral

Figure 4.2.: Degrees of freedom and motions in the human knee joint.

4.1.3. Biomechanics of Ligaments and Tendons

Soft tissues, such as ligaments and tendons, possess a complex biomechanical be-
haviour. They determine the motion in joints and are important for carrying loads.
Their characteristics are described in depth by [35] and [25]. In general, the biome-
chanics of ligaments and tendons are similar, they differ only in detail, as e.g. the
percentage of elastin in their composition and the arrangement of collagen fibrils.
This distinction is not considered in more detail, nevertheless the description of the
biomechanics is valid for both tissues.
To describe mechanical properties of ligaments and tendons, following parameters
are used

• Strain: elongation relative to length under no stress,
• Stress: force relative to cross-sectional area,
• Stiffness: relation between deformed length and applied force,
• Modulus: relation between stress and strain.

It is common to analyse the stress-strain behaviour of ligaments and tendons. This
means the analysis of applied stress to soft tissue in respect to the resulting strain.
A typical stress-strain curve can be seen in Figure 4.3. The slope of the curve
represents the modulus. High modulus indicates stiffer tissue.
Three different regions in the stress-strain curve can be distinguished, which are
typical for ligaments and tendons. They are called

1. Toe region,
2. Linear region,
3. Yield and failure region.
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Figure 4.3.: Stress-strain curve for ligaments and tendons [25].

Before ligaments and tendons are strained, the collagen fibrils, forming their struc-
ture, are crimped. They start to straighten when force is applied. This leads to a
non-linear slope at the beginning of the stress-strain curve, the toe region. When all
crimped fibers are straightened, the toe region ends. Normally, this region ends after
2% of strain. Now, the collagen fibers stretch and the ligament or tendon acts as
spring with a linear behaviour in the stress-strain curve. This implies a deformation
of the soft tissue. Until 4% of strain, the deformation is elastic. This means, the
ligament respectively the tendon remains to its normal length after the application
of stress. Applying more force leads to micro failures in the structure of the fibrils.
This determines the ultimate stress and the corresponding ultimate strain a liga-
ment or tendon can sustain. The yield and failure region shows a reduced stiffness
behaviour.
The nonlinear toe-region in the stress-strain curve of ligaments requires a non-linear
modelling of the force generated by ligaments. The modelling process is explained
in more detail in 4.2.

4.2. Multibody model for the Human Knee Joint
implemented in Adams

The platform SimTK [29] offers the possibility for researchers to share their work, as
e.g. collected data and developed models. The collection focuses on biomedical mod-
els. The website is hosted by the National Institutes of Health in the United States,
is free of charge and open to public. Since the repository provides geometries sup-
plementary to mathematical models, the development of new models is facilitated.
The available models include various modelling approaches, thus, multibody models
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and models described by partial differential equations can be found. Furthermore,
the assembly contains models in various simulation environments.
Multibody models of the human knee joint evolved by Guess et al. are available
on SimTK and one is used in this thesis for further analysis and as basis for knee
flexion simulations in other simulation frameworks. The work of Guess et al. deals
with the development of subject specific multibody models of the human knee joint,
for details see [8], [14] and [15].
The knee joint model by Guess et al. is implemented in Adams, a multibody dynam-
ics software developed by MSC Software Corporation. It simulates the flexion of the
right knee of a 77 year old man. It includes the three main bones of the human knee,
femur, tibia and patella. The geometries of the bones are measured by magnetic
resonance images of a cadaver knee. Articular cartilage is included in the geometries
of the bones. The bones are modelled as rigid bodies which means that they do not
show elastic properties. The bodies are described by their geometries and specific
parameters, as mass, density, center of mass and rotational inertia. These values
are derived by experimental tests and summarised in Table 4.1.

Coordinates of

Mass [kg] Center of mass [mm] Inertial rotation [kg mm2]

Femur 0.327
(
24.47, 530.92, 96.305

)T (
311.74, 254.45, 187.89

)T
Tibia 0.227

(
25.52, 468.32, 87.06

)T (
140.86, 109.29, 100.52

)T
Patella 0.0352

(
21.1, 524.89, 137.33

)T (
7.12, 4.85, 4.02

)T
Table 4.1.: Parameters for bones in the Adams model.

Since this model simulates the flexion without using joints, the movements between
the bodies are described by external forces only. Between femur and tibia as well as
between femur and patella contact forces act, more precisely between the respective
cartilage on the bone surface. This force is modelled as the default Adams compliant
contact model based on the Hertz contact law

F = kδn +B(δ)δ̇

with the contact force F . The parameters describe the spring constant k, the com-
pliance exponent n and the damping coefficient B(δ). The interpenetration between
the geometries is δ which qualifies the distance between the geometries, the corre-
sponding velocity is δ̇. The contact parameters are derived after analysis of different
methods. A simplified Hertzian contact law, a simplified elastic foundation contact
theory and parameter optimisation from a model based on PDEs were used for pa-
rameter estimation. The resulting kinematics were compared with measured data
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in-vitro kinematics, as is done in [14].
In addition to the bones, soft tissues as the crucial and collateral ligaments as well
as the patellar tendon are integrated in the model. The tendon is modelled with four
bundles of linear springs. The contact points of the tendon on femur and tibia are
extracted from magnetic resonance images. The stiffness and damping parameter
for the springs are obtained by testing the cadaver knee in a knee simulator and
comparing the results to the model. The ligaments are implemented as bundles of
one-dimensional non-linear spring damper elements. The fibers in ligaments change
their reaction depending on the stress as it can be read in more detail in section 4.1.3.
Unloaded, the fibrils in ligaments are crimped; under stress, the fibrils straighten
first. Afterwards, all fibers start to stretch and ligaments behave as linear springs.
This results in a typical stress-strain curve of ligaments with a non-linear behaviour.
The force f from the ligaments is therefore calculated as

f(ε) =


1
4εl

kε2, 0 ≤ ε ≤ 2εl,

k(ε− εl), ε > 2εl,

0, ε < 0,

with the stiffness parameter k and the spring parameter εl = 0.03. The strain ε is
defined as

ε =
l − l0
l0

,

with the length of the ligament l and the zero-load length l0. The derivation of
the formulas is done in [32] and [7]. The zero-load length is a sensitive parameter
defining the length of a ligament when it becomes taut which differs for each type of
ligament. The reference strain method is used to determine the zero-load length. It
uses experimental data, obtained by cadaver knees loaded with forces which occur
during walk as it is realised in [8]. The force of the crucial ligaments is realised in
the model using a C-subroutine for the calculation of external forces.
The femur is fixed to the ground, tibia and patella are able to move. Their motion is
constrained by the patellar tendon, the ligaments and the contact forces. Applying
an external force to the tibia in posterior direction leads to flexion of the knee.

4.3. Reformulation for Multibody libraries

Proceeding from the multibody model for the human knee joint in the simulation
environment Adams, a model of the knee flexion is formulated. This model is based
on physical and biomechanical properties of the systems which allows to use three
different simulation frameworks. In particular, the environments are Simscape and
MapleSim which are based on the multibody modelling theory and COMSOL using
partial differential equations for the mathematical model.
The requirement using different simulation frameworks which are further based on
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various modelling approaches leads to a simplification of the model compared to the
one presented above. Describing movements in simulation frameworks containing
multibody model libraries or multibody dynamics modules requires the usage of
joints. Therefore, it is not possible to use spring damper elements only as in the
model presented for the simulation environment Adams.
First, the flexion of the tibia is discussed. As mentioned in section 4.1.2, the knee
joint contains of six degrees of freedom. Considering only the motion responsible
for flexion and extension simplifies the knee as a revolute joint. As it is stated in
more detail in [9], this simplification does not describe the entire knee motion but
it is sufficient for load estimations.
Joints are specified by their spring stiffness constant and damping coefficient which
limit the movement and influence the velocity. In the revolute joint the spring stiff-
ness signifies the torque which is required to rotate the joint primitive by a unit
angle. In terms of biomechanics, the crucial ligaments stabilise the knee in rotation.
Since the Adams model contains translational spring stiffness parameters only, these
values can not be used. More information about elasticity coefficients in rotation
is not available in the data. Therefore, these values are calibrated comparing the
output angle between femur and tibia with the output angle of the Adams model.
The damping coefficient is the parameter which determines the torque to maintain
a constant angular velocity and is transferred directly from the Adams model.
Second, the movement of the patella with respect to the femur and tibia is intro-
duced. In order to simulate the sliding of the patella between the condyles of the
femur, a second revolute joint is implemented. The center of rotation for this joint
is at the center of mass of the femur. Both joint centers are visualised in Figure
4.4. The point j1 represents the center of rotation between femur and tibia, j2 de-
picts the center of joint between femur and patella. The given geometries determine
the global coordinate system. The spring stiffness value and the damping coeffi-
cient remain the same values as the parameters describing the patellar tendon in
Adams. The connection between tibia and patella can be realised by one spring
damper element. This interaction transmits the applied torque from tibia to patella
and does not define additional degree of freedom for a movement. This element is
added to the bones at the attachments points included in the data of the Adams
model. Even the spring stiffness constant and damping coefficient could be carried
over from the available data. Each spring damper element is defined additionally by
its length which is calculated by the distance between the attachment points. The
corresponding parameters are provided in Table 4.2. In Adams, the acting force vec-
tor F is applied at the tibia along the direction vector vF . The models, which are
used for further investigation, consider a revolute joint with one rotational degree of
freedom only. This requires a torque τ acting on this joint in the x-direction which
represents the rotational axis. For this calculation, the direction vector r between
the application point of the force pF and the center of joint pτ , where the torque is
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Figure 4.4.: Visualisation of the joint centers in the knee model.

acting, has to be known. It is calculated by

r = pτ − pF =

 27.47
509.62
86.305

−

 35.58
368.35
57.32

 =

−8.11
141.27
28.98

 .

In general, the torque is calculated by the crossproduct of the force and the direction
vector which results in a torque vector and is therefore not applicable for this model.
If the direction vector of the force vF is orthogonal to r, the length of r represents
the lever arm. This allows to calculate the torque by multiplying the force and the
length of the lever. The direction vector of the force is given by

vF =

−171.12
7.04
38.11

 .

Therefore, the angle α between these vectors results in

α = arccos

(
r • vF

‖r‖2 · ‖vF‖2

)
= 1.7 rad.

This leads to the calculation of the length l for the lever arm as

l = ‖r‖2 · sinα ≈ 144.44 · 0.9 mm ≈ 143.06 mm ≈ 0.14 m.
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Parameter Value

Attachment point Tibia
(
19.4, 438.2, 112

)T
mm

Attachment point Patella
(
19.5, 502.5, 141.7

)T
mm

Build Length 70.9 mm

Spring stiffness 158 N
mm

Damping coefficient 1 N s
mm

Table 4.2.: Parameters for the patellar tendon in the Adams model.

Femur

Tibia

pF

pτ

r

vF

α

Figure 4.5.: Illustration for the force and torque acting on the human knee.

An illustration for this calculation is depicted in Figure 4.5. Using a sine wave as
acting force, the torque is finally calculated by

τ(t) = l · F = 0.14 · 200 · sin(2π · 0.125(t− 1)) · H(t− 1) Nm,

dependent on time t. These assumptions allow to implement this model formulation
in various simulation environments.

4.3.1. Simulation in Simscape

As the Simscape Multibody library is embedded in Simulink, the setup of the sim-
ulation model differs to the construction of a multibody model in the Adams envi-
ronment. Each component in the model is represented by a block. Figure 4.6 shows
the structure of the multibody model of a human knee in Simscape.
Every multibody model contains a solver configuration, a world frame and a mecha-
nism configuration block. The solver block specifies information about solver param-
eters which are necessary to calculate the solution of the ODEs which describe the
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Figure 4.6.: Structure of the multibody model of a human knee in Simscape.

model. The solver type, initialisation options and sample time can be adjusted.
More specific informations, such as tolerances of the solver and time steps are
changed in the model configuration parameters, similarly to Simulink. The world
frame defines the global reference frame of the model. The mechanism configuration
block contains main parameters of the model, such as gravity and linearisation delta
used during linearisation for computing partial derivatives.
The three bones, femur, tibia and patella are modelled as rigid bodies. Simscape
provides the opportunity to import CAD files in the formats stl and step. The
import of .step-files has the advantage that the properties of the geometry are cal-
culated automatically by Simscape. The geometries of the bones are provided with
the multibody model in Adams from the platform SimTK and are saved as stl-files.
Therefore, all physical properties, as mass, center of mass and moments of inertia,
are entered manually. The data were taken from the Adams multibody model as
seen in Table 4.1.
Bodies have frames which act as connection points to different components, e.g.
joints, constraints or other bodies. Per default, each body has one reference frame
located at the origin of the body. Additional frames at the center of mass are de-
fined for all bones to simplify the connection to each other. The definition of frames
allows also to include transformations. Since the revolute joint is acting in Simscape
at the z-axis only, the linking frames through the revolute joints contain rotational
transformations that allow for a rotation in the desired direction. The location of
the revolute joint defines its rotation center. Consequently, rigid transforms between
bodies and joints are required as connection points.

Spring stiffness Damping coefficient

Revolute joint femur-tibia 553.5 N mm
deg 1 N mm s

deg

Revolute joint femur-patella 33 N mm
deg 1 N mm s

deg

Table 4.3.: Parameters for joints in Simscape.
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In joint blocks, parameters for stiffness and damping coefficients can be set for each
degree of freedom. The spring damper element is defined by the spring stiffness
constant, the damping coefficient and the natural length. Simscape allows to adapt
the unities in the blocks individually which facilitates the transfer of available pa-
rameters. The used parameters are summarised in Table 4.3.
The acting torque is applied to the joint directly as actuation using Simulink blocks,
a sine wave and a death zone. The joint blocks allow directly to export the position
which describes the angle between the connecting components. This feature enables
to plot them in Simulink scopes and export them to the MATLAB workspace where
they can be processed further. The Simscape blocks are 3D blocks which produce
3D signals. The Simulink blocks are described in 1D only. Hence, additional blocks
are needed to convert the signals.
During simulation, Simscape starts the Mechanics Explorer using MATLAB for vi-
sualisation in 3D as it can be seen in Figure 4.7. In the Mechanics Explorer, all rigid
bodies are visible with their generated shape. The center of mass and all frames de-
fined in the model can be shown. Furthermore, it is possible to export the animation
of a finished simulation.

Figure 4.7.: View in the Mechanics Explorer in MATLAB.

4.3.2. Simulation in MapleSim

The simulation environment in MapleSim is similar to Simscape regarding the model
setup. They differ in numerical and algebraic aspects as they rely on Maple and
MATLAB. Again, the component are represented by blocks, which are nearly co-
incident with the library in Simscape. Therefore, the model structure in Figure
4.8 strongly resembles the one in Figure 4.6. The main parameters and the solver
configuration of the model are defined in the model properties, so that no additional
blocks are needed. Again, one reference frame defines the physical origin of the
model and is therefore fixed in space. As in Simscape, rigid body frames act as
connection points and define the distances between the components.
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Figure 4.8.: Structure of the multibody model of a human knee in MapleSim.

Spring stiffness Damping coefficient

Revolute joint femur-tibia 31.71 N m
rad 0.05 N m s

rad

Revolute joint femur-patella 1.89 N m
rad 0.05 N m s

rad

Patellar tendon 158 · 103 N
m 103N s

m

Table 4.4.: Parameters for joints and patellar tendon in MapleSim.

Rigid bodies are defined by their mass and rotational inertia. Their center of mass
is declared by their position. The rotational axis in the revolute joints can be chosen
freely. The units for the mechanical parameters can not be changed freely and are
therefore converted as it is listed in Table 4.4.
Analogously to Simscape, the torque is directly applied to the revolute joint between
femur and tibia directly. In MapleSim, the joint blocks contain two flanges, from
which one is used for applying a force and exporting the resulting angle. The torque
is composed using Signal Blocks and the 1D-Mechanical torque block, available in
the MapleSim Library.
The body shapes are used in MapleSim for visualisation only. Hence, additional
blocks, which contain the geometry, are needed. MapleSim provides pre-built ge-
ometries, such as blocks, cylinders, spheres, torus, etc. and to import CAD geome-
tries from stl-files. The geometry blocks are linked directly to rigid bodies which
implies that they undergo the same translational transforms. The definition of a
translational offset in the geometry block, allows a relocation of the geometry file.
Similar to the Mechanics Explorer in Simscape, MapleSim offers two kinds of graph-
ical 3D representation. First, the 3D workspace shows a rendering of the model
which adapts to changes immediately. In addition to the model arrangement by
blocks, it is possible to build the model setup in the 3D workspace directly. Second,
the 3D animation of the simulation is accessible via the 3D playback window in the
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simulation results tab in the analysis window where all results of the simulation are
stored.

Figure 4.9.: View in the 3D Window and Playback Window in MapleSim.

The left side of Figure 4.9 shows the block components of the model setup in the
3D window, as the rigid bodies, the frames in black and the joints in red. In the
playback window on the right side, the corresponding geometries of the rigid bodies
are visible. An animation of the simulation is accessible via the playback window.
The analysis window offers only the 3D representation of the model with the initial
conditions.

4.3.3. Simulation in COMSOL

For the simulation in COMSOL, the Multibody Dynamics module and a time depen-
dent study is chosen. This choice affects the included physics and its components
in the model. The simulation environment of COMSOL differs to Simscape and
MapleSim as the model elements are not represented by blocks. The model struc-
ture in COMSOL resembles a sequence of steps which have to be completed in order
to supply all informations required for the simulation as it can be seen on the left
side in Figure 4.10.
As COMSOL uses the finite element method to solve the partial differential equa-
tions describing the model numerically, the geometries defining the bodies constitute
an important part of the model. Dependent on the geometries, a mesh is built to
define the points for which the solution is calculated. Apart from building geome-
tries by using shapes, COMSOL offers the possibility to import CAD geometries.
Two different approaches of importing geometries are available. Either the geometry
component directly from a part or a mesh can be imported and converted afterwards
to a geometry part. The latter option was chosen to import the files describing the
bones as meshes. Three geometries are built in directly from the meshes. The choice
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Figure 4.10.: Structure of the knee model in COMSOL.

of option mostly depends on the structure of the CAD files. After the import of the
geometries, an assembly or a union can be built. Since the three bones should be
able to move independently, they form an assembly.
All three bones are defined as rigid bodies. To each component attributes can be
assigned, such as corresponding center of mass and rotational inertia. Furthermore,
COMSOL gives the opportunity to transform units. Therefore, the values are the
same as in Table 4.1 in the Adams model. The corresponding material properties,
such as density, are added in the material subsection.
Again, two hinge joints, one between femur and tibia and the other between femur
and patella, are defined. The center of rotation can be chosen freely. For both hinge
joints, spring damper elements are included as attributes since the joints itself do
not offer the possibility to define these parameters. Finally, the spring damper force
describing the patellar tendon between patella and tibia is added. The correspond-
ing parameter values are again the same as in the Simscape model, see Table 4.3.
The acting torque is applied on the hinge joint between femur and tibia again using
an attribute for the joint. The function defining the momentum can be entered
manually. The Heaviside function is realised by a smoothed step function flsmhs
dependent on the rise and a smoothing interval.
One additional joint is included in this model in order to prevent movement of the
femur. Between femur and ground, a fixed joint is applied. No additional parameters
are needed. Finally, gravity is applied to all three bones.
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4.4. Discussion of Simulation Results

In the following, the results of the simulation models are presented and discussed.
The three models describe the behaviour of the flexion between femur and tibia
under the impact of the torque

τ(t) = 28.8 · sin(2π · 0.125 · (t− 1)) · H(t− 1),

which is acting on the revolute joint. The resulting flexion angle is plotted in Figure
4.11 versus the simulation time span [0, 5].
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Figure 4.11.: Angle ϕ between femur and tibia in MapleSim.

Computations are done by MapleSim 2018.1. The results computed by the simula-
tion models in Simscape and COMSOL show the same behaviour. The used versions
are MATLAB 2018a and COMSOL 5.4. Table 4.5 gives an overview of the used dif-
ferential equation solvers and tolerances in both multibody simulation frameworks.
In COMSOL, the time step for calculating the solution is chosen by ∆t = 0.001 to
ensure a smooth behaviour of the results compared to the multibody models.

Differential equation solver Relative tolerance

MapleSim rkf45 10−5

Simscape ode45 10−3

Table 4.5.: ODE solver settings in the multibody model simulations.

In order to compare the simulation results of all three simulation tools, the absolute
error of the angle for each time step is calculated. Hence, all three models use differ-
ent time steps, the data are interpolated using MATLAB resulting in three vectors
with the same length and time steps. Since MapleSim uses the smallest amount of
time steps, these are used for the interpolation. Therefore, interpolating with these
sample times leads to best results.
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The results of MapleSim can be exported directly from the analysis window to a
table. Since the solution of COMSOL is calculated using the finite element analysis,
the results are available for all points defined by the meshes. For the angle, only the
results for the coordinates of the hinge joint are exported.
The absolute error ∆ϕ is calculated by the absolute difference between the data
points

∆ϕ = |ϕ1 − ϕ2|,
where ϕi, i = 1, 2, describe two simulation results for the angle. The absolute error
is calculated by comparing all three simulations. In order to improve the illustration
of the different model behaviour, the absolute error between the multibody models
simulated in Simscape and MapleSim are considered separately to the absolute error
between the multibody models and the PDE model simulated in COMSOL.
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Figure 4.12.: Absolute error between the multibody models.

In Figure 4.12 the absolute error between the two multibody models is depicted over
the simulation time t. The time span t ∈ [0, 1] is plotted in Figure 4.13.The peak
in the beginning of the simulation results from the adjustment of the linear spring
connecting the tibia and patella. At this moment no other forces act on the system.
At time step t = 1, the torque acting on the revolute joint increases which again re-
sults in an oscillating behaviour of the error. This result reveals how the calculation
of the torque is treated differently. MapleSim is a computer algebra system, but
Simscape, based on MATLAB, calculates numerically. Therefore, the movement of
the tibia are slightly different. The norm of the vector describing the absolute error
is given by ‖∆ϕ‖2 = 1.73 · 10−5. Since both simulation models are based on the
multibody modelling theory, the simulation results are quite accurate.
As depicted in Figure 4.14, the errors of both multibody models compared to the
COMSOL simulation show a similar behaviour. The peak at time t = 1 results
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Figure 4.13.: Absolute error between the multibody models for t ∈ [0, 1].
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Figure 4.14.: Absolute error between multibody models and PDE model.

from using the heaviside function as input which is a sampled function in COMSOL
within an interval, whose boundaries are chosen analogously to the timestep −0.001
and 0.001. During flexion of the tibia, an increase of 2 · 10−5 in the error can be
observed, as it is plotted in Figure 4.15. The norm of the absolute error between the
COMSOL simulation and both multibody model simulations is ‖∆ϕ‖2 = 0.0022.
In conclusion, the results show a satisfying behaviour regarding the numerical as-
pects.
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Figure 4.15.: Absolute error during flexion between multibody models and PDE
model.
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Figure 4.16.: Absolute error between multibody models and PDE model in time
span t ∈ [0, 1].
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5. Simulation Loop for Knee
Models

This chapter gives an overview about the possibilities of designing feedback loops for
the knee simulation models introduced in chapter 4. Having two different modelling
approaches, multibody modelling and models based on partial differential equations,
requires various resolution methods in order to fulfil the necessary preconditions to
embed the models to simulation loops. As presented in chapter 3, the plant in
a control circuit is a dynamic system. Therefore, additional reformulation or some
simplification, respectively, for the knee model described by partial differential equa-
tions is needed.
After a short introduction to the aim and motivation of the closed control loop, var-
ious control designs for the knee models are presented. This includes the discussion
of the behaviour of the knee models in different simulation loops.
All three simulation models developed in chapter 4 are based on the same model
description. This means, they fulfil the same biomechanical principles and calculate
comparable output in respect to the same input. Nevertheless, this does not imply
the same modelling approach but it gives the possibility to design one control circuit
for all three simulation models.

ϕr e τ ϕs

−

Figure 5.1.: Block diagram of the simulation loop principle for the knee model.

A block diagram of the considered control circuit design is depicted in Figure 5.1.
In this case, the acting torque τ on the revolute joint between femur and tibia is
input for the plant, and output is the angle ϕs between femur and tibia which is cal-
culated by one simulation model. This choice facilitates the design for the feedback
loop and enables an analysis of the behaviour for the different modelling approaches.
While the plant and the controller are switched, the involved signals remain. The
plant is changed in regard to the multibody model and the model based on partial
differential equations. As controllers, various transfer functions and combinations of
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multiple standard elements are considered as well as more complex control designs
concerning nonlinear control. The behaviour regarding different model description
is analysed and discussed.
The aim is to establish various controllers which are able to stabilise the knee in
desired positions. The desired positions are summarised and visualised in Figure
5.2. The tibia starts in its initial position which corresponds to no flexion in respect
to the femur. At time t = 1, the knee starts to move to position ϕ = 0.3 rad and

time t position ϕ Figure
0 0 rad 5.2(a)
1 0.3 rad 5.2(b)
2 0.8 rad 5.2(c)
3 0.3 rad 5.2(d)
4 0 rad 5.2(e)

Table 5.1.: Desired positions of the knee in the closed simulation loop.

goes until ϕ = 0.8 rad at time step t = 2. Afterwards, the knee returns to its
initial position. This can be seen as a simulation for a gait cycle but it is possible
to extend this reference signal for more complex applications as well. Concluding

(a) t = 0
ϕ = 0

(b) t = 1
ϕ = 0.3

(c) t = 2
ϕ = 0.8

(d) t = 3
ϕ = 0.3

(e) t = 4
ϕ = 0

Figure 5.2.: Visualisation of the desired positions of the knee.

control theory, this control design specifies a reference signal which should be the
output from the plant after embedding the system to a closed loop. The following
control designs stabilise the knee in any desired position. This allows to simulate
various sequences of motion with a simple definition of the reference signal.

68



5.1. Control Designs for the Multibody Knee
Model

The mathematical description of multibody models by ordinary differential equa-
tions allows to incorporate them directly to a closed simulation loop. This implies
that multibody models are easily to describe as dynamic systems. Since the mo-
tion between bodies in multibody models is defined using a system of second-order
differential equation

M ẍ+ JT
x λ = F, (5.1)

with the mass matrix M of the system, the vector x holding the state variables, JT
x

represents the Jacobian matrix of the state variables and λ the Lagrange multipliers.
The external force F acts on the system. Reformulating the equation (5.1) for the
second derivative of the state vector x on the left side only, leads to

ẍ = M−1F −M−1JT
x λ.

Introducing the state vector z with the state variables x and ẋ,

z =

(
z1

z2

)
=

(
x
ẋ

)
allows to rewrite this system of second-order differential equations to system of a
first-order differential equations only

ż =

(
ż1

ż2

)
=

(
ẋ
ẍ

)
=

(
ẋ

M−1F −M−1JT
x λ

)
= f(x,u,p, t).

This first-order differential equation is the function which describes the dynamics of
the system, dependent on the input u, the parameters p and time t. In combina-
tion with a function defining the output y = h(x,u,p, t), dependent on the state
variables, all requirements for a dynamic system are fulfilled. Hence, multibody
models do not require further reformulation because they already fulfil all necessary
conditions. Indeed, this gives the possibility to create a subsystem containing the
model in Simscape and use it directly as plant in Simulink in a feedback loop using
linear control elements.

5.1.1. Linearisation of the Multibody Knee Model

Regarding the linear control design, the multibody model implemented in Simscape
is considered as plant only. All control designs and theoretical aspects are valid
for the multibody model in MapleSim as well, since the model description is the
same. Using the control tools of Simulink, where the Simscape model can be em-
bedded directly, allows more flexibility because no link between different software
environments has to be established. First of all, the usage of linear control elements
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requires a linearisation of the plant. Building a subsystem containing all blocks of
the Simscape model for the human knee gives the possibility to embed this model as
plant in a feedback loop in Simulink. Simulink offers a wide variety of analysis tools
which are helpful in the design of control circuits. The linear analysis tool gives a
linearisation of a model after defining input and output. The linearisation is shown
in state space representation of the form (3.3.3) or as transfer function as in (3.11).
For validation and understanding, the linearisation is realised manually as well.
As in the control circuit, only the relative motion between femur and tibia is rel-
evant, these two bones are considered for further calculation in the first attempt.
The connection of femur and tibia by one revolute joint recalls the equation of a
mathematical pendulum. Since this joint contains a damping constant, an extended
equation of the pendulum, is used, as in

ϕ̈ = − sinϕ− γϕ̇+ τ.

The acceleration of the angle ϕ is driven by the external torque τ and slowed down
by the damping factor γ. Reformulating this to a first order differential equation by
using ϕ̇ = ω leads to (

ϕ̇
ω̇

)
=

(
ω

− sinϕ− γω + τ

)
.

The state vector x is defined as

x =

(
ϕ
ω

)
,

the input is u = τ and the output function

y = h(ϕ, ω, τ, γ) = ϕ.

This allows to rewrite the equation for the pendulum as dynamic system

ẋ =

(
x2

− sinx1 − γx2 + u

)
= f(x, u, γ), (5.2a)

y = ϕ = h(x, u, γ). (5.2b)

For this nonlinear system a linearisation can be calculated at the stable equilibrium
point

xE =

(
ϕE

χE

)
=

(
0
0

)
, (5.3)

which corresponds to the lower vertical position of the pendulum. The following
steps are accomplished as it was introduced in more detail in chapter 3. First, the
Jacobians for f and h are calculated as

∂f

∂x
=

(
0 1

− cosϕ −γ

)
,

∂f

∂u
=

(
0
1

)
,

∂h

∂x
=
(
1 0

)
,

∂h

∂u
= 0.
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Evaluating the Jacobians at the equilibrium point xE stated in (5.3) leads to the
linear state space representation

ẋ =

(
0 1
−1 −γ

)
x+

(
0
1

)
u,

y =
(
1 0

)
x.

The related transfer function is calculated by

G(s) =
(
1 0

)((s 0
0 s

)
−
(

0 1
−1 −γ

))−1(
0
1

)
=
(
1 0

)( γ+s
s2+γs+1

1
s2+γs+1

− 1
s2+γs+1

s
s2+γs+1

)(
0
1

)
=

1

s2 + γs+ 1
,

which corresponds to a P-T2 element.
This linear system studies only the motion in the x − y plane and simplifies the
system regarding physical parameters as moment of inertia and mass of the rigid
bodies. Simscape gives the possibility to extract the linear system of a model but
the nonlinear equations describing the multibody model are not accessible. This is
different compared to MapleSim which offers the possibility to extract the equations,
which describe a simulation model. To reproduce the linearisation in Simscape, the
equations for the knee model are extracted by using the equation extraction in
MapleSim 2018.
The equations can be extracted for the entire model or for a certain part of the
model only by creating a subsystem. Looking at the relative motion between femur
and tibia, it is sufficient to analyse the equations for the subsystem with these
two bones and the revolute joint connecting them. Rigid transforms between the
bones and the joint are added to this subsystem as well. A parameter block can
be introduced which contains equations with symbolic variables. Those include
parameters concerning the bodies, the rigid transforms as well as global parameters
like gravity. The ordinary differential equation calculated by MapleSim for the
motion between femur and tibia is given by

d2ϕ

dt2
(
mt(r

2
y + r2z) + Ix

)
= g mt (ry sinϕ+ rz cosϕ)−

dϕ

dt
Kd − ϕKs + τ. (5.6)

As before, this equation describes the acceleration of the angle ϕ between the two
bones in respect to time t and dependent on the acting torque τ on the revolute
joint. The explanations and values for the symbolic variables can be found in Table
5.2. The values are equal to the knee simulation model introduced in chapter 4.
With the state vector x = (ϕ, ω)T , equation (5.6) can be rewritten to a system of
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Variable Value Description

mt 0.227 kg Mass of tibia

ry −41.3 · 10−3 m Transform between joint to tibia, y-direction

rz 0.755 · 10−3 m Transform between joint to tibia, z-direction

Ix 140.86 · 10−6 kg m2 Inertial rotation of tibia, x-component

Kd
180·10−3

π
N m s
rad Damping coefficient in joint

Ks
102.6
π

N m
rad Spring stiffness constant in joint

g 9.81 m
s2 Gravitation

Table 5.2.: Parameters p for the subsystem consisting of femur and tibia.

differential equations

ẋ =

(
ω

g mt(ry sin ϕ+rz cos ϕ)−dϕ
dt

Kd−ϕKs+τ

mt(r2y+r2z)+Ix

)
= f(x,p, τ, t), (5.7a)

y = ϕ = h(x,p, τ, t). (5.7b)

The output function (5.7b) is defined additionally, fulfilling then all needed require-
ments for a dynamic system. Again, the Jacobian matrices of both functions f , h
are calculated by

∂f

∂x
=

(
0 1

g mt(ry cos ϕ−rz sin ϕ)Ks

mt(r2y+r2z)+Ix
− Kd

mt(r2y+r2z)+Ix

)
,

∂f

∂u
=

(
0
1

mt(r2y+r2z)+Ix

)
, (5.8a)

∂h

∂x
=
(
1 0

)
,

∂h

∂u
= 0. (5.8b)

Evaluating the Jacobians at the equilibrium point xE = (0, 0)T as before in (5.3)
and substituting the variables in (5.8) with the values in Table 5.2 gives the linear
state space representation

ẋ =

(
0 1

−62006.32 −108.47

)
x+

(
0

1893.29

)
u, (5.9a)

y =
(
1 0

)
x. (5.9b)

As before, the corresponding transfer function is calculated by

G(s) =
(
1 0

)((s 0
0 s

)
−
(

0 1
−62006.32 −108.47

))(
0

1893.29

)
=

1893.29

s2 + 108.47s+ 62006.32
.
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As stated above, Simulink gives the possibility to linearise a model using the lin-
ear analysis tool. This makes it simple to derive a state space representation or
transfer function of a model in Simulink or Simscape, respectively. Therefore, an
additional model, which contains just femur and tibia, is created. The linearisation
is calculated after the definition of input and output signal as well as an operating
point, equivalent to the equilibrium point before. The initial position is chosen as
operating point of the model which is equivalent to the vertical position (5.3). The
state space representation of the linear analysis tool leads to almost the same result
as in (5.9a) and is given by

ẋ =

(
0 1

−6.201 · 104 −108.5

)
x+

(
0

1893

)
u,

y =
(
1 0

)
x.

The state variables are again the angle ϕ and its corresponding derivative, the angu-
lar velocity. The corresponding transfer function is calculated using the MATLAB
function tf and again, a P-T2 element is the result

G(s) =
1893

s2 + 108.5s+ 6.201 · 104
.

This shows that the simplification of the knee to a single pendulum represents a
good approximation. From the pendulum’s behaviour further deduction can be
made fore more detailed analysis, even in the control design. The equivalence of the
results, linearising the model using Simulink and achieving a state space representa-
tion manually after extracting the equations from MapleSim show that both models
are based on the same mathematical description.
Defining the LTI system in (5.10) as state space model in MATLAB gives the op-
portunity to analyse it for observability and controllability. Both corresponding
matrices have full rank which is verified with the MATLAB functions obsv and
ctrb. This shows that this system is fully observable and controllable.
Considering not only femur and tibia, but patella as well, leads to a more complex
state space. Again, using the linear analysis tool leads to a state space respresenta-
tion

ẋ =


0 1 0 0

−6.62 · 106 −4.26 · 104 6.61 · 106 4.18 · 104
0 0 0 1

8.46 · 105 5.36 · 103 −9.11 · 105 −5.48 · 103

x+


0
0
0

1.89 · 103

 ,

(5.11a)
y =

(
0 0 1 0

)
x. (5.11b)

Two more states are introduced which represent the angle and angle velocity in
regard to the relative motion between femur and patella. This implies a higher
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order transfer function,

G(s) =
1893s2 + 8.06 · 107s+ 1.25 · 1010

s4 + 4.81 · 104s3 + 1.67 · 107s2 + 4.24 · 109s+ 4.36 · 1011
. (5.12)

The extended linear system (5.11) can again be analysed regarding its observability
and controllability. The rank of the observability matrix is 4 which corresponds to
an observable system. This turns out as expected, because all state variables can be
extracted from the model. The rank of the controllability matrix is only 3, which
can be explained by the fact that there is just one input acting on the joint between
femur and tibia. This means, no input is acting on the joint between femur and
patella. Fortunately, this will not be obstructive for further consideration.
The representation by linear functions describing the multibody knee model allows
to apply linear control designs.

5.1.2. PID Control for the Multibody Model

In the first approach, a PID block from the Simulink library is chosen as controller.
The Simscape model for the human knee is embedded directly in the simulation
loop as subsystem. This involves signal converter blocks, transferring the signal
from Simulink to Simscape and vice versa. A block diagram of the feedback loop is
depicted in Figure 5.3.

r PID(s)
e τ ϕs

−

Figure 5.3.: Block diagram of a PID control circuit in Simulink.

As reference signal r, a repeating sequence stair is chosen. Using the Heaviside
function H, this signal can be written as

r(t) = 0.3 · H(t− 1) + 0.5 · H(t− 2)− 0.5 · H(t− 3)− 0.3 · H(t− 4), (5.13)

what results in a motion of the tibia as illustrated in Figure 5.2.The control tools
in Simulink include tuning for PID blocks. The parameters describing a PID tuner,
the proportional, differentiator and integrator coefficient are calculated by Simulink.
The PID block in Simulink contains one additional parameter, the filter coefficient
N . This is the realisation term for the differentiator, equivalent to 1

T
. For the tuning,

the plant is linearised first as it is shown in equation (5.11) and afterwards the step
response of the closed loop is analysed. The step response is the output from the

74



system having the Heaviside function H as input. The parameters are calculated to
get the desired step response. For the step response, the default value for response
time t = 5 · 10−3 and transient behaviour b = 0.6 are taken. The response time
indicates how fast the response of the plant achieves the reference signal. A lower
response time results in a faster adaptation to the reference signal. The transient
behaviour indicates the oscillating behaviour of the step response. A higher value
indicates a robust adaptation resulting in a lower oscillation. A low value shows
an aggressive behaviour corresponding to high oscillation. The resulting parameters
are summarised in Table 5.3. The results of the simulation are plotted in Figure 5.4

Parameter Value
P 67.58
I 89.32 · 102
D 12.67 · 10−2

N 45.15 · 102

Table 5.3.: Parameters of PID controller calculated by Simulink.

for the time steps, where the reference signal changes.
Since the mutibody knee model is represented in linear form as a P-T2 element, an
oscillating behaviour is observed in order to follow the desired reference signal. The
steps representing the reference signal are in the first and last time step lower than
in the second and third. This leads to a higher overshoot of the output signal at
time t = 2 and t = 3 with a reference signal of 0.5 rad. This can be seen in Figure
5.4(b) and 5.4(c). At time t = 1 and t = 4, with a step of 0.3 rad, the step response
shows an oscillating behaviour with an amplitude of 0.04 rad, what can be seen in
Figure 5.4(a) and 5.4(d).
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Figure 5.4.: PID control for the multibody knee model in four time spans.

5.1.3. Control with Transfer Functions for the Multibody
Model

Additionally to the PID tuning, Simulink offers the Control System Designer, a tool,
which allows to tune other blocks in order to establish a feedback loop. Blocks which
can be tuned include LTI systems, gain blocks and transfer functions, in continuous
and discrete time, respectively.
A control circuit is built containing the submodel for the Simscape knee simulation
as plant and a transfer function

C(s) =
p(s)

q(s)

acting as controller. A block diagram for this simulation loop is depicted in Figure
5.5. In the Control System Designer, the block C is chosen to be tuned and again
input and output signals are defined. This allows to use automatic tuning meth-
ods. In this case, the internal model control method is chosen which calculates the
coefficients for a transfer function in a way that the stability of the closed loop is
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r C(s) = p(s)
q(s)

e τ ϕs

−

Figure 5.5.: Block diagram for control with transfer function for the multibody
model.

guaranteed. Additional to the dominant closed-loop time constant, the controller
order can be chosen which depends on the plants dynamics. For the analysis of
a well tuned controller, transfer functions for all orders are calculated and then
compared. The control system designer is not able to calculate a first-order and
fifth-order transfer function. As dominant closed loop time constant the default
value t = 1.73 · 10−3 is chosen which corresponds to 5% of the settling time of the
plant. The calculated transfer functions are summarised in Table 5.4.

Order of degree Transfer function

2 C(s) = 195.89(s2+193s+5.86·104)
s(s+1143)

3 C(s) = 175.76(s+4.69·104)(s2+193.1s+5.87·104)
s(s+4.17·104)(s+1156)

4 C(s) = 175.48(s+4.77·104)(s+155.7)(s2+192.5s+5.87·104)
s(s+4.24·104)(s+1153)(s+156.1)

Table 5.4.: Transfer functions calculated with the Control System Designer in
Simulink.

In the closed simulation loop, all transfer functions show the same behaviour. A
higher or lower order of the transfer function does not have a remarkable effect on
the output of the closed loop as it can be seen in Figure 5.6. In Figure 5.7 the con-
trol errors between output and reference signal for all three transfer functions are
plotted. The index of the output signal represents the order of the transfer function.
It can be seen that already the second order transfer function fits as good as the
fourth order transfer function.
Looking at the poles and zeros of the transfer functions support these results. The
corresponding positions of zeros and poles are summarised in Table 5.5.
This shows that the higher order transfer functions keep zeros and poles of the lower
order transfer functions. Of course, poles and zeros are added. Since the knee sim-
ulation model is already stable, the poles of the control transfer function guarantee
only that the model remains stable. The poles λi of the transfer function describing
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Figure 5.6.: Control with one transfer function for the multibody knee model in four
time spans.

the knee simulation model as it is given in (5.12), are calculated to

λ1 = −4.77 · 104,
λ2 = −1.55 · 102,

λ3,4 = −98.63± 222.15 i .

Theorem 3.3.19 shows that the system describing the multibody knee model is BIBO
stable. The aim of the controller is to calculate an input for this system to simulate
the desired output signal. This is achieved by proper coefficients of the transfer
function.
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Figure 5.7.: Control error for various order of transfer functions for the multibody
knee model.
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Transfer function 2nd order

zeros −96.5± 222 i

poles
−1.14 · 103

1.78 · 10−15

Transfer function 3rd order

zeros
−4.69 · 104

−96.5± 222 i

poles

−4.17 · 104

−1.16 · 103

−2.76 · 10−13

Transfer function 4th order

zeros

−4.77 · 104

−156

−96.2± 222 i

poles

−4.24 · 104

−1.15 · 103

156

Table 5.5.: Zeros and poles of the transfer functions.
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5.1.4. Nonlinear PD Control Design for the Multibody Model

Concluding the control designs for the multibody model, a nonlinear control law is
formulated. This is realised for the nonlinear equations extracted from MapleSim
given in (5.6). Since the description of the multibody knee model follows the La-
grange equations as in (3.43), it is possible to apply the PD control law. Obviously,
the following control law is valid for the restricted system, which considers femur and
tibia, because the extracted equation describes the relative motion between these
two bodies. Introducing the variables

M = m(r2y + r2z) + Ix,

C = Kd,

f = m · g · (− sinϕ) + ry − rz · cosϕ+Ksϕ,

gives the desired form of the differential equation Mϕ̈ + cϕ̇ + f(ϕ) = τ . Defining
now a torque τ acting on the system of the form

τ = KP (ϕd − ϕ)−KDϕ̇+ f(ϕ),

stabilises the knee in the desired position ϕd. KP indicates the proportional factor
of the controller. A higher value results in a better match of the output signal
of the plant compared to the reference signal. The parameter KD indicates the
robustness of the controller. This constant influences the angle velocity and therefore
the approximation from the output signal. A high value indicates a robust controller,
a low value defines an aggressive control law. This results in an oscillating behaviour
of the output signal before it reaches the desired value. The new defined system of
differential equations

ϕ̈ = −Kd−m ·g ·(− sinϕ)−ry+rz ·cosϕ−Ksϕ+KP (ϕd−ϕ)−KDϕ̇+f(ϕ) (5.14)

is solved using ode45 in MATLAB. The parameters of the controller are calibrated
to KP = 56 and KD = 0.2. This results in an overshoot of the output signal which
matches the desired position with an error of 10−2. The simulation is executed in
four different time spans, one for each step of the reference signal. Since the desired
position in the control law is a constant value, the simulation is performed when the
desired position changes. As initial values for the simulations, the values of ϕ and
ϕ̇ from the last time step of the simulation before are applied. These initial and
final values are summarised in Table 5.6. The results for all four simulations are
visualised in Figure 5.8.
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Initial Values Final Values

ϕ ϕ̇ ϕ ϕ̇

t ∈ [1, 2) 0 0 29.89 · 10−2 5.82 · 10−3

t ∈ [2, 3) 29.89 · 10−2 5.82 · 10−3 79.89 · 10−2 9.74 · 10−3

t ∈ [3, 4) 79.89 · 10−2 9.74 · 10−3 29.9 · 10−2 −9.74 · 10−3

t ∈ [4, 5) 29.9 · 10−2 −9.74 · 10−3 −9.94 · 10−4 −5.84 · 10−3

Table 5.6.: Initial and final values for the simulations with the PD control law.
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Figure 5.8.: PD control for the multibody knee model in four time spans.

5.2. Control Design for the PDE Knee Model

The design of a closed simulation loop is examined in Simulink, analogously to the
procedure performed with the multibody model. This presumes that it is possible to
establish an open loop simulation, where Simulink defines the input for the COMSOL
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model. After the simulation in COMSOL, it is necessary to access the output in
Simulink. The solution for the simulation model in COMSOL is calculated using the
finite element analysis because the model description is based on partial differential
equations. This implies that this system does not depend on time only but as well on
space. This is a so-called distributed parameter system with an infinite dimensional
state space. Obviously, this complicates the formulation as dynamic system.

5.2.1. Possibilities of running a COMSOL simulation in
MATLAB

COMSOL offers the possibility to create a LiveLink to MATLAB which allows to run
simulations in COMSOL using the MATLAB interface. With the help of S-functions,
a simulation loop in Simulink can be established. A detailed explanation of the
structure for the S-function is found in [28]. This open loop structure is built for
the knee simulation in COMSOL but it is not considered for feedback design. Since
the COMSOL simulation model is based on nonlinear partial differential equations,
the formulation of a control law is complex. Linear tools, as transfer functions for
example, do not accomplish satisfying results with the direct usage of the COMSOL
model as plant. This concludes to establish a linear representation of the COMSOL
simulation model.
With the usage of COMSOL, it is possible to calculate a state space representation
for the simulation model. The form of this state space representation is given by

Mcẋ = McMAx+McMBu,

y = Cx+Du,

where MA ∈ Rn×n,MB ∈ Rn×l, C ∈ Rn×m, D ∈ Rm×l as well as the state vector
x ∈ Rn, the output y ∈ Rm and the input u ∈ Rl. If the mass matrix Mc ∈ Rn×n

is singular, the system is described by differential algebraic equations. For large
systems, this state space representation is more suitable than (3.3.3) because the
matrices Mc and MA become more sparse. After defining as input again the acting
torque on the hinge joint and as output the angle between femur and tibia, the state
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space matrices can be exported to

Mc =


0 0 0 10.21 · 10−4 −3.39 · 10−4 0
0 0 0 −3.39 · 10−4 3.03 · 10−4 0
0 0 0 0 0 0

10.21 · 10−4 0 0 0 0 0
0 10.21 · 10−4 0 0 0 0
0 0 10.21 · 10−4 0 0 0

 ,

(5.15a)

MA =


−22.61 · 10−2 44.73 · 10−2 0 −125.05 · 10−2 269.01 · 10−2 0
44.73 · 10−2 −1 0 269.01 · 10−2 −622.64 · 10−2 0

0 0 0 0 0 83.86
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

(5.15b)
MT

B =
(
−5.12 2.04 0 0 0 0

)
, (5.15c)

C =
(
−2.25 · 10−4 8.96 · 10−5 0 0 0 0

)
, (5.15d)

D = 0. (5.15e)

Due to the singularity of the matrix Mc, no state space representation of the form
(3.3.3) can be defined. With the usage of the descriptor state space block in Simulink,
this state space representation can be directly imported in the simulation. Further-
more, this form gives the possibility to design a feedback loop in Simulink.

5.2.2. PID control for the COMSOL Model

In the first approach, a PID control design is evaluated, its block diagram is depicted
in Figure 5.9. The COMSOL model is realised in Simulink with the descriptor state
space block which allows to define a system with the structure introduced in (5.15).

r PID(s)
Mcẋ = McMAx+McMBu

y = Cx+Du
e τ ϕs

−

Figure 5.9.: Block diagram of a PID control circuit for the COMSOL model.

The values of the parameters from the multibody model for the PID control design do
not show a satisfying behaviour for the COMSOL model. Therefore, the parameters
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of the PID controller are tuned again with the control design in Simulink. This
leads to slightly different values for the parameters as it can be seen in Table 5.7.
The values for the proportional and integrator parameter P and I are twice or three
times as high, respectively, than the values which were tuned for the multibody
model. The differentiator and realisator term D and N are in the same range as for
the multibody model.

Parameter Value
P 135.49
I 11.27 · 103
D 37.66 · 10−2

N 55.03 · 103

Table 5.7.: Parameters tuned by Simulink for the PID block for the COMSOL model.

In Figure 5.10 the PID control results for the COMSOL model are plotted with the
parameter sets first tuned for the COMSOL model, second of the multibody model.
The output signals use the index 1 for the parameter set for the PDE model, and 2
for the multibody model.
The results show that the PID control with the parameters of the multibody model
needs more time to calculate the required input for the PDE model. The parameters
tuned for the PDE model itself results in a more robust controller which is able to
match the reference signal faster.
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Figure 5.10.: PID control for the COMSOL model with two different parameter sets.

5.2.3. Control with Transfer functions for the COMSOL
Model

The design of a controller with one degree of freedom, consisting of a transfer func-
tion is examined for the PDE model in COMSOL as well. The block diagram of
this control design is depicted in Figure 5.11.

r C(s) = p(s)
q(s)

Mcẋ = McMAx+McMBu
y = Cx+Du

e τ ϕs

−

Figure 5.11.: Block diagram of a control with one transfer function for the COMSOL
model.

Using the control system designer in Simulink, the transfer function is tuned again
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for the COMSOL model. Three different transfer functions are calculated, they are
summarised in Table 5.9.

Order of degree Transfer function

2 C(s) = 105.16(s2+113.3s+3.27·104)
s(s+640)

3 C(s) = 92.74(s+2.48·104)(s2+113.2s+3.28·104)
s(s+2.17·104)(s+648)

4 C(s) = 92.73(s+2.49·104)(s+156.5)(s2+113.1s+3.28·104)
s(s+2.18·104)(s+647.3)(s+156.6)

Table 5.8.: Transfer functions calculated with the Control System Designer in
Simulink for the COMSOL model.

Analysing the poles and zeros in Table 5.9 of these transfer functions leads to simi-
lar observations as before regarding the transfer functions for the multibody model.
Transfer functions with higher order have alomost the same poles and zeros as the
ones with lower order. Again, using transfer function does not guarantee stability of
the plant but they require proper coefficients in order to match the reference signal.
Therefore, a higher order of the transfer function does not fulfil better conditions for
the closed simulation circle. In Figure 5.12 the results of the control with transfer
functions for the COMSOL model are plotted. The transfer function of second order
is applied, once with the parameters tuned for the COMSOL model, secondly with
the coefficients of the multibody model. This shows that the transfer function tuned
for the COMSOL model results in a robust controller with no overshoot. The results
with the transfer function calibrated for the multibody model leads to an oscillating
behaviour of the COMSOL model. The final value of the reference signal is reached
but the oscillation signifies that the parameters are not well tuned.
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Transfer function 2nd order

zeros −56.7± 172 i

poles
−640

5.68 · 10−14

Transfer function 3rd order

zeros
−2.48 · 104

−56.6± 172 i

poles

−2.17 · 104

−648

2.2 · 10−13

Transfer function 4th order

zeros

−2.5 · 104

−156

−56.5± 172 i

poles

−2.18 · 104

−647

−157

5.68 · 10−14

Table 5.9.: Zeros and poles of the transfer functions.
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Figure 5.12.: Control with transfer function for the COMSOL model with two dif-
ferent parameter sets.
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5.3. Discussion of Results

Looking at the difference between output signal ϕ of the plant and reference signal
r indicates the controller performance. In Figure 5.13 the three different control
designs for the multibody model are evaluated. The control error is plotted in the
time ranges when the reference signal changes for the PID control, for the controller
defined by the transfer function and the nonlinear PD control. Due to the step of
the reference signal, defined by the Heaviside function, each controller has to react
quickly. The PID control shows an oscillating behaviour of the output signal, the
transfer function is calibrated in a robust way. The parameters of the PD control
are chosen in that way that the output signal overshoots only once. All three control
types match the reference signal. Since the calibration of the PD control is achieved
manually, a difference in the dimension of 10−4 remains between output and reference
signal.
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Figure 5.13.: Comparison of various control errors for the multibody model.

Figure 5.14 shows the difference between output and reference signal for the PID
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control first for the multibody model and second for the PDE model. The COMSOL
simulation is based on fixed time steps t = 0.02, which explains the linear slope of
the difference. Both models show an oscillating behaviour to the PID control. This
is a result due to the same calibration method for the parameters.
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Figure 5.14.: PID control error for the ODE and PDE model.

Figure 5.15 shows the difference for both modelling approaches regarding a control
design with a transfer function. The results are similar to the observations regarding
the PID control. The multibody model and the PDE model show nearly no overshoot
and match the reference signal quickly.
In conclusion, one can say that both modelling approaches, multibody models and
models described by partial differential equations, can be formulated as linear state
space representation. This allows to design for both modelling approaches linear
control designs in the same software environment. This facilitates the control design
process and the analysis of both models.
Furthermore, it is important to notice that even the linear control design shows
satisfying or even better results than the nonlinear control design. This can be
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Figure 5.15.: Transfer function control error for the ODE and PDE model.

explained due to the aim of the controller. More complex output behaviour would
have required nonlinear control design. The possibility of equation extraction in
MapleSim is an useful tool which makes the usage of this software more attractive.
The knowledge of the equations allows a better analysis of the underlying system.
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6. Conclusion and Outlook

The conclusion of this thesis comprises two parts. First, the used simulation en-
vironments are discussed regarding their advantages and disadvantages. This is
followed by the discussion of handling the different modelling approaches regarding
their representation as dynamic systems. Last but not least, a short outlook gives
an overview about possible future expansions of this work.

6.1. Benchmark of Simulation Environments

Mainly, three different simulation environments were used, Simulink including the
multibody library in Simscape, MapleSim and COMSOL Multiphysics.
Although, in both multibody simulation environments, MapleSim and Simscape, the
simulation models are described by ODEs, whereby the extraction of the equations
is possible in MapleSim only. This facilitates further analysis and the usability of
the simulation model for more investigation.
Another key point is the flexibility with respect to programming. The engine of
MapleSim is based on Modelica, an object-oriented modelling language. This enables
to edit the pre-implemented components by adapting the code. Furthermore, custom
components can be defined with the use of Modelica programming.
Regarding to the modelling capabilities, MapleSim offers more possibilities than
Simscape due to these two points. Focusing on the post processing of simulation
results and flexibility of combination with the Simulink environment and its tools,
Simscape offers more variety due to the interconnection to MATLAB.
The usability of COMSOL is different to the multibody libraries. This is caused
not only by the modelling description by PDEs but as well regarding the modelling
process. In contrast to the multibody simulation environments, COMSOL focuses on
a solution oriented modelling process and not on the formulation of a mathematical
model. Therefore, it offers a wide variety of visualisation for the results. LiveLinks
to other software frameworks, as MATLAB and Solidworks, widen the application
fields of simulation.

6.2. Biomechanical Models as Dynamic Systems

The aim of the thesis was the representation of biomechanical models, including
different modelling approaches, as dynamic systems. The simulation models, estab-
lished in chapter 4, involves one model described by ODEs and one by PDEs. In
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chapter 5 a state space representation was derived or calculated numerically, respec-
tively, for both simulation models. The application of system theory built the base
for the used techniques. Due to the dependence of PDEs in time and as well space,
a restriction of the output behaviour with respect to time was required for a state
space representation.
Using the state space representation describing the dynamics of biomechanical mod-
els, allows the application of the same linear control designs for both simulation
models. Nevertheless, both modelling approaches, the model in Simscape and the
one in COMSOL, showed different sensitivity to control inputs. This inhibited to
use one simulation model as calibration for the other. But this is a result due to
their mathematical description and numerical differences in solving the simulation
model. Furthermore, the multibody model gives a lot more flexibility of mathemat-
ical analysis than the PDE model due to its description by ODEs. This facilitates
further investigation in a simulation loop.
The application of linear and nonlinear control design showed that for the consid-
ered control goal, following a defined reference signal, a linear controller results in a
adequate behaviour of the plant.

6.3. Outlook

Future work could focuses on four main points. The established model for the
flexion of the human knee in chapter 4 is simplified regarding the complex biome-
chanical structure of the human knee joint. The creation of custom components
in MapleSim allows to implement nonlinear spring damper elements. The usage of
nonlinear components in the simulation will improve the realistic behaviour of the
ligaments. Furthermore, the analysis of the behaviour of nonlinear models in the
simulation loop, in contrast to the linear models, is of interest. As well as the anal-
ysis of numerical aspects regarding the embedment of a linear or nonlinear model
to a feedback loop, will be a task in the future.
The design of more sophisticated control designs, e.g. the definition of a trajectory
as reference signal, would allow to simulate a human gait cycle. This could widen the
application for biomechanical research questions and improve further biomechanical
analysis of the interactions in the human body.
The simulation model in COMSOL was implemented following the hypotheses de-
rived from the multibody model. In biomechanics PDEs are used for stress strain
analysis due to their dependence on time and space. The development of a model
described by PDEs analysing bone adaptation or the behaviour of soft tissue would
give more application possibilities in biomechanical research.
Finally, the usage of S-functions would gives the opportunity to create an applica-
tion of nonlinear control theory for the PDE model as well. Furthermore, this would
allow the investigation of additional control designs, e.g. process control.
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A. Nonlinear Control Laws

The nonlinear control theory gives a lot more possibilities than it was presented in
this thesis. Two more nonlinear control laws are introduced for further investigation.
Due to the fact, that they were not applicable to the established knee models, they
are separated.

A.1. Control Laws based on Lyapunov Functions

With the help of Lyapunov stability, introduced above, it is possible to define control
designs for nonlinear systems. For the first formulation of a control law, systems of
the form

ẋ1 = f1(x1) + g1(x1)x2 (A.1a)
ẋ2 = u (A.1b)

are considered, with the states x1 ∈ Rn, x2 ∈ R, the input u ∈ R and the initial
value x(0) = x0. Systems of this kind are given in the so-called strict feedback form
and are part of input linear systems. Therefore, a control law can be given by the
following

Theorem A.1.1 (Integrator Backstepping). Given the nonlinear system (A.1) with the
equilibrium state x1,R = 0, i.e. f(0) = 0, a continuously differentiable function α(x1)
with α(0) = 0 and a positive definite, radially unbounded Lyapunov function V (x1).
Additionally, the inequation

∂V

∂x1

(f1(x1) + g1(x1)α(x1)) ≤ W (x1) ≤ 0

holds for a function W (x1).

(i) If W (x1) is negative definite, then there exists a control law u = α(x1, x2) so,
that the equilibrium state x1,R = 0, x2 = 0 is global asymptotically stable. A
possible control law is

u =
∂α

∂x1

(f1(x1) + g1(x1)x2)−
1

γ

∂V

∂x1

g1(x1)− c (x2 − α(x1))

for c > 0, γ > 0. Additionally a Lyapunov function for the whole system is
given by

V (x1, x2) = V (x1) +
γ
2
(x2 − α(x1))

2.
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(ii) If W (x1) is negative semi-definite, then there exists a control law u = α(x1, x2)
so that the states x1(t), x2(t) are bounded for all t > 0. Furthermore, the
solution of the system converges for t → ∞ to the greatest positive invariant
set of

X =

{(
x1

x2

)
∈ Rn+1 : W (x1) = 0 and x2 = α(x1)

}
.

It is now possible to expand this theorem to nonlinear systems of the form

ẋ1 = f1(x1,x2), (A.2a)
ẋ2 = f2(x1,x2) + u, (A.2b)

with the states x1 ∈ Rn,x2 ∈ Rp and the input u ∈ Rp. The control law u is
modified to

u =
∂

∂x1

α(x1)f1(x1,x2)−
(

∂

∂x1

V (x1)G(x1,x2 − α(x1))

)T

− c(x2 − α(x1))− f2(x1,x2)

with the auxiliary function

G =

1∫
0

∂

∂α(x1 + λx2)
f1(x1, α(x1 + λx2))dλ.

The next example illustrates the implementation of a control law by Lyapunov
functions using the integrator backstepping theorem.

Example A.1.2. A model of a rotary flexible joint is considered. The system
consists of a body holding one arm as it is depicted in Figure A.1. The state

x2
x11

body

arm ML

Figure A.1.: Illustration for rotary flexible joint.

variables x11, x12 describe the angle and the angle velocity of the arm. They are
merged in the vector x1 = (x11, x12)

T . The angle velocity of the body is the state
variable x3. A constant load torque ML and the moment of inertia Ia are applied on
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the arm. Springs are connected between the arm and the body applying an aligning
torque c0(x11 − x2), c0 > 0. The constant da > 0 is the friction coefficient defining
the friction between arm and body. Hence, the differential equations of the system
are given by

ẋ1 =

(
x12

1
Ia
(ML − c0(x11 − x2)− dax12)

)
, (A.3a)

ẋ2 = x3 = u. (A.3b)

This description is given in strict feedback form which makes it simple to define a
control law by the integrator backstepping following the system description as in
(A.1). With the system description (A.3), the functions are given by

f1(x1) =

(
x12

1
Ia
(ML − c0x11 − dax12)

)
, g1(x1) =

(
0

1
Ia
c0

)
,

f2(x1, x2) = 0, g2(x1, x2) = 1.

Using the integrator backstepping designs a control law fulfilling the dynamics

ẋ1 =

(
x12

1
Ia
(ML −M(x11)− dx12)

)
. (A.4)

Let the aligning torque M(x11) be a smooth and increasing function with the prop-
erty M(x11)x11 > 0 for x11 6= 0.
In the first approach for a control design, only the arm is considered. Hence, it is
possible to calculate the input u = α(x1) by comparing the ideal dynamics given by
(A.4) to the real system in (A.3a). This leads to

α(x1) = x11 +
(da − d)x12 −M(x11)

c0
.

Second, the stability of Lyapunov for this control law is proven. The transformation
z1 = x1 − x1R for the equilibrium state x1R and the Lyapunov function

V1 =

z11∫
0

(M(ξ + x11R)−ML) dξ +
Ia
2
z 2
12.

are introduced. The derivative of the Lyapunov function is calculated by

V̇1(z1) = ∇V T
1 ż1 =

(
M(x11)−ML Iax12

)
(f1(x1) + g1(x1)α)

=
(
M(x11)−ML Iax12

)( x12
ML−M(x11)−dx12

Ia

)
= −dx2

12 ≤ 0.

This shows, that the Lyapunov function is positive definite with a negative semidef-
inite derivative. This implies the stability of Lyapunov for the given control law α
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for the system x1.
It is now possible to expand the control law for all three state variables by expanding
the Lyapunov function to

V2(z1, z2) = V1(z1) +
γ

2
z22 ,

with the error z2 = (x2−α(x1)) of the real state x2 and the desired state α(x1). The
Lyapunov function for the whole system is positive definite due to V1. Calculating
the derivative leads to

V̇2 = V̇1 + γz2ż2 = V̇1 + γ(x2 − α(x1))(ẋ2 − α̇)

=
∂V1

∂x1

(f1 + g1x2) + γ(x2 − α(x1))

(
g2u− ∂α1

∂x1

(f1 + g1x2)

)
=

∂V1

∂x1

(f1 + g1α(x1)) + γ(x2 − α(x1))

(
g2u− ∂α

∂x1

(f1 + g1x2) +
1

γ

∂V1

∂x1

g1

)
.

A possible control law with the parameters k > 0, γ > 0 is given by

u =
∂

∂x1

α(x1) (f1(x1) + g1(x1)x2)−
1

γ

∂

∂x1

V (x1)g1(x1)− k(x2 − α(x1))

=
(
1− Ṁ(x11)

c0
d−da
c0

)
(f1(x1) + g1(x1)x2)−

1

γ

(
M(x11)−ML Iax12

)
g1

−k(x2 − α(x1))

= x12 − k

(
x2 − x11 +

(d− da)x12 +M(x11)

c0

)
−d− da

c0

x2c0 − c0x11 − dax12 +ML

Ia
− x12c0

γ
.

This input leads to a negative semi-definite derivative V̇2 ≤ 0. This proves that
the closed circle is stable. The parameter γ regulates the influence of the Lyapunov
function V1.
The results of the simulation with the calculated input u are depicted in Figure A.2.
The plots show the real coordinates x11, x12 and the desired values of the coordinates
d1, d2 where a good behaviour of the controller can be observed.
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t

x11(t)

d1(t)

(a) Angle of the arm x11(t) plotted against
its reference signal d1(t).

t

x12(t)

d2(t)

(b) Velocity of the arm x12(t) plotted
against its reference signal d2(t).

Figure A.2.: Integrator Backstepping design for the rotable flexible joint.

A.2. Exact Linearisation

In the following, systems of the form

ẋ = f(x) + g(x)u (A.5a)
y = h(x) (A.5b)

with the state x ∈ Rn, the input u ∈ R and the output y ∈ R are considered, which
are part of the affine input systems. The functions f(x), g(x) describe smooth
vector fields and h(x) a smooth function. For the method of the exact linearisation,
the Lie derivative is needed, which is introduced in

Definition A.2.1 (Lie derivative). The Lie derivative Lf of a differentiable function h
with respect to a vector field f is defined by

Lfh(x) =
∂h

∂x
f(x) = ∇hT (x)f(x).

The Lie derivative Lk
fh(x) for k ∈ N is defined by the recursion

Lk
fh(x) = Lk−1

f h(x), L0
fh(x) = h(x).

Furthermore, the relative degree is introduced to determine the recursive Lie deriva-
tive which is not 0 anymore.

Definition A.2.2 (Relative degree). The system (A.5) has relative degree δ ∈ N at x̂
if

LgL
k
fh(x) = 0, k = 0 . . . δ − 2 for all x fulfilling ‖x− x̂‖ < ε

and
LgL

δ−1
f h(x̂) 6= 0.
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Investigating in (A.5) the change in time of the output y leads to

ẏ =
∂h(x)

x
ẋ = Lfh(x) + Lgh(x)u. (A.6)

Assuming that Lgh(x) 6= 0, allows to introduce a state feedback

u =
1

Lgh(x)
(v − Lfh(x))

with a new input v. This transforms the system (A.5) in a linear system of first
order of the form

ẏ = v.

Assuming that Lgh(x) = 0 in (A.6), leads to

ÿ =
∂Lfh(x)

x
ẋ =

∂Lfh(x)

x
(f(x) + g(x)u) = L2

fh(x) + LgLfh(x)u.

Introducing the relative degree δ of the system allows to analyse the derivative of y
where the input u is explicitly given, as shown in

y = h(x),

ẏ = Lfh(x) + Lgh(x)︸ ︷︷ ︸
=0

u,

ÿ = L2
fh(x) + LgLfh(x)︸ ︷︷ ︸

=0

u,

...
y(δ−1) = Lδ−1

f h(x) + LgL
δ−2
f h(x)︸ ︷︷ ︸
=0

u,

y(δ) = Lδ
fh(x) + LgL

δ−1
f h(x)u.

The state feedback control law

u =
1

LgL
δ−1
f h(x)

(v − Lδ
fh(x))

leads to a linear input-output behaviour for the δ-th derivation of the output

y(δ) = v.

Solving this equation for the output y yields in a n times integration. These insights
can be summarised in
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Theorem A.2.3 (Exact linearisation). Consider the system given in (A.5). Suppose the
relative degree δ ≤ n at x̂. The control law for the state feedback

u =
1

LgL
δ−1
f h(x)

(v − Lδ
fh(x))

transforms the system with a linear input-output behaviour and the new input v ∈ R.
The transfer function

G(s) =
1

sδ

calculates the output y.

Again, this control design is illustrated with an

Example A.2.4. The inverted double pendulum, considered in Example 3.4.10
allows to study more complex control designs. The state variables of the double
pendulum are extended with the acceleration of the position x of the cart. Again,
the system of second order differential equations for the state variables are described
by a mass matrix M and a right hand side b containing external forces acting on
the derivatives of the state variables. This concludes to an equation of the form

M

 ẍ
ϕ̈1

ϕ̈2

 = b+

1
0
0

u.

The input u is considered as an external force F acting on the cart. The mass
matrix and the vector field b are given by

M =

 mm +m1 +m2

(
m1

2
+m2

)
l1 cosϕ1

m2

2
l2 cosϕ2(

m1

2
+m2

)
l1 cosϕ1

(
m1

3
+m2

)
l21

m2

2
l1l2 cos(ϕ1 − ϕ2)

m2

2
l2 cosϕ2

m2

2
l1l2 cos(ϕ1 − ϕ2)

m2

3
l22

 ,

b =

 (
m1

2
+m2

)
l1 sinϕ1ϕ̇

2
1 +

m2

2
l2 sinϕ2ϕ̇2

m2

2
l1l2 sin(ϕ2 − ϕ1)ϕ̇2 +

(
m1

2
+m2

)
gl1 sinϕ1

m2

2
l2(g sinϕ2 + l1 sin(ϕ1 − ϕ2)ϕ̇

2
1)

 .

The mass of the cart and the pendulums are considered as mm = 0.02 kg,
m1 = m2 = 0.01 kg, the length of the pendulums as l1 = 0.5 m, l2 = 0.7 m and the
gravitation constant as g = 9.81 ms−2. The differential equations of second order
for the system are given by M−1b. Considering as output of the system h(x) = x
and calculating the derivatives of the output leads to the equations

y = x,

ẏ = ẋ,

ÿ = ẍ = M−1b(1) + u = v.
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Expressing the input as
u = v −M−1b(1)

leads to the equation of the output for the second derivative

ÿ = v.

Following the Theorem A.2.3 leads to the formulation of the equations for the deriva-
tives of the output by the Lie Derivatives as

y = h(x),

ẏ =
∂h

∂x
(f(x) + g(x)u) = Lfh(x) + Lgh(x)︸ ︷︷ ︸

=0

u,

ÿ =
∂Lfh(x)

∂x
ẋ =

∂Lfh(x)

∂x
(f(x) + g(x)u) = L2

fh(x) + LgLfh(x)︸ ︷︷ ︸
=1

u.

This implies a relative degree of 2 for the system. Reformulating the differential
equations with the new input leads to

ẍ = v,

ϕ̈1 = M−1b(2),

ϕ̈2 = M−1b(3).

π
t

x(t)

ϕ1(t)

ϕ2(t)

Figure A.3.: Exact linearisation for the inverted double pendulum.

In Figure A.3 the simulation results of the solution of the position of the cart x(t)
and the angles ϕ1(t), ϕ2(t) are depicted. The results show that the equilibrium state
at (ϕ1, ϕ2) = (π, π) is stabilised with the exact linearisation. The position of the
cart is increasing which is caused by the reformulation, due to the integration of the
constant value v = 1.
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Nomenclature

Abbreviations

Symbol Description

BIBO Bounded-Input Bounded-Output

FEA Finite Element Analysis

FEM Finite Element Method

MIMO Multiple-Input Multiple-Output

LTI Linear Time Invariant

ODE Ordinary Differential Equation

PDE Partial Differential Equation

SISO Single-Input Single-Output

Mathematical Symbols and Functions

Symbol Description

A Capital letters for matrices

x Boldface for vectors

x Normal font scalars

()T Matrix or Vector Transpose

H Heaviside function

The Heavside H function is defined by

H(t) =

{
1, t ≥ 0,

0, t < 0.
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