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Abstract

Motivation: Anatomical landmarks are of great importance for many medical fields.
Especially at the knee joint, landmarks are used for orientation during surgery or to
define axes. Consequently, knowledge of their exact location is crucial. Previous methods
to detect these points are very time consuming or highly complex. In 2009, a fully
automatic approach to detect peak landmarks based on surface curvatures was presented
by Subburaj et al. This method was implemented and tested. In addition, the method
was extended to detect different geometric structures and axes.

Material and methods: As the proposed method is based on curvature values of
surface meshes, segmented computer tomography scans were used to obtain triangular
meshes of 15 knees. A semi-automatic multi-step process was implemented to detect
bony landmarks with the shape of a peak, based on curvature values and adjacency
relationships. The implemented algorithm was extended to detect further geometrical
shapes of the surface such as edges and valleys. This enabled the computation of the
farthest points of the tibial plateau and the patella as well as the cylindrical axis and
the path of the trochlear groove. In addition, the shaft axes of the femur and tibia were
calculated. This algorithm was applied to all 15 specimens. The results obtained for the
bony landmarks were compared with the landmarks labeled by an experienced orthopedic
surgeon on 7 of those 15 specimens.

Results: Manual intervention was necessary for all specimens to allow the algorithm to
detect bony landmarks on the surface. However, the algorithm was only able to detect
all landmarks of 5 femura and 6 tibias. The variability in location of bony landmarks of
the femur and tibia, compared to the landmarks labeled by the surgeon, were found to
be in range of 1.90 to 6.96 mm. The computation of the farthest points of the patella as
well as tibial plateau, the trochlear groove, and the cylindrical axis delivered adequate
results, required manual interventions for roughly half of all specimens. The computation
of the shaft axis of the femur and tibia did not require any interventions to get results.

Discussion: The methods for detecting landmarks or axes which were based on larger
regions or an overall contour of the bone were relatively stable. In contrast, using
curvature values for locating small peak landmarks required partly manual interventions
and this strategy was not successful for all specimens. The landmarks found were in good
agreement with the literature. In conclusion, semi-automatic detecting and labeling of
anatomical landmarks and axes could be achieved with the implemented algorithms.



Zusammenfassung

Motivation: Anatomische Landmarken sind für viele verschiedene Anwedungen in der
Medizin von großer Bedeutung. Am Kniegelenk werden sie zur Orientierung während
Operationen und um Achsen zu definieren verwendet. Deshalb ist die Kenntnis ihrer
genauen Position sehr wichtig. Vorhandene Methoden haben die Nachteile, dass sie
entweder sehr zeitaufwendig, oder sehr komplex sind. Deshalb hat Subburaj et al. 2009
einen Ansatz präsentiert der hügelförmige Landmarken voll automatisch basierend auf
Krümmungswerten auffindet. Dieser Ansatz wurde implementiert und getestet. Zusätzlich
wurde diese Methodik erweitert um auch andere geometrische Strukturen und Achsen
auffinden zu können.

Material und Methoden: Da der präsentierte Ansatz auf Krümmungswerten von
Oberflächenmeshes beruht, wurden segmentierten computer-tomographische scans verwe-
ndet um Dreieckmeshes von 15 Knien zu erzeugen. Ein semiautomatischer, mehrstufiger
Prozess wurde implementiert um, basierend auf Krümmungswerten und Nachbarschafts-
beziehungen, knochige Landmarken in der Form eines Hügels detektieren zu können. Der
implementierte Algorithmus wurde erweitert, um weitere geometrische Strukturen wie
Kanten und Täler auffinden zu können. Dies macht es möglich die Punkte mit dem
größten Abstand bei der Patella und des Tibiaplateaus, sowie die zylindrische Achse
und den Pfad der Trochlear Groove am Femur aufzufinden. Zusätzlich wurden die
Schaftachsen von Femur und Tibia berechnet. Diese Algorithmen wurden auf alle 15
Knie angewandt. Die erhaltenen Ergebnisse wurden mit markierten Landmarken eines
erfahrenen orthopedischen Chirurgen für 7 von diesen 15 Knien verglichen.

Ergebnisse: Manuelle Eingriffe waren notwendig um knochige Landmarken detektieren
zu können. Dennoch war der Algorithmus nur in der Lage an 5 Femuren und 5 Tibien alle
Landmarken aufzufinde. Die Schwankungen der Position der knochigen Landmarken von
Femur und Tibia, zwischen Punkten die der Chirurg markiert hat und dem Algorithmus
waren zwischen 1.90 und 6.96 mm. Für die Berechnung der Punkte mit dem größten
Abstand von der Patella und dem Tibiaplateau, sowie der zylindrischen Achse und der
"trochlear groove" waren manuelle Eingriffe für in etwa die Hälfte aller Proben notwendig.
Die Berechnung der Schaftachsen von Femur und Tibia benötigte keine Interventionen
um Ergebnisse zu erhalten.

Diskussion: Abschließend lässt sich sagen, dass das Detektieren von Landmarken und
Achsen basierend auf größeren Regionen oder überregionalen Konturen gut funktioniert.
Das Auffinden von kleinen, lokalen Strukturen der Oberfläche, wie Erhebungen, hingegen
funktionierte nicht zufriedenstellend und verlangte manuelles eingreifen. Die aufgefund-
enen Regionen waren jedoch übereinstimmend mit der Literatur. Schlussfolgend lässt sich
sagen, dass halbautomatisches Detektieren und Kennzeichnen von anatomischen Land-
marken und Achsen mit den implementierten Algorithmen erreicht werden konnte.
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Chapter 1

Introduction

1.1 Motivation
Anatomical landmarks are of great importance in many medical fields and knowledge of
their position is essential for various applications. Mosby’s medical dictionary [1] defines
the terminus landmark as "a readily recognizable anatomical structure used as a point
of reference in establishing the location of another structure or in determining certain
measurements" and a bony landmark as "a groove or prominence on a bone that serves
as a guide to the location of other body structures". This means a bony landmark shows
a characteristic geometric shape, like a peak, a pit, etc.

The importance of anatomical landmarks on the entire skeleton of the human body is
manifold. For example, they can be used to label attachment points of ligaments or
muscles, or to define mechanical joint axes [2, 3]. Consequently, landmarks are used for
intra-operative navigation, which is why they are very important for operation planning
[4, 5, 6, 7], for designing and adapting prosthesis and implants, and for measuring
characteristic distances on bones [8, 1]. Especially, on the knee joint bony landmarks
are for positioning prosthetic components, for performance of a computer assisted knee
arthroplasty (TKA) and to define a reference system during motion [9, 10, 11]. In
addition, variability in the location of landmarks has the potential to affect the joint
coordinate systems and reported kinematic descriptions.[12].

Landmarks are used in different medical fields for different applications. Therefore,
for many bones and joints, including the human knee joint, it is important to know
their respective position. Finding such landmarks often requires manual intervention of
experienced staff and is time consuming. For this reason the objective of this diploma
thesis is to implement and to extend an existing automatic algorithm to detect and label
such characteristic points.
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1.2 The human knee joint
The human knee is a highly complex bicondylar joint and the largest joint in the human
body. It consists of three bones the femur, tibia, and patella (figure 1.1). The femur,
and tibia form the femorotibial joint. The femur and patella form the femoropatellar
joint. Both joints are enclosed by one joint capsule, which is why the per se two joints
are understood as the one knee joint. The fibula, the bone parallel to the tibia, is not
part of the actual knee joint, but forms an autonomous joint, the tibiofibular joint, with
the tibia [13, 14]. The two condyles of femur and tibia are round prominences. The
epicondyles are eminences of the condyles. The part of the femur which is part of the
knee joint is called distal end, and the part of the tibia which is part of the knee joint is
called proximal end (figure 1.2) [3].

Figure 1.1: Bones forming the human knee joint.
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Figure 1.2: Anatomical directional terms shown on a left knee joint.

The femur and tibia are connected on the medial side directly through the medial
collateral ligament and on the lateral side through the lateral collateral ligament (figure
1.3). Proximally those ligaments are attached to the epicondyles of the femur and distally
to the medial condyle of the tibia and the fibular head. The cruciate ligaments are
arranged like the letter X and connect the femur and the tibia as well. These ligaments
keep the articular surfaces of the femur and the tibia in contact and provide stability to the
knee joint, during motion. The patellar tendon connects the patella with the tuberosity
of the tibia. The tibia tuberosity is considered to be the insertion of the quadriceps,
which is directly connected to the proximal end of the patella and the femur, and is
mainly responsible for extending the leg [3]. The hamstrings participates in the flexion
of the knee joint, inserting on the tibia and fibula. The adductors are a muscle group
that is attached to the femur and tibia. Their insertion occurs, among others, on the
adductor magnus tubercle, whereas this muscle is mainly responsible for movements of
the hip. The gastrocnemius is located for the most part at the posterior side of the lower
leg, whereas the origin is on the medial and lateral condyle of the femur. It participates
in the flexion of the knee joint as well (figure 1.3) [13].
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Figure 1.3: Simplified drawing of muscles and ligaments of the human knee joint.

The movement of the human knee joint is highly complex [3]. The maximum flexion
of the human knee is about 150 degrees, as the center moves up and down [13]. The
movement is rather a combination of rolling and sliding of the individual joint bones [15].
When knee flexion reaches its maximum, there is a secondary movement, the obligatory
terminal rotation, where the tibia rotates internally by approximately 5 degrees [3].

Knowing and understanding the importance of landmarks in general and the complexity
of the human knee leads to the question of how they interlink. Therefore, the next chapter
investigates landmarks on the human knee.

1.3 Landmarks and axes at the human knee
At the human knee joint there are several anatomical landmarks with different meaning
and appearance. In this work, only a selection of all landmarks on the knee are of
interest and therefore listed below. They were chosen because they can all be found
through a fundamentally consistent characteristic geometric structure. For example, all
listed anatomical landmarks correspond to a peak.

1.3.1 Femur
Five different bony landmarks at the femur are of interest regarding this study, (table
1.1), which are depicted in figure 1.4.
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Landmark Function[3, 14, 16, 17, 18]
Adductor magnus tubercle • Insertion of adductor magnus

Medial epicondyle • Attachment point of medial collateral ligament
Lateral epicondyle • Attachment point of lateral collateral ligament

Medial peak • Most anterior point of medial condyle
Lateral peak • Most anterior point of lateral condyle

Table 1.1: Bony landmarks at the distal end of the femur and their function (figure 1.4)

In addition, the characteristic structure of the trochlear groove is of interest (table 1.2).

Characteristic structure Function

Trochlear groove • Concave notch in which patella moves along
the femur during flexion and extension [19]

Table 1.2: Characteristic structure at the distal and of the femur

Figure 1.4: Femoral bony landmarks: Adductor magnus tubercle, lateral peak, medial
peak, medial epicondyle, lateral epicondyle

Three different axes at the femur are of interest regarding this study (table 1.3), which
are depicted in figure 1.5.

Axis Function[20, 21, 22, 23]

Cylindrical axis • Axis of cylinder registered in posterior
medial an lateral condyles [20]

Shaft axis
• Femoral proximal shaft axis [23].

The actual definition depends
on what the axis is used for.

Epicondylar axis • Connecting line of medial
and lateral cpicondyles [20]

Table 1.3: Axes of the distal end of the femur and their characteristics (figure 1.5)
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Figure 1.5: Shaft axis, cylindrical axis, epicondylar axis of the femur of the left knee
joint.

1.3.2 Tibia
Concerning this study, there are also five different bony landmarks of interest at the tibia
(table 1.4), which are depicted in figure 1.6.

Landmark Function[3, 14, 24, 25]
Medial intercondylar

tubercle
• Medial peak of eminence intercondylaris

Lateral intercondylar
tubercle

• Lateral peak of eminence intercondylaris

Medial peak • Most medial point of tibial plateau
Lateral peak • Most lateral point of tibial plateau

Tibial tuberosity • Attachment of patellar tendon
(considered insertion of quadriceps)

Table 1.4: Bony landmarks at the proximal end of the tibia and their function (figure
1.6)
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Figure 1.6: Tibial bony landmarks: Tibial tuberosity, lateral peak, medial peak, lateral
intercondylar tubercle, medial intercondylar tubercle

One axis at the tibia is of interest for this study (table 1.5), which is depicted in figure
1.7.

Axis Function[26]

Shaft axis
• Axis located in the shaft of the Tibia [26].

The actual definition depends
on what the axis is used for.

Table 1.5: Axis of the distal end of the tibia and their characteristics (figure 1.7)
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Figure 1.7: Shaft axis of the tibia of a left knee

The farthest points of the tibial plateau are defined by the largest distance between two
points. This is another approach of finding the lateral and medial peaks of the tibial
plateau, which are explained in table 1.4. (figure 1.8).

Figure 1.8: The farthest points of the tibia are defined by the distance between two points
located at the edge of the tibial plateau.

1.3.3 Patella
Considering the farthest points the most proximal, most distal, most medial and most
lateral of the anterior side of the patella are of interest, regarding this study (figure 1.9).
These are determined by the largest distance between four points of the outer contour of
the bone. The lines connecting two of those points must be orthogonal to each other.
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Figure 1.9: The farthest points of the patella are defined by the largest distance between
two points of the outer contour of the bone.

1.4 State of the art of detecting landmarks
Currently, many different approaches for locating bony landmarks are known, which in
principle can be assigned to two different methods. Either landmarks are determined on
the actual body part, or alternatively based on images or models of the bone. However,
there are also procedures that use both methods. Van Sint Jan [27] published a color
atlas of skeletal landmarks and defined an approach for detecting them on a patient by
palpation. Based on 3D foot and leg scans, Liu et al. [29] presented a method to extract
landmarks by using principal curvatures of the skin. These are used to describe certain
shapes of the body surface that are connected to bony landmarks. Those approaches
are based on the actual body part, whereat the approach of Liu et al. can be seen as
an approach that relies on actual body parts and images, as well. Approaches based on
images and models can be broken down into methods that require only 2D or 3D medical
images, and methods that need 3D models in the form of a mesh. In 2000, Griffin et al.
[16] used magnetic resonance imaging to define landmarks in single pictures by manual
examination, to show the variability of certain measurements of the distal femur. In
2005, Wörz [31] used similar images for a fully automatic approach to find three different
predefined structures on the surface, by fitting shapes onto defined regions of interest.
In 2013, Baek et al. [32] used surface meshes of the femur to create a mean model with
labeled points, registered with another mesh to automatically find landmarks. To create
such mean models, a rather extensive database is required. Using femoral surface meshes
as well, in 2015 Yang et al. [33] presented an approach that uses complex convolutional
neural networks in combination with curvature values to label anatomical landmarks fully
automatically. Forty samples were used to train the neural network and ten to test the
algorithm.

Most of these methods have at least one of the following disadvantages, that their
results tend to vary, hat they are time consuming, or that they are relatively complex.
Furthermore, many of those approaches cannot be performed fully automatically and need
manual intervention. In 2009, Subburaj et al. [24] presented a systematic approach that
uses curvature values and adjacency relationship between landmarks to automatically
identify landmarks of 3D models of the knee joint. The presented algorithm has the
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advantage that it does not vary and that it is supposed to work fully automatically,
without using highly complex approaches as neural networks. However, the results of
only three different specimens were shown. During the presentation of the approach
within the paper, some important steps are not adequate explained, so that some points
are not fully comprehensible.

Furthermore, Subburaj et al. [24] focus entirely on landmarks that have the form of a
peak. Curvature values are expected to be serviceable in locating features that are not
exclusively in that particular form. The adaptation of the proposed approach therefore
seems to have the potential to automatically find additional characteristics through the
use of curvature values.

1.5 Objective of this Thesis
The following scientific question sets the objectives of the diploma thesis:

Can information stored in surface meshes, and curvature values be used to detect
different landmarks and axes fully automatically at the human knee joint?

The aim of this diploma thesis is to implement and improve the Curvature Based Algorithm
[24] and to test its robustness and validate the results, by comparing to a manual detection
of an experienced surgeon. Furthermore, the curvatures are used and combined with other
approaches to detect further characteristics and axes of the knee joint. The following
subgoals can be defined.

• Create 3D models and meshes from CT-Images.
• Implement and improve Curvature Based Algorithm (CBA) [24] to detect described

landmarks.
• Test robustness of CBA.
• Validate created results by comparing them to landmarks detected by an experienced

orthopedic surgeon.
• Extend algorithm so it is able to detect:

1. Farthest points of Tibia
2. Farthest points of Patella
3. Trochlear Groove of Femur
4. Cylindrical axes of Femur
5. Shaft axis of Femur and Tibia
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Chapter 2

Material and Methods

As a first step, a segmentation process needs to be developed (figure 2.1). Then, the
Curvature Based Algorithm (CBA) is implemented and extended, so that axes and
landmarks can be localized. As a final step the received results have to be validated
by comparing them to landmarks detected by an experienced orthopedic surgeon.

Figure 2.1: Logical flow of diploma thesis

2.1 Materials
The basis for creating the required meshes are 15 sets of CT-Images of left human
cadaver knee specimens (figure 2.2). Those images were taken at the University Hospital
Tübingen, in Tübingen and specially prepared for biomechanical experiments using a
special knee simulator [34, 35]. Therefore, femur and tibia were cut approximately 15
cm from the joint line and the fibula was screwed to the tibia with cortical screws.
Furthermore, the femur and tibia were fixed in aluminum cylinders and provided with
screws as reference points. Those screws and other metallic objects cause strong artifacts
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within the CT-Images, making the contour of the bones difficult to see. The resolution
of the images slightly differs for each specimen, but is about 0.24 mm, 0.24 mm, 0.6 mm.
They are stored as dicom files, whereas each dicom file represents a single image. Gray
values scaled in Hounsfield Unit (HU) are stored for each voxel [36], in these images.

Figure 2.2: CT-Image of a left knee joint with artifacts due to clips and screws of metal,
stored in a dicom file.

In addition, after creating surface meshes an experienced orthopedic surgeon labeled
anatomical landmarks (chapter 1.3) on 7 of these 15 specimens (figure 2.3). For one
of those 7 specimens each landmark (chapter 1.3) was labeled eight times by the same
orthopedic surgeon.

Figure 2.3: Overview existing data for diploma thesis.

2.2 Creating 3D models based on CT-Images
The whole segmentation process is subdivided into three main steps, whereas the final
results are surface meshes (figure 2.4). The first step prepares the input data, for the
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actual segmentation. During the second step, the single bones are segmented, and in a
final third step, 3D models are created.

Figure 2.4: Process of creating surface meshes based on CT-Images.

For the implementation of the segmentation process the software medtool 4.2 (Dr. Pahr
Ingenieurs e.U., Pfaffstätten, Austria) is used in each of the following steps. Furthermore
the free and open source software 3D Slicer 4.8 is applied additionally in some steps. If
the 3D Slicer software was used, this is mentioned within the step. This process is applied
for each knee.

1. Input data preparation
In the first main step, the original input data of the whole knee is prepared for the
actual segmentation.

1.1. Dicom file convertion
Dicom files are converted into mhd and raw files for further calculation. The
mhd file is a header file that contains basic information, whereas the actual
image data is stored within the raw file.

1.2. Midplanes generation
Midplanes for all three planes (x-y, y-z, x-z) are created (figure 2.5). A
midplane is an image taken in the geometric center of the image and used
for visual inspection.

1.3. Image cropping
The image is cropped to save storage space, by keeping only the bones in the
image. (The midplanes created in the previous step are required to define the
cropping area.)

1.4. Voxel size refining
The voxel size is refined to a resolution of 0.6 mm, 0.6 mm, 0.6 mm so that it
is the same for each direction and specimen.

1.5. Image scaling
The gray values are scaled between 0 and 255 in order to store them in one
byte.

13



Figure 2.5: Midplanes created in step 1.5 Image scaling.

2. Single bone segmentation
The following steps have to be executed for each of the four bones (femur, tibia,
patella and fibula).

2.1. Presegmentation
The presegmentation is done by using the 3D Slicer Software. First, 5-10
images are manually segmented in each direction (x, y, z). Then, the command
"fill between slices" is used to create a complete rough presegmented mask
(figure 2.6). This method fills the skipped slices by interpolating between
segmented slices. A mask is a binary image containing only 1 and 0. Based on
this mask an image is created with gray values between 0 and 255, whereby
all voxels outside the mask have the gray value 0.

Figure 2.6: Rough presegmented mask of a femur.
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2.2. Thresholding
The created image is thresholded by defining a gray value limit, where only the
voxels with a higher gray value remain. Therefore, the threshold is determined
within an iterative process for each bone. The limit must be visually selected
so that the contour of the bone is maintained as much as possible (figure 2.7).
To prevent the bone in the thresholded image from being hollow after filling
up holes, an end cap is attached to the cut end of the bone.

Figure 2.7: Tresholded image.

2.3. Hole and cavity closing
A morphological filter (table 2.1) is computed to close possible holes and
cavities of the image (figure 2.7). Therefore, the bone specific threshold,
determined in step 2.2 is used. Afterwards, the end cap attached in the
previous step is removed again.

Parameter Adjustment
Threshold Bone specific of step 2.2

valid 5
type out
Kernel 1

Table 2.1: Used settings for the fill filter.

2.4. Final Mask generation
The image received of step 2.3 us used to generate a final mask, by using
the 3D Slicer Software. if the mask differs from the contour of the original
bone, it must be manually edited by adding or removing parts by using the
3D Slicer Software. In order to prevent new small holes and branches that
might have been created during this fine segmentation process (figure 2.8),
two morphological filters (table 2.2 & 2.3) are applied. By performing an
opening filter (dilation + erosion) and a closing filter (erosion + dilatation),
the surface is smoothed depending on the shape of the kernel and the chosen
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radius. Both morphological filters use a spherical kernel (shape = 2) with a
radius of one voxel. Finally, a smoothed final mask is obtained. (figure 2.9).

Figure 2.8: Final mask before applying the final morphological filters.

1. Filter - Open:

Parameter Adjustment
Radius 1
type o
shape 2

threshold 1

Table 2.2: Settings of the morphological opening filter.

2. Filter - Close:

Parameter Adjustment
Radius 1
type c
shape 2

threshold 1

Table 2.3: Settings of the morphological closing filter.

The received final mask (figure 2.9) can be used to create a 3D model in form
of a mesh.
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Figure 2.9: Final binary mask of a femur.

3. Final mesh generation
A triangular surface mesh is an approximation of a surface, consisting of nodes and
elements, with each element having three nodes. The size of those finite elements,
used for discretize a structure, defines the number of points after the simplification
and therefore, how much the original object is approximated. By creating a surface
mesh, the number of nodes belonging to the surface, are reduced from an infinite
amount to a finite one. This allows to compute differential geometry on every point
of a surface and therefore forms the basis for the subsequent algorithms. In the
differential geometry of meshes, nodes are often referred to as vertices.

3.1. Mesh generation
A surface mesh is computed (figure 2.10) using the Computational Geometry
Open Source Algorithm Library (CGAL) included in medtool 4.2, based on
the final mask of each bone. By creating 2D surface meshes, a complete 3D
mesh is generated first, and in a second step all elements and nodes which
are not part of the surface are deleted. After testing different settings, the
following parameters for the CGAL3D mesher were used (table 2.4).

Parameter Adjustment
Cell size 1

Facet distance 0.6
edge size 0.5

Table 2.4: Settings of the CGAL3D mesher for all bones.

The mesh is stored as inp file, containing the coordinates of the nodes and
how the nodes are connected with the elements. Such inp files can be used as
input for finite element simulations using ABAQUS of Dassault Systems.
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Figure 2.10: Mesh of specimen 15 without smooting

3.2. Surface smoothing
To obtain a clean surface without artifacts, Taubin smoothing filters [40],
included in medtool 4.2, are used. Local, sharp-edged bumps of the surface
mesh are often generated by the segmentation process and not part of the
original surface. A Taubin smoothing filter is a linear low-pass filter that
removes high curvature variations.

In particular, concerning the smoothing filter, there is a risk that the original
contour will be deformed, which means a distortion of the surface curvature.
This would be very problematic because the following algorithms are based
on surface curvature values. Therefore, a parameter study was performed to
understand the effects of all input parameters of the Taubin smoothing filter
and to find the best settings (table 2.5).

Parameter Adjustment
Iteration steps 50
Scaling factor λ 0.2

Pass-band frequency 0.35 kPB

Table 2.5: Settings of Taubin smoothing filter for all meshes.
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Figure 2.11: Final mesh of specimen 15 with smoothed surface.

The described segmentation and meshing process was applied to the scans of all 15
available knees.
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2.3 Curvature Based Algorithm (CBA) for landmark
detection

The basic idea of locating anatomical landmarks based on curvature values and adjacency
relationships between landmarks was published by K. Subburaj et al. in 2009 [24].
The use of the mathematical signs of curvatures provides the ability to detect different
geometric shapes and structures on the surfaces (figure 2.12). Applying this approach to
the mesh of a bone results in a list of significant regions, all of which have the geometric
potential to be an actual landmark. For labeling anatomical landmarks an iterative
process is applied using relative positions of those significant regions and the information
of relative position of landmarks [24].

Figure 2.12: Geometric shapes identifiable by the mathematical sign of curvatures.

In general, the calculation of curvatures works for any desired surface, but the extraction
and labeling process are specially designed for the knee joint.

2.3.1 Curvature computation
The computation of curvatures is the basis for the whole landmark detection process. Do
Carmo [41] defines the curvature of a curve C as the rate of change of the tangent line to
C. For surfaces, this means that the curvature describes the rate of change of a surface
to the respective tangent plane.

2.3.1.1 Theoretical background

For each point pi ∈ S (figure 2.13), an associate unit normal vector ni in Euclidean space
R3 exists. Using the Gauss map G, a surface S and the corresponding normal vector ni
in euclidean space R3 can be mapped to the unit sphere S2 [41, 42].
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Figure 2.13: Gauss map G for a point pi ∈ S with its corresponding normal vector ni
(adapted from [42]).

The rate at which ni changes across the surface S is measured by the derivative of G with
respect to S and is known as the Weingarten mapW [42]. Let Gp be the Gauss Map and
Wp the Weingarten map of point pi.

The Gaussian curvature Kp and the mean curvature Hp of pi ∈ S are defined by:

Kp = det(Wp), (2.1)

and
Hp = 1

2 trace(Wp). (2.2)

The Eigenvalues of Wp, κ1 and κ2, are called principal curvatures and ψ1 and ψ2, which
are the corresponding eigenvectors, are called principal vectors. The principal curvatures
κ1 and κ2 for a point pi ∈ S are the maximum and minimum values of the curvature [42].
The principal vectors are used as a basis for the Weingarten map

Wp(ψ1,ψ2) =
(
κ1 0
0 κ2

)
. (2.3)

Considering equations 2.1 and 2.2, the Gaussian curvature Kp and mean curvature Hp

can now be calculated using principal curvatures

Kp = κ1 κ2, (2.4)

and
Hp = 1

2(κ1 + κ2). (2.5)

2.3.1.2 Curvatures of a mesh

Considering a triangular mesh the problem with computing curvatures of a surface mesh
becomes obvious. The discretized surface consists of vertices which are part of elements
representing the surface. These elements as such are completely flat and therefore without
any curvature. To calculate curvature values anyways, the Gauss-Bonnet Theorem is used
[41, 43]. Looking at an element ti (figure 2.14) on any surface, the Gauss-Bonnet Theorem
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states that the difference between π and the sum of the interior angles φ1, φ2, φ3 is equal
to the integral of the Gaussian curvature K over ti

3∑
i=1

φi − π =
∫∫
ti

KdA. (2.6)

Figure 2.14: Triangle ti with its interior angles φ1, φ2, φ3 (adapted from [41]).

A triangular mesh consists of a set of elements ti, each consisting of 3 edges ej and 3
vertices vk (figure 2.15) [43].

An edge ej is defined by two vertices

ej = vk+1 − vk. (2.7)

The angle αl between two successive edges, which share the vertex vk, is define as

αl = ∠(ej, ej+1). (2.8)

For the triangle ti = 4(vk,vk+1,vk+2) a surface normal vector ni can be defined as

ni = ej × ej+1

||ej × ej+1||
. (2.9)

The dihedral angle βj at an edge ej which is the angle between the surface normals of
the adjacent elements

βj = ∠(ni,ni+1). (2.10)

Figure 2.15: Vertex vk and adjacent elements on a small part of a surface (adapted from
[43])
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For the general calculation of the integral Gaussian curvature K̄, we consider the curvature
κ of a closed regular planar curve c, parameterized with respect to its arc length τ [44].
If the curve is simple, then the integral curvature K̄ of c becomes equal to

K̄ =
∫
c
κ(τ)dτ = 2π. (2.11)

Based on this consideration the sharp corner at each vertex vk is now replaced by a
circular arc segment with radius ρ. The arc segment joins the adjacent edges tangentially
(figure 2.16) to obtain a smooth, closed and simple curve cρ [43].

Figure 2.16: Sharp edge of vk with insert arc segment cρ (Adapted from [44])

Now, the integral Gaussian curvature K̄k,i located at the vertex vk and the triangle ti
can be calculated as

K̄k,i =
∫ yv

yv−1
κ(τ)dτ = π − αi. (2.12)

Where yv and yv+1 mark the points where the circular arc touches the edges of the
elements. Considering all elements, the vertex vk is part of, leads to the total integral
Gaussian curvature VK̄k of this vertex

VK̄k = 2π −
Enk∑
i=1

αl. (2.13)

Where αl is the angle between two connected edges ej and ej+1 that share the vertex
vk (figure 2.15). Enk is the number of adjacent elements to the vertex vk [44, 43]. To
receive the actual Gaussian curvature VKk of a vertex vk from the integral curvature VK̄k

we assume the curvatures to be uniformly distributed around the considered vertex [45].
For this purpose, a scaling factor is used that divides the curvature equally between all
adjacent elements [24, 46, 47]

VKk =
VK̄k

1
3

E
nk

= 2π −∑Enk
i=1 αl

1
3

E
nk

. (2.14)

The same approach can be used to compute the total integral mean curvature VH̄k of the
vertex vk [45, 47, 24]

VH̄k = 1
4

Enk∑
j=1
||ej|| |βj|. (2.15)

Where βj is the dihedral angle associated to an edge (figure 2.15) and ||ej|| is the length of
an edge ej. To receive the actual mean curvature value from the integral mean curvature
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VH̄k of a vertex, the same assumption as already explained for the Gaussian curvature is
used [45, 47]

VHk =
¯VHk

1
3

E
nk

=
1
4
∑Enk
j=1 ||ej|| |βj|

1
3

E
nk

. (2.16)

For the curvature based algorithm, the integral curvatures would be sufficient, since the
algorithm requires only the mathematical sign to distinguish between different geometric
structures (table 2.6). To keep the programming algorithm as general as possible, the
computation of the actual curvature was implemented instead of the integral curvature.

Based on curvature values, 5 different geometric shapes can be distinguished (table 2.6).

VKk<0 VKk=0 VKk>0
VHk<0 Ridge Ridge Peak
VHk=0 - Flat -
VHk>0 Valley Valley Pit

Table 2.6: Different surface types based on ht mathematical sign of curvatures [24].

To distinguish between these structures, only the mathematical sign is needed.

2.3.1.3 Algorithm for curvature computation

The computation of curvature values to determine shapes on surfaces is subdivided into
three steps (figure 2.17). First, the entire mesh is loaded. Subsequently, each vertex is
considered one after the other. For each vertex, the coordinate system is rotated and the
curvature values for each vertex VKk and VHk are computed.

Figure 2.17: Major steps for computing curvature values

1. Load Mesh:
As a first step, the algorithm loads the mesh, generated in chapter 2.2. During this
loading process, surface normal vectors ni are determined for each element ti. In
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addition, a normal vector for each vertex vk is computed, considering all surface
normal vectors ni of adjacent elements

nk = 1
Enk

Enk∑
i=1
ni. (2.17)

Enk defines the number of elements connected to vk.

2. Rotate Coordinates:
For each vertex vk, the coordinate system is rotated such that the z-axis is parallel
to the vertex normal vector nk (figure 2.18). This rotated coordinate system is
needed to define the mathematical sign of the mean curvature VHk later on.

Figure 2.18: Rotation of the coordinate system to align z-axis with the vertex normal
vector nk.

Rotation of vectors:
In order to rotate an initial vector u so it becomes parallel to a goal vector w,
a suitable rotation axis er and a respective rotation angle αr must be found.
Following Euler’s rotation theorem, any displacement in a three dimensional space
is equivalent to one single rotation. This means that instead of rotating a body
around the x-, y-, and z-axis, only one rotation around an arbitrary axis is valid
[48].

To calculate the rotation axis, the normalized cross product between u and w is
used

er = u×w
||u×w||

. (2.18)

As a next step, the angle αr between the initial vector u and the goal vector w is
calculated by using the definition of the cross product:∣∣∣u×w∣∣∣ =

∣∣∣u∣∣∣ ∣∣∣w∣∣∣ sin(αr). (2.19)
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To obtain vector u parallel to w, the initial vector has to be rotated around er by
an angle of αr. Rotating around an arbitrary axis requires the following rotation
matrix [51]

Rarbitary(αr) =
[

e2
r,x(1−cr)+cr er,x er,y(1−cr)−sr er,z er,x er,z(1−cr)+sr er,y

er,x er,y(1−cr)+sr er,z e2
r,y (1−cr)+cr er,y er,z(1−cr)−sr er,x

er,x er,z(1−cr)−sr er,y er,y er,z(1−cr)−sr er,x e2
r,z (1−cr)+cr

]
. (2.20)

With cr = cos(αr) , sr = sin(αr) and er,x, er,y, er,z are vector elements of the rotation
axis er.

3. Computing vertex curvatures:
The computation of the Gaussian curvature VKk and the mean curvature VHk for
each vertex vk is done with respect to equation 2.14 and 2.16. To detect different
surface structures, the mathematical signs of curvatures are needed. To determine
the mathematical sign of the mean curvatures, the coordinate system is rotated to
align the z-axis with the vertex normal vector nk of the considered vertex vk (figure
2.19).

Figure 2.19: Rotated coordinate system to determine the mathematical sign of VHk.

Comparing the z coordinates of the considered vertex vk and all adjacent vertices,
their relative location can be determined (figure 2.19). If the z coordinate of an
adjacent vertex is lower than the z coordinate of the considered vertex vk, the
dihedral angle βj is negative (figure 2.16). If the z coordinate of an adjacent vertex
is higher than the z coordinate of the considered vertex vk, the dihedral angle βj
is positive. The mathematical sign must be determined for all directly adjacent
vertices. With respect to equation 2.16 the signed angles βj are then used to
determine the sign of the mean curvature VHk.

2.3.1.4 Validation of computed curvatures

In order to validate the implemented algorithm for computing curvatures 5 different test
objects (figure 2.12) with known curvatures were computed. The obtained results of those
computations were adequate. In addition, the curvatures of a final test object, featuring
peaks of different sizes were calculated (figure 2.20).
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Figure 2.20: Final test object for validation of computed curvatures

At each peak of the final test object, the Gaussian curvature had to be positive and the
mean curvature negative. In addition, the Gaussian curvature had to be zero at the edges
and positive in the sharp corners. The mean curvature had to negative at the edges and
in the corners.

(a) Gaussian curvature (b) Mean curvature

Figure 2.21: Values of Gaussian and mean curvature of the final test object

The calculated curvatures corresponded to the stated expectations.
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Bone - Femur:
Gaussian curvature and mean curvature often change on the rough surface of a bone
(figure 2.22).

(a) Gaussian curvature (b) Mean curvature

Figure 2.22: Gaussian and mean curvature on a femur with 44766 elements. View from
posterior-medial side.

2.3.2 Landmark regions extraction
As the following part of the Curvature Based Algorithm was not elaborated upon in the
published paper of Subburaj et al. [24], the following approach might differ from the
original algorithm.

To determine landmarks based on curvature values, regions with characteristic properties
have to be extracted. The region extraction process can be subdivided into two major
steps. First, curvature values of each element, with respect to the elements surroundings,
have to be calculated. Afterwards, elements that meet specific requirements are grouped
into regions (figure 2.23).
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Figure 2.23: Major steps of the region extraction process.

1. Compute element curvature
As explained in chapter 2.3.1, curvature values are calculated for each vertex. In
order to find geometric shapes, however, the curvature values EKi and EHi of element
ti are needed. For this, the curvature values of the vertices vk of an element ti are
summed up

EKi =
3∑

k=1

VKk, (2.21)

and
EHi =

3∑
k=1

VHk. (2.22)

Summing up the curvature values, ideally levels out small local pits on the surface. If
a vertex of an element has a different sign due to a small local artifact on the surface,
the sign of the element’s curvatures ideally do not change after the summation. In
such cases, small surface artifacts will have no appreciable effect, since the CBA
needs only the mathematical sign to distinguish between the geometric structures
(table 2.6).

For the detection of the behavior of a larger area, the curvatures of vertices neighboring
an element ti must be included. The more neighboring vertices are considered, the
more the computed alternate curvature corresponds to a larger area. A ring defines
the number of vertices around a considered element ti. Using one ring means that
all vertices directly connected to the considered element ti are included. By two
rings, all vertices connected to vertices of ring one are considered, and so on (figure
2.24). For detecting anatomical landmarks three rings are used.
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Figure 2.24: Using rings for labeling adjacent vertices.

Depending if a vertex belongs to the element ti or to one of the rings it is weighted.
The curvature values of the vertices of the element ti, are weighted with δ0 = 1.
The weights corresponding to the three rings are referred to as δ1, δ2, δ3. Being the
number of rings for m ∈ [1, 2, 3] and the number of vertices in the respective ring
for j ∈ [1, 2, ..., nj]

RKm = δm

nj∑
j=1

VKj, (2.23)

and
RHm = δm

nj∑
j=1

VHj. (2.24)

After weighting the curvatures of the element ti and the three individual rings, the
values are summed up

CKi = EKi +
3∑

m=1

RKm, (2.25)

and
CHi = EHi +

3∑
m=1

RHm. (2.26)

CKi and CKi represents the curvature values of one element, by considering the
curvatures of the surrounding vertices as well.
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To determine, if an element is part of a peak, the weighted and summed up curvature
values CKi and CHi are compared with predefined limits (table 2.6). The limits that
define the geometrical shape of a peak are

CKi > 0, (2.27)

and
CHi < 0. (2.28)

Using these limits only delivers information about whether an element ti is part
of a peak, and no information about the size of the peak. Since the surface of a
bone is rough, many elements meet these fundamental requirements. Consequently,
specific limits have to be defined in order to find peaks of a certain size.
The use of specific curvature limits defines how much a peak has to be curved in
order to be taken into account. Therefore, the parameters LK and LH are defined

CKi >
LK, (2.29)

and
CHi <

LH. (2.30)

Elements whose calculated curvature values CKi and CHi correspond to the limits
form the basis for forming regions.

2. Grouping elements into regions
All elements that correspond to the limits (equation 2.29 and 2.30) and are directly
connected to each other, are grouped together as one region. To determine of how
many elements a peak must consist off, the factor region limit nR is defined. The
region limit nR defines a minimum number of elements from which a region must
at least exist, to sort out too small structures.

Finally, a number of regions which contain potential landmarks are received. It should be
noted that the subsequent labeling process can only work stably with a certain number
of potential landmark regions. A hard limit on how many regions can be processed at
maximum can not be defined. Not only the number, but also the location of regions and
the number of interesting landmarks is crucial. The more landmarks are to be found,
the more potential regions can be processed. For the 5 successive landmarks, at least 25
regions can be processed, depending on their location.

2.3.3 Landmark labeling
To label anatomical landmarks from the potential regions, adjacency relationships of
defined landmarks are used, as presented by Subburay et al. [24]. First, tolerance
ranges have to be defined for each computed landmark region, in order to use adjacency
relationships for labeling landmark regions. Finally specific points have to be marked as
the landmark point of the labeled landmark region.
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The labeling process can be divided into three different steps, which symbolize the logical
work-flow during computation (figure 2.25).

Figure 2.25: Logical work-flow for the landmark labeling process.

1. Label regions as landmarks
The adjacency matrices differ slightly to the ones published in the paper [24],
because of the different approach used for the landmark region extraction. Adjacency
matrices contain the relative position of each individual landmark, considering each
other landmark, expressed in 3 directions (figure 1.2). If a landmark is located in
proximal direction (positive z-direction) of another landmark, the corresponding
entry for this direction is Px. For example (figure 2.26), with the region of ME as
basis, the region of AT is located in proximal direction and the corresponding entry
in the matrix (table 2.8 line 2, column 1) for the proximal/distal direction is Px.
If a landmark is located in the same level as another landmark, the corresponding
entry in the adjacency matrix for that direction is 0. The current basis is defined
by the line of the table that represents the adjacency matrix and the landmark that
is considered is defined by the column. For example, looking at line 3 and column
1 of table 2.8 shows, that with LE as a basis AT is located in medial and proximal
direction, while sharing a level for the anterior/posterior direction (0 entry) (figure
1.4). So, the individual matrix entries express the relative position of one landmark
with another landmark as basis for each of the three different directions: P/A for
the x-direction, M/L for the y-direction and Px/D for the z-direction. The use of
5 landmarks thus creates a 5x5 matrix.

Figure 2.26: Example for the relative distances stored in adjacency matrices.

Femur:
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The abbreviations of the landmarks used in the adjacency matrix of the femur
(table 2.8) are explained in table 2.7

Acronym Landmark
AT Adductor Magnus Tubercle
ME Medial Epicondyle
LE Lateral Epicondyle
MP Medial Peak
LP Lateral Peak

Table 2.7: Abbreviations of femoral landmarks used in the adjacency matrix in table 1.1

Table 2.8: Adjacency matrix of the left femur used for the labeling process.

Tibia:
The abbreviations of the landmarks used in the adjacency matrix of the tibia (table
2.8) are explained in table 2.7

Acronym Landmark
TT Tibial Tuberosity
MIT Medial Intercondylar

tubercle
LIT Lateral Intercondylar

tubercle
MP Medial Peak
LP Lateral Peak

Table 2.9: Abbreviations of tibial landmarks used in the adjacency matrix in table 2.10.

33



Table 2.10: Adjacency matrix of the left tibia used for the labeling process

Because landmarks vary in their location, it is difficult to define generally valid
relative positions. Therefore, tolerance ranges are defined to make more robust
statements about whether landmarks are considered to be at the same level (0
entry) in the adjacency matrices. In order to define such windows, the geometric
center of a region pcenter is calculated first. Then, a window is opened in each
direction (figure 2.32), defining the tolerance range, based on this center. For this,
the factor nW is added to the coordinates of the center and subtracted to set the
boundaries of the tolerance range (equation 2.31).

x direction: ∆window,x = pcenter,x ± nW

y direction: ∆window,y = pcenter,y ± nW

z direction: ∆window,z = pcenter,z ± nW

(2.31)

The same relative positions can be used for each specimen if such tolerances are
applied (figure 2.27).

For example, looking at the second entry of the first row of table 2.8 determines
that, with AT as a basis, ME is located at the same level in posterior/anterior and
medial/lateral direction, while it is located distally (figure 2.27). This information
is only generally correct if tolerance ranges are used.
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Figure 2.27: Center points of AT and ME and their tolerance range for the
posterior/anterior direction.

Apply adjacency matrix
The adjacency matrix is applied, using the defined tolerance ranges. During the
application process, each region R of the possible landmark regions is considered
for each row in the adjacency matrix once. This means each region R is once used
as reference system for each landmark. If there are other regions that meet all
requirements stored in this row of the matrix, the other regions Ro are assigned to
the corresponding landmarks. For example, let’s consider the region AT the current
basis (figure 2.27). According to the adjacency matrix, there has to be at least
one region which shares a level with AT in anterior/posterior- and medial/lateral
direction and which is located distally. All regions that meet these requirements
are assigned as ME. After considering each region R as basis for each row of the
adjacency matrix, all regions Ro assigned to a landmark are compared. If a certain
region was labeled as a certain landmark every time, this region is assigned to the
landmark. Consequently, it is possible that two different regions are addressed as
the same landmark.

2. Compute landmarks from regions

After using the adjacency matrices, some regions are labeled as specific landmark
regions. In order to define a certain point from these regions as landmark, four
different methods are implemented. Those method are based on finding,

(a) the largest Gaussian curvature VKk of a vertex.
(b) the largest negative mean curvature VHk of a vertex.
(c) the largest magnitude of the product of the Gaussian curvature VKk and the

mean curvature VHk.
(d) the geometric center.
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Figure 2.28: Points labeled by different methods in the region of the lateral peak.

2.3.4 Parameter adjustment and robustness
The implemented Curvature Based Algorithm possesses 6 parameters, that have a significant
impact on the obtained results:

• Curvature limits LK and LH

• Region limit nR

• Window size nW

• Weighting factors δm
• Discrete point method

The influence of these parameters was to be investigated during the application of the
algorithm.

1. Curvature limits LK and LH
The curvature limits LK and LH interact with each other. If a peak on a surface
has to be found, LK and LH define together how strongly this peak has to curve, in
order to be recognized as such by the algorithm. Therefore, these two limits must
always be changed together.

LK defines a minimum value and LH a negative maximum value for a peak of the
surface. Therefore, the computed alternate Gaussian curvature CKi of an element
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must be higher and the computed alternate mean curvature CHi must be negative
and lower than the limit, for further processing.

CKi >
LK, (2.32)

and
CHi <

LH. (2.33)
For other geometrical shapes LK and LH have to be chosen differently (table 2.6).

A general statement on how exactly this limits have to be set can not be found,
as this depends on the specific bone surface. However, it can be noted that if too
small peaks are found, the limits must be increased (figure 2.29). If large peaks are
not recognized they must be decreased.

(a) Without limitation (b) With limitation

Figure 2.29: Comparison of peak finding process with different curvature limitations. (a)
has no limitation for both curvatures. Therefore a vast number of elements fulfill the
requirement of a peak. For (b), the following limitations were used: CKi > 0.35 and
CHi < 0.55. Consequently, the number of shown regions decreases, and only peaks with
distinctive curvature values remain. Those regions can be processed further on. View
from posterior-medial side.

Using the appropriate limits is crucial to obtain a number of potential regions that
can be further processed.

2. Region limit nR
The region limit nR defines, how many elements a peak must at least consist of.
The curvature limits thus define how strongly a peak has to curve and the region
limit nR how large it must be, to be processed (figure 2.30).
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Figure 2.30: Sorting process with a region limit nR of 5 elements. Therefore only regions
that consist of at least 6 elements, are being processed.

This region limit nR provides the opportunity to eliminate peaks that are too small
to be a landmark (figure 2.31).

(a) Without region size
limitation

(b) With region size
limitation

Figure 2.31: Comparison of peak finding process with different region limits. (a) has
no region limit nR at all. (b) has a region limit nR = 50. Consequently many small
regions are eliminated and only regions consisting of at least 51 elements are shown.
This computation was done with specimen 15, LK = 0.3 and LH = 0.45. View from
posterior-medial side.

Thus, the region limit also reduces the number of potential regions that are further
processed.

3. Window size nW
The window size parameter nW defines the size of the computed tolerance range,
needed for the labeling process. If the size of the calculated tolerance range changes
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greatly, the relative locations in the adjacency matrices are no longer correct (chapter
2.3.3). The relative distances in the matrices were determined for a given window
size nW. Therefore, changing this size usually causes the labeling process to stop
working. The change of the window size nW can improve the labeling process in
rare cases, if the landmarks are at very atypical places.

Figure 2.32: Center points of two potential regions (AT and ME) of a left femur with
computed tolerance range. They share a level in anterior/posterior direction

For example, when tolerance ranges are used, the Landmarks AT and ME share a
plane (figure 2.32) in anterior/posterior direction. As the position of the original
coordinate system changes, the tolerance ranges ensure that AT and ME still share
a level in anterior/posterior direction (figure 2.33).

Figure 2.33: Position of Landmarks (AT and ME) with a different coordinate system.
They still share a level in anterior/posterior direction.

4. Weighting factors δm
Weighting factors δ1, δ2, δ3 are used to include adjacent elements, whereat the
curvature of the considered element ti is weighted with δ0 = 1. If these factors
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are changed the way in which the environment of an element is taken into account
changes. The reduction of the weighting factors therefore means that less the global
area but the local curvature is taken into account (figure 2.34).

(a) δ1=δ2=δ3 = 1 (b) δ1=δ2=δ3 = 0.8

Figure 2.34: Comparison of different weighing factors on specimen 15. (a) has the
following weighting factors δ1=δ2=δ3 = 1 and (b) has δ1=δ2=δ3 = 0.8 as weighting factors.
The computation was done with, LK = 0.2, LH = 0.3 and the region limit nR = 30. View
from posterior-medial side.

Because the elements of the meshes used are small, high weighting factors for all
algorithm have been used to calculate alternate curvature values (CKi and CHi) for
considering curvatures of a larger area.

Application Default δ1, δ2, δ3

All implemented algorithm 0.95, 0.9, 0.9

5. Discrete point method
Different points in a region are labeled as landmark, depending on the method used
(figure 2.28). The location of the points received by those different methods vary,
and therefore deliver different results for different specimens. Applying a validation
process to the results obtained with each method showed no general statement is
possible, about which method is appropriate.

If the CBA does not provide adequate results because single peaks can not be found, or
because too many peaks are found, interventions can be made. This can be checked in
the automatically created vtk file. If too weak or too strong peaks are detected, the LK
and LH limits have to be adjusted. If too small or too large regions are detected, the
region limit nR can be changed. The way in which the respective parameters have to be
changed for the individual cases is shown in table 2.11.
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Parameter
Problem LK LH region limit nR

Too weak peaks ↑ ↑ -
Only too strong peaks ↓ ↓ -

Too small regions - - ↑
Only to big regions - - ↓

Table 2.11: Possibilites for changing parameters of the CBA.

However, it often makes sense to adjust all parameters at the same time, according to
the knowledge gained from the vtk file.

2.3.5 Operator error and accuracy
The manually labeled points of an experienced orthopedic surgeon rests upon years of
experience and know-how and, therefore, are seen as the gold standard [32, 33].

2.3.5.1 Operator error

To define the operator error of labeled landmarks the variance and standard deviation
is computed [55]. First the Euclidean norm oft the vertex vk labeled by the surgeon is
calculated as

vk =
√
v2
k,x + v2

k,y + v2
k,z. (2.34)

The mean value of the Euclidean norm of nk data points can be expressed by

v̄ = 1
nk

nk∑
k=1

vk. (2.35)

The variance s2 is defined as follows

s2 = 1
nk − 1

nk∑
k=1

(vk − v̄)2. (2.36)

Based on the variance the standard deviation can be determined, which has the advantage
that the standard deviation has the same dimension and unit as the original data.

s =
√
s2 (2.37)

2.3.5.2 Accuracy

To determine the accuracy of landmarks labeled by the CBA, the Euclidean distances
between those points and the manual labeling are caculated.

d =
√

(vCBA,x − vSurgeon,x)2 + (vCBA,y − vSurgeon,y)2 + (vCBA,z − vSurgeon,z)2 (2.38)
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2.4 Extending Curvature Based Algorithm
To extend the Curvature Based Algorithm, other geometric structureswere detected by
using curvature values. Those different geometric shapes were the basis for labeling
additional characteristics and axes.

2.4.1 Mathematical theory
To compute additional characteristics and axes the two following fitting methods are
applied to detected geometric structures.

2.4.1.1 Spherical fit

In analytic geometry, a sphere is defined by the center point p0 and the radius r (figure
2.35).

Figure 2.35: Geometric object sphere with center point p0 and the radius r.

If a spherical surface is described in R3 by n points defined as pi = [pi,x, pi,y, pi,z]T , than
the radius r can be written as

(pi,x − p0,x)2 + (pi,y − p0,y)2 + (pi,z − p0,z)2 = r2 (2.39)
On a perfect sphere each surface point has exactly the same distance to the center point,
which is the radius r. To fit a sphere into scattered points equation 2.39 is used [56].
If the center point and the radius as well are unknown, exactly four points pi=1...4 are
needed to create an equation system that can be solved and that delivers the unknown
parameters p0,x, p0,y, p0,z and r. For fitting a sphere into more than 4 data points the
equation system is more difficult[57] and minimizes the summed square errors of the data
points. Instead of exactly 4, now n different points pi=1...n, where n > 4 have to be
considered. To be able to calculate the center point p0 and the radius r for this fit, first
the mean values of the data points are calculated.

p̄x = 1
n

n∑
i=1

pi,x p̄y = 1
n

n∑
i=1

pi,y p̄z = 1
n

n∑
i=1

pi,z (2.40)

In a next step two matrices are defined.
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A = 2 ·


∑n
i=1

pi,x·(pi,x−p̄x)
n

∑n
i=1

pi,x·(pi,y−p̄y)
n

∑n
i=1

pi,x·(pi,z−p̄z)
n∑n

i=1
pi,y ·(pi,x−p̄x)

n

∑n
i=1

pi,y ·(pi,y−p̄y)
n

∑n
i=1

pi,y ·(pi,z−p̄z)
n∑n

i=1
pi,z ·(pi,x−p̄x)

n

∑n
i=1

pi,z ·(pi,y−p̄y)
n

∑n
i=1

pi,z ·(pi,z−p̄z)
n

 (2.41)

B =


∑n
i=1

(p2
i,x+p2

i,y+p2
i,z)·(pi,x−p̄x)
n∑n

i=1
(p2

i,x+p2
i,y+p2

i,z)·(pi,y−p̄y)
n∑n

i=1
(p2

i,x+p2
i,y+p2

i,z)·(pi,z−p̄z)
n

 (2.42)

Solving the following equation system leads to the center point.

p0 =

p0,x
p0,y
p0,z

 = (AT ·A)−1 ·AT ·B (2.43)

In the last step, the radius r is calculated

r =
√∑n

i=1((pi,x − p0,x)2 + (pi,y − p0,y)2 + (pi,z − p0,z)2)
n

(2.44)

2.4.1.2 Linear regression

The basic linear regression model [59, 58] can be stated as follows (figure 2.36)

pi,y = γ0 + γ1 · pi,x︸ ︷︷ ︸ . (2.45)

Figure 2.36: Example for a linear regression and the line which is fitted into originally
scattered data points.

Where γ0 and γ1 are unknown parameters of the linear function. To find the parameters
γ0 and γ1 we introduce the method of least squares. Therefore, the error function g(γ0, γ1)
which defines the error between m data points pi,f and the linear fit [58], is minimized

g(γ0, γi) =
m∑
i=1

(γ0 + γi · pi,x − pi,f )2. (2.46)
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The minimization of the error function is proposed with respect to γ0 and γ1. Therefore
the partial derivatives from g(γ0, γ1) to γ0 and γ1 have to disappear.[59]

∂g

∂γ0
= 2

m∑
i=1

(γ0 + γ1 · pi,x − pi,f ) = 2γ0

m∑
i=1

1 + 2γ1

m∑
i=1

pi,x − 2
m∑
i=1

pi,f = 0

∂g

∂γ1
= 2xi

m∑
i=1

(γ0 + γ1 · pi,x − pi,f ) = 2γ0

m∑
i=1

pi,x + 2γ1

m∑
i=1

p2
i,x − 2

m∑
i=1

pi,x pi,f = 0
(2.47)

Dividing both equations by 2 leads to the following linear equation system( ∑m
i=1 1 ∑m

i=1 pi,x∑m
i=1 pi,x

∑m
i=1 p

2
i,x

)
·
(
γ0
γ1

)
=
( ∑m

i=1 pi,f∑m
i=1 pi,x pi,f

)
(2.48)

The unknown parameters γ0 and γ1 are determined by solving this equation system [59,
58]. As input data for the linear regression the middle points of ten slices of the shaft of
the tibia and femur are used 2.4.6.

2.4.2 Farthest points of the tibial plateau
The farthest points are those points of the contour of the tibial plateau with the greatest
distance between each other. The use of this approach aims to improve the detection of
the lateral and medial peak of the tibial plateau.

In order to detect those points, the contour of the tibial plateau has to be found using
curvature values (figure 2.37). This contour corresponds to an edge. On an idealized
sharp edge, the Gaussian curvature is equal to zero (figure 2.21). Because the edge of
the contour of the tibial plateau is not an idealized sharp edge the Gaussian curvature
must at least have a specific minimum value LKFt, defined for detecting the contour of
the tibial plateau. The mean curvature is neglected to detect the contour of the edge

CKi >
LKFt. (2.49)

Figure 2.37: Contour of the tibial plateau. This computation was done with parameters
shown in table 2.12. View from proximal side.

Using this curvature limit delivers the edges, but many other regions as well. Therefore,
it must be additionally defined which of these found regions should be used to calculate
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the distances. Starting from the highest points of the intercondylar tubercle, a window
in distal direction is defined, within which all regions are understood as regions of the
edge. To define the size of this window, the parameter window size plateau np is used.
For all vertices in the obtained regions, the distances to each other are calculated. The
two vertices with the greatest distance are then labeled as farthest points of the tibial
plateau (figure 2.38). This also includes regions that are on the intercondylar tubercles.
However, since the largest distance between two vertices within these detected regions
are calculated, this is irrelevant.

Figure 2.38: Detected farthest points of the tiblial plateau at the lateral and medial
condyle of the tibia. View from proximal side.

If the window size plateau np is too big or too small, regions are considered that are not
part of the edge. This will label wrong points. Based on experiences gathered during the
application of the algorithm, the following default values are used:

Parameter Value
Number of elements nr 10

Gaussian curvature limit LKFt 0.1
Window size plateau np 18

Table 2.12: Default settings for computing farthest points of the Tibia.

2.4.2.1 Validation of the farthest points at the tibial plateau

This approach is supposed to detect the lateral and medial peaks of the tibial plateau.
Therefore, the received results are compared with the lateral and medial peaks of the
original Curvature Based Algorithm (chapter 2.3) and with the points manually labeled
by the surgeon. To validate the accuracy the euclidean distance is computed (equation
2.38).
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2.4.3 Farthest points of patella
The furthest points of the patella are defined by four points on the anterior side with
the greatest distance between them. The lines between two of these points must be
rectangular. In order to detect those points the outer contour of the patella has to be
found first by using curvature values. The edge to be found here is basically similar to
the edge of the tibial plateau. Therefore the mean curvature is neglected and only the
Gaussian curvature is considered

CKi >
LKFp. (2.50)

Using the specific curvature limit LKFp for detecting the contour of the patella delivers
the following regions (figure 2.39).

Figure 2.39: Detected outer contour of the patella which is used to compute the farthest
points. Those computation was done with the parameters shown in table 2.13. View
from anterior side.

Based on the vertices in the detected edge regions, the distances from each vertex to
the other vertices are calculated to find the two vertices with the greatest distance.
These vertices are used to define an axis. Next, the distances from each vertices that lie
orthogonal to the previous computed axis are determined to identify the largest distance
again. The dot product is used to determine the orthogonality of two lines. If two lines
are exactly orthogonal to each other, then the dot product of the two is equal to zero.
Because the connecting lines between the farthest points of the patella will not be exactly
orthogonal, a dot product factor ndf is used that defines the maximum deviation. The
dot product factor ndf states the maximal deviation of those lines.
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Figure 2.40: Farthest points of Patella. View from anterior side.

Based on experience gathered during the application of the algorithm, the following
default values are used:

Parameter Value
Number of elements nr 10

Gaussian curvature limit LKFp 0.2
Dot product factor ndf 2

Table 2.13: Default settings for computing farthest points of the Patella

2.4.3.1 Validation of the farthest points of the patella

For the farthest points of the patella manually labeled landmarks of an experienced
orthopedic surgeon exist. For determining the accuracy the euclidean distances (equation
2.38) and for determining the operator error the standard deviations (equation 2.37) are
computed.

2.4.4 Trochlear Groove
The trochlear groove is a concave notch of the femur in which the patella moves along
during flexion and extension and is also called patella valley [19]. Curvature values are
used, to detect the path of the bottom of the patella valley. Because the tochlear groove
resembles a curved valley, the requirements for a valley (table 2.6) are modified. This
modification is necessary as it is not an idealized valley with no curvature along the valley
floor

LKTg <
CKi < 0, (2.51)

and
0 ≤ CHi <

LHTg. (2.52)

Using the specific curvature limits LKTg and LHTg for detecting the trochlear groove
delivers the following region in the patella valley (figure 2.41).
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Figure 2.41: Patella valley detected using curvature values, with the following input
parameters: region limit nr = 100, LKTg = 0.05, LHTg = 0.55 and weighting factors are
δ1 = δ2 = δ3 = 0.9. The region has holes, because due to local artifacts single elements
do not match the given requirements. View from distal side.

The region has holes, because due to local artifacts single elements of the patella valley
do not match the given requirements. In order to consider each element of the trochlea
groove for the computation, these holes have to be closed. The vertices of the detected
region give us enough information to computed a spherical fit (figure 2.42).

Figure 2.42: Contour of the midplane (posterior/anterior-proximal/distal) of the distal
end of femur with a spherical fit of the trochlear groove.

The center point p0 and radius r of this sphere is now used to define a valley area (table
2.14).

lower area limit upper area limit
x direction p0,x − 10 p0,x + 10
y direction p0,y − r · 1.2 p0,y + r · 0.1
z direction p0,z − r · 1.2 p0,z + r · 0.1

Table 2.14: Area for detecting elements of the patella valley.
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All elements within this defined valely area are considered for detecting the patella valley
bottom (figure 2.43).

Figure 2.43: All elements which are identified as elements of the trochlear groove, based
on the area limits. View from distal side.

To determine the path of the bottom of the trochlea groove, a starting point is selected.
This is done using the point with the shortest distance to the midpoint p0 at the proximal
edge of the defined area. Subsequently, the distance of each adjacent vertex to the center
is calculated. The one vertex with the smallest distance is seen as the next vertex of the
valley bottom. This is done until the path reaches the distal edge of the region.

This approach initially requires some vertices to find the actual path (figure 2.44).

Figure 2.44: Path of the Trochlear Groove bottom. View from distal side.

Based on experiences obtained during application the algorithm the following default
values are used:

49



Parameter Value
Number of elements nr 150

Gaussian curvature limit LKTg 0.01
Mean curvature limit LHTg 0.55

Table 2.15: Default settings for computing the Trochlear Groove of a left Femur

2.4.5 Cylindrical axis of the posterior femoral condyles
The cylindrical axis of the femoral condyles is the axis obtained by fitting a cylinder in
the medial and lateral condyle [20]. In order to compute the cylindrical axis, the outer
contour of the medial and lateral condyle has to be detected, using curvature values.
For this purpose, contours similar to an edge must be found again. Since the edges are
not idealized but curved, the mean curvature is again neglected and only the Gaussian
curvature is considered by using a specific curvature limit LKCa for detecting the contour
of the condyles

CKi >
LKCa. (2.53)

The curves along the outer contour of the condyles are much larger than those of the
edges of the tibia plateau, leading to a higher limit for the Gaussian curvature.

The vertices of these detected contour regions are used to compute a spherical fit for each
condyles. The cylindrical axis is then defined as the connection of the center points p0
of those spheres (figure 2.45).

Figure 2.45: Cylindrical axis and the couture regions, which where detected using
curvature values, with the following input parameters: region limit nr = 250 and
LKCa = 0.2. View from posterior-medial side.

Based on experiences obtained during application the algorithm the following default
values are used:
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Parameter Value
Number of elements nr 300

Gaussian curvature limit LKCa 0.2

Table 2.16: Default settings for computing the cylindrical axis of a left Femur

2.4.6 Shaft axis
The shaft axis of the femur and tibia are computed in the same way. First, the cylindrical
part of the bone is sliced into 10 equally distributed slices of 2 mm thickness. In the next
step, a spherical fit is computed to find the centers of each slice. Finally, linear regression
is used to fit a line into those center points p0 (figure 2.46).

Figure 2.46: Slices of the cylindrical part of the femur with each slices center point,
depicted as a red dot. The shaft axis was computed using linear regression on the fitted
center points. View from posterior-medial side.

Computing a connection line between the center points p0 of two slices would be sufficient
in order to compute a shaft axis. By using a linear regression and the center points of
more then two slices, the stability of the computation increases. If a slice is deformed,
taking into account a total of 10 slices, due to poor segmentation or deformed bone, this
has no great influence on the computed axis.
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To account for varying length of the femur and tibia the parameter percentage ns is
defined. This parameter ns determines how much bone is used for the computation
starting at the proximal edge. ns = 50% of the proximal end of the femur and ns = 40%
of the distal end of the tibia are used as default values based on experience obtained
during the application of the algorithm.
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Chapter 3

Results

3.1 Created 3D models from CT images
The determination of the appropriate mesh size was the first step of creating meshes.

(a) Rough mesh (b) Fine mesh

Figure 3.1: Influence of the number of elements at the mesh of a femur. (a) 5313 elements
(b) 44704 elements computed with final settings. View from posterior side.

If the element size of the mesh was chosen too large, the original surface could not be
appropriately approximated. After testing different sizes the element size was determined
(table 2.4) for all specimens (figure 3.1b).

Determining the appropriate Taubin smoothing settings was the second step.

(a) Strong smooth (b) Weak smooth

Figure 3.2: Comparison of two Taubin smoothing filters. (a) Too strong smoothing (b)
Final smoothing filter settings. View from posterior side.
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If the Taubin smoothing was too strong, the original contour was distorted. After
testing different Taubin smoothing settings the settings were determined (table 2.5) for
all specimens (figure 3.2b)

15 data sets (chapter 2.1) were generated from CT-images, with the developed segmentation
process. Therefore, the femur, tibia, patella and fibula were segmented.

Depending on the quality of the CT-Scans the times for an entire segmentation process
varied between two and six hours.

Step of procedure Computation time Manual time
1. Input data preparation

1.1 Dicom files converting <1 Minute -
1.2 Midplanes generation <1 Minute -
1.3 Mhd file cropping 1 Minute 1 Minute
1.4 Voxel size refining 20-30 Minutes -
1.5 Data scaling <1 Minute -

2. Single bone segmentation
2.1 First mask creation 5 Minutes 15-25 Minutes
2.2 Thresholding 7 Minutes 3 Minutes
2.3 Holes and cavities closing <5 Minutes -
2.4 Final Mask generation 10 Minutes 60 - 240 Minutes

Final mesh generation
3.1 Mesh generation <5 Minutes -
3.2 Surface smoothing 10-20 Minutes -

Table 3.1: Time breakdown of each single step of the segmentation process. Especially
the steps in which manual segmentation work is required have the highest risk to slow
down the process.

It should be noted that especially in those areas of the bones where landmarks were
supposed to be the manual segmentation was done very precisely.

3.2 Anatomical landmarks detection
Computing curvature values was a computational expensive process and took up to one
hour. If the curvature values were stored, reloading them took only up to five minutes.
All following computations and simulations were done with a computer with the following
stats:

System
Processor Intel(R) Core(TM) i5-6200U CPU with 2.30GHz
RAM 8 GB DDR

Operating System Ubuntu 16.4

Table 3.2: Computer used for computations
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Thus, the given calculation times are only plausible for a computer with this specification..

3.2.1 Femur
3.2.1.1 Validation of labeling methods femur

Four implemented labeling methods were used to compute results on seven different
specimens (figures 3.3 and 3.4). In Table 3.3 the mean Euclidean distances, standard
deviations (chapter 2.3.5) and maximum and minimum distance for each labeling method
and each landmark are shown. To compute those quantities the Euclidean distances
between points labeled by the algorithm and labeled by an experienced orthopedic surgeon
are used.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 7 (d) Specimen 9

(e) Specimen 12 (f) Specimen 13

(g) Specimen 15

Figure 3.3: Selection of differently labeled landmarks on the femur, view from posterior-
medial side.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 7 (d) Specimen 9

(e) Specimen 12 (f) Specimen 13

(g) Specimen 15

Figure 3.4: Selection of differently labeled landmarks on the femur, view from anterior-
lateral side.
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Method Mean [mm] Std [mm] Max [mm] Min [mm]
Landmark AT

1. center 2.61 2.09 6.32 1.30
2. gauss 2.95 3.09 8.39 1.03
3. mean 3.36 0.67 4.32 2.66
4. both 2.68 1.27 4.32 1.03

Landmark ME
1. center 4.02 3.37 9.71 1.15
2. gauss 4.02 3.37 9.71 1.15
3. mean 4.28 2.62 8.0 1.03
4. both 4.4 3.52 11.12 1.03

Landmark LE
1. center 3.25 2.16 5.44 0.73
2. gauss 5.17 2.65 8.53 2.35
3. mean 5.09 1.91 7.44 2.69
4. both 5.51 2.34 8.53 2.69

Landmark MP
1. center 7.27 4.56 14.12 1.23
2. gauss 6.0 4.74 14.12 0.87
3. mean 7.71 4.37 15.34 2.26
4. both 6.74 4.74 15.34 2.24

Landmark LP
1. center 10.25 4.85 16.89 5.11
2. gauss 7.87 4.63 14.6 1.87
3. mean 7.58 4.19 12.35 1.87
4. both 6.96 4.63 12.87 1.87

Table 3.3: Mean euclidean distance, standard deviation and maximal and minimal
distances between four differently labeled points from the CBA (chapter 2.3.3) and the
surgeon for all 5 landmarks (chapter 1.3) of 7 femura.

Method Mean [mm] Std [mm] Max [mm] Min [mm]
1. center 5.48 2.21 16.89 0.73
2. gauss 5,20 1.89 14.12 0.87
3. mean 5,60 1.96 15.34 1.03
4. both 5,28 1.77 15.34 1.03

Table 3.4: Computed mean distances, standard deviations and maximal and minimal
distances for each labeling method of the femur.

Looking at the computed mean distances (table 3.4), indicated that no method could
be generally favored for all femoral landmarks. Because of repeatability, for subsequent
uses of the CBA applied the points with the highest magnitude of the product of both
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curvature values. This method was more repeatable, since the point with maximum
curvature values within a region always remained the same.

3.2.1.2 Operator error of surgeon

To determine the operator error of the landmarks labeled by an experienced orthopedic
surgeon, first the average of 8 labeling procedures performed on one specimen was calculated
(figure 2.3). Following the mean euclidean distance, standard deviation and maximal and
minimal distance between (figure 3.5) the average and each single labeling was computed
(table 3.5).

Femur - Specimen 2
Landmark Mean [mm] Std [mm] Max [mm] Min [mm]

LE 1.76 0.735 2.66 0.78
ME 3.78 3.69 7.17 0.707
LP 0.821 0.786 1.54 0.20
MP 1.51 1.95 3.65 0.41
AT 1.63 1.05 3.07 0.41

Table 3.5: Mean euclidean distance, standard deviation, and maximal and minimal
distance between the average of 8 segmentations and each of those individual labelings
performed by the surgeon on specimen 2 .

Figure 3.5: Scattering landmarks of the femur of specimen 2 labeled by an orthopedic
surgeon. View from medial-posterior and lateral-anterior side.

Looking at the standard deviation of the landmarks marked by the surgeon (table 3.5),
showed that it was largest for the ME and smallest for the LE. Compared with the
standard deviation of the medial epicondyle (table 3.3) labeled by the algorithm indicates
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that landmarks that the surgeon labeled with high variability, are hard to find for the
algorithm as well.

3.2.1.3 Numerical robustness of the CBA

The Curvature Based Algorithm was not able to detect each landmark for each specimen
(table 3.6). On four of fifteen specimens the algorithm was able to detect all landmarks.
On 8 landmarks not all five and on three specimens no landmarks could be detected.
There are two main reasons why the algorithm can not find landmarks. First, it is possible
that other peaks of the surface have similar characteristics as a landmark and is located
in similar directions so using adjacency relationships does not work and a landmark is
not labeled (figure 3.6 (a)). This can also lead to a wrong point being labeled (figure 3.6
(c)). Second, it is possible that at the location were a landmark is supposed to be, no
real peak exists (figure 3.6 (d)). Consequently, the parameter LK, LH, nr, nw (chapter
2.3.4), which control the labeling process had to be adjusted for each specimen and the
algorithm could nor detect landmarks fully automatically.
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(a) Specimen 1

(b) Specimen 3

(c) Specimen 4

Figure 3.6: Selection of specimens where some landmarks could not be detected or wrong
points were labeled as landmarks. View from anterior-lateral and posterior-medial side.
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The created results were computed with the following parameters:

Specimen LK LH nr nw AT ME LE MP LP Result
1 0.15 0.15 35 5 x x x x 4/5
2 0.1 0.1 30 5 x x x 3/5
3 0.1 0.2 30 5 x x x x 4/5
4 0.1 0.2 30 5 x x x x 4/5
5 0.05 0.5 20 5 x 1/5
6 0.15 0.25 30 5 0/5
7 0.25 0.35 30 5 x x x x x 5/5
8 0.15 0.25 30 5 0/5
9 0.1 0.25 30 5 x x x x x 5/5
10 0.1 0.1 30 5 0/5
11 0.2 0.3 20 6 x x x x 4/5
12 0.05 0.1 35 3 x x x x x 5/5
13 0.1 0.1 20 5 x x x x 4/5
14 0.15 0.25 40 5 x 1/5
15 0.4 0.6 30 5 x x x x x 5/5∑ 8 9 8 10 10

Table 3.6: For labeling landmarks on the femur the parameter LK, LH, nr, nw (chapter
2.3.4), which control the labeling process, had to be adjusted. AT, ME, LE, MP, LP
(chapter 1.3) depict if a landmark was detected for a specimen.

Detecting anatomical landmarks on the femur took up to 8-12 minutes, if the curvature
values were already computed (table 3.7).

Work step Required time
Loading mesh and creating surface normals 5-7 minutes

Load curvature values 1 minute
Grow potential regions 1-2 minutes
Label landmark regions 1-2 minute
Visualization of result < 1 minute

Table 3.7: Required time for detecting anatomical landmarks on the left Femur

3.2.2 Tibia
3.2.2.1 Validation of labeling methods tibia

Four different labeling methods were used to compute results on tibias of seven different
specimens (figure 3.7 and 3.8). In table (table 3.8) the mean Euclidean distances, standard
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deviations (chapter 2.3.5) and the maximal and minimal distance of each labeling method
and each landmark are depicted. In order to compute distances and standard deviations
landmarks labeled by an experienced orthopedic surgeon are used as gold standard.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 7 (d) Specimen 8

(e) Specimen 12 (f) Specimen 13

(g) Specimen 15

Figure 3.7: Selection of differently labeled landmarks on the tibia, view from anterior-
lateral-proximal side.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 7 (d) Specimen 8

(e) Specimen 12 (f) Specimen 13

(g) Specimen 14

Figure 3.8: Selection of differently labeled landmarks on the tibia, view from anterior-
medial-proximal side.
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Method Mean [mm] Std [mm] Max [mm] Min [mm]
Landmark TT

1. center 3.14 1.27 5.1 1.64
2. gauss 4.98 2.1 6.63 1.36
3. mean 6.15 3.0 9.13 1.31
4. both 6.67 2.97 9.8 1.31

Landmark MIT
1. center 1.90 0.75 3.13 1.23
2. gauss 3.56 0.54 4.46 3.03
3. mean 3.43 1.36 5.00 1.26
4. both 3.04 0.68 3.53 1.88

Landmark LIT
1. center 5.13 6.74 15.19 0.82
2. gauss 4.99 4.87 12.21 1.53
3. mean 4.29 5.28 12.21 1.51
4. both 4.63 5.12 12.21 1.51

Landmark MP
1. center 7.58 5.92 16.62 2.3
2. gauss 5.72 6.38 16.91 0.88
3. mean 8.20 7.96 20.98 1.95
4. both 5.94 6.19 16.91 1.95

Landmark LP
1. center 6.57 2.59 8.15 2.7
2. gauss 11.39 9.29 25.2 5.77
3. mean 12.54 8.51 25.2 6.94
4. both 11.68 9.06 25.2 6.15

Table 3.8: Mean Euclidean distance, standard deviation and maximal and minimal
distances between four differently labeled points from the implemented algorithm (chapter
2.3.3) and the surgeon for all 5 landmarks (chapter 1.3) of 7 tibias.

Method Mean [mm] Std [mm] Max [mm] Min [mm]
1. center 4.86 2.35 2.70 0.82
2. gauss 6,07 3.04 5.77 0.88
3. mean 6,92 3.64 6.94 1.26
4. both 6,39 3.26 6.15 1.31

Table 3.9: Computed mean distances, standard deviations and maximal and minimal
distances for each labeling method applied to tibias.

Looking at the computed mean Euclidean distances (table 3.9 and 3.8), indicates that no
method could be generally favored for all tibial landmarks. Because the labeling process
did not work stably, most of the following results were labeled manually out of a list of
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potential regions. During this process, the method used was adjusted specifically for each
sample.

3.2.2.2 Operator error of surgeon

To determine the operator error of landmarks of the tibia labeled by an orthopedic
surgeon, the average of 8 different labelings (figure 2.3) on one specimen was calculated.
Following the mean euclidean distance, standard deviation and maximal and minimal
distance between the average and each of those individual labelings (table 3.10) were
computed.

Tibia - Specimen 2
Landmark Mean [mm] Std [mm] Max [mm] Min [mm]

LP 2.14 1.33 3.73 0.94
MP 1.83 1.69 3.82 0.39
LIT 2.13 1.00 3.50 1.10
MIT 1.19 0.83 3.04 0.33
TT 1.75 1.08 2.65 0.31

Table 3.10: Mean euclidean distance, standard deviation, and maximal and minimal
distance between the average of 8 labelings and each of those individual labelings of the
tibia ofspecimen 2 performed by the surgeon.

Figure 3.9: Scattering landmarks labeled by an experienced orthopedic surgeon of the
tibia of specimen 2. View from anterior-proximal side.

As with the femur, the points of the surgeon were scattered at the tibia, with the standard
deviations being very similar for each point (table 3.10). Comparing with table 3.8 shows,
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that the standard deviations of the algorithm are much larger and vary between the
different landmarks.

3.2.2.3 Numerical robustness of the CBA

The Curvature Based Algorithm was not able to detect all five landmarks for all specimens
(table 3.11). On six of fifteen specimens all landmarks could be found. On seven
specimens not all five and on two specimens no landmarks could be located. Depending on
how strong or weak a peak was, the algorithm was unable to detect a certain landmark,
because no appropriate limits LK and LH could be found. (figure 3.10 (b) and (d)).
Especially because the peaks of the tibia were very different from each other, detecting
all peaks in the right place was not possible for each specimen (figure 3.10 (c)). If all
landmarks could be computed the landmarks were clearly recognizable peaks on the
surface (figure 3.10 (a)). Manual interventions, by changing the parameters LK, LH, nr,
nw (chapter 2.3.4) that control the labeling algorithm, were necessary for all specimens
to compute results
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 4

Figure 3.10: Selection of specimens where some landmarks could not be detected, or were
located in a wrong place. View from anterior-proximal side.
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The created results were computed with the following parameters:

Specimen LK LH nR nW Meth TT MP LP MIT LIT Result
1 0.1 0.15 50 7 center x x x x x 5/5
2 0.1 0.15 20 5 both x x 2/5
3 0.05 0.15 20 5 both x x x x x 5/5
4 0.1 0.2 20 5 both 0/5
5 0.15 0.25 20 5 both x x 2/5
6 0.15 0.25 10 5 both x x x x 4/5
7 0.1 0.18 10 5 both x x x x x 5/5
8 0.1 0.2 70 5 center x x x x x 5/5
9 0.05 0.05 5 5 both 0/5
10 0.15 0.2 50 5 both x x x x 4/5
11 0.1 0.15 50 5 both x x x x 4/5
12 0.15 0.2 50 5 center x x x 3/5
13 0.1 0.15 50 7 center x x x x x 5/5
14 0.1 0.15 20 7 center x x x x 4/5
15 0.1 0.15 50 7 center x x x x x 5/5∑ 13 11 10 10 10

Table 3.11: For labeling landmarks on the tibia the parameters LK, LH, nr, nw (chapter
2.3.4), which control the labeling process had to be adjusted. TT, MP, LP, MIT, LIT
(chapter 1.3) show if the landmark was detected. Meth defines which labeling method
(chapter 2.3.3) was used to label the landmark point in the landmark region.

For the tibia the automatic labeling process was turned off, because no adequate results
could be computed. Therefore, manual landmark labeling from regions of interest depicted
on the bone surface was performed. For this the manual labeling process, the following
parameters computed adequate results for all specimens (table 3.12):

Parameter Value
Number of elements nr 50

Gaussian curvature limit LK 0.1
Mean curvature limit LH 0.1

Table 3.12: Default settings for manual labeling of landmarks on the tibia

The whole landmark labeling process took up to 5-9 minutes, if the curvature values were
already computed (table 3.13).
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Work step Required time
Loading mesh and creating surface normals 3-4 minutes

Load curvature values 1 minute
Grow potential regions 1-2 minutes
Label landmark regions 1-2 minute
Visualization of result < 1 minute

Table 3.13: Required time for detecting anatomical landmarks on the left Tibia

3.3 Farthest points of tibial plateau

3.3.1 Validation of farthest points method
The algorithm for determining the farthest points of the tibial plateau was intended
to be an alternative approach for the determination of the lateral and medial peaks of
the tibial plateau. Therefore, the computed points were compared with the lateral and
medial peaks labeled by the orthopedic surgeon and the CBA (figures 3.11 and 3.12).
For one specimen, only the points from the farthest points algorithm and the surgeon
were compared, because the CBA could not detect those landmarks. To compare the
accuracy of both methods the Euclidean distances between the labeling of the surgeon
and both algorithms were computed (table 3.14). The results of the CBA were computed
with respect to table 3.6.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 7 (d) Specimen 8

(e) Specimen 12 (f) Specimen 13

(g) Specimen 15

Figure 3.11: Selection of lateral and medial peaks of the tibial plateau labeled with
different approaches, view from anterior-medial side.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 7 (d) Specimen 8

(e) Specimen 12 (f) Specimen 13

(g) Specimen 15

Figure 3.12: Selection of lateral and medial peaks of the tibial plateau labeled with
different approaches, view from anterior-lateral side.
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Computed values for evaluating the accuracy of the computed points:

Distance [mm]
CBA Farthest points

Specimen LP MP LP MP
1 7.19 2.55 6.33 8.08
2 8.89 12.71
7 10.52 2.34 6.23 9.03
8 9.03 9.45 14.87 11.68
12 11.58 16.62 9.04 10.67
13 2.30 7.61 3.24 9.18
15 2.34 1.60 7.34 6.59

Table 3.14: Euclidean distances between landmarks labeled by the surgeon and by the
CBA as well as the farthest points algorithm.

Algorithm Mean [mm] Std [mm] Max [mm] Min [mm]
Landmark LP

CBA 7.07 4.03 11.58 2.30
Farthest point 7.84 3.34 14.87 3.24

Landmark MP
CBA 7.53 5.81 16.62 1.60

Farthest points 9.20 1.97 12.71 6.59

Table 3.15: Mean distances, standard deviation and maximal and minimal distances of
the lateral and medial peak labeled by the CBA as well as the farthest point algorithm,
compared with landmarks labeled by the surgeon.

The mean distance and standard deviations (table 3.15) of the distances computed
between points labeled by the CBA, the farthest points algorithm and points labeled
by the surgeon (table 3.14), indicated that using the CBA to detect those points is
generally more appropriate.

3.3.2 Numerical robustness of tibial farthest points computation
Computing the farthest points of the tibial plateau delivered results for all 15 specimens.
Except for five specimens the default values could be used (table 3.16). The used default
values were:

Parameter Value
Number of elements nr 10

Gaussian curvature limit LKFt 0.1
Window size plateau np 18

Table 3.16: Default settings for computing farthest points of the tibial plateau (chapter
2.4.2).

74



For five specimens the parameter window size plateau np (explained in chapter 2.4.2) had
to be changed from np = 18 (table 3.16) in order to compute a result (table 3.17).

Specimen Window size plateau np

1 15
4 12
5 12
9 25
11 10
12 12

Table 3.17: From the default deviating settings for the farthest points of a left tibia.

If a wrong value for the window size plateau parameter np (chapter 2.4.2) was used the
computed points were not part of the contour of the tibial plateau and therefore misplaced
(figure 3.13). Consequently, the parameter np had to be changed to include all contour
regions.

Figure 3.13: Wrong farthest points of the tibial plateau due to a to small value for the
parameter window size plateau np. View from proximal side.

Computing the farthest points of tibial plateau required 5-7 minutes, if the curvature
values were already computed (figure 3.18).

Work step Required time
Loading mesh and creating surface normals 3-4 minutes

Load curvature values 1 minute
Grow potential regions 1 minutes

Define the farthest points < 1 minute

Table 3.18: Required time for detecting farthest points of condyles of the left Tibia.

3.4 Farthest points of patella

3.4.1 Validation of farthest points method patella
The algorithm determining the farthest points of the patella was supposed to detect the
most proximal, distal, medial and lateral points of the anterior side of the patella. The
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lines between two of those points had to be orthogonal (figure 3.14). To determine the
accuracy of these results, the mean euclidean distances between the landmarks of the
farthest points algorithm and the surgeon were calculated (table 3.19).

(a) Specimen 1 (b) Specimen 2 (c) Specimen 7

(d) Specimen 8 (e) Specimen 9 (f) Specimen 12

(g) Specimen 13 (h) Specimen 15

Figure 3.14: Selection of specimens with farthest points of the patella labeled by the
surgeon and the algorithm, view from anterior side.
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Computed values for evaluating the accuracy of the computed points:

Distance [mm]
Patella - Specimen

Landmarks 1 2 7 8 9 12 13 15
Most proximal point 11.20 4.00 9.68 14.91 16.18 16.41 14.53 17.53
Most distal point 5.26 2.22 2.80 1.38 7.97 3.02 3.76 2.05
Most medial point 4.09 3.00 5.44 2.73 8.74 2.30 10.56 3.68
Most lateral point 8.73 3.04 3.39 2.89 6.54 2.55 7.67 4.76

Table 3.19: Euclidean distance between farthest points of patella labeled by a surgeon
and the algorithm

Landmark Mean [mm] Std [mm] Max [mm] Min [mm]
Most proximal point 13.05 4.53 17.53 4.00
Most distal point 3.56 2.14 7.97 2.05
Most medial point 5.07 3.03 10.56 2.30
Most lateral point 4.95 2.40 8.73 2.89

Table 3.20: Mean distances, standard deviation and maximal and minimal distances of
the farthest points of the patella labeled by the CBA, compared with landmarks labeled
by the surgeon.

The calculated mean Euclidean distances (table 3.20) indicated, that for the most proximal
point of the anterior side a different point was labeled by the algorithm.

3.4.2 Operator error of surgeon
To determine the operator error of the landmarks labeled by an experienced orthopedic
surgeon, the average of 8 different labelings was computed. Following the mean distance,
the standard deviation and the maximal and minimal distance between the average and
each single labeling was computed (table 3.21).

Patella - Specimen 2
Landmark Mean [mm] Std [mm] Max [mm] Min [mm]

Most proximal point 0.62 0.60 0.94 0.26
Most distal point 1.69 0.80 2.70 0.64
Most medial point 2.05 1.76 3.50 1.38
Most lateral point 2.35 1.04 3.47 1.03

Table 3.21: Mean euclidean distance, standard deviation, and maximal and minimal
distance between the average of 8 labelings and each of those individual labelings of the
patella of specimen 2 performed by the surgeon.
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Figure 3.15: Scattering farthest points labeled by an experienced surgeon of patella of
specimen 2 (table 3.21). View from anterior side.

A look at the standard deviations (table 3.21) showed that the points labeled by the
surgeon fluctuated.

3.4.3 Numerical robustness of patellar farthest points computation
Computing the farthest points of the patella delivered results for all 15 specimens. Except
for eight specimens the default values could be used (table 3.22):

Parameter Value
Number of elements nr 10

Gaussian curvature limit LKFp 0.2
Dot product factor ndf 2

Table 3.22: Default settings for computing farthest points of the patella (chapter 2.4.3).

For eight specimens the parameter dot product factor ndf (explained in chapter 2.4.3)
had to be changed from ndf = 2 (table 3.22) in order to compute a result (table 3.23).
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Specimen Dot product factor ndf

1 0.5
2 0.5
3 0.5
4 5
6 10
10 5
12 5
14 15

Table 3.23: From the default deviating settings for the farthest points of a left Patella.

If a wrong dot product factor ndf (explained in chapter 2.4.3) was used, it may not be
possible to actually label the farthest points, because the requirement of orthogonality
prevented this (figure 3.16). Therefore, the dot product factor ndf had to be changed, to
actually label the points with the largest distance.

Figure 3.16: Wrong farthest points of the patella due to a too strict dot product factor
ndf . View from anterior side.

Computing farthest points of the patella was relatively fast, because the patella is a rather
small bone. Hence, the computation of the farthest points took up 2-4 Minutes. (table
3.24)

Work step Required time
Loading mesh and creating surface normals 1-2 minutes

Define first pair of farthest points < 1 minute
Define second pair of farthest points < 1 minutes

Visualize Results < 1 minute

Table 3.24: Required time for detecting farthest points of the patella.

3.5 Trochlear groove detection
Computing the path of the trochlear groove delivered results for all 15 specimens. The
results were computed with the following default values.
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Parameter Value
Number of elements nr 150

Gaussian curvature limit LKTg 0.01
Mean curvature limit LHTg 0.55

Table 3.25: Default settings for computing the trochlear groove of a left femur (chapter
2.4.4).

Results of four specimens are shown in figure 3.17.

(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 4

Figure 3.17: Selection of path of the trochlear groove, view from anterior side.

For four specimens, the mean curvature limit had to be changed from LHTg = 0.55 in
order to detect the patella valley and to create results (table 3.26).

Specimen LHTg

1 0.77
3 1.05
8 0.75
14 0.35

Table 3.26: From the default deviating settings for the Trochlear Groove of a left Femur

If the LHTg was set incorrectly, it happened that not just the patella valley but a larger
region, or a too small region was detect. In this case, the path of the patella valley was
misplaced. If the detected region was too large, the LHTg had to be decreased. If the
region was too little, the LHTg had to be increased.
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Figure 3.18: Wrong path of the trochlear groove due to a too big region because of a
wrong mean curvature limit LHTg. View from anterior side.

Detecting the path of the trochlear groove took up to 9 till 13 minutes, if the curvature
values were already computed and stored (table 3.27).

Work step Required time
Loading mesh and creating surface normals 5-7 minutes

Load curvature values 1 minute
Grow potential regions 1-3 minutes

Define Trochlear Groove region < 1 minute
Detecte valley path of Trochlear Groove 1-2 minutes

Visualization of result <1 minute

Table 3.27: Required time for detecting the trochlear groove of a left femur.

3.6 Cylindrical axis detection
Computing the cylindrical axis of the posterior femoral condyles delivered results for all
15 specimens. The results were computed with the following parameters (table 3.28):

Parameter Value
Number of elements nr 300

Guassian curvature limit LKCa 0.2

Table 3.28: Default settings for computing the cylindrical axis of a left femur (chapter
2.4.5).
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Results of four different specimens can be seen in figure 3.19.

(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 4

Figure 3.19: Selection of cylindrical axis of the posterior femoral condyles. View from
distal direction.

For six specimens, the Gaussian curvature limit had to be changed from LKCa = 0.2 to
detect the contour of the condyles and in order to create results (table 3.29).

Specimen LKCa

1 0.16
2 0.17
3 0.15
6 0.12
12 0.22
14 0.15

Table 3.29: Settings deviating from the default values for the cylindrical axis of the femur

If LKCa was set incorrectly, it happened that too little of the contour or the contour and
adjacent regions were detected. In both cases, this resulted in a wrong axis (figure 3.17).
If the detected region was too large, the LKCa had to be increased. If the region was too
little, LKCa had to be decreased.
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(a) Specimen 12
wrong cylindrical
axis

(b) Specimen 12
correct cylindrical
axis

Figure 3.17: Different values of LKCa deliver different regions, which are used to compute
the cylindrical axis. (a) the default settings provided too big regions which therefore
leads to a wrong cylindrical axis. (b) Changing LKCa in a way that the for computation
used regions are more fitting delivers a adequate cylindrical axis. View from posterior
side.

Detecting the cylindrical axis took up to 8 till 13 minutes, if the curvature values were
already computed and stored (table 3.30).

Work step Required time
Loading mesh and creating surface normals 5-7 minutes

Load curvature values 1 minute
Grow potential regions 1-3 minutes

Define the two condyle regions < 1 minute
Compute fit < 1 minute

Visualization of result < 1 minute

Table 3.30: Required time for the detecting cylindrical axis of the femur.

3.7 Shaft axis detection

3.7.1 Femur
Computing the shaft axis of the femur delivered results for all 15 specimens. As default
value of the computation a percentage ns = 50% (explained in chapter 3.7) was used.

The obtained results of four different specimens can be seen in figure 3.21.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 5

Figure 3.21: Selection of specimens with shaft axis of the femur, view from anterior side.

For seven specimens the default value of percentage ns (explained in chapter 2.4.6) had
to be changed, because the cylindrical part of the femur was longer or shorter than 50
% of the total bone length (table 3.31). If the length of the bone differed, the computed
axis could be in another place then intended, when the shaft of the bone was curved.
Therefore, the percentage ns parameter had to be changed.
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Specimen Percentage ns

4 75%
5 65%
8 75%
10 70%
11 55%
12 70%
14 75%

Table 3.31: From the default deviating settings for the shaft axis of a left femur

The computation time for detecting the shaft axis was 5-8 minutes (table 3.32).

Work step Required time
Loading mesh and creating surface normals 5-7 minutes

Define slices < 1 minutes
Compute fit through slices < 1 minutes

Visualization of result < 1 minute

Table 3.32: Required time for detecting the shaft axis of a left femur.

3.7.2 Tibia
Computing the shaft axis of the tibia delivered results for all 15 specimens. For the
computation a default value for the percentage parameter ns = 40 % (explained in chapter
2.4.6) was used.

The computed results of four different specimens can be seen in figure 3.22.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 4

Figure 3.22: Selection of specimens with shaft axis of the tibia, view from anterior side.

For five different specimens the percentage parameter ns had to be changed, because the
length of the tibia differed (table 3.33).

Specimen Percentage ns

3 70%
4 60%
5 30%
7 70%
9 80%

Table 3.33: From the default deviating settings for the shaft axis of a left tibia

The computation of the shaft axis of the tibia took around 4-6 minutes (table 3.34).

86



Work step Required time
Loading mesh and creating surface normals 3-4 minutes

Define slices < 1 minutes
Compute fit through slices < 1 minutes

Visualization of result < 1 minute

Table 3.34: Required time for detecting shaft axis of a left tibia.
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Chapter 4

Discussion

Landmarks are important for different fields in medicine. An existing approach was
implemented, tested, extended and applied to 15 different specimens to detect such
landmarks nearly automatically. Appropriate parameter sets were found for these algorithms
to extract anatomical landmarks, additional characteristics and axes. Not all computations
delivered an adequate result for each specimen. Landmarks labeled by an experienced
orthopedic surgeon are used as gold standard to evaluate computed results of anatomical
landmarks.

The quality of the extracted surface meshes from CT-Images is very important as they
are the basis for all subsequent computatoins. The mesh element size and the mesh
smoothing filter settings are crucial for computing adequate meshes. Especially the
Taubin smoothing filter involves the risk of distorting the curvatures of the surface. The
surface smoothing has to be efficient, in a way that the original contour of the surface
does not change, but local artifacts get eliminated.

Four different methods were implemented to label a particular point of a landmark region
as the landmark. The labeling of the geometric center of the region, maximum Gaussian
curvature, maximum negative mean curvature, and the largest product of the curvature
values (chapter 2.3.3) was tested. The euclidean mean distances (explained in chapter
2.3.5) were found to be in range of 2.61 to 10.25 mm for the femur and 1.90 to 12.54 mm
for the tibia. The results showed that none of the four methods can generally be described
as most appropriate. What can be stated is that for different landmarks different methods
are preferable.

The computed anatomical landmarks were compared to literature, showing good agreement
concerning the distances to the gold standard for most of the landmarks. Computing the
adductor magnus tubercle delivered a slightly better result with a mean distance of 2.61
mm which was nearly 36 % more accurate than published by Subburaj et al. [24]. In
contrast the median distance of the lateral peak of the anterior femoral condyles with
6.96 mm had more than twice the mean distance as in the same paper. The lateral
epicondyle had a mean distance of 5.51 mm which was at least 83 % more inaccurate
then in literature [32, 33, 24].
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The landmarks labeled by the algorithm are reproducible using the same parameters. In
contrast the 8 labelings of the same landmarks on a specimen made by an experienced
surgeon, shows that the labelings of the surgeon vary. The standard deviations, characterizing
the operator error, of the positions of the landmarks varied in a range 0.735 to 3.69
mm and corresponds to the literature [62]. However, the mean distances between the
landmarks labeled by the algorithms and the surgeon are larger than the deviations of
the surgeon labeling the same points multiple times.

Automatic labeling of regions that represent bony landmarks using curvature values
and adjacency matrices, did not work very stable and required manual interventions.
For the automatic labeling not only the size of landmarks but their size in comparison
with other natural bumps on the surface were crucial. If the algorithm detected all
five anatomical landmark regions and, for example, 50 additional peak regions then the
adjacency matrices did not contain enough information for automatic labeling. Furthermore,
if the landmarks had varying sizes the algorithm could not be adjusted (chapter 2.3.4) to
adequate detect all landmarks at the same time, which led to too much detected regions
as well. Consequently, the individual parameters (explained in chapter 2.3.4) that control
the labeling process had to adapted eventually and manual interventions were necessary.
In general the automatic labeling process did not work stable for the femur and tibia,
which made manual labeling necessary.

A different approach based on curvature values was implemented to label anatomical
landmarks that often could not be found with the original CBA. The computation of the
farthest points of the tibial plateau (chapter 2.4.2) was intended to detect the lateral and
medial peaks (LP and MP). The mean distances between the lateral and medial peak
computed with the farthest points algorithm were 7.84 mm and 9.2 mm, respectively
and at least 22 % more inaccurate than the points labeled by CBA. The detected points
of the tibial plateau were detected in a range defined by the window size plateau np
(chapter 2.4.2). If np was set too large the detected points often were not on the edge
of the plateau but offset in distal direction. Consequently, the computed results were
distorted. However, since the lateral and medial peaks of the tibial plateau were often
not recognized by the CBA automatically they could be detected by the farthest points
algorithm instead in such cases to increase the stability of the labeling process (chapter
2.3.3).

The original Curvature Based Algorithm has been enhanced to detect and process different
sized geometric shapes, such as edges and valleys. Those large-scaled geometric shapes
were used for the computation of the farthest points of the patella (chapter 2.4.3), of
the trochlear groove (chapter 2.4.4) and of the cylindrical axis (chapter 2.4.5). For these
large areas with an overall stable curvature good working default parameters could be
found, which led to a stable working algorithm. If surrounding areas of the detected
geometric structure were curved in a similar way, the parameters that control the region
detection (chapter 2.3.4) had to be adapted. This had to be done for 40 % of the
specimens detecting the cylindrical axis and for 27% of the specimens detecting the
patellar valley. No comparable literature for automatic detection of the trochlear groove
and the cylindrical axis were found. However, looking at the movement of the patella
during knee flexion, a comparable path as the computed path of the trochlear groove was
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reported [19]. For the cylindrical axis similar results were shown for manually labeling the
contours of the condyles [20]. Computing the farthest points of the patella did not detect
the most distal point of the anterior side, which is evident when looking at the mean
distance of 13.05 mm of those point. The reason for this is, that the algorithm did not
detect only the edges of the anterior side, and therefore computed maximum distances
for the posterior side as well. It can be conclude that detecting large-scaled areas of the
bone surface using curvature values works stable. However, the subsequent processes are
an additional source of error and should be further enhanced. Consequently, the whole
algorithm requires an optical check of the results.

Computing the shaft axes of femur and tibia based on information stored in the mesh
worked stable. The shaft axis of the femur and the tibia was computed without using
curvature values. Due to the fact that the length of the bones represented by the meshes
are depending on the size in the original CT-Image the proportion of the shaft of the entire
bone varies. To consider the length of the bone for computing the axis, the percentage
parameter np was required (chapter 3.7). In general the shaft of the femur as curved.
Therefore, different results were obtained for different parts of the bone considered.
Consequently, it is a matter of definition and further application which axis is considered
adequate. It can be stated that calculations which do not rest on curvature values are
more stable.

One limitation was that it was not tested how much axes of the original coordinate system
may vary without affecting the algorithms. The algorithms were implemented in a way
that allows axes to vary in their position. How far the axes were allowed to vary has not
been tested, but it was estimated that changing the axes by 20 degrees would not affect
the algorithm. A limited deviation of the axes of the coordinate system could be assumed
and was realistic because the original coordinate system was taken from the CT-Images
and the knee of a patient is always placed in a similar position in the CT device [63].
Another limitation was that the manual labeling of anatomical landmarks was only done
by one surgeon. To make more general statements, a larger database established from
more surgeons would be required.

In conclusion, using curvature values to detect and label anatomical landmarks completely
automatically turned out to be demanding and could not be done with the implemented
algorithms without manual interaction. In many cases an intervention by the operator
was necessary to receive results, which limits the use of the CBA. Detecting overall regions
and contours of the shape of the bone using curvature values was much more stable than
detecting little peaks. However, further developments of such algorithms are promising
with respect to future clinical usage.
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Chapter 5

Outlook

The following considerations can improve the implemented algorithms and make them
work more stable.

More information in the adjacency matrices make the whole automatic labeling process
more stable. To expand the adjacency matrices more landmarks have to be included into
the algorithm. Therefore, points have to be defined that can be found on all specimens
based on curvature values and based on other approaches and methods. Applying the
landmark extraction process (chapter 2.3.2) with different parameter settings allows to
include landmarks of different sizes and shapes. Consequently, more landmarks could be
included into the adjacency matrix.

In order to enhance the quality of the results and the computation time, areas in which
landmarks are located could be estimated by using statistic mean models [64]. A similar
approach that predefines such areas could be a combination with neuronal networks [33].
If the landmark detection algorithm does not have to be used for the whole, but just for
predefined parts of the surface, the region detection procedure would not have to sort
such a high number of elements. This would lead to less regions that fulfill given limits
and the whole labeling process would be much more stable and much faster.
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