©ui

Scale measures with fuzzy data: analyzing their robustness and application to fuzzy rating scale-based questionnaires

Sara de la Rosa de Sáa

Universidad de Oviedo

Doctoral Programme
in Mathematics and Statistics

WIEN
TECHNISCHE UNIVERSITÄT WIEN

Doctoral Programme in Engineering Sciences
Diploma Programme: Technical Mathematics

PhD Dissertation
 2017

supervised by
María Ángeles Gil, María Asunción Lubiano
University of Oviedo
and Peter Filzmoser
Vienna University of Technology

A mis padres y a mi hermano

Acknowledgements

I would like to express my sincere thanks to all the people who have supported me during the course of my PhD project.

First, I would like to especially thank my three PhD supervisors, Ángeles, Asun and Peter for their enormous support. Thanks to Ángeles for introducing me to this exiting world of scientific research, for the invaluable time you devoted to me, always with a smile on your face and good mood, and for being a perfect example of devotion and dedication. Thanks to Asun for always being there to help, for the infinite hours you devoted to this work and for your good and productive ideas. And thanks to Peter, for introducing me to the Robust Statistics field, for your useful suggestions and for making me feel at home in each of every short stay in Vienna.

Thanks to the Departamento de Estadística e I.O. y D.M. of the University of Oviedo, for providing me with all the necessary tools to carry out my thesis work, as well as for the friendly atmosphere which has allowed me to develop this work in a very pleasant way.

I must also say thank you to Bea and Sonia. You have helped every time I needed it and I shall cherish unforgettable memories of our stays in Ghent and Vienna. I am also very grateful to my colleagues Ahmed, Ana, Ángela, Ekra, Itziar, Liudmila and Marta, with whom I have shared much of my time in the office and at conferences.

During the course of my PhD I had the chance to undertake six internships in the Institut für Stochastik und Wirtschaftsmathematik of the Vienna University of Technology, whose members have always warmly welcomed me. I have unforgettable memories from these experiences, thanks in part to my colleagues Maria Anna, Barbara, Gianna, Honza, Petra and Sevinç, and also to Ángel, David, Félix, Irina, Isma, John and Juan, with whom I greatly enjoyed the time spent out of work. All of you made me feel at home despite being so far away. I cannot talk about my stay in Vienna without mentioning Valentin, to whom I am very grateful to for his willingness to help me and his close friendship.

Also thanks to my special friends Belén, Irene, Sara and Yulia. Thank you for your support and encouragement, especially now on the home straight of this work, and for being always there, in good times and in bad.

Finally, thanks to my parents for their advice and support in all my decisions, always trying to help me get the best possible outcomes. I am also grateful for the education they gave me, and for showing me how to face difficulties, always with courage and humility. Thanks to my mum because with her huge help I have been able to make the most of my time when working on this project, and to my dad for the time he devoted to help me to overcome the many mathematical problems I encountered throughout this time, especially in this last step during my thesis preparation. And of course, thanks to my brother, Jorge, for his affection and for being a constant example to me.

I would like to express my gratitude to all the institutions that have economically supported this research along these years. In particular, I would like to thank Gobierno del Principado de Asturias for financing the PhD through the launching of the "Severo Ochoa" plan for the formation of research and teaching staff in Principado de Asturias, which was awarded to me at the beginning of this PhD as a two-years fellowship and a two-years contract, BP12-012, and also for financing the short PhD internships and the Grants GRUPIN14-101 (co-financed by FEDER), CP-PA-11-GI/SPIN-OFF and SV-PA-13-ECOEMP-66, all of which I was highly involved in. For the same reason I wish to thank the Ministerio de Educación y Ciencias for the Grants MTM2009-09440-C02-01 and the Ministerio de Economía y Competitividad for the Grant MTM2013-44212-P. Thanks also to the Fundación Universidad de Oviedo, Banco Santander and the European Science Foundation (through the COST Action IC0702) for economically supporting three of the stays abroad.

My immense gratitude to you all.

Agradecimientos

Quisiera expresar mi más sincero agradecimiento a todas las personas que me han acompañado en estos últimos años de trabajo que han dado como fruto esta tesis doctoral.

En primer lugar, me gustaría agradecer profundamente el apoyo que me han brindado mis tres directores, Ángeles, Asun y Peter. Gracias Ángeles, por introducirme en este mundo apasionante de la investigación, por el incalculable tiempo que me has dedicado, siempre con tu alegría y buen humor, y por ser para mí un ejemplo de dedicación y entrega. Gracias Asun, por estar siempre dispuesta a ayudarme, por tus infinitas horas de trabajo en mi tesis a lo largo de estos años y por tus buenas y productivas ideas. Y gracias Peter, por descubrirme el campo de la Estadística Robusta, por tus valiosas propuestas y por acogerme tan bien en cada una de las estancias que he realizado en Viena.

Gracias al Departamento de Estadística e I.O. y D.M. de la Universidad de Oviedo por poner a mi disposición todos los medios necesarios para poder desarrollar mi trabajo investigador, así como por el buen ambiente y compañerismo que ha hecho mi trabajo mucho más agradable.

No me puedo olvidar de Bea y Sonia. Me habéis ayudado en mi investigación siempre que lo he necesitado y guardo recuerdos inolvidables de nuestras estancias en Gante y Viena. Tampoco me olvido de mis compañeros Ahmed, Ana, Ángela, Ekra, Itziar, Liudmila y Marta, con los que he compartido numerosas horas de trabajo y convivencia en el despacho y congresos.

Durante mis años de doctorado he tenido la enorme suerte de realizar seis estancias breves en el Institut für Stochastik und Wirtschaftsmathematik de la Universidad Técnica de Viena, cuyos miembros me han acogido siempre como una más. De allí me llevo imborrables recuerdos, en parte gracias a mis compañeros de despacho Maria Anna, Barbara, Gianna, Honza, Petra y Sevinç, y en parte a Ángel, David, Félix, Irina, Isma, John y Juan, con los que pasé grandes momentos fuera del trabajo. Todos me habéis hecho sentir como en casa aun estando tan lejos. Y
no puedo dejar Viena sin mencionar a Valentin, al que agradezco enormemente su predisposición a ayudarme siempre y su inmejorable trato.

A mis amigas con mayúsculas Belén, Irene, Sara y Yulia, gracias de corazón por apoyarme y darme ánimos en la recta final de este trabajo, y por estar siempre ahí, en los buenos y en los malos momentos.

Finalmente, gracias a mis padres por aconsejarme y apoyarme en todas mis decisiones, siempre buscando lo mejor para mí. Por la educación que me habéis dado, enseñándome a afrontar la vida con valentía y humildad. Gracias a mi madre por regalarme todo su tiempo para que el mío rinda más, y a mi padre, por las horas dedicadas a sacarme de mis "atascos" con las matemáticas a lo largo de todos mis estudios, incluida esta última etapa de preparación de la tesis. Y por supuesto, gracias también a mi hermano Jorge, por su cariño y por ser un ejemplo constante para mí.

Quisiera expresar también mi gratitud a las instituciones que han apoyado la investigación en la que he estado involucrada en estos años de trabajo. Concretamente, al Gobierno del Principado de Asturias, por financiar la ayuda predoctoral BP12-012 del programa "Severo Ochoa" para la formación en investigación y docencia del Principado de Asturias, que me fue concedida al empezar mi doctorado en forma de beca durante dos años y de contrato durante otros dos, y también por sus ayudas dentro de este programa para estancias breves y por los Proyectos GRUPIN14-101 (cofinanciado con Fondos FEDER), CP-PA-11-GI/SPIN-OFF y SV-PA-13-ECOEMP-66, de cuyos equipos de investigación he sido miembro. También, por esta última razón, al Ministerio de Educación y Ciencias por el Proyecto MTM2009-09440-C02-01 y al Ministerio de Economía y Competitividad por el Proyecto MTM2013-44212-P. Y también a la Fundación Universidad de Oviedo, al Banco Santander y a la European Science Foundation (a través de la Acción COST IC0702), por financiar tres de mis estancias de investigación.

Gracias, infinitas gracias a todos.

Prologue

Imprecise data can be found in many real-life situations. Fields like Engineering, Biomedical Sciences or Social Sciences often deal with this kind of data. For instance, the optimization of industrial control systems, the diagnosis determined by a doctor about a patient or the customer valuation about a product are matters that may involve imprecise data. Fuzzy numbers can properly express and model this type of data.

The Likert-type scales are frequently used in designing questionnaires to rate characteristics or attributes that cannot be numerically measured (like satisfaction, perceived quality, perception...). Although they are easy to answer and they do not require a special training to use them, the available statistical methodology to analyze the data from these questionnaires is rather limited. This is mainly due to the fact that Likert scales are discrete with a very small number of responses to choose for each item (often 4 or 5). To overcome this concern, some alternatives have been suggested in the literature:

- On one hand, the visual analogue scales, which allow the respondent to choose the exact value or point along a line between two end-points (i.e., along a compact interval) that better represents his/her level of agreement to a statement or property. Even though it is a continuous scale, so the diversity of responses is ensured and the statistical conclusions are reliable, it does not seem realistic to demand as much accuracy in connection with such an intrinsically imprecise context.
- On the other hand, the posterior encoding (usually made by trained experts) of the Likert responses by means of fuzzy numbers from a linguistic scale. With this scale, the intrinsic imprecision associated with the responses is better captured, but it is a discrete scale with small cardinal, like the Likert scale, and so, the subjectivity and the diversity of ratings are to some extent lost.

The so-called fuzzy rating scales integrate the skills of the two previous alternatives (to be a 'continuous' and fuzzy-valued scale). The questionnaires based on this scale have a free-response format, allowing the rater to draw the fuzzy number that better expresses his/her response to the given item, within a reference bounded interval. In this way, the values can cope (to a full extent) with the intrinsic imprecision associated with the ratings. On the other hand, the diversity and subjectivity of the responses are not lost because it is a continuous scale, and there is a substantial gain of information and accuracy in the conclusions. Moreover, along the last years a statistical methodology is being developed to analyze fuzzy-based data, allowing us to treat them in a similar way to the numerical data.

A substantial part of the thesis work is devoted to summarize the statistical information involved in datasets that are based on a fuzzy rating by analyzing their scale estimate, where it is intended as a representative measure of the dispersion of the imprecise-valued attributes supplying the datasets. More concretely, the objective is summarizing the scale by extending different, mostly robust, scale estimates from the real-valued case. Thus, the Fréchet-type variance (or the corresponding standard deviation) is the best known and used dispersion measure in the fuzzy context. It preserves the main valuable properties of the variance (standard deviation) for real-valued data, but it also inherits its high sensitivity to the presence of outliers or atypical/extreme observations in the data. Therefore, it is desirable to introduce and study other scale measures and to analyze their robust behaviour.

The other main contribution of the work is to compare the mentioned different rating scales to model/deal with imprecise-valued data through some studies based on simulations and also on real-life questionnaires. In particular, the Likert-type scale, through both its numerical and fuzzy linguistic encodings, and the fuzzy rating scale will be compared, mainly on the basis of the dispersion/scale measures studied in the first main part of the work.

Aiming to achieve these goals, the work in this dissertation has been structured as follows:

Chapter 1 introduces the different rating scales currently most employed to measure aspects which are intrinsically imprecise. All of them are illustrated by means of some examples. The main positive and negative features in connection with the use of each scale are analyzed, and the design of questionnaires based on the fuzzy rating scale is explained in detail.

The principal preliminary and supporting tools about fuzzy numbers are gathered, including some of the representations that characterize them, their arithmetic and the metrics which will be used along this work. The random mechanism that models the generation of fuzzy values within a probabilistic setting is presented, and the main summary measures/parameters of its distribution are recalled, both central tendency and dispersion measures. The latter will be deeply analyzed in the next chapter.

Three real-life examples concerning the application of the fuzzy rating and Likert scales in questionnaires are included, and the complete datasets associated to such questionnaires can be found in the appendices section at the end of this work. Besides, the two simulation procedures of fuzzy numbers conducted in different instances of this work are also explained. After a small study consisting of analyzing the sensitivity of Fréchet's variance with respect to the shape of the fuzzy data, the chapter ends motivating the need for robust measures alternative to the variance, as well as the interest of comparing the rating scales from a dispersion perspective.

In Chapter 2 several measures of scale to deal with real-valued data are extended to deal with fuzzy-valued data. After proving some of their most relevant properties, such as the invariance by translation, the (absolute) equivariance by the product by scalars or the strong consistency, their robust behaviour is analyzed deeply from a theoretical point of view and also by means of simulations. The value of the finite sample breakdown point is calculated for each estimator assuming that there are not two identical observations in the sample, and the results obtained will show that these values are the same as those in the real-valued case.

The three types of outliers considered along the chapter have had to be specifically conceived for this fuzzy setting and they are explained in detail. The empirical breakdown point is obtained for each estimator, confirming the theoretical values. The notion of sensitivity curves is extended from the real- to the fuzzy-valued case and they are graphically displayed.

A brief section is devoted to introduce the M-estimators of scale. It gathers an algorithm to compute them and also an empirical analysis of the robustness for two well-known loss functions: the Huber loss function and the Tukey bisquare loss function.

Finally, the computation of all the scale estimators introduced along this chapter is illustrated for the fuzzy responses from the three questionnaires in Chapter 1.

In Chapter 3 a comparative study among the rating scales presented in the first chapter is carried out. The first comparative tool to be analyzed will be the diversity, and as we will see it is always higher, under quite general reasonable conditions, for the questionnaires based on the fuzzy rating scale. This supports the idea that this scale allows us to capture better the subjectivity and diversity of responses, as it was mentioned at the beginning of this work.

Then, an inferential approach based on a bootstrapped test about the equality of variances/standard deviations for independent populations is presented and applied to two questionnaires-based case studies. By comparing the p-values obtained for each rating scale, it will be determined if the chosen scale has influence on the test result.

Finally, a descriptive analysis of the three scales is performed in the chapter. On one hand, all the scale measures introduced in Chapter 2, but M-estimators which should be studied in more depth, are calculated for each rating scale, making use of the double response questionnaires-based case studies and of the usual numerical and fuzzy linguistic encodings of Likert data. On the other hand, fuzzy rating responses are simulated and associated with Likert responses by means of a 'Likertization' criterion which will be explained and validated with the questionnaires. Then, each 'Likertized' datum is encoded by means of a fuzzy linguistic scale. In this way, with the responses available in the three scales, the value of the different dispersion estimators is calculated and compared among the scales. We will see that the results obtained with this descriptive approach based on simulations are the same as those obtained for the case studies and they are also coherent with the conclusions for the standard deviation in the inferential analysis.

Each of the chapters ends up with a brief section devoted to summarize its main conclusions and contributions, followed by a list of publications I coauthored where these findings are described in full.

The work for this dissertation concludes with some final comments and suggestions concerning open problems in connection with the topic covered in it.

Prólogo

Los datos imprecisos pueden encontrarse en muchas situaciones de la vida cotidiana. Campos como la Ingeniería, las Ciencias Biomédicas o las Ciencias Sociales tratan habitualmente con este tipo de datos. Por ejemplo, la optimización de sistemas de control industriales, el diagnóstico que determina un médico sobre un paciente o la valoración que hace un cliente de un producto son cuestiones que pueden involucrar datos imprecisos. Los números difusos son los encargados de expresar y modelar este tipo de datos.

En el diseño de cuestionarios que tratan de recabar valoraciones sobre aspectos que no son medibles de forma exacta (como la satisfacción, la calidad percibida, la percepción...) es habitual recurrir al empleo de escalas tipo Likert. A pesar de que su aplicación es sencilla y no requieren preparación previa de los encuestados, cuando se quiere explotar la información contenida en los datos provenientes de estos cuestionarios, la metodología estadística disponible es bastante limitada. Esto se debe en gran parte a que se trata de escalas discretas con un número muy reducido de respuestas a elegir para cada pregunta (normalmente 4 o 5). Para soslayar este inconveniente, se han propuesto en la literatura algunas alternativas al empleo de las escalas Likert:

- Por un lado, las escalas visuales analógicas, que piden al encuestado especificar el punto o valor exacto en una barra o intervalo acotado que mejor exprese su grado de acuerdo con la declaración o propiedad enunciada. Aunque se trata de una alternativa de escala continua, que recoge la diversidad de respuestas y se adapta muy bien al tratamiento estadístico, no parece natural exigir tanta exactitud en un contexto de por sí impreciso.
- Por otro lado, la codificación a posteriori (normalmente realizada por expertos) de las respuestas Likert mediante números difusos procedentes de una escala lingüística. A pesar de que con este tipo de escala captamos mejor la imprecisión inherente a las respuestas, se trata, al igual que la Likert, de una escala discreta con cardinal pequeño, lo que conlleva una clara pérdida en subjetividad y diversidad de valoraciones.

Combinando las ideas de las dos alternativas anteriores (escala continua y difusa) se encuentra la conocida como escala de valoración difusa. Los cuestionarios que utilizan esta escala tienen un formato de respuesta libre, de tal forma que el encuestado representa gráficamente para cada pregunta el numero difuso que mejor expresa su respuesta, dentro un intervalo cuyos extremos son fijados de antemano. Así se garantiza que, por un lado, las respuestas reflejen la imprecisión intrínseca a las valoraciones a las que se refieren, y por otro, que haya una mayor diversidad de las mismas al tratarse de una escala continua, lo que conlleva una ganancia sustancial de información y fiabilidad en las conclusiones. Además, a lo largo de los últimos años se está desarrollando una metodología estadística para el análisis de datos difusos, que permite un tratamiento muy similar al del análisis de datos numéricos.

Buena parte de esta tesis se dedica a resumir la información estadística contenida en varios conjuntos de datos basados en valoraciones difusas. Esto se llevará a cabo mediante el análisis de su estimación de escala, entendiéndola como una medida representativa de la dispersión de los datos. Concretamente, el objetivo es resumir la escala extendiendo del caso real diferentes estimadores, muchos de ellos robustos. La medida de dispersión más conocida y habitual en el contexto difuso es la varianza de Fréchet (o la correspondiente desviación típica). Esta medida conserva las principales propiedades de la varianza (desviación típica) del caso real, entre las que se encuentra su elevada sensibilidad a la presencia de outliers u observaciones atípicas o extremas en los datos. Es deseable, por tanto, tratar de introducir y estudiar otras medidas de escala y analizar su comportamiento robusto.

La otra principal contribución de este trabajo es comparar las escalas de valoración mencionadas mediante estudios basados en simulaciones y también en ejemplos reales de cuestionarios. Concretamente, las escalas que van a compararse son la tipo Likert, codificada numéricamente y a través de escalas lingüísticas difusas, y la escala de valoración difusa. Dicha comparación se hará principalmente sobre la base de las medidas de dispersión/escala estudiadas en la primera parte de la memoria.

Con estos objetivos generales, el trabajo de esta tesis se ha estructurado como detallamos a continuación.

El Capítulo 1 presenta las escalas de valoración más empleadas en la actualidad para medir magnitudes intrínsicamente imprecisas, ilustrando todas ellas con ejemplos. Se analizan las ventajas e inconvenientes más destacables de cada una, y se explica detalladamente el diseño de cuestionarios basados en la escala de valoración difusa.

Se recogen además los preliminares sobre números difusos, incluyendo algunas de sus representaciones, su aritmética y las distancias que serán usadas a lo largo de este trabajo. Se formaliza el mecanismo que genera aleatoriamente tales datos dentro de un contexto probabilístico y se recuerdan las principales medidas que resumen su distribución, tanto de tendencia central como de dispersión. Estas últimas serán analizadas en profundidad en el siguiente capítulo.

Se incluyen tres ejemplos reales de cuestionarios con respuestas Likert y de valoración difusa, cuyos conjuntos de datos asociados pueden encontrarse en la sección de apéndices al final de esta memoria. Se detallan también los dos procedimientos de simulación de datos difusos que serán empleados en varias ocasiones en este trabajo. Después de un pequeño estudio que analiza la sensibilidad de la varianza de Fréchet respecto a la forma de los datos, se concluye el capítulo motivando la necesidad de buscar alternativas más robustas a ella, así como el interés de comparar, desde un punto de vista de la dispersión, las diferentes escalas de valoración.

En el Capítulo 2 se extienden del caso real varias medidas de escala para datos difusos. Después de probar algunas de sus propiedades más relevantes, como la invarianza por traslación, la equivarianza (en valor absoluto) por el producto por escalares o la consistencia fuerte, se analiza profundamente el comportamiento robusto de estas medidas, tanto desde un punto de vista teórico como a través de simulaciones. Así, se determina su punto de ruptura muestral finito cuando la muestra no contiene observaciones iguales, siendo estos valores coincidentes con los del caso real para todas las medidas.

Se explican en detalle los tres tipos de outliers que se van a considerar a lo largo del capítulo, los cuales han sido especialmente concebidos para este contexto difuso, y se corrobora de forma empírica e ilustrativa el valor de los puntos de ruptura para cada estimador. También se extiende la noción de curvas de sensibilidad del caso real al caso difuso, y se representan gráficamente.

Se dedica una breve sección a introducir los M-estimadores de escala. En ella se recoge un algoritmo para su computación, así como un análisis empírico de la robustez para dos conocidas funciones de pérdida: la función de pérdida de Huber y la función de pérdida de Tukey.

Por último, se ilustra el cálculo de todos los estimadores de escala presentados a lo largo del capítulo, utilizando para ello las respuestas difusas procedentes de los tres cuestionarios expuestos en el Capítulo 1.

En el Capítulo 3 se desarrolla el estudio comparativo entre las escalas de valoración que fueron presentadas en el primer capítulo. La primera herramienta comparativa analizada será la diversidad, que como veremos es siempre mayor, bajo condiciones bastante generales, para los cuestionarios basados en la escala de valoración difusa. Esto refrenda la idea de que el uso de esta escala permite captar mejor la subjetividad y la diversidad de respuestas, según se planteó en el inicio de esta memoria.

A continuación, se presenta un enfoque inferencial basado en un test bootstrap de igualdad de varianzas/desviaciones típicas para poblaciones independientes, que es aplicado a dos cuestionarios reales. Comparando los p-valores obtenidos para cada escala de valoración, se determinará si la escala elegida influye en el resultado del test.

Por último y para finalizar este capítulo, se realiza un análisis descriptivo de las tres escalas. Por un lado, haciendo uso de los cuestionarios de respuesta doble y de las codificaciones numéricas y linguísticas difusas más usuales, se calculan todas las medidas de dispersión definidas en el Capítulo 2 para cada escala (no se incluyen los M -estimadores, que deberían ser estudiados con más profundidad). Por otro lado, se simulan respuestas difusas y se asocian a respuestas Likert mediante un criterio de 'Likertización' que será explicado y validado con los cuestionarios. Después, cada dato 'Likertizado' se codifica mediante una escala lingüística difusa. Así, con las respuestas disponibles en las tres escalas, se procede a calcular el valor de los distintos estimadores de dispersión y a compararlos entre las escalas. Veremos que los resultados de este enfoque descriptivo basado en simulaciones coinciden con los obtenidos para los cuestionarios, y que son coherentes con las conclusiones del análisis inferencial para la desviación típica.

Todos los capítulos finalizan con una breve sección dedicada a resumir las principales conclusiones y contribuciones del mismo, además de indicarse las publicaciones, de las que soy coautora, donde han sido recogidas estas aportaciones.

La memoria concluye con algunos comentarios finales y sugerencias de problemas abiertos estrechamente ligados con el tema de esta tesis.

Einleitung

Unscharfe Daten findet man in vielen Lebenssituationen. Themen wie Ingenieurwesen, Biomedizinische Wissenschaften oder Sozialwissenschaften befassen sich oft mit dieser Art von Daten. Beispiele für das Auftreten von unscharfen Daten sind die Optimierung von industriellen Steuerungen, die Bestimmung der Diagnose eines Patienten von einem Arzt, oder die Kundenbewertung eines Produkts. „Fuzzy" Zahlen können dabei helfen, diese Art von Daten korrekt darzustellen.

Die Likert-Skala wird häufig bei der Gestaltung von Fragebögen verwendet, um Eigenschaften oder Merkmale zu bewerten, welche nicht numerisch gemessen werden können (zum Beispiel: Zufriedenheit, wahrgenommene Qualität, Wahrnehmung). Obwohl sie leicht anzuwenden ist und man keine spezielle Ausbildung benötigt um sie zu verwenden, ist die verfügbare statistische Methodik zur Analyse der Daten aus diesen Fragebögen begrenzt. Dies ist vor allem auf die Tatsache zurückzuführen, dass Likert-Skalen sehr diskret mit einer sehr kleinen Anzahl von Antworten für jedes Element zu wählen sind (meist 4 oder 5). Um dies zu überwinden, wurden in der Literatur einige Alternativen vorgeschlagen:

- Auf der einen Seite, visuelle Analogskalen, welche es dem Befragten ermöglichen, den exakten Wert oder Punkt einer Linie zwischen zwei Endpunkten zu wählen (d.h.: entlang eines kompakten Intervalls), der seinen/ihren Stand der Vereinbarung einer Stellungnahme oder Fähigkeit darstellt. Obwohl man damit eine kontinuierliche Skala erhält, die Vielfalt der Antworten gewährleistet ist und auch die statistischen Schlussfolgerungen zulässig sind, ist es nicht realistisch, so viel Genauigkeit in Verbindung mit einem ungenauen Kontext zu verlangen.
- Auf der anderen Seite, die a-posteriori Kodierung (von ausgebildeten Experten) der Likert-Antworten mittels unscharfer Zahlen einer sprachlichen Skala. Mit dieser Skala wird die intrinsische Ungenauigkeit, die mit der Antwort verbunden ist besser erfasst, aber es ist eine diskrete Skala mit einer
kleinen Grundzahl, wie die Likert-Skala und daher gehen die Subjektivität und Vielfalt der Bewertungen bis zu einem gewissen Grad verloren.

Die sogenannten „fuzzy" Bewertungsskalen integrieren die Fähigkeiten der beiden vorherigen Alternativen (eine kontinuierliche und unscharf bewertete Skala). Basierend auf diese Skala haben die Fragebögen ein „Freies Antwort"-Format, welches es dem Beurteiler erlaubt, die unscharfe Zahl zu zeichnen, welche seine/ihre Antwort innerhalb eines referenzinternen Intervalls besser ausdrückt. Auf diese Weise können die Werte mit der intrinsischen Ungenauigkeit, die mit den Bewertungen verbunden ist, bewältigt werden. Andererseits gehen Vielfalt und Subjektivität der Antworten nicht verloren, da es eine kontinuierliche Skala ist und es einen erheblichen Gewinn an Informationen und Genauigkeit in den Schlussfolgerungen gibt. Darüber hinaus wurde in den letzten Jahren eine statistische Methode entwickelt, um fuzzy-basierte Daten zu analysieren, sodass wir diese in ähnlicher Weise wie die numerischen Daten behandeln können.

Ein wesentlicher Teil der Arbeit widmet sich der Zusammenfassung der statistischen Information in Datensätzen, basierend auf einer Fuzzy-Bewertung durch die Analyse ihrer Schätzung, wobei sie als repräsentative Maßnahme der Streuung der unscharfen Werte, die die Datensätze liefern, gedacht ist. Konkret ist damit folgendes gemeint: Das Ziel ist die Zusammenfassung der Skala durch die Ausweitung der verschiedenen vor allem robusten Schätzungen aus dem reellwertigen Fall. Somit ist die Fréchet-Varianz (oder die entsprechende Standardabweichung) das bekannteste und auch oft angewendete Streuungsmaß im Fuzzy-Kontext. Es bewahrt die wichtigsten Eigenschaften der Varianz (Standardabweichung) für reellwertige Daten, aber es bewahrt auch die hohe Empfindlichkeit gegenüber dem Vorhandensein von Ausreißern oder atypische/extreme Beobachtungen von Daten. Daher ist es wünschenswert, andere Skalenmaße einzuführen und zu studieren und ihr robustes Verhalten zu analysieren.

Der andere wichtige Teil der Arbeit ist, die beschriebenen unterschiedlichen Bewertungsskalen mit unscharfen Daten durch einige auf Simulation basierenden Studien und auch auf realen Fragebögen zu vergleichen. Insbesondere werden beim LikertTyp die numerischen und fuzzy-linguistisch codierten Skalen mit den Fuzzy-RatingSkalen verglichen, hauptsächlich basierend auf den Streuungsmaßen vom ersten Teil der Arbeit.

Um diese Ziele zu erreichen, wurde der Inhalt dieser Dissertation folgend strukturiert:

Kapitel 1 stellt die verschiedenen Rating-Skalen vor, die derzeit am meisten eingesetzt werden, um Aspekte zu messen, die intrinsisch ungenau sind. Diese werden anhand einiger Beispiele dargestellt. Die wichtigsten positiven und negativen Eigenschaften werden im Zusammenhang mit der Verwendung jeder Skala analysiert, und die Gestaltung der Fragebögen, die auf der Rating-Skala basiert, wird im Detail erläutert.

Die vorläufig wichtigsten und unterstützenden Werkzeuge von unscharfen Zahlen werden hier aufgelistet, einschließlich einiger Darstellungen, die sie charakterisieren. Diese beinhalten ebenso die Arithmetik und die Metriken, die für diese Arbeit verwendet werden. Der zufällige Mechanismus, der die Erzeugung von Fuzzy-Werten innerhalb einer probabilistischen Einstellung modelliert wird dargestellt und die wichtigsten zusammenfassenden Maßnahmen/Parameter werden in Erinnerung gerufen, sowohl die Lokation als auch die Streuungsmaße. Die Letzteren werden im nächsten Kapitel genauer analysiert.

Drei Beispiele aus der Praxis für die Anwendung der Fuzzy-Bewertung und Likert-Skalen sind in den Fragebögen enthalten, ebenso findet man die kompletten Datensätze, die mit solchen Fragebögen verknüpft sind, im Anhang dieser Arbeit. Außerdem sind die beiden Simulationsverfahren der Fuzzy-Zahlen, die in verschiedenen Instanzen dieser Arbeit durchgeführt wurden, erläutert. Nach einer kleinen Studie, bestehend aus der Analyse der Empfindlichkeit der Fréchet-Varianz in Bezug auf die Form der Fuzzy-Daten, endet das Kapitel mit der Motivation für die Notwendigkeit für robuste Maße als Alternative zur Varianz, sowie das Interesse des Vergleichs der Rating-Skalen aus der Streuungs-Perspektive.

In Kapitel 2 werden verschiedene Streuungsmaße erweitert, um mit realwertigen Daten und fuzzy-wertigen Daten umzugehen. Nach der Prüfung einiger der wichtigsten Eigenschaften, wie die Invarianz durch Translation, die absolute Äquivarianz durch das Produkt der Skalare oder die starke Konsistenz, wird das robuste Verhalten aus theoretischer Sicht und auch durch Simulation eingehend analysiert. Der Wert des endlichen Stichproben-Bruchpunktes wird für jede Schätzfunktion berechnet, wobei angenommen wird, dass es keine zwei identischen Beobachtungen in den Proben gibt. Die erzielten Ergebnisse werden zeigen, dass diese Werte der Bruchpunkte die gleichen sind wie im reellwertigen Fall.

Die drei Arten von Ausreißern, die in diesem Kapitel beschrieben werden, mussten speziell für diese Fuzzy-Szenario konzipiert werden, und sie werden ausführlich erklärt. Der empirische Bruchpunkt wird für jeden Schätzer berechnet, wobei die the-
oretischen Werte bestätigt werden. Der Begriff der Sensitivitätskurven wird vom reellen auf den fuzzy-wertigen Fall erweitert, und diese werden grafisch dargestellt.

Zum Abschluss befasst sich ein kurzer Abschnitt damit, die M-Schätzer für Streuung zu präsentieren. Ein Algorithmus zur Berechnung wird erläutert, sowie eine empirische Analyse der Robustheit für zwei bekannte Verlustfunktionen: die Huber Verlustfunktion und die Tukey bisquare Verlustfunktion.

Schließlich werden die Berechnungen für alle Streuungsschätzer, die in diesem Kapitel eingeführt wurden, für fuzzy-Antworten von den drei Fragebögen aus Kapitel 1 illustriert.

In Kapitel 3 wird eine Vergleichsstudie der in Kapitel 1 vorgestellten Bewertungsskalen durchgeführt. Das erste Vergleichsinstrument das analysiert werden soll, ist die Diversität, und wie man sehen wird, ist sie immer höher, unter ganz allgemein gültigen Bedingungen, für die Fragebögen basierend auf der Fuzzy-Rating Skala. Wie am Anfang der Arbeit beschrieben, unterstützt dies die Idee, dass diese Skala es uns ermöglicht, die Subjektivität und Vielfalt der Antworten besser zu erfassen.

Es wird ein inferentieller Ansatz, der auf einem Bootstrap-Test über die Gleichheit von Varianzen/Standardabweichungen für unabhängige Populationen basiert, auf zwei Fragebogen-basierte Fallstudien vorgestellt und angewendet. Durch Vergleich der für jede Bewertungsskala erhaltenen p-Werte wird bestimmt, ob die gewählte Skala Einfluss auf das Testergebnis hat.

Zuletzt wird in diesem Kapitel eine beschreibende Analyse der drei Skalen durchgeführt. Einerseits werden alle Maße, die in Kapitel 2 vorgestellt wurden (MSchätzer sollten näher untersucht werden), für jede Bewertungsskala und unter Verwendung der doppelten Antwortfragebogen-basierten Fallstudie und der üblichen numerischen und unscharfen linguistischen Kodierungen von Likert-Daten berechnet, andererseits werden Fuzzy-Rating-Antworten simuliert und mit Likert Antworten, sogenannte „Likertisierung" verknüpft, welche mit Fragebögen erklärt und validiert werden. Danach wird jedes „Likertisierte"-Datum durch eine fuzzy-linguistische Skala kodiert. Auf diese Weise wird der Wert der verschiedenen Streuungsschätzer verglichen, unter Berücksichtigung der Antworten aus den drei Skalen. Man sieht, dass die Ergebnisse, die man mit dem beschreibenden Ansatz auf Grundlage von Simulationen erhält, die gleichen wie die für die Fallstudien erhaltenen sind und dass sie auch mit den Schlussfolgerungen für die Standardabweichung in der Inferenzanalyse kohärent sind.

Jedes Kapitel endet mit einem kurzen Abschnitt, um die wichtigsten Schlussfolgerungen und Beiträge zusammenzufassen, gefolgt von einer Publikationsliste in der ich Koautor bin, wo die Ergebnisse vollständig beschrieben werden.

Die Arbeit für diese Dissertation endet mit einigen abschließenden Kommentaren und Anregungen zu offenen Problemen, im Zusammenhang mit dem darin besprochenen Thema.

Contents

Acknowledgements i
Agradecimientos iii
Prologue V
Prólogo ix
Einlentung xiii
Contents xix
List of Figures xxii
List of Tables xxxi
1 On statistics with fuzzy data and measuring scale of fuzzy datasets 1
1.1 Standard scales to rate intrinsically imprecise magnitudes 1
1.2 Fuzzy scales to rate intrinsically imprecise magnitudes 5
1.2.1 Fuzzy numbers 5
1.2.2 Fuzzy scales 11
1.3 Fuzzy arithmetic and metrics 14
1.3.1 Arithmetic with fuzzy data 15
1.3.2 Metrics between fuzzy data 17
1.4 Random fuzzy numbers and relevant summary measures 23
1.5 Introduction to robustness with RFN's: some robust location measures 27
1.6 Case studies to be analyzed in the work 33
1.7 Generating fuzzy data for simulation studies 37
1.8 Analyzing sensitivity of Fréchet's variance with respect to the shape of fuzzy data 40
1.8.1 Simulations-based comparative analysis 42
1.8.2 Case study-based comparative analysis 45
1.9 Concluding remarks of this chapter 47
1.9.1 Motivating the need for robust measures alternative to the Fréchet variance 48
1.9.2 Motivating the interest of comparing statistical conclusions for different scales of measurement from a dispersion perspective 49
2 Robust scale measures in dealing with fuzzy data 51
2.1 Scale measures for fuzzy data 52
2.2 Formal general properties as scale measures 56
2.3 Formal analysis of the robustness of the scale measures: the finite sample breakdown point 65
2.4 Analysis of the robustness of the different scale measures by means of simulation studies 87
2.4.1 Outliers in dealing with fuzzy number-valued data 87
2.4.2 Simulations-based analysis of the finite sample breakdown point: explosion and implosion breakdown point 93
2.4.3 Sensitivity curves 142
2.5 Another approach for the scale estimation: the M-estimation of scale 157
2.5.1 An algorithm to compute M-estimators of scale for fuzzy data 159
2.5.2 Simulations-based analysis of the robustness of some M-esti- mates of scale 160
2.6 Illustrating the use of different scale measures through case studies 187
2.7 Concluding remarks of this chapter 191
3 Comparing statistical conclusions for different rating scales. Questionnaires-based case studies and simulations 193
3.1 Comparing the diversity of datasets for different rating scales 196
3.2 Comparison of rating scales through testing hypotheses about vari- ances. Case studies-based analysis 197
3.3 Descriptive comparison of the rating scales through different scale estimates. Case studies-based analysis 202
3.4 Comparison of the rating scales through different scale estimates. Simulations-based analysis 206
3.4.1 'Likertization' of fuzzy rating scale-based data: criterion and validation 207
3.4.2 Fuzzy linguistic encoding through the Likertized responses 209
3.4.3 Descriptive simulations-based comparison of different rating scales 211
3.5 Concluding remarks of this chapter 224
Final conclusions and open problems 227
Conclusiones finales y problemas abiertos 229
Schlussfolgerungen und offene Probleme 231
A Form and datasets for adapted TIMSS/PIRLS student Question- naire 233
B Form and datasets for adapted restaurant customer satisfaction Questionnaire 243
C Computerized application and datasets for the online double response perceptions question 251
References and other main consulted papers and books 261
Subject index 271
Symbols index 277

List of Figures

1.1 Example of two items designed so that possible responses are based on a 5-point Likert scale, in a survey made by SurveyLegend (https://www.surveylegend.com/user- guide/likert-scale/) 2
1.2 Example of a visual analogue scale-based item (http://www.rcemlearning.co.uk/ references/pain-management-in-adults/) 3
1.3 Example of a graphic/numerical rating scale-based item (http://cceffect.org/pain- scales-for-crohns-disease/). On the top and the bottom two graphic rating scales, on the middle a numerical one 4
1.4 Six types of fuzzy numbers sharing core $[20,25]$ and support $(10,40)$ and differing in shape. On the left, trapezoidal (top) and Π-curve (bottom), along with four different $L U$-fuzzy numbers on the middle and the right 10
1.5 Example of a Fuzzy Linguistic Scale taken from fuzzyTECH's Linguistic Variable Editors webpage (http://www.fuzzytech.com/) 12
1.6 The sum of two fuzzy numbers (e.g., those on the left) is generally different depending on the fuzzy arithmetic (on the right top) or the functional arithmetic (on the right bottom) being considered 16
1.7 The product of a fuzzy number (on the left) by a scalar $(\gamma=2)$ is generally different depending on the fuzzy arithmetic (on the right top) or the functional arithmetic (on the right bottom) being considered 17
1.8 Example of the double response paper-and-pencil (on the left) and computerized (on the right) form to an item in Example 1.6.1 34
1.9 Excerpt of the questionnaire about the satisfaction with the quality of restaurants in Example 1.6.2 35
1.10 Example of a double response from the online application in Example 1.6.3 36
1.11 4-Tuples to be generated for the simulation procedures 38
1.12 Density functions of different $\operatorname{Beta}(p, q)$ which have been used in the comparative studies 40
1.13 FRS responses to Item $M .2$ by students who have filled out the paper-and-pencil form 48
1.14 Example of 4 double responses to Item $M .2$ for which the Likert-type ones coincide while the fuzzy rating scale-type clearly differ 49
2.1 Sample of 22 trapezoidal fuzzy numbers with one outlier (in red) 66
2.2 From top to bottom, the non-contaminated sample, the contaminated sample by two outliers of translation (in red), the contaminated sample by two outliers of scale on core and support and the contaminated sample by two outliers of both - 1stSP Case 1 89
2.3 From top to bottom, the non-contaminated sample, the contaminated sample by two outliers of translation (in red), the contaminated sample by two outliers of scale on core and support and the contaminated sample by two outliers of both - 1stSP Case 2 90
2.4 From top to bottom, the non-contaminated sample, the contaminated sample by two outliers of translation (in red), the contaminated sample by two outliers of scale on core and support and the contaminated sample by two outliers of both - 2ndSP Symmetric distribution 91
2.5 From top to bottom, the non-contaminated sample, the contaminated sample by two outliers of translation (in red), the contaminated sample by two outliers of scale on core and support and the contaminated sample by two outliers of both - 2ndSP Asymmetric distribution 92
2.6 Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of translation, k varying from 0 to 50-1stSP Case 1 99
2.7 Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of scale on core and support, k varying from 0 to $50-1$ stSP Case 1 100
2.8 Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $50-1$ stSP Case 1 101
2.9 Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of translation, k varying from 0 to 51-1stSP Case 1 1022.10 Explosion breakdown point: values of the scale estimators for a sample of size 101with k observations replaced by outliers of scale on core and support, k varyingfrom 0 to $51-1$ stSP Case 1103
2.11 Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $51-1$ stSP CASE1 104
2.12 Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of translation, k varying from 0 to 50-1stSP Case 2 105
2.13 Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of scale on core and support, k varying from 0 to $50-1$ stSP Case 2 106
2.14 Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $50-1$ stSP Case 2 107
2.15 Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of translation, k varying from 0 to 51-1stSP Case 2 108
2.16 Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of scale on core and support, k varying from 0 to 51 - 1stSP Case 2. 109
2.17 Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $51-1$ stSP Case 2 110
2.18 Implosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by inliers, k varying from 0 to $99-1$ stSP Case 1 113
2.19 Implosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by inliers, k varying from 0 to $100-1$ stSP Case 1 114
2.20 Implosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by inliers, k varying from 0 to $99-1$ stSP Case 2 115
2.21 Implosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by inliers, k varying from 0 to $100-1$ stSP Case 2 116
2.22 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of translation, k varying from 0 to 10-2ndSP Symmetric distribution 124
2.23 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of scale on core and support, k varying from 0 to $10-2$ ndSP Symmetric distribution 125
2.24 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to 10-2ndSP Symmetric distribution 126
2.25 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of translation, k varying from 0 to 11-2ndSP Symmetric distribution 127
2.26 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of scale on core and support, k varying from 0 to $11-2$ ndSP Symmetric distribution 128
2.27 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $11-2$ ndSP Symmetric distribution 129
2.28 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of translation, k varying from 0 to 10-2ndSP Asymmetric distribution 130
2.29 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of scale on core and support, k varying from 0 to $10-2 n d S P$ Asymmetric distribution 131
2.30 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $10-2$ ndSP Asymmetric distribution 132
2.31 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of translation, k varying from 0 to 11-2ndSP Asymmetric distribution 133
2.32 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of scale on core and support, k varying from 0 to 11-2ndSP Asymmetric distribution 134
2.33 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $11-2 n d S P$ Asymmetric distribution 135
2.34 Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by inliers, k varying from 0 to $19-2 n d S P$ Symmetric distribution 138
2.35 Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by inliers, k varying from 0 to $20-2$ ndSP Symmetric distribution 139
2.36 Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by inliers, k varying from 0 to $19-2 n d S P$ Asymmetric distribution 140
2.37 Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by inliers, k varying from 0 to 20 - 2ndSP Asymmetric distribution 141
2.38 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of translation - 1stSP Case 1 144
2.39 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of scale on core and support - 1stSP Case 1 145
2.40 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of both translation and scale on core and support - 1stSP Case 1 146
2.41 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of translation - 1stSP Case 2 147
2.42 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of scale on core and support - 1stSP Case 2 148
2.43 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of both translation and scale on core and support - 1stSP Case 2 149
2.44 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of translation-2ndSP Symmetric distribution 151
2.45 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of scale on core and support - 2ndSP Symmetric distribution 152
2.46 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of both translation and scale on core and support - 2ndSP Symmetric distribution 153
2.47 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of translation - 2ndSP Asymmetric distribution 154
2.48 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of scale on core and support - 2ndSP Asymmetric distribution 155
2.49 Sensitivity curves of the scale estimators for a sample of size 100 and outliers of both translation and scale on core and support - 2ndSP Asymmetric distribution 156
2.50 Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of translation, k varying from 0 to 50-1stSP Case 1 164
2.51 Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of scale on core and support, k varying from 0 to $50-1$ stSP Case 1 164
2.52 Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $50-1$ stSP Case 1 165
2.53 Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of translation, k varying from 0 to $51-1$ stSP Case 1 165
2.54 Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of scale on core and support, k varying from 0 to $51-1$ stSP Case 1 166
2.55 Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $51-1$ stSP Case 1 166
2.56 Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of translation, k varying from 0 to $50-1$ stSP Case 2 167
2.57 Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of scale on core and support, k varying from 0 to $50-1$ stSP Case 2 167
2.58 Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $50-1$ stSP Case 2 168
2.59 Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of translation, k varying from 0 to $51-1$ stSP Case 2 168
2.60 Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of scale on core and support, k varying from 0 to $51-1$ stSP Case 2 169
2.61 Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $51-1$ stSP Case 2 169
2.62 Implosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by inliers, k varying from 0 to $99-1$ stSP
Case 1 171
2.63 Implosion breakdown point: values of the M-estimators of scale for a sample ofsize 101 with k observations replaced by inliers, k varying from 0 to $100-1$ stSPCase 1171
2.64 Implosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by inliers, k varying from 0 to $99-1$ stSP Case 2 172
2.65 Implosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by inliers, k varying from 0 to $100-1$ stSP Case 2 172
2.66 Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by outliers of translation, k varying from 0 to $10-2$ ndSP Asymmetric distribution 176
2.67 Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by outliers of scale on core and support, k varying from 0 to $10-2$ ndSP Asymmetric distribution 176
2.68 Explosion pseudo-breakdown point: values of the M -estimators of scale for a sample of size 20 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to 10-2ndSP Asymmetric distribution 177
2.69 Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by outliers of translation, k varying from 0 to 11 - 2ndSP Asymmetric distribution 177
2.70 Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by outliers of scale on core and support, k varying from 0 to 11 - 2ndSP Asymmetric distribution 178
2.71 Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to 11-2ndSP Asymmetric distribution 178
2.72 Implosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by inliers, k varying from 0 to 19 - 2ndSP Asymmetric distribution 180
2.73 Implosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by inliers, k varying from 0 to 20 - 2ndSP Asymmetric distribution 180
2.74 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of translation - 1stSP Case 1 182
2.75 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of scale on core and support - 1stSP Case 1 182
2.76 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of both translation and scale on core and support - 1stSP Case 1 183
2.77 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of translation - 1stSP Case 2 183
2.78 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of scale on core and support - 1stSP Case 2 184
2.79 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of both translation and scale on core and support - 1stSP Case 2 184
2.80 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of translation - 2ndSP Asymmetric distribution 185
2.81 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of scale on core and support - 2ndSP Asymmetric distribution 186
2.82 Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of both translation and scale on core and support - 2ndSP Asymmetric distribution186
2.83 Graphical display of the values of different scale estimates for responses to Items $R .1$ to $S .3$ in Example 1.6.1 188
2.84 Graphical display of the values of different scale estimates for responses to Items $Q F 1$ to $Q P 1$ in Example 1.6.2 190
3.1 Usual balanced semantic representation of the linguistic hierarchies of $k=4$ levels used in Example 1.6.1 198
3.2 Usual balanced semantic representation of the linguistic hierarchies of $k=5$ levels used in Example 1.6.3 198
3.3 Minimum distance criterion scheme when the reference interval equals $[1, k]$ 207
3.4 Fuzzy linguistic scales with four values and reference interval [0, 100]: from top to bottom, the scales $\mathrm{FLS}_{1}^{4}, \mathrm{FLS}_{2}^{4}, \mathrm{FLS}_{3}^{4}, \mathrm{FLS}_{4}^{4}$ and FLS_{5}^{4}. 210
3.5 Fuzzy linguistic scales with five values and reference interval [0, 100]: from top to bottom, the scales $\mathrm{FLS}_{1}^{5}, \mathrm{FLS}_{2}^{5}, \mathrm{FLS}_{3}^{5}$ and FLS_{4}^{5}. 211

List of Tables

1.1 Expressions for functions $l_{L U}$ and $r_{L U}$ in the horizontal view of $L U$-fuzzy numbers with $L U$ ranging on $\left\{\operatorname{Tra}, \Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right\}$ 11
1.2 Exact expressions for the ρ_{2} distances between fuzzy numbers $\operatorname{Tra}(a, b, c, d)$ and $L U(a, b, c, d)$ with $L U$ ranging on $\left\{\Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right.$, Tri, TriS $\}$ 18
1.3 Exact expressions for the ρ_{2} distances between fuzzy numbers $L U\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $L U\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ with $L U$ ranging on $\left\{\operatorname{Tra}, \Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right\}$ 19
1.4 Simulation (1stSP)-based bootstrapped two-sample test p-values for the equality of population Fréchet's variances $(\theta=1 / 3)$ of trapezoidal $v s$ other $L U$'s RFN's in 30 simulations of samples of size $n=10 \mid n=100$ 43
1.5 Simulation (1stSP)-based bootstrapped two-sample test average p-values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$ of trapezoidal vs other $L U$'s RFN's over 30 simulations of samples of size $n=10 \mid n=100$ 44
1.6 Simulation (2ndSP)-based bootstrapped two-sample test p-values for the equality of population Fréchet's variances $(\theta=1 / 3)$ of trapezoidal vs other $L U$'s RFN's in 30 simulations of samples of size $n=10 \mid n=100$ 44
1.7 Simulation (2ndSP)-based bootstrapped two-sample test average p-values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$ of trapezoidal vs other LU's RFN's over 30 simulations of samples of size $n=10 \mid n=100$ 45
$1.8 p$-Values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$ of boys' and girls' $L U$'s responses to Item M.2 in Example 1.6.1, depending on the considered shape 45
$1.9 \quad p$-Values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$ of 'paper-and-pencil' and 'computerized' form's $L U$'s responses to Item M. 2 in Example 1.6.1, depending on the considered shape 46
$1.10 p$-Values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$of the four groups, $\boldsymbol{G} \mathbf{1}$ to $\boldsymbol{G 4}, L U$'s responses to Item $M .2$ in Example 1.6.1,depending on the considered shape46
$1.11 p$-Values for the equality of population Fréchet's variances $(\theta=1 / 3)$ of trapezoidal vs other $L U$'s responses for populations in Tables 1.8, 1.9 and 1.10 47
2.1 Sample of 22 trapezoidal fuzzy numbers with one outlier (in red), and ($\left.a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv$ $\operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$ 66
2.2 The effect of one outlier in some dispersion estimates 662.3 Explosion breakdown point: values of the scale estimators for a sample of size 100with k observations replaced by outliers of translation (at the top), scale on coreand support (in the middle) and both (at the bottom), with $k \in\{0,1,2,10,20,30$,$40,48,49,50\}-1$ stSP Case 195
2.4 Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,2,10,20,30$, $40,49,50,51\}-1$ stSP Case 1 96
2.5 Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,2,10,20,30$, 40, $48,49,50\}-1$ stSP Case 2 97
2.6 Explosion breakdown point: values of the scale estimators for a sample of size 101with k observations replaced by outliers of translation (at the top), scale on coreand support (in the middle) and both (at the bottom), with $k \in\{0,1,2,10,20,30$,$40,49,50,51\}-1$ stSP Case 298
2.7 Implosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by inliers, with $k \in\{0,1,2,10,49,50,51,98,99\}$ - 1stSP Case 1 111
2.8 Implosion breakdown point: values of the scale estimators for a sample of size 101with k observations replaced by inliers, with $k \in\{0,1,2,10,49,50,51,99,100\}$ -1stSP Case 1111
2.9 Implosion breakdown point: values of the scale estimators for a sample of size100 with k observations replaced by inliers, with $k \in\{0,1,2,10,49,50,51,98,99\}$- 1stSP Case 2112
2.10 Implosion breakdown point: values of the scale estimators for a sample of size 101with k observations replaced by inliers, with $k \in\{0,1,2,10,49,50,51,99,100\}$ -1stSP Case 2112
2.11 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 10\}$ - 2ndSP Symmetric distribution 120
2.12 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 11\}$ - 2ndSP Symmetric distribution 121
2.13 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 10\}$ - 2ndSP Asymmetric distribution 122
2.14 Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 11\}$ - 2ndSP Asymmetric distribution 123
2.15 Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by inliers, with $k \in\{0,1,2,3,9,10,11,18,19\}$

- 2ndSP Symmetric distribution 136
2.16 Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by inliers, with $k \in\{0,1,2,3,9,10,11,19,20\}$
- 2ndSP Symmetric distribution 136
2.17 Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by inliers, with $k \in\{0,1,2,3,9,10,11,18,19\}$ - 2ndSP Asymmetric distribution 137
2.18 Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by inliers, with $k \in\{0,1,2,3,9,10,11,19,20\}$ - 2ndSP Asymmetric distribution 137
2.19 Explosion breakdown point: values of the M-estimators of scale for a sampleof size 100 with k observations replaced by outliers of translation (at the top),scale on core and support (in the middle) and both (at the bottom), with $k \in$$\{0,1,9,10,11,29,30,31,49,50\}-1$ stSP Case 1162
2.20 Explosion breakdown point: values of the M-estimators of scale for a sampleof size 101 with k observations replaced by outliers of translation (at the top),scale on core and support (in the middle) and both (at the bottom), with $k \in$$\{0,1,9,10,11,29,30,31,50,51\}-1$ stSP Case 1162
2.21 Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in$ $\{0,1,9,10,11,29,30,31,49,50\}-1$ stSP Case 2 163
2.22 Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in$ $\{0,1,9,10,11,29,30,31,50,51\}-1$ stSP Case 2 163
2.23 Implosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by inliers, with $k \in\{0,1,2,50,51,70,71,90,91\}$ - 1stSP Case 1 170
2.24 Implosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by inliers, with $k \in\{0,1,2,50,51,70,71,90,91\}$ - 1stSP Case 1 170
2.25 Implosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by inliers, with $k \in\{0,1,2,50,51,70,71,90,91\}$ - 1stSP Case 2 170
2.26 Implosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by inliers, with $k \in\{0,1,2,50,51,70,71,90,91\}$ - 1stSP Case 2 170
2.27 Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 10\}-2$ ndSP Asymmetric distribution 175
2.28 Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 11\}-2$ ndSP Asymmetric distribution 175
2.29 Implosion pseudo-breakdown point: values of the M-estimators of scale for a sam- ple of size 20 with k observations replaced by inliers, with $k \in\{0,1,2,10,11,14,15$, 18, 19\}-2ndSP Asymmetric distribution 179
2.30 Implosion pseudo-breakdown point: values of the M-estimators of scale for a sam- ple of size 21 with k observations replaced by inliers, with $k \in\{0,1,2,10,11,14,15$, 18, 19\} - 2ndSP Asymmetric distribution 179
2.31 Questions selected from the student questionnaire in Example 1.6.1 187
2.32 Sample scale estimates for the fuzzy rating responses to Items $R .1$ to $S .3$ in Example 1.6.1 188
2.33 Questions selected from the restaurant questionnaire in Example 1.6.2 189
2.34 Sample scale estimates for the fuzzy rating responses to Items $Q F 1$ to $Q P 1$ in Example 1.6.2 189
2.35 Sample scale estimates for the responses to questionnaire in Example 1.6.3 190
3.1 Questions selected from the student questionnaire in Example 1.6.1 199
3.2 Two-sample bootstrapped homoscedasticity tests on the effect of the form cho- sen to respond to Item $R .1\left(H_{0}: \rho_{2}-\mathrm{SD}(\mathrm{comp})=\rho_{2}-\mathrm{SD}(\mathrm{p} \& \mathrm{p})\right)$ in the adapted Questionnaire TIMSS-PIRLS ($\left.\widehat{\mathrm{D}}=\widehat{\rho_{2}-\mathrm{SD}}\right)$ 199
3.3 Two-sample bootstrapped homoscedasticity tests on the effect of the form chosen to respond to Items $R .1-S .3\left(H_{0}: \rho_{2}-\mathrm{SD}(\mathrm{comp})=\rho_{2}-\mathrm{SD}(\mathrm{p} \& \mathrm{p})\right)$ in the adapted Questionnaire TIMSS-PIRLS ($\left.\widehat{\mathrm{D}}=\widehat{\rho_{2}-\mathrm{SD}}\right)$ 200
3.4 Four-sample bootstrapped homoscedasticity tests on the effect of the resolu- tion Pref $\left(H_{0}: \rho_{2}-\mathrm{SD}(\right.$ Pref $=815)=\rho_{2}-\operatorname{SD}($ Pref $=917)=\rho_{2}-\operatorname{SD}($ Pref $=1020)=$ $\left.\rho_{2}-\mathrm{SD}(\operatorname{Pref}=1148)\right)$ in the online application Perceptions 201
3.5 Sample means, 1-norm medians and ℓ-wabl/ldev/rdev medians for the responses to Items $R .1$ to $S .3$ in Example 1.6.1 203
3.6 Sample scale estimates for the responses to Items R.1 to $S .3$ in Example 1.6.1 204
3.7 Sample means, 1 -norm medians and ℓ-wabl/ldev/rdev medians for the responses to questionnaire in Example 1.6.3 205
3.8 Sample scale estimates for the responses to questionnaire in Example 1.6.3 206
3.9 Validation of the minimum D-distance Likertization of fuzzy rating responses: \% of right associations in the Likertization of the FRS-based responses in Examples 1.6.1, 1.6.2 and 1.6.3 $\left(D \in\left\{\rho_{1}, \mathscr{D}_{1}^{\varphi}, D_{1 / 3}^{\varphi}, D_{1}^{\varphi}\right\}\right.$ with different choices of φ) 208
3.10% of simulated samples of size n for which the Euclidean distance between thesample scale estimate \widehat{D} associated with the FRS and the one associated witheither the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in$$\{1,5,10,15\}$ for the 2ndSP and $\beta(p, q) \equiv \beta(1,1)$212
3.11% of simulated samples of size n for which the Euclidean distance between thesample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated witheither the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in$$\{1,5,10,15\}$ for the 2ndSP and $\beta(p, q) \equiv \beta(0.75,0.75)$213
3.12% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2ndSP and $\beta(p, q) \equiv \beta(2,2)$214
3.13% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(4,2)$215
3.14% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(6,1)$216
3.15 \% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2ndSP and $\beta(p, q) \equiv \beta(6,10)$217
3.16% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2ndSP and $\beta(p, q) \equiv \beta(1,1)$218
3.17% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2ndSP and $\beta(p, q) \equiv \beta(0.75,0.75)$219
3.18% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(2,2)$220
3.19% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2ndSP and $\beta(p, q) \equiv \beta(4,2)$221
3.20% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(6,1)$
3.21% of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in$ $\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(6,10)$
A. 1 Dataset for the "About you" items (Page 235) from the adapted TIMSS/PIRLS student Questionnaire ($\mathrm{p} \& \mathrm{p}=$ paper-and-pencil format, comp $=$ computerized format, $\mathrm{D}+$ $=$ disagree a lot, $\mathrm{D}-=$ disagree a little, $\mathrm{A}-=$ agree a little, $\mathrm{A}+=$ agree a lot, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$
A. 2 Dataset for the "Reading in school" items (Page 236) from the adapted TIMSS/PIRLS student Questionnaire ($\mathrm{D}+=$ disagree a lot, $\mathrm{D}-=$ disagree a little, $\mathrm{A}-=$ AgRee a little, $\mathrm{A}+=\operatorname{AGREe} \mathrm{a}$ Lot, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$
A. 3 Dataset for the "Mathematics in school" items (Page 236) from the adapted TIMSS/PIRLS student Questionnaire (D+ = disagree a lot, $\mathrm{D}-=$ disagree a little, $\mathrm{A}-=$ agree A Little, $\mathrm{A}+=\operatorname{AGREE} \mathrm{A}$ Lot, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$
A. 4 Dataset for the "Science in school" items (Page 237) from the adapted TIMSS/PIRLS student Questionnaire (D+ = disagree a lot, D- = disagree a little, $\mathrm{A}-=$ agree a little, $\mathrm{A}+=\operatorname{AgREe} \mathrm{A}$ lot, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$
B. 1 Dataset for the "About yourself" items (Page 243) from the adapted restaurant customer satisfaction Questionnaire246
B. 2 Dataset for the "About your opinion/valuation/rating on the quality of food and beverage" items (Pages 243 and 244) from the adapted restaurant customer satisfaction Questionnaire ($\mathrm{SD}=$ strongly disagree, $\mathrm{sD}=$ Somewhat disagree, $\mathrm{N}=$ NEUTRAL, sA $=$ SOMEWHAT AGREE, $\left.\mathrm{SA}=\operatorname{strongly~AGREE,~and~}\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right) 247$
B. 3 Dataset for the "About your opinion/valuation/rating on the satisfaction with restaurant service" first five items (Pages 244 and 245) from the adapted restaurant customer satisfaction Questionnaire ($\mathrm{SD}=$ Strongly disagree, $\mathrm{sD}=$ SOMEwhat disagree, $\mathrm{N}=$ neutral, $\mathrm{sA}=$ somewhat agree, $\mathrm{SA}=\operatorname{strongly~agree,~and~}\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv$ $\left.\operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$
B. 4 Dataset for the "About your opinion/valuation/rating on the satisfaction with restaurant service" last three and "restaurant price" items (Page 245) from the adapted restaurant customer satisfaction Questionnaire ($\mathrm{SD}=$ strongly disagree, $\mathrm{sD}=$ somewhat disagree, $\mathrm{N}=$ neutral, sA $=$ Somewhat agree, $\mathrm{SA}=$ strongly agree, $\left.\operatorname{and}\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$
C. 1 Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS $=$ very small, $\mathrm{S}=$ Small, $\mathrm{M}=\operatorname{medium}, \mathrm{L}=\operatorname{LARGE}, \mathrm{VL}=\operatorname{VERY} \operatorname{LARGE}$, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID1-ID6
C. 2 Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=$ Small, $\mathrm{M}=\operatorname{MEDiUM}, \mathrm{L}=\operatorname{LARGE}, \mathrm{VL}=\operatorname{VERY}$ LARGE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID7-ID13254
C. 3 Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=$ Small, $\mathrm{M}=\operatorname{medium}, \mathrm{L}=\operatorname{LARGE}, \mathrm{VL}=\operatorname{VERY} \operatorname{large}$, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right) ;$ data ID14-ID21

C. 4 Dataset for the online application Perceptions (Page 251) on the relative length
of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=$
Small, $\mathrm{M}=\operatorname{medium}, \mathrm{L}=\operatorname{LARGE}, \mathrm{VL}=\operatorname{VERY} \operatorname{large}$, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$;
data ID22 256
C. 5 Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one ($\mathrm{VS}=$ very small, $\mathrm{S}=$ small, $\mathrm{M}=\operatorname{medium}, \mathrm{L}=\operatorname{LARGE}, \mathrm{VL}=\operatorname{very} \operatorname{large}$, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID23 (182 trials)
C. 6 Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=$ Small, $\mathrm{M}=\operatorname{medium}, \mathrm{L}=\operatorname{LARGE}, \mathrm{VL}=\operatorname{Very} \operatorname{large}$, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID23 (180 trials)
C. 7 Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=$ Small, $\mathrm{M}=\operatorname{medium}, \mathrm{L}=\operatorname{LARGE}, \mathrm{VL}=\operatorname{VERY}$ Large, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right) ;$ data ID24-ID25

Chapter 1

On statistics with fuzzy data and measuring scale of fuzzy datasets

When one looks for the definition of Statistics in traditional reputed dictionaries, one usually finds it to be conceived as

- "A branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data; a collection of quantitative data" (Merriam-Webster Dictionary [119]).
- "The practice or science of collecting and analysing numerical data in large quantities, ..." (Oxford English Dictionary [120]).

In this way, it has been commonly assumed that available data from the performance of random experiments can be expressed in a numerical scale. However, in practice this assumption sometimes fails. Thus, many human ratings (associated with perceptions/classifications/valuations/judgments/...) in random frameworks lead to data that cannot be expressed in a numerical scale, because they concern intrinsically imprecise-valued attributes.

1.1 Standard scales to rate intrinsically imprecise magnitudes

Aiming to model and handle these imprecise-valued data, some scales have been considered. Among the standard scales to rate intrinsically imprecise magnitudes, the best known are probably the Likert-type (or other categorical) and the visual analogue scales.

Likert scale-based ratings (Likert [73]) allow a rater to choose among a small number of pre-specified 'linguistic values', labeling different degrees of agreement/satisfaction/accomplishment/etc., the one that best represents rater's score.

As an example of a 5-point Likert scale-based items, see those in Figure 1.1. The five possible responses label in this example different degrees of agreement.
Do you agree or disagree with the following statements:
SurveyLegend is the most user-friendly survey tool on the market.

Strongly
disagree

Strongly
disagree

Disagree
Neither
agree disagree

Figure 1.1: Example of two items designed so that possible responses are based on a 5 -point Likert scale, in a survey made by SurveyLegend (https://www.surveylegend.com/user-guide/likert-scale/)

Among the pros of using Likert scales one can highlight the following:

- the ease of rating, irrespectively of the framework the rating is carried out;
- there is no need for a special training to use them, since common sense is generally enough; as a consequence, Likert scale-based ratings can be usually conducted irrespectively of the age, background, knowledge... of raters;
- the linguistic labels are coherent with the intrinsic imprecision associated with the rating based on these scales.

Among the cons that have been pointed out in the literature, one can mention the following:

- the number of possible 'values' to choose among is small (i.e., Likert scales are discrete with a small cardinal); consequently, the variability, adjustment, diversity, subjectivity of these ratings cannot be well captured with these scales;
- the choice of the 'value' that best represents rater's score is often a complex task because none of them accurately fit such a score;
- to analyze Likert-type data a posterior numerical-encoding of the involved Likert scale 'values' is usually considered; this makes all differences between consecutive 'values' to coincide, which is often unappropriate;
- the transition from a value to another one within the scale is rather abrupt;
- the number of applicable statistical techniques is quite limited and they are mainly based on the frequencies of different 'values' and, maybe, on their position in accordance with a certain ranking; therefore, relevant statistical information is often lost.

Visual analogue scale-based Ratings (introduced by Freyd [38]) allow a rater to draw/choose within a given bounded interval (with labeled extremes) the point that best represents rater's score. The interval is often considered to be 10 cm (or units, in general) long, and to get responses the distance of the respondent mark from the left endpoint is the visual analogue scale-based response.

As a usual example of a visual analogue scale, see the one in Figure 1.2 which is related to the rating of pain.

Visual Analog Scale (VAS)*

Figure 1.2: Example of a visual analogue scale-based item (http://www.rcemlearning.co.uk/references/pain-management-in-adults/)

Visual analogue scales sometimes appear combined with Likert scales, Likert labels being chosen as 'anchors' and leading to the so-called Graphic Rating scale. This combination is mainly considered to serve as a reference instead of getting a double (two scales) rating. Alternatively, or simultaneously, visual analogue scales sometimes appear combined with a (discrete) numerical rating scale, where numbers in the scale are usually integers, these numbers being chosen as 'anchors' to serve as a frame of references for respondents.

As an example of such a (multiple in this case) combined scale, see the one in Figure 1.3 which is also related to the rating of pain in connection with Crohn's disease.

PAIN MEASUREMENT SCALE

Figure 1.3: Example of a graphic/numerical rating scale-based item
(http://cceffect.org/pain-scales-for-crohns-disease/).
On the top and the bottom two graphic rating scales, on the middle a numerical one

Among the pros of using visual analogue scales one can highlight the following:

- the choice is made within a continuum; so, the ability to capture the variability, subjectivity and diversity which are inherent to these ratings is ensured;
- data drawn from the use of visual analogue scales can be statistically analyzed through traditional techniques and no relevant information is generally lost.

Among the cons that have been pointed out in the literature, one can mention the following:

- the choice of the point that best represents rater's score is usually neither easy nor natural;
- to require a full accuracy (i.e., to draw/choose a single real number) seems rather unrealistic in such an intrinsically imprecise context;
- surveys/questionnaries/... involving a visual analogue scale cannot be conducted in any framework, since they require either a paper-and-pencil or a computerized form to be filled by the rater;
- occasionally, problems with subject's ability to conceptually understand the rating method itself have been reported in the literature, so a certain training could be also required.

1.2 Fuzzy scales to rate intrinsically imprecise magnitudes

A rather natural question to be posed in this context is: why not fuzzy scales to rate intrinsically imprecise magnitudes? In the literature one can find several motivating and supporting quotations in this respect. Among some recent ones, one can select the following:
"The fuzzy scales establish a link between strongly defined measurements... and weakly defined measurements" (see Benoit [6]).
"One should consider a rich and expressive scale in which... something can be meaningful although we cannot name it" (see Ghneim [42]).
"Paradoxically, one of the principal contributions of fuzzy logic...
is its high power of 'precisiation' of what is imprecise" (see Zadeh [140]).
The first quotation supports, in general, the use of fuzzy scales to rate intrinsically imprecise magnitudes. The second and third quotations are mainly addressed to what has been coined as fuzzy rating scales, that will be soon explained.

Fuzzy scales can be applied to overcome the limitations of standard scales to rate intrinsically imprecise magnitudes associated with random experiments, by modeling such an imprecision in terms of fuzzy numbers so that

- values capture 'differences in location',
- values capture 'differences in imprecision’,
- and they can be mathematically treated.

1.2.1 Fuzzy numbers

Fuzzy numbers (also referred to by some authors as fuzzy intervals) are formalized as follows:

Definition 1.2.1. A (bounded) fuzzy number is a function $\widetilde{U}: \mathbb{R} \rightarrow[0,1]$ such that it is upper semi-continuous, quasi-concave, normal (i.e., it takes on the value 1 for at least a real number), and its support (i.e., the set of all real numbers with nonzero image) is bounded. In this view (often referred to as the vertical definition), for each $x \in \mathbb{R}$, the value $\widetilde{U}(x)$ can be interpreted as the 'degree of compatibility of x with the property defined by \widetilde{U}.

Equivalently, a (bounded) fuzzy number is a mapping $\widetilde{U}: \mathbb{R} \rightarrow[0,1]$ such that for all $\alpha \in[0,1]$, the α-level set defined as

$$
\widetilde{U}_{\alpha}= \begin{cases}\{x \in \mathbb{R}: \widetilde{U}(x) \geq \alpha\} & \text { if } \alpha \in(0,1] \\ \operatorname{cl}\{x \in \mathbb{R}: \widetilde{U}(x)>0\} & \text { if } \alpha=0\end{cases}
$$

with 'cl' denoting the closure of the set, is a nonempty compact interval. This equivalent view is often known as the horizontal definition.

The space of (bounded) fuzzy numbers will be denoted by $\mathscr{F}_{c}^{*}(\mathbb{R})$.
Real numbers can be viewed as special fuzzy numbers, since each real number x can be identified with the indicator function of the corresponding singleton $\mathbb{1}_{\{x\}}$.

In dealing with fuzzy number-valued data, some representations have been considered in the literature.

Definition 1.2.2. The inf/sup representation of the fuzzy number $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ is the vector-valued function $\boldsymbol{\iota}_{\widetilde{U}}=\left(\iota_{\widetilde{U}}^{l}, \iota_{\widetilde{U}}^{r}\right):[0,1] \rightarrow\left\{(x, y) \in \mathbb{R}^{2}: x \leq y\right\}$ where $\iota_{\widetilde{U}}^{l}(\alpha)=\inf \widetilde{U}_{\alpha}, l_{\widetilde{U}}^{r}(\alpha)=\sup \widetilde{U}_{\alpha}$.

It should be emphasized that a fuzzy number in $\mathscr{F}_{c}^{*}(\mathbb{R})$ is uniquely determined by its inf/sup representation, i.e., by giving its 'boundaries'. Furthermore, a set of conditions can be established for the inf/sup representation to characterize a fuzzy number. The following result states this set of conditions (see, for instance, Goetschel and Voxman [47] and Ming [83] -Theorem 3.1, pp. 187-188-):

Proposition 1.2.1. Given a fuzzy number $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$, there exist two functions $l:[0,1] \rightarrow \mathbb{R}$ and $r:[0,1] \rightarrow \mathbb{R}$ satisfying that
i) l and r are

- left-continuous on $(0,1]$,
- right-continuous at 0 ,
- non-increasing on $[0,1]$,
ii) $-l(1) \leq r(1)$,
such that

$$
\boldsymbol{\iota}_{\widetilde{U}}(\alpha)=(-l(\alpha), r(\alpha)) \text { for all } \alpha \in[0,1] .
$$

Conversely, let $l:[0,1] \rightarrow \mathbb{R}$ and $r:[0,1] \rightarrow \mathbb{R}$ be two functions satisfying Conditions i) and ii). Then, there exists a unique $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ such that the vectorvalued function $(-l, r)$ is its inf/sup representation.

Another representation that has been used in providing an alternative interpretation and expression for the metric by Bertoluzza et al. [7] (see Gil et al. [45] for the interval-valued case, Trutschnig et al. [129] for a fuzzy general one, and recently Casals et al. [15] for fuzzy numbers) and in formalizing some statistical developments with fuzzy number-valued data is the following one:

Definition 1.2.3. The mid/spr representation of the fuzzy number $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ is the vector-valued function $\boldsymbol{\eta}_{\widetilde{U}}=\left(\eta_{\widetilde{U}}^{m}, \eta_{\widetilde{U}}^{s}\right):[0,1] \rightarrow \mathbb{R} \times[0, \infty)$ such that $\eta_{\widetilde{U}}^{m}(\alpha)$ $=\operatorname{mid} \tilde{U}_{\alpha}, \eta \eta_{\tilde{U}}^{s}(\alpha)=\operatorname{spr} \tilde{U}_{\alpha}$, where $\operatorname{mid} \tilde{U}_{\alpha}=\left(\inf \tilde{U}_{\alpha}+\sup \widetilde{U}_{\alpha}\right) / 2=$ centre of \tilde{U}_{α}, $\operatorname{spr} \widetilde{U}_{\alpha}=\left(\sup \widetilde{U}_{\alpha}-\inf \widetilde{U}_{\alpha}\right) / 2=$ radius of \widetilde{U}_{α}.

A fuzzy number in $\mathscr{F}_{c}^{*}(\mathbb{R})$ is uniquely determined by its mid/spr representation, i.e., by giving indicators of its 'location' and 'shape/imprecision'. One can verify that $\eta_{\widetilde{U}}^{s}$ is a left-continuous, non-increasing and non-negative function on $(0,1]$ and rightcontinuous at 0 , whereas $\eta_{\widetilde{U}}^{m}$ is also left-continuous on (0,1$]$ and right-continuous at 0 , but nothing can be ensured in general in connection with its monotonicity. In fact, one cannot establish a set of conditions the mid/spr representation should fulfill to characterize a fuzzy number.

Alternatively, aiming to extend the mid/spr representation of the interval-valued case in a way allowing us to establish a characterizing set of conditions, another representation has been introduced. This representation is based on considering a different indicator of the 'center' (instead of considering the mid function) along with a different indicator of the 'shape' (instead of considering the spr function), and it is possible to establish necessary conditions to determine a fuzzy number.

As indicator of the 'center' of a fuzzy number, the considered one has been that given by Yager [135] and later extended by De Campos and González [24] (as the 0.5 -average index) and by Nasibov [86] (as the weighted averaging based on levels -see also Nasibov et al. [87]). For any $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$, the φ-weighted averaging based on levels of $\widetilde{U}\left(\operatorname{wabl}^{\varphi}(\widetilde{U})\right)$ is defined as the real number in the interior set $\operatorname{int}\left(\widetilde{U}_{0}\right)$ such that $\operatorname{wabl}^{\varphi}(\widetilde{U})=\int_{[0,1]} \operatorname{mid} \widetilde{U}_{\alpha} d \varphi(\alpha)$, where φ is a weighting measure on the measurable space $\left([0,1], \mathcal{B}_{[0,1]}\right)$ that can be formalized by means of an absolutely continuous probability measure with positive mass function on $(0,1)$. No stochastic meaning is actually associated with φ, but it allows us to weight the 'degrees of compatibility' given by the α-levels.

The wabl ${ }^{\varphi}$ is one of the three components of the new representation of fuzzy numbers. As indicators of the 'shape' of a fuzzy number, the level-wise 'deviations' with respect to the 'center' (more concretely, the following functions:

$$
\begin{aligned}
\operatorname{ldev}_{\widetilde{U}}^{\varphi}:[0,1] \rightarrow \mathbb{R}, & \alpha \mapsto \operatorname{ldev}_{\widetilde{U}}^{\varphi}(\alpha)=\operatorname{wabl}^{\varphi}(\widetilde{U})-\inf \widetilde{U}_{\alpha}, \\
\operatorname{rdev}_{\widetilde{U}}^{\varphi}:[0,1] \rightarrow \mathbb{R}, & \left.\alpha \mapsto \operatorname{rdev}_{\widetilde{U}}^{\varphi}(\alpha)=\sup \widetilde{U}_{\alpha}-\operatorname{wabl}^{\varphi}(\widetilde{U})\right)
\end{aligned}
$$

have been considered.
On the basis of these three components, we obtain the φ-wabl/ldev/rdev representation of fuzzy numbers as follows:

Definition 1.2.4. Let φ be an absolutely continuous probability measure associated with the measurable space $\left([0,1], \mathcal{B}_{[0,1]}\right)$ and having positive mass function on $(0,1)$. The $\boldsymbol{\varphi}$-wabl/ldev/rdev representation of the fuzzy number $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ is the vector-valued function $\boldsymbol{v}_{\widetilde{U}}^{\varphi}=\left(v_{\widetilde{U}}^{w}, v_{\widetilde{U}}^{l}, v_{\widetilde{U}}^{r}\right):[0,1] \rightarrow \mathbb{R}^{3}$ such that $v_{\widetilde{U}}^{w}$ is constantly equal to $\operatorname{wabl}^{\varphi}(\widetilde{U}), v_{\widetilde{U}}^{l}(\alpha)=\operatorname{ldev}_{\widetilde{U}}^{\varphi}(\alpha)$ and $v_{\widetilde{U}}^{r}(\alpha)=\operatorname{rdev}_{\widetilde{U}}^{\varphi}(\alpha)$.

For symmetric fuzzy number-valued data, the φ-wabl/ldev/rdev representation coincides with the mid/spr one, irrespective of φ. As for the \inf / sup representation, one can state a necessary and sufficient set of conditions characterizing fuzzy numbers by their φ-wabl/ldev/rdev representation (see Sinova et al. [112]). Thus,

Proposition 1.2.2. Given a fuzzy number $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$, there exist a value $m \in \mathbb{R}$ and two functions $l^{*}:[0,1] \rightarrow \mathbb{R}$ and $r^{*}:[0,1] \rightarrow \mathbb{R}$ satisfying that
i) l^{*} and r^{*} are

- left-continuous on $(0,1]$,
- right-continuous at 0 ,
- and non-increasing on $[0,1]$,
ii) $-l^{*}(1) \leq r^{*}(1)$,
and such that for all $\alpha \in[0,1]$,

$$
\tilde{U}_{\alpha}=\left[m-l^{*}(\alpha), m+r^{*}(\alpha)\right] .
$$

Conversely, let $m \in \mathbb{R}$ and let $l^{*}:[0,1] \rightarrow \mathbb{R}$ and $r^{*}:[0,1] \rightarrow \mathbb{R}$ be functions satisfying Conditions i) and ii). Then, there exists a unique $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ such that for all $\alpha \in[0,1]$

$$
\tilde{U}_{\alpha}=\left[m-l^{*}(\alpha), m+r^{*}(\alpha)\right] .
$$

Furthermore, if there is an absolutely continuous probability measure φ on $\left([0,1], \mathcal{B}_{[0,1]}\right)$ with positive mass function on $(0,1)$ and such that

$$
\begin{aligned}
& \text { iii) } \int_{[0,1]} l^{*}(\alpha) d \varphi(\alpha)=\int_{[0,1]} r^{*}(\alpha) d \varphi(\alpha), \\
& \text { then, }\left(m, l^{*}, r^{*}\right) \text { is the } \varphi \text {-wabl/ldev/rdev representation of } \tilde{U} \text {. }
\end{aligned}
$$

To illustrate the ideas in this subsection, one can consider a well-known and frequently used family of fuzzy numbers: the trapezoidal fuzzy numbers. If a, b, c, d $\in \mathbb{R}$ with $a \leq b \leq c \leq d$, the trapezoidal fuzzy number $\operatorname{Tr}(a, b, c, d)$ is given, in accordance with the vertical view, by

$$
\operatorname{Tra}(a, b, c, d)(x)= \begin{cases}(x-a) /(b-a) & \text { if } x \in[a, b) \\ 1 & \text { if } x \in[b, c] \\ (d-x) /(d-c) & \text { if } x \in(c, d] \\ 0 & \text { otherwise }\end{cases}
$$

and, in accordance with the horizontal view, and for each $\alpha \in[0,1]$ by

$$
(\operatorname{Tra}(a, b, c, d))_{\alpha}=[a+\alpha(b-a), d+\alpha(c-d)] .
$$

And the corresponding representations are given for each $\alpha \in[0,1]$ by

$$
\begin{gathered}
\boldsymbol{\iota}_{\operatorname{Tra}(a, b, c, d)}(\alpha)=\left(\inf (\operatorname{Tra}(a, b, c, d))_{\alpha}, \sup (\operatorname{Tra}(a, b, c, d))_{\alpha}\right) \\
=((1-\alpha) \cdot a+\alpha \cdot b,(1-\alpha) \cdot d+\alpha \cdot c), \\
\boldsymbol{\eta}_{\operatorname{Tra}(a, b, c, d)}(\alpha)=\left(\operatorname{mid}(\operatorname{Tra}(a, b, c, d))_{\alpha}, \operatorname{spr}(\operatorname{Tra}(a, b, c, d))_{\alpha}\right) \\
=((1-\alpha) \cdot \underline{m}+\alpha \cdot \bar{m},(1-\alpha) \cdot \underline{s}+\alpha \cdot \bar{s}) \\
=\left(\left(1-\vartheta_{\alpha}\right) \cdot \underline{m}+\vartheta_{\alpha} \cdot \bar{m},(1-\alpha) \cdot \underline{s}+\alpha \cdot \bar{s}+\left(\vartheta_{\alpha}-\alpha\right) \cdot(\bar{m}-\underline{m}),(1-\alpha) \cdot \underline{s}+\alpha \cdot \bar{s}+\left(\vartheta_{\alpha}-\alpha\right) \cdot(\underline{m}-\bar{m})\right),
\end{gathered}
$$

where $\underline{m}=\operatorname{mid}(\operatorname{Tra}(a, b, c, d))_{0}=(a+d) / 2, \bar{m}=\operatorname{mid}(\operatorname{Tra}(a, b, c, d))_{1}=(b+c) / 2$, $\underline{s}=\operatorname{spr}(\operatorname{Tra}(a, b, c, d))_{0}=(d-a) / 2, \bar{s}=\operatorname{spr}(\operatorname{Tra}(a, b, c, d))_{1}=(c-b) / 2$, and $\vartheta_{\alpha}=\int_{[0,1]} \alpha d \varphi(\alpha) \in(0,1)$.

A wider interesting family of fuzzy numbers, including the one of trapezoidal fuzzy numbers, is that of the $L R$-fuzzy numbers (see Dubois and Prade [36]). A fuzzy number \widetilde{U} is said to be an $L R$-fuzzy number $\widetilde{U}=L R(a, b, c, d)=(b, c, b-a, d-c)_{L R}$ if it is given by

$$
\tilde{U}(x)= \begin{cases}L\left(\frac{b-x}{b-a}\right) & \text { if } x \in[a, b) \\ 1 & \text { if } x \in[b, c] \\ R\left(\frac{x-c}{d-c}\right) & \text { if } x \in(c, d] \\ 0 & \text { otherwise }\end{cases}
$$

where $a, b, c, d \in \mathbb{R}, a \leq b \leq c \leq d$, and $L, R:[0,1] \rightarrow[0,1]$ are continuous nonincreasing functions such that $L(x)=R(y)=1$ iff $x=y=0$ and $L(x)=R(y)=0$ iff $x=y=1$.

In case L and R are invertible functions one can easily check that
$\inf (L R(a, b, c, d))_{\alpha}=a+(b-a) L^{-1}(\alpha), \sup (L R(a, b, c, d))_{\alpha}=d-(d-c) R^{-1}(\alpha)$ for all $\alpha \in[0,1]$.

Along this work, and apart from trapezoidal, some $L R$-fuzzy numbers for which the so-called $L U$-parameterized representation (see Stefanini et al. [122], Sorini and Stefanini [118], Stefanini and Bede [121]) can be characterized by means of four real numbers (namely the extremes of their 0 - and 1 -level), are to be considered.

In particular, those involving quadratic functions (Π-curves) and functions with parametric monotonic Hermite-type interpolation, either using (2,2)-rational splines ($L U_{1 A}$ and $L U_{1 B}$) or mixed exponential splines ($L U_{2 A}$ and $L U_{2 B}$) (see Figure 1.4).

Figure 1.4: Six types of fuzzy numbers sharing core $[20,25]$ and support $(10,40)$ and differing in shape. On the left, trapezoidal (top) and Π-curve (bottom), along with four different $L U$-fuzzy numbers on the middle and the right

More specifically, if $\widetilde{U} \equiv L U(a, b, c, d)$ with $a=\inf \widetilde{U}_{0}, b=\inf \widetilde{U}_{1}, c=\sup \widetilde{U}_{1}$, $d=\sup \widetilde{U}_{0}$, and $L U \in\left\{\operatorname{Tra}, \Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right\}$, then for each $\alpha \in[0,1]$

$$
\widetilde{U}_{\alpha}=\left[a+l_{L U}(\alpha)(b-a), c+r_{L U}(\alpha)(d-c)\right],
$$

where the functions involved in the left and right arms can be seen in detail in Table 1.1.

Table 1.1: Expressions for functions $l_{L U}$ and $r_{L U}$ in the horizontal view of $L U$-fuzzy numbers with $L U$ ranging on $\left\{\operatorname{Tra}, \Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right\}$

$L U$	$l_{L U}(\alpha)$	$r_{L U}(\alpha)$
Tra	α	$1-\alpha$
Π	$\begin{cases}\sqrt{\alpha / 2} & \text { if } \alpha<1 / 2 \\ 1-\sqrt{(1-\alpha) / 2} & \text { otherwise }\end{cases}$	$\begin{cases}1-\sqrt{\alpha / 2} & \text { if } \alpha<1 / 2 \\ \sqrt{(1-\alpha) / 2} & \text { otherwise }\end{cases}$
$L U_{1 A}$	$\frac{\alpha^{2}+5 \alpha(1-\alpha)}{1+3.5 \alpha(1-\alpha)}$	$(1-\alpha)(1+0.9 \alpha)$
$L U_{1 B}$	α	$1-\frac{\alpha^{2}+5 \alpha(1-\alpha)}{1+3.2 \alpha(1-\alpha)}$
$L U_{2 A}$	$\frac{\alpha^{2}(3-2 \alpha)-0.5(1-\alpha)^{1.55}+0.5+0.05 \alpha^{1.55}}{1.55}$	$1-\frac{\alpha^{2}(3-2 \alpha)-5(1-\alpha)^{11}+5+5 \alpha^{11}}{11}$
$L U_{2 B}$	$\frac{\alpha^{2}(3-2 \alpha)-0.5(1-\alpha)^{1.55}+0.5+0.05 \alpha^{1.55}}{1.55}$	$1-\frac{\alpha^{2}(3-2 \alpha)-5(1-\alpha)^{6.05}+5+0.05 \alpha^{6.05}}{6.05}$

1.2.2 Fuzzy scales

A fuzzy linguistic variable (Zadeh [139]), or its associated FUZZY Linguistic scale (FLS), is characterized by a 4 -tuple ($\mathbf{X}, \mathrm{T}, \mathcal{S}, \mathbb{R}$), where

- \mathbf{X} is the intrinsically imprecise variable/attribute to be either measured or observed,
- T is the set of imprecise 'values' of \mathbf{X} (usually referred to as terms),
$-\mathcal{S}$ is the (fuzzy) semantic rule, i.e., a mapping

$$
\mathcal{S}: \mathrm{T} \rightarrow \mathscr{F}_{c}^{*}(\mathbb{R})
$$

where $\mathcal{S}(\mathrm{t})$ is the fuzzy number which has been considered to model the imprecise value $t \in T$.

As an example of an FLS, see the one in Figure 1.5. Actually, \mathcal{S} is generally conceived as a posterior fuzzy number-valued encoding of a Likert scale.

Among the pros of using fuzzy linguistic scales one can highlight the following:

- the ease of the initial rating and no need for a special training, because of often corresponding to a posterior encoding of Likert-type values, and the encoding is usually made by trained experts;
- the values in the scale can cope (to some extent) with the intrinsic imprecision associated with this rating.

Figure 1.5: Example of a Fuzzy Linguistic Scale taken from fuzzyTECH's Linguistic Variable Editors webpage (http://www.fuzzytech.com/)

Among the cons to be pointed out, one could mention the following:

- the number of possible fuzzy values to choose among is small (it is a discrete scale with small cardinal), and the transition from a value to another within the scale is somewhat abrupt; so, the variability, adjustment, diversity, subjectivity of these ratings are to some extent lost;
- the choice of the Likert-type 'value' that best represents rater's score is often a complex task because none of them accurately fit such a score, and the same happens with the fuzzy modeling of the chosen value;
- statistical techniques should be developed to analyze fuzzy number-valued data; in fact, this is at present a rather minor concern, since it is being overcome along the last years, as will be commented later.

A fuzzy rating scale (FRS), as introduced by Hesketh et al. [58], allows a rater to draw the fuzzy number that best represents rater's score. The guideline for the mechanism to draw such a fuzzy number (trapezoidal fuzzy number) is as follows:

Step 1. A reference bounded interval/segment is first considered. This is often chosen to be $[0,10]$ or $[0,100]$, but the choice of the intervals is not at all a constraint. The end-points are often labeled in accordance with their meaning referring to the degree of agreement, satisfaction, quality, and so on.

Step 2. The core, or 1-level set, associated with the response is determined. It corresponds to the interval consisting of the real values within the reference one which are considered to be as 'fully compatible' with the response.

Step 3. The support, or its closure or 0-level set, associated with the response is determined. It corresponds to the interval consisting of the real values within the referential that are considered to be as 'compatible to some extent' with the response, and it should be always included in the reference interval.

Step 4. The two intervals are 'linearly interpolated' to get a trapezoidal fuzzy number.

Among the pros of using fuzzy rating scales one can highlight the following:

- values in the FRS's can cope (to a full extent) with the intrinsic imprecision associated with this rating;
- any FRS means a continuum, and the transition from a value to another within the scale is fully gradual (both in location and precision);
- these scales are much richer and more expressive than any one based on a (unavoidably finite) natural language or its real/fuzzy-valued encoding ("... something can be meaningful although we cannot name it");
- the flexibility of the FRS's allows raters to properly capture individual differences, whence the intrinsic variability, diversity and subjectivity are not lost ("... precisiation of what is imprecise");
- values in the FRS's can be mathematically and computationally handled in a suitable way, since one can state arithmetic and distances
- preserving the meaning of fuzzy numbers,
- and allowing us to extend/adapt many concepts and developments from Statistics with real-valued data.

Among the cons to be pointed out, one could mention the following:

- surveys/questionnaires for which responses are based on an FRS cannot be conducted in all the frameworks, since they require either a paper-and-pencil or a computerized form to be filled by the rater;
- raters need either to have an adequate background or to be properly trained; it should be remarked that, although this is a clear concern, the training does not need to be highly time-consuming in most of cases, as will be shown in one of the case studies to be considered later;
- statistical techniques should be developed to analyze fuzzy number-valued data; in this respect, Hesketh et al. [62] have stated that "... We are yet to see easily adapted packages that allow for researchers to use the fuzzy concept and then to apply appropriate statistical and other analyses to these in order to both test hypotheses and ensure that meaning is captured"; as it has already been commented, this is partially a cons.

Regarding the last cons that has been highlighted in connection with the two described fuzzy scales, it should be pointed out that along the last years a methodology is being developed to statistically analyze fuzzy scale-based data (irrespectively of them being or not trapezoidal), and a package in the software R is additionally being stated to support its practical implementation. This work aims to study and discuss new developments related to the analysis of fuzzy data and, more concretely, related to the scale/dispersion of these data.

1.3 Fuzzy arithmetic and metrics

The key tools for the statistical methodology that is being developed around fuzzy data are:

- Arithmetic with fuzzy numbers + Metrics between fuzzy numbers;
- Random fuzzy numbers.

Combining arithmetic + metrics constitutes a key tool in this setting; why? To handle fuzzy data from a mathematical perspective, one can first pose a relevant question:

Can fuzzy data be treated as special functional data?
There is not a single answer to the last question, but the two following answers are compatible:

- Directly, NO. In applying functional arithmetic to handle elements in the space of (functional-valued) fuzzy numbers, one often moves out of the space and the fuzzy meaning is generally lost.
- Indirectly, YES. By using an appropriate arithmetic and suitable metrics, fuzzy numbers can be identified with elements in a convex cone of a Hilbert space of functions, and the arithmetic and metrics with fuzzy numbers with those in the Hilbert space of functions (see, for instance, González-Rodríguez et al. [49]).

Implications from the last identification will be commented along the work.

1.3.1 Arithmetic with fuzzy data

When fuzzy numbers are considered to model experimental data, statistics to analyze them are frequently based on two arithmetical operations, namely the sum and the product by scalars.

The common way to extend the sum and the product by a scalar from \mathbb{R} to $\mathscr{F}_{c}^{*}(\mathbb{R})$ is to use Zadeh's extension principle [139], which is equivalent to consider level-wise the usual and more natural interval arithmetic. More concretely,

Definition 1.3.1. Given $\tilde{U}, \tilde{V} \in \mathscr{F}_{c}^{*}(\mathbb{R})$, the sum of \tilde{U} and \tilde{V} is the fuzzy number $\widetilde{U}+\widetilde{V} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ given by

$$
(\tilde{U}+\tilde{V})(t)=\sup _{y, z \in \mathbb{R}: y+z=t} \min \{\tilde{U}(y), \tilde{V}(z)\} .
$$

Equivalently, for each $\alpha \in[0,1]$

$$
(\widetilde{U}+\widetilde{V})_{\alpha}=\text { Minkowski sum of } \widetilde{U}_{\alpha} \text { and } \widetilde{V}_{\alpha}=\left[\inf \widetilde{U}_{\alpha}+\inf \widetilde{V}_{\alpha}, \sup \widetilde{U}_{\alpha}+\sup \widetilde{V}_{\alpha}\right] .
$$

Definition 1.3.2. Given $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ and $\gamma \in \mathbb{R}$, the product of \tilde{U} by the scalar γ is the fuzzy number $\gamma \cdot \widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ given by

$$
(\gamma \cdot \widetilde{U})(t)=\sup _{y \in \mathbb{R}: y=\gamma t} \widetilde{U}(y)= \begin{cases}\widetilde{U}(t / \gamma) & \text { if } \gamma \neq 0 \\ \mathbb{1}_{\{0\}}(t) & \text { if } \gamma=0\end{cases}
$$

Equivalently, for each $\alpha \in[0,1]$

$$
(\gamma \cdot \widetilde{U})_{\alpha}=\gamma \cdot \widetilde{U}_{\alpha}= \begin{cases}{\left[\gamma \cdot \inf \widetilde{U}_{\alpha}, \gamma \cdot \sup \widetilde{U}_{\alpha}\right]} & \text { if } \gamma \geq 0 \\ {\left[\gamma \cdot \sup \widetilde{U}_{\alpha}, \gamma \cdot \inf \widetilde{U}_{\alpha}\right]} & \text { otherwise. }\end{cases}
$$

which corresponds to consider level-wise the natural product of a set by a scalar.
It can be easily proved that for fixed invertible functions L and R, the family of $L R$-fuzzy numbers is closed under the sum and the product by scalars. More concretely,

$$
\begin{gathered}
L R(a, b, c, d)+L R\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=L R\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}, d+d^{\prime}\right), \\
\gamma \cdot L R(a, b, c, d)=\left\{\begin{array}{lc}
L R(\gamma a, \gamma b, \gamma c, \gamma d) & \text { if } \gamma \geq 0 \\
L R(\gamma d, \gamma c, \gamma b, \gamma a) & \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Remark 1.3.1. It has been above asserted that, in applying the functional arithmetic to handle elements in the space of fuzzy numbers, one often moves out of the space and the fuzzy meaning is generally lost. Actually, one can easily check that the fuzzy arithmetic differs substantially from the functional one (see Figure 1.6 for the sum and Figure 1.7 for the product by a scalar).

Figure 1.6: The sum of two fuzzy numbers (e.g., those on the left) is generally different depending on the fuzzy arithmetic (on the right top) or the functional arithmetic (on the right bottom) being considered

Figure 1.7: The product of a fuzzy number (on the left) by a scalar $(\gamma=2)$ is generally different depending on the fuzzy arithmetic (on the right top) or the functional arithmetic (on the right bottom) being considered

Remark 1.3.2. It should be especially highlighted that the space $\left(\mathscr{F}_{c}^{*}(\mathbb{R}),+, \cdot\right)$ has not linear but semilinear structure since

$$
\widetilde{U}+(-1 \cdot \widetilde{U}) \neq \mathbb{1}_{\{0\}} \text { (neutral element of }+ \text {). }
$$

1.3.2 Metrics between fuzzy data

Due to the nonlinearity that has been pointed out in Remark 1.3.2, one cannot state a definition for the difference between fuzzy numbers that is always well-defined and simultaneously preserves the main properties of the difference between real values in connection with the sum. In fact, there exists a difference notion (Hukuhara's one) satisfying the last condition, but it cannot be defined for many interval and fuzzy number values.

This crucial drawback has been substantially overcome in developing statistics with fuzzy data by incorporating suitable distances between them. On one hand, distances will allow to 'translate' the equality of fuzzy numbers into the vanishing of the distance between them, as in the case of real values. On the other hand, appropriate distances also allow us via the support function to 'identify' fuzzy data with functional ones and fuzzy arithmetic with functional arithmetic (as will be remarked later). Furthermore, statistical concepts and methods for real-valued datasets involving metrics (e.g., dispersion measures, mean distance approaches, classification problems, etc.) could be extended by considering extended metrics.

Among the L^{2} metrics between fuzzy numbers, the one introduced by Bertoluzza et al. [7] (see Montenegro et al. [84] for the generalized version in this work, Gil et al. [45] to justify its mid/spr expression, and Trutschnig et al. [129] for fuzzy numbers and higher dimensional fuzzy values), that generalizes the one by Diamond and Kloeden [30] and, hence, extending Vitale's [133] one for interval values (in fact introduced for compact values) is given as follows:

Definition 1.3.3. (Bertoluzza et al. [7]) Let $\tilde{U}, \tilde{V} \in \mathscr{F}_{c}^{*}(\mathbb{R})$, and assume $\theta \in(0,1]$ and $\varphi=$ probability measure associated with a continuous distribution with support in $(0,1)$. The $(\boldsymbol{\varphi}, \boldsymbol{\theta})$-distance between \widetilde{U} and \widetilde{V} is defined as

$$
D_{\theta}^{\varphi}(\tilde{U}, \tilde{V})=\sqrt{\int_{[0,1]}\left(\left[\operatorname{mid} \tilde{U}_{\alpha}-\operatorname{mid} \tilde{V}_{\alpha}\right]^{2}+\theta\left[\operatorname{spr} \tilde{U}_{\alpha}-\operatorname{spr} \tilde{V}_{\alpha}\right]^{2}\right) d \varphi(\alpha)}
$$

In particular, the 2-norm-distance (Diamond and Kloeden [30]) corresponds to $\rho_{2}=D_{1}^{\ell}$, with ℓ being the Lebesgue measure on $[0,1]$, that is,

$$
\rho_{2}(\widetilde{U}, \widetilde{V})=D_{1}^{\ell}(\widetilde{U}, \tilde{V})=\sqrt{\frac{1}{2} \int_{[0,1]}\left(\left[\inf \widetilde{U}_{\alpha}-\inf \tilde{V}_{\alpha}\right]^{2}+\left[\sup \widetilde{U}_{\alpha}-\sup \tilde{V}_{\alpha}\right]^{2}\right) d \alpha}
$$

In connection with ρ_{2}, one can later make use of the fact that

- for $L U \in\left\{\Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right.$, $\left.\operatorname{Tri}, \operatorname{TriS}\right\}$ (where $\operatorname{Tri}(a, b, c, d)=\operatorname{Tra}(a$, $(b+c) / 2,(b+c) / 2, d)$ and $\operatorname{TriS}(a, b, c, d)=\operatorname{Tra}(a,(a+d) / 2,(a+d) / 2, d))$, distances between $\operatorname{Tra}(a, b, c, d)$ and $L U(a, b, c, d)$ can be obtained exactly and have been gathered in Table 1.2;

Table 1.2: Exact expressions for the ρ_{2} distances between fuzzy numbers $\operatorname{Tra}(a, b, c, d)$ and $L U(a, b, c, d)$ with $L U$ ranging on $\left\{\Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right.$, Tri, TriS $\}$

$\boldsymbol{L} \boldsymbol{U}$	$\left[\boldsymbol{\rho}_{\mathbf{2}}(\operatorname{Tra}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}), \boldsymbol{L} \boldsymbol{U}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}))\right]^{\mathbf{2}}$
Π	$0.00416667(a-b)^{2}+0.00416667(c-d)^{2}$
$L U_{1 A}$	$0.03129046(a-b)^{2}+0.0135(c-d)^{2}$
$L U_{1 B}$	$0.03724265(c-d)^{2}$
$L U_{2 A}$	$0.00171940(a-b)^{2}+0.01325610(c-d)^{2}$
$L U_{2 B}$	$0.00171940(a-b)^{2}+0.05307135(c-d)^{2}$
Tri	$(c-b)^{2} / 12$
TriS	$\left[(b-a+c-d)^{2}+(c-b)^{2}\right] / 12$

Table 1.3: Exact expressions for the ρ_{2} distances between fuzzy numbers $L U\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $L U\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ with $L U$ ranging on $\left\{\operatorname{Tra}, \Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right\}$

$L \boldsymbol{U}$	$\left[\rho_{2}\left(L U\left(a_{1}, b_{1}, c_{1}, d_{1}\right), L U\left(a_{2}, b_{2}, c_{2}, d_{2}\right)\right)\right]^{2}$
Tra	$\begin{aligned} & {\left[\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}+\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)\right] / 6} \\ & +\left[\left(c_{1}-c_{2}\right)^{2}+\left(d_{1}-d_{2}\right)^{2}+\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right)\right] / 6 \end{aligned}$
Π	$\begin{aligned} & {\left[7\left(a_{1}-a_{2}\right)^{2}+7\left(b_{1}-b_{2}\right)^{2}+10\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)\right] / 48} \\ & +\left[7\left(c_{1}-c_{2}\right)^{2}+7\left(d_{1}-d_{2}\right)^{2}+10\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right)\right] / 48 \end{aligned}$
$L U_{1 A}$	$\begin{gathered} 0.06622634\left(a_{1}-a_{2}\right)^{2}+0.2900244\left(b_{1}-b_{2}\right)^{2}+0.14374922\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right) \\ +0.10516667\left(c_{1}-c_{2}\right)^{2}+0.25516667\left(d_{1}-d_{2}\right)^{2}+0.13966667\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right) \end{gathered}$
$L U_{1 B}$	$\begin{aligned} & 0.16666666\left(a_{1}-a_{2}\right)^{2}+0.16666666\left(b_{1}-b_{2}\right)^{2}+0.16666666\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right) \\ & +0.30881332\left(c_{1}-c_{2}\right)^{2}+0.06176266\left(d_{1}-d_{2}\right)^{2}+0.12942402\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right) \end{aligned}$
$L U_{2 A}$	$\begin{aligned} & 0.16429256\left(a_{1}-a_{2}\right)^{2}+0.19560186\left(b_{1}-b_{2}\right)^{2}+0.14010559\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right) \\ & +0.13773163\left(c_{1}-c_{2}\right)^{2}+0.13773163\left(d_{1}-d_{2}\right)^{2}+0.22453675\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right) \end{aligned}$
$L U_{2 B}$	$\begin{aligned} & 0.16429256\left(a_{1}-a_{2}\right)^{2}+0.19560186\left(b_{1}-b_{2}\right)^{2}+0.14010559\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right) \\ & +0.34394341\left(c_{1}-c_{2}\right)^{2}+0.05090666\left(d_{1}-d_{2}\right)^{2}+0.10514993\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right) \end{aligned}$

- for $L U \in\left\{\operatorname{Tra}, \Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right\}$, distances between $L U\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $L U\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ can be exactly obtained and have been gathered in Table 1.3.

It should be pointed out that φ has not a stochastic but a simple weighting meaning. Actually, it weighs the importance of distances at different levels, and a suitable model for this purpose is to consider beta density functions.

On the other hand, the choice of θ weighs the importance of the squared distance between the spreads in contrast to that between the midpoints. In particular, the choice $\theta=1$ is equivalent to weigh only and uniformly the two squared Euclidean distances between the extreme points of the level sets, so that

$$
D_{1}^{\varphi}(\widetilde{U}, \widetilde{V})=\sqrt{\frac{1}{2} \int_{[0,1]}\left(\left[\inf \widetilde{U}_{\alpha}-\inf \tilde{V}_{\alpha}\right]^{2}+\left[\sup \widetilde{U}_{\alpha}-\sup \tilde{V}_{\alpha}\right]^{2}\right) d \varphi(\alpha)}
$$

and the choice $\theta=1 / 3$ is equivalent to weight uniformly all the squared Euclidean distances between the convex linear extreme points of the level sets, so that

$$
D_{1 / 3}^{\varphi}(\tilde{U}, \tilde{V})=\sqrt{\int_{[0,1]}\left(\int_{[0,1]}\left[\tilde{U}_{\alpha}^{[t]}-\tilde{V}_{\alpha}^{[t]}\right]^{2} d t\right) d \varphi(\alpha)}
$$

where $\widetilde{U}_{\alpha}^{[t]}=t \cdot \sup \widetilde{U}_{\alpha}+(1-t) \cdot \inf \widetilde{U}_{\alpha}$.
The following result summarizes several valuable properties of distances D_{θ}^{φ}.

Proposition 1.3.1. (González-Rodríguez et al. [49]) Let $\theta \in(0,1]$ and let φ be an absolutely continuous probability measure on $\left([0,1], \mathcal{B}_{[0,1]}\right)$ with the mass function being positive in $(0,1)$.

Let $\mathbb{H}_{2}=\left\{L^{2}\right.$-type real-valued functions defined on $[0,1] \times\{-1,1\}$ w.r.t. $\left.\ell \otimes \lambda_{1}\right\}$ (with $\lambda_{1}(-1)=\lambda_{1}(1)=0.5$). Then, the $L^{2} \mathrm{mid} /$ spr-based metric satisfies that
i) D_{θ}^{φ} is an L^{2}-type metric on $\mathscr{F}_{c}^{*}(\mathbb{R})$.
ii) D_{θ}^{φ} is translational invariant, i.e., $D_{\theta}^{\varphi}(\widetilde{U}+\widetilde{W}, \widetilde{V}+\widetilde{W})=D_{\theta}^{\varphi}(\widetilde{U}, \widetilde{V})$, and 'rotational' invariant, where this is understood as $D_{\theta}^{\varphi}((-1) \cdot \tilde{U},(-1) \cdot \tilde{V})=D_{\theta}^{\varphi}(\widetilde{U}, \tilde{V})$.
iii) D_{θ}^{φ} is topologically equivalent to ρ_{2}^{φ}, where $\rho_{2}^{\varphi}=D_{1}^{\varphi}$.
iv) $\left(\mathscr{F}_{c}^{*}(\mathbb{R}), D_{\theta}^{\varphi}\right)$ is a separable metric space.
$v)$ The support function $s: \mathscr{F}_{c}^{*}(\mathbb{R}) \rightarrow \mathbb{H}_{2}$ (with $s(\widetilde{U})=s_{\widetilde{U}}$ and $s_{\widetilde{U}}(\alpha,-1)$ $\left.=-\inf \widetilde{U}_{\alpha}, s_{\widetilde{U}}(\alpha, 1)=\sup \widetilde{U}_{\alpha}\right)$ states an isometric embedding of $\mathscr{F}_{c}^{*}(\mathbb{R})$ with the fuzzy arithmetic and D_{θ}^{φ} onto a convex cone of the Hilbert space \mathbb{H}_{2} with the functional arithmetic and the distance induced by the norm

$$
\left\|h-h^{\prime}\right\|_{\theta}^{\varphi}=\sqrt{\left\langle h-h^{\prime}, h-h^{\prime}\right\rangle_{\theta}^{\varphi}},
$$

where the inner product is given by

$$
\langle f, g\rangle_{\theta}^{\varphi}=\sum_{u=-1,1} \int_{[0,1]}[\operatorname{mid} f(\alpha, u) \cdot \operatorname{mid} g(\alpha, u)+\operatorname{spr} f(\alpha, u) \cdot \operatorname{spr} g(\alpha, u)] d \varphi(\alpha)
$$ and

$$
\operatorname{mid} f(\alpha, u)=\frac{f(\alpha, u)-f(\alpha,-u)}{2}, \quad \operatorname{spr} f(\alpha, u)=\frac{f(\alpha, u)+f(\alpha,-u)}{2} .
$$

Remark 1.3.3. An immediate and crucial implication from Proposition 1.3.1.v) is that any fuzzy number $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ can be identified with the corresponding function $s_{\widetilde{U}}$ and this identification is accompanied by the correspondences between the usual arithmetics and L^{2} metrics. Consequently, data in the setting of fuzzy numbervalued data with the fuzzy arithmetic and the metric D_{θ}^{φ} can be systematically translated into data in the setting of functional data with the functional arithmetic and the metric based on the associated norm. In this way, despite the fact that fuzzy data should not be treated directly as functional data, they can be treated as functional data by considering the identification via the support function.

Then, we can now assert formally as a relevant implication for statistical purposes that several developments in Functional Data Analysis could be particularized
to fuzzy number-valued data by using the adequate identifications and correspondences. However, it should be guaranteed that the resulting elements/outputs remain in the cone $s\left(\mathscr{F}_{c}^{*}(\mathbb{R})\right)$. In case either the functional developments become very complex or the resulting elements/outputs are out of $s\left(\mathscr{F}_{c}^{*}(\mathbb{R})\right)$, ad hoc techniques should be developed, as we will show in the next chapters.

The mid/spr-based L^{2} metric has been shown to be very suitable in the development of statistical methodology for experimental fuzzy number-valued data (see, for instance, the recent reviews by Blanco-Fernández et al. $[8,9,10,11]$ and Gil et al. [43]) summarizing many of these statistical methods.

Among the L^{1} metrics between fuzzy numbers, the one introduced by Sinova et al. [109] (see Sinova et al. [108] for fuzzy numbers and higher dimensional fuzzy values), and the one extending Diamond and Kloeden [30] and, hence, extending Vitale's [133] one for interval values (in fact introduced for compact values), are given as follows:

Definition 1.3.4. (Sinova et al. [109]) Let $\tilde{U}, \tilde{V} \in \mathscr{F}_{c}^{*}(\mathbb{R})$, and assume $\theta \in(0,1]$ and $\varphi=$ probability measure associated with a continuous distribution with support in $(0,1)$. The $(\boldsymbol{\varphi}, \boldsymbol{\theta})$-wabl/ldev/rdev-based L^{1} metric between \widetilde{U} and \widetilde{V} is defined as

$$
\begin{gathered}
\mathscr{D}_{\theta}^{\varphi}(\widetilde{U}, \widetilde{V})=\left|\operatorname{wabl}^{\varphi}(\widetilde{U})-\operatorname{wabl}^{\varphi}(\widetilde{V})\right| \\
+\frac{\theta}{2} \int_{[0,1]}\left|\operatorname{ldev}_{\widetilde{U}}^{\varphi}(\alpha)-\operatorname{ldev}_{\widetilde{V}}^{\varphi}(\alpha)\right| d \varphi(\alpha)+\frac{\theta}{2} \int_{[0,1]}\left|\operatorname{rdev}_{\widetilde{U}}^{\varphi}(\alpha)-\operatorname{rdev}_{\widetilde{V}}^{\varphi}(\alpha)\right| d \varphi(\alpha) .
\end{gathered}
$$

The 1-norm-distance (Diamond and Kloeden [30]) between \tilde{U} and \tilde{V} is defined as

$$
\rho_{1}(\widetilde{U}, \widetilde{V})=\frac{1}{2} \int_{[0,1]}\left(\left|\inf \widetilde{U}_{\alpha}-\inf \widetilde{V}_{\alpha}\right|+\left|\sup \widetilde{U}_{\alpha}-\sup \widetilde{V}_{\alpha}\right|\right) d \alpha .
$$

If d α is extended to $d \varphi(\alpha)$, the metric is denoted by ρ_{1}^{φ}.
In connection with ρ_{1}, we will later make use of the fact that the distance between $\operatorname{Tra}\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $\operatorname{Tra}\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ can be exactly obtained and equals

$$
\rho_{1}\left(\operatorname{Tra}\left(a_{1}, b_{1}, c_{1}, d_{1}\right), \operatorname{Tra}\left(a_{2}, b_{2}, c_{2}, d_{2}\right)\right)=G\left(a_{1}-a_{2}, b_{1}-b_{2}\right)+G\left(c_{1}-c_{2}, d_{1}-d_{2}\right),
$$

where

$$
G(x, y)= \begin{cases}\frac{x|x|-y|y|}{4(x-y)} & \text { if } x \neq y \\ \frac{|y|}{2} & \text { otherwise. }\end{cases}
$$

The following result summarizes several valuable properties of distances $\mathscr{D}_{\theta}^{\varphi}$ and ρ_{1}^{φ}.

Proposition 1.3.2. (Sinova et al. [109], Sinova and López [114]) Let $\theta \in(0,1]$ and let φ be an arbitrarily fixed absolutely continuous probability measure on $\left([0,1], \mathcal{B}_{[0,1]}\right)$ with positive mass function on $(0,1)$. Then,
i) $\mathscr{D}_{\theta}^{\varphi}$ and ρ_{1}^{φ} are L^{1} metrics on $\mathscr{F}_{c}^{*}(\mathbb{R})$, and they are both translational and rotational invariant.
ii) $\mathscr{D}_{\theta}^{\varphi}$ is topologically equivalent to ρ_{1}^{φ}.
iii) $\left(\mathscr{F}_{c}^{*}(\mathbb{R}), \mathscr{D}_{\theta}^{\varphi}\right)$ and $\left(\mathscr{F}_{c}^{*}(\mathbb{R}), \rho_{1}^{\varphi}\right)$ are separable metric spaces.
iv) For a fixed φ, the function $\boldsymbol{v}^{\varphi}: \mathscr{F}_{c}^{*}(\mathbb{R}) \rightarrow \mathbb{B}_{1}^{\star}=\left\{L^{1}\right.$-type 3-dimensional vectorvalued functions defined on $[0,1]\}$ satisfies that
$-\boldsymbol{v}^{\varphi}(\widetilde{U}+\widetilde{V})=\boldsymbol{v}^{\varphi}(\widetilde{U})+\boldsymbol{v}^{\varphi}(\widetilde{V})$ for all $\widetilde{U}, \widetilde{V} \in \mathscr{F}_{c}^{*}(\mathbb{R})$,
$-\boldsymbol{v}^{\varphi}(\gamma \cdot \widetilde{U})=\gamma \cdot \boldsymbol{v}^{\varphi}(\widetilde{U})$ for all $\tilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ and $\gamma>0$,

- and the \boldsymbol{v}^{φ} function preserves the semilinearity of $\mathscr{F}_{c}^{*}(\mathbb{R})$ and relates the fuzzy arithmetic to the functional arithmetic in such a way that $\left(\mathscr{F}_{c}^{*}(\mathbb{R})\right.$, $\left.\mathscr{D}_{\theta}^{\varphi}\right)$ can be isometrically embedded into a convex cone of the Banach space $\left(\mathbb{B}_{1}^{\star},\|\cdot\|_{\theta}^{\varphi \star}\right)$ where
$\|f-g\|_{\theta}^{\varphi \star}=\int_{[0,1]}\left(\left|f_{1}(\alpha)-g_{1}(\alpha)\right|+\frac{\theta}{2} \cdot\left|f_{2}(\alpha)-g_{2}(\alpha)\right|+\frac{\theta}{2} \cdot\left|f_{3}(\alpha)-g_{3}(\alpha)\right|\right) d \varphi(\alpha)$ for $f=\left(f_{1}, f_{2}, f_{3}\right), g=\left(g_{1}, g_{2}, g_{3}\right) \in \mathbb{B}_{1}^{\star}$.

The function $\iota: \mathscr{F}_{c}^{*}(\mathbb{R}) \rightarrow \mathbb{B}_{1}=\left\{L^{1}\right.$-type 2-dimensional vector-valued functions defined on $[0,1]\}$ satisfies that
$-\boldsymbol{\iota}(\tilde{U}+\tilde{V})=\boldsymbol{\iota}(\tilde{U})+\boldsymbol{\iota}(\tilde{V})$ for all $\tilde{U}, \tilde{V} \in \mathscr{F}_{c}^{*}(\mathbb{R})$,
$-\iota(\gamma \cdot \tilde{U})=\gamma \cdot \iota(\tilde{U})$ for all $\tilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ and $\gamma>0$,

- and the ι function preserves the semilinearity of $\mathscr{F}_{c}^{*}(\mathbb{R})$ and relates the fuzzy arithmetic to the functional arithmetic in such a way that $\left(\mathscr{F}_{c}^{*}(\mathbb{R})\right.$, ρ_{1}^{φ}) can be isometrically embedded into a convex cone of the Banach space $\left(\mathbb{B}_{1},\|\cdot\|_{1}^{\varphi}\right)$ with

$$
\|f-g\|_{1}^{\varphi}=\int_{[0,1]}\left(\frac{1}{2}\left|f_{1}(\alpha)-g_{1}(\alpha)\right|+\frac{1}{2}\left|f_{2}(\alpha)-g_{2}(\alpha)\right|\right) d \varphi(\alpha)
$$

for $f=\left(f_{1}, f_{2}\right), g=\left(g_{1}, g_{2}\right) \in \mathbb{B}_{1}$.
As we will see later, the L^{1} metrics have been shown to be valuable in connection with the ad hoc development of some robust location measures (see Sinova et al. [111, 109]).

1.4 Random fuzzy numbers and relevant summary measures

In developing statistics with fuzzy data coming from intrinsically imprecise-valued attributes, random fuzzy numbers constitute a well-formalized model within the probabilistic setting for the random mechanisms generating such data. Random fuzzy numbers, originally coined as (one-dimensional) fuzzy random variables by Puri and Ralescu [94], integrate randomness (associated with the data generation) and fuzziness (associated with the data nature).

Definition 1.4.1. (Puri and Ralescu [94]) Given a probability space (Ω, \mathcal{A}, P), an associated random fuzzy number (for short RFN) is a mapping $\mathcal{X}: \Omega \rightarrow \mathscr{F}_{c}^{*}(\mathbb{R})$ such that for all $\alpha \in[0,1]$ the interval-valued mapping \mathcal{X}_{α}, such that $\mathcal{X}_{\alpha}(\omega)=(\mathcal{X}(\omega))_{\alpha}$ for all $\omega \in \Omega$, is a compact random interval (i.e., a Borel-measurable mapping w.r.t. the topology induced by the Hausdorff metric in the space of the nonempty compact intervals).

Equivalently, \mathcal{X} is an $R F N$ if and only if $s(\mathcal{X})$ is an $\mathbb{H}_{2} / \mathbb{B}_{1}^{\star}$-valued random element, that is, a Borel mesurable function w.r.t. the Borel σ-field generated by the topology induced by the metric associated with $D_{\theta}^{\varphi} / \mathscr{D}_{\theta}^{\varphi}$ via $s / \boldsymbol{v}^{\varphi}$.

Remark 1.4.1. The above considered definitions are equivalent to state that

- a mapping $\mathcal{X}: \Omega \rightarrow \mathscr{F}_{c}^{*}(\mathbb{R})$ is an RFN if and only if for all $\alpha \in[0,1]$ the real-valued mappings $\inf \mathcal{X}_{\alpha}$ and $\sup \mathcal{X}_{\alpha}$ are real-valued random variables;
- a mapping $\mathcal{X}: \Omega \rightarrow \mathscr{F}_{c}^{*}(\mathbb{R})$ is an RFN if and only if for all $\alpha \in[0,1]$ the real-valued mappings mid \mathcal{X}_{α} and $\operatorname{spr} \mathcal{X}_{\alpha}$ are real-valued random variables.

Remark 1.4.2. Also equivalently, a mapping $\mathcal{X}: \Omega \rightarrow \mathscr{F}_{c}^{*}(\mathbb{R})$ is said to be an RFN if and only if it is a Borel-measurable mapping w.r.t. the Borel σ-field generated on $\mathscr{F}_{c}^{*}(\mathbb{R})$ by the topology induced by several different metrics, among them D_{θ}^{φ} or $\mathscr{D}_{\theta}^{\varphi}$. This Borel-measurability ensures that one can properly and trivially refer to the distribution induced by an RFN, the stochastic independence of RFN's, and so on, without needing to state expressly these notions.

As it has just been highlighted, one can properly refer to the distribution induced by an RFN so that if \mathfrak{B} is a Borel set belonging to the Borel σ-field in the last remark,

$$
P(\mathcal{X} \in \mathfrak{B})=P(\{\omega \in \Omega: \mathcal{X}(\omega) \in \mathfrak{B}\})
$$

and, in particular,

$$
P(\mathcal{X}=\widetilde{U})=P(\{\omega \in \Omega: \mathcal{X}(\omega)=\widetilde{U}\})
$$

whatever $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ may be. Nevertheless, in contrast to what happens for the real- and vectorial-valued cases, one can not universally define an extension of the distribution function to characterize the distribution induced by a random fuzzy number. This is due to the fact that there is no universally accepted ranking between fuzzy numbers.

In analyzing the induced distribution of a random fuzzy number, two main types of summary measures/parameters could be distinguished:

- Central tendency or location measures, which are fuzzy-valued summary indicators. The Aumann-type mean (see Puri and Ralescu [94]) is the best known and used location measure.
- Measures for the dispersion/variability or scale, which are real-valued summary indicators. The best known and used dispersion measure is the Fréchet-type variance, defined in terms of a convenient L^{2}-type metric (see, for instance, Körner [70], Lubiano et al. [76], Ramos-Guajardo and Lubiano [95], BlancoFernández et al. [10] or Gil et al. [43]).

The Aumann-type mean value of a random fuzzy number extends the mean of a random variable as well as the Aumann expectation of a random set, and it is formalized as follows:

Definition 1.4.2. (Puri and Ralescu [94]) Let \mathcal{X} be a random fuzzy number associated with the probability space (Ω, \mathcal{A}, P). The (population) Aumann-type mean or expected value of \mathcal{X} is the fuzzy number $\tilde{E}(\mathcal{X}) \in \mathscr{F}_{c}^{*}(\mathbb{R})$, if it exists (a sufficient condition for such an existence would be that of \mathcal{X} being integrably bounded, that is, there exists a real-valued function $h \in L^{1}(\Omega, \mathcal{A}, P)$ such that $\sup _{x \in \mathcal{X}_{0}}|x| \leq h$ a.s. $\left.[P]\right)$, such that for each $\alpha \in[0,1]$

$$
(\widetilde{E}(\mathcal{X}))_{\alpha}=\text { Aumann integral of } \mathcal{X}_{\alpha}(\text { see }[3])
$$

that is, $(\widetilde{E}(\mathcal{X}))_{\alpha}=\left[E\left(\inf \mathcal{X}_{\alpha}\right), E\left(\sup \mathcal{X}_{\alpha}\right)\right]$ with E denoting the expected value of a real-valued random variable. Equivalently, and whenever $s_{\mathcal{X}} \in L^{1}(\Omega, \mathcal{A}, P)$, it is the fuzzy number $\widetilde{E}(\mathcal{X}) \in \mathscr{F}_{c}^{*}(\mathbb{R})$ such that $s_{\widetilde{E}(\mathcal{X})}=\mathrm{E}\left(s_{\mathcal{X}}\right)$, with E denoting the Bochner expectation of a Banach space-valued random element.

In particular, if $\widetilde{\mathbf{x}}_{n}=\left(\mathcal{X}\left(\omega_{1}\right), \ldots, \mathcal{X}\left(\omega_{n}\right)\right)=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ is a sample of observations from \mathcal{X} when measured on a sample of individuals $\left(\omega_{1}, \ldots, \omega_{n}\right)$, the (sample) Aumann-type mean is the fuzzy number $\overline{\mathbf{x}}_{n}$ given for all $\alpha \in[0,1]$ by

$$
\left(\widetilde{\mathbf{x}}_{n}\right)_{\alpha}=\left(\frac{1}{n} \cdot\left(\widetilde{x}_{1}+\ldots+\widetilde{x}_{n}\right)\right)_{\alpha}=\left[\frac{1}{n} \sum_{i=1}^{n} \inf \left(\widetilde{x}_{i}\right)_{\alpha}, \frac{1}{n} \sum_{i=1}^{n} \sup \left(\widetilde{x}_{i}\right)_{\alpha}\right] .
$$

Remark 1.4.3. If \mathcal{X} is an $L R$-valued random fuzzy number for fixed invertible functions L and R, then $\tilde{E}(\mathcal{X})=L R\left(E\left(\inf \mathcal{X}_{0}\right), E\left(\inf \mathcal{X}_{1}\right), E\left(\sup \mathcal{X}_{1}\right), E\left(\sup \mathcal{X}_{0}\right)\right)$.

Due to the properties of the support function and the Hilbertian random elements, the Aumann-type mean preserves the main valuable properties from the real-valued case. In this way (see, for instance, Puri and Ralescu [94], GonzálezRodríguez et al. [49]),

Proposition 1.4.1. \tilde{E} is equivariant under affine transformations on $\mathscr{F}_{c}^{*}(\mathbb{R})$, that is, if $\gamma \in \mathbb{R}, \widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ and $\widetilde{E}(\mathcal{X})$ exists, then

$$
\widetilde{E}(\gamma \cdot \mathcal{X}+\widetilde{U})=\gamma \cdot \widetilde{E}(\mathcal{X})+\widetilde{U}
$$

Consequently, if \mathcal{X} is a random fuzzy number associated with the probability space (Ω, \mathcal{A}, P) and the distribution of \mathcal{X} is degenerate at a fuzzy number $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ (i.e., $\mathcal{X}=\widetilde{U}$ a.s. $[P]$), then $\widetilde{E}(\mathcal{X})=\widetilde{U}$.

Proposition 1.4.2. \widetilde{E} is additive, that is, if \mathcal{X} and \mathcal{Y} are random fuzzy numbers associated with the same probability space, for which $\widetilde{E}(\mathcal{X})$ and $\widetilde{E}(\mathcal{Y})$ exist, then

$$
\widetilde{E}(\mathcal{X}+\mathcal{Y})=\widetilde{E}(\mathcal{X})+\widetilde{E}(\mathcal{Y})
$$

Furthermore, the Aumann-type mean is coherent with the usual above-described fuzzy arithmetic because of the equivalent expression it takes for countable-valued RFN's. More concretely,

Proposition 1.4.3. \widetilde{E} is coherent with the usual fuzzy arithmetic, in the sense that if \mathcal{X} is an RFN associated with the probability space (Ω, \mathcal{A}, P) and such that the set of the RFN values is finite or countable, that is, $\mathcal{X}(\Omega)=\left\{\widetilde{x}_{1}^{*}, \ldots, \widetilde{x}_{m}^{*}, \ldots\right\} \subset \mathscr{F}_{c}^{*}(\mathbb{R})$, then
$\widetilde{E}(\mathcal{X})=P\left(\left\{\omega \in \Omega: \mathcal{X}(\omega)=\widetilde{x}_{1}^{*}\right\}\right) \cdot \widetilde{x}_{1}^{*}+\ldots+P\left(\left\{\omega \in \Omega: \mathcal{X}(\omega)=\widetilde{x}_{m}^{*}\right\}\right) \cdot \widetilde{x}_{m}^{*}+\ldots$

Remark 1.4.4. Another way to show the coherence of the Aumann-type mean with the usual fuzzy arithmetic is that of the fulfilment of Strong Laws of Large Numbers (see, for instance, Colubi et al. [21]), so that the fuzzy arithmetic-based sample mean for a sample of independent and identically distributed RFN's converges to the population Aumann-type mean, as the sample size tends to ∞, in the sense most of the metrics one can consider on $\mathscr{F}_{c}^{*}(\mathbb{R})$.

The Aumann-type mean is also supported by Fréchet's approach [37] w.r.t. D_{θ}^{φ}, irrespectively of the choice of θ and φ, so that

Proposition 1.4.4. $\widetilde{E}(\mathcal{X})$ is the 'Fréchet expectation' of \mathcal{X} w.r.t. D_{θ}^{φ}, that is,

$$
\widetilde{E}(\mathcal{X})=\arg \min _{\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})} E\left(\left[D_{\theta}^{\varphi}(\mathcal{X}, \widetilde{U})\right]^{2}\right),
$$

so that the mean is the fuzzy value leading to the lowest mean squared D_{θ}^{φ}-distance (or error) w.r.t. the RFN distribution, and this corroborates the fact that it is a central tendency measure.

In extending the variance of real-valued random variables to RFN's, Fréchet's approach [37] has been considered (see Körner [70], Lubiano et al. [76], GonzálezRodríguez et al. [49]). In accordance with this approach, the variance of an RFN can be interpreted as a measure of the 'least squares error/distance' in approximating the values of the RFN by a (non-random) fuzzy number. When Fréchet's approach is applied in D_{θ}^{φ} 's sense we have

Definition 1.4.3. The (population) Fréchet-type variance is the real number $\sigma_{\mathcal{X}}^{2}$, if it exists (a necessary and sufficient condition for this existence being that of $\widetilde{E}(\mathcal{X})$ along with $D_{\theta}^{\varphi}(\mathcal{X}, \widetilde{E}(\mathcal{X})) \in L^{1}(\Omega, \mathcal{A}, P)$), given by

$$
\sigma_{\mathcal{X}}^{2}=E\left(\left[D_{\theta}^{\varphi}(\mathcal{X}, \widetilde{E}(\mathcal{X}))\right]^{2}\right)=\int_{[0,1]} \sigma_{\operatorname{mid} \mathcal{X}_{\alpha}}^{2} d \varphi(\alpha)+\theta \sigma_{\operatorname{spr} \mathcal{X}_{\alpha}}^{2} d \varphi(\alpha),
$$

where σ_{X}^{2} denotes the variance of the real-valued random variable X. Equivalently, if $s_{\mathcal{X}} \in L^{2}(\Omega, \mathcal{A}, P)$, it is the real number $\sigma_{\mathcal{X}}^{2}$ such that $\sigma_{\mathcal{X}}^{2}=\operatorname{Var}\left(s_{\mathcal{X}}\right)$, with Var being intended in terms of the metric on \mathbb{H}_{2} associated with D_{θ}^{φ}.

The (population) Fréchet-type standard deviation is the value $\sigma_{\mathcal{X}}=\sqrt{\sigma_{\mathcal{X}}^{2}}$.
In particular, if $\widetilde{\mathbf{x}}_{n}=\left(\mathcal{X}\left(\omega_{1}\right), \ldots, \mathcal{X}\left(\omega_{n}\right)\right)=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ is a sample of observations from \mathcal{X} when measured on a sample of individuals $\left(\omega_{1}, \ldots, \omega_{n}\right)$, the (sample) Fréchet-type variance is the real number $S_{\mathbf{x}_{n}}^{2}$ given by

$$
S_{\widetilde{\mathbf{x}}_{n}}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \overline{\mathbf{x}}_{n}\right)\right]^{2}
$$

The (sample) Fréchet-type standard deviation corresponds to $S_{\widetilde{\mathbf{x}}_{n}}=\sqrt{S_{\widetilde{\mathbf{x}}_{n}}^{2}}$.

Due to the properties of the support function and the Hilbertian random elements, the Fréchet variance of an RFN satisfies the usual properties for this concept. In this way (see Körner [70], Lubiano et al. [76], González-Rodríguez et al. [49]),

Proposition 1.4.5. The Fréchet-type variance $\sigma_{\mathcal{X}}^{2}$ is non-negative, with $\sigma_{\mathcal{X}}^{2}=0$ if, and only if, \mathcal{X} is degenerate at a fuzzy number, that is, there exists $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ such that $\mathcal{X}=\widetilde{U}$ a.s. $[P]$.

Proposition 1.4.6. If $\gamma \in \mathbb{R}, \tilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ and \mathcal{X} is an RFN associated with the probability space (Ω, \mathcal{A}, P) for which the variance exists, then

$$
\sigma_{\gamma \cdot \mathcal{X}+\widetilde{U}}^{2}=\gamma^{2} \cdot \sigma_{\mathcal{X}}^{2}
$$

that is, the Fréchet-type variance is invariant under (fuzzy number-valued) translations (also referred to as location invariant) and it is squared equivariant under the product by a scalar (also referred to as squared scale equivariant).

The Fréchet-type variance is not additive in general, but it is under independence of the involved RFN's. Thus,

Proposition 1.4.7. If \mathcal{X} and \mathcal{Y} are independent RFN's associated with the same probability space (Ω, \mathcal{A}, P) and for which variances exist, we have that

$$
\sigma_{\mathcal{X}+\mathcal{Y}}^{2}=\sigma_{\mathcal{X}}^{2}+\sigma_{\mathcal{Y}}^{2} .
$$

The covariance of two RFN's has been extended in the literature (see, for instance, González-Rodríguez et al. [49]) on the basis of the inner product $\langle\cdot, \cdot\rangle_{\theta}^{\varphi}$ in \mathbb{H}_{2} via the corresponding isometric embedding. Notice that the existence of such an inner product could be only guaranteed for the L^{2} metrics but not for the L^{1} ones. Nevertheless, in the study in this work we are not going to make special use of this summary measure of the joint distribution of two RFN's.

1.5 Introduction to robustness with RFN's: some robust location measures

In the preceding section it has been shown that the most commonly used summary measures in dealing with random fuzzy numbers, namely the Aumann-type mean and the Fréchet-type variance, preserve the main valuable properties of the classical location and scale parameters they extend. However, they also inherit some of their drawbacks, especially those in connection with their high sensitivity to the presence
of 'outliers', data changes or asymmetries. This assertion can easily be illustrated by means of real-life and synthetic examples, as we will later see.

This relevant concern motivates the development of robust location and scale measures in the setting of random fuzzy numbers. For this purpose, a first natural attempt is to extend the main developments for robust location and scale measurement in the real-valued case. However, one should be aware of the already highlighted handicaps associated with the induced distribution of an RFN, namely,

- the lack of a general extension of the distribution function for RFN's,
- and the lack of general, realistic and well-supported models for these distributions.

Robust statistics studies with real-valued data often involve either distribution functions or normal (or more generally symmetric) distributions, and sometimes asymmetric models, like the exponential. The use of mathematically convenient parametric models helps to solve the question of what to estimate for the location and scale of the distribution of a real-valued random variable when it is not symmetrically distributed.

Although the notion of symmetry of the induced distribution of an RFN can be properly formalized (see Sinova et al. [106]), to date the above-mentioned handicaps make unfeasible both the extension of some location and scale measures from the real-valued case, as well as of some tools to evaluate their robustness. In Remark 1.3.3 it has been emphasized that methods for the statistical analysis of fuzzy data are being developed either as particularization of Functional Data Analysis techniques or ad hoc.

Recently, several developments have been carried out in connection with the robust estimation of the location of RFN's (see, for instance, Sinova et al. [111, 112, 115, 113], Colubi and González-Rodríguez [19] and, especially, Sinova [105]). In estimating/measuring location in the real-valued case, although many robust estimators/measures have been suggested in the literature, the median is certainly the most widely known and considered, and the first approaches in dealing with fuzzy data have aimed to extend it. Since there is no universally accepted ranking between fuzzy numbers, the extension cannot be based on that of the distribution function. Therefore, a different way to proceed should be taking into account: the median minimizes the average deviation. And such a deviation could be extended in the fuzzy number-valued case by using L^{1} metrics. This has been the key idea underlying the ad hoc approaches that are now recalled.

Definition 1.5.1. (Sinova et al. [111]) Let \mathcal{X} be a random fuzzy number. The (population) 1-norm median of \mathcal{X} is the fuzzy number $\widetilde{\operatorname{Me}}(\mathcal{X})$ such that for each $\alpha \in[0,1]$

$$
(\widetilde{\operatorname{Me}}(\mathcal{X}))_{\alpha}=\left[\operatorname{Me}\left(\inf \mathcal{X}_{\alpha}\right), \operatorname{Me}\left(\sup \mathcal{X}_{\alpha}\right)\right]
$$

where in case $\operatorname{Me}\left(\inf \mathcal{X}_{\alpha}\right)$ or $\operatorname{Me}\left(\sup \mathcal{X}_{\alpha}\right)$ are non-unique, we will follow the most usual convention, that is, we will consider the midpoint of the interval of medians.

In particular, if $\widetilde{\mathbf{x}}_{n}=\left(\mathcal{X}\left(\omega_{1}\right), \ldots, \mathcal{X}\left(\omega_{n}\right)\right)=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ is a sample of observations from \mathcal{X} when measured on a sample of individuals $\left(\omega_{1}, \ldots, \omega_{n}\right)$, the (sample) 1-norm median is the fuzzy number $\widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)$ such that for all $\alpha \in[0,1]$

$$
\begin{aligned}
\inf \left(\widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)_{\alpha} & =\operatorname{Me}\left\{\inf \left(\widetilde{x}_{1}\right)_{\alpha}, \ldots, \inf \left(\widetilde{x}_{n}\right)_{\alpha}\right\} \\
\sup \left(\widehat{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)_{\alpha} & =\operatorname{Me}\left\{\sup \left(\widetilde{x}_{1}\right)_{\alpha}, \ldots, \sup \left(\widetilde{x}_{n}\right)_{\alpha}\right\}
\end{aligned}
$$

where in case any of the two involved medians of real-valued data is non-unique, we will follow the most usual convention, that is, we will consider the midpoint of the interval of medians.

The notion above is in fact the solution (or one of the possible solutions, in case the usual convention is not applied to avoid non-uniqueness) of minimizing the average ρ_{1}^{φ}-deviation. That is,

Proposition 1.5.1. (Sinova et al. [111]) Let \mathcal{X} be a random fuzzy number. Then,

$$
\widetilde{\operatorname{Me}}(\mathcal{X})=\arg \min _{\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})} E\left(\rho_{1}^{\varphi}(\mathcal{X}, \widetilde{U})\right)
$$

whatever the weighting measure φ may be and whenever the corresponding involved expectation exists.

Remark 1.5.1. Another solution of the last minimization problem, based on a different convention and Zadeh's extension principle, has been introduced by Grzegorzewski [50]. As it has been observed (Pérez-Fernández and Sinova [91]), the behaviour of both extended ρ_{1}^{φ}-medians is much more robust towards contamination than the Aumann-type mean's one. With respect to the comparison between the two alternatives for the median, the 1-norm median behaves a little better than Grzegorzewski's proposal in the sense that the sample estimate is closer (in ρ_{1}^{φ} 's sense) to the corresponding population value.

On the other hand,

Definition 1.5.2. (Sinova et al. [109]) Let \mathcal{X} be a random fuzzy number and φ be an absolutely continuous probability measure associated with the measurable space $\left([0,1], \mathcal{B}_{[0,1]}\right)$ and having positive mass function on $(0,1)$. The (population) $\boldsymbol{\varphi}$ wabl/ldev/rdev median of \mathcal{X} is the fuzzy number $\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})$ such that for each $\alpha \in[0,1]$

$$
\left.\left(\widetilde{\operatorname{M}^{\varphi}}(\mathcal{X})\right)_{\alpha}=\left[\operatorname{Me}\left(\operatorname{wabl}^{\varphi}(\mathcal{X})\right)-\operatorname{Me}\left(\operatorname{ldev}_{\mathcal{X}}^{\varphi}(\alpha)\right), \operatorname{Me}\left(\operatorname{wabl}^{\varphi}(\mathcal{X})\right)+\operatorname{Me}^{\left(\operatorname{dev}_{\mathcal{X}}^{\varphi}\right.}(\alpha)\right)\right]
$$

where in case $\operatorname{Me}\left(\operatorname{wabl}^{\varphi}(\mathcal{X})\right)$, $\operatorname{Me}\left(\operatorname{ldev}_{\mathcal{X}}^{\varphi}(\alpha)\right)$ or $\operatorname{Me}\left(\operatorname{rdev}_{\mathcal{X}}^{\varphi}(\alpha)\right)$ are non-unique, the most usual convention is considered.

In particular, if $\widetilde{\mathbf{x}}_{n}=\left(\mathcal{X}\left(\omega_{1}\right), \ldots, \mathcal{X}\left(\omega_{n}\right)\right)=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ is a sample of observations from \mathcal{X} when measured on a sample of individuals $\left(\omega_{1}, \ldots, \omega_{n}\right)$, the (sample) $\boldsymbol{\varphi}$-wabl/ldev/rdev median is the fuzzy number $\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)$ such that for all $\alpha \in[0,1]$

$$
\begin{aligned}
& \inf \left(\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)_{\alpha}=\operatorname{Me}\left\{\operatorname{wabl}^{\varphi}\left(\widetilde{x}_{1}\right), \ldots, \operatorname{wabl}^{\varphi}\left(\widetilde{x}_{n}\right)\right\} \\
& \quad-\operatorname{Me}\left\{\operatorname{ldev}_{\widetilde{x}_{1}}^{\varphi}(\alpha), \ldots, \operatorname{ldev}_{\widetilde{x}_{n}}^{\varphi}(\alpha)\right\} \\
& \sup \left(\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)_{\alpha}=\operatorname{Me}\left\{\operatorname{wabl}^{\varphi}\left(\widetilde{x}_{1}\right), \ldots, \operatorname{wabl}^{\varphi}\left(\widetilde{x}_{n}\right)\right\} \\
& \quad+\operatorname{Me}\left\{\operatorname{rdev}_{\widetilde{x}_{1}}^{\varphi}(\alpha), \ldots, \operatorname{rdev}_{\widetilde{x}_{n}}^{\varphi}(\alpha)\right\} .
\end{aligned}
$$

The notion above is in fact the solution (or one of the possible solutions) of minimizing the average $\mathscr{D}_{\theta}^{\varphi}$-deviation. That is,

Proposition 1.5.2. (Sinova et al. [109]) Let \mathcal{X} be a random fuzzy number and φ be an absolutely continuous probability measure associated with the measurable space $\left([0,1], \mathcal{B}_{[0,1]}\right)$ and having positive mass function on $(0,1)$. Then,

$$
\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})=\arg \min _{\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})} E\left(\mathscr{D}_{\theta}^{\varphi}(\mathcal{X}, \widetilde{U})\right)
$$

whatever θ may be and whenever the corresponding involved expectation exists.
Remark 1.5.2. Sinova and López [114] have recently shown that neither the position nor the shape of the sample φ-wabl/ldev/rdev median are very influenced by the chosen measure φ, but they are scarcely affected.

The two above-recalled L^{1}-medians preserve the main valuable properties from the real-valued case. In this way,

Proposition 1.5.3. (Sinova et al. $[111,109]) \widetilde{\mathrm{Me}}$ and $\widetilde{\mathrm{M}^{\varphi}}$ are equivariant under affine transformations on $\mathscr{F}_{c}^{*}(\mathbb{R})$, that is, if $\gamma \in \mathbb{R}, \widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$, then

$$
\widetilde{\operatorname{Me}}(\gamma \cdot \mathcal{X}+\widetilde{U})=\gamma \cdot \widetilde{\operatorname{Me}}(\mathcal{X})+\widetilde{U}, \quad \widetilde{\mathrm{M} \varphi}(\gamma \cdot \mathcal{X}+\widetilde{U})=\gamma \cdot \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})+\widetilde{U} .
$$

Consequently, if \mathcal{X} is a random fuzzy number associated with the probability space (Ω, \mathcal{A}, P) and the distribution of \mathcal{X} is degenerate at a fuzzy number $\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})$ (i.e., $\mathcal{X}=\widetilde{U}$ a.s. $[P])$, then $\widetilde{\mathrm{Me}}(\mathcal{X})=\widetilde{U}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})=\widetilde{U}$.

As for the real-valued case, under rather mild conditions the sample extended medians are shown to be a strongly consistent estimator of the corresponding population medians, that is,

Proposition 1.5.4. (Sinova et al. [111, 109]) Let \mathcal{X} be a random fuzzy number associated with a probability space (Ω, \mathcal{A}, P).

Assume that for each $\alpha \in[0,1]$ the real-valued population medians $\operatorname{Me}\left(\inf \mathcal{X}_{\alpha}\right)$ and $\operatorname{Me}\left(\sup \mathcal{X}_{\alpha}\right)$ exist and they are actually unique. If $\widehat{\operatorname{Me}(\mathcal{X})_{n}}$ denotes the sample median statistic corresponding to a simple random sample $\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ from \mathcal{X}, and the two sequences of the real-valued sample medians $\left\{\widehat{\operatorname{Me}\left(\inf \mathcal{X}_{\alpha}\right)_{n}}\right\}_{n}$ and $\left.\left\{\operatorname{Me} \widehat{\left(\sup \mathcal{X}_{\alpha}\right.}\right)_{n}\right\}_{n}$ as functions of α over $[0,1]$ are both uniformly integrable, then $\widetilde{\mathrm{Me}(\mathcal{X})_{n}}$ is a strongly consistent estimator of $\widetilde{\operatorname{Me}}(\mathcal{X})$ in ρ_{1}-sense (and hence in the sense of all the topologically equivalent metrics), i.e.

$$
\lim _{n \rightarrow \infty} \rho_{1}\left(\widehat{\operatorname{Me}(\mathcal{X})_{n}}, \widetilde{\operatorname{Me}}(\mathcal{X})\right)=0 \quad \text { a.s. }[P]
$$

Actually, the ρ_{1}^{φ}-convergence also holds.
Assume that φ is an absolutely continuous probability measure on $\left([0,1], \mathcal{B}_{[0,1]}\right)$ with positive mass function on $(0,1)$, and that for each $\alpha \in[0,1]$ the real-valued population medians $\operatorname{Me}\left(\operatorname{wabl}^{\varphi}(\mathcal{X})\right)$, $\operatorname{Me}\left(\operatorname{ldev}_{\mathcal{X}}^{\varphi}(\alpha)\right)$ and $\operatorname{Me}\left(\operatorname{rdev}_{\mathcal{X}}^{\varphi}(\alpha)\right)$ exist and they are actually unique. If $\widehat{\mathrm{M}^{\varphi}(\mathcal{X})_{n}}$ denotes the sample median corresponding to a simple random sample $\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ from \mathcal{X}, and the two sequences of the real-valued sample medians $\left\{\operatorname{Me}\left(\widehat{\operatorname{ldev}_{\mathcal{X}}^{\varphi}}(\alpha)\right)_{n}\right\}_{n}$ and $\left.\left\{\operatorname{Me} \widehat{\left(\operatorname{rdev}_{\mathcal{X}}^{\varphi}\right.}(\alpha)\right)_{n}\right\}_{n}$ as functions of α over $[0,1]$ are both uniformly integrable, then for each $\theta \in(0,1]$ the estimator $\widehat{\mathrm{M}^{\varphi}(\mathcal{X})_{n}}$ is strongly consistent in $\mathscr{D}_{\theta}^{\varphi}$-sense (and hence in the sense of all the topologically equivalent metrics), i.e.

$$
\left.\lim _{n \rightarrow \infty} \mathscr{D}_{\theta}^{\varphi}\left(\widehat{\mathrm{M}^{\varphi}(\mathcal{X}}\right)_{n}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)=0 \quad \text { a.s. }[P]
$$

Regarding robustness, to check it a suitable tool that makes immediate sense in the fuzzy number-valued setting is that of the finite sample breakdown point (fsbp for short), which is the minimum proportion of sample data which should be perturbed to get an arbitrarily large or small location estimator value. It has been proved that whereas the fsbp of the Aumann-type sample mean is $1 / n$, the one for the two extended medians equal $\left\lfloor\frac{n+1}{2}\right\rfloor / n$ where $\lfloor\cdot\rfloor$ denotes the floor function (which is the highest possible fsbp for location estimators).

Proposition 1.5.5. (Sinova et al. $[111,109])$ The finite sample breakdown point of the sample 1-norm median from a random fuzzy number $\mathcal{X}, \mathrm{fsbp}\left(\widehat{\operatorname{Me}(\mathcal{X})_{n}}, \widetilde{\mathbf{x}}_{n}, \rho_{1}\right)$, and the finite sample breakdown point of the sample φ-wabl/ldev/rdev median from a random fuzzy number $\mathcal{X}, \operatorname{fsbp}\left(\widehat{\mathrm{M}^{\varphi}(\mathcal{X})_{n}}, \widetilde{\mathbf{x}}_{n}, \mathscr{D}_{\theta}^{\varphi}\right)$, equal

$$
\left.\left.\operatorname{fsbp}(\widehat{\operatorname{Me}(\mathcal{X}})_{n}, \widetilde{\mathbf{x}}_{n}, \rho_{1}\right)=\operatorname{fsbp}\left(\widehat{\mathrm{M}^{\varphi}(\mathcal{X}}\right)_{n}, \widetilde{\mathbf{x}}_{n}, \mathscr{D}_{\theta}^{\varphi}\right)=\frac{1}{n} \cdot\left\lfloor\frac{n+1}{2}\right\rfloor .
$$

In contrast to what happens for the Aumann-type mean, the two preceding extended medians do not keep the data shape in general. More concretely, if one considers an $L R$-valued random fuzzy number for fixed invertible functions L and R, the 1-norm and φ-wabl/ldev/rdev medians are not necessarily $L R$-valued (see Sinova [105]).

At this point, one should notice that Sinova et al. [113], by particularizing and adapting some developments from Functional Data Analysis, have stated (robust) fuzzy M-estimates of location. These M-estimates include the two preceding medians as especial cases. Under rather general assumptions, which are not fulfilled by the 1 -norm and φ-wabl/ldev/rdev medians, M-estimates are given by some weighted averages of the sample fuzzy data (although weights should be obtained in an approximate way; in fact it has been suggested to approximate them by standard iteratively re-weighted least squares algorithms -see Sinova and Terán [116]-). As a consequence, if one considers an $L R$-valued random fuzzy number for fixed invertible functions L and R, the M-estimates fulfilling the above-mentioned assumptions are $L R$-valued, what is quite natural and makes several posterior statistical computations easier. Nevertheless, M-estimates cannot be guaranteed to be scale equivariant (not even absolute or squared).

Another recent approach (see Sinova et al. [107], Sinova [105], Sinova and Terán [116], Colubi and González-Rodríguez [19]) is that corresponding to the particularization from Functional Data Analysis of the trimmed means approach. Fuzzy trimmed means are given by the arithmetic means of some of the available sample data, so they also preserve the shape of the $L R$-valued fuzzy data for fixed invertible functions L and R. Furthermore, trimmed means are scale equivariant.

It has been proved, by means of their finite sample breakdown point, that the behaviour of these two alternatives is more robust than the one of the Aumann-type mean and coincides with the one for the 1 -norm and φ-wabl/ldev/rdev medians. In the comparative analysis in Sinova [105] and Sinova and Terán [116], it has been proved that fuzzy M-estimators of location are usually the most robust approach.

If the trimming proportion is 0.5 , fuzzy trimmed mean estimators are as robust as fuzzy M-estimators of location.

Along this work, we will not make use of the Functional Data Analysis-based but only of the ad hoc robust location estimates/measures. Of course, the use of the general M-estimates and trimmed means is left as an open direction.

1.6 Case studies to be analyzed in the work

The following two chapters, that will be motivated at the end of this one, and Section 1.8 will make use sometimes of three real-life examples. This section is to be devoted to present these examples in detail. They concern the application of the fuzzy rating and Likert (and, hence and if desired, the fuzzy linguistic) scales.

The three examples have a common guideline. They correspond to standard questionnaires in which most of items are traditionally assumed to be responded in accordance with Likert-type scales (4-point and 5-point ones). The novelty lies in the fact that items have been adapted to allow a double response type, namely the original Likert-type response and a fuzzy rating scale-based one. Although they have been mainly designed aiming to support the convenience of using fuzzy rating scales in this setting, by comparing statistical conclusions with Likert or fuzzy linguistic ones, they will also be considered to illustrate the measures/estimates introduced along the work as well as some results and other conclusions.

Example 1.6.1. (Sinova [105], Gil et al. [44], Lubiano et al. [75], Sinova et al. [113]) The first example is related to the well-known questionnaire TIMSS-PIRLS 2011 which is conducted on the population of Grade 4 students (i.e., nine to ten years old) and concerns their opinion and feeling on aspects regarding reading, math, and science. This questionnaire is rather standard and most of the involved questions have to be answered according to a 4-point Likert scale, responses being disagree a lot, disagree a little, agree a little, and agree a lot.

To get more expressive responses and informative conclusions, the original questionnaire form has been adapted to allow a double-type response: the original Likert and a fuzzy rating scale-based one with reference interval [0,10] (see Figure 1.8 for one of the items, and Pages 233 to 237 for the full paper-and-pencil form, and http://carleos.epv.uniovi.es:8080/ for the -Spanish- computerized form by Professor Carlos Carleos).

Mathematics in school

Items about mathematics

Item 11:
How much do you agree with this statement:
I like mathematics.
Answer:

■ values: $\operatorname{Tra}(2.5 \quad 3.75 \quad .6 .25,7.5$.
Return to original trapezium
Click to confirm response

Figure 1.8: Example of the double response paper-and-pencil (on the left) and computerized (on the right) form to an item in Example 1.6.1

The questionnaire involving these double response questions has been conducted in 2014 on a sample of 69 fourth grade students from Colegio San Ignacio (OviedoAsturias, Spain). These students have been distributed in accordance with (their usual) three groups, so that the teachers have decided that the 24 students in one of the three classrooms have to fill out the paper-and-pencil format and the 45 students from the other two groups have to complete the computerized version. To 'ease' the relationship between the two scales for these very young respondents, each numerically encoded Likert response has been superimposed upon the reference interval of the fuzzy rating scale part, as we can see in Figure 1.8.

The training of the students to let them know about the meaning and purpose of the case study, as well as the aim of the double response, has been carried out in up to 15 minutes, and three researchers from the Department of Statistics, OR and Math Teaching have been in charge of the explanation and conduction of the survey. At this point, it should be remarked that the students had no idea on the concept of real-valued functions and they have just learned that of a trapezium. With the guideline described in Pages 234 and 235, the students have not had understanding problems, they have catched the philosophy behind and they have been able to provide us with quite coherent responses in most of the cases. Actually, for all the questions, the number of 'no response"s has been very small and smaller for the fuzzy rating than for the Likert scale. In summary, the training has been surprisingly much easier and more effective than we had expected.

Datasets associated with responses to this questionnaire can be found in Tables A. 1 to A. 4 in the appendices section.

Example 1.6.2. (De la Rosa de Sáa et al. [27], Sinova et al. [110]) The second example is related to a typical restaurant customer satisfaction questionnaire which is usually conducted on the population of people of different ages and often showing a wide diversity in background, occupation, and so on. This type of questionnaires frequently involves items concerning quality of food and beverage, quality of service, and price; the items are assiduously to be answered according to a 5-point Likert scale where responses are STRONGLY DISAGREE, SOMEWHAT DISAGREE, NEUTRAL, somewhat agree, and strongly agree.

Figure 1.9: Excerpt of the questionnaire about the satisfaction with the quality of restaurants in Example 1.6.2

As for the first example, to get more expressive responses and informative conclusions, a standard paper-and-pencil questionnaire form has been adapted to allow the questions associated with intrinsically imprecise matters a double-type response: the above-mentioned 5 -point Likert and a fuzzy rating scale-based one with reference interval [0,100] (see Figure 1.9 for one of the items, and Pages 243 to 245 for the full form).

A sample of 70 people has been considered to fill this questionnaire. It has been conducted by students of a Master on Soft Computing and Intelligent Data Analysis delivered in Mieres (Asturias, Spain) in 2011-2012, and individuals in the sample have mainly corresponded to colleagues, friends and relatives of these students. The training of respondents has been certainly variable, mainly due to the fact that the background of these respondents is quite diverse. Anyway, this training has never lasted more than 15 minutes.

Datasets associated with responses to this questionnaire can be found in Tables B. 1 to B. 4 in the appendices section.

Example 1.6.3. (Colubi et al. [20], González-Rodríguez et al. [49]) By using an online (computerized) application, an experiment has been conducted online in which people have been asked for their perception of the relative length of different line segments with respect to a pattern longer one. The population has corresponded to people contacted for this purpose. People have participated online by providing with their perception of relative length for each of several line segments.

More concretely, on the center top of the screen the longest (pattern) line segment has been drawn in magenta. This segment is fixed for all the trials, so that there is always a reference for the maximum length. At each trial, a grey shorter line segment is generated and placed below the pattern one, parallel and without considering a concrete location (i.e., indenting or centering). For each respondent, line segments are generated at random, although to avoid the variation in the perception of different respondents can mainly be due to the variation in length of different generated segments, the (27 first) trials for two respondents refer to the same segments but appearing in different position.

Each of the perceptions can be doubly expressed, namely by choosing a label from a 5 -point Likert-like scale (VERY Small, Small, MEDiUm, LARGE, and VERY LARGE), and by using the fuzzy rating scale with reference interval $[0,100]$ so that they can be thought as imprecise percentages (see Figure 1.10 for a screen capture).

Figure 1.10: Example of a double response from the online application in Example 1.6.3

The online application explains the formalization and meaning of the fuzzy rating values (see Pages 251 and 252).

A sample of 25 respondents (all of them with a university scientific background and they have needed a minor training, mostly consisting of simply reading the instructions in Pages 251 and 252) has been contacted for this experiment, and they have supplied the responses in Tables C. 1 to C. 7 in the appendices section.

By looking at datasets in the three examples, gathered in Tables in Appendices A, B and C, it is quite clear that data from the computerized forms and experiments are frequently more detailed (i.e., they have more decimals) than the paper-and-pencil ones.

Remark 1.6.1. It should be emphasized that in Examples 1.6 .1 and 1.6 .2 the involved random variables to be observed/measured relate to intrinsically imprecisevalued magnitudes, and there is no underlying real-valued attribute. However, in Example 1.6.3 there is an underlying real-valued random variable (the exact relative length), that has been printed in grey in Tables C. 1 to C.7. It has been assumed that such an exact measurement has not been accessible to the respondent, but the available information would be only that of respondent's human perception, which is also intrinsically imprecise-valued. In the three examples the statistical analysis is to be referred to either the Likert or the fuzzy data, irrespectively of underlying (albeit unknown) real-valued data existing or not.

1.7 Generating fuzzy data for simulation studies

Simulation studies are to be considered along this work for two different purposes:

- to provide with a complementary view supporting some properties that can furthermore be theoretically supported by means of some formal tools,
- to show how some measures and procedures behave, mainly when it is not possible, feasible or necessary to develop general theoretical properties or conclusions.

A crucial thought at this stage is that, as it has already been commented in Page 28, there are not yet suitable realistic models for the distribution of random fuzzy numbers. This makes the simulation process a novel endeavor, especially in simulating outliers in this setting.

In this work, simulations are to be basically related to two simulation procedures. The first one can be seen as a kind of extension of the normal model, which plays a key role in robust developments with real-valued data. The second one has been inspired by real-life datasets in connection with fuzzy rating scale-based experiments.

To generate fuzzy data from an $L R$-valued random fuzzy number $\mathcal{X}=L R\left(\inf \mathcal{X}_{0}\right.$, $\inf \mathcal{X}_{1}, \sup \mathcal{X}_{1}, \sup \mathcal{X}_{0}$), Sinova et al. [111] suggest to use an alternative characterization, $\mathcal{X}=L R\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$, where

$$
\begin{gathered}
X_{1}=\operatorname{mid} \mathcal{X}_{1}=\left(\inf \mathcal{X}_{1}+\sup \mathcal{X}_{1}\right) / 2, \quad X_{2}=\operatorname{spr} \mathcal{X}_{1}=\left(\sup \mathcal{X}_{1}-\inf \mathcal{X}_{1}\right) / 2, \\
X_{3}=\operatorname{lspr} \mathcal{X}_{0}=\inf \mathcal{X}_{1}-\inf \mathcal{X}_{0}, \quad X_{4}=u s p r \mathcal{X}_{0}=\sup \mathcal{X}_{0}-\sup \mathcal{X}_{1}
\end{gathered}
$$

whence

$$
\mathcal{X}=L R\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle=L R\left(X_{1}-X_{2}-X_{3}, X_{1}-X_{2}, X_{1}+X_{2}, X_{1}+X_{2}+X_{4}\right) .
$$

In fact, irrespective of L and R, fuzzy data will be generated by simulating the four real-valued random variables X_{1}, X_{2}, X_{3} and X_{4} so that the $\mathbb{R} \times[0, \infty)$ $\times[0, \infty) \times[0, \infty)$-valued random vector $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ will provide us with the 4tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{1} / x_{2}=$ center/radius of the core, and $x_{3} / x_{4}=$ lower/upper spread of the fuzzy number. To each generated 4 -tuple ($x_{1}, x_{2}, x_{3}, x_{4}$) we associate the fuzzy number $L R\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$.

Figure 1.11: 4-Tuples to be generated for the simulation procedures

Most of the simulations to be considered will involve trapezoidal fuzzy numbers, but they could be similarly done with $L R$-fuzzy numbers with invertible L and R. The choice of the trapezoidal shape is justified by both the simplicity in computations and the conclusions from the discussion presented in the next section.

As we have announced before, the simulation developments have been carried out in two ways.

According to the FIRST SIMULATION PROCEDURE (1stSP), data have been generated from random fuzzy numbers with an unbounded reference set and showing a symmetrical behavior in what concerns the centers of their cores. Moreover, two different cases have been considered in this 1stSP. More concretely, and once fixed the L and R functions, data will be generated from a random vector ($X_{1}, X_{2}, X_{3}, X_{4}$) for which X_{1} is normally distributed in the two cases, $X_{1} \sim \mathcal{N}(0,1)$ and $X_{2}, X_{3}, X_{4} \sim \chi_{1}^{2}$ in Case 1, all of these variables being independent, whereas $X_{2}, X_{3}, X_{4} \sim 1 /\left(X_{1}^{2}\right.$ $+1)^{2}+0.1 \cdot \chi_{1}^{2}$ in Case 2 (see Sinova et al. [109], [111]).

However, although this model is appropriate for several discussions in the work, real-life examples scarcely support it. For most of the real-life examples one can consider, random fuzzy numbers make use of a bounded referential and the distribution of X_{1} is skewed. This motivates the use of an alternative model.

According to the SECOND SIMULATION PROCEDURE (2ndSP), data have been generated from random fuzzy numbers with a bounded reference set and abstracting and mimicking what we have observed in real-life examples employing the fuzzy rating scale. More concretely, fuzzy data have been generated so that

- 5% (or, more generally, $100 \cdot \omega_{1} \%$) of the data have been obtained by first considering a simulation from a simple random sample of size 4 from a beta $\beta(p, q)$ distribution, the ordered 4 -tuple, and finally computing the values of the x_{i}. The values of p and q vary in most of cases to cover six quite different distributions (namely symmetrical weighting central values like $p=q=1$, $p=q=2$, symmetrical weighting extreme values like $p=q=0.75$, and three types of asymmetric ones like $p=4>2=q, p=6>1=q$ and $p=6<q=10$, see Figure 1.12). In most of the comparative studies involving simulations, the values from the beta distribution are re-scaled and translated to an interval $\left[l_{0}, u_{0}\right]$ different from $[0,1]$.
- 35% (or, more generally, $100 \cdot \omega_{2} \%$) of the data have been obtained considering a simulation of four random variables $X_{i}=\left(u_{0}-l_{0}\right) \cdot Y_{i}+l_{0}$ as follows:

$$
\begin{aligned}
& Y_{1} \sim \beta(p, q), \\
& Y_{2} \sim \text { Uniform }\left[0, \min \left\{1 / 10, Y_{1}, 1-Y_{1}\right\}\right], \\
& Y_{3} \sim \text { Uniform }\left[0, \min \left\{1 / 5, Y_{1}-Y_{2}\right\}\right] \\
& Y_{4} \sim \text { Uniform }\left[0, \min \left\{1 / 5,1-Y_{1}-Y_{2}\right\}\right] .
\end{aligned}
$$

- 60% (or, more generally, $100 \cdot \omega_{3} \%$) of the data have been obtained considering a simulation of four random variables $X_{i}=\left(u_{0}-l_{0}\right) \cdot Y_{i}+l_{0}$ as follows:

$$
\begin{aligned}
Y_{1} & \sim \beta(p, q), \\
Y_{2} & \sim \begin{cases}\operatorname{Exp}(200) & \text { if } Y_{1} \in[0.25,0.75] \\
\operatorname{Exp}\left(100+4 Y_{1}\right) & \text { if } Y_{1}<0.25 \\
\operatorname{Exp}\left(500-4 Y_{1}\right) & \text { otherwise }\end{cases} \\
Y_{3} & \sim \begin{cases}\gamma(4,100) & \text { if } Y_{1}-Y_{2} \geq 0.25 \\
\gamma\left(4,100+4 Y_{1}\right) & \text { otherwise }\end{cases} \\
Y_{4} & \sim \begin{cases}\gamma(4,100) & \text { if } Y_{1}+Y_{2} \geq 0.25 \\
\gamma\left(4,500-4 Y_{1}\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Figure 1.12: Density functions of different $\operatorname{Beta}(p, q)$
which have been used in the comparative studies

1.8 Analyzing sensitivity of Fréchet's variance with respect to the shape of fuzzy data

For practical purposes, and to ease both the drawing and the computing processes, the fuzzy rating scale has been introduced assuming responses to be modeled by means of trapezoidal fuzzy numbers. Moreover, Pedrycz [89], Grzegorzewski [51, 52, 53], Grzegorzewski and Pasternak-Winiarska [54], Ban et al. [5], and others, have
provided with different arguments to employ trapezoidal (in particular, triangular) fuzzy numbers or approximations preserving ambiguity, expected interval, etc.

It should be highlighted that the assumption of the trapezoidal shape is not at all mandatory from a formal viewpoint, although computations could become more cumbersome for some other choices. In this section, we are going to show, by means of simulations and a real-life case study, that when fuzzy numbers are modelling imprecise data coming from random experiments and the dispersion of fuzzy datasets is summarized through their Fréchet-type variances, data shape is usually not relevant.

The discussion is carried out on the basis of the test about the equality of variances with fuzzy data developed by Ramos-Guajardo and Lubiano [95]. Both studies make use of the bootstrapped homoscedasticity test of k independent RFN's in Ramos-Guajardo and Lubiano [95], which is now algorithmically summarized. If $\mathcal{X}_{1}, \ldots, \mathcal{X}_{k}$ are independent RFN's, consider a sample of independent observations $\widetilde{\boldsymbol{x}}_{i}=\left(\widetilde{x}_{i 1}, \ldots, \widetilde{x}_{i n_{i}}\right)$ from $\mathcal{X}_{i}, i=1, \ldots, k$, the k samples being also independent, with $n=n_{1}+\ldots+n_{k}$. Denote $\widetilde{\widetilde{\boldsymbol{x}}_{i}}=\frac{1}{n_{i}} \cdot\left(\widetilde{x}_{i 1}+\ldots+\widetilde{x}_{i n_{i}}\right)$ the sample Aumann-type mean for $\widetilde{\boldsymbol{x}}_{\boldsymbol{i}}, S_{\widetilde{\boldsymbol{x}}_{i}}^{2}=\sum_{j=1}^{n_{i}}\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{i j}, \widetilde{\boldsymbol{x}}_{i}\right)\right]^{2} / n_{i}$ the sample Fréchet-type variance for $\widetilde{\boldsymbol{x}}_{\boldsymbol{i}}$, and $\overline{S_{\widetilde{\boldsymbol{x}}}^{2}}=\sum_{i=1}^{k} n_{i} \cdot S_{\widetilde{\boldsymbol{x}}_{i}}^{2} / n$.

Then, for fixed arbitrary θ and φ, the bootstrapped algorithm to test the null hypothesis $H_{0}: \sigma_{\mathcal{X}_{1}}^{2}=\ldots=\sigma_{\mathcal{X}_{k}}^{2}$ proceeds as follows:
Step 1. Compute the value of the statistic

$$
T_{n_{1}, \ldots, n_{k}}=\frac{\sum_{i=1}^{k} n_{i}\left(S_{\widetilde{x}_{i}}^{2}-\overline{S_{\widetilde{x}}^{2}}\right)^{2}}{\sum_{i=1}^{k} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}}\left(\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{i j}, \widetilde{\widetilde{x}}_{i}\right)\right]^{2}-S_{\widetilde{x}_{i}}^{2}\right)^{2}}
$$

Step 2. For each $i \in\{1, \ldots, k\}$, obtain a bootstrap sample from $\left(\widetilde{x}_{i 1} \cdot \sqrt{\overline{S_{\tilde{\boldsymbol{x}}}^{2}} / S_{\widetilde{x}_{i}}^{2}}, \ldots\right.$, $\left.\widetilde{x}_{i n_{i}} \cdot \sqrt{\overline{S_{\widetilde{\boldsymbol{x}}}^{2}} / S_{\widetilde{\boldsymbol{x}}_{i}}^{2}}\right), \widetilde{\boldsymbol{x}}_{i}^{*}=\left(\widetilde{x}_{i 1}^{*}, \ldots, \widetilde{x}_{i n_{i}}^{*}\right)$, and compute the value of the bootstrap statistic

$$
T_{n_{1}, \ldots, n_{k}}^{*}=\frac{\sum_{i=1}^{k} n_{i}\left(S_{\widetilde{x}_{i}^{*}}^{2}-\overline{S_{\widetilde{x}^{*}}}\right)^{2}}{\sum_{i=1}^{k} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}}\left(\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{i j}^{*}, \overline{\widetilde{x}_{i}^{*}}\right)\right]^{2}-S_{\widetilde{x}_{i}^{*}}^{2}\right)^{2}}
$$

Step 3. Step 2 should be repeated a large number B of times to get a set of estimates, denoted by $\left\{t_{1}^{*}, \ldots, t_{B}^{*}\right\}$.

Step 4. Compute the bootstrap p-value as the proportion of values in $\left\{t_{1}^{*}, \ldots, t_{B}^{*}\right\}$ being greater than $T_{n_{1}, \ldots, n_{k}}$.

1.8.1 Simulations-based comparative analysis

The preceding k-sample algorithm is to be particularized to $k=2$ aiming to test whether the population variances of trapezoidal- and $L U$-valued random fuzzy numbers can be considered or not as significantly different, where $L U \in\left\{\Pi, L U_{1 A}, L U_{1 B}\right.$, $L U_{2 A}, L U_{2 B}$, Tri, TriS\}. The scheme of the simulations-based analysis for an arbitrary choice of $L U \in\left\{\Pi, L U_{1 A}, L U_{1 B}, L U_{2 A}, L U_{2 B}\right.$, Tri, TriS $\}$ is as follows:
$\boldsymbol{S . 1 .}$ A sample of 4 -tuples, $\left\{\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right)\right\}_{i=1}^{n}$, is generated by the selected simulation procedure (either 1stSP or 2ndSP). To each of the 4 -tuples we can associate two samples of size n of fuzzy data, $\left\{\operatorname{Tra}\left\langle x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right\rangle\right\}_{i=1}^{n}$ and $\left\{L U\left\langle x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right\rangle\right\}_{i=1}^{n}$. Then, to test the null hypothesis

$$
H_{0}: \sigma_{\operatorname{Tra}\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle}^{2}=\sigma_{L U\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle}^{2}
$$

on the basis of the two (treated as independent) ${ }^{1}$ samples

$$
\begin{aligned}
& \left(\operatorname{Tr}\left\langle x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}, x_{4}^{(1)}\right\rangle, \ldots, \operatorname{Tra}\left\langle x_{1}^{(n)}, x_{2}^{(n)}, x_{3}^{(n)}, x_{4}^{(n)}\right\rangle\right) \\
& \left(L U\left\langle x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}, x_{4}^{(1)}\right\rangle, \ldots, L U\left\langle x_{1}^{(n)}, x_{2}^{(n)}, x_{3}^{(n)}, x_{4}^{(n)}\right\rangle\right),
\end{aligned}
$$

the value of the statistic $T_{n, n}$ in the preceding Step 1 is computed.
S.2. For each of the two samples (in this step viewed as the bootstrap populations), obtain a sample of n independent observations and compute the value of the bootstrap statistic $T_{n, n}^{*}$ in the preceding Step 2.
$\boldsymbol{S} .3$. Repeat 1000 times $\boldsymbol{S} .2$ to get a set of statistic values, $\left\{t_{1}^{*}, \ldots, t_{1000}^{*}\right\}$.
\boldsymbol{S}.4. Compute the bootstrap p-value as the proportion of values in $\left\{t_{1}^{*}, \ldots, t_{1000}^{*}\right\}$ being greater than the value of $T_{n, n}$.

Table 1.4 shows the p-values obtained when the above-described analysis is repeated 30 times, for $\theta=1 / 3$ and $\varphi=\ell$, and simulations are performed in accordance with procedure 1stSP-Case 1. For Case 2 similar conclusions would be achieved.

The obtained p-values indicate that there are no significant differences between population Fréchet's variances for

[^0]- most of the significance levels one can consider,
- almost all the generated samples
- and all the seven developed comparisons.

Table 1.4: Simulation (1stSP)-based bootstrapped two-sample test p-values for the equality of population Fréchet's variances $(\theta=1 / 3)$ of trapezoidal $v s$ other $L U$'s RFN's in 30 simulations of samples of size $n=10 \mid n=100$

$\theta=1 / 3(n=10 \mid n=100)$	Tra vs Π	Tra vs	$L U_{1 A}$	Tra vs	$L U_{1 B}$	Tra vs $L U_{2 A}$	Tra vs $L U_{2 B}$	Tra vs Tri	Tra vs TriS	
Sample 1	0.935 \| 0.898	1.000	0.680	0.878	0.845	0.957 \| 0.898	$0.880 \mid 0.800$	0.099 \| 0.376	0.569 \| 0.434	
Sample 2	0.960 \| 0.832	0.838	0.917	0.765	0.672	0.954\|0.872	$0.744 \mid 0.651$	0.913 \| 0.199	0.715\|0.347	
Sample 3	0.956 \| 0.921	0.814	0.875	0.836	0.768	0.978\| 0.970	0.785 \| 0.776	0.682\|0.204	0.546\|0.883	
Sample 4	0.981 \| 0.912	0.901	0.933	0.917	0.783	0.964\|0.957	0.898\| 0.759	0.561 \| 0.126	0.584\|0.958	
Sample 5	0.908 \| 0.823	0.732	0.936	0.640	0.724	0.866 \| 0.886	0.599 \| 0.708	0.686 \| 0.204	0.489 \| 0.580	
Sample 6	0.981 \| 0.904	0.919	0.903	0.857	0.867	0.989 \| 0.941	0.850 \| 0.880	0.510 \| 0.125	0.719 \| 0.783	
Sample 7	0.734 \| 0.854	0.585	0.968	0.557	0.542	0.796\|0.932	0.605 \| 0.493	0.885 \| 0.323	0.626\|0.277	
Sample 8	0.901 \| 0.893	0.938	0.970	0.644	0.843	0.904 \| 0.913	0.640 \| 0.831	0.479 \| 0.263	0.363 \| 0.926	
Sample 9	0.987 \| 0.869	0.963	1.000	0.949	0.608	0.988\|0.915	0.931\|0.559	0.965 \| 0.246	0.711\|0.372	
Sample 10	0.987 \| 0.877	0.900	0.855	0.935	0.733	0.999 \| 0.897	0.942\|0.726	0.623 \| 0.174	0.634\|0.903	
Sample 11	0.713 \| 0.900	0.449	0.782	0.394	0.781	0.677\|0.935	0.377\| 0.742	0.659 \| 0.356	0.188\| 0.535	
Sample 12	0.947 \| 0.827	0.634	0.760	0.995	0.740	0.968\|0.889	0.992 \| 0.669	0.656\|0.342	0.832\|0.227	
Sample 13	0.975 \| 0.929	0.710	0.963	0.944	0.864	0.969 \| 0.944	0.949 \| 0.849	0.390 \| 0.275	0.962 \| 0.866	
Sample 14	0.962 \| 0.860	0.976	0.858	0.813	0.635	0.963\|0.913	0.771\|0.616	0.727\|0.234	0.580\|0.470	
Sample 15	0.995 \| 0.931	0.949	0.891	0.931	0.827	0.992 \| 0.926	0.939 \| 0.811	0.507 \| 0.236	0.545 \| 0.846	
Sample 16	0.979 \| 0.954	0.946	0.913	0.870	0.893	0.975 \| 0.971	0.820 \| 0.893	0.694\|0.200	0.867 \| 0.956	
Sample 17	0.954\|0.894	0.958	0.995	0.985	0.700	0.977\|0.930	1.000\|0.673	0.851 \| 0.095	0.902\|0.697	
Sample 18	0.965 \| 0.819	0.859	0.971	0.992	0.580	0.980\|0.852	0.984\|0.561	0.630 \| 0.348	0.896\|0.321	
Sample 19	0.985 \| 0.836	0.798	0.710	0.993	0.628	0.970\|0.916	0.973 \| 0.600	0.552\|0.318	0.955 \| 0.187	
Sample 20	0.955 \| 0.912	0.790	0.874	0.885	0.615	0.974\|0.891	0.859 \| 0.517	0.845 \| 0.322	0.672\|0.418	
Sample 21	0.954 \| 0.889	0.984	0.904	0.885	0.659	0.963\|0.909	$0.882 \mid 0.609$	0.719 \| 0.246	0.991\|0.397	
Sample 22	0.795 \| 0.903	0.538	0.907	0.484	0.634	$0.752 \mid 0.906$	0.509 \| 0.591	0.703 \| 0.273	0.368 \| 0.724	
Sample 23	0.968 \| 0.916	0.858	0.897	0.932	0.664	0.945 \| 0.896	0.910 \| 0.623	0.809 \| 0.559	0.705 \| 0.259	
Sample 24	0.912 \| 0.941	0.849	0.901	0.904	0.872	0.926 \| 0.952	0.874\|0.870	0.853 \| 0.214	0.392 \| 0.937	
Sample 25	0.870\|0.923	0.697	0.936	0.710	0.826	0.949\|0.963	0.730\|0.789	0.568\|0.219	0.470 \| 0.831	
Sample 26	0.935 \| 0.921	0.719	0.832	0.618	0.658	0.887 \| 0.943	0.518\|0.596	0.506\|0.251	0.608\|0.841	
Sample 27	0.935 \| 0.804	0.876	0.800	0.850	0.693	0.949 \| 0.903	0.840 \| 0.672	0.712 \| 0.409	0.521\|0.219	
Sample 28	0.972 \| 0.926	0.922	0.917	0.976	0.708	0.951\|0.924	0.963 \| 0.603	0.836\|0.320	0.841 0.524	
Sample 29	0.938 \| 0.871	0.966	0.885	0.855	0.570	0.992\|0.898	0.799 \| 0.473	0.905 \| 0.517	(1) $0.562 \mid 0.374$	
Sample 30	0.921\|0.882	0.980	0.926	0.761	0.696	0.896\|0.941	0.717\|0.693	$\|0.896\| 0.327 \mid$	\| 0.463	0.503

When the compared Fréchet's variances correspond to other values of $\theta \in(0,1]$, conclusions are very close. In fact, for all the considered trials we have only found occasionally some significant differences between trapezoidal and triangular shapes (which, actually, share the support but not the core) for $n=100$ and $\theta=10$. It should be emphasized that this choice for θ is not usual, although it is possible (i.e., the corresponding D_{θ}^{φ} makes sense as a distance, but it is not equivalent to a Bertoluzza et al.'s metric, as originally formalized). Because of the weighting role played by θ in the metric, the greater its value the greater the weight for difference in shape, what certainly affects the statistical conclusions.

Table 1.5 illustrates these comments by collecting the average (over the corresponding 30 samples) p-values for $\theta=1 / 3,1$ and 10 .

Table 1.5: Simulation (1stSP)-based bootstrapped two-sample test average p-values for the equality of population Fréchet's variances ($\theta=1 / 3, \theta=1, \theta=10$) of trapezoidal v s other $L U$'s RFN's over 30 simulations of samples of size $n=10 \mid n=100$

$\theta=1 / 3(n=10 \mid n=100)$	$0.932 \mid 0.887$	$0.835 \mid 0.889$	$0.825 \mid 0.721$	$0.935 \mid 0.919$	$0.809 \mid 0.688$	$0.681 \mid 0.277$
$0.643 \mid 0.587$						

 $\overline{7} \theta=10(n=10 \mid n=100)| | 0.950|0.955||0.860| 0.958| | 0.836|0.840||0.954| 0.966| | 0.826|0.869||0.427| 0.075| | 0.467 \mid 0.095$

Table 1.6 shows the p-values obtained when the above-described analysis is repeated 30 times, for $\theta=1 / 3$ and $\varphi=\ell$, and simulations are performed in accordance with procedure 2ndSP.

Table 1.6: Simulation (2ndSP)-based bootstrapped two-sample test p-values for the equality of population Fréchet's variances $(\theta=1 / 3)$ of trapezoidal $v s$ other $L U$'s RFN's in 30 simulations of samples of size $n=10 \mid n=100$

$\theta=1 / 3(n=10 \mid n=100)$	Tra vs Π	Tra vs $L U_{1 A}$	Tra vs $L U_{1 B}$	Tra vs $L U_{2 A}$	Tra vs $L U_{2 B}$	Tra vs Tri	Tra vs TriS			
Sample 1	0.999 \| 0.996	0.983 \| 0.946	0.999 \| 0.971	0.999 \| 0.996	0.992 \| 0.954	0.997 \| 0.957	0.936 \| 0.727			
Sample 2	$0.997 \mid 0.990$	0.974 \| 0.999	0.954\|0.934	$1.000 \mid 1.000$	0.943 \| 0.909	0.992 \| 0.974	0.893 \| 0.686			
Sample 3	$1.000 \mid 0.990$	0.965 \| 0.928	0.992 \| 0.962	0.997 \| 0.993	0.989 \| 0.948	0.999 \| 0.984	0.912\|0.706			
Sample 4	0.996 \| 0.988	0.985 \| 0.905	0.933 \| 0.983	0.996 \| 0.986	0.922\|0.962	0.988 \| 0.967	0.824\|0.707			
Sample 5	0.998 \| 0.981	0.998 \| 0.896	0.983 \| 0.979	$1.000 \mid 0.987$	0.978 \| 0.957	$0.995 \mid 0.970$	0.923 \| 0.678			
Sample 6	0.995 \| 0.992	0.957\|0.996	0.975 \| 0.927	0.998 \| 0.987	0.983\|0.903	0.997 \| 0.970	0.981\|0.774			
Sample 7	0.997 \| 0.990	0.937 \| 0.960	0.971 \| 0.935	0.994 \| 0.992	0.979 \| 0.895	0.988 \| 0.965	0.957 \| 0.635			
Sample 8	0.998 \| 0.994	0.962\|0.977	0.990 \| 0.914	0.997 \| 0.998	0.982\|0.902	0.991 \| 0.971	0.991 \| 0.650			
Sample 9	0.998 \| 0.995	0.986 \| 0.994	0.987 \| 0.939	0.998 \| 0.997	0.969 \| 0.918	0.987 \| 0.978	0.854\|0.775			
Sample 10	0.999 \| 0.992	0.958\|0.985	0.986 \| 0.952	0.997 \| 0.995	0.988\|0.951	1.000 \| 0.992	0.964\|0.872			
Sample 11	0.998 \| 0.985	0.967\|0.943	0.946\|0.951	0.998\|0.993	0.941\|0.928	0.990 \| 0.976	0.896\|0.721			
Sample 12	0.998 \| 0.992	0.980 \| 0.988	0.992\|0.947	0.996\|0.996	0.985 \| 0.951	0.985 \| 0.980	0.936 \| 0.799			
Sample 13	0.995 \| 0.985	0.994\|0.976	1.000 \| 0.933	0.999 \| 0.999	0.995 \| 0.920	$0.993 \mid 0.971$	0.993\|0.715			
Sample 14	1.000 \| 0.991	0.988 \| 0.988	0.977 \| 0.947	0.997 \| 0.997	0.970 \| 0.946	0.992 \| 0.982	0.897 \| 0.805			
Sample 15	0.998 \| 0.998	0.953 \| 0.960	0.952 \| 0.974	0.998 \| 0.992	0.935 \| 0.954	0.993 \| 0.981	0.931\|0.778			
Sample 16	0.996 \| 0.997	0.980 \| 0.950	0.965 \| 0.956	0.996 \| 0.992	0.944 \| 0.948	0.995 \| 0.958	0.809 \| 0.719			
Sample 17	0.998 \| 0.988	0.958\|0.973	0.941 \| 0.945	0.999 \| 0.998	0.928\|0.906	0.994\|0.975	0.899 \| 0.737			
Sample 18	0.998 \| 0.990	$0.992 \mid 0.995$	0.968 \| 0.924	0.998\|0.995	0.963\|0.901	0.999 \| 0.971	0.864 \| 0.698			
Sample 19	0.998 \| 0.990	0.944\|0.982	0.993 \| 0.936	0.991\|0.997	0.999 \| 0.916	0.995 \| 0.984	0.908\|0.735			
Sample 20	0.999 \| 0.992	0.990 \| 0.935	0.992 \| 0.868	0.999 \| 0.997	0.990\|0.820	0.990 \| 0.975	0.951\|0.713			
Sample 21	1.000 \| 0.988	0.974\|0.958	0.944\|0.968	0.999 \| 0.994	0.918\|0.953	0.998 \| 0.947	0.823 \| 0.755			
Sample 22	$1.000 \mid 0.993$	0.997 \| 0.962	0.965 \| 0.937	0.998 \| 0.999	0.958\|0.902	0.993 \| 0.988	0.904 \| 0.806			
Sample 23	1.000 \| 0.988	0.977\|0.976	0.970 \| 0.944	0.996 \| 1.000	0.951\|0.918	0.988\|0.973	0.933 \| 0.773			
Sample 24	0.999 \| 0.994	0.958\| 0.976	0.985 \| 0.967	0.995 \| 0.995	0.977 \| 0.954	0.989 \| 0.969	0.984\|0.826			
Sample 25	1.000 \| 0.991	0.998 \| 0.994	0.990 \| 0.943	1.000 \| 0.999	0.990\|0.918	0.992 \| 0.977	0.955 \| 0.730			
Sample 26	0.999 \| 0.985	1.000 \| 0.968	0.991\|0.974	0.997 \| 0.998	\|0.996	0.953	0.997 \| 0.952	0.984\|0.758		
Sample 27	0.999 \| 0.993	0.993 \| 0.991	0.998 \| 0.924	0.998\|0.995	0.997\|0.901	0.998 \| 0.988	0.974\|0.728			
Sample 28	0.997 \| 0.989	0.994\|0.931	0.979 \| 0.941	1.000\|0.985	0.983\|0.918	0.993 \| 0.978	0.958\|0.654			
Sample 29	0.999 \| 0.996	0.991\|0.945	0.952 \| 0.959	0.997\|0.986	0.959 \| 0.941	0.983 \| 0.986	0.856\|0.700			
Sample 30	\|0.998	0.996	0.992 \| 0.980	\| 1.000	0.969	\| 0.998	0.997	1.000 \| 0.951	0.987 \| 0.978	0.994 \| 0.806

The obtained p-values indicate, even more conclusively than for the 1 stSP , that there are no significant differences between population Fréchet's variances for

- almost all the significance levels one can consider,
- all the generated samples
- and all the seven developed comparisons.

When the compared Fréchet's variances correspond to other values of $\theta \in(0,1]$, conclusions are very close. In fact, for all the considered trials we have only found a significant difference between trapezoidal and triangular symmetric shapes for n $=100$ and $\theta=10$.

Table 1.7 illustrates these comments by collecting the average (over the corresponding 30 samples) p-values for $\theta=1 / 3,1$ and 10 .

Table 1.7: Simulation (2ndSP)-based bootstrapped two-sample test average p-values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$ of trapezoidal vs other $L U$'s RFN's over 30 simulations of samples of size $n=10 \mid n=100$

average p-values	Tra vs Π	\mid Tra vs $L U_{1 A} \mid$	Tra vs	$L U_{1 B}$	Tra v	$L U_{2 A}$	Tra vs	$L U_{2 B}$	Tra v	s Tri	Tra vs TriS				
$\theta=1 / 3(n=10 \mid n=100)$	0.998\|0.991	0.978 \| 0.965	0.976	0.947	0.998	0.995	0.970	0.927	0.993	0.974	0.923	0.739			
$\theta=1(n=10 \mid n=100)$	0.997 \| 0.985	0.978 \| 0.965	0.976	0.969	0.997	0.994	0.972	0.953	0.979	0.920	0.911	0.684			
$\theta=10(n=10 \mid n=100)$	\|0.982	0.923		\| 0.953	$0.926 \mid$	0.957	0.766	0.986	0.933	0.951	0.737	0.814	0.411	0.747	0.280

1.8.2 Case study-based comparative analysis

The analysis in Subsection 1.8.1 is carried out aiming to test the influence of the shape of fuzzy data on the Fréchet variance. By means of some of the data in Example 1.6.1, this subsection follows two different comparative approaches. More concretely, this subsection is first devoted to compare the p-values of two-sample and k-sample test about the equality of variances for different choices of the shape.

Table 1.8 gathers the p-values of the two-sample test about the equality of variances on the basis of the fuzzy rating scale responses to Item M.2 in Example 1.6.1 when the two considered populations are 'boys' and 'girls' (see Pages 238 and 240), when the 4 -tuples are associated not only with trapezoidal fuzzy numbers (as it has actually been made) but also with other $L U^{\prime}$'s. The p-values have been computed for $\theta=1 / 3,1$ and 10 .

Table 1.8: p-Values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$ of boys' and girls' $L U$'s responses to Item M. 2 in Example 1.6.1, depending on the considered shape

	Tra	п	$L U_{1 A}$	$L L^{\prime}$	$L L^{2}$	$L U_{2 B}$	Tri	Tri
$\theta=1 / 3$	0.416	0.478	0.539	0.466	0.473	0.456	0.466	0.39
$\theta=1$	0.414	0.443	0.512	0.4	0.46	0.	0.450	

For the usually selected significance levels (those being lower than 0.25), there are no significant differences between boys and girls in responding to $M .2$, irrespectively of the considered shape of fuzzy data and even of the choice of θ.

Table 1.9 gathers the p-values of the two-sample test about the equality of variances on the basis of the fuzzy rating scale responses to Item M.2 in Example 1.6.1 when the two considered populations are 'paper-and-pencil' and 'computerized' form (see Pages 238 and 240), when the 4 -tuples are associated with several $L U$-valued fuzzy numbers. The p-values have been computed for $\theta=1 / 3,1$ and 10 .

Table 1.9: p-Values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$ of 'paper-and-pencil' and 'computerized' form's $L U$'s responses to Item M.2 in Example 1.6.1, depending on the considered shape

p-values	Tra	Π	$L U_{1 A}$	$L U_{1 B}$	$L U_{2 A}$	$L U_{2 B}$	Tri	TriS
$\theta=1 / 3$	0.215	0.220	0.239	0.217	0.233	0.198	0.234	0.190
$\theta=1$	0.149	0.166	0.186	0.165	0.161	0.165	0.184	0.161
$\theta=10$	0.014	0.017	0.017	0.017	0.009	0.013	0.033	0.030

In this second situation, the effect of the choice of $\theta \in(0,1]$ is not very relevant, but it is for $\theta \gg 1$ (a rather rare choice, since it does not seem highly recommended for a dispersion measure to weigh 'difference in shape' more than 'difference in location'). Anyway, statistical conclusions scarcely depend on the considered shape of fuzzy data.

Table 1.10 gathers the p-values of the four-sample test about the equality of variances on the basis of the fuzzy rating scale responses to Item M. 2 in Example 1.6.1 when the four considered populations are four groups of students based on their 'mark taken in the last examination of math' (see M4, Page 240) given by $\boldsymbol{G} \mathbf{1}=[0,6], \boldsymbol{G} \mathbf{2}=(6,8], \boldsymbol{G} \mathbf{3}=(8,9]$ and $\boldsymbol{G 4}=(9,10]$, according to the usual range $[0,10]$ which is considered in Spain. The p-values have been computed for $\theta=1 / 3,1$ and 10 , when the 4 -tuples are associated with several $L U$-valued fuzzy numbers.

Table 1.10: p-Values for the equality of population Fréchet's variances $(\theta=1 / 3, \theta=1, \theta=10)$ of the four groups, $\boldsymbol{G} \mathbf{1}$ to $\boldsymbol{G 4}, L U^{\prime}$'s responses to Item $M .2$ in Example 1.6.1, depending on the considered shape

p-values	Tra	Π	$L U_{1 A}$	$L U_{1 B}$	$L U_{2 A}$	$L U_{2 B}$	Tri
TriS							
$\theta=1 / 3$	0.270	0.255	0.255	0.282	0.263	0.275	0.247
$\theta=1$	0.258	0.260	0.274	0.239	0.247	0.268	0.251
$\theta=10$	0.157	0.156	0.130	0.177	0.157	0.171	0.201
0							

Once more, in this third situation statistical conclusions scarcely depend on the considered shape of fuzzy data.

A second way to analyze the influence of the shape of fuzzy data by means of the real-life Example 1.6.1, is to compare by means of the two-sample test about the equality of variances trapezoidal data vs other $L U$ data in the responses to Item M. 2 for different populations involved in the preceding tables in this subsection.

Table 1.11 collects the corresponding p-values for $\theta=1 / 3$.

Table 1.11: p-Values for the equality of population Fréchet's variances $(\theta=1 / 3)$ of trapezoidal $v s$ other $L U$'s responses for populations in Tables 1.8, 1.9 and 1.10

p-values	Tra vs Π	Tra vs $L U_{1 A}$	Tra vs $L U_{1 B}$	Tra vs $L U_{2 A}$	Tra vs $L U_{2 B}$	Tra vs Tri	Tra vs TriS
Boys	0.998	0.909	0.916	0.994	0.902	0.970	0.897
Girls	1.000	0.974	0.951	0.998	0.940	0.972	0.843
Paper-and-pencil	0.997	0.998	0.964	0.997	0.938	0.994	0.890
Computerized form	0.995	0.902	0.914	0.992	0.901	0.961	0.852
G1	0.991	0.866	0.923	0.980	0.904	0.832	0.820
$G \mathbf{Z 2}$	0.997	0.922	0.927	0.995	0.920	0.978	0.923
$G \mathbf{G}$	1.000	0.979	0.949	0.998	0.949	0.986	0.927
$G \mathbf{4}$	0.996	0.999	0.975	0.995	0.968	0.986	0.917

The conclusions from the last table are similar to those in the simulations studies following the procedure 2ndSP: there are no significant differences between population Fréchet's variances for almost all the significance levels one can consider and all the seven developed comparisons.

1.9 Concluding remarks of this chapter

This chapter has presented the ideas motivating the interest of fuzzy scales to deal with intrinsically imprecise magnitudes as well as the preliminary and supporting concepts and results corresponding to fuzzy data. In recalling the basic models and tools to formalize and handle these data in a probabilistic/statistical setting, the need for robust measures/estimates of location of fuzzy datasets has been reviewed. Furthermore, simulations-based and case study-based discussions on the sensitivity of the usual summary dispersion measure (the Fréchet-type variance or the corresponding standard deviation) w.r.t. the shape of fuzzy data have been carried out to conclude that the shape is not relevant in general.

These preliminaries lead to consider two immediate open directions, that will be dealt with in next two chapters and are now briefly motivated.

1.9.1 Motivating the need for robust measures alternative to the Fréchet-type variance

As it has already been commented, the Fréchet-type variance, and hence the standard deviation, of an RFN preserves the main valuable properties of the variance, respectively the standard deviation, of real-valued random variables, but it also inherits its high sensitivity to the presence of outliers, data changes or asymmetries. Actually, the presence of outliers, data changes, etc., can affect the Fréchet-type variance even more than the Aumann-type mean.

To empirically corroborate this assertion, one can consider, for instance, the dataset of 23 FRS-based responses to Item M.2 in Example 1.6.1 for students who have filled out the paper-and-pencil form (see Figure 1.13), denoted by $\widetilde{\mathbf{x}}_{23}$.

Figure 1.13: FRS responses to Item M. 2
by students who have filled out the paper-and-pencil form

If we consider the metric ρ_{2}, then $S_{\widetilde{\mathbf{x}}_{23}}=1.69$.
If the fuzzy datum on the left of Figure 1.13 (an evident outlier of the sample) is removed and the reduced sample is denoted by $\widetilde{\mathbf{x}}_{22}$, then we get $S_{\widetilde{\mathbf{x}}_{22}}=1.29$.

This fact motivates the development of a study on the robust measurement/ estimation of scale or dispersion in the setting of random fuzzy numbers. Actually, this will be the objective of Chapter 2 in this work.

1.9.2 Motivating the interest of comparing statistical conclusions for different scales of measurement from a dispersion perspective

The interest of the fuzzy scales to rate intrinsically imprecise magnitudes has been argued in Subsection 1.2.2. It is intuitively obvious that the use of fuzzy rating scales provides with a much richer and diverse information than Likert-type or fuzzy linguistic ones. This results in more accurate statistical conclusions, sometimes differing importantly from the conclusions drawn from Likert or fuzzy linguistic.

In previous studies (see Gil et al. [44], Lubiano et al. [78, 75]) we have confirmed the preceding comments mainly from the location perspective. Nevertheless, differences can often be clearer from the dispersion perspective. This is mainly due to the fact that many values or responses matching for the Likert-type or fuzzy linguistic scales (and hence showing no dispersion) do not match at all for the fuzzy rating scale (and hence showing a certain dispersion).

To support and illustrate this last assertion, one can consider a combined graphical display of the double response to Item M.2 in Example 1.6.1 for which the Likert scale-based response chosen by four students has corresponded to disagree A Little, and the fuzzy rating scale-based responses for the same students have been definitely different (see Figure 1.14).

Figure 1.14: Example of 4 double responses to Item M. 2 for which the Likert-type ones coincide while the fuzzy rating scale-type clearly differ

Of course the sample standard deviation for the four Likert data (or their fuzzy linguistic counterpart) equals 0 , whereas the one for the four FRS-based data

$$
\begin{gathered}
\operatorname{Tra}(1.75,2.5,3.675,3.675), \operatorname{Tra}(3,3,3.45,4), \\
\operatorname{Tra}(2.5,3.75,3.9,5.45), \operatorname{Tra}(3.5,3.55,6.25,7.5),
\end{gathered}
$$

and considering ρ_{2} as the involved metric, equals 1 .
Chapter 3 in this work aims to enter in more detail a comparative statistical analysis between the three scales, Likert or numerically encoded Likert, fuzzy linguistic and fuzzy rating, from a dispersion perspective. More concretely, the purpose is that of corroborating that statistical results often vary with the employed scale of rating.

Chapter 2

Robust scale measures in dealing with fuzzy data

In summarizing the distribution of an RFN, two key aspects are usually taken into account: the measurement of the central tendency or location and the measurement of the dispersion or scale. Whereas the former constitutes fuzzy-valued summary indicators, the latter refers to real-valued summary measurements.

In the previous chapter, it has already been introduced the most commonly used location measure in dealing with fuzzy-valued data: the Aumann-type mean, which inherits from the real case its high sensitivity to the presence of atypical observations in the data. Morever, the 1 -norm median and φ-wabl/ldev/rdev median have also been recalled as good alternatives to the Aumann-type mean because of their good robust behaviour.

However, in this work we are focussing on the study of the dispersion or scale measurement for fuzzy-valued data. The estimators of scale, in addition to summarize and inform about the distribution of a random element, can be used for many other purposes, like for instance, as auxiliary estimates for location, as objective functions in regression or multivariate analysis, as a basis to formulate rules to detect outliers and so on. Therefore, although there is less literature on robust estimation of scale than on robust estimation of location, scale estimators are very important in practice.

The Fréchet-type variance (or standard deviation) is the best known and used dispersion measure, despite the fact that it is a measure highly influenced by the outliers, as previously illustrated in Subsection 1.9.1. It is for that reason that the purpose of this chapter consists of looking for other estimators of scale that are
resistant to the presence of extreme/atypical observations among the data, that is, estimators with a good robust behaviour.

In Section 2.1, several measures of scale to deal with real-valued data are extended to deal with fuzzy-valued data. Some of them are location-free estimators whereas others are location-based estimators, that is, there is an estimator of location in their expression that needs to be computed first.

Section 2.2 is devoted to the study of some of the main properties of these measures, such as certain in/equi-variances and the strong consistency. The robustness, a highly important and valuable property of an estimator which makes it insensitive to the influence of atypical observations among the data, is proved in Section 2.3 by means of the finite sample breakdown point. A key novel idea at this stage is that of outlier in a fuzzy-valued setting; Section 2.4 explains the three types of outliers in dealing with fuzzy data that will be used along this work. Morover, it shows a simulation study about the empirical finite sample breakdown point and the sensitivity curves of the estimators presented in Section 2.1.

An additional approach to estimating scale consists of what are called M-estimators, which are briefly introduced and their empirical robust behaviour is analyzed in Section 2.5. The three case studies presented in Chapter 1 are used to illustrate the computation of all the scale estimators in Section 2.6. The chapter ends with a Section 2.7 containing the summary of the contribution of the chapter as well as the related publications derived from it.

2.1 Scale measures for fuzzy data

Let \mathcal{X} be a random fuzzy number associated with the probability space (Ω, \mathcal{A}, P), $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ a sample of observations from \mathcal{X} and $D \in\left\{\rho_{1}, \mathscr{D}_{\theta}^{\varphi}, D_{\theta}^{\varphi}\right\}$ a metric between fuzzy data (see Subsection 1.3.2). Then, as we have already reminded in Chapter 1,

Definition 2.1.1. The (population) Fréchet-type $\boldsymbol{D}_{\theta}^{\varphi}$-Standard Deviation is the real number $D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X})$ (also shortly denoted by $\sigma_{\mathcal{X}}$), if it exists, given by

$$
D_{\theta}^{\varphi}-\operatorname{SD}(\mathcal{X})=\sqrt{E\left(\left[D_{\theta}^{\varphi}(\mathcal{X}, \widetilde{E}(\mathcal{X}))\right]^{2}\right)}
$$

In particular, the (sample) Fréchet-type $\boldsymbol{D}_{\theta}^{\varphi}$-Standard Deviation is the real number $\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$ (also shortly denoted by $S_{\widetilde{\mathbf{x}}_{n}}$) given by

$$
\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{\mathbf{x}}_{n}\right)\right]^{2}}
$$

The first suggested alternative location-based scale measures for RFN's are those extending to the fuzzy-valued case the well-known average absolute deviation. Since in the fuzzy setting several distances extending the Euclidean metric on the space of real numbers could be considered, it seems often natural for the location-based scale measures to choose the related metric (i.e., the one for which the average is minimized by the involved location measure).

Definition 2.1.2. The (population) D-Average Distance Deviation of \mathcal{X} with respect to the location measure \tilde{U} is the real number $D-\operatorname{ADD}(\mathcal{X}, \widetilde{U})$ given by

$$
D-\operatorname{ADD}(\mathcal{X}, \widetilde{U})=E[D(\mathcal{X}, \widetilde{U})]
$$

Specifically, the following D-average distance deviations are analyzed in this work:

- The (population) ρ_{2}-Average Distance Deviation of \mathcal{X} with respect to the Aumann-type mean $\widetilde{E}(\mathcal{X})$ is the real number $\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$, if it exists, given by

$$
\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))=E\left[\rho_{2}(\mathcal{X}, \widetilde{E}(\mathcal{X}))\right] .
$$

In particular, the (sample) ρ_{2}-Average Distance Deviation of $\widetilde{\mathbf{x}}_{n}$ with respect to the Aumann-type mean $\overline{\widetilde{\mathbf{x}}}_{n}$ is the real number $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$ given by

$$
\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \rho_{2}\left(\widetilde{x}_{i}, \widetilde{\mathbf{x}}_{n}\right) .
$$

- The (population) ρ_{1}-Average Distance Deviation of \mathcal{X} with respect to the 1-norm median $\widetilde{\operatorname{Me}}(\mathcal{X})$ is the real number $\rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$, if it exists, given by

$$
\rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))=E\left[\rho_{1}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))\right]=\min _{\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})} E\left[\rho_{1}(\mathcal{X}, \widetilde{U})\right] .
$$

In particular, the (sample) ρ_{1}-Average Distance Deviation of $\widetilde{\mathbf{x}}_{n}$ with respect to the 1-norm median $\widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)$ is the real number $\widehat{\rho_{1}-\operatorname{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{\operatorname{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ given by

$$
\widehat{\rho_{1}-\operatorname{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{\operatorname{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n} \sum_{i=1}^{n} \rho_{1}\left(\widetilde{x}_{i}, \widehat{\widetilde{\operatorname{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right) .
$$

- The (population) $\mathscr{D}_{\theta}^{\varphi}$-Average Distance Deviation of \mathcal{X} with respect to the φ-wabl/ldev/rdev median $\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})$ is the real number $\mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)$, if it exists, given by

$$
\mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)=E\left[\mathscr{D}_{\theta}^{\varphi}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)\right]=\min _{\widetilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R})} E\left[\mathscr{D}_{\theta}^{\varphi}(\mathcal{X}, \widetilde{U})\right] .
$$

In particular, the (sample) $\mathscr{D}_{\theta}^{\varphi}$-Average Distance Deviation of $\widetilde{\mathbf{x}}_{n}$ with respect to the φ-wabl/ldev/rdev median $\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathrm{x}}_{n}\right)$ is the real number $\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}\left(\widetilde{\mathrm{x}}_{n}, \widetilde{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ given by

$$
\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widehat{\mathrm{M}} \varphi}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n} \sum_{i=1}^{n} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widehat{\widehat{\mathrm{M}^{\varphi}}}\left(\tilde{\mathbf{x}}_{n}\right)\right) .
$$

Remark 2.1.1. As it has been pointed out, the ρ_{1} - ADD and the $\mathscr{D}_{\theta}^{\varphi}$ - ADD are the minima of the corresponding average distance. This is not true, in general, for the ρ_{2} - ADD , since it would not be minimized at the Aumann-type mean value but at the extended spatial median, that in the fuzzy case would be extremely complex to determine (in this respect, see Sinova and Van Aelst [117] for the interval-valued case).

The second suggested alternative location-based scale measures for RFN's are those extending to the fuzzy-valued case the well-known median absolute deviation. In these definitions, the real-valued median is assumed to be intended in accordance with the usual convention and, whenever the involved location fuzzy measure is not unique, the commented conventions in Chapter 1 will be considered.

Definition 2.1.3. The (population) D-Median Distance Deviation of \mathcal{X} with respect to the location measure \widetilde{U} is the real number $D-\operatorname{MDD}(\mathcal{X}, \widetilde{U})$ given by

$$
D-\operatorname{MDD}(\mathcal{X}, \widetilde{U})=\operatorname{Me}[D(\mathcal{X}, \widetilde{U})] .
$$

Specifically, the following D-median distance deviations are analyzed in this work:

- The (population) ρ_{2}-Median Distance Deviation of \mathcal{X} with respect to the Aumann-type mean $\widetilde{E}(\mathcal{X})$ is the real number $\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$, if it exists, given by

$$
\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))=\operatorname{Me}\left[\rho_{2}(\mathcal{X}, \widetilde{E}(\mathcal{X}))\right] .
$$

In particular, the (sample) ρ_{2}-Median Distance Deviation of $\widetilde{\mathbf{x}}_{n}$ with respect to the Aumann-type mean $\widetilde{\mathbf{x}}_{n}$ is the real number $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$ given by

$$
\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)=\operatorname{Me}\left\{\rho_{2}\left(\widetilde{x}_{i}, \overline{\widetilde{\mathbf{x}}}_{n}\right) ; i=1, \ldots, n\right\} .
$$

- The (population) ρ_{1}-Median Distance Deviation of \mathcal{X} with respect to the $\mathbf{1}$-norm median $\widetilde{\operatorname{Me}}(\mathcal{X})$ is the real number $\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$, if it exists, given by

$$
\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))=\operatorname{Me}\left[\rho_{1}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))\right] .
$$

In particular, the (sample) ρ_{1}-Median Distance Deviation of $\widetilde{\mathbf{x}}_{n}$ with respect to the 1-norm median $\widehat{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)$ is the real number $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ given by

- The (population) $\mathscr{D}_{\theta}^{\varphi}$-Median Distance Deviation of \mathcal{X} with respect to the φ-wabl/ldev/rdev median $\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})$ is the real number $\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)$, if it exists, given by

$$
\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)=\operatorname{Me}\left[\mathscr{D}_{\theta}^{\varphi}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)\right] .
$$

In particular, the (sample) $\mathscr{D}_{\boldsymbol{\theta}}^{\varphi}$-Median Distance Deviation of $\widetilde{\mathbf{x}}_{n}$ with respect to the φ-wabl/ldev/rdev median $\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathrm{x}}_{n}\right)$ is the real number $\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ given by

Next measures are inspired by the scale estimates for data from real-valued random variables introduced by Rousseeuw and Croux [99, 100] as alternatives to the median absolute deviation. They have a simple and explicit formula and they are location-free estimates of scale, that is, in contrast to the measures in Definitions 2.1.1, 2.1.2 and 2.1.3, it is not necessary to compute a location measure because these estimates only consider deviations between data values.

Definition 2.1.4. Let \mathcal{X} and \mathcal{Y} independent and identically distributed random fuzzy numbers associated with the probability space (Ω, \mathcal{A}, P). The (population) scale estimate $\boldsymbol{D}-\mathbf{S}(\mathcal{X}, \mathcal{Y})$ is the real number given by

$$
D-\mathrm{S}(\mathcal{X}, \mathcal{Y})=\operatorname{Me}_{\mathcal{X}} \operatorname{Me}_{\mathcal{Y}} D(\mathcal{X}, \mathcal{Y})
$$

In particular, the (sample) scale estimate $\widehat{\boldsymbol{D - S}}\left(\widetilde{\mathbf{x}}_{n}\right)$ is the real number given by

$$
\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)=\underline{\operatorname{Me}}_{i}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)\right\}\right\}
$$

where Me is a low median, that is, the order statistic of rank $\lfloor(n+1) / 2\rfloor$ and $\overline{\mathrm{Me}}$ is a high median, which is the order statistic of rank $h:=\lfloor n / 2\rfloor+1$ (this notation will be used throughout this work). Therefore, for each i we compute the high median of $\left\{D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right): j=1, \ldots, n\right\}$. This leads to n non-negative numbers, the low median of which gives the estimate $\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)$.

When we are dealing with fuzzy data, next two scale measures only can be defined in their sample version, but not in their population version. This is due to the fact that there is not a distribution function to characterize the distribution induced by a random fuzzy number, as it has already been highlighted in Page 28. It can be seen in Rousseeuw and Croux [99, 100] that the population version of the following estimators involves the class of generalized L-statistics introduced by Serfling [102], in which the distribution function is involved.

Definition 2.1.5. The (sample) scale estimate $\widehat{\boldsymbol{D - Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ is the real number given by

$$
\widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)=\left\{D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right): i<j\right\}_{(m)},
$$

where $m:=\binom{h}{2}$ and h is given as in Definition 2.1.4. That is, it takes the order statistic of range m of the $\binom{n}{2}$ distances between the fuzzy values.
Definition 2.1.6. The (sample) scale estimate $\widehat{\boldsymbol{D - T}}\left(\widetilde{\mathbf{x}}_{n}\right)$ is the real number given by

$$
\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)=\frac{1}{h} \sum_{r=1}^{h}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)\right\} ; i=1, \ldots, n\right\}_{(r)}
$$

where h is given as in Definition 2.1.4. That is, for each i the estimate calculates the high median of $\left\{D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right): j=1, \ldots, n\right\}$, the process leading to n medians. Then, it computes the average of the h first ordered medians.

Remark 2.1.2. As it has already been mentioned, the calculation of the three last scale estimates does not require a previous computation of a location measure because of they only take into account distances between observations. This entails a computational advantage with respect to the scale estimates introduced in Definitions 2.1.1-2.1.3.

2.2 Formal general properties as scale measures

This section shows that the scale measures introduced in Section 2.1 preserve the main properties from those in the real-valued case. First, we prove that they actually extend well-known measures for real-valued random variables.

Let $\mathcal{X}: \Omega \rightarrow \mathscr{F}_{c}^{*}(\mathbb{R})$ be an RFN associated with the probability space (Ω, \mathcal{A}, P), $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample of observations from \mathcal{X}, and $D \in\left\{\rho_{1}, \mathscr{D}_{\theta}^{\varphi}, D_{\theta}^{\varphi}\right\}$ be a metric between fuzzy data.

Proposition 2.2.1. (Extension from the real-valued case). If there exists a real-valued random variable X associated with (Ω, \mathcal{A}, P) such that $\mathcal{X}=\mathbb{1}_{\{X\}}$ a.s. $[P]$, then the scale measures introduced in the Definitions 2.1.1-2.1.6 coincide with the corresponding measures for the real-valued case.

Proof. This is immediate taking into account that for notions in Definitions 2.1.1 to 2.1.6,

- the Aumann-type mean and the 1 -norm median and the φ-wabl/ldev/rdev median reduce in the real-valued case to the mean and median, respectively,
- and the metrics $\rho_{1}, \mathscr{D}_{\theta}^{\varphi}$ and D_{θ}^{φ} are generalizations of the Euclidean distance in \mathbb{R}.

In the following propositions it will be shown that the scale measures introduced in Definitions 2.1.1-2.1.6 preserve the main properties of the corresponding scale estimates for real-valued random variables (or even for multidimensional ones -see, for instance, Kołacz and Grzegorzewski [69]-). More concretely,

Proposition 2.2.2. (Nonnegativeness). The scale measures in Definitions 2.1.12.1.6 are non-negative estimates.

Proof. The result is obvious, by simply taking into account that D is a metric and, hence, it is non-negative.

Besides, all the measures are equal to zero if the RFN \mathcal{X} is degenerate at a fuzzy number, that is,

Proposition 2.2.3. If the $R F N \mathcal{X}$ is degenerate at a fuzzy number (i.e., there exists a fuzzy number \tilde{U} such that $\mathcal{X}=\widetilde{U}$ a.s. $[P])$, then the scale measures in Definitions 2.1.1-2.1.6 are equal to zero.

Proof. If $\mathcal{X}=\widetilde{U}$ a.s. $[P]$, then $D_{\theta}^{\varphi}(\mathcal{X}, \widetilde{E}(\mathcal{X}))=\rho_{1}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))=\mathscr{D}_{\theta}^{\varphi}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)$ $=D(\mathcal{X}, \widetilde{U})=D(\widetilde{U}, \widetilde{U})=0$ a.s. $[P]$, whence all measures in Definitions 2.1.1-2.1.3 vanish.

On the other hand, if \mathcal{X} and \mathcal{Y} are independent and identically distributed random fuzzy numbers, then $D-S(\mathcal{X}, \mathcal{Y})=\operatorname{Me}_{\mathcal{X}} \operatorname{Me}_{\mathcal{Y}} D(\mathcal{X}, \mathcal{Y})=\operatorname{Me}_{\mathcal{X}} \operatorname{Me}_{\mathcal{Y}} D(\widetilde{U}, \widetilde{U})=0$ a.s. $[P]$.

Finally, if $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ is a sample of observations from $\mathcal{X}=\widetilde{U}$ a.s. $[P]$, then $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{U},{ }^{(n \text { times })}, \widetilde{U}\right)$, and so, $\widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)=\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)=0$.

As it happens for the real-valued case, the reciprocal implication is only true for some of the measures. Thus,

Proposition 2.2.4. (Minimality). $D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X})=0$, or $\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))=0$, or $\rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))=0$, or $\mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)=0$, holds if, and only if, the $R F N \mathcal{X}$ is degenerate at the involved location measure.

Proof. Indeed, because of the non-negativeness of the distances between fuzzy numbers, one can conclude that

$$
\begin{gathered}
D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X})=0 \text { iff } D_{\theta}^{\varphi}(\mathcal{X}, \widetilde{E}(\mathcal{X}))=0 \text { a.s. }[P] \\
\text { iff } \mathcal{X}=\widetilde{E}(\mathcal{X}) \text { a.s. }[P] . \\
\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))=0 \text { iff } \rho_{2}(\mathcal{X}, \widetilde{E}(\mathcal{X}))=0 \text { a.s. }[P] \\
\text { iff } \mathcal{X}=\widetilde{E}(\mathcal{X}) \text { a.s. }[P] . \\
\rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))=0 \text { iff } \rho_{1}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))=0 \text { a.s. }[P] \\
\text { iff } \mathcal{X}=\widetilde{\operatorname{Me}}(\mathcal{X}) \text { a.s. }[P] . \\
\mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)=0 \text { iff } \mathscr{D}_{\theta}^{\varphi}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)=0 \text { a.s. }[P] \\
\text { iff } \mathcal{X}=\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X}) \text { a.s. }[P] .
\end{gathered}
$$

Remark 2.2.1. As for the real-valued case, the vanishing of $\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$, $\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X})), \mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right), D-\mathrm{S}(\mathcal{X}, \mathcal{Y}), \widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$, or $\widehat{D-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$, does not generally imply that the RFN \mathcal{X} is degenerate at a fuzzy number. For instance, if \mathcal{X} is a non-degenerate random fuzzy number taking on the triangular fuzzy values $\operatorname{Tra}(0,1,1,2)$, $\operatorname{Tra}(1,2,2,3)$ and $\operatorname{Tra}(2,3,3,4)$ with probabilities $1 / 5$, $3 / 5$ and $1 / 5$, respectively, then $\widetilde{E}(\mathcal{X})=\widetilde{\operatorname{Me}}(\mathcal{X})=\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})=\operatorname{Tra}(1,2,2,3)$, whence $\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))=\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))=\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)=\operatorname{Me}\{1,0,0,0$, $1\}=0$, and can straightforwardly be checked that measures $D-\mathrm{S}(\mathcal{X}, \mathcal{Y}), \widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)$ equal zero. Consequently, the vanishing of these scale estimators does not necessarily ensure the lack of variability. This is due to the fact that these estimates should be viewed as representative summary measures of the dispersion of sample fuzzy data, instead of measures of variability.

Other valuable properties have also been inherited from their real-valued counterparts, namely,

Proposition 2.2.5. (Absolute equivariance by the product by scalar and invariance by translation). The scale measures introduced in Definitions 2.1.12.1.6 satisfy the shift (or location or translation) invariance and scale (absolute) equivariance conditions. That is, if $\gamma \in \mathbb{R}, \tilde{U} \in \mathscr{F}_{c}^{*}(\mathbb{R}), \mathcal{X}$ is an RFN for which the involved scale measures exist, \mathcal{Y} is an RFN which is identically distributed as and independent of \mathcal{X}, and $\widetilde{\mathbf{x}}_{n}$ is a sample of observations from \mathcal{X}, then,

$$
\begin{aligned}
& D_{\theta}^{\varphi}-\mathrm{SD}(\gamma \cdot \mathcal{X}+\widetilde{U})=|\gamma| \cdot D_{\theta}^{\varphi}-\operatorname{SD}(\mathcal{X}), \\
& \rho_{2}-\operatorname{ADD}(\gamma \cdot \mathcal{X}+\widetilde{U}, \widetilde{E}(\gamma \cdot \mathcal{X}+\widetilde{U}))=|\gamma| \cdot \rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X})), \\
& \rho_{1}-\operatorname{ADD}(\gamma \cdot \mathcal{X}+\widetilde{U}, \widetilde{\operatorname{Me}}(\gamma \cdot \mathcal{X}+\widetilde{U}))=|\gamma| \cdot \rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X})), \\
& \mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\gamma \cdot \mathcal{X}+\widetilde{U}, \widetilde{\mathrm{M}^{\varphi}}(\gamma \cdot \mathcal{X}+\widetilde{U})\right)=|\gamma| \cdot \mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right), \\
& \rho_{2}-\operatorname{MDD}(\gamma \cdot \mathcal{X}+\widetilde{U}, \widetilde{E}(\gamma \cdot \mathcal{X}+\widetilde{U}))=|\gamma| \cdot \rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X})), \\
& \rho_{1}-\operatorname{MDD}(\gamma \cdot \mathcal{X}+\widetilde{U}, \widetilde{\operatorname{Me}}(\gamma \cdot \mathcal{X}+\widetilde{U}))=|\gamma| \cdot \rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X})), \\
& \mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\gamma \cdot \mathcal{X}+\widetilde{U}, \widetilde{\mathrm{M}^{\varphi}}(\gamma \cdot \mathcal{X}+\widetilde{U})\right)=|\gamma| \cdot \mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right), \\
& D-\mathrm{S}(\gamma \cdot \mathcal{X}+\widetilde{U}, \gamma \cdot \mathcal{Y}+\widetilde{U})=|\gamma| \cdot D-\mathrm{S}(\mathcal{X}, \mathcal{Y}), \\
& \widehat{D-Q}\left(\gamma \cdot \widetilde{\mathbf{x}}_{n}+\widetilde{U}\right)=|\gamma| \cdot \widehat{D-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right), \\
& \widehat{D-\mathrm{T}}\left(\gamma \cdot \widetilde{\mathbf{x}}_{n}+\widetilde{U}\right)=|\gamma| \cdot \widehat{D-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right) .
\end{aligned}
$$

Proof. Indeed, whatever the metric $D \in\left\{\rho_{1}, \mathscr{D}_{\theta}^{\varphi}, D_{\theta}^{\varphi}\right\}$ and the location measure $\widetilde{C}(\mathcal{X}) \in\left\{\widetilde{E}(\mathcal{X}), \widetilde{\operatorname{Me}}(\mathcal{X}), \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right\}$ may be, because of the properties of the metrics and the property of affine equivariance fulfilled by the Aumann-type mean (see Proposition 1.4.1) and the 1 -norm and φ-wabl/ldev/rdev medians (see Proposition 1.5.3) we have that

$$
D(\gamma \cdot \mathcal{X}+\widetilde{U}, \widetilde{C}(\gamma \cdot \mathcal{X}+\widetilde{U}))=D(\gamma \cdot \mathcal{X}+\widetilde{U}, \gamma \cdot \widetilde{C}(\mathcal{X})+\widetilde{U})=|\gamma| \cdot D(\mathcal{X}, \widetilde{C}(\mathcal{X}))
$$

and the proof is immediately concluded for the location-based measures $D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X})$, $\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X})), \rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X})), \mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right), \rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$, $\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$ and $\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)$.

Regarding the location-free estimators, we have that

$$
\begin{gathered}
D-\mathrm{S}(\gamma \cdot \mathcal{X}+\widetilde{U}, \gamma \cdot \mathcal{Y}+\widetilde{U})=\mathrm{Me}_{\gamma \cdot \mathcal{X}+\widetilde{U}} \mathrm{Me}_{\gamma \cdot \mathcal{Y}+\widetilde{U}} D(\gamma \cdot \mathcal{X}+\widetilde{U}, \gamma \cdot \mathcal{Y}+\widetilde{U}) \\
=\operatorname{Me}_{\mathcal{X}} \mathrm{Me}_{\mathcal{Y}}|\gamma| \cdot D(\mathcal{X}, \mathcal{Y})=|\gamma| \cdot D-\mathrm{S}(\mathcal{X}, \mathcal{Y}), \\
\widehat{D-\mathrm{Q}}\left(\gamma \cdot \widetilde{\mathbf{x}}_{n}+\widetilde{U}\right)=\left\{D\left(\gamma \cdot \widetilde{x}_{i}+\widetilde{U}, \gamma \cdot \widetilde{x}_{j}+\widetilde{U}\right): i<j\right\}_{(m)}
\end{gathered}
$$

$$
\begin{gathered}
=\left\{|\gamma| \cdot D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right): i<j\right\}_{(m)}=|\gamma| \cdot\left\{D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right): i<j\right\}_{(m)}=|\gamma| \cdot \widehat{D-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right) \\
\widehat{\widehat{D-T}\left(\gamma \cdot \widetilde{\mathbf{x}}_{n}+\widetilde{U}\right)=\frac{1}{h} \sum_{r=1}^{h}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\gamma \cdot \widetilde{x}_{i}+\widetilde{U}, \gamma \cdot \widetilde{x}_{j}+\widetilde{U}\right)\right\} ; i=1, \ldots, n\right\}_{(r)}} \begin{array}{c}
=\frac{1}{h} \sum_{r=1}^{h}\left\{\overline{\operatorname{Me}}_{j}\left\{|\gamma| \cdot D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)\right\} ; i=1, \ldots, n\right\}_{(r)} \\
=|\gamma| \cdot \frac{1}{h} \sum_{r=1}^{h}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)\right\} ; i=1, \ldots, n\right\}_{(r)}=|\gamma| \cdot \widehat{D-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right) .
\end{array}
\end{gathered}
$$

Remark 2.2.2. It should be pointed out that while the shift invariance would hold in case of involving as location measures the M-estimates by Sinova et al. [113], the scale (absolute) equivariance would not necessarily hold. This is due to the fact that, generally speaking, M-estimates of location are not scale equivariant.

Proposition 2.2.6. (Strong consistency). Let $\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ be a simple random sample from the RFN \mathcal{X}. Let $\overline{\mathcal{X}}_{n}$ denote the sample mean estimator.
i) If $\widetilde{E}(\mathcal{X})$ and $D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X})$ exist, then the statistic $\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ is a strongly consistent estimator of $D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X})$, that is,

$$
\lim _{n \rightarrow \infty} \widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)=D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X}) \quad \text { a.s. }[P] .
$$

ii) If $\tilde{E}(\mathcal{X})$ and $\rho_{2}-\operatorname{ADD}(\mathcal{X}, \tilde{E}(\mathcal{X}))$ exist, then the statistic $\widehat{\rho_{2}-\operatorname{ADD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right.$, $\overline{\mathcal{X}}_{n}$) is a strongly consistent estimator of $\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$, that is,

$$
\lim _{n \rightarrow \infty} \widehat{\rho_{2}-\mathrm{ADD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \overline{\mathcal{X}}_{n}\right)=\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X})) \text { a.s. }[P]
$$

iii) If for each $\alpha \in[0,1]$ the medians of the real-valued random variables $\inf \mathcal{X}_{\alpha}$ and $\sup \mathcal{X}_{\alpha}$ are unique (without making use of any convention), and the sequences of the real-valued sample medians $\left\{\operatorname{Me}\left\{\inf \left(\mathcal{X}_{1}\right)_{\alpha}, \ldots, \inf \left(\mathcal{X}_{n}\right)_{\alpha}\right\}\right\}_{n}$ and $\left\{\operatorname{Me}\left\{\sup \left(\mathcal{X}_{1}\right)_{\alpha}, \ldots, \sup \left(\mathcal{X}_{n}\right)_{\alpha}\right\}\right\}_{n}$ as functions of α over $[0,1]$ are both uniformly integrable, then the statistic $\widehat{\rho_{1}-\mathrm{ADD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \widehat{\widetilde{M e}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right)$ is a strongly consistent estimator of $\rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$, if it exists, that is,

$$
\lim _{n \rightarrow \infty} \widehat{\rho_{1}-\operatorname{ADD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \widehat{\widehat{\operatorname{Me}}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right)=\rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X})) \quad \text { a.s. }[P]
$$

iv) If the population median of the real-valued random variable wabl $^{\varphi}(\mathcal{X})$ is unique (without making use of any convention), and also for each $\alpha \in[0,1]$ the population medians of the real-valued random variables $\operatorname{ldev}_{\mathcal{X}}^{\varphi}(\alpha)$ and $\operatorname{rdev}_{\mathcal{X}}^{\varphi}(\alpha)$ are
 $\left.\left.\operatorname{ldev}_{\mathcal{X}_{n}}^{\varphi}(\alpha)\right\}\right\}_{n}$ and $\left\{\operatorname{Me}^{4}\left\{\operatorname{rdev}_{\mathcal{X}_{1}}^{\varphi}(\alpha), \ldots, \operatorname{rdev}_{\mathcal{X}_{n}}^{\varphi}(\alpha)\right\}\right\}_{n}$ as functions of α over $[0,1]$ are both uniformly integrable, then the statistic $\mathscr{D}_{\theta}-\mathrm{ADD}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right.$, $\left.\widetilde{\mathrm{M}^{\varphi}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right)$ is a strongly consistent estimator of $\mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)$, if it exists, that is,

$$
\lim _{n \rightarrow \infty} \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD}} \mathrm{D}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right)=\mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right) \quad \text { a.s. }[P] .
$$

v) If $\widetilde{E}(\mathcal{X})$ and $\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$ exist and the second one is unique (without making use of any convention), then the statistic $\widehat{\rho_{2}-\mathrm{MDD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \overline{\mathcal{X}}_{n}\right)$ is a strongly consistent estimator of $\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$, that is,

$$
\lim _{n \rightarrow \infty} \widehat{\rho_{2}-\widehat{M D D}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \overline{\mathcal{X}}_{n}\right)=\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X})) \quad \text { a.s. }[P]
$$

vi) If for each $\alpha \in[0,1]$ the medians of the real-valued random variables $\inf \mathcal{X}_{\alpha}$ and $\sup \mathcal{X}_{\alpha}$ are unique (without making use of any convention), $\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$ exists and it is unique (without making use of any convention), and the sequences of the real-valued sample medians $\left\{\operatorname{Me}\left\{\inf \left(\mathcal{X}_{1}\right)_{\alpha}, \ldots, \inf \left(\mathcal{X}_{n}\right)_{\alpha}\right\}\right\}_{n}$ and $\left\{\operatorname{Me}\left\{\sup \left(\mathcal{X}_{1}\right)_{\alpha}, \ldots, \sup \left(\mathcal{X}_{n}\right)_{\alpha}\right\}\right\}_{n}$ as functions of α over $[0,1]$ are both uniformly integrable, then the statistic $\widehat{\rho_{1}-\mathrm{MDD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \widehat{\mathrm{Me}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right)$ is a strongly consistent estimator of $\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$, that is,

$$
\lim _{n \rightarrow \infty} \widehat{\rho_{1}-\mathrm{MDD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \widehat{\operatorname{Me}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right)=\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X})) \quad \text { a.s. }[P]
$$

vii) If the population median of the real-valued random variable wabl $^{\varphi}(\mathcal{X})$ is unique (without using any convention), and also for each $\alpha \in[0,1]$ the population medians of the real-valued random variables $\operatorname{ldev}_{\mathcal{X}}^{\varphi}(\alpha)$ and $\operatorname{rdev}_{\mathcal{X}}^{\varphi}(\alpha)$ are actually unique, $\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)$ exists and it is unique (without making use of
 $\left.\left.\operatorname{ldev}_{\mathcal{X}_{n}}^{\varphi}(\alpha)\right\}\right\}_{n}$ and $\left.\left\{\operatorname{Me}_{\operatorname{Ldev}}^{\mathcal{X}_{1}}{ }_{1}^{\varphi}(\alpha), \ldots, \operatorname{rdev}_{\mathcal{X}_{n}}^{\varphi}(\alpha)\right\}\right\}_{n}$ are both uniformly integrable when viewed as functions of α over $[0,1]$, then the statistic $\mathscr{D}_{\theta} \widehat{-M D D}\left(\mathcal{X}_{1}\right.$, $\left.\ldots, \mathcal{X}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right)$ is a strongly consistent estimator of $\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}(\mathcal{X}$, $\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})$, that is,
$\lim _{n \rightarrow \infty} \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right)=\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right) \quad$ a.s. $[P]$.
viii) Let \mathcal{X} and \mathcal{Y} independent and identically distributed random fuzzy numbers. If for any value of \mathcal{X} the median $\mathrm{Me}_{\mathcal{Y}}\left(D(\mathcal{X}, \mathcal{Y})\right.$) and the median $\mathrm{Me}_{\mathcal{X}}$ of the realvalued random variable $\operatorname{Me}_{\mathcal{Y}}(D(\mathcal{X}, \mathcal{Y})$) exist and are actually unique (without
making use of any convention), then the statistic $\widehat{D-S}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ is a strongly consistent estimator of $D-\mathrm{S}(\mathcal{X}, \mathcal{Y})$, that is,

$$
\lim _{n \rightarrow \infty} \widehat{D-S}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)=D-\mathrm{S}(\mathcal{X}, \mathcal{Y}) \quad \text { a.s. }[P] .
$$

Proof.
i) On the basis of the triangle inequality for D_{θ}^{φ}, we have that for any $i \in\{1$, $\ldots, n\}$

$$
\begin{aligned}
& D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right) \leq D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)+D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right), \\
& D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right) \leq D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right)+D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)
\end{aligned}
$$

and

$$
D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) \leq D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \tilde{E}(\mathcal{X})\right)+D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right)
$$

Therefore,

$$
\begin{gathered}
\left|D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)-D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)\right| \leq D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right) \\
\leq D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)+D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)
\end{gathered}
$$

and, hence, by taking squares on the three members of the inequality and averaging later over i we have that

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n}\left[D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)\right]^{2}+\left[D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)\right]^{2}-D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) \frac{2}{n} \sum_{i=1}^{n} D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right) \\
\leq\left[\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right]^{2} \leq \frac{1}{n} \sum_{i=1}^{n}\left[D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)\right]^{2}+\left[D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)\right]^{2} \\
+D_{\theta}^{\varphi}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) \frac{2}{n} \sum_{i=1}^{n} D_{\theta}^{\varphi}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)
\end{gathered}
$$

whence, by applying the Strong Law of Large Numbers for the real-valued random variables $D_{\theta}^{\varphi}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$ and $\left[D_{\theta}^{\varphi}(\mathcal{X}, \widetilde{E}(\mathcal{X}))\right]^{2}$ and the strong consistency of $\overline{\mathcal{X}}_{n}$ in D_{θ}^{φ}-sense (as a consequence from Colubi et al. [21], in which an SLLN for random fuzzy sets has been obtained for the stronger metric of the supremum between fuzzy sets), we have that

$$
\lim _{n \rightarrow \infty}\left[\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)\right]^{2}=\left[D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X})\right]^{2} \quad \text { a.s. }[P]
$$

and therefore

$$
\lim _{n \rightarrow \infty} \widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)=D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X}) \quad \text { a.s. }[P] .
$$

ii) On the basis of the triangle inequality for ρ_{2}, we have that for any $i \in\{1$, $\ldots, n\}$

$$
\rho_{2}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right) \leq \rho_{2}(\mathcal{X}, \widetilde{E}(\mathcal{X}))+\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)
$$

and

$$
\rho_{2}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right) \leq \rho_{2}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right)+\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) .
$$

Therefore,

$$
\begin{aligned}
& \rho_{2}\left(\mathcal{X}_{i}, \tilde{E}(\mathcal{X})\right)-\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) \leq \rho_{2}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right) \leq \rho_{2}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)+\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right), \\
& \quad-\rho_{2}\left(\tilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) \leq \rho_{2}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right)-\rho_{2}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right) \leq \rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)
\end{aligned}
$$

and

$$
\left|\rho_{2}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right)-\rho_{2}(\mathcal{X}, \widetilde{E}(\mathcal{X}))\right| \leq \rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)
$$

and, hence, by averaging over i we have that

$$
\left|\widehat{\rho_{2}-\mathrm{ADD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \overline{\mathcal{X}}_{n}\right)-\frac{1}{n} \sum_{i=1}^{n} \rho_{2}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)\right| \leq \rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right),
$$

whence by applying the Strong Law of Large Numbers for the real-valued random variable $\rho_{2}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$ (that can trivially be drawn from Klement et al. [68] and Diamond and Kloeden [30]) and the strong consistency of $\overline{\mathcal{X}}_{n}$ in ρ_{2}-sense we have that

$$
\left|\lim _{n \rightarrow \infty} \widehat{\rho_{2}-\operatorname{ADD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \overline{\mathcal{X}}_{n}\right)-\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X}))\right|=0 \quad \text { a.s. }[P]
$$

what implies that

$$
\lim _{n \rightarrow \infty} \widehat{\rho_{2}-\mathrm{ADD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \overline{\mathcal{X}}_{n}\right)=\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X})) \quad \text { a.s. }[P] .
$$

iii) The proof is analogous to that for $i i$) by applying the triangle inequality for the metric ρ_{1}, the Strong Law of Large Numbers for the real-valued random variable $\rho_{1}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$ and the strong consistency of the fuzzy-valued sample 1 -norm median in ρ_{1}-sense (see Sinova et al. [111]).
$i v)$ The proof is analogous to that for $i i$) by applying the triangle inequality for the metric $\mathscr{D}_{\theta}^{\varphi}$, the Strong Law of Large Numbers for the real-valued random variable $\mathscr{D}_{\theta}^{\varphi}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)$ and the strong consistency of the fuzzy-valued sample φ-wabl/ldev/rdev median in $\mathscr{D}_{\theta}^{\varphi}$-sense (see Sinova et al. [109]).
$v)$ On the basis of the triangle inequality for ρ_{2}, we have that for any $i \in\{1$, $\ldots, n\}$

$$
\rho_{2}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right) \leq \rho_{2}(\mathcal{X}, \widetilde{E}(\mathcal{X}))+\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)
$$

and

$$
\rho_{2}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right) \leq \rho_{2}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right)+\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) .
$$

Therefore,

$$
\rho_{2}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)-\rho_{2}\left(\tilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) \leq \rho_{2}\left(\mathcal{X}_{i}, \overline{\mathcal{X}}_{n}\right) \leq \rho_{2}\left(\mathcal{X}_{i}, \widetilde{E}(\mathcal{X})\right)+\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)
$$

and hence,

$$
\begin{aligned}
\operatorname{Me}\left\{\rho_{2}\left(\mathcal{X}_{1}, \widetilde{E}(\mathcal{X})\right), \ldots, \rho_{2}\left(\mathcal{X}_{n}, \widetilde{E}(\mathcal{X})\right)\right\}-\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right) \\
\leq \widehat{\rho_{2}-\operatorname{MDD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \overline{\mathcal{X}}_{n}\right) \\
\leq \operatorname{Me}\left\{\rho_{2}\left(\mathcal{X}_{1}, \widetilde{E}(\mathcal{X})\right), \ldots, \rho_{2}\left(\mathcal{X}_{n}, \widetilde{E}(\mathcal{X})\right)\right\}+\rho_{2}\left(\widetilde{E}(\mathcal{X}), \overline{\mathcal{X}}_{n}\right)
\end{aligned}
$$

whence, by applying the strong consistency of $\overline{\mathcal{X}}_{n}$ in ρ_{2}-sense and the strong consistency of the sample median from the real-valued random variable $\rho_{2}(\mathcal{X}, \widetilde{E}(\mathcal{X}))$, we have that

$$
\lim _{n \rightarrow \infty} \widehat{\rho_{2}-\operatorname{MDD}}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}, \overline{\mathcal{X}}_{n}\right)=\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X})) \text { a.s. }[P]
$$

vi) The proof is analogous to that for v) by applying the triangle inequality for the metric ρ_{1}, the strong consistency of the fuzzy-valued sample 1-norm median in ρ_{1}-sense (see Sinova et al. [111]) and the strong consistency under the assumed conditions of the sample median from the real-valued random variable $\rho_{1}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$.
$v i i)$ The proof is analogous to that for v) by applying the triangle inequality for the metric $\mathscr{D}_{\theta}^{\varphi}$, the strong consistency of the fuzzy-valued sample φ-wabl/ldev/rdev median in $\mathscr{D}_{\theta}^{\varphi}$-sense (see Sinova et al. [109]) and the strong consistency under the assumed conditions of the sample median from the real-valued random variable $\mathscr{D}_{\theta}^{\varphi}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right)$.
viii) For fixed $i \in\{1, \ldots, n\}$ and by applying the strong consistency of the sample median of the real-valued random variable $D\left(\mathcal{X}_{i}, \mathcal{X}_{j}\right)$ w.r.t \mathcal{X}_{j}, we have that

$$
\lim _{n \rightarrow \infty} \overline{\operatorname{Me}}_{j}\left\{D\left(\mathcal{X}_{i}, \mathcal{X}_{j}\right)\right\}=\operatorname{Me}\left(D\left(\mathcal{X}_{i}, \mathcal{Y}\right)\right) \quad \text { a.s. }[P] .
$$

Now, by applying the strong consistency of the sample median w.r.t. \mathcal{X}_{i} for the real-valued random variable $\operatorname{Me}\left(D\left(\mathcal{X}_{i}, \mathcal{Y}\right)\right)$, we have that

$$
\lim _{n \rightarrow \infty} \operatorname{Me}_{i}\left\{\operatorname{Me}\left(D\left(\mathcal{X}_{i}, \mathcal{Y}\right)\right)\right\}=\operatorname{Me}_{\mathcal{X}} \operatorname{Me}_{\mathcal{Y}}(D(\mathcal{X}, \mathcal{Y})) \quad \text { a.s. }[P]
$$

Remark 2.2.3. It should be pointed out that the strong consistency in Proposition 2.2.6 has been understood in the sense of the convergence of the sample scale measure to the population one, instead of the convergence (after maybe a correction) of the sample measure to the population standard deviation as often made in case of dealing with real-valued random variables. Actually, the last convergence is usually discussed in the real-valued case by considering some outstanding models for the distribution of the involved random variables; this type of models has not been yet realistically stated for RFN's.

2.3 Formal analysis of the robustness of the scale measures: the finite sample breakdown point

Consider the sample of trapezoidal fuzzy numbers collected in Table 2.1 and displayed in Figure 2.1. The last datum, the trapezoidal $\operatorname{Tra}(39.70,39.73,60.13,73.05)$ (in red) clearly stands out from the rest of the values and it can be considered as an outlier. Let's see now Table 2.2, where we can find the values of some of the scales estimates defined in Section 2.1 for the whole dataset (with the outlier) and also for the dataset in which the suspicious outlier has been removed. We can observe the lack of robustness of the estimates $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)$, $\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$. The sample standard deviation is the most influenced estimator by the outlier. The $\widehat{\rho_{2} \text {-ADD }}$ with respect to the mean is also very sensitive to the presence of this atypical value, although to a lesser extent than the standard deviation. In contrast, good robust alternatives are the estimates $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$, $\widehat{\rho_{1}-\mathrm{Q}}\left(\tilde{\mathbf{x}}_{n}\right)$ and $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$, since their values slightly change when the outlier is included in the dataset.

A popular and powerful tool allowing us to describe the robustness of an estimate is its breakdown point. Donoho and Huber [34] pointed out that "the notion of breakdown point was coined, formally defined, and very briefly discussed by Frank Hampel, at that time a student of Erich Lehman, in his PhD in 1968" [55]. Although it was originally presented for location estimates, the concept has also been generalized to scale estimates.

Table 2.1: Sample of 22 trapezoidal fuzzy numbers with one outlier (in red), and $\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$

a_{i}	b_{i}	c_{i}	d_{i}	a_{i}	b_{i}	c_{i}	d_{i}
-2.51	-1.57	-1.35	-1.12	-0.41	0.18	3.92	4.41
-4.26	-4.00	-0.49	-0.34	-1.24	-0.59	-0.46	-0.32
-3.80	-0.58	2.59	2.60	0.16	0.21	0.21	0.48
-4.28	-0.82	-0.77	0.24	-1.31	-1.02	0.35	2.17
-0.56	-0.56	3.66	4.57	-5.18	-1.56	3.27	3.64
-1.44	0.42	0.45	0.77	-2.12	-1.54	1.19	1.26
-0.46	0.48	0.83	1.16	1.28	1.43	1.96	2.79
0.99	1.15	1.39	1.78	-2.08	0.18	3.69	5.01
-0.17	-0.16	-0.16	-0.14	-1.44	-0.86	-0.28	-0.28
-1.90	-1.06	-0.72	-0.65	-3.78	-0.25	0.81	0.85
-1.33	-0.18	0.07	3.37	39.70	39.73	60.13	73.05

Dataset with one outlier

Figure 2.1: Sample of 22 trapezoidal fuzzy numbers with one outlier (in red)

Table 2.2: The effect of one outlier in some dispersion estimates

Scale measure	For dataset WITHOUT outlier	For dataset WITH outlier
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.53	11.46
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.40	4.95
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.21	3.57
$\mathscr{D}_{1}^{\ell-\mathrm{ADD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.74	4.63
$\rho_{2} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.30	2.79
$\widehat{\rho_{1}-\widehat{M D D}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.05	1.20
$\mathscr{D}_{1}^{\ell-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.56	1.64
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.41	1.48
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.13	1.21
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.24	1.35

A simple and intuitive notion of the breakdown point of a scale estimate constrained to finite samples, the so-called finite sample breakdown point (fsbp for short), was introduced by Donoho [33] and Donoho and Huber [34]. For scale
estimates, it is defined as the minimum proportion of sample data which should be perturbed in order to let the estimate acquire either an arbitrary large value or the value zero. The higher the breakdown point of an estimate, the more robust it is.

Therefore, two situations need to be taken into account in scale estimation studies: the one consisting of contaminating the sample by means of outliers, which can make the estimate overestimate the true scale up to infinity (explosion), and the one consisting of contaminating the sample by means of inliers, which may result in underestimation of the true scale to zero (implosion). Notice that when dealing with location estimates, only the explosion case makes sense, this being defined as the minimum proportion of sample data that should be perturbed to get an arbitrarily large or small estimator value.

Next, the replacement version of the finite sample breakdown point for scale estimates (see Donoho and Huber [34]) is recalled, but applied in this case to fuzzy data.

Definition 2.3.1. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an $R F N \mathcal{X}$, the finite sample breakdown point of a scale estimate $\hat{\mathrm{D}}$ is defined by

$$
\operatorname{fsbp}^{*}\left(\widehat{\mathrm{D}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\min \left\{\operatorname{fsbp}^{+}\left(\hat{\mathrm{D}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \operatorname{fsbp}^{-}\left(\widehat{\mathrm{D}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right\}
$$

where

$$
\operatorname{fsbp}^{+}\left(\widehat{\mathrm{D}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\min \left\{\frac{k}{n} ; \sup _{\tilde{\mathbf{y}}_{n, k}} \hat{\mathrm{D}}\left(\widetilde{\mathbf{y}}_{n, k}\right)=\infty\right\}
$$

and

$$
\operatorname{fsbp}^{-}\left(\widehat{\mathrm{D}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\min \left\{\frac{k}{n} ; \inf _{\tilde{\mathbf{y}}_{n, k}} \widehat{\mathrm{D}}\left(\widetilde{\mathbf{y}}_{n, k}\right)=0\right\}
$$

with $\widetilde{\mathbf{y}}_{n, k}$ obtained by replacing any k observations of $\widetilde{\mathbf{x}}_{n}$ by arbitrary values. The quantities fsbp^{+}and fsbp^{-}are called the explosion breakdown point and the implosion breakdown point.

The following theorems formalize the comparison of the robustness of different scale estimators through the fsbp. They prove that if the considered sample of fuzzy observations $\widetilde{\mathbf{x}}_{n}$ does not contain two coinciding observations, then their fsbp equals

- $\frac{1}{n}$ for the estimates $\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$, which is the lowest possible fsbp, and
- $\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor$ for the estimates $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)$, $\widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)$, which is the highest possible fsbp for a scale estimate.

Therefore, these estimators inherit the value of the fsbp from the real-valued case (see, for instance, Rousseeuw and Croux [100]).

Theorem 2.3.1. For any sample of observations $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ from an RFN \mathcal{X} in which there are not two identical observations, we have that

$$
\operatorname{fsbp}^{+}\left(\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}, \quad \operatorname{fsbp}^{-}\left(\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{n-1}{n} .
$$

Therefore, the finite sample breakdown point of the scale estimate $\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$ is given by

$$
\operatorname{fsbp}^{*}\left(\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}
$$

which is the lowest possible fsbp* of an estimate.
Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample in which there are not two identical observations, and denote fsbp ${ }^{+}=\mathrm{fsbp}^{+}\left(\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\mathrm{fsbp}^{-}=\mathrm{fsbp}^{-}\left(\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$. The proof of the two first conclusions is to be split in three steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq(n-1) / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n, n-1}=\left\{\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right\}$ with $n-1$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$ such that $\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)=0$.

The sample $\widetilde{\mathbf{y}}_{n, n-1}$ is constructed by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{n}$ by \widetilde{x}_{1}. The considered sample $\widetilde{\mathbf{y}}_{n, n-1}$ has $k=n-1$ replaced observations. Since $\overline{\widetilde{\mathbf{y}}}_{n, n-1}=\widetilde{x}_{1}$, we have that for all $i \in\{1, \ldots, n\}, D_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widetilde{\mathbf{y}}_{n, n-1}\right)=D_{\theta}^{\varphi}\left(\widetilde{x}_{1}, \widetilde{x}_{1}\right)=0$, whence $\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)=\sqrt{\sum_{i=1}^{n}\left[D_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \overline{\tilde{\mathbf{y}}}_{n, n-1}\right)\right]^{2} / n}=0$.

Therefore, $\inf _{\widetilde{\mathbf{z}}_{n, n-1}} \widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{z}}_{n, n-1}\right)=0$ with $\widetilde{\mathbf{z}}_{n, n-1}$ any sample with $n-1$ replaced observations of $\widetilde{\mathbf{x}}_{n}$, whence $\mathrm{fsbp}^{-} \leq(n-1) / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq(n-1) / n$.
Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<n-1$ replaced observations of $\widetilde{\mathbf{x}}_{n}$. There exist at least two observations $\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that $\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}$ $\in \widetilde{\mathbf{y}}_{n, k}$. Let $\delta:=\sqrt{\min _{i, j \in\{1, \ldots, n\}}\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)\right]^{2} / n^{2}}>0$. We have that

$$
\begin{gathered}
\delta=\sqrt{\frac{\min _{i, j \in\{1, \ldots, n\}} D_{\theta}^{\varphi}\left[\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)\right]^{2}}{n^{2}}} \leq \sqrt{\left[\frac{1}{n} D_{\theta}^{\varphi}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x}_{\tilde{\mathbf{y}}_{n, k}}\right)\right]^{2}} \\
\leq \sqrt{\left[\frac{D_{\theta}^{\varphi}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \overline{\tilde{y}}_{n, k}\right)+D_{\theta}^{\varphi}\left(\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}, \overline{\tilde{y}}_{n, k}\right)}{n}\right]^{2}} \leq \sqrt{\left[\frac{1}{n} \sum_{i=1}^{n} D_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widetilde{\mathbf{y}}_{n, k}\right]^{2}\right.} \\
\leq \sqrt{\frac{1}{n} \sum_{i=1}^{n}\left[D_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \overline{\mathbf{y}}_{n, k}\right)\right]^{2}}=\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{y}}_{n, k}\right) .
\end{gathered}
$$

Therefore, $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{y}}_{n, k}\right) \geq \delta>0$ with $k<n-1$, and hence fsbp ${ }^{-}$ $\geq(n-1) / n$.

Step 3: Finally, we will prove that fsbp ${ }^{+}=1 / n$. For this purpose, we construct the sample $\widetilde{\mathbf{y}}_{n, 1}$ by replacing the observation \widetilde{x}_{1} by $\widetilde{x}_{(n)}+L$, with $L \in \mathbb{R}, L>0$ and $\widetilde{x}_{(n)}$ the extended maximum $\widetilde{\max }_{i \in\{1, \ldots, n\}} \widetilde{x}_{i}$ (see, for instance, [35]) defined so that $\left(\widetilde{\max }_{i \in\{1, \ldots, n\}} \widetilde{x}_{i}\right)_{\alpha}=\left[\max _{i \in\{1, \ldots, n\}} \inf \left(\widetilde{x}_{i}\right)_{\alpha}, \max _{i \in\{1, \ldots, n\}} \sup \left(\widetilde{x}_{i}\right)_{\alpha}\right]$ for each $\alpha \in[0,1]$.

The considered sample $\widetilde{\mathbf{y}}_{n, 1}$ has $k=1$ replaced observation. If $\widetilde{\mathbf{x}}_{n}^{\prime}=\left\{\widetilde{x}_{(n)}, \widetilde{x}_{2}\right.$, $\left.\ldots, \widetilde{x}_{n}\right\}$, by taking into account that $\operatorname{mid}\left(\widetilde{x}_{(n)}\right)_{\alpha} \geqslant \operatorname{mid}\left(\overline{\overline{\mathbf{x}}^{\prime}}\right)_{\alpha}$ for all $\alpha \in[0,1]$, and $L \geqslant L / n$, it is satisfied that

$$
\begin{aligned}
{\left[D_{\theta}^{\varphi}\left(\widetilde{y}_{1}, \overline{\mathbf{y}}_{n, 1}\right)\right]^{2} } & =\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{(n)}+L, \overline{\mathbf{y}}_{n, 1}\right)\right]^{2}=\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{(n)}+L, \overline{\widehat{\mathbf{x}}_{n}^{\prime}}+\frac{L}{n}\right)\right]^{2} \\
& \geq\left[D_{\theta}^{\varphi}\left(\widetilde{x}_{(n)}, \overline{{\widetilde{\mathbf{x}^{\prime}}}_{n}}\right)\right]^{2}+\left[\frac{(n-1) L}{n}\right]^{2}
\end{aligned}
$$

whence

$$
D_{\theta}^{\varphi}\left(\widetilde{y}_{1}, \overline{\widetilde{\mathbf{y}}}_{n, 1}\right) \geq \frac{(n-1) L}{n} .
$$

Thus, $\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)=\sqrt{\sum_{i=1}^{n}\left[D_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \overline{\mathbf{y}}_{n, 1}\right)\right]^{2} / n} \geq \sqrt{\left[D_{\theta}^{\varphi}\left(\widetilde{y}_{1}, \overline{\mathbf{y}}_{n, 1}\right)\right]^{2} / n}$ $=D_{\theta}^{\varphi}\left(\widetilde{y}_{1}, \overline{\mathbf{y}}_{n, 1}\right) / \sqrt{n} \geq(n-1) L /(n \sqrt{n})$.

Letting $L \rightarrow \infty, \sup _{\widetilde{z}_{n, 1}} \widehat{D_{\theta}^{\varphi}-\operatorname{SD}}\left(\widetilde{\mathbf{z}}_{n, 1}\right)=\infty$ with $\widetilde{\mathbf{z}}_{n, 1}$ any sample with 1 replaced observation of $\widetilde{\mathbf{x}}_{n}$. Therefore, $\mathrm{fsbp}^{+}=1 / n$.

Theorem 2.3.2. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an $R F N \mathcal{X}$ in which there are not two identical observations, we have that

$$
\operatorname{fsbp}^{+}\left(\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}, \quad \operatorname{fsbp}^{-}\left(\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)\right)=\frac{n-1}{n} .
$$

Therefore, the finite sample breakdown point of the scale estimate $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$ is given by

$$
\operatorname{fsbp}^{*}\left(\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)\right)=\frac{1}{n},
$$

which is the lowest possible fsbp* of an estimate.
Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample in which there are not two identical observations, and denote $\mathrm{fsbp}^{+}=\mathrm{fsbp}^{+}\left(\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)\right)$ and $\mathrm{fsbp}^{-}=\mathrm{fsbp}^{-}\left(\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}\right.\right.$, $\left.\widetilde{\mathbf{x}}_{n}\right)$). The proof of the two first conclusions is to be split in three steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq(n-1) / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n, n-1}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=n-1$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$ such that $\widehat{\rho_{2}-\operatorname{ADD}}\left(\widetilde{\mathbf{y}}_{n, n-1}, \overline{\mathbf{y}}_{n, n-1}\right)=0$.

We construct the sample $\widetilde{\mathbf{y}}_{n, n-1}$ by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{n}$ by \widetilde{x}_{1}. The considered sample $\widetilde{\mathbf{y}}_{n, n-1}$ has $k=n-1$ replaced observations. Since $\overline{\tilde{\mathbf{y}}}_{n, n-1}=\widetilde{x}_{1}$, we have that for all $i \in\{1, \ldots, n\}, \rho_{2}\left(\widetilde{y}_{i}, \overline{\tilde{\mathbf{y}}}_{n, n-1}\right)=\rho_{2}\left(\widetilde{x}_{1}, \widetilde{x}_{1}\right)=0$, whence

$$
\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{y}}_{n, n-1}, \widetilde{\mathbf{y}}_{n, n-1}\right)=\sum_{i=1}^{n} \rho_{2}\left(\widetilde{y}_{i}, \widetilde{\mathbf{y}}_{n, n-1}\right) / n=0 .
$$

Consequently, $\inf _{\widetilde{\mathbf{z}}_{n, n-1}} \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{z}}_{n, n-1}, \overline{\mathbf{z}}_{n, n-1}\right)=0$ with $\widetilde{\mathbf{z}}_{n, n-1}$ any sample with $n-1$ replaced observations of $\widetilde{\mathbf{x}}_{n}$ and, for this reason, $\mathrm{fsbp}^{-} \leq(n-1) / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq(n-1) / n$.
Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<n-1$ replaced observations of $\widetilde{\mathbf{x}}_{n}$. There exist at least two observations $\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x}_{\widetilde{\mathbf{y}}_{n, k}} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that $\widetilde{x}_{\tilde{\mathbf{y}}_{n, k}}, \widetilde{x}_{\widetilde{\mathbf{y}}_{n, k}}$ $\in \widetilde{\mathbf{y}}_{n, k}$. Let $\delta:=\min _{i, j \in\{1, \ldots, n\}} \rho_{2}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) / n>0$. We have that

$$
\begin{gathered}
\delta=\frac{\min _{i, j \in\{1, \ldots, n\}} \rho_{2}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)}{n} \leq \frac{\rho_{2}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}\right)}{n} \\
\left.\leq \frac{\rho_{2}\left({\widetilde{x^{1}}}_{\widetilde{\mathbf{y}}_{n, k}}, \overline{\mathbf{y}}_{n, k}\right)+\rho_{2}\left(\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}\right.}{n} \leq \overline{\widetilde{\mathbf{y}}}_{n, k}\right) \\
n
\end{gathered} \frac{\sum_{i=1}^{n} \rho_{2}\left(\widetilde{y}_{i}, \overline{\tilde{\mathbf{y}}}_{n, k}\right)}{n}=\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{y}}_{n, k}, \overline{\widetilde{\mathbf{y}}}_{n, k}\right) . .
$$

Therefore, $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{\rho_{2}-\operatorname{ADD}}\left(\widetilde{\mathbf{y}}_{n, k}, \overline{\mathbf{y}}_{n, k}\right) \geq \delta>0$ with $k<n-1$, and hence fsbp ${ }^{-}$ $\geq(n-1) / n$.

Step 3: Finally, we will prove that $\mathrm{fsbp}^{+}=1 / n$. For this purpose, we construct the sample $\widetilde{\mathbf{y}}_{n, 1}$ in the same way as was constructed in Step 3 of the proof of Theorem 2.3.1. Since $\rho_{2}=D_{1}^{\ell}$, then by looking at Step 3 of the proof of Theorem 2.3.1 we can conclude that

$$
\rho_{2}\left(\widetilde{y}_{1}, \overline{\widetilde{\mathbf{y}}}_{n, 1}\right) \geq \frac{(n-1) L}{n} .
$$

Thus, $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{y}}_{n, 1}, \overline{\mathbf{y}}_{n, 1}\right)=\sum_{i=1}^{n} \rho_{2}\left(\widetilde{y}_{i}, \overline{\mathbf{y}}_{n, 1}\right) / n \geq \rho_{2}\left(\widetilde{y}_{1}, \overline{\mathbf{y}}_{n, 1}\right) / n \geq(n-1) L / n^{2}$.
Letting $L \rightarrow \infty, \sup _{\widetilde{\mathbf{z}}_{n, 1}} \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{z}}_{n, 1}, \overline{\widetilde{\mathbf{z}}}_{n, 1}\right)=\infty$ with $\widetilde{\mathbf{z}}_{n, 1}$ any sample with 1 replaced observation of $\widetilde{\mathbf{x}}_{n}$. Consequently, $\mathrm{fsbp}^{+}=1 / n$.

Theorem 2.3.3. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an $R F N \mathcal{X}$ in which there are not two identical observations, we have that

Therefore, the finite sample breakdown point of the scale estimate $\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ is given by

$$
\operatorname{fsbp}^{*}\left(\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n}
$$

which is the lowest possible fsbp* of an estimate.

Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample which does not contain two identical observations, and denote now $\mathrm{fsbp}^{+}=\mathrm{fsbp}^{+}\left(\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)$ and fsbp^{-} $=\operatorname{fsbp}^{-}\left(\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)$. The proof of the two first conclusions is to be split in three steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq(n-1) / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n, n-1}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=n-1$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$ such that $\widehat{\rho_{1}-\operatorname{ADD}}\left(\widetilde{\mathbf{y}}_{n, n-1}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)\right)=0$.

We construct the sample $\widetilde{\mathbf{y}}_{n, n-1}$ by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{n}$ by \widetilde{x}_{1}. The considered sample $\tilde{\mathbf{y}}_{n, n-1}$ has $k=n-1$ replaced observations. Since $\widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)=\widetilde{x}_{1}$, we have that $\rho_{1}\left(\widetilde{y}_{i}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)\right)=\rho_{1}\left(\widetilde{x}_{1}, \widetilde{x}_{1}\right)=0$ for all $i \in\{1, \ldots, n\}$, whence $\widehat{\rho_{1}-\operatorname{ADD}}\left(\tilde{\mathbf{y}}_{n, n-1}, \widehat{\operatorname{Me}}\left(\tilde{\mathbf{y}}_{n, n-1}\right)\right)=\sum_{i=1}^{n} \rho_{1}\left(\widetilde{y}_{i}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)\right) / n=0$.

Therefore, $\inf _{\widetilde{\mathbf{z}}_{n, n-1}} \widehat{\rho_{1}-\operatorname{ADD}}\left(\widetilde{\mathbf{z}}_{n, n-1}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{z}}_{n, n-1}\right)\right)=0$ with $\widetilde{\mathbf{z}}_{n, n-1}$ any sample with $n-1$ replaced observations of $\widetilde{\mathbf{x}}_{n}$ and, for this reason, $\mathrm{fsbp}^{-} \leq(n-1) / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq(n-1) / n$.
Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<n-1$ replaced observations from the original. There exist at least two observations ${\widetilde{x^{1}}}_{\widetilde{\mathbf{y}}_{n, k}}, \widetilde{x}^{2} \widetilde{\mathbf{y}}_{n, k} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that $\widetilde{x}^{1} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k} \in \widetilde{\mathbf{y}}_{n, k}$. Let $\delta:=\min _{i, j \in\{1, \ldots, n\}} \rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) / n>0$. We have that

$$
\begin{gathered}
\delta=\frac{\min _{i, j \in\{1, \ldots, n\}} \rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)}{n} \leq \frac{\rho_{1}\left({\widetilde{x^{1}}}_{\tilde{\mathbf{y}}_{n, k}},{\widetilde{x^{2}}}_{\widetilde{\mathbf{y}}_{n, k}}\right)}{n} \\
\leq \frac{\rho_{1}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)+\rho_{1}\left(\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)}{n} \leq \frac{\sum_{i=1}^{n} \rho_{1}\left(\widetilde{y}_{i}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)}{n} \\
=\widehat{\rho_{1}-\widehat{\operatorname{ADD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) .} \text {. }
\end{gathered}
$$

Therefore, $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{\rho \rho_{1}-\operatorname{ADD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) \geq \delta>0$ with $k<n-1$, whence fsbp ${ }^{-}$ $\geq(n-1) / n$.

Step 3: Finally, we will prove that $\mathrm{fsbp}^{+}=1 / n$. For this purpose, we construct the sample $\widetilde{\mathbf{y}}_{n, 1}$ in the same way as it was constructed in Step 3 of the proof of Theorem 2.3.1. The considered sample $\tilde{\mathbf{y}}_{n, 1}$ has $k=1$ replaced observation. By taking into account that $\inf \left(\widetilde{x}_{(n)}\right)_{\alpha} \geqslant \inf \left(\widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)_{\alpha}$ and $\sup \left(\widetilde{x}_{(n)}\right)_{\alpha} \geqslant \sup \left(\widetilde{\widetilde{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)_{\alpha}$ for all $\alpha \in[0,1]$, it is satisfied that

$$
\rho_{1}\left(\widetilde{y}_{1}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)=\rho_{1}\left(\widetilde{x}_{(n)}+L, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)=\rho_{1}\left(\widetilde{x}_{(n)}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)+L \geq L
$$

Thus, $\widehat{\rho_{1}-\operatorname{ADD}}\left(\tilde{\mathbf{y}}_{n, 1}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)=\sum_{i=1}^{n} \rho_{1}\left(\widetilde{y}_{i}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right) / n \geq \rho_{1}\left(\widetilde{y}_{1}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right) / n$ $\geq L / n$.

Letting $L \rightarrow \infty, \sup _{\widetilde{\mathbf{z}}_{n, 1}} \widehat{\rho_{1}-\operatorname{ADD}}\left(\widetilde{\mathbf{z}}_{n, 1} \widehat{, \mathrm{Me}}\left(\widetilde{\mathbf{z}}_{n, 1}\right)\right)=\infty$ with $\widetilde{\mathbf{z}}_{n, 1}$ any sample with 1 replaced observation of $\widetilde{\mathbf{x}}_{n}$. Consequently, $\mathrm{fsbp}^{+}=1 / n$.

Theorem 2.3.4. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an $R F N \mathcal{X}$ in which there are not two identical observations, we have that

$$
\operatorname{fsbp}^{+}\left(\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD} D\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n}, \quad \operatorname{fsbp}^{-}\left(\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD} D\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{n-1}{n} .
$$

Therefore, the finite sample breakdown point of the scale estimate $\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}\left(\widetilde{\mathrm{x}}_{n}, \stackrel{\widetilde{\mathrm{M}} \varphi}{\varphi}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ is given by

$$
\operatorname{fsbp}^{*}\left(\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n},
$$

which is the lowest possible fsbp* of an estimate.
Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample which does not contain two identical observations, and denote now fsbp ${ }^{+}=\operatorname{fsbp}^{+}\left(\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)$ and fsbp ${ }^{-}$ $=\mathrm{fsbp}^{-}\left(\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)$. The proof of the two first conclusions is to be split in three steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq(n-1) / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n, n-1}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=n-1$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$ such that $\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD}} \mathrm{D}\left(\tilde{\mathbf{y}}_{n, n-1}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)\right)=0$.

We construct the sample $\widetilde{\mathbf{y}}_{n, n-1}$ by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{n}$ by \widetilde{x}_{1}. The considered sample $\widetilde{\mathbf{y}}_{n, n-1}$ has $k=n-1$ replaced observations. Since $\overparen{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)$ $=\widetilde{x}_{1}$, we have that $\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, n-1}\right)\right)=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{1}, \widetilde{x}_{1}\right)=0$ for all $i \in\{1, \ldots, n\}$, whence $\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD}} \mathrm{D}\left(\tilde{\mathbf{y}}_{n, n-1}, \widehat{\mathrm{M}^{\varphi}}\left(\tilde{\mathbf{y}}_{n, n-1}\right)\right)=\sum_{i=1}^{n} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\tilde{\mathbf{y}}_{n, n-1}\right)\right) / n=0$.

Therefore, $\inf _{\widetilde{\mathbf{z}}_{n, n-1}} \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}}\left(\widetilde{\mathbf{z}}_{n, n-1}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{z}}_{n, n-1}\right)\right)=0$ with $\widetilde{\mathbf{z}}_{n, n-1}$ any sample with $n-1$ replaced observations of $\widetilde{\mathbf{x}}_{n}$ and, for this reason, $\mathrm{fsbp}^{-} \leq(n-1) / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq(n-1) / n$.
Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<n-1$ replaced observations from the original. There exist at least two observations ${\widetilde{x^{1}}}_{\widetilde{\mathbf{y}}_{n, k}}, \widetilde{x}^{2} \widetilde{\mathbf{y}}_{n, k} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that $\widetilde{x}^{1} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x}^{2} \widetilde{\mathbf{y}}_{n, k} \in \widetilde{\mathbf{y}}_{n, k}$. Let $\delta:=\min _{i, j \in\{1, \ldots, n\}} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) / n>0$. We have that

$$
\begin{gathered}
\delta=\frac{\min _{i, j \in\{1, \ldots, n\}} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)}{n} \leq \frac{\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k},{\widetilde{x^{2}}}_{\tilde{\mathbf{y}}_{n, k}}\right)}{n} \\
\leq \frac{\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)+\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)}{n} \leq \frac{\sum_{i=1}^{n} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)}{n} \\
=\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) .
\end{gathered}
$$

Therefore, $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD}} \mathrm{D}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) \geq \delta>0$ with $k<n-1$, and so, fsbp ${ }^{-}$ $\geq(n-1) / n$.

Step 3: Finally, we will prove that $\mathrm{fsbp}^{+}=1 / n$. For this purpose, we construct the sample $\widetilde{\mathbf{y}}_{n, 1}$ in the same way as it was constructed in Step 3 of the proof of Theorem 2.3.1. The considered sample $\widetilde{\mathbf{y}}_{n, 1}$ has $k=1$ replaced observation. Taking into account that $\operatorname{wabl}^{\varphi}\left(\widetilde{x}_{(n)}\right) \geqslant \operatorname{wabl}^{\varphi}\left(\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)$, it is satisfied that

$$
\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{1}, \widetilde{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{(n)}+L, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{(n)}, \widetilde{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right)+L \geq L .
$$

Thus, $\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{AD}} \mathrm{D}\left(\widetilde{\mathbf{y}}_{n, 1}, \widehat{\mathrm{M}^{\varphi}}\left(\tilde{\mathbf{y}}_{n, 1}\right)\right)=\sum_{i=1}^{n} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, 1}\right)\right) / n \geq \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{1}, \widehat{\mathrm{M}^{\varphi}}\left(\tilde{\mathbf{y}}_{n, 1}\right)\right) / n$ $\geq L / n$.

Letting $L \rightarrow \infty, \sup _{\widetilde{\mathbf{z}}_{n, 1}} \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}}\left(\widetilde{\mathbf{z}}_{n, 1}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{z}}_{n, 1}\right)\right)=\infty$ with $\widetilde{\mathbf{z}}_{n, 1}$ any sample with 1 replaced observation of $\widetilde{\mathbf{x}}_{n}$. Consequently, $\mathrm{fsbp}^{+}=1 / n$.

Theorem 2.3.5. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an RFN \mathcal{X} in which there are not two identical observations, we have that

$$
\begin{aligned}
& \operatorname{fsbp}^{+}\left(\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)\right)=\frac{1}{n} \text {, } \\
& \operatorname{fsbp}^{-}\left(\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)\right) \in\left\{\frac{1}{n}\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right), \frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right\} .
\end{aligned}
$$

Therefore, the finite sample breakdown point of the scale estimate $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)$ is given by

$$
\operatorname{fsbp}^{*}\left(\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)\right)=\frac{1}{n},
$$

which is the lowest possible fsbp* of an estimate.
Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample which does not contain two identical observations, and denote now $\mathrm{fsbp}^{+}=\mathrm{fsbp}^{+}\left(\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)\right)$ and fsbp^{-} $=\operatorname{fsbp}^{-}\left(\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)\right)$. The proof of the two first conclusions is to be split in three steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right) / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=\left\lfloor\frac{n}{2}\right\rfloor+1$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$ such that $\widehat{\rho_{2}-\mathrm{MDD}}\left(\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}, \widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}\right)=0$.

We construct the sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}$ by replacing the observations $\widetilde{x}_{1}, \ldots, \widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+1}$ by $\overline{\overline{\mathbf{x}^{\prime}}}$, being $\overline{\overline{\mathbf{x}^{\prime}}}$ the mean of the sample $\widetilde{\overline{\mathbf{x}}^{\prime}}=\left(\widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+2}, \ldots, \widetilde{x}_{n}\right)$. The considered sample $\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}$ has $k=\left\lfloor\frac{n}{2}\right\rfloor+1$ replaced observations. See that $\widehat{\rho_{2}-\mathrm{MDD}}\left(\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}, \overline{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}\right)$ $=0$.

Since $\overline{\tilde{\mathbf{y}}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}=\overline{\widetilde{\mathbf{x}^{\prime}}}$, then for all $i \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}$,

$$
\rho_{2}\left(\widetilde{y}_{i}, \overline{\tilde{\mathbf{y}}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}\right)=\rho_{2}\left(\overline{\widetilde{\mathbf{x}^{\prime}},} \overline{\mathbf{x}^{\prime}}\right)=0 .
$$

Thus, $\widehat{\rho_{2}-\widehat{M D D}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}, \overline{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}\right)=\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{2}\left(\widetilde{y}_{i}, \overline{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}\right)\right)=0$.
Therefore, $\inf _{\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}} \widehat{\rho_{2}-\operatorname{MDD}}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}, \widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}\right)=0$ with $\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor+1}$ any sample with $\left\lfloor\frac{n}{2}\right\rfloor+1$ replaced observations of $\widetilde{\mathbf{x}}_{n}$ and, for this reason, $\mathrm{fsbp}^{-} \leq\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right) / n$.

It should be remarked that if there is an \widetilde{x}_{i} equalling the sample mean of a subsample of $n-\left\lfloor\frac{n}{2}\right\rfloor$ observations including it, the last inequality can be constrained to be fsbp ${ }^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$. Thus, assume without loss of generality that the observation $\widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+1}$ equals the mean $\overline{\widetilde{\mathbf{x}^{\prime \prime}}}$ of the sample $\widetilde{\mathbf{x}^{\prime \prime}}=\left(\widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+1}, \ldots, \widetilde{x}_{n}\right)$. By taking the sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}$ replacing the observations $\widetilde{x}_{1}, \ldots, \widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor}$ by $\overline{\widetilde{\mathbf{x}^{\prime \prime}}}$, the proof is analogous to the previous one.

Step 2: To show that fsbp ${ }^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$, let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with k $<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the original. Because of the definition of median for real numbers, there exist at least $\left\lfloor\frac{n}{2}\right\rfloor+1$ observations $\widetilde{y^{j}}$ (with $j \in\{1, \ldots$, $\left.\left.\left\lfloor\frac{n}{2}\right\rfloor+1\right\}\right)$ in the sample $\widetilde{\mathbf{y}}_{n, k}$ such that $\rho_{2}\left(\widetilde{y^{j}}, \overline{\widetilde{\mathbf{y}}}_{n, k}\right) / 2 \leq \operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{2}\left(\widetilde{y}_{i}, \overline{\mathbf{y}}_{n, k}\right)\right)$.

Moreover, because of $\widetilde{\mathbf{y}}_{n, k}$ having $k<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the sample $\tilde{\mathbf{x}}_{n}$, there exist at least two observations ${\widetilde{x_{1}^{1}}}_{\tilde{\mathbf{y}}_{n, k}},{\widetilde{x^{2}}}_{\tilde{\mathbf{y}}_{n, k}} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that $\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}=\widetilde{y^{j_{1}}}$ and $\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}=\widetilde{y^{j_{2}}}$ with $\widetilde{y^{j_{1}}}, \widetilde{y^{j_{2}}} \in\left\{\widetilde{y^{1}}, \ldots,{y^{\left\lfloor\frac{n}{2}\right\rfloor+1}}\right.$.

Let $\delta:=\min _{i, j \in\{1, \ldots, n\}} \rho_{2}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) / 4>0$. We have that

$$
\begin{gathered}
\delta=\frac{\min _{i, j \in\{1, \ldots, n\}} \rho_{2}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)}{4} \leq \frac{\rho_{2}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}\right)}{4} \\
\leq \frac{1}{2} \cdot \frac{\rho_{2}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{\mathbf{y}}_{n, k}\right)+\rho_{2}\left(\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{\mathbf{y}}_{n, k}\right)}{2} \\
\leq \frac{1}{2} \cdot\left(\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{2}\left(\widetilde{y}_{i}, \overline{\widetilde{\mathbf{y}}}_{n, k}\right)\right)+\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{2}\left(\widetilde{y}_{i}, \widetilde{\mathbf{y}}_{n, k}\right)\right)\right) \\
=\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{2}\left(\widetilde{y}_{i}, \overline{\tilde{\mathbf{y}}}_{n, k}\right)\right)=\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \overline{\tilde{\mathbf{y}}}_{n, k}\right) .
\end{gathered}
$$

Therefore, $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \overline{\widetilde{\mathbf{y}}}_{n, k}\right) \geq \delta>0$ with $k<\left\lfloor\frac{n}{2}\right\rfloor$, and hence fsbp ${ }^{-}$ $\geq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 3: Finally, we will prove that fsbp ${ }^{+}=1 / n$. For this purpose, we construct the sample $\widetilde{\mathbf{y}}_{n, 1}$ by replacing the observation \widetilde{x}_{1} by the real number $n \cdot 2 \cdot s+L$, with $L \in \mathbb{R}, L>0$ and $s:=\max _{i \in\{1, \ldots, n\}, \alpha \in[0,1]}\left\{\left|\inf \left(\widetilde{x}_{i}\right)_{\alpha}\right|,\left|\sup \left(\widetilde{x}_{i}\right)_{\alpha}\right|\right\}$ $=\max _{i \in\{1, \ldots, n\}}\left\{\left|\inf \left(\widetilde{x}_{i}\right)_{0}\right|,\left|\sup \left(\widetilde{x}_{i}\right)_{0}\right|\right\}$.

The considered sample $\widetilde{\mathbf{y}}_{n, 1}$ has $k=1$ replaced observation. If $\widetilde{\widetilde{\mathbf{x}}^{\prime}}{ }_{n}=\{n \cdot 2 \cdot s$, $\left.\widetilde{x}_{2}, \ldots, \widetilde{x}_{n}\right\}=\left\{n \cdot 2 \cdot s, \widetilde{y}_{2}, \ldots, \widetilde{y}_{n}\right\}$, since

$$
\inf \left(\overline{\widehat{\mathbf{x}}^{\prime}}\right)_{\alpha}=\frac{n \cdot 2 \cdot s+\inf \left(\widetilde{y}_{2}\right)_{\alpha}+\ldots+\inf \left(\widetilde{y}_{n}\right)_{\alpha}}{n}
$$

$$
\begin{gathered}
=\frac{2 \cdot s+\left(\inf \left(\widetilde{y}_{2}\right)_{\alpha}+2 \cdot s\right)+\ldots+\left(\inf \left(\widetilde{y}_{n}\right)_{\alpha}+2 \cdot s\right)}{n} \\
\geq \frac{n \cdot \inf \left(\widetilde{y}_{i}\right)_{\alpha}}{n}=\inf \left(\widetilde{y}_{i}\right)_{\alpha} \\
\sup \left(\overline{\overline{\mathbf{x}}^{\prime}}\right)_{\alpha}=\frac{n \cdot 2 \cdot s+\sup \left(\widetilde{y}_{2}\right)_{\alpha}+\ldots+\sup \left(\widetilde{y}_{n}\right)_{\alpha}}{n} \\
=\frac{2 \cdot s+\left(\sup \left(\widetilde{y}_{2}\right)_{\alpha}+2 \cdot s\right)+\ldots+\left(\sup \left(\widetilde{y}_{n}\right)_{\alpha}+2 \cdot s\right)}{n} \\
\geq \frac{n \cdot \sup \left(\widetilde{y}_{i}\right)_{\alpha}}{n}=\sup \left(\widetilde{y}_{i}\right)_{\alpha}
\end{gathered}
$$

for all $\alpha \in[0,1]$ and for all $i \in\{2, \ldots, n\}$, then it is satisfied that

$$
\left[\rho_{2}\left(\widetilde{y}_{i}, \overline{\tilde{\mathbf{y}}}_{n, 1}\right)\right]^{2}=\left[\rho_{2}\left(\widetilde{y}_{i},{\overline{\widehat{\mathbf{x}}^{\prime}}}_{n}+\frac{L}{n}\right)\right]^{2} \geq\left[\rho_{2}\left(\widetilde{y}_{i}, \overline{\overline{\mathbf{x}}_{n}^{\prime}}\right)\right]^{2}+\left[\frac{L}{n}\right]^{2},
$$

for all $i \in\{2, \ldots, n\}$, whence

$$
\rho_{2}\left(\widetilde{y}_{i}, \overline{\mathbf{y}}_{n, 1}\right) \geq \frac{L}{n} .
$$

Thus, $\widehat{\rho_{2}-\operatorname{MDD}}\left(\widetilde{\mathbf{y}}_{n, 1}, \overline{\tilde{\mathbf{y}}}_{n, 1}\right)=\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{2}\left(\widetilde{y}_{i}, \overline{\tilde{\mathbf{y}}}_{n, 1}\right)\right) \geq L / n$.
Letting $L \rightarrow \infty, \sup _{\tilde{\mathbf{z}}_{n, 1}} \widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{z}}_{n, 1}, \overline{\widetilde{\mathbf{z}}}_{n, 1}\right)=\infty$ with $\widetilde{\mathbf{z}}_{n, 1}$ any sample with 1 replaced observation of $\widetilde{\mathbf{x}}_{n}$. Therefore, $\mathrm{fsbp}^{+}=1 / n$.

Theorem 2.3.6. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an $R F N \mathcal{X}$ in which there are not two identical observations, we have that
$\operatorname{fsbp}^{+}\left(\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n}\left\lfloor\frac{n+1}{2}\right\rfloor, \quad \operatorname{fsbp}^{-}\left(\widehat{\left.\rho_{1}-\widehat{\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor . ~}\right.$
Therefore, the finite sample breakdown point of the scale estimate $\widehat{\rho_{1}-\mathrm{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{M e}}\left(\widetilde{\mathbf{x}}_{n}\right)\right) \text { is given by }}$

$$
\operatorname{fsbp}^{*}\left(\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\overline{\operatorname{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor,
$$

which is the highest possible fsbp* of a scale estimate.
Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample which does not contain two identical observations, and denote now $\mathrm{fsbp}^{+}=\mathrm{fsbp}^{+}\left(\rho_{1-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)$ and fsbp^{-} $=\operatorname{fsbp}^{-}\left(\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)$. The proof of the two first conclusions is next presented in four steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$ such that $\widehat{\rho_{1}-\widehat{\operatorname{MDD}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}, \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)=0$.

We construct the sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}$ by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+1}$ by \widetilde{x}_{1}. Since $\widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)=\widetilde{x}_{1}$, then for all $i \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}$

$$
\rho_{1}\left(\widetilde{y}_{i}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)=\rho_{1}\left(\widetilde{x}_{1}, \widetilde{x}_{1}\right)=0 .
$$

Thus, $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)=\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{1}\left(\widetilde{y}_{i}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)\right)=0$.
Therefore, $\inf _{\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}} \widehat{\rho_{1}-\operatorname{MDD}}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}, \widehat{\widetilde{M e}}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)=0$ for any sample $\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}$ with $\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations of $\widetilde{\mathbf{x}}_{n}$, and fsbp ${ }^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$. Let $\tilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the original. Because of the definition of median for real numbers, there exist at least $\left\lfloor\frac{n}{2}\right\rfloor+1$ observations $\widetilde{y^{j}}$ (with $j \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+\right.$ $1\})$ in the sample $\tilde{\mathbf{y}}_{n, k}$ such that $\rho_{1}\left(\widetilde{y^{j}}, \widehat{\operatorname{Me}}\left(\tilde{\mathbf{y}}_{n, k}\right)\right) / 2 \leq \operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{1}\left(\widetilde{y}_{i}, \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)$.

Moreover, because of $\tilde{\mathbf{y}}_{n, k}$ having $k<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the sample $\widetilde{\mathbf{x}}_{n}$, there exist at least two observations ${\widetilde{x^{1}}}_{\widetilde{\mathbf{y}}_{n, k}},{\widetilde{x^{2}}}_{\widetilde{\mathbf{y}}_{n, k}} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that $\widetilde{x^{1}} \widetilde{\boldsymbol{y}}_{n, k}=\widetilde{y^{j_{1}}}$ and $\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}=\widetilde{y^{j_{2}}}$ with $\widetilde{y^{j_{1}}}, \widetilde{y^{j_{2}}} \in\left\{\widetilde{y^{1}}, \ldots, y^{\left\lfloor\frac{n}{2}\right\rfloor+1}\right\}$.

Let $\delta:=\min _{i, j \in\{1, \ldots, n\}} \rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) / 4>0$. We have that

$$
\begin{gathered}
\delta=\frac{\min _{i, j \in\{1, \ldots, n\}} \rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)}{4} \leq \frac{\rho_{1}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}\right)}{4} \\
\leq \frac{1}{2} \cdot \frac{\rho_{1}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)+\rho_{1}\left(\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)}{2} \\
\leq \frac{1}{2} \cdot\left(\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{1}\left(\widetilde{y}_{i}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)+\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{1}\left(\widetilde{y_{i}}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)\right) \\
=\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{1}\left(\widetilde{y}_{i}, \widehat{\widetilde{M e}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)=\widehat{\rho_{1}-\operatorname{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\widetilde{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) .
\end{gathered}
$$

Therefore, $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{\rho_{1}-\operatorname{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) \geq \delta>0$ with $k<\left\lfloor\frac{n}{2}\right\rfloor$, and hence fsbp $^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 3: Now we will prove that fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.
We construct the sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ by replacing the observation \widetilde{x}_{1} by $\widetilde{x}_{(n)}+L, \widetilde{x}_{2}$ by $\widetilde{x}_{(n)}+2 L, \ldots, \widetilde{x}_{\left\lfloor\frac{n+1}{2}\right\rfloor}$ by $\widetilde{x}_{(n)}+\left\lfloor\frac{n+1}{2}\right\rfloor L$, with $L \in \mathbb{R}, L>0$ and $\widetilde{x}_{(n)}$ the extended maximum $\widetilde{\max }_{i \in\{1, \ldots, n\}} \widetilde{\widetilde{x}}_{i}$.

The considered sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ has $k=\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations. It satisfies that for any $i \in\{2, \ldots, n\}, \rho_{1}\left(\widetilde{y}_{i}, \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)\right) \geq L / 2$ because:

- If n is odd, $\widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\widetilde{x}_{(n)}+L$ and, hence,

$$
\begin{aligned}
& \left.- \text { for all } i \in\left\{2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}, \rho_{1}\left(\widetilde{y}_{i}, \widehat{\widetilde{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right\rfloor\right)\right)=\rho_{1}\left(\widetilde{x}_{(n)}+i L, \widetilde{x}_{(n)}+L\right) \\
& \quad=(i-1) L \geq L \text { and } \\
& \text { - for all } i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}, \rho_{1}\left(\widetilde{y}_{i}, \widehat{\widetilde{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right\rfloor\right)=\rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}_{(n)}+L\right) \\
& \quad=\rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}_{(n)}\right)+L \geq L .
\end{aligned}
$$

- If n is even, $\widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\widetilde{x^{\prime}}+L / 2$, where $\left(\tilde{x}^{\prime}\right)_{\alpha}=\left[\left(\max _{i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}} \inf \left(\widetilde{x}_{i}\right)_{\alpha}\right.\right.$ $\left.\left.+\inf \left(\widetilde{x}_{(n)}\right)_{\alpha}\right) / 2,\left(\max _{i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}} \sup \left(\widetilde{x}_{i}\right)_{\alpha}+\sup \left(\widetilde{x}_{(n)}\right)_{\alpha}\right) / 2\right]$ and, hence,
- for all $i \in\left\{2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}, \rho_{1}\left(\widetilde{y}_{i}, \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)\right)=\rho_{1}\left(\widetilde{x}_{(n)}+i L, \widetilde{x}^{\prime}+L / 2\right)$
$=\rho_{1}\left(\widetilde{x}_{(n)}, \tilde{x}^{\prime}\right)+(2 i-1) L / 2 \geq L$ and
- for all $i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}, \rho_{1}\left(\widetilde{y_{i}}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)\right)=\rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}^{\prime}+L / 2\right)$
$=\rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}^{\prime}\right)+L / 2 \geq L / 2$.

 $\left.\widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)\right)=\infty$ for any sample $\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ with $\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations of $\widetilde{\mathbf{x}}_{n}$, and therefore, fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Step 4: Finally, we will prove that fsbp ${ }^{+} \geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$. Let $\tilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations from the original. Because of the definition of median for real numbers, there exist at least $\left\lfloor\frac{n+1}{2}\right\rfloor$ observations $\widetilde{y^{j}}$ (with $\left.j \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}\right)$ in the sample $\widetilde{\mathbf{y}}_{n, k}$ such that $\rho_{1}\left(\widetilde{y^{j}}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)$ $\geq \operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{1}\left(\widetilde{y}_{i}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)$.

Moreover, because of $\tilde{\mathbf{y}}_{n, k}$ having $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations from the sample $\widetilde{\mathbf{x}}_{n}$, notice that

- there exists at least one observation $\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that $\widetilde{x^{1}}{\widetilde{\mathbf{y}_{n, k}}}=\widetilde{y^{j_{1}}}$ with $\widetilde{y^{j_{1}}} \in\left\{\widetilde{y^{1}}, \ldots, \widetilde{y^{\left\lfloor\frac{n+1}{2}\right\rfloor}}\right\}$,
- and for each $\alpha \in[0,1], \inf \left(\widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)_{\alpha}$ should be in between the minimum and the maximum of the infima of the α-levels of the unreplaced \widetilde{x}_{i}, and the same happens with the suprema.

Let $M:=\max _{i, j \in\{1, \ldots, n\}} \rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)<\infty$. We have that

$$
M=\max _{i, j \in\{1, \ldots, n\}} \rho_{1}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) \geq \rho_{1}\left(\widetilde{x^{1}}{\widetilde{\mathbf{y}_{n, k}}} \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)
$$

$$
\geq \operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\rho_{1}\left(\widetilde{y}_{i}, \widehat{\mathrm{Me}}\left(\tilde{\mathbf{y}}_{n, k}\right)\right)\right)=\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)
$$

Therefore, $\left.\sup _{\widetilde{\mathbf{y}}_{n, k}} \widehat{\rho-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right) \leq M<\infty$ with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$, and consequently, $\mathrm{fsbp}^{+} \geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Theorem 2.3.7. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an RFN \mathcal{X} in which there are not two identical fuzzy numbers, we have that
$\operatorname{fsbp}^{+}\left(\mathscr{D}_{\theta}^{\widehat{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n}\left\lfloor\frac{n+1}{2}\right\rfloor, \operatorname{fsbp}^{-}\left(\mathscr{D}_{\theta}^{\widehat{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor$.
Therefore, the finite sample breakdown point of the scale estimate $\widehat{\mathscr{D}_{\theta}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}\right.$, $\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)$) is given by

$$
\operatorname{fsbp}^{*}\left(\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor,
$$

which is the highest possible fsbp* of a scale estimate.
Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample in which there are not two identical fuzzy numbers, and denote $\mathrm{fsbp}^{+}=\mathrm{fsbp}^{+}\left(\mathscr{D}_{\theta}{ }^{-} \mathrm{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)$ and fsbp ${ }^{-}$ $=\mathrm{fsbp}^{-}\left(\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)\right)$. The proof is presented in four steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$ such that $\widehat{\mathscr{D}_{\theta}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)=0$.

We construct the sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}$ by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+1}$ by \widetilde{x}_{1}. Since $\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)=\widetilde{x}_{1}$, then for all $i \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}$,

$$
\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{1}, \widetilde{x}_{1}\right)=0 .
$$

Thus, $\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}, \widehat{\mathrm{M}^{\varphi}}\left(\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)=\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)\right)=0$.
Therefore, $\inf _{\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right.}} \mathscr{D}_{\theta}^{\widehat{\varphi}-\mathrm{MD}} \mathrm{D}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}, \widehat{\widehat{\mathrm{M}_{\varphi}^{\varphi}}}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)\right)=0$ for any sample $\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}$ with $\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations of $\widetilde{\mathbf{x}}_{n}$, and fsbp ${ }^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$. Let $\tilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the original. Because of the definition of median for real numbers, there exist at least $\left\lfloor\frac{n}{2}\right\rfloor+1$ observations $\widetilde{y^{j}}$ (with $j \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}$) in the sample $\widetilde{\mathbf{y}}_{n, k}$ such that $\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y^{j}}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) / 2 \leq \operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)$.

Moreover, because of $\tilde{\mathbf{y}}_{n, k}$ having $k<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the sample $\widetilde{\mathbf{x}}_{n}$, there exist at least two observations $\widetilde{x}_{\widetilde{\mathbf{y}}_{n, k}}, \widetilde{x}_{\widetilde{\mathbf{y}}_{n, k}} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that
$\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}=\widetilde{y^{j_{1}}}$ and $\widetilde{x^{2}}{\widetilde{y_{n, k}}}=\widetilde{y^{j_{2}}}$ with $\widetilde{y^{j_{1}}}, \widetilde{y^{j_{2}}} \in\left\{\widetilde{y^{1}}, \ldots, y^{\left\lfloor\frac{n}{2}\right\rfloor+1}\right\}$. Let δ $:=\min _{i, j \in\{1, \ldots, n\}} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) / 4>0$. We have that

$$
\begin{gathered}
\delta=\frac{\min _{i, j \in\{1, \ldots, n\}} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)}{4} \leq \frac{\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}\right)}{4} \\
\leq \frac{1}{2} \cdot \frac{\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)+\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x^{2}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)}{2} \\
\leq \frac{1}{2} \cdot\left(\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)+\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)\right) \\
=\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)=\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) .
\end{gathered}
$$

Therefore, $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) \geq \delta>0$ with $k<\left\lfloor\frac{n}{2}\right\rfloor$, and hence $\mathrm{fsbp}^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 3: Now we will prove that fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.
We construct the sample $\widetilde{\mathbf{y}}_{n, k}$ by replacing the observation \widetilde{x}_{1} by $\widetilde{x}_{(n)}+L, \widetilde{x}_{2}$ by $\widetilde{x}_{(n)}+2 L, \ldots, \widetilde{x}_{\left\lfloor\frac{n+1}{2}\right\rfloor}$ by $\widetilde{x}_{(n)}+\left\lfloor\frac{n+1}{2}\right\rfloor L$, with $L \in \mathbb{R}, L>0$ and $\widetilde{x}_{(n)}$ the interval value given by

$$
\widetilde{x}_{(n)}=\left[\max _{i \in\{1, \ldots, n\}} \operatorname{wabl}^{\varphi}\left(\widetilde{x}_{i}\right), \max _{i \in\{1, \ldots, n\}} \operatorname{wabl}^{\varphi}\left(\widetilde{x}_{i}\right)+2 s\right],
$$

with $s:=\max _{i \in\{1, \ldots, n\}, \alpha \in[0,1]}\left\{\operatorname{ldev}_{\widetilde{x}_{i}}^{\varphi}(\alpha), \operatorname{rdev}_{\widetilde{x}_{i}}^{\varphi}(\alpha)\right\}=\max _{i \in\{1, \ldots, n\}}\left\{\operatorname{ldev}_{\widetilde{x}_{i}}^{\varphi}(0), \operatorname{rdev}_{\widetilde{x}_{i}}^{\varphi}(0)\right\}$.
The considered sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ has $k=\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations. It satisfies that for any $i \in\{2, \ldots, n\}, \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)\right) \geq L / 2$ because:

- If n is odd, $\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\widetilde{x}_{(n)}+L$ and, hence,

$$
\begin{aligned}
& - \text { for all } i \in\left\{2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}, \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right\rfloor\right)=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{(n)}+i L, \widetilde{x}_{(n)}+L\right) \\
& \quad=(i-1) L \geq L \text { and } \\
& - \text { for all } i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}, \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\widetilde{\mathrm{M}^{\varphi}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right\rfloor\right)=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{(n)}+L\right) \\
& \quad=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{(n)}\right)+L \geq L .
\end{aligned}
$$

- If n is even, $\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\widetilde{x^{\prime}}+L / 2$, where $\widetilde{x^{\prime}}$ is the fuzzy number such that for each $\alpha \in[0,1]$

$$
\begin{aligned}
& \max \left(\widetilde{x^{\prime}}\right)_{\alpha}=\frac{\max _{i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}} \operatorname{wabl}^{\varphi}\left(\widetilde{x}_{i}\right)-\max _{i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}} \operatorname{ldev}_{\widetilde{x}_{i}}^{\varphi}(\alpha)+\inf \left(\widetilde{x}_{(n)}\right)_{\alpha}}{2}, \\
& \operatorname{mup}\left(\tilde{x^{\prime}}\right)_{\alpha}=\frac{\max _{i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}} \operatorname{wabl}^{\varphi}\left(\widetilde{x}_{i}\right)+\max _{i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}} \operatorname{rdev}_{\widetilde{x}_{i}}^{\varphi}(\alpha)+\sup \left(\widetilde{x}_{(n)}\right)_{\alpha}}{2}
\end{aligned}
$$

and, hence,

$$
\begin{aligned}
& - \text { for all } i \in\left\{2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}, \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widetilde{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right\rfloor\right)=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{(n)}+i L, \widetilde{x}^{\prime}+L / 2\right) \\
& \quad=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{(n)},{\widetilde{x^{\prime}}}^{\prime}\right)+(2 i-1) L / 2 \geq L \text { and } \\
& \text { - for all } i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}, \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right\rfloor\right)=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x^{\prime}}+L / 2\right) \\
& \quad=\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}^{\prime}\right)+L / 2 \geq L / 2 .
\end{aligned}
$$

Therefore,

$$
\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}, \widehat{\widehat{\mathrm{M}^{\varphi}}}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)\right)=\operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)\right)\right) \geq L / 2 .
$$

Consequently, if $L \rightarrow \infty$, we have that $\sup _{\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right.}} \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)\right)$ $=\infty$ for any sample $\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ with $\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations of $\widetilde{\mathbf{x}}_{n}$, and therefore, $\mathrm{fsbp}^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Step 4: Finally, we will prove that fsbp ${ }^{+} \geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$. Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations from the original. Because of the definition of median for real numbers, there exist at least $\left\lfloor\frac{n+1}{2}\right\rfloor$ observations $\widetilde{y^{j}}$ of the sample $\tilde{\mathbf{y}}_{n, k}$ such that $\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y^{j}}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) \geq \operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)$, with $j \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}$.

Moreover, because of $\widetilde{\mathbf{y}}_{n, k}$ having $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations from the sample $\widetilde{\mathbf{x}}_{n}$, there exist at least one observation $\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k} \in\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right\}$ such that ${\widetilde{x^{1}}}_{\widetilde{\mathbf{y}}_{n, k}}=\widetilde{y^{j_{1}}}$ with $\widetilde{y^{j_{1}}} \in\left\{\widetilde{y^{1}}, \ldots, \int^{\left\lfloor\frac{n+1}{2}\right\rfloor}\right\}$. Let $M:=\max _{i, j \in\{1, \ldots, n\}} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)<\infty$. Reasoning as for Step 4 in the proof of Theorem 2.3.6, we have that

$$
\begin{gathered}
M=\max _{i, j \in\{1, \ldots, n\}} \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right) \geq \mathscr{D}_{\theta}^{\varphi}\left(\widetilde{x^{1}} \widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi} \varphi}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) \\
\geq \operatorname{Me}_{i \in\{1, \ldots, n\}}\left(\mathscr{D}_{\theta}^{\varphi}\left(\widetilde{y}_{i}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right)=\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right) .
\end{gathered}
$$

Therefore, $\left.\sup _{\widetilde{\mathbf{y}}_{n, k}} \widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{y}}_{n, k}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{y}}_{n, k}\right)\right)\right) \leq M<\infty$ with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$, and consequently, fsbp ${ }^{+} \geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Theorem 2.3.8. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an $R F N \mathcal{X}$ in which there are not two identical observations, we have that

$$
\operatorname{fsbp}^{+}\left(\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n+1}{2}\right\rfloor, \quad \operatorname{fsbp}^{-}\left(\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor .
$$

Therefore, the finite sample breakdown point of the scale estimate $\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)$ is given by

$$
\operatorname{fsbp}^{*}\left(\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor,
$$

which is the highest possible fsbp* of a scale estimate.

Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample in which there are not two identical observations, and denote $\mathrm{fsbp}^{+}=\mathrm{fsbp}^{+}\left(\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\mathrm{fsbp}^{-}=\mathrm{fsbp}^{-}\left(\widehat{D-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$. The proof for the two first conclusions is presented in four steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$, such that $\widehat{D-S}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)=0$.

We construct the contaminated sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}$ from $\widetilde{\mathbf{x}}_{n}$ by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+1}$ by \widetilde{x}_{1}. Since for all $i \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}, \overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\}=0$, then $\widehat{D-S}\left(\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)=\underline{\operatorname{Me}}_{i}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\}\right\}=0$.
 observations of the original sample $\widetilde{\mathbf{x}}_{n}$, and as a consequence, $\mathrm{fsbp}^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$. Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the original sample $\widetilde{\mathbf{x}}_{n}$.

Fix an arbitrary $\widetilde{y}_{i} \in \widetilde{\mathbf{y}}_{n, k} \cap \widetilde{\mathbf{x}}_{n}$. Since $k<\left\lfloor\frac{n}{2}\right\rfloor$ observations are replaced of the original sample $\widetilde{\mathbf{x}}_{n}$, there exist at least $n-\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n+1}{2}\right\rfloor$ observations \widetilde{y}_{l} in the sample $\widetilde{\mathbf{y}}_{n, k}$ with $\widetilde{y}_{l} \neq \widetilde{y}_{i}$ such that $\widetilde{y}_{l} \in \widetilde{\mathbf{x}}_{n}$. So, for at least $\left\lfloor\frac{n+1}{2}\right\rfloor$ observations $\widetilde{y}_{l}: D\left(\widetilde{y}_{i}, \widetilde{y}_{l}\right)$ $\geq \min _{i, j \in\{1, \ldots, n\}} D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right):=\delta>0$ and hence, $\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} \geq \delta>0$. Since at least there exist $n-\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)=\left\lfloor\frac{n+1}{2}\right\rfloor+1$ observations $\widetilde{y}_{i} \in \widetilde{\mathbf{y}}_{n, k} \cap \widetilde{\mathbf{x}}_{n}$, whence $\widehat{D-S}\left(\widetilde{\mathbf{y}}_{n, k}\right)=\underline{\operatorname{Me}}_{i}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\}\right\} \geq \delta$.

Thus, $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{D-S}\left(\widetilde{\mathbf{y}}_{n, k}\right) \geq \delta>0$ with $k<\left\lfloor\frac{n}{2}\right\rfloor$, and hence fsbp ${ }^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$.
Step 3: Now we will prove that fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.
We construct the sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ from $\widetilde{\mathbf{x}}_{n}$ by replacing the observation \widetilde{x}_{1} by $\widetilde{x}_{(n)}+L, \widetilde{x}_{2}$ by $\widetilde{x}_{(n)}+2 L, \ldots, \widetilde{x}_{\left\lfloor\frac{n+1}{2}\right\rfloor}$ by $\widetilde{x}_{(n)}+\left\lfloor\frac{n+1}{2}\right\rfloor L$, with $0<L \in \mathbb{R}$ and $\widetilde{x}_{(n)}$ the extended maximum $\widetilde{\max }_{i \in\{1, \ldots, n\}} \widetilde{x}_{i}$.

The considered sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ has $k=\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations. It satisfies that for any $i \in\{1, \ldots, n\}, \overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} \geq L$ since

- if $i \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}, D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right) \geq L$ for all $j \neq i$, whereas
- if $i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}, D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right) \geq L$ for all $j \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}$.

Thus, $\left.\widehat{D-S}\left(\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right.}\right\rfloor\right)=\underline{\operatorname{Me}}_{i}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\}\right\} \geq L$.
Letting $L \rightarrow \infty, \sup _{\left.\mathbf{z}_{n,\left\lfloor\frac{n+1}{2}\right.}\right\rfloor} \widehat{D-S}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\infty$ being $\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ any sample with $\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations of $\widetilde{\mathbf{x}}_{n}$, and fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Step 4: Finally, we will prove that fsbp ${ }^{+} \geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$. Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations from the original sample $\widetilde{\mathbf{x}}_{n}$.

Fix an arbitrary $\widetilde{y}_{i} \in \widetilde{\mathbf{y}}_{n, k} \cap \widetilde{\mathbf{x}}_{n}$. Since $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ observations are replaced of the original sample $\widetilde{\mathbf{x}}_{n}$, there exist at least $n-\left(\left\lfloor\frac{n+1}{2}\right\rfloor-1\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$ observations \widetilde{y}_{l} in the sample $\widetilde{\mathbf{y}}_{n, k}$ such that $\widetilde{y}_{l} \in \widetilde{\mathbf{x}}_{n}$. So $D\left(\widetilde{y}_{i}, \widetilde{y}_{l}\right) \leq \max _{i, j \in\{1, \ldots, n\}} D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right):=M<\infty$ and $\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} \leq M<\infty$. And, there exist at least $n-\left(\left\lfloor\frac{n+1}{2}\right\rfloor-1\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$ observations $\widetilde{y}_{i} \in \widetilde{\mathbf{y}}_{n, k} \cap \widetilde{\mathbf{x}}_{n}$, whence

$$
\widehat{D-S}\left(\widetilde{\mathbf{y}}_{n, k}\right)=\underline{\mathrm{Me}}_{i}\left\{\overline{\mathrm{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\}\right\} \leq M .
$$

Hence, $\sup _{\widetilde{y}_{n, k}} \widehat{D-S}\left(\widetilde{\mathbf{y}}_{n, k}\right) \leq M<\infty$ with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ and, consequently, fsbp ${ }^{+}$ $\geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Theorem 2.3.9. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an $R F N \mathcal{X}$ in which there are not two identical observations, we have that

$$
\operatorname{fsbp}^{+}\left(\widehat{D-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n+1}{2}\right\rfloor, \quad \operatorname{fsbp}^{-}\left(\widehat{D-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor .
$$

Therefore, the finite sample breakdown point of the scale estimate $\widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$ is given by

$$
\operatorname{fsbp}^{*}\left(\widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor,
$$

which is the highest possible fsbp* of a scale estimate.
Proof. Let $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample in which there are not two identical observations, and denote $\mathrm{fsbp}^{+}=\mathrm{fsbp}^{+}\left(\widehat{D-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\mathrm{fsbp}^{-}=\mathrm{fsbp}^{-}\left(\widehat{D-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$. The proof of the two first conclusions is presented in four steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.
We are going to find a sample $\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$, such that $\widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)=0$.

We construct the contaminated sample $\widetilde{\mathbf{y}}_{n\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor\right.}$ from $\widetilde{\mathbf{x}}_{n}$ by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+1}$ by \widetilde{x}_{1}. Since $\widetilde{y}_{i}=\widetilde{x}_{1}$ for all $i=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+1$, then we have that

$$
D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)=0 \text { for all } i \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\} \text { and for all } j \in\left\{2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+1\right\} .
$$

Therefore, by denoting $h=\lfloor n / 2\rfloor+1$, and $m=\binom{h}{2}$, we have that

$$
\operatorname{card}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)=0: i<j\right\}=\binom{\left\lfloor\frac{n}{2}\right\rfloor+1}{2}=\binom{h}{2}=m .
$$

 being $\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}$ any sample with $\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$, then $\mathrm{fsbp}^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$. Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the original sample $\widetilde{\mathbf{x}}_{n}$, and let δ $:=\min _{i, j \in\{1, \ldots, n\}} D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right)>0$.

The number of distances $D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)$ which could be lower than δ for the sample $\tilde{\mathbf{y}}_{n, k}$ is at most $\binom{k+2}{2}-1$, which is necessarily lower than or equal to

$$
\binom{\left\lfloor\frac{n}{2}\right\rfloor-1+2}{2}-1=\binom{\left\lfloor\frac{n}{2}\right\rfloor+1}{2}-1=m-1
$$

Then, $\widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n, k}\right)=\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right): i<j\right\}_{(m)} \geq \delta$, so $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n, k}\right) \geq \delta>0$ with $k<\left\lfloor\frac{n}{2}\right\rfloor$, and therefore $\mathrm{fsbp}^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 3: Now we will prove that fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.
We construct the sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ from $\widetilde{\mathbf{x}}_{n}$ by replacing the observation \widetilde{x}_{1} by $\widetilde{x}_{(n)}+L, \widetilde{x}_{2}$ by $\tilde{x}_{(n)}+2 L, \ldots, \tilde{x}_{\left\lfloor\frac{n+1}{2}\right\rfloor}$ by $\tilde{x}_{(n)}+\left\lfloor\frac{n+1}{2}\right\rfloor L$, with $0<L \in \mathbb{R}$ and $\widetilde{x}_{(n)}$ the extended maximum $\widetilde{\max }_{i \in\{1, \ldots, n\}} \widetilde{x}_{i}$.

The considered sample $\tilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ has $k=\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations, and it verifies that

$$
\begin{gathered}
\operatorname{card}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right) \geqslant L: i<j\right\} \\
=\operatorname{card}\left\{D\left(\widetilde{y}_{1}, \widetilde{y}_{j}\right) \geqslant L: 1<j\right\}+\operatorname{card}\left\{D\left(\widetilde{y}_{2}, \widetilde{y}_{j}\right) \geqslant L: 2<j\right\}+\ldots \\
\left.+\operatorname{card}\left\{D\left(\widetilde{y}_{\left\lfloor\frac{n+1}{2}\right\rfloor}\right\rfloor \widetilde{y}_{j}\right) \geqslant L:\left\lfloor\frac{n+1}{2}\right\rfloor<j\right\}+\ldots+\operatorname{card}\left\{D\left(\widetilde{y}_{n-1}, \widetilde{y}_{n}\right) \geqslant L\right\} \\
\geq(n-1)+(n-2)+\ldots+\left(n-\left\lfloor\frac{n+1}{2}\right\rfloor\right)=\left\lfloor\frac{n+1}{2}\right\rfloor\left(\frac{2 n-\left\lfloor\frac{n+1}{2}\right\rfloor-1}{2}\right) .
\end{gathered}
$$

- If n is even, the number of distances which are greater than or equal to L is at least equal to

$$
\left\lfloor\frac{n+1}{2}\right\rfloor\left(\frac{2 n-\left\lfloor\frac{n+1}{2}\right\rfloor-1}{2}\right)=\frac{n(3 n-2)}{8}
$$

and therefore, the number of distances which are lower than L is lower than or equal to

$$
\binom{n}{2}-\frac{n(3 n-2)}{8}=\frac{n(n-2)}{8} .
$$

Since $\widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right): i<j\right\}_{(m)}$, and in the case that n is even,

$$
m=\binom{\left\lfloor\frac{n}{2}\right\rfloor+1}{2}=\frac{n(n+2)}{8}>\frac{n(n-2)}{8}
$$

then $\widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right): i<j\right\}_{(m)} \geq L$.

- In case that n is odd, the number of distances which are greater than or equal to L is at least equal to

$$
\left\lfloor\frac{n+1}{2}\right\rfloor\left(\frac{2 n-\left\lfloor\frac{n+1}{2}\right\rfloor-1}{2}\right)=\frac{(n+1)(3 n-3)}{8}
$$

and therefore, the number of distances which are lower than L is at most equal to

$$
\binom{n}{2}-\frac{(n+1)(3 n-3)}{8}=\frac{n^{2}-4 n+3}{8} .
$$

In this case, since n is odd,

$$
m=\binom{\left\lfloor\frac{n}{2}\right\rfloor+1}{2}=\binom{\frac{n-1}{2}+1}{2}=\frac{(n+1)(n-1)}{8}>\frac{n^{2}-4 n+3}{8}
$$

since $n^{2}-1>n^{2}-4 n+3$ if $n>1$. Therefore, for n odd it is also verified that $\widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right): i<j\right\}_{(m)} \geq L$.
 $\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations of $\widetilde{\mathbf{x}}_{n}$, and fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Step 4: Finally, we will prove that fsbp ${ }^{+} \geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$. Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations from the original sample $\widetilde{\mathbf{x}}_{n}$.

At least $n-\left(\left\lfloor\frac{n+1}{2}\right\rfloor-1\right)$ observations belong to the original sample of observations $\widetilde{\mathbf{x}}_{n}$, therefore at least $\binom{n-\left\lfloor\frac{n+1}{2}\right\rfloor+1}{2}$ distances belong to the original sample of distances.

- If n is even, then

$$
\binom{n-\left\lfloor\frac{n+1}{2}\right\rfloor+1}{2}=\frac{n(n+2)}{8} .
$$

We have seen in Step 3 that when n is even, $m=n(n+2) / 8$, whence $\widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n, k}\right)=\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right): i<j\right\}_{(m)} \leq \max _{i, j \in\{1, \ldots, n\}} D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right):=M<\infty$.

- If n is odd, then

$$
\binom{n-\left\lfloor\frac{n+1}{2}\right\rfloor+1}{2}=\frac{(n+1)(n-1)}{8}
$$

which is equal to m when n is odd, whence $\widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n, k}\right) \leq M$.
Thus, for any sample size $n, \sup _{\widetilde{y}_{n, k}} \widehat{D-Q}\left(\widetilde{\mathbf{y}}_{n, k}\right) \leq M<\infty$ with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$, and consequently, $\mathrm{fsbp}^{+} \geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Theorem 2.3.10. For any sample of observations $\widetilde{\mathbf{x}}_{n}$ from an $R F N \mathcal{X}$ in which there are not two identical observations, we have that

$$
\operatorname{fsbp}^{+}\left(\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n+1}{2}\right\rfloor, \quad \operatorname{fsbp}^{-}\left(\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor .
$$

Therefore, the finite sample breakdown point of the scale estimate $\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)$ is given by

$$
\mathrm{fsbp}^{*}\left(\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)\right)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor,
$$

which is the highest possible fsbp* of a scale estimate.
Proof. Let $\tilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample in which there are not two identical observations, and denote $\mathrm{fsbp}^{+}=\mathrm{fsbp}^{+}\left(\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\mathrm{fsbp}^{-}=\mathrm{fsbp}^{-}\left(\widehat{D-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$. The proof of the two first conclusions is presented in four steps.

Step 1: We begin showing that fsbp ${ }^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.
We are going to find a sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$ with $k=\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations of the original sample $\widetilde{\mathbf{x}}_{n}$, such that $\widehat{D-T}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)=0$.

We construct the contaminated sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}$ from $\widetilde{\mathbf{x}}_{n}$ by replacing the observations $\widetilde{x}_{2}, \ldots, \widetilde{x}_{\left\lfloor\frac{n}{2}\right\rfloor+1}$ by \widetilde{x}_{1}. Since for all $i \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+1\right\}, \overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\}=0$, then, by denoting $h=\lfloor n / 2\rfloor+1$

$$
\widehat{D-T}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n}{2}\right\rfloor}\right)=\frac{1}{h} \sum_{r=1}^{h}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} ; i=1, \ldots, n\right\}_{(r)}=0 .
$$

 observations of the original sample $\widetilde{\mathbf{x}}_{n}$, and as a consequence, $\mathrm{fsbp}^{-} \leq\left\lfloor\frac{n}{2}\right\rfloor / n$.

Step 2: Now we show that fsbp ${ }^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$. Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n}{2}\right\rfloor$ replaced observations from the original sample $\widetilde{\mathbf{x}}_{n}$.

Fix $\widetilde{y}_{i} \in \widetilde{\mathbf{y}}_{n, k} \cap \widetilde{\mathbf{x}}_{n}$. Since $k<\left\lfloor\frac{n}{2}\right\rfloor$ observations are replaced of the original sample $\widetilde{\mathbf{x}}_{n}$, there exist at least $n-\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n+1}{2}\right\rfloor$ observations \widetilde{y}_{l} in the sample $\widetilde{\mathbf{y}}_{n, k}$
with $\widetilde{y}_{l} \neq \widetilde{y}_{i}$ such that $\widetilde{y}_{l} \in \widetilde{\mathbf{x}}_{n}$. So, for at least $\left\lfloor\frac{n+1}{2}\right\rfloor$ observations $\widetilde{y}_{l}: D\left(\widetilde{y}_{i}, \widetilde{y}_{l}\right)$ $\geq \min _{i, j \in\{1, \ldots, n\}} D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right):=\delta>0$ and hence, $\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} \geq \delta>0$.

Moreover, at most $\left\lfloor\frac{n}{2}\right\rfloor-1=h-2$ observations are replaced from the original sample $\widetilde{\mathbf{x}}_{n}$, then there exist at least two observations $\widetilde{y}_{i_{1}}, \widetilde{y}_{i_{2}} \in \widetilde{\mathbf{y}}_{n, k} \cap \widetilde{\mathbf{x}}_{n}$ such that $\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i_{1}}, \widetilde{y}_{j}\right)\right\}$ and $\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i_{2}}, \widetilde{y}_{j}\right)\right\}$ belong to the first h elements of the set $\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} ; i=1, \ldots, n\right\}$. Therefore,

$$
\widehat{D-T}\left(\widetilde{\mathbf{y}}_{n, k}\right)=\frac{1}{h} \sum_{r=1}^{h}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} ; i=1, \ldots, n\right\}_{(r)} \geq \frac{2 \delta}{h}
$$

whence $\inf _{\widetilde{\mathbf{y}}_{n, k}} \widehat{D-T}\left(\widetilde{\mathbf{y}}_{n, k}\right) \geq 2 \delta / h>0$ with $k<\left\lfloor\frac{n}{2}\right\rfloor$, and hence fsbp ${ }^{-} \geq\left\lfloor\frac{n}{2}\right\rfloor / n$.
Step 3: Now we will prove that fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.
We construct the sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ from $\widetilde{\mathbf{x}}_{n}$ by replacing the observation \widetilde{x}_{1} by $\widetilde{x}_{(n)}+L, \widetilde{x}_{2}$ by $\widetilde{x}_{(n)}+2 L, \ldots, \widetilde{x}_{\left\lfloor\frac{n+1}{2}\right\rfloor}$ by $\widetilde{x}_{(n)}+\left\lfloor\frac{n+1}{2}\right\rfloor L$, with $0<L \in \mathbb{R}$ and $\widetilde{x}_{(n)}$ the extended maximum $\widetilde{\max }_{i \in\{1, \ldots, n\}} \widetilde{x}_{i}$.

The considered sample $\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ has $k=\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations. It satisfies that for any $i \in\{1, \ldots, n\}, \overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} \geq L$, since

- if $i \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}$, then $D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right) \geq L$ for all $j \neq i$, and
- if $i \in\left\{\left\lfloor\frac{n+1}{2}\right\rfloor+1, \ldots, n\right\}$, then $D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right) \geq L$ for all $j \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}$.

Consequently, $\widehat{D-T}\left(\widetilde{\mathbf{y}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\frac{1}{h} \sum_{r=1}^{h}\left\{\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} ; i=1, \ldots, n\right\}_{(r)} \geq L$.
Letting $L \rightarrow \infty, \sup _{\tilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right.}} \widehat{D-T}\left(\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}\right)=\infty$ being $\widetilde{\mathbf{z}}_{n,\left\lfloor\frac{n+1}{2}\right\rfloor}$ any sample with $\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations of $\widetilde{\mathbf{x}}_{n}$, and fsbp ${ }^{+} \leq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

Step 4: Finally, we will prove that fsbp ${ }^{+} \geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$. Let $\widetilde{\mathbf{y}}_{n, k}$ be an arbitrary sample with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ replaced observations from the original sample $\widetilde{\mathbf{x}}_{n}$.

Fix $\widetilde{y}_{i} \in \widetilde{\mathbf{y}}_{n, k} \cap \widetilde{\mathbf{x}}_{n}$. Since $k<\left\lfloor\frac{n+1}{2}\right\rfloor$ observations are replaced of the original sample $\widetilde{\mathbf{x}}_{n}$, there exist at least $n-\left(\left\lfloor\frac{n+1}{2}\right\rfloor-1\right)=\left\lfloor\frac{n}{2}\right\rfloor+1=h$ observations \widetilde{y}_{l} in the sample $\widetilde{\mathbf{y}}_{n, k}$ such that $\widetilde{y}_{l} \in \widetilde{\mathbf{x}}_{n}$, whence $D\left(\widetilde{y}_{i}, \widetilde{y}_{l}\right) \leq \max _{i, j \in\{1, \ldots, n\}} D\left(\widetilde{x}_{i}, \widetilde{x}_{j}\right):=M<\infty$ and $\overline{\operatorname{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} \leq M<\infty$.

Moreover, at least there exist $n-\left(\left\lfloor\frac{n+1}{2}\right\rfloor-1\right)=h$ observations $\widetilde{y}_{i} \in \widetilde{\mathbf{y}}_{n, k} \bigcap \widetilde{\mathbf{x}}_{n}$ and, hence,

$$
\widehat{D-\mathrm{T}}\left(\widetilde{\mathbf{y}}_{n, k}\right)=\frac{1}{h} \sum_{r=1}^{h}\left\{\overline{\mathrm{Me}}_{j}\left\{D\left(\widetilde{y}_{i}, \widetilde{y}_{j}\right)\right\} ; i=1, \ldots, n\right\}_{(r)} \leq M .
$$

Consequently, $\sup _{\tilde{\mathbf{y}}_{n, k}} \widehat{D-T}\left(\widetilde{\mathbf{y}}_{n, k}\right) \leq M<\infty$ with $k<\left\lfloor\frac{n+1}{2}\right\rfloor$, whence fsbp ${ }^{+}$ $\geq\left\lfloor\frac{n+1}{2}\right\rfloor / n$.

2.4 Analysis of the robustness of the different scale measures by means of simulation studies

In this section, several simulations are set up to analyze and illustrate the robust behaviour of the different scale estimates from an empirical point of view.

For this purpose, a key question should be posed, namely, what outliers mean when we are dealing with fuzzy-valued data instead of real-valued data?

Firstly, a response for this question is presented. Secondly, a simulation study to obtain the empirical value of the finite sample breakdown point of the different scale estimates will be performed; this study will confirm the theoretical results obtained in Section 2.3. Finally, the sensitivity curves, which inform us of the effect that a single outlier produces in the value of the estimators, will be graphically plotted for each estimator.

All simulations in this section are developed according to the two simulation procedures explained in Section 1.7. Regarding the 2ndSP, data have been generated by assuming the reference interval to be $[0,100]$ and two different beta $\beta(p, q)$ distributions have been considered: a symmetrical and an asymmetric one.

It should also be commented that in the conducted simulations in this section, the standard deviation has been calculated by using the 2-norm distance $\rho_{2}=D_{1}^{\ell}$, and for $\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\mathscr{D}_{\theta}^{\widehat{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi} \varphi}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ the choice has corresponded to $\theta=1$ and $\varphi=\ell$, whereas for $\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)$ the 1-norm distance ρ_{1} has been employed.

2.4.1 Outliers in dealing with fuzzy number-valued data

The meaning of the outliers when we are dealing with real-valued data is wellknown. They are atypical observations, that is, as said by Maronna et al. [81], they are "observations that are well separated from the majority or 'bulk' of the data, or in some way deviate from the general pattern of the data".

In the setting of the fuzzy data, the notion of outlier for real-valued case still makes sense: they are observations that are 'separated' from the majority of the data because of they having either a different 'location' or a different 'imprecision' (more concretely, observations with a similar location to the majority of the data but with a different scale on the core and the support, that is, observations that are 'wider' or 'narrower' than the rest of the data).

Taking this into account, three different types of outliers will be considered for all the simulations conducted in this work. We explain now how to generate these outliers.

First, for each type of outlier, the four-tuple (a, b, c, d) is generated from the distribution of the random vector $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ in the non-contaminated sample. Then, we construct the outlier $\widetilde{y}_{i}=\operatorname{Tra}\left\langle y_{i}^{1}, y_{i}^{2}, y_{i}^{3}, y_{i}^{4}\right\rangle$ in the following way. Let $r_{i}^{1}, r_{i}^{2} \in \mathbb{R}:$

- Outlier of translation: $y_{i}^{1}=a+r_{i}^{1}, y_{i}^{2}=b, y_{i}^{3}=c, y_{i}^{4}=d$.
- Outlier of scale on the core and support: $y_{i}^{1}=a, y_{i}^{2}=\left|r_{i}^{2}\right| \cdot b, y_{i}^{3}=\left|r_{i}^{2}\right| \cdot c$, $y_{i}^{4}=\left|r_{i}^{2}\right| \cdot d$.
- Outlier of both translation and scale: $y_{i}^{1}=a+r_{i}^{1}, y_{i}^{2}=\left|r_{i}^{2}\right| \cdot b, y_{i}^{3}=\left|r_{i}^{2}\right| \cdot c$, $y_{i}^{4}=\left|r_{i}^{2}\right| \cdot d$.

The three types of outliers are shown in Figures 2.2 and 2.3 for the first simulation procedure (1stSP) and Figures 2.4 and 2.5 for the second simulation procedure (2ndSP). In all cases, the size of the original sample is 10 and two outliers have been added to the sample.

Regarding the 1stSP, Figure 2.2 illustrates Case 1 and Figure 2.3 illustrates Case 2. For the outliers of translation, we have chosen $r_{1}^{1}=10$ and $r_{2}^{1}=-10$, for the outliers of scale $r_{1}^{2}=5$ and $r_{2}^{2}=10$ and for the outliers of both translation and scale $r_{1}^{1}=10, r_{2}^{1}=-10, r_{1}^{2}=5$ and $r_{2}^{2}=10$.

Regarding the 2ndSP, Figure 2.4 illustrates the symmetric case, generating the non-contaminated sample from a $\beta(100,100)$, and Figure 2.5 illustrates the asymmetric case, generating the non-contaminated sample from a $\beta(1,100)$. The weights in both cases have been $\omega_{1}=0.8, \omega_{2}=0.1$ and $\omega_{3}=0.1$.

In the symmetric case, for the outliers of translation we have chosen $r_{1}^{1}=30$ and $r_{2}^{1}=-30$, for the outliers of scale $r_{1}^{2}=5$ and $r_{2}^{2}=10$ and for the outliers of both translation and scale $r_{1}^{1}=30, r_{2}^{1}=-30, r_{1}^{2}=5$ and $r_{2}^{2}=10$.

In the asymmetric case, for the outliers of translation we have chosen $r_{1}^{1}=30$ and $r_{2}^{1}=60$, for the outliers of scale $r_{1}^{2}=40$ and $r_{2}^{2}=80$ and for the outliers of both translation and scale $r_{1}^{1}=30, r_{2}^{1}=60, r_{1}^{2}=40$ and $r_{2}^{2}=80$.

Figure 2.2: From top to bottom, the non-contaminated sample, the contaminated sample by two outliers of translation (in red), the contaminated sample by two outliers of scale on core and support and the contaminated sample by two outliers of both - 1stSP Case 1

Figure 2.3: From top to bottom, the non-contaminated sample, the contaminated sample by two outliers of translation (in red), the contaminated sample by two outliers of scale on core and support and the contaminated sample by two outliers of both - 1stSP Case 2

Figure 2.4: From top to bottom, the non-contaminated sample, the contaminated sample by two outliers of translation (in red), the contaminated sample by two outliers of scale on core and support and the contaminated sample by two outliers of both - 2ndSP Symmetric distribution

Figure 2.5: From top to bottom, the non-contaminated sample, the contaminated sample by two outliers of translation (in red), the contaminated sample by two outliers of scale on core and support and the contaminated sample by two outliers of both - 2ndSP

Asymmetric distribution

2.4.2 Simulations-based analysis of the finite sample breakdown point: explosion and implosion breakdown point

In Section 2.3 the value of the finite sample breakdown point has been obtained for the different scale measures when fuzzy-valued data are considered. This value is now to be empirically corroborated and illustrated.

Recall that when we deal with estimates of scale, two different types of breakdown point need to be studied: the one caused by the presence of outliers in the sample, which can make the estimate explode to infinite (explosion breakdown point), and the one caused by the presence of inliers in the sample, which can make the estimate implode to zero (implosion breakdown point).

By means of simulations according to the FIRST SIMULATION PROCEDURE (1stSP), we are first going to see what the empirical value is for all estimates. The non-contaminated sample has been simulated from the 1stSP considering the two cases (see Page 38). Moreover, two sample sizes have been considered in the simulation study, namely, an even sample size $(n=100)$ and an odd sample size ($n=101$).

Explosion breakdown point:

To study the breakdown point for explosion, we have considered the three types of outliers explained in Subsection 2.4.1. Namely, if \widetilde{y}_{i} is the i-th outlier, then we have chosen

$$
r_{i}^{1}= \begin{cases}\frac{i+1}{2} \cdot 10^{10} & \text { if } i \text { is odd } \\ -\frac{i}{2} \cdot 10^{10} & \text { if } i \text { is even }\end{cases}
$$

that is, we have considered observations that are increasingly distant from the data at both right and left sides, and

$$
r_{i}^{2}=i \cdot 10^{10}
$$

that is, observations that are getting wider.
For the estimator $\widehat{\rho_{2} \text {-MDD }\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right) \text { we have chosen }}$

$$
r_{i}^{1}=i \cdot 10^{10}
$$

that is, we have considered observations that are increasingly distant from the data only at the right side. In this way, we can see better what the explosion breakdown point is for this estimator.

For each type of outlier, the general scheme of the simulation has been structured as follows:

Step 1. A sample $\widetilde{\mathbf{x}}_{n}$ of n trapezoidal fuzzy numbers has been simulated from the 1stSP, with $n \in\{100,101\}$ and considering the two cases of simulation involved in this procedure.

Step 2. Contaminated samples $\widetilde{\mathbf{y}}_{n, k}$ have been obtained by replacing k observations of the original sample $\widetilde{\mathbf{x}}_{n}$ by k outliers \widetilde{y}_{i}, with $k \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}$ and $i \in\{1, \ldots, k\}$. Overall, k contaminated samples, one for each k value, have been considered.

Step 3. The values of the different scale measures have been calculated for the original sample without contamination $\widetilde{\mathbf{x}}_{n}$, and for each of k contaminated samples $\widetilde{\mathbf{y}}_{n, k}$.

The simulation-based conclusions in this study are presented through Tables 2.3 to 2.6 and Figures 2.6 to 2.17 . More concretely, tables gather the values of the different estimators when outliers are introduced in the sample by replacement, and figures graphically display these values for each estimator.

Implosion breakdown point:

To study the breakdown point for implosion, we have considered the inliers being all of them equal to one observation chosen randomly from the non-contaminated sample, but for the estimator $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)$, for which to make it implode to zero we have considered the inliers being all of them equal to the mean of the rest of observations.

The general scheme of the simulation has been structured as follows:
Step 1. A sample $\widetilde{\mathbf{x}}_{n}$ of n trapezoidal fuzzy numbers has been simulated from the 1stSP, with $n \in\{100,101\}$ and considering the two cases of simulation involved in this procedure.

Step 2. Contaminated samples $\widetilde{\mathbf{y}}_{n, k}$ have been obtained by replacing k observations of the original sample $\widetilde{\mathbf{x}}_{n}$ by k inliers \widetilde{y}, with $k \in\{1, \ldots, n-1\}$. In total, k contaminated samples, one for each k value.

Step 3. The values of the different scale measures have been calculated for the original sample without contamination $\widetilde{\mathbf{x}}_{n}$, and for each of k contaminated samples $\widetilde{\mathbf{y}}_{n, k}$.

The simulation-based conclusions in this study are presented through Tables 2.7 to 2.10 and Figures 2.18 to 2.21 . More concretely, tables gather the values of the different estimators when inliers are introduced in the sample by replacement, and figures graphically display these values for each estimator.

Table 2.3: Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,2,10,20,30,40,48,49,50\}-1$ stSP Case 1

\# outliers (translation)	0	1	2	10	20	30	40	48	49	50
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.69	$9.95 \mathrm{E}+08$	$1.41 \mathrm{E}+09$	$1.05 \mathrm{E}+10$	$2.77 \mathrm{E}+10$	$4.98 \mathrm{E}+10$	$7.58 \mathrm{E}+10$	$9.90 \mathrm{E}+10$	$1.02 \mathrm{E}+11$	$1.05 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.48	$1.98 \mathrm{E}+08$	$2.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$1.10 \mathrm{E}+10$	$2.40 \mathrm{E}+10$	$4.20 \mathrm{E}+10$	$6.00 \mathrm{E}+10$	$6.38 \mathrm{E}+10$	$6.50 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.31	$1.00 \mathrm{E}+08$	$2.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$1.10 \mathrm{E}+10$	$2.40 \mathrm{E}+10$	$4.20 \mathrm{E}+10$	$6.00 \mathrm{E}+10$	$6.25 \mathrm{E}+10$	$6.50 \mathrm{E}+10$
$\widehat{\mathscr{D}_{1}^{\ell-\mathrm{ADD}} \mathrm{D}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	1.81	$1.00 \mathrm{E}+08$	$2.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$1.10 \mathrm{E}+10$	$2.40 \mathrm{E}+10$	$4.20 \mathrm{E}+10$	$6.00 \mathrm{E}+10$	$6.25 \mathrm{E}+10$	$6.50 \mathrm{E}+10$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.32	$1.00 \mathrm{E}+08$	$3.00 \mathrm{E}+08$	$5.50 \mathrm{E}+09$	$2.10 \mathrm{E}+10$	$4.65 \mathrm{E}+10$	$8.20 \mathrm{E}+10$	$1.18 \mathrm{E}+11$	$1.23 \mathrm{E}+11$	$1.28 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.09	1.10	1.11	1.17	1.25	1.37	1.76	2.92	3.79	$5.00 \mathrm{E}+09$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	1.59	1.57	1.57	1.71	1.96	2.33	2.94	3.97	4.85	$5.00 \mathrm{E}+09$
$\widehat{1-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.57	1.57	1.60	1.76	1.91	2.30	3.13	4.80	5.88	$1.00 \mathrm{E}+10$
$-\mathrm{Q}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.09	1.09	1.11	1.24	1.44	1.71	2.29	4.09	5.88	$1.00 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.35	1.35	1.37	1.49	1.67	1.91	2.40	3.72	4.68	$1.00 \mathrm{E}+10$
\# outliers (scale)	0	1	2	10	20	30	40	48	49	50
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.53	$1.09 \mathrm{E}+09$	$2.44 \mathrm{E}+09$	$2.07 \mathrm{E}+10$	$5.42 \mathrm{E}+10$	$9.40 \mathrm{E}+10$	$1.37 \mathrm{E}+11$	$1.71 \mathrm{E}+11$	$1.75 \mathrm{E}+11$	$1.80 \mathrm{E}+11$
$\widehat{-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.35	$2.18 \mathrm{E}+08$	$6.47 \mathrm{E}+08$	$1.09 \mathrm{E}+10$	$3.72 \mathrm{E}+10$	$7.35 \mathrm{E}+10$	$1.15 \mathrm{E}+11$	$1.49 \mathrm{E}+11$	$1.53 \mathrm{E}+11$	$1.57 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.18	$1.10 \mathrm{E}+08$	$3.29 \mathrm{E}+08$	$6.02 \mathrm{E}+09$	$2.30 \mathrm{E}+10$	$5.09 \mathrm{E}+10$	$8.98 \mathrm{E}+10$	$1.29 \mathrm{E}+11$	$1.34 \mathrm{E}+11$	$1.40 \mathrm{E}+11$
$\widehat{\mathscr{D}_{1}^{\ell-\mathrm{ADD}}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)}\right)$	1.63	$1.18 \mathrm{E}+08$	$3.54 \mathrm{E}+08$	$6.48 \mathrm{E}+09$	$2.47 \mathrm{E}+10$	$5.48 \mathrm{E}+10$	$9.66 \mathrm{E}+10$	$1.39 \mathrm{E}+11$	$1.44 \mathrm{E}+11$	$1.50 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.18	$1.10 \mathrm{E}+08$	$3.30 \mathrm{E}+08$	$6.05 \mathrm{E}+09$	$2.31 \mathrm{E}+10$	$5.12 \mathrm{E}+10$	$9.02 \mathrm{E}+10$	$1.29 \mathrm{E}+11$	$1.35 \mathrm{E}+11$	$1.40 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.98	1.01	1.02	1.08	1.33	1.65	2.23	3.42	4.26	$5.48 \mathrm{E}+09$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}_{n}}\right)\right)}\right.$	1.46	1.49	1.51	1.62	1.93	2.25	3.44	6.29	7.97	$5.89 \mathrm{E}+09$
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.45	1.47	1.53	1.67	1.93	2.22	2.69	3.71	5.50	$1.10 \mathrm{E}+10$
$\underline{-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.99	1.01	1.02	1.17	1.39	1.66	2.04	3.19	5.50	$1.10 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}_{n}}\right)$	1.21	1.23	1.24	1.41	1.63	1.85	2.16	2.88	3.80	$1.10 \mathrm{E}+10$
\# outliers (both)	0	1	2	10	20	30	40	48	49	50
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.07	$1.68 \mathrm{E}+09$	$3.42 \mathrm{E}+09$	$2.84 \mathrm{E}+10$	$7.44 \mathrm{E}+10$	$1.29 \mathrm{E}+11$	$1.90 \mathrm{E}+11$	$2.39 \mathrm{E}+11$	$2.45 \mathrm{E}+11$	$2.52 \mathrm{E}+11$
$\widehat{2-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.55	$3.34 \mathrm{E}+08$	$8.74 \mathrm{E}+08$	$1.45 \mathrm{E}+10$	$4.99 \mathrm{E}+10$	$9.96 \mathrm{E}+10$	$1.58 \mathrm{E}+11$	$2.07 \mathrm{E}+11$	$2.13 \mathrm{E}+11$	$2.20 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.33	$1.39 \mathrm{E}+08$	$4.18 \mathrm{E}+08$	$7.67 \mathrm{E}+09$	$2.93 \mathrm{E}+10$	$6.48 \mathrm{E}+10$	$1.14 \mathrm{E}+11$	$1.64 \mathrm{E}+11$	$1.71 \mathrm{E}+11$	$1.78 \mathrm{E}+11$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.85	$2.34 \mathrm{E}+08$	$6.24 \mathrm{E}+08$	$1.07 \mathrm{E}+10$	$4.03 \mathrm{E}+10$	$8.89 \mathrm{E}+10$	$1.56 \mathrm{E}+11$	$2.24 \mathrm{E}+11$	$2.33 \mathrm{E}+11$	$2.43 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.31	$1.69 \mathrm{E}+08$	$5.07 \mathrm{E}+08$	$9.29 \mathrm{E}+09$	$3.55 \mathrm{E}+10$	$7.85 \mathrm{E}+10$	$1.39 \mathrm{E}+11$	$1.99 \mathrm{E}+11$	$2.07 \mathrm{E}+11$	$2.15 \mathrm{E}+11$
$\widehat{\rho_{1}-\widehat{\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	1.05	1.06	1.06	1.20	1.38	1.74	2.52	4.72	5.62	$6.97 \mathrm{E}+09$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	1.53	1.53	1.54	1.68	1.80	2.31	3.04	5.74	6.43	$1.17 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.46	1.52	1.52	1.72	1.89	2.28	3.00	4.64	5.88	$1.39 \mathrm{E}+10$
$\widehat{\rho_{1-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	1.05	1.06	1.07	1.22	1.37	1.70	2.33	3.85	5.88	$1.39 \mathrm{E}+10$
$\widehat{\rho_{1-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	1.26	1.28	1.28	1.47	1.61	1.89	2.43	3.64	4.27	$1.39 \mathrm{E}+10$

Table 2.4: Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,2,10,20,30,40,49,50,51\}-1$ stSP Case 1

\# outliers (translation)	0	1	2	10	20	30	40	49	50	51
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.01	$9.90 \mathrm{E}+08$	$1.41 \mathrm{E}+09$	$1.04 \mathrm{E}+10$	$2.76 \mathrm{E}+10$	$4.96 \mathrm{E}+10$	$7.54 \mathrm{E}+10$	$1.02 \mathrm{E}+11$	$1.05 \mathrm{E}+11$	$1.08 \mathrm{E}+11$
$\widehat{2-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.66	$1.96 \mathrm{E}+08$	$1.98 \mathrm{E}+08$	$2.97 \mathrm{E}+09$	$1.09 \mathrm{E}+10$	$2.38 \mathrm{E}+10$	$4.16 \mathrm{E}+10$	$6.31 \mathrm{E}+10$	$6.44 \mathrm{E}+10$	$6.82 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.45	$9.90 \mathrm{E}+07$	$1.98 \mathrm{E}+08$	$2.97 \mathrm{E}+09$	$1.09 \mathrm{E}+10$	$2.38 \mathrm{E}+10$	$4.16 \mathrm{E}+10$	$6.19 \mathrm{E}+10$	$6.44 \mathrm{E}+10$	$6.69 \mathrm{E}+10$
$\mathscr{D}_{1}^{\underline{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	2.05	$9.90 \mathrm{E}+07$	$1.98 \mathrm{E}+08$	$2.97 \mathrm{E}+09$	$1.09 \mathrm{E}+10$	$2.38 \mathrm{E}+10$	$4.16 \mathrm{E}+10$	$6.19 \mathrm{E}+10$	$6.44 \mathrm{E}+10$	$6.69 \mathrm{E}+10$
$\rho_{2} \widehat{-\mathrm{MDD}}\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$	1.43	$9.90 \mathrm{E}+07$	$2.97 \mathrm{E}+08$	$5.45 \mathrm{E}+09$	$2.08 \mathrm{E}+10$	$4.60 \mathrm{E}+10$	$8.12 \mathrm{E}+10$	$1.21 \mathrm{E}+11$	$1.26 \mathrm{E}+11$	$1.31 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.22	1.23	1.23	1.26	1.34	1.65	2.04	5.66	5.70	$1.00 \mathrm{E}+10$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	1.77	1.75	1.80	1.90	2.12	2.57	3.49	5.48	5.79	$1.00 \mathrm{E}+10$
$\widehat{\mathrm{l}-\mathrm{S}}\left(\tilde{\mathbf{x}}_{n}\right)$	1.70	1.73	1.76	1.88	2.09	2.65	3.36	6.98	7.02	$1.00 \mathrm{E}+10$
-Q $\left(\widetilde{\mathbf{x}}_{n}\right)$	1.17	1.19	1.21	1.31	1.50	1.91	2.46	5.87	7.02	$1.00 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.47	1.48	1.51	1.60	1.77	2.12	2.67	5.74	5.88	$1.00 \mathrm{E}+10$
\# outliers (scale)	0	1	2	10	20	30	40	49	50	51
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.51	$1.88 \mathrm{E}+09$	$4.18 \mathrm{E}+09$	$3.55 \mathrm{E}+10$	$9.31 \mathrm{E}+10$	$1.61 \mathrm{E}+11$	$2.35 \mathrm{E}+11$	$3.02 \mathrm{E}+11$	$3.09 \mathrm{E}+11$	$3.16 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.82	$3.72 \mathrm{E}+08$	$1.10 \mathrm{E}+09$	$1.86 \mathrm{E}+10$	$6.37 \mathrm{E}+10$	$1.26 \mathrm{E}+11$	$1.97 \mathrm{E}+11$	$2.62 \mathrm{E}+11$	$2.69 \mathrm{E}+11$	$2.76 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.58	$1.87 \mathrm{E}+08$	$5.62 \mathrm{E}+08$	$1.03 \mathrm{E}+10$	$3.93 \mathrm{E}+10$	$8.71 \mathrm{E}+10$	$1.54 \mathrm{E}+11$	$2.29 \mathrm{E}+11$	$2.39 \mathrm{E}+11$	$2.48 \mathrm{E}+11$
$\mathscr{D}_{1}^{\underline{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	2.08	$1.97 \mathrm{E}+08$	$5.92 \mathrm{E}+08$	$1.08 \mathrm{E}+10$	$4.14 \mathrm{E}+10$	$9.17 \mathrm{E}+10$	$1.62 \mathrm{E}+11$	$2.42 \mathrm{E}+11$	$2.51 \mathrm{E}+11$	$2.61 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathbf{x}}_{n}\right)$	1.52	$1.88 \mathrm{E}+08$	$5.63 \mathrm{E}+08$	$1.03 \mathrm{E}+10$	$3.94 \mathrm{E}+10$	$8.73 \mathrm{E}+10$	$1.54 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$2.39 \mathrm{E}+11$	$2.49 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\operatorname{Me}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	1.04	1.05	1.09	1.33	1.62	1.99	3.14	6.70	7.23	$1.89 \mathrm{E}+10$
	1.58	1.61	1.67	1.83	2.05	2.60	4.21	9.86	11.35	$1.99 \mathrm{E}+10$
$\widehat{\mathrm{p}_{1-\mathrm{S}}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.48	1.49	1.51	1.81	2.13	2.60	3.61	6.34	7.12	$1.89 \mathrm{E}+10$
$\widehat{1-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.05	1.08	1.11	1.29	1.46	1.78	2.73	6.08	7.12	$1.89 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.24	1.27	1.30	1.49	1.67	2.02	2.88	5.37	6.08	$1.89 \mathrm{E}+10$
\# outliers (both)	0	1	2	10	20	30	40	49	50	51
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}_{n}}\right)$	2.20	$4.44 \mathrm{E}+09$	$9.64 \mathrm{E}+09$	$8.18 \mathrm{E}+10$	$2.14 \mathrm{E}+11$	$3.72 \mathrm{E}+11$	$5.41 \mathrm{E}+11$	$6.97 \mathrm{E}+11$	$7.14 \mathrm{E}+11$	$7.31 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.79	$8.79 \mathrm{E}+08$	$2.54 \mathrm{E}+09$	$4.27 \mathrm{E}+10$	$1.46 \mathrm{E}+11$	$2.90 \mathrm{E}+11$	$4.54 \mathrm{E}+11$	$6.07 \mathrm{E}+11$	$6.23 \mathrm{E}+11$	$6.40 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.57	$4.28 \mathrm{E}+08$	$1.28 \mathrm{E}+09$	$2.35 \mathrm{E}+10$	$8.99 \mathrm{E}+10$	$1.99 \mathrm{E}+11$	$3.51 \mathrm{E}+11$	$5.24 \mathrm{E}+11$	$5.46 \mathrm{E}+11$	$5.67 \mathrm{E}+11$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	2.11	$5.44 \mathrm{E}+08$	$1.47 \mathrm{E}+09$	$2.64 \mathrm{E}+10$	$1.01 \mathrm{E}+11$	$2.23 \mathrm{E}+11$	$3.92 \mathrm{E}+11$	$5.87 \mathrm{E}+11$	$6.10 \mathrm{E}+11$	$6.34 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.52	$4.44 \mathrm{E}+08$	$1.33 \mathrm{E}+09$	$2.44 \mathrm{E}+10$	$9.32 \mathrm{E}+10$	$2.06 \mathrm{E}+11$	$3.64 \mathrm{E}+11$	$5.44 \mathrm{E}+11$	$5.66 \mathrm{E}+11$	$5.89 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.22	1.23	1.21	1.41	1.74	2.11	3.28	8.95	11.50	$4.32 \mathrm{E}+10$
$\widehat{\mathscr{D}_{1}^{\ell-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	1.60	1.63	1.66	1.79	1.95	2.59	3.59	10.30	13.73	$4.32 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.72	1.75	1.76	1.90	2.13	2.56	3.71	8.76	11.50	$4.32 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.17	1.19	1.21	1.34	1.58	1.87	2.62	8.51	11.50	$4.32 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.45	1.48	1.49	1.64	1.81	2.06	2.78	7.42	9.95	$4.32 \mathrm{E}+10$

Table 2.5: Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,2,10,20,30,40,48,49,50\}-1$ stSP Case 2

\# outliers (translation)	0	1	2	10	20	30	40	48	49	50
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.01	$9.95 \mathrm{E}+08$	$1.41 \mathrm{E}+09$	$1.05 \mathrm{E}+10$	$2.77 \mathrm{E}+10$	$4.98 \mathrm{E}+10$	$7.58 \mathrm{E}+10$	$9.90 \mathrm{E}+10$	$1.02 \mathrm{E}+11$	$1.05 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right.$	0.91	$1.98 \mathrm{E}+08$	$2.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$1.10 \mathrm{E}+10$	$2.40 \mathrm{E}+10$	$4.20 \mathrm{E}+10$	$6.00 \mathrm{E}+10$	$6.38 \mathrm{E}+10$	$6.50 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\tilde{\mathbf{x}}_{n}\right)\right)$	0.75	$1.00 \mathrm{E}+08$	$2.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$1.10 \mathrm{E}+10$	$2.40 \mathrm{E}+10$	$4.20 \mathrm{E}+10$	$6.00 \mathrm{E}+10$	$6.25 \mathrm{E}+10$	$6.50 \mathrm{E}+10$
$\mathscr{D}_{1}^{\widehat{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}_{n}}\right)}\right.$)	1.17	$1.00 \mathrm{E}+08$	$2.00 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	$1.10 \mathrm{E}+10$	$2.40 \mathrm{E}+10$	$4.20 \mathrm{E}+10$	$6.00 \mathrm{E}+10$	$6.25 \mathrm{E}+10$	$6.50 \mathrm{E}+10$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.79	$1.00 \mathrm{E}+08$	$3.00 \mathrm{E}+08$	$5.50 \mathrm{E}+09$	$2.10 \mathrm{E}+10$	$4.65 \mathrm{E}+10$	$8.20 \mathrm{E}+10$	$1.18 \mathrm{E}+11$	$1.23 \mathrm{E}+11$	$1.28 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.69	0.69	0.70	0.75	0.90	0.92	1.03	1.67	1.88	$5.00 \mathrm{E}+09$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.99	1.00	1.04	1.16	1.29	1.46	1.57	1.81	2.09	$5.00 \mathrm{E}+09$
$\widehat{1-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.91	0.96	0.97	1.09	1.30	1.45	1.80	3.02	3.76	$1.00 \mathrm{E}+10$
$\underline{-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.50	0.51	0.52	0.63	0.78	1.02	1.36	2.28	3.76	$1.00 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.80	0.82	0.83	0.95	1.08	1.22	1.41	2.16	2.58	$1.00 \mathrm{E}+10$
\# outliers (scale)	0	1	2	10	20	30	40	48	49	50
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.07	$7.89 \mathrm{E}+08$	$1.76 \mathrm{E}+09$	$1.49 \mathrm{E}+10$	$3.91 \mathrm{E}+10$	$6.77 \mathrm{E}+10$	$9.84 \mathrm{E}+10$	$1.23 \mathrm{E}+11$	$1.26 \mathrm{E}+11$	$1.29 \mathrm{E}+11$
$\widehat{-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.94	$1.57 \mathrm{E}+08$	$4.66 \mathrm{E}+08$	$7.85 \mathrm{E}+09$	$2.68 \mathrm{E}+10$	$5.30 \mathrm{E}+10$	$8.27 \mathrm{E}+10$	$1.07 \mathrm{E}+11$	$1.10 \mathrm{E}+11$	$1.13 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.79	$7.77 \mathrm{E}+07$	$2.33 \mathrm{E}+08$	$4.27 \mathrm{E}+09$	$1.63 \mathrm{E}+10$	$3.61 \mathrm{E}+10$	$6.37 \mathrm{E}+10$	$9.14 \mathrm{E}+10$	$9.52 \mathrm{E}+10$	$9.91 \mathrm{E}+10$
$\mathscr{D}_{1} \widehat{-\mathrm{ADD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	1.19	$7.93 \mathrm{E}+07$	$2.38 \mathrm{E}+08$	$4.36 \mathrm{E}+09$	$1.67 \mathrm{E}+10$	$3.69 \mathrm{E}+10$	$6.50 \mathrm{E}+10$	$9.33 \mathrm{E}+10$	$9.72 \mathrm{E}+10$	$1.01 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.75	$7.93 \mathrm{E}+07$	$2.38 \mathrm{E}+08$	$4.36 \mathrm{E}+09$	$1.66 \mathrm{E}+10$	$3.69 \mathrm{E}+10$	$6.50 \mathrm{E}+10$	$9.32 \mathrm{E}+10$	$9.71 \mathrm{E}+10$	$1.01 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.61	0.62	0.62	0.71	0.82	1.13	1.47	2.01	2.33	$3.89 \mathrm{E}+09$
$\left.\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}_{n}}\right.}\right)\right)$	0.93	0.92	0.97	1.14	1.23	1.99	2.40	4.98	5.72	$3.97 \mathrm{E}+09$
$\widehat{\rho_{1}-\mathrm{S}}\left(\mathbf{x}_{n}\right)$	0.87	0.87	0.87	0.97	1.13	1.41	2.16	3.64	4.61	$7.77 \mathrm{E}+09$
-Q $\left(\widetilde{\mathbf{x}}_{n}\right)$	0.54	0.54	0.55	0.65	0.78	1.01	1.42	2.74	4.61	$7.77 \mathrm{E}+09$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.77	0.77	0.77	0.85	0.94	1.15	1.53	2.52	3.01	$7.77 \mathrm{E}+09$
\# outliers (both)	0	1	2	10	20	30	40	48	49	50
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.30	$9.99 \mathrm{E}+08$	$1.52 \mathrm{E}+09$	$1.14 \mathrm{E}+10$	$3.00 \mathrm{E}+10$	$5.36 \mathrm{E}+10$	$8.11 \mathrm{E}+10$	$1.05 \mathrm{E}+11$	$1.08 \mathrm{E}+11$	$1.12 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathbf{x}}_{n}\right)$	1.13	$1.99 \mathrm{E}+08$	$2.82 \mathrm{E}+08$	$4.37 \mathrm{E}+09$	$1.56 \mathrm{E}+10$	$3.29 \mathrm{E}+10$	$5.55 \mathrm{E}+10$	$7.70 \mathrm{E}+10$	$7.97 \mathrm{E}+10$	$8.28 \mathrm{E}+10$
$\widehat{\rho_{1-\mathrm{ADD}}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.96	$9.78 \mathrm{E}+07$	$2.02 \mathrm{E}+08$	$3.01 \mathrm{E}+09$	$1.10 \mathrm{E}+10$	$2.40 \mathrm{E}+10$	$4.20 \mathrm{E}+10$	$6.01 \mathrm{E}+10$	$6.24 \mathrm{E}+10$	$6.51 \mathrm{E}+10$
$\mathscr{D}_{1}^{\ell}-\mathrm{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.38	$1.21 \mathrm{E}+08$	$2.71 \mathrm{E}+08$	$4.27 \mathrm{E}+09$	$1.58 \mathrm{E}+10$	$3.47 \mathrm{E}+10$	$6.08 \mathrm{E}+10$	$8.70 \mathrm{E}+10$	$9.05 \mathrm{E}+10$	$9.42 \mathrm{E}+10$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.94	$1.00 \mathrm{E}+08$	$3.01 \mathrm{E}+08$	$5.52 \mathrm{E}+09$	$2.11 \mathrm{E}+10$	$4.67 \mathrm{E}+10$	$8.23 \mathrm{E}+10$	$1.18 \mathrm{E}+11$	$1.23 \mathrm{E}+11$	$1.28 \mathrm{E}+11$
$\widehat{\rho_{1}-\widehat{\mathrm{MDD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	0.86	0.86	0.89	0.93	1.08	1.31	1.53	2.89	2.91	$4.89 \mathrm{E}+09$
$\widehat{\mathscr{D}_{1}^{\ell-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	1.20	1.21	1.21	1.23	1.58	2.21	2.81	4.32	4.52	$6.03 \mathrm{E}+09$
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.10	1.10	1.15	1.29	1.53	2.03	2.71	5.73	5.82	$9.78 \mathrm{E}+09$
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}_{n}}\right)$	0.65	0.67	0.69	0.80	1.02	1.32	1.87	3.71	5.82	$9.78 \mathrm{E}+09$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.95	0.95	0.97	1.05	1.29	1.52	2.04	3.80	3.88	$9.78 \mathrm{E}+09$

Table 2.6: Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,2,10,20,30,40,49,50,51\}-1$ stSP Case 2

\# outliers (translation)	0	1	2	10	20	30	40	49	50	51
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.14	$9.90 \mathrm{E}+08$	$1.41 \mathrm{E}+09$	$1.04 \mathrm{E}+10$	$2.76 \mathrm{E}+10$	$4.96 \mathrm{E}+10$	$7.54 \mathrm{E}+10$	$1.02 \mathrm{E}+11$	$1.05 \mathrm{E}+11$	$1.08 \mathrm{E}+11$
$\widehat{2-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.98	$1.96 \mathrm{E}+08$	$1.98 \mathrm{E}+08$	$2.97 \mathrm{E}+09$	$1.09 \mathrm{E}+10$	$2.38 \mathrm{E}+10$	$4.16 \mathrm{E}+10$	$6.31 \mathrm{E}+10$	$6.44 \mathrm{E}+10$	$6.82 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.78	$9.90 \mathrm{E}+07$	$1.98 \mathrm{E}+08$	$2.97 \mathrm{E}+09$	$1.09 \mathrm{E}+10$	$2.38 \mathrm{E}+10$	$4.16 \mathrm{E}+10$	$6.19 \mathrm{E}+10$	$6.44 \mathrm{E}+10$	$6.69 \mathrm{E}+10$
$\mathscr{D}_{1}^{\underline{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	1.22	$9.90 \mathrm{E}+07$	$1.98 \mathrm{E}+08$	$2.97 \mathrm{E}+09$	$1.09 \mathrm{E}+10$	$2.38 \mathrm{E}+10$	$4.16 \mathrm{E}+10$	$6.19 \mathrm{E}+10$	$6.44 \mathrm{E}+10$	$6.69 \mathrm{E}+10$
$\rho_{2} \widehat{-\mathrm{MDD}}\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$	0.73	$9.90 \mathrm{E}+07$	$2.97 \mathrm{E}+08$	$5.45 \mathrm{E}+09$	$2.08 \mathrm{E}+10$	$4.60 \mathrm{E}+10$	$8.12 \mathrm{E}+10$	$1.21 \mathrm{E}+11$	$1.26 \mathrm{E}+11$	$1.31 \mathrm{E}+11$
$\rho_{1-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.57	0.57	0.57	0.67	0.77	1.05	1.27	2.21	2.63	$1.00 \mathrm{E}+10$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.81	0.81	0.81	0.89	1.12	1.24	1.62	2.19	2.79	$1.00 \mathrm{E}+10$
$\widehat{\mathrm{l}-\mathrm{S}}\left(\tilde{\mathbf{x}}_{n}\right)$	0.80	0.80	0.80	0.88	1.10	1.45	2.22	4.17	4.84	$1.00 \mathrm{E}+10$
-Q $\left(\widetilde{\mathbf{x}}_{n}\right)$	0.51	0.51	0.52	0.58	0.75	1.02	1.44	2.89	4.84	$1.00 \mathrm{E}+10$
$\widehat{\rho_{1-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	0.69	0.69	0.69	0.74	0.92	1.19	1.63	2.78	3.21	$1.00 \mathrm{E}+10$
\# outliers (scale)	0	1	2	10	20	30	40	49	50	51
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.08	$2.62 \mathrm{E}+08$	$5.83 \mathrm{E}+08$	$4.96 \mathrm{E}+09$	$1.30 \mathrm{E}+10$	$2.25 \mathrm{E}+10$	$3.27 \mathrm{E}+10$	$4.21 \mathrm{E}+10$	$4.31 \mathrm{E}+10$	$4.41 \mathrm{E}+10$
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.96	$5.18 \mathrm{E}+07$	$1.54 \mathrm{E}+08$	$2.59 \mathrm{E}+09$	$8.88 \mathrm{E}+09$	$1.76 \mathrm{E}+10$	$2.74 \mathrm{E}+10$	$3.66 \mathrm{E}+10$	$3.76 \mathrm{E}+10$	$3.85 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.78	$2.55 \mathrm{E}+07$	$7.66 \mathrm{E}+07$	$1.40 \mathrm{E}+09$	$5.36 \mathrm{E}+09$	$1.19 \mathrm{E}+10$	$2.09 \mathrm{E}+10$	$3.13 \mathrm{E}+10$	$3.25 \mathrm{E}+10$	$3.38 \mathrm{E}+10$
$\mathscr{D}_{1}^{\underline{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	1.20	$2.73 \mathrm{E}+07$	$8.20 \mathrm{E}+07$	$1.50 \mathrm{E}+09$	$5.74 \mathrm{E}+09$	$1.27 \mathrm{E}+10$	$2.24 \mathrm{E}+10$	$3.35 \mathrm{E}+10$	$3.49 \mathrm{E}+10$	$3.62 \mathrm{E}+10$
$\rho_{2} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathbf{x}}_{n}\right)$	0.79	$2.62 \mathrm{E}+07$	$7.85 \mathrm{E}+07$	$1.44 \mathrm{E}+09$	$5.50 \mathrm{E}+09$	$1.22 \mathrm{E}+10$	$2.15 \mathrm{E}+10$	$3.21 \mathrm{E}+10$	$3.34 \mathrm{E}+10$	$3.47 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\operatorname{Me}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.65	0.67	0.67	0.73	0.99	1.24	1.37	2.21	2.73	$2.58 \mathrm{E}+09$
	0.97	0.97	0.95	1.00	1.28	1.81	3.17	5.13	6.55	$2.76 \mathrm{E}+09$
$\widehat{\mathrm{p}_{1-\mathrm{S}}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.88	0.90	0.90	1.07	1.29	1.70	2.29	3.87	4.92	$2.58 \mathrm{E}+09$
-Q $\left(\widetilde{\mathbf{x}}_{n}\right)$	0.55	0.56	0.57	0.66	0.81	1.12	1.50	2.98	4.92	$2.58 \mathrm{E}+09$
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.77	0.78	0.79	0.86	1.03	1.32	1.74	2.73	3.26	$2.58 \mathrm{E}+09$
\# outliers (both)	0	1	2	10	20	30	40	49	50	51
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}_{n}}\right)$	1.03	$1.39 \mathrm{E}+09$	$2.60 \mathrm{E}+09$	$2.13 \mathrm{E}+10$	$5.58 \mathrm{E}+10$	$9.76 \mathrm{E}+10$	$1.44 \mathrm{E}+11$	$1.87 \mathrm{E}+11$	$1.92 \mathrm{E}+11$	$1.97 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.94	$2.75 \mathrm{E}+08$	$6.42 \mathrm{E}+08$	$1.06 \mathrm{E}+10$	$3.65 \mathrm{E}+10$	$7.35 \mathrm{E}+10$	$1.18 \mathrm{E}+11$	$1.61 \mathrm{E}+11$	$1.66 \mathrm{E}+11$	$1.71 \mathrm{E}+11$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{M} e}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.78	$1.04 \mathrm{E}+08$	$2.98 \mathrm{E}+08$	$5.32 \mathrm{E}+09$	$2.03 \mathrm{E}+10$	$4.49 \mathrm{E}+10$	$7.92 \mathrm{E}+10$	$1.18 \mathrm{E}+11$	$1.23 \mathrm{E}+11$	$1.28 \mathrm{E}+11$
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.17	$1.95 \mathrm{E}+08$	$4.88 \mathrm{E}+08$	$8.29 \mathrm{E}+09$	$3.12 \mathrm{E}+10$	$6.87 \mathrm{E}+10$	$1.21 \mathrm{E}+11$	$1.80 \mathrm{E}+11$	$1.88 \mathrm{E}+11$	$1.95 \mathrm{E}+11$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n},{\widetilde{\mathbf{x}_{n}}}_{n}\right)$	0.83	$1.39 \mathrm{E}+08$	$4.16 \mathrm{E}+08$	$7.63 \mathrm{E}+09$	$2.91 \mathrm{E}+10$	$6.45 \mathrm{E}+10$	$1.14 \mathrm{E}+11$	$1.70 \mathrm{E}+11$	$1.77 \mathrm{E}+11$	$1.84 \mathrm{E}+11$
$\rho_{1}-\widehat{\mathrm{MDD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.71	0.74	0.74	0.82	0.95	1.12	1.32	1.76	1.81	$5.55 \mathrm{E}+09$
$\widehat{\mathscr{D}_{1}^{\ell-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	0.99	1.02	1.01	1.09	1.48	1.76	1.99	3.03	3.41	$9.93 \mathrm{E}+09$
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.94	0.97	0.97	1.10	1.23	1.50	2.11	3.15	3.40	$1.05 \mathrm{E}+10$
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.52	0.53	0.54	0.64	0.79	1.01	1.39	2.31	3.40	$1.05 \mathrm{E}+10$
$\widehat{\rho_{1-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	0.83	0.85	0.85	0.95	1.05	1.24	1.56	2.18	2.44	$1.05 \mathrm{E}+10$

Figure 2.6: Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of translation, k varying from 0 to $50-1$ stSP Case 1

Figure 2.7: Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of scale on core and support, k varying from 0 to $50-1$ stSP Case 1

Figure 2.8: Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $50-1$ stSP Case 1

Figure 2.9: Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of translation, k varying from 0 to $51-1$ stSP Case 1

Figure 2.10: Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of scale on core and support, k varying from 0 to $51-1$ stSP Case 1

Figure 2.11: Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $51-1$ stSP CASE1

Figure 2.12: Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of translation, k varying from 0 to $50-1$ stSP Case 2

Figure 2.13: Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of scale on core and support, k varying from 0 to $50-1$ stSP Case 2

Figure 2.14: Explosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $50-1$ stSP Case 2

Figure 2.15: Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of translation, k varying from 0 to $51-1$ stSP Case 2

Figure 2.16: Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of scale on core and support, k varying from 0 to $51-1$ stSP Case 2

Figure 2.17: Explosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $51-1$ stSP Case 2

Table 2.7: Implosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by inliers, with $k \in\{0,1,2,10,49,50,51,98,99\}-1$ stSP Case 1

\# inliers	0	1	2	10	49	50	51	98	99
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.93	1.93	1.93	1.92	1.56	1.56	1.55	0.31	0
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.62	1.62	1.62	1.61	1.15	1.15	1.12	0.06	0
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.40	1.40	1.40	1.38	0.86	0.85	0.83	0.03	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.96	1.96	1.95	1.91	1.13	1.12	1.09	0.04	0
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.34	1.35	1.36	1.37	0.43	0.18	0	0	0
$\rho_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.08	1.09	1.08	0.95	0.11	0	0	0	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.50	1.50	1.50	1.33	0.16	0	0	0	0
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.44	1.44	1.44	1.34	0.22	0	0	0	0
$\widehat{\rho_{1-\mathrm{Q}}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.02	1.02	1.01	0.97	0.22	0	0	0	0
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.22	1.22	1.20	1.12	0.22	0	0	0	0

Table 2.8: Implosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by inliers, with $k \in\{0,1,2,10,49,50,51,99,100\}-1$ stSP Case 1

\# inliers	0	1	2	10	49	50	51	99	100
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.80	1.80	1.80	1.89	1.96	1.95	1.95	0.29	0
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.45	1.45	1.45	1.58	1.70	1.69	1.69	0.06	0
$\widehat{\rho} \widehat{-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.27	1.27	1.27	1.37	1.34	1.32	1.30	0.02	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.75	1.75	1.76	1.92	1.98	1.91	1.90	0.04	0
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.25	1.23	1.21	1.14	0.50	0.35	0	0	0
$\rho_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.02	1.02	1.01	1.10	0.29	0	0	0	0
$\mathscr{D}_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.38	1.40	1.42	1.66	0.41	0	0	0	0
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.40	1.40	1.40	1.60	0.29	0	0	0	0
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.02	1.02	1.02	1.12	0.29	0	0	0	0
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.21	1.21	1.21	1.35	0.29	0	0	0	0

Table 2.9: Implosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by inliers, with $k \in\{0,1,2,10,49,50,51,98,99\}-1$ stSP Case 2

\# inliers	0	1	2	10	49	50	51	98	99
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.20	1.20	1.20	1.20	1.15	1.15	1.15	0.23	0
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.05	1.04	1.04	1.06	1.02	1.02	1.02	0.04	0
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.87	0.87	0.87	0.89	0.79	0.78	0.78	0.02	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.28	1.28	1.28	1.29	1.11	1.09	1.08	0.03	0
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	0.81	0.79	0.79	0.78	0.36	0.15	0	0	0
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.72	0.71	0.71	0.75	0.08	0	0	0	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.98	0.98	0.98	1.14	0.13	0	0	0	0
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.94	0.94	0.94	1.05	0.16	0	0	0	0
$\widehat{\rho_{1-\mathrm{Q}}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.59	0.59	0.59	0.59	0.13	0	0	0	0
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.83	0.83	0.83	0.89	0.16	0	0	0	0

Table 2.10: Implosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by inliers, with $k \in\{0,1,2,10,49,50,51,99,100\}-1$ stSP Case 2

\# inliers	0	1	2	10	49	50	51	99	100
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.16	1.16	1.16	1.13	0.92	0.91	0.91	0.16	0
$\widehat{\rho 2-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.04	1.04	1.03	1.01	0.71	0.69	0.69	0.03	0
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.86	0.86	0.86	0.85	0.54	0.53	0.53	0.02	0
$\widehat{\mathscr{D}_{1}^{\ell-\mathrm{AD}} \mathrm{D}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.30	1.29	1.28	1.23	0.76	0.74	0.74	0.02	0
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	0.82	0.83	0.83	0.80	0.47	0.43	0	0	0
$\rho_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{M e}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.73	0.73	0.72	0.69	0.09	0	0	0	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.07	1.08	1.09	1.05	0.14	0	0	0	0
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.99	0.99	1.00	1.01	0.09	0	0	0	0
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.61	0.61	0.61	0.61	0.09	0	0	0	0
$\widehat{\rho_{1-}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.88	0.89	0.88	0.86	0.09	0	0	0	0

Figure 2.18: Implosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by inliers, k varying from 0 to $99-1$ stSP Case 1

Figure 2.19: Implosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by inliers, k varying from 0 to $100-1$ stSP Case 1

Figure 2.20: Implosion breakdown point: values of the scale estimators for a sample of size 100 with k observations replaced by inliers, k varying from 0 to $99-1$ stSP Case 2

Figure 2.21: Implosion breakdown point: values of the scale estimators for a sample of size 101 with k observations replaced by inliers, k varying from 0 to $100-1$ stSP Case 2

Regarding explosion we can conclude that for the sample size $n=100$ (101), by looking at Table 2.3 (2.4) and Figures 2.6 to 2.8 (2.9 to 2.11) for Case 1 and Table 2.5 (2.6) and Figures 2.12 to 2.14 (2.15 to 2.17) for Case 2, we can see that the minimum number of perturbed observations by outliers that makes the estimator to increase arbitrarily, independently of the simulation case and the type of outlier considered, has been

- 1 for the estimators $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{D_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$;
- 50 (51) for the estimators $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\mathscr{D}_{1}^{\ell-\mathrm{MD}} D}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$.

Therefore, these results show that the empirical value for the explosion breakdown point matches the theoretical value obtained in Section 2.3.

On the other hand, and concerning implosion, for the sample size $n=100$ (101), by looking at Table 2.7 (2.8) and Figure 2.18 (2.19) for Case 1 and Table 2.9 (2.10) and Figure 2.20 (2.21) for Case 2, we can see that the minimum number of perturbed observations by inliers that makes the estimator to implode to zero, independently of the simulation case considered, has been

- 99 (100) for the estimators $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$;
- 51 for the estimator $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$;
- 50 for the estimators $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\tilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$, $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{\rho_{1-}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$.

Therefore, these results show that the empirical value for the implosion breakdown point matches the theoretical value obtained in the previous section.

Similar developments are now to be carried out in accordance with the SECOND SIMULATION PROCEDURE (2ndSP) (see Page 39). Notice that the notion of breakdown point does not make sense with this procedure, because all generated fuzzy numbers must be within a bounded interval ($[0,100]$ for this study) and, for this reason, any scale estimator never can explode to infinity. Therefore, instead of breakdown point or finite sample breakdown point, we will refer to pseudobreakdown point or pseudo-finite sample breakdown point when we are dealing with data generated from random fuzzy numbers with a bounded reference set.

Two sizes of sample have been considered in the simulation study, namely, an even sample size $(n=20)$ and an odd sample size $(n=21)$. For the sample size $n=20$ we have chosen the weights $\omega_{1}=0.8, \omega_{2}=0.1$ and $\omega_{3}=0.1$, and for the sample size $n=21$ the weights have been $\omega_{1}=16 / 21, \omega_{2}=3 / 21$ and $\omega_{3}=2 / 21$.

Explosion pseudo-breakdown point:

The outlier \widetilde{y}_{i} has been constructed as follows, depending of the type of distribution generating the data of the non-contaminated sample.

- Symmetric distribution:
- Outlier of translation: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(1000,1000)$ and the fuzzy numbers have been constrained to be in the interval [47.5,52.5]. Then, we have chosen

$$
r_{i}^{1}= \begin{cases}8+\frac{i+1}{2} \cdot 4 & \text { if } i \text { is odd } \\ -\left(8+\frac{i}{2} \cdot 4\right) & \text { if } i \text { is even. }\end{cases}
$$

For the estimator $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$ we have chosen $r_{i}^{1}=8+i \cdot 4$.

- Outlier of scale on the core and support: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(5000,5000)$ and the fuzzy numbers have been constrained to be in the interval [49.5,50.5]. Then, we have chosen $r_{i}^{2}=i \cdot 10$.
- Outlier of both translation and scale: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(1000,1000)$ and the fuzzy numbers have been constrained to be in the interval $[47.5,52.5]$. Then, we have chosen

$$
\begin{gathered}
r_{i}^{1}= \begin{cases}8+\frac{i+1}{2} \cdot 4 & \text { if } i \text { is odd } \\
-\left(8+\frac{i}{2} \cdot 4\right) & \text { if } i \text { is even } \\
r_{i}^{2}=2\end{cases}
\end{gathered}
$$

For the estimator $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)$ we have chosen $r_{i}^{1}=8+i \cdot 4$.

- Asymmetric distribution:
- Outlier of translation: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(1,100)$ and the fuzzy numbers have been constrained to be in the interval $[0,5]$. Then, we have chosen r_{i}^{1} $=40+i \cdot 5$.
- Outlier of scale on the core and support: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(1,1000)$ and the fuzzy numbers have been constrained to be in the interval $[0,1]$. Then, we have chosen $r_{i}^{2}=i \cdot 100$.
- Outlier of both translation and scale: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(1,100)$ and the fuzzy numbers have been constrained to be in the interval $[0,5]$. Then, we have chosen

$$
r_{i}^{1}=40+i \cdot 5, \quad r_{i}^{2}=2 .
$$

For each type of outlier, the general scheme of the simulation is the same that the one for the 1stSP (see Page 93).

Remark 2.4.1. It should be pointed out that, in case any of the four numbers characterizing the outlier $\widetilde{y}_{i}=\operatorname{Tra}\left(y_{i}^{[1]}, y_{i}^{[2]}, y_{i}^{[3]}, y_{i}^{[4]}\right)$ falls outside the reference interval $[0,100]$, then it is automatically replaced by 0 if it is negative, or by 100 if it is over 100.

The simulation-based conclusions in this study are presented through Tables 2.11 to 2.14 and Figures 2.22 to 2.33 . More concretely, tables gather the values of the different estimators when outliers are introduced in the sample by replacement, and figures graphically display these values for each estimator.

Implosion pseudo-breakdown point:

The non-contaminated sample has been generated on the basis of a beta distribution $\beta(100,100)$ regarding the symmetric distribution, and on the basis of a beta distribution $\beta(1,100)$ regarding the asymmetric distribution.

The general scheme of the simulation is the same that the one for the 1stSP (see Page 94).

The simulation-based conclusions in this study are presented through Tables 2.15 to 2.18 and Figures 2.34 to 2.37 . More concretely, tables gather the values of the different estimators when inliers are introduced in the sample by replacement, and figures graphically display these values for each estimator.

Table 2.11: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 10\}-2 n d S P$ Symmetric distribution

\# outliers (translation)	0	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.84	2.84	3.89	5.29	6.38	7.77	8.98	10.42	11.75	13.26	14.71
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.78	1.51	1.92	2.95	3.44	4.75	5.36	6.94	7.65	9.47	10.38
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.69	1.29	1.85	2.62	3.36	4.31	5.28	6.45	7.58	8.95	10.29
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.93	1.55	2.11	2.88	3.64	4.58	5.56	6.74	7.85	9.21	10.55
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.74	1.00	1.90	2.74	3.91	5.42	7.03	8.76	10.70	12.90	15.27
$\widehat{1-\mathrm{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	0.68	0.75	0.71	0.71	0.76	0.76	0.84	0.84	0.81	1.19	6.55
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.89	0.97	1.04	1.00	1.16	1.14	1.29	1.41	1.54	1.90	6.81
$-\mathrm{S}\left(\widetilde{x}_{n}\right)$	0.88	0.99	1.09	1.10	1.24	1.24	1.29	1.41	1.41	2.16	11.98
$\left.\widehat{\rho_{1-Q}(} \widetilde{\mathbf{x}}_{n}\right)$	0.64	0.69	0.74	0.78	0.91	0.93	1.10	1.22	1.30	2.16	8.00
$\widehat{\rho_{1-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	0.76	0.86	0.94	0.97	1.05	1.06	1.18	1.23	1.26	1.72	11.56
\# outliers (scale)	0	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.18	1.15	2.55	4.21	6.06	8.04	9.97	11.69	13.26	14.56	15.63
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)$	0.17	0.53	1.45	2.74	4.31	6.09	7.95	9.80	11.50	12.98	14.29
$\widehat{\rho_{1-\mathrm{ADD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	0.14	0.38	0.88	1.65	2.67	3.97	5.49	7.15	8.97	10.86	12.85
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.21	0.48	1.06	1.94	3.10	4.57	6.25	8.01	9.82	11.70	13.68
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.19	0.32	0.84	1.67	2.75	4.11	5.69	7.43	9.26	11.17	13.20
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.13	0.11	0.13	0.18	0.18	0.20	0.23	0.24	0.24	0.26	2.66
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.19	0.17	0.16	0.21	0.23	0.26	0.30	0.42	0.54	0.57	3.06
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.19	0.19	0.22	0.22	0.22	0.22	0.27	0.28	0.32	0.42	5.07
$-\mathrm{Q}\left(\widetilde{x}_{n}\right)$	0.14	0.15	0.15	0.16	0.17	0.18	0.22	0.23	0.27	0.42	4.89
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.17	0.17	0.17	0.19	0.19	0.20	0.22	0.25	0.27	0.31	4.96
\# outliers (both)	0	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.71	2.88	3.91	5.34	6.41	7.82	9.01	10.47	11.79	13.31	14.74
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.65	1.47	1.84	2.96	3.42	4.84	5.40	7.08	7.82	9.68	10.62
$\widehat{\operatorname{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.57	1.19	1.74	2.50	3.25	4.25	5.18	6.38	7.54	8.96	10.29
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{AD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.72	1.44	2.08	2.92	3.74	4.81	5.78	7.05	8.23	9.67	11.04
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.53	0.87	1.61	2.62	3.86	5.33	6.87	8.69	10.69	12.90	15.32
$\rho_{1}-\widehat{\operatorname{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.47	0.50	0.57	0.55	0.60	0.62	0.62	0.75	0.93	1.26	6.43
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.62	0.66	0.75	0.74	0.79	0.89	1.03	1.16	1.44	2.07	7.18
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.69	0.78	0.85	0.87	0.89	1.01	1.10	1.16	1.47	1.91	11.55
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.46	0.56	0.67	0.69	0.72	0.79	0.86	1.04	1.21	1.91	8.00
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.59	0.69	0.76	0.77	0.80	0.85	0.91	1.02	1.20	1.56	11.28

Table 2.12: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 11\}-2 n d S P$ Symmetric distribution

\# outliers (translation)	0	1	2	3	4	5	6	7	8	9	10	11
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.82	2.59	3.79	5.04	6.22	7.50	8.76	10.11	11.46	12.90	14.36	15.87
$\widehat{-\mathrm{ADD}}\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$	0.75	1.38	1.81	2.70	3.26	4.41	5.06	6.42	7.25	8.85	9.88	11.61
$\rho_{1}-\mathrm{ADD}\left(\mathbf{x}_{n}, \widehat{\left.\operatorname{Me}\left(\mathbf{x}_{n}\right)\right)}\right.$	0.66	1.15	1.73	2.45	3.19	4.11	5.02	6.06	7.21	8.49	9.84	11.26
$\mathscr{D}_{1}^{\ell}-\mathrm{ADD}\left(\mathbf{x}_{n}, \mathrm{M}^{\ell}\left(\mathbf{x}_{n}\right)\right)$	0.83	1.32	1.90	2.60	3.34	4.24	5.12	6.15	7.30	8.57	9.92	11.33
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.68	1.01	1.55	2.47	3.62	4.85	6.30	7.98	9.86	11.88	14.14	16.59
$\widehat{1-M D D}\left(\mathbf{x}_{n}, \operatorname{Me}\left(\mathbf{x}_{n}\right)\right)$	0.49	0.55	0.51	0.65	0.55	0.71	0.79	0.71	0.98	1.10	1.81	11.57
$\mathscr{D}_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}_{n}}\right)\right)}\right.$	0.75	0.79	0.83	0.88	0.88	0.95	1.00	1.00	1.01	1.16	1.97	11.59
$\widehat{-S}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.69	0.69	0.74	0.79	0.79	1.14	1.16	1.16	1.32	1.39	2.12	11.96
$\widehat{-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.49	0.50	0.57	0.64	0.69	0.79	0.81	0.83	1.14	1.37	2.12	8.00
$\widehat{\rho_{1-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	0.55	0.55	0.58	0.67	0.69	0.89	0.90	0.90	1.07	1.27	1.84	11.58
\# outliers (scale)	0	1	2	3	4	5	6	7	8	9	10	11
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.22	0.93	2.05	3.39	4.88	6.50	8.19	9.67	11.00	12.15	13.06	13.77
$\widehat{2-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.19	0.44	1.15	2.17	3.42	4.84	6.40	7.96	9.41	10.69	11.82	12.71
$\rho_{1-\mathrm{ADD}}\left(\mathbf{x}_{n}, \widehat{\left.\operatorname{Me}\left(\mathbf{x}_{n}\right)\right)}\right.$	0.17	0.34	0.72	1.29	2.05	3.02	4.19	5.48	6.88	8.35	9.87	11.24
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.23	0.43	0.86	1.52	2.37	3.48	4.81	6.20	7.65	9.12	10.64	12.01
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.20	0.25	0.66	1.30	2.17	3.24	4.46	5.86	7.34	8.92	10.51	12.13
$\widehat{1-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\operatorname{Me}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.15	0.14	0.17	0.20	0.21	0.24	0.26	0.26	0.26	0.26	0.39	4.11
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.21	0.20	0.20	0.19	0.23	0.27	0.35	0.34	0.40	0.55	0.57	4.29
$\widehat{\rho_{1-S}(}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.23	0.25	0.26	0.26	0.26	0.26	0.26	0.26	0.31	0.39	0.46	4.11
$\underline{-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.14	0.15	0.17	0.18	0.18	0.18	0.20	0.22	0.25	0.26	0.46	3.72
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.18	0.19	0.22	0.22	0.22	0.23	0.23	0.23	0.25	0.26	0.35	3.89
\# outliers (both)	0	1	2	3	4	5	6	7	8	9	10	11
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.00	2.80	3.84	5.17	6.25	7.60	8.78	10.19	11.48	12.96	14.36	15.92
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.91	1.57	2.00	2.91	3.44	4.64	5.29	6.70	7.43	9.13	9.99	11.92
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.81	1.38	1.91	2.65	3.36	4.30	5.21	6.30	7.36	8.68	9.92	11.44
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.03	1.62	2.13	2.85	3.57	4.51	5.44	6.52	7.56	8.87	10.08	11.60
$\rho_{2} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.85	0.99	1.69	2.60	3.73	5.12	6.62	8.33	10.25	12.31	14.57	17.05
$\rho_{1}-\widehat{\operatorname{MDD}}\left(\tilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\tilde{\mathbf{x}}_{n}\right)\right)$	0.68	0.73	0.82	0.82	0.91	1.31	1.29	1.35	1.41	1.53	1.64	11.57
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}_{n}}\right)\right)}\right.$	0.97	1.02	1.14	1.15	1.15	1.74	1.78	1.80	1.82	1.91	1.91	11.51
$\widehat{\rho_{1-S}^{-S}\left(\mathbf{x}_{n}\right)}$	0.99	1.08	1.11	1.37	1.51	1.80	1.92	1.98	2.16	2.18	2.29	11.72
$\widehat{\rho_{1-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	0.62	0.73	0.73	0.78	1.03	1.25	1.49	1.55	1.67	1.92	2.29	8.00
$\widehat{\rho_{1-\mathrm{T}}}\left(\widetilde{\mathbf{x}_{n}}\right)$	0.77	0.84	0.93	1.05	1.21	1.47	1.69	1.71	1.78	1.89	2.00	11.34

Table 2.13: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 10\}-2$ ndSP Asymmetric distribution

\# outliers (translation)	0	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.88	9.73	14.12	17.75	20.96	23.86	26.58	29.05	31.32	33.34	35.09
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.76	4.34	8.49	12.64	16.65	20.43	23.98	27.13	29.85	32.04	33.59
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.58	2.77	5.21	7.87	10.81	14.00	17.39	21.09	25.04	29.22	33.59
$\mathscr{D}_{1}^{\ell}-\mathrm{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.98	3.16	5.61	8.20	11.11	14.29	17.59	21.26	25.18	29.38	33.78
$\widehat{\rho_{2}-\mathrm{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)}$	0.75	2.36	4.86	7.66	10.72	13.96	17.47	21.26	25.12	29.33	33.62
$\widehat{\rho_{1}-\overline{\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	0.53	0.52	0.56	0.56	0.57	0.69	0.69	0.78	0.84	1.14	23.20
$\widehat{\mathscr{D}_{1}^{\ell-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	0.89	0.84	0.84	0.86	0.82	0.89	0.91	0.92	0.94	1.06	23.16
$\widehat{1-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.68	0.68	0.79	0.79	0.82	0.96	0.96	0.96	0.98	1.11	45.05
$\left.\widehat{\rho_{1-Q}(} \widetilde{\mathbf{x}}_{n}\right)$	0.51	0.53	0.57	0.57	0.58	0.66	0.66	0.73	0.87	1.11	10.00
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.60	0.60	0.69	0.69	0.70	0.80	0.80	0.81	0.84	0.94	44.63
\# outliers (scale)	0	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.17	0.71	1.52	2.49	3.55	4.70	5.90	7.13	8.38	9.63	10.86
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.14	0.36	0.87	1.62	2.54	3.57	4.69	5.90	7.11	8.33	9.52
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.09	0.19	0.39	0.68	1.07	1.55	2.13	2.79	3.55	4.40	5.35
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.17	0.38	0.79	1.41	2.23	3.25	4.48	5.89	7.51	9.33	11.34
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.10	0.25	0.57	1.05	1.69	2.49	3.45	4.57	5.83	7.20	8.72
$\widehat{\rho_{1}-\mathrm{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	0.05	0.06	0.07	0.09	0.11	0.14	0.19	0.22	0.27	0.35	1.22
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.10	0.12	0.13	0.16	0.20	0.25	0.35	0.42	0.50	0.61	2.46
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.08	0.09	0.10	0.13	0.16	0.20	0.22	0.23	0.32	0.40	2.03
$\widehat{1_{1-Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.06	0.06	0.08	0.09	0.12	0.15	0.19	0.21	0.28	0.40	1.95
$\widehat{\rho_{1-}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.07	0.07	0.08	0.10	0.13	0.16	0.20	0.21	0.28	0.33	1.92
\# outliers (both)	0	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.75	9.81	14.26	17.90	21.12	24.05	26.70	29.17	31.40	33.42	35.18
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.67	4.33	8.56	12.74	16.78	20.60	24.09	27.25	29.93	32.12	33.68
$\widehat{1-\operatorname{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	0.53	2.75	5.22	7.95	10.94	14.17	17.57	21.28	25.18	29.34	33.68
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.84	3.09	5.58	8.34	11.32	14.55	17.93	21.66	25.56	29.75	34.09
$\widehat{\rho_{2}-\overline{\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n},{\overline{\mathbf{x}_{n}}}_{n}\right)}$	0.74	2.30	4.85	7.64	10.77	14.11	17.65	21.48	25.33	29.55	33.63
$\rho_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.55	0.59	0.56	0.57	0.68	0.85	0.95	1.12	1.54	2.03	23.93
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.90	0.98	1.05	0.98	1.01	1.25	1.37	1.67	2.29	2.72	24.84
$\widehat{\rho_{1-S}\left(\widetilde{\mathbf{x}}_{n}\right)}$	0.73	0.73	0.74	0.95	1.07	1.16	1.16	1.29	1.68	1.80	45.57
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.52	0.55	0.60	0.66	0.74	0.84	0.95	1.08	1.34	1.80	10.00
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{x}_{n}\right)$	0.61	0.62	0.64	0.78	0.88	0.98	0.98	1.11	1.35	1.55	44.80

Table 2.14: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 11\}-2 n d S P$ Asymmetric distribution

\# outliers (translation)	0	1	2	3	4	5	6	7	8	9	10	11
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.66	9.54	13.89	17.48	20.65	23.57	26.25	28.72	30.99	33.06	34.98	36.63
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$	0.62	4.10	8.15	12.19	16.11	19.86	23.35	26.52	29.30	31.63	33.50	34.76
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}_{n}}, \widehat{\left.\operatorname{Me}\left(\mathbf{x}_{n}\right)\right)}\right.$	0.50	2.61	4.97	7.54	10.37	13.41	16.68	20.18	23.89	27.82	32.03	34.36
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.75	2.88	5.25	7.81	10.65	13.72	17.00	20.49	24.21	28.14	32.32	34.62
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathbf{x}}_{n}\right)$	0.63	2.34	4.71	7.40	10.26	13.42	16.79	20.38	24.07	28.00	32.22	36.50
$\rho_{1-\mathrm{MDD}}\left(\mathbf{x}_{n}, \widehat{\left.\operatorname{Me}\left(\mathbf{x}_{n}\right)\right)}\right.$	0.43	0.49	0.57	0.60	0.60	0.68	0.80	0.92	1.14	1.54	1.68	44.03
$\mathscr{D}_{1} \widehat{\operatorname{MDD}}\left(\widetilde{\mathbf{x}_{n}}, \mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.67	0.75	0.79	0.81	0.92	0.93	1.13	1.23	1.31	1.53	1.61	44.56
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.54	0.65	0.78	0.78	0.84	0.85	1.00	1.12	1.22	1.36	1.36	44.23
-Q $\left(\widetilde{\mathbf{x}}_{n}\right.$	0.42	0.45	0.48	0.50	0.63	0.64	0.71	0.83	0.92	1.08	1.36	5.00
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.47	0.54	0.63	0.63	0.72	0.74	0.84	0.92	1.01	1.11	1.12	37.38
\# outliers (scale)	0	1	2	3	4	5	6	7	8	9	10	11
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.19	0.98	2.14	3.50	5.02	6.65	8.36	10.13	11.92	13.67	14.97	15.92
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.15	0.46	1.19	2.24	3.52	4.98	6.54	8.28	10.03	11.75	13.21	14.31
$\widehat{1-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.09	0.22	0.49	0.89	1.42	2.09	2.89	3.82	4.87	6.04	7.20	8.24
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.17	0.44	1.00	1.86	2.99	4.41	6.11	8.08	10.32	12.82	15.29	17.48
$\widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.13	0.30	0.73	1.38	2.26	3.35	4.66	6.22	7.93	9.86	11.79	13.78
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.04	0.04	0.05	0.06	0.07	0.08	0.10	0.24	0.25	0.30	0.48	2.89
$\mathscr{D}_{1} \widehat{\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.07	0.07	0.09	0.09	0.12	0.19	0.21	0.46	0.49	0.59	0.85	6.10
-S($\left.\widetilde{\mathbf{x}}_{n}\right)$	0.06	0.06	0.06	0.07	0.10	0.13	0.14	0.24	0.25	0.31	0.49	2.89
-Q $\left(\widetilde{\mathbf{x}}_{n}\right)$	0.05	0.05	0.05	0.06	0.07	0.08	0.13	0.20	0.24	0.30	0.48	2.81
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.05	0.05	0.06	0.06	0.07	0.10	0.11	0.22	0.22	0.28	0.43	2.78
\# outliers (both)	0	1	2	3	4	5	6	7	8	9	10	11
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{x}_{n}\right)$	0.70	9.60	13.96	17.55	20.74	23.66	26.34	28.84	31.14	33.26	35.13	36.80
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}_{n}}, \widetilde{\mathbf{x}}_{n}\right)$	0.67	4.15	8.21	12.25	16.18	19.94	23.43	26.64	29.46	31.83	33.66	34.93
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.51	2.63	4.99	7.57	10.40	13.46	16.73	20.26	24.02	28.00	32.18	34.53
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.82	2.94	5.30	7.88	10.71	13.78	17.03	20.57	24.35	28.34	32.53	34.87
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n},{\widetilde{\mathbf{x}_{n}}}_{n}\right)$	0.70	2.18	4.56	7.18	10.18	13.34	16.70	20.37	24.16	28.07	32.27	36.62
$\rho_{1}-\widehat{\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.51	0.51	0.53	0.59	0.62	0.65	0.69	0.78	1.16	1.29	1.73	44.54
$\mathscr{D}_{1} \widehat{\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	0.74	0.82	0.85	0.86	0.93	1.07	1.20	1.25	1.61	1.73	1.98	45.00
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.73	0.77	0.83	0.87	0.93	1.00	1.03	1.03	1.12	1.17	1.39	44.58
$\widehat{1-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.41	0.49	0.55	0.58	0.63	0.69	0.73	0.83	1.00	1.07	1.39	5.00
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.61	0.69	0.71	0.73	0.79	0.83	0.85	0.87	1.01	1.04	1.19	36.83

Figure 2.22: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of translation,
k varying from 0 to $10-2 n d S P$
Symmetric distribution

Figure 2.23: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of scale on core and support, k varying from 0 to $10-2$ ndSP

Symmetric distribution

Figure 2.24: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $10-2$ ndSP

Symmetric distribution

Figure 2.25: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of translation, k varying from 0 to $11-2$ ndSP

Symmetric distribution

Figure 2.26: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of scale on core and support, k varying from 0 to $11-2$ ndSP

Symmetric distribution

Figure 2.27: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $11-2$ ndSP

Symmetric distribution

Figure 2.28: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of translation,
k varying from 0 to $10-2 \mathrm{ndSP}$
Asymmetric distribution

Figure 2.29: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of scale on core and support, k varying from 0 to $10-2$ ndSP

Asymmetric distribution

Figure 2.30: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $10-2$ ndSP

Asymmetric distribution

Figure 2.31: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of translation,

$$
k \text { varying from } 0 \text { to } 11-2 n d S P
$$

Asymmetric distribution

Figure 2.32: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of scale on core and support, k varying from 0 to $11-2$ ndSP

Asymmetric distribution

Figure 2.33: Explosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $11-2$ ndSP

Asymmetric distribution

Table 2.15: Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by inliers, with $k \in\{0,1,2,3,9,10,11,18,19\}-2 n d S P$ Symmetric distribution

\# inliers	0	1	2	3	9	10	11	18	19
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	3.69	3.69	3.69	3.55	3.19	3.16	3.12	0.28	0
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	2.83	2.86	2.83	2.66	2.12	2.05	1.92	0.12	0
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	2.36	2.42	2.39	2.24	1.50	1.41	1.29	0.06	0
$\mathscr{D}_{1}^{\widehat{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	3.38	3.44	3.40	3.15	2.33	2.24	2.07	0.08	0
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.91	1.91	1.93	1.89	1.92	0.99	0	0	0
$\widehat{\rho_{1}-\widehat{M D D}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.61	1.71	1.54	1.57	0.54	0	0	0	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	2.33	2.33	2.29	2.50	0.82	0	0	0	0
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.55	2.55	2.47	2.26	1.09	0	0	0	0
$\widehat{\rho_{1-\mathrm{Q}}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.09	2.16	2.10	2.00	1.09	0	0	0	0
$\widehat{\rho_{1-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	2.23	2.32	2.29	2.18	1.09	0	0	0	0

Table 2.16: Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by inliers, with $k \in\{0,1,2,3,9,10,11,19,20\}-2 n d S P$

Symmetric distribution

\# inliers	0	1	2	3	9	10	11	19	20
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	3.88	3.85	3.82	3.77	3.56	3.50	3.43	0.95	0
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	3.04	2.99	2.93	2.85	2.53	2.45	2.38	0.41	0
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	2.50	2.46	2.40	2.31	1.84	1.74	1.64	0.17	0
$\mathscr{D}_{1} \widehat{-\mathrm{ADD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	3.52	3.48	3.39	3.30	2.63	2.44	2.27	0.29	0
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\widetilde{\mathbf{x}}}_{n}\right)$	2.36	2.38	2.44	2.44	1.83	1.39	0	0	0
$\rho_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.69	1.66	1.44	1.61	1.48	0	0	0	0
$\mathscr{D}_{1} \widehat{-\mathrm{MD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	2.48	2.45	2.24	2.16	2.19	0	0	0	0
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.44	2.28	2.24	2.18	1.48	0	0	0	0
$\widehat{\rho_{1-\mathrm{Q}}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.89	1.84	1.83	1.76	1.48	0	0	0	0
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.15	2.09	1.99	1.86	1.48	0	0	0	0

Table 2.17: Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by inliers, with $k \in\{0,1,2,3,9,10,11,18,19\}-2 n d S P$

Asymmetric distribution

\# inliers	0	1	2	3	9	10	11	18	19
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.16	1.16	1.13	1.09	0.95	0.90	0.89	0.23	0
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	0.88	0.90	0.88	0.85	0.69	0.63	0.61	0.10	0
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.65	0.66	0.64	0.61	0.43	0.38	0.34	0.04	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.10	1.13	1.11	1.08	0.80	0.65	0.61	0.07	0
$\rho_{2} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	0.69	0.65	0.62	0.52	0.33	0.12	0	0	0
$\rho_{1-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.54	0.59	0.51	0.42	0.17	0	0	0	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.77	0.88	0.94	0.82	0.23	0	0	0	0
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.68	0.72	0.77	0.74	0.33	0	0	0	0
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.52	0.56	0.57	0.56	0.33	0	0	0	0
$\widehat{\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)}$	0.61	0.66	0.69	0.68	0.33	0	0	0	0

Table 2.18: Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by inliers, with $k \in\{0,1,2,3,9,10,11,19,20\}-2 n d S P$ Asymmetric distribution

\# inliers	0	1	2	3	9	10	11	19	20
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.23	2.25	2.26	2.28	2.36	2.38	2.39	0.34	0
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.34	1.37	1.38	1.39	1.51	1.53	1.55	0.15	0
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.86	0.89	0.90	0.91	0.96	0.90	0.87	0.05	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.48	1.54	1.56	1.61	1.74	1.65	1.59	0.10	0
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	0.89	0.80	0.82	0.87	0.67	0.66	0	0	0
$\rho_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.54	0.53	0.60	0.65	0.05	0	0	0	0
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.52	0.71	0.71	0.77	0.06	0	0	0	0
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.61	0.70	0.72	0.83	0.07	0	0	0	0
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.49	0.53	0.55	0.55	0.07	0	0	0	0
$\widehat{\rho_{1-}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.53	0.57	0.62	0.66	0.07	0	0	0	0

Figure 2.34: Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by inliers, k varying from 0 to $19-2 n d S P$ Symmetric distribution

Figure 2.35: Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by inliers, k varying from 0 to $20-2$ ndSP Symmetric distribution

Figure 2.36: Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 20 with k observations replaced by inliers, k varying from 0 to $19-2$ ndSP Asymmetric distribution

Figure 2.37: Implosion pseudo-breakdown point: values of the scale estimators for a sample of size 21 with k observations replaced by inliers, k varying from 0 to $20-2$ ndSP Asymmetric distribution

Regarding explosion we can conclude that for the sample size $n=20$ (21), by looking at Table 2.11 (2.12) and Figures 2.22 to 2.24 (2.25 to 2.27) for the symmetric distribution and Table 2.13 (2.14) and Figures 2.28 to 2.30 (2.31 to 2.33) for the asymmetric distribution, we can see that the minimum number of perturbed observations by outliers that makes the estimator to increase noticeably, independently of the distribution and the type of outlier considered, has been

- 1 for the estimators $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$;
- $10(11)$ for the estimators $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$, $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{\rho_{1-}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$.

Therefore, the empirical value for the explosion pseudo-breakdown point coincides with the theoretical explosion breakdown point in Section 2.3.

On the other hand, and concerning implosion, for the sample size $n=20$ (21), by looking at Table 2.15 (2.16) and Figure 2.34 (2.35) for the symmetric case and Table 2.17 (2.18) and Figure 2.36 (2.37) for the asymmetric case, we can see that the minimum number of perturbed observations by inliers that makes the estimator to implode to zero, independently of the distribution case considered, has been

- 19 (20) for the estimators $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$;
- 11 for the estimator $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$;
- 10 for the estimators $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{M e}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell-\mathrm{MDD}}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$, $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{\rho_{1-}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$.

Therefore, the empirical value for the implosion pseudo-breakdown point coincides with the theoretical implosion breakdown point in the previous section.

2.4.3 Sensitivity curves

Another important and useful tool to measure the robustness of an estimator from an empirical point of view is now to be analyzed: the sensitivity curves, which represent the sample version of the influence functions (see, for instance, Maronna et al. [81] and Rossello [98]).

Previously, the finite sample breakdown point, which tell us how much the estimate changes when a percentage of the data is contaminated by outliers or inliers, has been studied for the different estimators. In contrast, the sensitivity curves describe how the estimator reacts to a single outlier in the data.

Recall that we are dealing with three different types of outliers in the fuzzy setting (see Subsection 2.4.1): outliers of translation, outliers of scale on the core and support, and outliers of both translation and scale. Therefore, some of the sensitivity curves will allow us to measure the effect of different 'locations' of a single outlier in the sample, other curves will measure the effect of considering different 'widths' of a single outlier, and other ones will measure the effect of different 'locations' and 'widths' of a single outlier in the sample.

The non-contaminated sample has first been simulated from the FIRST SIMULATION PROCEDURE (1stSP) considering the two cases (see Page 38) and an only sample size $n=100$.

The outliers have been constructed so that if \widetilde{y}_{s} is the outlier, then,

- Outlier of translation: $r_{s}^{1}=s$, with s varying from -20 to 20 with a step equals 0.1.
- Outlier of scale on the core and support: $r_{s}^{2}=s$, with s varying from 0 to 20 with a step equals 0.1.
- Outlier of both translation and scale: $r_{s}^{1}=r_{s}^{2}=s$, with s varying from -20 to 20 with a step equals 0.1 .

For each type of outlier, the general scheme of the construction of the sensitivity curves has been as follows:

Step 1. A sample $\widetilde{\mathbf{x}}_{100}$ of 100 trapezoidal fuzzy numbers has been simulated from the 1stSP, considering the two cases of simulation involved in this procedure.

Step 2. One observation from the original sample $\widetilde{\mathbf{x}}_{100}$ has been chosen randomly and replaced by the outlier \widetilde{y}_{s}.

Step 3. For each s, the value of the sensitivity curve has been calculated for each estimator of scale as follows:

Definition 2.4.1. Let \mathcal{X} be an $R F N, \widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ be a sample of observations from \mathcal{X} and $\hat{\mathrm{D}}$ a dispersion estimate. The sensitivity curve of the estimate $\hat{\mathrm{D}}$ for the sample $\widetilde{\mathbf{x}}_{n}$ is the function associating with each $s \in \mathbb{R}$ the difference

$$
\mathrm{SC}(s)=\widehat{\mathrm{D}}\left(\widetilde{\mathbf{x}}_{n}^{[s]}\right)-\hat{\mathrm{D}}\left(\widetilde{\mathbf{x}}_{n}\right)
$$

where the sample $\widetilde{\mathbf{x}}_{n}^{[s]}$ is obtained by replacing an arbitrary observation of $\widetilde{\mathbf{x}}_{n}$ by the outlier \widetilde{y}_{s}.

The sensitivity curves have been graphically displayed for each estimator in Figures 2.38 to 2.40 for Case 1 and in Figures 2.41 to 2.43 for Case 2.

Figure 2.38: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of translation - 1stSP Case 1

Figure 2.39: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of scale on core and support - 1stSP Case 1

Figure 2.40: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of both translation and scale on core and support - 1stSP Case 1

Figure 2.41: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of translation - 1stSP Case 2

Figure 2.42: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of scale on core and support - 1stSP Case 2

Figure 2.43: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of both translation and scale on core and support - 1stSP Case 2

Irrespective of the type of outlier that we are considering, we can see that the sensitivity curves in the two cases are

- bounded for the robust scale estimates $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}\right.$, $\left.\widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right) \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$;
- unbounded for the remaining ones $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}\right.$,

The preceding developments are now to be carried out by considering the SECOND SIMULATION PROCEDURE (2ndSP) (see Page 39). Notice that, as it happens for the fsbp, when there is a bounded reference interval the notion of sensitivity curve does not make sense, and we will refer to the pseudo-sensitivity curve.

In this study we have only considered the sample size $n=100$, with the weights $\omega_{1}=0.8, \omega_{2}=0.1$ and $\omega_{3}=0.1$.

The outlier \widetilde{y}_{s} has been constructed as follows:

- Symmetric distribution: the non-contaminated sample has been generated from a beta $\beta(100,100)$.
- Outlier of translation: $r_{s}^{1}=s$, with s varying from -20 to 20 with a step equals 0.1.
- Outlier of scale on the core and support: $r_{s}^{2}=s$, with s varying from 0 to 20 with a step equals 0.1.
- Outlier of both translation and scale: $r_{s}^{1}=r_{s}^{2}=s$, with s varying from -20 to 20 with a step equals 0.1 .
- Asymmetric distribution: the non-contaminated sample has been generated from a beta $\beta(1,100)$.
- Outlier of translation: $r_{s}^{1}=s$, with s varying from 0 to 20 with a step equals 0.1.
- Outlier of scale on the core and support: $r_{s}^{2}=s$, with s varying from 0 to 20 with a step equals 0.1 .
- Outlier of both translation and scale: $r_{s}^{1}=r_{s}^{2}=s$, with s varying from 0 to 20 with a step equals 0.1 .

For each type of outlier, the general scheme of the simulation is the same that the one for the 1stSP (see Page 143), and the criterion in Remark 2.4.1 is also considered.

The pseudo-sensitivity curves have been graphically displayed for each estimator in Figures 2.44 to 2.46 for the symmetric distribution and in Figures 2.47 to 2.49 for the asymmetric one.

Figure 2.44: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of translation - 2ndSP

Symmetric distribution

Tn

Figure 2.45: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of scale on core and support - 2ndSP

Symmetric distribution

Figure 2.46: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of both translation and scale on core and support - 2ndSP

Symmetric distribution

Figure 2.47: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of translation - 2ndSP

Asymmetric distribution

Figure 2.48: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of scale on core and support - 2ndSP

Asymmetric distribution

Figure 2.49: Sensitivity curves of the scale estimators for a sample of size 100 and outliers of both translation and scale on core and support - 2ndSP

Asymmetric distribution

Irrespective of the type of outlier we are considering, the pseudo-sensitivity curves in the two distributions are

- bounded for the robust scale estimates $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}\right.$, $\left.\widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$;
- 'unbounded' for the other estimates $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}\right.$, $\left.\widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ and $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$.

2.5 Another approach for the scale estimation: the M-estimation of scale

Another approach to estimating scale is now to be tackled. This section is focussed on the extension to the fuzzy setting of a well-known family of estimators of scale which play an important role in the robust estimation because of their suitable properties: the so-called M-estimators of scale. The notion of M-estimator of scale can easily be extended from the real-valued case to the case where the available data are fuzzy number-valued.

Anyway, it should be emphasized that, in spite of their good behaviour in the presence of either outliers or subtle changes in the data, M-estimators have a clear handicap in comparison with the ones in Definitions 2.1.1-2.1.6: they do not have an explicit formula, so iterative algorithms should be designed and performed to compute their value, as will be shown along this section, and they are more computationally expensive. For this reason some authors (see Rousseeuw and Croux [99]) have expressed in the real-valued case a slight preference for robust estimators with an explicit expression, like those in Section 2.1 for the fuzzy framework.

Robust M-estimation is a 'modified' maximum likelihood estimation and, according to Maronna et al. [81], it leads to less sensitive estimators to the presence of outlying observations.

Following Maronna et al. [81] to formalize the M-scale estimation, observations are assumed to be defined in accordance with a model $\mathcal{X}_{i}=\sigma \cdot \mathcal{E}_{i}(i=1, \ldots, n)$, where \mathcal{E}_{i} are independent and identically distributed RFN's and σ is the scale parameter to be estimated. Two concepts should first be recalled.

Definition 2.5.1. A loss function $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that

- it is even (actually, it is often expressed as a function of its absolute value),
- it is non-decreasing on the positive numbers with $\varrho(0)=0$, and
- if ϱ is bounded it will be assumed, without loss of generality, that $\varrho(\infty)=1$.

Loss functions play a key role in M-scale estimation. They should ideally define an estimator close to the classical one (often the maximum likelihood or the least squares estimator) when there is no outlier and, furthermore, provide an estimator close enough to the actual parameter when the data are contaminated.

Robust M-scale estimation makes use also of the so-called weight function associated with a wide class of appropriate loss functions.

Definition 2.5.2. Given a loss function @ with a quadratic behaviour near the origin (more concretely, $\varrho^{\prime}(0)=0$ and $\varrho^{\prime \prime}(0)>0$), the weight function $W: \mathbb{R} \rightarrow \mathbb{R}$ associated with ϱ is defined as

$$
W(x)= \begin{cases}\varrho(x) / x^{2} & \text { if } x \neq 0 \\ \varrho^{\prime \prime}(0) & \text { if } x=0\end{cases}
$$

Adapting Huber's ideas (see Huber [64]) for real-valued data, an M-estimate of scale for fuzzy data is formalized as follows:

Definition 2.5.3. Let (Ω, \mathcal{A}, P) be a probability space and $\mathcal{X}: \Omega \rightarrow \mathscr{F}_{c}^{*}(\mathbb{R})$ be an associated random fuzzy number. Moreover, let ϱ be a loss function and $\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ a simple random sample from \mathcal{X}. Then, any estimate $\hat{\sigma}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ (for short $\hat{\sigma}$) satisfying an equation of the form

$$
\frac{1}{n} \sum_{i=1}^{n} \varrho\left(\frac{D\left(\mathcal{X}_{i}, \mathbb{1}_{\{0\}}\right)}{\widehat{\sigma}}\right)=\delta,
$$

where δ is a positive constant and D is a metric between fuzzy numbers, is said to be an M-estimator of scale.

In case ϱ has a quadratic behaviour near 0, then M-estimators of scale fulfill the equation

$$
\widehat{\sigma}^{2}=\frac{1}{n \delta} \sum_{i=1}^{n} W\left(\frac{D\left(\mathcal{X}_{i}, \mathbb{1}_{\{0\}}\right)}{\widehat{\sigma}}\right) \cdot D\left(\mathcal{X}_{i}, \mathbb{1}_{\{0\}}\right)^{2} .
$$

Remark 2.5.1. Note that in order for the equations in Definition 2.5.3 to have a solution, it should be $0<\delta<\varrho(\infty)$. Hence, if the loss function ϱ is bounded, then it will be assumed without loss of generality that $\varrho(\infty)=1$ (as assumed in Definition 2.5.1) and $\delta \in(0,1)$.

The M-estimators of scale satisfy the scale (absolute) equivariance condition. That is,

Proposition 2.5.1. (Scale absolute equivariance). If \mathcal{X} is an $R F N$, $\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ a simple random sample from $\mathcal{X}, \widehat{\sigma}$ a scale M-estimate and $\gamma \in \mathbb{R}$, then

$$
\widehat{\sigma}\left(\gamma \cdot \mathcal{X}_{1}, \ldots, \gamma \cdot \mathcal{X}_{n}\right)=|\gamma| \cdot \widehat{\sigma}\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)
$$

Proof. If $\hat{\sigma}$ is the M-estimator of scale for $\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$, then,

$$
\frac{1}{n} \sum_{i=1}^{n} \varrho\left(\frac{D\left(\mathcal{X}_{i}, \mathbb{1}_{\{0\}}\right)}{\widehat{\sigma}}\right)=\delta
$$

for some $\delta>0$. Therefore,
$\delta=\frac{1}{n} \sum_{i=1}^{n} \varrho\left(\frac{D\left(\mathcal{X}_{i}, \mathbb{1}_{\{0\}}\right)}{\widehat{\sigma}}\right)=\frac{1}{n} \sum_{i=1}^{n} \varrho\left(\frac{|\gamma| \cdot D\left(\mathcal{X}_{i}, \mathbb{1}_{\{0\}}\right)}{|\gamma| \cdot \widehat{\sigma}}\right)=\frac{1}{n} \sum_{i=1}^{n} \varrho\left(\frac{D\left(\gamma \cdot \mathcal{X}_{i}, \mathbb{1}_{\{0\}}\right)}{|\gamma| \cdot \widehat{\sigma}}\right)$,
whence $|\gamma| \cdot \widehat{\sigma}$ is the scale M -estimate for the simple random sample $\left(\gamma \cdot \mathcal{X}_{1}, \ldots\right.$, $\left.\gamma \cdot \mathcal{X}_{n}\right)$.

2.5.1 An algorithm to compute M-estimators of scale for fuzzy data

As we have already mentioned at the beginning of this section, the M-estimators of scale cannot be calculated in a direct way, as they do not have an explicit formula and require the solution of an equation. There are several methods available for computing M-estimates of scale, but we will only focus on an computational method known as iterative reweighting (see Maronna et al. [81]), which is explained now in detail.

Let \mathcal{X} be a random fuzzy number associated with the probability space (Ω, \mathcal{A}, P), $\widetilde{\mathbf{x}}_{n}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ a sample of observations from \mathcal{X} and $D \in\left\{\rho_{1}, \mathscr{D}_{\theta}^{\varphi}, D_{\theta}^{\varphi}\right\}$ a metric for fuzzy data. Consider a loss function ϱ being quadratic near the origin. The algorithm is the following:

Step 1. Take an initial robust estimate $\widehat{\sigma}_{1}$. This initial value can be set, for instance, to be the sample $\widehat{\rho_{1}-\mathrm{MDD}}$ with respect to the 1-norm median, $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}\right.$, $\left.\widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ (see also, for instance, Shahriari et al. [103] for a recently corrected suggestion in the real-valued case). Fix a tolerance ϵ.

Step 2. Given $\widehat{\sigma}_{k}(k=1,2 \ldots)$, compute the weights

$$
\omega_{k, i}=W\left(\frac{D\left(\widetilde{x}_{i}, \mathbb{1}_{\{0\}}\right)}{\widehat{\sigma}_{k}}\right) \quad(i \in\{1, \ldots, n\})
$$

where W is the considered weight function, and let

$$
\widehat{\sigma}_{k+1}=\sqrt{\frac{1}{n \delta} \sum_{i=1}^{n} \omega_{k, i} \cdot D\left(\widetilde{x}_{i}, \mathbb{1}_{\{0\}}\right)^{2}} .
$$

Step 3. Repeat Step 2 until

$$
\left|\frac{\widehat{\sigma}_{k+1}}{\widehat{\sigma}_{k}}-1\right|<\epsilon \quad \text { or } \quad \widehat{\sigma}_{k+1}<10^{-10}
$$

In that case, stop the algorithm.
The simulations conducted in the next subsection involve M-estimators of scale which are determined by means of this algorithm.

2.5.2 Simulations-based analysis of the robustness of some M-estimates of scale

In this subsection the empirical robustness of some M-estimators of scale is examined. By means of simulations dealing with fuzzy data, it is seen what the empirical finite sample breakdown point is and how the sensitivity curves are for two well-known loss functions: the Huber loss function, which corresponds to $\varrho(x)=$ $\min \left\{x^{2}, 1\right\}$ and the Tukey bisquare loss function (also called biweight loss function), which corresponds to $\varrho(x)=\min \left\{3 \cdot x^{2}-3 \cdot x^{4}+x^{6}, 1\right\}$ (see Croux [23]).

The M-estimators are computed using the algorithm explained in Subsection 2.5.1 with a chosen tolerance $\epsilon=10^{-5}$, three chosen positive constants $\delta: 0.1,0.3$ and 0.5 , and the metric between fuzzy data ρ_{1}.

All simulations in this section are developed in accordance with the two simulation procedures described in Section 1.7 (Page 37). Regarding the 2ndSP, data have been generated within the reference interval $[0,100]$ and only the asymmetric distribution has been considered. Symmetric distribution has not been included in the M -estimator analysis as the empirical explosion pseudo-breakdown point cannot be deduced when the outliers fall within the interval $[0,100]$. If so, we should consider outliers located further than the observations of the non-contaminated sample, which implies they would fall outside this interval.

We start by analyzing the finite sample breakdown point when the simulations are conduced according to the FIRST SIMULATION PROCEDURE (1stSP) and as explained in Subsection 2.4.2. Thus, the non-contaminated sample has been simulated from the 1stSP considering the two cases (see Page 38). Moreover, two sample sizes have been considered in the simulation study, namely, an even sample size $(n=100)$ and an odd sample size $(n=101)$.

Explosion breakdown point:

To study the breakdown point for explosion, we have considered the three types of outliers explained in Subsection 2.4.1. Namely, if \widetilde{y}_{i} is the i-th outlier, then we have chosen

$$
r_{i}^{1}=\left\{\begin{array}{cl}
\frac{i+1}{2} \cdot 10^{10} & \text { if } i \text { is odd } \\
-\frac{i}{2} \cdot 10^{10} & \text { if } i \text { is even }
\end{array}\right.
$$

that is, we have considered observations that are increasingly distant from the data at both right and left sides, and $r_{i}^{2}=i \cdot 10^{10}$, that is, observations that are getting wider.

For each type of outlier, the general scheme of the simulation has been as follows:
Step 1. A sample $\widetilde{\mathbf{x}}_{n}$ of n trapezoidal fuzzy numbers has been simulated from the 1stSP, with $n \in\{100,101\}$ and considering the two cases of simulation involved in this procedure.

Step 2. Contaminated samples $\widetilde{\mathbf{y}}_{n, k}$ have been obtained by replacing k observations of the original sample $\widetilde{\mathbf{x}}_{n}$ by k outliers \widetilde{y}_{i}, with $k \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}$ and $i \in\{1, \ldots, k\}$. Overall, k contaminated samples, one for each k value.

Step 3. The values of the M-estimators of scale have been calculated for the original sample without contamination $\widetilde{\mathbf{x}}_{n}$, and for each of k contaminated samples $\widetilde{\mathbf{y}}_{n, k}$. We have chosen the $\widehat{\rho_{1}-\mathrm{MDD}}$ with respect to the 1-norm median, $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, as initial robust scale measure to start the algorithm.

The simulation-based conclusions in this study are presented through Tables 2.19 to 2.22 and Figures 2.50 to 2.61 . More concretely, tables gather the values of the M-estimators of scale when outliers are introduced in the sample by replacement, and figures graphically display these values for each estimator.

Implosion breakdown point:

To study the breakdown point for implosion, we have considered the inliers being all of them equal to $\mathbb{1}_{\{0\}}$. The general scheme of the simulation has been as follows:

Step 1. A sample $\widetilde{\mathbf{x}}_{n}$ of n trapezoidal fuzzy numbers has been simulated from the 1stSP, with $n \in\{100,101\}$ and considering the two cases of simulation involved in this procedure.

Step 2. Contaminated samples $\widetilde{\mathbf{y}}_{n, k}$ have been obtained by replacing k observations of the original sample $\widetilde{\mathbf{x}}_{n}$ by k inliers \widetilde{y}, with $k \in\{1, \ldots, n-1\}$. In total, k contaminated samples, one for each k value.

Step 3. The values of the M-estimators of scale have been calculated for the original sample without contamination $\widetilde{\mathbf{x}}_{n}$, and for each of k contaminated samples $\widetilde{\mathbf{y}}_{n, k}$. We have chosen the ρ_{2}-standard deviation, $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$, as initial robust scale measure to start the algorithm (this estimator is robust in the implosion case).

The simulation-based conclusions in this study are presented through Tables 2.23 to 2.26 and Figures 2.62 to 2.65 . More concretely, tables gather the values of the M-estimators of scale when inliers are introduced in the sample by replacement, and figures graphically display these values for each estimator.

Table 2.19: Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,9,10,11,29,30,31,49,50\}-1$ stSP Case 1

\# outliers (translation)	0	1	9	10	11	29	30	31	49	50
ρ_{1}-Huber, $\delta=0.1$	7.06	7.42	22.84	1610.31	$1.41 \mathrm{E}+10$	$1.50 \mathrm{E}+11$	$1.57 \mathrm{E}+11$	$1.65 \mathrm{E}+11$	$3.23 \mathrm{E}+11$	$3.32 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.3$	3.27	3.28	4.17	4.33	4.50	18.77	760.11	$1.41 \mathrm{E}+10$	$1.50 \mathrm{E}+11$	$1.57 \mathrm{E}+11$
1-Huber, $\delta=0.5$	2.08	2.08	2.29	2.31	2.34	3.37	3.45	3.59	17.27	$5.00 \mathrm{E}+09$
-Tukey, $\delta=0.1$	11.48	12.10	39.14	2789.10	$2.19 \mathrm{E}+10$	$2.28 \mathrm{E}+11$	$2.40 \mathrm{E}+11$	$2.53 \mathrm{E}+11$	$5.21 \mathrm{E}+11$	$5.38 \mathrm{E}+11$
-Tukey, $\delta=0.3$	5.16	5.21	6.56	6.77	7.01	32.24	1316.54	$2.19 \mathrm{E}+10$	$2.19 \mathrm{E}+11$	$2.30 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	3.14	3.14	3.54	3.57	3.62	5.34	5.46	5.67	29.57	$5.00 \mathrm{E}+09$
\# outliers (scale)	0	1	9	10	11	29	30	31	49	50
ρ_{1}-Huber, $\delta=0.1$	7.33	7.72	22.88	1617.07	$3.18 \mathrm{E}+10$	$4.16 \mathrm{E}+11$	$4.38 \mathrm{E}+11$	$4.59 \mathrm{E}+11$	$9.05 \mathrm{E}+11$	$9.32 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.3$	3.54	3.63	4.54	4.70	4.86	20.15	820.06	$3.18 \mathrm{E}+10$	$4.16 \mathrm{E}+11$	$4.38 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.5$	2.16	2.20	2.51	2.58	2.63	3.74	3.86	3.97	17.45	$7.12 \mathrm{E}+09$
1-Tukey, $\delta=0.1$	11.79	12.52	39.36	2800.83	$4.67 \mathrm{E}+10$	$6.29 \mathrm{E}+11$	$6.65 \mathrm{E}+11$	$7.02 \mathrm{E}+11$	$1.46 \mathrm{E}+12$	$1.51 \mathrm{E}+12$
-Tukey, $\delta=0.3$	5.49	5.63	7.10	7.36	7.63	34.59	1420.39	$4.67 \mathrm{E}+10$	$6.07 \mathrm{E}+11$	$6.38 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	3.31	3.36	3.88	3.98	4.07	5.78	5.97	6.15	29.87	$7.12 \mathrm{E}+09$
\# outliers (both)	0	1	9	10	11	29	30	31	49	50
ρ_{1}-Huber, $\delta=0.1$	8.35	8.77	25.56	1804.04	$1.39 \mathrm{E}+10$	$1.55 \mathrm{E}+11$	$1.61 \mathrm{E}+11$	$1.73 \mathrm{E}+11$	$3.50 \mathrm{E}+11$	$3.55 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.3$	3.80	3.88	4.91	5.10	5.27	23.31	949.81	$1.39 \mathrm{E}+10$	$1.45 \mathrm{E}+11$	$1.52 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.5$	2.34	2.34	2.54	2.58	2.58	4.14	4.33	4.56	20.58	$3.87 \mathrm{E}+09$
ρ_{1}-Tukey, $\delta=0.1$	13.41	14.18	43.95	3124.67	$2.02 \mathrm{E}+10$	$2.36 \mathrm{E}+11$	$2.46 \mathrm{E}+11$	$2.64 \mathrm{E}+11$	$5.53 \mathrm{E}+11$	$5.64 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.3$	6.02	6.14	7.62	7.90	8.14	40.03	1645.10	$2.02 \mathrm{E}+10$	$2.11 \mathrm{E}+11$	$2.22 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	3.57	3.58	3.90	3.96	3.98	6.53	6.79	7.12	35.22	$3.87 \mathrm{E}+09$

Table 2.20: Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,9,10,11,29,30,31,50,51\}-1$ stSP Case 1

\# outliers (translation)	0	1	9	10	11	29	30	31	50	51
ρ_{1}-Huber, $\delta=0.1$	6.00	6.00	18.04	59.45	$1.35 \mathrm{E}+10$	$1.49 \mathrm{E}+11$	$1.57 \mathrm{E}+11$	$1.65 \mathrm{E}+11$	$3.31 \mathrm{E}+11$	$3.41 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.3$	2.93	2.93	3.51	3.59	3.66	15.18	31.34	$1.24 \mathrm{E}+10$	$1.55 \mathrm{E}+11$	$1.63 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.5$	1.98	1.98	2.16	2.17	2.17	2.86	2.91	3.02	20.69	$1.15 \mathrm{E}+10$
ρ_{1}-Tukey, $\delta=0.1$	9.97	9.97	30.86	102.85	$2.07 \mathrm{E}+10$	$2.26 \mathrm{E}+11$	$2.39 \mathrm{E}+11$	$2.52 \mathrm{E}+11$	$5.35 \mathrm{E}+11$	$5.51 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.3$	4.61	4.61	5.53	5.65	5.78	25.76	54.02	$1.84 \mathrm{E}+10$	$2.26 \mathrm{E}+11$	$2.37 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	2.99	2.99	3.28	3.30	3.31	4.51	4.60	4.78	35.48	$1.64 \mathrm{E}+10$
\# outliers (scale)	0	1	9	10	11	29	30	31	50	51
ρ_{1}-Huber, $\delta=0.1$	6.16	6.56	18.45	60.83	$1.57 \mathrm{E}+10$	$2.14 \mathrm{E}+11$	$2.25 \mathrm{E}+11$	$2.36 \mathrm{E}+11$	$4.79 \mathrm{E}+11$	$4.94 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.3$	3.09	3.14	3.61	3.69	3.77	14.81	30.49	$1.34 \mathrm{E}+10$	$2.23 \mathrm{E}+11$	$2.34 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.5$	2.08	2.11	2.24	2.25	2.25	3.10	3.14	3.19	19.14	$1.04 \mathrm{E}+10$
ρ_{1}-Tukey, $\delta=0.1$	10.07	10.68	31.65	105.26	$2.25 \mathrm{E}+10$	$3.23 \mathrm{E}+11$	$3.41 \mathrm{E}+11$	$3.60 \mathrm{E}+11$	$7.74 \mathrm{E}+11$	$7.98 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.3$	4.82	4.92	5.77	5.91	6.05	25.31	52.65	$1.93 \mathrm{E}+10$	$3.25 \mathrm{E}+11$	$3.41 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	3.12	3.16	3.39	3.41	3.42	4.83	4.91	5.00	32.98	$1.61 \mathrm{E}+10$
\# outliers (both)	0	1	9	10	11	29	30	31	50	51
ρ_{1}-Huber, $\delta=0.1$	7.22	7.73	22.41	74.18	$1.66 \mathrm{E}+10$	$1.83 \mathrm{E}+11 \mid$	$1.97 \mathrm{E}+11 \mid$	$2.04 \mathrm{E}+11 \mid$	$4.36 \mathrm{E}+11 \mid$	$4.42 \mathrm{E}+11 \mid$
ρ_{1}-Huber, $\delta=0.3$	3.35	3.39	4.02	4.15	4.30	18.88	39.07	$1.35 \mathrm{E}+10$	$1.83 \mathrm{E}+11$	$1.92 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.5$	2.27	2.27	2.49	2.53	2.58	3.44	3.50	3.50	22.64	$1.04 \mathrm{E}+10$
ρ_{1}-Tukey, $\delta=0.1$	11.64	12.35	38.36	128.35	$2.21 \mathrm{E}+10$	$2.78 \mathrm{E}+11$	$2.99 \mathrm{E}+11$	$3.12 \mathrm{E}+11$	$6.90 \mathrm{E}+11$	$7.04 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.3$	5.24	5.32	6.48	6.70	6.97	32.10	67.38	$1.96 \mathrm{E}+10$	$2.67 \mathrm{E}+11$	$2.80 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	3.35	3.36	3.72	3.79	3.88	5.40	5.52	5.53	38.79	$1.63 \mathrm{E}+10$

Table 2.21: Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,9,10,11,29,30,31,49,50\}-1$ stSP Case 2

\# outliers (translation	0	1	9	10	11	29	30	31	49	50
$\begin{aligned} & \rho_{1}-\text { Huber, } \delta=0.1 \\ & \rho_{1}-\text { Huber, } \delta=0.3 \\ & \rho_{1}-\text { Huber, } \delta=0.5 \\ & \rho_{1}-\text { Tukey, } \delta=0.1 \\ & \rho_{1}-\text { Tukey, } \delta=0.3 \\ & \rho_{1}-\text { Tukey, } \delta=0.5 \end{aligned}$	$\begin{aligned} & 4.44 \\ & 2.54 \\ & 1.90 \\ & 7.49 \\ & 4.06 \\ & 2.89 \end{aligned}$	$\left\lvert\, \begin{aligned} & 4.66 \\ & 2.57 \\ & 1.91 \\ & 7.87 \\ & 4.11 \\ & 2.90\end{aligned}\right.$	$\begin{array}{\|c\|} \hline 13.21 \\ 2.87 \\ 1.98 \\ 22.82 \\ 4.66 \\ 3.06 \end{array}$	$\begin{array}{\|c\|} \hline 927.34 \\ 2.92 \\ 1.99 \\ 1606.19 \\ 4.75 \\ 3.08 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.41 \mathrm{E}+10 \\ 2.99 \\ 2.01 \\ 2.19 \mathrm{E}+10 \\ 4.87 \\ 3.11 \\ \hline \end{array}$	$\begin{gathered} 1.50 \mathrm{E}+11 \\ 11.57 \\ 2.48 \\ 2.28 \mathrm{E}+11 \\ 19.97 \\ 4.00 \end{gathered}$	$\begin{gathered} 1.57 \mathrm{E}+11 \\ 468.18 \\ 2.53 \\ 2.40 \mathrm{E}+11 \\ 810.91 \\ 4.07 \\ \hline \end{gathered}$	$\begin{gathered} 1.65 \mathrm{E}+11 \\ 1.41 \mathrm{E}+10 \\ 2.58 \\ 2.53 \mathrm{E}+11 \\ 2.19 \mathrm{E}+10 \\ 4.16 \\ \hline \end{gathered}$	$\begin{gathered} 3.23 \mathrm{E}+11 \\ 1.50 \mathrm{E}+11 \\ 9.56 \\ 5.21 \mathrm{E}+11 \\ 2.19 \mathrm{E}+11 \\ 16.49 \end{gathered}$	$\|$$3.32 \mathrm{E}+11$ $1.57 \mathrm{E}+11$ $5.00 \mathrm{E}+09$ $5.38 \mathrm{E}+11$ $2.30 \mathrm{E}+11$ $5.00 \mathrm{E}+09$
\# outliers (scale)	0	1	9	10	11	29	30	31	49	50
$\begin{aligned} & \rho_{1}-\text { Huber, } \delta=0.1 \\ & \rho_{1}-\text { Huber, } \delta=0.3 \\ & \rho_{1}-\text { Huber, } \delta=0.5 \\ & \rho_{1}-\text { Tukey, } \delta=0.1 \\ & \rho_{1}-\text { Tukey, } \delta=0.3 \\ & \rho_{1}-\text { Tukey, } \delta=0.5 \end{aligned}$	$\begin{aligned} & 4.35 \\ & 2.51 \\ & 1.93 \\ & 7.38 \\ & 4.05 \\ & 2.93 \end{aligned}$	4.56 2.54 1.94 7.75 4.10 2.94	$\begin{array}{\|c\|} \hline 13.07 \\ 2.85 \\ 2.03 \\ 22.59 \\ 4.68 \\ 3.13 \end{array}$	920.84 2.91 2.05 1594.93 4.79 3.17	$\begin{array}{\|c\|} \hline 1.83 \mathrm{E}+10 \\ 2.98 \\ 2.07 \\ 2.69 \mathrm{E}+10 \\ 4.91 \\ 3.20 \\ \hline \end{array}$	$\begin{gathered} 2.40 \mathrm{E}+11 \\ 11.66 \\ 2.55 \\ 3.62 \mathrm{E}+11 \\ 20.14 \\ 4.10 \end{gathered}$	$\begin{gathered} 2.52 \mathrm{E}+11 \\ 472.32 \\ 2.59 \\ 3.83 \mathrm{E}+11 \\ 818.08 \\ 4.18 \\ \hline \end{gathered}$	$\begin{gathered} 2.65 \mathrm{E}+11 \\ 1.83 \mathrm{E}+10 \\ 2.64 \\ 4.04 \mathrm{E}+11 \\ 2.69 \mathrm{E}+10 \\ 4.28 \\ \hline \end{gathered}$	$\begin{gathered} 5.21 \mathrm{E}+11 \\ 2.40 \mathrm{E}+11 \\ 9.98 \\ 8.41 \mathrm{E}+11 \\ 3.50 \mathrm{E}+11 \\ 17.21 \\ \hline \end{gathered}$	$\|$$5.37 \mathrm{E}+11$ $2.52 \mathrm{E}+11$ $4.10 \mathrm{E}+09$ $8.68 \mathrm{E}+11$ $3.68 \mathrm{E}+11$ $4.10 \mathrm{E}+09$
\# outliers (both)	0	1	9	10	11	29	30	31	49	50
$\begin{aligned} & \rho_{1}-\text { Huber, } \delta=0.1 \\ & \rho_{1}-\text { Huber, } \delta=0.3 \\ & \rho_{1}-\text { Huber, } \delta=0.5 \\ & \rho_{1}-\text { Tukey, } \delta=0.1 \\ & \rho_{1}-\text { Tukey, } \delta=0.3 \\ & \rho_{1}-\text { Tukey, } \delta=0.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 4.09 \\ & 2.36 \\ & 1.81 \\ & 6.92 \\ & 3.79 \\ & 2.73\end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 4.30 \\ & 2.40 \\ & 1.82 \\ & 7.30 \\ & 3.86 \\ & 2.76\end{aligned}\right.$	12.43 2.71 1.94 21.48 4.44 2.96	874.61 2.77 1.95 1514.87 4.54 2.99	$\begin{array}{\|c\|} \hline 1.91 \mathrm{E}+10 \\ 2.83 \\ 1.97 \\ 2.87 \mathrm{E}+10 \\ 4.66 \\ 3.03 \end{array}$	$\begin{gathered} 2.34 \mathrm{E}+11 \\ 11.27 \\ 2.46 \\ 3.53 \mathrm{E}+11 \\ 19.47 \\ 3.95 \end{gathered}$	$\begin{gathered} 2.46 \mathrm{E}+11 \\ 459.28 \\ 2.52 \\ 3.74 \mathrm{E}+11 \\ 795.50 \\ 4.06 \end{gathered}$	$\begin{gathered} 2.58 \mathrm{E}+11 \\ 1.91 \mathrm{E}+10 \\ 2.56 \\ 3.94 \mathrm{E}+11 \\ 2.87 \mathrm{E}+10 \\ 4.14 \end{gathered}$	$\begin{gathered} 5.08 \mathrm{E}+11 \\ 2.34 \mathrm{E}+11 \\ 9.44 \\ 8.20 \mathrm{E}+11 \\ 3.41 \mathrm{E}+11 \\ 16.29 \end{gathered}$	$\left\lvert\, \begin{aligned} & 5.23 \mathrm{E}+11 \\ & 2.46 \mathrm{E}+11 \\ & 5.20 \mathrm{E}+09 \\ & 8.46 \mathrm{E}+11 \\ & 3.58 \mathrm{E}+11 \\ & 5.20 \mathrm{E}+09\end{aligned}\right.$

Table 2.22: Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1,9,10,11,29,30,31,50,51\}-1$ stSP Case 2

\# outliers (translation)	0	1	9	10	11	29	30	31	50	51
ρ_{1}-Huber, $\delta=0.1$	4.18	4.39	12.23	40.45	$1.35 \mathrm{E}+10$	$1.49 \mathrm{E}+11$	$1.57 \mathrm{E}+11$	$1.65 \mathrm{E}+11$	$3.31 \mathrm{E}+11$	$3.41 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.3$	2.42	2.45	2.78	2.84	2.89	9.97	20.59	$1.24 \mathrm{E}+10$	$1.55 \mathrm{E}+11$	$1.63 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.5$	1.82	1.83	1.94	1.97	1.98	2.45	2.49	2.54	13.28	$1.15 \mathrm{E}+10$
ρ_{1}-Tukey, $\delta=0.1$	7.07	7.44	21.12	70.05	$2.07 \mathrm{E}+10$	$2.26 \mathrm{E}+11$	$2.39 \mathrm{E}+11$	$2.52 \mathrm{E}+11$	$5.35 \mathrm{E}+11$	$5.52 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.3$	3.85	3.91	4.52	4.64	4.74	17.19	35.62	$1.84 \mathrm{E}+10$	$2.26 \mathrm{E}+11$	$2.37 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	2.75	2.78	2.99	3.03	3.06	3.91	3.98	4.06	22.95	$1.64 \mathrm{E}+10$
\# outliers (scale)	0	1	9	10	11	29	30	31	50	51
ρ_{1}-Huber, $\delta=0.1$	4.41	4.63	12.72	42.09	$3.01 \mathrm{E}+10$	$4.11 \mathrm{E}+11$	$4.32 \mathrm{E}+11$	$4.53 \mathrm{E}+11$	$9.20 \mathrm{E}+11$	$9.48 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.3$	2.51	2.54	2.87	2.94	3.00	10.53	21.73	$2.58 \mathrm{E}+10$	$4.28 \mathrm{E}+11$	$4.49 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.5$	1.88	1.89	1.98	2.00	2.01	2.54	2.58	2.64	13.98	$1.99 \mathrm{E}+10$
ρ_{1}-Tukey, $\delta=0.1$	7.43	7.82	21.97	72.87	$4.32 \mathrm{E}+10$	$6.20 \mathrm{E}+11$	$6.56 \mathrm{E}+11$	$6.92 \mathrm{E}+11$	$1.49 \mathrm{E}+12$	$1.53 \mathrm{E}+12$
ρ_{1}-Tukey, $\delta=0.3$	4.02	4.08	4.66	4.78	4.88	18.15	37.60	$3.71 \mathrm{E}+10$	$6.24 \mathrm{E}+11$	$6.55 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	2.86	2.88	3.05	3.09	3.11	4.05	4.13	4.23	24.16	$3.09 \mathrm{E}+10$
\# outliers (both)	0	1	9	10	11	29	30	31	50	51
ρ_{1}-Huber, $\delta=0.1$	4.22	4.44	12.19	40.27	$1.50 \mathrm{E}+10$	$1.79 \mathrm{E}+11$	$1.88 \mathrm{E}+11$	$1.97 \mathrm{E}+11$	$4.00 \mathrm{E}+11$	$4.12 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.3$	2.41	2.45	2.77	2.83	2.89	10.28	21.25	$1.38 \mathrm{E}+10$	$1.86 \mathrm{E}+11$	$1.96 \mathrm{E}+11$
ρ_{1}-Huber, $\delta=0.5$	1.84	1.85	1.94	1.96	1.97	2.51	2.56	2.56	13.59	$1.29 \mathrm{E}+10$
ρ_{1}-Tukey, $\delta=0.1$	7.13	7.51	21.05	69.73	$2.28 \mathrm{E}+10$	$2.70 \mathrm{E}+11$	$2.86 \mathrm{E}+11$	$3.02 \mathrm{E}+11$	$6.46 \mathrm{E}+11$	$6.67 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.3$	3.88	3.95	4.51	4.61	4.73	17.73	36.76	$2.03 \mathrm{E}+10$	$2.72 \mathrm{E}+11$	$2.85 \mathrm{E}+11$
ρ_{1}-Tukey, $\delta=0.5$	2.78	2.81	2.98	3.02	3.05	4.03	4.11	4.13	23.49	$1.80 \mathrm{E}+10$

Figure 2.50: Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of translation, k varying from 0 to $50-1$ stSP Case 1

Figure 2.51: Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of scale on core and support, k varying from 0 to $50-1$ stSP Case 1

Figure 2.52: Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $50-1$ stSP Case 1

Figure 2.53: Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of translation, k varying from 0 to $51-1$ stSP Case 1

Figure 2.54: Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of scale on core and support, k varying from 0 to $51-1$ stSP Case 1

Figure 2.55: Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $51-1$ stSP Case 1

Figure 2.56: Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of translation, k varying from 0 to $50-1$ stSP Case 2

Figure 2.57: Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of scale on core and support, k varying from 0 to $50-1$ stSP Case 2

Figure 2.58: Explosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $50-1$ stSP Case 2

Figure 2.59: Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of translation, k varying from 0 to $51-1$ stSP Case 2

Figure 2.60: Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of scale on core and support, k varying from 0 to $51-1$ stSP Case 2

Figure 2.61: Explosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $51-1$ stSP Case 2

Table 2.23: Implosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by inliers, with $k \in\{0,1,2,50,51,70,71,90,91\}-1$ stSP Case 1

\# inliers	0	1	2	50	51	70	71	90	91
ρ_{1}-Huber, $\delta=0.1$	7.43	7.42	7.38	4.35	4.32	3.34	3.32	0.39	$9.58 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.3$	3.20	3.19	3.14	1.60	1.57	0.39	$9.95 \mathrm{E}-11$	$5.90 \mathrm{E}-11$	$6.98 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.5$	2.05	2.03	2.00	0.29	$9.96 \mathrm{E}-11$	$9.91 \mathrm{E}-11$	$8.57 \mathrm{E}-11$	$4.52 \mathrm{E}-11$	$5.31 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.1$	11.78	11.76	11.68	6.82	6.78	5.23	5.20	0.40	$9.78 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.3$	5.09	5.07	4.99	2.36	2.30	0.40	$9.85 \mathrm{E}-11$	$6.29 \mathrm{E}-11$	$7.51 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.5$	3.08	3.06	3.00	0.30	$9.94 \mathrm{E}-11$	$8.87 \mathrm{E}-11$	$9.79 \mathrm{E}-11$	$4.82 \mathrm{E}-11$	$5.71 \mathrm{E}-11$

Table 2.24: Implosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by inliers, with $k \in\{0,1,2,50,51,70,71,90,91\}-1$ stSP Case 1

\# inliers	0	1	2	50	51	70	71	90	91
ρ_{1}-Huber, $\delta=0.1$	6.96	6.78	6.72	4.33	4.29	3.23	3.20	0.76	$9.99 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.3$	3.64	3.56	3.52	1.91	1.86	0.48	$9.98 \mathrm{E}-11$	$6.72 \mathrm{E}-11$	$6.88 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.5$	2.44	2.40	2.36	0.37	$9.99 \mathrm{E}-11$	$8.78 \mathrm{E}-11$	$8.90 \mathrm{E}-11$	$6.31 \mathrm{E}-11$	$7.27 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.1$	11.41	11.12	11.02	6.99	6.92	5.11	5.07	1.09	$9.99 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.3$	5.69	5.56	5.48	2.79	2.71	0.67	$9.98 \mathrm{E}-11$	$6.72 \mathrm{E}-11$	$6.88 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.5$	3.69	3.62	3.55	0.54	$9.99 \mathrm{E}-11$	$7.84 \mathrm{E}-11$	$7.77 \mathrm{E}-11$	$6.31 \mathrm{E}-11$	$7.27 \mathrm{E}-11$

Table 2.25: Implosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by inliers, with $k \in\{0,1,2,50,51,70,71,90,91\}-1$ stSP Case 2

\# inliers	0	1	2	50	51	70	71	90	91
ρ_{1}-Huber, $\delta=0.1$	4.30	4.29	4.26	2.96	2.93	2.26	2.22	0.46	$9.82 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.3$	2.49	2.48	2.46	1.63	1.60	0.72	$9.96 \mathrm{E}-11$	$7.68 \mathrm{E}-11$	$9.42 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.5$	1.90	1.89	1.87	0.78	$9.99 \mathrm{E}-11$	$9.61 \mathrm{E}-11$	$8.17 \mathrm{E}-11$	$7.60 \mathrm{E}-11$	$9.24 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.1$	7.29	7.26	7.21	4.88	4.82	3.58	3.51	0.46	$9.82 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.3$	3.99	3.97	3.94	2.41	2.36	0.72	$9.96 \mathrm{E}-11$	$7.68 \mathrm{E}-11$	$9.42 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.5$	2.88	2.86	2.83	0.83	$9.96 \mathrm{E}-11$	$9.61 \mathrm{E}-11$	$8.17 \mathrm{E}-11$	$7.60 \mathrm{E}-11$	$9.24 \mathrm{E}-11$

Table 2.26: Implosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by inliers, with $k \in\{0,1,2,50,51,70,71,90,91\}-1$ stSP Case 2

\# inliers	0	1	2	50	51	70	71	90	91
ρ_{1}-Huber, $\delta=0.1$	4.37	4.34	4.33	3.10	3.09	2.44	2.43	1.28	$9.99 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.3$	2.47	2.45	2.44	1.65	1.64	0.88	$9.99 \mathrm{E}-11$	$7.28 \mathrm{E}-11$	$6.58 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.5$	1.81	1.79	1.78	0.84	$9.95 \mathrm{E}-11$	$8.79 \mathrm{E}-11$	$8.93 \mathrm{E}-11$	$6.83 \mathrm{E}-11$	$6.95 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.1$	7.34	7.29	7.27	5.06	5.04	3.89	3.86	1.71	$9.99 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.3$	3.93	3.90	3.89	2.46	2.43	1.18	$9.96 \mathrm{E}-11$	$7.28 \mathrm{E}-11$	$6.58 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.5$	2.76	2.73	2.72	1.05	$9.99 \mathrm{E}-11$	$8.81 \mathrm{E}-11$	$8.94 \mathrm{E}-11$	$6.83 \mathrm{E}-11$	$6.95 \mathrm{E}-11$

Figure 2.62: Implosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by inliers, k varying from 0 to $99-1$ stSP Case 1

Figure 2.63: Implosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by inliers, k varying from 0 to $100-1$ stSP Case 1

Figure 2.64: Implosion breakdown point: values of the M-estimators of scale for a sample of size 100 with k observations replaced by inliers, k varying from 0 to $99-1$ stSP Case 2

Figure 2.65: Implosion breakdown point: values of the M-estimators of scale for a sample of size 101 with k observations replaced by inliers, k varying from 0 to $100-1$ stSP Case 2

In connection with these first simulations and the explosion analysis, for the sample size $n=100$ (101), by looking at Table 2.19 (2.20) and Figures 2.50 to 2.52 (2.53 to 2.55) for Case 1 and Table 2.21 (2.22) and Figures 2.56 to 2.58 (2.59 to 2.61) for Case 2, we can see that the minimum number of perturbed observations by outliers that makes the estimator to increase arbitrarily, independently of the simulation case and the type of outlier considered, has been

- 11 for the Huber and Tukey estimators with $\delta=0.1$;
- 31 for the Huber and Tukey estimators with $\delta=0.3$;
- 50 (51) for the Huber and Tukey estimators with $\delta=0.5$.

In connection with the implosion analysis, for the sample size $n=100$ (101), by looking at Table 2.23 (2.24) and Figure 2.62 (2.63) for Case 1 and Table 2.25 (2.26) and Figure 2.64 (2.65) for Case 2, we can see that the minimum number of perturbed observations by inliers that makes the estimator to implode to zero, independently of the simulation case considered, has been

- 91 for the Huber and Tukey estimators with $\delta=0.1$;
- 71 for the Huber and Tukey estimators with $\delta=0.3$;
- 51 for the Huber and Tukey estimators with $\delta=0.5$.

On the basis of these simulations concerning the explosion and implosion breakdown point, one can empirically conclude that Huber and Tukey M-estimators of scale achieve maximum fsbp when the constant δ equals 0.5 .

Next, we will perform the same analyses when the the SECOND SIMULATION PROCEDURE (2ndSP) (see Page 39) is conducted. As in Subsection 2.4.2, two sample sizes have been considered in the simulation study, namely, an even sample size $(n=20)$ and an odd sample size $(n=21)$. For the sample size $n=20$ we have chosen the weights $\omega_{1}=0.8, \omega_{2}=0.1$ and $\omega_{3}=0.1$, and for the sample size $n=21$ the weights have been $\omega_{1}=16 / 21, \omega_{2}=3 / 21$ and $\omega_{3}=2 / 21$.

Explosion pseudo-breakdown point:

The outlier \widetilde{y}_{i} has been constructed as follows (only for asymmetric distribution):

- Outlier of translation: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(1,100)$ and the fuzzy numbers have been constrained to be in the interval [0,5]. Then, we have chosen $r_{i}^{1}=40+i \cdot 5$.
- Outlier of scale on the core and support: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(1,1000)$ and the fuzzy numbers have been constrained to be in the interval $[0,1]$. Then, we have chosen $r_{i}^{2}=i \cdot 100$.
- Outlier of both translation and scale: the non-contaminated sample has been generated on the basis of a beta distribution $\beta(1,100)$ and the fuzzy numbers have been constrained to be in the interval $[0,5]$. Then, we have chosen

$$
r_{i}^{1}=40+i \cdot 5, \quad r_{i}^{2}=2
$$

For each type of outlier, the general scheme of the simulation is the same that the one for the 1stSP (see Page 161). The criterion in Remark 2.4.1 is also applied.

The simulation-based conclusions in this study are presented through Tables 2.27 and 2.28 and Figures 2.66 to 2.71 . More concretely, tables gather the values of the M-estimators of scale when outliers are introduced in the sample by replacement, and figures graphically display these values for each estimator.

Implosion pseudo-breakdown point:

The non-contaminated sample has been generated from a beta $\beta(1,100)$. The general scheme of the simulation is the same that the one for the 1stSP (see Page 161).

The simulation-based conclusions in this study are presented through Tables 2.29 and 2.30 and Figures 2.72 and 2.73. Tables gather the values of the M-estimators of scale when inliers are introduced in the sample by replacement, and figures graphically display these values for each estimator.

Table 2.27: Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 10\}-2$ ndSP

Asymmetric distribution

\# outliers (translation)	0	1	2	3	4	5	6	7	8	9	10
ρ_{1}-Huber, $\delta=0.1$	3.74	5.27	45.51	61.80	75.04	88.07	101.10	114.23	127.53	141.05	154.79
ρ_{1}-Huber, $\delta=0.3$	2.10	2.33	2.61	2.99	3.58	4.88	45.46	61.26	71.48	80.66	89.20
ρ_{1}-Huber, $\delta=0.5$	1.40	1.52	1.67	1.84	1.98	2.11	2.39	2.75	3.33	4.69	45.38
ρ_{1}-Tukey, $\delta=0.1$	6.24	8.96	53.87	90.77	116.23	139.97	163.18	186.29	209.54	233.05	256.88
ρ_{1}-Tukey, $\delta=0.3$	3.25	3.64	4.14	4.85	5.93	8.25	53.40	83.80	100.68	115.94	130.67
ρ_{1}-Tukey, $\delta=0.5$	2.14	2.34	2.54	2.78	3.00	3.22	3.68	4.34	5.43	7.89	52.39
\# outliers (scale)	0	1	2	3	4	5	6	7	8	9	10
ρ_{1}-Huber, $\delta=0.1$	0.61	0.85	5.37	11.83	19.72	26.99	32.28	36.81	40.84	44.51	47.90
ρ_{1}-Huber, $\delta=0.3$	0.32	0.36	0.41	0.48	0.58	0.81	5.35	11.82	19.72	25.70	27.66
ρ_{1}-Huber, $\delta=0.5$	0.21	0.22	0.24	0.27	0.29	0.33	0.36	0.44	0.46	0.64	5.33
ρ_{1}-Tukey, $\delta=0.1$	1.01	1.44	6.64	17.41	28.88	40.58	50.51	58.95	66.38	73.08	79.23
ρ_{1}-Tukey, $\delta=0.3$	0.51	0.56	0.64	0.77	0.94	1.37	6.55	17.40	28.35	34.80	39.53
ρ_{1}-Tukey, $\delta=0.5$	0.32	0.33	0.36	0.41	0.44	0.51	0.56	0.66	0.72	1.04	6.33
\# outliers (both)	0	1	2	3	4	5	6	7	8	9	10
ρ_{1}-Huber, $\delta=0.1$	4.00	5.51	45.76	62.08	75.36	88.42	101.48	114.64	127.97	141.51	155.28
ρ_{1}-Huber, $\delta=0.3$	2.31	2.46	2.73	3.09	3.65	5.11	45.71	61.52	71.75	80.93	89.50
ρ_{1}-Huber, $\delta=0.5$	1.72	1.78	1.89	1.99	2.09	2.28	2.53	2.82	3.19	4.47	45.64
ρ_{1}-Tukey, $\delta=0.1$	6.75	9.41	54.37	91.20	116.73	140.55	163.81	186.97	210.26	233.82	257.71
ρ_{1}-Tukey, $\delta=0.3$	3.65	3.94	4.44	5.09	6.11	8.69	53.90	84.15	101.05	116.34	131.12
ρ_{1}-Tukey, $\delta=0.5$	2.58	2.67	2.87	3.04	3.22	3.56	4.02	4.57	5.27	7.57	53.19

Table 2.28: Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by outliers of translation (at the top), scale on core and support (in the middle) and both (at the bottom), with $k \in\{0,1, \ldots, 11\}-2$ ndSP Asymmetric distribution

\# outliers (translation)	0	1	2	3	4	5	6	7	8	9	10	11
ρ_{1}-Huber, $\delta=0.1$	4.07	5.63	18.59	61.56	74.65	87.52	100.38	113.33	126.43	139.72	153.24	167.01
ρ_{1}-Huber, $\delta=0.3$	2.28	2.52	2.83	3.20	3.61	4.55	9.10	58.78	69.81	79.18	87.94	96.42
ρ_{1}-Huber, $\delta=0.5$	1.63	1.78	1.90	2.01	2.02	2.08	2.23	2.58	2.90	3.01	4.83	56.34
ρ_{1}-Tukey, $\delta=0.1$	6.81	9.57	32.14	89.26	114.79	138.39	161.37	184.21	207.14	230.28	253.76	277.60
ρ_{1}-Tukey, $\delta=0.3$	3.58	4.00	4.52	5.19	5.96	7.65	15.65	79.34	97.45	112.95	127.72	142.25
ρ_{1}-Tukey, $\delta=0.5$	2.42	2.64	2.86	3.07	3.15	3.28	3.55	4.08	4.60	5.04	8.27	74.58
\# outliers (scale)	0	1	2	3	4	5	6	7	8	9	10	11
ρ_{1}-Huber, $\delta=0.1$	0.59	0.82	2.71	8.98	14.91	21.27	27.32	32.33	36.66	40.54	44.07	47.34
ρ_{1}-Huber, $\delta=0.3$	0.32	0.36	0.41	0.47	0.56	0.73	1.52	7.88	13.71	20.00	25.44	27.33
ρ_{1}-Huber, $\delta=0.5$	0.18	0.20	0.23	0.26	0.31	0.34	0.38	0.44	0.49	0.62	1.06	6.09
ρ_{1}-Tukey, $\delta=0.1$	0.98	1.38	4.60	12.97	21.95	31.44	41.73	50.89	58.86	65.94	72.36	78.28
ρ_{1}-Tukey, $\delta=0.3$	0.48	0.55	0.63	0.75	0.92	1.23	2.60	11.21	20.12	28.75	34.54	39.02
ρ_{1}-Tukey, $\delta=0.5$	0.28	0.31	0.35	0.40	0.46	0.50	0.58	0.68	0.77	1.01	1.81	9.44
\# outliers (both)	0	1	2	3	4	5	6	7	8	9	10	11
ρ_{1}-Huber, $\delta=0.1$	4.79	5.50	17.40	62.08	75.27	88.22	101.14	114.15	127.30	140.65	154.23	168.04
ρ_{1}-Huber, $\delta=0.3$	2.47	2.47	2.65	2.93	3.41	4.48	8.77	59.30	70.36	79.76	88.54	97.02
ρ_{1}-Huber, $\delta=0.5$	1.58	1.58	1.58	1.63	1.74	1.98	2.08	2.53	2.78	3.49	5.94	56.86
ρ_{1}-Tukey, $\delta=0.1$	7.83	9.32	30.08	89.98	115.74	139.50	162.60	185.56	208.59	231.84	255.41	279.34
ρ_{1}-Tukey, $\delta=0.3$	3.83	3.83	4.12	4.64	5.53	7.48	15.05	79.99	98.19	113.78	128.61	143.19
ρ_{1}-Tukey, $\delta=0.5$	2.41	2.41	2.45	2.54	2.69	3.03	3.20	3.86	4.28	5.64	10.05	75.30

Figure 2.66: Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by outliers of translation,
k varying from 0 to $10-2 n d S P$ Asymmetric distribution

Figure 2.67: Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by outliers of scale on core and support, k varying from 0 to $10-2 n d S P$ Asymmetric distribution

Figure 2.68: Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $10-2 n d S P$ Asymmetric distribution

Figure 2.69: Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by outliers of translation, k varying from 0 to $11-2 n d S P$ Asymmetric distribution

Figure 2.70: Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by outliers of scale on core and support, k varying from 0 to $11-2 n d S P$ Asymmetric distribution

Figure 2.71: Explosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by outliers of both translation and scale on core and support, k varying from 0 to $11-2$ ndSP Asymmetric distribution

Table 2.29: Implosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by inliers, with $k \in\{0,1,2,10,11,14,15,18,19\}-2 n d S P$ Asymmetric distribution

\# inliers	0	1	2	10	11	14	15	18	19
ρ_{1}-Huber, $\delta=0.1$	6.01	5.78	5.54	4.22	4.14	3.86	3.69	0.88	$8.60 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.3$	2.69	2.59	2.48	1.66	1.56	1.11	$9.92 \mathrm{E}-11$	$8.43 \mathrm{E}-11$	$6.93 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.5$	1.86	1.70	1.50	0.50	$9.64 \mathrm{E}-11$	$7.86 \mathrm{E}-11$	$7.29 \mathrm{E}-11$	$6.46 \mathrm{E}-11$	$3.69 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.1$	9.40	9.12	8.82	7.02	6.88	6.35	6.03	0.88	$8.60 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.3$	4.22	4.00	3.77	2.47	2.33	1.14	$9.78 \mathrm{E}-11$	$8.43 \mathrm{E}-11$	$6.93 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.5$	2.76	2.55	2.32	0.51	$9.89 \mathrm{E}-11$	$9.27 \mathrm{E}-11$	$8.22 \mathrm{E}-11$	$6.46 \mathrm{E}-11$	$3.69 \mathrm{E}-11$

Table 2.30: Implosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by inliers, with $k \in\{0,1,2,10,11,14,15,18,19\}-2$ ndSP Asymmetric distribution

\# inliers	0	1	2	10	11	14	15	18	19
ρ_{1}-Huber, $\delta=0.1$	7.51	7.47	7.41	7.28	7.27	7.17	7.06	1.49	$9.77 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.3$	2.50	2.44	2.32	1.99	1.95	1.37	$9.97 \mathrm{E}-11$	$7.75 \mathrm{E}-11$	$8.00 \mathrm{E}-11$
ρ_{1}-Huber, $\delta=0.5$	1.53	1.46	1.34	0.85	$9.93 \mathrm{E}-11$	$9.72 \mathrm{E}-11$	$9.66 \mathrm{E}-11$	$6.50 \mathrm{E}-11$	$7.91 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.1$	11.58	11.50	11.35	10.99	10.96	10.69	10.36	2.27	$9.77 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.3$	4.05	3.92	3.69	3.01	2.93	2.01	$9.86 \mathrm{E}-11$	$7.75 \mathrm{E}-11$	$8.00 \mathrm{E}-11$
ρ_{1}-Tukey, $\delta=0.5$	2.37	2.25	2.06	1.14	$9.90 \mathrm{E}-11$	$9.74 \mathrm{E}-11$	$8.67 \mathrm{E}-11$	$6.50 \mathrm{E}-11$	$7.91 \mathrm{E}-11$

Figure 2.72: Implosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 20 with k observations replaced by inliers, k varying from 0 to $19-2$ ndSP Asymmetric distribution

Figure 2.73: Implosion pseudo-breakdown point: values of the M-estimators of scale for a sample of size 21 with k observations replaced by inliers, k varying from 0 to 20 - 2ndSP Asymmetric distribution

In summary, for these second type simulations and in connection with the explosion/implosion, for the sample size $n=20$ (21), by looking at Table 2.27/2.29 (2.28/2.30) and Figures 2.66 to $2.68 / 2.72$ (2.69 to $2.71 / 2.73$), we can see that 'the minimum number of perturbed observations by outliers that makes the estimator to increase noticeably'/ 'the minimum number of perturbed observations by inliers that makes the estimator to implode to zero', independently of the considered type of outlier, has been

- $2 / 19$ for the Huber and Tukey estimators with $\delta=0.1$;
- $6 / 15(7 / 15)$ for the Huber and Tukey estimators with $\delta=0.3$;
- 10/11 (11/11) for the Huber and Tukey estimators with $\delta=0.5$.

We analyze now the sensitivity curves of the M-estimators. The simulations are conduced according to the FIRST SIMULATION PROCEDURE (1stSP) in the same way that was explained in Subsection 2.4.3.

Therefore, the non-contaminated sample has been simulated from the 1stSP considering the two cases (see Page 38) and a unique sample size, $n=100$.

The outliers have been constructed as follows. Let \widetilde{y}_{s} be the outlier. Then,

- Outlier of translation: $r_{s}^{1}=s$, with s varying from -20 to 20 with a step equals 0.1.
- Outlier of scale on the core and support: $r_{s}^{2}=s$, with s varying from 0 to 20 with a step equals 0.1.
- Outlier of both translation and scale: $r_{s}^{1}=r_{s}^{2}=s$, with s varying from -20 to 20 with a step equals 0.1 .

For each type of outlier, the general scheme of the construction of the sensitivity curves has been as follows:

Step 1. A sample $\widetilde{\mathbf{x}}_{100}$ of 100 trapezoidal fuzzy numbers has been simulated from the 1stSP, considering the two cases of simulation involved in this procedure.

Step 2. One observation from the original sample $\widetilde{\mathbf{x}}_{100}$ has been chosen randomly and replaced by the outlier \widetilde{y}_{s}.

Step 3. For each s, the value of the sensitivity curve has been calculated for each M-estimator of scale. We have chosen the $\widehat{\rho_{1} \text {-MDD }}$ with respect to the 1-norm median, $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, as initial robust scale measure to start the algorithm.

The sensitivity curves have been graphically displayed for each M-estimator in Figures 2.74 to 2.76 for Case 1 and in Figures 2.77 to 2.79 for Case 2. Irrespective of the type of outlier that we are considering, we can see that the sensitivity curves are bounded for all the M-estimators in both cases.

Figure 2.74: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of translation - 1stSP Case 1

Figure 2.75: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of scale on core and support - 1stSP Case 1

Figure 2.76: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of both translation and scale on core and support - 1stSP Case 1

Figure 2.77: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of translation - 1stSP Case 2

Figure 2.78: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of scale on core and support - 1stSP Case 2

Figure 2.79: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of both translation and scale on core and support - 1stSP Case 2

Now, we follow the SECOND SIMULATION PROCEDURE (2ndSP) (see Page 39). As in Subsection 2.4.3, a unique sample size $n=100$ has been considered in the study, with weights $\omega_{1}=0.8, \omega_{2}=0.1$ and $\omega_{3}=0.1$.

The outlier \widetilde{y}_{s} for the considered asymmetric distribution has been constructed so that, with the non-contaminated sample being generated from a beta $\beta(1,100)$,

- Outlier of translation: $r_{s}^{1}=s$, with s varying from 0 to 20 with a step equals 0.1.
- Outlier of scale on the core and support: $r_{s}^{2}=s$, with s varying from 0 to 20 with a step equals 0.1.
- Outlier of both translation and scale: $r_{s}^{1}=r_{s}^{2}=s$, with s varying from 0 to 20 with a step equals 0.1.

For each type of outlier, the general scheme of the simulation is the same that the one for the 1stSP (see Page 181), and the criterion in Remark 2.4.1 has also been applied.

Figure 2.80: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of translation - 2ndSP Asymmetric distribution

Figure 2.81: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of scale on core and support - 2ndSP Asymmetric distribution

Figure 2.82: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers of both translation and scale on core and support - 2ndSP Asymmetric distribution

We can see the pseudo-sensitivity curves graphically represented for each Mestimator in Figures 2.80 to 2.82. Independently of the type of outlier that we are considering, we can see that the pseudo-sensitivity curves are bounded for all the M-estimators.

2.6 Illustrating the use of different scale measures through case studies

This section aims to illustrate the computation of the scale measures that have been introduced in this chapter for FRS-based data in the three case studies in Examples 1.6.1 (Pages 33 and 233), 1.6.2 (Pages 35 and 243) and 1.6.3 (Pages 35 and 251).

In Table 2.32 the values of the scale estimates in Sections 2.1 and $2.5\left(\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)\right.$, $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$, and the robust ones $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\mathscr{D _ { 1 } ^ { \ell } - \mathrm { MDD }}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$, $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right), \rho_{1}-\operatorname{Huber}\left(\widetilde{\mathbf{x}}_{n}\right)$ with $\delta=0.5$, and $\rho_{1}-\operatorname{Tukey}\left(\widetilde{\mathbf{x}}_{n}\right)$ with $\left.\delta=0.5\right)$ are gathered for the FRS-based responses to the following nine items from the Example 1.6.1 questionnaire:

Table 2.31: Questions selected from the student questionnaire in Example 1.6.1

Reading in SChOOL	
$R .1$	I like to read things that make me think
$R .2$	I learn a lot from reading
$R .3$	Reading is harder for me than any other subject
Mathematics In SCHOOL	
$M .1$	I like mathematics
$M .2$	My math teacher is easy to understand
$M .3$	Mathematics is harder for me than any other subject
SCIENCE IN SCHOOL	
$S .1$	My teacher taught me to discover science in daily life
$S .2$	I read about science in my spare time
$S .3$	Science is harder for me than any other subject

If we analyze Table 2.32 by quantifying the pairwise Pearson's correlation coefficients between scale estimates, where individuals are the nine items, we get a rather strong positive correlation for all pairs of estimates but for M-estimates that behave in a different way. More concretely, the lowest correlation coefficient for pairs of non-robust estimates equals 0.942 , and the lowest correlation coefficient for pairs of robust estimates (different from M-estimates) equals 0.872 .

Table 2.32: Sample scale estimates for the fuzzy rating responses to Items $R .1$ to $S .3$ in Example 1.6.1

scale measure \backslash item	$R .1$	$R .2$	$R .3$	$M .1$	$M .2$	$M .3$	$S .1$	$S .2$	$S .3$
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.26	1.88	2.90	2.70	2.34	3.48	2.59	2.34	2.93
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.82	1.63	2.42	2.38	1.98	3.09	2.16	1.93	2.58
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.72	1.50	2.24	2.27	1.74	3.03	2.03	1.83	2.47
$\left.\left.\widehat{\mathscr{D}_{1}^{\ell-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\right.} \widetilde{\mathbf{x}}_{n}\right)\right)$	2.08	1.97	2.73	2.79	2.27	3.28	2.54	2.29	2.98
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.44	1.45	2.27	2.31	1.80	3.41	1.71	1.67	2.41
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.37	1.39	1.58	2.17	1.06	3.04	1.69	1.60	2.24
$\widehat{\mathscr{D}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}}{ }^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.65	1.86	2.12	2.89	1.79	3.30	2.24	2.03	2.69
$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.59	1.56	2.21	2.40	1.50	3.36	2.03	1.95	2.84
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.04	0.94	1.09	1.43	0.81	1.53	1.33	1.14	1.62
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.39	1.32	1.69	2.18	1.18	2.83	1.83	1.68	2.48
$\rho_{1}-\mathrm{Huber}, \delta=0.5$	9.46	11.10	3.52	9.85	11.57	6.22	8.93	4.07	6.45
$\rho_{1}-\mathrm{Tukey}, \delta=0.5$	14.09	16.90	5.10	14.37	17.51	9.15	13.26	6.01	9.36

As we have commented, the behaviour of the computed scale M-estimates is quite different from that of the other scale estimates (see Figure 2.83). It would be then interesting to examine whether this behaviour can be more coherent if other loss functions or parameter values are chosen.

Figure 2.83: Graphical display of the values of different scale estimates for responses to Items R. 1 to $S .3$ in Example 1.6.1

In Table 2.34 the values of the scale estimates in Sections 2.1 and $2.5\left(\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)\right.$, $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\tilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)$, and
the robust ones $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{M e}}\left(\tilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$, $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right), \rho_{1}-\operatorname{Huber}\left(\widetilde{\mathbf{x}}_{n}\right)$ with $\delta=0.5$, and $\rho_{1}-\operatorname{Tukey}\left(\widetilde{\mathbf{x}}_{n}\right)$ with $\left.\delta=0.5\right)$ are gathered for the FRS-based responses to the following fourteen items from the Example 1.6.2 questionnaire:

Table 2.33: Questions selected from the restaurant questionnaire in Example 1.6.2

About your opinion/valuation/Rating	
QF1	The food is served hot and fresh
$Q F 2$	The menu has a good variety of items
$Q F 3$	The quality of food is excellent
QF4	The food is tasty and flavorful
$Q F 5$	The quality of beverage is good
Satisfaction with restaurant service	
$Q R 1$	My food order was correct and complete
$Q R 2$	Employees are patient when taking my order
$Q R 3$	I was served promptly
$Q R 4$	Good availability of sauces, utensils, napkins,...
$Q R 5$	The menu board was easy to read
$Q R 6$	Employees are friendly and courteous
$Q R 7$	The service is excellent
QR8	Good cleanness of the restaurant and service
Opinion about prices	
$Q P 1$	Prices are competitive

Table 2.34: Sample scale estimates for the fuzzy rating responses to Items $Q F 1$ to $Q P 1$ in Example 1.6.2

scale measure \ item	$Q F 1$	$Q F 2$	QF3	$Q F 4$	$Q F 5$	$Q R 1$	$Q R 2$	QR3	$Q R 4$	$Q R 5$	$Q R 6$	$Q R 7$	$Q R 8$	$Q P 1$
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	15.76	20.36	19.75	14.05	16.57	16.39	16.79	15.84	22.81	17.59	21.64	16.88	19.06	18.28
$\widehat{\rho_{2}-\widehat{\mathrm{AD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)}$	12.02	17.41	15.65	11.71	14.21	12.81	13.74	12.81	19.48	13.13	17.11	13.36	15.03	14.68
$\widehat{\rho_{1}-\mathrm{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	11.33	16.71	14.28	10.84	13.38	11.18	12.39	11.99	18.30	11.40	15.17	12.36	14.20	13.04
$\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}} \underset{\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}{\widehat{2}}$	14.31	20.21	17.64	13.59	16.47	14.37	15.26	14.94	21.64	14.76	18.55	15.25	16.82	16.77
$\rho_{2} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\widetilde{\mathbf{x}}}_{n}\right)$	8.93	17.32	12.37	10.68	13.69	11.04	12.34	9.59	18.79	9.61	15.07	10.86	13.87	12.91
$\rho_{1} \widehat{\operatorname{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	8.48	16.79	10.05	9.18	13.50	6.00	8.96	9.85	17.28	6.88	9.74	9.76	12.63	8.75
$\mathscr{D}_{1}^{\widehat{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\tilde{\mathbf{x}}_{n}\right)\right)$	10.67	18.29	11.96	10.80	16.38	10.78	11.99	13.53	19.58	10.46	12.31	12.88	15.07	11.19
$\widehat{\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}_{n}}\right)}$	12.00	17.75	13.25	10.25	13.75	8.75	10.00	12.50	17.50	10.00	12.25	12.50	15.00	12.50
$\widehat{\rho_{1-\mathrm{Q}}\left(\widetilde{\mathbf{x}_{n}}\right)}$	7.50	10.50	10.00	7.50	10.00	5.00	7.50	7.50	11.25	5.00	7.50	8.25	8.33	7.50
$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	10.39	15.99	11.45	9.34	12.62	6.82	8.94	10.31	15.47	7.88	9.61	10.62	12.93	9.88
ρ_{1}-Huber, $\delta=0.5$	109.97	98.83	102.5	2.6	05.1	1.3	114.12	99.1	04.7	1.	13.4	106.4	110.4	113.59
ρ_{1}-Tukey, $\delta=0.5$	168.85	148.14	155.63	173.30	160.07	186.52	174.77	167.01	156.91	186.49	172.49	162.54	168.22	173.61

If we analyze Table 2.34 by quantifying the pairwise Pearson's correlation coefficients between scale estimates, where individuals are the fourteen items, we get a rather strong positive correlation for all pairs of estimates but for M-estimates that behave in a different way. More concretely, the lowest correlation coefficient for pairs of non-robust estimates equals 0.832 , and the lowest correlation coefficient for pairs of robust estimates (different from M-estimates) equals 0.811 .

As for the preceding example, the behaviour of the computed scale M-estimates is quite different from that of the other scale estimates (see Figure 2.84).

Figure 2.84: Graphical display of the values of different scale estimates for responses to Items $Q F 1$ to $Q P 1$ in Example 1.6.2

In Table 2.35 the values of the scale estimates in Sections 2.1 and $2.5\left(\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)\right.$, $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\tilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$, and the robust ones $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$, $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right), \rho_{1}-\operatorname{Huber}\left(\widetilde{\mathbf{x}}_{n}\right)$ with $\delta=0.5$, and $\rho_{1}-\operatorname{Tukey}\left(\widetilde{\mathbf{x}}_{n}\right)$ with $\left.\delta=0.5\right)$ are gathered for the unique item in Example 1.6.3, namely, the relative length of different line segments with respect to a pattern longer one.

Table 2.35: Sample scale estimates for the responses to questionnaire in Example 1.6.3

scale measure		scale measure	
$\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	28.85	$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	24.78
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{M e}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	24.65	$\widehat{D_{1}^{\ell-\mathrm{ADD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	25.98
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	24.81	$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widehat{M e}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	24.67
$\mathscr{D}_{1}^{\ell-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	25.98	$\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	25.35
$\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	13.45	$\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	24.58
ρ_{1}-Huber, $\delta=0.5$	75.78	ρ_{1}-Tukey, $\delta=0.5$	110.81

2.7 Concluding remarks of this chapter

This chapter has been devoted to introduce several scale measures in dealing with fuzzy-valued data. Some of their main properties have been examined, specially the one concerning the robustness. The analysis of the finite sample breakdown point and the sensitivity curves, as powerful tools to verify the robust behaviour of some of these measures, has allowed us to draw similar conclusions to those from the case of real-valued data.

Therefore, the main contributions of this Chapter have been the following:

- The introduction of several scale measures for fuzzy-valued data in Definitions 2.1.1-2.1.6 and the analysis of some of their main properties in Section 2.2.
- The study of the robust behaviour of the different scale estimates by means of the finite sample breakdown point in Section 2.3 from a theoretical point of view; conclusions have been later corroborated by means of simulation studies, including their sensitivity curves, in Section 2.4; this study has confirmed the good robust behaviour of the scale measures $\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X}))$, $\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right), D-\mathrm{S}(\mathcal{X}, \mathcal{Y}), \widehat{D-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\widehat{D-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$, so their robustness is inherited when they are extended from the real- case to the fuzzy-valued case.
- A brief introduction to the M-estimation of scale for fuzzy-valued data, including an simulation study to check the empirical robustness of the M-estimators of scale based on two of the most popular loss functions, by means of the finite sample breakdown point and the sensitivity curves; the application to illustrate the measurement of scale in the case studies presented in Chapter 1 indicates the behaviour of M-estimators is rather different to the other robust estimators, so a much deeper analysis needs to be performed.

The ideas and results in this chapter have been gathered at this stage in one published paper (De la Rosa de Sáa et al. [28]) and one communication to an international conference (De la Rosa de Sáa et al. [25]).

Chapter 3

Comparing statistical conclusions for different rating scales. Questionnaires-based case studies and simulations

Different studies can be found in the literature to discuss the influence of the number of categories/points of the Likert-type scales on the reliability of the analysis of these responses. They usually coincide in pointing out that increasing the number of categories results in an increase of the variability, information and reliability (see, for instance, Tomás and Oliver [127] and Lozano et al. [74]).

Actually, to some extent, the ideal situation would be increasing the number of choices to a continuum. Several studies (see, for instance, Reips and Funke [96], and Treiblmaier and Filzmoser [128]) have pointed out that the visual analogue scales provide researchers with many advantages in contrast to discrete ones like Likert's. Thus, one can benefit from a metric setting and from the fact that a much wider set of statistical methods can be applied to analyze the data coming from this rating.

However, the choice of a single point within a continuum representing each response is neither easy nor natural in an imprecise context, and it does not seem realistic to demand so much accuracy in rating intrinsically imprecise magnitudes.

If one aims to really exploit the individual differences in responding to questionnaires, there is a need for a rich and expressive scale that can cope with imprecision. Fuzzy scales have been involved in this work aiming to rate intrinsically imprecise magnitudes, like human perceptions, attitudes, opinions, and so on.

In Chapter 1, advantages of using fuzzy rating scales have been commented. Among these advantages, it has been stated that

- these scales are much richer and more expressive than any one based on a (unavoidably finite) natural language or its real/fuzzy-valued encoding, and they allow an uncountable number of modifiers and hedges;
- the flexibility of the FRS's allows raters to properly capture individual differences, whence the intrinsic variability, diversity and subjectivity are not lost.

As a consequence from such a richness and flexibility, one can expect a richer statistical information which will result in more accurate statistical conclusions. This chapter is to be focussed on empirically illustrate some aspects related to the last assertion, by comparing statistical conclusions for three types of scales in this framework, namely

- the Likert-type (or its numerical-encoded counterpart),
- the fuzzy linguistic,
- and the FUZZY RATING scales.

Visual analogue scales (VAS's) and their combined versions are not to be included in the comparative discussion in this chapter. Main reasons supporting such a decision are the following:

- to require a real number-valued full accuracy in such an intrinsically imprecise context seems not to be coherent and realistic;
- although the visual analogue scale allows a high diversity, variability and subjectivity in rating, the fuzzy rating scale includes VAS' values as special elements, so the diversity, variability and subjectivity are even more highly captured and, in contrast to VAS's, FRS's can (fully) cope with the imprecision of the considered magnitudes;
- lastly, as shown in González-Rodríguez et al. [48], real-valued data like those based on a VAS could be fuzzified in such a way that the Aumann-type mean of these fuzzy data would contain the whole information on (i.e., would characterize) the distribution of the original data, with the value added of being based on a mean and then showing properties of consistency, and some valuable others.

The comparative studies among the three considered scales have been carried out in this chapter either on questionnaires-based case studies or on simulation developments inspired on such questionnaires (i.e., the 2ndSP). Questionnaires play a major role in many scientific studies, especially in those related to social and
biomedical sciences. Evaluation, rating, judgment, perception, etc., are typical in human social lives, and the corresponding data are routinely collected as responses to some questionnaires. Questionnaires were first considered by Galton (see, for instance, [40]) in connection with human communities. They mean a valuable research tool constituted of a series of questions which are posed to gather information from respondents, and they are usually designed for statistical analysis.

The comparative analysis has been empirically performed mainly due to the fact that theoretical results are mostly impossible to achieve in general, since raters not necessarily behave in a completely systematic way, as it is to be commented along the chapter. Actually, for any possible comparison we could prepare a counterexample of any conclusion we could think about. Even for conclusions on aspects/measures/indices for which data values are irrelevant, like happens for instance with the diversity, one should make some assumptions to get theoretical results. And for the case studies- and simulations-based developments we will make use of particular cases of these assumptions.

In this chapter, a first comparison is made through a well-known diversity index to show that, under reasonable conditions, the diversity is more clearly shown for the FRS's than with Likert-type scales or their numerical/fuzzy encodings.

Secondly, on the basis of the bootstrapped algorithm to test the equality of the Fréchet-type variances in Page 41, an additional comparative study is considered. It presents different (two-sample and k-sample) case studies-based tests about the equality of Fréchet's variances (or the corresponding standard deviations), that are to be considered separately for each of the three scales of measurement and for Case studies 1.6.1 (Page 33) and 1.6.3 (Page 35) in which the involved Likert scale is a 4and 5 -point one, respectively. By comparing the p-values associated with different scales we will conclude whether or not they differ depending on the rating scale.

Later, two descriptive comparative analyses are to be carried out in terms of all the, robust and non-robust, scale measures in Chapter 2. The first one compares the estimates of these measures for Case studies 1.6.1 and 1.6.3; in both case studies the considered fuzzy linguistic scales are the most usual (balanced) semantic representations of the linguistic hierarchies of $k=4$ and $k=5$ levels. The second descriptive comparison is simulations-based. Since data simulated will be FRS-based in accordance with the 2ndSP in Section 1.7 (Page 39), there are not direct Likert-type linked ones, so they need to be stated in a reasonable way (it will be considered a 'Likertization' process based on the minimum distance and a posterior fuzzy encoding involving a few different fuzzy linguistic scales).

3.1 Comparing the diversity of datasets for different rating scales

The diversity of a dataset from a random element quantifies the variability of data by taking into account neither their magnitude order nor how different they are (that is, irrespectively of how 'distant' they are and even of the nature of these data). It can also be interpreted as the amount of information supplied by the experimental performance.

In quantifying the diversity of a dataset, one of the best known indices is GiniSimpson one (see Gini [46] and Simpson [104]).

Definition 3.1.1. Let \mathcal{X} be a random fuzzy number associated with the probability space (Ω, \mathcal{A}, P), and let $\left(\omega_{1}, \ldots, \omega_{n}\right)$ a sample of individuals from Ω and providing with the dataset $\widetilde{\mathbf{x}}_{n}=\left(\mathcal{X}\left(\omega_{1}\right), \ldots, \mathcal{X}\left(\omega_{n}\right)\right)$. The (sample) Gini-Simpson diversity index of $\widetilde{\mathbf{x}}_{n}$ is the real number given by

$$
\widehat{G}\left(\widetilde{\mathbf{x}}_{n}\right)=1-\frac{1}{n^{2}} \sum_{j=1}^{m}\left[\operatorname{card} \mathcal{X}^{-1}\left(\left\{\widetilde{x}_{j}^{*}\right\}\right)\right]^{2}
$$

where $\mathcal{X}\left(\left\{\omega_{1}, \ldots, \omega_{n}\right\}\right)=\left\{\widetilde{x}_{1}^{*}, \ldots, \widetilde{x}_{m}^{*}\right\}, \mathcal{X}^{-1}\left(\left\{\widetilde{x}_{j}^{*}\right\}\right)=\left\{\omega_{i}: \mathcal{X}\left(\omega_{i}\right)=\widetilde{x}_{j}^{*}\right\}, m \leq n$.
If in responding to a given item or in rating an imprecise magnitude, raters can simultaneously make use of both an FRS and a Likert-type scale, then it seems quite reasonable that two coinciding outputs for the FRS are associated with two coinciding Likert outputs. Under such a behaviour, the Gini-Simpson index is definitely higher for the fuzzy rating scale-based questionnaire. Thus, on the basis of the well-known decomposability of the Gini-Simpson index, and because of the Likert assessment establishing a partition on the class of fuzzy responses, one can state that

Proposition 3.1.1. Let \mathcal{X} be a random fuzzy number associated with the probability space (Ω, \mathcal{A}, P), and let $\left(\omega_{1}, \ldots, \omega_{n}\right)$ a sample of individuals from Ω and providing with the dataset $\widetilde{\mathbf{x}}_{n}=\left(\mathcal{X}\left(\omega_{1}\right), \ldots, \mathcal{X}\left(\omega_{n}\right)\right)$. Let $\mathfrak{F}: \mathcal{X}\left(\left\{\omega_{1}, \ldots, \omega_{n}\right\}\right) \rightarrow \mathscr{S}$ where $\mathscr{S}=\left\{\mathbf{L}_{1}, \ldots, \mathbf{L}_{k}\right\}$ is either the set of values from a Likert scale or the set of terms of its numerical or fuzzy linguistic encoding. Then,

$$
\widehat{G}\left(\widetilde{\mathbf{x}}_{n}\right) \geq \widehat{G}\left(\mathfrak{F}\left(\widetilde{\mathbf{x}}_{n}\right)\right),
$$

with equality iff $k=m$.

Proof. Let $\mathcal{X}\left(\left\{\omega_{1}, \ldots, \omega_{n}\right\}\right)=\left\{\widetilde{x}_{1}^{*}, \ldots, \widetilde{x}_{m}^{*}\right\}$. The set $\mathbb{J}=\{1, \ldots, m\}$ can be partitioned as $\mathbb{J}=\mathbb{J}_{1} \cup \ldots \cup \mathbb{J}_{k}$, with $\mathbb{J}_{l}=\left\{j \in \mathbb{J}: \mathfrak{F}\left(\widetilde{x}_{j}^{*}\right)=\mathbf{L}_{l}\right\}$. Then, if $n_{l}=\operatorname{card}(\mathfrak{F} \circ \mathcal{X})^{-1}\left(\left\{\mathbf{L}_{l}\right\}\right)=\sum_{j \in \mathbb{J}_{l}} \operatorname{card} \mathcal{X}^{-1}\left(\left\{\tilde{x}_{j}^{*}\right\}\right)$, we have that

$$
\begin{aligned}
\widehat{G}\left(\widetilde{\mathbf{x}}_{n}\right) & =1-\frac{1}{n^{2}} \sum_{j \in \mathbb{J}}\left[\operatorname{card} \mathcal{X}^{-1}\left(\left\{\widetilde{x}_{j}^{*}\right\}\right)\right]^{2}=1-\sum_{l=1}^{k}\left[\frac{n_{l}}{n}\right]^{2} \sum_{j \in \mathbb{J}_{l}}\left[\frac{\operatorname{card} \mathcal{X}^{-1}\left(\left\{\widetilde{x}_{j}^{*}\right\}\right)}{n_{l}}\right]^{2} \\
& \geq 1-\sum_{l=1}^{k}\left[\frac{n_{l}}{n}\right]^{2} \sum_{j \in \mathbb{J}_{l}} \frac{\operatorname{card} \mathcal{X}^{-1}\left(\left\{\widetilde{x}_{j}^{*}\right\}\right)}{n_{l}}=1-\sum_{l=1}^{k}\left[\frac{n_{l}}{n}\right]^{2}=\widehat{G}\left(\mathfrak{F}\left(\widetilde{\mathbf{x}}_{n}\right)\right) .
\end{aligned}
$$

As a consequence, since the most usual and reasonable double associations would be identified with mappings, and in case of developing simulations we would certainly make use of them, there is no need at this point to show conclusions from a simulations-based approach, which would inevitably ratify the general result above.

3.2 Comparison of rating scales through testing hypotheses about variances. Case studies-based analysis

This section is the first attempt to compare the three considered rating scales for intrinsically imprecise-valued data through scale measures. And this attempt is an inferential one; more concretely, a hypothesis testing one. Since the only available test about the equality of population scale measures for fuzzy data is the bootstrapped one corresponding to variances (or, equivalently, testing the equality of population standard deviations of two or more independent random elements) in Page 41, it is the only procedure we can use at this stage.

As we have stated before, the aim of this chapter is verifying that statistical conclusions can differ depending on the scale that is chosen to respond to items in a questionnaire when such a response is naturally imprecise (or, more generally, to rate intrinsically imprecise-valued magnitudes). To illustrate this assertion we are going to analyze some of the data from case studies in Example 1.6.1 (Page 33) and Example 1.6.3 (Page 35). These two examples relate to questionnaires in which respondents have chosen for each item both a Likert answer and an FRS-based one in $[0,10]$ and $[0,100]$, respectively.

Since an FLS corresponds to a posterior fuzzy number-valued encoding of Likert labels, we have chosen the most usual (see, for instance, Herrera et al. [57]) balanced semantic representations of the linguistic hierarchies of $k=4$ levels (Figure 3.1) and $k=5$ levels (Figure 3.2).

Figure 3.1: Usual balanced semantic representation of the linguistic hierarchies of $k=4$ levels used in Example 1.6.1

Figure 3.2: Usual balanced semantic representation of the linguistic hierarchies of $k=5$ levels used in Example 1.6.3

Example 3.2.1. Consider the random experiment in Example 1.6.1 (Page 33, and see Appendix A, Page 233, for more details), and the nine adapted items allowing to receive a double response in Table 3.1. Only data from the students who have provided with both the Likert-type and the FRS responses have been considered in the comparative analysis in this section.

Assume that one wishes to test whether or not responses to Item $R .1$ can be expected to be equally disperse for the two considered forms (computerized and paper-and-pencil). Suppose that, for this purpose, the two-sample version of the bootstrapped homoscedasticity test in Page 41 is applied, separately, for

- the FRS-based data with reference interval $[0,10]$,
- the numerically encoded Likert data (NELikert for short, and identifying DISAGREE A LOT with $\mathbb{1}_{\{0\}}$, DisAGREE A Little with $\mathbb{1}_{\{10 / 3\}}$, AGREE A Little with $\mathbb{1}_{\{20 / 3\}}$ and AGREE A LOT with $\mathbb{1}_{\{10\}}$),
- and the fuzzy linguistically encoded Likert data in accordance with the triangular encoding in Figure 3.1 (FLTriLikert for short),
where Likert- and FRS-based data can be found in Table A. 2 (Page 239). The L^{2} chosen metric to compute the standard deviations in this example has been ρ_{2}.

Table 3.1: Questions selected from the student questionnaire in Example 1.6.1

READING IN SCHOOL	
$R .1$	I like to read things that make me think
$R .2$	I learn a lot from reading
$R .3$	Reading is harder for me than any other subject
MATHEMATICS IN SCHOOL	
$M .1$	I like mathematics
$M .2$	My math teacher is easy to understand
$M .3$	Mathematics is harder for me than any other subject
SCIENCE IN SCHOOL	
$S .1$	My teacher taught me to discover science in daily life
$S .2$	I read about science in my spare time
$S .3$	Science is harder for me than any other subject

The datasets, distances between the sample standard deviations for both forms and bootstrap p-values are gathered in Table 3.2.

Table 3.2: Two-sample bootstrapped homoscedasticity tests on the effect of the form chosen to respond to Item $R .1\left(H_{0}: \rho_{2}-\mathrm{SD}(\mathrm{comp})=\rho_{2}-\mathrm{SD}(\mathrm{p} \& \mathrm{p})\right)$ in the adapted Questionnaire TIMSS-PIRLS $\left(\widehat{\mathrm{D}}=\widehat{\rho_{2}-\mathrm{SD}}\right)$

On the basis of the results in Table 3.2, we can conclude that the ρ_{2}-SD-dispersion is not significantly influenced by the filled form when the information in FRS-based data is considered. On the contrary, if encoded Likert data are employed, the ρ_{2}-SDdispersion is significantly influenced by the filled form, especially for the NELikert data for which the p-value equals 0.05 .

If p-values are analogously computed for the nine items, we get the results in Table 3.3.

Table 3.3: Two-sample bootstrapped homoscedasticity tests on the effect of the form chosen to respond to Items $R .1-S .3\left(H_{0}: \rho_{2}-\mathrm{SD}(\right.$ comp $\left.)=\rho_{2}-\mathrm{SD}(\mathrm{p} \& \mathrm{p})\right)$ in the adapted Questionnaire TIMSS-PIRLS ($\left.\widehat{\mathrm{D}}=\widehat{\rho_{2}-\mathrm{SD}}\right)$

item \backslash rating scale	FRS	NELikert	FLTriLikert
$R .1$	0.47	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$R .2$	0.79	0.49	0.50
$R .3$	0.38	0.57	0.52
$M .1$	0.35	0.24	0.25
$M .2$	0.15	0.20	0.22
$M .3$	0.11	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 7}$
$S .1$	0.27	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 9}$
$S .2$	0.49	0.99	0.95
$S .3$	0.47	$\mathbf{0 . 0 9}$	$\mathbf{0 . 0 7}$

The results in Table 3.3 show that statistical conclusions for the FRS approach in this study differ from the encoded Likert approaches substantially for Items R.1, $S .1$ and S.3 and slightly for Item M.3.

In Example 3.2.1 we can see that, for the items for which conclusions are remarkably different and dispersion is significantly different (actually, at significance levels up to 0.1) for the two involved forms, the p-values for the FRS are greater than those for the two encoded Likert. However, this cannot be viewed as a rather general situation, as we will see right now by means of another example.

Example 3.2.2. Consider the random experiment in Example 1.6.3 (Page 35, and see Appendix C, Page 251, for more details). The perception of the relative length of different line segments with respect to a pattern longer one is the unique item to be responded in an online application involving a double response.

An underlying non-explicit factor that could influence the response is Pref = "absolute number of pixels in horizontal sense occupied by the reference line". It is intended as the integer part of the product of the number of pixels in the horizontal direction of the working space (taking on values 1019, 1147, 1275 and 1435) times the relative size of the reference line with respect to the available horizontal working space expressed in percentage (fixed as 80) divided by 100. Levels for factor Pref are then 815, 917, 1020 and 1148.

Assume that one wishes to test whether or not responses to the item can be expected to be equally disperse for the four values of Pref. For this purpose, the four-sample version of the bootstrapped homoscedasticity test in Page 41 is applied, separately, for

- the FRS-based data with reference interval $[0,100]$,
- the numerically encoded Likert data (NELikert for short, and identifying VERY SMALL with $\mathbb{1}_{\{0\}}$, SMALL with $\mathbb{1}_{\{25\}}$, MEDIUM with $\mathbb{1}_{\{50\}}$, LARGE with $\mathbb{1}_{\{75\}}$ and VERY LARGE with $\left.\mathbb{1}_{\{100\}}\right)$,
- and the fuzzy linguistically encoded Likert data in accordance with the triangular encoding in Figure 3.2 (FLTriLikert for short).

The L^{2} chosen metric to compute the standard deviations in this example has been ρ_{2}.

The datasets and bootstrap p-values are gathered in Table 3.4.
Table 3.4: Four-sample bootstrapped homoscedasticity tests on the effect of the resolution Pref $\left(H_{0}: \rho_{2}-\operatorname{SD}(\right.$ Pref $=815)=\rho_{2}-\mathrm{SD}($ Pref $=917)=\rho_{2}-\mathrm{SD}($ Pref $=1020)=\rho_{2}-\mathrm{SD}($ Pref $\left.=1148)\right)$ in the online application Perceptions

On the basis of the results in Table 3.4, we can conclude that the ρ_{2}-SD-dispersion is not very much influenced by the resolution (Pref) of the considered line if the (either numerically or fuzzy linguistically) encoded Likert data are employed. On the contrary, the ρ_{2}-SD-dispersion is rather significantly influenced by the resolution when the FRS-based data are considered since the p-value equals 0.09 .

3.3 Descriptive comparison of the rating scales through different scale estimates. Case studies-based analysis

This section aims to reinforce the conclusions in the preceding section by involving scale measures different from the variance/standard deviation, and especially robust scale measures. However, there are not yet hypothesis testing procedures about other scale measures; in fact, it is a future direction of the research in this work. Consequently, we are limited to consider descriptive developments.

For the descriptive approach, we will first make use of the two case studies inferentially analyzed in the preceding section. Then, we are going to compute the scale measures in Section 2.1 over their datasets. The notations as well as the numerical and fuzzy linguistic encodings of the Likert responses in both case studies are those already considered in Section 3.2.

Example 3.3.1. Consider the random experiment in Example 1.6.1 (Page 33, and see Appendix A, Page 233, for more details), and the nine adapted items allowing to receive a double response in Table 3.1.

A descriptive analysis of the sample Aumann-type mean, the 1-norm median and the ℓ-wabl/ldev/rdev median for the nine items can be found in Table 3.5.

As one can see, to a lesser or greater extent the values of these location measures for the FRS-based responses are different from those for the encoded Likert ones (see also Lubiano et al. [75] for a wider analysis about). In this respect, if we look, for instance, at Item M.3, the mean value for the NELikert responses equals 5.8935 and the one for the FLTriLikert is $\operatorname{Tra}(3.2850,5.8937,5.8937,7.8261)$, whereas the one for the FRS equals $\operatorname{Tra}(4.0149,4.2562,4.8982,5.1895)$. If the last two fuzzy location estimates are defuzzified by means of their wabl ${ }^{\ell}$, we get the values 5.7246 for the FLTriLikert and 4.5897 for the FRS. The difference is even greater for the medians, since the NELikert median equals 6.6667 , the wabl ${ }^{\ell}$ of both the 1 -norm and wabl medians of the FLTriLikert equals 6.6667, and the wabl ${ }^{\ell}$ of the 1-norm median of the FRS equals 3.8544 and the one of the wabl median of the FRS equals 3.9365.

Such a difference between different rating scales can also be shown when the sample scale is measured. In Table 3.6 the real values of the scale estimates in Section 2.1 (namely, $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$, and the robust ones $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$, $\widehat{\rho_{1}-S}\left(\widetilde{\mathbf{x}}_{n}\right), \widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and $\left.\widehat{\rho_{1-}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ are gathered for the nine items.

Table 3.5: Sample means, 1-norm medians and ℓ-wabl/ldev/rdev medians for the responses to Items $R .1$ to $S .3$ in Example 1.6.1

	$\mathrm{c}_{\text {mean }}^{\text {NELikert }}$	NELikert median	FLTriLikert Aumann mean	FLTriLikert 1-norm median	FLTriLikert wabl median	FRS Aumann mean	FRS 1-norm median	FRS wabl median
R. 1	6.3738	20/3						
R. 2	8.2099	10						
R. 3	2.1885	0						
M. 1	6.5672	20/3						
M. 2	8.3341	10						
M. 3	5.8935	20/3						11
S. 1	6.2572	20/3						
S. 2	2.6553	10/3						
S. 3	3.9392	10/3						

Table 3.6: Sample scale estimates for the responses to Items $R .1$ to $S .3$ in Example 1.6.1

scale measure \backslash item	$R .1$	R. 2	R. 3	M. 1	M. 2	M. 3	$S .1$	S. 2	S. 3
NELikert $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.4754	2.1798	3.1834	3.0469	2.4786	4.0192	3.1227	2.6474	3.4780
FLTriLikert $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.2052	1.8873	2.7177	2.6912	2.1186	3.4502	2.7284	2.3084	3.0256
FRS $\widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right)$	2.2056	1.8435	2.9205	2.7125	2.3641	3.4820	2.6238	2.3081	2.9128
NELikert $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.7262	1.9772	2.6131	2.5207	2.0698	3.6769	2.4285	2.1574	2.9769
FLTriLikert $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\widetilde{\mathbf{x}}}_{n}\right)$	1.6572	1.6681	2.2253	2.3602	1.7403	3.2370	2.2499	1.8697	2.6990
FRS $\rho_{2} \widehat{-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	1.7674	1.5979	2.4406	2.3890	2.0103	3.0942	2.1883	1.8853	2.5706
NELikert $\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.5694	1.7901	2.1885	2.4885	1.6659	3.5757	2.2571	2.0309	2.8292
FLTriLikert $\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\operatorname{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.3725	1.4179	1.7786	2.1517	1.3258	3.0435	1.9359	1.6667	2.4369
FRS $\rho_{1}-\operatorname{ADD}\left(\mathbf{x}_{n}, \operatorname{Me}\left(\mathbf{x}_{n}\right)\right)$	1.6700	1.4611	2.2770	2.2865	1.7741	3.0276	2.0579	1.7890	2.4635
NELikert $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.5694	1.7901	2.1885	2.4885	1.6659	3.5757	2.2571	2.0309	2.8292
FLTriLikert $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.5931	1.8377	2.1471	2.5295	1.6777	3.4979	2.2965	2.0768	2.8772
$\operatorname{FRS} \mathscr{D}_{1}^{\ell-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	2.0320	1.9332	2.7688	2.7927	2.3110	3.2824	2.5621	2.2428	2.9730
NELikert $\rho_{2} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right)$	0.2962	1.7901	2.1885	3.2372	1.6659	4.1065	2.9272	2.6553	2.7308
FLTriLikert $\rho_{2} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	0.4795	1.4975	1.8195	2.9364	1.3816	3.4808	2.8077	2.2234	2.6044
FRS $\rho_{2}-\mathrm{MDD}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right)$	1.4050	1.3520	2.3321	2.3665	1.8534	3.4066	1.8743	1.5960	2.4658
NELikert $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.0000	0.0000	0.0000	3.3300	0.0000	3.3300	3.3300	3.3300	3.3300
FLTriLikert $\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.0000	0.0000	0.0000	2.5000	0.0000	2.5000	2.5000	2.5000	2.5000
FRS $\rho_{1} \widehat{-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	1.2934	1.3625	1.7149	2.2140	1.2119	3.0357	1.8289	1.4314	2.3375
NELikert $\mathscr{D}_{1}^{\widehat{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.0000	0.0000	0.0000	3.3300	0.0000	3.3300	3.3300	3.3300	3.3300
FLTriLikert $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	0.0000	0.0000	0.0000	3.3333	0.0000	2.9167	3.3333	3.3333	3.3333
$\operatorname{FRS} \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\left.\mathrm{M}^{\ell}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}\right.$	1.6188	1.8240	2.2581	2.9174	1.8625	3.3000	2.2755	1.9329	2.9304
NELikert $\widehat{\rho_{1-S} \mathrm{~S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.0000	0.0000	0.0000	3.3300	0.0000	3.3300	3.3300	3.3300	3.3300
FLTriLikert $\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.0000	0.0000	0.0000	2.8333	0.0000	2.8333	2.8333	2.5000	2.5000
$\widehat{\operatorname{FRS}} \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.5688	1.5625	2.2642	2.4005	1.5250	3.3625	2.0688	1.9250	2.8000
NELikert $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.3300
FLTriLikert $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.5000
FRS $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.0389	0.9313	1.1500	1.3813	0.9192	1.5313	1.3532	1.1625	1.6125
NELikert $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.0000	0.0000	0.0000	3.3300	0.0000	3.3300	3.3300	3.3300	3.3300
FLTriLikert $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	0.0000	0.0000	0.0000	2.8333	0.0000	2.8333	2.8333	2.5000	2.5000
FRS $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	1.3879	1.2980	1.8176	2.1641	1.2321	2.8338	1.8917	1.6460	2.4582

On the basis of Table 3.6 we can empirically conclude that the values of the scale estimates differ to a lesser or greater extent for (encoded) Likert responses and FRS responses. For all the items, the robust scale estimates show a higher sensitivity w.r.t. the rating scale (more concretely, to be either encoded Likert or FRS) than the non-robust ones. In fact for each of the non-robust estimates the highest differences are up to 1.1 whereas for each of the robust ones are over 1.8. In particular, $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ is uniformly quite different for the encoded Likert data (both the NELikert and the FLTriLikert) and the FRS-based ones.

Example 3.3.2. Consider the random experiment in Example 1.6.3 (Page 35, and see Appendix C, Page 251, for more details), the perception of the relative length of different line segments with respect to a pattern longer one being the unique item to be responded in the already referred online application involving a double response.

A descriptive analysis of the sample Aumann-type mean, the 1-norm median and the ℓ-wabl/ldev/rdev median for this item can be found in Table 3.7.

Table 3.7: Sample means, 1-norm medians and ℓ-wabl/ldev/rdev medians for the responses to questionnaire in Example 1.6.3

NELikert mean	NELikert median	FLTriLikert Aumann mean	FLTriLikert 1-norm median	FLTriLikert wabl median	FRS Aumann mean	FRS 1-norm median	FRS wabl median
50.4867	50						

As one can see, these location measures are mainly different for the FRS-based responses and the encoded Likert ones because of their shape, but if they were defuzzified they would be close. This is due to the fact that the distributions of data are close to symmetrical (rather than to the fact that $k=5$), so that both robust and non-robust are also 'close'.

On the other hand, the analysis of the sample scale measures (those considered in Example 3.3.1) can be found in Table 3.8.

On the basis of Table 3.8 we can empirically conclude that the values of the scale estimates are very close but importantly for the robust $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ and to a lesser extent for the non-robust $\widehat{\rho_{2}-\mathrm{SD}}$. Actually, eight of the measures (all but $\widehat{\rho_{1}-\mathrm{Q}}$ and $\left.\widehat{\rho_{2}-\mathrm{SD}}\right)$ lead to close estimates irrespective of the measure. This behaviour is also mainly due to the symmetry of the distribution.

As a summary implication of this descriptive analysis for the scale estimation from intrinsically imprecise-valued data, we can conclude that estimates can differ with the rating scale. This implication has an important analogy with what happens when grouping real-valued data by intervals: both, 'identifying' fuzzy rating scalevalued responses with one of a few possible Likert labels (or their numerical/fuzzy linguistic counterpart) and 'identifying' real-valued responses with one of a few possible non-overlapping interval-valued ones, entail a loss of information so that some existing differences can be ignored, whence statistical conclusions are not usually well preserved under such an identification.

Table 3.8: Sample scale estimates for the responses to questionnaire in Example 1.6.3

scale measure		scale measure	
$\begin{aligned} & \text { NELikert } \widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right) \\ & \text { FLTriLikert } \widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right) \\ & \text { FRS } \widehat{\rho_{2}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right) \end{aligned}$	$\left\|\begin{array}{l} 32.0423 \\ 29.4047 \\ 28.8479 \end{array}\right\|$	NELikert $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$ FLTriLikert $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$ $\operatorname{FRS} \widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	$\left\|\begin{array}{l} 26.0937 \\ 24.8377 \\ 24.7757 \end{array}\right\|$
NELikert $\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ FLTriLikert $\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ $\operatorname{FRS} \widehat{\rho_{1}-\widehat{\operatorname{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{M e}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)}$	$\left\lvert\, \begin{aligned} & 25.9733 \\ & 24.0853 \\ & 24.6524 \end{aligned}\right.$	NELikert $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ FLTriLikert $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ $\operatorname{FRS} \mathscr{D}_{1}^{\ell}-\mathrm{ADD}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	$\left\|\begin{array}{l} 25.9733 \\ 26.2093 \\ 25.9801 \end{array}\right\|$
NELikert $\widehat{\rho_{2} \text {-MDD }\left(\widetilde{\mathbf{x}}_{n}, \overline{\mathbf{x}}_{n}\right) ~}$ FLTriLikert $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$ $\operatorname{FRS} \widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$	$\left(\begin{array}{l} 25.4867 \\ 25.5573 \\ 24.8092 \end{array}\right.$	$\operatorname{NELikert} \widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ FLTriLikert $\widehat{\rho-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ $\operatorname{FRS} \widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{M e}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	$\left\lvert\, \begin{aligned} & 25.0000 \\ & 25.0000 \\ & 24.6680 \end{aligned}\right.$
NELikert $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ FLTriLikert $\widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$ $\operatorname{FRS} \widehat{\mathscr{D}_{1}^{\ell}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\ell}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$	$\left\lvert\, \begin{aligned} & 25.0000 \\ & 25.0000 \\ & 25.9756 \end{aligned}\right.$	NELikert $\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$ FLTriLikert $\widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$ $\widehat{\operatorname{FRS}} \widehat{\rho_{1}-\mathrm{S}}\left(\widetilde{\mathbf{x}}_{n}\right)$	$\left\|\begin{array}{l} 25.0000 \\ 25.0000 \\ 25.3450 \end{array}\right\|$
NELikert $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ FLTriLikert $\widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$ $\widehat{\operatorname{FRS}} \widehat{\rho_{1}-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right)$	$\left\lvert\, \begin{aligned} & 25.0000 \\ & 18.7500 \\ & 13.4500 \end{aligned}\right.$	NELikert $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$ FLTriLikert $\widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$ $\widehat{F R S} \widehat{\rho_{1}-\mathrm{T}}\left(\widetilde{\mathbf{x}}_{n}\right)$	$\begin{aligned} & 25.0000 \\ & 25.0000 \\ & 24.5803 \end{aligned}$

3.4 Descriptive comparison of the rating scales through different scale estimates. Simulations-based analysis

The descriptive analysis in the last section is to be now completed with a simulationbased one. Along this section, FRS data will first be simulated in accordance with the realistic process in the 2ndSP (Page 39), which to a great extent mimics the response to FRS-based questionnaires. In the case studies we have assumed double response questionnaires for which components of each double response are linked, because of them coming from the same respondent. However, this link cannot be immediately stated in simulation processes. In this section, a reasonable 'Likertization' process is to be considered and later a fuzzy linguistic encoding is to be applied. Next two subsections are devoted to present such processes, as well as to validate the first one by means of the considered case studies.

3.4.1 'Likertization' of fuzzy rating scale-based data: criterion and validation

Fuzzy data based on a fuzzy rating scale can fairly be associated/classified in accordance with labels in a Likert scale (more concretely, with their numerical encoding). This process is to be called "Likertization". Furthermore, the associated Likert values could also be later encoded by means of values from a fuzzy linguistic scale. This subsection is devoted to explain an ease-to-use and ease-to-support association criterion.

For carrying out the Likertization, different association criteria could be employed. The one to be used in next subsections will be the following:

Minimum distance Likertization criterion:

If the considered Likert scale is a k-point one, a reasonable Likertization criterion consists in associating each FRS-based datum with the integer number in $\{1, \ldots, k\}$, if $[1, k]$ is the reference interval in the considered FRS, with the smallest distance to the given datum. That is, given a metric D between fuzzy data and \widetilde{U} the free fuzzy response to be classified, then \widetilde{U} is associated with the integer $\kappa(\widetilde{U})$ such that

$$
\kappa(\widetilde{U})=\arg \min _{j \in\{1, \ldots, k\}} D\left(\widetilde{U}, \mathbb{1}_{\{j\}}\right) .
$$

FRS-based response

\boldsymbol{k}-point κ-associated response
Figure 3.3: Minimum distance criterion scheme when the reference interval equals $[1, k]$
Figure 3.3 graphically illustrates the process when $[a, b]=[1, k]$, but it can immediately be re-scaled to any other $[a, b]$, so that the choice is made in the subset $\{a, a+(b-a) /(k-1), a+2(b-a) /(k-1), \ldots, b\}$ whose elements divide the reference interval $[a, b]$ in $k-1$ equally wide subintervals.

Remark 3.4.1. If in solving the above minimization there exist two involved coincident distances, the associated numerically encoded Likert response is chosen at
random among the two corresponding numerical values. It should be pointed out that other reasonable and well-supported Likertization criteria (like, for instance, the supervised classification by Colubi et al. [20]) have been considered, but they lead to a similar validation.

Case studies-based validation of the minimum distance criterion:

The three case studies in Examples 1.6.1 (Pages 33 and 233), 1.6.2 (Pages 35 and 243) and 1.6.3 (Pages 35 and 251) are now to be used to make the classification of the FRS-based component of each double response into a Likert one and validate this classification later with the real Likert-based component of the same double response.

Table 3.9 shows the percentages of responses for which the minimum distancebased Likert classification of the FRS responses coincides with the real associated Likert response for different choices of the metric D.

Table 3.9: Validation of the minimum D-distance Likertization of fuzzy rating responses: \% of right associations in the Likertization of the FRS-based responses in Examples 1.6.1, 1.6.2 and 1.6.3 $\left(D \in\left\{\rho_{1}, \mathscr{D}_{1}^{\varphi}, D_{1 / 3}^{\varphi}, D_{1}^{\varphi}\right\}\right.$ with different choices of φ)

$\begin{gathered} \% \\ \text { matching } \end{gathered}$				$\begin{gathered} \text { TIMSS/PIRLS } \\ n=599 \end{gathered}$	Restaurants $n=980$	Perceptions $n=1387$
Minimum distance criterion	ρ_{1}			81.64	77.96	85.00
	$\mathscr{D}_{1}^{\varphi}$	$\varphi \equiv \beta(1,1)$		81.30	77.76	84.93
		$\varphi \equiv \beta(1,2)$		80.63	77.96	85.08
		$\varphi \equiv \beta(2,1)$		80.63	77.96	85.15
		$\varphi \equiv \beta(1,5)$		80.63	76.43	85.15
		$\varphi \equiv \beta(5,1)$		81.64	78.16	85.29
	D_{θ}^{φ}	$\varphi \equiv \beta(1,1)$	$\theta=1 / 3$	81.30	78.06	84.93
			$\theta=1$	81.30	78.16	84.93
		$\varphi \equiv \beta(1,2)$	$\theta=1 / 3$	80.80	78.06	85.08
			$\theta=1$	80.97	78.06	85.08
		$\varphi \equiv \beta(2,1)$	$\theta=1 / 3$	81.30	78.06	85.15
			$\theta=1$	80.80	77.96	85.15
		$\varphi \equiv \beta(1,5)$	$\theta=1 / 3$	80.47	76.43	85.15
			$\theta=1$	80.63	76.43	85.15
		$\varphi \equiv \beta(5,1)$	$\theta=1 / 3$	81.47	78.06	85.29
			$\theta=1$	81.47	78.16	85.29

The preceding percentages are rather high. One should not expect to design a Likertization criterion leading to 100% of matching, since humans not necessarily behave in a completely systematized way.

The validation is almost irrespective of the chosen metric, and in the next simulations the minimum ρ_{1} Likertization criterion will be considered.

3.4.2 Fuzzy linguistic encoding through the Likertized responses

This subsection is focussed on the fuzzy linguistic encoding of FRS-based responses. Each FRS-based datum will be first Likertized by means of the minimum distance criterion, and it will later be encoded by means of a fuzzy linguistic scale (like, for instance, those in Figures 3.1 and 3.2).

In the simulations studies in this section, we will make use of some fuzzy linguistic scales selected among the most mentioned in the literature to encode 4 - and 5 - point Likert scales.

Case $k=4$:
In this case we have made use of some of the most frequently fuzzy linguistic scales considered when 4 labels are modelled (see, for instance, Herrera et al. [57], Bajpai et al. [4], Cai et al. [12], Picon et al. [92]).
$\mathrm{FLS}_{1}^{4}, \mathrm{FLS}_{2}^{4}$ and FLS_{3}^{4} will denote some of the most usual symmetric representations for a 4-point Likert scale, $\mathrm{FLS}_{3}^{4}=$ FLTriLikert being the balanced semantic representation of the $k=4$ linguistic hierarchies, and FLS_{4}^{4} and FLS_{5}^{4} being two asymmetric representations for the same number of labels.
FLS_{1}^{4} to FLS_{5}^{4} have been displayed in Figure 3.4 by considering $[0,100]$ as the reference interval.

Case $k=5$:
In this case we have made use of some of the most frequently fuzzy linguistic scales considered when 5 labels are modelled (see, for instance, Yeh et al. [136], Motawa et al. [85], Herrera et al. [57]).
FLS_{1}^{5} and FLS_{2}^{5} will denote some of the most usual symmetric representations for a 5 -point Likert scale, $\mathrm{FLS}_{3}^{5}=$ FLTriLikert being the balanced semantic representation of the $k=5$ linguistic hierarchies, and FLS_{4}^{5} being an asymmetric representation inspired by the unbalanced semantic of the same number of labels (Herrera et al. [57]).
FLS_{1}^{5} to FLS_{4}^{5} have been displayed in Figure 3.5 by considering $[0,100]$ as the reference interval.

Figure 3.4: Fuzzy linguistic scales with four values and reference interval [0, 100]: from top to bottom, the scales $\mathrm{FLS}_{1}^{4}, \mathrm{FLS}_{2}^{4}, \mathrm{FLS}_{3}^{4}, \mathrm{FLS}_{4}^{4}$ and FLS_{5}^{4}.

Figure 3.5: Fuzzy linguistic scales with five values and reference interval [0,100]: from top to bottom, the scales $\mathrm{FLS}_{1}^{5}, \mathrm{FLS}_{2}^{5}, \mathrm{FLS}_{3}^{5}$ and FLS_{4}^{5}.

3.4.3 Descriptive simulations-based comparison of different rating scales

Next simulations-based tables (Tables 3.10 to 3.21) collect the percentages of Euclidean distances between the sample scale estimates \hat{D} for the FRS-simulated data and for their numerically and fuzzy linguistically encoded ρ_{1} Likertization that are over $\varepsilon \in\{1,5,10,15\}$. The percentages have been quantified over 1000 samples of $n \in\{10,30,100\}$ FRS simulated (following the 2ndSP with different betas) data with reference interval $[0,100]$ (this last fact being irrelevant for the study).

Table 3．10：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(1,1)$

	aio	9300		Ň． 0		－		－	（1）	
	の 0	\bigcirc	cre	－100					（1）	Nor
	000	000	0.00	Nor	－	ミロバ			®icio	Mram
	000	0%	N00	$\because \bigcirc$	－in	－${ }_{\text {－}}^{\text {N }}$			（1）	边
	10.0		－			$\left\lvert\, \begin{array}{ccc} \infty & 0 \\ \infty & 0 & 0 \\ \infty & -\dot{c} & 0 \end{array}\right.$	－7if		O．	
	ÑO	Noll	Noll	1900	－		¢\％		¢	
$=$	$\bigcirc 9^{\circ} 8$	$\bigcirc 88$	$\bigcirc 88$	$\bigcirc 98$	$\bigcirc \bigcirc$			$\bigcirc 8.8$	$\bigcirc 8.8$	
＜ 0									$\sqrt{\frac{a}{x}}$	\cdots

$\underset{\\|}{2}$	000	000	000	Oin 0	¢		－		Nrors	
	000	000	000	170	N－	成	㖪		Or	ずつ
	000	000	000	\bigcirc	10	\％	Noco	－	$\\| \infty x_{\sim}^{\infty}$	$\underset{\sim}{\sim}$
$\left\|\begin{array}{ll\|} \stackrel{\rightharpoonup}{\wedge} & \overrightarrow{4} \\ \hat{\omega} & \\| \end{array}\right\|$	\bigcirc	000	$\bigcirc 0$	－		Nor		N－	～	（2）
	000	－	000	Foo				9\％	（10）	\％${ }_{\sim}^{2}+{ }^{\text {a }}$
	000	\bigcirc	000	000	N－	Noำ	－	1080	人\％	J̇
：	\bigcirc	$\bigcirc \bigcirc$	$\bigcirc \bigcirc_{0}^{\circ} \stackrel{8}{1}$	웅악			$\bigcirc \bigcirc \bigcirc \circ$			$\bigcirc)_{0}^{\circ} \stackrel{8}{-1}$
＜\wedge								$\frac{\widehat{\tilde{x}}}{\frac{2}{x}} \frac{\sqrt{2}}{2}$		$\frac{\sqrt{\frac{\rightharpoonup}{x}}}{\substack{5 \\ \frac{5}{2}}}$

号	－							会为它	Orer	
				－					crer	（1）
		－	（2）	（1）	Or				Fi	－
$\left\|\right\|$		Nom	－	の99\％	$\left\|\begin{array}{lll} \infty & \infty & \infty \\ \infty \\ \infty & \alpha \\ \infty & \infty \\ o \end{array}\right\|$				－	（1）
	号8	O\％	\％i8\％	\％i\％	－	® ¢ ¢			¢ \％	
$\begin{array}{\|c} \substack{3 \\ 3 \\ 11} \end{array}$	Nrer	Nrsor	（1）	－ 8		\％	Oid	Oix	O\％ 0_{0}^{8}	¢\％
＝	\bigcirc	\bigcirc	아웅	$\bigcirc \bigcirc$	\bigcirc	요웅	$\bigcirc \bigcirc$	요앙		
＜ 0								$\frac{\stackrel{\widetilde{\tilde{x}}}{\substack{x}}}{\frac{\sqrt[v]{2}}{2}}$	$\underset{\substack{\frac{\tilde{x}}{8} \\ \frac{9}{2} \\ \frac{1}{2}}}{ }$	逢

碝	¢		边	边	N0\％	Nor	（1）	（1）	N	｜rac｜
$\left(\left.\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 111 & 11 \\ 0 & 0 \end{array} \right\rvert\,\right.$	¢					（1）	（1）		－	N－
	$7{ }^{7} 50$	$0_{0}^{6} 50$	－			（1）			－${ }_{\text {－}}^{\text {® }}$	
	$\sim \sim \sim$	－	－	边		起	（1）		Fricror	（1）
	Non		$\left\lvert\, \begin{array}{lll} \infty & 0 \\ \infty & 4 \\ \infty \\ \infty \end{array}\right.$	－¢ ¢ \％	N－180	禹皆言	¢	$\left.\right\|_{x} ^{x} \times \infty$	\％	
$\begin{array}{r} 3 \\ \text { II } \\ \text { II } \end{array}$	${ }_{\substack{\infty \\ \dot{\sim} \\ \sim \\ \sim}}^{\infty}$	O	y				त̇	N	F－\％	Nors
＝	\bigcirc			$\bigcirc \bigcirc \circ$		$\bigcirc \bigcirc$				\bigcirc
＜ 0								$\frac{\sqrt{\frac{8}{x}}}{\left\langle\frac{x_{2}^{\prime}}{2}\right.}$	$\sqrt{\frac{\widetilde{x}}{8}}$	$\frac{\sqrt{\frac{\rightharpoonup}{x}}}{\substack{9 \\ \frac{9}{2}}}$

Table 3．11：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(0.75,0.75)$

iull	－	－	10	10		\％	－		｜rar	등
$\begin{array}{\|cc\|c} \substack{0 \\ 0 \\ 0} \\ \hline \end{array}$		a 00	O M M		風		（1）	－	－	
	000	000	000	0	O\％	－\％	－	\％		$\mathrm{Si}^{\circ} \mathrm{C}$
\bigcirc	900	Ono	9800	＋M 0_{0}	－	Coid				
\|	\％$=10$	为		笖号品品		वッロ				
	$\bigcirc 0$	000	000	9	（	Nomin		\％${ }_{0}^{\circ}$	\％$\%$	
＝	988		O8：			988	988	\％\％\％		9\％8
＜								$\begin{aligned} & \frac{\widetilde{x}}{\frac{1}{x}} \\ & \frac{2}{2} \end{aligned}$	会	毞

Table 3．12：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(2,2)$

$\begin{array}{\|c\|\|} \underline{1} \\ \\| \end{array}$	$\underset{\sim}{\sim} 00$	1000	Ñ0	－10 ${ }^{\text {NO }}$				（1）		
	\bigcirc	10	\bigcirc	O－920	Nom	cor			（1）	
	000	000	$1{ }_{0}^{12} 00$	$\mathrm{c}^{\mathrm{i}} \mathrm{O}$	\％\％\％	－	$\left\lvert\, \begin{array}{\|ccc\|c} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \\ \hline \end{array}\right.$	－		
	300	000	0	1080	$\cos _{\substack{1 \\ \infty}}$	¢0．	N	in $\sim_{0}^{\circ} \stackrel{\infty}{\circ}$		crers
		\％	Or		Nor				－	
$\left.\begin{array}{r} 3 \\ \vdots \\ \text { un } \\ 11 \end{array} \right\rvert\,$	000	0.00	No：	\bigcirc	욷ㅇ	¢	（1）		$\\| \infty$	－
$=$	$\bigcirc 9^{\circ} 8$	$\bigcirc \overbrace{0}^{\circ} 8$	$\bigcirc \bigcirc 080$	$\bigcirc \bigcirc \bigcirc 08$	$\bigcirc)_{0}^{\circ} 8$		$\bigcirc 88$	$\bigcirc 88$	$\bigcirc \stackrel{8}{\circ} 8$	
＜${ }^{\text {a }}$								$\frac{\sqrt{\frac{x}{x}}}{\left\langle\frac{\sqrt{v}}{2}\right.}$	$\frac{2}{\frac{\tilde{x}}{2}}$	$\sqrt{\frac{\widetilde{x}}{\frac{7}{2}}}$

	000	000	000	000	$1{ }_{1}$	（1）	O－1000	Nicrer	a	
	000	000	－	000			边	－	त̇	－
	000	000	\bigcirc	000	Noc		－	momer	－${ }_{\text {a }}$	
	$\bigcirc 0$	0	\bigcirc	000	$\mathrm{Cl}_{\mathrm{O}}^{1} \mathrm{O}$	二会喿	Nor		－	$\underset{\sim}{\sim}$
	170	－	000	$\bigcirc 00$	$\infty \stackrel{\infty}{\infty}$	©	岳	Or	二̇ं）	กับ
$\left.\begin{array}{\|\|c\|\|} \hline \frac{2}{3} \\ 111 \\ 0 \end{array} \right\rvert\,$	$\bigcirc 0$	000	000	000	NOO	－	－		Nor	¢
$=$		$\bigcirc \circ_{0} 8$	$\bigcirc \overbrace{\circ}^{\circ} 8$	$\bigcirc O_{0} 8$	$\bigcirc 8.8$	$\bigcirc 8.8$	$\bigcirc \stackrel{\circ}{\circ} \stackrel{8}{-1}$	\bigcirc	988	$\bigcirc 9_{0}^{\circ} 8$
＜\wedge								$\frac{\widehat{\tilde{E}}}{\left\langle\frac{\widetilde{x}}{\frac{n}{2}}\right.}$		$\frac{\substack{\frac{2}{x} \\ \frac{1}{2} \\ \frac{1}{2}}}{}$

Table 3．13：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate \widehat{D} associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(4,2)$

	∞	$\bigcirc 0$	$1{ }_{0}^{1} 00$	Mo．	－		\％	－	ジア	
	\bigcirc	0%	0.00	Noscor	家寺宫	\％	ชั\％\％\％	O－1	－	（0\％
	\bigcirc	0%	000		$\xrightarrow{\sim}$	边	¢ ¢－－\％	तู\％		
	\bigcirc	O\％O	000	9			－		\％¢	（1）
	NOO	N00		10\％	N（10		\％\％\％\％		趐	（1）
π	\bigcirc	0	0000	Nrers	No		－	－		
$=$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$			아앙	$\bigcirc \bigcirc$	웅육	
＜ 0								$\frac{\sqrt{\frac{x}{x}}}{\left\langle\frac{\sqrt{v}}{2}\right.}$	$\frac{2}{\frac{\tilde{x}}{2}}$	$\frac{\sqrt{\tilde{x}}}{\substack{9 \\ \frac{1}{2}}}$

$\underset{\\|}{\stackrel{3}{4}} \underset{\\|}{\\|}$	000	000	000	000	$\overrightarrow{0}-0$		－		700	で
	000	000	－	000	－	－			10	－
	000	000	$\bigcirc 0$	000	－ํo	＋	Nico	®゙き	$\underset{+}{\infty}$	¢ ¢
	$\bigcirc 0$	000	000	－	－No	10			a ${ }_{\text {a }}$	
	\bigcirc	$\bigcirc 00$	－	－	Mr	108	－		\％ 00	©
$\left\|\begin{array}{l\|l\|} \substack{3 \\ 3 \\ 11 \\ n} \end{array}\right\|$	$\bigcirc 0$	000	000	000	－	NAEA	No		込 0	
$=$		$\bigcirc \circ_{0} 8$	$\bigcirc \overbrace{\circ}^{\circ} 8$	$\bigcirc O_{0} 8$	$\bigcirc 8.8$	$\bigcirc 8.8$	$\bigcirc \circ_{0}^{\circ} 8$	$\bigcirc \bigcirc$	988	$\bigcirc \bigcirc$
＜ 0								$\frac{\widehat{\tilde{E}}}{\left\langle\frac{\widetilde{x}}{\frac{n}{2}}\right.}$		$\frac{\substack{\frac{2}{x} \\ \frac{1}{2} \\ \frac{1}{2}}}{}$

Table 3．14：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(6,1)$

${ }_{\text {L }}$	000	000	000	8000	50	\％No	－		180	－
	Nol	10		400		－			90	
$\left\|\right\|$	000	000	000	9	0		$\bigcirc \stackrel{\infty}{\circ} \stackrel{\sim}{\circ}$		∞	
	000	000	000	\bigcirc	500			¢	Noo	
	000	000	000	000	No：			¢	\bigcirc	枵
$\begin{gathered} \text { 部 } \\ \end{gathered}$	000	$=100$	1900	1200	0	Tick		वैं	980	
$=$	$\bigcirc 9^{\circ} 8$	$\bigcirc 88$	$\bigcirc 88$	$\bigcirc 98$	$\bigcirc \bigcirc$			$\bigcirc 8.8$	$\bigcirc 8.8$	$\bigcirc 8.8$
＜－									$\sqrt{\frac{a}{x}}$	\cdots

$\stackrel{11}{\text { ¢ }}$	000	000	000	000	000	000	\％－30	-3.0	10， 0	\％00	
	000	000	000	000	\bigcirc	－ํㅡㅇ́ㅇ	920		\＃，	込	
	000	000	000	000	000			～¢ ¢	0	$1 \log _{0}$	
$\left.\begin{array}{\|cc\|\|} \stackrel{\rightharpoonup}{\wedge} & \stackrel{3}{4} \\ \hat{\sim} & \\| \end{array} \right\rvert\,$	$\bigcirc 0$	－	000	000	000	－	O2，		170	$\underset{\sim}{\sim}$	
	000	\bigcirc	000	000	－	－	9\％	O－	$10_{0}^{10} 0$	${ }_{0}^{0}$	
$\begin{aligned} & 3 \\ & n \\ & n \end{aligned}$	000	000	000	000	$\mathrm{Cl}_{0}^{\circ} \mathrm{O} 00$	arccor		¢1000	0	－	
$=$	\bigcirc	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$				$\bigcirc \bigcirc \bigcirc \circ$			$\bigcirc)_{0}^{\circ} \stackrel{8}{-1}$	
＜\wedge								$\frac{\widehat{\tilde{x}}}{\frac{2}{x}} \frac{\sqrt{2}}{2}$		$\frac{\sqrt{\frac{\rightharpoonup}{x}}}{\substack{5 \\ \frac{5}{2}}}$	

䍃		구ㅇㅜㅜㄹ	㐌管号品				掠迺高	\％\％	을율	\％\％\％
\％	\＃\％ix o		O，		T ${ }^{\text {x }}$	－		\％\％ 8	88.	융：
	2	－		（1）	\％쿵			\％\％	\％\％\％	\％\％
人		－		7r	－			8\％	\％\％\％	\％${ }_{\text {\％}}^{\text {\％}}$
	줌			－	－	かo		\％\％	¢ \％¢	\％\％\％
	商号号	か ¢ \％\％	Fix	¢\％\％\％¢		을：		율	\％\％\％	융：
＝	988	288	988	988	988		988	988	288	$\bigcirc 8 \%$
¢								$\begin{aligned} & \frac{\widetilde{x}}{\frac{x}{x}} \\ & \left\langle\frac{7}{2}\right. \end{aligned}$		准

	\％	\％	8							
			＋							F－
（ill	$)_{0}^{\circ} 0_{0}^{+}$	ご吅	∞		$\stackrel{+}{8}$		Fome		व̌	か．
	20	$\bigcirc 00$	∞		9	\％x_{0}^{20}			（\％R	
菢	9	\％\％ 0	\bigcirc		앙으응					（1）
5			\＃＊		Å			运訾		
\％			98%		\bigcirc	98%				980
¢	$\begin{aligned} & \text { 倉 } \\ & \text { 管 } \end{aligned}$							$\frac{\stackrel{⿸ 厂 ⿱ 二 ⿺ 卜 丿 口 ~}{x}}{\left\langle\frac{12}{2}\right.}$		1

Table 3．15：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=4$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(6,10)$

H	∞	$\stackrel{5}{5}$	Oioc	$\pm \begin{gathered}* \\ 0\end{gathered}$	F－0	$\pm{ }^{\circ} \mathrm{C}$			$\frac{\infty}{\sim}{ }_{\sim}^{\circ}$ 웅	
${ }_{\text {III }}^{11}$	∞	Noo	0		980	$\pm \square^{\circ} \mathrm{B}$		8 F	年 응	＊
¢	∞	$\cong 00$	O\％	－${ }_{0}^{2}$	70_{0}	す\％	\％\％\％\％	員下式	$\stackrel{\infty}{\sim}$ 성 ㅇ	
\wedge	∞	$\bigcirc 00$	O\％O		$\operatorname{lom}_{+\infty}^{\infty}$	$\pm \square^{\circ} \mathrm{B}$	\％\％\％		$\frac{\infty}{\sim}$ 승 앙	
$\left\lvert\, \begin{aligned} & \text { 気 } \\ & 0 \end{aligned}\right.$	－ 00	90	$\because 00$		Fis 웅	$\pm \square^{\circ} \mathrm{B}$		O．	穴答	－
	∞	$\because 00$	O\％		웅ㅇ		\％\％\％	㖊 F	$\frac{\infty}{\text { a }}$ 응	－
＝	988	288	988	988	288	288	288	288	288	988
＜	$\begin{aligned} & \text { 令 } \\ & \text { 倉 } \\ & 0 \end{aligned}$							$\begin{aligned} & \frac{\widetilde{x}}{\frac{1}{2}} \\ & \left\langle\frac{\pi}{2}\right. \end{aligned}$	$\begin{aligned} & \frac{\widetilde{\tilde{x}}}{0} \\ & \frac{0}{9} \\ & \frac{9}{2} \end{aligned}$	准

Table 3．16：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(1,1)$

	000	00	$\bigcirc 0$	000	$\bigcirc 0.0$	Nimo	$\square_{0} 0_{0}^{\infty}$	10	${ }_{\sim}^{\infty} \times$	$\infty \square_{0}^{\circ}$
	000	000	\bigcirc	00		웅잉		앙앙ㅇ	$2{ }^{2} 80$	940
－	－0	000	000	000	$0 \cdot$	${ }_{\sim}^{\infty} \times \infty$	9 O	N－	－\sim_{0}^{0}	\％\％
0	000	000	000	000	주웅	¢90	Fio		風会号	\％－0
In	000	00	000	－	130	\＃\％	No…	－x ci co	为 5	N0，
＝	988	988		988	988	988	988		988	9\％8
¢								$\begin{aligned} & \frac{\widetilde{x}}{\frac{\tilde{x}}{2}} \\ & \left\langle\frac{1}{2}\right. \end{aligned}$		裘

$\\| \underset{y}{2} \underset{\sim}{2}$	－	8 \％¢ ¢ ¢	二呂	10	－	－	®ix	¢ix mix	－	禹
		Of	－		On mi		言号哃			（1）
－	Oix	2－\sim_{0}^{∞}	成言高	N\％	¢	－		¢	${ }_{\sim}^{\infty} \times$	（100
	\％	N－	－					あ゙らす		¢\％\％\％
¢ 5	－	为舟	\％		\％\％	N－		筬め\％	\％	
＝	98%	\％\％\％	9%		\％\％\％		\％\％\％	288	98%	$9 \% 8$
¢								$\begin{aligned} & \frac{\sqrt{x}}{\frac{1}{x}} \\ & \left\langle\frac{1}{2}\right. \end{aligned}$		㾉

犮	900	－m mo	$\overbrace{0}^{\infty} 0_{0}^{\circ}$	$x_{0}^{\infty} \times$			－	－	免系吕	\％
$\left\lvert\, \begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 11 \end{array}\right.$	± 0	O궁	\％\％	－		守奇品品			－	\％
$\left[\begin{array}{cc} 0 & 3 \\ 0 & 4 \\ 0 \end{array}\right.$	\％${ }_{\sim}^{0}$	${ }_{0}^{+}$	A 70	180		Foin	वix mio			枵
$\left\lvert\, \begin{array}{cc} a \\ 0 \end{array}\right.$	－	\％$\square^{\circ} \mathrm{O}$	$\sim_{\sim}^{\infty} \times$	（1）	\％	F－				
か을	$\ddagger+00$	¢ ${ }_{\text {c i jo }}$	No．${ }^{\text {coso }}$			\％$\sim_{0} \times \sim$		成号管		
＝	98%	\％\％\％	\％\％\％	\％\％\％	\％\％\％	O\％\％		98%	2\％\％	98\％
¢								$\begin{aligned} & \frac{\widehat{x}}{\frac{x}{x}} \\ & \left\langle\frac{1}{2}\right. \end{aligned}$		

Table 3．17：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(0.75,0.75)$

$\left\|\right\|$	¢	N	Fic	－	N－	O	N－	$\\| \begin{array}{ccc} \substack{0 \\ \dot{\alpha} \\ \dot{\alpha} \\ \infty \\ \infty} & 0 \\ \hline \end{array}$	－	（1）
$\left\|\begin{array}{cc} 111 & 0 \\ \partial & \vec{x} \\ 3 & 11 \end{array}\right\|$	信	Hiccor	～	¢	$\left\lvert\, \begin{gathered} \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ 0 \end{gathered}\right.$		－	¢\％	（1）	$\pm \infty$
	cror			（1）	$\left\|\begin{array}{ccc} 0 & \text { N. } \\ \dot{\infty} & \dot{\infty} \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{array}{ccc} 1 & \infty \\ \infty \\ \infty \\ \infty & \infty \\ \infty & \infty \\ \infty \end{array}\right.$				（ers
		（1）	$\left\lvert\, \begin{array}{ccc} 0 & 0 \\ \dot{x} & 0 \\ & 0 \\ \hline \end{array}\right.$	® ¢ ¢ ¢	Nor		－	\cdots	（1）	
		¢		（rror					－	\bigcirc
$=$	\bigcirc	$\bigcirc \mathrm{O}_{\sim}^{\circ} \stackrel{8}{\circ}$	$\bigcirc \mathrm{O}_{1} \mathrm{O}$		용응	$\bigcirc \overbrace{\circ}^{\circ} \stackrel{\circ}{\circ}$	용융			$\bigcirc \bigcirc \bigcirc-\circ_{0}^{\circ}$
＜$\stackrel{1}{ }$								$\frac{\stackrel{\rightharpoonup}{\tilde{E}}}{\left\langle\frac{x_{2}^{\prime}}{2}\right.}$	$\sqrt{\frac{2}{x}}$	$\frac{\sqrt{\tilde{x}}}{\frac{2}{2}}$

速	\％ 00	－̊ㅇㅇ	98.	\％			䛎	－		－
（110	∞	天 20	0	－		为			$\mathrm{m}_{0} \times$ ci	硡
－	0	$\infty 00$	－100	x_{0}^{∞}	\％	N		－		－
	No	$\overbrace{-\infty}^{\infty}$		Nos	－	へ̊				
成	∞	\％${ }^{2} 0$		¢ ¢ ¢ ¢ ¢	（1）	\％\％¢ ¢ ¢ ¢		－		尔
＊	$\bigcirc \%$ ¢	－\％¢	$\bigcirc 8$.	$\bigcirc 8 \%$	$9 \% \%$	98%	98.8	98%	98%	98%
¢										会

Table 3．18：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(2,2)$

$\left\|\begin{array}{cc} \widehat{a} & { }_{i}^{x} \\ \text { of } & 11 \end{array}\right\|$	000	－	000	Noco		ごの	\％	（1）	\sim_{0}^{∞}		
$\left\|\begin{array}{cc} c c & 3 \\ s & 5 \\ 0 & 11 \end{array}\right\|$	－0	000	000	®oco	\cdots	－	Orsors	Nin $\sim_{\text {N }}$	－		
$\left[\begin{array}{r} \vec{E} \\ 0 \\ 0 \\ 0 \end{array}\right.$	000	0.00	000	\bigcirc	\cdots	On－	－		－	¢	
	300	5000	000	000	$\\| \infty$		No				
¢0 $\frac{11}{3}$	000	000	－	No 0	\cdots	（1）		－${ }_{\text {ajo }}^{\text {ajo }}$	N－	边	
$=$	$\bigcirc \mathrm{O}_{9} 8 \stackrel{8}{\circ}$	$\bigcirc \bigcirc$		$\bigcirc \bigcirc$	\bigcirc	$\bigcirc \overbrace{\sim}^{\circ} \stackrel{\circ}{\circ}$		$\bigcirc \bigcirc \bigcirc \circ \stackrel{\circ}{\circ}$		$\bigcirc \bigcirc$	
＜$⿵$										$\frac{\sqrt{\tilde{x}}}{\frac{y}{2}}$	

	000	－	000	－	${ }_{0}^{2} 000$	\cdots	－	¢	73.70	
	00	00	00	000	000	N100	－	¢\％		－15－3
	－	－	－	－	000	¢ico		－	\bigcirc	
$\left\|\right\|$	000	000	000	000	－9 웅	$\left.\left\lvert\, \begin{array}{ccc} \substack{0} & 0 \\ \\ & 0 \\ 0 \end{array}\right.\right]$	Nrsol	Oi ¢ ¢ ¢	ajor	تֻ
かo	000	$\bigcirc 0$	000	000	000	¢		－	Colo	\％
$=$	앙앙	앙앙	$\bigcirc 8.8$	용앙		$\bigcirc \bigcirc \bigcirc \circ \circ \circ_{0}^{\circ}$		$\bigcirc 8.8$	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$
＜\square								$\frac{\stackrel{\widetilde{\tilde{x}}}{\frac{\pi}{0}}}{\frac{0}{2}}$		$\frac{\sqrt{\frac{2}{x}}}{\frac{1}{x}}$

	7\％	\％ror	F＊	（1）	$\left\lvert\, \begin{array}{ccc} \infty & 0 \\ \infty \\ \infty \\ \infty & \infty \\ \infty & \infty \\ \infty \end{array}\right.$	¢		（ᄌ）		（1）	
		（1）			$\left\lvert\, \begin{array}{ccc} \infty & 0 \\ \infty & 0 \\ \infty & \infty \\ \infty & \infty \\ \infty \end{array}\right.$		$\left.\\| \begin{array}{cccc} \infty & \infty & 10 \\ 0 & 0 & 5 \\ 0 \end{array}\right)$		－180	\％\％\％	
	N		$\left[\begin{array}{ccc} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline} & \cdots \\ \hline \end{array}\right.$		$\\| \infty$			Oin	（1）	－	
$\left. \right\rvert\,$	No	\％ 0_{1}^{0}	过过	（1）	$\left\lvert\, \begin{array}{ccc} \infty & \infty \\ \infty \\ \infty & \dot{\alpha} \\ \infty & \dot{\alpha} \end{array}\right.$	－\％	$\left.\right\|_{n} ^{n}$		$\\| \begin{array}{ccc} \infty & \infty \\ \infty & 0 \\ \infty & \dot{\alpha} \\ \hline \end{array}$		
$\left.\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 11 \end{array} \right\rvert\,$		（1）	成盛号			$\left\lvert\, \begin{array}{ccc} \infty & \infty & 10 \\ \infty & 0 & 0 \\ \infty & \sigma_{0} & \alpha \end{array}\right.$		$\\|_{\infty}^{\infty}$	N－\％	N	
$=$	$\bigcirc \mathrm{O}_{9}^{\circ} \mathrm{P}$ ：		$\bigcirc O_{0}^{\circ} \stackrel{\square}{-1}$					$\bigcirc)_{-\infty}^{\circ}$			
＜								$\left\langle\frac{\stackrel{\rightharpoonup}{x}}{\left\langle\frac{x_{2}^{2}}{2}\right.}\right.$	$\sqrt{\frac{a}{x}}$	$\frac{\sqrt{\frac{2}{x}}}{\substack{5}}$	

	$\stackrel{3}{4} 0$	＋${ }_{\circ}^{\circ}$	－7\％ 0	\％	¢			－		－${ }_{\text {－}}^{\text {d }}$
	10	－${ }_{\text {cioc }}$	＋ $0_{0}^{\circ} \mathrm{O}$				或宗示		－	边
	10	＋\％	0×0	$\stackrel{\infty}{\circ} \mathrm{J}=0$		（1）	（1）		－	
$\left.\begin{array}{cc} c_{0}^{2} & 3 \\ 1 & 1 \\ 1 & 11 \end{array} \right\rvert\,$	No	が \sim_{\sim}^{∞}	\＃${ }_{\sim}^{\sim}$	$\bigcirc-\mathrm{Co}$		\％	Ors	\＃	$\left\lvert\,\right.$	－
$\begin{array}{lll} 50 & \frac{1}{11} \end{array}$	¢ ${ }^{\infty}$	－io ${ }^{\circ}$ O	$7{ }^{-1} 0$	（1）	®ั．					
\％	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc 08$	$\bigcirc \bigcirc \bigcirc 88$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc \circ \circ$	$\bigcirc \bigcirc \circ 8$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$		\bigcirc
＜ 0	\mathfrak{c}							$\left\langle\frac{\widetilde{\tilde{x}}}{\frac{\sqrt{n}}{2}} \frac{1}{2}\right.$		$\sqrt{\stackrel{\rightharpoonup}{x}}$

Table 3．19：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(4,2)$

	000	000	000	0				¢		さioco	
$\left\|\begin{array}{cc} c c & 3 \\ s & 5 \\ 0 & 11 \end{array}\right\|$	$\bigcirc 0$	000	－	0.00	－	$\\| \begin{array}{lll} \infty & 0 \\ \infty \\ \infty \\ \infty & 0 \\ 0 & 0 \\ 0 \end{array}$			于 $\stackrel{\infty}{\infty}$ ¢		
	000	000	000	1700	－ $\mathrm{c}_{\text {－}}^{\sim}$				No．	\％	
	000	000	000	7000	$\mathrm{O}_{\mathrm{i}}-\mathrm{C}$	－	「大き		－		
	00	000	000	7000		$\\| \underset{\sim}{\alpha}$			Ofor		
$=$	$\bigcirc 9_{9}^{\circ} \stackrel{\circ}{\circ}$	$\bigcirc 9_{0}^{\circ} \stackrel{\circ}{\circ}$	$\bigcirc 8.8$	$\bigcirc \circ_{0}^{\circ} \stackrel{\circ}{\circ}$	$\bigcirc \circ_{0}^{\circ} \stackrel{\circ}{\circ}$	$\bigcirc 0_{0}^{\circ} \stackrel{\circ}{\circ}$	$\bigcirc 0_{0}^{\circ} \stackrel{\circ}{0}$		$\bigcirc 8.8$		
＜a									$\frac{\sqrt{\frac{\tilde{x}}{0}}}{\substack{9 \\ 0 \\ \frac{9}{2}}}$		

$\left\|\begin{array}{ll} \text { an } & \overrightarrow{a n} \\ \text { did } & 11 \end{array}\right\|$	000	000	000	000	000	\％${ }_{-1}$	－		No 0	$\stackrel{1}{1} \times 0$
$\left\|\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 & 0 \end{array}\right\|$	000	000	000	000	000	－${ }_{-}^{4}$	＋		1300	0
$\left\|\begin{array}{cc} a \\ & \vec{i} \\ 0 & 111 \end{array}\right\|$	000	－ 0	\bigcirc	－	－		－	比	1000	－${ }_{-1} 0$
$\left\|\begin{array}{cc} c_{0}^{n} & \vec{a} \\ 0 & 11 \end{array}\right\|$	000	000	000	000	000		（7）	－	1080	（1）
	$\bigcirc 0$	000	－	－	1700		＋	$\stackrel{\sim}{\square}=\stackrel{\circ}{\circ}$		0
＝	\bigcirc	앙융	$\bigcirc \circ_{0}^{\circ} \stackrel{\circ}{\circ}$	\bigcirc	$\bigcirc \overbrace{\circ}^{\circ} \stackrel{\circ}{0}$	$\bigcirc O_{0}^{\circ} \stackrel{\circ}{\circ}$	$\bigcirc O_{0}^{\circ} \stackrel{\circ}{0}$	$\bigcirc \circ_{0}^{\circ} \stackrel{\circ}{\circ}$	$\bigcirc \bigcirc_{0}^{\circ} \mathrm{O}$	\bigcirc
＜\triangle								$\frac{\substack{\frac{\tilde{x}}{0}}}{\frac{\sqrt[x]{n}}{2}}$		\cdots

$\left\|\begin{array}{c\|} \widehat{a j} \\ \underset{\sim}{a} \\ \underset{\sim}{i} \\ 11 \end{array}\right\|$	OR	式	Nor	\＃10	\cdots	オ̇			Ni	（\％）
	Nor			$\left.\left\lvert\, \begin{array}{ll} \infty \\ \infty \\ \infty \\ \infty & \dot{\alpha} \\ \infty \end{array}\right.\right)$	Nomer	Her	No joj	$\left\lvert\, \begin{array}{ccc} \circ & 1 & 0 \\ \dot{o} & \dot{O} \\ \hline \end{array}\right.$	No	（1）
	－	ค \sim_{∞}^{\sim}	¢\％	$\left\{\begin{array}{l} \infty \\ x \\ x \\ x \\ x \end{array}\right.$	－	O－1	あ ¢ ¢ ¢ ¢ ¢ ¢	$\left\|\begin{array}{ccc} \infty & \infty & \infty \\ 0 & 0 \\ \infty & \dot{\infty} & 0 \\ \infty \end{array}\right\|$	－	Or
$\left. \right\rvert\,$						O\％	お\％\％\％¢ ¢	（	So	Nors
$5 \circ$	$\left\lvert\, \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ & 0 & 0 \\ 0 \end{array}\right.$	（\％）		¢		Nrer	$\left\lvert\, \begin{array}{ll} -\infty \\ \infty \\ \infty \end{array}\right.$	Lorrlor	앙：8．8	No
$=$	$\bigcirc)_{\circ}^{\circ} \stackrel{0}{\circ}$				우ㅇㅜㅠㅇ	요욱	우ㅇㅜㅠ	아웅		웅육
＜								$\frac{\sqrt{\frac{\rightharpoonup}{x}}}{\left\langle\frac{\sqrt{x}}{2}\right.}$		$\frac{\sqrt{\frac{2}{8}}}{\frac{5}{2}}$

	$\therefore 50$	$0 \stackrel{\circ}{\circ} 0$		$\underset{\sim}{\infty} \underset{\sim}{\infty} \times$	\％			人	（\％）	\％
$\left\|\begin{array}{cc} 0 & 0 \\ 3 & 1 \\ 0 & 11 \\ 0 & 11 \end{array}\right\|$	No．	${ }_{i} \mathrm{O}$	O．	戌号	Fi亏	Oin	N	\＃	－	（20）
$\left\|\begin{array}{ll} 5 & 2 \\ & 2 \\ 0 & 11 \\ 0 & 0 \end{array}\right\|$	O－j	－	$\overrightarrow{\mathrm{a}}$	$\stackrel{0}{\circ} \stackrel{\infty}{\sim}$	\％iccrer	（1）		－	ƠO	边
	－	－	－	$\stackrel{\sim}{\sim}$		Nricrem		aicraid	（1）	\％rrer
So	$\square{ }_{+}$	¢	${ }^{1}$				Fico	No	N－\％	－
\％				$\bigcirc \bigcirc \bigcirc \circ \circ$	$\bigcirc)^{\circ} 8$		$\bigcirc O_{0}^{\circ} \stackrel{8}{1}$		$\bigcirc \bigcirc$	\bigcirc
＜－								$\frac{\widetilde{x_{2}}}{\frac{\sqrt[x]{n}}{2}}$		$\stackrel{\substack{\frac{\rightharpoonup}{x}}}{\substack{a \\ \frac{1}{2}}}$

Table 3．20：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2ndSP and $\beta(p, q) \equiv \beta(6,1)$

		000	000	000	000	000	\％oo	－	000	800
\％	000	000	000	\bigcirc	000	－	－9 ${ }_{-}^{\text {a }}$	\％ 00	\bigcirc	1700
	000	000	000	000	000	${ }^{-10} 0$		180	000	\％ 000
合官	000	000	000	\bigcirc	000	000		\％ 0	000	800
25	000	000	000	000	\bigcirc	－	$\rightarrow \sim_{\sim}^{\infty}$	89	\％ 0	
\％	용응	¢ \％\％	98%	용앙	98%	98%	98.8	98%	98%	98%
¢										

$\begin{aligned} & \text { Of } \\ & 0 \\ & 0 \end{aligned}$		No	\％ 00	$7{ }_{6}{ }^{\circ}$	\bigcirc	\％		\％		
景		Yoo	\％oo	${ }_{1}^{4}$		\％${ }_{\circ}^{\circ}$		\％	（1）	
，	0	\％\％o	$\cdots{ }^{-0}$	$\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$	$\stackrel{\sim}{-1} \times$					－
$\begin{aligned} & 6 x \\ & 40 \\ & 0 \end{aligned}$	－70		${ }_{0}^{\infty} 00$				（\％）			
\％${ }^{3}$	\％\％		Hix	－A O	笑号茹	葆哭边	7i $\overbrace{0}$	－\％		－
＝	$\bigcirc \%$	$\bigcirc \%$	\％\％\％	$\bigcirc 8$.	$\bigcirc 8$.	O\％\％	O\％	\bigcirc	$\bigcirc \%$	
＜								$\begin{aligned} & \frac{\widehat{\tilde{x}}}{\left\langle\frac{1}{2}\right.} \\ & \frac{1}{2} \end{aligned}$		

Table 3．21：\％of simulated samples of size n for which the Euclidean distance between the sample scale estimate $\widehat{\mathrm{D}}$ associated with the FRS and the one associated with either the Likert or the FLS with $k=5$ different values is greater than $\varepsilon \in\{1,5,10,15\}$ for the 2 ndSP and $\beta(p, q) \equiv \beta(6,10)$

	000	00	000	000	10．30		－	（1）	边	Nom	
$\left\|\begin{array}{ccc} 0 & 3 \\ 0 & x_{1} \\ 0 & \\| \end{array}\right\|$	－	000	000	000	\＃10	\bigcirc		－	200		
	$\bigcirc 0$	$\bigcirc 00$	000	000	\＃0	－		Orion	\％ 00	－${ }_{\text {c }}^{\infty}$	
	000	－	：100	－	N：	－	（1）	$\left\|\begin{array}{ccc} \infty & 0 \\ \infty \\ \infty & 0 \\ 0 & 0 \\ \infty \end{array}\right\|$	\％ 00	（in	
	000	－	000	000	400	－	（20	－ix	为	N	
$=$	$\bigcirc 8.8$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc)^{\circ} 8$		$\bigcirc)_{0}^{\circ} \stackrel{\circ}{0}$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	
＜－								$\frac{\stackrel{\overparen{x}}{\frac{x}{x}}}{\frac{\sqrt[x]{2}}{2}}$		$\frac{\sqrt{\tilde{x}}}{\substack{\frac{1}{2} \\ \frac{1}{2}}}$	

\widehat{O}	－	000	000	$\bigcirc 0$	000				000	$\underset{\sim}{\sim} \underset{\sim}{\sim}$
S ${ }^{\text {c }}$	000	000	000	000	000	on	－	\％\％om ci	$0_{0}^{+} 000$	
	00	00	000	000	000	m		¢の\％	\＃	
$\begin{array}{\|cc\|} \hline 0 & 5 \\ \hline \end{array}$	000	000	000	000	0%	O－1．	－\times crer	（1）	80	¢1－
－2 $\frac{11}{3}$	000	000	000	000	000	¢	－		\bigcirc	
$=$	988	$\bigcirc \bigcirc$	$\bigcirc 0_{0} 88$	$\bigcirc \circ_{0}^{\circ} 8$	$\bigcirc \circ_{0} 8$	$\bigcirc \bigcirc_{0} 88$	$\bigcirc \bigcirc_{\sim}^{\circ} 8$	$\bigcirc \bigcirc_{\sim}^{\circ} 8$	$\bigcirc \bigcirc_{0}^{\circ} 8$	
＜$⿵$									$\frac{\substack{\tilde{x} \\ \frac{2}{2} \\ \frac{9}{2} \\ \hline}}{}$	

$\left\|\begin{array}{cc} \widehat{O} \\ \widehat{O} \\ \vdots & \\| \end{array}\right\|$	NTM			－	（1）	－	－	\％\％¢ ¢	¢ ¢ ¢ ：	
	\＆	（1）	Fix					O\％：	O\％：O\％	\％\％O－：
	Norrs				$\left\|\begin{array}{ccc} \infty & 0 \\ \infty & 0 \\ 0 & \dot{\infty} & \dot{\sigma} \end{array}\right\|$	Or	－		®i $\dot{\circ} \mathrm{O}$	－
	\＃＊）		$\left[\begin{array}{ccc} \infty & \infty \\ \infty & \infty \\ \infty & 0 \\ \infty & 0 \\ j \end{array}\right.$	$\left\|\right\|$				\％\％	\％\％\％	
	$\left\lvert\, \begin{array}{ccc} \begin{array}{c} 2 \\ \\ 0 \\ 0 \end{array} & 0 & 0 \\ \hline \end{array}\right.$	（T）	Oi		（1）	为		O． 8 O	O\％\％	\％\％\％\％
$=$	$\bigcirc O_{0}^{\circ} 8$	$\bigcirc 0^{\circ} 8$	$\bigcirc \circ_{0}^{\circ} 8$	$\bigcirc \circ_{0}^{\circ} \stackrel{8}{\circ}$	$\bigcirc \circ_{9} 8$	$\bigcirc \circ_{9} 8$	$\bigcirc \sim_{0}^{\circ} \stackrel{8}{\circ}$		\bigcirc	$\bigcirc \circ_{\circ}^{\circ} \stackrel{8}{8}$
く								$\frac{\stackrel{\rightharpoonup}{x}}{\left\langle\frac{\sqrt{x}}{\frac{n}{2}}\right.}$	$\sqrt{\substack{\hat{x} \\ 0 \\ 0 \\ 0 \\ 0}}$	，

	－${ }_{-1} \times 0$		－		N－	${ }_{\sim}^{\circ}$	Nors	O－	®．${ }_{\circ}^{\circ}$	筞运家
	$\stackrel{\sim}{\sim}$	¢	Nor	＋		－		aicoso	の．	
	On	$\stackrel{\sim}{\sim}$	¢	$\stackrel{\sim}{0}_{+}^{\sim}$		Nrer		$\left.\left\lvert\, \begin{array}{ccc} -1 & 0 & 0 \\ \infty & \infty & 0 \\ 0 & 0 & 0 \end{array}\right.\right]$	®．	
$\left\|\right\|$	N		－	$\stackrel{0}{\circ} \mathrm{O} \rightarrow 7$		$\left\|\begin{array}{lll} \infty & 0 & 0 \\ \infty & 0 \\ \infty & 0 \\ \infty & 8 \\ \hline \end{array}\right\|$		Mrars	のogo	No
为	－ 00	－	$\overbrace{0}^{\mathrm{O}} \stackrel{\sim}{\sim}$	\＃${ }_{0}$		Nors	＋ion		®，\％\％	
\approx	앙앙	요아암	$\bigcirc \bigcirc \bigcirc$		$\bigcirc \bigcirc_{\sim}^{\circ} \stackrel{\circ}{\circ}$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$		$\bigcirc 0_{0}^{\circ} \stackrel{\circ}{-1}$	$\bigcirc 8$.
（ $)$	倉									$\frac{\stackrel{\rightharpoonup}{\frac{2}{x}}}{\substack{a}}$

On the basis of Tables 3.10 to 3.21 we cannot get very general conclusions, but we can definitely assert that scale measures mostly vary from the FRS-based data to the encoded Likert ones.

Furthermore, one can state some approximate behaviour patterns. In this way,

- for almost all situations, robust scale estimates provide us with much higher percentages than non-robust ones; more concretely, robust estimates are almost generally more sensitive to the change in the rating scale type, as it has also been shown for the case studies-based descriptive analyses;
- distances are uniformly lower for $k=5$ than for $k=4$ when the midpoint of the 1 -level is beta distributed with $(p, q) \in\{(1,1),(0.75,0.75),(2,2),(4,2)\}$; when $(p, q)=(6,10)$ such a conclusion is not uniform but close to; when $(p, q)=(6,1)$ such a conclusion is appropriate for robust estimates and ε $\in\{1,5\}$, but there is no clear conclusion for non-robust estimates or greater values of ε.

3.5 Concluding remarks of this chapter

This chapter has been devoted to compare, from a statistical point of view, three types of scale used to rate intrinsically imprecise magnitudes: the Likert-type (or its numerical encoding), the fuzzy linguistic scale (which is generally obtained as a posterior fuzzy number-valued encoding of a Likert scale) and the fuzzy rating scale. The comparison is rather specifically conceived to be carried out in the framework of questionnaires.

The first comparative tool among the three scale has been the diversity, quantified through the Gini-Simpson index. Assuming that two respondents assessing the same fuzzy rating response also assess the same Likert one, it has been proved that the diversity is much better captured through fuzzy rating scale-based questionnaires.

Secondly, an inferential approach has been presented on the basis of datasets from the questionnaires in two of the case studies in Chapter 1. Both questionnaires involve items which have to be answered according to a fuzzy rating scale as well as to a Likert-type scale. Likert data have been numerically encoded and also associated with the terms from the most usual balanced fuzzy linguistic scales of 4 and 5 values. With the available data in the three scales, the bootstrapped test about the equality of population variances of two or more random fuzzy numbers has been applied, separately, for each rating scale. The outputs in this study show
that the statistical conclusions for the FRS differ from the ones obtained for the encoded Likert-type data.

Finally, a descriptive analysis has been addressed through two approaches to compare the scale measures in Chapter 2. The first one, making use of the two previous datasets, has allowed us to conclude that the values of these measures often differ for different rating scales.

The second descriptive approach has been carried out through simulations. Fuzzy rating scale responses have been generated according to the simulation procedure inspired by questionnaires. The simulated fuzzy data have been associated with numerically encoded labels in a Likert scale. This association has been performed by means of the minimum distance Likertization criterion, which has been validated with the three cases studies introduced in Chapter 1. The Likertized responses have also been encoded by means of the terms from different fuzzy linguistic scales with 4 and 5 values. Considering different sample sizes, the percentages (over 1000 samples) of Euclidean distances between the scale estimates for the FRS data and for the two encoded Likertized responses have been calculated. On the basis of the outputs of this simulation study, we could assert that the values of the scale measures mostly vary from the FRS-based data to the encoded Likert ones. Moreover, the robust scale measures are almost generally more sensitive to the change of rating scale than the non-robust ones (this fact could also be seen for the case studies-based descriptive analyses).

In summary, the main conclusions/contributions of this Chapter are the following:

- The diversity is higher, under quite general conditions, for the fuzzy rating scale than for the Likert scale or its numerical/fuzzy linguistic encoding.
- An inferential study to test the equality of variances has shown different conclusions depending on the considered scale.
- Two descriptive comparative studies, based on real-life examples and simulations, and involving the scale measures introduced in Chapter 2, have allowed us to conclude that the values of these measures differ to a lesser or greater extent for responses based on the FRS and encoded Likert responses. Moreover, robust scale estimates have shown a higher sensitivity w.r.t. the use of different rating scales than the non-robust ones.

The ideas and results in this chapter have been gathered at this stage in three published papers (De la Rosa de Sáa et al. [27], Gil et al. [44] and Lubiano et al. [75]) and one communication to an international conference (Lubiano et al. [79]).

Final conclusions and open problems

In describing some of the most immediate open problems from this work, one should distinguish among the new challenges which could be addressed and those which directly derives from the developments in the work.

Among the new challenges we can mention the following:

- To consider other tools that allow us to measure objectively the robust behaviour of an estimator.
- To analyze the influence of the property of symmetry of a random fuzzy number (see Sinova et al. [106]) in the scale measures introduced in Chapter 2, as suggested by Rousseeuw and Croux [100].

Among the future directions in connection with the studies already collected in this work, we can mention the following:

- The study of the computation time and storage space of the estimators of scale.
- Regarding the measures of dispersion that involve measures of location, the Aumann-type mean and the 1 -norm and φ-wabl/ldev/rdev medians were considered. It would also be interesting to consider the M -estimates and the trimmed means.
- To analyze in more detail the M-estimation of scale in the fuzzy setting by using other loss functions (like Hampel's one) and different choices for the involved parameters.
- To develop a hypothesis test about the equality of variances for different rating scales (that is, a test for the effect of the rating scale on the variance or standard deviation). Because of the same individual would give his/her response according to each scale, it would be a test for linked samples. Then a homoscedasticity test for dependent samples should first be developed.
- To develop hypothesis testing procedures about scale measures different than the variance (or the standard deviation), especially the robust ones analyzed in this work.

Conclusiones finales

 y problemas abiertosAl describir los problemas abiertos más inmediatos en relación con esta memoria, conviene distinguir entre los nuevos retos que interesaría abordar y los que se derivan directamente de los desarrollos recogidos en el trabajo.

Entre los primeros cabe destacar los siguientes:

- La consideración de otras herramientas que nos permitan medir de forma objetiva el comportamiento robusto de un estimador.
- El análisis de la influencia de la propiedad de simetría de un número difuso aleatorio (ver Sinova et al. [106]) en las medidas de escala presentadas en el Capítulo 2, sugerido por Rousseeuw y Croux [100].

Entre las futuras líneas de investigación ligadas a los estudios llevados a cabo en este trabajo, deben mencionarse las siguientes:

- El estudio del tiempo computacional y el espacio de almacenamiento de los distintos estimadores de escala.
- En relación con las medidas de dispersión que involucran medidas de localización, además de la media tipo Aumann y las medianas 1-norma y φ wabl/ldev/rdev, sería interesante considerar los M-estimadores y las medias recortadas.
- Analizar con más detalle la M-estimación de escala en el contexto difuso, empleando otras funciones de pérdida (como la de Hampel) y haciendo diferentes elecciones de sus parámetros.
- El desarrollo de un contraste de hipótesis sobre la igualdad de varianzas para distintas escalas de valoración (es decir, un test para el efecto de la escala de valoración en la varianza o desviación típica). Puesto que un mismo individuo daría su respuesta en cada una de las escalas, se trataría de un contraste para muestras relacionadas. Por lo tanto, se debe desarrollar primero un test de homocedasticidad para muestras dependientes.
- El desarrollo de contrastes de hipótesis sobre la igualdad de medidas de escala poblacionales diferentes a la varianza (o desviación típica), especialmente las medidas robustas analizadas en esta memoria.

Schlussfolgerungen und offene Probleme

Bei der Beschreibung einiger der unmittelbarsten offenen Probleme aus dieser Arbeit, sollte man unter den neuen Herausforderungen unterscheiden, welche angesprochen werden könnten, und jenen, die sich direkt aus den Entwicklungen der Arbeit ergeben.

Unter den neuen Herausforderungen können wir folgende erwähnen:

- Andere Werkzeuge zu betrachten, die es uns erlauben, objektiv das robuste Verhalten eines Schätzers zu messen.
- Den Einfluss der Symmetrieeigenschaft einer zufälligen Fuzzy-Zahl (Sinova et al. [106]) in den Skalierungsmaßen von Kapitel 2, die von Rousseeuw und Croux [100] vorgeschlagen wurden, zu analysieren.

Zukünftig können wir, im Zusammenhang mit den bereits in dieser Arbeit gesammelten Studien, folgendes erwähnen:

- Untersuchung der Berechnungszeit und des Speicherplatzes der Streuungsschätzer;
- in Bezug auf die Streuungsmaße, die eine Lokationsmaße involvieren, wurden die Aumann-Typ-Mittel, die 1-Norm und die φ-wabl/ldev/rdev Mediane berücksichtigt. Es wäre auch interessant, M-Schätzer und gestutzte Mittel zu betrachten;
- M-Schätzer für Streuung im Fuzzy-Szenario detaillierter zu analysieren, indem andere Verlustfunktionen (wie Hampel's) und verschiedene Optionen für die involvierten Parameter verwendet werden;
- einen Hypothesentest über die Gleichheit der Varianz für verschiedene Bewertungsskalen (ein Test über die Auswirkung der Bewertungsskala auf die Varianz oder Standardabweichung) zu entwickeln. Nachdem die gleiche Person seine/ihre Antwort entsprechend jeder der beiden Skalen geben würde, wäre es
ein Test für verbundene Stichproben. Dann sollte zunächst ein Homoskedastizi-täts-Test für abhängige Proben entwickelt werden;
- die Entwicklung von Hypothesentests für Skalierungsmaße, die unterschiedlich von Varianz (oder Standardabweichung) sind, besonders robuste, wie sie in dieser Arbeit analysiert wurden.

Appendix A

Form and datasets for adapted TIMSS/PIRLS student Questionnaire

Partially based on TIMSS \& PIRLS 2011 Questionnaire

Student
Questionnaire

Grade 4

Universidad de Oviedo
Departamento de Estadística e I.O.
y Didáctica de la Matemática
Grupo de Investigación SMIRE (http://bellman.ciencias.uniovi.es/SMIRE, http://grupos.uniovi.es/web/smire)

Contents

Instructions to fill the booklet ...
General items
READING items ...
MATHEMATICS items ... 9
SCIENCE items ... 11

Directions

In this booklet you will find questions about you and what you think. For each question, you should either choosing or drawing the answer you think is best.
Let us take a few minutes to practice the kinds of questions you will answer in this booklet.
Example 1 is one kind of question you will find in this booklet.

Example 1

Do you go to school?

> Fill one circle only
> Yes $-\ldots-\bigcirc$
> No $\ldots . .-\bigcirc$

Example 2 is another kind of question you will find in this booklet.

Example 2

What do you think about your school?
Tell how much you agree with these statement

Read each question carefully, and pick the answer in 1 you think is best to describe your opinion/rating by filling the circle next (if there is only answer 1 to answer the item) or under your answer.
1.

2.

- Read each question carefully, and set the answer in 2 you think is best to describe your opinion/rating by drawing an acute trapezium (r, in particular, a triangle, a parallelogram or even a vertical line) with height equal to 1 and so that
- the upper base is associated with the values 0 to 10 that best describe numerically your opinion/rating

2.

In responding in accordance with type 1, one often considers tod demanding having to choose a a unique answer, but one often considers prefer to have the opportunity to choose something 'in between'. At the same time, it is usually difficult to choose a unique number from 0 to 10 to respond.
Type 2 offers a more flexible and imprecise way to provide with the answer, so that in addition to indicating the ""ully preferred numbers to
rate respondent's valuation, the "somewhat preferred" can be also indicated.
Albout y OU

Reading in school

How much do you agree with these statements about reading?

Tell how much you agree with these statements
R.1. I like to read things that make me think

R.3. Reading is harder for me than any other subject

2.

R4. What grade you got in the last reading test?
R.2. I learn a lot from reading

2.

M.3. Mathematics is harder for me than any other subject

2.

M4. What grade you got in the last math test?
M.2. My math teacher is easy to understand

2.

Science in school

How much do you agree with these statements about science? Tell how much you agree with these statements
S.1. My teacher taught me to discover science in daily life

2.

s.2. I read about science in my spare time
2.

S.3. Science is harder for me than any other subject

1.

2.

S4. What grade you got in the last science test?

Table A.1: Dataset for the "About you" items (Page 235) from the adapted TIMSS/PIRLS student Questionnaire ($\mathrm{p} \& \mathrm{p}=$ paper-and-pencil format, comp $=$ computerized format, $\mathrm{D}+=$ DISAGREE A LOT,
$\mathrm{D}-=$ disagree a little, $\mathrm{A}-=$ agree a little, $\mathrm{A}+=$ agree a lot, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$

ID	Sex	$\begin{gathered} \text { Month } \\ \text { born } \end{gathered}$	Comp	$\begin{array}{l\|} \hline \left.\begin{array}{l} \text { Own } \\ \text { desk } \end{array} \right\rvert\, \end{array}$	$\begin{array}{\|c\|} \hline \text { Own } \\ \text { books } \end{array}$	$\begin{array}{\|c\|} \hline \text { Own } \\ \text { room } \end{array}$	Int	Format	$\begin{array}{c\|} \hline \text { A.1 } \\ \text { Likert } \end{array}$	$\begin{gathered} A .2 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right. \end{gathered}$	$\left\lvert\, \begin{gathered} B .1 \\ \text { Likert } \end{gathered}\right.$	$\begin{gathered} B .2 \\ \left(a_{i}, b_{i}, c_{i},\right. \end{gathered}$
ID1	Girl	July	YES	YES	YES	NO	YES	p\&	D-	(2.2, 3, 4, 5)	D-	(1.4, 2, 3, 4.5)
ID2	Gir	January	NO	Y	S	YES	NO	co	A-	5, 5.625, 7.5, 8.65)		4, 5.7, 7.65, 8.275)
ID3	Boy	June	YES	YES	YES	YES	YES	comp	A+	(5.95, 5.95, 9.95, 9.975)	A-	(5.625, 6.25, 6.25, 7.95)
ID4	Boy	December	YES	YES	YES	YES	YES	comp	D+	(0.175, 0.2, 2.025, 4.125)	A-	$(6.55,6.55,8.45,9.05)$
ID5	Girl	October	YES	YES	YES	YES	YES	co	D+	(0.15, 1.975, 5.95, 6.05)	A-	$(2.5,4.675,6.25,6.9)$
ID	Boy	M	YES	YES	YES	YES	YES	co	A-	(5.975, 6.5, 8.475, 8.975)	A+	(6.975, 7.575, 8.925, 9.475)
ID7	Girl	October	YES	YES	YES	YES	YES	co	A-	$(4.075,4.8,7.425,8)$	A+	$(5.125,5.15,8.55,10)$
ID8	Boy	October	YES	O	YES	NO	YES	<	D-	(2, 2.6, 3, 3)	D-	(3, 3, 3, 3)
ID9	Girl	June	YES	O	YES	YES	O	p	A+	(6.7, 8, 8, 9)	D	$4.9,5.9,6.1,6.9)$
ID10	Girl	March	YES	YES	YES	NO	YES	comp	A+	(7, 7.9, 9.475, 10)	A-	(3.925, 4.8, 6.8,6.8)
ID	Boy	December	YES	YES	YES	YES	YES	comp	D-	$(2.925,3.75,4,5)$	A	(6.075, 6.575, 7.5, 7.5)
ID12	Girl	October	YES	YES	YES	YES	YES	p	A+	(7, 7.9, 8.5, 9.3)	D-	1.5
ID13	Boy	February	YES	YES	YES	YES	YES	p\&p	D-	(3,	D-	(3, 3, 4, 5)
ID14	Boy	June	YES	YES	YES	YES	YES	comp	A+	7.325, $7.35,9,9.975)$	A-	$(4.5,5.5,6.65,8.525)$
ID15	Girl	July	YES	NO	YES	YES	YES	co	A+	(7.975, 8, 9.95, 9.95)	A-	4.8, 4.925, 7.625, 7.975)
ID	Boy	May	YES	YES	YES		YES	co	A-	(5.1, 5.1, 7.975, 7.975)	A-	(3.95, 3.95, 7.9, 7.9)
ID	Girl	July	YES	YES	YES	YES	YES	co	A+	(575, 6.95, 9, 10)	A-	$4.375,4.875,6.25,7.95)$
ID18	Boy	May	YES	Y	YES		YES	co	A-	. $275,5.65,7.575,7.875)$	A-	$(5.6,6.175,8.1,8.725)$
	G	M	YES	Y	ES	NO	NO	co	A-	$(4.625,5.525,7.5,8.25)$	A-	($5.55,5.55,7.825,8.55$)
	G	June	S	YES	YES	YES	YES	comp	D+	(0.175, 0.175, 2.575, 2.625)	A-	$(3.675,3.75,5.775,6.925)$
	G	Ap	S		YES	O		p	D-	$(2.35,3,3.55,3.75)$	D-	(2.9,
	Boy	April	S		YES	O	NO		D+	(0,0,0,1)	D-	(2, 2.8, 3.55, 4.1)
	Boy	Septembe	Y		S	YES	YE	p\&p	-	$(2.8,3,3.5,4)$	D-	3,
	Boy	M	Y		YES	YES		p	A-	07	A+	(6.775
	Boy	Jan	YES		ES	S				$(5,6,7,8)$	D-	$(7,7.45,7.45,8)$
	Girl	Aug	YES		YES	O				(3, 3, 3.5, 4.2		(2, 2, 2.6,
ID27	Bo	Octob	YES		YES	YES				$(6,6.2,6.6,7.1)$		$(8,8.3,8.55,9)$
	Boy	April	YES		YES	ES		com		$(4.675,5.525,7.5,7.5)$.2,5
ID	Gi	May	YES		YES	S				5, 3.075, 3.65, 4.55)	A+	(5.9, 6.2
	Boy	M	YES		YES	O		com		1,	A-	$(5,5,7.5,7.5)$
	Bo	Ma	YES		YES	S	YES			$(6.85,6.85,8.975,10)$		$(2.5,3.75,6.25,7.5)$
	Gi	Oct	YES	YES	S	O						(3.3,
	G	May			YES	ES				(7.25, $7.55,8.3,8.45)$		(2.35,
	Bo				YES	YES				(6,6.45, 7, 7.4)		2.4,
	Bo				YES					25, 5.9)		.
	B	Jan								$(2.9,4,5,6.15)$		
	B	Nov			YES	NO						
		J				YES				775		.85, 5.9, 7.425
	Girl	December	S	S	S	O		comp		(0.15, 0.15, 3, 4.05)		($4.125,4.15,7.95,7.95)$
	Bo	August	S	YES	YES	YES	ES	co		.875, 5.9, 8.9, 8.975		(5, 5.075, 8.075, 8.075)
	Girl	June	S	YES	YES	YES	NO	co	D-	.5, 3.75, 6.25, 6.27	A+	$(3.725,3.75,6.25,10)$
	Boy	February	Y	YES	YES	YES	YES	co		5)	A-	(2.5,
	Bo	April	YES	YES	YES	YES				0.1, 1.975, 3.1, 4.5)	A-	(2.825, 3.75, 5.325, 6.1)
	B	July	YES	YES	O	YES	YES	co		4.9	A-	7.575, 7.625, 8.1, 8.925)
	Girl	January	S	YES	YES	NO	YES		A-	(7.65, 8, 9, 9)	D-	(0,0,1, 1)
	Bo	June	YES	YES	YES	YES	YES	co		$(4.125,5.025,5.05,8.075)$	A-	, 5
	Boy	June	YES	YES	YES	NO	YES				D-	7.3
	Boy	e	YES	O	YES	NO	YES	co		(6.875, $7.45,9.525,10)$	A-	(3.975, 4.925, 7.5, 8.25)
	Girl	April	S	YES	YES	YES	YES	co	A+	(5.425, 6.025, 7.975, 10)	A-	3.025, 3.75, 6.25, 6.925)
	Boy	February	YES	YES	YES	YES	ES	co	A-	4.925, 5.5, 7.5, 8.525)	A-	$(6,6,7.975,7.975)$
	Girl	April	S	YES	YES	O	S	co	D-	$125,1.25,2.075,2.15)$	A-	$1.225,1.25,2.025,2.175)$
	Boy	May	S	YES	YES	O	S	co	A+	(9, 9.05, 9.95, 9.95)	A	$(6.05,6.05,7.5,7.5)$
ID53	Girl	June	YES	YES	YES	O	ES	comp	+	(7.95, 7.95, 9.075, 9.075)	A+	.525, 4.975, 7.975, 8.925)
ID54	Girl	September	YES	NO	YES	NO	NO	comp	A-	$(6.475,7.625,9.15,9.975)$		(7.05, 7.075, 10, 10)
ID55	Girl	April	YES	YES	YES	YES	ES	p\&p	D-		D-	
ID	Gir	May	YES	NO	YES	NO		$\mathrm{p} \& \mathrm{p}$	A+	(7.85, $8.35,8.7,9.1)$	D-	(4,4.2, 4.8,5)
ID57	Boy	June	YES	YES	YES	YES	YES	comp	A-	(5.55, 5.55, 7.375, 7.4)	A-	6.05, 6.125, 7.975, 7.975)
	Boy	March	YES	YES	YES	O			D+		D-	
	Boy	Ju	YES	YES	YES	NO	YES		A-	(6.5, $7,8,8.65$	D-	(2.45, 3, 4, 4.45)
ID60	Girl	August	YES	YES	YES	YES	YES	comp	A+	$(9.025,9.025,9.975,10)$	A-	(4.05, 4.05, 7.025, 7.025)
ID61	Boy	May	YES	YES	YES	YES	YES	co	A-	325, 5.775, 7.675, 8.875)	A-	$(4.625,5.475,7.975,9)$
	Boy	February	YES	YES	YES	YES	YES	co	A-	(6.975, 6.975, 9	A	(6.925, 8, 8.025, 8.05)
	Girl	September	YES	YES	YES	YES	YES	comp	A-	$3.75,4.475,7.325,8.225)$	A	(6.225, 6.225, 8.55, 9.9)
	Girl	June	YES	YES	YES	YES	ES	comp	A+	(6.825, 9.9, 9.95, 9.975)	A+	(2.5, 5.15, 7.975, 9.075)
	Gi	August	YES	YE	YES	YES	YES	comp	A+	(7.975, 8.05, 10, 10)	D-	$(2.025,2.125,3.95,3.95)$
	Girl	November	YES	YES	YES	YES	YES	co	+	(8.95, 9, 9.9	A+	(6.85, 6.85, 7.475, 8.125)
	Bo	July	YE	YE	Y	NO					D-	(0.2, $0.65,1.3,1.55)$
	G	Novemb	Y	YES	YES	Y			D-	(2.35, 3, 4, 4.5	D-	(3.5, 4.1, 4.9, 5.45)
ID69	Boy	June	YES	NO	YES	NO	YES	comp	D+	(0.025, 1.025, 2.025, 3.075)	A-	(2.95, 2.95, 2.95, 4.15)

Table A.2: Dataset for the "Reading in school" items (Page 236) from the adapted TIMSS/PIRLS student Questionnaire ($\mathrm{D}+=$ disagree a lot, $\mathrm{D}-=$ disagree a little, $\mathrm{A}-=$ agree A LIttle, $\mathrm{A}+=$ AGREE A LOT, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$

ID	$\left\lvert\, \begin{gathered} R .1 \\ \text { Likert } \end{gathered}\right.$	$\begin{gathered} R .1 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\left\lvert\, \begin{gathered} R .2 \\ \text { Likert } \end{gathered}\right.$	$\begin{gathered} R .2 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\begin{gathered} R .3 \\ \text { Likert } \end{gathered}$	$\begin{gathered} R .3 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$R 4$
ID1	A-	($5.35,6,7,7.75$)	A+	(8.1, 9, 10, 10)	D-	(3, 3, 4, 4)	9
2	A-	$(5.575,6.15,7.5,7.5)$	$+$	(6.775, 8.45, 9.75, 9.75)	D+	($0.025,0.15,0.525,9.95$)	
3	A+	$(6.35,6.35,6.575,10)$	A+	(7.225, 7.275, 9.775, 10)	D+	$(2.5,3.75,6.25,9.9)$	10
4	A-	(6.025, 6.1, 7.525, 9.425)	A-	$(3.675,3.75,6.25,6.8)$	D+	(0.025, 0.075, 1.075, 3.575)	9
ID5	A+	$(6.25,6.275,9.95,9.95)$	A-	(5.575, 6.325, 8.475, 9.475)	D+	(0.1, 0.325, 3.05, 3.325)	7
ID6	A+	(8, 8.5, 9.5, 10)	A+	(9, 9, 10, 10)	D+	$(0,0.5,0.5,1)$	9.5
7	A-	(4.65, 4.65, 7.5, 8.4)	A-	$(3.975,3.975,6.25,8)$	D-	(1.525, 2.525, 4.575, 4.625)	8
ID8	D-	4)	D-	$(3,3,3.45,4)$	D-	$(2,2.55,3,3)$	0
ID9	A-	$(5,6.5,6.5,7.5)$	A+	(8,9, 9, 10)	D-	(2, 3, 3, 3.8)	8
ID10	A-	(4.025, 4.25, 6.4, 6.775)	A-	(3.575, 4.4, 6.9, 6.9)	D+	(0.175, 0.55, 2.1, 2.45)	9
ID11	A-	(7, 7.025, 7.5, 10)		(8.775, 9.925, 9.925, 9.925)	D+	(1.05, 1.05, 1.675, 2.775)	9
ID12	D-	$(2,2,3,3)$	A+	(9, 9, 10, 10)	D-	(2, 2, 4, 4)	8
ID13	A-	(6.4, 7, 7.9, 8.5	A+	(9, 10, 10, 10)	D-	$(1.55,2.45,3.6,4)$	9
ID14	A-	(5.425, 5.5, 7, 8.275)	A-	$(4.275,5.925,7.425,8.275)$	D-	(2.95, 2.95, 4.5, 5.95)	9
ID15	A-	(4.375, 4.4, 7.55, 8.05)	A+	$(4.775,4.775,9.175,10)$	A-	(3.625, 4.15, 7.2, 7.5)	8
ID16	A+	(6.8, 7.025, 9.975, 9.975)	A+	($5.05,5.05,10,10)$	A-	$(2.975,3.95,6.975,6.975)$	8
ID17	D-	$(3.75,3.75,6.25,6.25)$	A+	($5.9,5.9,9.975,9.975$)	D-	$(3.9,3.9,6.15,7.075)$	8
ID18	D-	$(4.175,4.375,6.075,6.275)$	A+	(6.75, 7.15, 8.7, 9.525)	D-	$(1.55,2.2,4.4,5.6)$	8
ID19	A-	$(4.975,5.65,7.5,7.5)$	D-	$(2.5,2.55,4.65,5.5)$	D+	($0,0,1.7,1.7$)	8
ID20	A+	(7.35, 7.425, 10, 10)	A+	($6.925,8.5,10,10$)	D+	(0.05, 0.05, 1.025, 1.025)	10
ID21	A+	(9.2	A+	0)	D+	$(0,0,0.15,0.4)$	9
ID22	A-	(6)	A-	$(6,6.65,7.3,8)$	D+	0, 0, 0, 1)	7
ID23	A-	(5.9,	A	$(6,6.25,6.85,7.1)$	D+	(0, 0, 0, 0)	6
ID24	A-	25, 5	A	$(4.925,5.9,7.05,8.025)$	D-	(1.975, 2.525, 4.025, 4.925)	8
ID25	A-	$(6,6.5,6.5,7)$	A	(8, 8.5, 8.5, 9)	D+	$(0,0.5,0.5,1)$	7
ID26	D-	(3, 3, 3.5,4)	A	($6,6,6.6,7.2)$	D-	(3, 3, 4, 4.6)	7.5
ID27	A+	(9	A+	(9,	+	$(0.1,0.3,0.65,1)$	10
ID28	A-	(4, 5.8, 7.425, 9.075)	A+	(6.175, 8.85, 9.85, 9.85)	D+	(0.025, 0.025, 1.025, 1.075)	8
ID29	A+	(7.925, 7.925, 10, 10)	A+	$(9,9.05,9.925,9.975)$	D+	(9.95, 9.95, 9.95, 9.975)	9.5
ID30	D-	(3.025, 3.025, 5.025, 5.075)	D-	(1.975, 2, 5.025, 5.025)	D+	(1, 1, 3.05, 3.45)	6
ID31	A-	$(2.5,3.75,6.25,7.5)$	A+	(3.7, 3.75, 9.8, 9.95)	D+	(0.6, 0.675, 6.25, 6.25)	7.75
ID32	A-	(6.75	A	$(8,8,8.65,9.2)$	D	(3.5, 4.4, 5.3, 6.2)	8
ID33	A-	(7.3,	A-	. 4	D+	($0,0,0.2,0.4$	8.5
ID34	A-	(6,6.3,6.9, 7.2)	A+	(8.15, 8.5, 8.9, 9.3)	A+	(8.3,	6
ID35		(0, 1.075, 2.15, 3.5)		(0, 0.475, 1.85, 2.275)	8
ID36	A		D-	7, 8, 9)	+	$(1,2,3,4)$	9
ID37	A		A-	(6	A-	$(8,8,9,9)$	6.5
ID	A	(5.825,	A+	(8, 9.97	D+	$(0,0.05,0.95,0.95)$	
ID39	D	(2.5,	A+	(6.975, 6.975, 6.975, 10)	+	(0.125, 0.125, 0.375, 0.375)	
ID40	A+	(8.95, 8.95, 10, 10)	A	(9.4, 9.4, 9.95, 9.975)	D+	($0,0,1,1.025$	
ID	A-	(5.125, 5.125, 6.25, 8.925	A-	$(5.15,5.175,7.45,9.95)$	D+	(0.075, 3.75, 6.25, 6.25)	
	D-	(1.725, 3.075, 6.1, 7.5)	A	$(2.5,5.225,8.55,10)$	D+	(0.075, 0.075, 3.775, 3.8)	
ID	A	(3.5, 4.625, 6.325, 6.775)	A	(8.725, 9.175, 9.95, 10)	+	($0,0,1.025,2.025$)	
ID	A+	(8.925, 8.925, 8.925, 8.925)	A-	(5.95, $6.575,8.375,9.825)$	A+	$(2.5,3.75,7.45,7.5)$	
ID	A-		D-		D	(1.4, 2, 3, 3)	9
ID	A-	(4.375, 5.025, 7, 8.025)	A+	(5.925, 7.175, 9.375, 10)	A+	.975, 8.025, 9.9, 10)	
ID	A-	(7, 78.15, 8.65, 8.65)	A+	(8.2, 8.8, 10, 10)	D+	$(0,0.3,0.65,1)$	8
ID	D	$(2.425,3.25,5.575,6.675)$	A-	$(4.425,5.6,7.5,8.25)$	D+	(0, 0.5, 2.6, 2.6)	8.5
ID49	A-	(4.95, 5.525, 7.05, 8.05)	A+	(8.95, 8.95, 9.9, 9.95)	D-	.825, 2.875, 4.975, 5.05)	
ID50	D+	(0.025, 0.025, 1.5, 1.5)	A-	$(5,6,7.975,8)$	D-	(3, 3, 5, 6)	
ID	A	(4.125, 4.975, 6.9, 7.95)	A-	(4.85, 4.875, 7.375, 7.875)	+	$(1.05,1.075,1.775,2.05)$	
ID52	A-	(6.1, 6.15, 7.475, 7.5)	A+	(7.975, 7.975, 9.9, 10)	D+	(8.3, 8.375, 9.825, 9.825)	8
ID	A-	(7.95, 7.95, 8.95, 9)	A	(5.125, 7.375, 7.5, 10)	D+	($0,0,2.525,2.525$)	
	D-	$(2.6,2.6,6.25,6.25)$	A-	$(3.725,3.75,6.875,6.875)$		(0.075, 0.1, 1.725, 1.725)	8
	A-	(7, 7, 8, 9	A-	(7.05, 8.15, 9, 9	D+	(0, 0, 0, 0)	7
	A-	$(6.9,7.7,8.3,9)$	A+	$(9,10,10,10)$	D+	$(0,0.35,0.6,1)$	9.5
	D+	(0.025, 0.075, 1.025, 1.05	A-	.05, 6.05, 8.95, 8.95)	D-	(2.15, 3.05, 3.05, 5.025)	
	A-	(6,7	A+	(0,10,10)	$+$	(9.4, 9.85, 10, 10)	8
	D-	(2, 2.85, 3.6, 4.15)	A-	$(5.6,6.35,7.1,7.5)$	A+	(8.65, 9.05, 9.6, 10)	6
	D+	(0.025, 0.025, 1.025, 1.025)	A+	(6.875, 6.95, 9.975, 10)	D+	$(0.125,0.175,1.075,1.1)$	10
	D-	(1.475, 2.45, 5.025, 6.1)	D-	$(1.675,2.375,4.825,5.9)$	D+	(0.025, 0.05, 0.05, 0.05)	9
ID62	A+	(8.975, 8.975, 10, 10)	A+	(8, 8, 9.925, 9.975)	A+	(6.9, 7, 9.9, 9.9)	9
	A-	(3.75, 4.7, 6.9, 8.175)	A+	(7.425, 7.475, 9.375, 9.375)	D+	(0.2, 0.2, 0.275, 1.85)	9
	A+	(8.95, 9.075, 9.925, 9.95)	A-	($5.475,5.475,8.8,8.8$)	D+	(0.15, 0.175, 7.025, 7.025)	
ID	A-	$(4.2,4.875,7.375,7.5)$	A+	$(5.875,5.925,8.925,8.95)$	D+	(0, 0.1, 0.95, 2.925)	7
ID	A-	(5.975, 7.025, 7.1, 8.9)	A+	(8.975, 8.975, 9.975, 10)	A-	$(5.05,5.975,7.775,9.15)$	8
	A-	$(5.6,6.15,6.9,7.45)$	A+	$(8.5,9.1,9.65,10)$	D+	(0.2, 0.6, 1.2, 1.6)	8
	A+	$(9,9.6,9.6,10)$	A+	(8.65, 9.1, 9.9, 10)	A-	(5.55, 6.2, 6.95, 7.3)	8
ID69	D-	(2.1, 2.975, 4, 4.975)	A-	($5.575,5.575,7.5,7.5$)	D+	(0, 1.025, 2.05, 3.15)	

Table A.3: Dataset for the "Mathematics in school" items (Page 236) from the adapted TIMSS/PIRLS student Questionnaire ($\mathrm{D}+=$ disagree a lot, $\mathrm{D}-=$ disagree a little, $\mathrm{A}-=$ agree a Little, $\mathrm{A}+=$ AGREE A Lot, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$

ID	$\left\lvert\, \begin{gathered} M .1 \\ \text { Likert } \end{gathered}\right.$	$\begin{gathered} M .1 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline M .2 \\ \text { Likert } \end{array}$	$\begin{gathered} M .2 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline M .3 \\ \text { Likert } \\ \hline \end{array}$	$\begin{gathered} M .3 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \\ \hline \end{gathered}$	M4
ID1	D-	(2.35, 3, 4, 4.8)	A+	(8.4, 9, 10, 10)	A-	(5.2, 6, 7, 7)	8
ID	A-	(5.65, 6.2, 7.475, 9.8)	A+	(9.2, 9.2, 9.975, 9.975)	D+	(0, 0, 0, 2.95)	8
ID3	A+	(9.85, 9.85, 9.875, 9.975)	A+	(8.925, 9.95, 9.95, 9.95)	A+	$(6,6.425,7.35,7.875)$	10
ID4	A+	(8.025, 9.05, 9.9, 9.975)	D+	(0.1, 0.1, 0.625, 1.975)	A+	($0,0,0.775,1.225$)	8.5
ID5	D-	(3.525, 3.75, 6.25, 6.725)	D-	$(3.5,3.55,6.25,7.5)$	D+	($0,0,2.15,2.15$)	6
ID6	A+	(9, 9.225, 9.775, 10)	A+	$(10,10,10,10)$	A+	$(10,10,10,10)$	10
ID7	D-	(2.5, 2.975, 5.3, 5.35)	A-	(4.375, 5.175, 7.5, 7.5)	A+	(7.9, 7.95, 8.7, 8.7)	9
ID8	D-	$(2,2.45,3,3)$	D-	$(3,3,3.45,4)$	A+	(9, 9, 9.4, 10)	10
ID9	D-	(3.1, 4, 4, 4.5)	A+	$(8.6,10,10,10)$	A+	(9, 10, 10, 10)	7
ID10	A-	$(4.325,5.025,7.925,8.5)$	D-	(1.75, 2.5, 3.675, 3.675)	D+	$(4.975,4.975,5.325,5.4)$	7
ID11	A+	(7.525, 7.525, $7.55,9.025$)	A-	(6.975, 6.975, 7.5, 7.5)	A+	(7.6, 7.6, 8.35, 8.65)	10
ID12	A+	(9, 9, 10, 10)	A+	$(10,10,10,10)$	D-	$(2,2,4,4)$	9
ID13	A+	$(9.4,10,10,10)$	A+	(8.9, 9.4, 10, 10)	D+	($0,0,0,0.45$)	10
ID14	A-	(5.025, 5.95, 7.025, 8.95)	A+	(7.3, 8.05, 9.575, 10)	A+	(9.975, 10, 10, 10)	8
ID15	A+	(5.75, 5.775, 9.55, 9.875)	A+	(5.95, 6, 9.2, 10)	A+	($0,0,1.575,1.575$)	9
ID16	A+	$(6.85,8,10,10)$	A+	(6.75, $7.025,9.975,9.975)$	A+	$(2.225,2.225,3.125,3.125)$	10
ID17	A+	$(4.025,5.75,8.725,10)$	A+	$(4.9,4.9,8.45,9.975)$	A+	$(1.9,1.95,3,3.15)$	5
ID18	A-	(4.2, 4.925, 6.975, 7.2)	A-	$(4.4,4.725,6.25,7.8)$	D-	$(4.875,5.05,5.45,5.625)$	7
ID19	A-	(3.75, 3.75, 7.5, 7.5)	A-	(6.225, 6.25, 7.5, 7.5)	A+	$(6.15,6.15,6.75,6.75)$	8
ID20	A+	(5.85, 7.025, 9.05, 9.1)	D+	(0, 0.125, 2.05, 2.55)	D-	(3.45, 3.45, 4.425, 4.425)	8.5
ID21	D-	(3.1, 3.25, 3.85, 4.5)	A+	$(10,10,10,10)$	D-	$(2.5,3.2,3.3,4.45)$	8
ID22	A-	$(6,6.7,7.2,8)$	A+	(8.7, 9.4, 10, 10)	D-	$(3,3.6,4.2,5.05)$	8
ID23	A-	(6.1, 6.4, 6.75, 7.1)	A+	(9, 10, 10, 10)	D-	(3, 3, 3, 3)	7
ID24	A+	$(10,10,10,10)$	A+	(9.975, 9.975, 9.975, 9.975)	A+	(0, 0.6, 1.25, 1.65)	10
ID25	A+	(9, 9.5, 9.5, 10)	A-	8, 8.5, 8.5, 9)	D+	(0, 0.5, 0.5, 1)	9
ID	D-	(2.4, 3, 3.65, 3.65)	A-	(6,6,6.6, 7.7)	D-	(2.5, 3, 3.6, 3.6)	5
ID	A-	$(6,6.15,6.55,7)$	A+	(8.1, 8.2, 8.6, 9)	D-	(3, 3.2, 3.6, 4.2)	8
ID	D-	(2.5, 2.95, 6.25, 7.5)	A+	(3.4, 4.825, 9.95, 9.95)	A+	$(10,10,10,10)$	5
ID29	A+	(9.975, 10, 10, 10)	A+	(9.975, 9.975, 10, 10)	A+	$(10,10,10,10)$	9
ID30	A+	(2.975, 3.05, 10, 10)	A-	(3, 3, 7.95, 7.95)	A+	(6.975, 6.975, 7.925, 7.925)	
ID	D-	$(2.5,3.75,6.25,7.5)$	A-	$(2.5,3.75,6.25,7.5)$	D+	($0,0,2.575,2.575$)	5
ID	D-	$(3.8,4.25,5.5,6)$	A+	(9.6, 9.8, 10, 10)	A-	$(6,6.45,7.4,8)$	9
ID33	D-	$(4.6,4.75,5.15,5.35)$	A+	(9.2, 9.8, 10, 10)	D-	$(2.35,2.8,3.25,3.5)$	7.5
ID	A-	$(6.2,6.4,6.85,7.1)$	A-	(5.2, 5.4, 5.65, 6)	D-	(3.15, 3.4, 3.6, 4)	5
ID		(3.05, 4.05, 7.95, 9.025)		(8.725, 8.95, 9.7, 10	D+	(0, 0.625, 2.725, 2.75)	7
ID36	A+	(8, 9.15, 10, 10)	A+	(8, 9, 10, 10)	D+	$(0,0,1,2)$	10
ID					D-	$(0,1.125,2.025,2.625)$	
ID38	A	(9.925	A-	(7, 7.0	A+	(4.925, 5.025, 5.95, 6.3)	10
ID39	D+	(0, 0.025, 0.025, 0.025)	A+	$(9.975,9.975,9.975,10)$	A+	$(10,10,10,10)$	
ID40	D-	$(2.925,2.975,5.95,5.975)$	A+	$(9.45,9.45,9.925,10)$	D+	(0, 0.825, 2.425, 2.425)	
ID41	D+	$(0,1.125,1.2,1.275)$	D-	(2.5, 3.75, 3.9, 5.45)	D-	$(0,0.325,1.475,1.475)$	5
ID42	A-	(3.7, 3.75, 7.225, 7.25)	A+	(6.9, 8.175, 9.225, 9.975)	A+	$(5.15,5.35,6.15,6.15)$	10
ID43	A-	(3.825, 4.9, 6.05, 6.725)	A+	(6.7, 7.775, 8.9, 10)	A+	$(8.55,8.85,9.625,10)$	8.5
ID44	A-	(8.975, 8.975, 8.975, 10)	A+	(3.175, 5.025, 7.5, 9.95)	A+	($0,0,0,0.725$)	7.5
ID45	A+	(0, 10, 10, 10)	A+	$(10,10,10,10)$	D+	(0, 0, 0, 0)	10
ID46	A+	$(10,10,10,10)$		(8.05, 8.65, 10, 10)	A+	$(10,10,10,10)$	9.5
ID47	A-	(6, 6.65, $7.25,7.25)$	A-	(8, 8.5, 9.2, 9.2)	A-	(7, 7.4, 8.2, 8.4)	8
ID48	D-	(2, 2	A-	$(5,6,6.125,8)$	A+	(4.05, 4.05, 4.7, 4.775)	9
ID49	A+	$(8.975,8.975,9.975,9.975)$	A+	(9.025, 9.025, 9.95, 9.95)	A+	$(10,10,10,10)$	9
ID50	D-	$(2.5,2.975,5.5,6.5)$	A+	$(8,8.5,9.85,9.875)$	D+	(0, 0.85, 1.5, 1.825)	9
ID51	A-	(4.85, 5, 7.05, 7.875)	A+	(7.95, 9, 10, 10)	D+	(1.6, 1.825, 2.425, 3.075)	10
ID52	D-	(3.075, 3.1, 4, 7.5)	A+	(9.325, 9.375, 10, 10)	A+	(3.125, 3.275, 3.7, 4.05)	10
ID53	D-	(0.975, 3.875, 4.075, 4.075)	A-	(3.975, 4.925, 6.875, 6.925)	A-	(9.9, 9.9, 10, 10)	9
ID54	A-	$(6.675,6.675,6.675,6.7)$	A+	(0.225, 3, 6.875, 9.9)	A-	($0,0,1.125,1.125$)	
ID55	A-	(7,7	A-	$(7,8,9,9)$	A-	$(6,6,7,8)$	8
ID56	A-	(8, 8.3, 8.55, 9)	A+	(9, 10, 10, 10)	D-	$(1,1.8,2.35,3.1)$	10
ID57	A-	(7.925, $7.95,8,8)$	A-	(6.075, 6.15, 9.05, 9.05)	A-	(0, 0.075, 1, 1.35)	9.5
ID58	A+	(9, 10, 10, 10)	A+	$(8,10,10,10)$	D+	(0, 0, 0, 0)	10
ID59	A+	(8.3, 9.3, 9.8, 10)	A-	($6,7,9,10$)	D+	(0, 0.4, 0.95, 1.75)	9
ID60	D+	(0.05, 0.05, 0.075, 0.075)	A+	(9.025, 9.025, 9.95, 9.95)	A-	$(10,10,10,10)$	
ID61	D-	$(1.45,1.95,4.95,5.725)$	A+	(5.6, 6.7, 9.15, 10)	A+	(8.8, 8.8, 9.5, 9.575)	8
ID62	A-	$(2.9,3.75,6.25,7.8)$	A+	(9.85, 9.85, 9.9, 9.9)	A+	$(4.6,6.15,6.15,6.85)$	10
ID63	A+	(9.875, 9.95, 9.95, 9.975)	A-	$(4.225,5.7,7.025,8.9)$	A-	(3.6, 3.925, 4.575, 4.575)	8
ID64	A-	$(2.5,4.075,7.175,8.15)$	A+	($5.825,5.85,9.875,9.95$)	D-	(3.875, 3.875, 5.6, 5.6)	9
ID65	D-	(2.5, 2.55, 4.275, 4.3)	A-	$(2.5,4.625,4.625,6.9)$	D+	(0, 0.25, 1.025, 1.025)	7
ID66	A+	(8,8.025, 9.8, 9.975)	A+	(9.8, 9.8, 10, 10)	A+	$(10,10,10,10)$	9
ID67	A+	(8.55, 9.15, 9.7, 10)	A+	(8.6, 9.15, 9.75, 10)	D-	$(0.3,0.45,1.15,1.5)$	10
ID68	D-	(3.5, 4.2, 5, 5.45)	A-	(5.1, 6, 6.75, 7.3)	A-	$(5.5,6.1,6.9,7.4)$	10
ID69	D-	(2.5, 2.5, 5.1, 7.5)	A+	$(10,10,10,10)$	A+	$(6.325,6.925,7.175,7.65)$	

Table A.4: Dataset for the "Science in school" items (Page 237) from the adapted TIMSS/PIRLS student Questionnaire ($\mathrm{D}+=$ disagree a lot, $\mathrm{D}-=$ disagree a little, $\mathrm{A}-=$ agree a Little, $\mathrm{A}+=$ AGREE A Lot, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$

ID	$\left\lvert\, \begin{gathered} S .1 \\ \text { Likert } \end{gathered}\right.$	$\begin{gathered} S .1 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} S .2 \\ \text { Likert } \end{gathered}\right.$	$\begin{gathered} S .2 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\begin{gathered} S .3 \\ \text { Likert } \end{gathered}$	$\begin{gathered} S .3 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \\ \hline \end{gathered}$	S4
ID1	A-	(6.35, 6.95, 8, 8)	D-	(2.4, 2.95, 4.05, 5)	D-	(3.2, $4,5,5)$	7
ID2	A-	(0.45, 6.225, 7.4, 7.5)	D+	(0.075, 0.075, 0.775, 9.775)	D+	(0.025, 0.025, 0.675, 9.825)	10
3		$(2.5,3.75,6.25,7.5)$	D-	$(2.5,2.5,3.775,4.275)$	D+	$(2.5,2.5,2.575,2.65)$	9.5
4	A+	($5.975,7.9,9.45,10$)	D-	(2.5, 2.5, 4.425, 4.975)	D+	($0,0,2,3.475$)	8.5
5	A+	(9.175, 9.2, 9.95, 9.95)	D+	$(0,0.125,2.55,2.575)$	D+	(0.175, 0.225, 6.25, 7.5)	8.5
6	A-	(6.5, 7, 7.5, 8)	D-	(2, 2.5, 4.5, 5)	D-	$(2.5,2.5,3.5,3.5)$	7.75
7	A-	(4, 4.8, 7.275, 7.5)	D-	(1.075, 1.5, 3.6, 5.25)	A-	$(4.05,5.075,7.225,7.5)$	7
ID8	A+	(9, 9, 9.45, 10)	D+	, 0.4, 1)	A+	(9, 9, 9.45, 10)	10
ID9	A+	(9, 10, 10, 10)	D-	(2, 3, 3, 3.6)	A-	(6.15, 7, 7, 7.45)	8
ID10	D+	(0.8, 0.8, 1.3, 1.85)	D+	(0.45, 1.175, 2.55, 2.7)	A-	(3.75, 4.675, 6.85, 8.4)	9.5
ID11	A-	(6.925, 6.925, 7.5, 7.5)	D+	(2.5, 2.5, 2.975, 2.975)	D-	$(2.5,2.525,3.55,3.575)$	8
ID12	A-	7)	D+	$(0,0,0,0)$	D+	$(0,0,1,1)$	10
ID13	D-	$(2,2.8,4,4)$	D+	(0, 0, 1, 1)	A-	$(5.5,6.1,6.9,8.5)$	9.5
ID14	A-	$(4,5.65,6.725,7.375)$	D+	$(0.025,1.175,2.35,2.925)$	D+	(0.4, 1.475, 2.4, 3)	10
ID15	A-	(4.625, 4.65, 7.475, 7.5)	A-	(3.75, 3.75, 7.2, 7.525)	D-	(3.575, 3.75, 7.15, 7.5)	10
ID16	A-	(3.55, 3.75, 6.95, 6.95)	A-	$(3.475,6.925,6.975,6.975)$	A-	(4.925, 4.925, 6.8,6.8)	10
ID17	A-	(3.625, 4.6, 6.95, 7.5)	D+	(0.025, 1, 2.6, 4.175)	D+	(0.075, 0.2, 1.7, 1.75)	7
ID18	A+	$(6.175,6.475,8.25,9.525)$	D+	(0.45, 1.35, 2.275, 2.675)	A-	(5.225, 6, 7.425, 8.5)	7
ID19	A+	(6.7, 6.7, 9.975, 10)	D+	($0,0.025,1.6,1.6$)	A+	(8.025, 8.45, 9.825, 9.85)	7
ID20	A-	(5, 6.05, 6.875, 7.35)	A-	(3.5, 4.95, 6.95, 6.95)	A-	(4.525, 4.95, 7.425, 7.5)	7.5
ID21	A+	$(10,10,10,10)$	D-	(2.	D+	(0, 0, 0, 0)	8.5
ID22	A-	(5,5	D-	(1, 1.65, 2.3, 3.3)	D-	$2,2.3,3.1,3.8)$	3
ID23	A+		D		D-	$(3,3.1,3.7,4)$	6
ID24	A-	275, 7.6)	D-	2.025, 3.225	D+	.95, 1.575, 2.425, 3.4)	7
ID25	D-	(3, 3.5, 3.5,4)	D+	5, 1)	D+	$(0,0.5,0.5,1)$	9
ID26	A-	(5	0	(0,0,0, 0.7)	D-	(3, 3, 3.5, 4.15)	4.5
ID27	A+	(9, 9.15, 9.55, 10)	A+	(8.1, 8	D+	(0, 0.2, 0.6, 1)	9
ID28	A+	(1.4, 3.75, 9.9, 9.925)	D	$(2.5,2.55,6.25,7.5)$	A-	(3.7, 5.625, 7.5, 7.5)	7
ID29	A+	(9.95, 9.975, 9.975, 9.975)	D-	(3.575, 3.75, 3.75, 6.725)	A-	(3.975, 4.05, 7.025, 7.025)	8
ID30	A-	(2.95, 3.025, 7, 7.025)	D	($0,0,2.075,2.075$)	A+	(3.75, 3.75, 7.95, 8.05)	6
ID31	A-	(3.35, 3.75, 7, 7.5)	D-	$(2.5,2.85,6.25,6.3)$	D+	(0, 0.025, 6.25, 6.325)	9
ID32	A-	(6.9, 7.6, 8.5, 9.2)	D-	(2.4, 3.2, 3.7, 4.2)	D-	(2.5, 3.5, 4.25, 5.2)	10
ID33	D-	$(4.6,4.7,5.15,5.45)$	D	$(4.25,4.55,5.15,5.4)$	D-	(4.45, 4.8, 5.2, 5.5)	8.5
ID34	A+	(8.25, 8.35, 8.85, 9.1)	D+	$(1.2,1.4,1.85,2.15)$	A-	$(6.15,6.3,6.8,7)$	9
ID35		(5.15, 6.05, 7.925, 9)		(0.025, 0.3, 0.5, 0.75)		25, 10)	8
ID36	A+	$(8,9,10,10)$	A-	(8, 9, 10, 10)	D+	(0, 0, 1, 1.9)	8
$\left\lvert\, \begin{aligned} & \text { ID37 } \\ & \text { ID38 } \end{aligned}\right.$							9
ID	D	.95	D+	. 12	A+	(7.925, 8.925, 10, 10)	3.5
ID	A-	$(4.875,4.875,8.025,8.05)$	A-	$(3.75,3.75,7.5,7.5)$		$(2.5,3.75,6.25,7.5)$	
ID	A+	(4.975, 4.975, 6.575, 7.925)	D-	(0.2, 2.5, 3.075, 3.075)	D+	0.15, 0.6, 2.875, 2.95)	
ID	D+	$(2.5,2.525,3.35,3.775)$	D+	(0.35, 0.35, 3.525, 3.575)	D-	$(2.5,3.75,6.25,7.5)$	6
ID	D-	(3.55, 3.55, 3.575, 3.6)	D	(0.025, 0.1, $0.15,0.15)$	D	(4.975, 4.975, 4.975, 4.975)	10
ID	A+	(5.075, 7.05, 9.975, 9.975)	A-	(3.75, 3.75, 6.25	A-	(5.625, 5.625, 7.4, 9.9)	
ID	A-		D-	,	D+	45)	10
ID	D-	(0, 0.025, 0.55, 0.55)		(A+	9)	
ID	A-		D-	(3)	D-	(2.5	8
ID	D-	(1.5, 2.5, 4.525, 5.475)		(0.3, 1, 3.075, 4.05)	A+	(8.5, 8.5, 9.925, 9.925)	6
ID	D+	(0.05, 0.075, 3.025, 3.025)	D+	(1.525, 2.8, 3.875, 4.425)	A-	$(4.85,5.975,6.9,8)$	6
ID	D-			$(0,0.025,0.15,1)$	$+$	(0.5, 1, 2, 2.5)	
	A	(7.975, 8.975, 9.95, 10)	D-	(2.025, 2.025, 3.075, 3.07	$+$	(0.05, 0.05, 0.5, 1.05)	10
ID	D-	$(2.9,3.125,6.25,6.275)$	A+	(8.925, 8.925, 10, 10)	A+	$(9.675,9.725,9.975,10)$	7
ID	A-	$(3.9,3.9,6.8,6.875)$	D+	$(0.075,0.125,1.05,1.125)$	A-	$(2.5,3.75,6.775,7)$	7
ID	A+	(0.025, 3.75, 6.25, 9.95)	D-	$(3.575,3.625,6.75,6.775)$	D-	.025, 0.075, 3.625, 3.625)	
	A-		D+		A-		7
	D-	$(3,3,3,3.6)$	A-	$(4.9,5.5,5.5,6)$	D+	(0, 0, 0, 1)	10
	D+	125, $0.125,3,3$.	D	0.025, 2.025, 2.025)	D+	(0, 0, 0.95, 0.975)	9.5
	D-	2.9, 4, 5, 6.1)	D-	,	A-	$(4.4,5.1,7,7.8)$	6
	D-	(2.2, 3, 3.7, 4.6)	0	$(0,0,0,0)$	+	(0.2, $0.45,1.65,2.4)$	8
	D	$(0.05,0.05,1.1,1.1)$	D	(0, 0.025, 0.05, 0.05)	D+	(0, 0.025, 0.025, 0.025)	7
	D+	(0,	D-	(0.725, 1.6, 4.55, 5.075)	A-	($5.5,5.9,7.5,8.075$)	9.5
	A-	$(4.925,6.1,8.425,8.425)$	D-	(1.375, 2.525, 4.45, 6.325)	D-	(2.5, 4.625, 4.625, 7.5)	8
	A-	(5.4, 5.425, 7.825, 8.425)	D-	(2.425, 3.1, 5, 5.825)	D-	(1.7, 3.075, 4.9, 5.875)	10
	A-	($2.275,3.75,6.25,8.075$)	A-	(3.75, 3.75, 8.975, 9.025)	D-	(3.6, 3.75, 7.425, 7.5)	8
	A-	(5.125, 6.775, 7.45, 7.5)	D-	$(2.5,3.125,3.125,6)$	D	$(2.5,3.75,6.25,7.5)$	5
	A-	(6.025, 6.05, 7.5, 9.05)	D-	(2.5, 3.75, 5.45, 6.05)	A+	(8.1, 9.9, 9.975, 10)	8
	A-	(6.1, 6.7, 7.3, 7.65)	D-	(2.25, 2.6, 3.7, 4.3)	D-	(2.7, 3.3, 3.9, 4.3)	9
ID68	A+	(8.5, 9.2, 9.7, 10)	D+	(0.2, 1, 2, 2.4)	D-	(2.6, 3.15, 3.8, 4.3)	8
ID69	D+	(2.5, 2.675, 2.675, 2.725)	D+	(0.025, 0.025, 0.025, 0.075)	A+	(9.925, 9.925, 9.95, 10)	

Appendix B

Form and datasets for adapted restaurant customer satisfaction Questionnaire

QUESTIONNAIRE ON LAUNCH RESTAURANTS
(All information that you provide will be used in the strictest confidence)
PART 1: ABOUT YOURSELF

GENDER	CURRENT MAIN RESPONSABILITY	Usual
O Female	O Working	having lunch
O Male	O Training	at a restaurant
	O Both	
AGE	O Housework	
O Under 25 years	O None/retired	
O 25-34 $\bigcirc 135-44$	USUAL RESTAURANT CHOICE	average price/lunch
O 45-54	O Fast food restaurant	at the usual
O 55-64	O Self-service restaurant	
O Over 65 years	O Casual restaurant O Fine restaurant	

Please indicate an interval of time at which you use to have lunch:

PART 2: ABOUT YOUR OPINION/VALUATION/RATING ON THE USUAL CHOICE

* Firstly, you will reply to questions concerning the quality of the food and beverage.

Questions should be replied by using a double type of response:

- on one hand, the respondent should choose 1 of the 5 possible responses on the right side;
- on the other hand, the same respondent should draw a trapezoid as follows:
the lower basis for the trapezoid will be the interval of values between 0 (lowest rating) and 100 (highest rating) which are considered by the respondent as being compatible to some extent with their rating; the upper basis for the trapezoid will be the interval of values between 0 and 100 which are considered by the respondent as being fully compatible with their rating. Then the trapezoid will be immediate to draw.

QF1. The food is served hot and fresh

QF2. The menu has a good variety of items

Strongly disagree
Somewhat disagree
O Neutral
O Somewhat agree
O strongly agree

Otrongly disagree
Somewhat disagree
O Neutral
Somewhat agree
O strongly agree

QF3. The quality of food is excellent

QF4. The food is tasty and flavorful

QF5. The quality of beverage is good

O Strongly disagree
O Somewhat disagree
O Neutral
O Somewhat agree
Strongly agree
Strongly disagree
somewhat disagree
Neutral
somewhat agree
strongly agree
Strongly disagree
somewhat disagree
Neutral
somewhat agree
Strongly agree

* Secondly, you will reply (in a similar double way) to questions concerning the satisfaction with the restaurant service.

QR1. My food order was correct and complete

QR2. Employees are patient when taking my order

QR3. I was served promptly

O strongly disagree
O Somewhat disagree
O Neutral
Somewhat agree
Strongly agree
Strongly disagree
Somewhat disagree
Neutral
Somewhat agree
Strongly agree

Strongly disagree
Somewhat disagree
O Neutral
Somewhat agree
Strongly agree

QR5. The menu board was easy to read

QR6. Employees are friendly and courteous

O strongly disagree
O Somewhat disagree
O Neutral
Somewhat agree
Strongly agree

Strongly disagree
Somewhat disagree
O Neutral
Somewhat agree
Strongly agree

Strongly disagree
Somewhat disagree
Neutral
Somewhat agree
Strongly agree

QR7. The service is excellent

QR8. Good cleanness of the restaurant and service

O Strongly disagree
Somewhat disagree
O Neutral
Somewhat agree
Strongly agree

Strongly disagree
Somewhat disagree
O Neutral
Somewhat agree
Strongly agree

* Thirdly, you will reply (in a similar double way) to a single question concerning the price of the restaurant.

QP1. Prices are competitive

Strongly disagree
Somewhat disagree
O Neutral
Somewhat agree
Strongly agree

Table B.1: Dataset for the "About yourself" items (Page 243) from the adapted restaurant customer satisfaction Questionnaire

ID	Gender	Age (years)	Occupation	Restaurant type	\# days/month	average price/lunch ($¢$)	lunch interval time
ID1	Female	<25	Training	Fast food	6	4	21:00-22:00
ID2	Male	> 64	None/retired	Casual	1	20	14:30-16:30
ID3	Female	45-54	Housework	Casual	1	15	14:30-16:00
ID4	Female	<25	Training	Casual	2	20	21: 00-23:00
ID5	Female	<25	Training	Fine	2	45	21:00-23:00
ID6	Male	25-34	Working	Casual	6	14	22:30-00:30
ID7	Male	< 25	Working	Fine	3	100	14: $15-16: 30$
ID8	Female	55-64	Working	Casual	3	15	14:30-15:30
ID9	Female	55-64	Housework	Casual	1	15	14:00-15: 15
ID10	Male	25-34	Training	Casual	3	20	13:30-14:30
ID11	Male	<25	Both	Casual	4	7	14: 00-15: 00
ID12	Male	25-34	Both	Self-service	8	11	15:00-16:00
ID13	Female	25-34	Both	Casual	2	17	14:00-16:00
ID14	Male	<25	Training	Casual	2	10	14:30-15: 10
ID15	Female	25-34	Both	Self-service	4	12	14:00-15: 00
ID16	Male	55-64	None/retired	Casual	2	15	14:00-15: 15
ID17	Female	25-34	Training	Casual	30	6	14:30-15:30
ID18	Female	<25	Training	Casual	4	15	14:00-15: 00
ID19	Female	<25	Training	Casual	5	15	13: 00-14:00
ID20	Female	<25	Training	Casual	1	17	13:00-13: 30
ID21	Male	55-64	Working	Fine	3	20	13: $30-14: 00$
ID22	Male	25-34	Working	Casual	4	20	
ID23	Female	25-34	Working	Fine	4	22	12:30-14:00
ID24	Male	25-34	Working	Casual	4	20	12:30-13:30
ID25	Female	25-34	Working	Casual	4	20	13: 00-14:00
ID26	Male	35-44	Working	Casual	2	25	12:00-13:00
ID27	Male	35-44	Working	Casual	4	30	
ID28	Male	35-44	Working	Casual	5	25	12:30-13:30
ID29	Female	25-34	Working	Casual	2	15	
ID30	Female	25-34	Working	Casual	4	13	13: 00-14:30
ID31	Female	< 25	Working	Fine	6	30	12:30-13:30
ID32	Male	25-34	Training	Casual	5	20	13: 00-14:00
ID33	Male	< 25	Training	Casual	8	15	13: 00-14:00
ID34	Male	55-64	None/retired	Casual	1		14:00-15: 30
ID35	Male	25-34		Fast food	10	5	14: 00-16:00
ID36	Female	25-34	Working	Casual	2	15	14: 00-15:00
ID37	Female	25-34	Working	Casual	4	20	14: 00-15: 30
ID38	Female	35-44	Working	Casual	1	15	14:30-15:00
ID39	Male	<25	Both	Casual	3	9	14:00-15:00
ID40	Male	<25	Training	Casual	20	7.5	14:00-15:00
ID41	Male	< 25	Both	Fast food	5	5	13: 00-14:00
ID42	Male	25-34	Working	Self-service	8	8	13: 00-15: 00
ID43	Female	< 25	Training	Fast food	8	6	14: 00-15:00
ID44	Male	25-34	Working	Casual	5	12	14:00-15:00
ID45	Female	25-34	Working	Casual	5	8	12: $00-13: 00$
ID46	Female	< 25	Training	Casual	5	8	12: $00-13: 00$
ID47	Male	<25	Training	Fast food	6	4	14: 00-15: 00
ID48	Male	<25	Both	Casual	12	7.5	14:00-15:00
ID49	Male	25-34	Training	Casual	20	7	14:30-15:30
ID50	Male	<25	Both	Casual	4	7.5	14:00-15:00
ID51	Male	25-34	Training	Casual	8	10	13: 00-14:00
ID52	Female	25-34	Training	Casual	20	7	14:30-15:30
ID53	Male	25-34	Training	Casual	18	8	14:30-15:30
ID54	Male	35-44	Both	Fine	8	12	20: 00-21:00
ID55	Female	> 64	None/retired	Fine	10	15	12:30-14:00
ID56	Female	25-34	Both	Self-service	2	10	13: 00-14:00
ID57	Female	25-34	Training	Fast food	16	5	21:00-22:00
ID58	Male	25-34	Training	Casual	24	3	13: $30-14: 30$
ID59	Male	25-34	Training	Casual	20	7	14: $30-15: 30$
ID60	Female	25-34	Training	Casual	18	7	14: $30-14: 30$
ID61	Male	35-44	Working	Casual	20	8	13: 00-15:00
ID62	Female	< 25	Training	Fast food	15	4	13: 00-14:00
ID63	Female	45-54	Working	Fine	20	5	13: $00-15: 00$
ID64	Male	45-54	None/retired	Casual	20	7	15: 00-16: 00
ID65	Female	>64	None/retired	Fine	10	14	12: $30-14: 00$
ID66	Female	35-44	None/retired	Casual	24	5	13: $00-14: 00$
ID67	Female	35-44	Working	Casual	24	5.5	13: $00-14: 00$
ID68	Female	25-34	Working	Casual	4	10	14: $00-15: 00$
ID69	Male	55-64	Working	Casual	20	9	14:00-15:00
ID70	Male	25-34	Both	Fast food	6	10	21:00-23:00

Table B.2: Dataset for the "About your opinion/valuation/rating on the quality of food and beverage" items (Pages 243 and 244) from the adapted restaurant customer satisfaction Questionnaire ($\mathrm{SD}=$ strongly disagree, $\mathrm{sD}=$ somewhat disagree, $\mathrm{N}=$ neutral, $\mathrm{sA}=$ somewhat agree, $\mathrm{SA}=\operatorname{STRONGLY} \operatorname{AGREE}$, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$

ID	$\begin{array}{\|c\|} \hline Q F 1 \\ \text { Likert } \end{array}$	$\begin{gathered} Q F 1 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\left\lvert\, \begin{array}{c\|} Q F 2 \\ \text { Likert } \end{array}\right.$	$\begin{gathered} Q F 2 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline Q F 3 \\ \text { Likert } \\ \hline \end{array}$	$\begin{gathered} Q F 3 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\left\lvert\, \begin{gathered} Q F 4 \\ \text { Likert } \end{gathered}\right.$	$\begin{gathered} Q F 4 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\left\lvert\, \begin{array}{c\|} Q F 5 \\ \text { Likert } \end{array}\right.$	$\begin{gathered} Q F 5 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$
ID1	sA	(70, 80, 90, 100)	SA	(90, 95, 100, 100)	sA	(70, 75, 85, 90)	sA	(75, 80, 85, 90)	sA	(75, 80, 85, 90)
ID2	SA	(80, 90, 90, 100)	SA	($80,80,80,90$)	sA	$(80,80,80,100)$	sA	$(80,90,90,100)$	SA	$(100,100,100,100)$
ID3	sA	($70,80,80,90$)	sA	($80,85,85,90)$	N	(80, 80, 90, 100)	sA	$(80,90,90,100)$	SA	(100, 100, 100, 100)
ID4	sA	(70, $75,80,80)$	N	$(30,35,35,50)$	SA	(80, 80, 90, 90)	SA	$(80,85,85,90)$	N	$(40,50,50,60)$
ID5	SA	(80, 95, 95, 100)	sA	$(60,65,70,80)$	SA	$(80,100,100,100)$	SA	(90, 100, 100, 100)	sA	$(50,65,65,70)$
ID6	sA	($60,65,75,80$)	SA	(70, 80, 85, 90)	sA	(70, 70, 80, 90)	sA	($60,70,80,80$)	sA	($70,80,80,80$)
ID7	SA	$(90,98,100,100)$	sA	($70,75,80,90$)	SA	$(95,99,100,100)$	sA	$(65,70,85,90)$	SA	$(70,80,100,100)$
ID	SA	$(80,90,100,100)$	SA	($75,80,90,100)$	SA	$(90,95,100,100)$	SA	$(80,90,100,100)$	SA	$(80,85,95,100)$
ID	sA	(60, 70, 80, 90)	N	$(30,40,60,70)$	A	(50, 60, 80, 90)	sA	(50, 60, 80, 90)	N	$(40,50,70,80)$
ID10	sA	(60, 70, 90, 100)	sA	(50, 60, 70, 80)	sA	(60, 70, 90, 100)	N	$(40,50,60,70)$	N	(50, 60, 70, 80)
ID	sA	(61, 70, 70, 79)	sD	$(25,30,40,48)$	sA	$(64,70,80,88)$	sA	(63, 70, 80, 86)	N	$(44,49,56,60)$
ID	sA	$(30,50,68,79)$	SA	(70, 81, 100, 100)	N	$(40,51,71,80)$	N	$(41,59,59,79)$	N	$(30,40,60,70)$
	sA	(51, 61, 70, 80)	N	$(40,50,71,80)$	N	(31, 49, 60, 71)	sA	(50, 60, 70, 80)	sA	$(40,59,70,80)$
	sA	(61, 70, 90, 100)	SA	($72,80,89,100$)	N	(50, 60, 90, 100)	sA	$(60,70,78,91)$	N	(31, 40, 69, 80)
	SA	(60, 70, 81, 90)	A	$(60,69,80,90)$	sA	(61, 70, 79, 80)	N	$(30,40,50,59)$	SA	(91, 100, 100, 100)
	N	$(40,50,70,86)$	sA	$(44,56,76,87)$	sA	$(50,63,74,86)$	N	$(45,55,76,83)$	sA	$(48,58,71,79)$
	sA	($60,68,70,80$)	N	$(44,50,60,80)$	N	$(60,68,75,80)$	SA	$(80,90,100,100)$	SA	$(79,80,100,100)$
	SA	$(50,63,86,100)$	N	$(31,39,60,70)$	sA	$(70,80,90,100)$	N	$(30,39,60,68)$	SA	$(70,80,100,100)$
	SA	($82,88,94,96$)	SA	$(95,100,100,100)$	SA	$(80,90,100,100)$	sA	($75,80,90,95$)	sA	($70,75,85,90$)
	A	(70, 75, 95, 100)	A	(70, 74, 94, 100)	SA	$(70,75,90,96)$	SA	(70, 73, 90, 96)	SA	$(65,70,90,95)$
	SA	(70, 80, 90, 100)	A	$(68,80,90,100)$	SA	(60, 70, 80, 80)	SA	$(60,70,80,100)$	sA	$(50,70,90,100)$
ID	SA	(90, 100, 100, 100)	SA	$(90,100,100,100)$	SA	$(90,100,100,100)$	SA	(100, 100, 100, 100)	SA	(90, 100, 100, 100)
ID	SA	$(70,80,90,100)$	SA	(70, 80, 90, 100)	SA	$(70,80,90,100)$	SA	$(60,70,80,90)$	sA	$(60,70,80,90)$
ID	sA	(60, 70, 80, 90)	N	$(70,80,90,100)$	sA	$(50,60,80,90)$	sA	$(50,60,80,90)$	sA	$(70,80,90,100)$
	sA	(60, 70, 80, 90)	sA	$(60,65,75,80)$	sA	$(65,70,80,85)$	sA	$(70,80,90,95)$	N	$(45,50,60,65)$
	sA	$(40,60,80,90)$	SA	(80, 90, 100, 100)	SA	$(80,80,90,90)$	sA	$(70,80,100,100)$	sA	$(60,70,90,100)$
ID27	sA	$(30,70,100,100)$	SA	(60, 90, 100, 100)	sA	$(20,70,100,100)$	sA	$(20,70,100,100)$	SA	$(40,90,100,100)$
ID	N	($60,60,80,80$)	sA	$(50,60,80,90)$	N	$(50,60,80,90)$	sA	$(60,60,80,80)$	sA	$(60,60,80,80)$
	sA	$(40,50,80,100)$	sA	$(50,60,90,100)$	N	$(30,40,60,70)$	sA	$(40,50,90,100)$	sD	$(20,30,60,80)$
	sA	(55, 65, 75, 85)	N	$(40,45,55,60)$	sD	(20, 25, 35, 40)	sD	(20, 25, 35, 50)	sA	$(60,70,85,95)$
	SA	$(80,90,100,100)$	SD	(0, 0, 10, 40)	sD	(50, 60, 70, 100)	SA	$(80,90,100,100)$	SA	$(80,90,100,100)$
	SA	(100, 100, 100, 100)	N	$(40,50,60,70)$	A	$(70,75,85,90)$	sA	($70,75,85,90$)	sA	$(60,70,80,90)$
	sA	$(76,80,85,87)$	A	$(80,85,92,95)$	sA	$(65,69,81,83)$	SA	$(76,80,95,98)$	sA	$(65,70,85,90)$
	sA	(60, 68, 73, 78)	sA	($50,62,70,70)$	sA	$(70,76,83,86)$	sA	(55, 61, 66, 75)	SA	$(85,91,96,100)$
	A	$(60,70,88,100)$	D	$(11,20,40,50)$	sD	$(10,20,39,52)$	sA	$(60,68,90,100)$	N	$(40,40,58,58)$
	sA	(70, 80, 85, 100)	N	$(50,60,75,75)$	N	$(40,50,70,75)$	sA	($70,80,85,95$)	sA	(65, 70, 80, 85)
	sA	$(70,80,100,100)$	A	(60, 70, 90, 100)	sA	(70, 80, 90, 100)	SA	$(80,90,100,100)$	sA	$(70,80,90,100)$
	sA	($70,75,80,90$)	SA	$(80,90,90,95)$	sA	$(70,75,80,85)$	SA	(90, 90, 90, 100)	sA	$(65,70,80,85)$
	N	$(45,50,50,65)$	N	$(40,50,60,70)$	sA	(60, 70, 70, 80)	sA	(50, 60, 70, 80)	sA	$(42,50,70,80)$
	sA	($55,60,70,75$)	D	$(35,40,40,45)$	A	(55, 60, 65, 70)	sA	(65, 70, 70, 75)	N	$(45,50,50,55)$
	N	$(40,50,50,60)$	D	$(20,30,40,50)$	SD	($0,10,20,30$)	SA	$(70,80,90,100)$	N	$(30,40,50,60)$
	SD	($0,0,0,10$)	sA	$(65,70,80,85)$	N	$(35,40,50,60)$	sA	$(65,70,80,85)$	N	$(45,50,50,55)$
	sA	(55, 60, 70, 75)	N	$(45,48,52,55)$	sD	$(25,30,35,40)$	sA	(65, 70, 75, 80)	SA	$(85,90,100,100)$
	sA	(65, 70, 80, 85)	N	$(40,50,65,75)$	sA	($70,75,85,90)$	sA	$(60,65,75,80)$	N	$(45,50,50,55)$
	sA	(50, 60, 70, 80)	SA	$(80,85,95,100)$	N	$(30,40,60,70)$	sA	$(60,70,75,85)$	sA	$(50,60,70,80)$
	sA	(55, 60, 70, 75)	sA	$(60,70,80,90)$	sA	(55, 60, 70, 75)	sA	$(55,60,70,75)$	sA	$(65,70,75,80)$
	SA	(70, 80, 90, 100)	D	$(25,30,35,40)$	SD	$(0,0,5,5)$	sA	$(65,75,85,95)$	sD	$(20,30,30,40)$
	N	$(40,50,50,60)$	sA	$(60,65,70,75)$	sA	$(50,60,70,80)$	SA	$(80,85,95,100)$	sA	$(65,70,80,85)$
	SA	($70,80,90,100)$	sD	$(30,40,45,55)$	A	$(60,65,75,80)$	SA	(70, 80, 90, 90)	sA	$(65,70,80,85)$
	sA	$(65,70,80,85)$	N	$(40,50,60,70)$	sA	$(75,80,90,95)$	SA	$(80,85,95,100)$	sA	$(65,70,80,85)$
	sA	$(70,75,80,85)$	SA	$(80,90,100,100)$	sA	$(70,75,85,90)$	SA	$(80,90,100,100)$	N	$(45,50,60,65)$
	sA	$(60,70,80,90)$	N	$(50,55,60,65)$	N	$(45,50,55,60)$	sA	($75,80,85,90)$	SA	($75,80,90,95$)
	SA	$(80,90,100,100)$	N	$(40,45,55,60)$	sA	$(70,75,85,90)$	SA	$(80,90,95,100)$	SA	$(80,90,95,100)$
	sA	($70,75,80,85$)	sA	$(50,60,70,80)$	sA	$(65,70,80,85)$	sA	($75,80,85,90)$	sA	$(70,75,80,85)$
	SA	(80, 90, 100, 100)	SA	$(70,80,90,100)$	sA	(70, 80, 90, 100)	sA	$(70,80,90,100)$	SA	$(80,90,100,100)$
	sA	(60, 70, 80, 90)	N	$(45,50,55,60)$	sA	$(60,70,80,90)$	sA	$(70,80,85,95)$	N	$(40,50,60,70)$
	sA	(60, 70, 80, 90)	sA	$(60,70,75,85)$	N	$(35,50,60,75)$	N	$(50,60,70,80)$	N	$(50,60,70,80)$
ID58	sA	$(65,75,80,100)$	SA	$(95,100,100,100)$	sA	$(60,80,95,100)$	SA	$(70,95,100,100)$	sA	$(40,50,70,80)$
ID59	SA	$(70,80,90,100)$	sD	$(30,40,45,55)$	sA	$(60,65,75,80)$	SA	(70, 80, 90, 90)	sA	$(65,70,80,85)$
ID60	sA	$(65,80,85,95)$	N	$(20,40,50,80)$	sA	$(30,50,60,100)$	sA	$(30,50,90,100)$	sA	$(40,70,80,100)$
ID61	SA	$(80,90,100,100)$	sA	$(40,50,70,90)$	N	$(10,20,50,80)$	sA	$(60,70,85,100)$	SA	(50, 70, 80, 90)
	sA	(60, 65, 75, 80)	SD	(0, 10, 25, 50)	sA	(20, 70, 90, 95)	SA	(50, 95, 95, 100)	sA	(50, 70, 80, 100)
	N	(30, 40, 90, 100)	SA	$(80,85,90,100)$	SA	(85, 90, 95, 100)	sA	$(80,85,100,100)$	N	$(80,90,100,100)$
	sA	(90, 100, 100, 100)	N	$(30,40,60,100)$	SA	$(40,85,100,100)$	SA	$(50,80,85,100)$	sA	(50, 70, 80, 90)
	SA	(50, 80, 90, 100)	SA	$(40,80,85,100)$	sA	$(40,60,70,100)$	SA	$(70,80,100,100)$	SA	(80, 90, 95, 100)
	sA	$(40,50,80,100)$	sA	$(40,60,70,90)$	sA	$(30,60,75,95)$	SA	$(80,85,95,100)$	sA	($75,85,95,100)$
	sA	$(75,80,90,100)$	SA	$(50,80,90,100)$	SA	$(40,70,90,100)$	SA	$(70,95,100,100)$	sA	$(55,70,90,100)$
	SA	(85, 90, 95, 100)	sA	$(60,67,73,80)$	sA	$(70,80,80,85)$	SA	$(80,90,95,100)$	sA	$(65,75,75,85)$
ID69	sA	$(75,90,90,100)$	N	$(50,60,60,60)$	sA	(80, 80, 80, 100)	N	$(50,55,60,60)$	N	$(45,50,50,55)$
ID70	N	(37, 47, 56, 62)	sA	(51, 62, 69, 72)	sD	(25, 30, 40, 50)	SA	(90, 100, 100, 100)	sA	$(45,50,62,72)$

Table B.3: Dataset for the "About your opinion/valuation/rating on the satisfaction with restaurant service" first five items (Pages 244 and 245) from the adapted restaurant customer satisfaction Questionnaire ($\mathrm{SD}=$ strongly disagree, $\mathrm{sD}=$ somewhat disagree, $\mathrm{N}=$ neutral, $\mathrm{sA}=$ SOMEWHAT AGREE, $\mathrm{SA}=$ STRONGLY AGREE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$

ID	$\begin{array}{\|c\|} \hline Q R 1 \\ \text { Likert } \\ \hline \end{array}$	$\begin{gathered} Q R 1 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline Q R 2 \\ \text { Likert } \\ \hline \end{array}$	$\begin{gathered} Q R 2 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\left\lvert\, \begin{gathered} Q R 3 \\ \text { Likert } \\ \hline \end{gathered}\right.$	$\begin{gathered} Q R 3 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline Q R 4 \\ \text { Likert } \\ \hline \end{array}$	$\begin{gathered} Q R 4 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline Q R 5 \\ \text { Likert } \end{array}$	$\begin{gathered} Q R 5 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \\ \hline \end{gathered}$
ID1	SA	($100,100,100,100)$	sA	(80, 85, 90, 100)	N	(40, 50, 60, 70)	sA	(60, 70, 80, 90)	SA	(90, 95, 100, 100)
ID2	SA	$(100,100,100,100)$	sA	(80, 90, 90, 100)	sA	(60, 70, 80, 80)	SA	$(100,100,100,100)$	SA	($100,100,100,100)$
3	SA	($70,70,70,80)$	SA	(80, 90, 90, 100)	N	($70,80,80,100$)	sA	(60, 65, 75, 80)	SA	$(80,85,95,100)$
ID4	N	(50, 65, 65, 70)	N	$(40,50,50,50)$	sA	(60, 80, 80, 80)	sA	($70,75,75,85$)	SA	$(80,85,85,100)$
ID5	SA	(80, 95, 95, 100)	SA	(80, 95, 95, 100)	sA	(60, 80, 80, 85)	SA	(80, 95, 95, 100)	SA	$(90,100,100,100)$
ID6	sA	(60, 70, 80, 80)	N	$(50,50,60,70)$	N	$(40,50,50,60)$	sA	(60, 70, 80, 80)	N	(50, 60, 70, 70)
ID	SA	$(95,98,100,100)$	SA	$(100,100,100,100)$	N	$(45,50,60,65)$	SA	$(90,95,100,100)$	sD	$(0,10,29,30)$
ID8	SA	(75, 80, 90, 95)	SA	($70,75,95,100)$	sA	(60, 70, 80, 90)	SA	(70, 70, 90, 90)	sA	(60, 65, 75, 80)
ID	N	(50, 65, 65, 80)	N	(53, 70, 70, 81)	N	(51, 68, 68, 81)	sA	(62, 77, 77, 90)	N	(52, 69, 69, 82)
ID	sA	$(60,70,80,90)$	SA	($70,80,100,100)$	sA	(50, 70, 80, 90)	N	$(30,50,50,70)$	SA	$(80,90,100,100)$
	SA	$(90,100,100,100)$	sA	($75,80,85,90)$	sA	$(75,80,90,96)$	sA	($71,78,90,100$)	SA	$(90,100,100,100)$
	SA	$(100,100,100,100)$	A	(51, 69, 80, 90)	SA	$(90,100,100,100)$	SA	(90, 100, 100, 100)	sD	$(20,30,40,49)$
	N	($40,50,60,70)$	A	(50, 60, 70, 80)	N	$(30,50,50,60)$	A	(61, 71, 80, 90)	N	(30, 41, 50, 63)
	sD	$(0,10,19,30)$	N	$(62,69,80,89)$	sA	$(40,50,79,91)$	SD	$(0,11,20,38)$	SD	$(0,30,40,60)$
	sA	(71, 80, 80, 90)	SA	(91, 100, 100, 100)	sA	(71, 79, 79, 91)	sA	(71, 79, 79, 91)	N	$(41,50,60,71)$
	sA	(53, 62, 75, 88)	sA	(52, 62, 79, 90)	sA	(53, 63, 79, 90)	N	$(54,63,77,87)$	sA	$(56,66,70,84)$
ID	SA	$(79,91,100,100)$	SA	$(79,90,100,100)$	sA	$(62,70,80,86)$	sA	($61,67,74,79$)	N	$(41,48,60,66)$
ID	sA	(80, 90, 90, 100)	sA	$(70,80,90,100)$	N	$(50,60,70,80)$	sA	($73,89,89,100)$	N	$(40,60,90,100)$
ID	sA	$(65,70,80,85)$	SA	(70, 80, 90, 95)	SA	$(95,100,100,100)$	SA	$(80,85,95,95)$	SA	(95, 100, 100, 100)
ID	sA	$(55,60,80,85)$	SA	(70, 73, 95, 100)	SA	($60,65,84,90)$	sA	$(50,56,76,80)$	SA	$(68,74,95,100)$
ID	sA	(50, 60, 80, 90)	sA	(80, 80, 80, 80)	SA	$(70,80,90,100)$	SA	$(80,90,100,100)$	SA	(100, 100, 100, 100)
	SA	$(90,100,100,100)$	SA	(90, 100, 100, 100)	SA	$(90,100,100,100)$	sA	(90, 100, 100, 100)	SA	(90, 100, 100, 100)
	sA	(50, 60, 70, 80)	sA	(50, 60, 70, 80)	N	$(40,50,60,70)$	N	$(40,50,60,70)$	N	$(40,50,60,70)$
	SA	(70, 80, 90, 100)	N	($70,80,90,100$)	sA	$(50,60,80,90)$	N	$(30,40,70,80)$	SA	$(80,90,100,100)$
	SA	$(80,80,90,100)$	SA	$(75,80,90,95)$	SA	$(75,80,90,95)$	N	$(45,50,60,65)$	sA	(70, 75, 85, 90)
	SA	$(70,80,100,100)$	SA	$(90,90,100,100)$	SA	$(90,90,100,100)$	sA	$(50,60,80,80)$	sA	$(60,70,90,100)$
ID	SA	$(80,90,100,100)$	sA	$(10,70,100,100)$	sA	$(10,60,100,100)$	sA	$(10,70,100,100)$	SA	$(60,90,100,100)$
ID	sA	$(60,60,80,80)$	N	$(60,60,80,80)$	N	$(60,60,80,80)$	sA	$(50,60,80,90)$	SA	(70, 70, 90, 90)
	N	$(40,50,80,90)$	N	(30, 40, 70, 80)	sA	$(40,50,80,90)$	N	(30, 40, 70, 80)	sA	$(50,60,90,100)$
ID	SA	$(85,95,100,100)$	sA	(70, 75, 87, 95)	sA	$(64,73,86,95)$	sD	$(20,30,40,50)$	SA	$(84,90,100,100)$
ID	sD	(30, 40, 50, 80)	sD	(30, 40, 50, 80)	sD	$(40,50,60,70)$	sD	(30, 40, 60, 70)	SA	$(80,90,100,100)$
ID32	SA	$(80,90,100,100)$	SA	($80,90,100,100$)	sA	(60, 70, 85, 90)	SA	$(100,100,100,100)$	SA	$(100,100,100,100)$
ID	sA	(62, 70, 72, 76)	N	$(52,58,64,70)$	sA	(65, 70, 80, 90)	SA	$(100,100,100,100)$	SA	$(100,100,100,100)$
	SA	(80, 90, 95, 95)	sA	($75,83,90,95$)	sA	$(84,84,94,97)$	SA	$(85,90,96,100)$	SA	$(89,94,100,100)$
	SA	$(90,90,100,100)$	SA	(90, 90, 100, 100)	sA	(62, 70, 88, 97)	N	(32, 40, 60, 70)	sA	$(70,78,100,100)$
	SA	$(90,95,100,100)$	sA	($75,80,90,95$)	s	($70,75,85,90)$	sA	($75,80,90,100)$	SA	$(85,90,100,100)$
	sA	$(70,80,100,100)$	SA	($84,90,100,100$)	sA	($70,80,100,100)$	sA	$(70,80,100,100)$	SA	$(80,90,100,100)$
	SA	$(90,95,100,100)$	sA	$(65,70,75,80)$	SA	$(85,90,90,100)$	sA	$(75,80,80,85)$	SA	$(90,95,100,100)$
	SA	($60,70,80,90$)	SA	(60, 70, 85, 90)	sA	$(65,75,75,85)$	N	$(40,50,50,60)$	SA	$(75,80,90,95)$
	SA	($75,80,90,95$)	A	$(65,70,80,85)$	N	$(45,50,50,55)$	N	$(45,50,60,65)$	SA	$(70,80,80,90)$
	SA	(80, 90, 90, 100)	sD	($10,20,40,50)$	sA	($70,80,80,90$)	sD	(10, 20, 30, 40)	sA	(70, 80, 80, 90)
	SA	$(90,100,100,100)$	SA	(90, 100, 100, 100)	SA	$(90,100,100,100)$	SA	($85,90,95,100)$	SA	$(85,90,95,100)$
	SA	(85, 90, 100, 100)	N	$(45,50,60,60)$	sA	($70,75,85,90$)	sD	($20,20,30,35$)	SA	$(85,87,90,95)$
	SA	$(90,100,100,100)$	sA	(55, 60, 70, 75)	sA	$(65,70,80,85)$	N	$(35,40,60,60)$	sA	(80, 85, 90, 95)
	SA	$(100,100,100,100)$	sA	$(50,60,65,75)$	sD	$(20,30,40,50)$	sD	$(25,30,40,45)$	SA	$(100,100,100,100)$
	sD	(20, 30, 40, 50)	N	$(35,40,50,55)$	N	(50, 55, 60, 65)	sA	(60, 70, 80, 90)	sA	(80, 85, 90, 95)
	sA	($75,80,90,95$)	sA	($70,75,85,90$)	N	(20, 25, 35, 40)	sD	($10,15,25,30)$	sA	($70,75,80,85$)
	SA	$(80,100,100,100)$	SA	(75, 80, 95, 100)	sA	($75,80,85,90$)	N	$(35,40,50,55)$	sA	(80, 85, 85, 90)
	SA	$(80,90,100,100)$	sA	$(65,70,80,85)$	A	(70, 75, 85, 90)	sD	$(10,20,30,40)$	SA	$(80,90,100,100)$
	SA	(90, 100, 100, 100)	SA	$(90,95,100,100)$	sA	(70, 75, 80, 85)	N	$(45,50,60,65)$	SA	$(85,90,100,100)$
	sA	$(70,80,90,100)$	sD	$(15,20,30,35)$	N	$(45,50,60,65)$	sA	(70, 75, 85, 90)	SA	$(80,90,100,100)$
	sA	($70,75,80,85$)	SA	$(85,90,95,100)$	SA	($85,90,100,100$)	N	$(50,55,60,65)$	sA	$(70,80,90,100)$
	SA	$(90,90,100,100)$	SA	$(90,90,100,100)$	sA	$(75,80,85,90)$	sA	(80, 85, 90, 95)	SA	$(85,90,100,100)$
	SA	$(75,80,90,100)$	SA	$(80,90,100,100)$	SA	$(80,90,100,100)$	sA	$(70,80,90,100)$	sA	$(75,80,85,90)$
	sA	(70, 80, 90, 100)	sA	($70,80,90,100$)	sA	(70, 80, 90, 100)	SA	$(80,90,100,100)$	sA	$(70,80,90,100)$
ID56	SA	$(90,95,100,100)$	sA	$(75,80,90,95)$	SA	$(80,90,100,100)$	SA	$(80,90,100,100)$	sA	$(75,80,85,90)$
ID57	SA	$(80,90,100,100)$	N	$(50,60,70,80)$	SA	$(90,95,100,100)$	SA	$(90,95,100,100)$	SA	$(90,95,100,100)$
ID58	SA	$(80,90,100,100)$	sA	$(40,50,80,100)$	sA	($50,60,70,100)$	sA	$(40,80,85,100)$	SA	(95, 100, 100, 100)
ID59	SA	$(80,90,100,100)$	sA	$(65,70,80,85)$	sA	($70,75,85,90$)	sD	$(10,20,30,40)$	SA	$(80,90,100,100)$
	SA	(70, 90, 95, 100)	sA	(70, 80, 90, 100)	sA	(50, 80, 90, 95)	N	(20, 50, 60, 70)	SA	($75,90,95,100)$
	sA	$(80,90,100,100)$	N	$(60,90,100,100)$	sA	$(40,50,70,80)$	N	(30, 60, 80, 90)	SA	(90, 100, 100, 100)
	SA	$(80,90,100,100)$	sA	$(80,90,100,100)$	N	(80, 90, 100, 100)	sA	(50, 80, 90, 100)	SA	(90, 100, 100, 100)
	SA	$(80,90,100,100)$	sA	$(85,95,100,100)$	sA	$(70,85,95,100)$	SA	$(80,90,100,100)$	SA	(70, 80, 90, 100)
	SA	(50, 70, 90, 100)	SA	$(70,90,100,100)$	SA	$(50,60,80,90)$	sA	$(50,60,80,100)$	SA	$(95,100,100,100)$
	sA	(90, 100, 100, 100)	sA	(70, 85, 90, 100)	sA	(80, 85, 90, 100)	SA	$(85,95,100,100)$	sA	($70,80,90,100$)
	sA	$(80,90,100,100)$	sA	$(80,90,100,100)$	sA	$(60,70,80,90)$	N	(70, 80, 85, 90)	SA	(90, 95, 95, 100)
	SA	$(90,95,100,100)$	sA	$(60,80,100,100)$	sA	$(50,65,70,80)$	sA	$(50,80,90,100)$	SA	$(50,100,100,100)$
	sA	$(60,70,70,80)$	SA	$(85,95,100,100)$	sA	$(65,75,80,90)$	SA	$(85,95,95,100)$	SA	$(90,95,100,100)$
ID69	SA	$(95,100,100,100)$	SA	(90, 90, 90, 95)	SA	$(100,100,100,100)$	sA	$(75,75,75,80)$	SA	$(90,95,95,100)$
ID70	SA	$(95,100,100,100)$	sA	$(60,70,80,90)$	SA	(85, 91, 97, 99)	SA	$(85,91,95,100)$	SA	$(70,85,90,90)$

Table B.4: Dataset for the "About your opinion/valuation/rating on the satisfaction with restaurant service" last three and "restaurant price" items (Page 245) from the adapted restaurant customer satisfaction Questionnaire ($\mathrm{SD}=$ strongly disagree, $\mathrm{sD}=$ somewhat disagree, N $=$ NEUTRAL, $\mathrm{sA}=$ SOMEWHAT AGREE, $\mathrm{SA}=\operatorname{strongly~AGREE}$, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$

ID	$\begin{gathered} Q R 6 \\ \text { Likert } \end{gathered}$	$\begin{gathered} Q R 6 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	QR7 Likert	$\begin{gathered} Q R 7 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	QR8 Likert	$\begin{gathered} Q R 8 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$	QP1 Likert	$\begin{gathered} Q P 1 \\ \left(a_{i}, b_{i}, c_{i}, d_{i}\right) \end{gathered}$
ID1	sA	(65, 70, 80, 85)	N	(60, 65, 75, 80)	SA	(80, 90, 95, 100)	SA	(90, 95, 100, 100)
ID2	sA	(90, 90, 90, 90)	sA	$(100,100,100,100)$	sA	$(100,100,100,100)$	sA	($80,80,80,80$)
ID3	N	(80, 85, 90, 100)	N	(60, 75, 80, 90)	sA	(70, 80, 85, 90)	sA	(80, 85, 95, 100)
ID4	N	$(40,45,45,60)$	sA	$(80,85,85,90)$	SA	(90, 90, 90, 100)	SA	(80, 90, 90, 100)
ID5	SA	$(90,100,100,100)$	sA	(80, 90, 90, 100)	SA	$(90,100,100,100)$	SA	(80, 90, 90, 100)
ID6	sD	(40, 40, 50, 60)	N	(50, 60, 70, 70)	N	(50, 60, 60, 70)	N	(50, 60, 70, 70)
ID7	SA	$(100,100,100,100)$	SA	(90, 95, 100, 100)	SA	$(100,100,100,100)$	N	($50,50,70,70$)
ID8	SA	($70,80,90,100$)	SA	$(80,85,95,100)$	SA	($70,80,90,100$)	SA	(70, 80, 90, 100)
ID9	sA	(60, 76, 76, 90)	sA	$(60,76,76,93)$	N	(52, 69, 69, 79)	SA	(71, 85, 100, 100)
ID10	SA	(70, 90, 100, 100)	N	$(40,50,60,80)$	N	(30, 48, 60, 80)	SA	(69, 90, 100, 100)
ID11	SA	(83, 90, 100, 100)	SA	$(85,95,100,100)$	N	$(53,60,65,71)$	sA	$(69,75,75,80)$
ID12	SA	(71, 90, 100, 100)	N	$(40,50,50,70)$	N	$(40,50,50,61)$	SA	$(61,79,100,100)$
ID13	N	$(30,41,50,60)$	N	$(40,51,60,70)$	N	$(30,40,49,61)$	N	$(30,42,50,61)$
ID14	SA	(60, 69, 79, 100)	SA	($50,59,68,100)$	sA	(51, 59, 68, 80)	SA	(70, 80, 91, 100)
ID15	SA	(81, 90, 100, 100)	sA	(60, 71, 80, 90)	SA	$(80,90,100,100)$	SA	($80,90,100,100$)
ID16	sA	$(45,54,75,85)$	N	$(46,57,69,82)$	N	$(56,67,71,84)$	sA	$(40,50,69,81)$
ID17	sA	$(60,68,80,86)$	sA	$(60,67,70,86)$	SA	(81, 91, 100, 100)	SA	(83, 90, 100, 100)
ID18	SA	(81, 90, 100, 100)	sA	($62,70,90,100)$	N	$(28,50,69,80)$	sA	($57,70,90,100$)
ID19	SA	$(95,100,100,100)$	SA	$(85,90,100,100)$	SA	(70, 80, 90, 95)	SA	$(80,85,95,100)$
ID20	sA	$(60,65,85,90)$	sA	$(60,65,85,90)$	sA	$(55,60,80,85)$	SA	(65, 70, 90, 95)
ID21	SA	(70, 80, 90, 100)	sA	$(60,70,80,90)$	sA	$(60,70,80,90)$	SA	$(80,90,100,100)$
ID22	SA	$(90,100,100,100)$	SA	$(90,100,100,100)$	SA	$(90,100,100,100)$	SA	$(90,100,100,100)$
ID23	N	$(40,50,60,70)$	N	(50, 60, 70, 80)	sA	$(60,70,80,90)$	sA	(60, 70, 80, 90)
ID24	N	$(40,60,80,100)$	N	(60, 70, 80, 90)	sA	$(80,90,100,100)$	sA	$(50,60,90,100)$
ID25	sA	$(75,80,90,95)$	sA	($70,75,85,90)$	sA	($70,75,85,90)$	sA	$(60,70,70,80)$
ID26	SA	$(90,90,100,100)$	sA	($60,70,90,100$)	sA	$(40,60,80,80)$	N	$(10,40,50,80)$
ID27	N	$(10,60,100,100)$	sA	$(20,80,100,100)$	sA	$(20,80,100,100)$	sD	$(10,40,100,100)$
ID28	N	$(80,80,100,100)$	N	(70, 70, 90, 90)	N	(70, 70, 90, 90)	sA	(70, 70, 90, 90)
ID29	sD	$(20,30,60,90)$	N	(20, 40, 60, 90)	sD	$(10,20,60,80)$	sA	$(40,50,80,90)$
ID30	sA	$(60,75,90,97)$	N	$(34,44,55,67)$	sD	$(10,15,35,40)$	sD	(10, 20, 30, 40)
ID31	sD	$(40,50,60,100)$	sD	(50, 60, 70, 100)	SA	$(80,90,100,100)$	sD	$(10,20,40,70)$
ID32	SA	($80,90,100,100$)	SA	$(80,90,100,100)$	SA	$(80,90,100,100)$	SA	(70, 80, 90, 100)
ID33	sA	(74, 80, 92, 96)	sA	($70,75,80,86$)	SA	$(85,90,100,100)$	sA	$(65,70,80,87)$
ID34	N	$(60,64,70,74)$	N	$(63,70,77,80)$	sA	$(82,87,94,94)$	sA	(71, 74, 80, 87)
ID35	SA	$(80,88,100,100)$	sA	(60, 70, 78, 90)	sA	$(62,70,84,90)$	SA	$(70,80,100,100)$
ID36	sA	(80, 85, 95, 95)	N	$(50,55,65,70)$	sA	$(65,70,80,85)$	N	(55, 60, 70, 70)
ID37	SA	(80, 90, 100, 100)	SA	$(80,90,100,100)$	SA	$(80,90,100,100)$	sA	(70, 80, 90, 100)
ID38	SA	$(85,90,100,100)$	SA	(80, 90, 95, 100)	sA	$(70,75,80,85)$	SA	(90, 90, 95, 100)
ID39	SA	$(75,80,90,100)$	sA	$(62,75,85,91)$	sA	$(55,60,75,80)$	SA	$(75,85,85,90)$
ID40	SA	(70, 80, 80, 90)	sA	$(55,60,60,65)$	sA	$(65,70,80,85)$	sA	$(55,60,70,75)$
ID41	SD	(0, 10, 20, 30)	SD	$(0,10,10,20)$	N	$(40,50,60,70)$	SA	$(90,100,100,100)$
ID42	N	$(45,50,60,65)$	N	$(45,50,60,65)$	sD	$(15,20,25,30)$	sA	$(65,70,80,85)$
ID43	N	$(45,48,52,55)$	N	$(45,48,52,55)$	sD	$(25,30,40,45)$	SA	$(85,90,100,100)$
ID44	sA	$(65,70,80,85)$	sA	($70,75,85,90)$	sA	($75,80,80,85$)	N	$(45,50,65,70)$
ID45	sA	$(60,65,75,80)$	sA	$(60,65,75,80)$	sA	(60, 70, 80, 90)	sA	$(65,70,80,85)$
ID46	sD	$(10,20,30,35)$	N	$(45,50,50,55)$	SA	$(80,90,100,100)$	sA	$(60,70,80,90)$
ID47	SD	(0, 0, 0, 20)	sD	$(10,20,30,40)$	N	$(10,20,20,30)$	SA	$(90,100,100,100)$
ID48	sA	$(60,65,70,75)$	sA	$(65,70,75,80)$	sA	$(70,80,80,80)$	sA	($70,80,90,100$)
ID49	SA	(90, 95, 100, 100)	sA	(60, 70, 80, 90)	SA	(75, 80, 90, 95)	SA	$(85,90,100,100)$
ID50	SA	($75,80,90,95$)	SA	($75,80,90,95$)	N	$(45,50,60,65)$	SA	$(85,90,100,100)$
ID51	sD	$(15,20,30,35)$	N	$(45,50,60,65)$	sA	$(65,70,80,85)$	sD	$(10,20,30,40)$
ID52	SA	$(85,90,100,100)$	sA	($75,80,85,90)$	sA	$(70,75,80,85)$	SA	$(80,90,100,100)$
ID53	SA	$(90,95,100,100)$	SA	(80, 85, 95, 100)	SA	(75, 80, 90, 95)	SA	(85, 90, 95, 100)
ID54	sA	($70,75,80,85$)	sA	$(75,80,85,90)$	SA	$(80,90,100,100)$	sA	(70, 80, 90, 100)
ID55	sA	(70, 80, 90, 100)	sA	(70, 80, 90, 100)	SA	($80,90,100,100$)	N	(50, 60, 70, 80)
ID56	sA	$(75,80,85,90)$	sA	$(75,80,85,90)$	sA	$(75,80,85,90)$	SA	(80, 90, 100, 100)
ID57	sA	$(60,70,80,90)$	N	$(40,50,60,70)$	sA	$(60,70,80,90)$	sA	(70, 80, 90, 100)
ID58	N	$(40,70,85,100)$	sA	($50,70,80,100)$	sA	($50,70,80,100$)	N	(30, 50, 60, 100)
ID59	SA	(90, 95, 100, 100)	sA	$(60,70,80,90)$	SA	$(75,80,90,95)$	SA	$(85,90,100,100)$
ID60	SA	(85, 90, 95, 100)	sA	(60, 70, 90, 100)	SA	(80, 90, 95, 100)	SA	(90, 95, 100, 100)
ID61	sA	(70, 80, 90, 100)	sA	$(50,80,95,100)$	SA	(50, 70, 80, 100)	SA	(50, 80, 90, 100)
ID62	SA	(80, 90, 100, 100)	sA	$(50,90,100,100)$	SA	$(40,80,90,100)$	sA	$(80,90,100,100)$
ID63	SA	$(90,95,100,100)$	SA	$(80,90,100,100)$	SA	$(90,100,100,100)$	SA	(50, 70, 80, 90)
ID64	SA	(70, 80, 95, 100)	SA	(50, 70, 80, 100)	SA	$(80,90,100,100)$	SA	(80, 90, 90, 100)
ID65	sA	$(60,80,85,100)$	sA	($70,80,95,100$)	SA	$(85,95,100,100)$	SA	$(85,90,100,100)$
ID66	SA	$(50,90,100,100)$	sA	(50, 80, 90, 100)	sA	(80, 85, 95, 100)	sA	($50,80,85,100)$
ID67	SA	$(80,95,100,100)$	sA	$(50,60,70,90)$	SA	$(65,80,90,100)$	sA	$(60,70,80,100)$
ID68	SA	$(95,100,100,100)$	sA	$(70,80,80,85)$	sA	$(65,75,80,84)$	sA	($70,77,85,90$)
ID69	SA	$(100,100,100,100)$	sA	(75, 80, 80, 80)	sA	$(80,80,80,85)$	SA	($100,100,100,100)$
ID70	N	$(40,50,50,60)$	N	$(30,50,55,70)$	sA	$(50,60,70,70)$	sD	$(30,34,38,45)$

Appendix C

Computerized application and datasets for the online double response perceptions question

- You are "sure" that the true relative size (TRS) of the magnitude X is contained in this interval
- Assuming a "maximum" risk criteria you think that the TRS of the magnitude X is contained in this interval
- Assuming a "medium" risk criteria you think that the TRS of the magnitude X is contained in this interval

Note: "Maximum" and "medium" risk is up to you.
For instance, some people could choose "maximum" risk interval to be degenerated in a point.

Instructions - You can practice with the above figure

- To move the figure along the Min-Max scale, hold Ctrl on and drag the figure to the desired position.
- To adjust the "maximum" risk and "sure" intervals, drag the corresponding edge to the desired position

Further adjustings:
Although for representing perceptions trapezoidal forms, as the one in the above example, seems to be enough it is also posible to describe them by means of diferent shapes.

- The shape can be changed by holding Alt and dragging the edges to the desired position

Table C.1: Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=\mathrm{SmalL}, \mathrm{M}=\mathrm{medium}, \mathrm{L}$ $=\operatorname{LARGE}, \mathrm{VL}=\mathrm{VERY}$ LARGE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right) ;$ data ID1-ID6

ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$	ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$
ID1	Male	38.39 3.6 84.62 15.16 49.95 26.72 73.06 61.4 96.29 15.16 3.6 49.95	$\begin{gathered} \hline \text { S } \\ \text { VS } \\ \text { L } \\ \text { S } \\ \text { M } \\ \text { S } \\ \mathrm{L} \\ \text { M } \\ \text { VL } \\ \text { S } \\ \text { VS } \\ \text { M } \end{gathered}$	$(28.29,28.92,31.26,33.69)$ $(3.6,4.59,5.95,9.91)$ $(80.09,84.05,87.21,90.09)$ $(9.91,11.98,16.67,17.48)$ $(41.71,44.95,51.35,51.35)$ $(23.78,23.96,27.03,29.73)$ $(74.14,76.22,78.65,80.18)$ $(57.03,59.46,59.91,65.14)$ $(97.39,99.64,99.64,100)$ $(7.66,9.82,11.53,12.07)$ $(1.89,2.52,3.15,3.6)$ $(37.57,39.55,40.99,43.06)$	ID4	Female	38.33 96.27 3.63 15.2 84.61 61.47 26.76 73.04 50 15.2 3.63 73.04	S VL VS S VL M S L S VS VS L	$(24.72,29.16,39.9,44.83)$ $(90.15,92.89,98.14,100)$ $(0,2.18,4.85,7.27)$ $(10.02,12.76,18.9,20.36)$ $(80.21,86.75,94.91,97.74)$ $(49.92,54.77,63.09,68.01)$ $(19.95,23.83,32.15,34.89)$ $(70.19,71.57,78.27,80.53)$ $(44.99,48.55,54.28,59.85)$ $(12.12,15.75,20.52,22.21)$ $(0.4,0.4,5.74,8.08)$ $(67.04,70.6,77.54,83.28)$
ID2	Male	61.47 26.75 15.09 49.94 73.01 96.2 3.68 38.28 84.66 49.94 38.28 84.66 73.01 61.47 96.2 26.75 3.68	M VS VS M L VL VS S VL M S VL L M VL VS VS	$(56.72,63.03,71.59,74.13)$ $(16.6,18.74,26.88,31.67)$ $(4.48,9.47,14.66,19.55)$ $(43.99,47.05,52.34,55.7)$ $(77.49,83.4,88.49,93.48)$ $(89.92,95.01,98.27,100)$ $(0,2.65,6.01,9.98)$ $(25.56,30.55,40.63,45.62)$ $(83.4,87.37,91.65,95.82)$ $(39.92,47.56,52.65,59.98)$ $(27.6,31.16,37.98,40.02)$ $(82.99,85.74,89.92,93.38)$ $(75.36,80.24,83.71,87.68)$ $(45.01,50,58.96,63.03)$ $(89.92,93.38,95.01,99.29)$ $(12.22,15.27,19.86,22.2)$ $(0,2.65,6.72,8.25)$ $5,7.74,13.14,14)$			96.27 61.47 26.76 84.61 50 50 3.63 15.2 38.33 96.27 73.04 84.61 26.76 61.47 35.39 33.53 71.47	VL L S VL M M VS S M VL L VL S M S S L	$(95.8,100,100,100)$ $(53.39,58.64,62.68,68.98)$ $(20.27,21.65,27.63,30.05)$ $(75.28,77.79,85.95,89.98)$ $(44.18,46.61,53.55,57.67)$ $(44.75,47.09,52.83,55.49)$ $(1.29,2.5,4.93,8)$ $(12.6,15.19,19.79,21.16)$ $(31.74,34.57,44.99,47.42)$ $(97.9,99.43,100,100)$ $(64.86,67.53,77.22,80.13)$ $(75.28,79,86.43,89.82)$ $(18.98,21.65,28.68,29.97)$ $(53.39,56.62,65.11,699.47)$ $(26.49,28.84,37.88,42)$ $(28.51,30.45,36.35,38.53)$ $(63.81,68.82,75.04,79.81)$
		15.09 15.09 3.68 26.75 84.66 73.01 96.2 49.94 61.47 38.28 10.18 28.1 85.28 71.9 73.37 13.99 42.94 43.56 48.83 52.52 87.12 22.82 94.85 37.79 26.63 78.9 97.06 64.05 53.5 24.05 22.58 13.01	VS VS VS VS S VL L VL M M S VS S VL L L VS S S M M VL S VL S S VL VL M M S S VS	$(5.5,7.74,13.14,14.26)$ $(4.89,9.88,14.05,17.41)$ $(0,1.93,4.89,6.62)$ $(18.64,23.01,25.05,27.6)$ $(80.45,85.03,89,95.32)$ $(71.89,76.27,83.71,87.78)$ $(91.96,94.5,98.27,100)$ $(41.34,45.01,54.18,56.92)$ $(57.43,59.57,67.11,69.35)$ $(30.04,34.01,41.14,44.91)$ $(3.16,8.25,13.24,14.97)$ $(12.73,16.29,23.01,25.05)$ $(78.21,83.3,90.73,95.82)$ $(73.73,78.31,86.15,88.7)$ $(69.35,73.73,78.92,81.36)$ $(5.8,9.06,14.36,16.7)$ $(27.09,29.33,37.07,40.02)$ $(31.67,34.42,40.63,42.36)$ $(40.63,43.48,49.49,53.05)$ $(36.25,41.24,47.76,50.2)$ $(87.47,89.51,922.77,96.44)$ $(16.8,20.47,26.17,29.23)$ $(90.22,93.18,96.95,100)$ $(34.32,38.19,43.08,46.13)$ $(23.83,27.09,33.6,34.83)$ $(79.23,81.57,86.86,89.61)$ $(87.47,90.73,94.4,98.37)$ $(44.3,46.33,56.01,59.47)$ $(43.79,49.59,56.11,59.16)$ $(16.7,18.43,23.32,25.66)$ $(13.85,18.53,22.3,24.95)$ $(3.67,7.03,11.3,15.07)$	ID5	Male	73.01 96.2 49.94 38.28 15.09 3.68 84.66 26.75 61.47 15.09 49.94 73.01 3.68 61.47 38.28 96.2 84.66 26.75 96.2 61.47 49.94 84.66 26.75 15.09 3.68 73.01 38.28 7.85 39.26 10.06 14.23 76.32	$\begin{gathered} \hline \text { L } \\ \text { VL } \\ \text { M } \\ \text { S } \\ \text { VS } \\ \text { VS } \\ \text { L } \\ \text { S } \\ \text { M } \\ \text { VS } \\ \text { M } \\ \text { L } \\ \text { VS } \\ \text { L } \\ \text { M } \\ \text { VL } \\ \text { L } \\ \text { S } \\ \text { VL } \\ \text { L } \\ \text { M } \\ \text { L } \\ \text { S } \\ \text { VS } \\ \text { VS } \\ \text { L } \\ \text { M } \\ \text { VS } \\ \text { M } \\ \text { VS } \\ \text { S } \\ \text { L } \\ \hline \end{gathered}$	$(59.88,70.16,78.62,90.22)$ $(79.84,89.61,97.56,100)$ $(39.92,44.91,54.99,59.98)$ $(29.94,37.17,41.04,44.5)$ $(7.54,11.41,15.89,20.77)$ $(0.61,2.24,3.87,6.42)$ $(72.1,77.09,82.69,86.86)$ $(15.48,19.35,20.98,244.44)$ $(50.61,57.64,62.02,68.74)$ $(9.98,13.34,15.99,19.04)$ $(52.34,56.82,58.86,62.22)$ $(70.16,74.24,78.11,82.59)$ $(1.32,3.26,5.4,7.13)$ $(58.45,62.42,66.7,69.86)$ $(34.01,38.29,41.34,45.32)$ $(91.85,93.99,98.27,99.59)$ $(79.33,84.11,87.17,91.85)$ $(18.84,23.52,26.37,30.14)$ $(89.21,92.67,94.91,99.19)$ $(55.5,59.27,62.02,65.89)$ $(49.59,54.18,56.62,59.98)$ $(72.1,78.31,82.89,88.39)$ $(13.44,18.43,21.89,26.58)$ $(9.06,14.05,16.4,19.76)$ $(0.31,2.24,4.68,7.54)$ $(64.56,69.55,71.28,75.66)$ $(32.69,37.68,42.36,44.33)$ $(2.14,5.09,7.03,9.47)$ $(28.92,33.91,37.78,41.34)$ $(3.56,7.64,10.18,13.24)$ $(11.3,16.29,19.55,24.03)$ $(69.55,75.15,78.21,84.22)$
		21.47	S	(10.39, 12.83, 16.6, 21.38)	ID6	Male	96.2	VL	(87.17, 90.12, 94.2, 97.05)
ID3	Female	26.76 15.2 61.47 96.27 84.61 73.04 50 38.33 3.63 26.76 61.47 3.63 15.2 50 38.33 73.04 96.27 84.61 61.47 15.2 84.61 73.04 96.27 26.76 38.33 50 3.63 43.63 11.57 73.33 18.24 85.78	S S L VL VL VL M S VS S L VS S M S L VL VL L VS VL L VL S L M VS S VS VL S VL	$(20.19,23.99,27.3,29.81)$ $(13.57,18.34,21.57,24.72)$ $(50.24,56.54,63.41,69.71)$ $(89.9,92.16,96.61,100)$ $(80.13,84.25,92.57,95.8)$ $(59.94,64.54,75.12,79.81)$ $(41.36,46.77,53.39,58.08)$ $(35.14,39.98,45.72,49.68)$ $(0,0.73,8,9.85)$ $(20.11,21.81,27.95,30.21)$ $(53.47,56.14,64.86,69.87)$ $(0,0.97,7.19,9.85)$ $(4.6,8,15.75,19.87)$ $(44.43,46.37,53.39,55.09)$ $(34.65,38.05,42.73,45.23)$ $(70.19,74.15,82.07,84.25)$ $(89.98,91.52,97.98,100)$ $(73.59,79.97,86.83,95.32)$ $(56.22,61.07,71.16,755.85)$ $(10.18,15.99,24.47,30.05)$ $(74.64,80.13,89.9,94.67)$ $(64.3,70.03,78.51,84.49)$ $(85.06,86.83,95.32,100)$ $(20.19,23.67,31.42,34.81)$ $(30.21,35.14,45.8,49.92)$ $(40.15,44.99,54.44,59.94)$ $(0.48,2.91,10.18,14.94)$ $(30.13,34.17,44.99,49.92)$ $(4.68,10.02,19.95,25.93)$ $(69.95,71.49,78.84,79.89)$ $(9.85,15.19,24.23,29.89)$ $(79.89,81.99,89.9,95.48)$			49.94 61.47 38.28 15.09 3.68 84.66 73.01 26.75 49.94 15.09 84.66 61.47 38.28 3.68 26.75 96.2 73.01 3.68 61.47 49.94 84.66 26.75 73.01 96.2 15.09 38.28 35.21 82.45	Cl M M S VS VS L L S S S L L S VS S VL L VS L M L S L VL S S S S L	$(44.3,49.9,49.9,55.09)$ $(42.36,46.33,54.07,56.62)$ $(27.29,32.69,38.9,43.18)$ $(6.62,8.76,10.69,17.82)$ $(2.65,4.99,5.09,10.08)$ $(70.16,73.93,79.43,81.67)$ $(65.07,70.06,80.14,85.13)$ $(19.04,23.22,28.31,30.96)$ $(30.24,37.17,41.85,44.6)$ $(11.1,18.13,22.91,25.05)$ $(70.06,75.05,81.47,85.03)$ $(49.59,54.58,62.02,644.36)$ $(29.74,33.4,43.38,47.25)$ $(2.14,3.16,6.82,10.08)$ $(24.44,26.48,36.56,39.51)$ $(89.31,93.38,95.42,98.07)$ $(60.39,65.17,72,75.56)$ $(1.83,4.58,7.03,9.57)$ $(53.67,58.66,60.79,65.27)$ $(39.92,43.48,46.74,50.2)$ $(76.17,80.96,86.15,89)$ $(21.79,25.97,29.74,34.73)$ $(68.23,72.3,75.97,78.62)$ $(85.03,87.88,92.77,944.81)$ $(14.15,15.89,20.57,25.87)$ $(28.31,30.55,36.15,39.1)$ $(27.9,29.43,35.95,40.84)$ $(20.98,24.64,27.8,35.13)$ $(64.15,66.8,72.71,79.12)$

Table C.2: Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=\mathrm{SmalL}, \mathrm{M}=\mathrm{medium}, \mathrm{L}$ $=$ LARGE, VL $=$ VERY LARGE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right) ;$ data ID7-ID13

ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$	ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$
ID7	Female	61.47 26.76 84.61 3.63 15.2 38.33 73.04 50 96.27 73.04 38.33 96.27 84.61 15.2 26.76 61.47 3.63 50 38.33 73.04 96.27 50 26.76 15.2 3.63 61.47 84.61 47.35 26.86 87.94	L S L VS S M L M VL L S VL L S S M V M S L VL M S S VS L L M S VL	$(56.18,59.28,68.84,71.92)$ $(39.98,47.5,52.42,59.94)$ $(75.2,79.89,90.15,95.15)$ $(0.57,1.21,8.72,10.02)$ $(6.38,11.39,21.65,26.33)$ $(30.05,35.22,45.56,50)$ $(68.01,72.78,85.3,87.96)$ $(40.15,45.8,54.77,600.1)$ $(92.16,94.1,99.03,100)$ $(70.11,74.23,85.7,90.06)$ $(27.46,30.13,39.82,43.62)$ $(92.08,93.94,99.84,100)$ $(81.58,85.3,95.72,99.03)$ $(5.9,10.5,19.47,25.85)$ $(17.04,20.19,29.811,31.99)$ $(50.08,54.2,64.78,70.03)$ $(48.73,1.62,6.46,10.99)$ $(32.63,50.48,59.61,63.73)$ $(65.51,76.83,47.42,49.68)$ $(89.42,93.54,90.05,85.46)$ $(41.84,45.4,55.57,100)$ $(22.78,25.77,35.54,39.64)$ $(10.1,15.02,25.04,30.5)$ $(0,0.89,5.25,10.10 .58)$ $(61.63,65.75,75.28,77.54)$ $(38.68,80.94,89.9,94.02)$ $(39.98,45.88,54.77,59.94)$ $(24.96,28.84,39.7726,44.91)$ $(82.88,84.81,96.45,98.3)$	ID11	Male	61.47 3.63 84.61 73.04 26.76 96.27 38.33 50 15.2 3.63 73.04 38.33 15.2 50 26.76 61.47 96.27 84.61 84.61 38.33 3.63 26.76 61.47 50 73.04 15.2 96.27 45.1 3.33 49.51	M VS VL L S VL M M VS L M S M S L VL L L MS VS S M M L S VL M VS M	$(50.48,56.54,63.25,70.52)$ $(0,2.42,7.19,10.02)$ $(80.13,87.72,90.95,98.22)$ $(68.9,76.01,80.05,88.05)$ $(30.21,36.83,43.05,50.08)$ $(88.69,94.83,99.27,100)$ $(32.63,37.16,42.81,46.77)$ $(45.32,50,56.54,65.11)$ $(9.77,15.91,24.39,29.97)$ $(0.4,1.78,77.03,10.18)$ $(59.94,68.34,76.49,82.55)$ $(28.51,36.35,42,50.08)$ $(10.34,18.98,244.64,31.18)$ $(41.84,48.55,51.45,58.4)$ $(19.79,24.39,29.89,38.45)$ $(52.42,61.55,65.02,71.16)$ $(87.8,93.7,97.42,100)$ $(72.62,82.55,88.61,97.42)$ $(70.11,79.97,85.22,95.23$ $(36.67,42.49,46.45,55.49)$ $(0,3.47,7.75,11.39)$ $(20.11,28.11,32.63,39.9)$ $(50.16,57.35,62.2,73.26$ $(42.81,49.6,52.91,60.26)$ $(69.22,75.12,800.05,85.86)$ $(9.94,14.54,19.22,26.01)$ $(89.98,95.88,100,1000)$ $(39.26,44.99,48.55,56.14)$ $(0,1.45,5.17,9.85)$ $(41.52,48.47,52.1,59.05)$ $(39.98,45.07,54.3,260$.
		2.75	VS	(0.97, 1.37, $6.54,8.08)$	ID12	Female	50	M	(39.98, 45.07, 54.93, 60.1)
ID8	Male	$\begin{gathered} \hline 49.94 \\ 3.68 \\ 73.01 \\ 61.47 \\ 84.66 \\ 15.09 \\ 96.2 \\ 38.28 \\ 26.75 \\ 73.01 \\ \hline \end{gathered}$	M VS L M L S VL M S L	$(40.02,50.31,50.31,59.98)$ $(0,2.34,3.77,4.99)$ $(79.94,84.93,87.37,91.75)$ $(52.24,57.23,62.93,68.02)$ $(79.74,83.3,86.56,89.61)$ $(11.71,13.95,17.41,19.65)$ $(93.18,9.95 .93,98.07,100)$ $(33.6,36.86,39.51,43.69)$ $(13.95,18.84,21.28,24.54)$ $(72.81,77.49,78.51,82.89)$			$\begin{gathered} 38.33 \\ 15.2 \\ 73.04 \\ 3.63 \\ 26.76 \\ 61.47 \\ 84.61 \\ 96.27 \\ 50 \\ 61.47 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{~S} \\ \mathrm{~L} \\ \mathrm{VS} \\ \mathrm{~S} \\ \mathrm{M} \\ \mathrm{~L} \\ \mathrm{VL} \\ \mathrm{M} \\ \mathrm{M} \end{gathered}$	$(20.11,25.53,40.31,46.77)$ $(0.24,4.2,15.27,19.95)$ $(46.61,53.63,72.46,79.81)$ $(0,0,5.17,9.77)$ $(2.26,4.36,14.38,20.19)$ $(39.98,44.99,60.02,70.36)$ $(59.85,71.89,84.57,95.8)$ $(94.59,99.68,99.68,99.68)$ $(29.64,34.89,45.07,49.92)$ $(29.64,34.81,46.12,53.72)$ $(15.41$
ID9	Male	61.47 96.2 3.68 38.28 26.75 49.94 15.09 73.01 38.28 3.68 73.01 61.47 15.09 49.94 84.66 96.2 38.28	M VL VS L S S M VS L VS L L S M S L V S	$(53.97,59.67,62.63,69.96)$ $(90.02,93.38,94.91,100)$ $(0.51,1.53,2.55,5.19)$ $(73.83,77.7,80.14,84.83)$ $(29.74,33.6,36.15,39.71)$ $(19.96,23.32,25.25,29.84)$ $(44.91,48.78,51.22,544.99)$ $(12.53,15.58,17.21,18.84)$ $(37.31,73.22,75.56,777.29)$ $(1.02,38.7,40.63,44.2)$ $(72.1,75.25,3.67,4.68)$ $(55.3,58.04,59.19,79.74)$ $(44.98,14.05,15.17,64.15)$ $(21.91,48.57,51.93,541)$ $(21.28,24.44,25.46,28)$ $(92.79,84.83,86.15,88.39)$ $(30.45,93.58,97.05,98.78)$ $(0.71,46,37.17,38.59)$			38.33 73.04 96.27 84.61 3.63 26.76 15.2 15.2 73.04 61.47 50 96.27 38.33 3.63 84.61 26.76 78.73 5 95.29		$(15.11,19.63,35.54,39.98)$ $(50,57.27,71.89,79.89)$ $(89.98,99.68,100,100)$ $(76.01,79.97,90.23,9669)$ $(0,0.89,4.04,7.27)$ $(6.7,10.02,24.39,34.01)$ $(0.24,4.6,12.76,25.36)$ $(2.99,7.59,16.64,22.21)$ $(34.81,48.14,60.02,64.94)$ $44.99,47.82,63.41,63.89$ $(29.89,37.08,52.99,54.93)$ $(89.98,95.56,100,100)$ $(23.02,29.56,40.47,44.18)$ $(0,5.17,16.88,21)$ $(67.53,73.18,84.25,89.82)$ $(15.51,21.97,31.02,36.19$ $(57.59,62.68,7771,82.15)$ $(0,2.83,14.62,21.24)$ $(83.36,89.82,99.19,100)$
		$\begin{gathered} 3.68 \\ 61.47 \\ 26.75 \\ 84.66 \\ 15.09 \\ 49.94 \\ 73.01 \\ 96.2 \\ 67.36 \\ 5.28 \\ 72.88 \\ \hline \end{gathered}$	$\begin{gathered} \text { VS } \\ \mathrm{L} \\ \mathrm{~S} \\ \mathrm{~L} \\ \mathrm{~S} \\ \mathrm{M} \\ \mathrm{~L} \\ \mathrm{VL} \\ \mathrm{~L} \\ \mathrm{VS} \\ \mathrm{~L} \\ \hline \end{gathered}$	$(0.71,2.04,3.26,4.48)$ $(60.08,63.54,66.29,68.43)$ $(27.8,29.94,30.86,32.08)$ $(87.37,88.9,90.73,92.57)$ $(12.53,15.17,15.68,17.82)$ $44.91,48.27,48.57,494949$ $(76.48,78.82,80.24,84.01)$ $(92.26,95.01,95.93,98.07)$ $(60.9,63.75,67.31,69.86)$ $(3.97,5.4,6.31,7.23)$ $(75.05,77.7,79.94,83.2)$	ID13	Female	3.68 73.01 84.66 15.09 96.2 26.75 61.47 38.28 49.94 49.94 96.2	VS L VL S VL S L M M VL	$(0.1,1.73,2.85,4.07)$ $(70.37,73.52,76.37,79.74)$ $(76.58,81.57,86.05,89.51)$ $(13.75,19.65,23.42,26.88)$ $(90.02,93.69,96.84,99.9)$ $(25.87,32.59,36.86,42.16)$ $(50.2,54.99,65.07,70.77)$ $(42.36,46.64,53.36,577.94)$ $(39.61,44.6,51.73,56.92)$ $(44.4,49.08,55.8,61.1)$ $(94.2,95.42,97.66,99.49)$
ID10	Female	50 96.27 61.47 73.04 3.63 84.61 38.33 26.76 15.2 26.76 50 73.04 15.2 84.61 61.47 3.63 38.33 96.27 3.63 61.47 84.61 50 38.33 96.27 15.2 73.04 26.76 65.1 53.24 51.96	M VL L L VS L M S S S M L S L M VS M VL VS M L M S L S L S M M M	$(43.21,47.5,52.26,56.46)$ $(91.03,95.88,100,100)$ $(50.16,51.53,58.64,65.27)$ $(70.03,72.21,77.79,79.97)$ $(1.21,3.31,6.22,8.4)$ $(90.06,90.95,94.35,98.14)$ $(32.96,36.19,42.25,46.28)$ $(24.72,27.87,32.79,35.3)$ $(11.15,13.49,16.8,18.9)$ $(24.07,26.98,32.88,35.38)$ $(44.99,48.87,51.86,55.57)$ $(65.43,69.87,74.07,79)$ $(10.02,12.52,17.77,20.03)$ $(82.71,85.46,92.25,95.8)$ $(48.55,50.08,58.48,59.94)$ $(0,3.15,7.03,10.1)$ $(34.57,38.21,44.26,48.14)$ $(95.4,98.38,100,100)$ $(1.21,3.39,6.95,9.53)$ $(45.64,49.11,51.53,55.01)$ $(80.13,81.74,88.61,89.9)$ $(44.99,48.3,52.5,55.57)$ $(24.64,27.06,32.88,34.98)$ $(89.98,92.89,98.38,99.35)$ $(10.1,12.68,17.77,19.87)$ $(68.42,71.41,78.84,81.83$ $(20.03,21.57,28.51,29.97)$ $(58.32,61.79,67.69,72.05$ $(44.99,47.74,52.99,555.98)$ $(44.1,47.09,53.72,57.67)$			3.68 38.28 26.75 61.47 73.01 84.66 15.09 15.09 84.66 3.68 73.01 96.2 26.75 61.47 49.94 38.28 83.8 39.51 39.51 42.33 80.98 97.06 82.7 52.27 71.66 92.15 8.34 83.68 56.32 8.83		

Table C.3: Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one ($\mathrm{VS}=$ very small, $\mathrm{S}=$ Small, $\mathrm{M}=$ medium, L $=$ LARGE, $\mathrm{VL}=\operatorname{VERY}$ LARGE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID14-ID21

ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$	ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$
ID14	Male				ID18	Female			
ID15	Male				ID19	Male			
ID16	Female		L M M L VL VS VS L L L				38.28 96.2 91.47 73.01 3.68 84.66 15.09 49.94 97.91 9.91 .049		
			L S S VS VL VS VL VL L L VS V VL VL M L VL VS		ID20	Male			
ID17	Male		V L L M L S S M ML V V VS V				15.69 15.09 73.01 26.75 84.64 96.2 38.28 14.85 20.85 36.49 8.81	L S S L S M M M S S M	
					ID21	Female			

Table C.4: Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=$ Small, $\mathrm{M}=\mathrm{medium}, \mathrm{L}$ $=\operatorname{LARGE}, \mathrm{VL}=\operatorname{VERY}$ LARGE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID22

ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$	ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$
ID22	Male				$\left.\begin{array}{\|c\|} \hline \text { ID22 } \\ \text { (cont.) } \end{array} \right\rvert\,$		9.8	S	(17.53, 20
							37.25	S	(33.52, 36.75, 37.96, 40.47)
							66.86	L	(61.07, 64.7, 65.75, 69.79)
							57.75	M	(55.57, 59.61, 61.39, 65.35)
							97.16	VL	(96.85, 97.98, 98.63, 99.43)
							55.2	M	(52.02, 53.63, 55.01, 57.27)
							41.47	M	(39.98, 42, 43.21, 45.4)
							40.78	M	(38.29, 39.98, 41.6, 44.02)
							71.27	L	(70.03, 71.89, 72.7, 75.12)
							27.06	S	(24.88, 27.14, 28.43, 30.86)
							77.84	L	(75.28, 77.87, 79, 81.99)
							15.39	S	(12.6, 14.38, $15.35,18.34)$
							59.51 18.53	M	$(55.9,58.56,60.26,63)$ $(16.48,19.14,20.52,23.26)$
							69.12	L	(66.48, 69.31, 71, 74.15)
							40.59	M	(38.13, 41.11, 42.33, 45.07)
							90.98	VL	(87.24, 89.66, 92, 96.28)
							59.51	L	(57.35, 59.53, 61.39, 63.65)
							53.14 56.08	M	$(51.13,53.47,54.6,57.19)$ $(53.55,55.9,57.27,60.02)$
							1.37	VS	(${ }^{(0.97,1.29, ~ 1.78, ~ 1.94) ~}$
							46.76	M	(43.94, 46.28, 47.5, 48.95)
							72.75	L	(73.67, 75.93, 77.63, 80.05)
							19.9	S	(18.98, 20.44, 21.81, 24.39)
							27.84 96.76	$\stackrel{\text { S }}{\text { VL }}$	(22.46, 25.2, 26.74, 28.84)
							36.76	M	(34.25, $36.51,38.29,40.06)$
							22.84	S	(21.32, 23.51, 24.72, 27.06)
							80.39	L	(75.93, 78.59, 80.29, 85.22)
							95.49	VL	(91.36, 94.35, 95.32, 97.42)
							32.35	S	(30.86, 34.73, 36.43, 39.01)
							67.25	L	(64.46, 66.32, $67.85,70.44)$
							50.1	M	(44.83, 48.3, 49.52, 50.48)
							98.92	VL	(98.38, 99.27, 99.76, 100)
							11.76	VS	(8.48, 9.29, 10.58, 12.68)
							44.31	M	(43.21, 44.99, 46.37, 48.71)
							8.92 76.27	LS	$(5.82,8,8.89,9.77)$ $(73.51,76.98,79.16,83.04)$
							20	S	(20.76, 23.42, 24.8, 28.11)
							46.37	M	(42.25, 44.59, 46.04, 48.79)
							12.16	VS	(8.32, 10.26, 11.47, 13.89)
							96.86	VL	(94.26, 96.77, 98.14, 99.68)
							66.18	L	(64.46, 67.45, 69.06, 72.78)
							74.61 53.43	L	$(73.83,77.87,79.4, ~ 82.55)$ $(52.26,54.28,56.14,58.48)$
							86.67	VL	(83.76, 86.27, 87.8, 90.95)
							14.9	VS	(11.79, 14.22, 15.19, 17.69)
							28.82	S	(23.83, 25.93, 26.82, 29.16)
							35.49	S	(34.25, 37.16, 38.05, 40.95)
							23.33	S	(20.27, 23.1, 24.15, 27.06)
							95.39	VL	(94.43, 96.28, 97.09, 98.14)
							61.96	L	(60.99, 63.57, 64.62, 68.01)
							81.76	L	(80.05, 83.44, 86.51, 89.58)
							60.49	M	(57.67, 59.85, 61.39, 63.57)
							17.84	$\stackrel{\mathrm{S}}{\mathrm{V}}$	(15.75, 18.34, 19.95, 22.86)
							11.47	VS	(7.43, 9.05, 10.02, 11.87)
							33.33 75.88	S	$(28.03,30.78,31.83,35.95)$ $(70.84,73.83,74.88,78.51)$
							41.27	M	(43.54, 46.2, 47.01, 49.92)
							83.63	L	(81.66, 84.25, 85.14, 88.37)
							74.9	L	(73.51, 76.01, 77.22, 80.61)
							99.51	VL	(97.42, 98.55, 99.35, 99.92)
							96.27 58.82	VL	$(94.91,95.88,96.85,97.98)$ $(58,60.42,61.55,63.97)$
							70.49	L	(72.46, 75.36, 76.33, 79.89)
							17.65	VS	(16.4, 18.58, 20.27, 22.46)
							57.94	L	(56.7, 59.37, 60.99, 63.73)
							98.73	VL	(97.9, 99.03, 99.68, 100)
							55.78	M	$(53.15,55.09,55.65,57.35)$
							70.59	L	$(67.29,70.19,72.13,75.69)$
							17.45 4.22	VS	$(15.59,18.34,19.39,22.21)$
							4.22 54.61	VS	$\begin{gathered} (3.07,4.44,5.17,6.7) \\ (53.15,54.85,55.57,57.19) \end{gathered}$
							37.45	S	(34.89, 38.21, 39.9, 42.65)
							35.1	S	$(30.13,31.91,32.79,34.57)$
							41.37	M	(36.83, 39.1, 40.95, 43.62)
							14.71	VS	(10.02, 11.87, 12.84, 14.7)
							54.12	M	(53.23, 54.44, 55.25, 56.79)
							20.59	S	(16.48, 19.47, 20.68, 23.26)
							21.08	S	(15.67, 18.58, 20.11, 22.29)
							55.69	M	(53.07, 54.68, 55.57, 58.08)
							14.8	VS	(11.15, 13.17, 14.38, 16.96)
							78.14	L	$(72.62,75.04,76.41,79.16)$
							17.45 2.84	$\stackrel{\mathrm{S}}{\mathrm{VS}}$	$(14.46,16.48,17.69,19.55)$ $(1.29,2.5,2.83,3.8)$
							99.51	VL	(98.38, 99.27, 99.68, 100)
							44.31	M	(42.16, 44.67, 45.64, 48.38)
							75.88	L	(71.57, 74.31, 75.61, 78.59)
							56.86	M	(53.63, 55.25, 56.87, 59.29)
							8.33	VS	(4.2, 5.82, 6.46, 8.48)
							50.49	M	(50.4, 51.62, 52.34, 54.04)
							15	VS	(10.42, 11.47, 12.44, 14.3)
							38.43	M	(34.89, 36.83, 37.64, 40.06)

Table C.5: Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=\mathrm{SmalL}, \mathrm{M}=$ medium, L $=\operatorname{LARGE}, \mathrm{VL}=\operatorname{VERY}$ LARGE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID23 (182 trials)

Table C.6: Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=\mathrm{SmalL}, \mathrm{M}=$ medium, L $=$ LARGE, VL $=$ VERY LARGE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID23 (180 trials)

ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$	ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$
$\begin{array}{\|c\|} \hline \hline \text { ID23 } \\ \text { (cont.2) } \end{array}$					ID23		17.84	VS	(13.81, 17.69, 19.31, 21.73)
							63.43	M	(59.37, 62.12, 63.49, 68.42)
							7.35	VS	(5.49, 7.11, 8.56, 9.94)
							33.63	S	$(32.79,35.62,37.48,39.42)$
							80.98	L	(78.19, 81.34, 83.44, 87.08)
							43.14	M	(39.66, 42.97, 45.56, 48.47)
							81.76	L	(73.75, 78.11, 80.86, 84.81)
							94.41	VL	(90.31, 93.05, 94.83, 97.01)
							58.1	M	(50.72, 52.43, 54.22, 56.65)
							52.96	M	(45.21, 48.78, 52.5, 56.44)
							63.5	L	(61.16, 63.73, 66.24, 69.31)
							29.88	S	$(25.89,30.11,31.62,36.62)$
							45.38	M	(43.13, 46.49, 47.85, 49.71)
							4.7	VS	(3.29, 5.22, 5.94, 6.29)
							52.87	M	(51.36, 53.79, 55.01, 58.51)
							38.59	M	(36.12, 39.41, 41.63, 45.28)
							32.58	S	(27.83, 31.62, 33.4, 37.2)
							53.75	M	(45.99, 49.14, 51.72, 56.08)
							34.58	S	(33.26, 36.62, 37.91, 41.13)
							84.84	VL	(80.54, 83.98, 85.62, 88.56)
							64.63	L	(58.66, 62.37, 63.45, 69.46)
							36.41	S	(29.9, 34.33, 35.62, 40.27)
							71.78	L	(69.89, 72.96, 74.39, 78.4)
							17.68	VS	$(15.24,19.1,20.03,23.32)$
							0.44	VS	(0.29, 0.64, 0.64, 0.93)
							93.64	VL	(92.85, 95.06, 95.64, 98)
							35.1	M	(35.91, 39.91, 41.34, 44.56)
							50.7	M	$(48.07,50.07,51.36,54.86)$
							30.92	S	(29.69, 32.9, 34.69, 37.48)
							42.16	M	(39.84, 41.49, 42.56, 45.21)
							16.11	VS	$(13.45,16.88,18.17,20.46)$
							44.51	M	(41.13, 44.28, 45.49, 47.78)
							1.22	VS	(0.64, 1.72, 2.15, 3.22)
							63.59	L	$(61.87,65.16,66.17,70.03)$
							65.68	L	(64.31, 67.88, 69.6, 72.03)
							36.67	S	(30.62, 34.12, 35.98, 39.56)
							96.17	VL	(93.13, 94.99, 95.99, 97.78)
							20.64	S	(18.45, 23.61, 25.04, 27.97)
							56.27	M	(55.65, 58.3, 59.51, 62.23)
							47.39	M	(45.42, 48, 49.28, 51.86)
							55.75	M	$(53.58,56.22,58.01,62.95)$
							28.48	S	$(24.54,28.33,29.69,32.26)$
							79.01	L	(74.96, 78.18, 79.69, 83.76)
							29.01	S	(25.32, 28.83, 30.11, 33.26)
							88.85	VL	(86.27, 88.34, 89.91, 92.27)
							28.05	S	(25.18, 29.33, 31.4, 34.76)
							6.36	VS	(4.65, 6.58, 7.22, 9.23)
							99.74	VL	(95.64, 98.21, 99.14, 100)
							41.72	M	(43.49, 47.21, 48.43, 50)
							92.16	VL	(88.56, 90.27, 91.63, 94.92)
							81.97	L	(75.25, 78.97, 80.33, 84.55)
							97.82	VL	(89.7, 92.85, 94.13, 97.21)
							23.95	S	(22.25, 24.46, 26.11, 30.11)
							90.07	VL	(86.19, 88.84, 90.13, 92.7)
							59.84	M	(57.8, 59.8, 60.94, 64.31)
							72.82	L	(71.96, 74.61, 75.46, 78.68)
							32.32	S	(28.25, 32.12, 33.4, 37.41)
							63.76	L	$(62.23,66.31,67.53,71.39)$
							13.94	VS	$(11.8,15.31,16.74,19.17)$
							17.68	S	(15.59, 19.6, 21.1, 23.25)
							64.11	L	(63.3, 67.1, 68.17, 71.96)
							10.45	VS	(6.8, 9.3, 10.52, 13.02)
							75.35	L	(71.75, 75.11, 76.18, 80.62)
							19.25	S	(15.45, 19.67, 21.6, 25.82)
							10.98	VS	(6.37, 9.08, 10.66, 13.09)
							59.84	M	(56.8, 58.87, 60.23, 62.3)
							32.32	S	(27.32, 31.26, 33.19, 35.41)
							44.08	M	(42.7, 45.42, 46.42, 48.07)
							27.79	S	$(24.25,27.75,29.33,31.9)$
							78.31	L	(74.54, 78.4, 79.9, 82.62)
							65.24	M	(63.09, 66.45, 67.53, 69.96)
							34.49	M	(30.11, 33.48, 34.69, 38.2)
							55.14	M	(53.29, 55.29, 56.22, 57.08)
							66.99	L	(62.8, 65.38, 66.74, 69.96)
							39.37	M	(39.84, 42.06, 43.2, 45.28)
							28.75	$\stackrel{\text { S }}{ }$	(25.11, 29.18, 30.9, 34.26)
							89.02	VL	(86.05, 88.13, 89.34, 92.7)
							35.02	M	(33.48, 36.7, 37.98, 41.63)
							48.17	M	$(46.92,48.78,51.72,53.51)$
							25.61	S	(23.75, 25.68, 27.25, 30.76)
							86.32	VL	(83.12, 85.19, 86.27, 89.7)
							99.3	VL	(93.78, 96.42, 97.57, 99)
							87.89	VL	(87.12, 89.77, 90.99, 93.35)
							74.3	L	(71.17, 74.75, 75.75, 79.11)
							89.29	VL	(87.05, 89.77, 91.06, 93.99)
							9.41	VS	(6.72, 9.08, 10.44, 13.16)
							82.14	L	$(76.97,79.54,81.47,84.05)$
							77.53	L	(72.68, 74.82, 76.25, 79.97)
							60.1	L	(58.08, 61.87, 62.8, 67.24)
							51.22	M	$(53.22,55.94,56.72,61.09)$

Table C.7: Dataset for the online application Perceptions (Page 251) on the relative length of a given line segment with respect to a fixed longer one (VS = very small, $\mathrm{S}=\mathrm{SmalL}, \mathrm{M}=$ medium, L $=\operatorname{LARGE}, \mathrm{VL}=\operatorname{VERY}$ LARGE, and $\left.\left(a_{i}, b_{i}, c_{i}, d_{i}\right) \equiv \operatorname{Tra}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)$; data ID24-ID25

ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$	ID	Gender	Underlying exact relative length (\%)	Likert	$\left(a_{i}, b_{i}, c_{i}, d^{\prime}\right.$
ID24	Female	15.238.3326.7661.47503.6384.6196.2773.0415.261.4738.333.6373.0484.6126.7696.27505038.3384.6126.7673.0496.2761.4715.23.6364.0285.5954.958.9274.6183.1415.3987.7512.6515.3992.7527.948.6325.4957.6537.942.8491.6716.7646.4710.126.6762.5571.2773.1443.7361.2714.2226.3715.2			ID25	Female			

References and other main consulted papers and books

[1] Aitken, R.C.B. Measurement of feelings using visual analogue scales. Proc. Soc. Royal Med. 62, 989-993 (1969)
[2] Alonso, M.C., Brezmes, T., Lubiano, M.A., Bertoluzza, C. A generalized real-valued measure of the inequality associated with a fuzzy random variable. Int. J. Approx. Reas. 26, 47-66 (2001)
[3] Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1-12 (1965)
[4] Bajpai, S., Sachdeva, A., Gupta, J.P. Security risk assessment: Applying the concepts of fuzzy logic. J. Hazard. Mater. 173, 258-264 (2010)
[5] Ban, A., Coroianu, L., Grzegorzewski, P. Trapezoidal approximation and aggregation. Fuzzy Sets Syst. 177, 45-59 (2011)
[6] Benoit, E. Expression of uncertainty in fuzzy scales based measurements. Measurement 46, 3778-3782 (2013)
[7] Bertoluzza, C., Corral, N., Salas, A. On a new class of distances between fuzzy numbers. Math \& Soft Comput. 2, 71-84 (1995)
[8] Blanco-Fernández, A., Casals, M.R., Colubi, A., Coppi, R., Corral, N., De la Rosa de Sáa, S., D’Urso, P.P., Ferraro, M.B., García-Bárzana, M., Gil, M.A., Giordani, P., GonzálezRodríguez, G., López, M.T., Lubiano, M.A., Montenegro, M., Nakama, T., RamosGuajardo, A.B., Sinova, B., Trutschnig, W. Arithmetic and distance-based approach to the statistical analysis of imprecisely valued data. In Towards Advanced Data Analysis by Combining Soft Computing and Statistics (Borgelt, C., Gil, M.A., Sousa, J.M.C., Verleysen, M., Eds.), Studies in Fuzziness and Soft Computing, Vol. 285. Springer, Heidelberg, pp. 1-18 (2013)
[9] Blanco-Fernández, A., Casals, M.R., Colubi, A., Corral, N., García-Bárzana, M., Gil, M.A., González-Rodríguez, G., López, M.T., Lubiano, M.A., Montenegro, M., Ramos-Guajardo, A.B., De la Rosa de Sáa, S., Sinova, B. Random fuzzy sets: a mathematical tool to develop statistical fuzzy data analysis. Iran. J. Fuzzy Syst. 10(2), 1-28 (2013)
[10] Blanco-Fernández, A., Casals, M.R., Colubi, A., Corral, N., García-Bárzana, M., Gil, M.A., González-Rodríguez, G., López, M.T., Lubiano, M.A., Montenegro, M., Ramos-Guajardo, A.B., De la Rosa de Sáa, S., Sinova, B. A distance-based statistical analysis of fuzzy numbervalued data. Int. J. Approx. Reas. 55(7), 1487-1501 (2014)
[11] Blanco-Fernández, A., Casals, M.R., Colubi, A., Corral, N., García-Bárzana, M., Gil, M.A., González-Rodríguez, G., López, M.T., Lubiano, M.A., Montenegro, M., Ramos-Guajardo, A.B., De la Rosa de Sáa, S., Sinova, B. Rejoinder on "A distance-based statistical analysis of fuzzy number-valued data". Int. J. Approx. Reas. 55, 1601-1605 (2014)
[12] Cai, J., Li, Q., Li, L., Peng, H., Yang Y. A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point effects. Energy 38, 346-353 (2012)
[13] Calcagni, A., Lombardi, L. Dynamic Fuzzy Rating Tracker (DYFRAT): a novel methodology for modeling real-time dynamic cognitive processes in rating scales. Appl. Soft Comput. 24, 948-961 (2014)
[14] Carifio, J., Perla, R.J. Ten common misunderstandings, misconceptions, persistent myths and urban legends about Likert scales and Likert response formats and their antidotes. J. Soc. Sci. 3, 106-116 (2007)
[15] Casals, M.R., Corral, N., Gil, M.A., López, M.T., Lubiano, M.A., Montenegro, M., Naval, G., Salas, A. Bertoluzza et al.'s metric as a basis for analyzing fuzzy data. Metron 71(3), 307-322 (2013)
[16] Castillo, I., Tomás, I., Ntoumanis, N., Bartholomew, K., Duda, J.L., Balaguer, I. Psychometric properties of the Spanish version of the Controlling Coach Behaviors Scale in the sport context. Psicothema 26, 409-414 (2014)
[17] Chou, C.-C., Liu, L.-J., Huang, S.-F., Yih, J.-M., Han, T.-C. An evaluation of airline service quality using the fuzzy weighted SERVQUAL method. Appl. Soft Comp. 11, 2117-2128 (2011)
[18] Chu, K.-M. The application of fuzzy linguistic scale on Internet questionnaire surveys. Int. J. Organ. Inn. 2(4), 35-48 (2010)
[19] Colubi, A., González-Rodríguez, G. Fuzziness in data analysis: towards accuracy and robustness. Fuzzy Sets Syst. 281, 260-271 (2015)
[20] Colubi, A., González-Rodríguez, G., Gil, M.A., Trutschnig, W. Nonparametric criteria for supervised classification of fuzzy data. Int. J. Approx. Reas. 52, 1272-1282 (2011)
[21] Colubi, A., López-Díaz, M., Domínguez-Menchero, J.S., Gil, M.A. A generalized Strong Law of Large Numbers. Prob. Theor. Rel. Fields 114, 401-417 (1999)
[22] Corral-Blanco, N., Zurbano-Fernández, E., Blanco-Fernández, A., García-Honrado, I., Ramos-Guajardo, A.B. Structure of the family educational environment: its influence on performance and differential performance. In PIRLS - TIMSS 2011 International Study on Progress in Reading Comprehension, Mathematics and Sciences IEA. Volume II. Spanish Report. Secondary Analysis, Ministerio de Educación, Cultura y Deporte, Instituto Nacional de Evaluación Educativa: pp. 9-31 (http://www.mecd.gob.es/dctm/inee/internacional/pirlstimss2011eng1.pdf?documentId=0901e72b81825be3) (2013)
[23] Croux, C. Efficient high-breakdown M-estimators of scale. Stat. Probabil. Lett. 19, 371-379 (1994)
[24] De Campos, L., González, A. A subjective approach for ranking fuzzy numbers. Fuzzy Sets Syst. 29, 145-153 (1989)
[25] De la Rosa de Sáa, S., Filzmoser, P., Gil, M.A., Lubiano, M.A. On the Robustness of Absolute Deviations with Fuzzy Data. In Strengthening Links Between Data Analysis and Soft Computing (Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M.A., Eds.), Advances in Intelligent Systems and Computing, Vol. 315. Springer, Heidelberg, pp. 133141 (2015)
[26] De la Rosa de Sáa, S., Gil, M.A., López, M.T., Lubiano, M.A. Fuzzy rating vs. fuzzy conversion scales: an empirical comparison through the MSE. In Synergies of Soft Computing and Statistics for Intelligent Data Analysis (Kruse, R., Berthold, M.R., Moewes, C., Gil, M.A., Grzegorzewski, P., Hryniewicz, O., Eds.), Advances in Intelligent Systems and Computing, Vol. 190. Springer, Heidelberg, pp. 135-143 (2013)
[27] De la Rosa de Sáa, S., Gil, M.A., González-Rodríguez, G., López, M.T., Lubiano, M.A. Fuzzy rating scale-based questionnaires and their statistical analysis. IEEE Trans. Fuzzy Syst. 23, 111-126 (2015)
[28] De la Rosa de Sáa, S., Lubiano, M.A., Sinova, B., Filzmoser, P. Robust scale estimators for fuzzy data. Adv. Data Anal. Classif., (accepted, doi:10.1007/s11634-015-0210-1, 2017)
[29] Delgado, M., Verdegay, J.L., Vila, M.A. Linguistic decision making models. Int. J. Intel. Syst. 7(5), 479-492 (1993)
[30] Diamond, P., Kloeden, P. Metric spaces of fuzzy sets. Fuzzy Sets Syst. 35, 241-249 (1990)
[31] Dong, Y., Xu, Y., Yu, S. Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model. IEEE Trans. Fuzzy Syst. 17(6), 1366-1378 (2009)
[32] Dong, Y., Hong, W.-C., Xu, Y., Yu, S. Selecting the individual numerical scale and prioritization method in the analytic hierarchy process: A 2-Tuple fuzzy linguistic approach. IEEE Trans. Fuzzy Syst. 19(1), 13-25 (2011)
[33] Donoho, D.L. Breakdown properties of multivariate location estimators. Ph.D. qualifying paper, Dept. Statistics, Harvard University (1982)
[34] Donoho, D.L., Huber, P.J. The notion of breakdown point. In A Festschrift for Erich L. Lehmann (Bickel, P.J., Doksum, K., Hodges, J.L.Jr., Eds.). Wadsworth, Belmont, CA, pp. 157-184 (1983)
[35] Dubois, D., Prade, H. Operations in a fuzzy-valued logic. Inf. Contr. 43(2), 224-240 (1979)
[36] Dubois, D., Prade, H. Additions of interactive fuzzy numbers. IEEE Trans. Automat. Control 26, 926-936 (1981)
[37] Fréchet, M. Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. L'Inst. H. Poincaré 10, 215-310 (1948)
[38] Freyd, M. A graphic rating scale for teachers. J. Educ. Res. 8(5), 433-439 (1923)
[39] Funke, F., Reips, U.-D. Why semantic differentials in web-based research should be made from visual analogue scales and not from 5-point scales. Field Meth. 24(3), 310-327 (2012)
[40] Galton, F. English Men of Science: Their Nature and Nurture. London, U.K.: MacMillan (1874)
[41] Gerich, J. Visual analogue scales for mode-independent measurement in self-administered questionnaires. Beh. Res. Meth. 39(4), 985-992 (2007)
[42] Ghneim, J. Fuzzy concept. In Encyclopedia of Psychometrics, 61-68-Wikipedia. October 27, 2014, URL: http://en.wikipedia.org/wiki/Fuzzy_concept. (Ed.) (2013)
[43] Gil, M.A., Colubi, A., Terán, P. Random fuzzy sets: why, when, how. BEIO 30(1), 5-29 (2014)
[44] Gil, M.A., Lubiano, M.A., De la Rosa de Sáa, S., Sinova, B. Analyzing data from a fuzzy rating scale-based questionnaire. A case study. Psicothema 27, 182-191 (2015)
[45] Gil, M.A., Lubiano, M.A., Montenegro, M., López, M.T. Least squares fitting of an affine function and strength of association for interval-valued data. Metrika 56(2), 97-111 (2002)
[46] Gini, C.W. Variability e mutabilita. Studi Econ.-Giur. R. Univ. Calgiary 2, 3-159 (1912)
[47] Goetschel, R.Jr., Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31-43 (1986)
[48] González-Rodríguez, G., Colubi, A., Gil, M.A. A fuzzy representation of random variables: an operational tool in exploratory analysis and hypothesis testing. Comp. Stat. Data Anal. 51(1), 163-176 (2006)
[49] González-Rodríguez, G., Colubi, A., Gil, M.A. Fuzzy data treated as functional data. A one-way ANOVA test approach. Comp. Stat. Data Anal. 56(4), 943-955 (2012)
[50] Grzegorzewski, P. Statistical inference about the median from vague data. Control Cyber. 27, 447-464 (1998)
[51] Grzegorzewski, P. Trapezoidal approximations of fuzzy numbers preserving the expected interval - algorithms and properties. Fuzzy Sets Syst. 159, 1354-1364 (2008)
[52] Grzegorzewski, P. Algorithms for trapezoidal approximations of fuzzy numbers preserving the expected interval. In Foundations of Reasoning under Uncertainty. Springer, Berlin, pp. 85-98 (2010)
[53] Grzegorzewski, P. Fuzzy number approximation via shadowed sets. Inform. Sci. 225, 35-46 (2013)
[54] Grzegorzewski, P., Pasternak-Winiarska, K. Trapezoidal approximations of fuzzy numbers with restrictions on the support and core. In Proc. 7th Conf. EUSFLAT-2011 and LFA-2011, Paris, Atlantis Press, pp. 749-756 (2011)
[55] Hampel, F.R. Contributions to the Theory of Robust Estimation. Ph.D. Thesis, University of California, Berkeley (1968)
[56] Hayes, M.H.S., Patterson, D.G. Experimental development of the graphic rating method. Psych. Bull. 18, 98-99 (1921)
[57] Herrera, F., Herrera-Viedma, E., Martínez, L. A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE Trans. Fuzzy Syst. 16(2), 354-370 (2008)
[58] Hesketh, T., Pryor, R., Hesketh, B. An application of a computerized fuzzy graphic rating scale to the psychological measurement of individual differences. Int. J. Man-Mach. Stud. 29, 21-35 (1988)
[59] Hesketh, B., McLachlan, K., Gardner, D. Work adjustment theory: An empirical test using a fuzzy rating scale. J. Vocat. Behav. 40, 318-337 (1992)
[60] Hesketh, T., Hesketh, B. Computerized fuzzy ratings: the concept of a fuzzy class. Behav. Res. Meth., Instr. \& Comp. 26, 272-277 (1994)
[61] Hesketh, B., Hesketh, T., Hansen, J.-I., Goranson, D. Use of fuzzy variables in developing new scales from the strong interest inventory. J. Couns. Psychol. 42, 85-99 (1995)
[62] Hesketh, B., Griffin, B., Loh, V. A future-oriented retirement transition adjustment framework. J. Vocat. Behav. 79, 303-314 (2011)
[63] Hu, H.-Y., Lee, Y.-C., Yen, T.-M. Service quality gaps analysis based on fuzzy linguistic SERVQUAL with a case study in hospital out-patient services. TQM J. 22(5), 499-515 (2010)
[64] Huber, P.J. Robust Statistics. New York, USA: Wiley (1981)
[65] Jamieson, S. Likert scales: how to (ab)use them. Med. Educ. 38, 1217-1218 (2004)
[66] Jeon, G., Anisetti, M., Lee, J., Bellandi, V., Damiani, E., Jeong, J. Concept of linguistic variable-based fuzzy ensemble approach: application to interlaced HDTV sequences. IEEE Trans. Fuzzy Syst. 17(6), 1245-1258 (2009)
[67] Kacprzyk, J., Yager, R.R. Softer optimization and control models via fuzzy linguistic quantifiers. Inform. Sci. 34(2), 157-178 (1984)
[68] Klement, E.P., Puri, M.L., Ralescu, D.A. Limit theorems for fuzzy random variables. Proc. R. Soc. Lond. A 407, 171-182 (1986)
[69] Kołacz, A., Grzegorzewski, P. Measures of dispersion for multidimensional data. Eur. J. Oper. Res. 251, 930-937 (2016)
[70] Körner, R. On the variance of fuzzy random variables. Fuzzy Sets Syst. 92, 83-93 (1997)
[71] Körner, R., Näther, W. On the variance of random fuzzy variables. In Statistical Modeling, Analysis and Management of Fuzzy Data (Bertoluzza, C., Gil, M.A., Ralescu, D.A., Eds.), Studies in Fuzziness and Soft Computing, Vol. 87. Physica-Verlag, Heidelberg, pp. 22-39 (2002)
[72] Li, Q. A novel Likert scale based on fuzzy sets theory. Exp. Syst. Appl. 40, 1609-1618 (2013)
[73] Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22(140), 1-55 (1932)
[74] Lozano, L.M., García-Cueto, E., Muñiz, J. Effect of the number of response categories on the reliability and validity of rating scales. Methodology 4, 73-79 (2008)
[75] Lubiano, M.A., De la Rosa de Sáa, S., Montenegro, M., Sinova, B., Gil, M.A. Descriptive analysis of responses to items in questionnaires. Why not using a fuzzy rating scale? Inf. Sci. 360, 131-148 (2016)
[76] Lubiano, M.A., Gil, M.A., López-Díaz, M., López, M.T. The $\vec{\lambda}$-mean squared dispersion associated with a fuzzy random variable. Fuzzy Sets Syst. 111, 307-317 (2000)
[77] Lubiano, M.A., Gil, M.A. f-Inequality indices for fuzzy random variables. In Statistical Modeling, Analysis and Management of Fuzzy Data (Bertoluzza, C., Gil, M.A., Ralescu, D.A., Eds.), Studies in Fuzziness and Soft Computing, Vol. 87. Physica-Verlag, Heidelberg, pp. 43-63 (2002)
[78] Lubiano, M.A., Montenegro, M., Sinova, B., De la Rosa de Sáa, S., Gil, M.A. Hypothesis testing for means in connection with fuzzy rating scale-based data: algorithms and applications. Eur. J. Oper. Res. 251, 918-929 (2016)
[79] Lubiano, M.A., Salas, A., De la Rosa de Sáa, S., Montenegro, M., Gil, M.A. An Empirical Analysis of the Coherence Between Fuzzy Rating Scale- and Likert Scale-Based Responses to Questionnaires. In Soft Methods for Data Science (Ferraro, M.B., Giordani, P., Vantaggi, B., Gagolewski, M., Gil, M.A., Grzegorzewski, P., Hryniewicz, O., Eds.), Advances in Intelligent Systems and Computing, Vol. 456. Springer, Heidelberg, pp. 329-337 (2017)
[80] Lubiano, M.A., De la Rosa de Sáa, S. FuzzyStatTra: Statistical Methods for Trapezoidal Fuzzy Numbers. https://cran.r-project.org/web/packages/FuzzyStatTra/index.html.
[81] Maronna, R.A., Martin, R.D., Yohai, V.J. Robust Statistics: Theory and Methods. Wiley \& Son (2006)
[82] Meng, D., Pei, Z. On weighted unbalanced linguistic aggregation operators in group decision making. Inform. Sci. 223, 31-41 (2013)
[83] Ming, M. On embedding problems of fuzzy number spaces: Part 4. Fuzzy Sets Syst. 58, 185-193 (1993)
[84] Montenegro, M., Casals, M.R., Lubiano, M.A., Gil, M.A. Two-sample hypothesis tests of means of a fuzzy random variable. Inform. Sci. 133(1-2), 89-100 (2001)
[85] Motawa, I.A., Anumba, C.J., El-Hamalawi, A. A fuzzy system for evaluating the risk of change in construction projects. Adv. Eng. Softw. 37, 583-591 (2006)
[86] Nasibov, E.N. To linear transformations with fuzzy arguments. Trans. Acad. Sciences Azerbaijan, Ser. Phys-Tecn. \& Math. Sci. 6, 164-169 (1989)
[87] Nasibov, E.N., Baskan, O., Mert, A. A learning algorithm for level sets weights in weighted level-based averaging method. Fuzzy Optim. Dec. Making 4, 279-291 (2005)
[88] Pedrycz, W. A fuzzy cognitive structure for pattern recognition, Patt. Recog. Let. 9(5), 305-313 (1989)
[89] Pedrycz, W. Why triangular membership functions? Fuzzy Sets Syst. 64, 21-30 (1994)
[90] Peña-Suárez, E., Muñiz, J., Campillo-Álvarez, Á., Fonseca-Pedrero, E., García-Cueto, E. Assessing organizational climate: Psychometric properties of the CLIOR Scale. Psicothema 25, 137-144 (2013)
[91] Pérez-Fernández, S., Sinova, B. An analysis of the median of a fuzzy random variable based on Zadeh's extension principle. In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (Alonso, J.M., Bustince, H., Reformat, M., Eds.), Advances in Intelligent Systems Research, Vol. 89. Atlantis Press, Amsterdam, pp. 888-894 (2015)
[92] Picon, A.P., Ortega, N.R.S., Watari, R., Sartor, C., Sacco, I.C.N. Classification of the severity of diabetic neuropathy: a new approach taking uncertainties into account using fuzzy logic. Clinics 67(2), 151-156 (2012)
[93] Plebankiewicz, E. A fuzzy sets based contractor prequalification procedure. Automat. Constr. 22, 433-443 (2012)
[94] Puri, M.L., Ralescu, D.A. Fuzzy random variables. J. Math. Anal. Appl. 114, 409-422 (1986)
[95] Ramos-Guajardo, A.B., Lubiano, M.A. K-sample tests for equality of variances of random fuzzy sets. Comp. Stat. Data Anal. 56(4), 956-966 (2012)
[96] Reips, U.-D., Funke, F. Interval-level measurement with visual analogue scales in Internetbased research: VAS Generator. Beh. Res. Meth. 40(3), 699-704 (2008)
[97] Rodríguez, R.M., Martínez, L., Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109-119 (2012)
[98] Rossello, D. Ranking of investment funds: acceptability versus robustness. Eur. J. Oper. Res. 254, 828-836 (2015)
[99] Rousseeuw, P.J., Croux, C. Explicit scale estimators with high breakdown point. In L_{1} Statistical Analysis and Related Methods (Dodge, Y., Ed.), Amsterdam, North-Holland, pp. 77-92 (1992)
[100] Rousseeuw, P.J., Croux, C. Alternatives to the Median Absolute Deviation. J. Am. Stat. Assoc. 88(424), 1273-1283 (1993)
[101] Saltan, M., Saltan, S., Sahiner, A. Fuzzy logic modeling of deflection behavior against dynamic loading in flexible pavements. Constr. Build. Mater. 21, 1406-1414 (2007)
[102] Serfling, R.J. Generalized L-, M-, and R-Statistics. Ann. Stat. 12, 76-86 (1984)
[103] Shahriari, H., Radfar, E., Samimi, Y. Robust estimation of systems reliability. Qual. Tech. \& Quant. Manag., (accepted, doi:10.1080/16843703.2016.1226591, 2017)
[104] Simpson, E.H. The measurement of diversity. Nature 163, 688-688 (1949)
[105] Sinova, B. Robust location measures for imprecise-valued random elements. PhD Thesis, University of Oviedo \& University of Gent, http://digibuo.uniovi.es/dspace/bitstream/10651/28964/1/TD_BeatrizSinova.pdf (2014)
[106] Sinova, B., Casals, M.R., Gil, M.A. Central tendency for symmetric random fuzzy numbers. Inform. Sci. 278, 599-613 (2014)
[107] Sinova, B., Colubi, A., González-Rodríguez, G., Van Aelst, S. The trimmed mean for random fuzzy numbers. In Book of Abstracts of The International Conference on Robust Statistics (ICORS11), Valladolid, pp. 72-73 (2011)
[108] Sinova, B., De la Rosa de Sáa, S., Casals, M.R., Gil, M.A., Salas, A. The Mean Square Error of a random fuzzy vector based on the support function and the Steiner point. Fuzzy Sets Syst. 292, 347-363 (2016)
[109] Sinova, B., De la Rosa de Sáa, S., Gil, M.A. A generalized L^{1}-type metric between fuzzy numbers for an approach to central tendency of fuzzy data. Inform. Sci. 242, 22-34 (2013)
[110] Sinova, B., De la Rosa de Sáa, S., Lubiano, M.A., Gil, M.A. An overview on the statistical central tendency for fuzzy data sets. Int. J. Uncert., Fuzz. Know.-Bas. Syst. 23, 105-132 (2015)
[111] Sinova, B., Gil, M.A., Colubi, A., Van Aelst, S. The median of a random fuzzy number. The 1-norm distance approach. Fuzzy Sets Syst. 200, 99-115 (2012)
[112] Sinova, B., Gil, M.A., López, M.T., Van Aelst, S. A parameterized L^{2} metric between fuzzy numbers and its parameter interpretation. Fuzzy Sets Syst. 245, 101-115 (2014)
[113] Sinova, B., Gil, M.A., Van Aelst, S. M-Estimates of location for the robust central tendency of fuzzy data. IEEE Trans. Fuzzy Syst. 24(4), 945-956 (2016)
[114] Sinova, B., López, M.T. Study of the choice of the weighting measure φ on the φ wabl/ldev/rdev median. In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (Alonso, J.M., Bustince, H., Reformat, M., Eds.), Advances in Intelligent Systems Research, Vol. 89. Atlantis Press, Amsterdam, pp. 267-274 (2015)
[115] Sinova, B., Pérez-Fernández S., Montenegro M. The wabl/ldev/rdev median of a random fuzzy number and statistical properties. In Strengthening Links Between Data Analysis and Soft Computing (Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M.A., Eds.), Advances in Intelligent Systems and Computing, Vol. 315. Springer-Verlag, Heidelberg, pp. 143-150 (2015)
[116] Sinova, B., Terán, P. Comparative analysis of M-estimators and trimmed means for fuzzy set-valued data. Ramiro Melendreras Award of the SEIO'2016, Toledo (2016)
[117] Sinova, B., Van Aelst, S. A spatial-type interval-valued median for random intervals. Submitted (2017)
[118] Sorini, L., Stefanini, L. Some parametric forms for $L R$ fuzzy numbers and $L R$ fuzzy arithmetic. In Proc. Ninth International Conference on Intelligent Systems Design and Applications (ISDA'09), Pisa, pp. 312-317 (2009)
[119] Statistics. In Merriam-Webster.com. Retrieved July 26, 2016, from http://www.merriamwebster.com/dictionary/statistics
[120] Statistics. In OxfordDictionaries.com. Retrieved July 26, 2016, from http://www.oxforddictionaries.com/definition/english/statistics
[121] Stefanini, L., Bede, B. Generalized fuzzy differentiability with $L U$-parametric representation. Fuzzy Sets Syst. 257, 184-203 (2014)
[122] Stefanini, L., Sorini, L., Guerra, M.L. Parametric representation of fuzzy numbers and applications to fuzzy calculus. Fuzzy Sets Syst. 157, 2423-2455 (2006)
[123] Takemura, K. A fuzzy linear regression analysis for fuzzy input-output data using the least squares method under linear constraints and its application to fuzzy rating data. J. Adv. Comp. Intel. 3(1), 36-41 (1999)
[124] Takemura, K. Ambiguous comparative judgment: fuzzy set model and data analysis. Jap. Psychol. Res. 49(2), 148-156 (2007)
[125] Takemura, K. Ambiguity and social judgment: fuzzy set model and data analysis. In Fuzzy Logic - Algorithms, Techniques and Implementations. http://www.intechopen.com: InTech, pp. 3-24 (2012)
[126] Tayfur, G., Ozdemir, S., Singh, V.P. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Adv. Water Resour. 26, 1249-1256 (2003)
[127] Tomás, J.M., Oliver, A. Efectos de formato de respuesta y método de estimación en análisis factorial confirmatorio. Psicothema 10, 197-208 (1988)
[128] Treiblmaier, H., Filzmoser, P. Benefits from using continuous rating scales in online survey research. In Proc. 32nd International Conference on Information Systems (ICIS'2011), Shanghai, Paper 1 (2011)
[129] Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A. A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Inform. Sci. 179, 3964-3972 (2009)
[130] Trutschnig, W., Lubiano, M.A. SAFD: Statistical Analysis of Fuzzy Data. http://cran.rproject.org/web/packages/SAFD/index.html.
[131] Trutschnig, W., Lubiano, M.A., Lastra, J. SAFD - An R package for Statistical Analysis of Fuzzy Data. In Towards Advanced Data Analysis by Combining Soft Computing and Statistics (Borgelt, C., Gil, M.A., Sousa, J.M.C., Verleysen, M., Eds.), Studies in Fuzziness and Soft Computing, Vol. 285. Springer, Heidelberg, pp. 107-118 (2013)
[132] Turksen, I.B., Willson, I.A. A fuzzy set preference model for consumer choice. Fuzzy Sets Syst. 68, 253-266 (1994)
[133] Vitale, R.A. L_{p} metrics for compact, convex sets. J. Approx. Theor. 45, 280-287 (1985)
[134] Van Broekhoven, E., De Baets, B. Only smooth rule bases can generate monotone MamdaniAssilian models under center-of-gravity defuzzification. IEEE Trans. Fuzzy Syst. 17(5), 1157-1174 (2009)
[135] Yager R.R. A procedure for ordering fuzzy subsets of the unit interval. Inform. Sci. 24, 143-161 (1981)
[136] Yeh, C.H., Willis, R.J., Deng, H., Pan, H. Task oriented weighting in multi-criteria analysys. Eur. J. Oper. Res. 119, 130-146 (1999)
[137] Yücel, A., Güneri, A.F. A weighted additive fuzzy programming approach for multi-criteria supplier selection. Expert Syst. Appl. 38, 6281-6286 (2011)
[138] Zadeh, L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst., Man, Cybern 3(1), 28-44 Jan. (1973)
[139] Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning. Part 1. Inform. Sci. 8, 199-249; Part 2. Inform. Sci. 8, 301-353; Part 3. Inform. Sci. 9, 43-80 (1975)
[140] Zadeh, L.A. Is there a need for fuzzy logic? Inform. Sci. 178, 2751-2779 (2008)

Subject index

$\left(\mathscr{F}_{c}^{*}(\mathbb{R}), D_{\theta}^{\varphi}\right)$
isometric embedding into a cone of a Hilbert space of functions, 20
$\left(\mathscr{F}_{c}^{*}(\mathbb{R}), \mathscr{D}_{\theta}^{\varphi}\right)$
isometric embedding into a cone of a Banach space of functions, 22
$\left(\mathscr{F}_{c}^{*}(\mathbb{R}), \rho_{1}^{\varphi}\right)$
isometric embedding into a cone of a Banach space of functions, 22
$L R$-fuzzy numbers, 9
$\mathscr{D}_{\theta}^{\varphi}$-Average Distance Deviation of an RFN with respect to the φ-wabl/ldev/rdev median population version, 54 sample version, 54
$\mathscr{D}_{\theta}^{\varphi}$-Median Distance Deviation of an RFN with respect to the φ-wabl/ldev/rdev median population version, 55
sample version, 55
ρ_{1}-Average Distance Deviation of an RFN with respect to the 1-norm median
population version, 53
sample version, 53
ρ_{1}-Median Distance Deviation of an RFN with respect to the 1-norm median population version, 55 sample version, 55
ρ_{2}-Average Distance Deviation of an RFN with respect to the Aumann-type mean
population version, 53
sample version, 53
ρ_{2}-Median Distance Deviation of an RFN with respect to the Aumann-type mean population version, 54 sample version, 54
φ-weighted averaging based on levels, 7
arithmetic of fuzzy numbers
arithmetic of $L R$-fuzzy numbers, 16
connection with functional arithmetic, 20
difference with functional arithmetic, 16
product by scalars, 15
semilinear structure, 17
sum, 15
bootstrapped algorithm to test homoscedasticity for k independent RFN's, 41
case study-based analysis of the sensitivity of the population variance w.r.t. the shape of fuzzy data, 45
simulations-based analysis of the sensitivity of the population variance w.r.t. the shape of fuzzy data, 42

Case studies
adapted restaurant customer satisfaction questionnaire, 35 adapted TIMSS/PIRLS student questionnaire, 33
online perceptions application, 35
diversity
(sample) Gini-Simpson diversity index, 196
finite sample breakdown point, 31, 66 of $\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}} \mathrm{D}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), 72$
of $\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{~K}_{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), 78$
of $\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widehat{\mathrm{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), 70$
of $\widehat{\rho_{1}-\widehat{\mathrm{MDD}}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)\right), 75$
of $\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), 69$
of $\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widetilde{\mathbf{x}}_{n}\right), 73$
of $\widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right), 82$
of $\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right), 80$
of $\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right), 85$
of $\widehat{D_{\theta}^{\varphi}-\mathrm{SD}}\left(\widetilde{\mathbf{x}}_{n}\right), 68$
of the sample φ-wabl/ldev/rdev median, 32
of the sample 1-norm median, 32

Fréchet-type standard deviation of an RFN
population version, 26, 52
sample version, 26,52
Fréchet-type variance of an RFN
invariance under translation and squared equivariance under the product by a scalar, 27 nonnegativity, and vanishment for degenerate RFN's, 27
population version, 26
sample version, 26
functional data
correspondence with fuzzy number-valued data, 20
fuzzy linguistic scale, 11
cons, 12
posterior fuzzy number-valued encoding of a Likert scale, 11
pros, 11
fuzzy number-valued data
identification with functional data, 20
fuzzy numbers, 5,6
$L R$-fuzzy numbers
$L U$-parameterized representation, 10
$L U_{1 A}$-curves, 10
$L U_{1 B}$-curves, 10
$L U_{2 A^{-}}$curves, 10
$L U_{2 B}$-curves, 10
П-curves, 10
trapezoidal fuzzy numbers, 9
φ-wabl/ldev/rdev representation, 8
characteristic properties, 8
$\mathscr{F}_{c}^{*}(\mathbb{R}), 6$
identification with functional values, 20
inf/sup representation, 6
characteristic properties, 6
$\mathrm{mid} / \mathrm{spr}$ representation, 7
product by a scalar of, 15
sum of, 15
fuzzy rating scale, 12
cons, 14
guideline, 12
pros, 13

Gini-Simpson diversity index, 196

Likert
scale-based rating, 2
cons, 2
pros, 2
Likertization process
minimum distance criterion, 207
loss function, 157
Huber's loss, 160
Tukey's loss, 160

M-estimators of scale, 158
Huber's loss function, 160
iterative algorithm, 159
loss function, 157
scale equivariance, 158
simulations to check the
robustness, 160
breakdown point, 160
explosion breakdown point, 160
explosion pseudo-breakdown point, 174
implosion breakdown point, 161
implosion pseudo-breakdown point, 174
pseudo-breakdown point, 173
pseudo-sensitivity curves, 185
sensitivity curves, 181
Tukey's loss function, 160
weight function, 158
metrics between fuzzy numbers
L^{1} metrics, 21 $\mathscr{D}_{\theta}^{\varphi}, 21$
1-norm distance $\left(\rho_{1}\right), 21$
1-norm distance (ρ_{1}^{φ}), 21
metric properties, 22 topological properties, 22
L^{2} metrics, 18
$D_{\theta}^{\varphi}, 18$
2-norm distance (ρ_{2}), 18
metric properties, 20
topological properties, 20
outlier types, 88
scale on the core and support, 88
translation, 88
two-way (translation and scale), 88
population scale estimate $D-\mathrm{S}(\mathcal{X}, \mathcal{Y})$, 55
random fuzzy numbers (RFN's), 23
φ-wabl/ldev/rdev median of an RFN
equivariance under affine transformations, 30
minimization of the mean $\mathscr{D}_{\theta}^{\varphi}$-deviation, 30
population version, 30
sample version, 30
strong consistency, 31
1-norm median of an RFN equivariance under affine transformations, 30
minimization of the mean
ρ_{1}^{φ}-deviation, 29
population version, 29
sample version, 29
strong consistency, 31
Aumann-type mean of an RFN
D_{θ}^{φ}-Fréchet's expectation, 26
additivity, 25
Bochner expectation of a
Banach space-valued random
element (support
function-based definition), 24
coherence with the usual fuzzy
arithmetic, 25
equivariance under affine
transformations, 25
population version, 24
sample version, 25
SLLN, 26
Borel-measurable mappings, 23
distribution induced by an RFN, 23
Fréchet-type variance of an RFN
support function-based
definition, 26
inf/sup-based definition, 23
mid/spr-based definition, 23
support function-based definition, 23
sample scale estimate $\widehat{D-\mathrm{Q}}\left(\widetilde{\mathbf{x}}_{n}\right), 56$
sample scale estimate $\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right), 55$
sample scale estimate $\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right), 56$
scale estimators
explosion breakdown point, 67
finite sample breakdown point, 66
implosion breakdown point, 67
properties, 56
extension of the real-valued case, 57
minimality, 58
nonnegativeness, 57
scale (absolute) equivariance, 59
shift invariance, 59
strong consistency, 60
simulations to check the robustness, 93, 142
breakdown point, 93
explosion breakdown point, 93
explosion pseudo-breakdown point, 118
implosion breakdown point, 94
implosion pseudo-breakdown point, 119
pseudo-breakdown point, 117
pseudo-sensitivity curves, 150
sensitivity curves, 142
sensitivity curves, 143
separability of the metric space
$\left(\mathscr{F}_{c}^{*}(\mathbb{R}), D_{\theta}^{\varphi}\right), 20$
$\left(\mathscr{F}_{c}^{*}(\mathbb{R}), \mathscr{D}_{\theta}^{\varphi}\right), 22$
$\left(\mathscr{F}_{c}^{*}(\mathbb{R}), \rho_{1}^{\varphi}\right), 22$
Simulation procedures
from a fuzzy rating scale-inspired distribution (2ndSP), 39
from an extension from the normal distribution (1stSP), 38
trapezoidal fuzzy numbers, 9

Visual analogue
graphic rating scale, 3 numerical rating scale, 3
scale-based rating, 3
cons, 4
pros, 4

Symbols index

$D-\mathrm{S}(\mathcal{X}, \mathcal{Y})$: scale estimate $D-\mathrm{S}(\mathcal{X}, \mathcal{Y})$ of the independent and identically distributed RFN's \mathcal{X} and $\mathcal{Y}, 55$
$D_{\theta}^{\varphi}-\mathrm{SD}(\mathcal{X})$: Fréchet-type standard deviation of the RFN $\mathcal{X}, 52$
$D_{\theta}^{\varphi}:(\varphi, \theta)$-mid/spr-based L^{2} metric between fuzzy numbers, 18
$S_{\widetilde{\mathbf{x}}_{n}}^{2}$: Fréchet-type sample variance of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN $\mathcal{X}, 26$
$S_{\widetilde{\mathbf{x}}_{n}}$: Fréchet-type sample standard deviation of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X}, 26
W : weight function in M-estimation of scale, 158
$\boldsymbol{\eta}_{\widetilde{U}}: \mathrm{mid} / \mathrm{spr}$ representation of the fuzzy number $\tilde{U}, 7$
$\iota_{\widetilde{U}}:$ inf/sup representation of the fuzzy number $\widetilde{U}, 6$
$\boldsymbol{v}_{\widetilde{U}}^{\varphi}: \varphi$-wabl/ldev/rdev representation of the fuzzy number $\widetilde{U}, 8$
$\langle\cdot, \cdot\rangle_{\theta}^{\varphi}$: inner product on \mathbb{H}_{2} associated with the L^{2} metric $D_{\theta}^{\varphi}, 20$
\mathcal{X} : (generic) random fuzzy number, 23
fsbp ${ }^{+}$: explosion breakdown point, 67
fsbp ${ }^{-}$: implosion breakdown point, 67 wabl $^{\varphi}: \varphi$-weighted averaging based on levels, 7
$\mathscr{D}_{\theta}^{\varphi}:(\varphi, \theta)$-wabl $/ \mathrm{ldev} / \mathrm{rdev} L^{1}$ metric between fuzzy numbers, 21
$\mathscr{D}_{\theta}^{\varphi}-\operatorname{ADD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right): \mathscr{D}_{\theta}^{\varphi}$-Average Distance Deviation of the RFN \mathcal{X} with respect to the φ-wabl/ldev/rdev median $\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X}), 54$
$\mathscr{D}_{\theta}^{\varphi}-\operatorname{MDD}\left(\mathcal{X}, \widetilde{\mathrm{M}^{\varphi}}(\mathcal{X})\right): \mathscr{D}_{\theta}^{\varphi}$-Median Distance Deviation of the RFN \mathcal{X} with respect to the φ-wabl/ldev/rdev median $\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X}), 55$
$\overline{\mathbf{x}}_{n}$: Aumann-type sample mean of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN $\mathcal{X}, 25$
ρ_{1} : 1-norm metric between fuzzy numbers, 21
$\rho_{1}-\operatorname{ADD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X})): \rho_{1}$-Average Distance Deviation of the RFN \mathcal{X} with respect to the 1-norm median $\widetilde{\operatorname{Me}}(\mathcal{X}), 53$
$\rho_{1}-\operatorname{MDD}(\mathcal{X}, \widetilde{\operatorname{Me}}(\mathcal{X})): \rho_{1}$-Median
Distance Deviation of the RFN \mathcal{X} with respect to the 1-norm median $\widetilde{\operatorname{Me}}(\mathcal{X}), 55$
ρ_{1}^{φ} : 1-norm metric between fuzzy numbers, 21
ρ_{2} : 2-norm metric between fuzzy numbers, 18
$\rho_{2}-\operatorname{ADD}(\mathcal{X}, \widetilde{E}(\mathcal{X})): \rho_{2}$-Average Distance Deviation of the RFN \mathcal{X} with respect to the Aumann-type mean $\widetilde{E}(\mathcal{X}), 53$
$\rho_{2}-\operatorname{MDD}(\mathcal{X}, \widetilde{E}(\mathcal{X})): \rho_{2}$-Median Distance Deviation of the RFN \mathcal{X} with respect to the Aumann-type mean $\widetilde{E}(\mathcal{X}), 54$
$\sigma_{\mathcal{X}}^{2}$: Fréchet-type variance of the RFN $\mathcal{X}, 26$
$\sigma_{\mathcal{X}}$: Fréchet-type standard deviation of the RFN $\mathcal{X}, 26$
ϱ : loss function in M-estimation of scale, 157
$\widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$: sample scale estimate $\widehat{D-Q}\left(\widetilde{\mathbf{x}}_{n}\right)$ of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from $\mathcal{X}, 56$
$\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)$: sample scale estimate $\widehat{D-S}\left(\widetilde{\mathbf{x}}_{n}\right)$ of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from $\mathcal{X}, 55$
$\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)$: sample scale estimate $\widehat{D-T}\left(\widetilde{\mathbf{x}}_{n}\right)$ of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from $\mathcal{X}, 56$
$\widehat{D_{\theta}^{\varphi} \text {-SD }}\left(\widetilde{\mathbf{x}}_{n}\right)$: Fréchet-type sample standard deviation of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN $\mathcal{X}, 52$
$\widehat{G}\left(\widetilde{\mathbf{x}}_{n}\right)$: sample Gini-Simpson diversity index of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X}, 196
$\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widehat{\mathrm{M}} \varphi}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$: sample $\mathscr{D}_{\theta}^{\varphi}$-Average Distance Deviation of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X} with respect to the φ-wabl/ldev/rdev median $\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right), 54$
$\widehat{\mathscr{D}_{\theta}^{\varphi}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widetilde{\mathrm{M}^{\varphi}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$: sample $\mathscr{D}_{\theta}^{\varphi}$-Median Distance Deviation of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X} with respect to the $\xlongequal[\widetilde{\mathrm{M}^{\varphi}}]{\varphi \text {-wabl }}\left(\widetilde{\mathbf{x}}_{n}\right), 55$
$\widehat{\rho_{1}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$: sample ρ_{1}-Average Distance Deviation of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X} with respect to the 1-norm median $\widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right), 53$
$\widehat{\rho_{1}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \widehat{\widehat{\operatorname{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)\right)$: sample ρ_{1}-Median Distance Deviation of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X} with respect to the 1-norm median $\widehat{\widehat{\mathrm{Me}}}\left(\widetilde{\mathbf{x}}_{n}\right)$, 55
$\widehat{\rho_{2}-\mathrm{ADD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$: sample ρ_{2}-Average Distance Deviation of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X} with respect to the Aumann-type mean $\overline{\widetilde{\mathbf{x}}}_{n}, 53$
$\widehat{\rho_{2}-\mathrm{MDD}}\left(\widetilde{\mathbf{x}}_{n}, \overline{\widetilde{\mathbf{x}}}_{n}\right)$: sample ρ_{2}-Median Distance Deviation of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X} with respect to the Aumann-type mean $\overline{\widetilde{\mathbf{x}}}_{n}, 54$
$\widehat{\mathrm{Me}}\left(\widetilde{\mathbf{x}}_{n}\right)$: sample 1-norm median of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN $\mathcal{X}, 29$
$\widehat{\mathrm{M}^{\varphi}}\left(\widetilde{\mathbf{x}}_{n}\right)$: sample φ-wabl/ldev/rdev median of a sample of observations $\widetilde{\mathbf{x}}_{n}$ from RFN \mathcal{X}, 30
$\widetilde{E}(\mathcal{X})$: Aumann-type mean of the $\operatorname{RFN} \mathcal{X}, 24$
$\widetilde{\operatorname{Me}}(\mathcal{X})$: 1-norm median of the RFN $\mathcal{X}, 29$
$\widetilde{\mathrm{M}^{\varphi}}(\mathcal{X}): \varphi$-wabl/ldev/rdev median of the RFN $\mathcal{X}, 30$
$\mathscr{F}_{c}^{*}(\mathbb{R})$: space of bounded fuzzy numbers, 6
\mathbb{B}_{1} : space of L^{1}-type 2-dimensional vector-valued functions defined on $[0,1], 22$
\mathbb{B}_{1}^{\star} : space of L^{1}-type 3 -dimensional vector-valued functions defined on $[0,1], 22$
fsbp: finite sample breakdown point, 31
\mathbb{H}_{2} : space of L^{2}-type real-valued functions defined on $[0,1] \times\{-1,1\}$ w.r.t. $\ell \otimes \lambda_{1}$, 20

[^0]: ${ }^{1}$ It should be pointed out that to avoid differences in variances coming from differences in the starting 4-tuples, the sample of Tra's and the sample of $L U$'s in these simulations share the same sample of 4 -tuples. Nevertheless, they should not be treated as linked since they are actually assumed to come from two independent samples, each sample being associated with one of the two different shapes. Of course, the bootstrap samples in $\boldsymbol{S} .2$ do not share in general the same sample of 4 -tuples.

