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Prologue

Imprecise data can be found in many real-life situations. Fields like Engineering,
Biomedical Sciences or Social Sciences often deal with this kind of data. For instance,
the optimization of industrial control systems, the diagnosis determined by a doctor
about a patient or the customer valuation about a product are matters that may
involve imprecise data. Fuzzy numbers can properly express and model this type of
data.

The Likert-type scales are frequently used in designing questionnaires to rate
characteristics or attributes that cannot be numerically measured (like satisfaction,
perceived quality, perception...). Although they are easy to answer and they do
not require a special training to use them, the available statistical methodology to
analyze the data from these questionnaires is rather limited. This is mainly due
to the fact that Likert scales are discrete with a very small number of responses to
choose for each item (often 4 or 5). To overcome this concern, some alternatives
have been suggested in the literature:

• On one hand, the visual analogue scales, which allow the respondent to choose
the exact value or point along a line between two end-points (i.e., along a com-
pact interval) that better represents his/her level of agreement to a statement
or property. Even though it is a continuous scale, so the diversity of responses
is ensured and the statistical conclusions are reliable, it does not seem realistic
to demand as much accuracy in connection with such an intrinsically imprecise
context.

• On the other hand, the posterior encoding (usually made by trained experts) of
the Likert responses by means of fuzzy numbers from a linguistic scale. With
this scale, the intrinsic imprecision associated with the responses is better
captured, but it is a discrete scale with small cardinal, like the Likert scale,
and so, the subjectivity and the diversity of ratings are to some extent lost.
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Prologue

The so-called fuzzy rating scales integrate the skills of the two previous alter-
natives (to be a ‘continuous’ and fuzzy-valued scale). The questionnaires based on
this scale have a free-response format, allowing the rater to draw the fuzzy number
that better expresses his/her response to the given item, within a reference bounded
interval. In this way, the values can cope (to a full extent) with the intrinsic impre-
cision associated with the ratings. On the other hand, the diversity and subjectivity
of the responses are not lost because it is a continuous scale, and there is a sub-
stantial gain of information and accuracy in the conclusions. Moreover, along the
last years a statistical methodology is being developed to analyze fuzzy-based data,
allowing us to treat them in a similar way to the numerical data.

A substantial part of the thesis work is devoted to summarize the statistical
information involved in datasets that are based on a fuzzy rating by analyzing their
scale estimate, where it is intended as a representative measure of the dispersion of
the imprecise-valued attributes supplying the datasets. More concretely, the objec-
tive is summarizing the scale by extending different, mostly robust, scale estimates
from the real-valued case. Thus, the Fréchet-type variance (or the corresponding
standard deviation) is the best known and used dispersion measure in the fuzzy
context. It preserves the main valuable properties of the variance (standard devia-
tion) for real-valued data, but it also inherits its high sensitivity to the presence of
outliers or atypical/extreme observations in the data. Therefore, it is desirable to
introduce and study other scale measures and to analyze their robust behaviour.

The other main contribution of the work is to compare the mentioned different
rating scales to model/deal with imprecise-valued data through some studies based
on simulations and also on real-life questionnaires. In particular, the Likert-type
scale, through both its numerical and fuzzy linguistic encodings, and the fuzzy
rating scale will be compared, mainly on the basis of the dispersion/scale measures
studied in the first main part of the work.

Aiming to achieve these goals, the work in this dissertation has been structured
as follows:

Chapter 1 introduces the different rating scales currently most employed to
measure aspects which are intrinsically imprecise. All of them are illustrated by
means of some examples. The main positive and negative features in connection
with the use of each scale are analyzed, and the design of questionnaires based on
the fuzzy rating scale is explained in detail.
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The principal preliminary and supporting tools about fuzzy numbers are gath-
ered, including some of the representations that characterize them, their arithmetic
and the metrics which will be used along this work. The random mechanism that
models the generation of fuzzy values within a probabilistic setting is presented,
and the main summary measures/parameters of its distribution are recalled, both
central tendency and dispersion measures. The latter will be deeply analyzed in the
next chapter.

Three real-life examples concerning the application of the fuzzy rating and Likert
scales in questionnaires are included, and the complete datasets associated to such
questionnaires can be found in the appendices section at the end of this work.
Besides, the two simulation procedures of fuzzy numbers conducted in different
instances of this work are also explained. After a small study consisting of analyzing
the sensitivity of Fréchet’s variance with respect to the shape of the fuzzy data, the
chapter ends motivating the need for robust measures alternative to the variance,
as well as the interest of comparing the rating scales from a dispersion perspective.

In Chapter 2 several measures of scale to deal with real-valued data are ex-
tended to deal with fuzzy-valued data. After proving some of their most relevant
properties, such as the invariance by translation, the (absolute) equivariance by the
product by scalars or the strong consistency, their robust behaviour is analyzed
deeply from a theoretical point of view and also by means of simulations. The value
of the finite sample breakdown point is calculated for each estimator assuming that
there are not two identical observations in the sample, and the results obtained will
show that these values are the same as those in the real-valued case.

The three types of outliers considered along the chapter have had to be specifi-
cally conceived for this fuzzy setting and they are explained in detail. The empirical
breakdown point is obtained for each estimator, confirming the theoretical values.
The notion of sensitivity curves is extended from the real- to the fuzzy-valued case
and they are graphically displayed.

A brief section is devoted to introduce the M-estimators of scale. It gathers
an algorithm to compute them and also an empirical analysis of the robustness for
two well-known loss functions: the Huber loss function and the Tukey bisquare loss
function.

Finally, the computation of all the scale estimators introduced along this chapter
is illustrated for the fuzzy responses from the three questionnaires in Chapter 1.
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In Chapter 3 a comparative study among the rating scales presented in the first
chapter is carried out. The first comparative tool to be analyzed will be the diversity,
and as we will see it is always higher, under quite general reasonable conditions, for
the questionnaires based on the fuzzy rating scale. This supports the idea that this
scale allows us to capture better the subjectivity and diversity of responses, as it
was mentioned at the beginning of this work.

Then, an inferential approach based on a bootstrapped test about the equality of
variances/standard deviations for independent populations is presented and applied
to two questionnaires-based case studies. By comparing the p-values obtained for
each rating scale, it will be determined if the chosen scale has influence on the test
result.

Finally, a descriptive analysis of the three scales is performed in the chapter. On
one hand, all the scale measures introduced in Chapter 2, but M-estimators which
should be studied in more depth, are calculated for each rating scale, making use of
the double response questionnaires-based case studies and of the usual numerical and
fuzzy linguistic encodings of Likert data. On the other hand, fuzzy rating responses
are simulated and associated with Likert responses by means of a ‘Likertization’
criterion which will be explained and validated with the questionnaires. Then, each
‘Likertized’ datum is encoded by means of a fuzzy linguistic scale. In this way,
with the responses available in the three scales, the value of the different dispersion
estimators is calculated and compared among the scales. We will see that the results
obtained with this descriptive approach based on simulations are the same as those
obtained for the case studies and they are also coherent with the conclusions for the
standard deviation in the inferential analysis.

Each of the chapters ends up with a brief section devoted to summarize its main
conclusions and contributions, followed by a list of publications I coauthored where
these findings are described in full.

The work for this dissertation concludes with some final comments and sugges-
tions concerning open problems in connection with the topic covered in it.
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Prólogo

Los datos imprecisos pueden encontrarse en muchas situaciones de la vida cotidiana.
Campos como la Ingeniería, las Ciencias Biomédicas o las Ciencias Sociales tratan
habitualmente con este tipo de datos. Por ejemplo, la optimización de sistemas de
control industriales, el diagnóstico que determina un médico sobre un paciente o la
valoración que hace un cliente de un producto son cuestiones que pueden involucrar
datos imprecisos. Los números difusos son los encargados de expresar y modelar
este tipo de datos.

En el diseño de cuestionarios que tratan de recabar valoraciones sobre aspectos
que no son medibles de forma exacta (como la satisfacción, la calidad percibida,
la percepción...) es habitual recurrir al empleo de escalas tipo Likert. A pesar de
que su aplicación es sencilla y no requieren preparación previa de los encuestados,
cuando se quiere explotar la información contenida en los datos provenientes de
estos cuestionarios, la metodología estadística disponible es bastante limitada. Esto
se debe en gran parte a que se trata de escalas discretas con un número muy reducido
de respuestas a elegir para cada pregunta (normalmente 4 o 5). Para soslayar este
inconveniente, se han propuesto en la literatura algunas alternativas al empleo de
las escalas Likert:

• Por un lado, las escalas visuales analógicas, que piden al encuestado especificar
el punto o valor exacto en una barra o intervalo acotado que mejor exprese su
grado de acuerdo con la declaración o propiedad enunciada. Aunque se trata
de una alternativa de escala continua, que recoge la diversidad de respuestas y
se adapta muy bien al tratamiento estadístico, no parece natural exigir tanta
exactitud en un contexto de por sí impreciso.

• Por otro lado, la codificación a posteriori (normalmente realizada por exper-
tos) de las respuestas Likert mediante números difusos procedentes de una
escala lingüística. A pesar de que con este tipo de escala captamos mejor
la imprecisión inherente a las respuestas, se trata, al igual que la Likert, de
una escala discreta con cardinal pequeño, lo que conlleva una clara pérdida en
subjetividad y diversidad de valoraciones.
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Combinando las ideas de las dos alternativas anteriores (escala continua y di-
fusa) se encuentra la conocida como escala de valoración difusa. Los cuestionarios
que utilizan esta escala tienen un formato de respuesta libre, de tal forma que el
encuestado representa gráficamente para cada pregunta el numero difuso que mejor
expresa su respuesta, dentro un intervalo cuyos extremos son fijados de antemano.
Así se garantiza que, por un lado, las respuestas reflejen la imprecisión intrínseca
a las valoraciones a las que se refieren, y por otro, que haya una mayor diversi-
dad de las mismas al tratarse de una escala continua, lo que conlleva una ganancia
sustancial de información y fiabilidad en las conclusiones. Además, a lo largo de
los últimos años se está desarrollando una metodología estadística para el análisis
de datos difusos, que permite un tratamiento muy similar al del análisis de datos
numéricos.

Buena parte de esta tesis se dedica a resumir la información estadística contenida
en varios conjuntos de datos basados en valoraciones difusas. Esto se llevará a cabo
mediante el análisis de su estimación de escala, entendiéndola como una medida
representativa de la dispersión de los datos. Concretamente, el objetivo es resumir
la escala extendiendo del caso real diferentes estimadores, muchos de ellos robustos.
La medida de dispersión más conocida y habitual en el contexto difuso es la varianza
de Fréchet (o la correspondiente desviación típica). Esta medida conserva las prin-
cipales propiedades de la varianza (desviación típica) del caso real, entre las que se
encuentra su elevada sensibilidad a la presencia de outliers u observaciones atípicas
o extremas en los datos. Es deseable, por tanto, tratar de introducir y estudiar otras
medidas de escala y analizar su comportamiento robusto.

La otra principal contribución de este trabajo es comparar las escalas de valo-
ración mencionadas mediante estudios basados en simulaciones y también en ejemp-
los reales de cuestionarios. Concretamente, las escalas que van a compararse son la
tipo Likert, codificada numéricamente y a través de escalas lingüísticas difusas, y la
escala de valoración difusa. Dicha comparación se hará principalmente sobre la base
de las medidas de dispersión/escala estudiadas en la primera parte de la memoria.

Con estos objetivos generales, el trabajo de esta tesis se ha estructurado como
detallamos a continuación.

El Capítulo 1 presenta las escalas de valoración más empleadas en la actualidad
para medir magnitudes intrínsicamente imprecisas, ilustrando todas ellas con ejem-
plos. Se analizan las ventajas e inconvenientes más destacables de cada una, y se
explica detalladamente el diseño de cuestionarios basados en la escala de valoración
difusa.
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Se recogen además los preliminares sobre números difusos, incluyendo algunas de
sus representaciones, su aritmética y las distancias que serán usadas a lo largo de este
trabajo. Se formaliza el mecanismo que genera aleatoriamente tales datos dentro
de un contexto probabilístico y se recuerdan las principales medidas que resumen
su distribución, tanto de tendencia central como de dispersión. Estas últimas serán
analizadas en profundidad en el siguiente capítulo.

Se incluyen tres ejemplos reales de cuestionarios con respuestas Likert y de va-
loración difusa, cuyos conjuntos de datos asociados pueden encontrarse en la sección
de apéndices al final de esta memoria. Se detallan también los dos procedimientos de
simulación de datos difusos que serán empleados en varias ocasiones en este trabajo.
Después de un pequeño estudio que analiza la sensibilidad de la varianza de Fréchet
respecto a la forma de los datos, se concluye el capítulo motivando la necesidad de
buscar alternativas más robustas a ella, así como el interés de comparar, desde un
punto de vista de la dispersión, las diferentes escalas de valoración.

En el Capítulo 2 se extienden del caso real varias medidas de escala para datos
difusos. Después de probar algunas de sus propiedades más relevantes, como la
invarianza por traslación, la equivarianza (en valor absoluto) por el producto por
escalares o la consistencia fuerte, se analiza profundamente el comportamiento ro-
busto de estas medidas, tanto desde un punto de vista teórico como a través de
simulaciones. Así, se determina su punto de ruptura muestral finito cuando la
muestra no contiene observaciones iguales, siendo estos valores coincidentes con los
del caso real para todas las medidas.

Se explican en detalle los tres tipos de outliers que se van a considerar a lo largo
del capítulo, los cuales han sido especialmente concebidos para este contexto difuso,
y se corrobora de forma empírica e ilustrativa el valor de los puntos de ruptura para
cada estimador. También se extiende la noción de curvas de sensibilidad del caso
real al caso difuso, y se representan gráficamente.

Se dedica una breve sección a introducir los M-estimadores de escala. En ella
se recoge un algoritmo para su computación, así como un análisis empírico de la
robustez para dos conocidas funciones de pérdida: la función de pérdida de Huber
y la función de pérdida de Tukey.

Por último, se ilustra el cálculo de todos los estimadores de escala presentados
a lo largo del capítulo, utilizando para ello las respuestas difusas procedentes de los
tres cuestionarios expuestos en el Capítulo 1.
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En el Capítulo 3 se desarrolla el estudio comparativo entre las escalas de valo-
ración que fueron presentadas en el primer capítulo. La primera herramienta com-
parativa analizada será la diversidad, que como veremos es siempre mayor, bajo
condiciones bastante generales, para los cuestionarios basados en la escala de va-
loración difusa. Esto refrenda la idea de que el uso de esta escala permite captar
mejor la subjetividad y la diversidad de respuestas, según se planteó en el inicio de
esta memoria.

A continuación, se presenta un enfoque inferencial basado en un test bootstrap
de igualdad de varianzas/desviaciones típicas para poblaciones independientes, que
es aplicado a dos cuestionarios reales. Comparando los p-valores obtenidos para
cada escala de valoración, se determinará si la escala elegida influye en el resultado
del test.

Por último y para finalizar este capítulo, se realiza un análisis descriptivo de
las tres escalas. Por un lado, haciendo uso de los cuestionarios de respuesta doble
y de las codificaciones numéricas y linguísticas difusas más usuales, se calculan
todas las medidas de dispersión definidas en el Capítulo 2 para cada escala (no se
incluyen los M-estimadores, que deberían ser estudiados con más profundidad). Por
otro lado, se simulan respuestas difusas y se asocian a respuestas Likert mediante
un criterio de ‘Likertización’ que será explicado y validado con los cuestionarios.
Después, cada dato ‘Likertizado’ se codifica mediante una escala lingüística difusa.
Así, con las respuestas disponibles en las tres escalas, se procede a calcular el valor
de los distintos estimadores de dispersión y a compararlos entre las escalas. Veremos
que los resultados de este enfoque descriptivo basado en simulaciones coinciden con
los obtenidos para los cuestionarios, y que son coherentes con las conclusiones del
análisis inferencial para la desviación típica.

Todos los capítulos finalizan con una breve sección dedicada a resumir las princi-
pales conclusiones y contribuciones del mismo, además de indicarse las publicaciones,
de las que soy coautora, donde han sido recogidas estas aportaciones.

La memoria concluye con algunos comentarios finales y sugerencias de problemas
abiertos estrechamente ligados con el tema de esta tesis.
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Einleitung

Unscharfe Daten findet man in vielen Lebenssituationen. Themen wie Ingenieur-
wesen, Biomedizinische Wissenschaften oder Sozialwissenschaften befassen sich oft
mit dieser Art von Daten. Beispiele für das Auftreten von unscharfen Daten sind
die Optimierung von industriellen Steuerungen, die Bestimmung der Diagnose eines
Patienten von einem Arzt, oder die Kundenbewertung eines Produkts. „Fuzzy”
Zahlen können dabei helfen, diese Art von Daten korrekt darzustellen.

Die Likert-Skala wird häufig bei der Gestaltung von Fragebögen verwendet, um
Eigenschaften oder Merkmale zu bewerten, welche nicht numerisch gemessen werden
können (zum Beispiel: Zufriedenheit, wahrgenommene Qualität, Wahrnehmung).
Obwohl sie leicht anzuwenden ist und man keine spezielle Ausbildung benötigt um
sie zu verwenden, ist die verfügbare statistische Methodik zur Analyse der Daten
aus diesen Fragebögen begrenzt. Dies ist vor allem auf die Tatsache zurückzuführen,
dass Likert-Skalen sehr diskret mit einer sehr kleinen Anzahl von Antworten für jedes
Element zu wählen sind (meist 4 oder 5). Um dies zu überwinden, wurden in der
Literatur einige Alternativen vorgeschlagen:

• Auf der einen Seite, visuelle Analogskalen, welche es dem Befragten ermögli-
chen, den exakten Wert oder Punkt einer Linie zwischen zwei Endpunkten
zu wählen (d.h.: entlang eines kompakten Intervalls), der seinen/ihren Stand
der Vereinbarung einer Stellungnahme oder Fähigkeit darstellt. Obwohl man
damit eine kontinuierliche Skala erhält, die Vielfalt der Antworten gewährleis-
tet ist und auch die statistischen Schlussfolgerungen zulässig sind, ist es nicht
realistisch, so viel Genauigkeit in Verbindung mit einem ungenauen Kontext
zu verlangen.

• Auf der anderen Seite, die a-posteriori Kodierung (von ausgebildeten Ex-
perten) der Likert-Antworten mittels unscharfer Zahlen einer sprachlichen
Skala. Mit dieser Skala wird die intrinsische Ungenauigkeit, die mit der
Antwort verbunden ist besser erfasst, aber es ist eine diskrete Skala mit einer
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kleinen Grundzahl, wie die Likert-Skala und daher gehen die Subjektivität und
Vielfalt der Bewertungen bis zu einem gewissen Grad verloren.

Die sogenannten „fuzzy” Bewertungsskalen integrieren die Fähigkeiten der bei-
den vorherigen Alternativen (eine kontinuierliche und unscharf bewertete Skala).
Basierend auf diese Skala haben die Fragebögen ein „Freies Antwort”-Format, wel-
ches es dem Beurteiler erlaubt, die unscharfe Zahl zu zeichnen, welche seine/ihre
Antwort innerhalb eines referenzinternen Intervalls besser ausdrückt. Auf diese
Weise können die Werte mit der intrinsischen Ungenauigkeit, die mit den Bewertun-
gen verbunden ist, bewältigt werden. Andererseits gehen Vielfalt und Subjektivität
der Antworten nicht verloren, da es eine kontinuierliche Skala ist und es einen erhe-
blichen Gewinn an Informationen und Genauigkeit in den Schlussfolgerungen gibt.
Darüber hinaus wurde in den letzten Jahren eine statistische Methode entwickelt,
um fuzzy-basierte Daten zu analysieren, sodass wir diese in ähnlicher Weise wie die
numerischen Daten behandeln können.

Ein wesentlicher Teil der Arbeit widmet sich der Zusammenfassung der statis-
tischen Information in Datensätzen, basierend auf einer Fuzzy-Bewertung durch die
Analyse ihrer Schätzung, wobei sie als repräsentative Maßnahme der Streuung der
unscharfen Werte, die die Datensätze liefern, gedacht ist. Konkret ist damit folgen-
des gemeint: Das Ziel ist die Zusammenfassung der Skala durch die Ausweitung der
verschiedenen vor allem robusten Schätzungen aus dem reellwertigen Fall. Somit
ist die Fréchet-Varianz (oder die entsprechende Standardabweichung) das bekann-
teste und auch oft angewendete Streuungsmaß im Fuzzy-Kontext. Es bewahrt die
wichtigsten Eigenschaften der Varianz (Standardabweichung) für reellwertige Daten,
aber es bewahrt auch die hohe Empfindlichkeit gegenüber dem Vorhandensein von
Ausreißern oder atypische/extreme Beobachtungen von Daten. Daher ist es wün-
schenswert, andere Skalenmaße einzuführen und zu studieren und ihr robustes Ver-
halten zu analysieren.

Der andere wichtige Teil der Arbeit ist, die beschriebenen unterschiedlichen Bew-
ertungsskalen mit unscharfen Daten durch einige auf Simulation basierenden Studien
und auch auf realen Fragebögen zu vergleichen. Insbesondere werden beim Likert-
Typ die numerischen und fuzzy-linguistisch codierten Skalen mit den Fuzzy-Rating-
Skalen verglichen, hauptsächlich basierend auf den Streuungsmaßen vom ersten Teil
der Arbeit.

Um diese Ziele zu erreichen, wurde der Inhalt dieser Dissertation folgend struk-
turiert:
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Kapitel 1 stellt die verschiedenen Rating-Skalen vor, die derzeit am meisten
eingesetzt werden, um Aspekte zu messen, die intrinsisch ungenau sind. Diese
werden anhand einiger Beispiele dargestellt. Die wichtigsten positiven und neg-
ativen Eigenschaften werden im Zusammenhang mit der Verwendung jeder Skala
analysiert, und die Gestaltung der Fragebögen, die auf der Rating-Skala basiert,
wird im Detail erläutert.

Die vorläufig wichtigsten und unterstützenden Werkzeuge von unscharfen Zahlen
werden hier aufgelistet, einschließlich einiger Darstellungen, die sie charakterisieren.
Diese beinhalten ebenso die Arithmetik und die Metriken, die für diese Arbeit ver-
wendet werden. Der zufällige Mechanismus, der die Erzeugung von Fuzzy-Werten
innerhalb einer probabilistischen Einstellung modelliert wird dargestellt und die
wichtigsten zusammenfassenden Maßnahmen/Parameter werden in Erinnerung geru-
fen, sowohl die Lokation als auch die Streuungsmaße. Die Letzteren werden im
nächsten Kapitel genauer analysiert.

Drei Beispiele aus der Praxis für die Anwendung der Fuzzy-Bewertung und
Likert-Skalen sind in den Fragebögen enthalten, ebenso findet man die komplet-
ten Datensätze, die mit solchen Fragebögen verknüpft sind, im Anhang dieser Ar-
beit. Außerdem sind die beiden Simulationsverfahren der Fuzzy-Zahlen, die in
verschiedenen Instanzen dieser Arbeit durchgeführt wurden, erläutert. Nach einer
kleinen Studie, bestehend aus der Analyse der Empfindlichkeit der Fréchet-Varianz
in Bezug auf die Form der Fuzzy-Daten, endet das Kapitel mit der Motivation für
die Notwendigkeit für robuste Maße als Alternative zur Varianz, sowie das Interesse
des Vergleichs der Rating-Skalen aus der Streuungs-Perspektive.

InKapitel 2 werden verschiedene Streuungsmaße erweitert, um mit realwertigen
Daten und fuzzy-wertigen Daten umzugehen. Nach der Prüfung einiger der wichtig-
sten Eigenschaften, wie die Invarianz durch Translation, die absolute Äquivarianz
durch das Produkt der Skalare oder die starke Konsistenz, wird das robuste Verhal-
ten aus theoretischer Sicht und auch durch Simulation eingehend analysiert. Der
Wert des endlichen Stichproben-Bruchpunktes wird für jede Schätzfunktion berech-
net, wobei angenommen wird, dass es keine zwei identischen Beobachtungen in den
Proben gibt. Die erzielten Ergebnisse werden zeigen, dass diese Werte der Bruch-
punkte die gleichen sind wie im reellwertigen Fall.

Die drei Arten von Ausreißern, die in diesem Kapitel beschrieben werden, mussten
speziell für diese Fuzzy-Szenario konzipiert werden, und sie werden ausführlich erk-
lärt. Der empirische Bruchpunkt wird für jeden Schätzer berechnet, wobei die the-
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oretischen Werte bestätigt werden. Der Begriff der Sensitivitätskurven wird vom
reellen auf den fuzzy-wertigen Fall erweitert, und diese werden grafisch dargestellt.

Zum Abschluss befasst sich ein kurzer Abschnitt damit, die M-Schätzer für Streu-
ung zu präsentieren. Ein Algorithmus zur Berechnung wird erläutert, sowie eine
empirische Analyse der Robustheit für zwei bekannte Verlustfunktionen: die Huber
Verlustfunktion und die Tukey bisquare Verlustfunktion.

Schließlich werden die Berechnungen für alle Streuungsschätzer, die in diesem
Kapitel eingeführt wurden, für fuzzy-Antworten von den drei Fragebögen aus Kapitel
1 illustriert.

In Kapitel 3 wird eine Vergleichsstudie der in Kapitel 1 vorgestellten Bewer-
tungsskalen durchgeführt. Das erste Vergleichsinstrument das analysiert werden
soll, ist die Diversität, und wie man sehen wird, ist sie immer höher, unter ganz
allgemein gültigen Bedingungen, für die Fragebögen basierend auf der Fuzzy-Rating
Skala. Wie am Anfang der Arbeit beschrieben, unterstützt dies die Idee, dass diese
Skala es uns ermöglicht, die Subjektivität und Vielfalt der Antworten besser zu
erfassen.

Es wird ein inferentieller Ansatz, der auf einem Bootstrap-Test über die Gleich-
heit von Varianzen/Standardabweichungen für unabhängige Populationen basiert,
auf zwei Fragebogen-basierte Fallstudien vorgestellt und angewendet. Durch Vergle-
ich der für jede Bewertungsskala erhaltenen p-Werte wird bestimmt, ob die gewählte
Skala Einfluss auf das Testergebnis hat.

Zuletzt wird in diesem Kapitel eine beschreibende Analyse der drei Skalen durch-
geführt. Einerseits werden alle Maße, die in Kapitel 2 vorgestellt wurden (M-
Schätzer sollten näher untersucht werden), für jede Bewertungsskala und unter Ver-
wendung der doppelten Antwortfragebogen-basierten Fallstudie und der üblichen nu-
merischen und unscharfen linguistischen Kodierungen von Likert-Daten berechnet,
andererseits werden Fuzzy-Rating-Antworten simuliert und mit Likert Antworten,
sogenannte „Likertisierung” verknüpft, welche mit Fragebögen erklärt und validiert
werden. Danach wird jedes „Likertisierte”-Datum durch eine fuzzy-linguistische
Skala kodiert. Auf diese Weise wird der Wert der verschiedenen Streuungsschätzer
verglichen, unter Berücksichtigung der Antworten aus den drei Skalen. Man sieht,
dass die Ergebnisse, die man mit dem beschreibenden Ansatz auf Grundlage von
Simulationen erhält, die gleichen wie die für die Fallstudien erhaltenen sind und
dass sie auch mit den Schlussfolgerungen für die Standardabweichung in der In-
ferenzanalyse kohärent sind.
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Jedes Kapitel endet mit einem kurzen Abschnitt, um die wichtigsten Schlussfol-
gerungen und Beiträge zusammenzufassen, gefolgt von einer Publikationsliste in der
ich Koautor bin, wo die Ergebnisse vollständig beschrieben werden.

Die Arbeit für diese Dissertation endet mit einigen abschließenden Kommentaren
und Anregungen zu offenen Problemen, im Zusammenhang mit dem darin besproch-
enen Thema.
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Chapter 1

On statistics with fuzzy data and
measuring scale of fuzzy datasets

When one looks for the definition of Statistics in traditional reputed dictionaries,
one usually finds it to be conceived as

• “A branch of mathematics dealing with the collection, analysis, interpretation,
and presentation of masses of numerical data; a collection of quantitative data”
(Merriam-Webster Dictionary [119]).

• “The practice or science of collecting and analysing numerical data in large
quantities, ...” (Oxford English Dictionary [120]).

In this way, it has been commonly assumed that available data from the per-
formance of random experiments can be expressed in a numerical scale. However,
in practice this assumption sometimes fails. Thus, many human ratings (associated
with perceptions/classifications/valuations/judgments/...) in random frameworks
lead to data that cannot be expressed in a numerical scale, because they concern
intrinsically imprecise-valued attributes.

1.1 Standard scales to rate
intrinsically imprecise magnitudes

Aiming to model and handle these imprecise-valued data, some scales have been
considered. Among the standard scales to rate intrinsically imprecise magnitudes,
the best known are probably the Likert-type (or other categorical) and the visual
analogue scales.

1
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Likert scale-based ratings (Likert [73]) allow a rater to choose among a
small number of pre-specified ‘linguistic values’, labeling different degrees of agree-
ment/satisfaction/accomplishment/etc., the one that best represents rater’s score.

As an example of a 5-point Likert scale-based items, see those in Figure 1.1. The
five possible responses label in this example different degrees of agreement.

Figure 1.1: Example of two items designed so that possible responses are based on a 5-point
Likert scale, in a survey made by SurveyLegend

(https://www.surveylegend.com/user-guide/likert-scale/)

Among the pros of using Likert scales one can highlight the following:

− the ease of rating, irrespectively of the framework the rating is carried out;

− there is no need for a special training to use them, since common sense is
generally enough; as a consequence, Likert scale-based ratings can be usually
conducted irrespectively of the age, background, knowledge... of raters;

− the linguistic labels are coherent with the intrinsic imprecision associated with
the rating based on these scales.

Among the cons that have been pointed out in the literature, one can mention
the following:

− the number of possible ‘values’ to choose among is small (i.e., Likert scales are
discrete with a small cardinal); consequently, the variability, adjustment, di-
versity, subjectivity of these ratings cannot be well captured with these scales;
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− the choice of the ‘value’ that best represents rater’s score is often a complex
task because none of them accurately fit such a score;

− to analyze Likert-type data a posterior numerical-encoding of the involved
Likert scale ‘values’ is usually considered; this makes all differences between
consecutive ‘values’ to coincide, which is often unappropriate;

− the transition from a value to another one within the scale is rather abrupt;

− the number of applicable statistical techniques is quite limited and they are
mainly based on the frequencies of different ‘values’ and, maybe, on their
position in accordance with a certain ranking; therefore, relevant statistical
information is often lost.

Visual analogue scale-based ratings (introduced by Freyd [38]) allow a
rater to draw/choose within a given bounded interval (with labeled extremes) the
point that best represents rater’s score. The interval is often considered to be 10cm
(or units, in general) long, and to get responses the distance of the respondent mark
from the left endpoint is the visual analogue scale-based response.

As a usual example of a visual analogue scale, see the one in Figure 1.2 which is
related to the rating of pain.

Figure 1.2: Example of a visual analogue scale-based item
(http://www.rcemlearning.co.uk/references/pain-management-in-adults/)

Visual analogue scales sometimes appear combined with Likert scales, Likert la-
bels being chosen as ‘anchors’ and leading to the so-called graphic rating scale.
This combination is mainly considered to serve as a reference instead of getting a
double (two scales) rating. Alternatively, or simultaneously, visual analogue scales
sometimes appear combined with a (discrete) numerical rating scale, where numbers
in the scale are usually integers, these numbers being chosen as ‘anchors’ to serve
as a frame of references for respondents.

As an example of such a (multiple in this case) combined scale, see the one in
Figure 1.3 which is also related to the rating of pain in connection with Crohn’s
disease.
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Figure 1.3: Example of a graphic/numerical rating scale-based item
(http://cceffect.org/pain-scales-for-crohns-disease/).

On the top and the bottom two graphic rating scales, on the middle a numerical one

Among the pros of using visual analogue scales one can highlight the following:

− the choice is made within a continuum; so, the ability to capture the variability,
subjectivity and diversity which are inherent to these ratings is ensured;

− data drawn from the use of visual analogue scales can be statistically analyzed
through traditional techniques and no relevant information is generally lost.

Among the cons that have been pointed out in the literature, one can mention
the following:

− the choice of the point that best represents rater’s score is usually neither easy
nor natural;

− to require a full accuracy (i.e., to draw/choose a single real number) seems
rather unrealistic in such an intrinsically imprecise context;

− surveys/questionnaries/... involving a visual analogue scale cannot be con-
ducted in any framework, since they require either a paper-and-pencil or a
computerized form to be filled by the rater;

− occasionally, problems with subject’s ability to conceptually understand the
rating method itself have been reported in the literature, so a certain training
could be also required.
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1.2 Fuzzy scales to rate
intrinsically imprecise magnitudes

A rather natural question to be posed in this context is: why not fuzzy scales to rate
intrinsically imprecise magnitudes? In the literature one can find several motivating
and supporting quotations in this respect. Among some recent ones, one can select
the following:

“The fuzzy scales establish a link between strongly defined measurements...
and weakly defined measurements” (see Benoit [6]).

“One should consider a rich and expressive scale in which...
something can be meaningful although we cannot name it” (see Ghneim [42]).

“Paradoxically, one of the principal contributions of fuzzy logic...
is its high power of ‘precisiation’ of what is imprecise” (see Zadeh [140]).

The first quotation supports, in general, the use of fuzzy scales to rate intrinsi-
cally imprecise magnitudes. The second and third quotations are mainly addressed
to what has been coined as fuzzy rating scales, that will be soon explained.

Fuzzy scales can be applied to overcome the limitations of standard scales to rate
intrinsically imprecise magnitudes associated with random experiments, by modeling
such an imprecision in terms of fuzzy numbers so that

− values capture ‘differences in location’,

− values capture ‘differences in imprecision’,

− and they can be mathematically treated.

1.2.1 Fuzzy numbers

Fuzzy numbers (also referred to by some authors as fuzzy intervals) are formalized
as follows:

Definition 1.2.1. A (bounded) fuzzy number is a function Ũ : R → [0, 1] such
that it is upper semi-continuous, quasi-concave, normal (i.e., it takes on the value
1 for at least a real number), and its support (i.e., the set of all real numbers with
nonzero image) is bounded. In this view (often referred to as the vertical definition),
for each x ∈ R, the value Ũ(x) can be interpreted as the ‘degree of compatibility of
x with the property defined by Ũ ’.
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Equivalently, a (bounded) fuzzy number is a mapping Ũ : R→ [0, 1] such that
for all α ∈ [0, 1], the α-level set defined as

Ũα =





{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0

with ‘cl’ denoting the closure of the set, is a nonempty compact interval. This
equivalent view is often known as the horizontal definition.

The space of (bounded) fuzzy numbers will be denoted by F ∗
c (R).

Real numbers can be viewed as special fuzzy numbers, since each real number x
can be identified with the indicator function of the corresponding singleton 1{x}.

In dealing with fuzzy number-valued data, some representations have been con-
sidered in the literature.

Definition 1.2.2. The inf/sup representation of the fuzzy number Ũ ∈ F ∗
c (R)

is the vector-valued function ι
Ũ

= (ιl
Ũ
, ιr
Ũ

) : [0, 1] → {(x, y) ∈ R2 : x ≤ y} where
ιl
Ũ

(α) = inf Ũα, ιrŨ(α) = sup Ũα.

It should be emphasized that a fuzzy number in F ∗
c (R) is uniquely determined

by its inf/sup representation, i.e., by giving its ‘boundaries’. Furthermore, a set
of conditions can be established for the inf/sup representation to characterize a
fuzzy number. The following result states this set of conditions (see, for instance,
Goetschel and Voxman [47] and Ming [83] -Theorem 3.1, pp. 187-188-):

Proposition 1.2.1. Given a fuzzy number Ũ ∈ F ∗
c (R), there exist two functions

l : [0, 1]→ R and r : [0, 1]→ R satisfying that
i) l and r are

− left-continuous on (0, 1],
− right-continuous at 0,
− non-increasing on [0, 1],

ii) −l(1) ≤ r(1),

such that
ι
Ũ

(α) = (−l(α), r(α)) for all α ∈ [0, 1].

Conversely, let l : [0, 1] → R and r : [0, 1] → R be two functions satisfying
Conditions i) and ii). Then, there exists a unique Ũ ∈ F ∗

c (R) such that the vector-
valued function (−l, r) is its inf/sup representation.
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Another representation that has been used in providing an alternative interpre-
tation and expression for the metric by Bertoluzza et al. [7] (see Gil et al. [45] for
the interval-valued case, Trutschnig et al. [129] for a fuzzy general one, and recently
Casals et al. [15] for fuzzy numbers) and in formalizing some statistical developments
with fuzzy number-valued data is the following one:

Definition 1.2.3. The mid/spr representation of the fuzzy number Ũ ∈ F ∗
c (R)

is the vector-valued function η
Ũ

= (ηm
Ũ
, ηs
Ũ

) : [0, 1] → R × [0,∞) such that ηm
Ũ

(α)
= mid Ũα, ηsŨ(α) = spr Ũα, where mid Ũα = (inf Ũα + sup Ũα)/2 = centre of Ũα,
spr Ũα = (sup Ũα − inf Ũα)/2 = radius of Ũα.

A fuzzy number in F ∗
c (R) is uniquely determined by its mid/spr representation,

i.e., by giving indicators of its ‘location’ and ‘shape/imprecision’. One can verify that
ηs
Ũ
is a left-continuous, non-increasing and non-negative function on (0, 1] and right-

continuous at 0, whereas ηm
Ũ

is also left-continuous on (0, 1] and right-continuous
at 0, but nothing can be ensured in general in connection with its monotonicity.
In fact, one cannot establish a set of conditions the mid/spr representation should
fulfill to characterize a fuzzy number.

Alternatively, aiming to extend the mid/spr representation of the interval-valued
case in a way allowing us to establish a characterizing set of conditions, another
representation has been introduced. This representation is based on considering a
different indicator of the ‘center’ (instead of considering the mid function) along
with a different indicator of the ‘shape’ (instead of considering the spr function),
and it is possible to establish necessary conditions to determine a fuzzy number.

As indicator of the ‘center’ of a fuzzy number, the considered one has been that
given by Yager [135] and later extended by De Campos and González [24] (as the
0.5-average index) and by Nasibov [86] (as the weighted averaging based on levels
-see also Nasibov et al. [87]). For any Ũ ∈ F ∗

c (R), the ϕ-weighted averaging based
on levels of Ũ (wablϕ(Ũ)) is defined as the real number in the interior set int(Ũ0)
such that wablϕ(Ũ) =

∫
[0,1] mid Ũα dϕ(α), where ϕ is a weighting measure on the

measurable space ([0, 1],B[0,1]) that can be formalized by means of an absolutely
continuous probability measure with positive mass function on (0, 1). No stochastic
meaning is actually associated with ϕ, but it allows us to weight the ‘degrees of
compatibility’ given by the α-levels.

The wablϕ is one of the three components of the new representation of fuzzy
numbers. As indicators of the ‘shape’ of a fuzzy number, the level-wise ‘deviations’
with respect to the ‘center’ (more concretely, the following functions:
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ldevϕ
Ũ

: [0, 1]→ R, α 7→ ldevϕ
Ũ

(α) = wablϕ(Ũ)− inf Ũα,

rdevϕ
Ũ

: [0, 1]→ R, α 7→ rdevϕ
Ũ

(α) = sup Ũα − wablϕ(Ũ))

have been considered.
On the basis of these three components, we obtain the ϕ-wabl/ldev/rdev repre-

sentation of fuzzy numbers as follows:

Definition 1.2.4. Let ϕ be an absolutely continuous probability measure associated
with the measurable space ([0, 1],B[0,1]) and having positive mass function on (0, 1).
The ϕ-wabl/ldev/rdev representation of the fuzzy number Ũ ∈ F ∗

c (R) is the
vector-valued function υϕ

Ũ
= (υw

Ũ
, υl

Ũ
, υr

Ũ
) : [0, 1] → R3 such that υw

Ũ
is constantly

equal to wablϕ(Ũ), υl
Ũ

(α) = ldevϕ
Ũ

(α) and υr
Ũ

(α) = rdevϕ
Ũ

(α).

For symmetric fuzzy number-valued data, the ϕ-wabl/ldev/rdev representation
coincides with the mid/spr one, irrespective of ϕ. As for the inf/sup representa-
tion, one can state a necessary and sufficient set of conditions characterizing fuzzy
numbers by their ϕ-wabl/ldev/rdev representation (see Sinova et al. [112]). Thus,

Proposition 1.2.2. Given a fuzzy number Ũ ∈ F ∗
c (R), there exist a value m ∈ R

and two functions l∗ : [0, 1]→ R and r∗ : [0, 1]→ R satisfying that
i) l∗ and r∗ are

− left-continuous on (0, 1],
− right-continuous at 0,
− and non-increasing on [0, 1],

ii) −l∗(1) ≤ r∗(1),

and such that for all α ∈ [0, 1],

Ũα = [m− l∗(α),m+ r∗(α)] .

Conversely, let m ∈ R and let l∗ : [0, 1] → R and r∗ : [0, 1] → R be functions
satisfying Conditions i) and ii). Then, there exists a unique Ũ ∈ F ∗

c (R) such that
for all α ∈ [0, 1]

Ũα = [m− l∗(α),m+ r∗(α)] .

Furthermore, if there is an absolutely continuous probability measure ϕ on ([0, 1],B[0,1])
with positive mass function on (0, 1) and such that

iii)
∫

[0,1]
l∗(α) dϕ(α) =

∫

[0,1]
r∗(α) dϕ(α),

then, (m, l∗, r∗) is the ϕ-wabl/ldev/rdev representation of Ũ .
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To illustrate the ideas in this subsection, one can consider a well-known and
frequently used family of fuzzy numbers: the trapezoidal fuzzy numbers. If a, b, c, d
∈ R with a ≤ b ≤ c ≤ d, the trapezoidal fuzzy number Tra(a, b, c, d) is given, in
accordance with the vertical view, by

Tra(a, b, c, d)(x) =





(x− a)/(b− a) if x ∈ [a, b)
1 if x ∈ [b, c]
(d− x)/(d− c) if x ∈ (c, d]
0 otherwise

and, in accordance with the horizontal view, and for each α ∈ [0, 1] by

(Tra(a, b, c, d))α = [a+ α(b− a), d+ α(c− d)].

And the corresponding representations are given for each α ∈ [0, 1] by

ιTra(a,b,c,d)(α) =
(

inf (Tra(a, b, c, d))α , sup (Tra(a, b, c, d))α
)

=
(
(1− α) · a+ α · b, (1− α) · d+ α · c

)
,

ηTra(a,b,c,d)(α) =
(
mid (Tra(a, b, c, d))α , spr (Tra(a, b, c, d))α

)

=
(
(1− α) ·m+ α ·m, (1− α) · s+ α · s

)
,

υϕTra(a,b,c,d)(α) =
(
wablϕ(Tra(a, b, c, d)), ldevϕTra(a,b,c,d)(α), rdevϕTra(a,b,c,d)(α)

)

=
(
(1−ϑα)·m+ϑα ·m, (1−α)·s+α·s+(ϑα−α)·(m−m), (1−α)·s+α·s+(ϑα−α)·(m−m)

)
,

where m = mid (Tra(a, b, c, d))0 = (a+ d)/2, m = mid (Tra(a, b, c, d))1 = (b+ c)/2,
s = spr (Tra(a, b, c, d))0 = (d − a)/2, s = spr (Tra(a, b, c, d))1 = (c − b)/2, and
ϑα =

∫
[0,1] α dϕ(α) ∈ (0, 1).

A wider interesting family of fuzzy numbers, including the one of trapezoidal
fuzzy numbers, is that of the LR-fuzzy numbers (see Dubois and Prade [36]). A fuzzy
number Ũ is said to be an LR-fuzzy number Ũ = LR(a, b, c, d) = (b, c, b−a, d−c)LR
if it is given by

Ũ(x) =





L

(
b− x
b− a

)
if x ∈ [a, b)

1 if x ∈ [b, c]

R
(
x− c
d− c

)
if x ∈ (c, d]

0 otherwise
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where a, b, c, d ∈ R, a ≤ b ≤ c ≤ d, and L,R : [0, 1] → [0, 1] are continuous non-
increasing functions such that L(x) = R(y) = 1 iff x = y = 0 and L(x) = R(y) = 0
iff x = y = 1.

In case L and R are invertible functions one can easily check that

inf
(
LR(a, b, c, d)

)
α

=a+ (b− a)L−1(α), sup
(
LR(a, b, c, d)

)
α

=d− (d− c)R−1(α)

for all α ∈ [0, 1].
Along this work, and apart from trapezoidal, some LR-fuzzy numbers for which

the so-called LU -parameterized representation (see Stefanini et al. [122], Sorini and
Stefanini [118], Stefanini and Bede [121]) can be characterized by means of four real
numbers (namely the extremes of their 0- and 1-level), are to be considered.

In particular, those involving quadratic functions (Π-curves) and functions with
parametric monotonic Hermite-type interpolation, either using (2,2)-rational splines
(LU1A and LU1B) or mixed exponential splines (LU2A and LU2B) (see Figure 1.4).

Figure 1.4: Six types of fuzzy numbers sharing core [20, 25] and support (10, 40)
and differing in shape. On the left, trapezoidal (top) and Π-curve (bottom),
along with four different LU -fuzzy numbers on the middle and the right

More specifically, if Ũ ≡ LU(a, b, c, d) with a = inf Ũ0, b = inf Ũ1, c = sup Ũ1,
d = sup Ũ0, and LU ∈ {Tra,Π, LU1A, LU1B, LU2A, LU2B}, then for each α ∈ [0, 1]

Ũα = [a+ lLU(α)(b− a), c+ rLU(α)(d− c)] ,

where the functions involved in the left and right arms can be seen in detail in
Table 1.1.
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Table 1.1: Expressions for functions lLU and rLU in the horizontal view of LU -fuzzy numbers
with LU ranging on {Tra,Π, LU1A, LU1B , LU2A, LU2B}

LU lLU (α) rLU (α)

Tra α 1− α

Π





√
α/2 if α < 1/2

1−
√

(1− α)/2 otherwise





1−
√
α/2 if α < 1/2

√
(1− α)/2 otherwise

LU1A
α2 + 5α(1− α)
1 + 3.5α(1− α)

(1− α)(1 + 0.9α)

LU1B α 1−
α2 + 5α(1− α)
1 + 3.2α(1− α)

LU2A
α2(3− 2α)− 0.5(1− α)1.55 + 0.5 + 0.05α1.55

1.55
1−

α2(3− 2α)− 5(1− α)11 + 5 + 5α11

11

LU2B
α2(3− 2α)− 0.5(1− α)1.55 + 0.5 + 0.05α1.55

1.55
1−

α2(3− 2α)− 5(1− α)6.05 + 5 + 0.05α6.05

6.05

1.2.2 Fuzzy scales

A fuzzy linguistic variable (Zadeh [139]), or its associated fuzzy linguistic scale
(FLS), is characterized by a 4-tuple (X,T,S,R), where

− X is the intrinsically imprecise variable/attribute to be either measured or
observed,

− T is the set of imprecise ‘values’ of X (usually referred to as terms),
− S is the (fuzzy) semantic rule, i.e., a mapping

S : T→ F ∗
c (R)

where S(t) is the fuzzy number which has been considered to model the im-
precise value t ∈ T.

As an example of an FLS, see the one in Figure 1.5. Actually, S is generally
conceived as a posterior fuzzy number-valued encoding of a Likert scale.

Among the pros of using fuzzy linguistic scales one can highlight the following:

− the ease of the initial rating and no need for a special training, because of often
corresponding to a posterior encoding of Likert-type values, and the encoding
is usually made by trained experts;

− the values in the scale can cope (to some extent) with the intrinsic imprecision
associated with this rating.
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Figure 1.5: Example of a Fuzzy Linguistic Scale taken from
fuzzyTECH’s Linguistic Variable Editors webpage (http://www.fuzzytech.com/)

Among the cons to be pointed out, one could mention the following:

− the number of possible fuzzy values to choose among is small (it is a discrete
scale with small cardinal), and the transition from a value to another within the
scale is somewhat abrupt; so, the variability, adjustment, diversity, subjectivity
of these ratings are to some extent lost;

− the choice of the Likert-type ‘value’ that best represents rater’s score is often
a complex task because none of them accurately fit such a score, and the same
happens with the fuzzy modeling of the chosen value;

− statistical techniques should be developed to analyze fuzzy number-valued
data; in fact, this is at present a rather minor concern, since it is being over-
come along the last years, as will be commented later.

A fuzzy rating scale (FRS), as introduced by Hesketh et al. [58], allows a
rater to draw the fuzzy number that best represents rater’s score. The guideline
for the mechanism to draw such a fuzzy number (trapezoidal fuzzy number) is as
follows:

Step 1. A reference bounded interval/segment is first considered. This is often cho-
sen to be [0, 10] or [0, 100], but the choice of the intervals is not at all a
constraint. The end-points are often labeled in accordance with their mean-
ing referring to the degree of agreement, satisfaction, quality, and so on.

Step 2. The core, or 1-level set, associated with the response is determined. It
corresponds to the interval consisting of the real values within the reference
one which are considered to be as ‘fully compatible’ with the response.
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Step 3. The support, or its closure or 0-level set, associated with the response is
determined. It corresponds to the interval consisting of the real values within
the referential that are considered to be as ‘compatible to some extent’ with
the response, and it should be always included in the reference interval.

Step 4. The two intervals are ‘linearly interpolated’ to get a trapezoidal fuzzy num-
ber.

Among the pros of using fuzzy rating scales one can highlight the following:

− values in the FRS’s can cope (to a full extent) with the intrinsic imprecision
associated with this rating;

− any FRS means a continuum, and the transition from a value to another within
the scale is fully gradual (both in location and precision);

− these scales are much richer and more expressive than any one based on a
(unavoidably finite) natural language or its real/fuzzy-valued encoding (“...
something can be meaningful although we cannot name it”);

− the flexibility of the FRS’s allows raters to properly capture individual differ-
ences, whence the intrinsic variability, diversity and subjectivity are not lost
(“... precisiation of what is imprecise”);

− values in the FRS’s can be mathematically and computationally handled in a
suitable way, since one can state arithmetic and distances



14 Chapter 1. Fuzzy data in Statistics and measurement of scale

� preserving the meaning of fuzzy numbers,
� and allowing us to extend/adapt many concepts and developments from
Statistics with real-valued data.

Among the cons to be pointed out, one could mention the following:

− surveys/questionnaires for which responses are based on an FRS cannot be
conducted in all the frameworks, since they require either a paper-and-pencil
or a computerized form to be filled by the rater;

− raters need either to have an adequate background or to be properly trained;
it should be remarked that, although this is a clear concern, the training does
not need to be highly time-consuming in most of cases, as will be shown in
one of the case studies to be considered later;

− statistical techniques should be developed to analyze fuzzy number-valued
data; in this respect, Hesketh et al. [62] have stated that “... We are yet to
see easily adapted packages that allow for researchers to use the fuzzy concept
and then to apply appropriate statistical and other analyses to these in order
to both test hypotheses and ensure that meaning is captured” ; as it has already
been commented, this is partially a cons.

Regarding the last cons that has been highlighted in connection with the two
described fuzzy scales, it should be pointed out that along the last years a methodol-
ogy is being developed to statistically analyze fuzzy scale-based data (irrespectively
of them being or not trapezoidal), and a package in the software R is additionally
being stated to support its practical implementation. This work aims to study and
discuss new developments related to the analysis of fuzzy data and, more concretely,
related to the scale/dispersion of these data.

1.3 Fuzzy arithmetic and metrics
The key tools for the statistical methodology that is being developed around fuzzy
data are:

• Arithmetic with fuzzy numbers + Metrics between fuzzy numbers;
• Random fuzzy numbers.

Combining arithmetic + metrics constitutes a key tool in this setting; why? To
handle fuzzy data from a mathematical perspective, one can first pose a relevant
question:
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Can fuzzy data be treated as special functional data?

There is not a single answer to the last question, but the two following answers
are compatible:

− Directly, NO. In applying functional arithmetic to handle elements in the space
of (functional-valued) fuzzy numbers, one often moves out of the space and
the fuzzy meaning is generally lost.

− Indirectly, YES. By using an appropriate arithmetic and suitable metrics, fuzzy
numbers can be identified with elements in a convex cone of a Hilbert space of
functions, and the arithmetic and metrics with fuzzy numbers with those in the
Hilbert space of functions (see, for instance, González-Rodríguez et al. [49]).

Implications from the last identification will be commented along the work.

1.3.1 Arithmetic with fuzzy data

When fuzzy numbers are considered to model experimental data, statistics to analyze
them are frequently based on two arithmetical operations, namely the sum and the
product by scalars.

The common way to extend the sum and the product by a scalar from R to
F ∗
c (R) is to use Zadeh’s extension principle [139], which is equivalent to consider

level-wise the usual and more natural interval arithmetic. More concretely,

Definition 1.3.1. Given Ũ , Ṽ ∈ F ∗
c (R), the sum of Ũ and Ṽ is the fuzzy number

Ũ + Ṽ ∈ F ∗
c (R) given by

(Ũ + Ṽ )(t) = sup
y,z∈R : y+z=t

min
{
Ũ(y), Ṽ (z)

}
.

Equivalently, for each α ∈ [0, 1]

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα =
[

inf Ũα + inf Ṽα, sup Ũα + sup Ṽα
]
.

Definition 1.3.2. Given Ũ ∈ F ∗
c (R) and γ ∈ R, the product of Ũ by the scalar

γ is the fuzzy number γ · Ũ ∈ F ∗
c (R) given by

(γ · Ũ)(t) = sup
y∈R : y=γt

Ũ(y) =





Ũ(t/γ) if γ 6= 0

1{0}(t) if γ = 0.
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Equivalently, for each α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα =





[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0

[
γ · sup Ũα, γ · inf Ũα

]
otherwise.

which corresponds to consider level-wise the natural product of a set by a scalar.

It can be easily proved that for fixed invertible functions L and R, the family
of LR-fuzzy numbers is closed under the sum and the product by scalars. More
concretely,

LR(a, b, c, d) + LR(a′, b′, c′, d′) = LR(a+ a′, b+ b′, c+ c′, d+ d′),

γ · LR(a, b, c, d) =





LR(γa, γb, γc, γd) if γ ≥ 0

LR(γd, γc, γb, γa) otherwise.

Remark 1.3.1. It has been above asserted that, in applying the functional arith-
metic to handle elements in the space of fuzzy numbers, one often moves out of the
space and the fuzzy meaning is generally lost. Actually, one can easily check that
the fuzzy arithmetic differs substantially from the functional one (see Figure 1.6 for
the sum and Figure 1.7 for the product by a scalar).

Figure 1.6: The sum of two fuzzy numbers (e.g., those on the left)
is generally different depending on the fuzzy arithmetic (on the right top)

or the functional arithmetic (on the right bottom) being considered
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Figure 1.7: The product of a fuzzy number (on the left) by a scalar (γ = 2)
is generally different depending on the fuzzy arithmetic (on the right top)

or the functional arithmetic (on the right bottom) being considered

Remark 1.3.2. It should be especially highlighted that the space (F ∗
c (R),+, ·) has

not linear but semilinear structure since

Ũ + (−1 · Ũ) 6= 1{0} (neutral element of +).

1.3.2 Metrics between fuzzy data

Due to the nonlinearity that has been pointed out in Remark 1.3.2, one cannot state
a definition for the difference between fuzzy numbers that is always well-defined and
simultaneously preserves the main properties of the difference between real values in
connection with the sum. In fact, there exists a difference notion (Hukuhara’s one)
satisfying the last condition, but it cannot be defined for many interval and fuzzy
number values.

This crucial drawback has been substantially overcome in developing statistics
with fuzzy data by incorporating suitable distances between them. On one hand,
distances will allow to ‘translate’ the equality of fuzzy numbers into the vanishing of
the distance between them, as in the case of real values. On the other hand, appro-
priate distances also allow us via the support function to ‘identify’ fuzzy data with
functional ones and fuzzy arithmetic with functional arithmetic (as will be remarked
later). Furthermore, statistical concepts and methods for real-valued datasets in-
volving metrics (e.g., dispersion measures, mean distance approaches, classification
problems, etc.) could be extended by considering extended metrics.
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Among the L2 metrics between fuzzy numbers, the one introduced by Bertoluzza
et al. [7] (see Montenegro et al. [84] for the generalized version in this work, Gil
et al. [45] to justify its mid/spr expression, and Trutschnig et al. [129] for fuzzy
numbers and higher dimensional fuzzy values), that generalizes the one by Diamond
and Kloeden [30] and, hence, extending Vitale’s [133] one for interval values (in fact
introduced for compact values) is given as follows:

Definition 1.3.3. (Bertoluzza et al. [7]) Let Ũ , Ṽ ∈ F ∗
c (R), and assume θ ∈ (0, 1]

and ϕ = probability measure associated with a continuous distribution with support
in (0, 1). The (ϕ, θ)-distance between Ũ and Ṽ is defined as

Dϕ
θ (Ũ , Ṽ ) =

√∫

[0,1]

(
[mid Ũα −mid Ṽα]2 + θ[spr Ũα − spr Ṽα]2

)
dϕ(α).

In particular, the 2-norm-distance (Diamond and Kloeden [30]) corresponds
to ρ2 = D`

1, with ` being the Lebesgue measure on [0, 1], that is,

ρ2(Ũ , Ṽ ) = D`
1(Ũ , Ṽ ) =

√
1
2

∫

[0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dα.

In connection with ρ2, one can later make use of the fact that

• for LU ∈ {Π, LU1A, LU1B, LU2A, LU2B,Tri,TriS} (where Tri(a, b, c, d) = Tra(a,
(b+ c)/2, (b+ c)/2, d) and TriS(a, b, c, d) = Tra(a, (a+ d)/2, (a+ d)/2, d)), dis-
tances between Tra(a, b, c, d) and LU(a, b, c, d) can be obtained exactly and
have been gathered in Table 1.2;

Table 1.2: Exact expressions for the ρ2 distances between fuzzy numbers Tra(a, b, c, d)
and LU(a, b, c, d) with LU ranging on {Π, LU1A, LU1B , LU2A, LU2B ,Tri,TriS}

LU
[
ρ2(Tra(a, b, c, d), LU(a, b, c, d))

]2

Π 0.00416667 (a− b)2 + 0.00416667 (c− d)2

LU1A 0.03129046 (a− b)2 + 0.0135 (c− d)2

LU1B 0.03724265 (c− d)2

LU2A 0.00171940 (a− b)2 + 0.01325610 (c− d)2

LU2B 0.00171940 (a− b)2 + 0.05307135 (c− d)2

Tri (c− b)2/12

TriS [(b− a+ c− d)2 + (c− b)2]/12
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Table 1.3: Exact expressions for the ρ2 distances between fuzzy numbers LU(a1, b1, c1, d1)
and LU(a2, b2, c2, d2) with LU ranging on {Tra,Π, LU1A, LU1B , LU2A, LU2B}

LU
[
ρ2(LU(a1, b1, c1, d1), LU(a2, b2, c2, d2))

]2

[(a1 − a2)2 + (b1 − b2)2 + (a1 − a2)(b1 − b2)]/6
Tra

+[(c1 − c2)2 + (d1 − d2)2 + (c1 − c2)(d1 − d2)]/6

[7(a1 − a2)2 + 7(b1 − b2)2 + 10(a1 − a2)(b1 − b2)]/48
Π

+[7(c1 − c2)2 + 7(d1 − d2)2 + 10(c1 − c2)(d1 − d2)]/48

0.06622634(a1 − a2)2 + 0.2900244(b1 − b2)2 + 0.14374922(a1 − a2)(b1 − b2)
LU1A

+0.10516667(c1 − c2)2 + 0.25516667(d1 − d2)2 + 0.13966667(c1 − c2)(d1 − d2)

0.16666666(a1 − a2)2 + 0.16666666(b1 − b2)2 + 0.16666666(a1 − a2)(b1 − b2)
LU1B

+0.30881332(c1 − c2)2 + 0.06176266(d1 − d2)2 + 0.12942402(c1 − c2)(d1 − d2)

0.16429256(a1 − a2)2 + 0.19560186(b1 − b2)2 + 0.14010559(a1 − a2)(b1 − b2)
LU2A

+0.13773163(c1 − c2)2 + 0.13773163(d1 − d2)2 + 0.22453675(c1 − c2)(d1 − d2)

0.16429256(a1 − a2)2 + 0.19560186(b1 − b2)2 + 0.14010559(a1 − a2)(b1 − b2)
LU2B

+0.34394341(c1 − c2)2 + 0.05090666(d1 − d2)2 + 0.10514993(c1 − c2)(d1 − d2)

• for LU∈{Tra,Π, LU1A, LU1B, LU2A, LU2B}, distances between LU(a1, b1, c1, d1)
and LU(a2, b2, c2, d2) can be exactly obtained and have been gathered in Ta-
ble 1.3.

It should be pointed out that ϕ has not a stochastic but a simple weighting
meaning. Actually, it weighs the importance of distances at different levels, and a
suitable model for this purpose is to consider beta density functions.

On the other hand, the choice of θ weighs the importance of the squared distance
between the spreads in contrast to that between the midpoints. In particular, the
choice θ = 1 is equivalent to weigh only and uniformly the two squared Euclidean
distances between the extreme points of the level sets, so that

Dϕ
1 (Ũ , Ṽ ) =

√
1
2

∫

[0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dϕ(α),

and the choice θ = 1/3 is equivalent to weight uniformly all the squared Euclidean
distances between the convex linear extreme points of the level sets, so that

Dϕ
1/3(Ũ , Ṽ ) =

√√√√
∫

[0,1]

( ∫

[0,1]

[
Ũ

[t]
α − Ṽ [t]

α

]2
dt

)
dϕ(α)

where Ũ [t]
α = t · sup Ũα + (1− t) · inf Ũα.

The following result summarizes several valuable properties of distances Dϕ
θ .
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Proposition 1.3.1. (González-Rodríguez et al. [49]) Let θ ∈ (0, 1] and let ϕ be an
absolutely continuous probability measure on ([0, 1],B[0,1]) with the mass function
being positive in (0, 1).

Let H2 = {L2-type real-valued functions defined on [0, 1] × {−1, 1} w.r.t. `⊗λ1}
(with λ1(−1) = λ1(1) = 0.5). Then, the L2 mid/spr-based metric satisfies that

i) Dϕ
θ is an L2-type metric on F ∗

c (R).

ii) Dϕ
θ is translational invariant, i.e., Dϕ

θ (Ũ+W̃ , Ṽ +W̃ ) = Dϕ
θ (Ũ , Ṽ ), and ‘rota-

tional’ invariant, where this is understood as Dϕ
θ ((−1)·Ũ , (−1)·Ṽ )=Dϕ

θ (Ũ , Ṽ ).

iii) Dϕ
θ is topologically equivalent to ρϕ2 , where ρϕ2 = Dϕ

1 .

iv) (F ∗
c (R), Dϕ

θ ) is a separable metric space.

v) The support function s : F ∗
c (R) → H2 (with s(Ũ) = s

Ũ
and s

Ũ
(α,−1)

= − inf Ũα, sŨ(α, 1) = sup Ũα) states an isometric embedding of F ∗
c (R) with

the fuzzy arithmetic and Dϕ
θ onto a convex cone of the Hilbert space H2 with

the functional arithmetic and the distance induced by the norm
∥∥∥h− h′

∥∥∥
ϕ

θ
=
√
〈h− h′, h− h′〉ϕθ ,

where the inner product is given by
〈
f, g

〉ϕ
θ

=
∑

u=−1,1

∫

[0,1]
[mid f(α, u) ·mid g(α, u) + spr f(α, u) · spr g(α, u)] dϕ(α)

and

mid f(α, u) = f(α, u)− f(α,−u)
2 , spr f(α, u) = f(α, u) + f(α,−u)

2 .

Remark 1.3.3. An immediate and crucial implication from Proposition 1.3.1.v) is
that any fuzzy number Ũ ∈ F ∗

c (R) can be identified with the corresponding function
s
Ũ
and this identification is accompanied by the correspondences between the usual

arithmetics and L2 metrics. Consequently, data in the setting of fuzzy number-
valued data with the fuzzy arithmetic and the metric Dϕ

θ can be systematically
translated into data in the setting of functional data with the functional arithmetic
and the metric based on the associated norm. In this way, despite the fact that
fuzzy data should not be treated directly as functional data, they can be treated as
functional data by considering the identification via the support function.

Then, we can now assert formally as a relevant implication for statistical pur-
poses that several developments in Functional Data Analysis could be particularized
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to fuzzy number-valued data by using the adequate identifications and correspon-
dences. However, it should be guaranteed that the resulting elements/outputs re-
main in the cone s (F ∗

c (R)). In case either the functional developments become very
complex or the resulting elements/outputs are out of s (F ∗

c (R)), ad hoc techniques
should be developed, as we will show in the next chapters.

The mid/spr-based L2 metric has been shown to be very suitable in the devel-
opment of statistical methodology for experimental fuzzy number-valued data (see,
for instance, the recent reviews by Blanco-Fernández et al. [8, 9, 10, 11] and Gil et
al. [43]) summarizing many of these statistical methods.

Among the L1 metrics between fuzzy numbers, the one introduced by Sinova
et al. [109] (see Sinova et al. [108] for fuzzy numbers and higher dimensional fuzzy
values), and the one extending Diamond and Kloeden [30] and, hence, extending
Vitale’s [133] one for interval values (in fact introduced for compact values), are
given as follows:

Definition 1.3.4. (Sinova et al. [109]) Let Ũ , Ṽ ∈ F ∗
c (R), and assume θ ∈ (0, 1]

and ϕ = probability measure associated with a continuous distribution with support in
(0, 1). The (ϕ, θ)-wabl/ldev/rdev-based L1 metric between Ũ and Ṽ is defined
as

Dϕ
θ (Ũ , Ṽ ) = |wablϕ(Ũ)− wablϕ(Ṽ )|

+θ

2

∫

[0,1]
|ldevϕ

Ũ
(α)− ldevϕ

Ṽ
(α)| dϕ(α) + θ

2

∫

[0,1]
|rdevϕ

Ũ
(α)− rdevϕ

Ṽ
(α)| dϕ(α).

The 1-norm-distance (Diamond and Kloeden [30]) between Ũ and Ṽ is defined
as

ρ1(Ũ , Ṽ ) = 1
2

∫

[0,1]

(∣∣∣inf Ũα − inf Ṽα
∣∣∣+

∣∣∣sup Ũα − sup Ṽα
∣∣∣
)
dα.

If dα is extended to dϕ(α), the metric is denoted by ρϕ1 .

In connection with ρ1, we will later make use of the fact that the distance between
Tra(a1, b1, c1, d1) and Tra(a2, b2, c2, d2) can be exactly obtained and equals

ρ1
(
Tra(a1, b1, c1, d1),Tra(a2, b2, c2, d2)

)
= G(a1 − a2, b1 − b2) +G(c1 − c2, d1 − d2),

where

G(x, y) =





x|x| − y|y|
4(x− y) if x 6= y

|y|
2 otherwise.
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The following result summarizes several valuable properties of distances Dϕ
θ and

ρϕ1 .

Proposition 1.3.2. (Sinova et al. [109], Sinova and López [114]) Let θ ∈ (0, 1] and
let ϕ be an arbitrarily fixed absolutely continuous probability measure on ([0, 1],B[0,1])
with positive mass function on (0, 1). Then,
i) Dϕ

θ and ρϕ1 are L1 metrics on F ∗
c (R), and they are both translational and

rotational invariant.
ii) Dϕ

θ is topologically equivalent to ρϕ1 .
iii) (F ∗

c (R),Dϕ
θ ) and (F ∗

c (R), ρϕ1 ) are separable metric spaces.
iv) For a fixed ϕ, the function υϕ : F ∗

c (R)→ B?1 = {L1-type 3-dimensional vector-
valued functions defined on [0, 1]} satisfies that
− υϕ(Ũ + Ṽ ) = υϕ(Ũ) + υϕ(Ṽ ) for all Ũ , Ṽ ∈ F ∗

c (R),

− υϕ(γ · Ũ) = γ · υϕ(Ũ) for all Ũ ∈ F ∗
c (R) and γ > 0,

− and the υϕ function preserves the semilinearity of F ∗
c (R) and relates the

fuzzy arithmetic to the functional arithmetic in such a way that (F ∗
c (R),

Dϕ
θ ) can be isometrically embedded into a convex cone of the Banach space(
B?1, ‖ · ‖

ϕ?
θ

)
where

∥∥f − g
∥∥ϕ?
θ

=
∫

[0,1]

(
|f1(α)− g1(α)|+ θ

2 · |f2(α)− g2(α)|+ θ

2 · |f3(α)− g3(α)|
)
dϕ(α)

for f = (f1, f2, f3), g = (g1, g2, g3) ∈ B?1.

The function ι : F ∗
c (R) → B1 = {L1-type 2-dimensional vector-valued func-

tions defined on [0, 1]} satisfies that
− ι(Ũ + Ṽ ) = ι(Ũ) + ι(Ṽ ) for all Ũ , Ṽ ∈ F ∗

c (R),

− ι(γ · Ũ) = γ · ι(Ũ) for all Ũ ∈ F ∗
c (R) and γ > 0,

− and the ι function preserves the semilinearity of F ∗
c (R) and relates the

fuzzy arithmetic to the functional arithmetic in such a way that (F ∗
c (R),

ρϕ1 ) can be isometrically embedded into a convex cone of the Banach space(
B1, ‖ · ‖ϕ1

)
with

∥∥∥f − g
∥∥∥
ϕ

1
=
∫

[0,1]

(1
2 |f1(α)− g1(α)|+ 1

2 |f2(α)− g2(α)|
)
dϕ(α)

for f = (f1, f2), g = (g1, g2) ∈ B1.

As we will see later, the L1 metrics have been shown to be valuable in connection
with the ad hoc development of some robust location measures (see Sinova et al. [111,
109]).
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1.4 Random fuzzy numbers
and relevant summary measures

In developing statistics with fuzzy data coming from intrinsically imprecise-valued
attributes, random fuzzy numbers constitute a well-formalized model within the
probabilistic setting for the random mechanisms generating such data. Random
fuzzy numbers, originally coined as (one-dimensional) fuzzy random variables by
Puri and Ralescu [94], integrate randomness (associated with the data generation)
and fuzziness (associated with the data nature).

Definition 1.4.1. (Puri and Ralescu [94]) Given a probability space (Ω,A, P ), an
associated random fuzzy number (for short RFN) is a mapping X : Ω → F ∗

c (R)
such that for all α∈ [0, 1] the interval-valued mapping Xα, such that Xα(ω)=

(
X (ω)

)
α

for all ω ∈ Ω, is a compact random interval (i.e., a Borel-measurable mapping w.r.t.
the topology induced by the Hausdorff metric in the space of the nonempty compact
intervals).

Equivalently, X is an RFN if and only if s(X ) is an H2/B?1-valued random ele-
ment, that is, a Borel mesurable function w.r.t. the Borel σ-field generated by the
topology induced by the metric associated with Dϕ

θ /D
ϕ
θ via s/υϕ.

Remark 1.4.1. The above considered definitions are equivalent to state that

− a mapping X : Ω → F ∗
c (R) is an RFN if and only if for all α ∈ [0, 1] the

real-valued mappings inf Xα and supXα are real-valued random variables;

− a mapping X : Ω → F ∗
c (R) is an RFN if and only if for all α ∈ [0, 1] the

real-valued mappings midXα and sprXα are real-valued random variables.

Remark 1.4.2. Also equivalently, a mapping X : Ω→ F ∗
c (R) is said to be an RFN

if and only if it is a Borel-measurable mapping w.r.t. the Borel σ-field generated
on F ∗

c (R) by the topology induced by several different metrics, among them Dϕ
θ or

Dϕ
θ . This Borel-measurability ensures that one can properly and trivially refer to

the distribution induced by an RFN, the stochastic independence of RFN’s, and so
on, without needing to state expressly these notions.

As it has just been highlighted, one can properly refer to the distribution induced
by an RFN so that ifB is a Borel set belonging to the Borel σ-field in the last remark,

P (X ∈ B) = P
(
{ω ∈ Ω : X (ω) ∈ B}

)
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and, in particular,

P (X = Ũ) = P
(
{ω ∈ Ω : X (ω) = Ũ}

)
,

whatever Ũ ∈ F ∗
c (R) may be. Nevertheless, in contrast to what happens for the

real- and vectorial-valued cases, one can not universally define an extension of the
distribution function to characterize the distribution induced by a random fuzzy
number. This is due to the fact that there is no universally accepted ranking between
fuzzy numbers.

In analyzing the induced distribution of a random fuzzy number, two main types
of summary measures/parameters could be distinguished:

• Central tendency or location measures, which are fuzzy-valued summary indi-
cators. The Aumann-type mean (see Puri and Ralescu [94]) is the best known
and used location measure.

• Measures for the dispersion/variability or scale, which are real-valued summary
indicators. The best known and used dispersion measure is the Fréchet-type
variance, defined in terms of a convenient L2-type metric (see, for instance,
Körner [70], Lubiano et al. [76], Ramos-Guajardo and Lubiano [95], Blanco-
Fernández et al. [10] or Gil et al. [43]).

The Aumann-type mean value of a random fuzzy number extends the mean of
a random variable as well as the Aumann expectation of a random set, and it is
formalized as follows:

Definition 1.4.2. (Puri and Ralescu [94]) Let X be a random fuzzy number as-
sociated with the probability space (Ω,A, P ). The (population) Aumann-type
mean or expected value of X is the fuzzy number Ẽ(X ) ∈ F ∗

c (R), if it ex-
ists (a sufficient condition for such an existence would be that of X being inte-
grably bounded, that is, there exists a real-valued function h ∈ L1(Ω,A, P ) such that
supx∈X0 |x| ≤ h a.s. [P ]), such that for each α ∈ [0, 1]

(
Ẽ(X )

)
α

= Aumann integral of Xα (see [3]),

that is,
(
Ẽ(X )

)
α

= [E(inf Xα), E(supXα)] with E denoting the expected value of a
real-valued random variable. Equivalently, and whenever sX ∈ L1(Ω,A, P ), it is the
fuzzy number Ẽ(X ) ∈ F ∗

c (R) such that s
Ẽ(X ) = E(sX ), with E denoting the Bochner

expectation of a Banach space-valued random element.
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In particular, if x̃n = (X (ω1), . . . ,X (ωn)) = (x̃1, . . . , x̃n) is a sample of observa-
tions from X when measured on a sample of individuals (ω1, . . . , ωn), the (sample)
Aumann-type mean is the fuzzy number x̃n given for all α ∈ [0, 1] by

(
x̃n
)
α

=
( 1
n
· (x̃1 + . . .+ x̃n)

)

α
=
[

1
n

n∑

i=1
inf(x̃i)α,

1
n

n∑

i=1
sup(x̃i)α

]
.

Remark 1.4.3. If X is an LR-valued random fuzzy number for fixed invertible
functions L and R, then Ẽ(X ) = LR

(
E(inf X0), E(inf X1), E(supX1), E(supX0)

)
.

Due to the properties of the support function and the Hilbertian random el-
ements, the Aumann-type mean preserves the main valuable properties from the
real-valued case. In this way (see, for instance, Puri and Ralescu [94], González-
Rodríguez et al. [49]),

Proposition 1.4.1. Ẽ is equivariant under affine transformations on F ∗
c (R), that

is, if γ ∈ R, Ũ ∈ F ∗
c (R) and Ẽ(X ) exists, then

Ẽ(γ · X + Ũ) = γ · Ẽ(X ) + Ũ .

Consequently, if X is a random fuzzy number associated with the probability space
(Ω,A, P ) and the distribution of X is degenerate at a fuzzy number Ũ ∈ F ∗

c (R)
(i.e., X = Ũ a.s. [P ]), then Ẽ(X ) = Ũ .

Proposition 1.4.2. Ẽ is additive, that is, if X and Y are random fuzzy numbers
associated with the same probability space, for which Ẽ(X ) and Ẽ(Y) exist, then

Ẽ(X + Y) = Ẽ(X ) + Ẽ(Y).

Furthermore, the Aumann-type mean is coherent with the usual above-described
fuzzy arithmetic because of the equivalent expression it takes for countable-valued
RFN’s. More concretely,

Proposition 1.4.3. Ẽ is coherent with the usual fuzzy arithmetic, in the sense that
if X is an RFN associated with the probability space (Ω,A, P ) and such that the set
of the RFN values is finite or countable, that is, X (Ω) = {x̃∗1, . . . , x̃∗m, . . .} ⊂ F ∗

c (R),
then

Ẽ(X ) = P ({ω ∈ Ω : X (ω) = x̃∗1}) · x̃∗1 + . . .+ P ({ω ∈ Ω : X (ω) = x̃∗m}) · x̃∗m + . . .
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Remark 1.4.4. Another way to show the coherence of the Aumann-type mean with
the usual fuzzy arithmetic is that of the fulfilment of Strong Laws of Large Numbers
(see, for instance, Colubi et al. [21]), so that the fuzzy arithmetic-based sample
mean for a sample of independent and identically distributed RFN’s converges to
the population Aumann-type mean, as the sample size tends to∞, in the sense most
of the metrics one can consider on F ∗

c (R).

The Aumann-type mean is also supported by Fréchet’s approach [37] w.r.t. Dϕ
θ ,

irrespectively of the choice of θ and ϕ, so that

Proposition 1.4.4. Ẽ(X ) is the ‘Fréchet expectation’ of X w.r.t. Dϕ
θ , that is,

Ẽ(X ) = arg min
Ũ∈F∗c (R)

E
([
Dϕ
θ (X , Ũ)

]2)
,

so that the mean is the fuzzy value leading to the lowest mean squared Dϕ
θ -distance

(or error) w.r.t. the RFN distribution, and this corroborates the fact that it is a
central tendency measure.

In extending the variance of real-valued random variables to RFN’s, Fréchet’s
approach [37] has been considered (see Körner [70], Lubiano et al. [76], González-
Rodríguez et al. [49]). In accordance with this approach, the variance of an RFN can
be interpreted as a measure of the ‘least squares error/distance’ in approximating
the values of the RFN by a (non-random) fuzzy number. When Fréchet’s approach
is applied in Dϕ

θ ’s sense we have

Definition 1.4.3. The (population) Fréchet-type variance is the real number
σ2
X , if it exists (a necessary and sufficient condition for this existence being that of
Ẽ(X ) along with Dϕ

θ (X , Ẽ(X )) ∈ L1(Ω,A, P )), given by

σ2
X = E

([
Dϕ
θ

(
X , Ẽ(X )

)]2)
=
∫

[0,1]
σ2

midXα dϕ(α) + θ σ2
sprXα dϕ(α),

where σ2
X denotes the variance of the real-valued random variable X. Equivalently,

if sX ∈ L2(Ω,A, P ), it is the real number σ2
X such that σ2

X = Var(sX ), with Var
being intended in terms of the metric on H2 associated with Dϕ

θ .
The (population) Fréchet-type standard deviation is the value σX =

√
σ2
X .

In particular, if x̃n = (X (ω1), . . . ,X (ωn)) = (x̃1, . . . , x̃n) is a sample of observa-
tions from X when measured on a sample of individuals (ω1, . . . , ωn), the (sample)
Fréchet-type variance is the real number S2

x̃n given by

S2
x̃n = 1

n

n∑

i=1

[
Dϕ
θ (x̃i, x̃n)

]2
.

The (sample) Fréchet-type standard deviation corresponds to Sx̃n =
√
S2

x̃n
.



Introduction to robustness with RFN’s: some robust location measures 27

Due to the properties of the support function and the Hilbertian random ele-
ments, the Fréchet variance of an RFN satisfies the usual properties for this concept.
In this way (see Körner [70], Lubiano et al. [76], González-Rodríguez et al. [49]),

Proposition 1.4.5. The Fréchet-type variance σ2
X is non-negative, with σ2

X = 0 if,
and only if, X is degenerate at a fuzzy number, that is, there exists Ũ ∈ F ∗

c (R) such
that X = Ũ a.s. [P ].

Proposition 1.4.6. If γ ∈ R, Ũ ∈ F ∗
c (R) and X is an RFN associated with the

probability space (Ω,A, P ) for which the variance exists, then

σ2
γ·X+Ũ = γ2 · σ2

X ,

that is, the Fréchet-type variance is invariant under (fuzzy number-valued) transla-
tions (also referred to as location invariant) and it is squared equivariant under the
product by a scalar (also referred to as squared scale equivariant).

The Fréchet-type variance is not additive in general, but it is under independence
of the involved RFN’s. Thus,

Proposition 1.4.7. If X and Y are independent RFN’s associated with the same
probability space (Ω,A, P ) and for which variances exist, we have that

σ2
X+Y = σ2

X + σ2
Y .

The covariance of two RFN’s has been extended in the literature (see, for in-
stance, González-Rodríguez et al. [49]) on the basis of the inner product 〈·, ·〉ϕθ in
H2 via the corresponding isometric embedding. Notice that the existence of such an
inner product could be only guaranteed for the L2 metrics but not for the L1 ones.
Nevertheless, in the study in this work we are not going to make special use of this
summary measure of the joint distribution of two RFN’s.

1.5 Introduction to robustness with RFN’s:
some robust location measures

In the preceding section it has been shown that the most commonly used summary
measures in dealing with random fuzzy numbers, namely the Aumann-type mean
and the Fréchet-type variance, preserve the main valuable properties of the classical
location and scale parameters they extend. However, they also inherit some of their
drawbacks, especially those in connection with their high sensitivity to the presence
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of ‘outliers’, data changes or asymmetries. This assertion can easily be illustrated
by means of real-life and synthetic examples, as we will later see.

This relevant concern motivates the development of robust location and scale
measures in the setting of random fuzzy numbers. For this purpose, a first natural
attempt is to extend the main developments for robust location and scale mea-
surement in the real-valued case. However, one should be aware of the already
highlighted handicaps associated with the induced distribution of an RFN, namely,
− the lack of a general extension of the distribution function for RFN’s,
− and the lack of general, realistic and well-supported models for these distribu-

tions.

Robust statistics studies with real-valued data often involve either distribution
functions or normal (or more generally symmetric) distributions, and sometimes
asymmetric models, like the exponential. The use of mathematically convenient
parametric models helps to solve the question of what to estimate for the loca-
tion and scale of the distribution of a real-valued random variable when it is not
symmetrically distributed.

Although the notion of symmetry of the induced distribution of an RFN can be
properly formalized (see Sinova et al. [106]), to date the above-mentioned handi-
caps make unfeasible both the extension of some location and scale measures from
the real-valued case, as well as of some tools to evaluate their robustness. In Re-
mark 1.3.3 it has been emphasized that methods for the statistical analysis of fuzzy
data are being developed either as particularization of Functional Data Analysis
techniques or ad hoc.

Recently, several developments have been carried out in connection with the
robust estimation of the location of RFN’s (see, for instance, Sinova et al. [111,
112, 115, 113], Colubi and González-Rodríguez [19] and, especially, Sinova [105]).
In estimating/measuring location in the real-valued case, although many robust
estimators/measures have been suggested in the literature, the median is certainly
the most widely known and considered, and the first approaches in dealing with
fuzzy data have aimed to extend it. Since there is no universally accepted ranking
between fuzzy numbers, the extension cannot be based on that of the distribution
function. Therefore, a different way to proceed should be taking into account: the
median minimizes the average deviation. And such a deviation could be extended
in the fuzzy number-valued case by using L1 metrics. This has been the key idea
underlying the ad hoc approaches that are now recalled.
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Definition 1.5.1. (Sinova et al. [111]) Let X be a random fuzzy number. The
(population) 1-norm median of X is the fuzzy number M̃e(X ) such that for
each α ∈ [0, 1]

(
M̃e(X )

)
α

= [Me(inf Xα),Me(supXα)] ,

where in case Me(inf Xα) or Me(supXα) are non-unique, we will follow the most
usual convention, that is, we will consider the midpoint of the interval of medians.

In particular, if x̃n = (X (ω1), . . . ,X (ωn)) = (x̃1, . . . , x̃n) is a sample of observa-
tions from X when measured on a sample of individuals (ω1, . . . , ωn), the (sample)
1-norm median is the fuzzy number ̂̃Me(x̃n) such that for all α ∈ [0, 1]

inf
(̂̃Me(x̃n)

)
α

= Me {inf(x̃1)α, . . . , inf(x̃n)α} ,

sup
(̂̃Me(x̃n)

)
α

= Me {sup(x̃1)α, . . . , sup(x̃n)α} ,

where in case any of the two involved medians of real-valued data is non-unique, we
will follow the most usual convention, that is, we will consider the midpoint of the
interval of medians.

The notion above is in fact the solution (or one of the possible solutions, in
case the usual convention is not applied to avoid non-uniqueness) of minimizing the
average ρϕ1 -deviation. That is,

Proposition 1.5.1. (Sinova et al. [111]) Let X be a random fuzzy number. Then,

M̃e(X ) = arg min
Ũ∈F∗c (R)

E
(
ρϕ1 (X , Ũ)

)
,

whatever the weighting measure ϕ may be and whenever the corresponding involved
expectation exists.

Remark 1.5.1. Another solution of the last minimization problem, based on a
different convention and Zadeh’s extension principle, has been introduced by Grze-
gorzewski [50]. As it has been observed (Pérez-Fernández and Sinova [91]), the
behaviour of both extended ρϕ1 -medians is much more robust towards contamina-
tion than the Aumann-type mean’s one. With respect to the comparison between
the two alternatives for the median, the 1-norm median behaves a little better than
Grzegorzewski’s proposal in the sense that the sample estimate is closer (in ρϕ1 ’s
sense) to the corresponding population value.

On the other hand,
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Definition 1.5.2. (Sinova et al. [109]) Let X be a random fuzzy number and ϕ be
an absolutely continuous probability measure associated with the measurable space
([0, 1],B[0,1]) and having positive mass function on (0, 1). The (population) ϕ-
wabl/ldev/rdev median of X is the fuzzy number M̃ϕ(X ) such that for each
α ∈ [0, 1]
(
M̃ϕ(X )

)
α

= [Me(wablϕ(X ))−Me(ldevϕX (α)),Me(wablϕ(X )) + Me(rdevϕX (α))] ,

where in case Me(wablϕ(X )), Me(ldevϕX (α)) or Me(rdevϕX (α)) are non-unique, the
most usual convention is considered.

In particular, if x̃n = (X (ω1), . . . ,X (ωn)) = (x̃1, . . . , x̃n) is a sample of observa-
tions from X when measured on a sample of individuals (ω1, . . . , ωn), the (sample)
ϕ-wabl/ldev/rdev median is the fuzzy number ̂̃Mϕ(x̃n) such that for all α ∈ [0, 1]

inf
(̂̃Mϕ(x̃n)

)
α

= Me{wablϕ(x̃1), . . . ,wablϕ(x̃n)}
−Me{ldevϕ

x̃1
(α), . . . , ldevϕ

x̃n
(α)},

sup
(̂̃Mϕ(x̃n)

)
α

= Me{wablϕ(x̃1), . . . ,wablϕ(x̃n)}
+Me{rdevϕ

x̃1
(α), . . . , rdevϕ

x̃n
(α)}.

The notion above is in fact the solution (or one of the possible solutions) of
minimizing the average Dϕ

θ -deviation. That is,

Proposition 1.5.2. (Sinova et al. [109]) Let X be a random fuzzy number and ϕ
be an absolutely continuous probability measure associated with the measurable space
([0, 1],B[0,1]) and having positive mass function on (0, 1). Then,

M̃ϕ(X ) = arg min
Ũ∈F∗c (R)

E
(
Dϕ
θ (X , Ũ)

)
,

whatever θ may be and whenever the corresponding involved expectation exists.

Remark 1.5.2. Sinova and López [114] have recently shown that neither the posi-
tion nor the shape of the sample ϕ-wabl/ldev/rdev median are very influenced by
the chosen measure ϕ, but they are scarcely affected.

The two above-recalled L1-medians preserve the main valuable properties from
the real-valued case. In this way,

Proposition 1.5.3. (Sinova et al. [111, 109]) M̃e and M̃ϕ are equivariant under
affine transformations on F ∗

c (R), that is, if γ ∈ R, Ũ ∈ F ∗
c (R), then

M̃e(γ · X + Ũ) = γ · M̃e(X ) + Ũ , M̃ϕ(γ · X + Ũ) = γ · M̃ϕ(X ) + Ũ .
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Consequently, if X is a random fuzzy number associated with the probability space
(Ω,A, P ) and the distribution of X is degenerate at a fuzzy number Ũ ∈ F ∗

c (R) (i.e.,
X = Ũ a.s. [P ]), then M̃e(X ) = Ũ , M̃ϕ(X ) = Ũ .

As for the real-valued case, under rather mild conditions the sample extended
medians are shown to be a strongly consistent estimator of the corresponding pop-
ulation medians, that is,

Proposition 1.5.4. (Sinova et al. [111, 109]) Let X be a random fuzzy number
associated with a probability space (Ω,A, P ).

Assume that for each α ∈ [0, 1] the real-valued population medians Me
(

inf Xα
)

and Me
(

supXα
)
exist and they are actually unique. If ̂̃Me(X )n denotes the sam-

ple median statistic corresponding to a simple random sample (X1, . . . ,Xn) from
X , and the two sequences of the real-valued sample medians

{
̂Me(inf Xα)n

}
n
and

{
̂Me(supXα)n

}
n
as functions of α over [0, 1] are both uniformly integrable, then

̂̃Me(X )n is a strongly consistent estimator of M̃e(X ) in ρ1-sense (and hence in the
sense of all the topologically equivalent metrics), i.e.

lim
n→∞

ρ1

(
̂̃Me(X )n, M̃e(X )

)
= 0 a.s. [P ].

Actually, the ρϕ1 -convergence also holds.
Assume that ϕ is an absolutely continuous probability measure on ([0, 1],B[0,1])

with positive mass function on (0, 1), and that for each α ∈ [0, 1] the real-valued
population medians Me(wablϕ(X )), Me(ldevϕX (α)) and Me(rdevϕX (α)) exist and they
are actually unique. If ̂̃Mϕ(X )n denotes the sample median corresponding to a simple
random sample (X1, . . . ,Xn) from X , and the two sequences of the real-valued sample
medians

{ ̂Me(ldevϕX (α))n
}
n
and

{ ̂Me(rdevϕX (α))n
}
n
as functions of α over [0, 1] are

both uniformly integrable, then for each θ ∈ (0, 1] the estimator ̂̃Mϕ(X )n is strongly
consistent in Dϕ

θ -sense (and hence in the sense of all the topologically equivalent
metrics), i.e.

lim
n→∞

Dϕ
θ

(
̂̃Mϕ(X )n, M̃ϕ(X )

)
= 0 a.s. [P ].

Regarding robustness, to check it a suitable tool that makes immediate sense in
the fuzzy number-valued setting is that of the finite sample breakdown point (fsbp for
short), which is the minimum proportion of sample data which should be perturbed
to get an arbitrarily large or small location estimator value. It has been proved
that whereas the fsbp of the Aumann-type sample mean is 1/n, the one for the two
extended medians equal

⌊
n+1

2

⌋
/n where b·c denotes the floor function (which is the

highest possible fsbp for location estimators).
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Proposition 1.5.5. (Sinova et al. [111, 109]) The finite sample breakdown point of
the sample 1-norm median from a random fuzzy number X , fsbp

( ̂̃Me(X )n, x̃n, ρ1
)
,

and the finite sample breakdown point of the sample ϕ-wabl/ldev/rdev median from
a random fuzzy number X , fsbp( ̂̃Mϕ(X )n, x̃n,D

ϕ
θ ), equal

fsbp
( ̂̃Me(X )n, x̃n, ρ1

)
= fsbp( ̂̃Mϕ(X )n, x̃n,D

ϕ
θ ) = 1

n
·
⌊
n+ 1

2

⌋
.

In contrast to what happens for the Aumann-type mean, the two preceding
extended medians do not keep the data shape in general. More concretely, if one
considers an LR-valued random fuzzy number for fixed invertible functions L and
R, the 1-norm and ϕ-wabl/ldev/rdev medians are not necessarily LR-valued (see
Sinova [105]).

At this point, one should notice that Sinova et al. [113], by particularizing and
adapting some developments from Functional Data Analysis, have stated (robust)
fuzzy M-estimates of location. These M-estimates include the two preceding medians
as especial cases. Under rather general assumptions, which are not fulfilled by the
1-norm and ϕ-wabl/ldev/rdev medians, M-estimates are given by some weighted
averages of the sample fuzzy data (although weights should be obtained in an ap-
proximate way; in fact it has been suggested to approximate them by standard
iteratively re-weighted least squares algorithms -see Sinova and Terán [116]-). As a
consequence, if one considers an LR-valued random fuzzy number for fixed invertible
functions L and R, the M-estimates fulfilling the above-mentioned assumptions are
LR-valued, what is quite natural and makes several posterior statistical computa-
tions easier. Nevertheless, M-estimates cannot be guaranteed to be scale equivariant
(not even absolute or squared).

Another recent approach (see Sinova et al. [107], Sinova [105], Sinova and Terán
[116], Colubi and González-Rodríguez [19]) is that corresponding to the particu-
larization from Functional Data Analysis of the trimmed means approach. Fuzzy
trimmed means are given by the arithmetic means of some of the available sample
data, so they also preserve the shape of the LR-valued fuzzy data for fixed invertible
functions L and R. Furthermore, trimmed means are scale equivariant.

It has been proved, by means of their finite sample breakdown point, that the
behaviour of these two alternatives is more robust than the one of the Aumann-type
mean and coincides with the one for the 1-norm and ϕ-wabl/ldev/rdev medians. In
the comparative analysis in Sinova [105] and Sinova and Terán [116], it has been
proved that fuzzy M-estimators of location are usually the most robust approach.
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If the trimming proportion is 0.5, fuzzy trimmed mean estimators are as robust
as fuzzy M-estimators of location.

Along this work, we will not make use of the Functional Data Analysis-based
but only of the ad hoc robust location estimates/measures. Of course, the use of
the general M-estimates and trimmed means is left as an open direction.

1.6 Case studies to be analyzed in the work

The following two chapters, that will be motivated at the end of this one, and
Section 1.8 will make use sometimes of three real-life examples. This section is to
be devoted to present these examples in detail. They concern the application of the
fuzzy rating and Likert (and, hence and if desired, the fuzzy linguistic) scales.

The three examples have a common guideline. They correspond to standard
questionnaires in which most of items are traditionally assumed to be responded in
accordance with Likert-type scales (4-point and 5-point ones). The novelty lies in
the fact that items have been adapted to allow a double response type, namely the
original Likert-type response and a fuzzy rating scale-based one. Although they have
been mainly designed aiming to support the convenience of using fuzzy rating scales
in this setting, by comparing statistical conclusions with Likert or fuzzy linguistic
ones, they will also be considered to illustrate the measures/estimates introduced
along the work as well as some results and other conclusions.

Example 1.6.1. (Sinova [105], Gil et al. [44], Lubiano et al. [75], Sinova et al. [113])
The first example is related to the well-known questionnaire TIMSS-PIRLS 2011
which is conducted on the population of Grade 4 students (i.e., nine to ten years
old) and concerns their opinion and feeling on aspects regarding reading, math, and
science. This questionnaire is rather standard and most of the involved questions
have to be answered according to a 4-point Likert scale, responses being disagree
a lot, disagree a little, agree a little, and agree a lot.

To get more expressive responses and informative conclusions, the original ques-
tionnaire form has been adapted to allow a double-type response: the original
Likert and a fuzzy rating scale-based one with reference interval [0, 10] (see Fig-
ure 1.8 for one of the items, and Pages 233 to 237 for the full paper-and-pencil
form, and http://carleos.epv.uniovi.es:8080/ for the -Spanish- computerized form by
Professor Carlos Carleos).
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Figure 1.8: Example of the double response paper-and-pencil (on the left)
and computerized (on the right) form to an item in Example 1.6.1

The questionnaire involving these double response questions has been conducted
in 2014 on a sample of 69 fourth grade students from Colegio San Ignacio (Oviedo-
Asturias, Spain). These students have been distributed in accordance with (their
usual) three groups, so that the teachers have decided that the 24 students in one
of the three classrooms have to fill out the paper-and-pencil format and the 45
students from the other two groups have to complete the computerized version.
To ‘ease’ the relationship between the two scales for these very young respondents,
each numerically encoded Likert response has been superimposed upon the reference
interval of the fuzzy rating scale part, as we can see in Figure 1.8.

The training of the students to let them know about the meaning and purpose
of the case study, as well as the aim of the double response, has been carried out
in up to 15 minutes, and three researchers from the Department of Statistics, OR
and Math Teaching have been in charge of the explanation and conduction of the
survey. At this point, it should be remarked that the students had no idea on the
concept of real-valued functions and they have just learned that of a trapezium.
With the guideline described in Pages 234 and 235, the students have not had
understanding problems, they have catched the philosophy behind and they have
been able to provide us with quite coherent responses in most of the cases. Actually,
for all the questions, the number of ‘no response”s has been very small and smaller
for the fuzzy rating than for the Likert scale. In summary, the training has been
surprisingly much easier and more effective than we had expected.

Datasets associated with responses to this questionnaire can be found in Ta-
bles A.1 to A.4 in the appendices section.
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Example 1.6.2. (De la Rosa de Sáa et al. [27], Sinova et al. [110]) The second
example is related to a typical restaurant customer satisfaction questionnaire which
is usually conducted on the population of people of different ages and often showing
a wide diversity in background, occupation, and so on. This type of questionnaires
frequently involves items concerning quality of food and beverage, quality of service,
and price; the items are assiduously to be answered according to a 5-point Likert
scale where responses are strongly disagree, somewhat disagree, neutral,
somewhat agree, and strongly agree.

Figure 1.9: Excerpt of the questionnaire about the satisfaction
with the quality of restaurants in Example 1.6.2

As for the first example, to get more expressive responses and informative con-
clusions, a standard paper-and-pencil questionnaire form has been adapted to
allow the questions associated with intrinsically imprecise matters a double-type re-
sponse: the above-mentioned 5-point Likert and a fuzzy rating scale-based one with
reference interval [0, 100] (see Figure 1.9 for one of the items, and Pages 243 to 245
for the full form).

A sample of 70 people has been considered to fill this questionnaire. It has been
conducted by students of a Master on Soft Computing and Intelligent Data Analysis
delivered in Mieres (Asturias, Spain) in 2011-2012, and individuals in the sample
have mainly corresponded to colleagues, friends and relatives of these students. The
training of respondents has been certainly variable, mainly due to the fact that the
background of these respondents is quite diverse. Anyway, this training has never
lasted more than 15 minutes.

Datasets associated with responses to this questionnaire can be found in Ta-
bles B.1 to B.4 in the appendices section.

Example 1.6.3. (Colubi et al. [20], González-Rodríguez et al. [49]) By using an on-
line (computerized) application, an experiment has been conducted online in
which people have been asked for their perception of the relative length of different
line segments with respect to a pattern longer one. The population has corre-
sponded to people contacted for this purpose. People have participated online by
providing with their perception of relative length for each of several line segments.
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More concretely, on the center top of the screen the longest (pattern) line seg-
ment has been drawn in magenta. This segment is fixed for all the trials, so that
there is always a reference for the maximum length. At each trial, a grey shorter
line segment is generated and placed below the pattern one, parallel and without
considering a concrete location (i.e., indenting or centering). For each respondent,
line segments are generated at random, although to avoid the variation in the per-
ception of different respondents can mainly be due to the variation in length of
different generated segments, the (27 first) trials for two respondents refer to the
same segments but appearing in different position.

Each of the perceptions can be doubly expressed, namely by choosing a label
from a 5-point Likert-like scale (very small, small, medium, large, and very
large), and by using the fuzzy rating scale with reference interval [0, 100] so that
they can be thought as imprecise percentages (see Figure 1.10 for a screen capture).

Figure 1.10: Example of a double response from the online application in Example 1.6.3

The online application explains the formalization and meaning of the fuzzy rating
values (see Pages 251 and 252).

A sample of 25 respondents (all of them with a university scientific background
and they have needed a minor training, mostly consisting of simply reading the
instructions in Pages 251 and 252) has been contacted for this experiment, and they
have supplied the responses in Tables C.1 to C.7 in the appendices section.

By looking at datasets in the three examples, gathered in Tables in Appendices A,
B and C, it is quite clear that data from the computerized forms and experiments are
frequently more detailed (i.e., they have more decimals) than the paper-and-pencil
ones.
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Remark 1.6.1. It should be emphasized that in Examples 1.6.1 and 1.6.2 the
involved random variables to be observed/measured relate to intrinsically imprecise-
valued magnitudes, and there is no underlying real-valued attribute. However, in
Example 1.6.3 there is an underlying real-valued random variable (the exact relative
length), that has been printed in grey in Tables C.1 to C.7. It has been assumed
that such an exact measurement has not been accessible to the respondent, but the
available information would be only that of respondent’s human perception, which
is also intrinsically imprecise-valued. In the three examples the statistical analysis
is to be referred to either the Likert or the fuzzy data, irrespectively of underlying
(albeit unknown) real-valued data existing or not.

1.7 Generating fuzzy data for simulation studies
Simulation studies are to be considered along this work for two different purposes:

• to provide with a complementary view supporting some properties that can
furthermore be theoretically supported by means of some formal tools,

• to show how some measures and procedures behave, mainly when it is not
possible, feasible or necessary to develop general theoretical properties or con-
clusions.

A crucial thought at this stage is that, as it has already been commented in
Page 28, there are not yet suitable realistic models for the distribution of random
fuzzy numbers. This makes the simulation process a novel endeavor, especially in
simulating outliers in this setting.

In this work, simulations are to be basically related to two simulation procedures.
The first one can be seen as a kind of extension of the normal model, which plays
a key role in robust developments with real-valued data. The second one has been
inspired by real-life datasets in connection with fuzzy rating scale-based experiments.

To generate fuzzy data from an LR-valued random fuzzy number X = LR(inf X0,

inf X1, supX1, supX0), Sinova et al. [111] suggest to use an alternative characteri-
zation, X = LR〈X1, X2, X3, X4〉, where

X1 = midX1 = (inf X1 + supX1)/2, X2 = sprX1 = (supX1 − inf X1)/2,

X3 = lsprX0 = inf X1 − inf X0, X4 = usprX0 = supX0 − supX1,

whence

X = LR〈X1, X2, X3, X4〉 = LR(X1 −X2 −X3, X1 −X2, X1 +X2, X1 +X2 +X4).
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In fact, irrespective of L and R, fuzzy data will be generated by simulating
the four real-valued random variables X1, X2, X3 and X4 so that the R × [0,∞)
×[0,∞)× [0,∞)-valued random vector (X1, X2, X3, X4) will provide us with the 4-
tuples (x1, x2, x3, x4) with x1/x2 = center/radius of the core, and x3/x4 = lower/upper
spread of the fuzzy number. To each generated 4-tuple (x1, x2, x3, x4) we associate
the fuzzy number LR〈x1, x2, x3, x4〉.

Figure 1.11: 4-Tuples to be generated for the simulation procedures

Most of the simulations to be considered will involve trapezoidal fuzzy num-
bers, but they could be similarly done with LR-fuzzy numbers with invertible L
and R. The choice of the trapezoidal shape is justified by both the simplicity in
computations and the conclusions from the discussion presented in the next section.

As we have announced before, the simulation developments have been carried
out in two ways.

According to the FIRST SIMULATION PROCEDURE (1stSP), data have been
generated from random fuzzy numbers with an unbounded reference set and showing
a symmetrical behavior in what concerns the centers of their cores. Moreover, two
different cases have been considered in this 1stSP. More concretely, and once fixed the
L and R functions, data will be generated from a random vector (X1, X2, X3, X4) for
whichX1 is normally distributed in the two cases, X1 ∼ N (0, 1) andX2, X3, X4 ∼ χ2

1

in Case 1, all of these variables being independent, whereas X2, X3, X4 ∼ 1/(X2
1

+ 1)2 + 0.1 · χ2
1 in Case 2 (see Sinova et al. [109], [111]).
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However, although this model is appropriate for several discussions in the work,
real-life examples scarcely support it. For most of the real-life examples one can con-
sider, random fuzzy numbers make use of a bounded referential and the distribution
of X1 is skewed. This motivates the use of an alternative model.

According to the SECOND SIMULATION PROCEDURE (2ndSP), data have
been generated from random fuzzy numbers with a bounded reference set and ab-
stracting and mimicking what we have observed in real-life examples employing the
fuzzy rating scale. More concretely, fuzzy data have been generated so that
− 5% (or, more generally, 100 · ω1%) of the data have been obtained by first

considering a simulation from a simple random sample of size 4 from a beta
β(p, q) distribution, the ordered 4-tuple, and finally computing the values of
the xi. The values of p and q vary in most of cases to cover six quite different
distributions (namely symmetrical weighting central values like p = q = 1,
p = q = 2, symmetrical weighting extreme values like p = q = 0.75, and
three types of asymmetric ones like p = 4 > 2 = q, p = 6 > 1 = q and
p = 6 < q = 10, see Figure 1.12). In most of the comparative studies involving
simulations, the values from the beta distribution are re-scaled and translated
to an interval [l0, u0] different from [0, 1].

− 35% (or, more generally, 100 ·ω2%) of the data have been obtained considering
a simulation of four random variables Xi = (u0 − l0) · Yi + l0 as follows:

Y1 ∼ β(p, q),

Y2 ∼ Uniform
[
0,min{1/10, Y1, 1− Y1}

]
,

Y3 ∼ Uniform
[
0,min{1/5, Y1 − Y2}

]
,

Y4 ∼ Uniform
[
0,min{1/5, 1− Y1 − Y2}

]
.

− 60% (or, more generally, 100 ·ω3%) of the data have been obtained considering
a simulation of four random variables Xi = (u0 − l0) · Yi + l0 as follows:

Y1 ∼ β(p, q),

Y2 ∼





Exp(200) if Y1 ∈ [0.25, 0.75]
Exp(100 + 4Y1) if Y1 < 0.25
Exp(500− 4Y1) otherwise

Y3 ∼




γ(4, 100) if Y1 − Y2 ≥ 0.25
γ(4, 100 + 4Y1) otherwise

Y4 ∼




γ(4, 100) if Y1 + Y2 ≥ 0.25
γ(4, 500− 4Y1) otherwise.
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Figure 1.12: Density functions of different Beta(p, q)
which have been used in the comparative studies

1.8 Analyzing sensitivity of Fréchet’s variance
with respect to the shape of fuzzy data

For practical purposes, and to ease both the drawing and the computing processes,
the fuzzy rating scale has been introduced assuming responses to be modeled by
means of trapezoidal fuzzy numbers. Moreover, Pedrycz [89], Grzegorzewski [51, 52,
53], Grzegorzewski and Pasternak-Winiarska [54], Ban et al. [5], and others, have
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provided with different arguments to employ trapezoidal (in particular, triangular)
fuzzy numbers or approximations preserving ambiguity, expected interval, etc.

It should be highlighted that the assumption of the trapezoidal shape is not
at all mandatory from a formal viewpoint, although computations could become
more cumbersome for some other choices. In this section, we are going to show,
by means of simulations and a real-life case study, that when fuzzy numbers are
modelling imprecise data coming from random experiments and the dispersion of
fuzzy datasets is summarized through their Fréchet-type variances, data shape is
usually not relevant.

The discussion is carried out on the basis of the test about the equality of vari-
ances with fuzzy data developed by Ramos-Guajardo and Lubiano [95]. Both studies
make use of the bootstrapped homoscedasticity test of k independent RFN’s
in Ramos-Guajardo and Lubiano [95], which is now algorithmically summarized. If
X1, . . . ,Xk are independent RFN’s, consider a sample of independent observations
x̃i = (x̃i1, . . . , x̃ini) from Xi, i = 1, . . . , k, the k samples being also independent,
with n = n1 + . . .+nk. Denote x̃i = 1

ni
· (x̃i1 + . . .+ x̃ini) the sample Aumann-type

mean for x̃i, S2
x̃i

= ∑ni
j=1

[
Dϕ
θ (x̃ij, x̃i)

]2
/ni the sample Fréchet-type variance for x̃i,

and S2
x̃

= ∑k
i=1 ni · S2

x̃i
/n.

Then, for fixed arbitrary θ and ϕ, the bootstrapped algorithm to test the null
hypothesis H0 : σ2

X1 = . . . = σ2
Xk proceeds as follows:

Step 1. Compute the value of the statistic

Tn1,...,nk =

k∑

i=1
ni
(
S2
x̃i
− S2

x̃

)2

k∑

i=1

1
ni

ni∑

j=1

([
Dϕ
θ (x̃ij, x̃i)

]2
− S2

x̃i

)2

Step 2. For each i ∈ {1, . . . , k}, obtain a bootstrap sample from
(
x̃i1 ·

√
S2
x̃
/S2

x̃i
, . . . ,

x̃ini ·
√
S2
x̃
/S2

x̃i

)
, x̃∗i = (x̃∗i1, . . . , x̃∗ini), and compute the value of the boot-

strap statistic

T ∗n1,...,nk
=

k∑

i=1
ni
(
S2
x̃∗

i
− S2

x̃∗

)2

k∑

i=1

1
ni

ni∑

j=1

([
Dϕ
θ (x̃∗ij, x̃∗i )

]2
− S2

x̃∗
i

)2

Step 3. Step 2 should be repeated a large number B of times to get a set of estimates,
denoted by {t∗1, . . . , t∗B}.

Step 4. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . , t∗B}
being greater than Tn1,...,nk .
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1.8.1 Simulations-based comparative analysis

The preceding k-sample algorithm is to be particularized to k = 2 aiming to test
whether the population variances of trapezoidal- and LU -valued random fuzzy num-
bers can be considered or not as significantly different, where LU ∈ {Π, LU1A, LU1B,

LU2A, LU2B,Tri,TriS}. The scheme of the simulations-based analysis for an
arbitrary choice of LU ∈ {Π, LU1A, LU1B, LU2A, LU2B,Tri,TriS} is as follows:

S.1. A sample of 4-tuples,
{

(x(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 )
}n
i=1

, is generated by the selected
simulation procedure (either 1stSP or 2ndSP). To each of the 4-tuples we can
associate two samples of size n of fuzzy data,

{
Tra〈x(i)

1 , x
(i)
2 , x

(i)
3 , x

(i)
4 〉
}n
i=1

and
{
LU〈x(i)

1 , x
(i)
2 , x

(i)
3 , x

(i)
4 〉
}n
i=1

. Then, to test the null hypothesis

H0 : σ2
Tra〈X1,X2,X3,X4〉 = σ2

LU〈X1,X2,X3,X4〉

on the basis of the two (treated as independent)1 samples

(Tra〈x(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 〉, . . . ,Tra〈x(n)

1 , x
(n)
2 , x

(n)
3 , x

(n)
4 〉)

(LU〈x(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 〉, . . . , LU〈x

(n)
1 , x

(n)
2 , x

(n)
3 , x

(n)
4 〉),

the value of the statistic Tn,n in the preceding Step 1 is computed.

S.2. For each of the two samples (in this step viewed as the bootstrap populations),
obtain a sample of n independent observations and compute the value of the
bootstrap statistic T ∗n,n in the preceding Step 2.

S.3. Repeat 1000 times S.2 to get a set of statistic values, {t∗1, . . . , t∗1000}.

S.4. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . , t∗1000}
being greater than the value of Tn,n.

Table 1.4 shows the p-values obtained when the above-described analysis is re-
peated 30 times, for θ = 1/3 and ϕ = `, and simulations are performed in accordance
with procedure 1stSP-Case 1. For Case 2 similar conclusions would be achieved.

The obtained p-values indicate that there are no significant differences between
population Fréchet’s variances for

1It should be pointed out that to avoid differences in variances coming from differences in the starting 4-tuples,
the sample of Tra’s and the sample of LU ’s in these simulations share the same sample of 4-tuples. Nevertheless,
they should not be treated as linked since they are actually assumed to come from two independent samples, each
sample being associated with one of the two different shapes. Of course, the bootstrap samples in S.2 do not share
in general the same sample of 4-tuples.
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• most of the significance levels one can consider,
• almost all the generated samples
• and all the seven developed comparisons.

Table 1.4: Simulation (1stSP)-based bootstrapped two-sample test p-values
for the equality of population Fréchet’s variances (θ = 1/3) of trapezoidal vs other LU ’s RFN’s

in 30 simulations of samples of size n = 10 |n = 100

θ = 1/3 (n = 10 |n = 100) Tra vs Π Tra vs LU1A Tra vs LU1B Tra vs LU2A Tra vs LU2B Tra vs Tri Tra vs TriS

Sample 1 0.935 | 0.898 1.000 | 0.680 0.878 | 0.845 0.957 | 0.898 0.880 | 0.800 0.099 | 0.376 0.569 | 0.434
Sample 2 0.960 | 0.832 0.838 | 0.917 0.765 | 0.672 0.954 | 0.872 0.744 | 0.651 0.913 | 0.199 0.715 | 0.347
Sample 3 0.956 | 0.921 0.814 | 0.875 0.836 | 0.768 0.978 | 0.970 0.785 | 0.776 0.682 | 0.204 0.546 | 0.883
Sample 4 0.981 | 0.912 0.901 | 0.933 0.917 | 0.783 0.964 | 0.957 0.898 | 0.759 0.561 | 0.126 0.584 | 0.958
Sample 5 0.908 | 0.823 0.732 | 0.936 0.640 | 0.724 0.866 | 0.886 0.599 | 0.708 0.686 | 0.204 0.489 | 0.580
Sample 6 0.981 | 0.904 0.919 | 0.903 0.857 | 0.867 0.989 | 0.941 0.850 | 0.880 0.510 | 0.125 0.719 | 0.783
Sample 7 0.734 | 0.854 0.585 | 0.968 0.557 | 0.542 0.796 | 0.932 0.605 | 0.493 0.885 | 0.323 0.626 | 0.277
Sample 8 0.901 | 0.893 0.938 | 0.970 0.644 | 0.843 0.904 | 0.913 0.640 | 0.831 0.479 | 0.263 0.363 | 0.926
Sample 9 0.987 | 0.869 0.963 | 1.000 0.949 | 0.608 0.988 | 0.915 0.931 | 0.559 0.965 | 0.246 0.711 | 0.372

Sample 10 0.987 | 0.877 0.900 | 0.855 0.935 | 0.733 0.999 | 0.897 0.942 | 0.726 0.623 | 0.174 0.634 | 0.903
Sample 11 0.713 | 0.900 0.449 | 0.782 0.394 | 0.781 0.677 | 0.935 0.377 | 0.742 0.659 | 0.356 0.188 | 0.535
Sample 12 0.947 | 0.827 0.634 | 0.760 0.995 | 0.740 0.968 | 0.889 0.992 | 0.669 0.656 | 0.342 0.832 | 0.227
Sample 13 0.975 | 0.929 0.710 | 0.963 0.944 | 0.864 0.969 | 0.944 0.949 | 0.849 0.390 | 0.275 0.962 | 0.866
Sample 14 0.962 | 0.860 0.976 | 0.858 0.813 | 0.635 0.963 | 0.913 0.771 | 0.616 0.727 | 0.234 0.580 | 0.470
Sample 15 0.995 | 0.931 0.949 | 0.891 0.931 | 0.827 0.992 | 0.926 0.939 | 0.811 0.507 | 0.236 0.545 | 0.846
Sample 16 0.979 | 0.954 0.946 | 0.913 0.870 | 0.893 0.975 | 0.971 0.820 | 0.893 0.694 | 0.200 0.867 | 0.956
Sample 17 0.954 | 0.894 0.958 | 0.995 0.985 | 0.700 0.977 | 0.930 1.000 | 0.673 0.851 | 0.095 0.902 | 0.697
Sample 18 0.965 | 0.819 0.859 | 0.971 0.992 | 0.580 0.980 | 0.852 0.984 | 0.561 0.630 | 0.348 0.896 | 0.321
Sample 19 0.985 | 0.836 0.798 | 0.710 0.993 | 0.628 0.970 | 0.916 0.973 | 0.600 0.552 | 0.318 0.955 | 0.187
Sample 20 0.955 | 0.912 0.790 | 0.874 0.885 | 0.615 0.974 | 0.891 0.859 | 0.517 0.845 | 0.322 0.672 | 0.418
Sample 21 0.954 | 0.889 0.984 | 0.904 0.885 | 0.659 0.963 | 0.909 0.882 | 0.609 0.719 | 0.246 0.991 | 0.397
Sample 22 0.795 | 0.903 0.538 | 0.907 0.484 | 0.634 0.752 | 0.906 0.509 | 0.591 0.703 | 0.273 0.368 | 0.724
Sample 23 0.968 | 0.916 0.858 | 0.897 0.932 | 0.664 0.945 | 0.896 0.910 | 0.623 0.809 | 0.559 0.705 | 0.259
Sample 24 0.912 | 0.941 0.849 | 0.901 0.904 | 0.872 0.926 | 0.952 0.874 | 0.870 0.853 | 0.214 0.392 | 0.937
Sample 25 0.870 | 0.923 0.697 | 0.936 0.710 | 0.826 0.949 | 0.963 0.730 | 0.789 0.568 | 0.219 0.470 | 0.831
Sample 26 0.935 | 0.921 0.719 | 0.832 0.618 | 0.658 0.887 | 0.943 0.518 | 0.596 0.506 | 0.251 0.608 | 0.841
Sample 27 0.935 | 0.804 0.876 | 0.800 0.850 | 0.693 0.949 | 0.903 0.840 | 0.672 0.712 | 0.409 0.521 | 0.219
Sample 28 0.972 | 0.926 0.922 | 0.917 0.976 | 0.708 0.951 | 0.924 0.963 | 0.603 0.836 | 0.320 0.841 | 0.524
Sample 29 0.938 | 0.871 0.966 | 0.885 0.855 | 0.570 0.992 | 0.898 0.799 | 0.473 0.905 | 0.517 0.562 | 0.374
Sample 30 0.921 | 0.882 0.980 | 0.926 0.761 | 0.696 0.896 | 0.941 0.717 | 0.693 0.896 | 0.327 0.463 | 0.503

When the compared Fréchet’s variances correspond to other values of θ ∈ (0, 1],
conclusions are very close. In fact, for all the considered trials we have only found
occasionally some significant differences between trapezoidal and triangular shapes
(which, actually, share the support but not the core) for n = 100 and θ = 10. It
should be emphasized that this choice for θ is not usual, although it is possible
(i.e., the corresponding Dϕ

θ makes sense as a distance, but it is not equivalent to a
Bertoluzza et al.’s metric, as originally formalized). Because of the weighting role
played by θ in the metric, the greater its value the greater the weight for difference
in shape, what certainly affects the statistical conclusions.

Table 1.5 illustrates these comments by collecting the average (over the corre-
sponding 30 samples) p-values for θ = 1/3, 1 and 10.
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Table 1.5: Simulation (1stSP)-based bootstrapped two-sample test average p-values
for the equality of population Fréchet’s variances (θ = 1/3, θ = 1, θ = 10)

of trapezoidal vs other LU ’s RFN’s over 30 simulations of samples of size n = 10 |n = 100

average p-values Tra vs Π Tra vs LU1A Tra vs LU1B Tra vs LU2A Tra vs LU2B Tra vs Tri Tra vs TriS

θ = 1/3 (n = 10 |n = 100) 0.932 | 0.887 0.835 | 0.889 0.825 | 0.721 0.935 | 0.919 0.809 | 0.688 0.681 | 0.277 0.643 | 0.587

θ = 1 (n = 10 |n = 100) 0.934 | 0.923 0.857 | 0.928 0.829 | 0.802 0.940 | 0.942 0.813 | 0.777 0.508 | 0.108 0.689 | 0.554

θ = 10 (n = 10 |n = 100) 0.950 | 0.955 0.860 | 0.958 0.836 | 0.840 0.954 | 0.966 0.826 | 0.869 0.427 | 0.075 0.467 | 0.095

Table 1.6 shows the p-values obtained when the above-described analysis is re-
peated 30 times, for θ = 1/3 and ϕ = `, and simulations are performed in accordance
with procedure 2ndSP.

Table 1.6: Simulation (2ndSP)-based bootstrapped two-sample test p-values
for the equality of population Fréchet’s variances (θ = 1/3) of trapezoidal vs other LU ’s RFN’s

in 30 simulations of samples of size n = 10 |n = 100

θ = 1/3 (n = 10 |n = 100) Tra vs Π Tra vs LU1A Tra vs LU1B Tra vs LU2A Tra vs LU2B Tra vs Tri Tra vs TriS

Sample 1 0.999 | 0.996 0.983 | 0.946 0.999 | 0.971 0.999 | 0.996 0.992 | 0.954 0.997 | 0.957 0.936 | 0.727
Sample 2 0.997 | 0.990 0.974 | 0.999 0.954 | 0.934 1.000 | 1.000 0.943 | 0.909 0.992 | 0.974 0.893 | 0.686
Sample 3 1.000 | 0.990 0.965 | 0.928 0.992 | 0.962 0.997 | 0.993 0.989 | 0.948 0.999 | 0.984 0.912 | 0.706
Sample 4 0.996 | 0.988 0.985 | 0.905 0.933 | 0.983 0.996 | 0.986 0.922 | 0.962 0.988 | 0.967 0.824 | 0.707
Sample 5 0.998 | 0.981 0.998 | 0.896 0.983 | 0.979 1.000 | 0.987 0.978 | 0.957 0.995 | 0.970 0.923 | 0.678
Sample 6 0.995 | 0.992 0.957 | 0.996 0.975 | 0.927 0.998 | 0.987 0.983 | 0.903 0.997 | 0.970 0.981 | 0.774
Sample 7 0.997 | 0.990 0.937 | 0.960 0.971 | 0.935 0.994 | 0.992 0.979 | 0.895 0.988 | 0.965 0.957 | 0.635
Sample 8 0.998 | 0.994 0.962 | 0.977 0.990 | 0.914 0.997 | 0.998 0.982 | 0.902 0.991 | 0.971 0.991 | 0.650
Sample 9 0.998 | 0.995 0.986 | 0.994 0.987 | 0.939 0.998 | 0.997 0.969 | 0.918 0.987 | 0.978 0.854 | 0.775

Sample 10 0.999 | 0.992 0.958 | 0.985 0.986 | 0.952 0.997 | 0.995 0.988 | 0.951 1.000 | 0.992 0.964 | 0.872
Sample 11 0.998 | 0.985 0.967 | 0.943 0.946 | 0.951 0.998 | 0.993 0.941 | 0.928 0.990 | 0.976 0.896 | 0.721
Sample 12 0.998 | 0.992 0.980 | 0.988 0.992 | 0.947 0.996 | 0.996 0.985 | 0.951 0.985 | 0.980 0.936 | 0.799
Sample 13 0.995 | 0.985 0.994 | 0.976 1.000 | 0.933 0.999 | 0.999 0.995 | 0.920 0.993 | 0.971 0.993 | 0.715
Sample 14 1.000 | 0.991 0.988 | 0.988 0.977 | 0.947 0.997 | 0.997 0.970 | 0.946 0.992 | 0.982 0.897 | 0.805
Sample 15 0.998 | 0.998 0.953 | 0.960 0.952 | 0.974 0.998 | 0.992 0.935 | 0.954 0.993 | 0.981 0.931 | 0.778
Sample 16 0.996 | 0.997 0.980 | 0.950 0.965 | 0.956 0.996 | 0.992 0.944 | 0.948 0.995 | 0.958 0.809 | 0.719
Sample 17 0.998 | 0.988 0.958 | 0.973 0.941 | 0.945 0.999 | 0.998 0.928 | 0.906 0.994 | 0.975 0.899 | 0.737
Sample 18 0.998 | 0.990 0.992 | 0.995 0.968 | 0.924 0.998 | 0.995 0.963 | 0.901 0.999 | 0.971 0.864 | 0.698
Sample 19 0.998 | 0.990 0.944 | 0.982 0.993 | 0.936 0.991 | 0.997 0.999 | 0.916 0.995 | 0.984 0.908 | 0.735
Sample 20 0.999 | 0.992 0.990 | 0.935 0.992 | 0.868 0.999 | 0.997 0.990 | 0.820 0.990 | 0.975 0.951 | 0.713
Sample 21 1.000 | 0.988 0.974 | 0.958 0.944 | 0.968 0.999 | 0.994 0.918 | 0.953 0.998 | 0.947 0.823 | 0.755
Sample 22 1.000 | 0.993 0.997 | 0.962 0.965 | 0.937 0.998 | 0.999 0.958 | 0.902 0.993 | 0.988 0.904 | 0.806
Sample 23 1.000 | 0.988 0.977 | 0.976 0.970 | 0.944 0.996 | 1.000 0.951 | 0.918 0.988 | 0.973 0.933 | 0.773
Sample 24 0.999 | 0.994 0.958 | 0.976 0.985 | 0.967 0.995 | 0.995 0.977 | 0.954 0.989 | 0.969 0.984 | 0.826
Sample 25 1.000 | 0.991 0.998 | 0.994 0.990 | 0.943 1.000 | 0.999 0.990 | 0.918 0.992 | 0.977 0.955 | 0.730
Sample 26 0.999 | 0.985 1.000 | 0.968 0.991 | 0.974 0.997 | 0.998 0.996 | 0.953 0.997 | 0.952 0.984 | 0.758
Sample 27 0.999 | 0.993 0.993 | 0.991 0.998 | 0.924 0.998 | 0.995 0.997 | 0.901 0.998 | 0.988 0.974 | 0.728
Sample 28 0.997 | 0.989 0.994 | 0.931 0.979 | 0.941 1.000 | 0.985 0.983 | 0.918 0.993 | 0.978 0.958 | 0.654
Sample 29 0.999 | 0.996 0.991 | 0.945 0.952 | 0.959 0.997 | 0.986 0.959 | 0.941 0.983 | 0.986 0.856 | 0.700
Sample 30 0.998 | 0.996 0.992 | 0.980 1.000 | 0.969 0.998 | 0.997 1.000 | 0.951 0.987 | 0.978 0.994 | 0.806

The obtained p-values indicate, even more conclusively than for the 1stSP, that
there are no significant differences between population Fréchet’s variances for

• almost all the significance levels one can consider,
• all the generated samples
• and all the seven developed comparisons.
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When the compared Fréchet’s variances correspond to other values of θ ∈ (0, 1],
conclusions are very close. In fact, for all the considered trials we have only found
a significant difference between trapezoidal and triangular symmetric shapes for n
= 100 and θ = 10.

Table 1.7 illustrates these comments by collecting the average (over the corre-
sponding 30 samples) p-values for θ = 1/3, 1 and 10.

Table 1.7: Simulation (2ndSP)-based bootstrapped two-sample test average p-values
for the equality of population Fréchet’s variances (θ = 1/3, θ = 1, θ = 10)

of trapezoidal vs other LU ’s RFN’s over 30 simulations of samples of size n = 10 |n = 100

average p-values Tra vs Π Tra vs LU1A Tra vs LU1B Tra vs LU2A Tra vs LU2B Tra vs Tri Tra vs TriS

θ = 1/3 (n = 10 |n = 100) 0.998 | 0.991 0.978 | 0.965 0.976 | 0.947 0.998 | 0.995 0.970 | 0.927 0.993 | 0.974 0.923 | 0.739

θ = 1 (n = 10 |n = 100) 0.997 | 0.985 0.978 | 0.965 0.976 | 0.969 0.997 | 0.994 0.972 | 0.953 0.979 | 0.920 0.911 | 0.684

θ = 10 (n = 10 |n = 100) 0.982 | 0.923 0.953 | 0.926 0.957 | 0.766 0.986 | 0.933 0.951 | 0.737 0.814 | 0.411 0.747 | 0.280

1.8.2 Case study-based comparative analysis
The analysis in Subsection 1.8.1 is carried out aiming to test the influence of the
shape of fuzzy data on the Fréchet variance. By means of some of the data in
Example 1.6.1, this subsection follows two different comparative approaches. More
concretely, this subsection is first devoted to compare the p-values of two-sample
and k-sample test about the equality of variances for different choices of the shape.

Table 1.8 gathers the p-values of the two-sample test about the equality of vari-
ances on the basis of the fuzzy rating scale responses to Item M.2 in Example 1.6.1
when the two considered populations are ‘boys’ and ‘girls’ (see Pages 238 and 240),
when the 4-tuples are associated not only with trapezoidal fuzzy numbers (as it has
actually been made) but also with other LU ’s. The p-values have been computed
for θ = 1/3, 1 and 10.

Table 1.8: p-Values for the equality of population Fréchet’s variances (θ = 1/3, θ = 1, θ = 10)
of boys’ and girls’ LU ’s responses to Item M.2 in Example 1.6.1,

depending on the considered shape

p-values Tra Π LU1A LU1B LU2A LU2B Tri TriS

θ = 1/3 0.416 0.478 0.539 0.466 0.473 0.456 0.466 0.397

θ = 1 0.414 0.443 0.512 0.452 0.467 0.456 0.450 0.376

θ = 10 0.461 0.461 0.406 0.555 0.447 0.544 0.334 0.263

For the usually selected significance levels (those being lower than 0.25), there are
no significant differences between boys and girls in responding toM.2, irrespectively
of the considered shape of fuzzy data and even of the choice of θ.
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Table 1.9 gathers the p-values of the two-sample test about the equality of vari-
ances on the basis of the fuzzy rating scale responses to Item M.2 in Example 1.6.1
when the two considered populations are ‘paper-and-pencil’ and ‘computerized’ form
(see Pages 238 and 240), when the 4-tuples are associated with several LU -valued
fuzzy numbers. The p-values have been computed for θ = 1/3, 1 and 10.

Table 1.9: p-Values for the equality of population Fréchet’s variances (θ = 1/3, θ = 1, θ = 10)
of ‘paper-and-pencil’ and ‘computerized’ form’s LU ’s responses to Item M.2 in Example 1.6.1,

depending on the considered shape

p-values Tra Π LU1A LU1B LU2A LU2B Tri TriS

θ = 1/3 0.215 0.220 0.239 0.217 0.233 0.198 0.234 0.190

θ = 1 0.149 0.166 0.186 0.165 0.161 0.165 0.184 0.161

θ = 10 0.014 0.017 0.017 0.017 0.009 0.013 0.033 0.030

In this second situation, the effect of the choice of θ ∈ (0, 1] is not very relevant,
but it is for θ >> 1 (a rather rare choice, since it does not seem highly recommended
for a dispersion measure to weigh ‘difference in shape’ more than ‘difference in
location’). Anyway, statistical conclusions scarcely depend on the considered shape
of fuzzy data.

Table 1.10 gathers the p-values of the four-sample test about the equality of
variances on the basis of the fuzzy rating scale responses to Item M.2 in Exam-
ple 1.6.1 when the four considered populations are four groups of students based
on their ‘mark taken in the last examination of math’ (see M4, Page 240) given by
G1 = [0, 6], G2 = (6, 8], G3 = (8, 9] and G4 = (9, 10], according to the usual
range [0, 10] which is considered in Spain. The p-values have been computed for
θ = 1/3, 1 and 10, when the 4-tuples are associated with several LU -valued fuzzy
numbers.

Table 1.10: p-Values for the equality of population Fréchet’s variances (θ = 1/3, θ = 1, θ = 10)
of the four groups, G1 to G4, LU ’s responses to Item M.2 in Example 1.6.1,

depending on the considered shape

p-values Tra Π LU1A LU1B LU2A LU2B Tri TriS

θ = 1/3 0.270 0.255 0.255 0.282 0.263 0.275 0.247 0.218

θ = 1 0.258 0.260 0.274 0.239 0.247 0.268 0.251 0.241

θ = 10 0.157 0.156 0.130 0.177 0.157 0.171 0.201 0.172

Once more, in this third situation statistical conclusions scarcely depend on the
considered shape of fuzzy data.
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A second way to analyze the influence of the shape of fuzzy data by means of
the real-life Example 1.6.1, is to compare by means of the two-sample test about
the equality of variances trapezoidal data vs other LU data in the responses to Item
M.2 for different populations involved in the preceding tables in this subsection.

Table 1.11 collects the corresponding p-values for θ = 1/3.

Table 1.11: p-Values for the equality of population Fréchet’s variances (θ = 1/3)
of trapezoidal vs other LU ’s responses for populations in Tables 1.8, 1.9 and 1.10

p-values Tra vs Π Tra vs LU1A Tra vs LU1B Tra vs LU2A Tra vs LU2B Tra vs Tri Tra vs TriS

Boys 0.998 0.909 0.916 0.994 0.902 0.970 0.897
Girls 1.000 0.974 0.951 0.998 0.940 0.972 0.843

Paper-and-pencil 0.997 0.998 0.964 0.997 0.938 0.994 0.890
Computerized form 0.995 0.902 0.914 0.992 0.901 0.961 0.852

G1 0.991 0.866 0.923 0.980 0.904 0.832 0.820
G2 0.997 0.922 0.927 0.995 0.920 0.978 0.923
G3 1.000 0.979 0.949 0.998 0.949 0.986 0.927
G4 0.996 0.999 0.975 0.995 0.968 0.986 0.917

The conclusions from the last table are similar to those in the simulations studies
following the procedure 2ndSP: there are no significant differences between popula-
tion Fréchet’s variances for almost all the significance levels one can consider and
all the seven developed comparisons.

1.9 Concluding remarks of this chapter

This chapter has presented the ideas motivating the interest of fuzzy scales to deal
with intrinsically imprecise magnitudes as well as the preliminary and supporting
concepts and results corresponding to fuzzy data. In recalling the basic models and
tools to formalize and handle these data in a probabilistic/statistical setting, the
need for robust measures/estimates of location of fuzzy datasets has been reviewed.
Furthermore, simulations-based and case study-based discussions on the sensitivity
of the usual summary dispersion measure (the Fréchet-type variance or the corre-
sponding standard deviation) w.r.t. the shape of fuzzy data have been carried out
to conclude that the shape is not relevant in general.

These preliminaries lead to consider two immediate open directions, that will be
dealt with in next two chapters and are now briefly motivated.



48 Chapter 1. Fuzzy data in Statistics and measurement of scale

1.9.1 Motivating the need for robust measures
alternative to the Fréchet-type variance

As it has already been commented, the Fréchet-type variance, and hence the stan-
dard deviation, of an RFN preserves the main valuable properties of the variance,
respectively the standard deviation, of real-valued random variables, but it also in-
herits its high sensitivity to the presence of outliers, data changes or asymmetries.
Actually, the presence of outliers, data changes, etc., can affect the Fréchet-type
variance even more than the Aumann-type mean.

To empirically corroborate this assertion, one can consider, for instance, the
dataset of 23 FRS-based responses to Item M.2 in Example 1.6.1 for students who
have filled out the paper-and-pencil form (see Figure 1.13), denoted by x̃23.

Figure 1.13: FRS responses to Item M.2
by students who have filled out the paper-and-pencil form

If we consider the metric ρ2, then Sx̃23 = 1.69.

If the fuzzy datum on the left of Figure 1.13 (an evident outlier of the sample)
is removed and the reduced sample is denoted by x̃22, then we get Sx̃22 = 1.29.

This fact motivates the development of a study on the robust measurement/
estimation of scale or dispersion in the setting of random fuzzy numbers. Actually,
this will be the objective of Chapter 2 in this work.
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1.9.2 Motivating the interest of comparing statistical
conclusions for different scales of measurement
from a dispersion perspective

The interest of the fuzzy scales to rate intrinsically imprecise magnitudes has been
argued in Subsection 1.2.2. It is intuitively obvious that the use of fuzzy rating
scales provides with a much richer and diverse information than Likert-type or fuzzy
linguistic ones. This results in more accurate statistical conclusions, sometimes
differing importantly from the conclusions drawn from Likert or fuzzy linguistic.

In previous studies (see Gil et al. [44], Lubiano et al. [78, 75]) we have confirmed
the preceding comments mainly from the location perspective. Nevertheless, differ-
ences can often be clearer from the dispersion perspective. This is mainly due to the
fact that many values or responses matching for the Likert-type or fuzzy linguistic
scales (and hence showing no dispersion) do not match at all for the fuzzy rating
scale (and hence showing a certain dispersion).

To support and illustrate this last assertion, one can consider a combined graph-
ical display of the double response to Item M.2 in Example 1.6.1 for which the
Likert scale-based response chosen by four students has corresponded to disagree
a little, and the fuzzy rating scale-based responses for the same students have
been definitely different (see Figure 1.14).

Figure 1.14: Example of 4 double responses to Item M.2
for which the Likert-type ones coincide while the fuzzy rating scale-type clearly differ
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Of course the sample standard deviation for the four Likert data (or their fuzzy
linguistic counterpart) equals 0, whereas the one for the four FRS-based data

Tra(1.75, 2.5, 3.675, 3.675), Tra(3, 3, 3.45, 4),

Tra(2.5, 3.75, 3.9, 5.45), Tra(3.5, 3.55, 6.25, 7.5),

and considering ρ2 as the involved metric, equals 1.
Chapter 3 in this work aims to enter in more detail a comparative statistical

analysis between the three scales, Likert or numerically encoded Likert, fuzzy lin-
guistic and fuzzy rating, from a dispersion perspective. More concretely, the purpose
is that of corroborating that statistical results often vary with the employed scale
of rating.



Chapter 2

Robust scale measures in dealing
with fuzzy data

In summarizing the distribution of an RFN, two key aspects are usually taken into
account: the measurement of the central tendency or location and the measurement
of the dispersion or scale. Whereas the former constitutes fuzzy-valued summary
indicators, the latter refers to real-valued summary measurements.

In the previous chapter, it has already been introduced the most commonly used
location measure in dealing with fuzzy-valued data: the Aumann-type mean, which
inherits from the real case its high sensitivity to the presence of atypical observations
in the data. Morever, the 1-norm median and ϕ-wabl/ldev/rdev median have also
been recalled as good alternatives to the Aumann-type mean because of their good
robust behaviour.

However, in this work we are focussing on the study of the dispersion or scale
measurement for fuzzy-valued data. The estimators of scale, in addition to sum-
marize and inform about the distribution of a random element, can be used for
many other purposes, like for instance, as auxiliary estimates for location, as ob-
jective functions in regression or multivariate analysis, as a basis to formulate rules
to detect outliers and so on. Therefore, although there is less literature on robust
estimation of scale than on robust estimation of location, scale estimators are very
important in practice.

The Fréchet-type variance (or standard deviation) is the best known and used
dispersion measure, despite the fact that it is a measure highly influenced by the
outliers, as previously illustrated in Subsection 1.9.1. It is for that reason that the
purpose of this chapter consists of looking for other estimators of scale that are

51
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resistant to the presence of extreme/atypical observations among the data, that is,
estimators with a good robust behaviour.

In Section 2.1, several measures of scale to deal with real-valued data are ex-
tended to deal with fuzzy-valued data. Some of them are location-free estimators
whereas others are location-based estimators, that is, there is an estimator of loca-
tion in their expression that needs to be computed first.

Section 2.2 is devoted to the study of some of the main properties of these mea-
sures, such as certain in/equi-variances and the strong consistency. The robustness,
a highly important and valuable property of an estimator which makes it insensitive
to the influence of atypical observations among the data, is proved in Section 2.3 by
means of the finite sample breakdown point. A key novel idea at this stage is that
of outlier in a fuzzy-valued setting; Section 2.4 explains the three types of outliers in
dealing with fuzzy data that will be used along this work. Morover, it shows a sim-
ulation study about the empirical finite sample breakdown point and the sensitivity
curves of the estimators presented in Section 2.1.

An additional approach to estimating scale consists of what are called M-estima-
tors, which are briefly introduced and their empirical robust behaviour is analyzed
in Section 2.5. The three case studies presented in Chapter 1 are used to illustrate
the computation of all the scale estimators in Section 2.6. The chapter ends with
a Section 2.7 containing the summary of the contribution of the chapter as well as
the related publications derived from it.

2.1 Scale measures for fuzzy data
Let X be a random fuzzy number associated with the probability space (Ω,A, P ),
x̃n = (x̃1, . . . , x̃n) a sample of observations from X and D ∈ {ρ1,D

ϕ
θ , D

ϕ
θ } a metric

between fuzzy data (see Subsection 1.3.2). Then, as we have already reminded in
Chapter 1,

Definition 2.1.1. The (population) Fréchet-type Dϕ
θ -Standard Deviation

is the real number Dϕ
θ -SD(X ) (also shortly denoted by σX ), if it exists, given by

Dϕ
θ -SD(X ) =

√
E
([
Dϕ
θ

(
X , Ẽ(X )

)]2)
.

In particular, the (sample) Fréchet-type Dϕ
θ -Standard Deviation is the

real number D̂ϕ
θ -SD(x̃n) (also shortly denoted by Sx̃n) given by

D̂ϕ
θ -SD(x̃n) =

√√√√ 1
n

n∑

i=1

[
Dϕ
θ (x̃i, x̃n)

]2



Scale measures for fuzzy data 53

The first suggested alternative location-based scale measures for RFN’s are those
extending to the fuzzy-valued case the well-known average absolute deviation. Since
in the fuzzy setting several distances extending the Euclidean metric on the space
of real numbers could be considered, it seems often natural for the location-based
scale measures to choose the related metric (i.e., the one for which the average is
minimized by the involved location measure).

Definition 2.1.2. The (population) D-Average Distance Deviation of X
with respect to the location measure Ũ is the real number D-ADD(X , Ũ) given by

D-ADD(X , Ũ) = E
[
D(X , Ũ)

]
.

Specifically, the following D-average distance deviations are analyzed in this
work:

• The (population) ρ2-Average Distance Deviation of X with respect
to the Aumann-type mean Ẽ(X ) is the real number ρ2-ADD(X , Ẽ(X )), if
it exists, given by

ρ2-ADD(X , Ẽ(X )) = E
[
ρ2(X , Ẽ(X ))

]
.

In particular, the (sample) ρ2-Average Distance Deviation of x̃n with
respect to the Aumann-type mean x̃n is the real number ̂ρ2-ADD(x̃n, x̃n)
given by

̂ρ2-ADD(x̃n, x̃n) = 1
n

n∑

i=1
ρ2(x̃i, x̃n).

• The (population) ρ1-Average Distance Deviation of X with respect
to the 1-norm median M̃e(X ) is the real number ρ1-ADD(X , M̃e(X )), if it
exists, given by

ρ1-ADD(X , M̃e(X )) = E
[
ρ1(X , M̃e(X ))

]
= min

Ũ∈F∗c (R)
E
[
ρ1(X , Ũ)

]
.

In particular, the (sample) ρ1-Average Distance Deviation of x̃n with
respect to the 1-norm median ̂̃Me(x̃n) is the real number
̂ρ1-ADD(x̃n,

̂̃Me(x̃n)) given by

̂ρ1-ADD(x̃n,
̂̃Me(x̃n)) = 1

n

n∑

i=1
ρ1

(
x̃i,

̂̃Me(x̃n)
)
.
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• The (population) Dϕ
θ -Average Distance Deviation of X with respect

to the ϕ-wabl/ldev/rdev median M̃ϕ(X ) is the real number
Dϕ
θ -ADD(X , M̃ϕ(X )), if it exists, given by

Dϕ
θ -ADD(X , M̃ϕ(X )) = E

[
Dϕ
θ (X , M̃ϕ(X ))

]
= min

Ũ∈F∗c (R)
E
[
Dϕ
θ (X , Ũ)

]
.

In particular, the (sample) Dϕ
θ -Average Distance Deviation of x̃n with

respect to the ϕ-wabl/ldev/rdev median ̂̃Mϕ(x̃n) is the real number
̂Dϕ
θ -ADD(x̃n,

̂̃Mϕ(x̃n)) given by

̂Dϕ
θ -ADD(x̃n,

̂̃Mϕ(x̃n)) = 1
n

n∑

i=1
Dϕ
θ

(
x̃i,

̂̃Mϕ(x̃n)
)
.

Remark 2.1.1. As it has been pointed out, the ρ1-ADD and the Dϕ
θ -ADD are the

minima of the corresponding average distance. This is not true, in general, for the
ρ2-ADD, since it would not be minimized at the Aumann-type mean value but at
the extended spatial median, that in the fuzzy case would be extremely complex to
determine (in this respect, see Sinova and Van Aelst [117] for the interval-valued
case).

The second suggested alternative location-based scale measures for RFN’s are
those extending to the fuzzy-valued case the well-known median absolute deviation.
In these definitions, the real-valued median is assumed to be intended in accordance
with the usual convention and, whenever the involved location fuzzy measure is not
unique, the commented conventions in Chapter 1 will be considered.

Definition 2.1.3. The (population) D-Median Distance Deviation of X
with respect to the location measure Ũ is the real number D-MDD(X , Ũ) given by

D-MDD(X , Ũ) = Me
[
D(X , Ũ)

]
.

Specifically, the following D-median distance deviations are analyzed in this work:

• The (population) ρ2-Median Distance Deviation of X with respect
to the Aumann-type mean Ẽ(X ) is the real number ρ2-MDD(X , Ẽ(X )),
if it exists, given by

ρ2-MDD(X , Ẽ(X )) = Me
[
ρ2(X , Ẽ(X ))

]
.

In particular, the (sample) ρ2-Median Distance Deviation of x̃n with
respect to the Aumann-type mean x̃n is the real number ̂ρ2-MDD(x̃n, x̃n)
given by

̂ρ2-MDD(x̃n, x̃n) = Me
{
ρ2(x̃i, x̃n) ; i = 1, . . . , n

}
.
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• The (population) ρ1-Median Distance Deviation of X with respect
to the 1-norm median M̃e(X ) is the real number ρ1-MDD(X , M̃e(X )), if
it exists, given by

ρ1-MDD(X , M̃e(X )) = Me
[
ρ1(X , M̃e(X ))

]
.

In particular, the (sample) ρ1-Median Distance Deviation of x̃n with
respect to the 1-norm median ̂̃Me(x̃n) is the real number
̂ρ1-MDD(x̃n,

̂̃Me(x̃n)) given by

̂ρ1-MDD(x̃n,
̂̃Me(x̃n)) = Me

{
ρ1

(
x̃i,

̂̃Me(x̃n)
)

; i = 1, . . . , n
}
.

• The (population) Dϕ
θ -Median Distance Deviation of X with respect

to the ϕ-wabl/ldev/rdev median M̃ϕ(X ) is the real number
Dϕ
θ -MDD(X , M̃ϕ(X )), if it exists, given by

Dϕ
θ -MDD(X , M̃ϕ(X )) = Me

[
Dϕ
θ (X , M̃ϕ(X ))

]
.

In particular, the (sample) Dϕ
θ -Median Distance Deviation of x̃n with

respect to the ϕ-wabl/ldev/rdev median ̂̃Mϕ(x̃n) is the real number
̂Dϕ
θ -MDD(x̃n,

̂̃Mϕ(x̃n)) given by

̂Dϕ
θ -MDD(x̃n,

̂̃Mϕ(x̃n)) = Me
{
Dϕ
θ

(
x̃i,

̂̃Mϕ(x̃n)
)

; i = 1, . . . , n
}
.

Next measures are inspired by the scale estimates for data from real-valued
random variables introduced by Rousseeuw and Croux [99, 100] as alternatives to
the median absolute deviation. They have a simple and explicit formula and they
are location-free estimates of scale, that is, in contrast to the measures in Defini-
tions 2.1.1, 2.1.2 and 2.1.3, it is not necessary to compute a location measure because
these estimates only consider deviations between data values.

Definition 2.1.4. Let X and Y independent and identically distributed random
fuzzy numbers associated with the probability space (Ω,A, P ). The (population)
scale estimate D-S(X ,Y) is the real number given by

D-S(X ,Y) = MeXMeYD(X ,Y).

In particular, the (sample) scale estimate D̂-S(x̃n) is the real number given
by

D̂-S(x̃n) = Mei
{

Mej {D(x̃i, x̃j)}
}
,
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where Me is a low median, that is, the order statistic of rank b(n+ 1)/2c and Me is
a high median, which is the order statistic of rank h := bn/2c+ 1 (this notation will
be used throughout this work). Therefore, for each i we compute the high median of
{D(x̃i, x̃j) : j = 1, . . . , n}. This leads to n non-negative numbers, the low median of
which gives the estimate D̂-S(x̃n).

When we are dealing with fuzzy data, next two scale measures only can be defined
in their sample version, but not in their population version. This is due to the fact
that there is not a distribution function to characterize the distribution induced by
a random fuzzy number, as it has already been highlighted in Page 28. It can be
seen in Rousseeuw and Croux [99, 100] that the population version of the following
estimators involves the class of generalized L-statistics introduced by Serfling [102],
in which the distribution function is involved.

Definition 2.1.5. The (sample) scale estimate D̂-Q(x̃n) is the real number
given by

D̂-Q(x̃n) = {D(x̃i, x̃j) : i < j}(m),

where m :=
(
h
2

)
and h is given as in Definition 2.1.4. That is, it takes the order

statistic of range m of the
(
n
2

)
distances between the fuzzy values.

Definition 2.1.6. The (sample) scale estimate D̂-T(x̃n) is the real number
given by

D̂-T(x̃n) = 1
h

h∑

r=1

{
Mej {D(x̃i, x̃j)} ; i = 1, . . . , n

}
(r)
,

where h is given as in Definition 2.1.4. That is, for each i the estimate calculates the
high median of {D(x̃i, x̃j) : j = 1, . . . , n}, the process leading to n medians. Then,
it computes the average of the h first ordered medians.

Remark 2.1.2. As it has already been mentioned, the calculation of the three
last scale estimates does not require a previous computation of a location measure
because of they only take into account distances between observations. This en-
tails a computational advantage with respect to the scale estimates introduced in
Definitions 2.1.1-2.1.3.

2.2 Formal general properties as scale measures
This section shows that the scale measures introduced in Section 2.1 preserve the
main properties from those in the real-valued case. First, we prove that they actually
extend well-known measures for real-valued random variables.
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Let X : Ω→ F ∗
c (R) be an RFN associated with the probability space (Ω,A, P ),

x̃n = (x̃1, . . . , x̃n) be a sample of observations from X , and D ∈ {ρ1,D
ϕ
θ , D

ϕ
θ } be a

metric between fuzzy data.

Proposition 2.2.1. (Extension from the real-valued case). If there exists a
real-valued random variable X associated with (Ω,A, P ) such that X = 1{X} a.s.
[P ], then the scale measures introduced in the Definitions 2.1.1-2.1.6 coincide with
the corresponding measures for the real-valued case.

Proof. This is immediate taking into account that for notions in Definitions 2.1.1 to
2.1.6,

• the Aumann-type mean and the 1-norm median and the ϕ-wabl/ldev/rdev
median reduce in the real-valued case to the mean and median, respectively,

• and the metrics ρ1, Dϕ
θ and Dϕ

θ are generalizations of the Euclidean distance
in R.

In the following propositions it will be shown that the scale measures introduced
in Definitions 2.1.1-2.1.6 preserve the main properties of the corresponding scale
estimates for real-valued random variables (or even for multidimensional ones -see,
for instance, Kołacz and Grzegorzewski [69]-). More concretely,

Proposition 2.2.2. (Nonnegativeness). The scale measures in Definitions 2.1.1-
2.1.6 are non-negative estimates.

Proof. The result is obvious, by simply taking into account that D is a metric and,
hence, it is non-negative.

Besides, all the measures are equal to zero if the RFN X is degenerate at a fuzzy
number, that is,

Proposition 2.2.3. If the RFN X is degenerate at a fuzzy number (i.e., there exists
a fuzzy number Ũ such that X = Ũ a.s. [P ]), then the scale measures in Definitions
2.1.1-2.1.6 are equal to zero.

Proof. If X = Ũ a.s. [P ], then Dϕ
θ (X , Ẽ(X )) = ρ1(X , M̃e(X )) = Dϕ

θ (X , M̃ϕ(X ))
= D(X , Ũ) = D(Ũ , Ũ) = 0 a.s. [P ], whence all measures in Definitions 2.1.1-2.1.3
vanish.

On the other hand, if X and Y are independent and identically distributed
random fuzzy numbers, then D-S(X ,Y)=MeXMeYD(X ,Y)=MeXMeYD(Ũ , Ũ)=0
a.s. [P ].

Finally, if x̃n = (x̃1, . . . , x̃n) is a sample of observations from X = Ũ a.s. [P ],
then x̃n = (Ũ , (n times). . . , Ũ), and so, D̂-Q(x̃n) = D̂-T(x̃n) = 0.
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As it happens for the real-valued case, the reciprocal implication is only true for
some of the measures. Thus,

Proposition 2.2.4. (Minimality). Dϕ
θ -SD(X ) = 0, or ρ2-ADD(X , Ẽ(X )) = 0,

or ρ1-ADD(X , M̃e(X )) = 0, or Dϕ
θ -ADD(X , M̃ϕ(X )) = 0, holds if, and only if, the

RFN X is degenerate at the involved location measure.

Proof. Indeed, because of the non-negativeness of the distances between fuzzy num-
bers, one can conclude that

Dϕ
θ -SD(X ) = 0 iff Dϕ

θ (X , Ẽ(X )) = 0 a.s. [P ]

iff X = Ẽ(X ) a.s. [P ].

ρ2-ADD(X , Ẽ(X )) = 0 iff ρ2(X , Ẽ(X )) = 0 a.s. [P ]

iff X = Ẽ(X ) a.s. [P ].

ρ1-ADD(X , M̃e(X )) = 0 iff ρ1(X , M̃e(X )) = 0 a.s. [P ]

iff X = M̃e(X ) a.s. [P ].

Dϕ
θ -ADD(X , M̃ϕ(X )) = 0 iff Dϕ

θ (X , M̃ϕ(X )) = 0 a.s. [P ]

iff X = M̃ϕ(X ) a.s. [P ].

Remark 2.2.1. As for the real-valued case, the vanishing of ρ2-MDD(X , Ẽ(X )),
ρ1-MDD(X , M̃e(X )), Dϕ

θ -MDD(X , M̃ϕ(X )), D-S(X ,Y), D̂-Q(x̃n), or D̂-T(x̃n), does
not generally imply that the RFN X is degenerate at a fuzzy number. For in-
stance, if X is a non-degenerate random fuzzy number taking on the triangular
fuzzy values Tra(0, 1, 1, 2), Tra(1, 2, 2, 3) and Tra(2, 3, 3, 4) with probabilities 1/5,
3/5 and 1/5, respectively, then Ẽ(X ) = M̃e(X ) = M̃ϕ(X ) = Tra(1, 2, 2, 3), whence
ρ2-MDD(X , Ẽ(X )) = ρ1-MDD(X , M̃e(X )) = Dϕ

θ -MDD(X , M̃ϕ(X )) = Me{1, 0, 0, 0,
1} = 0, and can straightforwardly be checked that measures D-S(X ,Y), D̂-Q(x̃n)
and D̂-T(x̃n) equal zero. Consequently, the vanishing of these scale estimators does
not necessarily ensure the lack of variability. This is due to the fact that these es-
timates should be viewed as representative summary measures of the dispersion of
sample fuzzy data, instead of measures of variability.

Other valuable properties have also been inherited from their real-valued coun-
terparts, namely,
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Proposition 2.2.5. (Absolute equivariance by the product by scalar and
invariance by translation). The scale measures introduced in Definitions 2.1.1-
2.1.6 satisfy the shift (or location or translation) invariance and scale (absolute)
equivariance conditions. That is, if γ ∈ R, Ũ ∈ F ∗

c (R), X is an RFN for which the
involved scale measures exist, Y is an RFN which is identically distributed as and
independent of X , and x̃n is a sample of observations from X , then,

Dϕ
θ -SD(γ · X + Ũ) = |γ| ·Dϕ

θ -SD(X ),

ρ2-ADD(γ · X + Ũ , Ẽ(γ · X + Ũ)) = |γ| · ρ2-ADD(X , Ẽ(X )),

ρ1-ADD(γ · X + Ũ , M̃e(γ · X + Ũ)) = |γ| · ρ1-ADD(X , M̃e(X )),

Dϕ
θ -ADD(γ · X + Ũ , M̃ϕ(γ · X + Ũ)) = |γ| ·Dϕ

θ -ADD(X , M̃ϕ(X )),

ρ2-MDD(γ · X + Ũ , Ẽ(γ · X + Ũ)) = |γ| · ρ2-MDD(X , Ẽ(X )),

ρ1-MDD(γ · X + Ũ , M̃e(γ · X + Ũ)) = |γ| · ρ1-MDD(X , M̃e(X )),

Dϕ
θ -MDD(γ · X + Ũ , M̃ϕ(γ · X + Ũ)) = |γ| ·Dϕ

θ -MDD(X , M̃ϕ(X )),

D-S(γ · X + Ũ , γ · Y + Ũ) = |γ| ·D-S(X ,Y),

D̂-Q(γ · x̃n + Ũ) = |γ| · D̂-Q(x̃n),

D̂-T(γ · x̃n + Ũ) = |γ| · D̂-T(x̃n).

Proof. Indeed, whatever the metric D ∈ {ρ1,D
ϕ
θ , D

ϕ
θ } and the location measure

C̃(X ) ∈ {Ẽ(X ), M̃e(X ), M̃ϕ(X )} may be, because of the properties of the metrics
and the property of affine equivariance fulfilled by the Aumann-type mean (see
Proposition 1.4.1) and the 1-norm and ϕ-wabl/ldev/rdev medians (see Proposi-
tion 1.5.3) we have that

D
(
γ · X + Ũ , C̃(γ · X + Ũ)

)
= D

(
γ · X + Ũ , γ · C̃(X ) + Ũ

)
= |γ| ·D

(
X , C̃(X )

)
,

and the proof is immediately concluded for the location-based measures Dϕ
θ -SD(X ),

ρ2-ADD(X , Ẽ(X )), ρ1-ADD(X , M̃e(X )), Dϕ
θ -ADD(X , M̃ϕ(X )), ρ2-MDD(X , Ẽ(X )),

ρ1-MDD(X , M̃e(X )) and Dϕ
θ -MDD(X , M̃ϕ(X )).

Regarding the location-free estimators, we have that

D-S(γ · X + Ũ , γ · Y + Ũ) = Me
γ·X+ŨMe

γ·Y+ŨD(γ · X + Ũ , γ · Y + Ũ)

= MeXMeY |γ| ·D(X ,Y) = |γ| ·D-S(X ,Y),

D̂-Q(γ · x̃n + Ũ) =
{
D
(
γ · x̃i + Ũ , γ · x̃j + Ũ

)
: i < j

}
(m)
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= {|γ| ·D(x̃i, x̃j) : i < j}(m) = |γ| · {D(x̃i, x̃j) : i < j}(m) = |γ| · D̂-Q(x̃n),

D̂-T(γ · x̃n + Ũ) = 1
h

h∑

r=1

{
Mej

{
D
(
γ · x̃i + Ũ , γ · x̃j + Ũ

)}
; i = 1, . . . , n

}
(r)

= 1
h

h∑

r=1

{
Mej {|γ| ·D(x̃i, x̃j)} ; i = 1, . . . , n

}
(r)

= |γ| · 1
h

h∑

r=1

{
Mej {D(x̃i, x̃j)} ; i = 1, . . . , n

}
(r)

= |γ| · D̂-T(x̃n).

Remark 2.2.2. It should be pointed out that while the shift invariance would hold
in case of involving as location measures the M-estimates by Sinova et al. [113], the
scale (absolute) equivariance would not necessarily hold. This is due to the fact
that, generally speaking, M-estimates of location are not scale equivariant.

Proposition 2.2.6. (Strong consistency). Let (X1, . . . ,Xn) be a simple random
sample from the RFN X . Let X n denote the sample mean estimator.

i) If Ẽ(X ) and Dϕ
θ -SD(X ) exist, then the statistic D̂ϕ

θ -SD(X1, . . . ,Xn) is a strongly
consistent estimator of Dϕ

θ -SD(X ), that is,

lim
n→∞

D̂ϕ
θ -SD(X1, . . . ,Xn) = Dϕ

θ -SD(X ) a.s. [P ].

ii) If Ẽ(X ) and ρ2-ADD(X , Ẽ(X )) exist, then the statistic ̂ρ2-ADD(X1, . . . ,Xn,
X n) is a strongly consistent estimator of ρ2-ADD(X , Ẽ(X )), that is,

lim
n→∞

̂ρ2-ADD(X1, . . . ,Xn,X n) = ρ2-ADD(X , Ẽ(X )) a.s. [P ].

iii) If for each α ∈ [0, 1] the medians of the real-valued random variables inf Xα
and supXα are unique (without making use of any convention), and the se-
quences of the real-valued sample medians

{
Me{inf(X1)α, . . . , inf(Xn)α}

}
n
and

{
Me{sup(X1)α, . . . , sup(Xn)α}

}
n
as functions of α over [0, 1] are both uni-

formly integrable, then the statistic ̂ρ1-ADD(X1, . . . ,Xn,
̂̃Me(X1, . . . ,Xn)) is a

strongly consistent estimator of ρ1-ADD(X , M̃e(X )), if it exists, that is,

lim
n→∞

̂ρ1-ADD(X1, . . . ,Xn,
̂̃Me(X1, . . . ,Xn)) = ρ1-ADD(X , M̃e(X )) a.s. [P ].

iv) If the population median of the real-valued random variable wablϕ(X ) is unique
(without making use of any convention), and also for each α ∈ [0, 1] the popu-
lation medians of the real-valued random variables ldevϕX (α) and rdevϕX (α) are
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actually unique, and the two sequences of sample medians
{

Me{ldevϕX1(α), . . . ,
ldevϕXn(α)}

}
n
and

{
Me{rdevϕX1(α), . . . , rdevϕXn(α)}

}
n
as functions of α over

[0, 1] are both uniformly integrable, then the statistic ̂Dϕ
θ -ADD(X1, . . . ,Xn,

̂̃Mϕ(X1, . . . ,Xn)) is a strongly consistent estimator of Dϕ
θ -ADD(X , M̃ϕ(X )),

if it exists, that is,

lim
n→∞

̂Dϕ
θ -ADD(X1, . . . ,Xn,

̂̃Mϕ(X1, . . . ,Xn)) = Dϕ
θ -ADD(X , M̃ϕ(X )) a.s. [P ].

v) If Ẽ(X ) and ρ2-MDD(X , Ẽ(X )) exist and the second one is unique (without
making use of any convention), then the statistic ̂ρ2-MDD(X1, . . . ,Xn,X n) is
a strongly consistent estimator of ρ2-MDD(X , Ẽ(X )), that is,

lim
n→∞

̂ρ2-MDD(X1, . . . ,Xn,X n) = ρ2-MDD(X , Ẽ(X )) a.s. [P ].

vi) If for each α ∈ [0, 1] the medians of the real-valued random variables inf Xα and
supXα are unique (without making use of any convention),ρ1-MDD(X , M̃e(X ))
exists and it is unique (without making use of any convention), and the se-
quences of the real-valued sample medians

{
Me{inf(X1)α, . . . , inf(Xn)α}

}
n
and

{
Me{sup(X1)α, . . . , sup(Xn)α}

}
n
as functions of α over [0, 1] are both uni-

formly integrable, then the statistic ̂ρ1-MDD(X1, . . . ,Xn,
̂̃Me(X1, . . . ,Xn)) is a

strongly consistent estimator of ρ1-MDD(X , M̃e(X )), that is,

lim
n→∞

̂ρ1-MDD(X1, . . . ,Xn,
̂̃Me(X1, . . . ,Xn)) = ρ1-MDD(X , M̃e(X )) a.s. [P ].

vii) If the population median of the real-valued random variable wablϕ(X ) is unique
(without using any convention), and also for each α ∈ [0, 1] the population me-
dians of the real-valued random variables ldevϕX (α) and rdevϕX (α) are actually
unique, Dϕ

θ -MDD(X , M̃ϕ(X )) exists and it is unique (without making use of
any convention), and the two sequences of sample medians

{
Me{ldevϕX1(α), . . . ,

ldevϕXn(α)}
}
n
and

{
Me{rdevϕX1(α), . . . , rdevϕXn(α)}

}
n
are both uniformly inte-

grable when viewed as functions of α over [0, 1], then the statistic ̂Dϕ
θ -MDD(X1,

. . . ,Xn,
̂̃Mϕ(X1, . . . ,Xn)) is a strongly consistent estimator of Dϕ

θ -MDD(X ,
M̃ϕ(X )), that is,

lim
n→∞

̂Dϕ
θ -MDD(X1, . . . ,Xn,

̂̃Mϕ(X1, . . . ,Xn)) = Dϕ
θ -MDD(X , M̃ϕ(X )) a.s. [P ].

viii) Let X and Y independent and identically distributed random fuzzy numbers. If
for any value of X the median MeY(D(X ,Y)) and the median MeX of the real-
valued random variable MeY(D(X ,Y)) exist and are actually unique (without
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making use of any convention), then the statistic D̂-S(X1, . . . ,Xn) is a strongly
consistent estimator of D-S(X ,Y), that is,

lim
n→∞

D̂-S(X1, . . . ,Xn) = D-S(X ,Y) a.s. [P ].

Proof.

i) On the basis of the triangle inequality for Dϕ
θ , we have that for any i ∈ {1,

. . . , n}
Dϕ
θ (Xi,X n) ≤ Dϕ

θ (Xi, Ẽ(X )) +Dϕ
θ (Ẽ(X ),X n),

Dϕ
θ (Xi, Ẽ(X )) ≤ Dϕ

θ (Xi,X n) +Dϕ
θ (Ẽ(X ),X n)

and
Dϕ
θ (Ẽ(X ),X n) ≤ Dϕ

θ (Xi, Ẽ(X )) +Dϕ
θ (Xi,X n).

Therefore, ∣∣∣Dϕ
θ (Xi, Ẽ(X ))−Dϕ

θ (Ẽ(X ),X n)
∣∣∣ ≤ Dϕ

θ (Xi,X n)

≤ Dϕ
θ (Xi, Ẽ(X )) +Dϕ

θ (Ẽ(X ),X n)

and, hence, by taking squares on the three members of the inequality and
averaging later over i we have that

1
n

n∑

i=1

[
Dϕ
θ (Xi, Ẽ(X ))

]2
+
[
Dϕ
θ (Ẽ(X ),X n)

]2
−Dϕ

θ (Ẽ(X ),X n) 2
n

n∑

i=1
Dϕ
θ (Xi, Ẽ(X ))

≤
[
D̂ϕ
θ -SD(X1, . . . ,Xn)

]2
≤ 1
n

n∑

i=1

[
Dϕ
θ (Xi, Ẽ(X ))

]2
+
[
Dϕ
θ (Ẽ(X ),X n)

]2

+Dϕ
θ (Ẽ(X ),X n) 2

n

n∑

i=1
Dϕ
θ (Xi, Ẽ(X ))

whence, by applying the Strong Law of Large Numbers for the real-valued
random variables Dϕ

θ (X , Ẽ(X )) and
[
Dϕ
θ (X , Ẽ(X ))

]2
and the strong consis-

tency of X n in Dϕ
θ -sense (as a consequence from Colubi et al. [21], in which

an SLLN for random fuzzy sets has been obtained for the stronger metric of
the supremum between fuzzy sets), we have that

lim
n→∞

[
D̂ϕ
θ -SD(X1, . . . ,Xn)

]2
= [Dϕ

θ -SD(X )]2 a.s. [P ],

and therefore

lim
n→∞

D̂ϕ
θ -SD(X1, . . . ,Xn) = Dϕ

θ -SD(X ) a.s. [P ].
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ii) On the basis of the triangle inequality for ρ2, we have that for any i ∈ {1,
. . . , n}

ρ2(Xi,X n) ≤ ρ2(Xi, Ẽ(X )) + ρ2(Ẽ(X ),X n)

and
ρ2(Xi, Ẽ(X )) ≤ ρ2(Xi,X n) + ρ2(Ẽ(X ),X n).

Therefore,

ρ2(Xi, Ẽ(X ))− ρ2(Ẽ(X ),X n) ≤ ρ2(Xi,X n) ≤ ρ2(Xi, Ẽ(X )) + ρ2(Ẽ(X ),X n),

−ρ2(Ẽ(X ),X n) ≤ ρ2(Xi,X n)− ρ2(Xi, Ẽ(X )) ≤ ρ2(Ẽ(X ),X n)

and ∣∣∣ρ2(Xi,X n)− ρ2(Xi, Ẽ(X ))
∣∣∣ ≤ ρ2(Ẽ(X ),X n)

and, hence, by averaging over i we have that
∣∣∣∣∣
̂ρ2-ADD(X1, . . . ,Xn,X n)− 1

n

n∑

i=1
ρ2(Xi, Ẽ(X ))

∣∣∣∣∣ ≤ ρ2(Ẽ(X ),X n),

whence by applying the Strong Law of Large Numbers for the real-valued
random variable ρ2(X , Ẽ(X )) (that can trivially be drawn from Klement et
al. [68] and Diamond and Kloeden [30]) and the strong consistency of X n in
ρ2-sense we have that

∣∣∣∣ lim
n→∞

̂ρ2-ADD(X1, . . . ,Xn,X n)− ρ2-ADD(X , Ẽ(X ))
∣∣∣∣ = 0 a.s. [P ],

what implies that

lim
n→∞

̂ρ2-ADD(X1, . . . ,Xn,X n) = ρ2-ADD(X , Ẽ(X )) a.s. [P ].

iii) The proof is analogous to that for ii) by applying the triangle inequality for
the metric ρ1, the Strong Law of Large Numbers for the real-valued random
variable ρ1(X , M̃e(X )) and the strong consistency of the fuzzy-valued sample
1-norm median in ρ1-sense (see Sinova et al. [111]).

iv) The proof is analogous to that for ii) by applying the triangle inequality for
the metric Dϕ

θ , the Strong Law of Large Numbers for the real-valued random
variable Dϕ

θ (X , M̃ϕ(X )) and the strong consistency of the fuzzy-valued sample
ϕ-wabl/ldev/rdev median in Dϕ

θ -sense (see Sinova et al. [109]).
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v) On the basis of the triangle inequality for ρ2, we have that for any i ∈ {1,
. . . , n}

ρ2(Xi,X n) ≤ ρ2(Xi, Ẽ(X )) + ρ2(Ẽ(X ),X n)

and
ρ2(Xi, Ẽ(X )) ≤ ρ2(Xi,X n) + ρ2(Ẽ(X ),X n).

Therefore,

ρ2(Xi, Ẽ(X ))− ρ2(Ẽ(X ),X n) ≤ ρ2(Xi,X n) ≤ ρ2(Xi, Ẽ(X )) + ρ2(Ẽ(X ),X n)

and hence,

Me
{
ρ2(X1, Ẽ(X )), . . . , ρ2(Xn, Ẽ(X ))

}
− ρ2(Ẽ(X ),X n)

≤ ̂ρ2-MDD(X1, . . . ,Xn,X n)

≤ Me
{
ρ2(X1, Ẽ(X )), . . . , ρ2(Xn, Ẽ(X ))

}
+ ρ2(Ẽ(X ),X n)

whence, by applying the strong consistency of X n in ρ2-sense and the strong
consistency of the sample median from the real-valued random variable
ρ2(X , Ẽ(X )), we have that

lim
n→∞

̂ρ2-MDD(X1, . . . ,Xn,X n) = ρ2-MDD(X , Ẽ(X )) a.s. [P ].

vi) The proof is analogous to that for v) by applying the triangle inequality for the
metric ρ1, the strong consistency of the fuzzy-valued sample 1-norm median
in ρ1-sense (see Sinova et al. [111]) and the strong consistency under the
assumed conditions of the sample median from the real-valued random variable
ρ1(X , M̃e(X )).

vii) The proof is analogous to that for v) by applying the triangle inequality for the
metric Dϕ

θ , the strong consistency of the fuzzy-valued sample ϕ-wabl/ldev/rdev
median in Dϕ

θ -sense (see Sinova et al. [109]) and the strong consistency under
the assumed conditions of the sample median from the real-valued random
variable Dϕ

θ (X , M̃ϕ(X )).

viii) For fixed i ∈ {1, . . . , n} and by applying the strong consistency of the sample
median of the real-valued random variable D(Xi,Xj) w.r.t Xj, we have that

lim
n→∞

Mej {D(Xi,Xj)} = Me(D(Xi,Y)) a.s. [P ].

Now, by applying the strong consistency of the sample median w.r.t. Xi for
the real-valued random variable Me(D(Xi,Y)), we have that

lim
n→∞

Mei {Me(D(Xi,Y))} = MeXMeY(D(X ,Y)) a.s. [P ].
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Remark 2.2.3. It should be pointed out that the strong consistency in Proposi-
tion 2.2.6 has been understood in the sense of the convergence of the sample scale
measure to the population one, instead of the convergence (after maybe a correc-
tion) of the sample measure to the population standard deviation as often made in
case of dealing with real-valued random variables. Actually, the last convergence is
usually discussed in the real-valued case by considering some outstanding models
for the distribution of the involved random variables; this type of models has not
been yet realistically stated for RFN’s.

2.3 Formal analysis of the robustness of the scale
measures: the finite sample breakdown point

Consider the sample of trapezoidal fuzzy numbers collected in Table 2.1 and dis-
played in Figure 2.1. The last datum, the trapezoidal Tra(39.70, 39.73, 60.13, 73.05)
(in red) clearly stands out from the rest of the values and it can be considered
as an outlier. Let’s see now Table 2.2, where we can find the values of some of
the scales estimates defined in Section 2.1 for the whole dataset (with the out-
lier) and also for the dataset in which the suspicious outlier has been removed.
We can observe the lack of robustness of the estimates ρ̂2-SD(x̃n), ̂ρ2-ADD(x̃n, x̃n),
̂ρ1-ADD(x̃n,

̂̃Me(x̃n)), ̂D `
1-ADD(x̃n,

̂̃M`(x̃n)) and ̂ρ2-MDD(x̃n, x̃n). The sample stan-
dard deviation is the most influenced estimator by the outlier. The ̂ρ2-ADD with
respect to the mean is also very sensitive to the presence of this atypical value, al-
though to a lesser extent than the standard deviation. In contrast, good robust al-
ternatives are the estimates ̂ρ1-MDD(x̃n,

̂̃Me(x̃n)), ̂D `
1-MDD(x̃n,

̂̃M`(x̃n)), ρ̂1-S(x̃n),
ρ̂1-Q(x̃n) and ρ̂1-T(x̃n), since their values slightly change when the outlier is included
in the dataset.

A popular and powerful tool allowing us to describe the robustness of an esti-
mate is its breakdown point. Donoho and Huber [34] pointed out that “the notion of
breakdown point was coined, formally defined, and very briefly discussed by Frank
Hampel, at that time a student of Erich Lehman, in his PhD in 1968” [55]. Al-
though it was originally presented for location estimates, the concept has also been
generalized to scale estimates.
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Table 2.1: Sample of 22 trapezoidal fuzzy numbers with one outlier (in red),
and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di)

ai bi ci di ai bi ci di

-2.51 -1.57 -1.35 -1.12 -0.41 0.18 3.92 4.41
-4.26 -4.00 -0.49 -0.34 -1.24 -0.59 -0.46 -0.32
-3.80 -0.58 2.59 2.60 0.16 0.21 0.21 0.48
-4.28 -0.82 -0.77 0.24 -1.31 -1.02 0.35 2.17
-0.56 -0.56 3.66 4.57 -5.18 -1.56 3.27 3.64
-1.44 0.42 0.45 0.77 -2.12 -1.54 1.19 1.26
-0.46 0.48 0.83 1.16 1.28 1.43 1.96 2.79
0.99 1.15 1.39 1.78 -2.08 0.18 3.69 5.01
-0.17 -0.16 -0.16 -0.14 -1.44 -0.86 -0.28 -0.28
-1.90 -1.06 -0.72 -0.65 -3.78 -0.25 0.81 0.85
-1.33 -0.18 0.07 3.37 39.70 39.73 60.13 73.05

0 20 40 60

0

1

Dataset with one outlier

Figure 2.1: Sample of 22 trapezoidal fuzzy numbers with one outlier (in red)

Table 2.2: The effect of one outlier in some dispersion estimates

Scale measure For dataset WITHOUT outlier For dataset WITH outlier

ρ̂2-SD(x̃n) 1.53 11.46
̂ρ2-ADD(x̃n, x̃n) 1.40 4.95

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 1.21 3.57
̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.74 4.63
̂ρ2-MDD(x̃n, x̃n) 1.30 2.79

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 1.05 1.20
̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 1.56 1.64
ρ̂1-S(x̃n) 1.41 1.48
ρ̂1-Q(x̃n) 1.13 1.21
ρ̂1-T(x̃n) 1.24 1.35

A simple and intuitive notion of the breakdown point of a scale estimate con-
strained to finite samples, the so-called finite sample breakdown point (fsbp
for short), was introduced by Donoho [33] and Donoho and Huber [34]. For scale
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estimates, it is defined as the minimum proportion of sample data which should be
perturbed in order to let the estimate acquire either an arbitrary large value or the
value zero. The higher the breakdown point of an estimate, the more robust it is.

Therefore, two situations need to be taken into account in scale estimation stud-
ies: the one consisting of contaminating the sample by means of outliers, which can
make the estimate overestimate the true scale up to infinity (explosion), and the
one consisting of contaminating the sample by means of inliers, which may result in
underestimation of the true scale to zero (implosion). Notice that when dealing with
location estimates, only the explosion case makes sense, this being defined as the
minimum proportion of sample data that should be perturbed to get an arbitrarily
large or small estimator value.

Next, the replacement version of the finite sample breakdown point for scale
estimates (see Donoho and Huber [34]) is recalled, but applied in this case to fuzzy
data.

Definition 2.3.1. For any sample of observations x̃n from an RFN X , the finite
sample breakdown point of a scale estimate D̂ is defined by

fsbp∗(D̂(x̃n)) = min
{

fsbp+(D̂(x̃n)), fsbp−(D̂(x̃n))
}

where
fsbp+(D̂(x̃n)) = min

{
k

n
; sup

ỹn,k
D̂(ỹn,k) =∞

}

and
fsbp−(D̂(x̃n)) = min

{
k

n
; inf

ỹn,k
D̂(ỹn,k) = 0

}

with ỹn,k obtained by replacing any k observations of x̃n by arbitrary values. The
quantities fsbp+ and fsbp− are called the explosion breakdown point and the
implosion breakdown point.

The following theorems formalize the comparison of the robustness of different
scale estimators through the fsbp. They prove that if the considered sample of fuzzy
observations x̃n does not contain two coinciding observations, then their fsbp equals

• 1
n

for the estimates D̂ϕ
θ -SD(x̃n), ̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,

̂̃Me(x̃n)),
̂Dϕ
θ -ADD(x̃n,

̂̃Mϕ(x̃n)) and ̂ρ2-MDD(x̃n, x̃n), which is the lowest possible fsbp,
and

• 1
n

⌊
n
2

⌋
for the estimates ̂ρ1-MDD(x̃n,

̂̃Me(x̃n)), ̂Dϕ
θ -MDD(x̃n,

̂̃Mϕ(x̃n)), D̂-S(x̃n),
D̂-Q(x̃n) and D̂-T(x̃n), which is the highest possible fsbp for a scale estimate.

Therefore, these estimators inherit the value of the fsbp from the real-valued case
(see, for instance, Rousseeuw and Croux [100]).
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Theorem 2.3.1. For any sample of observations x̃n = (x̃1, . . . , x̃n) from an RFN
X in which there are not two identical observations, we have that

fsbp+(D̂ϕ
θ -SD(x̃n)) = 1

n
, fsbp−(D̂ϕ

θ -SD(x̃n)) = n− 1
n

.

Therefore, the finite sample breakdown point of the scale estimate D̂ϕ
θ -SD(x̃n) is

given by
fsbp∗(D̂ϕ

θ -SD(x̃n)) = 1
n
,

which is the lowest possible fsbp∗ of an estimate.

Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample in which there are not two identical obser-
vations, and denote fsbp+ = fsbp+(D̂ϕ

θ -SD(x̃n)) and fsbp− = fsbp−(D̂ϕ
θ -SD(x̃n)).

The proof of the two first conclusions is to be split in three steps.

Step 1: We begin showing that fsbp− ≤ (n− 1)/n.
We are going to find a sample ỹn,n−1 = {ỹ1, . . . , ỹn} with n − 1 replaced obser-

vations of the original sample x̃n such that D̂ϕ
θ -SD(ỹn,n−1) = 0.

The sample ỹn,n−1 is constructed by replacing the observations x̃2, . . . , x̃n by
x̃1. The considered sample ỹn,n−1 has k = n − 1 replaced observations. Since
ỹn,n−1 = x̃1, we have that for all i ∈ {1, . . . , n}, Dϕ

θ

(
ỹi, ỹn,n−1

)
= Dϕ

θ (x̃1, x̃1) = 0,

whence D̂ϕ
θ -SD(ỹn,n−1) =

√
∑n
i=1

[
Dϕ
θ

(
ỹi, ỹn,n−1

)]2
/n = 0.

Therefore, inf z̃n,n−1 D̂
ϕ
θ -SD(z̃n,n−1) = 0 with z̃n,n−1 any sample with n−1 replaced

observations of x̃n, whence fsbp− ≤ (n− 1)/n.

Step 2: Now we show that fsbp− ≥ (n− 1)/n.
Let ỹn,k be an arbitrary sample with k < n−1 replaced observations of x̃n. There

exist at least two observations x̃1
ỹn,k , x̃

2
ỹn,k ∈ {x̃1, . . . , x̃n} such that x̃1

ỹn,k , x̃
2

ỹn,k

∈ ỹn,k. Let δ :=
√

mini,j∈{1,...,n}[Dϕ
θ (x̃i, x̃j)]2/n2 > 0. We have that

δ =
√

mini,j∈{1,...,n}Dϕ
θ [(x̃i, x̃j)]2

n2 ≤
√[ 1

n
Dϕ
θ (x̃1

ỹn,k , x̃
2

ỹn,k)
]2

≤

√√√√√

D

ϕ
θ (x̃1

ỹn,k , ỹn,k) +Dϕ
θ (x̃2

ỹn,k , ỹn,k)
n




2

≤

√√√√
[

1
n

n∑

i=1
Dϕ
θ (ỹi, ỹn,k)

]2

≤

√√√√ 1
n

n∑

i=1

[
Dϕ
θ (ỹi, ỹn,k)

]2
= D̂ϕ

θ -SD(ỹn,k).

Therefore, inf ỹn,k D̂
ϕ
θ -SD(ỹn,k) ≥ δ > 0 with k < n − 1, and hence fsbp−

≥ (n − 1)/n.
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Step 3: Finally, we will prove that fsbp+ = 1/n. For this purpose, we construct
the sample ỹn,1 by replacing the observation x̃1 by x̃(n) +L, with L ∈ R, L > 0 and
x̃(n) the extended maximum m̃axi∈{1,...,n}x̃i (see, for instance, [35]) defined so that(
m̃axi∈{1,...,n}x̃i

)
α

= [maxi∈{1,...,n} inf(x̃i)α,maxi∈{1,...,n} sup(x̃i)α] for each α ∈ [0, 1].
The considered sample ỹn,1 has k = 1 replaced observation. If x̃′n = {x̃(n), x̃2,

. . . , x̃n}, by taking into account that mid(x̃(n))α > mid
(
x̃′n

)
α
for all α ∈ [0, 1], and

L > L/n, it is satisfied that

[
Dϕ
θ

(
ỹ1, ỹn,1

)]2
=
[
Dϕ
θ

(
x̃(n) + L, ỹn,1

)]2
=
[
Dϕ
θ

(
x̃(n) + L, x̃′n + L

n

)]2

≥
[
Dϕ
θ

(
x̃(n), x̃′n

)]2
+
[

(n− 1)L
n

]2

,

whence
Dϕ
θ

(
ỹ1, ỹn,1

)
≥ (n− 1)L

n
.

Thus, D̂ϕ
θ -SD(ỹn,1) =

√
∑n
i=1

[
Dϕ
θ (ỹi, ỹn,1)

]2
/n ≥

√[
Dϕ
θ (ỹ1, ỹn,1)

]2
/n

= Dϕ
θ (ỹ1, ỹn,1)/

√
n ≥ (n− 1)L/(n

√
n).

Letting L→∞, supz̃n,1 D̂
ϕ
θ -SD(z̃n,1) =∞ with z̃n,1 any sample with 1 replaced

observation of x̃n. Therefore, fsbp+ = 1/n.

Theorem 2.3.2. For any sample of observations x̃n from an RFN X in which there
are not two identical observations, we have that

fsbp+( ̂ρ2-ADD(x̃n, x̃n)) = 1
n
, fsbp−( ̂ρ2-ADD(x̃n, x̃n)) = n− 1

n
.

Therefore, the finite sample breakdown point of the scale estimate ̂ρ2-ADD(x̃n, x̃n)
is given by

fsbp∗( ̂ρ2-ADD(x̃n, x̃n)) = 1
n
,

which is the lowest possible fsbp∗ of an estimate.

Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample in which there are not two identical obser-
vations, and denote fsbp+ =fsbp+( ̂ρ2-ADD(x̃n, x̃n)) and fsbp−=fsbp−( ̂ρ2-ADD(x̃n,
x̃n)). The proof of the two first conclusions is to be split in three steps.

Step 1: We begin showing that fsbp− ≤ (n− 1)/n.
We are going to find a sample ỹn,n−1 = (ỹ1, . . . , ỹn) with k = n − 1 replaced

observations of the original sample x̃n such that ̂ρ2-ADD(ỹn,n−1, ỹn,n−1) = 0.
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We construct the sample ỹn,n−1 by replacing the observations x̃2, . . . , x̃n by x̃1.
The considered sample ỹn,n−1 has k = n−1 replaced observations. Since ỹn,n−1 = x̃1,
we have that for all i ∈ {1, . . . , n}, ρ2

(
ỹi, ỹn,n−1

)
= ρ2(x̃1, x̃1) = 0, whence

̂ρ2-ADD(ỹn,n−1, ỹn,n−1) =
n∑

i=1
ρ2
(
ỹi, ỹn,n−1

)
/n = 0.

Consequently, inf z̃n,n−1
̂ρ2-ADD(z̃n,n−1, z̃n,n−1) = 0 with z̃n,n−1 any sample with n−1

replaced observations of x̃n and, for this reason, fsbp− ≤ (n− 1)/n.

Step 2: Now we show that fsbp− ≥ (n− 1)/n.
Let ỹn,k be an arbitrary sample with k < n−1 replaced observations of x̃n. There

exist at least two observations x̃1
ỹn,k , x̃

2
ỹn,k ∈ {x̃1, . . . , x̃n} such that x̃1

ỹn,k , x̃
2

ỹn,k
∈ ỹn,k. Let δ := mini,j∈{1,...,n} ρ2(x̃i, x̃j)/n > 0. We have that

δ = mini,j∈{1,...,n} ρ2(x̃i, x̃j)
n

≤
ρ2(x̃1

ỹn,k , x̃
2

ỹn,k)
n

≤
ρ2(x̃1

ỹn,k , ỹn,k) + ρ2(x̃2
ỹn,k , ỹn,k)

n
≤
∑n
i=1 ρ2(ỹi, ỹn,k)

n
= ̂ρ2-ADD(ỹn,k, ỹn,k).

Therefore, inf ỹn,k
̂ρ2-ADD(ỹn,k, ỹn,k) ≥ δ > 0 with k < n − 1, and hence fsbp−

≥ (n− 1)/n.

Step 3: Finally, we will prove that fsbp+ = 1/n. For this purpose, we construct
the sample ỹn,1 in the same way as was constructed in Step 3 of the proof of Theo-
rem 2.3.1. Since ρ2 = D`

1, then by looking at Step 3 of the proof of Theorem 2.3.1
we can conclude that

ρ2
(
ỹ1, ỹn,1

)
≥ (n− 1)L

n
.

Thus, ̂ρ2-ADD(ỹn,1, ỹn,1) = ∑n
i=1 ρ2

(
ỹi, ỹn,1

)
/n ≥ ρ2

(
ỹ1, ỹn,1

)
/n ≥ (n− 1)L/n2.

Letting L → ∞, supz̃n,1
̂ρ2-ADD(z̃n,1, z̃n,1) = ∞ with z̃n,1 any sample with 1

replaced observation of x̃n. Consequently, fsbp+ = 1/n.

Theorem 2.3.3. For any sample of observations x̃n from an RFN X in which there
are not two identical observations, we have that

fsbp+( ̂ρ1-ADD(x̃n,
̂̃Me(x̃n))) = 1

n
, fsbp−( ̂ρ1-ADD(x̃n,

̂̃Me(x̃n))) = n− 1
n

.

Therefore, the finite sample breakdown point of the scale estimate
̂ρ1-ADD(x̃n,

̂̃Me(x̃n)) is given by

fsbp∗( ̂ρ1-ADD(x̃n,
̂̃Me(x̃n))) = 1

n
,

which is the lowest possible fsbp∗ of an estimate.
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Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample which does not contain two identical obser-
vations, and denote now fsbp+ = fsbp+( ̂ρ1-ADD(x̃n,

̂̃Me(x̃n))) and fsbp−

= fsbp−( ̂ρ1-ADD(x̃n,
̂̃Me(x̃n))). The proof of the two first conclusions is to be

split in three steps.

Step 1: We begin showing that fsbp− ≤ (n− 1)/n.
We are going to find a sample ỹn,n−1 = (ỹ1, . . . , ỹn) with k = n − 1 replaced

observations of the original sample x̃n such that ̂ρ1-ADD(ỹn,n−1,
̂̃Me(ỹn,n−1)) = 0.

We construct the sample ỹn,n−1 by replacing the observations x̃2, . . . , x̃n by
x̃1. The considered sample ỹn,n−1 has k = n − 1 replaced observations. Since
̂̃Me(ỹn,n−1)= x̃1, we have that ρ1

(
ỹi,
̂̃Me(ỹn,n−1)

)
=ρ1(x̃1, x̃1)=0 for all i∈ {1, . . . , n},

whence ̂ρ1-ADD(ỹn,n−1,
̂̃Me(ỹn,n−1))=∑n

i=1 ρ1
(
ỹi,
̂̃Me(ỹn,n−1)

)
/n = 0.

Therefore, inf z̃n,n−1
̂ρ1-ADD(z̃n,n−1,

̂̃Me(z̃n,n−1)) = 0 with z̃n,n−1 any sample with
n− 1 replaced observations of x̃n and, for this reason, fsbp− ≤ (n− 1)/n.

Step 2: Now we show that fsbp− ≥ (n− 1)/n.
Let ỹn,k be an arbitrary sample with k < n − 1 replaced observations from the

original. There exist at least two observations x̃1
ỹn,k , x̃

2
ỹn,k ∈ {x̃1, . . . , x̃n} such that

x̃1
ỹn,k , x̃

2
ỹn,k ∈ ỹn,k. Let δ := mini,j∈{1,...,n} ρ1(x̃i, x̃j)/n > 0. We have that

δ = mini,j∈{1,...,n} ρ1(x̃i, x̃j)
n

≤
ρ1(x̃1

ỹn,k , x̃
2

ỹn,k)
n

≤
ρ1(x̃1

ỹn,k ,
̂̃Me(ỹn,k)) + ρ1(x̃2

ỹn,k ,
̂̃Me(ỹn,k))

n
≤
∑n
i=1 ρ1(ỹi,

̂̃Me(ỹn,k))
n

= ̂ρ1-ADD(ỹn,k,
̂̃Me(ỹn,k)).

Therefore, inf ỹn,k
̂ρ1-ADD(ỹn,k,

̂̃Me(ỹn,k)) ≥ δ > 0 with k < n− 1, whence fsbp−

≥ (n− 1)/n.

Step 3: Finally, we will prove that fsbp+ = 1/n. For this purpose, we construct
the sample ỹn,1 in the same way as it was constructed in Step 3 of the proof of The-
orem 2.3.1. The considered sample ỹn,1 has k = 1 replaced observation. By taking
into account that inf(x̃(n))α > inf

(̂̃Me(ỹn,1)
)
α
and sup(x̃(n))α > sup

(̂̃Me(ỹn,1)
)
α
for

all α ∈ [0, 1], it is satisfied that

ρ1

(
ỹ1,

̂̃Me(ỹn,1)
)

= ρ1

(
x̃(n) + L,

̂̃Me(ỹn,1)
)

= ρ1

(
x̃(n),

̂̃Me(ỹn,1)
)

+ L ≥ L.

Thus, ̂ρ1-ADD(ỹn,1,
̂̃Me(ỹn,1)) = ∑n

i=1 ρ1
(
ỹi,
̂̃Me(ỹn,1)

)
/n ≥ ρ1

(
ỹ1,

̂̃Me(ỹn,1)
)
/n

≥ L/n.
Letting L → ∞, supz̃n,1

̂ρ1-ADD(z̃n,1,
̂̃Me(z̃n,1)) = ∞ with z̃n,1 any sample with

1 replaced observation of x̃n. Consequently, fsbp+ = 1/n.
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Theorem 2.3.4. For any sample of observations x̃n from an RFN X in which there
are not two identical observations, we have that

fsbp+( ̂Dϕ
θ -ADD(x̃n,

̂̃Mϕ(x̃n))) = 1
n
, fsbp−( ̂Dϕ

θ -ADD(x̃n,
̂̃Mϕ(x̃n))) = n− 1

n
.

Therefore, the finite sample breakdown point of the scale estimate
̂Dϕ
θ -ADD(x̃n,

̂̃Mϕ(x̃n)) is given by

fsbp∗( ̂Dϕ
θ -ADD(x̃n,

̂̃Mϕ(x̃n))) = 1
n
,

which is the lowest possible fsbp∗ of an estimate.

Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample which does not contain two identical
observations, and denote now fsbp+ = fsbp+( ̂Dϕ

θ -ADD(x̃n,
̂̃Mϕ(x̃n))) and fsbp−

= fsbp−( ̂Dϕ
θ -ADD(x̃n,

̂̃Mϕ(x̃n))). The proof of the two first conclusions is to be
split in three steps.

Step 1: We begin showing that fsbp− ≤ (n− 1)/n.
We are going to find a sample ỹn,n−1 = (ỹ1, . . . , ỹn) with k = n − 1 replaced

observations of the original sample x̃n such that ̂Dϕ
θ -ADD(ỹn,n−1,

̂̃Mϕ(ỹn,n−1)) = 0.
We construct the sample ỹn,n−1 by replacing the observations x̃2, . . . , x̃n by x̃1.

The considered sample ỹn,n−1 has k = n−1 replaced observations. Since ̂̃Mϕ(ỹn,n−1)
= x̃1, we have that Dϕ

θ

(
ỹi,
̂̃Mϕ(ỹn,n−1)

)
= Dϕ

θ (x̃1, x̃1) = 0 for all i ∈ {1, . . . , n},

whence ̂Dϕ
θ -ADD(ỹn,n−1,

̂̃Mϕ(ỹn,n−1)) = ∑n
i=1 Dϕ

θ

(
ỹi,
̂̃Mϕ(ỹn,n−1)

)
/n = 0.

Therefore, inf z̃n,n−1
̂Dϕ
θ -ADD(z̃n,n−1,

̂̃Mϕ(z̃n,n−1)) = 0 with z̃n,n−1 any sample
with n− 1 replaced observations of x̃n and, for this reason, fsbp− ≤ (n− 1)/n.

Step 2: Now we show that fsbp− ≥ (n− 1)/n.
Let ỹn,k be an arbitrary sample with k < n − 1 replaced observations from the

original. There exist at least two observations x̃1
ỹn,k , x̃

2
ỹn,k ∈ {x̃1, . . . , x̃n} such that

x̃1
ỹn,k , x̃

2
ỹn,k ∈ ỹn,k. Let δ := mini,j∈{1,...,n}Dϕ

θ (x̃i, x̃j)/n > 0. We have that

δ = mini,j∈{1,...,n}Dϕ
θ (x̃i, x̃j)

n
≤

Dϕ
θ (x̃1

ỹn,k , x̃
2

ỹn,k)
n

≤
Dϕ
θ (x̃1

ỹn,k ,
̂̃Mϕ(ỹn,k)) + Dϕ

θ (x̃2
ỹn,k ,

̂̃Mϕ(ỹn,k))
n

≤
∑n
i=1 Dϕ

θ (ỹi,
̂̃Mϕ(ỹn,k))

n

= ̂Dϕ
θ -ADD(ỹn,k,

̂̃Mϕ(ỹn,k)).

Therefore, inf ỹn,k
̂Dϕ
θ -ADD(ỹn,k,

̂̃Mϕ(ỹn,k)) ≥ δ > 0 with k < n−1, and so, fsbp−

≥ (n− 1)/n.
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Step 3: Finally, we will prove that fsbp+ = 1/n. For this purpose, we construct
the sample ỹn,1 in the same way as it was constructed in Step 3 of the proof of
Theorem 2.3.1. The considered sample ỹn,1 has k = 1 replaced observation. Taking
into account that wablϕ(x̃(n)) > wablϕ(̂̃Mϕ(ỹn,1)), it is satisfied that

Dϕ
θ

(
ỹ1,

̂̃Mϕ(ỹn,1)
)

= Dϕ
θ

(
x̃(n) + L,

̂̃Mϕ(ỹn,1)
)

= Dϕ
θ

(
x̃(n),

̂̃Mϕ(ỹn,1)
)

+ L ≥ L.

Thus, ̂Dϕ
θ -ADD(ỹn,1,

̂̃Mϕ(ỹn,1))=∑n
i=1 Dϕ

θ

(
ỹi,
̂̃Mϕ(ỹn,1)

)
/n≥Dϕ

θ

(
ỹ1,

̂̃Mϕ(ỹn,1)
)
/n

≥ L/n.
Letting L→∞, supz̃n,1

̂Dϕ
θ -ADD(z̃n,1,

̂̃Mϕ(z̃n,1)) =∞ with z̃n,1 any sample with
1 replaced observation of x̃n. Consequently, fsbp+ = 1/n.

Theorem 2.3.5. For any sample of observations x̃n from an RFN X in which there
are not two identical observations, we have that

fsbp+( ̂ρ2-MDD(x̃n, x̃n)) = 1
n
,

fsbp−( ̂ρ2-MDD(x̃n, x̃n)) ∈
{ 1
n

(⌊
n

2

⌋
+ 1

)
,

1
n

⌊
n

2

⌋}
.

Therefore, the finite sample breakdown point of the scale estimate ̂ρ2-MDD(x̃n, x̃n)
is given by

fsbp∗( ̂ρ2-MDD(x̃n, x̃n)) = 1
n
,

which is the lowest possible fsbp∗ of an estimate.

Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample which does not contain two identical obser-
vations, and denote now fsbp+ = fsbp+( ̂ρ2-MDD(x̃n, x̃n)) and fsbp−

= fsbp−( ̂ρ2-MDD(x̃n, x̃n)). The proof of the two first conclusions is to be split
in three steps.

Step 1: We begin showing that fsbp− ≤
(⌊

n
2

⌋
+ 1

)
/n.

We are going to find a sample ỹn,bn2 c+1 = (ỹ1, . . . , ỹn) with k =
⌊
n
2

⌋
+ 1 replaced

observations of the original sample x̃n such that ̂ρ2-MDD(ỹn,bn2 c+1, ỹn,bn2 c+1) = 0.
We construct the sample ỹn,bn2 c+1 by replacing the observations x̃1, . . . , x̃bn2 c+1

by x̃′ , being x̃′ the mean of the sample x̃′ = (x̃bn2 c+2, . . . , x̃n). The considered sample

ỹn,bn2 c+1 has k =
⌊
n
2

⌋
+1 replaced observations. See that ̂ρ2-MDD(ỹn,bn2 c+1, ỹn,bn2 c+1)

= 0.
Since ỹn,bn2 c+1 = x̃′ , then for all i ∈ {1, . . . ,

⌊
n
2

⌋
+ 1},

ρ2
(
ỹi, ỹn,bn2 c+1

)
= ρ2(x̃′ , x̃′) = 0.
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Thus, ̂ρ2-MDD(ỹn,bn2 c+1, ỹn,bn2 c+1) = Mei∈{1,...,n}
(
ρ2
(
ỹi, ỹn,bn2 c+1

))
= 0.

Therefore, inf z̃
n,bn2 c+1

̂ρ2-MDD(z̃n,bn2 c+1, z̃n,bn2 c+1) = 0 with z̃n,bn2 c+1 any sample

with
⌊
n
2

⌋
+ 1 replaced observations of x̃n and, for this reason, fsbp− ≤

(⌊
n
2

⌋
+ 1

)
/n.

It should be remarked that if there is an x̃i equalling the sample mean of a
subsample of n−

⌊
n
2

⌋
observations including it, the last inequality can be constrained

to be fsbp− ≤
⌊
n
2

⌋
/n. Thus, assume without loss of generality that the observation

x̃bn2 c+1 equals the mean x̃′′ of the sample x̃′′ = (x̃bn2 c+1, . . . , x̃n). By taking the

sample ỹn,bn2 c replacing the observations x̃1, . . . , x̃bn2 c by x̃′′ , the proof is analogous
to the previous one.

Step 2: To show that fsbp− ≥
⌊
n
2

⌋
/n, let ỹn,k be an arbitrary sample with k

<
⌊
n
2

⌋
replaced observations from the original. Because of the definition of median

for real numbers, there exist at least
⌊
n
2

⌋
+ 1 observations ỹj (with j ∈ {1, . . . ,⌊

n
2

⌋
+ 1}) in the sample ỹn,k such that ρ2

(
ỹj, ỹn,k

)
/2 ≤ Mei∈{1,...,n}

(
ρ2
(
ỹi, ỹn,k

))
.

Moreover, because of ỹn,k having k <
⌊
n
2

⌋
replaced observations from the sam-

ple x̃n, there exist at least two observations x̃1
ỹn,k , x̃

2
ỹn,k ∈ {x̃1, . . . , x̃n} such that

x̃1
ỹn,k = ỹj1 and x̃2

ỹn,k = ỹj2 with ỹj1 , ỹj2 ∈ {ỹ1, . . . , ỹb
n
2 c+1}.

Let δ := mini,j∈{1,...,n} ρ2(x̃i, x̃j)/4 > 0. We have that

δ = mini,j∈{1,...,n} ρ2(x̃i, x̃j)
4 ≤

ρ2(x̃1
ỹn,k , x̃

2
ỹn,k)

4

≤ 1
2 ·

ρ2(x̃1
ỹn,k , ỹn,k) + ρ2(x̃2

ỹn,k , ỹn,k)
2

≤ 1
2 ·
(

Mei∈{1,...,n}
(
ρ2
(
ỹi, ỹn,k

))
+ Mei∈{1,...,n}

(
ρ2
(
ỹi, ỹn,k

)))

= Mei∈{1,...,n}
(
ρ2
(
ỹi, ỹn,k

))
= ̂ρ2-MDD(ỹn,k, ỹn,k).

Therefore, inf ỹn,k
̂ρ2-MDD(ỹn,k, ỹn,k) ≥ δ > 0 with k <

⌊
n
2

⌋
, and hence fsbp−

≥
⌊
n
2

⌋
/n.

Step 3: Finally, we will prove that fsbp+ = 1/n. For this purpose, we construct
the sample ỹn,1 by replacing the observation x̃1 by the real number
n · 2 · s + L, with L ∈ R, L > 0 and s := maxi∈{1,...,n}, α∈[0,1]

{
| inf(x̃i)α|, | sup(x̃i)α|

}

= maxi∈{1,...,n}
{
| inf(x̃i)0|, | sup(x̃i)0|

}
.

The considered sample ỹn,1 has k = 1 replaced observation. If x̃′n = {n · 2 · s,
x̃2, . . . , x̃n} = {n · 2 · s, ỹ2, . . . , ỹn}, since

inf
(
x̃′n

)
α

= n · 2 · s+ inf(ỹ2)α + . . .+ inf(ỹn)α
n
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= 2 · s+ (inf(ỹ2)α + 2 · s) + . . .+ (inf(ỹn)α + 2 · s)
n

≥ n · inf(ỹi)α
n

= inf(ỹi)α,

sup
(
x̃′n

)
α

= n · 2 · s+ sup(ỹ2)α + . . .+ sup(ỹn)α
n

= 2 · s+ (sup(ỹ2)α + 2 · s) + . . .+ (sup(ỹn)α + 2 · s)
n

≥ n · sup(ỹi)α
n

= sup(ỹi)α

for all α ∈ [0, 1] and for all i ∈ {2, . . . , n}, then it is satisfied that
[
ρ2
(
ỹi, ỹn,1

)]2
=
[
ρ2

(
ỹi, x̃′n + L

n

)]2
≥
[
ρ2

(
ỹi, x̃′n

)]2
+
[
L

n

]2
,

for all i ∈ {2, . . . , n}, whence

ρ2
(
ỹi, ỹn,1

)
≥ L

n
.

Thus, ̂ρ2-MDD(ỹn,1, ỹn,1) = Mei∈{1,...,n}
(
ρ2
(
ỹi, ỹn,1

))
≥ L/n.

Letting L → ∞, supz̃n,1
̂ρ2-MDD(z̃n,1, z̃n,1) = ∞ with z̃n,1 any sample with 1

replaced observation of x̃n. Therefore, fsbp+ = 1/n.

Theorem 2.3.6. For any sample of observations x̃n from an RFN X in which there
are not two identical observations, we have that

fsbp+( ̂ρ1-MDD(x̃n,
̂̃Me(x̃n))) = 1

n

⌊
n+ 1

2

⌋
, fsbp−( ̂ρ1-MDD(x̃n,

̂̃Me(x̃n))) = 1
n

⌊
n

2

⌋
.

Therefore, the finite sample breakdown point of the scale estimate
̂ρ1-MDD(x̃n,

̂̃Me(x̃n)) is given by

fsbp∗( ̂ρ1-MDD(x̃n,
̂̃Me(x̃n))) = 1

n

⌊
n

2

⌋
,

which is the highest possible fsbp∗ of a scale estimate.

Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample which does not contain two identical obser-
vations, and denote now fsbp+ = fsbp+( ̂ρ1-MDD(x̃n,

̂̃Me(x̃n))) and fsbp−

= fsbp−( ̂ρ1-MDD(x̃n,
̂̃Me(x̃n))). The proof of the two first conclusions is next pre-

sented in four steps.

Step 1: We begin showing that fsbp− ≤
⌊
n
2

⌋
/n.

We are going to find a sample ỹn,bn2 c = (ỹ1, . . . , ỹn) with k =
⌊
n
2

⌋
replaced

observations of the original sample x̃n such that ̂ρ1-MDD(ỹn,bn2 c,
̂̃Me(ỹn,bn2 c)) = 0.
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We construct the sample ỹn,bn2 c by replacing the observations x̃2, . . . , x̃bn2 c+1 by

x̃1. Since
̂̃Me(ỹn,bn2 c) = x̃1, then for all i ∈ {1, . . . ,

⌊
n
2

⌋
+ 1}

ρ1
(
ỹi,
̂̃Me(ỹn,bn2 c)

)
= ρ1(x̃1, x̃1) = 0.

Thus, ̂ρ1-MDD(ỹn,bn2 c,
̂̃Me(ỹn,bn2 c)) = Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃Me(ỹn,bn2 c)

))
= 0.

Therefore, inf z̃
n,bn2 c

̂ρ1-MDD(z̃n,bn2 c,
̂̃Me(z̃n,bn2 c)) = 0 for any sample z̃n,bn2 c with⌊

n
2

⌋
replaced observations of x̃n, and fsbp− ≤

⌊
n
2

⌋
/n.

Step 2: Now we show that fsbp− ≥
⌊
n
2

⌋
/n. Let ỹn,k be an arbitrary sample with

k <
⌊
n
2

⌋
replaced observations from the original. Because of the definition of median

for real numbers, there exist at least
⌊
n
2

⌋
+ 1 observations ỹj (with j ∈ {1, . . . ,

⌊
n
2

⌋
+

1}) in the sample ỹn,k such that ρ1
(
ỹj,

̂̃Me(ỹn,k)
)
/2≤ Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃Me(ỹn,k)

))
.

Moreover, because of ỹn,k having k <
⌊
n
2

⌋
replaced observations from the sam-

ple x̃n, there exist at least two observations x̃1
ỹn,k , x̃

2
ỹn,k ∈ {x̃1, . . . , x̃n} such that

x̃1
ỹn,k = ỹj1 and x̃2

ỹn,k = ỹj2 with ỹj1 , ỹj2∈{ỹ1, . . . , ỹb
n
2 c+1}.

Let δ :=mini,j∈{1,...,n} ρ1(x̃i, x̃j)/4>0. We have that

δ = mini,j∈{1,...,n} ρ1(x̃i, x̃j)
4 ≤

ρ1(x̃1
ỹn,k , x̃

2
ỹn,k)

4

≤ 1
2 ·

ρ1(x̃1
ỹn,k ,

̂̃Me(ỹn,k)) + ρ1(x̃2
ỹn,k ,

̂̃Me(ỹn,k))
2

≤ 1
2 ·
(

Mei∈{1,...,n}
(
ρ1
(
ỹi,
̂̃Me(ỹn,k)

))
+ Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃Me(ỹn,k)

)))

= Mei∈{1,...,n}
(
ρ1
(
ỹi,
̂̃Me(ỹn,k)

))
= ̂ρ1-MDD(ỹn,k,

̂̃Me(ỹn,k)).

Therefore, inf ỹn,k
̂ρ1-MDD(ỹn,k,

̂̃Me(ỹn,k)) ≥ δ > 0 with k <
⌊
n
2

⌋
, and hence

fsbp− ≥
⌊
n
2

⌋
/n.

Step 3: Now we will prove that fsbp+ ≤
⌊
n+1

2

⌋
/n.

We construct the sample ỹn,bn+1
2 c by replacing the observation x̃1 by x̃(n) +L, x̃2

by x̃(n) + 2L, . . ., x̃bn+1
2 c by x̃(n) +

⌊
n+1

2

⌋
L, with L ∈ R, L > 0 and x̃(n) the extended

maximum m̃axi∈{1,...,n}x̃i.
The considered sample ỹn,bn+1

2 c has k =
⌊
n+1

2

⌋
replaced observations. It satisfies

that for any i ∈ {2, . . . , n}, ρ1
(
ỹi,
̂̃Me(ỹn,bn+1

2 c)
)
≥ L/2 because:

• If n is odd, ̂̃Me(ỹn,bn+1
2 c) = x̃(n) + L and, hence,
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– for all i ∈ {2, . . . ,
⌊
n+1

2

⌋
}, ρ1

(
ỹi,
̂̃Me(ỹn,bn+1

2 c)
)

= ρ1
(
x̃(n) + iL, x̃(n) + L

)

= (i− 1)L ≥ L and

– for all i ∈ {
⌊
n+1

2

⌋
+ 1, . . . , n}, ρ1

(
ỹi,
̂̃Me(ỹn,bn+1

2 c)
)

= ρ1
(
x̃i, x̃(n) + L

)

= ρ1
(
x̃i, x̃(n)

)
+ L ≥ L.

• If n is even,̂̃Me(ỹn,bn+1
2 c)= x̃′+L/2,where(x̃′)α=

[(
maxi∈{bn+1

2 c+1,...,n} inf(x̃i)α

+ inf(x̃(n))α
)
/2,

(
maxi∈{bn+1

2 c+1,...,n} sup(x̃i)α + sup(x̃(n))α
)
/2
]
and, hence,

– for all i ∈ {2, . . . ,
⌊
n+1

2

⌋
}, ρ1

(
ỹi,
̂̃Me(ỹn,bn+1

2 c)
)

= ρ1
(
x̃(n) + iL, x̃′ + L/2

)

= ρ1
(
x̃(n), x̃

′
)

+ (2i− 1)L/2 ≥ L and

– for all i ∈ {
⌊
n+1

2

⌋
+ 1, . . . , n}, ρ1

(
ỹi,
̂̃Me(ỹn,bn+1

2 c)
)

= ρ1
(
x̃i, x̃

′ + L/2
)

= ρ1
(
x̃i, x̃

′
)

+ L/2 ≥ L/2.

Hence, ̂ρ1-MDD(ỹn,bn+1
2 c,

̂̃Me(ỹn,bn+1
2 c)) = Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃Me(ỹn,bn+1

2 c)
))

≥ L/2. Consequently, letting L → ∞, we have that supz̃
n,bn+1

2 c
̂ρ1-MDD(z̃n,bn+1

2 c,

̂̃Me(z̃n,bn+1
2 c)) =∞ for any sample z̃n,bn+1

2 c with
⌊
n+1

2

⌋
replaced observations of x̃n,

and therefore, fsbp+ ≤
⌊
n+1

2

⌋
/n.

Step 4: Finally, we will prove that fsbp+ ≥
⌊
n+1

2

⌋
/n. Let ỹn,k be an arbi-

trary sample with k <
⌊
n+1

2

⌋
replaced observations from the original. Because

of the definition of median for real numbers, there exist at least
⌊
n+1

2

⌋
observa-

tions ỹj (with j ∈ {1, . . . ,
⌊
n+1

2

⌋
}) in the sample ỹn,k such that ρ1

(
ỹj,

̂̃Me(ỹn,k)
)

≥ Mei∈{1,...,n}
(
ρ1
(
ỹi,
̂̃Me(ỹn,k)

))
.

Moreover, because of ỹn,k having k <
⌊
n+1

2

⌋
replaced observations from the

sample x̃n, notice that

− there exists at least one observation x̃1
ỹn,k ∈ {x̃1, . . . , x̃n} such that x̃1

ỹn,k = ỹj1

with ỹj1 ∈ {ỹ1, . . . , ỹb
n+1

2 c},

− and for each α ∈ [0, 1], inf
(̂̃Me(ỹn,k)

)
α
should be in between the minimum

and the maximum of the infima of the α-levels of the unreplaced x̃i, and the
same happens with the suprema.

Let M := maxi,j∈{1,...,n} ρ1(x̃i, x̃j) < ∞. We have that

M = max
i,j∈{1,...,n}

ρ1(x̃i, x̃j) ≥ ρ1(x̃1
ỹn,k ,

̂̃Me(ỹn,k))
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≥ Mei∈{1,...,n}
(
ρ1
(
ỹi,
̂̃Me(ỹn,k)

))
= ̂ρ1-MDD(ỹn,k,

̂̃Me(ỹn,k)).

Therefore, supỹn,k
̂ρ1-MDD(ỹn,k,

̂̃Me(ỹn,k))) ≤ M < ∞ with k <
⌊
n+1

2

⌋
, and

consequently, fsbp+ ≥
⌊
n+1

2

⌋
/n.

Theorem 2.3.7. For any sample of observations x̃n from an RFN X in which there
are not two identical fuzzy numbers, we have that

fsbp+( ̂Dϕ
θ -MDD(x̃n,

̂̃Mϕ(x̃n)))= 1
n

⌊
n+ 1

2

⌋
, fsbp−( ̂Dϕ

θ -MDD(x̃n,
̂̃Mϕ(x̃n)))= 1

n

⌊
n

2

⌋
.

Therefore, the finite sample breakdown point of the scale estimate ̂Dϕ
θ -MDD(x̃n,

̂̃Mϕ(x̃n)) is given by

fsbp∗( ̂Dϕ
θ -MDD(x̃n,

̂̃Mϕ(x̃n))) = 1
n

⌊
n

2

⌋
,

which is the highest possible fsbp∗ of a scale estimate.

Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample in which there are not two identical fuzzy
numbers, and denote fsbp+ = fsbp+( ̂Dϕ

θ -MDD(x̃n,
̂̃Mϕ(x̃n))) and fsbp−

=fsbp−( ̂Dϕ
θ -MDD(x̃n,

̂̃Mϕ(x̃n))). The proof is presented in four steps.

Step 1: We begin showing that fsbp− ≤
⌊
n
2

⌋
/n.

We are going to find a sample ỹn,bn2 c = (ỹ1, . . . , ỹn) with k =
⌊
n
2

⌋
replaced

observations of the original sample x̃n such that ̂Dϕ
θ -MDD(ỹn,bn2 c,

̂̃Mϕ(ỹn,bn2 c)) = 0.
We construct the sample ỹn,bn2 c by replacing the observations x̃2, . . . , x̃bn2 c+1 by

x̃1. Since
̂̃Mϕ(ỹn,bn2 c) = x̃1, then for all i ∈ {1, . . . ,

⌊
n
2

⌋
+ 1},

Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,bn2 c)

)
= Dϕ

θ (x̃1, x̃1) = 0.

Thus, ̂Dϕ
θ -MDD(ỹn,bn2 c,

̂̃Mϕ(ỹn,bn2 c)) = Mei∈{1,...,n}
(
Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,bn2 c)

))
= 0.

Therefore, inf z̃
n,bn2 c

̂Dϕ
θ -MDD(z̃n,bn2 c,

̂̃Mϕ(z̃n,bn2 c)) = 0 for any sample z̃n,bn2 c
with

⌊
n
2

⌋
replaced observations of x̃n, and fsbp− ≤

⌊
n
2

⌋
/n.

Step 2: Now we show that fsbp− ≥
⌊
n
2

⌋
/n. Let ỹn,k be an arbitrary sample with

k <
⌊
n
2

⌋
replaced observations from the original. Because of the definition of median

for real numbers, there exist at least
⌊
n
2

⌋
+1 observations ỹj (with j∈{1, . . . ,

⌊
n
2

⌋
+1})

in the sample ỹn,k such that Dϕ
θ

(
ỹj,

̂̃Mϕ(ỹn,k)
)
/2 ≤ Mei∈{1,...,n}

(
Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,k)

))
.

Moreover, because of ỹn,k having k <
⌊
n
2

⌋
replaced observations from the sam-

ple x̃n, there exist at least two observations x̃1
ỹn,k , x̃

2
ỹn,k ∈ {x̃1, . . . , x̃n} such that
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x̃1
ỹn,k = ỹj1 and x̃2

ỹn,k = ỹj2 with ỹj1 , ỹj2 ∈ {ỹ1, . . . , ỹb
n
2 c+1}. Let δ

:= mini,j∈{1,...,n}Dϕ
θ (x̃i, x̃j)/4 > 0. We have that

δ = mini,j∈{1,...,n}Dϕ
θ (x̃i, x̃j)

4 ≤
Dϕ
θ (x̃1

ỹn,k , x̃
2

ỹn,k)
4

≤ 1
2 ·

Dϕ
θ (x̃1

ỹn,k ,
̂̃Mϕ(ỹn,k)) + Dϕ

θ (x̃2
ỹn,k ,

̂̃Mϕ(ỹn,k))
2

≤ 1
2 ·
(

Mei∈{1,...,n}
(
Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,k)

))
+ Mei∈{1,...,n}

(
Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,k)

)))

= Mei∈{1,...,n}
(
Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,k)

))
= ̂Dϕ

θ -MDD(ỹn,k,
̂̃Mϕ(ỹn,k)).

Therefore, inf ỹn,k
̂Dϕ
θ -MDD(ỹn,k,

̂̃Mϕ(ỹn,k)) ≥ δ > 0 with k <
⌊
n
2

⌋
, and hence

fsbp− ≥
⌊
n
2

⌋
/n.

Step 3: Now we will prove that fsbp+ ≤
⌊
n+1

2

⌋
/n.

We construct the sample ỹn,k by replacing the observation x̃1 by x̃(n) +L, x̃2 by
x̃(n) + 2L, . . ., x̃bn+1

2 c by x̃(n) +
⌊
n+1

2

⌋
L, with L ∈ R, L > 0 and x̃(n) the interval

value given by

x̃(n) =
[

max
i∈{1,...,n}

wablϕ(x̃i), max
i∈{1,...,n}

wablϕ(x̃i) + 2s
]
,

withs :=maxi∈{1,...,n},α∈[0,1]
{

ldevϕ
x̃i

(α), rdevϕ
x̃i

(α)
}

=maxi∈{1,...,n}
{

ldevϕ
x̃i

(0), rdevϕ
x̃i

(0)
}
.

The considered sample ỹn,bn+1
2 c has k =

⌊
n+1

2

⌋
replaced observations. It satisfies

that for any i ∈ {2, . . . , n}, Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,bn+1

2 c)
)
≥ L/2 because:

• If n is odd, ̂̃Mϕ(ỹn,bn+1
2 c) = x̃(n) + L and, hence,

– for all i ∈ {2, . . . ,
⌊
n+1

2

⌋
}, Dϕ

θ

(
ỹi,
̂̃Mϕ(ỹn,bn+1

2 c)
)

= Dϕ
θ

(
x̃(n) +iL, x̃(n) +L

)

= (i− 1)L ≥ L and

– for all i ∈ {
⌊
n+1

2

⌋
+ 1, . . . , n}, Dϕ

θ

(
ỹi,
̂̃Mϕ(ỹn,bn+1

2 c)
)

= Dϕ
θ

(
x̃i, x̃(n) + L

)

= Dϕ
θ

(
x̃i, x̃(n)

)
+ L ≥ L.

• If n is even, ̂̃Mϕ(ỹn,bn+1
2 c) = x̃′ + L/2, where x̃′ is the fuzzy number such that

for each α ∈ [0, 1]

inf(x̃′)α=
max

i∈{bn+1
2 c+1,...,n}

wablϕ(x̃i)− max
i∈{bn+1

2 c+1,...,n}
ldevϕ

x̃i
(α) + inf(x̃(n))α

2 ,

sup(x̃′)α=
max

i∈{bn+1
2 c+1,...,n}

wablϕ(x̃i) + max
i∈{bn+1

2 c+1,...,n}
rdevϕ

x̃i
(α) + sup(x̃(n))α

2
and, hence,
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– for all i ∈ {2, . . . ,
⌊
n+1

2

⌋
}, Dϕ

θ

(
ỹi,
̂̃Mϕ(ỹn,bn+1

2 c)
)

= Dϕ
θ

(
x̃(n)+iL, x̃′+L/2

)

= Dϕ
θ

(
x̃(n), x̃

′
)

+ (2i− 1)L/2 ≥ L and

– for all i ∈ {
⌊
n+1

2

⌋
+ 1, . . . , n}, Dϕ

θ

(
ỹi,
̂̃Mϕ(ỹn,bn+1

2 c)
)

= Dϕ
θ

(
x̃i, x̃

′ + L/2
)

= Dϕ
θ

(
x̃i, x̃

′
)

+ L/2 ≥ L/2.

Therefore,

̂Dϕ
θ -MDD(ỹn,bn+1

2 c,
̂̃Mϕ(ỹn,bn+1

2 c)) = Mei∈{1,...,n}
(
Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,bn+1

2 c)
))
≥ L/2.

Consequently, if L→∞, we have that supz̃
n,bn+1

2 c
̂Dϕ
θ -MDD(z̃n,bn+1

2 c,
̂̃Mϕ(z̃n,bn+1

2 c))

=∞ for any sample z̃n,bn+1
2 c with

⌊
n+1

2

⌋
replaced observations of x̃n, and therefore,

fsbp+ ≤
⌊
n+1

2

⌋
/n.

Step 4: Finally, we will prove that fsbp+ ≥
⌊
n+1

2

⌋
/n. Let ỹn,k be an arbitrary

sample with k <
⌊
n+1

2

⌋
replaced observations from the original. Because of the

definition of median for real numbers, there exist at least
⌊
n+1

2

⌋
observations ỹj of

the sample ỹn,k such that Dϕ
θ

(
ỹj,

̂̃Mϕ(ỹn,k)
)
≥Mei∈{1,...,n}

(
Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,k)

))
, with

j∈{1, . . . ,
⌊
n+1

2

⌋
}.

Moreover, because of ỹn,k having k <
⌊
n+1

2

⌋
replaced observations from the

sample x̃n, there exist at least one observation x̃1
ỹn,k ∈ {x̃1, . . . , x̃n} such that

x̃1
ỹn,k = ỹj1 with ỹj1 ∈ {ỹ1, . . . , ỹb

n+1
2 c}. Let M := maxi,j∈{1,...,n}Dϕ

θ (x̃i, x̃j) < ∞.
Reasoning as for Step 4 in the proof of Theorem 2.3.6, we have that

M = max
i,j∈{1,...,n}

Dϕ
θ (x̃i, x̃j) ≥ Dϕ

θ (x̃1
ỹn,k ,

̂̃Mϕ(ỹn,k))

≥ Mei∈{1,...,n}
(
Dϕ
θ

(
ỹi,
̂̃Mϕ(ỹn,k)

))
= ̂Dϕ

θ -MDD(ỹn,k,
̂̃Mϕ(ỹn,k)).

Therefore, supỹn,k
̂Dϕ
θ -MDD(ỹn,k,

̂̃Mϕ(ỹn,k))) ≤ M < ∞ with k <
⌊
n+1

2

⌋
, and

consequently, fsbp+ ≥
⌊
n+1

2

⌋
/n.

Theorem 2.3.8. For any sample of observations x̃n from an RFN X in which there
are not two identical observations, we have that

fsbp+(D̂-S(x̃n)) = 1
n

⌊
n+ 1

2

⌋
, fsbp−(D̂-S(x̃n)) = 1

n

⌊
n

2

⌋
.

Therefore, the finite sample breakdown point of the scale estimate D̂-S(x̃n) is given
by

fsbp∗(D̂-S(x̃n)) = 1
n

⌊
n

2

⌋
,

which is the highest possible fsbp∗ of a scale estimate.
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Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample in which there are not two identical ob-
servations, and denote fsbp+ = fsbp+(D̂-S(x̃n)) and fsbp− = fsbp−(D̂-S(x̃n)). The
proof for the two first conclusions is presented in four steps.

Step 1: We begin showing that fsbp− ≤
⌊
n
2

⌋
/n.

We are going to find a sample ỹn,bn2 c = (ỹ1, . . . , ỹn) with k =
⌊
n
2

⌋
replaced

observations of the original sample x̃n, such that D̂-S(ỹn,bn2 c) = 0.
We construct the contaminated sample ỹn,bn2 c from x̃n by replacing the obser-

vations x̃2, . . . , x̃bn2 c+1 by x̃1. Since for all i ∈ {1, . . . ,
⌊
n
2

⌋
+ 1}, Mej {D(ỹi, ỹj)} = 0,

then D̂-S(ỹn,bn2 c) = Mei
{

Mej {D(ỹi, ỹj)}
}

= 0.

Therefore, inf z̃
n,bn2 c

D̂-S(z̃n,bn2 c) = 0 being z̃n,bn2 c any sample with
⌊
n
2

⌋
replaced

observations of the original sample x̃n, and as a consequence, fsbp− ≤
⌊
n
2

⌋
/n.

Step 2: Now we show that fsbp− ≥
⌊
n
2

⌋
/n. Let ỹn,k be an arbitrary sample with

k <
⌊
n
2

⌋
replaced observations from the original sample x̃n.

Fix an arbitrary ỹi ∈ ỹn,k
⋂ x̃n. Since k <

⌊
n
2

⌋
observations are replaced of the

original sample x̃n, there exist at least n−
⌊
n
2

⌋
=
⌊
n+1

2

⌋
observations ỹl in the sample

ỹn,k with ỹl 6= ỹi such that ỹl ∈ x̃n. So, for at least
⌊
n+1

2

⌋
observations ỹl: D(ỹi, ỹl)

≥ mini,j∈{1,...,n}D(x̃i, x̃j) := δ > 0 and hence, Mej {D(ỹi, ỹj)} ≥ δ > 0. Since at
least there exist n − (

⌊
n
2

⌋
− 1) =

⌊
n+1

2

⌋
+ 1 observations ỹi ∈ ỹn,k

⋂ x̃n, whence
D̂-S(ỹn,k) = Mei

{
Mej {D(ỹi, ỹj)}

}
≥ δ.

Thus, inf ỹn,k D̂-S(ỹn,k) ≥ δ > 0 with k <
⌊
n
2

⌋
, and hence fsbp− ≥

⌊
n
2

⌋
/n.

Step 3: Now we will prove that fsbp+ ≤
⌊
n+1

2

⌋
/n.

We construct the sample ỹn,bn+1
2 c from x̃n by replacing the observation x̃1 by

x̃(n) +L, x̃2 by x̃(n) + 2L, . . ., x̃bn+1
2 c by x̃(n) +

⌊
n+1

2

⌋
L, with 0 < L ∈ R and x̃(n) the

extended maximum m̃axi∈{1,...,n}x̃i.
The considered sample ỹn,bn+1

2 c has k =
⌊
n+1

2

⌋
replaced observations. It satisfies

that for any i ∈ {1, . . . , n}, Mej {D(ỹi, ỹj)} ≥ L since

• if i ∈ {1, . . . ,
⌊
n+1

2

⌋
}, D(ỹi, ỹj) ≥ L for all j 6= i, whereas

• if i ∈ {
⌊
n+1

2

⌋
+ 1, . . . , n}, D(ỹi, ỹj) ≥ L for all j ∈ {1, . . . ,

⌊
n+1

2

⌋
}.

Thus, D̂-S(ỹn,bn+1
2 c) = Mei

{
Mej {D(ỹi, ỹj)}

}
≥ L.

Letting L→∞, supz̃
n,bn+1

2 c
D̂-S(z̃n,bn+1

2 c) =∞ being z̃n,bn+1
2 c any sample with

⌊
n+1

2

⌋
replaced observations of x̃n, and fsbp+ ≤

⌊
n+1

2

⌋
/n.
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Step 4: Finally, we will prove that fsbp+ ≥
⌊
n+1

2

⌋
/n. Let ỹn,k be an arbitrary

sample with k <
⌊
n+1

2

⌋
replaced observations from the original sample x̃n.

Fix an arbitrary ỹi ∈ ỹn,k
⋂ x̃n. Since k <

⌊
n+1

2

⌋
observations are replaced of the

original sample x̃n, there exist at least n− (
⌊
n+1

2

⌋
− 1) =

⌊
n
2

⌋
+ 1 observations ỹl in

the sample ỹn,k such that ỹl ∈ x̃n. So D(ỹi, ỹl) ≤ maxi,j∈{1,...,n}D(x̃i, x̃j) := M <∞
and Mej {D(ỹi, ỹj)} ≤M <∞. And, there exist at least n− (

⌊
n+1

2

⌋
− 1) =

⌊
n
2

⌋
+ 1

observations ỹi ∈ ỹn,k
⋂ x̃n, whence

D̂-S(ỹn,k) = Mei
{

Mej {D(ỹi, ỹj)}
}
≤M.

Hence, supỹn,k D̂-S(ỹn,k) ≤ M < ∞ with k <
⌊
n+1

2

⌋
and, consequently, fsbp+

≥
⌊
n+1

2

⌋
/n.

Theorem 2.3.9. For any sample of observations x̃n from an RFN X in which there
are not two identical observations, we have that

fsbp+(D̂-Q(x̃n)) = 1
n

⌊
n+ 1

2

⌋
, fsbp−(D̂-Q(x̃n)) = 1

n

⌊
n

2

⌋
.

Therefore, the finite sample breakdown point of the scale estimate D̂-Q(x̃n) is given
by

fsbp∗(D̂-Q(x̃n)) = 1
n

⌊
n

2

⌋
,

which is the highest possible fsbp∗ of a scale estimate.

Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample in which there are not two identical ob-
servations, and denote fsbp+ = fsbp+(D̂-Q(x̃n)) and fsbp−= fsbp−(D̂-Q(x̃n)). The
proof of the two first conclusions is presented in four steps.

Step 1: We begin showing that fsbp− ≤
⌊
n
2

⌋
/n.

We are going to find a sample ỹn,bn2 c = (ỹ1, . . . , ỹn) with k =
⌊
n
2

⌋
replaced

observations of the original sample x̃n, such that D̂-Q(ỹn,bn2 c) = 0.
We construct the contaminated sample ỹn,bn2 c from x̃n by replacing the obser-

vations x̃2, . . . , x̃bn2 c+1 by x̃1. Since ỹi = x̃1 for all i = 1, . . . ,
⌊
n
2

⌋
+ 1, then we have

that

D(ỹi, ỹj) = 0 for all i ∈ {1, . . . ,
⌊
n

2

⌋
} and for all j ∈ {2, . . . ,

⌊
n

2

⌋
+ 1}.

Therefore, by denoting h = bn/2c+ 1, and m =
(
h
2

)
, we have that

card{D(ỹi, ỹj) = 0 : i < j} =
(⌊

n
2

⌋
+ 1

2

)
=
(
h

2

)
= m.
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Then, D̂-Q(ỹn,bn2 c) = {D(ỹi, ỹj) : i < j}(m) = 0, whence, inf z̃
n,bn2 c

D̂-Q(z̃n,bn2 c) = 0,

being z̃n,bn2 c any sample with
⌊
n
2

⌋
replaced observations of the original sample x̃n,

then fsbp− ≤
⌊
n
2

⌋
/n.

Step 2: Now we show that fsbp− ≥
⌊
n
2

⌋
/n. Let ỹn,k be an arbitrary sam-

ple with k <
⌊
n
2

⌋
replaced observations from the original sample x̃n, and let δ

:= mini,j∈{1,...,n}D(x̃i, x̃j) > 0.
The number of distances D(ỹi, ỹj) which could be lower than δ for the sample

ỹn,k is at most
(
k+2

2

)
− 1, which is necessarily lower than or equal to

(⌊
n
2

⌋
− 1 + 2
2

)
− 1 =

(⌊
n
2

⌋
+ 1

2

)
− 1 = m− 1.

Then, D̂-Q(ỹn,k) = {D(ỹi, ỹj) : i < j}(m) ≥ δ, so inf ỹn,k D̂-Q(ỹn,k) ≥ δ > 0 with
k <

⌊
n
2

⌋
, and therefore fsbp− ≥

⌊
n
2

⌋
/n.

Step 3: Now we will prove that fsbp+ ≤
⌊
n+1

2

⌋
/n.

We construct the sample ỹn,bn+1
2 c from x̃n by replacing the observation x̃1 by

x̃(n) +L, x̃2 by x̃(n) + 2L, . . ., x̃bn+1
2 c by x̃(n) +

⌊
n+1

2

⌋
L, with 0 < L ∈ R and x̃(n) the

extended maximum m̃axi∈{1,...,n}x̃i.
The considered sample ỹn,bn+1

2 c has k =
⌊
n+1

2

⌋
replaced observations, and it

verifies that
card{D(ỹi, ỹj) > L : i < j}

= card{D(ỹ1, ỹj) > L : 1 < j}+ card{D(ỹ2, ỹj) > L : 2 < j}+ . . .

+ card
{
D(ỹbn+1

2 c, ỹj) > L :
⌊
n+ 1

2

⌋
< j

}
+ . . .+ card{D(ỹn−1, ỹn) > L}

≥ (n− 1) + (n− 2) + . . .+
(
n−

⌊
n+ 1

2

⌋)
=
⌊
n+ 1

2

⌋


2n−
⌊
n+1

2

⌋
− 1

2


 .

• If n is even, the number of distances which are greater than or equal to L is
at least equal to

⌊
n+ 1

2

⌋


2n−
⌊
n+1

2

⌋
− 1

2


 = n(3n− 2)

8 ,

and therefore, the number of distances which are lower than L is lower than
or equal to (

n

2

)
− n(3n− 2)

8 = n(n− 2)
8 .
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Since D̂-Q(ỹn,bn+1
2 c) = {D(ỹi, ỹj) : i < j}(m), and in the case that n is even,

m =
(⌊

n
2

⌋
+ 1

2

)
= n(n+ 2)

8 >
n(n− 2)

8 ,

then D̂-Q(ỹn,bn+1
2 c) = {D(ỹi, ỹj) : i < j}(m) ≥ L.

• In case that n is odd, the number of distances which are greater than or equal
to L is at least equal to

⌊
n+ 1

2

⌋


2n−
⌊
n+1

2

⌋
− 1

2


 = (n+ 1)(3n− 3)

8 ,

and therefore, the number of distances which are lower than L is at most equal
to (

n

2

)
− (n+ 1)(3n− 3)

8 = n2 − 4n+ 3
8 .

In this case, since n is odd,

m =
(⌊

n
2

⌋
+ 1

2

)
=
(
n−1

2 + 1
2

)
= (n+ 1)(n− 1)

8 >
n2 − 4n+ 3

8

since n2− 1 > n2− 4n+ 3 if n > 1. Therefore, for n odd it is also verified that
D̂-Q(ỹn,bn+1

2 c) = {D(ỹi, ỹj) : i < j}(m) ≥ L.

Letting L→∞, supz̃
n,bn+1

2 c
D̂-Q(z̃n,bn+1

2 c) =∞ being z̃n,bn+1
2 c any sample with

⌊
n+1

2

⌋
replaced observations of x̃n, and fsbp+ ≤

⌊
n+1

2

⌋
/n.

Step 4: Finally, we will prove that fsbp+ ≥
⌊
n+1

2

⌋
/n. Let ỹn,k be an arbitrary

sample with k <
⌊
n+1

2

⌋
replaced observations from the original sample x̃n.

At least n − (
⌊
n+1

2

⌋
− 1) observations belong to the original sample of observa-

tions x̃n, therefore at least
(
n−bn+1

2 c+1
2

)
distances belong to the original sample of

distances.

• If n is even, then (
n−

⌊
n+1

2

⌋
+ 1

2

)
= n(n+ 2)

8 .

We have seen in Step 3 that when n is even, m = n(n + 2)/8, whence
D̂-Q(ỹn,k) = {D(ỹi, ỹj) : i < j}(m) ≤ maxi,j∈{1,...,n}D(x̃i, x̃j) := M <∞.
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• If n is odd, then (
n−

⌊
n+1

2

⌋
+ 1

2

)
= (n+ 1)(n− 1)

8 ,

which is equal to m when n is odd, whence D̂-Q(ỹn,k) ≤M .

Thus, for any sample size n, supỹn,k D̂-Q(ỹn,k) ≤ M < ∞ with k <
⌊
n+1

2

⌋
, and

consequently, fsbp+ ≥
⌊
n+1

2

⌋
/n.

Theorem 2.3.10. For any sample of observations x̃n from an RFN X in which
there are not two identical observations, we have that

fsbp+(D̂-T(x̃n)) = 1
n

⌊
n+ 1

2

⌋
, fsbp−(D̂-T(x̃n)) = 1

n

⌊
n

2

⌋
.

Therefore, the finite sample breakdown point of the scale estimate D̂-T(x̃n) is given
by

fsbp∗(D̂-T(x̃n)) = 1
n

⌊
n

2

⌋
,

which is the highest possible fsbp∗ of a scale estimate.

Proof. Let x̃n = (x̃1, . . . , x̃n) be a sample in which there are not two identical ob-
servations, and denote fsbp+ = fsbp+(D̂-T(x̃n)) and fsbp− = fsbp−(D̂-T(x̃n)). The
proof of the two first conclusions is presented in four steps.

Step 1: We begin showing that fsbp− ≤
⌊
n
2

⌋
/n.

We are going to find a sample ỹn,bn2 c = (ỹ1, . . . , ỹn) with k =
⌊
n
2

⌋
replaced

observations of the original sample x̃n, such that D̂-T(ỹn,bn2 c) = 0.
We construct the contaminated sample ỹn,bn2 c from x̃n by replacing the obser-

vations x̃2, . . . , x̃bn2 c+1 by x̃1. Since for all i ∈ {1, . . . ,
⌊
n
2

⌋
+ 1}, Mej {D(ỹi, ỹj)} = 0,

then, by denoting h = bn/2c+ 1

D̂-T(ỹn,bn2 c) = 1
h

h∑

r=1

{
Mej {D(ỹi, ỹj)} ; i = 1, . . . , n

}
(r)

= 0.

Therefore, inf z̃
n,bn2 c

D̂-T(z̃n,bn2 c) = 0 being z̃n,bn2 c any sample with
⌊
n
2

⌋
replaced

observations of the original sample x̃n, and as a consequence, fsbp− ≤
⌊
n
2

⌋
/n.

Step 2: Now we show that fsbp− ≥
⌊
n
2

⌋
/n. Let ỹn,k be an arbitrary sample with

k <
⌊
n
2

⌋
replaced observations from the original sample x̃n.

Fix ỹi ∈ ỹn,k
⋂ x̃n. Since k <

⌊
n
2

⌋
observations are replaced of the original

sample x̃n, there exist at least n −
⌊
n
2

⌋
=
⌊
n+1

2

⌋
observations ỹl in the sample ỹn,k
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with ỹl 6= ỹi such that ỹl ∈ x̃n. So, for at least
⌊
n+1

2

⌋
observations ỹl: D(ỹi, ỹl)

≥ mini,j∈{1,...,n}D(x̃i, x̃j) := δ > 0 and hence, Mej {D(ỹi, ỹj)} ≥ δ > 0.
Moreover, at most

⌊
n
2

⌋
− 1 = h − 2 observations are replaced from the origi-

nal sample x̃n, then there exist at least two observations ỹi1 , ỹi2 ∈ ỹn,k
⋂ x̃n such

that Mej {D(ỹi1 , ỹj)} and Mej {D(ỹi2 , ỹj)} belong to the first h elements of the set{
Mej {D(ỹi, ỹj)} ; i = 1, . . . , n}. Therefore,

D̂-T(ỹn,k) = 1
h

h∑

r=1

{
Mej {D(ỹi, ỹj)} ; i = 1, . . . , n

}
(r)
≥ 2δ

h
,

whence inf ỹn,k D̂-T(ỹn,k) ≥ 2δ/h > 0 with k <
⌊
n
2

⌋
, and hence fsbp− ≥

⌊
n
2

⌋
/n.

Step 3: Now we will prove that fsbp+ ≤
⌊
n+1

2

⌋
/n.

We construct the sample ỹn,bn+1
2 c from x̃n by replacing the observation x̃1 by

x̃(n) +L, x̃2 by x̃(n) + 2L, . . ., x̃bn+1
2 c by x̃(n) +

⌊
n+1

2

⌋
L, with 0 < L ∈ R and x̃(n) the

extended maximum m̃axi∈{1,...,n}x̃i.
The considered sample ỹn,bn+1

2 c has k =
⌊
n+1

2

⌋
replaced observations. It satisfies

that for any i ∈ {1, . . . , n}, Mej {D(ỹi, ỹj)} ≥ L, since
• if i ∈ {1, . . . ,

⌊
n+1

2

⌋
}, then D(ỹi, ỹj) ≥ L for all j 6= i, and

• if i ∈ {
⌊
n+1

2

⌋
+ 1, . . . , n}, then D(ỹi, ỹj) ≥ L for all j ∈ {1, . . . ,

⌊
n+1

2

⌋
}.

Consequently, D̂-T(ỹn,bn+1
2 c) = 1

h

∑h
r=1

{
Mej {D(ỹi, ỹj)} ; i = 1, . . . , n

}
(r)
≥ L.

Letting L→∞, supz̃
n,bn+1

2 c
D̂-T(z̃n,bn+1

2 c) =∞ being z̃n,bn+1
2 c any sample with

⌊
n+1

2

⌋
replaced observations of x̃n, and fsbp+ ≤

⌊
n+1

2

⌋
/n.

Step 4: Finally, we will prove that fsbp+ ≥
⌊
n+1

2

⌋
/n. Let ỹn,k be an arbitrary

sample with k <
⌊
n+1

2

⌋
replaced observations from the original sample x̃n.

Fix ỹi ∈ ỹn,k
⋂ x̃n. Since k <

⌊
n+1

2

⌋
observations are replaced of the original

sample x̃n, there exist at least n− (
⌊
n+1

2

⌋
− 1) =

⌊
n
2

⌋
+ 1 = h observations ỹl in the

sample ỹn,k such that ỹl ∈ x̃n, whence D(ỹi, ỹl) ≤ maxi,j∈{1,...,n}D(x̃i, x̃j) := M <∞
and Mej {D(ỹi, ỹj)} ≤M <∞.

Moreover, at least there exist n − (
⌊
n+1

2

⌋
− 1) = h observations ỹi ∈ ỹn,k

⋂ x̃n
and, hence,

D̂-T(ỹn,k) = 1
h

h∑

r=1

{
Mej {D(ỹi, ỹj)} ; i = 1, . . . , n

}
(r)
≤M.

Consequently, supỹn,k D̂-T(ỹn,k) ≤ M < ∞ with k <
⌊
n+1

2

⌋
, whence fsbp+

≥
⌊
n+1

2

⌋
/n.
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2.4 Analysis of the robustness of the different
scale measures by means of simulation studies

In this section, several simulations are set up to analyze and illustrate the robust
behaviour of the different scale estimates from an empirical point of view.

For this purpose, a key question should be posed, namely, what outliers mean
when we are dealing with fuzzy-valued data instead of real-valued data?

Firstly, a response for this question is presented. Secondly, a simulation study to
obtain the empirical value of the finite sample breakdown point of the different scale
estimates will be performed; this study will confirm the theoretical results obtained
in Section 2.3. Finally, the sensitivity curves, which inform us of the effect that a
single outlier produces in the value of the estimators, will be graphically plotted for
each estimator.

All simulations in this section are developed according to the two simulation
procedures explained in Section 1.7. Regarding the 2ndSP, data have been gener-
ated by assuming the reference interval to be [0, 100] and two different beta β(p, q)
distributions have been considered: a symmetrical and an asymmetric one.

It should also be commented that in the conducted simulations in this section, the
standard deviation has been calculated by using the 2-norm distance ρ2 = D`

1, and
for ̂Dϕ

θ -ADD(x̃n,
̂̃Mϕ(x̃n)) and ̂Dϕ

θ -MDD(x̃n,
̂̃Mϕ(x̃n)) the choice has corresponded to

θ = 1 and ϕ = `, whereas for D̂-S(x̃n), D̂-Q(x̃n) and D̂-T(x̃n) the 1-norm distance
ρ1 has been employed.

2.4.1 Outliers in dealing with fuzzy number-valued data

The meaning of the outliers when we are dealing with real-valued data is well-
known. They are atypical observations, that is, as said by Maronna et al. [81], they
are “observations that are well separated from the majority or ‘bulk’ of the data, or
in some way deviate from the general pattern of the data”.

In the setting of the fuzzy data, the notion of outlier for real-valued case still
makes sense: they are observations that are ‘separated’ from the majority of the
data because of they having either a different ‘location’ or a different ‘imprecision’
(more concretely, observations with a similar location to the majority of the data
but with a different scale on the core and the support, that is, observations that are
‘wider’ or ‘narrower’ than the rest of the data).
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Taking this into account, three different types of outliers will be considered for
all the simulations conducted in this work. We explain now how to generate these
outliers.

First, for each type of outlier, the four-tuple (a, b, c, d) is generated from the
distribution of the random vector (X1, X2, X3, X4) in the non-contaminated sample.
Then, we construct the outlier ỹi = Tra〈y1

i , y
2
i , y

3
i , y

4
i 〉 in the following way. Let

r1
i , r

2
i ∈ R:

• Outlier of translation: y1
i = a+ r1

i , y2
i = b, y3

i = c, y4
i = d.

• Outlier of scale on the core and support: y1
i = a, y2

i = |r2
i | ·b, y3

i = |r2
i | ·c,

y4
i = |r2

i | · d.

• Outlier of both translation and scale: y1
i = a+r1

i , y2
i = |r2

i |·b, y3
i = |r2

i |·c,
y4
i = |r2

i | · d.

The three types of outliers are shown in Figures 2.2 and 2.3 for the first simulation
procedure (1stSP) and Figures 2.4 and 2.5 for the second simulation procedure
(2ndSP). In all cases, the size of the original sample is 10 and two outliers have been
added to the sample.

Regarding the 1stSP, Figure 2.2 illustrates Case 1 and Figure 2.3 illustrates
Case 2. For the outliers of translation, we have chosen r1

1 = 10 and r1
2 = −10, for

the outliers of scale r2
1 = 5 and r2

2 = 10 and for the outliers of both translation and
scale r1

1 = 10, r1
2 = −10, r2

1 = 5 and r2
2 = 10.

Regarding the 2ndSP, Figure 2.4 illustrates the symmetric case, generating the
non-contaminated sample from a β(100, 100), and Figure 2.5 illustrates the asym-
metric case, generating the non-contaminated sample from a β(1, 100). The weights
in both cases have been ω1 = 0.8, ω2 = 0.1 and ω3 = 0.1.

In the symmetric case, for the outliers of translation we have chosen r1
1 = 30 and

r1
2 = −30, for the outliers of scale r2

1 = 5 and r2
2 = 10 and for the outliers of both

translation and scale r1
1 = 30, r1

2 = −30, r2
1 = 5 and r2

2 = 10.
In the asymmetric case, for the outliers of translation we have chosen r1

1 = 30
and r1

2 = 60, for the outliers of scale r2
1 = 40 and r2

2 = 80 and for the outliers of
both translation and scale r1

1 = 30, r1
2 = 60, r2

1 = 40 and r2
2 = 80.



Simulations-based analysis of the robustness of the scale measures 89

−20 −10 0 10 20

0

1

Original sample

−20 −10 0 10 20

0

1

Outliers of translation

−20 −10 0 10 20

0

1

Outliers of scale on the core and support
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Outliers of both translation and scale

Figure 2.2: From top to bottom, the non-contaminated sample, the contaminated sample
by two outliers of translation (in red), the contaminated sample by two outliers of scale
on core and support and the contaminated sample by two outliers of both - 1stSP Case 1
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Outliers of both translation and scale

Figure 2.3: From top to bottom, the non-contaminated sample, the contaminated sample
by two outliers of translation (in red), the contaminated sample by two outliers of scale
on core and support and the contaminated sample by two outliers of both - 1stSP Case 2
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Figure 2.4: From top to bottom, the non-contaminated sample, the contaminated sample
by two outliers of translation (in red), the contaminated sample by two outliers of scale

on core and support and the contaminated sample by two outliers of both - 2ndSP
Symmetric distribution
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Figure 2.5: From top to bottom, the non-contaminated sample, the contaminated sample
by two outliers of translation (in red), the contaminated sample by two outliers of scale

on core and support and the contaminated sample by two outliers of both - 2ndSP
Asymmetric distribution
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2.4.2 Simulations-based analysis of the finite sample break-
down point: explosion and implosion breakdown point

In Section 2.3 the value of the finite sample breakdown point has been obtained for
the different scale measures when fuzzy-valued data are considered. This value is
now to be empirically corroborated and illustrated.

Recall that when we deal with estimates of scale, two different types of breakdown
point need to be studied: the one caused by the presence of outliers in the sample,
which can make the estimate explode to infinite (explosion breakdown point), and
the one caused by the presence of inliers in the sample, which can make the estimate
implode to zero (implosion breakdown point).

By means of simulations according to the FIRST SIMULATION PROCEDURE
(1stSP), we are first going to see what the empirical value is for all estimates.
The non-contaminated sample has been simulated from the 1stSP considering the
two cases (see Page 38). Moreover, two sample sizes have been considered in the
simulation study, namely, an even sample size (n = 100) and an odd sample size
(n = 101).

Explosion breakdown point:
To study the breakdown point for explosion, we have considered the three types

of outliers explained in Subsection 2.4.1. Namely, if ỹi is the i-th outlier, then we
have chosen

r1
i =





i+1
2 · 1010 if i is odd

− i
2 · 1010 if i is even

that is, we have considered observations that are increasingly distant from the data
at both right and left sides, and

r2
i = i · 1010,

that is, observations that are getting wider.
For the estimator ̂ρ2-MDD(x̃n, x̃n) we have chosen

r1
i = i · 1010,

that is, we have considered observations that are increasingly distant from the data
only at the right side. In this way, we can see better what the explosion breakdown
point is for this estimator.

For each type of outlier, the general scheme of the simulation has been structured
as follows:
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Step 1. A sample x̃n of n trapezoidal fuzzy numbers has been simulated from
the 1stSP, with n ∈ {100, 101} and considering the two cases of simulation involved
in this procedure.

Step 2. Contaminated samples ỹn,k have been obtained by replacing k ob-
servations of the original sample x̃n by k outliers ỹi, with k ∈ {1, . . . ,

⌊
n+1

2

⌋
} and

i ∈ {1, . . . , k}. Overall, k contaminated samples, one for each k value, have been
considered.

Step 3. The values of the different scale measures have been calculated for the
original sample without contamination x̃n, and for each of k contaminated samples
ỹn,k.

The simulation-based conclusions in this study are presented through Tables 2.3
to 2.6 and Figures 2.6 to 2.17. More concretely, tables gather the values of the
different estimators when outliers are introduced in the sample by replacement, and
figures graphically display these values for each estimator.

Implosion breakdown point:
To study the breakdown point for implosion, we have considered the inliers being

all of them equal to one observation chosen randomly from the non-contaminated
sample, but for the estimator ̂ρ2-MDD(x̃n, x̃n), for which to make it implode to zero
we have considered the inliers being all of them equal to the mean of the rest of
observations.

The general scheme of the simulation has been structured as follows:
Step 1. A sample x̃n of n trapezoidal fuzzy numbers has been simulated from

the 1stSP, with n ∈ {100, 101} and considering the two cases of simulation involved
in this procedure.

Step 2. Contaminated samples ỹn,k have been obtained by replacing k obser-
vations of the original sample x̃n by k inliers ỹ, with k ∈ {1, . . . , n− 1}. In total, k
contaminated samples, one for each k value.

Step 3. The values of the different scale measures have been calculated for the
original sample without contamination x̃n, and for each of k contaminated samples
ỹn,k.

The simulation-based conclusions in this study are presented through Tables 2.7
to 2.10 and Figures 2.18 to 2.21. More concretely, tables gather the values of the
different estimators when inliers are introduced in the sample by replacement, and
figures graphically display these values for each estimator.
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Table 2.3: Explosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by outliers of translation (at the top), scale on core and support (in
the middle) and both (at the bottom), with k ∈ {0, 1, 2, 10, 20, 30, 40, 48, 49, 50} - 1stSP Case 1

# outliers (translation) 0 1 2 10 20 30 40 48 49 50

ρ̂2-SD(̃xn) 1.69 9.95E+08 1.41E+09 1.05E+10 2.77E+10 4.98E+10 7.58E+10 9.90E+10 1.02E+11 1.05E+11

̂ρ2-ADD(̃xn, x̃n) 1.48 1.98E+08 2.00E+08 3.00E+09 1.10E+10 2.40E+10 4.20E+10 6.00E+10 6.38E+10 6.50E+10

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 1.31 1.00E+08 2.00E+08 3.00E+09 1.10E+10 2.40E+10 4.20E+10 6.00E+10 6.25E+10 6.50E+10

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.81 1.00E+08 2.00E+08 3.00E+09 1.10E+10 2.40E+10 4.20E+10 6.00E+10 6.25E+10 6.50E+10

̂ρ2-MDD(̃xn, x̃n) 1.32 1.00E+08 3.00E+08 5.50E+09 2.10E+10 4.65E+10 8.20E+10 1.18E+11 1.23E+11 1.28E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 1.09 1.10 1.11 1.17 1.25 1.37 1.76 2.92 3.79 5.00E+09

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 1.59 1.57 1.57 1.71 1.96 2.33 2.94 3.97 4.85 5.00E+09

ρ̂1-S(̃xn) 1.57 1.57 1.60 1.76 1.91 2.30 3.13 4.80 5.88 1.00E+10

ρ̂1-Q(̃xn) 1.09 1.09 1.11 1.24 1.44 1.71 2.29 4.09 5.88 1.00E+10

ρ̂1-T(̃xn) 1.35 1.35 1.37 1.49 1.67 1.91 2.40 3.72 4.68 1.00E+10

# outliers (scale) 0 1 2 10 20 30 40 48 49 50

ρ̂2-SD(̃xn) 1.53 1.09E+09 2.44E+09 2.07E+10 5.42E+10 9.40E+10 1.37E+11 1.71E+11 1.75E+11 1.80E+11

̂ρ2-ADD(̃xn, x̃n) 1.35 2.18E+08 6.47E+08 1.09E+10 3.72E+10 7.35E+10 1.15E+11 1.49E+11 1.53E+11 1.57E+11

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 1.18 1.10E+08 3.29E+08 6.02E+09 2.30E+10 5.09E+10 8.98E+10 1.29E+11 1.34E+11 1.40E+11

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.63 1.18E+08 3.54E+08 6.48E+09 2.47E+10 5.48E+10 9.66E+10 1.39E+11 1.44E+11 1.50E+11

̂ρ2-MDD(̃xn, x̃n) 1.18 1.10E+08 3.30E+08 6.05E+09 2.31E+10 5.12E+10 9.02E+10 1.29E+11 1.35E+11 1.40E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.98 1.01 1.02 1.08 1.33 1.65 2.23 3.42 4.26 5.48E+09

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 1.46 1.49 1.51 1.62 1.93 2.25 3.44 6.29 7.97 5.89E+09

ρ̂1-S(̃xn) 1.45 1.47 1.53 1.67 1.93 2.22 2.69 3.71 5.50 1.10E+10

ρ̂1-Q(̃xn) 0.99 1.01 1.02 1.17 1.39 1.66 2.04 3.19 5.50 1.10E+10

ρ̂1-T(̃xn) 1.21 1.23 1.24 1.41 1.63 1.85 2.16 2.88 3.80 1.10E+10

# outliers (both) 0 1 2 10 20 30 40 48 49 50

ρ̂2-SD(̃xn) 2.07 1.68E+09 3.42E+09 2.84E+10 7.44E+10 1.29E+11 1.90E+11 2.39E+11 2.45E+11 2.52E+11

̂ρ2-ADD(̃xn, x̃n) 1.55 3.34E+08 8.74E+08 1.45E+10 4.99E+10 9.96E+10 1.58E+11 2.07E+11 2.13E+11 2.20E+11

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 1.33 1.39E+08 4.18E+08 7.67E+09 2.93E+10 6.48E+10 1.14E+11 1.64E+11 1.71E+11 1.78E+11

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.85 2.34E+08 6.24E+08 1.07E+10 4.03E+10 8.89E+10 1.56E+11 2.24E+11 2.33E+11 2.43E+11

̂ρ2-MDD(̃xn, x̃n) 1.31 1.69E+08 5.07E+08 9.29E+09 3.55E+10 7.85E+10 1.39E+11 1.99E+11 2.07E+11 2.15E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 1.05 1.06 1.06 1.20 1.38 1.74 2.52 4.72 5.62 6.97E+09

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 1.53 1.53 1.54 1.68 1.80 2.31 3.04 5.74 6.43 1.17E+10

ρ̂1-S(̃xn) 1.46 1.52 1.52 1.72 1.89 2.28 3.00 4.64 5.88 1.39E+10

ρ̂1-Q(̃xn) 1.05 1.06 1.07 1.22 1.37 1.70 2.33 3.85 5.88 1.39E+10

ρ̂1-T(̃xn) 1.26 1.28 1.28 1.47 1.61 1.89 2.43 3.64 4.27 1.39E+10
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Table 2.4: Explosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by outliers of translation (at the top), scale on core and support (in
the middle) and both (at the bottom), with k ∈ {0, 1, 2, 10, 20, 30, 40, 49, 50, 51} - 1stSP Case 1

# outliers (translation) 0 1 2 10 20 30 40 49 50 51

ρ̂2-SD(̃xn) 2.01 9.90E+08 1.41E+09 1.04E+10 2.76E+10 4.96E+10 7.54E+10 1.02E+11 1.05E+11 1.08E+11

̂ρ2-ADD(̃xn, x̃n) 1.66 1.96E+08 1.98E+08 2.97E+09 1.09E+10 2.38E+10 4.16E+10 6.31E+10 6.44E+10 6.82E+10

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 1.45 9.90E+07 1.98E+08 2.97E+09 1.09E+10 2.38E+10 4.16E+10 6.19E+10 6.44E+10 6.69E+10

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 2.05 9.90E+07 1.98E+08 2.97E+09 1.09E+10 2.38E+10 4.16E+10 6.19E+10 6.44E+10 6.69E+10

̂ρ2-MDD(̃xn, x̃n) 1.43 9.90E+07 2.97E+08 5.45E+09 2.08E+10 4.60E+10 8.12E+10 1.21E+11 1.26E+11 1.31E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 1.22 1.23 1.23 1.26 1.34 1.65 2.04 5.66 5.70 1.00E+10

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 1.77 1.75 1.80 1.90 2.12 2.57 3.49 5.48 5.79 1.00E+10

ρ̂1-S(̃xn) 1.70 1.73 1.76 1.88 2.09 2.65 3.36 6.98 7.02 1.00E+10

ρ̂1-Q(̃xn) 1.17 1.19 1.21 1.31 1.50 1.91 2.46 5.87 7.02 1.00E+10

ρ̂1-T(̃xn) 1.47 1.48 1.51 1.60 1.77 2.12 2.67 5.74 5.88 1.00E+10

# outliers (scale) 0 1 2 10 20 30 40 49 50 51

ρ̂2-SD(̃xn) 2.51 1.88E+09 4.18E+09 3.55E+10 9.31E+10 1.61E+11 2.35E+11 3.02E+11 3.09E+11 3.16E+11

̂ρ2-ADD(̃xn, x̃n) 1.82 3.72E+08 1.10E+09 1.86E+10 6.37E+10 1.26E+11 1.97E+11 2.62E+11 2.69E+11 2.76E+11

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 1.58 1.87E+08 5.62E+08 1.03E+10 3.93E+10 8.71E+10 1.54E+11 2.29E+11 2.39E+11 2.48E+11

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 2.08 1.97E+08 5.92E+08 1.08E+10 4.14E+10 9.17E+10 1.62E+11 2.42E+11 2.51E+11 2.61E+11

̂ρ2-MDD(̃xn, x̃n) 1.52 1.88E+08 5.63E+08 1.03E+10 3.94E+10 8.73E+10 1.54E+11 2.30E+11 2.39E+11 2.49E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 1.04 1.05 1.09 1.33 1.62 1.99 3.14 6.70 7.23 1.89E+10

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 1.58 1.61 1.67 1.83 2.05 2.60 4.21 9.86 11.35 1.99E+10

ρ̂1-S(̃xn) 1.48 1.49 1.51 1.81 2.13 2.60 3.61 6.34 7.12 1.89E+10

ρ̂1-Q(̃xn) 1.05 1.08 1.11 1.29 1.46 1.78 2.73 6.08 7.12 1.89E+10

ρ̂1-T(̃xn) 1.24 1.27 1.30 1.49 1.67 2.02 2.88 5.37 6.08 1.89E+10

# outliers (both) 0 1 2 10 20 30 40 49 50 51

ρ̂2-SD(̃xn) 2.20 4.44E+09 9.64E+09 8.18E+10 2.14E+11 3.72E+11 5.41E+11 6.97E+11 7.14E+11 7.31E+11

̂ρ2-ADD(̃xn, x̃n) 1.79 8.79E+08 2.54E+09 4.27E+10 1.46E+11 2.90E+11 4.54E+11 6.07E+11 6.23E+11 6.40E+11

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 1.57 4.28E+08 1.28E+09 2.35E+10 8.99E+10 1.99E+11 3.51E+11 5.24E+11 5.46E+11 5.67E+11

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 2.11 5.44E+08 1.47E+09 2.64E+10 1.01E+11 2.23E+11 3.92E+11 5.87E+11 6.10E+11 6.34E+11

̂ρ2-MDD(̃xn, x̃n) 1.52 4.44E+08 1.33E+09 2.44E+10 9.32E+10 2.06E+11 3.64E+11 5.44E+11 5.66E+11 5.89E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 1.22 1.23 1.21 1.41 1.74 2.11 3.28 8.95 11.50 4.32E+10

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 1.60 1.63 1.66 1.79 1.95 2.59 3.59 10.30 13.73 4.32E+10

ρ̂1-S(̃xn) 1.72 1.75 1.76 1.90 2.13 2.56 3.71 8.76 11.50 4.32E+10

ρ̂1-Q(̃xn) 1.17 1.19 1.21 1.34 1.58 1.87 2.62 8.51 11.50 4.32E+10

ρ̂1-T(̃xn) 1.45 1.48 1.49 1.64 1.81 2.06 2.78 7.42 9.95 4.32E+10
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Table 2.5: Explosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by outliers of translation (at the top), scale on core and support (in
the middle) and both (at the bottom), with k ∈ {0, 1, 2, 10, 20, 30, 40, 48, 49, 50} - 1stSP Case 2

# outliers (translation) 0 1 2 10 20 30 40 48 49 50

ρ̂2-SD(̃xn) 1.01 9.95E+08 1.41E+09 1.05E+10 2.77E+10 4.98E+10 7.58E+10 9.90E+10 1.02E+11 1.05E+11

̂ρ2-ADD(̃xn, x̃n) 0.91 1.98E+08 2.00E+08 3.00E+09 1.10E+10 2.40E+10 4.20E+10 6.00E+10 6.38E+10 6.50E+10

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.75 1.00E+08 2.00E+08 3.00E+09 1.10E+10 2.40E+10 4.20E+10 6.00E+10 6.25E+10 6.50E+10

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.17 1.00E+08 2.00E+08 3.00E+09 1.10E+10 2.40E+10 4.20E+10 6.00E+10 6.25E+10 6.50E+10

̂ρ2-MDD(̃xn, x̃n) 0.79 1.00E+08 3.00E+08 5.50E+09 2.10E+10 4.65E+10 8.20E+10 1.18E+11 1.23E+11 1.28E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.69 0.69 0.70 0.75 0.90 0.92 1.03 1.67 1.88 5.00E+09

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.99 1.00 1.04 1.16 1.29 1.46 1.57 1.81 2.09 5.00E+09

ρ̂1-S(̃xn) 0.91 0.96 0.97 1.09 1.30 1.45 1.80 3.02 3.76 1.00E+10

ρ̂1-Q(̃xn) 0.50 0.51 0.52 0.63 0.78 1.02 1.36 2.28 3.76 1.00E+10

ρ̂1-T(̃xn) 0.80 0.82 0.83 0.95 1.08 1.22 1.41 2.16 2.58 1.00E+10

# outliers (scale) 0 1 2 10 20 30 40 48 49 50

ρ̂2-SD(̃xn) 1.07 7.89E+08 1.76E+09 1.49E+10 3.91E+10 6.77E+10 9.84E+10 1.23E+11 1.26E+11 1.29E+11

̂ρ2-ADD(̃xn, x̃n) 0.94 1.57E+08 4.66E+08 7.85E+09 2.68E+10 5.30E+10 8.27E+10 1.07E+11 1.10E+11 1.13E+11

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.79 7.77E+07 2.33E+08 4.27E+09 1.63E+10 3.61E+10 6.37E+10 9.14E+10 9.52E+10 9.91E+10

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.19 7.93E+07 2.38E+08 4.36E+09 1.67E+10 3.69E+10 6.50E+10 9.33E+10 9.72E+10 1.01E+11

̂ρ2-MDD(̃xn, x̃n) 0.75 7.93E+07 2.38E+08 4.36E+09 1.66E+10 3.69E+10 6.50E+10 9.32E+10 9.71E+10 1.01E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.61 0.62 0.62 0.71 0.82 1.13 1.47 2.01 2.33 3.89E+09

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.93 0.92 0.97 1.14 1.23 1.99 2.40 4.98 5.72 3.97E+09

ρ̂1-S(̃xn) 0.87 0.87 0.87 0.97 1.13 1.41 2.16 3.64 4.61 7.77E+09

ρ̂1-Q(̃xn) 0.54 0.54 0.55 0.65 0.78 1.01 1.42 2.74 4.61 7.77E+09

ρ̂1-T(̃xn) 0.77 0.77 0.77 0.85 0.94 1.15 1.53 2.52 3.01 7.77E+09

# outliers (both) 0 1 2 10 20 30 40 48 49 50

ρ̂2-SD(̃xn) 1.30 9.99E+08 1.52E+09 1.14E+10 3.00E+10 5.36E+10 8.11E+10 1.05E+11 1.08E+11 1.12E+11

̂ρ2-ADD(̃xn, x̃n) 1.13 1.99E+08 2.82E+08 4.37E+09 1.56E+10 3.29E+10 5.55E+10 7.70E+10 7.97E+10 8.28E+10

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.96 9.78E+07 2.02E+08 3.01E+09 1.10E+10 2.40E+10 4.20E+10 6.01E+10 6.24E+10 6.51E+10

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.38 1.21E+08 2.71E+08 4.27E+09 1.58E+10 3.47E+10 6.08E+10 8.70E+10 9.05E+10 9.42E+10

̂ρ2-MDD(̃xn, x̃n) 0.94 1.00E+08 3.01E+08 5.52E+09 2.11E+10 4.67E+10 8.23E+10 1.18E+11 1.23E+11 1.28E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.86 0.86 0.89 0.93 1.08 1.31 1.53 2.89 2.91 4.89E+09

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 1.20 1.21 1.21 1.23 1.58 2.21 2.81 4.32 4.52 6.03E+09

ρ̂1-S(̃xn) 1.10 1.10 1.15 1.29 1.53 2.03 2.71 5.73 5.82 9.78E+09

ρ̂1-Q(̃xn) 0.65 0.67 0.69 0.80 1.02 1.32 1.87 3.71 5.82 9.78E+09

ρ̂1-T(̃xn) 0.95 0.95 0.97 1.05 1.29 1.52 2.04 3.80 3.88 9.78E+09
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Table 2.6: Explosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by outliers of translation (at the top), scale on core and support (in
the middle) and both (at the bottom), with k ∈ {0, 1, 2, 10, 20, 30, 40, 49, 50, 51} - 1stSP Case 2

# outliers (translation) 0 1 2 10 20 30 40 49 50 51

ρ̂2-SD(̃xn) 1.14 9.90E+08 1.41E+09 1.04E+10 2.76E+10 4.96E+10 7.54E+10 1.02E+11 1.05E+11 1.08E+11

̂ρ2-ADD(̃xn, x̃n) 0.98 1.96E+08 1.98E+08 2.97E+09 1.09E+10 2.38E+10 4.16E+10 6.31E+10 6.44E+10 6.82E+10

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.78 9.90E+07 1.98E+08 2.97E+09 1.09E+10 2.38E+10 4.16E+10 6.19E+10 6.44E+10 6.69E+10

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.22 9.90E+07 1.98E+08 2.97E+09 1.09E+10 2.38E+10 4.16E+10 6.19E+10 6.44E+10 6.69E+10

̂ρ2-MDD(̃xn, x̃n) 0.73 9.90E+07 2.97E+08 5.45E+09 2.08E+10 4.60E+10 8.12E+10 1.21E+11 1.26E+11 1.31E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.57 0.57 0.57 0.67 0.77 1.05 1.27 2.21 2.63 1.00E+10

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.81 0.81 0.81 0.89 1.12 1.24 1.62 2.19 2.79 1.00E+10

ρ̂1-S(̃xn) 0.80 0.80 0.80 0.88 1.10 1.45 2.22 4.17 4.84 1.00E+10

ρ̂1-Q(̃xn) 0.51 0.51 0.52 0.58 0.75 1.02 1.44 2.89 4.84 1.00E+10

ρ̂1-T(̃xn) 0.69 0.69 0.69 0.74 0.92 1.19 1.63 2.78 3.21 1.00E+10

# outliers (scale) 0 1 2 10 20 30 40 49 50 51

ρ̂2-SD(̃xn) 1.08 2.62E+08 5.83E+08 4.96E+09 1.30E+10 2.25E+10 3.27E+10 4.21E+10 4.31E+10 4.41E+10

̂ρ2-ADD(̃xn, x̃n) 0.96 5.18E+07 1.54E+08 2.59E+09 8.88E+09 1.76E+10 2.74E+10 3.66E+10 3.76E+10 3.85E+10

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.78 2.55E+07 7.66E+07 1.40E+09 5.36E+09 1.19E+10 2.09E+10 3.13E+10 3.25E+10 3.38E+10

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.20 2.73E+07 8.20E+07 1.50E+09 5.74E+09 1.27E+10 2.24E+10 3.35E+10 3.49E+10 3.62E+10

̂ρ2-MDD(̃xn, x̃n) 0.79 2.62E+07 7.85E+07 1.44E+09 5.50E+09 1.22E+10 2.15E+10 3.21E+10 3.34E+10 3.47E+10

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.65 0.67 0.67 0.73 0.99 1.24 1.37 2.21 2.73 2.58E+09

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.97 0.97 0.95 1.00 1.28 1.81 3.17 5.13 6.55 2.76E+09

ρ̂1-S(̃xn) 0.88 0.90 0.90 1.07 1.29 1.70 2.29 3.87 4.92 2.58E+09

ρ̂1-Q(̃xn) 0.55 0.56 0.57 0.66 0.81 1.12 1.50 2.98 4.92 2.58E+09

ρ̂1-T(̃xn) 0.77 0.78 0.79 0.86 1.03 1.32 1.74 2.73 3.26 2.58E+09

# outliers (both) 0 1 2 10 20 30 40 49 50 51

ρ̂2-SD(̃xn) 1.03 1.39E+09 2.60E+09 2.13E+10 5.58E+10 9.76E+10 1.44E+11 1.87E+11 1.92E+11 1.97E+11

̂ρ2-ADD(̃xn, x̃n) 0.94 2.75E+08 6.42E+08 1.06E+10 3.65E+10 7.35E+10 1.18E+11 1.61E+11 1.66E+11 1.71E+11

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.78 1.04E+08 2.98E+08 5.32E+09 2.03E+10 4.49E+10 7.92E+10 1.18E+11 1.23E+11 1.28E+11

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.17 1.95E+08 4.88E+08 8.29E+09 3.12E+10 6.87E+10 1.21E+11 1.80E+11 1.88E+11 1.95E+11

̂ρ2-MDD(̃xn, x̃n) 0.83 1.39E+08 4.16E+08 7.63E+09 2.91E+10 6.45E+10 1.14E+11 1.70E+11 1.77E+11 1.84E+11

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.71 0.74 0.74 0.82 0.95 1.12 1.32 1.76 1.81 5.55E+09

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.99 1.02 1.01 1.09 1.48 1.76 1.99 3.03 3.41 9.93E+09

ρ̂1-S(̃xn) 0.94 0.97 0.97 1.10 1.23 1.50 2.11 3.15 3.40 1.05E+10

ρ̂1-Q(̃xn) 0.52 0.53 0.54 0.64 0.79 1.01 1.39 2.31 3.40 1.05E+10

ρ̂1-T(̃xn) 0.83 0.85 0.85 0.95 1.05 1.24 1.56 2.18 2.44 1.05E+10
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Figure 2.6: Explosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by outliers of translation, k varying from 0 to 50 - 1stSP Case 1
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Figure 2.7: Explosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by outliers of scale on core and support,

k varying from 0 to 50 - 1stSP Case 1
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Figure 2.8: Explosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by outliers of both translation and scale on core and support, k

varying from 0 to 50 - 1stSP Case 1
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Figure 2.9: Explosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by outliers of translation, k varying from 0 to 51 - 1stSP Case 1
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Figure 2.10: Explosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by outliers of scale on core and support,

k varying from 0 to 51 - 1stSP Case 1
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Figure 2.11: Explosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by outliers of both translation and scale on core and support, k

varying from 0 to 51 - 1stSP CASE1
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Figure 2.12: Explosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by outliers of translation, k varying from 0 to 50 - 1stSP Case 2
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Figure 2.13: Explosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by outliers of scale on core and support,

k varying from 0 to 50 - 1stSP Case 2
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Figure 2.14: Explosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by outliers of both translation and scale on core and support, k

varying from 0 to 50 - 1stSP Case 2
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Figure 2.15: Explosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by outliers of translation, k varying from 0 to 51 - 1stSP Case 2
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Figure 2.16: Explosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by outliers of scale on core and support,

k varying from 0 to 51 - 1stSP Case 2
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Figure 2.17: Explosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by outliers of both translation and scale on core and support, k

varying from 0 to 51 - 1stSP Case 2
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Table 2.7: Implosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by inliers, with k ∈ {0, 1, 2, 10, 49, 50, 51, 98, 99} - 1stSP Case 1

# inliers 0 1 2 10 49 50 51 98 99

ρ̂2-SD(x̃n) 1.93 1.93 1.93 1.92 1.56 1.56 1.55 0.31 0

̂ρ2-ADD(x̃n, x̃n) 1.62 1.62 1.62 1.61 1.15 1.15 1.12 0.06 0

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 1.40 1.40 1.40 1.38 0.86 0.85 0.83 0.03 0

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.96 1.96 1.95 1.91 1.13 1.12 1.09 0.04 0

̂ρ2-MDD(x̃n, x̃n) 1.34 1.35 1.36 1.37 0.43 0.18 0 0 0

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 1.08 1.09 1.08 0.95 0.11 0 0 0 0

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 1.50 1.50 1.50 1.33 0.16 0 0 0 0

ρ̂1-S(x̃n) 1.44 1.44 1.44 1.34 0.22 0 0 0 0

ρ̂1-Q(x̃n) 1.02 1.02 1.01 0.97 0.22 0 0 0 0

ρ̂1-T(x̃n) 1.22 1.22 1.20 1.12 0.22 0 0 0 0

Table 2.8: Implosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by inliers, with k ∈ {0, 1, 2, 10, 49, 50, 51, 99, 100} - 1stSP Case 1

# inliers 0 1 2 10 49 50 51 99 100

ρ̂2-SD(x̃n) 1.80 1.80 1.80 1.89 1.96 1.95 1.95 0.29 0

̂ρ2-ADD(x̃n, x̃n) 1.45 1.45 1.45 1.58 1.70 1.69 1.69 0.06 0

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 1.27 1.27 1.27 1.37 1.34 1.32 1.30 0.02 0

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.75 1.75 1.76 1.92 1.98 1.91 1.90 0.04 0

̂ρ2-MDD(x̃n, x̃n) 1.25 1.23 1.21 1.14 0.50 0.35 0 0 0

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 1.02 1.02 1.01 1.10 0.29 0 0 0 0

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 1.38 1.40 1.42 1.66 0.41 0 0 0 0

ρ̂1-S(x̃n) 1.40 1.40 1.40 1.60 0.29 0 0 0 0

ρ̂1-Q(x̃n) 1.02 1.02 1.02 1.12 0.29 0 0 0 0

ρ̂1-T(x̃n) 1.21 1.21 1.21 1.35 0.29 0 0 0 0
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Table 2.9: Implosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by inliers, with k ∈ {0, 1, 2, 10, 49, 50, 51, 98, 99} - 1stSP Case 2

# inliers 0 1 2 10 49 50 51 98 99

ρ̂2-SD(x̃n) 1.20 1.20 1.20 1.20 1.15 1.15 1.15 0.23 0

̂ρ2-ADD(x̃n, x̃n) 1.05 1.04 1.04 1.06 1.02 1.02 1.02 0.04 0

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 0.87 0.87 0.87 0.89 0.79 0.78 0.78 0.02 0

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.28 1.28 1.28 1.29 1.11 1.09 1.08 0.03 0

̂ρ2-MDD(x̃n, x̃n) 0.81 0.79 0.79 0.78 0.36 0.15 0 0 0

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 0.72 0.71 0.71 0.75 0.08 0 0 0 0

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 0.98 0.98 0.98 1.14 0.13 0 0 0 0

ρ̂1-S(x̃n) 0.94 0.94 0.94 1.05 0.16 0 0 0 0

ρ̂1-Q(x̃n) 0.59 0.59 0.59 0.59 0.13 0 0 0 0

ρ̂1-T(x̃n) 0.83 0.83 0.83 0.89 0.16 0 0 0 0

Table 2.10: Implosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by inliers, with k ∈ {0, 1, 2, 10, 49, 50, 51, 99, 100} - 1stSP Case 2

# inliers 0 1 2 10 49 50 51 99 100

ρ̂2-SD(x̃n) 1.16 1.16 1.16 1.13 0.92 0.91 0.91 0.16 0

̂ρ2-ADD(x̃n, x̃n) 1.04 1.04 1.03 1.01 0.71 0.69 0.69 0.03 0

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 0.86 0.86 0.86 0.85 0.54 0.53 0.53 0.02 0

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.30 1.29 1.28 1.23 0.76 0.74 0.74 0.02 0

̂ρ2-MDD(x̃n, x̃n) 0.82 0.83 0.83 0.80 0.47 0.43 0 0 0

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 0.73 0.73 0.72 0.69 0.09 0 0 0 0

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 1.07 1.08 1.09 1.05 0.14 0 0 0 0

ρ̂1-S(x̃n) 0.99 0.99 1.00 1.01 0.09 0 0 0 0

ρ̂1-Q(x̃n) 0.61 0.61 0.61 0.61 0.09 0 0 0 0

ρ̂1-T(x̃n) 0.88 0.89 0.88 0.86 0.09 0 0 0 0
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Figure 2.18: Implosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by inliers, k varying from 0 to 99 - 1stSP Case 1
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Figure 2.19: Implosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by inliers, k varying from 0 to 100 - 1stSP Case 1
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Figure 2.20: Implosion breakdown point: values of the scale estimators for a sample of size 100
with k observations replaced by inliers, k varying from 0 to 99 - 1stSP Case 2
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Figure 2.21: Implosion breakdown point: values of the scale estimators for a sample of size 101
with k observations replaced by inliers, k varying from 0 to 100 - 1stSP Case 2
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Regarding explosion we can conclude that for the sample size n = 100 (101), by
looking at Table 2.3 (2.4) and Figures 2.6 to 2.8 (2.9 to 2.11) for Case 1 and Table 2.5
(2.6) and Figures 2.12 to 2.14 (2.15 to 2.17) for Case 2, we can see that the minimum
number of perturbed observations by outliers that makes the estimator to increase
arbitrarily, independently of the simulation case and the type of outlier considered,
has been

• 1 for the estimators ρ̂2-SD(x̃n), ̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,
̂̃Me(x̃n)),

̂D `
1-ADD(x̃n,

̂̃M`(x̃n)) and ̂ρ2-MDD(x̃n, x̃n);

• 50 (51) for the estimators ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)), ̂D `

1-MDD(x̃n,
̂̃M`(x̃n)),

ρ̂1-S(x̃n), ρ̂1-Q(x̃n) and ρ̂1-T(x̃n).

Therefore, these results show that the empirical value for the explosion break-
down point matches the theoretical value obtained in Section 2.3.

On the other hand, and concerning implosion, for the sample size n = 100 (101),
by looking at Table 2.7 (2.8) and Figure 2.18 (2.19) for Case 1 and Table 2.9 (2.10)
and Figure 2.20 (2.21) for Case 2, we can see that the minimum number of perturbed
observations by inliers that makes the estimator to implode to zero, independently
of the simulation case considered, has been

• 99 (100) for the estimators ρ̂2-SD(x̃n), ̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,
̂̃Me(x̃n))

and ̂D `
1-ADD(x̃n,

̂̃M`(x̃n));

• 51 for the estimator ̂ρ2-MDD(x̃n, x̃n);

• 50 for the estimators ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)), ̂D `

1-MDD(x̃n,
̂̃M`(x̃n)), ρ̂1-S(x̃n),

ρ̂1-Q(x̃n) and ρ̂1-T(x̃n).

Therefore, these results show that the empirical value for the implosion break-
down point matches the theoretical value obtained in the previous section.

Similar developments are now to be carried out in accordance with the
SECOND SIMULATION PROCEDURE (2ndSP) (see Page 39). Notice that the
notion of breakdown point does not make sense with this procedure, because all
generated fuzzy numbers must be within a bounded interval ([0, 100] for this study)
and, for this reason, any scale estimator never can explode to infinity. Therefore,
instead of breakdown point or finite sample breakdown point, we will refer to pseudo-
breakdown point or pseudo-finite sample breakdown point when we are dealing with
data generated from random fuzzy numbers with a bounded reference set.
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Two sizes of sample have been considered in the simulation study, namely, an
even sample size (n = 20) and an odd sample size (n = 21). For the sample size
n = 20 we have chosen the weights ω1 = 0.8, ω2 = 0.1 and ω3 = 0.1, and for the
sample size n = 21 the weights have been ω1 = 16/21, ω2 = 3/21 and ω3 = 2/21.

Explosion pseudo-breakdown point:

The outlier ỹi has been constructed as follows, depending of the type of distri-
bution generating the data of the non-contaminated sample.

• Symmetric distribution:

− Outlier of translation: the non-contaminated sample has been generated
on the basis of a beta distribution β(1000, 1000) and the fuzzy numbers
have been constrained to be in the interval [47.5, 52.5]. Then, we have
chosen

r1
i =





8 + i+1
2 · 4 if i is odd

−(8 + i
2 · 4) if i is even.

For the estimator ̂ρ2-MDD(x̃n, x̃n) we have chosen r1
i = 8 + i · 4.

− Outlier of scale on the core and support: the non-contaminated sample
has been generated on the basis of a beta distribution β(5000, 5000) and
the fuzzy numbers have been constrained to be in the interval [49.5, 50.5].
Then, we have chosen r2

i = i · 10.

− Outlier of both translation and scale: the non-contaminated sample has
been generated on the basis of a beta distribution β(1000, 1000) and the
fuzzy numbers have been constrained to be in the interval [47.5, 52.5].
Then, we have chosen

r1
i =





8 + i+1
2 · 4 if i is odd

−(8 + i
2 · 4) if i is even

r2
i = 2.

For the estimator ̂ρ2-MDD(x̃n, x̃n) we have chosen r1
i = 8 + i · 4.

• Asymmetric distribution:

− Outlier of translation: the non-contaminated sample has been generated
on the basis of a beta distribution β(1, 100) and the fuzzy numbers have
been constrained to be in the interval [0, 5]. Then, we have chosen r1

i

= 40 + i · 5.
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− Outlier of scale on the core and support: the non-contaminated sample
has been generated on the basis of a beta distribution β(1, 1000) and the
fuzzy numbers have been constrained to be in the interval [0, 1]. Then,
we have chosen r2

i = i · 100.

− Outlier of both translation and scale: the non-contaminated sample has
been generated on the basis of a beta distribution β(1, 100) and the fuzzy
numbers have been constrained to be in the interval [0, 5]. Then, we have
chosen

r1
i = 40 + i · 5, r2

i = 2.

For each type of outlier, the general scheme of the simulation is the same that
the one for the 1stSP (see Page 93).

Remark 2.4.1. It should be pointed out that, in case any of the four numbers char-
acterizing the outlier ỹi = Tra(y[1]

i , y
[2]
i , y

[3]
i , y

[4]
i ) falls outside the reference interval

[0, 100], then it is automatically replaced by 0 if it is negative, or by 100 if it is over
100.

The simulation-based conclusions in this study are presented through Tables 2.11
to 2.14 and Figures 2.22 to 2.33. More concretely, tables gather the values of the
different estimators when outliers are introduced in the sample by replacement, and
figures graphically display these values for each estimator.

Implosion pseudo-breakdown point:

The non-contaminated sample has been generated on the basis of a beta distri-
bution β(100, 100) regarding the symmetric distribution, and on the basis of a beta
distribution β(1, 100) regarding the asymmetric distribution.

The general scheme of the simulation is the same that the one for the 1stSP (see
Page 94).

The simulation-based conclusions in this study are presented through Tables 2.15
to 2.18 and Figures 2.34 to 2.37. More concretely, tables gather the values of the
different estimators when inliers are introduced in the sample by replacement, and
figures graphically display these values for each estimator.
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Table 2.11: Explosion pseudo-breakdown point: values of the scale estimators for a sample
of size 20 with k observations replaced by outliers of translation (at the top), scale

on core and support (in the middle) and both (at the bottom), with k ∈ {0, 1, . . . , 10} - 2ndSP
Symmetric distribution

# outliers (translation) 0 1 2 3 4 5 6 7 8 9 10

ρ̂2-SD(̃xn) 0.84 2.84 3.89 5.29 6.38 7.77 8.98 10.42 11.75 13.26 14.71

̂ρ2-ADD(̃xn, x̃n) 0.78 1.51 1.92 2.95 3.44 4.75 5.36 6.94 7.65 9.47 10.38

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.69 1.29 1.85 2.62 3.36 4.31 5.28 6.45 7.58 8.95 10.29

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.93 1.55 2.11 2.88 3.64 4.58 5.56 6.74 7.85 9.21 10.55

̂ρ2-MDD(̃xn, x̃n) 0.74 1.00 1.90 2.74 3.91 5.42 7.03 8.76 10.70 12.90 15.27

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.68 0.75 0.71 0.71 0.76 0.76 0.84 0.84 0.81 1.19 6.55

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.89 0.97 1.04 1.00 1.16 1.14 1.29 1.41 1.54 1.90 6.81

ρ̂1-S(̃xn) 0.88 0.99 1.09 1.10 1.24 1.24 1.29 1.41 1.41 2.16 11.98

ρ̂1-Q(̃xn) 0.64 0.69 0.74 0.78 0.91 0.93 1.10 1.22 1.30 2.16 8.00

ρ̂1-T(̃xn) 0.76 0.86 0.94 0.97 1.05 1.06 1.18 1.23 1.26 1.72 11.56

# outliers (scale) 0 1 2 3 4 5 6 7 8 9 10

ρ̂2-SD(̃xn) 0.18 1.15 2.55 4.21 6.06 8.04 9.97 11.69 13.26 14.56 15.63

̂ρ2-ADD(̃xn, x̃n) 0.17 0.53 1.45 2.74 4.31 6.09 7.95 9.80 11.50 12.98 14.29

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.14 0.38 0.88 1.65 2.67 3.97 5.49 7.15 8.97 10.86 12.85

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.21 0.48 1.06 1.94 3.10 4.57 6.25 8.01 9.82 11.70 13.68

̂ρ2-MDD(̃xn, x̃n) 0.19 0.32 0.84 1.67 2.75 4.11 5.69 7.43 9.26 11.17 13.20

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.13 0.11 0.13 0.18 0.18 0.20 0.23 0.24 0.24 0.26 2.66

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.19 0.17 0.16 0.21 0.23 0.26 0.30 0.42 0.54 0.57 3.06

ρ̂1-S(̃xn) 0.19 0.19 0.22 0.22 0.22 0.22 0.27 0.28 0.32 0.42 5.07

ρ̂1-Q(̃xn) 0.14 0.15 0.15 0.16 0.17 0.18 0.22 0.23 0.27 0.42 4.89

ρ̂1-T(̃xn) 0.17 0.17 0.17 0.19 0.19 0.20 0.22 0.25 0.27 0.31 4.96

# outliers (both) 0 1 2 3 4 5 6 7 8 9 10

ρ̂2-SD(̃xn) 0.71 2.88 3.91 5.34 6.41 7.82 9.01 10.47 11.79 13.31 14.74

̂ρ2-ADD(̃xn, x̃n) 0.65 1.47 1.84 2.96 3.42 4.84 5.40 7.08 7.82 9.68 10.62

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.57 1.19 1.74 2.50 3.25 4.25 5.18 6.38 7.54 8.96 10.29

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.72 1.44 2.08 2.92 3.74 4.81 5.78 7.05 8.23 9.67 11.04

̂ρ2-MDD(̃xn, x̃n) 0.53 0.87 1.61 2.62 3.86 5.33 6.87 8.69 10.69 12.90 15.32

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.47 0.50 0.57 0.55 0.60 0.62 0.62 0.75 0.93 1.26 6.43

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.62 0.66 0.75 0.74 0.79 0.89 1.03 1.16 1.44 2.07 7.18

ρ̂1-S(̃xn) 0.69 0.78 0.85 0.87 0.89 1.01 1.10 1.16 1.47 1.91 11.55

ρ̂1-Q(̃xn) 0.46 0.56 0.67 0.69 0.72 0.79 0.86 1.04 1.21 1.91 8.00

ρ̂1-T(̃xn) 0.59 0.69 0.76 0.77 0.80 0.85 0.91 1.02 1.20 1.56 11.28
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Table 2.12: Explosion pseudo-breakdown point: values of the scale estimators for a sample
of size 21 with k observations replaced by outliers of translation (at the top), scale

on core and support (in the middle) and both (at the bottom), with k ∈ {0, 1, . . . , 11} - 2ndSP
Symmetric distribution

# outliers (translation) 0 1 2 3 4 5 6 7 8 9 10 11

ρ̂2-SD(̃xn) 0.82 2.59 3.79 5.04 6.22 7.50 8.76 10.11 11.46 12.90 14.36 15.87

̂ρ2-ADD(̃xn, x̃n) 0.75 1.38 1.81 2.70 3.26 4.41 5.06 6.42 7.25 8.85 9.88 11.61

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.66 1.15 1.73 2.45 3.19 4.11 5.02 6.06 7.21 8.49 9.84 11.26

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.83 1.32 1.90 2.60 3.34 4.24 5.12 6.15 7.30 8.57 9.92 11.33

̂ρ2-MDD(̃xn, x̃n) 0.68 1.01 1.55 2.47 3.62 4.85 6.30 7.98 9.86 11.88 14.14 16.59

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.49 0.55 0.51 0.65 0.55 0.71 0.79 0.71 0.98 1.10 1.81 11.57

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.75 0.79 0.83 0.88 0.88 0.95 1.00 1.00 1.01 1.16 1.97 11.59

ρ̂1-S(̃xn) 0.69 0.69 0.74 0.79 0.79 1.14 1.16 1.16 1.32 1.39 2.12 11.96

ρ̂1-Q(̃xn) 0.49 0.50 0.57 0.64 0.69 0.79 0.81 0.83 1.14 1.37 2.12 8.00

ρ̂1-T(̃xn) 0.55 0.55 0.58 0.67 0.69 0.89 0.90 0.90 1.07 1.27 1.84 11.58

# outliers (scale) 0 1 2 3 4 5 6 7 8 9 10 11

ρ̂2-SD(̃xn) 0.22 0.93 2.05 3.39 4.88 6.50 8.19 9.67 11.00 12.15 13.06 13.77

̂ρ2-ADD(̃xn, x̃n) 0.19 0.44 1.15 2.17 3.42 4.84 6.40 7.96 9.41 10.69 11.82 12.71

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.17 0.34 0.72 1.29 2.05 3.02 4.19 5.48 6.88 8.35 9.87 11.24

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.23 0.43 0.86 1.52 2.37 3.48 4.81 6.20 7.65 9.12 10.64 12.01

̂ρ2-MDD(̃xn, x̃n) 0.20 0.25 0.66 1.30 2.17 3.24 4.46 5.86 7.34 8.92 10.51 12.13

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.15 0.14 0.17 0.20 0.21 0.24 0.26 0.26 0.26 0.26 0.39 4.11

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.21 0.20 0.20 0.19 0.23 0.27 0.35 0.34 0.40 0.55 0.57 4.29

ρ̂1-S(̃xn) 0.23 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.31 0.39 0.46 4.11

ρ̂1-Q(̃xn) 0.14 0.15 0.17 0.18 0.18 0.18 0.20 0.22 0.25 0.26 0.46 3.72

ρ̂1-T(̃xn) 0.18 0.19 0.22 0.22 0.22 0.23 0.23 0.23 0.25 0.26 0.35 3.89

# outliers (both) 0 1 2 3 4 5 6 7 8 9 10 11

ρ̂2-SD(̃xn) 1.00 2.80 3.84 5.17 6.25 7.60 8.78 10.19 11.48 12.96 14.36 15.92

̂ρ2-ADD(̃xn, x̃n) 0.91 1.57 2.00 2.91 3.44 4.64 5.29 6.70 7.43 9.13 9.99 11.92

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.81 1.38 1.91 2.65 3.36 4.30 5.21 6.30 7.36 8.68 9.92 11.44

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 1.03 1.62 2.13 2.85 3.57 4.51 5.44 6.52 7.56 8.87 10.08 11.60

̂ρ2-MDD(̃xn, x̃n) 0.85 0.99 1.69 2.60 3.73 5.12 6.62 8.33 10.25 12.31 14.57 17.05

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.68 0.73 0.82 0.82 0.91 1.31 1.29 1.35 1.41 1.53 1.64 11.57

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.97 1.02 1.14 1.15 1.15 1.74 1.78 1.80 1.82 1.91 1.91 11.51

ρ̂1-S(̃xn) 0.99 1.08 1.11 1.37 1.51 1.80 1.92 1.98 2.16 2.18 2.29 11.72

ρ̂1-Q(̃xn) 0.62 0.73 0.73 0.78 1.03 1.25 1.49 1.55 1.67 1.92 2.29 8.00

ρ̂1-T(̃xn) 0.77 0.84 0.93 1.05 1.21 1.47 1.69 1.71 1.78 1.89 2.00 11.34
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Table 2.13: Explosion pseudo-breakdown point: values of the scale estimators for a sample
of size 20 with k observations replaced by outliers of translation (at the top), scale

on core and support (in the middle) and both (at the bottom), with k ∈ {0, 1, . . . , 10} - 2ndSP
Asymmetric distribution

# outliers (translation) 0 1 2 3 4 5 6 7 8 9 10

ρ̂2-SD(̃xn) 0.88 9.73 14.12 17.75 20.96 23.86 26.58 29.05 31.32 33.34 35.09

̂ρ2-ADD(̃xn, x̃n) 0.76 4.34 8.49 12.64 16.65 20.43 23.98 27.13 29.85 32.04 33.59

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.58 2.77 5.21 7.87 10.81 14.00 17.39 21.09 25.04 29.22 33.59

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.98 3.16 5.61 8.20 11.11 14.29 17.59 21.26 25.18 29.38 33.78

̂ρ2-MDD(̃xn, x̃n) 0.75 2.36 4.86 7.66 10.72 13.96 17.47 21.26 25.12 29.33 33.62

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.53 0.52 0.56 0.56 0.57 0.69 0.69 0.78 0.84 1.14 23.20

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.89 0.84 0.84 0.86 0.82 0.89 0.91 0.92 0.94 1.06 23.16

ρ̂1-S(̃xn) 0.68 0.68 0.79 0.79 0.82 0.96 0.96 0.96 0.98 1.11 45.05

ρ̂1-Q(̃xn) 0.51 0.53 0.57 0.57 0.58 0.66 0.66 0.73 0.87 1.11 10.00

ρ̂1-T(̃xn) 0.60 0.60 0.69 0.69 0.70 0.80 0.80 0.81 0.84 0.94 44.63

# outliers (scale) 0 1 2 3 4 5 6 7 8 9 10

ρ̂2-SD(̃xn) 0.17 0.71 1.52 2.49 3.55 4.70 5.90 7.13 8.38 9.63 10.86

̂ρ2-ADD(̃xn, x̃n) 0.14 0.36 0.87 1.62 2.54 3.57 4.69 5.90 7.11 8.33 9.52

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.09 0.19 0.39 0.68 1.07 1.55 2.13 2.79 3.55 4.40 5.35

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.17 0.38 0.79 1.41 2.23 3.25 4.48 5.89 7.51 9.33 11.34

̂ρ2-MDD(̃xn, x̃n) 0.10 0.25 0.57 1.05 1.69 2.49 3.45 4.57 5.83 7.20 8.72

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.05 0.06 0.07 0.09 0.11 0.14 0.19 0.22 0.27 0.35 1.22

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.10 0.12 0.13 0.16 0.20 0.25 0.35 0.42 0.50 0.61 2.46

ρ̂1-S(̃xn) 0.08 0.09 0.10 0.13 0.16 0.20 0.22 0.23 0.32 0.40 2.03

ρ̂1-Q(̃xn) 0.06 0.06 0.08 0.09 0.12 0.15 0.19 0.21 0.28 0.40 1.95

ρ̂1-T(̃xn) 0.07 0.07 0.08 0.10 0.13 0.16 0.20 0.21 0.28 0.33 1.92

# outliers (both) 0 1 2 3 4 5 6 7 8 9 10

ρ̂2-SD(̃xn) 0.75 9.81 14.26 17.90 21.12 24.05 26.70 29.17 31.40 33.42 35.18

̂ρ2-ADD(̃xn, x̃n) 0.67 4.33 8.56 12.74 16.78 20.60 24.09 27.25 29.93 32.12 33.68

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.53 2.75 5.22 7.95 10.94 14.17 17.57 21.28 25.18 29.34 33.68

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.84 3.09 5.58 8.34 11.32 14.55 17.93 21.66 25.56 29.75 34.09

̂ρ2-MDD(̃xn, x̃n) 0.74 2.30 4.85 7.64 10.77 14.11 17.65 21.48 25.33 29.55 33.63

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.55 0.59 0.56 0.57 0.68 0.85 0.95 1.12 1.54 2.03 23.93

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.90 0.98 1.05 0.98 1.01 1.25 1.37 1.67 2.29 2.72 24.84

ρ̂1-S(̃xn) 0.73 0.73 0.74 0.95 1.07 1.16 1.16 1.29 1.68 1.80 45.57

ρ̂1-Q(̃xn) 0.52 0.55 0.60 0.66 0.74 0.84 0.95 1.08 1.34 1.80 10.00

ρ̂1-T(̃xn) 0.61 0.62 0.64 0.78 0.88 0.98 0.98 1.11 1.35 1.55 44.80
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Table 2.14: Explosion pseudo-breakdown point: values of the scale estimators for a sample
of size 21 with k observations replaced by outliers of translation (at the top), scale

on core and support (in the middle) and both (at the bottom), with k ∈ {0, 1, . . . , 11} - 2ndSP
Asymmetric distribution

# outliers (translation) 0 1 2 3 4 5 6 7 8 9 10 11

ρ̂2-SD(̃xn) 0.66 9.54 13.89 17.48 20.65 23.57 26.25 28.72 30.99 33.06 34.98 36.63

̂ρ2-ADD(̃xn, x̃n) 0.62 4.10 8.15 12.19 16.11 19.86 23.35 26.52 29.30 31.63 33.50 34.76

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.50 2.61 4.97 7.54 10.37 13.41 16.68 20.18 23.89 27.82 32.03 34.36

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.75 2.88 5.25 7.81 10.65 13.72 17.00 20.49 24.21 28.14 32.32 34.62

̂ρ2-MDD(̃xn, x̃n) 0.63 2.34 4.71 7.40 10.26 13.42 16.79 20.38 24.07 28.00 32.22 36.50

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.43 0.49 0.57 0.60 0.60 0.68 0.80 0.92 1.14 1.54 1.68 44.03

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.67 0.75 0.79 0.81 0.92 0.93 1.13 1.23 1.31 1.53 1.61 44.56

ρ̂1-S(̃xn) 0.54 0.65 0.78 0.78 0.84 0.85 1.00 1.12 1.22 1.36 1.36 44.23

ρ̂1-Q(̃xn) 0.42 0.45 0.48 0.50 0.63 0.64 0.71 0.83 0.92 1.08 1.36 5.00

ρ̂1-T(̃xn) 0.47 0.54 0.63 0.63 0.72 0.74 0.84 0.92 1.01 1.11 1.12 37.38

# outliers (scale) 0 1 2 3 4 5 6 7 8 9 10 11

ρ̂2-SD(̃xn) 0.19 0.98 2.14 3.50 5.02 6.65 8.36 10.13 11.92 13.67 14.97 15.92

̂ρ2-ADD(̃xn, x̃n) 0.15 0.46 1.19 2.24 3.52 4.98 6.54 8.28 10.03 11.75 13.21 14.31

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.09 0.22 0.49 0.89 1.42 2.09 2.89 3.82 4.87 6.04 7.20 8.24

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.17 0.44 1.00 1.86 2.99 4.41 6.11 8.08 10.32 12.82 15.29 17.48

̂ρ2-MDD(̃xn, x̃n) 0.13 0.30 0.73 1.38 2.26 3.35 4.66 6.22 7.93 9.86 11.79 13.78

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.04 0.04 0.05 0.06 0.07 0.08 0.10 0.24 0.25 0.30 0.48 2.89

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.07 0.07 0.09 0.09 0.12 0.19 0.21 0.46 0.49 0.59 0.85 6.10

ρ̂1-S(̃xn) 0.06 0.06 0.06 0.07 0.10 0.13 0.14 0.24 0.25 0.31 0.49 2.89

ρ̂1-Q(̃xn) 0.05 0.05 0.05 0.06 0.07 0.08 0.13 0.20 0.24 0.30 0.48 2.81

ρ̂1-T(̃xn) 0.05 0.05 0.06 0.06 0.07 0.10 0.11 0.22 0.22 0.28 0.43 2.78

# outliers (both) 0 1 2 3 4 5 6 7 8 9 10 11

ρ̂2-SD(̃xn) 0.70 9.60 13.96 17.55 20.74 23.66 26.34 28.84 31.14 33.26 35.13 36.80

̂ρ2-ADD(̃xn, x̃n) 0.67 4.15 8.21 12.25 16.18 19.94 23.43 26.64 29.46 31.83 33.66 34.93

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 0.51 2.63 4.99 7.57 10.40 13.46 16.73 20.26 24.02 28.00 32.18 34.53

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 0.82 2.94 5.30 7.88 10.71 13.78 17.03 20.57 24.35 28.34 32.53 34.87

̂ρ2-MDD(̃xn, x̃n) 0.70 2.18 4.56 7.18 10.18 13.34 16.70 20.37 24.16 28.07 32.27 36.62

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 0.51 0.51 0.53 0.59 0.62 0.65 0.69 0.78 1.16 1.29 1.73 44.54

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 0.74 0.82 0.85 0.86 0.93 1.07 1.20 1.25 1.61 1.73 1.98 45.00

ρ̂1-S(̃xn) 0.73 0.77 0.83 0.87 0.93 1.00 1.03 1.03 1.12 1.17 1.39 44.58

ρ̂1-Q(̃xn) 0.41 0.49 0.55 0.58 0.63 0.69 0.73 0.83 1.00 1.07 1.39 5.00

ρ̂1-T(̃xn) 0.61 0.69 0.71 0.73 0.79 0.83 0.85 0.87 1.01 1.04 1.19 36.83
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Figure 2.22: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 20 with k observations replaced by outliers of translation,

k varying from 0 to 10 - 2ndSP
Symmetric distribution



Simulations-based analysis of the robustness of the scale measures 125

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0

5

10

15

SD

number of outliers (scale)

●
●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0

2

4

6

8

10

12

14

ADDmean

number of outliers (scale)

●
●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0

2

4

6

8

10

12

ADDmedian1norm

number of outliers (scale)

●
●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0

2

4

6

8

10

12

14

ADDmedianwabl

number of outliers (scale)

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0

2

4

6

8

10

12

MDDmean

number of outliers (scale)

● ● ●
● ● ● ● ● ● ●

●

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

MDDmedian1norm

number of outliers (scale)

● ● ●
● ● ●

●

●

●
●

●

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

MDDmedianwabl

number of outliers (scale)

● ● ● ● ● ● ● ● ●
●

●

0 2 4 6 8 10

0

1

2

3

4

5

Sn

number of outliers (scale)

● ● ● ● ● ● ● ● ●

●

●

0 2 4 6 8 10

0

1

2

3

4

5

Qn

number of outliers (scale)

● ● ● ● ● ● ● ● ● ●

●

0 2 4 6 8 10

0

1

2

3

4

5

Tn

number of outliers (scale)

Figure 2.23: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 20 with k observations replaced by outliers of scale

on core and support, k varying from 0 to 10 - 2ndSP
Symmetric distribution
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Figure 2.24: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 20 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 10 - 2ndSP
Symmetric distribution
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Figure 2.25: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 21 with k observations replaced by outliers of translation,

k varying from 0 to 11 - 2ndSP
Symmetric distribution
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Figure 2.26: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 21 with k observations replaced by outliers of scale

on core and support, k varying from 0 to 11 - 2ndSP
Symmetric distribution
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Figure 2.27: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 21 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 11 - 2ndSP
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Figure 2.28: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 20 with k observations replaced by outliers of translation,

k varying from 0 to 10 - 2ndSP
Asymmetric distribution
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Figure 2.29: Explosion pseudo-breakdown point: values of the scale estimators for a sample of
size 20 with k observations replaced by outliers of scale
on core and support, k varying from 0 to 10 - 2ndSP
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Figure 2.30: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 20 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 10 - 2ndSP
Asymmetric distribution
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Figure 2.31: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 21 with k observations replaced by outliers of translation,

k varying from 0 to 11 - 2ndSP
Asymmetric distribution
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Figure 2.32: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 21 with k observations replaced by outliers of scale

on core and support, k varying from 0 to 11 - 2ndSP
Asymmetric distribution
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Figure 2.33: Explosion pseudo-breakdown point: values of the scale estimators
for a sample of size 21 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 11 - 2ndSP
Asymmetric distribution
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Table 2.15: Implosion pseudo-breakdown point: values of the scale estimators for a sample of
size 20 with k observations replaced by inliers, with k ∈ {0, 1, 2, 3, 9, 10, 11, 18, 19} - 2ndSP

Symmetric distribution

# inliers 0 1 2 3 9 10 11 18 19

ρ̂2-SD(x̃n) 3.69 3.69 3.69 3.55 3.19 3.16 3.12 0.28 0

̂ρ2-ADD(x̃n, x̃n) 2.83 2.86 2.83 2.66 2.12 2.05 1.92 0.12 0

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 2.36 2.42 2.39 2.24 1.50 1.41 1.29 0.06 0

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 3.38 3.44 3.40 3.15 2.33 2.24 2.07 0.08 0

̂ρ2-MDD(x̃n, x̃n) 1.91 1.91 1.93 1.89 1.92 0.99 0 0 0

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 1.61 1.71 1.54 1.57 0.54 0 0 0 0

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 2.33 2.33 2.29 2.50 0.82 0 0 0 0

ρ̂1-S(x̃n) 2.55 2.55 2.47 2.26 1.09 0 0 0 0

ρ̂1-Q(x̃n) 2.09 2.16 2.10 2.00 1.09 0 0 0 0

ρ̂1-T(x̃n) 2.23 2.32 2.29 2.18 1.09 0 0 0 0

Table 2.16: Implosion pseudo-breakdown point: values of the scale estimators for a sample of
size 21 with k observations replaced by inliers, with k ∈ {0, 1, 2, 3, 9, 10, 11, 19, 20} - 2ndSP

Symmetric distribution

# inliers 0 1 2 3 9 10 11 19 20

ρ̂2-SD(x̃n) 3.88 3.85 3.82 3.77 3.56 3.50 3.43 0.95 0

̂ρ2-ADD(x̃n, x̃n) 3.04 2.99 2.93 2.85 2.53 2.45 2.38 0.41 0

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 2.50 2.46 2.40 2.31 1.84 1.74 1.64 0.17 0

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 3.52 3.48 3.39 3.30 2.63 2.44 2.27 0.29 0

̂ρ2-MDD(x̃n, x̃n) 2.36 2.38 2.44 2.44 1.83 1.39 0 0 0

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 1.69 1.66 1.44 1.61 1.48 0 0 0 0

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 2.48 2.45 2.24 2.16 2.19 0 0 0 0

ρ̂1-S(x̃n) 2.44 2.28 2.24 2.18 1.48 0 0 0 0

ρ̂1-Q(x̃n) 1.89 1.84 1.83 1.76 1.48 0 0 0 0

ρ̂1-T(x̃n) 2.15 2.09 1.99 1.86 1.48 0 0 0 0
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Table 2.17: Implosion pseudo-breakdown point: values of the scale estimators for a sample of
size 20 with k observations replaced by inliers, with k ∈ {0, 1, 2, 3, 9, 10, 11, 18, 19} - 2ndSP

Asymmetric distribution

# inliers 0 1 2 3 9 10 11 18 19

ρ̂2-SD(x̃n) 1.16 1.16 1.13 1.09 0.95 0.90 0.89 0.23 0

̂ρ2-ADD(x̃n, x̃n) 0.88 0.90 0.88 0.85 0.69 0.63 0.61 0.10 0

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 0.65 0.66 0.64 0.61 0.43 0.38 0.34 0.04 0

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.10 1.13 1.11 1.08 0.80 0.65 0.61 0.07 0

̂ρ2-MDD(x̃n, x̃n) 0.69 0.65 0.62 0.52 0.33 0.12 0 0 0

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 0.54 0.59 0.51 0.42 0.17 0 0 0 0

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 0.77 0.88 0.94 0.82 0.23 0 0 0 0

ρ̂1-S(x̃n) 0.68 0.72 0.77 0.74 0.33 0 0 0 0

ρ̂1-Q(x̃n) 0.52 0.56 0.57 0.56 0.33 0 0 0 0

ρ̂1-T(x̃n) 0.61 0.66 0.69 0.68 0.33 0 0 0 0

Table 2.18: Implosion pseudo-breakdown point: values of the scale estimators for a sample of
size 21 with k observations replaced by inliers, with k ∈ {0, 1, 2, 3, 9, 10, 11, 19, 20} - 2ndSP

Asymmetric distribution

# inliers 0 1 2 3 9 10 11 19 20

ρ̂2-SD(x̃n) 2.23 2.25 2.26 2.28 2.36 2.38 2.39 0.34 0

̂ρ2-ADD(x̃n, x̃n) 1.34 1.37 1.38 1.39 1.51 1.53 1.55 0.15 0

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 0.86 0.89 0.90 0.91 0.96 0.90 0.87 0.05 0

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.48 1.54 1.56 1.61 1.74 1.65 1.59 0.10 0

̂ρ2-MDD(x̃n, x̃n) 0.89 0.80 0.82 0.87 0.67 0.66 0 0 0

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 0.54 0.53 0.60 0.65 0.05 0 0 0 0

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 0.52 0.71 0.71 0.77 0.06 0 0 0 0

ρ̂1-S(x̃n) 0.61 0.70 0.72 0.83 0.07 0 0 0 0

ρ̂1-Q(x̃n) 0.49 0.53 0.55 0.55 0.07 0 0 0 0

ρ̂1-T(x̃n) 0.53 0.57 0.62 0.66 0.07 0 0 0 0
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Figure 2.34: Implosion pseudo-breakdown point: values of the scale estimators for a sample of
size 20 with k observations replaced by inliers, k varying from 0 to 19 - 2ndSP

Symmetric distribution



Simulations-based analysis of the robustness of the scale measures 139

● ● ●
● ● ● ●

● ●
●

●
● ●

● ●
● ●

●

●

●

●

0 5 10 15 20

0

1

2

3

4

SD

number of inliers

●
●

●
●

●
● ●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ADDmean

number of inliers

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

ADDmedian1norm

number of inliers

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ADDmedianwabl

number of inliers

● ●

● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

MDDmean

number of inliers

●
●

●

●

●
● ●

● ●

●

● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.0

0.5

1.0

1.5

MDDmedian1norm

number of inliers

●
●

●

●

●

● ●
● ●

●

● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

MDDmedianwabl

number of inliers

●

●
●

● ●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

Sn

number of inliers

●

● ●

● ●
● ●

● ●

●

● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.0

0.5

1.0

1.5

Qn

number of inliers

●

●

●

● ●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

Tn

number of inliers

Figure 2.35: Implosion pseudo-breakdown point: values of the scale estimators for a sample of
size 21 with k observations replaced by inliers, k varying from 0 to 20 - 2ndSP

Symmetric distribution



140 Chapter 2. Robust scale measures in dealing with fuzzy data

● ●

●

●
● ● ● ●

●

●

● ●

●
● ●

●

●

●
●

●

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SD

number of inliers

●
●

●

●

● ● ● ●

●

●

●
●

●

●
●

●

●

●

●

●

0 5 10 15

0.0

0.2

0.4

0.6

0.8

ADDmean

number of inliers

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ADDmedian1norm

number of inliers

●
●

●

●

● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

ADDmedianwabl

number of inliers

●

●

●

●

●
●

●

● ●

●

●

● ● ● ● ● ● ● ● ●

0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MDDmean

number of inliers

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

MDDmedian1norm

number of inliers

●

●

●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ●

0 5 10 15

0.0

0.2

0.4

0.6

0.8

MDDmedianwabl

number of inliers

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

0 5 10 15

0.0

0.2

0.4

0.6

0.8

Sn

number of inliers

●

● ●
● ●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ●

0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

Qn

number of inliers

●

●

●
●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tn

number of inliers

Figure 2.36: Implosion pseudo-breakdown point: values of the scale estimators for a sample of
size 20 with k observations replaced by inliers, k varying from 0 to 19 - 2ndSP

Asymmetric distribution
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Figure 2.37: Implosion pseudo-breakdown point: values of the scale estimators for a sample of
size 21 with k observations replaced by inliers, k varying from 0 to 20 - 2ndSP

Asymmetric distribution
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Regarding explosion we can conclude that for the sample size n = 20 (21),
by looking at Table 2.11 (2.12) and Figures 2.22 to 2.24 (2.25 to 2.27) for the
symmetric distribution and Table 2.13 (2.14) and Figures 2.28 to 2.30 (2.31 to
2.33) for the asymmetric distribution, we can see that the minimum number of
perturbed observations by outliers that makes the estimator to increase noticeably,
independently of the distribution and the type of outlier considered, has been

• 1 for the estimators ρ̂2-SD(x̃n), ̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,
̂̃Me(x̃n)),

̂D `
1-ADD(x̃n,

̂̃M`(x̃n)) and ̂ρ2-MDD(x̃n, x̃n);

• 10(11) for the estimators ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)), ̂D `

1-MDD(x̃n,
̂̃M`(x̃n)),ρ̂1-S(x̃n),

ρ̂1-Q(x̃n) and ρ̂1-T(x̃n).

Therefore, the empirical value for the explosion pseudo-breakdown point coin-
cides with the theoretical explosion breakdown point in Section 2.3.

On the other hand, and concerning implosion, for the sample size n = 20 (21),
by looking at Table 2.15 (2.16) and Figure 2.34 (2.35) for the symmetric case and
Table 2.17 (2.18) and Figure 2.36 (2.37) for the asymmetric case, we can see that
the minimum number of perturbed observations by inliers that makes the estimator
to implode to zero, independently of the distribution case considered, has been

• 19 (20) for the estimators ρ̂2-SD(x̃n), ̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,
̂̃Me(x̃n))

and ̂D `
1-ADD(x̃n,

̂̃M`(x̃n));

• 11 for the estimator ̂ρ2-MDD(x̃n, x̃n);

• 10 for the estimators ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)), ̂D `

1-MDD(x̃n,
̂̃M`(x̃n)), ρ̂1-S(x̃n),

ρ̂1-Q(x̃n) and ρ̂1-T(x̃n).

Therefore, the empirical value for the implosion pseudo-breakdown point coin-
cides with the theoretical implosion breakdown point in the previous section.

2.4.3 Sensitivity curves

Another important and useful tool to measure the robustness of an estimator from
an empirical point of view is now to be analyzed: the sensitivity curves, which
represent the sample version of the influence functions (see, for instance, Maronna
et al. [81] and Rossello [98]).

Previously, the finite sample breakdown point, which tell us how much the esti-
mate changes when a percentage of the data is contaminated by outliers or inliers,
has been studied for the different estimators. In contrast, the sensitivity curves
describe how the estimator reacts to a single outlier in the data.
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Recall that we are dealing with three different types of outliers in the fuzzy
setting (see Subsection 2.4.1): outliers of translation, outliers of scale on the core and
support, and outliers of both translation and scale. Therefore, some of the sensitivity
curves will allow us to measure the effect of different ‘locations’ of a single outlier
in the sample, other curves will measure the effect of considering different ‘widths’
of a single outlier, and other ones will measure the effect of different ‘locations’ and
‘widths’ of a single outlier in the sample.

The non-contaminated sample has first been simulated from the FIRST
SIMULATION PROCEDURE (1stSP) considering the two cases (see Page 38) and
an only sample size n = 100.

The outliers have been constructed so that if ỹs is the outlier, then,

− Outlier of translation: r1
s = s, with s varying from −20 to 20 with a step

equals 0.1.

− Outlier of scale on the core and support: r2
s = s, with s varying from 0 to 20

with a step equals 0.1.

− Outlier of both translation and scale: r1
s = r2

s = s, with s varying from −20
to 20 with a step equals 0.1.

For each type of outlier, the general scheme of the construction of the sensitivity
curves has been as follows:

Step 1. A sample x̃100 of 100 trapezoidal fuzzy numbers has been simulated
from the 1stSP, considering the two cases of simulation involved in this procedure.

Step 2. One observation from the original sample x̃100 has been chosen randomly
and replaced by the outlier ỹs.

Step 3. For each s, the value of the sensitivity curve has been calculated for
each estimator of scale as follows:

Definition 2.4.1. Let X be an RFN, x̃n = (x̃1, . . . , x̃n) be a sample of observations
from X and D̂ a dispersion estimate. The sensitivity curve of the estimate D̂ for
the sample x̃n is the function associating with each s ∈ R the difference

SC(s) = D̂(x̃[s]
n )− D̂(x̃n)

where the sample x̃[s]
n is obtained by replacing an arbitrary observation of x̃n by the

outlier ỹs.

The sensitivity curves have been graphically displayed for each estimator in Fig-
ures 2.38 to 2.40 for Case 1 and in Figures 2.41 to 2.43 for Case 2.
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Figure 2.38: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of translation - 1stSP Case 1



Simulations-based analysis of the robustness of the scale measures 145

0 5 10 15 20

0

5

10

15

SD

outlier (scale)

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

ADDmean

outlier (scale)

0 5 10 15 20

0.0

0.5

1.0

1.5

ADDmedian1norm

outlier (scale)

0 5 10 15 20

0.0

0.5

1.0

1.5

ADDmedianwabl

outlier (scale)

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

MDDmean

outlier (scale)

0 5 10 15 20

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

MDDmedian1norm

outlier (scale)

0 5 10 15 20

0.000

0.005

0.010

MDDmedianwabl

outlier (scale)

0 5 10 15 20

−0.005

0.000

0.005

Sn

outlier (scale)

0 5 10 15 20

−0.005

0.000

0.005

0.010

0.015

Qn

outlier (scale)

0 5 10 15 20

0.000

0.005

0.010

0.015

Tn

outlier (scale)

Figure 2.39: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of scale on core and support - 1stSP Case 1
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Figure 2.40: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of both translation and scale on core and support - 1stSP Case 1
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Figure 2.41: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of translation - 1stSP Case 2
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Figure 2.42: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of scale on core and support - 1stSP Case 2
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Figure 2.43: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of both translation and scale on core and support - 1stSP Case 2
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Irrespective of the type of outlier that we are considering, we can see that the
sensitivity curves in the two cases are

• bounded for the robust scale estimates ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)), ̂D `

1-MDD(x̃n,
̂̃M`(x̃n)), ρ̂1-S(x̃n), ρ̂1-Q(x̃n) and ρ̂1-T(x̃n);

• unbounded for the remaining ones ρ̂2-SD(x̃n), ̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,
̂̃Me(x̃n)), ̂D `

1-ADD(x̃n,
̂̃M`(x̃n)) and ̂ρ2-MDD(x̃n, x̃n).

The preceding developments are now to be carried out by considering the SEC-
OND SIMULATION PROCEDURE (2ndSP) (see Page 39). Notice that, as it hap-
pens for the fsbp, when there is a bounded reference interval the notion of sensitivity
curve does not make sense, and we will refer to the pseudo-sensitivity curve.

In this study we have only considered the sample size n = 100, with the weights
ω1 = 0.8, ω2 = 0.1 and ω3 = 0.1.

The outlier ỹs has been constructed as follows:
• Symmetric distribution: the non-contaminated sample has been generated

from a beta β(100, 100).
− Outlier of translation: r1

s = s, with s varying from −20 to 20 with a step
equals 0.1.

− Outlier of scale on the core and support: r2
s = s, with s varying from 0

to 20 with a step equals 0.1.
− Outlier of both translation and scale: r1

s = r2
s = s, with s varying from

−20 to 20 with a step equals 0.1.

• Asymmetric distribution: the non-contaminated sample has been generated
from a beta β(1, 100).
− Outlier of translation: r1

s = s, with s varying from 0 to 20 with a step
equals 0.1.

− Outlier of scale on the core and support: r2
s = s, with s varying from 0

to 20 with a step equals 0.1.
− Outlier of both translation and scale: r1

s = r2
s = s, with s varying from 0

to 20 with a step equals 0.1.

For each type of outlier, the general scheme of the simulation is the same that
the one for the 1stSP (see Page 143), and the criterion in Remark 2.4.1 is also
considered.

The pseudo-sensitivity curves have been graphically displayed for each estimator
in Figures 2.44 to 2.46 for the symmetric distribution and in Figures 2.47 to 2.49
for the asymmetric one.
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Figure 2.44: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of translation - 2ndSP

Symmetric distribution
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Figure 2.45: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of scale on core and support - 2ndSP

Symmetric distribution
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Figure 2.46: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of both translation and scale on core and support - 2ndSP

Symmetric distribution
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Figure 2.47: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of translation - 2ndSP

Asymmetric distribution
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Figure 2.48: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of scale on core and support - 2ndSP

Asymmetric distribution
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Figure 2.49: Sensitivity curves of the scale estimators for a sample of size 100
and outliers of both translation and scale on core and support - 2ndSP

Asymmetric distribution
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Irrespective of the type of outlier we are considering, the pseudo-sensitivity curves
in the two distributions are

• bounded for the robust scale estimates ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)), ̂D `

1-MDD(x̃n,
̂̃M`(x̃n)), ρ̂1-S(x̃n), ρ̂1-Q(x̃n) and ρ̂1-T(x̃n);

• ‘unbounded’ for the other estimates ρ̂2-SD(x̃n), ̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,
̂̃Me(x̃n)), ̂D `

1-ADD(x̃n,
̂̃M`(x̃n)) and ̂ρ2-MDD(x̃n, x̃n).

2.5 Another approach for the scale estimation:
the M-estimation of scale

Another approach to estimating scale is now to be tackled. This section is focussed
on the extension to the fuzzy setting of a well-known family of estimators of scale
which play an important role in the robust estimation because of their suitable
properties: the so-called M-estimators of scale. The notion of M-estimator of scale
can easily be extended from the real-valued case to the case where the available data
are fuzzy number-valued.

Anyway, it should be emphasized that, in spite of their good behaviour in the
presence of either outliers or subtle changes in the data, M-estimators have a clear
handicap in comparison with the ones in Definitions 2.1.1-2.1.6: they do not have
an explicit formula, so iterative algorithms should be designed and performed to
compute their value, as will be shown along this section, and they are more compu-
tationally expensive. For this reason some authors (see Rousseeuw and Croux [99])
have expressed in the real-valued case a slight preference for robust estimators with
an explicit expression, like those in Section 2.1 for the fuzzy framework.

Robust M-estimation is a ‘modified’ maximum likelihood estimation and, ac-
cording to Maronna et al. [81], it leads to less sensitive estimators to the presence
of outlying observations.

Following Maronna et al. [81] to formalize the M-scale estimation, observations
are assumed to be defined in accordance with a model Xi = σ·Ei (i = 1, . . . , n), where
Ei are independent and identically distributed RFN’s and σ is the scale parameter
to be estimated. Two concepts should first be recalled.

Definition 2.5.1. A loss function % : R→ R is a continuous function such that
• it is even (actually, it is often expressed as a function of its absolute value),
• it is non-decreasing on the positive numbers with %(0) = 0, and
• if % is bounded it will be assumed, without loss of generality, that %(∞) = 1.
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Loss functions play a key role in M-scale estimation. They should ideally define
an estimator close to the classical one (often the maximum likelihood or the least
squares estimator) when there is no outlier and, furthermore, provide an estimator
close enough to the actual parameter when the data are contaminated.

Robust M-scale estimation makes use also of the so-called weight function asso-
ciated with a wide class of appropriate loss functions.

Definition 2.5.2. Given a loss function % with a quadratic behaviour near the origin
(more concretely, %′(0) = 0 and %′′(0) > 0), the weight function W : R → R
associated with % is defined as

W (x) =



%(x)/x2 if x 6= 0
%′′(0) if x = 0.

Adapting Huber’s ideas (see Huber [64]) for real-valued data, an M-estimate of
scale for fuzzy data is formalized as follows:

Definition 2.5.3. Let (Ω,A, P ) be a probability space and X : Ω → F ∗
c (R) be an

associated random fuzzy number. Moreover, let % be a loss function and (X1, . . . ,Xn)
a simple random sample from X . Then, any estimate σ̂(X1, . . . ,Xn) (for short σ̂)
satisfying an equation of the form

1
n

n∑

i=1
%

(
D(Xi,1{0})

σ̂

)
= δ,

where δ is a positive constant and D is a metric between fuzzy numbers, is said to
be an M-estimator of scale.

In case % has a quadratic behaviour near 0, then M-estimators of scale fulfill the
equation

σ̂2 = 1
nδ

n∑

i=1
W

(
D(Xi,1{0})

σ̂

)
·D(Xi,1{0})2.

Remark 2.5.1. Note that in order for the equations in Definition 2.5.3 to have
a solution, it should be 0 < δ < %(∞). Hence, if the loss function % is bounded,
then it will be assumed without loss of generality that %(∞) = 1 (as assumed in
Definition 2.5.1) and δ ∈ (0, 1).

The M-estimators of scale satisfy the scale (absolute) equivariance condition.
That is,

Proposition 2.5.1. (Scale absolute equivariance). If X is an RFN, (X1, . . . ,Xn)
a simple random sample from X , σ̂ a scale M-estimate and γ ∈ R, then

σ̂(γ · X1, . . . , γ · Xn) = |γ| · σ̂(X1, . . . ,Xn).
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Proof. If σ̂ is the M-estimator of scale for (X1, . . . ,Xn), then,

1
n

n∑

i=1
%

(
D(Xi,1{0})

σ̂

)
= δ

for some δ > 0. Therefore,

δ = 1
n

n∑

i=1
%

(
D(Xi,1{0})

σ̂

)
= 1
n

n∑

i=1
%

(
|γ| ·D(Xi,1{0})

|γ| · σ̂

)
= 1
n

n∑

i=1
%

(
D(γ · Xi,1{0})
|γ| · σ̂

)
,

whence |γ| · σ̂ is the scale M-estimate for the simple random sample (γ · X1, . . . ,

γ · Xn).

2.5.1 An algorithm to compute M-estimators of scale
for fuzzy data

As we have already mentioned at the beginning of this section, the M-estimators of
scale cannot be calculated in a direct way, as they do not have an explicit formula
and require the solution of an equation. There are several methods available for
computing M-estimates of scale, but we will only focus on an computational method
known as iterative reweighting (see Maronna et al. [81]), which is explained now in
detail.

Let X be a random fuzzy number associated with the probability space (Ω,A, P ),
x̃n = (x̃1, . . . , x̃n) a sample of observations from X and D ∈ {ρ1,D

ϕ
θ , D

ϕ
θ } a metric

for fuzzy data. Consider a loss function % being quadratic near the origin. The
algorithm is the following:

Step 1. Take an initial robust estimate σ̂1. This initial value can be set, for
instance, to be the sample ̂ρ1-MDD with respect to the 1-norm median, ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)) (see also, for instance, Shahriari et al. [103] for a recently corrected sugges-
tion in the real-valued case). Fix a tolerance ε.

Step 2. Given σ̂k (k = 1, 2...), compute the weights

ωk,i = W

(
D(x̃i,1{0})

σ̂k

)
(i ∈ {1, . . . , n})

where W is the considered weight function, and let

σ̂k+1 =
√√√√ 1
nδ

n∑

i=1
ωk,i ·D(x̃i,1{0})2.

Step 3. Repeat Step 2 until
∣∣∣∣
σ̂k+1

σ̂k
− 1

∣∣∣∣ < ε or σ̂k+1 < 10−10.
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In that case, stop the algorithm.
The simulations conducted in the next subsection involve M-estimators of scale

which are determined by means of this algorithm.

2.5.2 Simulations-based analysis of the robustness
of some M-estimates of scale

In this subsection the empirical robustness of some M-estimators of scale is exam-
ined. By means of simulations dealing with fuzzy data, it is seen what the em-
pirical finite sample breakdown point is and how the sensitivity curves are for two
well-known loss functions: the Huber loss function, which corresponds to %(x) =
min{x2, 1} and the Tukey bisquare loss function (also called biweight loss function),
which corresponds to %(x) = min{3 · x2 − 3 · x4 + x6, 1} (see Croux [23]).

The M-estimators are computed using the algorithm explained in Subsection 2.5.1
with a chosen tolerance ε = 10−5, three chosen positive constants δ: 0.1, 0.3 and
0.5, and the metric between fuzzy data ρ1.

All simulations in this section are developed in accordance with the two simu-
lation procedures described in Section 1.7 (Page 37). Regarding the 2ndSP, data
have been generated within the reference interval [0, 100] and only the asymmetric
distribution has been considered. Symmetric distribution has not been included in
the M-estimator analysis as the empirical explosion pseudo-breakdown point cannot
be deduced when the outliers fall within the interval [0, 100]. If so, we should con-
sider outliers located further than the observations of the non-contaminated sample,
which implies they would fall outside this interval.

We start by analyzing the finite sample breakdown point when the simulations
are conduced according to the FIRST SIMULATION PROCEDURE (1stSP) and
as explained in Subsection 2.4.2. Thus, the non-contaminated sample has been
simulated from the 1stSP considering the two cases (see Page 38). Moreover, two
sample sizes have been considered in the simulation study, namely, an even sample
size (n = 100) and an odd sample size (n = 101).

Explosion breakdown point:
To study the breakdown point for explosion, we have considered the three types

of outliers explained in Subsection 2.4.1. Namely, if ỹi is the i-th outlier, then we
have chosen

r1
i =





i+1
2 · 1010 if i is odd
− i

2 · 1010 if i is even
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that is, we have considered observations that are increasingly distant from the data
at both right and left sides, and r2

i = i · 1010, that is, observations that are getting
wider.

For each type of outlier, the general scheme of the simulation has been as follows:
Step 1. A sample x̃n of n trapezoidal fuzzy numbers has been simulated from

the 1stSP, with n ∈ {100, 101} and considering the two cases of simulation involved
in this procedure.

Step 2. Contaminated samples ỹn,k have been obtained by replacing k ob-
servations of the original sample x̃n by k outliers ỹi, with k ∈ {1, . . . ,

⌊
n+1

2

⌋
} and

i ∈ {1, . . . , k}. Overall, k contaminated samples, one for each k value.
Step 3. The values of the M-estimators of scale have been calculated for

the original sample without contamination x̃n, and for each of k contaminated
samples ỹn,k. We have chosen the ̂ρ1-MDD with respect to the 1-norm median,
̂ρ1-MDD(x̃n,

̂̃Me(x̃n)), as initial robust scale measure to start the algorithm.
The simulation-based conclusions in this study are presented through Tables 2.19

to 2.22 and Figures 2.50 to 2.61. More concretely, tables gather the values of the
M-estimators of scale when outliers are introduced in the sample by replacement,
and figures graphically display these values for each estimator.

Implosion breakdown point:
To study the breakdown point for implosion, we have considered the inliers being

all of them equal to 1{0}. The general scheme of the simulation has been as follows:
Step 1. A sample x̃n of n trapezoidal fuzzy numbers has been simulated from

the 1stSP, with n ∈ {100, 101} and considering the two cases of simulation involved
in this procedure.

Step 2. Contaminated samples ỹn,k have been obtained by replacing k obser-
vations of the original sample x̃n by k inliers ỹ, with k ∈ {1, . . . , n− 1}. In total, k
contaminated samples, one for each k value.

Step 3. The values of the M-estimators of scale have been calculated for the
original sample without contamination x̃n, and for each of k contaminated samples
ỹn,k. We have chosen the ρ2-standard deviation, ρ̂2-SD(x̃n), as initial robust scale
measure to start the algorithm (this estimator is robust in the implosion case).

The simulation-based conclusions in this study are presented through Tables 2.23
to 2.26 and Figures 2.62 to 2.65. More concretely, tables gather the values of the
M-estimators of scale when inliers are introduced in the sample by replacement, and
figures graphically display these values for each estimator.
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Table 2.19: Explosion breakdown point: values of the M-estimators of scale for a sample of size
100 with k observations replaced by outliers of translation (at the top), scale on core and support
(in the middle) and both (at the bottom),with k∈{0, 1, 9, 10, 11, 29, 30, 31, 49, 50} - 1stSP Case 1

# outliers (translation) 0 1 9 10 11 29 30 31 49 50

ρ1-Huber, δ = 0.1 7.06 7.42 22.84 1610.31 1.41E+10 1.50E+11 1.57E+11 1.65E+11 3.23E+11 3.32E+11
ρ1-Huber, δ = 0.3 3.27 3.28 4.17 4.33 4.50 18.77 760.11 1.41E+10 1.50E+11 1.57E+11
ρ1-Huber, δ = 0.5 2.08 2.08 2.29 2.31 2.34 3.37 3.45 3.59 17.27 5.00E+09
ρ1-Tukey, δ = 0.1 11.48 12.10 39.14 2789.10 2.19E+10 2.28E+11 2.40E+11 2.53E+11 5.21E+11 5.38E+11
ρ1-Tukey, δ = 0.3 5.16 5.21 6.56 6.77 7.01 32.24 1316.54 2.19E+10 2.19E+11 2.30E+11
ρ1-Tukey, δ = 0.5 3.14 3.14 3.54 3.57 3.62 5.34 5.46 5.67 29.57 5.00E+09

# outliers (scale) 0 1 9 10 11 29 30 31 49 50

ρ1-Huber, δ = 0.1 7.33 7.72 22.88 1617.07 3.18E+10 4.16E+11 4.38E+11 4.59E+11 9.05E+11 9.32E+11
ρ1-Huber, δ = 0.3 3.54 3.63 4.54 4.70 4.86 20.15 820.06 3.18E+10 4.16E+11 4.38E+11
ρ1-Huber, δ = 0.5 2.16 2.20 2.51 2.58 2.63 3.74 3.86 3.97 17.45 7.12E+09
ρ1-Tukey, δ = 0.1 11.79 12.52 39.36 2800.83 4.67E+10 6.29E+11 6.65E+11 7.02E+11 1.46E+12 1.51E+12
ρ1-Tukey, δ = 0.3 5.49 5.63 7.10 7.36 7.63 34.59 1420.39 4.67E+10 6.07E+11 6.38E+11
ρ1-Tukey, δ = 0.5 3.31 3.36 3.88 3.98 4.07 5.78 5.97 6.15 29.87 7.12E+09

# outliers (both) 0 1 9 10 11 29 30 31 49 50

ρ1-Huber, δ = 0.1 8.35 8.77 25.56 1804.04 1.39E+10 1.55E+11 1.61E+11 1.73E+11 3.50E+11 3.55E+11
ρ1-Huber, δ = 0.3 3.80 3.88 4.91 5.10 5.27 23.31 949.81 1.39E+10 1.45E+11 1.52E+11
ρ1-Huber, δ = 0.5 2.34 2.34 2.54 2.58 2.58 4.14 4.33 4.56 20.58 3.87E+09
ρ1-Tukey, δ = 0.1 13.41 14.18 43.95 3124.67 2.02E+10 2.36E+11 2.46E+11 2.64E+11 5.53E+11 5.64E+11
ρ1-Tukey, δ = 0.3 6.02 6.14 7.62 7.90 8.14 40.03 1645.10 2.02E+10 2.11E+11 2.22E+11
ρ1-Tukey, δ = 0.5 3.57 3.58 3.90 3.96 3.98 6.53 6.79 7.12 35.22 3.87E+09

Table 2.20: Explosion breakdown point: values of the M-estimators of scale for a sample of size
101 with k observations replaced by outliers of translation (at the top), scale on core and support
(in the middle) and both (at the bottom), with k∈{0, 1, 9, 10, 11, 29, 30, 31, 50, 51} - 1stSP Case 1

# outliers (translation) 0 1 9 10 11 29 30 31 50 51

ρ1-Huber, δ = 0.1 6.00 6.00 18.04 59.45 1.35E+10 1.49E+11 1.57E+11 1.65E+11 3.31E+11 3.41E+11
ρ1-Huber, δ = 0.3 2.93 2.93 3.51 3.59 3.66 15.18 31.34 1.24E+10 1.55E+11 1.63E+11
ρ1-Huber, δ = 0.5 1.98 1.98 2.16 2.17 2.17 2.86 2.91 3.02 20.69 1.15E+10
ρ1-Tukey, δ = 0.1 9.97 9.97 30.86 102.85 2.07E+10 2.26E+11 2.39E+11 2.52E+11 5.35E+11 5.51E+11
ρ1-Tukey, δ = 0.3 4.61 4.61 5.53 5.65 5.78 25.76 54.02 1.84E+10 2.26E+11 2.37E+11
ρ1-Tukey, δ = 0.5 2.99 2.99 3.28 3.30 3.31 4.51 4.60 4.78 35.48 1.64E+10

# outliers (scale) 0 1 9 10 11 29 30 31 50 51

ρ1-Huber, δ = 0.1 6.16 6.56 18.45 60.83 1.57E+10 2.14E+11 2.25E+11 2.36E+11 4.79E+11 4.94E+11
ρ1-Huber, δ = 0.3 3.09 3.14 3.61 3.69 3.77 14.81 30.49 1.34E+10 2.23E+11 2.34E+11
ρ1-Huber, δ = 0.5 2.08 2.11 2.24 2.25 2.25 3.10 3.14 3.19 19.14 1.04E+10
ρ1-Tukey, δ = 0.1 10.07 10.68 31.65 105.26 2.25E+10 3.23E+11 3.41E+11 3.60E+11 7.74E+11 7.98E+11
ρ1-Tukey, δ = 0.3 4.82 4.92 5.77 5.91 6.05 25.31 52.65 1.93E+10 3.25E+11 3.41E+11
ρ1-Tukey, δ = 0.5 3.12 3.16 3.39 3.41 3.42 4.83 4.91 5.00 32.98 1.61E+10

# outliers (both) 0 1 9 10 11 29 30 31 50 51

ρ1-Huber, δ = 0.1 7.22 7.73 22.41 74.18 1.66E+10 1.83E+11 1.97E+11 2.04E+11 4.36E+11 4.42E+11
ρ1-Huber, δ = 0.3 3.35 3.39 4.02 4.15 4.30 18.88 39.07 1.35E+10 1.83E+11 1.92E+11
ρ1-Huber, δ = 0.5 2.27 2.27 2.49 2.53 2.58 3.44 3.50 3.50 22.64 1.04E+10
ρ1-Tukey, δ = 0.1 11.64 12.35 38.36 128.35 2.21E+10 2.78E+11 2.99E+11 3.12E+11 6.90E+11 7.04E+11
ρ1-Tukey, δ = 0.3 5.24 5.32 6.48 6.70 6.97 32.10 67.38 1.96E+10 2.67E+11 2.80E+11
ρ1-Tukey, δ = 0.5 3.35 3.36 3.72 3.79 3.88 5.40 5.52 5.53 38.79 1.63E+10
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Table 2.21: Explosion breakdown point: values of the M-estimators of scale for a sample of size
100 with k observations replaced by outliers of translation (at the top), scale on core and support
(in the middle) and both (at the bottom),with k∈{0, 1, 9, 10, 11, 29, 30, 31, 49, 50} - 1stSP Case 2

# outliers (translation) 0 1 9 10 11 29 30 31 49 50

ρ1-Huber, δ = 0.1 4.44 4.66 13.21 927.34 1.41E+10 1.50E+11 1.57E+11 1.65E+11 3.23E+11 3.32E+11
ρ1-Huber, δ = 0.3 2.54 2.57 2.87 2.92 2.99 11.57 468.18 1.41E+10 1.50E+11 1.57E+11
ρ1-Huber, δ = 0.5 1.90 1.91 1.98 1.99 2.01 2.48 2.53 2.58 9.56 5.00E+09
ρ1-Tukey, δ = 0.1 7.49 7.87 22.82 1606.19 2.19E+10 2.28E+11 2.40E+11 2.53E+11 5.21E+11 5.38E+11
ρ1-Tukey, δ = 0.3 4.06 4.11 4.66 4.75 4.87 19.97 810.91 2.19E+10 2.19E+11 2.30E+11
ρ1-Tukey, δ = 0.5 2.89 2.90 3.06 3.08 3.11 4.00 4.07 4.16 16.49 5.00E+09

# outliers (scale) 0 1 9 10 11 29 30 31 49 50

ρ1-Huber, δ = 0.1 4.35 4.56 13.07 920.84 1.83E+10 2.40E+11 2.52E+11 2.65E+11 5.21E+11 5.37E+11
ρ1-Huber, δ = 0.3 2.51 2.54 2.85 2.91 2.98 11.66 472.32 1.83E+10 2.40E+11 2.52E+11
ρ1-Huber, δ = 0.5 1.93 1.94 2.03 2.05 2.07 2.55 2.59 2.64 9.98 4.10E+09
ρ1-Tukey, δ = 0.1 7.38 7.75 22.59 1594.93 2.69E+10 3.62E+11 3.83E+11 4.04E+11 8.41E+11 8.68E+11
ρ1-Tukey, δ = 0.3 4.05 4.10 4.68 4.79 4.91 20.14 818.08 2.69E+10 3.50E+11 3.68E+11
ρ1-Tukey, δ = 0.5 2.93 2.94 3.13 3.17 3.20 4.10 4.18 4.28 17.21 4.10E+09

# outliers (both) 0 1 9 10 11 29 30 31 49 50

ρ1-Huber, δ = 0.1 4.09 4.30 12.43 874.61 1.91E+10 2.34E+11 2.46E+11 2.58E+11 5.08E+11 5.23E+11
ρ1-Huber, δ = 0.3 2.36 2.40 2.71 2.77 2.83 11.27 459.28 1.91E+10 2.34E+11 2.46E+11
ρ1-Huber, δ = 0.5 1.81 1.82 1.94 1.95 1.97 2.46 2.52 2.56 9.44 5.20E+09
ρ1-Tukey, δ = 0.1 6.92 7.30 21.48 1514.87 2.87E+10 3.53E+11 3.74E+11 3.94E+11 8.20E+11 8.46E+11
ρ1-Tukey, δ = 0.3 3.79 3.86 4.44 4.54 4.66 19.47 795.50 2.87E+10 3.41E+11 3.58E+11
ρ1-Tukey, δ = 0.5 2.73 2.76 2.96 2.99 3.03 3.95 4.06 4.14 16.29 5.20E+09

Table 2.22: Explosion breakdown point: values of the M-estimators of scale for a sample of size
101 with k observations replaced by outliers of translation (at the top), scale on core and support
(in the middle) and both (at the bottom),with k∈{0, 1, 9, 10, 11, 29, 30, 31, 50, 51} - 1stSP Case 2

# outliers (translation) 0 1 9 10 11 29 30 31 50 51

ρ1-Huber, δ = 0.1 4.18 4.39 12.23 40.45 1.35E+10 1.49E+11 1.57E+11 1.65E+11 3.31E+11 3.41E+11
ρ1-Huber, δ = 0.3 2.42 2.45 2.78 2.84 2.89 9.97 20.59 1.24E+10 1.55E+11 1.63E+11
ρ1-Huber, δ = 0.5 1.82 1.83 1.94 1.97 1.98 2.45 2.49 2.54 13.28 1.15E+10
ρ1-Tukey, δ = 0.1 7.07 7.44 21.12 70.05 2.07E+10 2.26E+11 2.39E+11 2.52E+11 5.35E+11 5.52E+11
ρ1-Tukey, δ = 0.3 3.85 3.91 4.52 4.64 4.74 17.19 35.62 1.84E+10 2.26E+11 2.37E+11
ρ1-Tukey, δ = 0.5 2.75 2.78 2.99 3.03 3.06 3.91 3.98 4.06 22.95 1.64E+10

# outliers (scale) 0 1 9 10 11 29 30 31 50 51

ρ1-Huber, δ = 0.1 4.41 4.63 12.72 42.09 3.01E+10 4.11E+11 4.32E+11 4.53E+11 9.20E+11 9.48E+11
ρ1-Huber, δ = 0.3 2.51 2.54 2.87 2.94 3.00 10.53 21.73 2.58E+10 4.28E+11 4.49E+11
ρ1-Huber, δ = 0.5 1.88 1.89 1.98 2.00 2.01 2.54 2.58 2.64 13.98 1.99E+10
ρ1-Tukey, δ = 0.1 7.43 7.82 21.97 72.87 4.32E+10 6.20E+11 6.56E+11 6.92E+11 1.49E+12 1.53E+12
ρ1-Tukey, δ = 0.3 4.02 4.08 4.66 4.78 4.88 18.15 37.60 3.71E+10 6.24E+11 6.55E+11
ρ1-Tukey, δ = 0.5 2.86 2.88 3.05 3.09 3.11 4.05 4.13 4.23 24.16 3.09E+10

# outliers (both) 0 1 9 10 11 29 30 31 50 51

ρ1-Huber, δ = 0.1 4.22 4.44 12.19 40.27 1.50E+10 1.79E+11 1.88E+11 1.97E+11 4.00E+11 4.12E+11
ρ1-Huber, δ = 0.3 2.41 2.45 2.77 2.83 2.89 10.28 21.25 1.38E+10 1.86E+11 1.96E+11
ρ1-Huber, δ = 0.5 1.84 1.85 1.94 1.96 1.97 2.51 2.56 2.56 13.59 1.29E+10
ρ1-Tukey, δ = 0.1 7.13 7.51 21.05 69.73 2.28E+10 2.70E+11 2.86E+11 3.02E+11 6.46E+11 6.67E+11
ρ1-Tukey, δ = 0.3 3.88 3.95 4.51 4.61 4.73 17.73 36.76 2.03E+10 2.72E+11 2.85E+11
ρ1-Tukey, δ = 0.5 2.78 2.81 2.98 3.02 3.05 4.03 4.11 4.13 23.49 1.80E+10
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Figure 2.50: Explosion breakdown point: values of the M-estimators of scale for a sample of size
100 with k observations replaced by outliers of translation, k varying from 0 to 50 - 1stSP Case 1
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Figure 2.51: Explosion breakdown point: values of the M-estimators of scale for a sample
of size 100 with k observations replaced by outliers of scale on core and support,

k varying from 0 to 50 - 1stSP Case 1
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Figure 2.52: Explosion breakdown point: values of the M-estimators of scale for a sample
of size 100 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 50 - 1stSP Case 1
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Figure 2.53: Explosion breakdown point: values of the M-estimators of scale for a sample of size
101 with k observations replaced by outliers of translation, k varying from 0 to 51 - 1stSP Case 1
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Figure 2.54: Explosion breakdown point: values of the M-estimators of scale for a sample
of size 101 with k observations replaced by outliers of scale on core and support,

k varying from 0 to 51 - 1stSP Case 1
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Figure 2.55: Explosion breakdown point: values of the M-estimators of scale for a sample
of size 101 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 51 - 1stSP Case 1
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Figure 2.56: Explosion breakdown point: values of the M-estimators of scale for a sample of size
100 with k observations replaced by outliers of translation, k varying from 0 to 50 - 1stSP Case 2
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Figure 2.57: Explosion breakdown point: values of the M-estimators of scale for a sample
of size 100 with k observations replaced by outliers of scale on core and support,

k varying from 0 to 50 - 1stSP Case 2
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Figure 2.58: Explosion breakdown point: values of the M-estimators of scale for a sample
of size 100 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 50 - 1stSP Case 2
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Figure 2.59: Explosion breakdown point: values of the M-estimators of scale for a sample of size
101 with k observations replaced by outliers of translation, k varying from 0 to 51 - 1stSP Case 2
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Figure 2.60: Explosion breakdown point: values of the M-estimators of scale for a sample
of size 101 with k observations replaced by outliers of scale on core and support,

k varying from 0 to 51 - 1stSP Case 2
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Figure 2.61: Explosion breakdown point: values of the M-estimators of scale for a sample of
size 101 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 51 - 1stSP Case 2
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Table 2.23: Implosion breakdown point: values of the M-estimators of scale for a sample of size
100 with k observations replaced by inliers, with k ∈ {0, 1, 2, 50, 51, 70, 71, 90, 91} - 1stSP Case 1

# inliers 0 1 2 50 51 70 71 90 91

ρ1-Huber, δ = 0.1 7.43 7.42 7.38 4.35 4.32 3.34 3.32 0.39 9.58E-11
ρ1-Huber, δ = 0.3 3.20 3.19 3.14 1.60 1.57 0.39 9.95E-11 5.90E-11 6.98E-11
ρ1-Huber, δ = 0.5 2.05 2.03 2.00 0.29 9.96E-11 9.91E-11 8.57E-11 4.52E-11 5.31E-11
ρ1-Tukey, δ = 0.1 11.78 11.76 11.68 6.82 6.78 5.23 5.20 0.40 9.78E-11
ρ1-Tukey, δ = 0.3 5.09 5.07 4.99 2.36 2.30 0.40 9.85E-11 6.29E-11 7.51E-11
ρ1-Tukey, δ = 0.5 3.08 3.06 3.00 0.30 9.94E-11 8.87E-11 9.79E-11 4.82E-11 5.71E-11

Table 2.24: Implosion breakdown point: values of the M-estimators of scale for a sample of size
101 with k observations replaced by inliers, with k ∈ {0, 1, 2, 50, 51, 70, 71, 90, 91} - 1stSP Case 1

# inliers 0 1 2 50 51 70 71 90 91

ρ1-Huber, δ = 0.1 6.96 6.78 6.72 4.33 4.29 3.23 3.20 0.76 9.99E-11
ρ1-Huber, δ = 0.3 3.64 3.56 3.52 1.91 1.86 0.48 9.98E-11 6.72E-11 6.88E-11
ρ1-Huber, δ = 0.5 2.44 2.40 2.36 0.37 9.99E-11 8.78E-11 8.90E-11 6.31E-11 7.27E-11
ρ1-Tukey, δ = 0.1 11.41 11.12 11.02 6.99 6.92 5.11 5.07 1.09 9.99E-11
ρ1-Tukey, δ = 0.3 5.69 5.56 5.48 2.79 2.71 0.67 9.98E-11 6.72E-11 6.88E-11
ρ1-Tukey, δ = 0.5 3.69 3.62 3.55 0.54 9.99E-11 7.84E-11 7.77E-11 6.31E-11 7.27E-11

Table 2.25: Implosion breakdown point: values of the M-estimators of scale for a sample of size
100 with k observations replaced by inliers, with k ∈ {0, 1, 2, 50, 51, 70, 71, 90, 91} - 1stSP Case 2

# inliers 0 1 2 50 51 70 71 90 91

ρ1-Huber, δ = 0.1 4.30 4.29 4.26 2.96 2.93 2.26 2.22 0.46 9.82E-11
ρ1-Huber, δ = 0.3 2.49 2.48 2.46 1.63 1.60 0.72 9.96E-11 7.68E-11 9.42E-11
ρ1-Huber, δ = 0.5 1.90 1.89 1.87 0.78 9.99E-11 9.61E-11 8.17E-11 7.60E-11 9.24E-11
ρ1-Tukey, δ = 0.1 7.29 7.26 7.21 4.88 4.82 3.58 3.51 0.46 9.82E-11
ρ1-Tukey, δ = 0.3 3.99 3.97 3.94 2.41 2.36 0.72 9.96E-11 7.68E-11 9.42E-11
ρ1-Tukey, δ = 0.5 2.88 2.86 2.83 0.83 9.96E-11 9.61E-11 8.17E-11 7.60E-11 9.24E-11

Table 2.26: Implosion breakdown point: values of the M-estimators of scale for a sample of size
101 with k observations replaced by inliers, with k ∈ {0, 1, 2, 50, 51, 70, 71, 90, 91} - 1stSP Case 2

# inliers 0 1 2 50 51 70 71 90 91

ρ1-Huber, δ = 0.1 4.37 4.34 4.33 3.10 3.09 2.44 2.43 1.28 9.99E-11
ρ1-Huber, δ = 0.3 2.47 2.45 2.44 1.65 1.64 0.88 9.99E-11 7.28E-11 6.58E-11
ρ1-Huber, δ = 0.5 1.81 1.79 1.78 0.84 9.95E-11 8.79E-11 8.93E-11 6.83E-11 6.95E-11
ρ1-Tukey, δ = 0.1 7.34 7.29 7.27 5.06 5.04 3.89 3.86 1.71 9.99E-11
ρ1-Tukey, δ = 0.3 3.93 3.90 3.89 2.46 2.43 1.18 9.96E-11 7.28E-11 6.58E-11
ρ1-Tukey, δ = 0.5 2.76 2.73 2.72 1.05 9.99E-11 8.81E-11 8.94E-11 6.83E-11 6.95E-11
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Figure 2.62: Implosion breakdown point: values of the M-estimators of scale for a sample of
size 100 with k observations replaced by inliers, k varying from 0 to 99 - 1stSP Case 1
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Figure 2.63: Implosion breakdown point: values of the M-estimators of scale for a sample of
size 101 with k observations replaced by inliers, k varying from 0 to 100 - 1stSP Case 1
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Figure 2.64: Implosion breakdown point: values of the M-estimators of scale for a sample of
size 100 with k observations replaced by inliers, k varying from 0 to 99 - 1stSP Case 2
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Figure 2.65: Implosion breakdown point: values of the M-estimators of scale for a sample of
size 101 with k observations replaced by inliers, k varying from 0 to 100 - 1stSP Case 2
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In connection with these first simulations and the explosion analysis, for the
sample size n = 100 (101), by looking at Table 2.19 (2.20) and Figures 2.50 to 2.52
(2.53 to 2.55) for Case 1 and Table 2.21 (2.22) and Figures 2.56 to 2.58 (2.59 to
2.61) for Case 2, we can see that the minimum number of perturbed observations
by outliers that makes the estimator to increase arbitrarily, independently of the
simulation case and the type of outlier considered, has been

• 11 for the Huber and Tukey estimators with δ = 0.1;

• 31 for the Huber and Tukey estimators with δ = 0.3;

• 50 (51) for the Huber and Tukey estimators with δ = 0.5.

In connection with the implosion analysis, for the sample size n = 100 (101), by
looking at Table 2.23 (2.24) and Figure 2.62 (2.63) for Case 1 and Table 2.25 (2.26)
and Figure 2.64 (2.65) for Case 2, we can see that the minimum number of perturbed
observations by inliers that makes the estimator to implode to zero, independently
of the simulation case considered, has been

• 91 for the Huber and Tukey estimators with δ = 0.1;

• 71 for the Huber and Tukey estimators with δ = 0.3;

• 51 for the Huber and Tukey estimators with δ = 0.5.

On the basis of these simulations concerning the explosion and implosion break-
down point, one can empirically conclude that Huber and Tukey M-estimators of
scale achieve maximum fsbp when the constant δ equals 0.5.

Next, we will perform the same analyses when the the SECOND SIMULATION
PROCEDURE (2ndSP) (see Page 39) is conducted. As in Subsection 2.4.2, two
sample sizes have been considered in the simulation study, namely, an even sample
size (n = 20) and an odd sample size (n = 21). For the sample size n = 20 we have
chosen the weights ω1 = 0.8, ω2 = 0.1 and ω3 = 0.1, and for the sample size n = 21
the weights have been ω1 = 16/21, ω2 = 3/21 and ω3 = 2/21.
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Explosion pseudo-breakdown point:

The outlier ỹi has been constructed as follows (only for asymmetric distribution):

− Outlier of translation: the non-contaminated sample has been generated on
the basis of a beta distribution β(1, 100) and the fuzzy numbers have been
constrained to be in the interval [0, 5]. Then, we have chosen r1

i = 40 + i · 5.

− Outlier of scale on the core and support: the non-contaminated sample has
been generated on the basis of a beta distribution β(1, 1000) and the fuzzy
numbers have been constrained to be in the interval [0, 1]. Then, we have
chosen r2

i = i · 100.

− Outlier of both translation and scale: the non-contaminated sample has been
generated on the basis of a beta distribution β(1, 100) and the fuzzy numbers
have been constrained to be in the interval [0, 5]. Then, we have chosen

r1
i = 40 + i · 5, r2

i = 2.

For each type of outlier, the general scheme of the simulation is the same that
the one for the 1stSP (see Page 161). The criterion in Remark 2.4.1 is also applied.

The simulation-based conclusions in this study are presented through Tables 2.27
and 2.28 and Figures 2.66 to 2.71. More concretely, tables gather the values of the
M-estimators of scale when outliers are introduced in the sample by replacement,
and figures graphically display these values for each estimator.

Implosion pseudo-breakdown point:

The non-contaminated sample has been generated from a beta β(1, 100). The
general scheme of the simulation is the same that the one for the 1stSP (see Page 161).

The simulation-based conclusions in this study are presented through Tables 2.29
and 2.30 and Figures 2.72 and 2.73. Tables gather the values of the M-estimators of
scale when inliers are introduced in the sample by replacement, and figures graphi-
cally display these values for each estimator.
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Table 2.27: Explosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 20 with k observations replaced by outliers of translation (at the top), scale on
core and support (in the middle) and both (at the bottom), with k ∈ {0, 1, . . . , 10} - 2ndSP

Asymmetric distribution

# outliers (translation) 0 1 2 3 4 5 6 7 8 9 10

ρ1-Huber, δ = 0.1 3.74 5.27 45.51 61.80 75.04 88.07 101.10 114.23 127.53 141.05 154.79
ρ1-Huber, δ = 0.3 2.10 2.33 2.61 2.99 3.58 4.88 45.46 61.26 71.48 80.66 89.20
ρ1-Huber, δ = 0.5 1.40 1.52 1.67 1.84 1.98 2.11 2.39 2.75 3.33 4.69 45.38
ρ1-Tukey, δ = 0.1 6.24 8.96 53.87 90.77 116.23 139.97 163.18 186.29 209.54 233.05 256.88
ρ1-Tukey, δ = 0.3 3.25 3.64 4.14 4.85 5.93 8.25 53.40 83.80 100.68 115.94 130.67
ρ1-Tukey, δ = 0.5 2.14 2.34 2.54 2.78 3.00 3.22 3.68 4.34 5.43 7.89 52.39

# outliers (scale) 0 1 2 3 4 5 6 7 8 9 10

ρ1-Huber, δ = 0.1 0.61 0.85 5.37 11.83 19.72 26.99 32.28 36.81 40.84 44.51 47.90
ρ1-Huber, δ = 0.3 0.32 0.36 0.41 0.48 0.58 0.81 5.35 11.82 19.72 25.70 27.66
ρ1-Huber, δ = 0.5 0.21 0.22 0.24 0.27 0.29 0.33 0.36 0.44 0.46 0.64 5.33
ρ1-Tukey, δ = 0.1 1.01 1.44 6.64 17.41 28.88 40.58 50.51 58.95 66.38 73.08 79.23
ρ1-Tukey, δ = 0.3 0.51 0.56 0.64 0.77 0.94 1.37 6.55 17.40 28.35 34.80 39.53
ρ1-Tukey, δ = 0.5 0.32 0.33 0.36 0.41 0.44 0.51 0.56 0.66 0.72 1.04 6.33

# outliers (both) 0 1 2 3 4 5 6 7 8 9 10

ρ1-Huber, δ = 0.1 4.00 5.51 45.76 62.08 75.36 88.42 101.48 114.64 127.97 141.51 155.28
ρ1-Huber, δ = 0.3 2.31 2.46 2.73 3.09 3.65 5.11 45.71 61.52 71.75 80.93 89.50
ρ1-Huber, δ = 0.5 1.72 1.78 1.89 1.99 2.09 2.28 2.53 2.82 3.19 4.47 45.64
ρ1-Tukey, δ = 0.1 6.75 9.41 54.37 91.20 116.73 140.55 163.81 186.97 210.26 233.82 257.71
ρ1-Tukey, δ = 0.3 3.65 3.94 4.44 5.09 6.11 8.69 53.90 84.15 101.05 116.34 131.12
ρ1-Tukey, δ = 0.5 2.58 2.67 2.87 3.04 3.22 3.56 4.02 4.57 5.27 7.57 53.19

Table 2.28: Explosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 21 with k observations replaced by outliers of translation (at the top), scale on
core and support (in the middle) and both (at the bottom), with k ∈ {0, 1, . . . , 11} - 2ndSP

Asymmetric distribution

# outliers (translation) 0 1 2 3 4 5 6 7 8 9 10 11

ρ1-Huber, δ = 0.1 4.07 5.63 18.59 61.56 74.65 87.52 100.38 113.33 126.43 139.72 153.24 167.01
ρ1-Huber, δ = 0.3 2.28 2.52 2.83 3.20 3.61 4.55 9.10 58.78 69.81 79.18 87.94 96.42
ρ1-Huber, δ = 0.5 1.63 1.78 1.90 2.01 2.02 2.08 2.23 2.58 2.90 3.01 4.83 56.34
ρ1-Tukey, δ = 0.1 6.81 9.57 32.14 89.26 114.79 138.39 161.37 184.21 207.14 230.28 253.76 277.60
ρ1-Tukey, δ = 0.3 3.58 4.00 4.52 5.19 5.96 7.65 15.65 79.34 97.45 112.95 127.72 142.25
ρ1-Tukey, δ = 0.5 2.42 2.64 2.86 3.07 3.15 3.28 3.55 4.08 4.60 5.04 8.27 74.58

# outliers (scale) 0 1 2 3 4 5 6 7 8 9 10 11

ρ1-Huber, δ = 0.1 0.59 0.82 2.71 8.98 14.91 21.27 27.32 32.33 36.66 40.54 44.07 47.34
ρ1-Huber, δ = 0.3 0.32 0.36 0.41 0.47 0.56 0.73 1.52 7.88 13.71 20.00 25.44 27.33
ρ1-Huber, δ = 0.5 0.18 0.20 0.23 0.26 0.31 0.34 0.38 0.44 0.49 0.62 1.06 6.09
ρ1-Tukey, δ = 0.1 0.98 1.38 4.60 12.97 21.95 31.44 41.73 50.89 58.86 65.94 72.36 78.28
ρ1-Tukey, δ = 0.3 0.48 0.55 0.63 0.75 0.92 1.23 2.60 11.21 20.12 28.75 34.54 39.02
ρ1-Tukey, δ = 0.5 0.28 0.31 0.35 0.40 0.46 0.50 0.58 0.68 0.77 1.01 1.81 9.44

# outliers (both) 0 1 2 3 4 5 6 7 8 9 10 11

ρ1-Huber, δ = 0.1 4.79 5.50 17.40 62.08 75.27 88.22 101.14 114.15 127.30 140.65 154.23 168.04
ρ1-Huber, δ = 0.3 2.47 2.47 2.65 2.93 3.41 4.48 8.77 59.30 70.36 79.76 88.54 97.02
ρ1-Huber, δ = 0.5 1.58 1.58 1.58 1.63 1.74 1.98 2.08 2.53 2.78 3.49 5.94 56.86
ρ1-Tukey, δ = 0.1 7.83 9.32 30.08 89.98 115.74 139.50 162.60 185.56 208.59 231.84 255.41 279.34
ρ1-Tukey, δ = 0.3 3.83 3.83 4.12 4.64 5.53 7.48 15.05 79.99 98.19 113.78 128.61 143.19
ρ1-Tukey, δ = 0.5 2.41 2.41 2.45 2.54 2.69 3.03 3.20 3.86 4.28 5.64 10.05 75.30
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Figure 2.66: Explosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 20 with k observations replaced by outliers of translation,

k varying from 0 to 10 - 2ndSP Asymmetric distribution
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Figure 2.67: Explosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 20 with k observations replaced by outliers of scale on core and support,

k varying from 0 to 10 - 2ndSP Asymmetric distribution
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Figure 2.68: Explosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 20 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 10 - 2ndSP Asymmetric distribution
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Figure 2.69: Explosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 21 with k observations replaced by outliers of translation,

k varying from 0 to 11 - 2ndSP Asymmetric distribution
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Figure 2.70: Explosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 21 with k observations replaced by outliers of scale on core and support,

k varying from 0 to 11 - 2ndSP Asymmetric distribution

● ●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0

50

100

150

Huber, δ = 0.1

number of outliers (both)

● ● ● ● ●
●

●

●

●

●

●

●

0 2 4 6 8 10

0

20

40

60

80

100

Huber, δ = 0.3

number of outliers (both)

● ● ● ● ● ● ● ● ●
●

●

●

0 2 4 6 8 10

0

10

20

30

40

50

Huber, δ = 0.5

number of outliers (both)

● ●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0

50

100

150

200

250

Tukey, δ = 0.1

number of outliers (both)

● ● ● ● ●
●

●

●

●

●

●

●

0 2 4 6 8 10

0

20

40

60

80

100

120

140

Tukey, δ = 0.3

number of outliers (both)

● ● ● ● ● ● ● ● ●
●

●

●

0 2 4 6 8 10

0

20

40

60

Tukey, δ = 0.5

number of outliers (both)

Figure 2.71: Explosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 21 with k observations replaced by outliers of both translation and scale

on core and support, k varying from 0 to 11 - 2ndSP Asymmetric distribution
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Table 2.29: Implosion pseudo-breakdown point: values of the M-estimators of scale for a sample
of size 20 with k observations replaced by inliers, with k ∈ {0, 1, 2, 10, 11, 14, 15, 18, 19} - 2ndSP

Asymmetric distribution

# inliers 0 1 2 10 11 14 15 18 19

ρ1-Huber, δ = 0.1 6.01 5.78 5.54 4.22 4.14 3.86 3.69 0.88 8.60E-11

ρ1-Huber, δ = 0.3 2.69 2.59 2.48 1.66 1.56 1.11 9.92E-11 8.43E-11 6.93E-11

ρ1-Huber, δ = 0.5 1.86 1.70 1.50 0.50 9.64E-11 7.86E-11 7.29E-11 6.46E-11 3.69E-11

ρ1-Tukey, δ = 0.1 9.40 9.12 8.82 7.02 6.88 6.35 6.03 0.88 8.60E-11

ρ1-Tukey, δ = 0.3 4.22 4.00 3.77 2.47 2.33 1.14 9.78E-11 8.43E-11 6.93E-11

ρ1-Tukey, δ = 0.5 2.76 2.55 2.32 0.51 9.89E-11 9.27E-11 8.22E-11 6.46E-11 3.69E-11

Table 2.30: Implosion pseudo-breakdown point: values of the M-estimators of scale for a sample
of size 21 with k observations replaced by inliers, with k ∈ {0, 1, 2, 10, 11, 14, 15, 18, 19} - 2ndSP

Asymmetric distribution

# inliers 0 1 2 10 11 14 15 18 19

ρ1-Huber, δ = 0.1 7.51 7.47 7.41 7.28 7.27 7.17 7.06 1.49 9.77E-11

ρ1-Huber, δ = 0.3 2.50 2.44 2.32 1.99 1.95 1.37 9.97E-11 7.75E-11 8.00E-11

ρ1-Huber, δ = 0.5 1.53 1.46 1.34 0.85 9.93E-11 9.72E-11 9.66E-11 6.50E-11 7.91E-11

ρ1-Tukey, δ = 0.1 11.58 11.50 11.35 10.99 10.96 10.69 10.36 2.27 9.77E-11

ρ1-Tukey, δ = 0.3 4.05 3.92 3.69 3.01 2.93 2.01 9.86E-11 7.75E-11 8.00E-11

ρ1-Tukey, δ = 0.5 2.37 2.25 2.06 1.14 9.90E-11 9.74E-11 8.67E-11 6.50E-11 7.91E-11
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Figure 2.72: Implosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 20 with k observations replaced by inliers, k varying from 0 to 19 - 2ndSP

Asymmetric distribution
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Figure 2.73: Implosion pseudo-breakdown point: values of the M-estimators of scale for a
sample of size 21 with k observations replaced by inliers, k varying from 0 to 20 - 2ndSP

Asymmetric distribution
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In summary, for these second type simulations and in connection with the ex-
plosion/implosion, for the sample size n = 20 (21), by looking at Table 2.27/2.29
(2.28/2.30) and Figures 2.66 to 2.68/2.72 (2.69 to 2.71/2.73), we can see that ‘the
minimum number of perturbed observations by outliers that makes the estimator
to increase noticeably’/‘the minimum number of perturbed observations by inliers
that makes the estimator to implode to zero’, independently of the considered type
of outlier, has been

• 2/19 for the Huber and Tukey estimators with δ = 0.1;
• 6/15 (7/15) for the Huber and Tukey estimators with δ = 0.3;
• 10/11 (11/11) for the Huber and Tukey estimators with δ = 0.5.

We analyze now the sensitivity curves of the M-estimators. The simulations
are conduced according to the FIRST SIMULATION PROCEDURE (1stSP) in the
same way that was explained in Subsection 2.4.3.

Therefore, the non-contaminated sample has been simulated from the 1stSP
considering the two cases (see Page 38) and a unique sample size, n = 100.

The outliers have been constructed as follows. Let ỹs be the outlier. Then,
− Outlier of translation: r1

s = s, with s varying from −20 to 20 with a step
equals 0.1.

− Outlier of scale on the core and support: r2
s = s, with s varying from 0 to 20

with a step equals 0.1.
− Outlier of both translation and scale: r1

s = r2
s = s, with s varying from −20

to 20 with a step equals 0.1.

For each type of outlier, the general scheme of the construction of the sensitivity
curves has been as follows:

Step 1. A sample x̃100 of 100 trapezoidal fuzzy numbers has been simulated
from the 1stSP, considering the two cases of simulation involved in this procedure.

Step 2. One observation from the original sample x̃100 has been chosen randomly
and replaced by the outlier ỹs.

Step 3. For each s, the value of the sensitivity curve has been calculated for
each M-estimator of scale. We have chosen the ̂ρ1-MDD with respect to the 1-norm
median, ̂ρ1-MDD(x̃n,

̂̃Me(x̃n)), as initial robust scale measure to start the algorithm.
The sensitivity curves have been graphically displayed for each M-estimator in

Figures 2.74 to 2.76 for Case 1 and in Figures 2.77 to 2.79 for Case 2. Irrespective
of the type of outlier that we are considering, we can see that the sensitivity curves
are bounded for all the M-estimators in both cases.
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Figure 2.74: Sensitivity curves of the M-estimators of scale for a sample of size 100
and outliers of translation - 1stSP Case 1
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Figure 2.75: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers
of scale on core and support - 1stSP Case 1
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Figure 2.76: Sensitivity curves of the M-estimators of scale for a sample of size 100
and outliers of both translation and scale on core and support - 1stSP Case 1
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Figure 2.77: Sensitivity curves of the M-estimators of scale for a sample of size 100
and outliers of translation - 1stSP Case 2
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Figure 2.78: Sensitivity curves of the M-estimators of scale for a sample of size 100
and outliers of scale on core and support - 1stSP Case 2
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Figure 2.79: Sensitivity curves of the M-estimators of scale for a sample of size 100 and outliers
of both translation and scale on core and support - 1stSP Case 2
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Now, we follow the SECOND SIMULATION PROCEDURE (2ndSP) (see
Page 39). As in Subsection 2.4.3, a unique sample size n = 100 has been considered
in the study, with weights ω1 = 0.8, ω2 = 0.1 and ω3 = 0.1.

The outlier ỹs for the considered asymmetric distribution has been constructed
so that, with the non-contaminated sample being generated from a beta β(1, 100),

− Outlier of translation: r1
s = s, with s varying from 0 to 20 with a step equals

0.1.
− Outlier of scale on the core and support: r2

s = s, with s varying from 0 to 20
with a step equals 0.1.

− Outlier of both translation and scale: r1
s = r2

s = s, with s varying from 0 to
20 with a step equals 0.1.

For each type of outlier, the general scheme of the simulation is the same that
the one for the 1stSP (see Page 181), and the criterion in Remark 2.4.1 has also
been applied.
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Figure 2.80: Sensitivity curves of the M-estimators of scale for a sample of size 100
and outliers of translation - 2ndSP Asymmetric distribution
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Figure 2.81: Sensitivity curves of the M-estimators of scale for a sample of size 100
and outliers of scale on core and support - 2ndSP Asymmetric distribution
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Figure 2.82: Sensitivity curves of the M-estimators of scale for a sample of size 100
and outliers of both translation and scale on core and support - 2ndSP Asymmetric distribution
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We can see the pseudo-sensitivity curves graphically represented for each M-
estimator in Figures 2.80 to 2.82. Independently of the type of outlier that we are
considering, we can see that the pseudo-sensitivity curves are bounded for all the
M-estimators.

2.6 Illustrating the use of different scale measures
through case studies

This section aims to illustrate the computation of the scale measures that have
been introduced in this chapter for FRS-based data in the three case studies in
Examples 1.6.1 (Pages 33 and 233), 1.6.2 (Pages 35 and 243) and 1.6.3 (Pages 35
and 251).

In Table 2.32 the values of the scale estimates in Sections 2.1 and 2.5 (ρ̂2-SD(x̃n),
̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,

̂̃Me(x̃n)), ̂D `
1-ADD(x̃n,

̂̃M`(x̃n)), ̂ρ2-MDD(x̃n, x̃n), and
the robust ones ̂ρ1-MDD(x̃n,

̂̃Me(x̃n)), ̂D `
1-MDD(x̃n,

̂̃M`(x̃n)), ρ̂1-S(x̃n), ρ̂1-Q(x̃n),
ρ̂1-T(x̃n), ρ1-Huber(x̃n) with δ = 0.5, and ρ1-Tukey(x̃n) with δ = 0.5) are gathered
for the FRS-based responses to the following nine items from the Example 1.6.1
questionnaire:

Table 2.31: Questions selected from the student questionnaire in Example 1.6.1

Reading in school
R.1 I like to read things that make me think
R.2 I learn a lot from reading
R.3 Reading is harder for me than any other subject

Mathematics in school
M.1 I like mathematics
M.2 My math teacher is easy to understand
M.3 Mathematics is harder for me than any other subject

Science in school
S.1 My teacher taught me to discover science in daily life
S.2 I read about science in my spare time
S.3 Science is harder for me than any other subject

If we analyze Table 2.32 by quantifying the pairwise Pearson’s correlation coeffi-
cients between scale estimates, where individuals are the nine items, we get a rather
strong positive correlation for all pairs of estimates but for M-estimates that behave
in a different way. More concretely, the lowest correlation coefficient for pairs of
non-robust estimates equals 0.942, and the lowest correlation coefficient for pairs of
robust estimates (different from M-estimates) equals 0.872.
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Table 2.32: Sample scale estimates for the fuzzy rating responses
to Items R.1 to S.3 in Example 1.6.1

scale measure \ item R.1 R.2 R.3 M.1 M.2 M.3 S.1 S.2 S.3

ρ̂2-SD(x̃n) 2.26 1.88 2.90 2.70 2.34 3.48 2.59 2.34 2.93
̂ρ2-ADD(x̃n, x̃n) 1.82 1.63 2.42 2.38 1.98 3.09 2.16 1.93 2.58

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 1.72 1.50 2.24 2.27 1.74 3.03 2.03 1.83 2.47

̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 2.08 1.97 2.73 2.79 2.27 3.28 2.54 2.29 2.98
̂ρ2-MDD(x̃n, x̃n) 1.44 1.45 2.27 2.31 1.80 3.41 1.71 1.67 2.41

̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 1.37 1.39 1.58 2.17 1.06 3.04 1.69 1.60 2.24

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 1.65 1.86 2.12 2.89 1.79 3.30 2.24 2.03 2.69

ρ̂1-S(x̃n) 1.59 1.56 2.21 2.40 1.50 3.36 2.03 1.95 2.84

ρ̂1-Q(x̃n) 1.04 0.94 1.09 1.43 0.81 1.53 1.33 1.14 1.62

ρ̂1-T(x̃n) 1.39 1.32 1.69 2.18 1.18 2.83 1.83 1.68 2.48

ρ1-Huber, δ = 0.5 9.46 11.10 3.52 9.85 11.57 6.22 8.93 4.07 6.45

ρ1-Tukey, δ = 0.5 14.09 16.90 5.10 14.37 17.51 9.15 13.26 6.01 9.36

As we have commented, the behaviour of the computed scale M-estimates is
quite different from that of the other scale estimates (see Figure 2.83). It would be
then interesting to examine whether this behaviour can be more coherent if other
loss functions or parameter values are chosen.

 

R.1 R.2 R.3 M.1 M.2 M.3 S.1 S.2 S.3

Figure 2.83: Graphical display of the values of different scale estimates for responses to Items
R.1 to S.3 in Example 1.6.1

In Table 2.34 the values of the scale estimates in Sections 2.1 and 2.5 (ρ̂2-SD(x̃n),
̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,

̂̃Me(x̃n)), ̂D `
1-ADD(x̃n,

̂̃M`(x̃n)), ̂ρ2-MDD(x̃n, x̃n), and
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the robust ones ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)), ̂D `

1-MDD(x̃n,
̂̃M`(x̃n)), ρ̂1-S(x̃n), ρ̂1-Q(x̃n),

ρ̂1-T(x̃n), ρ1-Huber(x̃n) with δ = 0.5, and ρ1-Tukey(x̃n) with δ = 0.5) are gathered
for the FRS-based responses to the following fourteen items from the Example 1.6.2
questionnaire:

Table 2.33: Questions selected from the restaurant questionnaire in Example 1.6.2

About your opinion/valuation/rating
QF1 The food is served hot and fresh
QF2 The menu has a good variety of items
QF3 The quality of food is excellent
QF4 The food is tasty and flavorful
QF5 The quality of beverage is good

Satisfaction with restaurant service
QR1 My food order was correct and complete
QR2 Employees are patient when taking my order
QR3 I was served promptly
QR4 Good availability of sauces, utensils, napkins,...
QR5 The menu board was easy to read
QR6 Employees are friendly and courteous
QR7 The service is excellent
QR8 Good cleanness of the restaurant and service

Opinion about prices
QP1 Prices are competitive

Table 2.34: Sample scale estimates for the fuzzy rating responses
to Items QF1 to QP1 in Example 1.6.2

scale measure \ item QF1 QF2 QF3 QF4 QF5 QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8 QP1

ρ̂2-SD(̃xn) 15.76 20.36 19.75 14.05 16.57 16.39 16.79 15.84 22.81 17.59 21.64 16.88 19.06 18.28

̂ρ2-ADD(̃xn, x̃n) 12.02 17.41 15.65 11.71 14.21 12.81 13.74 12.81 19.48 13.13 17.11 13.36 15.03 14.68

̂ρ1-ADD(̃xn,
̂̃Me(̃xn)) 11.33 16.71 14.28 10.84 13.38 11.18 12.39 11.99 18.30 11.40 15.17 12.36 14.20 13.04

̂D`
1-ADD(̃xn,

̂̃M` (̃xn)) 14.31 20.21 17.64 13.59 16.47 14.37 15.26 14.94 21.64 14.76 18.55 15.25 16.82 16.77

̂ρ2-MDD(̃xn, x̃n) 8.93 17.32 12.37 10.68 13.69 11.04 12.34 9.59 18.79 9.61 15.07 10.86 13.87 12.91

̂ρ1-MDD(̃xn,
̂̃Me(̃xn)) 8.48 16.79 10.05 9.18 13.50 6.00 8.96 9.85 17.28 6.88 9.74 9.76 12.63 8.75

̂D`
1-MDD(̃xn,

̂̃M` (̃xn)) 10.67 18.29 11.96 10.80 16.38 10.78 11.99 13.53 19.58 10.46 12.31 12.88 15.07 11.19

ρ̂1-S(̃xn) 12.00 17.75 13.25 10.25 13.75 8.75 10.00 12.50 17.50 10.00 12.25 12.50 15.00 12.50

ρ̂1-Q(̃xn) 7.50 10.50 10.00 7.50 10.00 5.00 7.50 7.50 11.25 5.00 7.50 8.25 8.33 7.50

ρ̂1-T(̃xn) 10.39 15.99 11.45 9.34 12.62 6.82 8.94 10.31 15.47 7.88 9.61 10.62 12.93 9.88

ρ1-Huber, δ = 0.5 109.97 98.83 102.54 112.67 105.18 121.36 114.12 109.18 104.77 121.47 113.49 106.40 110.48 113.59

ρ1-Tukey, δ = 0.5 168.85 148.14 155.63 173.30 160.07 186.52 174.77 167.01 156.91 186.49 172.49 162.54 168.22 173.61

If we analyze Table 2.34 by quantifying the pairwise Pearson’s correlation co-
efficients between scale estimates, where individuals are the fourteen items, we get
a rather strong positive correlation for all pairs of estimates but for M-estimates
that behave in a different way. More concretely, the lowest correlation coefficient
for pairs of non-robust estimates equals 0.832, and the lowest correlation coefficient
for pairs of robust estimates (different from M-estimates) equals 0.811.
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As for the preceding example, the behaviour of the computed scale M-estimates
is quite different from that of the other scale estimates (see Figure 2.84).
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Figure 2.84: Graphical display of the values of different scale estimates for responses to Items
QF1 to QP1 in Example 1.6.2

In Table 2.35 the values of the scale estimates in Sections 2.1 and 2.5 (ρ̂2-SD(x̃n),
̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,

̂̃Me(x̃n)), ̂D `
1-ADD(x̃n,

̂̃M`(x̃n)), ̂ρ2-MDD(x̃n, x̃n), and
the robust ones ̂ρ1-MDD(x̃n,

̂̃Me(x̃n)), ̂D `
1-MDD(x̃n,

̂̃M`(x̃n)), ρ̂1-S(x̃n), ρ̂1-Q(x̃n),
ρ̂1-T(x̃n), ρ1-Huber(x̃n) with δ = 0.5, and ρ1-Tukey(x̃n) with δ = 0.5) are gathered
for the unique item in Example 1.6.3, namely, the relative length of different line
segments with respect to a pattern longer one.

Table 2.35: Sample scale estimates for the responses to questionnaire in Example 1.6.3

scale measure scale measure

ρ̂2-SD(x̃n) 28.85 ̂ρ2-ADD(x̃n, x̃n) 24.78

̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 24.65 ̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 25.98

̂ρ2-MDD(x̃n, x̃n) 24.81 ̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 24.67

̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 25.98 ρ̂1-S(x̃n) 25.35

ρ̂1-Q(x̃n) 13.45 ρ̂1-T(x̃n) 24.58

ρ1-Huber, δ = 0.5 75.78 ρ1-Tukey, δ = 0.5 110.81
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2.7 Concluding remarks of this chapter
This chapter has been devoted to introduce several scale measures in dealing with
fuzzy-valued data. Some of their main properties have been examined, specially the
one concerning the robustness. The analysis of the finite sample breakdown point
and the sensitivity curves, as powerful tools to verify the robust behaviour of some
of these measures, has allowed us to draw similar conclusions to those from the case
of real-valued data.

Therefore, the main contributions of this Chapter have been the following:
• The introduction of several scale measures for fuzzy-valued data in Defini-

tions 2.1.1-2.1.6 and the analysis of some of their main properties in Section
2.2.

• The study of the robust behaviour of the different scale estimates by means
of the finite sample breakdown point in Section 2.3 from a theoretical point
of view; conclusions have been later corroborated by means of simulation
studies, including their sensitivity curves, in Section 2.4; this study has con-
firmed the good robust behaviour of the scale measures ρ1-MDD(X , M̃e(X )),
Dϕ
θ -MDD(X , M̃ϕ(X )), D-S(X ,Y), D̂-Q(x̃n) and D̂-T(x̃n), so their robustness

is inherited when they are extended from the real- case to the fuzzy-valued
case.

• A brief introduction to the M-estimation of scale for fuzzy-valued data, includ-
ing an simulation study to check the empirical robustness of the M-estimators
of scale based on two of the most popular loss functions, by means of the
finite sample breakdown point and the sensitivity curves; the application to
illustrate the measurement of scale in the case studies presented in Chapter 1
indicates the behaviour of M-estimators is rather different to the other robust
estimators, so a much deeper analysis needs to be performed.

The ideas and results in this chapter have been gathered at this stage in one
published paper (De la Rosa de Sáa et al. [28]) and one communication to an
international conference (De la Rosa de Sáa et al. [25]).





Chapter 3

Comparing statistical conclusions
for different rating scales.
Questionnaires-based
case studies and simulations

Different studies can be found in the literature to discuss the influence of the number
of categories/points of the Likert-type scales on the reliability of the analysis of
these responses. They usually coincide in pointing out that increasing the number
of categories results in an increase of the variability, information and reliability (see,
for instance, Tomás and Oliver [127] and Lozano et al. [74]).

Actually, to some extent, the ideal situation would be increasing the number of
choices to a continuum. Several studies (see, for instance, Reips and Funke [96], and
Treiblmaier and Filzmoser [128]) have pointed out that the visual analogue scales
provide researchers with many advantages in contrast to discrete ones like Likert’s.
Thus, one can benefit from a metric setting and from the fact that a much wider set
of statistical methods can be applied to analyze the data coming from this rating.

However, the choice of a single point within a continuum representing each re-
sponse is neither easy nor natural in an imprecise context, and it does not seem
realistic to demand so much accuracy in rating intrinsically imprecise magnitudes.

If one aims to really exploit the individual differences in responding to question-
naires, there is a need for a rich and expressive scale that can cope with imprecision.
Fuzzy scales have been involved in this work aiming to rate intrinsically imprecise
magnitudes, like human perceptions, attitudes, opinions, and so on.

In Chapter 1, advantages of using fuzzy rating scales have been commented.
Among these advantages, it has been stated that

193
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− these scales are much richer and more expressive than any one based on a
(unavoidably finite) natural language or its real/fuzzy-valued encoding, and
they allow an uncountable number of modifiers and hedges;

− the flexibility of the FRS’s allows raters to properly capture individual dif-
ferences, whence the intrinsic variability, diversity and subjectivity are not
lost.

As a consequence from such a richness and flexibility, one can expect a richer
statistical information which will result in more accurate statistical conclusions.
This chapter is to be focussed on empirically illustrate some aspects related to the
last assertion, by comparing statistical conclusions for three types of scales in this
framework, namely

• the Likert-type (or its numerical-encoded counterpart),
• the fuzzy linguistic,
• and the fuzzy rating scales.

Visual analogue scales (VAS’s) and their combined versions are not to be included
in the comparative discussion in this chapter. Main reasons supporting such a
decision are the following:
− to require a real number-valued full accuracy in such an intrinsically imprecise

context seems not to be coherent and realistic;
− although the visual analogue scale allows a high diversity, variability and sub-

jectivity in rating, the fuzzy rating scale includes VAS’ values as special ele-
ments, so the diversity, variability and subjectivity are even more highly cap-
tured and, in contrast to VAS’s, FRS’s can (fully) cope with the imprecision
of the considered magnitudes;

− lastly, as shown in González-Rodríguez et al. [48], real-valued data like those
based on a VAS could be fuzzified in such a way that the Aumann-type mean
of these fuzzy data would contain the whole information on (i.e., would char-
acterize) the distribution of the original data, with the value added of being
based on a mean and then showing properties of consistency, and some valu-
able others.

The comparative studies among the three considered scales have been carried
out in this chapter either on questionnaires-based case studies or on simulation de-
velopments inspired on such questionnaires (i.e., the 2ndSP). Questionnaires play
a major role in many scientific studies, especially in those related to social and
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biomedical sciences. Evaluation, rating, judgment, perception, etc., are typical in
human social lives, and the corresponding data are routinely collected as responses
to some questionnaires. Questionnaires were first considered by Galton (see, for in-
stance, [40]) in connection with human communities. They mean a valuable research
tool constituted of a series of questions which are posed to gather information from
respondents, and they are usually designed for statistical analysis.

The comparative analysis has been empirically performed mainly due to the
fact that theoretical results are mostly impossible to achieve in general, since raters
not necessarily behave in a completely systematic way, as it is to be commented
along the chapter. Actually, for any possible comparison we could prepare a coun-
terexample of any conclusion we could think about. Even for conclusions on as-
pects/measures/indices for which data values are irrelevant, like happens for in-
stance with the diversity, one should make some assumptions to get theoretical
results. And for the case studies- and simulations-based developments we will make
use of particular cases of these assumptions.

In this chapter, a first comparison is made through a well-known diversity index
to show that, under reasonable conditions, the diversity is more clearly shown for
the FRS’s than with Likert-type scales or their numerical/fuzzy encodings.

Secondly, on the basis of the bootstrapped algorithm to test the equality of the
Fréchet-type variances in Page 41, an additional comparative study is considered.
It presents different (two-sample and k-sample) case studies-based tests about the
equality of Fréchet’s variances (or the corresponding standard deviations), that are
to be considered separately for each of the three scales of measurement and for Case
studies 1.6.1 (Page 33) and 1.6.3 (Page 35) in which the involved Likert scale is a 4-
and 5-point one, respectively. By comparing the p-values associated with different
scales we will conclude whether or not they differ depending on the rating scale.

Later, two descriptive comparative analyses are to be carried out in terms of
all the, robust and non-robust, scale measures in Chapter 2. The first one com-
pares the estimates of these measures for Case studies 1.6.1 and 1.6.3; in both case
studies the considered fuzzy linguistic scales are the most usual (balanced) seman-
tic representations of the linguistic hierarchies of k = 4 and k = 5 levels. The
second descriptive comparison is simulations-based. Since data simulated will be
FRS-based in accordance with the 2ndSP in Section 1.7 (Page 39), there are not
direct Likert-type linked ones, so they need to be stated in a reasonable way (it
will be considered a ‘Likertization’ process based on the minimum distance and a
posterior fuzzy encoding involving a few different fuzzy linguistic scales).
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3.1 Comparing the diversity of datasets
for different rating scales

The diversity of a dataset from a random element quantifies the variability of data
by taking into account neither their magnitude order nor how different they are (that
is, irrespectively of how ‘distant’ they are and even of the nature of these data). It
can also be interpreted as the amount of information supplied by the experimental
performance.

In quantifying the diversity of a dataset, one of the best known indices is Gini-
Simpson one (see Gini [46] and Simpson [104]).

Definition 3.1.1. Let X be a random fuzzy number associated with the probability
space (Ω,A, P ), and let (ω1, . . . , ωn) a sample of individuals from Ω and providing
with the dataset x̃n = (X (ω1), . . . ,X (ωn)). The (sample) Gini-Simpson diver-
sity index of x̃n is the real number given by

Ĝ(x̃n) = 1− 1
n2

m∑

j=1

[
cardX−1

(
{x̃∗j}

)]2

where X ({ω1, . . . , ωn}) = {x̃∗1, . . . , x̃∗m}, X−1
(
{x̃∗j}

)
= {ωi : X (ωi) = x̃∗j}, m ≤ n.

If in responding to a given item or in rating an imprecise magnitude, raters can
simultaneously make use of both an FRS and a Likert-type scale, then it seems
quite reasonable that two coinciding outputs for the FRS are associated with two
coinciding Likert outputs. Under such a behaviour, the Gini-Simpson index is def-
initely higher for the fuzzy rating scale-based questionnaire. Thus, on the basis
of the well-known decomposability of the Gini-Simpson index, and because of the
Likert assessment establishing a partition on the class of fuzzy responses, one can
state that

Proposition 3.1.1. Let X be a random fuzzy number associated with the probability
space (Ω,A, P ), and let (ω1, . . . , ωn) a sample of individuals from Ω and providing
with the dataset x̃n = (X (ω1), . . . ,X (ωn)). Let F : X ({ω1, . . . , ωn}) → S where
S = {L1, . . . ,Lk} is either the set of values from a Likert scale or the set of terms
of its numerical or fuzzy linguistic encoding. Then,

Ĝ(x̃n) ≥ Ĝ(F(x̃n)),

with equality iff k = m.
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Proof. Let X ({ω1, . . . , ωn}) = {x̃∗1, . . . , x̃∗m}. The set J = {1, . . . ,m} can be par-
titioned as J = J1 ∪ . . . ∪ Jk, with Jl = {j ∈ J : F(x̃∗j) = Ll}. Then, if
nl = card (F ◦ X )−1

(
{Ll}

)
= ∑

j∈Jl cardX−1
(
{x̃∗j}

)
, we have that

Ĝ(x̃n) = 1− 1
n2

∑

j∈J

[
cardX−1

(
{x̃∗j}

)]2
= 1−

k∑

l=1

[
nl
n

]2 ∑

j∈Jl




cardX−1
(
{x̃∗j}

)

nl




2

≥ 1−
k∑

l=1

[
nl
n

]2 ∑

j∈Jl

cardX−1
(
{x̃∗j}

)

nl
= 1−

k∑

l=1

[
nl
n

]2
= Ĝ(F(x̃n)).

�

As a consequence, since the most usual and reasonable double associations would
be identified with mappings, and in case of developing simulations we would cer-
tainly make use of them, there is no need at this point to show conclusions from a
simulations-based approach, which would inevitably ratify the general result above.

3.2 Comparison of rating scales
through testing hypotheses about variances.
Case studies-based analysis

This section is the first attempt to compare the three considered rating scales for
intrinsically imprecise-valued data through scale measures. And this attempt is an
inferential one; more concretely, a hypothesis testing one. Since the only available
test about the equality of population scale measures for fuzzy data is the boot-
strapped one corresponding to variances (or, equivalently, testing the equality of
population standard deviations of two or more independent random elements) in
Page 41, it is the only procedure we can use at this stage.

As we have stated before, the aim of this chapter is verifying that statistical
conclusions can differ depending on the scale that is chosen to respond to items in
a questionnaire when such a response is naturally imprecise (or, more generally, to
rate intrinsically imprecise-valued magnitudes). To illustrate this assertion we are
going to analyze some of the data from case studies in Example 1.6.1 (Page 33)
and Example 1.6.3 (Page 35). These two examples relate to questionnaires in which
respondents have chosen for each item both a Likert answer and an FRS-based one
in [0,10] and [0,100], respectively.
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Since an FLS corresponds to a posterior fuzzy number-valued encoding of Likert
labels, we have chosen the most usual (see, for instance, Herrera et al. [57]) balanced
semantic representations of the linguistic hierarchies of k = 4 levels (Figure 3.1) and
k = 5 levels (Figure 3.2).

Figure 3.1: Usual balanced semantic representation of the linguistic hierarchies of k = 4 levels
used in Example 1.6.1

Figure 3.2: Usual balanced semantic representation of the linguistic hierarchies of k = 5 levels
used in Example 1.6.3

Example 3.2.1. Consider the random experiment in Example 1.6.1 (Page 33, and
see Appendix A, Page 233, for more details), and the nine adapted items allowing
to receive a double response in Table 3.1. Only data from the students who have
provided with both the Likert-type and the FRS responses have been considered in
the comparative analysis in this section.

Assume that one wishes to test whether or not responses to Item R.1 can be
expected to be equally disperse for the two considered forms (computerized and
paper-and-pencil). Suppose that, for this purpose, the two-sample version of the
bootstrapped homoscedasticity test in Page 41 is applied, separately, for
− the FRS-based data with reference interval [0,10],
− the numerically encoded Likert data (NELikert for short, and identifying dis-

agree a lot with 1{0}, disagree a little with 1{10/3}, agree a little
with 1{20/3} and agree a lot with 1{10}),

− and the fuzzy linguistically encoded Likert data in accordance with the trian-
gular encoding in Figure 3.1 (FLTriLikert for short),
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where Likert- and FRS-based data can be found in Table A.2 (Page 239). The L2

chosen metric to compute the standard deviations in this example has been ρ2.

Table 3.1: Questions selected from the student questionnaire in Example 1.6.1

Reading in school
R.1 I like to read things that make me think
R.2 I learn a lot from reading
R.3 Reading is harder for me than any other subject

Mathematics in school
M.1 I like mathematics
M.2 My math teacher is easy to understand
M.3 Mathematics is harder for me than any other subject

Science in school
S.1 My teacher taught me to discover science in daily life
S.2 I read about science in my spare time
S.3 Science is harder for me than any other subject

The datasets, distances between the sample standard deviations for both forms
and bootstrap p-values are gathered in Table 3.2.

Table 3.2: Two-sample bootstrapped homoscedasticity tests on the effect of the form chosen to
respond to Item R.1 (H0 : ρ2-SD(comp) = ρ2-SD(p&p)) in the adapted Questionnaire

TIMSS-PIRLS (D̂ = ρ̂2-SD)

rating scale FRS NELikert FLTriLikert

dataset
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there is an underlying precisely-valued magnitude (the real relative length), the
perception of such a length (when we are not making use of exact measurement
tools) is essentially imprecise.

Table 3.1: ANOVAs tests on the effect of the mark taken in the last examination (acting at
4 levels/groups) on the response to Question M.2 in accordance with different scales (∗∗p < .01,
∗∗∗p < .001)

FRS NELikert FLTriLikert

Datasets

form

Comp.

P&p

form 0 10/3 20/3 10

Comp. 3 8 23 10

P&p 0 4 17 3

form

Comp. 3 8 23 10

P&p 0 4 17 3

Figure 3.2 displays two triangular fuzzy linguistic scales to model labels/responses
in Figure 1.1. These FLS’s are the most usual (balanced) semantic representations
of the linguistic hierarchies of k = 4 (on the left) and k = 5 (on the right) levels
(see, for instance, Herrera et al. [56]).

Figure 3.2: Examples of 5 terms fuzzy linguistic scales

X corresponds in the first situation to the response chosen for the considered
item, and in the second situation it is the perception of the relative length of the
shorter line segment w.r.t. the longest pattern. Notice that, although in this case
there is an underlying precisely-valued magnitude (the real relative length), the
perception of such a length (when we are not making use of exact measurement
tools) is essentially imprecise.

form

Comp.

P&p

form 0 10/3 20/3 10

Comp. 3 8 23 10

P&p 0 4 17 3

form

Comp. 3 8 23 10

P&p 0 4 17 3

form

Comp.

P&p

form 0 10/3 20/3 10

Comp. 3 8 23 10

P&p 0 4 17 3

form

Comp. 3 8 23 10

P&p 0 4 17 3

|difference| |D̂(comp)− D̂(p&p)| = 0.321 |D̂(comp)− D̂(p&p)| = 0.977 |D̂(comp)− D̂(p&p)| = 0.808

p-value 0.47 0.05 0.06

On the basis of the results in Table 3.2, we can conclude that the ρ2-SD-dispersion
is not significantly influenced by the filled form when the information in FRS-based
data is considered. On the contrary, if encoded Likert data are employed, the ρ2-SD-
dispersion is significantly influenced by the filled form, especially for the NELikert
data for which the p-value equals 0.05.
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If p-values are analogously computed for the nine items, we get the results in
Table 3.3.

Table 3.3: Two-sample bootstrapped homoscedasticity tests on the effect of the form chosen to
respond to Items R.1− S.3 (H0 : ρ2-SD(comp) = ρ2-SD(p&p)) in the adapted Questionnaire

TIMSS-PIRLS (D̂ = ρ̂2-SD)

item \ rating scale FRS NELikert FLTriLikert

R.1 0.47 0.05 0.06
R.2 0.79 0.49 0.50
R.3 0.38 0.57 0.52

M.1 0.35 0.24 0.25
M.2 0.15 0.20 0.22
M.3 0.11 0.04 0.07

S.1 0.27 0.07 0.09
S.2 0.49 0.99 0.95
S.3 0.47 0.09 0.07

The results in Table 3.3 show that statistical conclusions for the FRS approach
in this study differ from the encoded Likert approaches substantially for Items R.1,
S.1 and S.3 and slightly for Item M.3.

In Example 3.2.1 we can see that, for the items for which conclusions are re-
markably different and dispersion is significantly different (actually, at significance
levels up to 0.1) for the two involved forms, the p-values for the FRS are greater
than those for the two encoded Likert. However, this cannot be viewed as a rather
general situation, as we will see right now by means of another example.

Example 3.2.2. Consider the random experiment in Example 1.6.3 (Page 35, and
see Appendix C, Page 251, for more details). The perception of the relative length
of different line segments with respect to a pattern longer one is the unique item to
be responded in an online application involving a double response.

An underlying non-explicit factor that could influence the response is Pref
= “absolute number of pixels in horizontal sense occupied by the reference line”.
It is intended as the integer part of the product of the number of pixels in the hori-
zontal direction of the working space (taking on values 1019, 1147, 1275 and 1435)
times the relative size of the reference line with respect to the available horizontal
working space expressed in percentage (fixed as 80) divided by 100. Levels for factor
Pref are then 815, 917, 1020 and 1148.

Assume that one wishes to test whether or not responses to the item can be
expected to be equally disperse for the four values of Pref. For this purpose, the
four-sample version of the bootstrapped homoscedasticity test in Page 41 is applied,
separately, for
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− the FRS-based data with reference interval [0,100],
− the numerically encoded Likert data (NELikert for short, and identifying very

small with 1{0}, small with 1{25}, medium with 1{50}, large with 1{75} and
very large with 1{100}),

− and the fuzzy linguistically encoded Likert data in accordance with the trian-
gular encoding in Figure 3.2 (FLTriLikert for short).

The L2 chosen metric to compute the standard deviations in this example has been
ρ2.

The datasets and bootstrap p-values are gathered in Table 3.4.

Table 3.4: Four-sample bootstrapped homoscedasticity tests on the effect of the resolution Pref
(H0 : ρ2-SD(Pref=815) = ρ2-SD(Pref=917) = ρ2-SD(Pref=1020) = ρ2-SD(Pref=1148))

in the online application Perceptions

rating scale FRS NELikert FLTriLikert

dataset

Table C.8: Bootstrapped homoscedasticity tests on the effect of the form chosen to respond
to item R.1 (H0 : ρ2-SD(comp) = ρ2-SD(p&p)) in the adapted Questionnaire TIMSS-PIRLS
(D̂ = ρ̂2-SD)

Rating scale FRS NELikert FLTriLikert

Pref Data

815

917

1020

1148

Pref 0 25 50 75 100

815 5 10 7 7 4

917 73 92 90 92 65

1020 119 173 244 194 130

1148 10 18 24 17 13

Pref

815 5 10 7 7 4

917 73 92 90 92 65

1020 119 173 244 194 130

1148 10 18 24 17 13

Table C.8: Bootstrapped homoscedasticity tests on the effect of the form chosen to respond
to item R.1 (H0 : ρ2-SD(comp) = ρ2-SD(p&p)) in the adapted Questionnaire TIMSS-PIRLS
(D̂ = ρ̂2-SD)

Rating scale FRS NELikert FLTriLikert

Pref Data

815

917

1020

1148

Pref 0 25 50 75 100

815 5 10 7 7 4

917 73 92 90 92 65

1020 119 173 244 194 130

1148 10 18 24 17 13

Pref

815 5 10 7 7 4

917 73 92 90 92 65

1020 119 173 244 194 130

1148 10 18 24 17 13

Table C.8: Bootstrapped homoscedasticity tests on the effect of the form chosen to respond
to item R.1 (H0 : ρ2-SD(comp) = ρ2-SD(p&p)) in the adapted Questionnaire TIMSS-PIRLS
(D̂ = ρ̂2-SD)

Rating scale FRS NELikert FLTriLikert

Pref Data

815

917

1020

1148

Pref 0 25 50 75 100

815 5 10 7 7 4

917 73 92 90 92 65

1020 119 173 244 194 130

1148 10 18 24 17 13

Pref

815 5 10 7 7 4

917 73 92 90 92 65

1020 119 173 244 194 130

1148 10 18 24 17 13

p-value 0.09 0.15 0.19

On the basis of the results in Table 3.4, we can conclude that the ρ2-SD-dispersion
is not very much influenced by the resolution (Pref) of the considered line if the
(either numerically or fuzzy linguistically) encoded Likert data are employed. On
the contrary, the ρ2-SD-dispersion is rather significantly influenced by the resolution
when the FRS-based data are considered since the p-value equals 0.09.
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3.3 Descriptive comparison of the rating scales
through different scale estimates.
Case studies-based analysis

This section aims to reinforce the conclusions in the preceding section by involving
scale measures different from the variance/standard deviation, and especially robust
scale measures. However, there are not yet hypothesis testing procedures about
other scale measures; in fact, it is a future direction of the research in this work.
Consequently, we are limited to consider descriptive developments.

For the descriptive approach, we will first make use of the two case studies
inferentially analyzed in the preceding section. Then, we are going to compute
the scale measures in Section 2.1 over their datasets. The notations as well as the
numerical and fuzzy linguistic encodings of the Likert responses in both case studies
are those already considered in Section 3.2.

Example 3.3.1. Consider the random experiment in Example 1.6.1 (Page 33, and
see Appendix A, Page 233, for more details), and the nine adapted items allowing
to receive a double response in Table 3.1.

A descriptive analysis of the sample Aumann-type mean, the 1-norm median and
the `-wabl/ldev/rdev median for the nine items can be found in Table 3.5.

As one can see, to a lesser or greater extent the values of these location measures
for the FRS-based responses are different from those for the encoded Likert ones (see
also Lubiano et al. [75] for a wider analysis about). In this respect, if we look, for
instance, at ItemM.3, the mean value for the NELikert responses equals 5.8935 and
the one for the FLTriLikert is Tra(3.2850, 5.8937, 5.8937, 7.8261), whereas the one
for the FRS equals Tra(4.0149, 4.2562, 4.8982, 5.1895). If the last two fuzzy location
estimates are defuzzified by means of their wabl`, we get the values 5.7246 for the
FLTriLikert and 4.5897 for the FRS. The difference is even greater for the medians,
since the NELikert median equals 6.6667, the wabl` of both the 1-norm and wabl
medians of the FLTriLikert equals 6.6667, and the wabl` of the 1-norm median of
the FRS equals 3.8544 and the one of the wabl median of the FRS equals 3.9365.

Such a difference between different rating scales can also be shown when the sam-
ple scale is measured. In Table 3.6 the real values of the scale estimates in Section 2.1
(namely, ρ̂2-SD(x̃n), ̂ρ2-ADD(x̃n, x̃n), ̂ρ1-ADD(x̃n,

̂̃Me(x̃n)), ̂D `
1-ADD(x̃n,

̂̃M`(x̃n)),
̂ρ2-MDD(x̃n, x̃n), and the robust ones ̂ρ1-MDD(x̃n,

̂̃Me(x̃n)), ̂D `
1-MDD(x̃n,

̂̃M`(x̃n)),
ρ̂1-S(x̃n), ρ̂1-Q(x̃n) and ρ̂1-T(x̃n)) are gathered for the nine items.
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Table 3.5: Sample means, 1-norm medians and `-wabl/ldev/rdev medians
for the responses to Items R.1 to S.3 in Example 1.6.1

NELikert NELikert FLTriLikert FLTriLikert FLTriLikert FRS FRS FRS

mean median Aumann mean 1-norm median wabl median Aumann mean 1-norm median wabl median
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Table 3.6: Sample scale estimates for the responses to Items R.1 to S.3 in Example 1.6.1

scale measure \ item R.1 R.2 R.3 M.1 M.2 M.3 S.1 S.2 S.3

NELikert ρ̂2-SD(x̃n) 2.4754 2.1798 3.1834 3.0469 2.4786 4.0192 3.1227 2.6474 3.4780
FLTriLikert ρ̂2-SD(x̃n) 2.2052 1.8873 2.7177 2.6912 2.1186 3.4502 2.7284 2.3084 3.0256
FRS ρ̂2-SD(x̃n) 2.2056 1.8435 2.9205 2.7125 2.3641 3.4820 2.6238 2.3081 2.9128

NELikert ̂ρ2-ADD(x̃n, x̃n) 1.7262 1.9772 2.6131 2.5207 2.0698 3.6769 2.4285 2.1574 2.9769
FLTriLikert ̂ρ2-ADD(x̃n, x̃n) 1.6572 1.6681 2.2253 2.3602 1.7403 3.2370 2.2499 1.8697 2.6990
FRS ̂ρ2-ADD(x̃n, x̃n) 1.7674 1.5979 2.4406 2.3890 2.0103 3.0942 2.1883 1.8853 2.5706

NELikert ̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 1.5694 1.7901 2.1885 2.4885 1.6659 3.5757 2.2571 2.0309 2.8292

FLTriLikert ̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 1.3725 1.4179 1.7786 2.1517 1.3258 3.0435 1.9359 1.6667 2.4369

FRS ̂ρ1-ADD(x̃n, ̂̃Me(x̃n)) 1.6700 1.4611 2.2770 2.2865 1.7741 3.0276 2.0579 1.7890 2.4635

NELikert ̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.5694 1.7901 2.1885 2.4885 1.6659 3.5757 2.2571 2.0309 2.8292

FLTriLikert ̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 1.5931 1.8377 2.1471 2.5295 1.6777 3.4979 2.2965 2.0768 2.8772

FRS ̂D`
1-ADD(x̃n,

̂̃M`(x̃n)) 2.0320 1.9332 2.7688 2.7927 2.3110 3.2824 2.5621 2.2428 2.9730

NELikert ̂ρ2-MDD(x̃n, x̃n) 0.2962 1.7901 2.1885 3.2372 1.6659 4.1065 2.9272 2.6553 2.7308
FLTriLikert ̂ρ2-MDD(x̃n, x̃n) 0.4795 1.4975 1.8195 2.9364 1.3816 3.4808 2.8077 2.2234 2.6044
FRS ̂ρ2-MDD(x̃n, x̃n) 1.4050 1.3520 2.3321 2.3665 1.8534 3.4066 1.8743 1.5960 2.4658

NELikert ̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 0.0000 0.0000 0.0000 3.3300 0.0000 3.3300 3.3300 3.3300 3.3300

FLTriLikert ̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 0.0000 0.0000 0.0000 2.5000 0.0000 2.5000 2.5000 2.5000 2.5000

FRS ̂ρ1-MDD(x̃n, ̂̃Me(x̃n)) 1.2934 1.3625 1.7149 2.2140 1.2119 3.0357 1.8289 1.4314 2.3375

NELikert ̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 0.0000 0.0000 0.0000 3.3300 0.0000 3.3300 3.3300 3.3300 3.3300

FLTriLikert ̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 0.0000 0.0000 0.0000 3.3333 0.0000 2.9167 3.3333 3.3333 3.3333

FRS ̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 1.6188 1.8240 2.2581 2.9174 1.8625 3.3000 2.2755 1.9329 2.9304

NELikert ρ̂1-S(x̃n) 0.0000 0.0000 0.0000 3.3300 0.0000 3.3300 3.3300 3.3300 3.3300
FLTriLikert ρ̂1-S(x̃n) 0.0000 0.0000 0.0000 2.8333 0.0000 2.8333 2.8333 2.5000 2.5000
FRS ρ̂1-S(x̃n) 1.5688 1.5625 2.2642 2.4005 1.5250 3.3625 2.0688 1.9250 2.8000

NELikert ρ̂1-Q(x̃n) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300
FLTriLikert ρ̂1-Q(x̃n) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.5000
FRS ρ̂1-Q(x̃n) 1.0389 0.9313 1.1500 1.3813 0.9192 1.5313 1.3532 1.1625 1.6125

NELikert ρ̂1-T(x̃n) 0.0000 0.0000 0.0000 3.3300 0.0000 3.3300 3.3300 3.3300 3.3300
FLTriLikert ρ̂1-T(x̃n) 0.0000 0.0000 0.0000 2.8333 0.0000 2.8333 2.8333 2.5000 2.5000
FRS ρ̂1-T(x̃n) 1.3879 1.2980 1.8176 2.1641 1.2321 2.8338 1.8917 1.6460 2.4582

On the basis of Table 3.6 we can empirically conclude that the values of the
scale estimates differ to a lesser or greater extent for (encoded) Likert responses
and FRS responses. For all the items, the robust scale estimates show a higher
sensitivity w.r.t. the rating scale (more concretely, to be either encoded Likert or
FRS) than the non-robust ones. In fact for each of the non-robust estimates the
highest differences are up to 1.1 whereas for each of the robust ones are over 1.8. In
particular, ρ̂1-Q(x̃n) is uniformly quite different for the encoded Likert data (both
the NELikert and the FLTriLikert) and the FRS-based ones.
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Example 3.3.2. Consider the random experiment in Example 1.6.3 (Page 35, and
see Appendix C, Page 251, for more details), the perception of the relative length of
different line segments with respect to a pattern longer one being the unique item to
be responded in the already referred online application involving a double response.

A descriptive analysis of the sample Aumann-type mean, the 1-norm median and
the `-wabl/ldev/rdev median for this item can be found in Table 3.7.

Table 3.7: Sample means, 1-norm medians and `-wabl/ldev/rdev medians
for the responses to questionnaire in Example 1.6.3

NELikert NELikert FLTriLikert FLTriLikert FLTriLikert FRS FRS FRS
mean median Aumann mean 1-norm median wabl median Aumann mean 1-norm median wabl median

50.4867 50
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0

1
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0

1

0 20 40 60 80 100

0

1

As one can see, these location measures are mainly different for the FRS-based
responses and the encoded Likert ones because of their shape, but if they were
defuzzified they would be close. This is due to the fact that the distributions of
data are close to symmetrical (rather than to the fact that k = 5), so that both
robust and non-robust are also ‘close’.

On the other hand, the analysis of the sample scale measures (those considered
in Example 3.3.1) can be found in Table 3.8.

On the basis of Table 3.8 we can empirically conclude that the values of the
scale estimates are very close but importantly for the robust ρ̂1-Q(x̃n) and to a
lesser extent for the non-robust ρ̂2-SD. Actually, eight of the measures (all but ρ̂1-Q
and ρ̂2-SD) lead to close estimates irrespective of the measure. This behaviour is
also mainly due to the symmetry of the distribution.

As a summary implication of this descriptive analysis for the scale estimation
from intrinsically imprecise-valued data, we can conclude that estimates can differ
with the rating scale. This implication has an important analogy with what happens
when grouping real-valued data by intervals: both, ‘identifying’ fuzzy rating scale-
valued responses with one of a few possible Likert labels (or their numerical/fuzzy
linguistic counterpart) and ‘identifying’ real-valued responses with one of a few pos-
sible non-overlapping interval-valued ones, entail a loss of information so that some
existing differences can be ignored, whence statistical conclusions are not usually
well preserved under such an identification.
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Table 3.8: Sample scale estimates for the responses to questionnaire in Example 1.6.3

scale measure scale measure

NELikert ρ̂2-SD(x̃n) 32.0423 NELikert ̂ρ2-ADD(x̃n, x̃n) 26.0937
FLTriLikert ρ̂2-SD(x̃n) 29.4047 FLTriLikert ̂ρ2-ADD(x̃n, x̃n) 24.8377
FRS ρ̂2-SD(x̃n) 28.8479 FRS ̂ρ2-ADD(x̃n, x̃n) 24.7757

NELikert ̂ρ1-ADD(x̃n,
̂̃Me(x̃n)) 25.9733 NELikert ̂D`

1-ADD(x̃n,
̂̃M`(x̃n)) 25.9733

FLTriLikert ̂ρ1-ADD(x̃n,
̂̃Me(x̃n)) 24.0853 FLTriLikert ̂D`

1-ADD(x̃n,
̂̃M`(x̃n)) 26.2093

FRS ̂ρ1-ADD(x̃n,
̂̃Me(x̃n)) 24.6524 FRS ̂D`

1-ADD(x̃n,
̂̃M`(x̃n)) 25.9801

NELikert ̂ρ2-MDD(x̃n, x̃n) 25.4867 NELikert ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)) 25.0000

FLTriLikert ̂ρ2-MDD(x̃n, x̃n) 25.5573 FLTriLikert ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)) 25.0000

FRS ̂ρ2-MDD(x̃n, x̃n) 24.8092 FRS ̂ρ1-MDD(x̃n,
̂̃Me(x̃n)) 24.6680

NELikert ̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 25.0000 NELikert ρ̂1-S(x̃n) 25.0000

FLTriLikert ̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 25.0000 FLTriLikert ρ̂1-S(x̃n) 25.0000

FRS ̂D`
1-MDD(x̃n,

̂̃M`(x̃n)) 25.9756 FRS ρ̂1-S(x̃n) 25.3450

NELikert ρ̂1-Q(x̃n) 25.0000 NELikert ρ̂1-T(x̃n) 25.0000
FLTriLikert ρ̂1-Q(x̃n) 18.7500 FLTriLikert ρ̂1-T(x̃n) 25.0000
FRS ρ̂1-Q(x̃n) 13.4500 FRS ρ̂1-T(x̃n) 24.5803

3.4 Descriptive comparison of the rating scales
through different scale estimates.
Simulations-based analysis

The descriptive analysis in the last section is to be now completed with a simulation-
based one. Along this section, FRS data will first be simulated in accordance with
the realistic process in the 2ndSP (Page 39), which to a great extent mimics the
response to FRS-based questionnaires. In the case studies we have assumed double
response questionnaires for which components of each double response are linked,
because of them coming from the same respondent. However, this link cannot be
immediately stated in simulation processes. In this section, a reasonable ‘Likerti-
zation’ process is to be considered and later a fuzzy linguistic encoding is to be
applied. Next two subsections are devoted to present such processes, as well as to
validate the first one by means of the considered case studies.
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3.4.1 ‘Likertization’ of fuzzy rating scale-based data:
criterion and validation

Fuzzy data based on a fuzzy rating scale can fairly be associated/classified in accor-
dance with labels in a Likert scale (more concretely, with their numerical encoding).
This process is to be called “Likertization”. Furthermore, the associated Likert val-
ues could also be later encoded by means of values from a fuzzy linguistic scale.
This subsection is devoted to explain an ease-to-use and ease-to-support association
criterion.

For carrying out the Likertization, different association criteria could be em-
ployed. The one to be used in next subsections will be the following:

Minimum distance Likertization criterion:
If the considered Likert scale is a k-point one, a reasonable Likertization criterion

consists in associating each FRS-based datum with the integer number in {1, . . . , k},
if [1, k] is the reference interval in the considered FRS, with the smallest distance
to the given datum. That is, given a metric D between fuzzy data and Ũ the free
fuzzy response to be classified, then Ũ is associated with the integer κ(Ũ) such that

κ(Ũ) = arg min
j∈{1,...,k}

D(Ũ ,1{j}).

Figure 3.3: Minimum distance criterion scheme when the reference interval equals [1, k]

Figure 3.3 graphically illustrates the process when [a, b] = [1, k], but it can
immediately be re-scaled to any other [a, b], so that the choice is made in the subset
{a, a+(b−a)/(k−1), a+2(b−a)/(k−1), . . . , b} whose elements divide the reference
interval [a, b] in k − 1 equally wide subintervals.

Remark 3.4.1. If in solving the above minimization there exist two involved co-
incident distances, the associated numerically encoded Likert response is chosen at
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random among the two corresponding numerical values. It should be pointed out
that other reasonable and well-supported Likertization criteria (like, for instance,
the supervised classification by Colubi et al. [20]) have been considered, but they
lead to a similar validation.

Case studies-based validation of the minimum distance criterion:

The three case studies in Examples 1.6.1 (Pages 33 and 233), 1.6.2 (Pages 35
and 243) and 1.6.3 (Pages 35 and 251) are now to be used to make the classification
of the FRS-based component of each double response into a Likert one and validate
this classification later with the real Likert-based component of the same double
response.

Table 3.9 shows the percentages of responses for which the minimum distance-
based Likert classification of the FRS responses coincides with the real associated
Likert response for different choices of the metric D.

Table 3.9: Validation of the minimum D-distance Likertization of fuzzy rating responses:
% of right associations in the Likertization of the FRS-based responses

in Examples 1.6.1, 1.6.2 and 1.6.3 (D ∈ {ρ1,D
ϕ
1 , D

ϕ
1/3, D

ϕ
1 } with different choices of ϕ)

% TIMSS/PIRLS Restaurants Perceptions
matching n= 599 n= 980 n= 1387

Minimum
distance
criterion

ρ1 81.64 77.96 85.00

Dϕ
1

ϕ ≡ β(1, 1) 81.30 77.76 84.93
ϕ ≡ β(1, 2) 80.63 77.96 85.08
ϕ ≡ β(2, 1) 80.63 77.96 85.15
ϕ ≡ β(1, 5) 80.63 76.43 85.15
ϕ ≡ β(5, 1) 81.64 78.16 85.29

Dϕ
θ

ϕ ≡ β(1, 1)
θ = 1/3 81.30 78.06 84.93
θ = 1 81.30 78.16 84.93

ϕ ≡ β(1, 2)
θ = 1/3 80.80 78.06 85.08
θ = 1 80.97 78.06 85.08

ϕ ≡ β(2, 1)
θ = 1/3 81.30 78.06 85.15
θ = 1 80.80 77.96 85.15

ϕ ≡ β(1, 5)
θ = 1/3 80.47 76.43 85.15
θ = 1 80.63 76.43 85.15

ϕ ≡ β(5, 1)
θ = 1/3 81.47 78.06 85.29
θ = 1 81.47 78.16 85.29

The preceding percentages are rather high. One should not expect to design a
Likertization criterion leading to 100% of matching, since humans not necessarily
behave in a completely systematized way.

The validation is almost irrespective of the chosen metric, and in the next sim-
ulations the minimum ρ1 Likertization criterion will be considered.
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3.4.2 Fuzzy linguistic encoding through
the Likertized responses

This subsection is focussed on the fuzzy linguistic encoding of FRS-based responses.
Each FRS-based datum will be first Likertized by means of the minimum distance
criterion, and it will later be encoded by means of a fuzzy linguistic scale (like, for
instance, those in Figures 3.1 and 3.2).

In the simulations studies in this section, we will make use of some fuzzy linguistic
scales selected among the most mentioned in the literature to encode 4- and 5- point
Likert scales.

Case k = 4:
In this case we have made use of some of the most frequently fuzzy linguistic

scales considered when 4 labels are modelled (see, for instance, Herrera et al. [57],
Bajpai et al. [4], Cai et al. [12], Picon et al. [92]).

FLS4
1, FLS4

2 and FLS4
3 will denote some of the most usual symmetric represen-

tations for a 4-point Likert scale, FLS4
3 =FLTriLikert being the balanced semantic

representation of the k = 4 linguistic hierarchies, and FLS4
4 and FLS4

5 being two
asymmetric representations for the same number of labels.

FLS4
1 to FLS4

5 have been displayed in Figure 3.4 by considering [0, 100] as the
reference interval.

Case k = 5:
In this case we have made use of some of the most frequently fuzzy linguistic

scales considered when 5 labels are modelled (see, for instance, Yeh et al. [136],
Motawa et al. [85], Herrera et al. [57]).

FLS5
1 and FLS5

2 will denote some of the most usual symmetric representations for
a 5-point Likert scale, FLS5

3 = FLTriLikert being the balanced semantic representa-
tion of the k = 5 linguistic hierarchies, and FLS5

4 being an asymmetric representa-
tion inspired by the unbalanced semantic of the same number of labels (Herrera et
al. [57]).

FLS5
1 to FLS5

4 have been displayed in Figure 3.5 by considering [0, 100] as the
reference interval.
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Figure 3.4: Fuzzy linguistic scales with four values and reference interval [0, 100]: from top to
bottom, the scales FLS4

1, FLS4
2, FLS4

3, FLS4
4 and FLS4

5.
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Figure 3.5: Fuzzy linguistic scales with five values and reference interval [0, 100]: from top to
bottom, the scales FLS5

1, FLS5
2, FLS5

3 and FLS5
4.

3.4.3 Descriptive simulations-based comparison
of different rating scales

Next simulations-based tables (Tables 3.10 to 3.21) collect the percentages of Eu-
clidean distances between the sample scale estimates D̂ for the FRS-simulated data
and for their numerically and fuzzy linguistically encoded ρ1 Likertization that are
over ε ∈ {1, 5, 10, 15}. The percentages have been quantified over 1000 samples of
n ∈ {10, 30, 100} FRS simulated (following the 2ndSP with different betas) data
with reference interval [0, 100] (this last fact being irrelevant for the study).
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Table 3.10: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 4 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(1, 1)
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Table 3.11: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 4 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(0.75, 0.75)
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Table 3.12: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 4 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(2, 2)
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Table 3.13: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 4 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(4, 2)
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Table 3.14: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 4 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(6, 1)
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Table 3.15: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 4 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(6, 10)
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Table 3.16: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 5 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(1, 1)
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Table 3.17: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 5 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(0.75, 0.75)
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Table 3.18: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 5 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(2, 2)

Si
m

ul
at

io
n-

ba
se

d
co

m
pa

ri
so

n
of

sc
al

e
es

ti
m

at
es

fo
r

di
ff

er
en

t
ra

ti
ng

s
22

1

%
∣ ∣ D̂

(F
R

S)
−

D̂
(S

)∣ ∣
>

10
(k

=
5,
β

(p
,
q
)
≡
β

(2
,
2)

)

D̂
n

S
=

L
ik

er
t

S
=

F
L

S5 1
S

=
F

L
S5 2

S
=

F
L

S5 3
S

=
F

L
S5 4

ρ̂
2

-S
D

(̃x
n

)
10

0
0.

1
0

0
0

30
0

0
0

0
0

10
0

0
0

0
0

0

̂
ρ

2
-A

D
D

(̃x
n
,

x̃
n

)
10

0
0.

1
0.

1
0

0
30

0
0

0
0

0
10

0
0

0
0

0
0

̂
ρ

1
-A

D
D

(̃x
n
,
̂̃ Me

(̃x
n

))
10

0
0

0
0

0
30

0
0

0
0

0
10

0
0

0
0

0
0

̂
D

` 1
-A

D
D

(̃x
n
,
̂̃ M`

(̃x
n

))

10
0.

2
0

0
0.

2
0.

2
30

0
0

0
0

0
10

0
0

0
0

0
0

̂
ρ

2
-M

D
D

(̃x
n
,

x̃
n

)
10

4.
4

13
.3

5.
8

3.
8

3.
9

30
5

34
.6

14
.6

4.
8

4.
4

10
0

1.
6

60
.7

17
.9

1.
5

1.
9

̂
ρ

1
-M

D
D

(̃x
n
,
̂̃ Me

(̃x
n

))
10

19
.6

34
.4

19
.3

19
.5

14
.1

30
28

.7
79

30
28

.6
9

10
0

16
.1

95
.5

16
.1

16
.1

0.
7

̂
D

` 1
-M

D
D

(̃x
n
,
̂̃ M`

(̃x
n

))

10
24

.2
33

.7
32

.6
24

.2
23

.2
30

9.
8

46
45

.1
9.

8
12

10
0

0.
6

40
.6

40
.6

0.
6

0.
6

ρ̂
1

-S
(̃x

n
)

10
28

.1
53

.2
30

.6
27

.2
25

.9
30

9.
2

51
.1

11
.2

9
8.

8
10

0
0.

6
54

.8
0.

6
0.

6
0.

6

ρ̂
1

-Q
(̃x

n
)

10
55

.2
75

.9
49

.1
49

.1
28

.3
30

94
.1

65
.6

65
.6

65
.6

66
10

0
99

.7
99

.3
99

.3
99

.3
99

.3

ρ̂
1

-T
(̃x

n
)

10
32

.5
62

.1
34

.7
31

25
.3

30
17

.1
82

.1
19

.2
16

.7
9.

5
10

0
3.

7
94

.8
3.

7
3.

7
0.

6

%
∣ ∣ D̂

(F
R

S)
−

D̂
(S

)∣ ∣
>

15
(k

=
5,
β

(p
,
q
)
≡
β

(2
,
2)

)

D̂
n

S
=

L
ik

er
t

S
=

F
L

S5 1
S

=
F

L
S5 2

S
=

F
L

S5 3
S

=
F

L
S5 4

ρ̂
2

-S
D

(̃x
n

)
10

0
0

0
0

0
30

0
0

0
0

0
10

0
0

0
0

0
0

̂
ρ

2
-A

D
D

(̃x
n
,

x̃
n

)
10

0
0

0
0

0
30

0
0

0
0

0
10

0
0

0
0

0
0

̂
ρ

1
-A

D
D

(̃x
n
,
̂̃ Me

(̃x
n

))
10

0
0

0
0

0
30

0
0

0
0

0
10

0
0

0
0

0
0

̂
D

` 1
-A

D
D

(̃x
n
,
̂̃ M`

(̃x
n

))

10
0

0
0

0
0

30
0

0
0

0
0

10
0

0
0

0
0

0

̂
ρ

2
-M

D
D

(̃x
n
,

x̃
n

)
10

0
1

0
0

0.
1

30
0

1.
2

0
0

0
10

0
0

0.
9

0
0

0

̂
ρ

1
-M

D
D

(̃x
n
,
̂̃ Me

(̃x
n

))
10

2.
2

10
.2

2.
4

2.
2

1.
5

30
0.

5
22

.6
0.

9
0.

5
0.

3
10

0
0

15
.5

0
0

0

̂
D

` 1
-M

D
D

(̃x
n
,
̂̃ M`

(̃x
n

))

10
6.

6
8.

7
8.

4
6.

6
6.

6
30

4.
1

5.
7

5.
7

4.
1

4.
1

10
0

0.
6

0.
6

0.
6

0.
6

0.
6

ρ̂
1

-S
(̃x

n
)

10
8.

4
17

.9
10

.1
8.

2
8.

3
30

4.
9

6.
2

4.
9

4.
9

4.
9

10
0

0.
6

0.
6

0.
6

0.
6

0.
6

ρ̂
1

-Q
(̃x

n
)

10
4.

7
29

.9
4.

7
4.

7
3.

1
30

0.
1

0.
1

0.
1

0.
1

0.
1

10
0

0
0

0
0

0

ρ̂
1

-T
(̃x

n
)

10
5.

3
21

.4
7.

8
5.

1
5.

8
30

1
10

.6
1.

5
1

1.
1

10
0

0.
1

3.
2

0.
1

0.
1

0.
1

22
0

C
ha

pt
er

3.
C

om
pa

ri
ng

st
at

is
ti

ca
l

co
nc

lu
si

on
s

fo
r

F
R

S’
s

an
d

ot
he

r
ra

ti
ng

sc
al

es

%
∣ ∣ D̂

(F
R

S)
−

D̂
(S

)∣ ∣
>

1
(k

=
5,
β

(p
,
q
)
≡
β

(2
,
2)

)

D̂
n

S
=

L
ik

er
t

S
=

F
L

S5 1
S

=
F

L
S5 2

S
=

F
L

S5 3
S

=
F

L
S5 4

ρ̂
2

-S
D

(̃x
n

)
10

69
.6

89
.2

74
.2

63
.5

64
.4

30
49

.9
98

73
.9

40
.5

45
10

0
36

.8
10

0
88

.3
11

.7
15

.8

̂
ρ

2
-A

D
D

(̃x
n
,

x̃
n

)
10

65
.4

82
68

.5
64

.8
66

.3
30

55
.7

77
.6

56
.3

61
.7

60
.1

10
0

58
.6

77
.5

31
.1

77
.8

49
.9

̂
ρ

1
-A

D
D

(̃x
n
,
̂̃ Me

(̃x
n

))
10

67
81

.4
69

.4
68

.5
71

30
57

72
53

.6
63

.7
65

.6
10

0
56

.1
69

.1
21

.8
76

.8
75

.2

̂
D

` 1
-A

D
D

(̃x
n
,
̂̃ M`

(̃x
n

))

10
89

.1
72

.6
72

.6
88

75
.4

30
97

64
.6

65
.3

97
73

10
0

10
0

46
.7

58
.6

10
0

88
.7

̂
ρ

2
-M

D
D

(̃x
n
,

x̃
n

)
10

83
.2

88
.6

84
.8

83
.9

86
.3

30
86

.7
96

.8
93

.3
87

.9
88

.5
10

0
98

.5
99

.7
99

.4
98

.9
98

.4

̂
ρ

1
-M

D
D

(̃x
n
,
̂̃ Me

(̃x
n

))
10

88
.8

93
.1

89
.1

88
.3

88
.9

30
95

.8
97

.7
95

.6
95

.7
94

.1
10

0
99

.5
10

0
99

.5
99

.5
98

.9

̂
D

` 1
-M

D
D

(̃x
n
,
̂̃ M`

(̃x
n

))

10
90

.9
91

.5
92

90
.9

88
.9

30
92

.8
98

.2
98

.1
92

.8
93

.9
10

0
97

.5
10

0
10

0
97

.5
98

.4

ρ̂
1

-S
(̃x

n
)

10
91

.8
95

.7
92

.3
90

.8
92

30
94

.5
99

.8
95

94
.2

80
.5

10
0

99
.8

10
0

99
.8

99
.8

78

ρ̂
1

-Q
(̃x

n
)

10
99

.7
98

.2
97

.9
98

.5
95

.5
30

10
0

99
.8

95
.8

10
0

88
.8

10
0

10
0

10
0

10
0

10
0

10
0

ρ̂
1

-T
(̃x

n
)

10
94

.2
97

.5
95

.1
93

.6
91

.9
30

99
.4

99
.6

99
.4

99
.2

90
.7

10
0

10
0

10
0

10
0

10
0

98
.7

%
∣ ∣ D̂

(F
R

S)
−

D̂
(S

)∣ ∣
>

5
(k

=
5,
β

(p
,
q
)
≡
β

(2
,
2)

)

D̂
n

S
=

L
ik

er
t

S
=

F
L

S5 1
S

=
F

L
S5 2

S
=

F
L

S5 3
S

=
F

L
S5 4

ρ̂
2

-S
D

(̃x
n

)
10

2.
8

25
.2

5.
5

1.
5

2.
4

30
0.

1
12

.1
0.

5
0

0
10

0
0

2.
8

0
0

0

̂
ρ

2
-A

D
D

(̃x
n
,

x̃
n

)
10

2.
6

13
.8

4.
4

2.
4

4
30

0.
2

3.
2

0.
3

0.
2

0.
3

10
0

0
0

0
0

0

̂
ρ

1
-A

D
D

(̃x
n
,
̂̃ Me

(̃x
n

))
10

4.
1

13
.4

5.
8

4
5.

1
30

0.
1

3.
6

0.
3

0.
3

0.
3

10
0

0
0

0
0

0

̂
D

` 1
-A

D
D

(̃x
n
,
̂̃ M`

(̃x
n

))

10
25

.3
10

9.
8

24
.5

12
.3

30
24

.6
1

1.
1

23
.3

3.
3

10
0

17
.4

0
0

16
.1

0.
1

̂
ρ

2
-M

D
D

(̃x
n
,

x̃
n

)
10

33
.9

49
39

.2
33

.1
33

.8
30

42
.2

79
.5

63
.3

41
.8

44
.2

10
0

64
.3

98
.8

92
.9

66
.1

67
.8

̂
ρ

1
-M

D
D

(̃x
n
,
̂̃ Me

(̃x
n

))
10

57
.4

64
.3

58
.5

56
.5

50
.3

30
81

.9
91

.3
81

.9
81

.5
57

.7
10

0
95

.5
99

.2
95

.5
95

.5
55

.9

̂
D

` 1
-M

D
D

(̃x
n
,
̂̃ M`

(̃x
n

))

10
57

.1
62

.6
61

.9
57

.1
55

.9
30

49
.9

87
85

.9
49

.9
55

.1
10

0
41

98
.1

98
.1

41
53

.1

ρ̂
1

-S
(̃x

n
)

10
62

.7
81

.4
61

.5
59

.6
52

.8
30

51
96

.1
53

50
.4

18
.8

10
0

54
.8

10
0

54
.8

54
.8

2.
9

ρ̂
1

-Q
(̃x

n
)

10
94

.7
90

.6
87

.1
87

.9
75

.4
30

10
0

74
.8

77
.8

91
.1

78
.4

10
0

10
0

99
.6

99
.6

10
0

99
.6

ρ̂
1

-T
(̃x

n
)

10
70

.7
88

.1
71

.4
66

.8
58

.1
30

83
.2

99
83

.7
82

.3
37

.7
10

0
94

.8
10

0
94

.8
94

.8
27



Simulations-based comparison of scale estimates for different ratings 221

Table 3.19: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 5 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(4, 2)
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Table 3.20: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 5 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(6, 1)
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Table 3.21: % of simulated samples of size n for which the Euclidean distance
between the sample scale estimate D̂ associated with the FRS and the one associated with
either the Likert or the FLS with k = 5 different values is greater than ε ∈ {1, 5, 10, 15}

for the 2ndSP and β(p, q) ≡ β(6, 10)
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224 Chapter 3. Comparing statistical conclusions for FRS’s and other rating scales

On the basis of Tables 3.10 to 3.21 we cannot get very general conclusions, but
we can definitely assert that scale measures mostly vary from the FRS-based data
to the encoded Likert ones.

Furthermore, one can state some approximate behaviour patterns. In this way,

• for almost all situations, robust scale estimates provide us with much higher
percentages than non-robust ones; more concretely, robust estimates are al-
most generally more sensitive to the change in the rating scale type, as it has
also been shown for the case studies-based descriptive analyses;

• distances are uniformly lower for k = 5 than for k = 4 when the midpoint of
the 1-level is beta distributed with (p, q) ∈ {(1, 1), (0.75, 0.75), (2, 2), (4, 2)};
when (p, q) = (6, 10) such a conclusion is not uniform but close to; when
(p, q) = (6, 1) such a conclusion is appropriate for robust estimates and ε

∈ {1, 5}, but there is no clear conclusion for non-robust estimates or greater
values of ε.

3.5 Concluding remarks of this chapter
This chapter has been devoted to compare, from a statistical point of view, three
types of scale used to rate intrinsically imprecise magnitudes: the Likert-type (or
its numerical encoding), the fuzzy linguistic scale (which is generally obtained as a
posterior fuzzy number-valued encoding of a Likert scale) and the fuzzy rating scale.
The comparison is rather specifically conceived to be carried out in the framework
of questionnaires.

The first comparative tool among the three scale has been the diversity, quan-
tified through the Gini-Simpson index. Assuming that two respondents assessing
the same fuzzy rating response also assess the same Likert one, it has been proved
that the diversity is much better captured through fuzzy rating scale-based ques-
tionnaires.

Secondly, an inferential approach has been presented on the basis of datasets
from the questionnaires in two of the case studies in Chapter 1. Both questionnaires
involve items which have to be answered according to a fuzzy rating scale as well
as to a Likert-type scale. Likert data have been numerically encoded and also
associated with the terms from the most usual balanced fuzzy linguistic scales of
4 and 5 values. With the available data in the three scales, the bootstrapped test
about the equality of population variances of two or more random fuzzy numbers
has been applied, separately, for each rating scale. The outputs in this study show
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that the statistical conclusions for the FRS differ from the ones obtained for the
encoded Likert-type data.

Finally, a descriptive analysis has been addressed through two approaches to
compare the scale measures in Chapter 2. The first one, making use of the two
previous datasets, has allowed us to conclude that the values of these measures
often differ for different rating scales.

The second descriptive approach has been carried out through simulations. Fuzzy
rating scale responses have been generated according to the simulation procedure
inspired by questionnaires. The simulated fuzzy data have been associated with
numerically encoded labels in a Likert scale. This association has been performed
by means of the minimum distance Likertization criterion, which has been validated
with the three cases studies introduced in Chapter 1. The Likertized responses have
also been encoded by means of the terms from different fuzzy linguistic scales with 4
and 5 values. Considering different sample sizes, the percentages (over 1000 samples)
of Euclidean distances between the scale estimates for the FRS data and for the two
encoded Likertized responses have been calculated. On the basis of the outputs of
this simulation study, we could assert that the values of the scale measures mostly
vary from the FRS-based data to the encoded Likert ones. Moreover, the robust
scale measures are almost generally more sensitive to the change of rating scale
than the non-robust ones (this fact could also be seen for the case studies-based
descriptive analyses).

In summary, the main conclusions/contributions of this Chapter are the follow-
ing:

• The diversity is higher, under quite general conditions, for the fuzzy rating
scale than for the Likert scale or its numerical/fuzzy linguistic encoding.

• An inferential study to test the equality of variances has shown different con-
clusions depending on the considered scale.

• Two descriptive comparative studies, based on real-life examples and simula-
tions, and involving the scale measures introduced in Chapter 2, have allowed
us to conclude that the values of these measures differ to a lesser or greater
extent for responses based on the FRS and encoded Likert responses. More-
over, robust scale estimates have shown a higher sensitivity w.r.t. the use of
different rating scales than the non-robust ones.

The ideas and results in this chapter have been gathered at this stage in three
published papers (De la Rosa de Sáa et al. [27], Gil et al. [44] and Lubiano et al.
[75]) and one communication to an international conference (Lubiano et al. [79]).





Final conclusions and open
problems

In describing some of the most immediate open problems from this work, one should
distinguish among the new challenges which could be addressed and those which
directly derives from the developments in the work.

Among the new challenges we can mention the following:

• To consider other tools that allow us to measure objectively the robust be-
haviour of an estimator.

• To analyze the influence of the property of symmetry of a random fuzzy number
(see Sinova et al. [106]) in the scale measures introduced in Chapter 2, as
suggested by Rousseeuw and Croux [100].

Among the future directions in connection with the studies already collected in
this work, we can mention the following:

• The study of the computation time and storage space of the estimators of
scale.

• Regarding the measures of dispersion that involve measures of location, the
Aumann-type mean and the 1-norm and ϕ-wabl/ldev/rdev medians were con-
sidered. It would also be interesting to consider the M-estimates and the
trimmed means.

• To analyze in more detail the M-estimation of scale in the fuzzy setting by
using other loss functions (like Hampel’s one) and different choices for the
involved parameters.

• To develop a hypothesis test about the equality of variances for different rat-
ing scales (that is, a test for the effect of the rating scale on the variance or
standard deviation). Because of the same individual would give his/her re-
sponse according to each scale, it would be a test for linked samples. Then a
homoscedasticity test for dependent samples should first be developed.

227



228 Final conclusions and open problems

• To develop hypothesis testing procedures about scale measures different than
the variance (or the standard deviation), especially the robust ones analyzed
in this work.



Conclusiones finales
y problemas abiertos

Al describir los problemas abiertos más inmediatos en relación con esta memoria,
conviene distinguir entre los nuevos retos que interesaría abordar y los que se derivan
directamente de los desarrollos recogidos en el trabajo.

Entre los primeros cabe destacar los siguientes:
• La consideración de otras herramientas que nos permitan medir de forma ob-

jetiva el comportamiento robusto de un estimador.
• El análisis de la influencia de la propiedad de simetría de un número difuso

aleatorio (ver Sinova et al. [106]) en las medidas de escala presentadas en el
Capítulo 2, sugerido por Rousseeuw y Croux [100].

Entre las futuras líneas de investigación ligadas a los estudios llevados a cabo en
este trabajo, deben mencionarse las siguientes:

• El estudio del tiempo computacional y el espacio de almacenamiento de los
distintos estimadores de escala.

• En relación con las medidas de dispersión que involucran medidas de loca-
lización, además de la media tipo Aumann y las medianas 1-norma y ϕ-
wabl/ldev/rdev, sería interesante considerar los M-estimadores y las medias
recortadas.

• Analizar con más detalle la M-estimación de escala en el contexto difuso, em-
pleando otras funciones de pérdida (como la de Hampel) y haciendo diferentes
elecciones de sus parámetros.

• El desarrollo de un contraste de hipótesis sobre la igualdad de varianzas para
distintas escalas de valoración (es decir, un test para el efecto de la escala de
valoración en la varianza o desviación típica). Puesto que un mismo individuo
daría su respuesta en cada una de las escalas, se trataría de un contraste para
muestras relacionadas. Por lo tanto, se debe desarrollar primero un test de
homocedasticidad para muestras dependientes.
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• El desarrollo de contrastes de hipótesis sobre la igualdad de medidas de escala
poblacionales diferentes a la varianza (o desviación típica), especialmente las
medidas robustas analizadas en esta memoria.



Schlussfolgerungen und offene
Probleme

Bei der Beschreibung einiger der unmittelbarsten offenen Probleme aus dieser Ar-
beit, sollte man unter den neuen Herausforderungen unterscheiden, welche ange-
sprochen werden könnten, und jenen, die sich direkt aus den Entwicklungen der
Arbeit ergeben.

Unter den neuen Herausforderungen können wir folgende erwähnen:

• Andere Werkzeuge zu betrachten, die es uns erlauben, objektiv das robuste
Verhalten eines Schätzers zu messen.

• Den Einfluss der Symmetrieeigenschaft einer zufälligen Fuzzy-Zahl (Sinova et
al. [106]) in den Skalierungsmaßen von Kapitel 2, die von Rousseeuw und
Croux [100] vorgeschlagen wurden, zu analysieren.

Zukünftig können wir, im Zusammenhang mit den bereits in dieser Arbeit gesam-
melten Studien, folgendes erwähnen:

• Untersuchung der Berechnungszeit und des Speicherplatzes der Streuungs-
schätzer;

• in Bezug auf die Streuungsmaße, die eine Lokationsmaße involvieren, wur-
den die Aumann-Typ-Mittel, die 1-Norm und die ϕ-wabl/ldev/rdev Mediane
berücksichtigt. Es wäre auch interessant, M-Schätzer und gestutzte Mittel zu
betrachten;

• M-Schätzer für Streuung im Fuzzy-Szenario detaillierter zu analysieren, indem
andere Verlustfunktionen (wie Hampel’s) und verschiedene Optionen für die
involvierten Parameter verwendet werden;

• einen Hypothesentest über die Gleichheit der Varianz für verschiedene Be-
wertungsskalen (ein Test über die Auswirkung der Bewertungsskala auf die
Varianz oder Standardabweichung) zu entwickeln. Nachdem die gleiche Person
seine/ihre Antwort entsprechend jeder der beiden Skalen geben würde, wäre es
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ein Test für verbundene Stichproben. Dann sollte zunächst ein Homoskedastizi-
täts-Test für abhängige Proben entwickelt werden;

• die Entwicklung von Hypothesentests für Skalierungsmaße, die unterschiedlich
von Varianz (oder Standardabweichung) sind, besonders robuste, wie sie in
dieser Arbeit analysiert wurden.



Appendix A
Form and datasets for adapted TIMSS/PIRLS
student Questionnaire

 

 
 
 
 
 
 
 
 

Partially based on  
TIMSS & PIRLS 
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Questionnaire 
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234 Appendix A. Adapted TIMSS/PIRLS student Questionnaire

 

© SMIRE, January 2014 
 

 

 

 

Contents 
  

 

Instructions to fill the booklet ……………………………………………… 1 

General items ………………………………………………………………… 5 

READING items ……………………………………………………………… 7 

MATHEMATICS items ………………………………………………………. 9 

SCIENCE ítems  ………………………………………………………………. 11 

 

 

1 

 
 
 

 

In this booklet you will find questions about you and what you think. For each 

question, you should either choosing or drawing the answer you think is best. 
 

Let us take a few minutes to practice the kinds of questions you will answer in 

this booklet. 
 

Example 1 is one kind of question you will find in this booklet. 
 

 

Example 1 
Do you go to school? 

 

 Fill one circle only 
 

 Yes -----  
 

 No ----- 
 

 
 
 
 

Example 2 is another kind of question you will find in this booklet. 
 
 
 
 

Example 2 
 

What do you think about your school?  

Tell how much you agree with these statement 

 

 

 

           I Like being in school  ------ 1.  

     

 

    ------ 2. 

 

 

 

Directions 

      Disagree           Disagree              Agree                 Agree  

         a lot                  a little                a little                 a lot 

 

 

 

2 

 

• Read each question carefully, and pick the answer in 1 you think is 

best to describe your opinion/rating by filling the circle next (if there 

is only answer 1 to answer the item) or under your answer. 
  

  

           

 

 

 

 

 

 

 

 

 

 

 

 Read each question carefully, and set the answer in 2 you think is 

best to describe your opinion/rating by drawing an acute trapezium 

(or, in particular, a triangle, a parallelogram or even a vertical line) 

with height equal to 1 and so that 

– the upper base is associated with the values 0 to 10 that best 

describe numerically your opinion/rating  
       

Nada 

de acuerdo 

Un poco 

de acuerdo 

 

   Bastante 

de acuerdo 

  Muy 

 de acuerdo 

 

 

 

 

 

 

 

 

 

1. 

 

 

2. 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
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3 

– the lower base is associated with the values 0 to 10 describing 

numerically to a (more or less great, but some) certain extent your 

opinion/rating  

       
Nada 

de acuerdo 

Un poco 

de acuerdo 

 

      Bastante 

 de acuerdo 

                 Muy 

           de acuerdo 

 

 

 

 

 

 

 

 

 

– legs of the answer trapezium are obtained by linking the two bases 

(i.e., by considering a linear interpolation).  

 

Nada 

de acuerdo 

Un poco 

de acuerdo 

 

Bastante 

de acuerdo 

Muy 

de acuerdo 

 

 

 

 

 

 

 

 

 

In responding in accordance with type 1, one often considers too 

demanding having to choose a unique answer, but one would prefer to have 

the opportunity to choose something ‘in between’. At the same time, it is 

usually difficult to choose a unique number from 0 to 10 to respond. 

Type 2 offers a more flexible and imprecise way to provide with the 

answer, so that in addition to indicating the “fully preferred” numbers to 

rate respondent’s valuation, the “somewhat preferred’’ can be also indicated. 

 

 

1. 

 

 

2. 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

 

 

4 

  

 

 

5 

 

 

 

Are you a girl or a boy? 
 

Fill one circle only 

 
                                            Girl -----                          Boy ----- 
 

 

 
When were you born? 

Fill the circles next to the month and year you were born 
 

a) Month b) Year 
 

 January --    2000 --  
 February --    2001 --   
 March --  2002 --  
 April --    2003 --  
 May --    2004 --   
 June --  2005 --  
 July --    2006 --  
 August --      
 September --   
 October --     
 November --      
 December --   

 
 

Do you have any of these things at your home? 

Fill one circle for each line 
                                                 Yes                    No 

 

 

a)   Computer   ---------------------------------------------------------------                

b)   Study desk/table for your use  ------------------------------------                 

c)   Books of your very (do not count your school books)   ------               

d)   Your own room  --------------------------------------------------------                           

e)   Internet connection  --------------------------------------------------              

About you 
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   How often do you use a computer in each of these places? 

Tell how much you agree with these statements 

 

              A. At home  
 

      Never or 

almost never 

 Once or twice    

a month 
 

Once or twice 

a week 

 Every day or almost  

every day 

 

 

 

 

 

 

 

 

 

 

B. At school 

 

      Never or 

almost never 

 Once or twice    

a month 
 

Once or twice 

a week 

 Every day or almost  

every day 

 

 

 

 

 

 
    

 

 

 

A.1. 

 

 

A.2. 

 

B.1. 

 

 

B.2. 
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    How much do you agree with these statements about reading? 

Tell how much you agree with these statements 

 

   R.1. I like to read things that make me think 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R.2. I learn a lot from reading 

  

   

    

Reading in school 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
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              R4. What grade you got in the last reading test? 

 

 

 

 

 

 

 

 

 

 

R.3. Reading is harder for me than any other subject 

 

  

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
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    How much do you agree with these statements about math? 

Tell how much you agree with these statements 

 

   M.1. I like mathematics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M.2. My math teacher is easy to understand 

  

   

Mathematics in school 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
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              M4. What grade you got in the last math test? 

 

 

 

 

 

 

 

 

 

    

 

M.3. Mathematics is harder for me than any other subject 

 

  

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
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    How much do you agree with these statements about science? 

Tell how much you agree with these statements 

 

   S.1. My teacher taught me to discover science in daily life 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.2. I read about science in my spare time 

  

   

Science in school 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
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              S4. What grade you got in the last science test? 

    

 

S.3. Science is harder for me than any other subject 

 

  

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Thank you! 
 

Thank you for fillingo ut the questionnaire! 

 

 

 

 

Departamento de Estadística e I.O.        

y Didáctica de la Matemática 

Grupo de Investigación SMIRE 
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Table A.1: Dataset for the “About you” items (Page 235) from the adapted TIMSS/PIRLS
student Questionnaire (p&p = paper-and-pencil format, comp = computerized format, D+ = disagree a lot,

D− = disagree a little, A− = agree a little, A+ = agree a lot, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di))

Month Own Own Own A.1 A.2 B.1 B.2
ID Sex born Comp desk books room Int Format Likert (ai, bi, ci, di) Likert (ai, bi, ci, di)

ID1 Girl July YES YES YES NO YES p&p D- (2.2, 3, 4, 5) D- (1.4, 2, 3, 4.5)
ID2 Girl January NO YES YES YES NO comp A- (5.625, 5.625, 7.5, 8.65) A- (5.4, 5.7, 7.65, 8.275)
ID3 Boy June YES YES YES YES YES comp A+ (5.95, 5.95, 9.95, 9.975) A- (5.625, 6.25, 6.25, 7.95)
ID4 Boy December YES YES YES YES YES comp D+ (0.175, 0.2, 2.025, 4.125) A- (6.55, 6.55, 8.45, 9.05)
ID5 Girl October YES YES YES YES YES comp D+ (0.15, 1.975, 5.95, 6.05) A- (2.5, 4.675, 6.25, 6.9)
ID6 Boy March YES YES YES YES YES comp A- (5.975, 6.5, 8.475, 8.975) A+ (6.975, 7.575, 8.925, 9.475)
ID7 Girl October YES YES YES YES YES comp A- (4.075, 4.8, 7.425, 8) A+ (5.125, 5.15, 8.55, 10)
ID8 Boy October YES NO YES NO YES p&p D- (2, 2.6, 3, 3) D- (3, 3, 3, 3)
ID9 Girl June YES NO YES YES NO p&p A+ (6.7, 8, 8, 9) D- (4.9, 5.9, 6.1, 6.9)
ID10 Girl March YES YES YES NO YES comp A+ (7, 7.9, 9.475, 10) A- (3.925, 4.8, 6.8, 6.8)
ID11 Boy December YES YES YES YES YES comp D- (2.925, 3.75, 4, 5) A- (6.075, 6.575, 7.5, 7.5)
ID12 Girl October YES YES YES YES YES p&p A+ (7, 7.9, 8.5, 9.3) D- (1.5, 2, 2.5, 3.2)
ID13 Boy February YES YES YES YES YES p&p D- (3, 3.45, 4.15, 5) D- (3, 3, 4, 5)
ID14 Boy June YES YES YES YES YES comp A+ (7.325, 7.35, 9, 9.975) A- (4.5, 5.5, 6.65, 8.525)
ID15 Girl July YES NO YES YES YES comp A+ (7.975, 8, 9.95, 9.95) A- (4.8, 4.925, 7.625, 7.975)
ID16 Boy May YES YES YES YES comp A- (5.1, 5.1, 7.975, 7.975) A- (3.95, 3.95, 7.9, 7.9)
ID17 Girl July YES YES YES YES YES comp A+ (5.975, 6.95, 9, 10) A- (4.375, 4.875, 6.25, 7.95)
ID18 Boy May YES YES YES YES comp A- (5.275, 5.65, 7.575, 7.875) A- (5.6, 6.175, 8.1, 8.725)
ID19 Girl May YES YES YES NO NO comp A- (4.625, 5.525, 7.5, 8.25) A- (5.55, 5.55, 7.825, 8.55)
ID20 Girl June YES YES YES YES YES comp D+ (0.175, 0.175, 2.575, 2.625) A- (3.675, 3.75, 5.775, 6.925)
ID21 Girl April YES YES YES NO YES p&p D- (2.35, 3, 3.55, 3.75) D- (2.9, 3.25, 3.55, 3.9)
ID22 Boy April YES YES YES NO NO p&p D+ (0, 0, 0, 1) D- (2, 2.8, 3.55, 4.1)
ID23 Boy September YES YES YES YES YES p&p D- (2.8, 3, 3.5, 4) D- (3, 3.15, 3.55, 4)
ID24 Boy March YES YES YES YES YES comp A- (4.075, 4.65, 6.8, 7.5) A+ (6.775, 7.525, 9.4, 10)
ID25 Boy January YES YES YES YES YES p&p A- (5, 6, 7, 8) D- (7, 7.45, 7.45, 8)
ID26 Girl August YES YES YES NO YES p&p D- (3, 3, 3.5, 4.2) D- (2, 2, 2.6, 3)
ID27 Boy October YES YES YES YES YES p&p A- (6, 6.2, 6.6, 7.1) D- (8, 8.3, 8.55, 9)
ID28 Boy April YES YES YES YES YES comp A- (4.675, 5.525, 7.5, 7.5) A- (4.2, 5.275, 7.475, 7.5)
ID29 Girl May YES YES YES YES YES comp D+ (1.75, 3.075, 3.65, 4.55) A+ (5.9, 6.2, 8.45, 8.975)
ID30 Boy May YES YES YES NO YES comp D+ (0.1, 0.1, 1.95, 2) A- (5, 5, 7.5, 7.5)
ID31 Boy March YES YES YES YES YES comp A+ (6.85, 6.85, 8.975, 10) (2.5, 3.75, 6.25, 7.5)
ID32 Girl October YES YES YES NO YES p&p A- (4, 4.5, 5.3, 5.5) D- (3.3, 3.6, 4.45, 4.5)
ID33 Girl May YES YES YES YES YES p&p A+ (7.25, 7.55, 8.3, 8.45) D- (2.35, 2.7, 3.25, 3.65)
ID34 Boy April YES YES YES YES YES p&p A+ (6, 6.45, 7, 7.4) D- (2.4, 2.7, 3.3, 3.6)
ID35 Boy April YES NO YES NO YES comp (3.125, 3.625, 5.125, 5.9) (5.45, 5.9, 7.9, 8.45)
ID36 Boy January YES YES NO NO YES p&p D- (2.9, 4, 5, 6.15) D- (3, 4, 5, 6.1)
ID37 Boy November YES YES YES NO YES p&p D- (7, 7, 8, 8) A+ (5, 6, 7, 9)
ID38 Boy January YES YES YES YES YES comp A+ (8.925, 9, 9.775, 9.775) A- (5.85, 5.9, 7.425, 7.5)
ID39 Girl December YES YES YES NO YES comp D+ (0.15, 0.15, 3, 4.05) A- (4.125, 4.15, 7.95, 7.95)
ID40 Boy August YES YES YES YES YES comp A- (5.875, 5.9, 8.9, 8.975) A- (5, 5.075, 8.075, 8.075)
ID41 Girl June YES YES YES YES NO comp D- (2.5, 3.75, 6.25, 6.275) A+ (3.725, 3.75, 6.25, 10)
ID42 Boy February YES YES YES YES YES comp (2.5, 3.75, 6.25, 7.5) A- (2.5, 3.75, 7.5, 8.35)
ID43 Boy April YES YES YES YES YES comp D- (0.1, 1.975, 3.1, 4.5) A- (2.825, 3.75, 5.325, 6.1)
ID44 Boy July YES YES NO YES YES comp A+ (4.975, 7.625, 9.7, 9.7) A- (7.575, 7.625, 8.1, 8.925)
ID45 Girl January YES YES YES NO YES p&p A- (7.65, 8, 9, 9) D- (0, 0, 1, 1)
ID46 Boy June YES YES YES YES YES comp A+ (4.125, 5.025, 5.05, 8.075) A- (5, 5.95, 7.5, 8.95)
ID47 Boy June YES YES YES NO YES p&p D- (7, 7.5, 7.75, 7.9) D- (7.3, 8, 8.5, 8.5)
ID48 Boy June YES NO YES NO YES comp A+ (6.875, 7.45, 9.525, 10) A- (3.975, 4.925, 7.5, 8.25)
ID49 Girl April YES YES YES YES YES comp A+ (5.425, 6.025, 7.975, 10) A- (3.025, 3.75, 6.25, 6.925)
ID50 Boy February YES YES YES YES YES comp A- (4.925, 5.5, 7.5, 8.525) A- (6, 6, 7.975, 7.975)
ID51 Girl April YES YES YES NO YES comp D- (1.125, 1.25, 2.075, 2.15) A- (1.225, 1.25, 2.025, 2.175)
ID52 Boy May YES YES YES NO YES comp A+ (9, 9.05, 9.95, 9.95) A- (6.05, 6.05, 7.5, 7.5)
ID53 Girl June YES YES YES NO YES comp A+ (7.95, 7.95, 9.075, 9.075) A+ (2.525, 4.975, 7.975, 8.925)
ID54 Girl September YES NO YES NO NO comp A- (6.475, 7.625, 9.15, 9.975) (7.05, 7.075, 10, 10)
ID55 Girl April YES YES YES YES YES p&p D- (6, 7, 8, 8.8) D- (6, 6, 7, 8)
ID56 Girl May YES NO YES NO YES p&p A+ (7.85, 8.35, 8.7, 9.1) D- (4, 4.2, 4.8, 5)
ID57 Boy June YES YES YES YES YES comp A- (5.55, 5.55, 7.375, 7.4) A- (6.05, 6.125, 7.975, 7.975)
ID58 Boy March YES YES YES NO YES p&p D+ (0, 0, 0, 2) D- (2.4, 3, 3.8, 5)
ID59 Boy June YES YES YES NO YES p&p A- (6.5, 7, 8, 8.65) D- (2.45, 3, 4, 4.45)
ID60 Girl August YES YES YES YES YES comp A+ (9.025, 9.025, 9.975, 10) A- (4.05, 4.05, 7.025, 7.025)
ID61 Boy May YES YES YES YES YES comp A- (4.325, 5.775, 7.675, 8.875) A- (4.625, 5.475, 7.975, 9)
ID62 Boy February YES YES YES YES YES comp A- (6.975, 6.975, 9, 9) A+ (6.925, 8, 8.025, 8.05)
ID63 Girl September YES YES YES YES YES comp A- (3.75, 4.475, 7.325, 8.225) A+ (6.225, 6.225, 8.55, 9.9)
ID64 Girl June YES YES YES YES YES comp A+ (6.825, 9.9, 9.95, 9.975) A+ (2.5, 5.15, 7.975, 9.075)
ID65 Girl August YES YES YES YES YES comp A+ (7.975, 8.05, 10, 10) D- (2.025, 2.125, 3.95, 3.95)
ID66 Girl November YES YES YES YES YES comp A+ (8.95, 9, 9.9, 9.9) A+ (6.85, 6.85, 7.475, 8.125)
ID67 Boy July YES YES YES NO YES p&p D- (1.2, 1.55, 2.4, 2.7) D- (0.2, 0.65, 1.3, 1.55)
ID68 Girl November YES YES YES YES YES p&p D- (2.35, 3, 4, 4.5) D- (3.5, 4.1, 4.9, 5.45)
ID69 Boy June YES NO YES NO YES comp D+ (0.025, 1.025, 2.025, 3.075) A- (2.95, 2.95, 2.95, 4.15)
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Table A.2: Dataset for the “Reading in school” items (Page 236) from the adapted
TIMSS/PIRLS student Questionnaire (D+ = disagree a lot, D− = disagree a little, A− = agree a

little, A+ = agree a lot, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di))

R.1 R.1 R.2 R.2 R.3 R.3
ID Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) R4

ID1 A- (5.35, 6, 7, 7.75) A+ (8.1, 9, 10, 10) D- (3, 3, 4, 4) 9
ID2 A- (5.575, 6.15, 7.5, 7.5) A+ (6.775, 8.45, 9.75, 9.75) D+ (0.025, 0.15, 0.525, 9.95)
ID3 A+ (6.35, 6.35, 6.575, 10) A+ (7.225, 7.275, 9.775, 10) D+ (2.5, 3.75, 6.25, 9.9) 10
ID4 A- (6.025, 6.1, 7.525, 9.425) A- (3.675, 3.75, 6.25, 6.8) D+ (0.025, 0.075, 1.075, 3.575) 9
ID5 A+ (6.25, 6.275, 9.95, 9.95) A- (5.575, 6.325, 8.475, 9.475) D+ (0.1, 0.325, 3.05, 3.325) 7
ID6 A+ (8, 8.5, 9.5, 10) A+ (9, 9, 10, 10) D+ (0, 0.5, 0.5, 1) 9.5
ID7 A- (4.65, 4.65, 7.5, 8.4) A- (3.975, 3.975, 6.25, 8) D- (1.525, 2.525, 4.575, 4.625) 8
ID8 D- (3, 3, 3.4, 4) D- (3, 3, 3.45, 4) D- (2, 2.55, 3, 3) 0
ID9 A- (5, 6.5, 6.5, 7.5) A+ (8, 9, 9, 10) D- (2, 3, 3, 3.8) 8
ID10 A- (4.025, 4.25, 6.4, 6.775) A- (3.575, 4.4, 6.9, 6.9) D+ (0.175, 0.55, 2.1, 2.45) 9
ID11 A- (7, 7.025, 7.5, 10) (8.775, 9.925, 9.925, 9.925) D+ (1.05, 1.05, 1.675, 2.775) 9
ID12 D- (2, 2, 3, 3) A+ (9, 9, 10, 10) D- (2, 2, 4, 4) 8
ID13 A- (6.4, 7, 7.9, 8.5) A+ (9, 10, 10, 10) D- (1.55, 2.45, 3.6, 4) 9
ID14 A- (5.425, 5.5, 7, 8.275) A- (4.275, 5.925, 7.425, 8.275) D- (2.95, 2.95, 4.5, 5.95) 9
ID15 A- (4.375, 4.4, 7.55, 8.05) A+ (4.775, 4.775, 9.175, 10) A- (3.625, 4.15, 7.2, 7.5) 8
ID16 A+ (6.8, 7.025, 9.975, 9.975) A+ (5.05, 5.05, 10, 10) A- (2.975, 3.95, 6.975, 6.975) 8
ID17 D- (3.75, 3.75, 6.25, 6.25) A+ (5.9, 5.9, 9.975, 9.975) D- (3.9, 3.9, 6.15, 7.075) 8
ID18 D- (4.175, 4.375, 6.075, 6.275) A+ (6.75, 7.15, 8.7, 9.525) D- (1.55, 2.2, 4.4, 5.6) 8
ID19 A- (4.975, 5.65, 7.5, 7.5) D- (2.5, 2.55, 4.65, 5.5) D+ (0, 0, 1.7, 1.7) 8
ID20 A+ (7.35, 7.425, 10, 10) A+ (6.925, 8.5, 10, 10) D+ (0.05, 0.05, 1.025, 1.025) 10
ID21 A+ (9.2, 9.65, 10, 10) A+ (10, 10, 10, 10) D+ (0, 0, 0.15, 0.4) 9
ID22 A- (6, 6.5, 7.4, 8) A- (6, 6.65, 7.3, 8) D+ (0, 0, 0, 1) 7
ID23 A- (5.9, 6.25, 6.9, 7) A- (6, 6.25, 6.85, 7.1) D+ (0, 0, 0, 0) 6
ID24 A- (4.25, 5.05, 7.025, 7.95) A- (4.925, 5.9, 7.05, 8.025) D- (1.975, 2.525, 4.025, 4.925) 8
ID25 A- (6, 6.5, 6.5, 7) A- (8, 8.5, 8.5, 9) D+ (0, 0.5, 0.5, 1) 7
ID26 D- (3, 3, 3.5, 4) A- (6, 6, 6.6, 7.2) D- (3, 3, 4, 4.6) 7.5
ID27 A+ (9, 9.25, 9.6, 10) A+ (9, 9.3, 9.55, 10) D+ (0.1, 0.3, 0.65, 1) 10
ID28 A- (4, 5.8, 7.425, 9.075) A+ (6.175, 8.85, 9.85, 9.85) D+ (0.025, 0.025, 1.025, 1.075) 8
ID29 A+ (7.925, 7.925, 10, 10) A+ (9, 9.05, 9.925, 9.975) D+ (9.95, 9.95, 9.95, 9.975) 9.5
ID30 D- (3.025, 3.025, 5.025, 5.075) D- (1.975, 2, 5.025, 5.025) D+ (1, 1, 3.05, 3.45) 6
ID31 A- (2.5, 3.75, 6.25, 7.5) A+ (3.7, 3.75, 9.8, 9.95) D+ (0.6, 0.675, 6.25, 6.25) 7.75
ID32 A- (6.75, 6.75, 7.5, 8) A- (8, 8, 8.65, 9.2) D- (3.5, 4.4, 5.3, 6.2) 8
ID33 A- (7.3, 7.65, 8.3, 8.6) A- (8.4, 8.7, 9.25, 9.65) D+ (0, 0, 0.2, 0.4) 8.5
ID34 A- (6, 6.3, 6.9, 7.2) A+ (8.15, 8.5, 8.9, 9.3) A+ (8.3, 8.6, 9.25, 9.6) 6
ID35 (0, 1.075, 2.15, 3.525) (2.875, 3.475, 5.175, 5.75) (0, 0.475, 1.85, 2.275) 8
ID36 A- (7.1, 8, 9, 10) D- (6, 7, 8, 9) D+ (1, 2, 3, 4) 9
ID37 A- (7, 7, 8, 8) A- (6, 6, 7, 7) A- (8, 8, 9, 9) 6.5
ID38 A- (5.825, 5.875, 7.95, 8) A+ (8, 9.975, 9.975, 10) D+ (0, 0.05, 0.95, 0.95)
ID39 D- (2.5, 3, 4.65, 4.65) A+ (6.975, 6.975, 6.975, 10) D+ (0.125, 0.125, 0.375, 0.375)
ID40 A+ (8.95, 8.95, 10, 10) A+ (9.4, 9.4, 9.95, 9.975) D+ (0, 0, 1, 1.025)
ID41 A- (5.125, 5.125, 6.25, 8.925) A- (5.15, 5.175, 7.45, 9.95) D+ (0.075, 3.75, 6.25, 6.25)
ID42 D- (1.725, 3.075, 6.1, 7.5) A+ (2.5, 5.225, 8.55, 10) D+ (0.075, 0.075, 3.775, 3.8)
ID43 A- (3.5, 4.625, 6.325, 6.775) A+ (8.725, 9.175, 9.95, 10) D+ (0, 0, 1.025, 2.025)
ID44 A+ (8.925, 8.925, 8.925, 8.925) A- (5.95, 6.575, 8.375, 9.825) A+ (2.5, 3.75, 7.45, 7.5)
ID45 A- (7, 7, 8, 8.4) D- (3, 3, 4, 4) D- (1.4, 2, 3, 3) 9
ID46 A- (4.375, 5.025, 7, 8.025) A+ (5.925, 7.175, 9.375, 10) A+ (6.975, 8.025, 9.9, 10)
ID47 A- (7, 78.15, 8.65, 8.65) A+ (8.2, 8.8, 10, 10) D+ (0, 0.3, 0.65, 1) 8
ID48 D- (2.425, 3.25, 5.575, 6.675) A- (4.425, 5.6, 7.5, 8.25) D+ (0, 0.5, 2.6, 2.6) 8.5
ID49 A- (4.95, 5.525, 7.05, 8.05) A+ (8.95, 8.95, 9.9, 9.95) D- (2.825, 2.875, 4.975, 5.05)
ID50 D+ (0.025, 0.025, 1.5, 1.5) A- (5, 6, 7.975, 8) D- (3, 3, 5, 6)
ID51 A- (4.125, 4.975, 6.9, 7.95) A- (4.85, 4.875, 7.375, 7.875) D+ (1.05, 1.075, 1.775, 2.05)
ID52 A- (6.1, 6.15, 7.475, 7.5) A+ (7.975, 7.975, 9.9, 10) D+ (8.3, 8.375, 9.825, 9.825) 8
ID53 A- (7.95, 7.95, 8.95, 9) A+ (5.125, 7.375, 7.5, 10) D+ (0, 0, 2.525, 2.525)
ID54 D- (2.6, 2.6, 6.25, 6.25) A- (3.725, 3.75, 6.875, 6.875) (0.075, 0.1, 1.725, 1.725) 8
ID55 A- (7, 7, 8, 9) A- (7.05, 8.15, 9, 9) D+ (0, 0, 0, 0) 7
ID56 A- (6.9, 7.7, 8.3, 9) A+ (9, 10, 10, 10) D+ (0, 0.35, 0.6, 1) 9.5
ID57 D+ (0.025, 0.075, 1.025, 1.05) A- (6.05, 6.05, 8.95, 8.95) D- (2.15, 3.05, 3.05, 5.025)
ID58 A- (6, 7, 8, 9.1) A+ (9, 10, 10, 10) A+ (9.4, 9.85, 10, 10) 8
ID59 D- (2, 2.85, 3.6, 4.15) A- (5.6, 6.35, 7.1, 7.5) A+ (8.65, 9.05, 9.6, 10) 6
ID60 D+ (0.025, 0.025, 1.025, 1.025) A+ (6.875, 6.95, 9.975, 10) D+ (0.125, 0.175, 1.075, 1.1) 10
ID61 D- (1.475, 2.45, 5.025, 6.1) D- (1.675, 2.375, 4.825, 5.9) D+ (0.025, 0.05, 0.05, 0.05) 9
ID62 A+ (8.975, 8.975, 10, 10) A+ (8, 8, 9.925, 9.975) A+ (6.9, 7, 9.9, 9.9) 9
ID63 A- (3.75, 4.7, 6.9, 8.175) A+ (7.425, 7.475, 9.375, 9.375) D+ (0.2, 0.2, 0.275, 1.85) 9
ID64 A+ (8.95, 9.075, 9.925, 9.95) A- (5.475, 5.475, 8.8, 8.8) D+ (0.15, 0.175, 7.025, 7.025)
ID65 A- (4.2, 4.875, 7.375, 7.5) A+ (5.875, 5.925, 8.925, 8.95) D+ (0, 0.1, 0.95, 2.925) 7
ID66 A- (5.975, 7.025, 7.1, 8.9) A+ (8.975, 8.975, 9.975, 10) A- (5.05, 5.975, 7.775, 9.15) 8
ID67 A- (5.6, 6.15, 6.9, 7.45) A+ (8.5, 9.1, 9.65, 10) D+ (0.2, 0.6, 1.2, 1.6) 8
ID68 A+ (9, 9.6, 9.6, 10) A+ (8.65, 9.1, 9.9, 10) A- (5.55, 6.2, 6.95, 7.3) 8
ID69 D- (2.1, 2.975, 4, 4.975) A- (5.575, 5.575, 7.5, 7.5) D+ (0, 1.025, 2.05, 3.15)
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Table A.3: Dataset for the “Mathematics in school” items (Page 236) from the adapted
TIMSS/PIRLS student Questionnaire (D+ = disagree a lot, D− = disagree a little, A− = agree a

little, A+ = agree a lot, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di))

M.1 M.1 M.2 M.2 M.3 M.3
ID Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) M4

ID1 D- (2.35, 3, 4, 4.8) A+ (8.4, 9, 10, 10) A- (5.2, 6, 7, 7) 8
ID2 A- (5.65, 6.2, 7.475, 9.8) A+ (9.2, 9.2, 9.975, 9.975) D+ (0, 0, 0, 2.95) 8
ID3 A+ (9.85, 9.85, 9.875, 9.975) A+ (8.925, 9.95, 9.95, 9.95) A+ (6, 6.425, 7.35, 7.875) 10
ID4 A+ (8.025, 9.05, 9.9, 9.975) D+ (0.1, 0.1, 0.625, 1.975) A+ (0, 0, 0.775, 1.225) 8.5
ID5 D- (3.525, 3.75, 6.25, 6.725) D- (3.5, 3.55, 6.25, 7.5) D+ (0, 0, 2.15, 2.15) 6
ID6 A+ (9, 9.225, 9.775, 10) A+ (10, 10, 10, 10) A+ (10, 10, 10, 10) 10
ID7 D- (2.5, 2.975, 5.3, 5.35) A- (4.375, 5.175, 7.5, 7.5) A+ (7.9, 7.95, 8.7, 8.7) 9
ID8 D- (2, 2.45, 3, 3) D- (3, 3, 3.45, 4) A+ (9, 9, 9.4, 10) 10
ID9 D- (3.1, 4, 4, 4.5) A+ (8.6, 10, 10, 10) A+ (9, 10, 10, 10) 7
ID10 A- (4.325, 5.025, 7.925, 8.5) D- (1.75, 2.5, 3.675, 3.675) D+ (4.975, 4.975, 5.325, 5.4) 7
ID11 A+ (7.525, 7.525, 7.55, 9.025) A- (6.975, 6.975, 7.5, 7.5) A+ (7.6, 7.6, 8.35, 8.65) 10
ID12 A+ (9, 9, 10, 10) A+ (10, 10, 10, 10) D- (2, 2, 4, 4) 9
ID13 A+ (9.4, 10, 10, 10) A+ (8.9, 9.4, 10, 10) D+ (0, 0, 0, 0.45) 10
ID14 A- (5.025, 5.95, 7.025, 8.95) A+ (7.3, 8.05, 9.575, 10) A+ (9.975, 10, 10, 10) 8
ID15 A+ (5.75, 5.775, 9.55, 9.875) A+ (5.95, 6, 9.2, 10) A+ (0, 0, 1.575, 1.575) 9
ID16 A+ (6.85, 8, 10, 10) A+ (6.75, 7.025, 9.975, 9.975) A+ (2.225, 2.225, 3.125, 3.125) 10
ID17 A+ (4.025, 5.75, 8.725, 10) A+ (4.9, 4.9, 8.45, 9.975) A+ (1.9, 1.95, 3, 3.15) 5
ID18 A- (4.2, 4.925, 6.975, 7.2) A- (4.4, 4.725, 6.25, 7.8) D- (4.875, 5.05, 5.45, 5.625) 7
ID19 A- (3.75, 3.75, 7.5, 7.5) A- (6.225, 6.25, 7.5, 7.5) A+ (6.15, 6.15, 6.75, 6.75) 8
ID20 A+ (5.85, 7.025, 9.05, 9.1) D+ (0, 0.125, 2.05, 2.55) D- (3.45, 3.45, 4.425, 4.425) 8.5
ID21 D- (3.1, 3.25, 3.85, 4.5) A+ (10, 10, 10, 10) D- (2.5, 3.2, 3.3, 4.45) 8
ID22 A- (6, 6.7, 7.2, 8) A+ (8.7, 9.4, 10, 10) D- (3, 3.6, 4.2, 5.05) 8
ID23 A- (6.1, 6.4, 6.75, 7.1) A+ (9, 10, 10, 10) D- (3, 3, 3, 3) 7
ID24 A+ (10, 10, 10, 10) A+ (9.975, 9.975, 9.975, 9.975) A+ (0, 0.6, 1.25, 1.65) 10
ID25 A+ (9, 9.5, 9.5, 10) A- (8, 8.5, 8.5, 9) D+ (0, 0.5, 0.5, 1) 9
ID26 D- (2.4, 3, 3.65, 3.65) A- (6, 6, 6.6, 7.7) D- (2.5, 3, 3.6, 3.6) 5
ID27 A- (6, 6.15, 6.55, 7) A+ (8.1, 8.2, 8.6, 9) D- (3, 3.2, 3.6, 4.2) 8
ID28 D- (2.5, 2.95, 6.25, 7.5) A+ (3.4, 4.825, 9.95, 9.95) A+ (10, 10, 10, 10) 5
ID29 A+ (9.975, 10, 10, 10) A+ (9.975, 9.975, 10, 10) A+ (10, 10, 10, 10) 9
ID30 A+ (2.975, 3.05, 10, 10) A- (3, 3, 7.95, 7.95) A+ (6.975, 6.975, 7.925, 7.925)
ID31 D- (2.5, 3.75, 6.25, 7.5) A- (2.5, 3.75, 6.25, 7.5) D+ (0, 0, 2.575, 2.575) 5
ID32 D- (3.8, 4.25, 5.5, 6) A+ (9.6, 9.8, 10, 10) A- (6, 6.45, 7.4, 8) 9
ID33 D- (4.6, 4.75, 5.15, 5.35) A+ (9.2, 9.8, 10, 10) D- (2.35, 2.8, 3.25, 3.5) 7.5
ID34 A- (6.2, 6.4, 6.85, 7.1) A- (5.2, 5.4, 5.65, 6) D- (3.15, 3.4, 3.6, 4) 5
ID35 (3.05, 4.05, 7.95, 9.025) (8.725, 8.95, 9.7, 10) D+ (0, 0.625, 2.725, 2.75) 7
ID36 A+ (8, 9.15, 10, 10) A+ (8, 9, 10, 10) D+ (0, 0, 1, 2) 10
ID37 D- (0, 1.125, 2.025, 2.625)
ID38 A+ (9.925, 9.95, 10, 10) A- (7, 7.025, 8.9, 8.975) A+ (4.925, 5.025, 5.95, 6.3) 10
ID39 D+ (0, 0.025, 0.025, 0.025) A+ (9.975, 9.975, 9.975, 10) A+ (10, 10, 10, 10)
ID40 D- (2.925, 2.975, 5.95, 5.975) A+ (9.45, 9.45, 9.925, 10) D+ (0, 0.825, 2.425, 2.425)
ID41 D+ (0, 1.125, 1.2, 1.275) D- (2.5, 3.75, 3.9, 5.45) D- (0, 0.325, 1.475, 1.475) 5
ID42 A- (3.7, 3.75, 7.225, 7.25) A+ (6.9, 8.175, 9.225, 9.975) A+ (5.15, 5.35, 6.15, 6.15) 10
ID43 A- (3.825, 4.9, 6.05, 6.725) A+ (6.7, 7.775, 8.9, 10) A+ (8.55, 8.85, 9.625, 10) 8.5
ID44 A- (8.975, 8.975, 8.975, 10) A+ (3.175, 5.025, 7.5, 9.95) A+ (0, 0, 0, 0.725) 7.5
ID45 A+ (10, 10, 10, 10) A+ (10, 10, 10, 10) D+ (0, 0, 0, 0) 10
ID46 A+ (10, 10, 10, 10) (8.05, 8.65, 10, 10) A+ (10, 10, 10, 10) 9.5
ID47 A- (6, 6.65, 7.25, 7.25) A- (8, 8.5, 9.2, 9.2) A- (7, 7.4, 8.2, 8.4) 8
ID48 D- (2, 2, 5, 5) A- (5, 6, 6.125, 8) A+ (4.05, 4.05, 4.7, 4.775) 9
ID49 A+ (8.975, 8.975, 9.975, 9.975) A+ (9.025, 9.025, 9.95, 9.95) A+ (10, 10, 10, 10) 9
ID50 D- (2.5, 2.975, 5.5, 6.5) A+ (8, 8.5, 9.85, 9.875) D+ (0, 0.85, 1.5, 1.825) 9
ID51 A- (4.85, 5, 7.05, 7.875) A+ (7.95, 9, 10, 10) D+ (1.6, 1.825, 2.425, 3.075) 10
ID52 D- (3.075, 3.1, 4, 7.5) A+ (9.325, 9.375, 10, 10) A+ (3.125, 3.275, 3.7, 4.05) 10
ID53 D- (0.975, 3.875, 4.075, 4.075) A- (3.975, 4.925, 6.875, 6.925) A- (9.9, 9.9, 10, 10) 9
ID54 A- (6.675, 6.675, 6.675, 6.7) A+ (0.225, 3, 6.875, 9.9) A- (0, 0, 1.125, 1.125)
ID55 A- (7, 7, 8, 9) A- (7, 8, 9, 9) A- (6, 6, 7, 8) 8
ID56 A- (8, 8.3, 8.55, 9) A+ (9, 10, 10, 10) D- (1, 1.8, 2.35, 3.1) 10
ID57 A- (7.925, 7.95, 8, 8) A- (6.075, 6.15, 9.05, 9.05) A- (0, 0.075, 1, 1.35) 9.5
ID58 A+ (9, 10, 10, 10) A+ (8, 10, 10, 10) D+ (0, 0, 0, 0) 10
ID59 A+ (8.3, 9.3, 9.8, 10) A- (6, 7, 9, 10) D+ (0, 0.4, 0.95, 1.75) 9
ID60 D+ (0.05, 0.05, 0.075, 0.075) A+ (9.025, 9.025, 9.95, 9.95) A- (10, 10, 10, 10)
ID61 D- (1.45, 1.95, 4.95, 5.725) A+ (5.6, 6.7, 9.15, 10) A+ (8.8, 8.8, 9.5, 9.575) 8
ID62 A- (2.9, 3.75, 6.25, 7.8) A+ (9.85, 9.85, 9.9, 9.9) A+ (4.6, 6.15, 6.15, 6.85) 10
ID63 A+ (9.875, 9.95, 9.95, 9.975) A- (4.225, 5.7, 7.025, 8.9) A- (3.6, 3.925, 4.575, 4.575) 8
ID64 A- (2.5, 4.075, 7.175, 8.15) A+ (5.825, 5.85, 9.875, 9.95) D- (3.875, 3.875, 5.6, 5.6) 9
ID65 D- (2.5, 2.55, 4.275, 4.3) A- (2.5, 4.625, 4.625, 6.9) D+ (0, 0.25, 1.025, 1.025) 7
ID66 A+ (8, 8.025, 9.8, 9.975) A+ (9.8, 9.8, 10, 10) A+ (10, 10, 10, 10) 9
ID67 A+ (8.55, 9.15, 9.7, 10) A+ (8.6, 9.15, 9.75, 10) D- (0.3, 0.45, 1.15, 1.5) 10
ID68 D- (3.5, 4.2, 5, 5.45) A- (5.1, 6, 6.75, 7.3) A- (5.5, 6.1, 6.9, 7.4) 10
ID69 D- (2.5, 2.5, 5.1, 7.5) A+ (10, 10, 10, 10) A+ (6.325, 6.925, 7.175, 7.65)
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Table A.4: Dataset for the “Science in school” items (Page 237) from the adapted
TIMSS/PIRLS student Questionnaire (D+ = disagree a lot, D− = disagree a little, A− = agree a

little, A+ = agree a lot, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di))

S.1 S.1 S.2 S.2 S.3 S.3
ID Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) S4

ID1 A- (6.35, 6.95, 8, 8) D- (2.4, 2.95, 4.05, 5) D- (3.2, 4, 5, 5) 7
ID2 A- (0.45, 6.225, 7.4, 7.5) D+ (0.075, 0.075, 0.775, 9.775) D+ (0.025, 0.025, 0.675, 9.825) 10
ID3 (2.5, 3.75, 6.25, 7.5) D- (2.5, 2.5, 3.775, 4.275) D+ (2.5, 2.5, 2.575, 2.65) 9.5
ID4 A+ (5.975, 7.9, 9.45, 10) D- (2.5, 2.5, 4.425, 4.975) D+ (0, 0, 2, 3.475) 8.5
ID5 A+ (9.175, 9.2, 9.95, 9.95) D+ (0, 0.125, 2.55, 2.575) D+ (0.175, 0.225, 6.25, 7.5) 8.5
ID6 A- (6.5, 7, 7.5, 8) D- (2, 2.5, 4.5, 5) D- (2.5, 2.5, 3.5, 3.5) 7.75
ID7 A- (4, 4.8, 7.275, 7.5) D- (1.075, 1.5, 3.6, 5.25) A- (4.05, 5.075, 7.225, 7.5) 7
ID8 A+ (9, 9, 9.45, 10) D+ (0, 0, 0.4, 1) A+ (9, 9, 9.45, 10) 10
ID9 A+ (9, 10, 10, 10) D- (2, 3, 3, 3.6) A- (6.15, 7, 7, 7.45) 8
ID10 D+ (0.8, 0.8, 1.3, 1.85) D+ (0.45, 1.175, 2.55, 2.7) A- (3.75, 4.675, 6.85, 8.4) 9.5
ID11 A- (6.925, 6.925, 7.5, 7.5) D+ (2.5, 2.5, 2.975, 2.975) D- (2.5, 2.525, 3.55, 3.575) 8
ID12 A- (5, 5, 7, 7) D+ (0, 0, 0, 0) D+ (0, 0, 1, 1) 10
ID13 D- (2, 2.8, 4, 4) D+ (0, 0, 1, 1) A- (5.5, 6.1, 6.9, 8.5) 9.5
ID14 A- (4, 5.65, 6.725, 7.375) D+ (0.025, 1.175, 2.35, 2.925) D+ (0.4, 1.475, 2.4, 3) 10
ID15 A- (4.625, 4.65, 7.475, 7.5) A- (3.75, 3.75, 7.2, 7.525) D- (3.575, 3.75, 7.15, 7.5) 10
ID16 A- (3.55, 3.75, 6.95, 6.95) A- (3.475, 6.925, 6.975, 6.975) A- (4.925, 4.925, 6.8, 6.8) 10
ID17 A- (3.625, 4.6, 6.95, 7.5) D+ (0.025, 1, 2.6, 4.175) D+ (0.075, 0.2, 1.7, 1.75) 7
ID18 A+ (6.175, 6.475, 8.25, 9.525) D+ (0.45, 1.35, 2.275, 2.675) A- (5.225, 6, 7.425, 8.5) 7
ID19 A+ (6.7, 6.7, 9.975, 10) D+ (0, 0.025, 1.6, 1.6) A+ (8.025, 8.45, 9.825, 9.85) 7
ID20 A- (5, 6.05, 6.875, 7.35) A- (3.5, 4.95, 6.95, 6.95) A- (4.525, 4.95, 7.425, 7.5) 7.5
ID21 A+ (10, 10, 10, 10) D- (2.7, 3.2, 3.7, 4) D+ (0, 0, 0, 0) 8.5
ID22 A- (5, 5.5, 6.5, 7.1) D- (1, 1.65, 2.3, 3.3) D- (2, 2.3, 3.1, 3.8) 3
ID23 A+ D+ D- (3, 3.1, 3.7, 4) 6
ID24 A- (4.725, 5.375, 7.275, 7.6) D- (0, 2.025, 3.225, 3.5) D+ (0.95, 1.575, 2.425, 3.4) 7
ID25 D- (3, 3.5, 3.5, 4) D+ (0, 0.5, 0.5, 1) D+ (0, 0.5, 0.5, 1) 9
ID26 A- (5.3, 6, 6.5, 6.5) 0 (0, 0, 0, 0.7) D- (3, 3, 3.5, 4.15) 4.5
ID27 A+ (9, 9.15, 9.55, 10) A+ (8.1, 8.35, 8.8, 10) D+ (0, 0.2, 0.6, 1) 9
ID28 A+ (1.4, 3.75, 9.9, 9.925) D- (2.5, 2.55, 6.25, 7.5) A- (3.7, 5.625, 7.5, 7.5) 7
ID29 A+ (9.95, 9.975, 9.975, 9.975) D- (3.575, 3.75, 3.75, 6.725) A- (3.975, 4.05, 7.025, 7.025) 8
ID30 A- (2.95, 3.025, 7, 7.025) D+ (0, 0, 2.075, 2.075) A+ (3.75, 3.75, 7.95, 8.05) 6
ID31 A- (3.35, 3.75, 7, 7.5) D- (2.5, 2.85, 6.25, 6.3) D+ (0, 0.025, 6.25, 6.325) 9
ID32 A- (6.9, 7.6, 8.5, 9.2) D- (2.4, 3.2, 3.7, 4.2) D- (2.5, 3.5, 4.25, 5.2) 10
ID33 D- (4.6, 4.7, 5.15, 5.45) D- (4.25, 4.55, 5.15, 5.4) D- (4.45, 4.8, 5.2, 5.5) 8.5
ID34 A+ (8.25, 8.35, 8.85, 9.1) D+ (1.2, 1.4, 1.85, 2.15) A- (6.15, 6.3, 6.8, 7) 9
ID35 (5.15, 6.05, 7.925, 9) (0.025, 0.3, 0.5, 0.75) (8.25, 8.675, 9.425, 10) 8
ID36 A+ (8, 9, 10, 10) A- (8, 9, 10, 10) D+ (0, 0, 1, 1.9) 8
ID37
ID38 A+ (8.85, 9.975, 9.975, 9.975) D- (2.5, 2.5, 4.2, 4.2) D+ (0.075, 0.075, 1.025, 1.025) 9
ID39 D- (1.95, 3.75, 6.025, 8.05) D+ (0.125, 0.15, 0.15, 0.15) A+ (7.925, 8.925, 10, 10) 3.5
ID40 A- (4.875, 4.875, 8.025, 8.05) A- (3.75, 3.75, 7.5, 7.5) (2.5, 3.75, 6.25, 7.5)
ID41 A+ (4.975, 4.975, 6.575, 7.925) D- (0.2, 2.5, 3.075, 3.075) D+ (0.15, 0.6, 2.875, 2.95)
ID42 D+ (2.5, 2.525, 3.35, 3.775) D+ (0.35, 0.35, 3.525, 3.575) D- (2.5, 3.75, 6.25, 7.5) 6
ID43 D- (3.55, 3.55, 3.575, 3.6) D+ (0.025, 0.1, 0.15, 0.15) D- (4.975, 4.975, 4.975, 4.975) 10
ID44 A+ (5.075, 7.05, 9.975, 9.975) A- (3.75, 3.75, 6.25, 8.8) A- (5.625, 5.625, 7.4, 9.9)
ID45 A- (7, 7, 8, 8.45) D- (1.65, 2, 3, 3) D+ (0, 0, 1, 1.45) 10
ID46 D- (0, 0.025, 0.55, 0.55) A- (2.5, 3.75, 6.25, 7.5) A+ (5.1, 5.975, 9.3, 9.9)
ID47 A- (7, 7.7, 8.4, 9) D- (3, 3.8, 4.6, 5.15) D- (2.5, 3, 3.5, 4) 8
ID48 D- (1.5, 2.5, 4.525, 5.475) D+ (0.3, 1, 3.075, 4.05) A+ (8.5, 8.5, 9.925, 9.925) 6
ID49 D+ (0.05, 0.075, 3.025, 3.025) D+ (1.525, 2.8, 3.875, 4.425) A- (4.85, 5.975, 6.9, 8) 6
ID50 D- (2.5, 3, 5, 6) D+ (0, 0.025, 0.15, 1) D+ (0.5, 1, 2, 2.5)
ID51 A+ (7.975, 8.975, 9.95, 10) D- (2.025, 2.025, 3.075, 3.075) D+ (0.05, 0.05, 0.5, 1.05) 10
ID52 D- (2.9, 3.125, 6.25, 6.275) A+ (8.925, 8.925, 10, 10) A+ (9.675, 9.725, 9.975, 10) 7
ID53 A- (3.9, 3.9, 6.8, 6.875) D+ (0.075, 0.125, 1.05, 1.125) A- (2.5, 3.75, 6.775, 7) 7
ID54 A+ (0.025, 3.75, 6.25, 9.95) D- (3.575, 3.625, 6.75, 6.775) D- (0.025, 0.075, 3.625, 3.625)
ID55 A- (6, 6, 7, 8) D+ (0, 0, 0, 0) A- (7, 7, 7, 7) 7
ID56 D- (3, 3, 3, 3.6) A- (4.9, 5.5, 5.5, 6) D+ (0, 0, 0, 1) 10
ID57 D+ (0.125, 0.125, 3, 3.05) D+ (0, 0.025, 2.025, 2.025) D+ (0, 0, 0.95, 0.975) 9.5
ID58 D- (2.9, 4, 5, 6.1) D- (2, 3, 4, 4.9) A- (4.4, 5.1, 7, 7.8) 6
ID59 D- (2.2, 3, 3.7, 4.6) 0 (0, 0, 0, 0) D+ (0.2, 0.45, 1.65, 2.4) 8
ID60 D+ (0.05, 0.05, 1.1, 1.1) D+ (0, 0.025, 0.05, 0.05) D+ (0, 0.025, 0.025, 0.025) 7
ID61 D+ (0, 0, 0, 0) D- (0.725, 1.6, 4.55, 5.075) A- (5.5, 5.9, 7.5, 8.075) 9.5
ID62 A- (4.925, 6.1, 8.425, 8.425) D- (1.375, 2.525, 4.45, 6.325) D- (2.5, 4.625, 4.625, 7.5) 8
ID63 A- (5.4, 5.425, 7.825, 8.425) D- (2.425, 3.1, 5, 5.825) D- (1.7, 3.075, 4.9, 5.875) 10
ID64 A- (2.275, 3.75, 6.25, 8.075) A- (3.75, 3.75, 8.975, 9.025) D- (3.6, 3.75, 7.425, 7.5) 8
ID65 A- (5.125, 6.775, 7.45, 7.5) D- (2.5, 3.125, 3.125, 6) D- (2.5, 3.75, 6.25, 7.5) 5
ID66 A- (6.025, 6.05, 7.5, 9.05) D- (2.5, 3.75, 5.45, 6.05) A+ (8.1, 9.9, 9.975, 10) 8
ID67 A- (6.1, 6.7, 7.3, 7.65) D- (2.25, 2.6, 3.7, 4.3) D- (2.7, 3.3, 3.9, 4.3) 9
ID68 A+ (8.5, 9.2, 9.7, 10) D+ (0.2, 1, 2, 2.4) D- (2.6, 3.15, 3.8, 4.3) 8
ID69 D+ (2.5, 2.675, 2.675, 2.725) D+ (0.025, 0.025, 0.025, 0.075) A+ (9.925, 9.925, 9.95, 10)
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QQUUEESSTTIIOONNNNAAIIRREE  OONN  LLAAUUNNCCHH  RREESSTTAAUURRAANNTTSS  
(All information that you provide will be used in the strictest confidence) 

PPPAAARRRTTT   111:::   AAABBBOOOUUUTTT   YYYOOOUUURRRSSSEEELLLFFF   

 

 

 

 

                 

 

 

     90%         

 

 

     90%        10 

 

 Under 25 years 

 25 – 34 

 35 – 44 

 45 – 54 

 55 – 64 

 Over 65 years 

AGE 

 Female 

 Male 

GENDER 

 Working 

 Training 

 Both 

 Housework 

 None/retired 

CURRENT MAIN RESPONSABILITY  

 Fast food restaurant 
 Self-service restaurant 
 Casual restaurant 
 Fine restaurant 

 

USUAL RESTAURANT CHOICE  

  Please indicate an interval of time at which you use to have lunch:              
 

 

Usual  
# days/month 
having lunch  

at a restaurant  

 

average  
price/lunch  
at the usual 
restaurant  

 

  

PPPAAARRRTTT   222:::   AAABBBOOOUUUTTT   YYYOOOUUURRR   OOOPPPIIINNNIIIOOONNN///VVVAAALLLUUUAAATTTIIIOOONNN///RRRAAATTTIIINNNGGG   OOONNN   TTTHHHEEE   UUUSSSUUUAAALLL   CCCHHHOOOIIICCCEEE   

 Firstly, you will reply to questions concerning the quality of the food and beverage.  

Questions should be replied by using a double type of response:  
-  on one hand, the respondent should choose 1 of the 5 possible responses on the right side; 
-  on the other hand, the same respondent should draw a trapezoid as follows:  
  the lower basis for the trapezoid will be the interval of values between 0 (lowest rating) and 100 (highest rating) 

which are considered by the respondent as being compatible to some extent with their rating;  
  the upper basis for the trapezoid will be the interval of values between 0 and 100 which are considered by the 

respondent as being fully compatible with their rating.  
  Then the trapezoid will be immediate to draw.  
 

 

          

0      10      20      30      40      50     60      70      80      90     100    90%        100% 

 

 

          

0      10      20      30      40      50     60      70      80      90     100   90%        100% 

QF1. The food is served hot and fresh 

competitive 

 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

QF2. The menu has a good variety of items 

competitive 

 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 
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0      10      20      30      40      50     60      70      80      90     100 

 

 

          

0      10      20      30      40      50     60      70      80      90     100    90%        100% 

 

 

          

0      10      20      30      40      50     60      70      80      90     100    90%        100% 

   

QF3. The quality of food is excellent 

 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

QF4. The food is tasty and flavorful 

 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

QF5. The quality of beverage is good 

 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

 

  

 

 Secondly, you will reply (in a similar double way) to questions concerning the satisfaction with the restaurant service.   

 

 

          

0      10      20      30      40      50     60      70      80      90     100   90%        100% 

 

 

          

0      10      20      30      40      50     60      70      80      90     100 

 

 

          

0      10      20      30      40      50     60      70      80      90     100    90%        100% 

QR1. My food order was correct and complete 

 

QR2. Employees are patient when taking my order 

competitive 

 

QR3. I was served promptly 

 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 
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0      10      20      30      40      50     60      70      80      90     100   90%        100% 

 

 

          

0      10      20      30      40      50     60      70      80      90     100 

 

 

          

0      10      20      30      40      50     60      70      80      90     100    90%        100% 

QR4. Good availability of sauces, utensils, napkins,... 

 

QR5. The menu board was easy to read 

 

QR6. Employees are friendly and courteous 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

 

  

 

 

          

0      10      20      30      40      50     60      70      80      90     100   90%        100% 

 

 

          

0      10      20      30      40      50     60      70      80      90     100   90%        100% 

 Thirdly, you will reply (in a similar double way) to a single question concerning the price of the restaurant.  
 

 

          

0      10      20      30      40      50     60      70      80      90     100 

QR7. The service is excellent 

 

QP1. Prices are competitive 

 

QR8. Good cleanness of the restaurant and service 

are good 

 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 

 Strongly disagree 

 Somewhat disagree 

 Neutral 

 Somewhat agree 

 Strongly agree 
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Table B.1: Dataset for the “About yourself” items (Page 243) from the adapted restaurant
customer satisfaction Questionnaire

ID Gender Age (years) Occupation Restaurant type # days/month average price/lunch (€) lunch interval time

ID1 Female < 25 Training Fast food 6 4 21 : 00− 22 : 00
ID2 Male > 64 None/retired Casual 1 20 14 : 30− 16 : 30
ID3 Female 45-54 Housework Casual 1 15 14 : 30− 16 : 00
ID4 Female < 25 Training Casual 2 20 21 : 00− 23 : 00
ID5 Female < 25 Training Fine 2 45 21 : 00− 23 : 00
ID6 Male 25-34 Working Casual 6 14 22 : 30− 00 : 30
ID7 Male < 25 Working Fine 3 100 14 : 15− 16 : 30
ID8 Female 55-64 Working Casual 3 15 14 : 30− 15 : 30
ID9 Female 55-64 Housework Casual 1 15 14 : 00− 15 : 15
ID10 Male 25-34 Training Casual 3 20 13 : 30− 14 : 30
ID11 Male < 25 Both Casual 4 7 14 : 00− 15 : 00
ID12 Male 25-34 Both Self-service 8 11 15 : 00− 16 : 00
ID13 Female 25-34 Both Casual 2 17 14 : 00− 16 : 00
ID14 Male < 25 Training Casual 2 10 14 : 30− 15 : 10
ID15 Female 25-34 Both Self-service 4 12 14 : 00− 15 : 00
ID16 Male 55-64 None/retired Casual 2 15 14 : 00− 15 : 15
ID17 Female 25-34 Training Casual 30 6 14 : 30− 15 : 30
ID18 Female < 25 Training Casual 4 15 14 : 00− 15 : 00
ID19 Female < 25 Training Casual 5 15 13 : 00− 14 : 00
ID20 Female < 25 Training Casual 1 17 13 : 00− 13 : 30
ID21 Male 55-64 Working Fine 3 20 13 : 30− 14 : 00
ID22 Male 25-34 Working Casual 4 20
ID23 Female 25-34 Working Fine 4 22 12 : 30− 14 : 00
ID24 Male 25-34 Working Casual 4 20 12 : 30− 13 : 30
ID25 Female 25-34 Working Casual 4 20 13 : 00− 14 : 00
ID26 Male 35-44 Working Casual 2 25 12 : 00− 13 : 00
ID27 Male 35-44 Working Casual 4 30
ID28 Male 35-44 Working Casual 5 25 12 : 30− 13 : 30
ID29 Female 25-34 Working Casual 2 15
ID30 Female 25-34 Working Casual 4 13 13 : 00− 14 : 30
ID31 Female < 25 Working Fine 6 30 12 : 30− 13 : 30
ID32 Male 25-34 Training Casual 5 20 13 : 00− 14 : 00
ID33 Male < 25 Training Casual 8 15 13 : 00− 14 : 00
ID34 Male 55-64 None/retired Casual 1 14 : 00− 15 : 30
ID35 Male 25-34 Fast food 10 5 14 : 00− 16 : 00
ID36 Female 25-34 Working Casual 2 15 14 : 00− 15 : 00
ID37 Female 25-34 Working Casual 4 20 14 : 00− 15 : 30
ID38 Female 35-44 Working Casual 1 15 14 : 30− 15 : 00
ID39 Male < 25 Both Casual 3 9 14 : 00− 15 : 00
ID40 Male < 25 Training Casual 20 7.5 14 : 00− 15 : 00
ID41 Male < 25 Both Fast food 5 5 13 : 00− 14 : 00
ID42 Male 25-34 Working Self-service 8 8 13 : 00− 15 : 00
ID43 Female < 25 Training Fast food 8 6 14 : 00− 15 : 00
ID44 Male 25-34 Working Casual 5 12 14 : 00− 15 : 00
ID45 Female 25-34 Working Casual 5 8 12 : 00− 13 : 00
ID46 Female < 25 Training Casual 5 8 12 : 00− 13 : 00
ID47 Male < 25 Training Fast food 6 4 14 : 00− 15 : 00
ID48 Male < 25 Both Casual 12 7.5 14 : 00− 15 : 00
ID49 Male 25-34 Training Casual 20 7 14 : 30− 15 : 30
ID50 Male < 25 Both Casual 4 7.5 14 : 00− 15 : 00
ID51 Male 25-34 Training Casual 8 10 13 : 00− 14 : 00
ID52 Female 25-34 Training Casual 20 7 14 : 30− 15 : 30
ID53 Male 25-34 Training Casual 18 8 14 : 30− 15 : 30
ID54 Male 35-44 Both Fine 8 12 20 : 00− 21 : 00
ID55 Female > 64 None/retired Fine 10 15 12 : 30− 14 : 00
ID56 Female 25-34 Both Self-service 2 10 13 : 00− 14 : 00
ID57 Female 25-34 Training Fast food 16 5 21 : 00− 22 : 00
ID58 Male 25-34 Training Casual 24 3 13 : 30− 14 : 30
ID59 Male 25-34 Training Casual 20 7 14 : 30− 15 : 30
ID60 Female 25-34 Training Casual 18 7 14 : 30− 14 : 30
ID61 Male 35-44 Working Casual 20 8 13 : 00− 15 : 00
ID62 Female < 25 Training Fast food 15 4 13 : 00− 14 : 00
ID63 Female 45-54 Working Fine 20 5 13 : 00− 15 : 00
ID64 Male 45-54 None/retired Casual 20 7 15 : 00− 16 : 00
ID65 Female > 64 None/retired Fine 10 14 12 : 30− 14 : 00
ID66 Female 35-44 None/retired Casual 24 5 13 : 00− 14 : 00
ID67 Female 35-44 Working Casual 24 5.5 13 : 00− 14 : 00
ID68 Female 25-34 Working Casual 4 10 14 : 00− 15 : 00
ID69 Male 55-64 Working Casual 20 9 14 : 00− 15 : 00
ID70 Male 25-34 Both Fast food 6 10 21 : 00− 23 : 00
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Table B.2: Dataset for the “About your opinion/valuation/rating on the quality of food and
beverage” items (Pages 243 and 244) from the adapted restaurant customer satisfaction

Questionnaire (SD = strongly disagree, sD = somewhat disagree, N = neutral, sA = somewhat agree,
SA = strongly agree, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di))

QF1 QF1 QF2 QF2 QF3 QF3 QF4 QF4 QF5 QF5
ID Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di)

ID1 sA (70, 80, 90, 100) SA (90, 95, 100, 100) sA (70, 75, 85, 90) sA (75, 80, 85, 90) sA (75, 80, 85, 90)
ID2 SA (80, 90, 90, 100) SA (80, 80, 80, 90) sA (80, 80, 80, 100) sA (80, 90, 90, 100) SA (100, 100, 100, 100)
ID3 sA (70, 80, 80, 90) sA (80, 85, 85, 90) N (80, 80, 90, 100) sA (80, 90, 90, 100) SA (100, 100, 100, 100)
ID4 sA (70, 75, 80, 80) N (30, 35, 35, 50) SA (80, 80, 90, 90) SA (80, 85, 85, 90) N (40, 50, 50, 60)
ID5 SA (80, 95, 95, 100) sA (60, 65, 70, 80) SA (80, 100, 100, 100) SA (90, 100, 100, 100) sA (50, 65, 65, 70)
ID6 sA (60, 65, 75, 80) SA (70, 80, 85, 90) sA (70, 70, 80, 90) sA (60, 70, 80, 80) sA (70, 80, 80, 80)
ID7 SA (90, 98, 100, 100) sA (70, 75, 80, 90) SA (95, 99, 100, 100) sA (65, 70, 85, 90) SA (70, 80, 100, 100)
ID8 SA (80, 90, 100, 100) SA (75, 80, 90, 100) SA (90, 95, 100, 100) SA (80, 90, 100, 100) SA (80, 85, 95, 100)
ID9 sA (60, 70, 80, 90) N (30, 40, 60, 70) sA (50, 60, 80, 90) sA (50, 60, 80, 90) N (40, 50, 70, 80)
ID10 sA (60, 70, 90, 100) sA (50, 60, 70, 80) sA (60, 70, 90, 100) N (40, 50, 60, 70) N (50, 60, 70, 80)
ID11 sA (61, 70, 70, 79) sD (25, 30, 40, 48) sA (64, 70, 80, 88) sA (63, 70, 80, 86) N (44, 49, 56, 60)
ID12 sA (30, 50, 68, 79) SA (70, 81, 100, 100) N (40, 51, 71, 80) N (41, 59, 59, 79) N (30, 40, 60, 70)
ID13 sA (51, 61, 70, 80) N (40, 50, 71, 80) N (31, 49, 60, 71) sA (50, 60, 70, 80) sA (40, 59, 70, 80)
ID14 sA (61, 70, 90, 100) SA (72, 80, 89, 100) N (50, 60, 90, 100) sA (60, 70, 78, 91) N (31, 40, 69, 80)
ID15 SA (60, 70, 81, 90) sA (60, 69, 80, 90) sA (61, 70, 79, 80) N (30, 40, 50, 59) SA (91, 100, 100, 100)
ID16 N (40, 50, 70, 86) sA (44, 56, 76, 87) sA (50, 63, 74, 86) N (45, 55, 76, 83) sA (48, 58, 71, 79)
ID17 sA (60, 68, 70, 80) N (44, 50, 60, 80) N (60, 68, 75, 80) SA (80, 90, 100, 100) SA (79, 80, 100, 100)
ID18 SA (50, 63, 86, 100) N (31, 39, 60, 70) sA (70, 80, 90, 100) N (30, 39, 60, 68) SA (70, 80, 100, 100)
ID19 SA (82, 88, 94, 96) SA (95, 100, 100, 100) SA (80, 90, 100, 100) sA (75, 80, 90, 95) sA (70, 75, 85, 90)
ID20 SA (70, 75, 95, 100) SA (70, 74, 94, 100) SA (70, 75, 90, 96) SA (70, 73, 90, 96) SA (65, 70, 90, 95)
ID21 SA (70, 80, 90, 100) SA (68, 80, 90, 100) SA (60, 70, 80, 80) SA (60, 70, 80, 100) sA (50, 70, 90, 100)
ID22 SA (90, 100, 100, 100) SA (90, 100, 100, 100) SA (90, 100, 100, 100) SA (100, 100, 100, 100) SA (90, 100, 100, 100)
ID23 SA (70, 80, 90, 100) SA (70, 80, 90, 100) SA (70, 80, 90, 100) SA (60, 70, 80, 90) sA (60, 70, 80, 90)
ID24 sA (60, 70, 80, 90) N (70, 80, 90, 100) sA (50, 60, 80, 90) sA (50, 60, 80, 90) sA (70, 80, 90, 100)
ID25 sA (60, 70, 80, 90) sA (60, 65, 75, 80) sA (65, 70, 80, 85) sA (70, 80, 90, 95) N (45, 50, 60, 65)
ID26 sA (40, 60, 80, 90) SA (80, 90, 100, 100) SA (80, 80, 90, 90) sA (70, 80, 100, 100) sA (60, 70, 90, 100)
ID27 sA (30, 70, 100, 100) SA (60, 90, 100, 100) sA (20, 70, 100, 100) sA (20, 70, 100, 100) SA (40, 90, 100, 100)
ID28 N (60, 60, 80, 80) sA (50, 60, 80, 90) N (50, 60, 80, 90) sA (60, 60, 80, 80) sA (60, 60, 80, 80)
ID29 sA (40, 50, 80, 100) sA (50, 60, 90, 100) N (30, 40, 60, 70) sA (40, 50, 90, 100) sD (20, 30, 60, 80)
ID30 sA (55, 65, 75, 85) N (40, 45, 55, 60) sD (20, 25, 35, 40) sD (20, 25, 35, 50) sA (60, 70, 85, 95)
ID31 SA (80, 90, 100, 100) SD (0, 0, 10, 40) sD (50, 60, 70, 100) SA (80, 90, 100, 100) SA (80, 90, 100, 100)
ID32 SA (100, 100, 100, 100) N (40, 50, 60, 70) sA (70, 75, 85, 90) sA (70, 75, 85, 90) sA (60, 70, 80, 90)
ID33 sA (76, 80, 85, 87) sA (80, 85, 92, 95) sA (65, 69, 81, 83) sA (76, 80, 95, 98) sA (65, 70, 85, 90)
ID34 sA (60, 68, 73, 78) sA (50, 62, 70, 70) sA (70, 76, 83, 86) sA (55, 61, 66, 75) SA (85, 91, 96, 100)
ID35 sA (60, 70, 88, 100) sD (11, 20, 40, 50) sD (10, 20, 39, 52) sA (60, 68, 90, 100) N (40, 40, 58, 58)
ID36 sA (70, 80, 85, 100) N (50, 60, 75, 75) N (40, 50, 70, 75) sA (70, 80, 85, 95) sA (65, 70, 80, 85)
ID37 sA (70, 80, 100, 100) sA (60, 70, 90, 100) sA (70, 80, 90, 100) SA (80, 90, 100, 100) sA (70, 80, 90, 100)
ID38 sA (70, 75, 80, 90) SA (80, 90, 90, 95) sA (70, 75, 80, 85) SA (90, 90, 90, 100) sA (65, 70, 80, 85)
ID39 N (45, 50, 50, 65) N (40, 50, 60, 70) sA (60, 70, 70, 80) sA (50, 60, 70, 80) sA (42, 50, 70, 80)
ID40 sA (55, 60, 70, 75) sD (35, 40, 40, 45) sA (55, 60, 65, 70) sA (65, 70, 70, 75) N (45, 50, 50, 55)
ID41 N (40, 50, 50, 60) sD (20, 30, 40, 50) SD (0, 10, 20, 30) SA (70, 80, 90, 100) N (30, 40, 50, 60)
ID42 SD (0, 0, 0, 10) sA (65, 70, 80, 85) N (35, 40, 50, 60) sA (65, 70, 80, 85) N (45, 50, 50, 55)
ID43 sA (55, 60, 70, 75) N (45, 48, 52, 55) sD (25, 30, 35, 40) sA (65, 70, 75, 80) SA (85, 90, 100, 100)
ID44 sA (65, 70, 80, 85) N (40, 50, 65, 75) sA (70, 75, 85, 90) sA (60, 65, 75, 80) N (45, 50, 50, 55)
ID45 sA (50, 60, 70, 80) SA (80, 85, 95, 100) N (30, 40, 60, 70) sA (60, 70, 75, 85) sA (50, 60, 70, 80)
ID46 sA (55, 60, 70, 75) sA (60, 70, 80, 90) sA (55, 60, 70, 75) sA (55, 60, 70, 75) sA (65, 70, 75, 80)
ID47 SA (70, 80, 90, 100) sD (25, 30, 35, 40) SD (0, 0, 5, 5) sA (65, 75, 85, 95) sD (20, 30, 30, 40)
ID48 N (40, 50, 50, 60) sA (60, 65, 70, 75) sA (50, 60, 70, 80) SA (80, 85, 95, 100) sA (65, 70, 80, 85)
ID49 SA (70, 80, 90, 100) sD (30, 40, 45, 55) sA (60, 65, 75, 80) SA (70, 80, 90, 90) sA (65, 70, 80, 85)
ID50 sA (65, 70, 80, 85) N (40, 50, 60, 70) sA (75, 80, 90, 95) SA (80, 85, 95, 100) sA (65, 70, 80, 85)
ID51 sA (70, 75, 80, 85) SA (80, 90, 100, 100) sA (70, 75, 85, 90) SA (80, 90, 100, 100) N (45, 50, 60, 65)
ID52 sA (60, 70, 80, 90) N (50, 55, 60, 65) N (45, 50, 55, 60) sA (75, 80, 85, 90) SA (75, 80, 90, 95)
ID53 SA (80, 90, 100, 100) N (40, 45, 55, 60) sA (70, 75, 85, 90) SA (80, 90, 95, 100) SA (80, 90, 95, 100)
ID54 sA (70, 75, 80, 85) sA (50, 60, 70, 80) sA (65, 70, 80, 85) sA (75, 80, 85, 90) sA (70, 75, 80, 85)
ID55 SA (80, 90, 100, 100) SA (70, 80, 90, 100) sA (70, 80, 90, 100) sA (70, 80, 90, 100) SA (80, 90, 100, 100)
ID56 sA (60, 70, 80, 90) N (45, 50, 55, 60) sA (60, 70, 80, 90) sA (70, 80, 85, 95) N (40, 50, 60, 70)
ID57 sA (60, 70, 80, 90) sA (60, 70, 75, 85) N (35, 50, 60, 75) N (50, 60, 70, 80) N (50, 60, 70, 80)
ID58 sA (65, 75, 80, 100) SA (95, 100, 100, 100) sA (60, 80, 95, 100) SA (70, 95, 100, 100) sA (40, 50, 70, 80)
ID59 SA (70, 80, 90, 100) sD (30, 40, 45, 55) sA (60, 65, 75, 80) SA (70, 80, 90, 90) sA (65, 70, 80, 85)
ID60 sA (65, 80, 85, 95) N (20, 40, 50, 80) sA (30, 50, 60, 100) sA (30, 50, 90, 100) sA (40, 70, 80, 100)
ID61 SA (80, 90, 100, 100) sA (40, 50, 70, 90) N (10, 20, 50, 80) sA (60, 70, 85, 100) SA (50, 70, 80, 90)
ID62 sA (60, 65, 75, 80) SD (0, 10, 25, 50) sA (20, 70, 90, 95) SA (50, 95, 95, 100) sA (50, 70, 80, 100)
ID63 N (30, 40, 90, 100) SA (80, 85, 90, 100) SA (85, 90, 95, 100) sA (80, 85, 100, 100) N (80, 90, 100, 100)
ID64 sA (90, 100, 100, 100) N (30, 40, 60, 100) SA (40, 85, 100, 100) SA (50, 80, 85, 100) sA (50, 70, 80, 90)
ID65 SA (50, 80, 90, 100) SA (40, 80, 85, 100) sA (40, 60, 70, 100) SA (70, 80, 100, 100) SA (80, 90, 95, 100)
ID66 sA (40, 50, 80, 100) sA (40, 60, 70, 90) sA (30, 60, 75, 95) SA (80, 85, 95, 100) sA (75, 85, 95, 100)
ID67 sA (75, 80, 90, 100) SA (50, 80, 90, 100) SA (40, 70, 90, 100) SA (70, 95, 100, 100) sA (55, 70, 90, 100)
ID68 SA (85, 90, 95, 100) sA (60, 67, 73, 80) sA (70, 80, 80, 85) SA (80, 90, 95, 100) sA (65, 75, 75, 85)
ID69 sA (75, 90, 90, 100) N (50, 60, 60, 60) sA (80, 80, 80, 100) N (50, 55, 60, 60) N (45, 50, 50, 55)
ID70 N (37, 47, 56, 62) sA (51, 62, 69, 72) sD (25, 30, 40, 50) SA (90, 100, 100, 100) sA (45, 50, 62, 72)
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Table B.3: Dataset for the “About your opinion/valuation/rating on the satisfaction with
restaurant service” first five items (Pages 244 and 245) from the adapted restaurant customer
satisfaction Questionnaire (SD = strongly disagree, sD = somewhat disagree, N = neutral, sA =

somewhat agree, SA = strongly agree, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di))

QR1 QR1 QR2 QR2 QR3 QR3 QR4 QR4 QR5 QR5
ID Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di)

ID1 SA (100, 100, 100, 100) sA (80, 85, 90, 100) N (40, 50, 60, 70) sA (60, 70, 80, 90) SA (90, 95, 100, 100)
ID2 SA (100, 100, 100, 100) sA (80, 90, 90, 100) sA (60, 70, 80, 80) SA (100, 100, 100, 100) SA (100, 100, 100, 100)
ID3 SA (70, 70, 70, 80) SA (80, 90, 90, 100) N (70, 80, 80, 100) sA (60, 65, 75, 80) SA (80, 85, 95, 100)
ID4 N (50, 65, 65, 70) N (40, 50, 50, 50) sA (60, 80, 80, 80) sA (70, 75, 75, 85) SA (80, 85, 85, 100)
ID5 SA (80, 95, 95, 100) SA (80, 95, 95, 100) sA (60, 80, 80, 85) SA (80, 95, 95, 100) SA (90, 100, 100, 100)
ID6 sA (60, 70, 80, 80) N (50, 50, 60, 70) N (40, 50, 50, 60) sA (60, 70, 80, 80) N (50, 60, 70, 70)
ID7 SA (95, 98, 100, 100) SA (100, 100, 100, 100) N (45, 50, 60, 65) SA (90, 95, 100, 100) sD (0, 10, 29, 30)
ID8 SA (75, 80, 90, 95) SA (70, 75, 95, 100) sA (60, 70, 80, 90) SA (70, 70, 90, 90) sA (60, 65, 75, 80)
ID9 N (50, 65, 65, 80) N (53, 70, 70, 81) N (51, 68, 68, 81) sA (62, 77, 77, 90) N (52, 69, 69, 82)
ID10 sA (60, 70, 80, 90) SA (70, 80, 100, 100) sA (50, 70, 80, 90) N (30, 50, 50, 70) SA (80, 90, 100, 100)
ID11 SA (90, 100, 100, 100) sA (75, 80, 85, 90) sA (75, 80, 90, 96) sA (71, 78, 90, 100) SA (90, 100, 100, 100)
ID12 SA (100, 100, 100, 100) sA (51, 69, 80, 90) SA (90, 100, 100, 100) SA (90, 100, 100, 100) sD (20, 30, 40, 49)
ID13 N (40, 50, 60, 70) sA (50, 60, 70, 80) N (30, 50, 50, 60) sA (61, 71, 80, 90) N (30, 41, 50, 63)
ID14 sD (0, 10, 19, 30) N (62, 69, 80, 89) sA (40, 50, 79, 91) SD (0, 11, 20, 38) SD (0, 30, 40, 60)
ID15 sA (71, 80, 80, 90) SA (91, 100, 100, 100) sA (71, 79, 79, 91) sA (71, 79, 79, 91) N (41, 50, 60, 71)
ID16 sA (53, 62, 75, 88) sA (52, 62, 79, 90) sA (53, 63, 79, 90) N (54, 63, 77, 87) sA (56, 66, 70, 84)
ID17 SA (79, 91, 100, 100) SA (79, 90, 100, 100) sA (62, 70, 80, 86) sA (61, 67, 74, 79) N (41, 48, 60, 66)
ID18 sA (80, 90, 90, 100) sA (70, 80, 90, 100) N (50, 60, 70, 80) sA (73, 89, 89, 100) N (40, 60, 90, 100)
ID19 sA (65, 70, 80, 85) SA (70, 80, 90, 95) SA (95, 100, 100, 100) SA (80, 85, 95, 95) SA (95, 100, 100, 100)
ID20 sA (55, 60, 80, 85) SA (70, 73, 95, 100) SA (60, 65, 84, 90) sA (50, 56, 76, 80) SA (68, 74, 95, 100)
ID21 sA (50, 60, 80, 90) sA (80, 80, 80, 80) SA (70, 80, 90, 100) SA (80, 90, 100, 100) SA (100, 100, 100, 100)
ID22 SA (90, 100, 100, 100) SA (90, 100, 100, 100) SA (90, 100, 100, 100) sA (90, 100, 100, 100) SA (90, 100, 100, 100)
ID23 sA (50, 60, 70, 80) sA (50, 60, 70, 80) N (40, 50, 60, 70) N (40, 50, 60, 70) N (40, 50, 60, 70)
ID24 SA (70, 80, 90, 100) N (70, 80, 90, 100) sA (50, 60, 80, 90) N (30, 40, 70, 80) SA (80, 90, 100, 100)
ID25 SA (80, 80, 90, 100) SA (75, 80, 90, 95) SA (75, 80, 90, 95) N (45, 50, 60, 65) sA (70, 75, 85, 90)
ID26 SA (70, 80, 100, 100) SA (90, 90, 100, 100) SA (90, 90, 100, 100) sA (50, 60, 80, 80) sA (60, 70, 90, 100)
ID27 SA (80, 90, 100, 100) sA (10, 70, 100, 100) sA (10, 60, 100, 100) sA (10, 70, 100, 100) SA (60, 90, 100, 100)
ID28 sA (60, 60, 80, 80) N (60, 60, 80, 80) N (60, 60, 80, 80) sA (50, 60, 80, 90) SA (70, 70, 90, 90)
ID29 N (40, 50, 80, 90) N (30, 40, 70, 80) sA (40, 50, 80, 90) N (30, 40, 70, 80) sA (50, 60, 90, 100)
ID30 SA (85, 95, 100, 100) sA (70, 75, 87, 95) sA (64, 73, 86, 95) sD (20, 30, 40, 50) SA (84, 90, 100, 100)
ID31 sD (30, 40, 50, 80) sD (30, 40, 50, 80) sD (40, 50, 60, 70) sD (30, 40, 60, 70) SA (80, 90, 100, 100)
ID32 SA (80, 90, 100, 100) SA (80, 90, 100, 100) sA (60, 70, 85, 90) SA (100, 100, 100, 100) SA (100, 100, 100, 100)
ID33 sA (62, 70, 72, 76) N (52, 58, 64, 70) sA (65, 70, 80, 90) SA (100, 100, 100, 100) SA (100, 100, 100, 100)
ID34 SA (80, 90, 95, 95) sA (75, 83, 90, 95) sA (84, 84, 94, 97) SA (85, 90, 96, 100) SA (89, 94, 100, 100)
ID35 SA (90, 90, 100, 100) SA (90, 90, 100, 100) sA (62, 70, 88, 97) N (32, 40, 60, 70) sA (70, 78, 100, 100)
ID36 SA (90, 95, 100, 100) sA (75, 80, 90, 95) sA (70, 75, 85, 90) sA (75, 80, 90, 100) SA (85, 90, 100, 100)
ID37 sA (70, 80, 100, 100) SA (84, 90, 100, 100) sA (70, 80, 100, 100) sA (70, 80, 100, 100) SA (80, 90, 100, 100)
ID38 SA (90, 95, 100, 100) sA (65, 70, 75, 80) SA (85, 90, 90, 100) sA (75, 80, 80, 85) SA (90, 95, 100, 100)
ID39 SA (60, 70, 80, 90) SA (60, 70, 85, 90) sA (65, 75, 75, 85) N (40, 50, 50, 60) SA (75, 80, 90, 95)
ID40 SA (75, 80, 90, 95) sA (65, 70, 80, 85) N (45, 50, 50, 55) N (45, 50, 60, 65) SA (70, 80, 80, 90)
ID41 SA (80, 90, 90, 100) sD (10, 20, 40, 50) sA (70, 80, 80, 90) sD (10, 20, 30, 40) sA (70, 80, 80, 90)
ID42 SA (90, 100, 100, 100) SA (90, 100, 100, 100) SA (90, 100, 100, 100) SA (85, 90, 95, 100) SA (85, 90, 95, 100)
ID43 SA (85, 90, 100, 100) N (45, 50, 60, 60) sA (70, 75, 85, 90) sD (20, 20, 30, 35) SA (85, 87, 90, 95)
ID44 SA (90, 100, 100, 100) sA (55, 60, 70, 75) sA (65, 70, 80, 85) N (35, 40, 60, 60) sA (80, 85, 90, 95)
ID45 SA (100, 100, 100, 100) sA (50, 60, 65, 75) sD (20, 30, 40, 50) sD (25, 30, 40, 45) SA (100, 100, 100, 100)
ID46 sD (20, 30, 40, 50) N (35, 40, 50, 55) N (50, 55, 60, 65) sA (60, 70, 80, 90) sA (80, 85, 90, 95)
ID47 sA (75, 80, 90, 95) sA (70, 75, 85, 90) N (20, 25, 35, 40) sD (10, 15, 25, 30) sA (70, 75, 80, 85)
ID48 SA (80, 100, 100, 100) SA (75, 80, 95, 100) sA (75, 80, 85, 90) N (35, 40, 50, 55) sA (80, 85, 85, 90)
ID49 SA (80, 90, 100, 100) sA (65, 70, 80, 85) sA (70, 75, 85, 90) sD (10, 20, 30, 40) SA (80, 90, 100, 100)
ID50 SA (90, 100, 100, 100) SA (90, 95, 100, 100) sA (70, 75, 80, 85) N (45, 50, 60, 65) SA (85, 90, 100, 100)
ID51 sA (70, 80, 90, 100) sD (15, 20, 30, 35) N (45, 50, 60, 65) sA (70, 75, 85, 90) SA (80, 90, 100, 100)
ID52 sA (70, 75, 80, 85) SA (85, 90, 95, 100) SA (85, 90, 100, 100) N (50, 55, 60, 65) sA (70, 80, 90, 100)
ID53 SA (90, 90, 100, 100) SA (90, 90, 100, 100) sA (75, 80, 85, 90) sA (80, 85, 90, 95) SA (85, 90, 100, 100)
ID54 SA (75, 80, 90, 100) SA (80, 90, 100, 100) SA (80, 90, 100, 100) sA (70, 80, 90, 100) sA (75, 80, 85, 90)
ID55 sA (70, 80, 90, 100) sA (70, 80, 90, 100) sA (70, 80, 90, 100) SA (80, 90, 100, 100) sA (70, 80, 90, 100)
ID56 SA (90, 95, 100, 100) sA (75, 80, 90, 95) SA (80, 90, 100, 100) SA (80, 90, 100, 100) sA (75, 80, 85, 90)
ID57 SA (80, 90, 100, 100) N (50, 60, 70, 80) SA (90, 95, 100, 100) SA (90, 95, 100, 100) SA (90, 95, 100, 100)
ID58 SA (80, 90, 100, 100) sA (40, 50, 80, 100) sA (50, 60, 70, 100) sA (40, 80, 85, 100) SA (95, 100, 100, 100)
ID59 SA (80, 90, 100, 100) sA (65, 70, 80, 85) sA (70, 75, 85, 90) sD (10, 20, 30, 40) SA (80, 90, 100, 100)
ID60 SA (70, 90, 95, 100) sA (70, 80, 90, 100) sA (50, 80, 90, 95) N (20, 50, 60, 70) SA (75, 90, 95, 100)
ID61 sA (80, 90, 100, 100) N (60, 90, 100, 100) sA (40, 50, 70, 80) N (30, 60, 80, 90) SA (90, 100, 100, 100)
ID62 SA (80, 90, 100, 100) sA (80, 90, 100, 100) N (80, 90, 100, 100) sA (50, 80, 90, 100) SA (90, 100, 100, 100)
ID63 SA (80, 90, 100, 100) sA (85, 95, 100, 100) sA (70, 85, 95, 100) SA (80, 90, 100, 100) SA (70, 80, 90, 100)
ID64 SA (50, 70, 90, 100) SA (70, 90, 100, 100) SA (50, 60, 80, 90) sA (50, 60, 80, 100) SA (95, 100, 100, 100)
ID65 sA (90, 100, 100, 100) sA (70, 85, 90, 100) sA (80, 85, 90, 100) SA (85, 95, 100, 100) sA (70, 80, 90, 100)
ID66 sA (80, 90, 100, 100) sA (80, 90, 100, 100) sA (60, 70, 80, 90) N (70, 80, 85, 90) SA (90, 95, 95, 100)
ID67 SA (90, 95, 100, 100) sA (60, 80, 100, 100) sA (50, 65, 70, 80) sA (50, 80, 90, 100) SA (50, 100, 100, 100)
ID68 sA (60, 70, 70, 80) SA (85, 95, 100, 100) sA (65, 75, 80, 90) SA (85, 95, 95, 100) SA (90, 95, 100, 100)
ID69 SA (95, 100, 100, 100) SA (90, 90, 90, 95) SA (100, 100, 100, 100) sA (75, 75, 75, 80) SA (90, 95, 95, 100)
ID70 SA (95, 100, 100, 100) sA (60, 70, 80, 90) SA (85, 91, 97, 99) SA (85, 91, 95, 100) SA (70, 85, 90, 90)
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Table B.4: Dataset for the “About your opinion/valuation/rating on the satisfaction with
restaurant service” last three and “restaurant price” items (Page 245) from the adapted

restaurant customer satisfaction Questionnaire (SD = strongly disagree, sD = somewhat disagree, N
= neutral, sA = somewhat agree, SA = strongly agree, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di))

QR6 QR6 QR7 QR7 QR8 QR8 QP1 QP1
ID Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di) Likert (ai, bi, ci, di)

ID1 sA (65, 70, 80, 85) N (60, 65, 75, 80) SA (80, 90, 95, 100) SA (90, 95, 100, 100)
ID2 sA (90, 90, 90, 90) sA (100, 100, 100, 100) sA (100, 100, 100, 100) sA (80, 80, 80, 80)
ID3 N (80, 85, 90, 100) N (60, 75, 80, 90) sA (70, 80, 85, 90) sA (80, 85, 95, 100)
ID4 N (40, 45, 45, 60) sA (80, 85, 85, 90) SA (90, 90, 90, 100) SA (80, 90, 90, 100)
ID5 SA (90, 100, 100, 100) sA (80, 90, 90, 100) SA (90, 100, 100, 100) SA (80, 90, 90, 100)
ID6 sD (40, 40, 50, 60) N (50, 60, 70, 70) N (50, 60, 60, 70) N (50, 60, 70, 70)
ID7 SA (100, 100, 100, 100) SA (90, 95, 100, 100) SA (100, 100, 100, 100) N (50, 50, 70, 70)
ID8 SA (70, 80, 90, 100) SA (80, 85, 95, 100) SA (70, 80, 90, 100) SA (70, 80, 90, 100)
ID9 sA (60, 76, 76, 90) sA (60, 76, 76, 93) N (52, 69, 69, 79) SA (71, 85, 100, 100)
ID10 SA (70, 90, 100, 100) N (40, 50, 60, 80) N (30, 48, 60, 80) SA (69, 90, 100, 100)
ID11 SA (83, 90, 100, 100) SA (85, 95, 100, 100) N (53, 60, 65, 71) sA (69, 75, 75, 80)
ID12 SA (71, 90, 100, 100) N (40, 50, 50, 70) N (40, 50, 50, 61) SA (61, 79, 100, 100)
ID13 N (30, 41, 50, 60) N (40, 51, 60, 70) N (30, 40, 49, 61) N (30, 42, 50, 61)
ID14 SA (60, 69, 79, 100) SA (50, 59, 68, 100) sA (51, 59, 68, 80) SA (70, 80, 91, 100)
ID15 SA (81, 90, 100, 100) sA (60, 71, 80, 90) SA (80, 90, 100, 100) SA (80, 90, 100, 100)
ID16 sA (45, 54, 75, 85) N (46, 57, 69, 82) N (56, 67, 71, 84) sA (40, 50, 69, 81)
ID17 sA (60, 68, 80, 86) sA (60, 67, 70, 86) SA (81, 91, 100, 100) SA (83, 90, 100, 100)
ID18 SA (81, 90, 100, 100) sA (62, 70, 90, 100) N (28, 50, 69, 80) sA (57, 70, 90, 100)
ID19 SA (95, 100, 100, 100) SA (85, 90, 100, 100) SA (70, 80, 90, 95) SA (80, 85, 95, 100)
ID20 sA (60, 65, 85, 90) sA (60, 65, 85, 90) sA (55, 60, 80, 85) SA (65, 70, 90, 95)
ID21 SA (70, 80, 90, 100) sA (60, 70, 80, 90) sA (60, 70, 80, 90) SA (80, 90, 100, 100)
ID22 SA (90, 100, 100, 100) SA (90, 100, 100, 100) SA (90, 100, 100, 100) SA (90, 100, 100, 100)
ID23 N (40, 50, 60, 70) N (50, 60, 70, 80) sA (60, 70, 80, 90) sA (60, 70, 80, 90)
ID24 N (40, 60, 80, 100) N (60, 70, 80, 90) sA (80, 90, 100, 100) sA (50, 60, 90, 100)
ID25 sA (75, 80, 90, 95) sA (70, 75, 85, 90) sA (70, 75, 85, 90) sA (60, 70, 70, 80)
ID26 SA (90, 90, 100, 100) sA (60, 70, 90, 100) sA (40, 60, 80, 80) N (10, 40, 50, 80)
ID27 N (10, 60, 100, 100) sA (20, 80, 100, 100) sA (20, 80, 100, 100) sD (10, 40, 100, 100)
ID28 N (80, 80, 100, 100) N (70, 70, 90, 90) N (70, 70, 90, 90) sA (70, 70, 90, 90)
ID29 sD (20, 30, 60, 90) N (20, 40, 60, 90) sD (10, 20, 60, 80) sA (40, 50, 80, 90)
ID30 sA (60, 75, 90, 97) N (34, 44, 55, 67) sD (10, 15, 35, 40) sD (10, 20, 30, 40)
ID31 sD (40, 50, 60, 100) sD (50, 60, 70, 100) SA (80, 90, 100, 100) sD (10, 20, 40, 70)
ID32 SA (80, 90, 100, 100) SA (80, 90, 100, 100) SA (80, 90, 100, 100) SA (70, 80, 90, 100)
ID33 sA (74, 80, 92, 96) sA (70, 75, 80, 86) SA (85, 90, 100, 100) sA (65, 70, 80, 87)
ID34 N (60, 64, 70, 74) N (63, 70, 77, 80) sA (82, 87, 94, 94) sA (71, 74, 80, 87)
ID35 SA (80, 88, 100, 100) sA (60, 70, 78, 90) sA (62, 70, 84, 90) SA (70, 80, 100, 100)
ID36 sA (80, 85, 95, 95) N (50, 55, 65, 70) sA (65, 70, 80, 85) N (55, 60, 70, 70)
ID37 SA (80, 90, 100, 100) SA (80, 90, 100, 100) SA (80, 90, 100, 100) sA (70, 80, 90, 100)
ID38 SA (85, 90, 100, 100) SA (80, 90, 95, 100) sA (70, 75, 80, 85) SA (90, 90, 95, 100)
ID39 SA (75, 80, 90, 100) sA (62, 75, 85, 91) sA (55, 60, 75, 80) SA (75, 85, 85, 90)
ID40 SA (70, 80, 80, 90) sA (55, 60, 60, 65) sA (65, 70, 80, 85) sA (55, 60, 70, 75)
ID41 SD (0, 10, 20, 30) SD (0, 10, 10, 20) N (40, 50, 60, 70) SA (90, 100, 100, 100)
ID42 N (45, 50, 60, 65) N (45, 50, 60, 65) sD (15, 20, 25, 30) sA (65, 70, 80, 85)
ID43 N (45, 48, 52, 55) N (45, 48, 52, 55) sD (25, 30, 40, 45) SA (85, 90, 100, 100)
ID44 sA (65, 70, 80, 85) sA (70, 75, 85, 90) sA (75, 80, 80, 85) N (45, 50, 65, 70)
ID45 sA (60, 65, 75, 80) sA (60, 65, 75, 80) sA (60, 70, 80, 90) sA (65, 70, 80, 85)
ID46 sD (10, 20, 30, 35) N (45, 50, 50, 55) SA (80, 90, 100, 100) sA (60, 70, 80, 90)
ID47 SD (0, 0, 0, 20) sD (10, 20, 30, 40) N (10, 20, 20, 30) SA (90, 100, 100, 100)
ID48 sA (60, 65, 70, 75) sA (65, 70, 75, 80) sA (70, 80, 80, 80) sA (70, 80, 90, 100)
ID49 SA (90, 95, 100, 100) sA (60, 70, 80, 90) SA (75, 80, 90, 95) SA (85, 90, 100, 100)
ID50 SA (75, 80, 90, 95) SA (75, 80, 90, 95) N (45, 50, 60, 65) SA (85, 90, 100, 100)
ID51 sD (15, 20, 30, 35) N (45, 50, 60, 65) sA (65, 70, 80, 85) sD (10, 20, 30, 40)
ID52 SA (85, 90, 100, 100) sA (75, 80, 85, 90) sA (70, 75, 80, 85) SA (80, 90, 100, 100)
ID53 SA (90, 95, 100, 100) SA (80, 85, 95, 100) SA (75, 80, 90, 95) SA (85, 90, 95, 100)
ID54 sA (70, 75, 80, 85) sA (75, 80, 85, 90) SA (80, 90, 100, 100) sA (70, 80, 90, 100)
ID55 sA (70, 80, 90, 100) sA (70, 80, 90, 100) SA (80, 90, 100, 100) N (50, 60, 70, 80)
ID56 sA (75, 80, 85, 90) sA (75, 80, 85, 90) sA (75, 80, 85, 90) SA (80, 90, 100, 100)
ID57 sA (60, 70, 80, 90) N (40, 50, 60, 70) sA (60, 70, 80, 90) sA (70, 80, 90, 100)
ID58 N (40, 70, 85, 100) sA (50, 70, 80, 100) sA (50, 70, 80, 100) N (30, 50, 60, 100)
ID59 SA (90, 95, 100, 100) sA (60, 70, 80, 90) SA (75, 80, 90, 95) SA (85, 90, 100, 100)
ID60 SA (85, 90, 95, 100) sA (60, 70, 90, 100) SA (80, 90, 95, 100) SA (90, 95, 100, 100)
ID61 sA (70, 80, 90, 100) sA (50, 80, 95, 100) SA (50, 70, 80, 100) SA (50, 80, 90, 100)
ID62 SA (80, 90, 100, 100) sA (50, 90, 100, 100) SA (40, 80, 90, 100) sA (80, 90, 100, 100)
ID63 SA (90, 95, 100, 100) SA (80, 90, 100, 100) SA (90, 100, 100, 100) SA (50, 70, 80, 90)
ID64 SA (70, 80, 95, 100) SA (50, 70, 80, 100) SA (80, 90, 100, 100) SA (80, 90, 90, 100)
ID65 sA (60, 80, 85, 100) sA (70, 80, 95, 100) SA (85, 95, 100, 100) SA (85, 90, 100, 100)
ID66 SA (50, 90, 100, 100) sA (50, 80, 90, 100) sA (80, 85, 95, 100) sA (50, 80, 85, 100)
ID67 SA (80, 95, 100, 100) sA (50, 60, 70, 90) SA (65, 80, 90, 100) sA (60, 70, 80, 100)
ID68 SA (95, 100, 100, 100) sA (70, 80, 80, 85) sA (65, 75, 80, 84) sA (70, 77, 85, 90)
ID69 SA (100, 100, 100, 100) sA (75, 80, 80, 80) sA (80, 80, 80, 85) SA (100, 100, 100, 100)
ID70 N (40, 50, 50, 60) N (30, 50, 55, 70) sA (50, 60, 70, 70) sD (30, 34, 38, 45)
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Table C.1: Dataset for the online application Perceptions (Page 251) on the relative length of a
given line segment with respect to a fixed longer one (VS = very small, S = small, M = medium, L

= large, VL = very large, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di)); data ID1-ID6

Underlying Underlying
ID Gender exact relative Likert (ai, bi, ci, di) ID Gender exact relative Likert (ai, bi, ci, di)

length (%) length (%)

ID1 Male 38.39 S (28.29, 28.92, 31.26, 33.69) ID4 Female 38.33 S (24.72, 29.16, 39.9, 44.83)
3.6 VS (3.6, 4.59, 5.95, 9.91) 96.27 VL (90.15, 92.89, 98.14, 100)

84.62 L (80.09, 84.05, 87.21, 90.09) 3.63 VS (0, 2.18, 4.85, 7.27)
15.16 S (9.91, 11.98, 16.67, 17.48) 15.2 S (10.02, 12.76, 18.9, 20.36)
49.95 M (41.71, 44.95, 51.35, 51.35) 84.61 VL (80.21, 86.75, 94.91, 97.74)
26.72 S (23.78, 23.96, 27.03, 29.73) 61.47 M (49.92, 54.77, 63.09, 68.01)
73.06 L (74.14, 76.22, 78.65, 80.18) 26.76 S (19.95, 23.83, 32.15, 34.89)
61.4 M (57.03, 59.46, 59.91, 65.14) 73.04 L (70.19, 71.57, 78.27, 80.53)

96.29 VL (97.39, 99.64, 99.64, 100) 50 S (44.99, 48.55, 54.28, 59.85)
15.16 S (7.66, 9.82, 11.53, 12.07) 15.2 VS (12.12, 15.75, 20.52, 22.21)

3.6 VS (1.89, 2.52, 3.15, 3.6) 3.63 VS (0.4, 0.4, 5.74, 8.08)
49.95 M (37.57, 39.55, 40.99, 43.06) 73.04 L (67.04, 70.6, 77.54, 83.28)

ID2 Male 61.47 M (56.72, 63.03, 71.59, 74.13) 96.27 VL (95.8, 100, 100, 100)
26.75 VS (16.6, 18.74, 26.88, 31.67) 61.47 L (53.39, 58.64, 62.68, 68.98)
15.09 VS (4.48, 9.47, 14.66, 19.55) 26.76 S (20.27, 21.65, 27.63, 30.05)
49.94 M (43.99, 47.05, 52.34, 55.7) 84.61 VL (75.28, 77.79, 85.95, 89.98)
73.01 L (77.49, 83.4, 88.49, 93.48) 50 M (44.18, 46.61, 53.55, 57.67)
96.2 VL (89.92, 95.01, 98.27, 100) 50 M (44.75, 47.09, 52.83, 55.49)
3.68 VS (0, 2.65, 6.01, 9.98) 3.63 VS (1.29, 2.5, 4.93, 8)

38.28 S (25.56, 30.55, 40.63, 45.62) 15.2 S (12.6, 15.19, 19.79, 21.16)
84.66 VL (83.4, 87.37, 91.65, 95.82) 38.33 M (31.74, 34.57, 44.99, 47.42)
49.94 M (39.92, 47.56, 52.65, 59.98) 96.27 VL (97.9, 99.43, 100, 100)
38.28 S (27.6, 31.16, 37.98, 40.02) 73.04 L (64.86, 67.53, 77.22, 80.13)
84.66 VL (82.99, 85.74, 89.92, 93.38) 84.61 VL (75.28, 79, 86.43, 89.82)
73.01 L (75.36, 80.24, 83.71, 87.68) 26.76 S (18.98, 21.65, 28.68, 29.97)
61.47 M (45.01, 50, 58.96, 63.03) 61.47 M (53.39, 56.62, 65.11, 69.47)
96.2 VL (89.92, 93.38, 95.01, 99.29) 35.39 S (26.49, 28.84, 37.88, 42)

26.75 VS (12.22, 15.27, 19.86, 22.2) 33.53 S (28.51, 30.45, 36.35, 38.53)
3.68 VS (0, 2.65, 6.72, 8.25) 71.47 L (63.81, 68.82, 75.04, 79.81)

15.09 VS (5.5, 7.74, 13.14, 14.26) ID5 Male 73.01 L (59.88, 70.16, 78.62, 90.22)
15.09 VS (4.89, 9.88, 14.05, 17.41) 96.2 VL (79.84, 89.61, 97.56, 100)
3.68 VS (0, 1.93, 4.89, 6.62) 49.94 M (39.92, 44.91, 54.99, 59.98)

26.75 S (18.64, 23.01, 25.05, 27.6) 38.28 S (29.94, 37.17, 41.04, 44.5)
84.66 VL (80.45, 85.03, 89, 95.32) 15.09 VS (7.54, 11.41, 15.89, 20.77)
73.01 L (71.89, 76.27, 83.71, 87.78) 3.68 VS (0.61, 2.24, 3.87, 6.42)
96.2 VL (91.96, 94.5, 98.27, 100) 84.66 L (72.1, 77.09, 82.69, 86.86)

49.94 M (41.34, 45.01, 54.18, 56.92) 26.75 S (15.48, 19.35, 20.98, 24.44)
61.47 M (57.43, 59.57, 67.11, 69.35) 61.47 M (50.61, 57.64, 62.02, 68.74)
38.28 S (30.04, 34.01, 41.14, 44.91) 15.09 VS (9.98, 13.34, 15.99, 19.04)
10.18 VS (3.16, 8.25, 13.24, 14.97) 49.94 M (52.34, 56.82, 58.86, 62.22)
28.1 S (12.73, 16.29, 23.01, 25.05) 73.01 L (70.16, 74.24, 78.11, 82.59)

85.28 VL (78.21, 83.3, 90.73, 95.82) 3.68 VS (1.32, 3.26, 5.4, 7.13)
71.9 L (73.73, 78.31, 86.15, 88.7) 61.47 L (58.45, 62.42, 66.7, 69.86)

73.37 L (69.35, 73.73, 78.92, 81.36) 38.28 M (34.01, 38.29, 41.34, 45.32)
13.99 VS (5.8, 9.06, 14.36, 16.7) 96.2 VL (91.85, 93.99, 98.27, 99.59)
42.94 S (27.09, 29.33, 37.07, 40.02) 84.66 L (79.33, 84.11, 87.17, 91.85)
43.56 S (31.67, 34.42, 40.63, 42.36) 26.75 S (18.84, 23.52, 26.37, 30.14)
48.83 M (40.63, 43.48, 49.49, 53.05) 96.2 VL (89.21, 92.67, 94.91, 99.19)
52.52 M (36.25, 41.24, 47.76, 50.2) 61.47 L (55.5, 59.27, 62.02, 65.89)
87.12 VL (87.47, 89.51, 92.77, 96.44) 49.94 M (49.59, 54.18, 56.62, 59.98)
22.82 S (16.8, 20.47, 26.17, 29.23) 84.66 L (72.1, 78.31, 82.89, 88.39)
94.85 VL (90.22, 93.18, 96.95, 100) 26.75 S (13.44, 18.43, 21.89, 26.58)
37.79 S (34.32, 38.19, 43.08, 46.13) 15.09 VS (9.06, 14.05, 16.4, 19.76)
26.63 S (23.83, 27.09, 33.6, 34.83) 3.68 VS (0.31, 2.24, 4.68, 7.54)
78.9 VL (79.23, 81.57, 86.86, 89.61) 73.01 L (64.56, 69.55, 71.28, 75.66)

97.06 VL (87.47, 90.73, 94.4, 98.37) 38.28 M (32.69, 37.68, 42.36, 46.33)
64.05 M (44.3, 46.33, 56.01, 59.47) 7.85 VS (2.14, 5.09, 7.03, 9.47)
53.5 M (43.79, 49.59, 56.11, 59.16) 39.26 M (28.92, 33.91, 37.78, 41.34)

24.05 S (16.7, 18.43, 23.32, 25.66) 10.06 VS (3.56, 7.64, 10.18, 13.24)
22.58 S (13.85, 18.53, 22.3, 24.95) 14.23 S (11.3, 16.29, 19.55, 24.03)
13.01 VS (3.67, 7.03, 11.3, 15.07) 76.32 L (69.55, 75.15, 78.21, 84.22)
21.47 S (10.39, 12.83, 16.6, 21.38) ID6 Male 96.2 VL (87.17, 90.12, 94.2, 97.05)

ID3 Female 26.76 S (20.19, 23.99, 27.3, 29.81) 49.94 M (44.3, 49.9, 49.9, 55.09)
15.2 S (13.57, 18.34, 21.57, 24.72) 61.47 M (42.36, 46.33, 54.07, 56.62)

61.47 L (50.24, 56.54, 63.41, 69.71) 38.28 S (27.29, 32.69, 38.9, 43.18)
96.27 VL (89.9, 92.16, 96.61, 100) 15.09 VS (6.62, 8.76, 10.69, 17.82)
84.61 VL (80.13, 84.25, 92.57, 95.8) 3.68 VS (2.65, 4.99, 5.09, 10.08)
73.04 VL (59.94, 64.54, 75.12, 79.81) 84.66 L (70.16, 73.93, 79.43, 81.67)

50 M (41.36, 46.77, 53.39, 58.08) 73.01 L (65.07, 70.06, 80.14, 85.13)
38.33 S (35.14, 39.98, 45.72, 49.68) 26.75 S (19.04, 23.22, 28.31, 30.96)
3.63 VS (0, 0.73, 8, 9.85) 49.94 S (30.24, 37.17, 41.85, 44.6)

26.76 S (20.11, 21.81, 27.95, 30.21) 15.09 S (11.1, 18.13, 22.91, 25.05)
61.47 L (53.47, 56.14, 64.86, 69.87) 84.66 L (70.06, 75.05, 81.47, 85.03)
3.63 VS (0, 0.97, 7.19, 9.85) 61.47 L (49.59, 54.58, 62.02, 64.36)
15.2 S (4.6, 8, 15.75, 19.87) 38.28 S (29.74, 33.4, 43.38, 47.25)
50 M (44.43, 46.37, 53.39, 55.09) 3.68 VS (2.14, 3.16, 6.82, 10.08)

38.33 S (34.65, 38.05, 42.73, 45.23) 26.75 S (24.44, 26.48, 36.56, 39.51)
73.04 L (70.19, 74.15, 82.07, 84.25) 96.2 VL (89.31, 93.38, 95.42, 98.07)
96.27 VL (89.98, 91.52, 97.98, 100) 73.01 L (60.39, 65.17, 72, 75.56)
84.61 VL (73.59, 79.97, 86.83, 95.32) 3.68 VS (1.83, 4.58, 7.03, 9.57)
61.47 L (56.22, 61.07, 71.16, 75.85) 61.47 L (53.67, 58.66, 60.79, 65.27)
15.2 VS (10.18, 15.99, 24.47, 30.05) 49.94 M (39.92, 43.48, 46.74, 50.2)

84.61 VL (74.64, 80.13, 89.9, 94.67) 84.66 L (76.17, 80.96, 86.15, 89)
73.04 L (64.3, 70.03, 78.51, 84.49) 26.75 S (21.79, 25.97, 29.74, 34.73)
96.27 VL (85.06, 86.83, 95.32, 100) 73.01 L (68.23, 72.3, 75.97, 78.62)
26.76 S (20.19, 23.67, 31.42, 34.81) 96.2 VL (85.03, 87.88, 92.77, 94.81)
38.33 L (30.21, 35.14, 45.8, 49.92) 15.09 S (14.15, 15.89, 20.57, 25.87)

50 M (40.15, 44.99, 54.44, 59.94) 38.28 S (28.31, 30.55, 36.15, 39.1)
3.63 VS (0.48, 2.91, 10.18, 14.94) 35.21 S (27.9, 29.43, 35.95, 40.84)

43.63 S (30.13, 34.17, 44.99, 49.92) 32.15 S (20.98, 24.64, 27.8, 35.13)
11.57 VS (4.68, 10.02, 19.95, 25.93) 82.45 L (64.15, 66.8, 72.71, 79.12)
73.33 VL (69.95, 71.49, 78.84, 79.89)
18.24 S (9.85, 15.19, 24.23, 29.89)
85.78 VL (79.89, 81.99, 89.9, 95.48)
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Table C.2: Dataset for the online application Perceptions (Page 251) on the relative length of a
given line segment with respect to a fixed longer one (VS = very small, S = small, M = medium, L

= large, VL = very large, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di)); data ID7-ID13

Underlying Underlying
ID Gender exact relative Likert (ai, bi, ci, di) ID Gender exact relative Likert (ai, bi, ci, di)

length (%) length (%)

ID7 Female 61.47 L (56.18, 59.28, 68.84, 71.92) ID11 Male 61.47 M (50.48, 56.54, 63.25, 70.52)
26.76 S (39.98, 47.5, 52.42, 59.94) 3.63 VS (0, 2.42, 7.19, 10.02)
84.61 L (75.2, 79.89, 90.15, 95.15) 84.61 VL (80.13, 87.72, 90.95, 98.22)
3.63 VS (0.57, 1.21, 8.72, 10.02) 73.04 L (68.9, 76.01, 80.05, 88.05)
15.2 S (6.38, 11.39, 21.65, 26.33) 26.76 S (30.21, 36.83, 43.05, 50.08)

38.33 M (30.05, 35.22, 45.56, 50) 96.27 VL (88.69, 94.83, 99.27, 100)
73.04 L (68.01, 72.78, 85.3, 87.96) 38.33 M (32.63, 37.16, 42.81, 46.77)

50 M (40.15, 45.8, 54.77, 60.1) 50 M (45.32, 50, 56.54, 65.11)
96.27 VL (92.16, 94.1, 99.03, 100) 15.2 S (9.77, 15.91, 24.39, 29.97)
73.04 L (70.11, 74.23, 85.7, 90.06) 3.63 VS (0.4, 1.78, 7.03, 10.18)
38.33 S (27.46, 30.13, 39.82, 43.62) 73.04 L (59.94, 68.34, 76.49, 82.55)
96.27 VL (92.08, 93.94, 99.84, 100) 38.33 M (28.51, 36.35, 42, 50.08)
84.61 L (81.58, 85.3, 95.72, 99.03) 15.2 S (10.34, 18.98, 24.64, 31.18)
15.2 S (5.9, 10.5, 19.47, 25.85) 50 M (41.84, 48.55, 51.45, 58.4)

26.76 S (17.04, 20.19, 29.81, 31.99) 26.76 S (19.79, 24.39, 29.89, 38.45)
61.47 M (50.08, 54.2, 64.78, 70.03) 61.47 L (52.42, 61.55, 65.02, 71.16)
3.63 VS (0.73, 1.62, 6.46, 10.99) 96.27 VL (87.8, 93.7, 97.42, 100)
50 M (48.63, 50.48, 59.61, 63.73) 84.61 L (72.62, 82.55, 88.61, 97.42)

38.33 S (32.39, 36.83, 47.42, 49.68) 84.61 L (70.11, 79.97, 85.22, 95.23)
73.04 L (65.51, 70.6, 80.05, 85.46) 38.33 M (36.67, 42.49, 46.45, 55.49)
96.27 VL (89.42, 93.54, 98.87, 100) 3.63 VS (0, 3.47, 7.75, 11.39)

50 M (41.84, 45.4, 55.57, 58.64) 26.76 S (20.11, 28.11, 32.63, 39.9)
26.76 S (22.78, 25.77, 35.54, 39.5) 61.47 M (50.16, 57.35, 62.2, 73.26)
15.2 S (10.1, 15.02, 25.04, 30.05) 50 M (42.81, 49.6, 52.91, 60.26)
3.63 VS (0, 0.89, 5.25, 10.58) 73.04 L (69.22, 75.12, 80.05, 85.86)

61.47 L (61.63, 65.75, 75.28, 77.54) 15.2 S (9.94, 14.54, 19.22, 26.01)
84.61 L (78.68, 80.94, 89.9, 94.02) 96.27 VL (89.98, 95.88, 100, 100)
47.35 M (39.98, 45.88, 54.77, 59.94) 45.1 M (39.26, 44.99, 48.55, 56.14)
26.86 S (24.96, 28.84, 39.26, 44.91) 3.33 VS (0, 1.45, 5.17, 9.85)
87.94 VL (82.88, 84.81, 96.45, 98.3) 49.51 M (41.52, 48.47, 52.1, 59.05)
2.75 VS (0.97, 1.37, 6.54, 8.08) ID12 Female 50 M (39.98, 45.07, 54.93, 60.1)

ID8 Male 49.94 M (40.02, 50.31, 50.31, 59.98) 38.33 S (20.11, 25.53, 40.31, 46.77)
3.68 VS (0, 2.34, 3.77, 4.99) 15.2 S (0.24, 4.2, 15.27, 19.95)

73.01 L (79.94, 84.93, 87.37, 91.75) 73.04 L (46.61, 53.63, 72.46, 79.81)
61.47 M (52.24, 57.23, 62.93, 68.02) 3.63 VS (0, 0, 5.17, 9.77)
84.66 L (79.74, 83.3, 86.56, 89.61) 26.76 S (2.26, 4.36, 14.38, 20.19)
15.09 S (11.71, 13.95, 17.41, 19.65) 61.47 M (39.98, 44.99, 60.02, 70.36)
96.2 VL (93.18, 95.93, 98.07, 100) 84.61 L (59.85, 71.89, 84.57, 95.8)

38.28 M (33.6, 36.86, 39.51, 43.69) 96.27 VL (94.59, 99.68, 99.68, 99.68)
26.75 S (13.95, 18.84, 21.28, 24.54) 50 M (29.64, 34.89, 45.07, 49.92)
73.01 L (72.81, 77.49, 78.51, 82.89) 61.47 M (29.64, 34.81, 46.12, 53.72)

ID9 Male 61.47 M (53.97, 59.67, 62.63, 69.96) 38.33 S (15.11, 19.63, 35.54, 39.98)
96.2 VL (90.02, 93.38, 94.91, 100) 73.04 L (50, 57.27, 71.89, 79.89)
3.68 VS (0.51, 1.53, 2.55, 5.19) 96.27 VL (89.98, 99.68, 100, 100)

84.66 L (73.83, 77.7, 80.14, 84.83) 84.61 L (76.01, 79.97, 90.23, 96.69)
38.28 S (29.74, 33.6, 36.15, 39.71) 3.63 VS (0, 0.89, 4.04, 7.27)
26.75 S (19.96, 23.32, 25.25, 29.84) 26.76 S (6.7, 10.02, 24.39, 34.01)
49.94 M (44.91, 48.78, 51.22, 54.99) 15.2 S (0.24, 4.6, 12.76, 25.36)
15.09 VS (12.53, 15.58, 17.21, 18.84) 15.2 S (2.99, 7.59, 16.64, 22.21)
73.01 L (67.31, 73.22, 75.56, 77.29) 73.04 M (34.81, 48.14, 60.02, 64.94)
38.28 S (35.95, 38.7, 40.63, 44.2) 61.47 M (44.99, 47.82, 63.41, 63.89)
3.68 VS (1.02, 2.65, 3.67, 4.68) 50 M (29.89, 37.08, 52.99, 54.93)

73.01 L (72.1, 75.25, 77.19, 79.74) 96.27 VL (89.98, 95.56, 100, 100)
61.47 L (55.3, 58.04, 59.16, 64.15) 38.33 S (23.02, 29.56, 40.47, 44.18)
15.09 S (9.98, 14.05, 15.17, 17.11) 3.63 VS (0, 5.17, 16.88, 21)
49.94 M (44.91, 48.57, 51.93, 54.99) 84.61 L (67.53, 73.18, 84.25, 89.82)
26.75 S (21.28, 24.44, 25.46, 28) 26.76 S (15.51, 21.97, 31.02, 36.19)
84.66 L (82.79, 84.83, 86.15, 88.39) 78.73 L (57.59, 62.68, 77.71, 82.15)
96.2 VL (92.67, 93.58, 97.05, 98.78) 5 S (0, 2.83, 14.62, 21.24)

38.28 S (30.45, 36.46, 37.17, 38.59) 95.29 VL (83.36, 89.82, 99.19, 100)
3.68 VS (0.71, 2.04, 3.26, 4.48) ID13 Female 3.68 VS (0.1, 1.73, 2.85, 4.07)

61.47 L (60.08, 63.54, 66.29, 68.43) 73.01 L (70.37, 73.52, 76.37, 79.74)
26.75 S (27.8, 29.94, 30.86, 32.08) 84.66 VL (76.58, 81.57, 86.05, 89.51)
84.66 L (87.37, 88.9, 90.73, 92.57) 15.09 S (13.75, 19.65, 23.42, 26.88)
15.09 S (12.53, 15.17, 15.68, 17.82) 96.2 VL (90.02, 93.69, 96.84, 99.9)
49.94 M (44.91, 48.27, 48.57, 49.49) 26.75 S (25.87, 32.59, 36.86, 42.16)
73.01 L (76.48, 78.82, 80.24, 84.01) 61.47 L (50.2, 54.99, 65.07, 70.77)
96.2 VL (92.26, 95.01, 95.93, 98.07) 38.28 M (42.36, 46.64, 53.36, 57.94)

67.36 L (60.9, 63.75, 67.31, 69.86) 49.94 M (39.61, 44.6, 51.73, 56.92)
5.28 VS (3.97, 5.4, 6.31, 7.23) 49.94 M (44.4, 49.08, 55.8, 61.1)

72.88 L (75.05, 77.7, 79.94, 83.2) 96.2 VL (94.2, 95.42, 97.66, 99.49)
ID10 Female 50 M (43.21, 47.5, 52.26, 56.46) 3.68 VS (0.31, 1.43, 2.44, 3.26)

96.27 VL (91.03, 95.88, 100, 100) 38.28 M (34.32, 36.97, 45.52, 48.47)
61.47 L (50.16, 51.53, 58.64, 65.27) 26.75 S (20.06, 22.81, 25.66, 27.39)
73.04 L (70.03, 72.21, 77.79, 79.97) 61.47 L (67.52, 70.06, 73.73, 76.37)
3.63 VS (1.21, 3.31, 6.22, 8.4) 73.01 L (76.68, 78.62, 81.36, 83.6)

84.61 L (90.06, 90.95, 94.35, 98.14) 84.66 VL (87.78, 89.61, 92.46, 94.7)
38.33 M (32.96, 36.19, 42.25, 46.28) 15.09 S (10.08, 13.34, 16.4, 19.86)
26.76 S (24.72, 27.87, 32.79, 35.3) 15.09 S (10.39, 13.34, 16.29, 20.67)
15.2 S (11.15, 13.49, 16.8, 18.9) 84.66 L (79.12, 83.3, 86.35, 89.41)

26.76 S (24.07, 26.98, 32.88, 35.38) 3.68 VS (0, 2.24, 3.16, 4.38)
50 M (44.99, 48.87, 51.86, 55.57) 73.01 L (73.73, 77.39, 82.18, 85.95)

73.04 L (65.43, 69.87, 74.07, 79) 96.2 VL (92.67, 94.4, 96.33, 98.27)
15.2 S (10.02, 12.52, 17.77, 20.03) 26.75 S (16.5, 20.26, 25.05, 28.92)

84.61 L (82.71, 85.46, 92.25, 95.8) 61.47 L (57.74, 61.81, 66.5, 70.16)
61.47 M (48.55, 50.08, 58.48, 59.94) 49.94 M (50, 53.26, 56.62, 61.51)
3.63 VS (0, 3.15, 7.03, 10.1) 38.28 S (28.62, 34.42, 37.68, 41.14)

38.33 M (34.57, 38.21, 44.26, 48.14) 83.8 L (79.33, 83.3, 86.46, 90.63)
96.27 VL (95.4, 98.38, 100, 100) 39.51 S (20.57, 25.25, 29.02, 32.18)
3.63 VS (1.21, 3.39, 6.95, 9.53) 39.51 M (44.81, 47.76, 50.81, 53.97)

61.47 M (45.64, 49.11, 51.53, 55.01) 42.33 M (40.43, 44.09, 48.07, 51.53)
84.61 L (80.13, 81.74, 88.61, 89.9) 80.98 L (88.39, 91.34, 95.01, 97.25)

50 M (44.99, 48.3, 52.5, 55.57) 97.06 VL (92.97, 95.21, 98.27, 99.69)
38.33 S (24.64, 27.06, 32.88, 34.98) 82.7 L (80.24, 82.08, 86.46, 88.09)
96.27 L (89.98, 92.89, 98.38, 99.35) 52.27 M (46.74, 49.08, 52.55, 54.99)
15.2 S (10.1, 12.68, 17.77, 19.87) 71.66 L (70.47, 73.12, 75.36, 77.8)

73.04 L (68.42, 71.41, 78.84, 81.83) 92.15 VL (86.86, 88.7, 91.24, 93.18)
26.76 S (20.03, 21.57, 28.51, 29.97) 8.34 S (9.47, 11.61, 13.24, 14.66)
65.1 M (58.32, 61.79, 67.69, 72.05) 83.68 L (76.58, 78.72, 81.57, 83.71)

53.24 M (44.99, 47.74, 52.99, 55.98) 56.32 L (65.99, 69.04, 74.03, 77.09)
51.96 M (44.1, 47.09, 53.72, 57.67) 8.83 VS (0.71, 3.05, 6.01, 8.04)
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Table C.3: Dataset for the online application Perceptions (Page 251) on the relative length of a
given line segment with respect to a fixed longer one (VS = very small, S = small, M = medium, L

= large, VL = very large, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di)); data ID14-ID21

Underlying Underlying
ID Gender exact relative Likert (ai, bi, ci, di) ID Gender exact relative Likert (ai, bi, ci, di)

length (%) length (%)

ID14 Male 84.66 VL (74.24, 83.3, 88.39, 94.3) ID18 Female 3.68 VS (0.51, 1.53, 7.43, 10.08)
26.75 VS (10.18, 19.45, 24.95, 34.52) 26.75 S (18.94, 21.28, 29.02, 31.26)
73.01 L (60.39, 69.25, 75.05, 85.03) 61.47 M (55.19, 57.23, 66.8, 69.86)
3.68 VS (0.41, 3.26, 6.82, 12.22) 73.01 L (65.48, 69.14, 78.62, 80.65)
96.2 VL (89.82, 91.85, 96.33, 99.49) 96.2 VL (78.31, 80.45, 89.31, 92.87)

15.09 VS (9.98, 13.85, 17.01, 21.28) 38.28 M (32.18, 34.11, 43.89, 46.44)
49.94 M (34.83, 39.92, 50.1, 55.4) 15.09 S (7.94, 11.51, 21.59, 23.42)
61.47 M (54.89, 58.66, 61.51, 69.96) 84.66 VL (80.24, 83.91, 92.06, 95.21)
38.28 M (29.84, 37.98, 41.85, 45.21) 49.94 M (41.85, 45.32, 55.09, 58.25)
38.28 M (34.83, 39.92, 44.2, 48.88) 26.75 S (18.33, 21.38, 29.02, 31.87)
73.01 L (61.2, 68.94, 73.52, 79.02) 15.09 S (9.88, 13.75, 20.26, 24.64)
61.47 M (60.59, 64.77, 69.35, 74.54) 38.28 M (32.48, 37.37, 44.5, 47.96)
26.75 S (13.03, 20.06, 24.34, 30.14) 73.01 L (61, 65.58, 73.83, 78)
49.94 M (42.67, 48.17, 53.16, 60.29) 49.94 M (42.57, 46.84, 53.56, 57.94)
15.09 VS (8.66, 11.61, 15.27, 20.16) 96.2 VL (88.19, 92.57, 98.68, 99.59)
3.68 VS (0.61, 3.36, 6.62, 9.37) 61.47 M (52.75, 57.54, 64.66, 69.55)

84.66 VL (74.13, 79.33, 83.4, 89.92) 3.68 VS (0.61, 1.53, 7.03, 10.9)
96.2 VL (90.02, 94.91, 99.39, 100) 84.66 L (78, 83.1, 90.84, 93.38)

26.75 S (20.16, 24.95, 30.04, 39.82) 38.28 S (29.12, 33.3, 42.77, 46.84)
49.94 M (44.7, 49.08, 51.12, 55.91) 3.68 VS (0.41, 1.83, 7.43, 10.49)
15.09 VS (9.88, 13.44, 16.7, 26.17) 73.01 M (67.41, 70.16, 77.8, 81.57)
3.68 VS (0.51, 1.43, 5.5, 10.08) 26.75 S (18.33, 21.28, 29.02, 32.48)

84.66 L (74.85, 75.97, 80.65, 85.64) 96.2 VL (87.47, 93.18, 100, 100)
38.28 S (33.4, 37.07, 41.24, 44.91) 84.66 VL (80.96, 85.23, 91.55, 96.44)
96.2 VL (89.31, 92.46, 96.74, 98.07) 61.47 M (53.36, 57.03, 65.58, 70.06)

73.01 L (65.58, 69.35, 74.95, 80.04) 15.09 S (7.43, 11.61, 18.84, 23.32)
61.47 M (41.65, 48.27, 52.85, 59.67) 49.94 M (41.96, 45.82, 53.97, 58.45)
62.45 M (52.55, 57.64, 64.05, 65.89) 66.99 L (60.9, 64.77, 73.42, 78.41)
57.91 M (50.2, 55.3, 59.47, 63.03) 28.96 S (19.76, 24.03, 31.67, 36.97)
86.01 VL (76.99, 83.1, 86.05, 90.84) 33.13 S (32.28, 36.05, 44.91, 49.08)
12.76 VS (9.88, 12.32, 18.33, 23.12) 54.11 M (39.61, 43.58, 51.12, 56.31)

ID15 Male 49.95 M (44.86, 49.91, 50.18, 54.23) 19.51 S (11.81, 15.58, 23.22, 28.72)
38.39 S (24.41, 29.91, 30, 34.68) ID19 Male 73.01 L (62.22, 66.8, 73.93, 80.45)
26.72 S (19.37, 23.78, 25.5, 30.45) 26.75 S (27.6, 32.59, 36.05, 38.49)
61.4 M (53.87, 57.3, 63.24, 68.74) 61.47 L (56.82, 61.91, 66.7, 71.38)

96.29 VL (90.72, 93.42, 96.76, 98.56) 84.66 VL (84.93, 87.68, 91.96, 95.01)
84.62 L (78.83, 82.79, 89.1, 92.7) 96.2 VL (92.57, 94.91, 99.39, 100)
73.06 L (64.86, 67.84, 74.05, 78.65) 49.94 M (44.81, 44.91, 54.99, 54.99)

3.6 VS (4.59, 7.66, 12.52, 15.86) 38.28 M (40.02, 42.87, 47.45, 50)
15.16 S (7.84, 11.98, 17.84, 21.17) 15.09 VS (9.37, 10.69, 14.15, 15.58)

3.6 VS (2.16, 4.59, 9.19, 11.8) 3.68 VS (0, 0, 3.05, 5.4)
73.06 L (51.26, 54.86, 60.09, 64.68) 61.47 M (55.09, 58.45, 63.54, 66.09)
61.4 M (48.56, 50.63, 56.94, 59.64) 15.09 S (12.63, 15.58, 20.88, 23.63)

38.39 S (32.88, 36.85, 44.23, 47.75) 49.94 M (46.54, 49.08, 52.65, 56.31)
49.95 M (39.37, 45.05, 51.44, 54.77) 3.68 VS (1.83, 2.55, 5.19, 6.92)
84.62 VL (73.96, 77.12, 85.05, 88.11) 73.01 L (64.26, 69.25, 71.08, 75.15)
26.72 S (21.08, 26.04, 32.34, 38.02) 84.66 L (75.36, 78.72, 82.59, 86.35)
15.16 S (10.81, 15.77, 22.88, 26.94) 38.28 S (30.55, 32.59, 37.88, 39.31)
96.29 VL (93.24, 95.77, 99.1, 100) 26.75 S (20.57, 24.34, 28.62, 30.86)

3.6 VS (1.35, 3.15, 7.75, 10.54) 96.2 VL (89.92, 92.16, 97.15, 98.57)
73.06 L (61.8, 65.95, 72.7, 76.4) 26.75 S (20.67, 24.13, 29.12, 29.94)

ID16 Female 38.28 M (38.59, 45.52, 51.32, 59.98) 38.28 M (37.68, 38.49, 42.06, 44.5)
26.75 S (14.46, 28.31, 33.1, 41.55) 96.2 VL (92.16, 93.89, 97.45, 100)
61.47 L (49.69, 58.86, 70.98, 80.45) 61.47 M (54.58, 57.84, 62.12, 64.97)
73.01 VL (59.16, 76.07, 85.03, 90.63) 73.01 L (67.92, 70.16, 76.07, 79.23)
84.66 VL (70.26, 81.47, 90.12, 99.9) 3.68 VS (0, 1.53, 3.77, 6.82)
15.09 VS (0, 9.57, 20.37, 30.14) 84.66 L (74.64, 77.7, 81.98, 85.34)
3.68 VS (0.51, 6.21, 11.61, 19.35) 15.09 S (11.2, 12.42, 17.52, 20.77)

49.94 L (34.22, 44.91, 54.99, 67.72) 49.94 M (44.7, 47.66, 51.93, 56.72)
96.2 VL (84.01, 99.8, 100, 100) 97.91 VL (94.4, 96.54, 99.08, 100)

61.47 L (38.19, 55.91, 65.27, 80.86) 9.94 VS (7.54, 11.41, 16.19, 17.92)
49.94 M (39.21, 46.13, 54.68, 60.08) 20.49 S (16.19, 17.92, 23.73, 24.44)
26.75 S (9.78, 19.45, 31.06, 40.12) ID20 Male 38.28 S (24.24, 33.4, 38.09, 42.16)
15.09 VS (10.08, 15.99, 24.64, 31.06) 15.09 VS (12.93, 17.72, 22.81, 23.83)
38.28 M (28.62, 34.73, 44.5, 59.98) 61.47 M (73.12, 77.19, 82.69, 94.2)
73.01 VL (67.82, 84.73, 95.01, 100) 73.01 L (77.49, 82.38, 90.73, 97.15)
3.68 VS (0, 4.18, 10.69, 21.49) 3.68 VS (0.81, 1.12, 4.68, 15.07)

84.66 VL (86.05, 91.96, 99.29, 100) 49.94 M (26.99, 44.91, 53.67, 59.16)
96.2 VL (89.71, 98.98, 100, 100) 26.75 S (8.86, 15.48, 23.22, 29.02)

15.09 S (9.88, 15.89, 24.54, 34.62) 84.66 L (81.06, 85.34, 89.51, 95.52)
26.75 M (20.57, 29.12, 32.89, 41.96) 96.2 VL (92.16, 94.4, 97.15, 99.29)
61.47 L (49.8, 53.77, 64.26, 80.45) 15.09 S (5.5, 8.35, 12.42, 16.19)
38.28 S (29.02, 40.33, 50.1, 58.15) 61.47 M (44.5, 51.83, 57.03, 65.48)
3.68 VS (0.61, 2.24, 10.18, 20.16) 96.2 VL (89.82, 96.54, 99.19, 99.19)

49.94 L (39.21, 46.13, 55.6, 69.65) 49.94 M (36.35, 40.63, 43.18, 44.5)
84.66 VL (79.43, 90.12, 97.05, 100) 3.68 VS (1.22, 6.82, 8.66, 9.16)
73.01 VL (67.01, 80.14, 92.26, 98.17) 38.28 M (22.91, 27.6, 31.77, 36.76)
96.2 VL (88.8, 97.25, 100, 100) 26.75 S (12.93, 18.23, 23.01, 29.63)

54.85 M (38.49, 49.49, 60.18, 69.96) 84.66 L (83.91, 87.68, 91.04, 95.82)
56.81 L (39.92, 58.55, 67.41, 79.84) 73.01 L (72.91, 75.97, 80.24, 84.52)
79.02 VL (75.66, 79.23, 89.61, 100) 61.47 M (65.68, 69.25, 72.91, 79.02)
0.12 VS (0, 0, 1.12, 10.29) 3.68 VS (1.93, 4.07, 6.62, 9.16)

ID17 Male 96.2 L (90.02, 92.77, 95.11, 98.57) 15.09 S (10.39, 13.44, 16.8, 19.45)
49.94 M (44.91, 49.9, 50.31, 54.99) 73.01 L (65.68, 67.31, 74.13, 80.04)
73.01 L (59.88, 60.69, 69.96, 75.05) 26.75 S (14.66, 22.51, 26.17, 29.43)
61.47 M (49.9, 52.55, 61.91, 68.53) 84.66 L (79.84, 81.98, 86.56, 96.64)
26.75 S (13.85, 20.77, 25.56, 29.12) 49.94 M (28.82, 35.34, 40.63, 44.5)
3.68 VS (1.93, 2.85, 6.21, 9.06) 96.2 VL (94.2, 96.23, 97.76, 98.68)

38.28 M (29.84, 33.81, 42.46, 46.44) 38.28 M (29.63, 35.13, 38.29, 42.87)
84.66 VL (79.94, 81.57, 85.34, 90.63) 14.85 S (6.52, 12.93, 15.48, 16.9)
15.09 VS (11.51, 15.38, 17.11, 18.74) 20.49 S (13.44, 17.72, 22, 25.25)
15.09 VS (12.42, 15.07, 17.62, 19.45) 36.81 M (30.04, 33.2, 35.64, 44.3)
96.2 VL (89.92, 93.18, 97.56, 97.66) ID21 Female 3.68 VS (3.36, 8.04, 8.96, 8.96)

61.47 M (55.4, 59.06, 61.71, 71.28) 84.66 VL (80.75, 81.77, 83.6, 95.52)
73.01 L (67.01, 74.44, 78.11, 80.14) 49.94 M (45.01, 46.95, 51.02, 55.5)
84.66 VL (69.96, 73.63, 83.1, 87.07) 96.2 VL (89.92, 94.81, 99.9, 99.9)
26.75 S (19.76, 22.91, 37.27, 39.92) 61.47 L (50.31, 52.44, 56.01, 65.78)
49.94 M (50.1, 50.1, 50.1, 50.1) 73.01 L (56.82, 63.14, 65.27, 71.18)
3.68 VS (1.53, 1.53, 3.56, 7.13) 15.09 S (10.08, 14.46, 17.72, 20.16)

38.28 M (32.69, 37.07, 42.97, 48.27) 26.75 S (17.72, 20.37, 23.32, 26.58)
61.47 L (52.04, 57.33, 65.38, 69.86) 49.94 M (39.92, 47.45, 52.44, 59.98)
38.28 M (34.22, 39.1, 43.08, 47.66) 38.28 S (39.92, 42.36, 47.66, 49.8)
15.09 VS (14.77, 19.14, 22.2, 29.02) 96.2 L (93.48, 98.17, 100, 100)
49.94 M (45.11, 49.29, 50.71, 55.6) 61.47 L (52.65, 56.82, 63.03, 66.6)
26.75 S (21.59, 30.14, 33.91, 39.92) 26.75 S (19.96, 22.1, 24.95, 29.84)
96.2 VL (90.73, 96.44, 98.17, 98.17) 84.66 L (75.87, 77.6, 82.28, 86.86)

84.66 L (72.71, 77.8, 82.79, 86.15) 3.68 VS (2.75, 5.8, 7.33, 9.78)
73.01 M (68.64, 72.81, 80.04, 82.59) 73.01 L (62.63, 64.46, 73.93, 77.49)
3.68 VS (2.75, 4.07, 5.8, 9.88) 15.09 S (10.08, 13.03, 16.6, 19.76)

46.99 M (44.91, 49.39, 51.02, 54.99) 3.68 VS (1.73, 3.05, 7.43, 9.47)
92.39 VL (82.99, 88.39, 90.12, 92.67) 38.28 S (35.64, 42.26, 45.01, 49.59)
12.27 VS (10.9, 16.5, 21.18, 24.03) 26.75 S (30.04, 34.11, 35.95, 39.71)
6.26 VS (5.09, 8.04, 12.93, 13.65) 96.2 VL (90.22, 92.26, 97.96, 100)

69.94 L (58.96, 61.91, 65.17, 70.26) 15.09 S (9.67, 11.1, 14.97, 16.29)
14.48 VS (11.2, 13.54, 19.76, 21.89) 61.47 L (53.05, 56.62, 59.98, 65.38)
47.36 M (47.25, 49.9, 50.51, 53.05) 73.01 L (59.67, 61.81, 69.96, 77.49)
28.1 S (29.43, 34.01, 37.98, 40.02) 84.66 L (69.86, 72.4, 76.27, 80.24)

49.94 M (39.92, 46.54, 49.59, 54.28)
8.71 VS (8.66, 9.37, 11.1, 12.73)

22.21 VS (19.35, 21.18, 24.34, 29.23)
81.23 L (71.69, 75.97, 81.77, 83.71)
70.43 L (61.51, 65.48, 71.89, 78)
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Table C.4: Dataset for the online application Perceptions (Page 251) on the relative length of a
given line segment with respect to a fixed longer one (VS = very small, S = small, M = medium, L

= large, VL = very large, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di)); data ID22

Underlying Underlying
ID Gender exact relative Likert (ai, bi, ci, di) ID Gender exact relative Likert (ai, bi, ci, di)

length (%) length (%)

ID22 Male 84.61 L (78.27, 80.94, 84.41, 87.4) ID22 19.8 S (17.53, 20.03, 21.41, 23.67)
73.04 L (54.93, 58, 62.2, 65.67) (cont.) 37.25 S (33.52, 36.75, 37.96, 40.47)

50 M (47.25, 49.43, 50.89, 53.31) 66.86 L (61.07, 64.7, 65.75, 69.79)
96.27 VL (92.65, 95.72, 97.58, 99.11) 57.75 M (55.57, 59.61, 61.39, 65.35)
15.2 VS (12.92, 15.51, 17.77, 20.03) 97.16 VL (96.85, 97.98, 98.63, 99.43)

38.33 S (32.55, 36.03, 39.9, 42.89) 55.2 M (52.02, 53.63, 55.01, 57.27)
3.63 VS (2.5, 4.44, 6.22, 9.21) 41.47 M (39.98, 42, 43.21, 45.4)

26.76 S (24.8, 28.19, 30.45, 33.28) 40.78 M (38.29, 39.98, 41.6, 44.02)
61.47 L (55.17, 58.4, 61.79, 65.75) 71.27 L (70.03, 71.89, 72.7, 75.12)
3.63 VS (2.26, 3.63, 5.57, 8.08) 27.06 S (24.88, 27.14, 28.43, 30.86)

61.47 M (53.23, 56.62, 59.53, 63) 77.84 L (75.28, 77.87, 79, 81.99)
38.33 S (36.75, 38.85, 41.68, 44.91) 15.39 S (12.6, 14.38, 15.35, 18.34)
26.76 S (20.6, 23.18, 25.85, 29.56) 59.51 M (55.9, 58.56, 60.26, 63)
84.61 L (74.23, 77.71, 80.45, 85.3) 18.53 S (16.48, 19.14, 20.52, 23.26)
73.04 L (69.39, 72.54, 75.53, 79.16) 69.12 L (66.48, 69.31, 71, 74.15)
15.2 S (14.14, 17.53, 20.19, 23.59) 40.59 M (38.13, 41.11, 42.33, 45.07)
50 M (47.17, 49.11, 51.13, 53.39) 90.98 VL (87.24, 89.66, 92, 96.28)

96.27 VL (94.02, 96.45, 97.74, 98.95) 59.51 L (57.35, 59.53, 61.39, 63.65)
50 M (46.85, 49.27, 50.73, 52.99) 53.14 M (51.13, 53.47, 54.6, 57.19)

84.61 L (74.88, 79, 81.5, 85.38) 56.08 M (53.55, 55.9, 57.27, 60.02)
26.76 S (21, 23.99, 25.69, 29.97) 1.37 VS (0.97, 1.29, 1.78, 1.94)
96.27 VL (94.43, 96.12, 98.06, 99.43) 46.76 M (43.94, 46.28, 47.5, 48.95)
38.33 S (35.54, 38.61, 41.6, 45.8) 72.75 L (73.67, 75.93, 77.63, 80.05)
3.63 VS (0.89, 2.5, 3.63, 5.25) 19.9 S (18.98, 20.44, 21.81, 24.39)

61.47 M (53.8, 56.62, 59.37, 63.81) 27.84 S (22.46, 25.2, 26.74, 28.84)
73.04 L (70.27, 73.51, 76.58, 79.56) 96.76 VL (95.48, 97.01, 97.98, 99.11)
15.2 S (12.44, 15.02, 17.12, 19.95) 36.76 M (34.25, 36.51, 38.29, 40.06)
7.65 VS (4.85, 8.24, 10.18, 13) 22.84 S (21.32, 23.51, 24.72, 27.06)
1.76 VS (0.4, 1.13, 2.42, 4.36) 80.39 L (75.93, 78.59, 80.29, 85.22)

57.94 M (50.24, 52.91, 55.65, 59.29) 95.49 VL (91.36, 94.35, 95.32, 97.42)
24.31 S (21.08, 24.47, 26.09, 29.56) 32.35 S (30.86, 34.73, 36.43, 39.01)

40 M (41.2, 43.78, 46.2, 49.76) 25.1 S (20.92, 24.64, 25.69, 30.05)
13.14 S (12.12, 15.43, 17.29, 20.11) 67.25 L (64.46, 66.32, 67.85, 70.44)
13.04 S (10.34, 12.84, 14.7, 18.42) 50.1 M (44.83, 48.3, 49.52, 50.48)
64.61 L (55.74, 59.61, 63, 68.34) 98.92 VL (98.38, 99.27, 99.76, 100)
17.16 S (13.25, 17.21, 18.42, 21.16) 11.76 VS (8.48, 9.29, 10.58, 12.68)
43.82 M (39.26, 41.84, 44.18, 47.9) 44.31 M (43.21, 44.99, 46.37, 48.71)
62.06 L (60.1, 62.92, 65.11, 69.95) 8.92 VS (5.82, 8, 8.89, 9.77)

95 VL (90.63, 94.26, 96.12, 99.68) 76.27 L (73.51, 76.98, 79.16, 83.04)
52.45 M (47.66, 51.7, 55.01, 59.29) 20 S (20.76, 23.42, 24.8, 28.11)
26.08 S (20.76, 25.44, 26.9, 30.94) 46.37 M (42.25, 44.59, 46.04, 48.79)
31.08 S (30.13, 34.09, 36.19, 39.98) 12.16 VS (8.32, 10.26, 11.47, 13.89)
65.39 L (61.07, 65.43, 66.8, 69.95) 96.86 VL (94.26, 96.77, 98.14, 99.68)
66.96 L (61.15, 65.35, 66.07, 69.31) 66.18 L (64.46, 67.45, 69.06, 72.78)
19.31 S (18.34, 21.08, 22.7, 26.01) 74.61 L (73.83, 77.87, 79.4, 82.55)
42.65 M (39.98, 43.38, 45.88, 50.08) 53.43 M (52.26, 54.28, 56.14, 58.48)
91.76 VL (91.84, 93.94, 94.83, 98.22) 86.67 VL (83.76, 86.27, 87.8, 90.95)
28.43 S (28.76, 32.71, 34.81, 40.06) 14.9 VS (11.79, 14.22, 15.19, 17.69)
68.63 L (63.57, 67.21, 68.42, 71.16) 28.82 S (23.83, 25.93, 26.82, 29.16)
71.08 L (64.7, 67.21, 68.66, 70.19) 35.49 S (34.25, 37.16, 38.05, 40.95)
85.98 VL (75.93, 78.84, 81.5, 85.06) 23.33 S (20.27, 23.1, 24.15, 27.06)
81.57 L (76.17, 79.73, 81.83, 84.89) 95.39 VL (94.43, 96.28, 97.09, 98.14)
54.41 M (50.32, 54.04, 55.57, 60.02) 61.96 L (60.99, 63.57, 64.62, 68.01)
16.57 VS (14.7, 17.37, 19.39, 22.78) 81.76 L (80.05, 83.44, 86.51, 89.58)
63.82 L (58.08, 61.31, 63.81, 68.09) 60.49 M (57.67, 59.85, 61.39, 63.57)
95.88 VL (94.91, 96.45, 97.25, 99.35) 17.84 S (15.75, 18.34, 19.95, 22.86)
96.18 VL (93.78, 95.72, 96.77, 99.03) 11.47 VS (7.43, 9.05, 10.02, 11.87)
11.18 VS (5.98, 9.05, 10.26, 13.65) 33.33 S (28.03, 30.78, 31.83, 35.95)
81.47 L (75.04, 79.32, 80.86, 84.98) 75.88 L (70.84, 73.83, 74.88, 78.51)
76.08 L (71.41, 75.04, 76.25, 80.21) 41.27 M (43.54, 46.2, 47.01, 49.92)
56.18 M (52.26, 55.09, 56.38, 59.85) 83.63 L (81.66, 84.25, 85.14, 88.37)
12.16 VS (10.1, 12.04, 13.41, 16.48) 74.9 L (73.51, 76.01, 77.22, 80.61)
4.12 VS (2.42, 3.55, 4.12, 5.25) 99.51 VL (97.42, 98.55, 99.35, 99.92)

34.51 S (30.13, 32.31, 33.28, 36.27) 96.27 VL (94.91, 95.88, 96.85, 97.98)
39.61 M (33.52, 37.08, 37.96, 41.36) 58.82 L (58, 60.42, 61.55, 63.97)
60.69 L (56.95, 60.02, 62.04, 66.24) 70.49 L (72.46, 75.36, 76.33, 79.89)
90.49 VL (85.06, 88.21, 89.9, 93.86) 17.65 VS (16.4, 18.58, 20.27, 22.46)
43.92 M (45.32, 47.74, 48.87, 50.08) 57.94 L (56.7, 59.37, 60.99, 63.73)
83.92 L (79.16, 82.55, 83.76, 86.83) 98.73 VL (97.9, 99.03, 99.68, 100)
95.78 VL (95.23, 96.53, 97.74, 99.68) 55.78 M (53.15, 55.09, 55.65, 57.35)
63.82 L (60.26, 62.76, 63.89, 66.96) 70.59 L (67.29, 70.19, 72.13, 75.69)
43.04 M (38.37, 41.6, 42.89, 46.69) 17.45 VS (15.59, 18.34, 19.39, 22.21)
42.55 M (40.23, 43.46, 44.51, 47.82) 4.22 VS (3.07, 4.44, 5.17, 6.7)
40.1 M (39.98, 42.57, 44.43, 47.25) 54.61 M (53.15, 54.85, 55.57, 57.19)

20.59 S (18.42, 21.08, 22.62, 25.93) 37.45 S (34.89, 38.21, 39.9, 42.65)
26.37 S (26.98, 30.05, 31.66, 35.06) 35.1 S (30.13, 31.91, 32.79, 34.57)
99.31 VL (96.28, 99.19, 99.92, 100) 41.37 M (36.83, 39.1, 40.95, 43.62)
13.04 VS (8.72, 10.66, 12.2, 14.54) 14.71 VS (10.02, 11.87, 12.84, 14.7)
48.82 M (46.53, 48.87, 51.29, 53.63) 54.12 M (53.23, 54.44, 55.25, 56.79)
59.41 M (57.43, 59.21, 61.55, 65.59) 20.59 S (16.48, 19.47, 20.68, 23.26)
50.29 M (49.6, 51.21, 52.67, 55.49) 21.08 S (15.67, 18.58, 20.11, 22.29)
58.92 L (58.16, 60.99, 62.84, 66.56) 55.69 M (53.07, 54.68, 55.57, 58.08)
49.12 M (45.48, 48.95, 51.29, 54.52) 14.8 VS (11.15, 13.17, 14.38, 16.96)
68.43 L (65.99, 68.66, 71.24, 74.07) 78.14 L (72.62, 75.04, 76.41, 79.16)
97.45 VL (92, 94.18, 95.4, 98.63) 17.45 S (14.46, 16.48, 17.69, 19.55)
38.33 M (35.22, 38.21, 40.79, 44.99) 2.84 VS (1.29, 2.5, 2.83, 3.8)
88.63 VL (84.98, 87.32, 89.01, 92.41) 99.51 VL (98.38, 99.27, 99.68, 100)
46.67 M (43.94, 45.8, 47.66, 49.6) 44.31 M (42.16, 44.67, 45.64, 48.38)
16.67 S (12.52, 14.94, 16.32, 18.66) 75.88 L (71.57, 74.31, 75.61, 78.59)
52.65 M (50.97, 53.47, 55.09, 58.4) 56.86 M (53.63, 55.25, 56.87, 59.29)
59.71 M (57.43, 59.53, 61.63, 64.7) 8.33 VS (4.2, 5.82, 6.46, 8.48)

65 L (62.2, 65.19, 66.8, 69.95) 50.49 M (50.4, 51.62, 52.34, 54.04)
83.92 L (83.2, 85.78, 87.24, 90.06) 15 VS (10.42, 11.47, 12.44, 14.3)
71.18 L (66.4, 69.22, 70.84, 74.8) 38.43 M (34.89, 36.83, 37.64, 40.06)
46.86 M (46.12, 48.14, 49.19, 50)
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Table C.5: Dataset for the online application Perceptions (Page 251) on the relative length of a
given line segment with respect to a fixed longer one (VS = very small, S = small, M = medium, L

= large, VL = very large, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di)); data ID23 (182 trials)

Underlying Underlying
ID Gender exact relative Likert (ai, bi, ci, di) ID Gender exact relative Likert (ai, bi, ci, di)

length (%) length (%)

ID23 Male 26.76 S (27.14, 31.91, 35.14, 39.26) ID23 26.67 S (28.92, 31.66, 33.2, 36.67)
96.27 VL (95.64, 97.66, 98.87, 100) (cont.1) 73.82 L (68.01, 72.78, 74.07, 76.9)
84.61 VL (81.5, 84.65, 87.72, 90.06) 84.71 VL (84.17, 88.77, 90.06, 92.41)

50 M (45.15, 48.79, 51.78, 55.65) 57.75 M (52.42, 57.35, 59.05, 60.66)
15.2 VS (13.33, 16.07, 18.58, 21.32) 59.61 M (53.31, 57.43, 59.05, 59.94)

38.33 M (34.89, 37.96, 40.39, 43.13) 4.9 VS (2.83, 4.12, 4.85, 5.82)
73.04 L (71.97, 75.12, 78.84, 82.39) 81.47 VL (81.42, 85.22, 86.59, 88.93)
61.47 L (58, 61.71, 63.57, 67.69) 38.43 M (35.86, 40.15, 41.44, 44.91)
3.63 VS (1.94, 3.15, 3.8, 4.44) 33.63 S (31.02, 35.78, 37.32, 40.71)

73.04 L (68.09, 70.92, 72.29, 76.09) 63.73 M (55.33, 60.58, 62.12, 65.02)
96.27 VL (96.61, 97.9, 98.63, 99.84) 2.16 VS (1.13, 2.34, 2.99, 3.15)
3.63 VS (2.42, 3.47, 3.8, 4.77) 42.06 M (37.32, 41.6, 42.57, 45.07)

38.33 S (34.25, 36.91, 38.45, 40.95) 70 L (57.59, 62.52, 64.3, 67.53)
50 M (47.33, 49.76, 51.21, 54.28) 68.43 L (59.37, 64.86, 66.32, 68.66)

61.47 L (58.97, 61.31, 62.84, 66.32) 53.14 M (46.28, 49.35, 51.05, 54.28)
84.61 L (81.1, 83.84, 86.67, 89.98) 56.47 M (48.63, 52.02, 53.15, 59.37)
15.2 S (13, 15.91, 17.04, 20.11) 1.08 VS (0.73, 1.29, 1.62, 2.02)

26.76 S (24.96, 28.68, 31.5, 35.7) 30.29 S (28.76, 31.5, 32.55, 35.86)
38.33 M (37.56, 40.87, 42.08, 45.8) 47.84 M (44.1, 47.42, 48.38, 50.65)
26.76 S (22.86, 26.17, 28.19, 30.94) 34.31 S (34.65, 39.42, 40.63, 43.62)

50 M (46.37, 49.11, 50.97, 53.88) 48.63 M (45.23, 47.9, 49.35, 51.29)
3.63 VS (2.34, 3.47, 4.2, 4.93) 1.67 VS (1.05, 1.86, 2.34, 2.58)
15.2 VS (15.51, 18.66, 21, 23.1) 10.1 VS (6.62, 9.21, 10.34, 12.04)

61.47 L (58.8, 61.63, 62.84, 66.07) 67.25 L (60.99, 66.07, 67.37, 69.63)
96.27 VL (95.4, 96.77, 97.5, 98.63) 67.35 M (59.05, 62.04, 62.68, 67.85)
73.04 L (70.44, 73.67, 75.04, 78.76) 56.08 M (49.6, 52.58, 53.55, 57.67)
84.61 VL (83.52, 85.54, 86.59, 90.06) 76.57 L (70.76, 74.56, 75.85, 78.76)
48.43 M (44.99, 49.27, 50.4, 52.02) 54.8 M (51.29, 55.82, 56.7, 59.29)
71.57 L (69.95, 73.75, 75.36, 78.03) 12.65 VS (9.37, 11.79, 12.44, 14.62)
63.04 M (44.91, 48.71, 51.37, 54.85) 46.76 M (45.48, 48.47, 49.6, 50.65)
48.53 M (44.67, 47.42, 49.52, 52.67) 68.53 L (68.74, 70.03, 72.29, 76.25)
13.33 VS (9.37, 11.79, 12.76, 15.35) 36.86 M (34.98, 40.79, 42, 44.91)
25.98 S (22.78, 25.2, 27.38, 30.13) 83.33 L (74.88, 81.02, 82.15, 82.96)
3.82 VS (2.42, 3.88, 4.52, 6.38) 94.71 VL (92.41, 94.18, 95.56, 97.9)

73.92 VL (70.68, 76.17, 80.21, 83.93) 6.57 VS (2.99, 4.52, 5.17, 5.9)
37.84 M (37.32, 41.28, 43.21, 46.85) 37.55 M (39.58, 44.26, 45.48, 47.66)
89.9 VL (91.68, 94.43, 96.04, 97.98) 51.37 M (50.08, 52.67, 53.55, 56.22)

21.18 S (20.03, 23.75, 25.85, 29.89) 74.02 L (66.4, 70.11, 72.46, 75.61)
27.84 S (25.04, 29.89, 32.15, 36.03) 20.78 S (16.56, 19.95, 21.16, 25.04)
39.22 M (38.37, 40.55, 41.84, 46.85) 55.29 M (51.45, 56.14, 57.35, 60.74)
40.78 M (44.02, 46.85, 48.95, 52.26) 24.12 S (23.99, 26.82, 29.64, 30.61)
1.47 VS (0.89, 1.78, 2.26, 3.55) 69.12 L (68.58, 71.57, 72.7, 77.46)
6.67 VS (3.96, 5.49, 6.7, 8) 71.37 L (66.64, 70.36, 71.57, 75.44)

96.76 VL (97.66, 98.71, 99.35, 100) 2.45 VS (1.94, 2.67, 3.15, 3.63)
25.88 S (26.9, 31.91, 34.33, 36.75) 85.78 VL (81.66, 85.06, 86.03, 90.39)
30.39 S (30.86, 35.06, 36.11, 40.15) 97.16 VL (95.4, 97.5, 98.22, 99.68)
18.33 VS (15.51, 18.58, 20.44, 22.78) 13.04 VS (10.02, 13.57, 14.3, 16.64)
5.88 VS (3.31, 5.17, 6.14, 7.84) 35.69 M (40.15, 41.28, 42.49, 46.45)

70.39 L (70.03, 71.97, 73.18, 79.08) 87.65 VL (88.53, 90.15, 91.11, 94.83)
15.88 S (15.43, 17.93, 19.55, 24.23) 47.84 M (50.16, 52.91, 53.88, 56.3)
89.8 VL (87.96, 91.44, 92.65, 94.83) 63.33 M (56.62, 60.66, 61.31, 63.49)

96.86 VL (94.35, 96.2, 96.93, 98.63) 87.45 VL (89.5, 90.63, 91.76, 94.67)
95.59 VL (92.08, 95.8, 96.45, 97.74) 74.31 L (69.47, 74.64, 75.61, 78.03)
40.78 M (41.36, 46.04, 46.93, 48.22) 7.84 VS (5.17, 8, 9.13, 9.94)
12.75 VS (9.94, 11.55, 12.44, 16.4) 73.73 L (71.16, 73.42, 74.39, 76.82)
51.47 M (49.6, 54.44, 55.41, 58.48) 65.98 L (60.74, 63.97, 64.78, 69.39)
69.22 L (68.26, 72.37, 73.42, 75.28) 59.61 M (54.12, 57.75, 58.8, 61.39)
36.27 M (40.31, 42.08, 43.3, 47.58) 53.24 M (51.78, 55.57, 56.46, 59.05)
44.41 M (43.62, 46.69, 48.38, 50.08) 95.69 VL (92.65, 96.04, 96.85, 99.11)
97.16 VL (96.45, 98.14, 98.79, 100) 2.84 VS (1.37, 2.18, 2.83, 3.8)
35.98 M (39.34, 42.08, 42.89, 47.66) 65.39 L (60.99, 65.59, 66.72, 70.11)
90.1 VL (86.83, 89.66, 91.03, 92.65) 51.76 M (50.48, 53.23, 53.88, 57.84)
1.37 VS (0.57, 1.62, 2.02, 2.34) 12.35 VS (9.61, 10.9, 11.71, 14.38)
0.1 VS (0, 0.32, 0.57, 1.21) 51.27 M (50.4, 52.99, 53.63, 56.62)

32.35 M (35.06, 39.01, 39.9, 42.25) 4.02 VS (2.26, 2.67, 3.15, 3.96)
26.47 S (27.06, 30.21, 31.26, 35.54) 76.27 L (70.76, 74.47, 75.69, 79.97)
91.86 VL (86.83, 90.47, 91.84, 94.51) 86.67 VL (85.06, 88.21, 89.26, 90.87)
72.94 L (69.31, 72.78, 75.04, 76.9) 14.8 S (10.42, 14.22, 15.19, 15.99)
73.63 L (60.66, 65.27, 67.21, 73.99) 47.94 M (41.68, 44.35, 45.32, 49.92)
20.98 S (20.36, 25.04, 26.41, 29.64) 9.02 VS (5.9, 8.08, 8.72, 10.26)
48.92 M (44.99, 47.74, 49.27, 50.81) 59.51 M (55.01, 58.56, 59.77, 62.36)
44.8 M (44.99, 47.66, 48.63, 49.68) 31.86 S (29.24, 31.83, 32.79, 36.19)

71.67 L (69.14, 72.7, 74.47, 76.82) 83.53 VL (82.15, 86.75, 88.93, 90.15)
50.49 M (46.69, 49.11, 50.48, 53.31) 52.06 M (47.9, 51.29, 52.75, 53.88)
40.49 M (42.33, 44.26, 45.07, 49.11) 80.88 L (79.08, 81.74, 83.28, 87.8)
38.73 M (40.31, 43.05, 44.18, 49.03) 48.63 M (45.96, 48.71, 49.84, 52.26)
70.98 L (59.69, 65.02, 65.99, 69.14) 64.71 L (58.56, 61.55, 62.52, 64.94)
25.39 S (22.05, 26.82, 28.11, 29.97) 49.02 M (46.2, 47.82, 48.55, 50.08)
60.59 M (52.42, 56.87, 60.58, 65.91) 9.9 VS (5.57, 7.03, 8.24, 10.02)
37.35 M (33.36, 39.26, 41.28, 43.21) 69.12 L (66.24, 67.85, 69.71, 74.23)
83.73 L (82.96, 85.62, 87.16, 89.82) 63.82 L (61.15, 65.75, 67.21, 69.79)
74.02 L (68.98, 75.04, 76.17, 78.35) 24.9 S (24.88, 28.92, 30.21, 31.74)
70.1 L (59.77, 61.95, 63.25, 68.66) 71.08 L (66.07, 68.5, 69.55, 72.37)
6.86 VS (3.39, 5.09, 5.98, 6.87) 71.86 L (68.01, 71.89, 73.18, 75.93)
60.2 M (55.74, 60.1, 61.55, 66.24) 11.57 VS (8.4, 9.05, 10.18, 13.17)
85.2 VL (80.29, 87.08, 88.77, 90.47) 67.16 L (67.04, 70.11, 71.41, 75.44)

41.47 M (40.47, 45.07, 46.37, 49.03) 7.45 VS (4.52, 6.38, 7.43, 8.16)
68.24 L (66.64, 69.63, 71.49, 76.41) 88.92 VL (84.09, 88.21, 89.5, 93.21)
54.12 M (51.37, 53.55, 54.44, 58) 32.06 M (37.72, 41.52, 43.13, 45.4)
84.61 L (72.62, 76.17, 78.35, 80.94) 53.63 M (51.86, 54.2, 55.49, 58.56)
69.9 L (63.81, 68.5, 69.95, 73.59) 42.55 M (42.25, 44.18, 46.2, 49.35)
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Table C.6: Dataset for the online application Perceptions (Page 251) on the relative length of a
given line segment with respect to a fixed longer one (VS = very small, S = small, M = medium, L

= large, VL = very large, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di)); data ID23 (180 trials)

Underlying Underlying
ID Gender exact relative Likert (ai, bi, ci, di) ID Gender exact relative Likert (ai, bi, ci, di)

length (%) length (%)

ID23 79.8 L (73.51, 75.44, 76.41, 80.45) ID23 17.84 VS (13.81, 17.69, 19.31, 21.73)
(cont.2) 38.04 M (37.8, 42.89, 44.59, 46.28) (cont.3) 63.43 M (59.37, 62.12, 63.49, 68.42)

64.22 L (56.14, 60.74, 62.76, 65.02) 7.35 VS (5.49, 7.11, 8.56, 9.94)
19.51 S (15.35, 19.71, 21.24, 24.15) 33.63 S (32.79, 35.62, 37.48, 39.42)
20.59 S (14.38, 18.17, 20.84, 23.91) 80.98 L (78.19, 81.34, 83.44, 87.08)
48.14 M (46.04, 48.95, 50.48, 53.55) 43.14 M (39.66, 42.97, 45.56, 48.47)
35.59 M (42.08, 44.67, 46.28, 49.35) 81.76 L (73.75, 78.11, 80.86, 84.81)
89.51 VL (87.72, 89.74, 91.76, 93.46) 94.41 VL (90.31, 93.05, 94.83, 97.01)
26.86 S (25.28, 27.46, 29.24, 32.71) 58.1 M (50.72, 52.43, 54.22, 56.65)
2.75 VS (1.86, 2.26, 2.99, 3.55) 52.96 M (45.21, 48.78, 52.5, 56.44)

37.84 M (39.01, 41.76, 42.81, 44.83) 63.5 L (61.16, 63.73, 66.24, 69.31)
49.61 M (47.5, 51.45, 52.1, 54.36) 29.88 S (25.89, 30.11, 31.62, 36.62)
29.9 S (27.3, 30.78, 32.79, 35.14) 45.38 M (43.13, 46.49, 47.85, 49.71)

59.61 M (54.52, 57.67, 59.21, 63.25) 4.7 VS (3.29, 5.22, 5.94, 6.29)
48.14 M (47.5, 49.35, 50.4, 52.58) 52.87 M (51.36, 53.79, 55.01, 58.51)
63.73 L (63.89, 66.96, 68.09, 71.65) 38.59 M (36.12, 39.41, 41.63, 45.28)
23.53 S (21.16, 24.07, 25.69, 28.59) 32.58 S (27.83, 31.62, 33.4, 37.2)
93.53 VL (91.52, 94.43, 95.88, 97.98) 53.75 M (45.99, 49.14, 51.72, 56.08)
63.14 M (58.32, 60.9, 62.12, 64.78) 34.58 S (33.26, 36.62, 37.91, 41.13)
32.06 S (31.5, 35.22, 37, 39.98) 84.84 VL (80.54, 83.98, 85.62, 88.56)
94.02 VL (90.06, 91.52, 92.49, 96.04) 64.63 L (58.66, 62.37, 63.45, 69.46)
21.96 S (20.36, 23.99, 24.8, 27.14) 36.41 S (29.9, 34.33, 35.62, 40.27)
55.69 M (52.26, 55.65, 56.38, 58.97) 71.78 L (69.89, 72.96, 74.39, 78.4)
50.98 M (45.56, 48.71, 50.57, 52.99) 17.68 VS (15.24, 19.1, 20.03, 23.32)
94.51 VL (90.63, 92.33, 94.1, 95.8) 0.44 VS (0.29, 0.64, 0.64, 0.93)
90.98 VL (87.32, 89.5, 90.31, 93.3) 93.64 VL (92.85, 95.06, 95.64, 98)
94.12 VL (90.06, 90.87, 92.16, 95.07) 35.1 M (35.91, 39.91, 41.34, 44.56)
32.75 M (35.14, 38.37, 39.82, 42.25) 50.7 M (48.07, 50.07, 51.36, 54.86)
74.51 L (69.87, 73.59, 74.72, 76.58) 30.92 S (29.69, 32.9, 34.69, 37.48)
28.53 S (23.34, 26.82, 27.95, 32.15) 42.16 M (39.84, 41.49, 42.56, 45.21)
87.75 VL (86.59, 89.18, 91.2, 92.73) 16.11 VS (13.45, 16.88, 18.17, 20.46)
21.57 S (15.59, 19.79, 21.24, 24.23) 44.51 M (41.13, 44.28, 45.49, 47.78)
4.61 VS (3.07, 3.8, 4.36, 5.25) 1.22 VS (0.64, 1.72, 2.15, 3.22)

79.02 L (69.06, 71, 72.62, 75.85) 63.59 L (61.87, 65.16, 66.17, 70.03)
35.29 M (35.22, 39.34, 41.03, 43.86) 65.68 L (64.31, 67.88, 69.6, 72.03)
82.75 L (74.15, 77.14, 78.59, 82.47) 36.67 S (30.62, 34.12, 35.98, 39.56)
0.49 VS (0.4, 0.89, 1.21, 1.45) 96.17 VL (93.13, 94.99, 95.99, 97.78)

79.61 L (77.79, 80.69, 82.39, 85.14) 20.64 S (18.45, 23.61, 25.04, 27.97)
2.35 VS (1.62, 2.26, 2.5, 3.31) 56.27 M (55.65, 58.3, 59.51, 62.23)
85 VL (79.64, 82.55, 83.68, 86.67) 47.39 M (45.42, 48, 49.28, 51.86)

76.08 L (74.64, 77.38, 79.08, 83.04) 55.75 M (53.58, 56.22, 58.01, 62.95)
53.82 M (52.1, 56.06, 57.43, 60.02) 28.48 S (24.54, 28.33, 29.69, 32.26)
2.25 VS (1.53, 1.86, 2.34, 3.07) 79.01 L (74.96, 78.18, 79.69, 83.76)

16.57 VS (10.02, 13.17, 14.05, 15.75) 29.01 S (25.32, 28.83, 30.11, 33.26)
57.45 M (55.17, 57.27, 58.4, 62.6) 88.85 VL (86.27, 88.34, 89.91, 92.27)
55.39 M (54.68, 56.62, 58.56, 62.28) 28.05 S (25.18, 29.33, 31.4, 34.76)
71.67 L (68.66, 71.32, 73.34, 75.44) 6.36 VS (4.65, 6.58, 7.22, 9.23)
24.31 S (19.87, 22.78, 24.23, 27.46) 99.74 VL (95.64, 98.21, 99.14, 100)
81.67 L (80.86, 84.33, 86.11, 88.69) 41.72 M (43.49, 47.21, 48.43, 50)
11.27 VS (6.79, 8.24, 9.29, 10.5) 92.16 VL (88.56, 90.27, 91.63, 94.92)
86.18 VL (84.01, 86.59, 88.13, 91.03) 81.97 L (75.25, 78.97, 80.33, 84.55)
93.43 VL (94.35, 95.72, 96.69, 98.87) 97.82 VL (89.7, 92.85, 94.13, 97.21)
36.57 M (34.17, 37.64, 40.15, 42.25) 23.95 S (22.25, 24.46, 26.11, 30.11)
14.31 VS (10.02, 13.49, 15.02, 17.93) 90.07 VL (86.19, 88.84, 90.13, 92.7)
63.14 L (61.47, 66.4, 67.61, 70.92) 59.84 M (57.8, 59.8, 60.94, 64.31)
35.2 S (33.28, 37.64, 40.87, 44.18) 72.82 L (71.96, 74.61, 75.46, 78.68)

70.98 L (67.37, 70.44, 71.32, 74.31) 32.32 S (28.25, 32.12, 33.4, 37.41)
43.92 M (44.02, 47.9, 48.79, 50.48) 63.76 L (62.23, 66.31, 67.53, 71.39)
6.37 VS (3.31, 4.52, 4.93, 5.9) 13.94 VS (11.8, 15.31, 16.74, 19.17)

62.06 M (63, 65.67, 67.29, 70.36) 17.68 S (15.59, 19.6, 21.1, 23.25)
98.33 VL (95.15, 98.22, 98.79, 99.84) 64.11 L (63.3, 67.1, 68.17, 71.96)
71.27 L (65.19, 68.34, 69.71, 72.94) 10.45 VS (6.8, 9.3, 10.52, 13.02)
57.06 M (52.42, 54.6, 55.49, 59.05) 75.35 L (71.75, 75.11, 76.18, 80.62)
80.2 L (73.91, 77.95, 79.32, 82.15) 19.25 S (15.45, 19.67, 21.6, 25.82)

76.67 L (72.29, 75.69, 76.98, 79.97) 10.98 VS (6.37, 9.08, 10.66, 13.09)
92.06 VL (85.95, 89.74, 91.11, 92.49) 59.84 M (56.8, 58.87, 60.23, 62.3)
44.51 M (38.69, 42.49, 45.32, 48.79) 32.32 S (27.32, 31.26, 33.19, 35.41)
34.8 S (30.13, 34.41, 36.03, 39.01) 44.08 M (42.7, 45.42, 46.42, 48.07)

69.02 L (64.14, 68.42, 69.79, 72.78) 27.79 S (24.25, 27.75, 29.33, 31.9)
92.94 VL (92.97, 94.67, 95.8, 97.17) 78.31 L (74.54, 78.4, 79.9, 82.62)
56.37 M (52.1, 56.22, 58.48, 60.26) 65.24 M (63.09, 66.45, 67.53, 69.96)
20.98 S (18.17, 21.97, 23.99, 26.9) 34.49 M (30.11, 33.48, 34.69, 38.2)
81.76 L (75.2, 78.59, 80.53, 82.47) 55.14 M (53.29, 55.29, 56.22, 57.08)
99.41 VL (97.98, 98.87, 99.6, 100) 66.99 L (62.8, 65.38, 66.74, 69.96)
13.53 VS (8.48, 10.66, 11.63, 13.97) 39.37 M (39.84, 42.06, 43.2, 45.28)
53.63 M (50, 51.94, 53.07, 57.19) 28.75 S (25.11, 29.18, 30.9, 34.26)
13.04 VS (8.32, 9.61, 10.82, 12.92) 89.02 VL (86.05, 88.13, 89.34, 92.7)
33.82 M (37.96, 39.98, 41.68, 45.64) 35.02 M (33.48, 36.7, 37.98, 41.63)
43.33 M (44.1, 47.33, 49.19, 50.32) 48.17 M (46.92, 48.78, 51.72, 53.51)
35.1 M (30.78, 35.54, 36.67, 39.66) 25.61 S (23.75, 25.68, 27.25, 30.76)
7.06 VS (3.63, 4.44, 5.33, 6.3) 86.32 VL (83.12, 85.19, 86.27, 89.7)
85 VL (79.48, 82.63, 84.01, 87.08) 99.3 VL (93.78, 96.42, 97.57, 99)

42.84 M (42.97, 46.28, 48.38, 49.43) 87.89 VL (87.12, 89.77, 90.99, 93.35)
52.45 M (48.63, 50.81, 52.75, 56.7) 74.3 L (71.17, 74.75, 75.75, 79.11)
6.67 VS (3.96, 5.09, 5.74, 6.79) 89.29 VL (87.05, 89.77, 91.06, 93.99)

21.67 S (19.14, 21.65, 23.34, 26.33) 9.41 VS (6.72, 9.08, 10.44, 13.16)
70.49 L (65.11, 68.09, 70.27, 75.04) 82.14 L (76.97, 79.54, 81.47, 84.05)
41.47 M (43.54, 47.42, 49.19, 50.81) 77.53 L (72.68, 74.82, 76.25, 79.97)
84.41 VL (83.52, 86.03, 88.21, 90.23) 60.1 L (58.08, 61.87, 62.8, 67.24)
68.63 L (63.57, 67.77, 69.55, 73.26) 51.22 M (53.22, 55.94, 56.72, 61.09)
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Table C.7: Dataset for the online application Perceptions (Page 251) on the relative length of a
given line segment with respect to a fixed longer one (VS = very small, S = small, M = medium, L

= large, VL = very large, and (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di)); data ID24-ID25

Underlying Underlying
ID Gender exact relative Likert (ai, bi, ci, di) ID Gender exact relative Likert (ai, bi, ci, di)

length (%) length (%)

ID24 Female 15.2 S (7.27, 14.05, 18.34, 23.26) ID25 Female 61.47 M (51.13, 56.7, 62.04, 66.88)
38.33 M (39.82, 44.1, 47.25, 50) 26.76 S (21.16, 26.58, 32.55, 37.4)
26.76 S (21.08, 26.58, 30.45, 34.89) 84.61 VL (88.93, 93.86, 97.66, 100)
61.47 L (65.67, 67.93, 74.15, 79.73) 3.63 VS (0, 3.31, 5.17, 8.16)

50 M (50.08, 52.58, 54.93, 59.94) 73.04 L (82.07, 86.67, 93.13, 95.15)
3.63 VS (0, 1.86, 4.6, 8) 38.33 M (30.78, 35.7, 40.23, 42.73)

84.61 VL (85.54, 89.1, 93.13, 96.53) 96.27 VL (96.53, 97.42, 99.11, 100)
96.27 VL (94.75, 95.56, 98.55, 100) 15.2 S (11.95, 13.33, 18.17, 21.73)
73.04 L (70.19, 76.25, 81.1, 85.78) 50 M (45.72, 47.58, 52.34, 54.2)
15.2 S (10.02, 14.46, 16.48, 19.79) 3.63 VS (0, 2.75, 6.54, 11.63)

61.47 L (59.94, 63.73, 69.39, 74.23) 84.61 L (87.32, 88.21, 94.91, 98.47)
38.33 M (34.49, 38.93, 43.7, 46.61) 15.2 S (14.14, 17.29, 22.78, 24.31)
3.63 VS (0.32, 2.58, 4.36, 6.87) 38.33 M (39.9, 42.49, 44.26, 47.74)

73.04 L (75.61, 77.87, 83.04, 85.95) 61.47 L (69.14, 70.68, 74.56, 78.03)
84.61 VL (86.75, 89.26, 91.03, 95.32) 73.04 L (76.17, 78.43, 82.15, 85.22)
26.76 S (23.18, 28.59, 32.23, 37.32) 50 M (49.43, 51.37, 53.88, 57.84)
96.27 VL (94.99, 96.2, 98.22, 99.68) 96.27 VL (90.95, 93.54, 97.82, 100)

50 M (53.23, 56.38, 59.13, 63.41) 26.76 S (17.21, 19.14, 23.99, 26.58)
50 M (49.52, 52.34, 55.09, 57.35) 15.2 VS (13.17, 15.02, 17.69, 19.22)

38.33 M (32.63, 37.64, 41.11, 44.02) 96.27 VL (93.46, 95.48, 98.71, 100)
84.61 VL (83.04, 85.14, 87.72, 89.98) 50 M (50.65, 52.34, 55.82, 60.74)
26.76 S (23.67, 27.06, 29.4, 31.34) 26.76 S (27.63, 30.29, 34.49, 35.54)
73.04 L (65.91, 67.12, 70.68, 72.78) 73.04 L (75.2, 76.41, 81.74, 85.7)
96.27 VL (95.07, 96.37, 97.98, 99.52) 61.47 L (65.02, 66.4, 72.13, 75.44)
61.47 M (54.85, 57.92, 61.55, 64.46) 84.61 VL (81.5, 85.22, 87.96, 92.41)
15.2 S (13.81, 15.51, 18.17, 20.11) 3.63 VS (0.97, 2.18, 4.77, 7.75)
3.63 VS (0.97, 3.07, 4.28, 5.82) 38.33 S (26.82, 31.83, 34.98, 36.43)

64.02 L (68.66, 72.62, 74.96, 77.95) 8.53 VS (4.12, 8.48, 12.04, 14.05)
85.59 VL (82.39, 84.57, 85.95, 87.8) 21.57 S (13.41, 17.45, 19.55, 21.73)
54.9 M (44.59, 48.06, 49.35, 51.94) 51.37 M (50.97, 52.75, 54.93, 57.84)

58.92 M (53.96, 57.27, 58.72, 61.79) 6.67 VS (7.03, 10.58, 14.3, 16.24)
74.61 L (71.49, 75.44, 77.63, 79.73) 74.02 L (68.42, 72.54, 75.36, 77.71)
83.14 L (79.97, 81.74, 84.01, 86.59) 42.94 M (38.45, 42.81, 46.04, 48.63)
15.39 S (11.15, 14.3, 16.48, 17.69) 70 L (67.29, 68.26, 72.37, 75.69)
87.75 VL (93.38, 94.75, 96.61, 98.14) 73.73 L (65.35, 68.09, 74.31, 78.11)
12.65 VS (6.7, 9.21, 12.44, 16.32) 5.69 VS (2.67, 5.9, 8.72, 13)
15.39 S (11.79, 14.46, 16.32, 18.98) 74.9 L (74.64, 76.9, 79.32, 81.1)
92.75 VL (90.71, 92.57, 94.43, 96.69) 74.41 L (67.04, 68.9, 73.67, 77.54)
27.94 S (28.03, 30.37, 32.79, 36.35) 67.55 L (62.28, 63.33, 66.24, 70.11)
8.63 VS (7.11, 9.29, 11.63, 12.44) 71.18 L (65.27, 67.21, 70.84, 74.07)

25.49 S (27.14, 29.97, 32.23, 36.59) 82.84 L (76.33, 81.83, 85.38, 88.05)
57.65 M (48.87, 52.02, 54.04, 59.45) 60.78 M (50.81, 54.04, 57.92, 63.49)
37.94 M (29.81, 34.89, 36.91, 39.5) 14.61 VS (4.36, 10.18, 12.6, 15.43)
2.84 VS (0.24, 1.53, 2.83, 4.68) 48.73 M (43.7, 46.61, 50.57, 54.93)

91.67 VL (89.5, 92.08, 93.46, 95.72) 29.12 S (21.97, 24.23, 31.02, 34.33)
16.76 S (17.69, 20.36, 24.31, 27.22) 57.75 M (55.25, 57.35, 63.09, 65.59)
46.47 M (38.85, 42.97, 45.56, 49.11) 45.2 M (36.43, 38.93, 44.18, 47.9)
10.1 VS (8.4, 9.85, 11.15, 14.86) 33.82 S (28.68, 31.58, 39.01, 42.25)

26.67 S (20.36, 23.75, 26.33, 29.73) 80.1 L (76.33, 77.79, 81.5, 84.89)
62.55 M (56.62, 60.42, 63.17, 68.01) 92.25 VL (85.3, 88.69, 93.78, 95.23)
71.27 L (68.17, 70.6, 73.02, 77.22) 53.92 M (44.99, 48.14, 52.67, 54.6)
73.14 L (65.19, 67.61, 69.14, 72.7) 7.16 VS (2.83, 8.08, 10.18, 11.47)
43.73 M (34.65, 38.37, 41.6, 43.7) 93.82 VL (91.28, 92.16, 95.64, 98.47)
61.27 M (58.4, 60.9, 63.33, 65.75) 96.18 VL (92, 93.86, 96.77, 98.63)
14.22 S (11.95, 13.65, 16.16, 18.09) 38.73 S (29.64, 33.12, 38.53, 42.81)
26.37 S (23.02, 26.17, 29.16, 31.02) 13.43 VS (10.42, 12.68, 16.8, 19.55)
15.2 S (12.36, 15.75, 17.29, 19.06) 62.16 M (55.09, 58.56, 63.41, 68.26)

13.33 S (10.82, 12.76, 14.14, 16.64) 94.71 VL (85.14, 86.43, 88.93, 91.84)
95.29 VL (92.16, 93.62, 95.07, 97.25) 23.73 S (22.13, 26.17, 31.1, 32.23)
20.39 S (20.27, 22.62, 24.56, 27.46) 45.69 M (34.01, 38.77, 42.65, 46.69)
44.22 M (33.04, 36.51, 40.87, 44.26) 27.25 S (20.84, 23.59, 27.14, 31.42)
52.94 M (46.61, 49.03, 51.13, 53.23) 34.02 S (30.78, 37.88, 40.47, 43.62)
57.25 M (53.47, 55.57, 57.27, 60.9) 98.14 VL (93.62, 95.23, 97.33, 100)
25.88 S (20.52, 22.7, 23.91, 27.14) 9.41 VS (7.35, 10.74, 14.54, 16.72)
54.12 M (50.48, 51.62, 52.91, 56.62) 73.92 L (65.67, 69.31, 72.05, 76.09)
65.1 L (66.88, 68.98, 71.32, 74.56) 88.92 VL (84.41, 85.7, 88.13, 92.41)

29.31 S (25.61, 27.87, 30.53, 34.98) 37.84 S (28.43, 31.74, 35.7, 37.4)
70.49 L (73.91, 74.47, 77.3, 80.05) 84.31 L (73.91, 75.85, 80.37, 84.65)
74.41 L (69.39, 70.84, 73.59, 77.87) 19.31 S (15.19, 19.71, 21.65, 25.93)
8.53 VS (3.31, 6.06, 8.64, 9.94) 25.59 S (20.68, 24.47, 27.54, 29.56)

61.08 M (61.31, 65.27, 68.34, 70.36) 42.16 M (34.65, 38.37, 41.11, 45.07)
62.55 M (59.45, 62.68, 66.72, 70.52) 68.14 L (56.95, 58.56, 62.2, 67.77)
89.02 VL (85.46, 88.37, 90.47, 93.13) 62.35 M (54.93, 56.95, 61.31, 63.73)
30.49 S (24.56, 29.08, 32.47, 34.81) 57.06 M (52.1, 57.03, 60.74, 62.52)
57.16 M (56.3, 61.23, 64.3, 68.66) 48.04 M (46.04, 48.47, 51.21, 53.72)
68.92 M (58.24, 60.02, 64.94, 68.9) 81.27 L (71.97, 77.22, 80.05, 83.2)
36.86 M (35.86, 40.06, 42.97, 46.45) 7.94 VS (5.98, 9.45, 14.3, 15.75)
10.1 VS (6.87, 8.89, 10.74, 14.7) 43.14 M (37.8, 39.74, 43.78, 46.85)

39.02 M (40.95, 45.88, 48.22, 51.21) 48.53 M (46.93, 48.71, 51.78, 54.93)
35.69 M (34.41, 38.29, 41.36, 44.75) 45 M (37.08, 43.86, 47.17, 49.52)
86.18 L (84.49, 86.19, 89.01, 90.79) 21.67 S (19.47, 21.97, 25.85, 28.76)
23.92 S (20.52, 22.37, 24.39, 25.93) 24.8 S (23.34, 25.77, 28.76, 31.1)
2.75 VS (0.48, 1.53, 2.67, 3.55) 83.33 L (81.42, 81.42, 85.14, 88.29)

47.55 M (45.15, 48.87, 50.48, 52.91) 29.02 S (24.88, 27.71, 29.81, 33.76)
44.41 M (44.83, 47.98, 50.57, 52.99) 38.82 M (34.73, 37.96, 41.52, 44.1)

35 M (32.47, 34.57, 37.8, 41.03) 84.71 VL (78.11, 82.23, 84.73, 87.08)
80.1 L (79.48, 82.88, 84.65, 87.48) 84.02 L (77.06, 77.87, 82.23, 84.65)

92.35 VL (87.08, 89.34, 91.6, 94.99) 50.78 M (47.42, 48.87, 52.83, 56.22)
79.41 L (74.88, 78.51, 80.94, 82.15) 21.37 S (15.75, 18.26, 22.29, 25.12)
63.14 M (59.61, 61.79, 63.73, 67.21) 78.43 L (75.85, 80.86, 82.55, 84.73)
62.25 M (53.96, 57.67, 60.02, 62.2) 45.49 M (37.64, 41.36, 44.43, 48.06)
94.22 VL (92.33, 94.91, 96.37, 98.71) 57.45 M (53.07, 55.49, 58, 61.63)
93.43 VL (91.36, 93.05, 94.26, 97.42) 60.29 M (58.24, 60.82, 64.05, 68.5)
74.02 L (74.64, 77.06, 78.92, 80.45) 88.73 VL (76.33, 80.53, 83.04, 84.89)
43.82 M (37.32, 40.79, 44.02, 46.04) 71.08 L (65.51, 70.03, 73.91, 75.93)
89.22 VL (85.62, 88.37, 90.23, 92.16) 74.8 L (64.54, 67.21, 71.16, 73.26)
56.18 M (45.64, 50, 52.42, 55.57) 72.65 L (65.11, 68.98, 73.67, 76.74)
95.78 VL (95.88, 96.93, 98.55, 99.6) 9.61 VS (8.89, 10.82, 15.43, 16.48)
56.67 M (54.28, 58, 60.58, 64.14) 90.78 VL (84.33, 88.45, 92.33, 94.75)
9.71 S (8.56, 9.94, 12.12, 13.25) 4.31 VS (1.7, 6.46, 10.58, 11.71)

98.14 VL (93.7, 96.53, 97.98, 99.84) 30.2 S (26.98, 29.24, 31.83, 36.19)
65.88 M (67.37, 69.55, 71.16, 77.87) 70 L (64.7, 65.51, 68.9, 72.7)

80.78 L (72.94, 78.43, 82.47, 85.78)
69.41 L (62.12, 64.62, 68.26, 73.99)
34.61 S (27.71, 31.74, 35.95, 37.64)
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implosion breakdown point, 161

implosion pseudo-breakdown
point, 174

pseudo-breakdown point, 173
pseudo-sensitivity curves, 185
sensitivity curves, 181

Tukey’s loss function, 160
weight function, 158

metrics between fuzzy numbers
L1 metrics, 21

Dϕ
θ , 21

1-norm distance (ρ1), 21
1-norm distance (ρϕ1 ), 21
metric properties, 22
topological properties, 22

L2 metrics, 18
Dϕ
θ , 18

2-norm distance (ρ2), 18
metric properties, 20
topological properties, 20

outlier types, 88
scale on the core and support, 88
translation, 88
two-way (translation and scale),

88

population scale estimate D-S(X ,Y),
55

random fuzzy numbers (RFN’s), 23
ϕ-wabl/ldev/rdev median of an

RFN
equivariance under affine
transformations, 30

minimization of the mean
Dϕ
θ -deviation, 30

population version, 30
sample version, 30
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strong consistency, 31
1-norm median of an RFN
equivariance under affine
transformations, 30

minimization of the mean
ρϕ1 -deviation, 29

population version, 29
sample version, 29
strong consistency, 31

Aumann-type mean of an RFN
Dϕ
θ -Fréchet’s expectation, 26

additivity, 25
Bochner expectation of a
Banach space-valued random
element (support
function-based definition), 24

coherence with the usual fuzzy
arithmetic, 25

equivariance under affine
transformations, 25

population version, 24
sample version, 25
SLLN, 26

Borel-measurable mappings, 23
distribution induced by an RFN,

23
Fréchet-type variance of an RFN
support function-based
definition, 26

inf/sup-based definition, 23
mid/spr-based definition, 23
support function-based definition,

23

sample scale estimate D̂-Q(x̃n), 56
sample scale estimate D̂-S(x̃n), 55
sample scale estimate D̂-T(x̃n), 56

scale estimators
explosion breakdown point, 67
finite sample breakdown point, 66
implosion breakdown point, 67
properties, 56
extension of the real-valued
case, 57

minimality, 58
nonnegativeness, 57
scale (absolute) equivariance, 59
shift invariance, 59
strong consistency, 60

simulations to check the
robustness, 93, 142

breakdown point, 93
explosion breakdown point, 93
explosion pseudo-breakdown
point, 118

implosion breakdown point, 94
implosion pseudo-breakdown
point, 119

pseudo-breakdown point, 117
pseudo-sensitivity curves, 150
sensitivity curves, 142

sensitivity curves, 143
separability of the metric space

(F ∗
c (R), Dϕ

θ ), 20
(F ∗

c (R),Dϕ
θ ), 22

(F ∗
c (R), ρϕ1 ), 22

Simulation procedures
from a fuzzy rating scale-inspired

distribution (2ndSP), 39
from an extension from the

normal distribution (1stSP),
38

trapezoidal fuzzy numbers, 9
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Visual analogue
graphic rating scale, 3
numerical rating scale, 3

scale-based rating, 3
cons, 4
pros, 4





Symbols index

D-S(X ,Y): scale estimate D-S(X ,Y)
of the independent and
identically distributed RFN’s
X and Y , 55

Dϕ
θ -SD(X ): Fréchet-type standard

deviation of the RFN X , 52
Dϕ
θ : (ϕ, θ)-mid/spr-based L2 metric

between fuzzy numbers, 18
S2

x̃n : Fréchet-type sample variance of
a sample of observations x̃n
from RFN X , 26

Sx̃n : Fréchet-type sample standard
deviation of a sample of
observations x̃n from RFN X ,
26

W : weight function in M-estimation
of scale, 158

η
Ũ
: mid/spr representation of the

fuzzy number Ũ , 7
ι
Ũ
: inf/sup representation of the

fuzzy number Ũ , 6
υϕ
Ũ
: ϕ-wabl/ldev/rdev representation

of the fuzzy number Ũ , 8
〈·, ·〉ϕθ : inner product on H2 associated

with the L2 metric Dϕ
θ , 20

X : (generic) random fuzzy number,
23

fsbp+: explosion breakdown point, 67

fsbp−: implosion breakdown point, 67
wablϕ: ϕ-weighted averaging based on

levels, 7
Dϕ
θ : (ϕ, θ)-wabl/ldev/rdev L1 metric

between fuzzy numbers, 21
Dϕ
θ -ADD(X , M̃ϕ(X )): Dϕ

θ -Average
Distance Deviation of the
RFN X with respect to the
ϕ-wabl/ldev/rdev median
M̃ϕ(X ), 54

Dϕ
θ -MDD(X , M̃ϕ(X )): Dϕ

θ -Median
Distance Deviation of the
RFN X with respect to the
ϕ-wabl/ldev/rdev median
M̃ϕ(X ), 55

x̃n: Aumann-type sample mean of a
sample of observations x̃n
from RFN X , 25

ρ1: 1-norm metric between fuzzy
numbers, 21

ρ1-ADD(X , M̃e(X )): ρ1-Average
Distance Deviation of the
RFN X with respect to the
1-norm median M̃e(X ), 53

ρ1-MDD(X , M̃e(X )): ρ1-Median
Distance Deviation of the
RFN X with respect to the
1-norm median M̃e(X ), 55

277



278 Symbols index

ρϕ1 : 1-norm metric between fuzzy
numbers, 21

ρ2: 2-norm metric between fuzzy
numbers, 18

ρ2-ADD(X , Ẽ(X )): ρ2-Average
Distance Deviation of the
RFN X with respect to the
Aumann-type mean Ẽ(X ), 53

ρ2-MDD(X , Ẽ(X )): ρ2-Median
Distance Deviation of the
RFN X with respect to the
Aumann-type mean Ẽ(X ), 54

σ2
X : Fréchet-type variance of the RFN

X , 26
σX : Fréchet-type standard deviation

of the RFN X , 26
%: loss function in M-estimation of

scale, 157
D̂-Q(x̃n): sample scale estimate

D̂-Q(x̃n) of a sample of
observations x̃n from X , 56

D̂-S(x̃n): sample scale estimate
D̂-S(x̃n) of a sample of
observations x̃n from X , 55

D̂-T(x̃n): sample scale estimate
D̂-T(x̃n) of a sample of
observations x̃n from X , 56

D̂ϕ
θ -SD(x̃n): Fréchet-type sample

standard deviation of a
sample of observations x̃n
from RFN X , 52

Ĝ(x̃n): sample Gini-Simpson diversity
index of a sample of
observations x̃n from RFN X ,
196

̂Dϕ
θ -ADD(x̃n,

̂̃Mϕ(x̃n)): sample
Dϕ
θ -Average Distance

Deviation of a sample of
observations x̃n from RFN X
with respect to the
ϕ-wabl/ldev/rdev median
̂̃Mϕ(x̃n), 54

̂Dϕ
θ -MDD(x̃n,

̂̃Mϕ(x̃n)): sample
Dϕ
θ -Median Distance

Deviation of a sample of
observations x̃n from RFN X
with respect to the
ϕ-wabl/ldev/rdev median
̂̃Mϕ(x̃n), 55

̂ρ1-ADD(x̃n,
̂̃Me(x̃n)): sample

ρ1-Average Distance
Deviation of a sample of
observations x̃n from RFN X
with respect to the 1-norm
median ̂̃Me(x̃n), 53

̂ρ1-MDD(x̃n,
̂̃Me(x̃n)): sample

ρ1-Median Distance Deviation
of a sample of observations x̃n
from RFN X with respect to
the 1-norm median ̂̃Me(x̃n),
55

̂ρ2-ADD(x̃n, x̃n): sample ρ2-Average
Distance Deviation of a
sample of observations x̃n
from RFN X with respect to
the Aumann-type mean x̃n, 53

̂ρ2-MDD(x̃n, x̃n): sample ρ2-Median
Distance Deviation of a
sample of observations x̃n
from RFN X with respect to
the Aumann-type mean x̃n, 54



Symbols index 279

̂̃Me(x̃n): sample 1-norm median of a
sample of observations x̃n
from RFN X , 29

̂̃Mϕ(x̃n): sample ϕ-wabl/ldev/rdev
median of a sample of
observations x̃n from RFN X ,
30

Ẽ(X ): Aumann-type mean of the
RFN X , 24

M̃e(X ): 1-norm median of the RFN
X , 29

M̃ϕ(X ): ϕ-wabl/ldev/rdev median of
the RFN X , 30

F ∗
c (R): space of bounded fuzzy

numbers, 6

B1 : space of L1-type 2-dimensional
vector-valued functions
defined on [0, 1], 22

B?1: space of L1-type 3-dimensional
vector-valued functions
defined on [0, 1], 22

fsbp: finite sample breakdown point,
31

H2: space of L2-type real-valued
functions defined on
[0, 1]× {−1, 1} w.r.t. `⊗ λ1,
20


