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Abstract

Functional optical coherence tomography (OCT) provides intrinsic tissue contrast
that yields important information about tissue physiology and dynamics. In par-
ticular, OCT Angiography and Doppler OCT provide vascular structure without
the need of contrast agents together with the quantitative information on blood
flow. However, quantitative data on vascular density and flow critically depend on
the proper segmentation of the structures of interest.
The aim of the thesis was the adaption and further refinement of segmentation al-
gorithms to analyze OCT angiography data. Particular structures were the retinal
nerve fiber layer as well as capillary layers within the neural retina. The perfor-
mance of the algorithm was tested on healthy in-vivo data as well as on images
of different retinal pathologies. For this thesis the retinal layer segmentation was
acquired along with an optic nerve head segmentation and a vessel segmentation.
Furthermore, microvascular perfusion parameters were defined and calculated.

Kurzfassung

Mittels funktioneller optischer Kohärenztomografie (OCT) erhält man intrinsis-
chen Gewebs-Kontrast durch welchen wichtige Informationen über Gewebspatholo-
gie und dessen Dynamik gewonnen werden können. Im Speziellen werden vaskuläre
Strukturen und quantitative Informationen über den Blutfluss mit Hilfe von OCT
Angiographie und Doppler OCT erlangt, ohne dabei Kontrastmittel verwenden
zu müssen. Quantitative Daten über die Gefäßdichte und Durchblutung hängen
jedoch kritisch von einer funktionierenden Segmentierung der zu untersuchenden
Strukturen ab.
Das Ziel dieser Arbeit war die Adaption und Verbesserung von Segmentierungsal-
gorithmen, die die Analyse von OCT Angiographie Daten ermöglichen. Bei den
Strukturen die näher untersucht wurden, handelt es sich um die Nervenfaserschicht
und die Kapillarschichten der Retina. Der Algorithmus wurde einerseits anhand
von gesunden in-vivo Daten und andererseits anhand von Bildern verschiedener
retinalen Pathologien getestet. Für diese Arbeit wurden ein Segmentierungsalgo-
rithmus für die retinalen Schichten, sowie eine Segmentierung des Sehnervs und
der Blutgefäße erarbeitet. Außerdem wurden mikrovaskuläre Druchblutungspa-
rameter definiert und berechnet.
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1. Introduction

1 Introduction
In today’s medicine, it is of great importance to acquire as much information on
the human body as possible. For this purpose, methods are being developed to
improve the resolution and the quality of imaging devices. An improved image
quality does not only help diagnosing a disease but also helps following and under-
standing the process of the disease better. Another important issue is the discovery
of so-called biomarkers, which are measurable indicators for diseases. Ideally, a
biomarker can be found that gives hints about a disease before any significant
damage is done, in which case reasonable countermeasures can be initiated.
The improved imaging methods also demand higher-quality processing and evalu-
ation of the data. Due to the improved resolution of the recorded medical images,
the required disk space is increasing. Additionally, a great number of patients has
to be imaged in medical research studies to calculate significant statistical evident
on possible biomarkers. To deal with the huge amount of data and to prevent a
flooding of the servers with non-utilized data, a fast processing of the measured
raw data is mandatory. Furthermore, analyzing a huge amount of data by hand is
too time-consuming. This shows the importance of programming image processing
algorithms, that are as automatized as possible.
The main focus of this thesis lies on programming algorithms for processing images
of the retina of human eyes in order to eventually gain perfusion parameters of
the retina. These images were recorded with the help of Optical Coherence To-
mography (OCT), which is an imaging technique that is based on low-coherence
interferometry. OCT is especially used in opthalmology, since it is non-invasive
and a full 3D tomogram can be gathered. A very good method for detecting the
vessel structures of the retina is retinal angiography.
Before the perfusion parameters of the retina can be calculated, several steps have
to be taken. First of all, the raw data measured with the help of OCT have to be
processed in order to get the 3D angiography and the images from the 100kHz1

acquisition of the retina. Afterwards, a segmentation algorithm is used on the
100kHz data to receive the different retinal layers. This algorithm is based on
solving a shortest path problem by minimizing a gradient-based cost function. The
segmentation of the different retinal layers is important in order to be able to cal-
culate only the perfusion parameters for the layers that are desired in the research
studies. The gained retinal layers can be easily transferred onto the corresponding
angiography. Furthermore, algorithms for the segmentation of the optical nerve
head and the major vessels within the retina are developed. When excluding them
from the angiography of the OCT, the microvascular structures remain. Thereby,
the perfusion parameters can be calculated for the retinal microvascular structure.
In chapter 2, the physical background that is needed for understanding OCT and
how the images are obtained is described. Furthermore, the basic principles of the

1100kHz refers to the A-scan rate of the OCT system (see chapter 3.2.2).
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1. Introduction

used image processing methods are explained. Finally a short introduction in the
relevant anatomical and pathological aspects of the human eye is given. Chapter
3 describes the setup of the OCT system used for the imaging in detail. The
image processing theory, which is necessary for the implementation, can be found
in this chapter as well. While chapter 4 gives an overview of the results on the
coded image processing algorithm, chapter 5 gives a conclusion and chapter 6
an outlook.
The calculations of the perfusion parameters already build the basis for different
medical research studies. Laurin Ginner has constructed the OCT system with
which the images were recorded. Furthermore, he was in charge of measuring the
patients of the research studies.

2



1. Introduction

Einleitung
In der heutigen Medizin ist es sehr wichtig, so viele Informationen wie möglich
über den menschlichen Körper zu erhalten. Zu diesem Zweck wird stets an neuen
Methoden gearbeitet, um bessere Abbildungsverfahren mit höherer Auflösung und
Qualität zu entwickeln. Dies hilft nicht nur die Diagnose von Krankheiten zu
vereinfachen, sondern auch den Verlauf einer Krankheit besser verstehen und ver-
folgen zu können. Ein weiterer wichtiger Punkt ist das Erkennen und Auffinden
von Biomarkern aus diesen Abbildungen, welche als Indikatoren für Krankheiten
dienen. Bestenfalls können Biomarker gefunden werden, die Hinweise auf eine
Krankheit geben bevor ein signifikanter Schaden angerichtet wurde. In diesem
Fall können angemessene Gegenmaßnahmen initiiert werden.
Die verbesserten Abbildungsverfahren stellen auch höhere Anforderungen an die
Verarbeitung und Auswertung der Daten. So wird durch die immer hoch au-
flösenderen Bilder immer mehr Speicherplatz für die gemessenen Daten benötigt.
Außerdem muss bei einer medizinischen Studie eine Vielzahl an Patienten gemessen
werden, um eine signifikante Statistik über mögliche Biomarker zu erhalten. Damit
die Server nicht mit nicht ausgewertetem Bildmaterial überlaufen, ist es wichtig,
die gemessenen Rohdaten schnell weiterzuverarbeiten. Außerdem ist die manuelle
Auswertung von großen Datenmengen sehr zeitaufwändig. Dies zeigt die Wichtigkeit
Algorithmen für die Bildverarbeitung neu zu entwickeln, welche die Bildmaterialien
automatisieren und so rasch wie möglich aufarbeiten.
Der Schwerpunkt dieser Arbeit liegt darin, Algorithmen zur Bildverarbeitung
der Retina des menschlichen Auges zu programmieren und daraus Perfusions-
Parameter der Retina zu berechnen. Die Bilder wurden mithilfe von Optischer
Kohärenztomografie (OCT) aufgenommen, einem Abbildungsverfahren, das auf
Interferenz basiert. OCT wird speziell in der Augenheilkunde verwendet, da dieses
Verfahren nicht invasiv ist und ein vollständiges 3D-Tomogramm aufgenommen
werden kann. Eine sehr gute Methode, um die Gefäßstruktur in der Retina zu
detektieren, ist die Angiographie.
Um die Perfusions-Parameter der Retina berechnen zu können, müssen mehrere
Arbeitsschritte durchgeführt werden. Zuerst müssen die Rohdaten, welche mit
einem OCT aufgenommen wurden, vorverarbeitet werden, um eine 3D-Angiographie
und die Bilder der 100kHz2 Aufnahme der Retina zu erhalten. Danach wird
ein Segmentierungs-Algorithmus auf die 100kHz Daten angewendet, um die ver-
schiedenen Schichten der Retina in den Bilddaten zu erkennen und zu differen-
zieren. Der Algorithmus basiert auf der Lösung des „kürzesten Pfad“-Problems im
Zusammenspiel mit einer Gradient-basierten Kostenfunktion. Die Segmentierung
der verschiedenen Schichten der Retina ist die Grundlage, um die Perfusions-
Parameter in den Schichten berechnen zu können, die für die medizinischen Stu-
dien gewünscht sind. Die so erhaltenen retinalen Schichten können danach auf die
zugehörige Angiographie umgerechnet werden. Weiters werden Algorithmen für
die Segmentierung des Sehnervs und der großen Blutgefäße innerhalb der Retina
entwickelt. Wenn diese aus den Daten der Angiographie entfernt werden, bleibt

2100kHz bezieht sich auf die A-scan Rate des OCT Systems (sie Kapitel 3.2.2).
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1. Introduction

nur noch die mikrovaskuläre Struktur über. Auf diese Art und Weise können die
Perfusions-Parameter der mikrovaskulären Struktur der Retina berechnet werden.
InKapitel 2 wird das physikalische Hintergrundwissen beschrieben, welches notwendig
ist, um OCT und das Zustandekommen der Bilder zu verstehen. Des Weit-
eren wird das Grundprinzip der verwendeten Bilderverarbeitungsmethoden erk-
lärt. Am Ende des Kapitels wird noch eine Einleitung in relevante anatomis-
che und pathologische Aspekte des menschlichen Auges gegeben, die im Kontext
dieser Arbeit notwendig sind. Kapitel 3 beschreibt detailliert das Setup des OCT
Systems, welches für die Aufnahmen verwendet wurde. Auch die für die Imple-
mentierung notwendige Bildverarbeitungstheorie wird in diesem Kapitel erläutert.
Während Kapitel 4 einen Überblick über die Resultate der programmierten Bild-
verarbeitungsalgorithmen liefert, sind abschließend in Kapitel 5 ein Fazit und in
Kapitel 6 ein Ausblick der Arbeit zu finden.
Die in dieser Arbeit durchgeführten Berechnungen der Perfusions-Parameter sind
bereits Grundlage verschiedener medizinischer Studien. Laurin Ginner hat das
OCT System, mit welchem die Bilder aufgenommen wurden, aufgebaut. Weiters
war er für die Messung der Patienten für die Studien verantwortlich.

4



2. Basics

2 Basics
Over the time diverse imaging techniques have been developed. Depending on
their resolution and depth penetration as well as their ability to image specific
biological tissue, they are used for certain medical fields. Microscopy is used for
studying cells or to get a better understanding how diseases work, since it has a
high resolution of about 1 µm and below. Since in standard microscopy, light in
visible range is used, it has the disadvantage that it is highly scattered. Thus only
the surface of a structure is visible. Imaging techniques that use X-rays can be used
to show the bone structure of the human body. This is possible because X-rays
have a considerably higher penetration depth due to the high energy level of the
beam. As a negative side effect, harmful ionization is caused by the X-ray beams.
Furthermore, not all structures in the human body -such as organs- are suitable for
X-ray imaging techniques. A possibility to record internal structures is provided
by ultrasound imaging. Depending on the frequency of the ultrasound waves, it
has a resolution of about 15 to 100 µm. This resolution isn’t sufficient enough for
ophthalmology. Another imaging technique that is similar to ultrasound is opti-
cal coherence tomography (OCT). However instead of using ultrasound waves, it
uses light. With the properties of OCT imaging, it has developed as the leading
imaging method for ophthalmology to detect early stages of diseases even before
physical symptoms such as an irreversible vision loss occur. Furthermore, disease
monitoring can be made to see if the performed treatments are effective. Another
application area among many others is, for example, noninvasive imaging of dif-
ferent human skin diseases.
Since the number of imaging techniques as well as their information content are
expanding, biomedical image processing becomes very important in order to get
access to all the information contained in the image. Biomedical image process-
ing is an interdisciplinary research field attracting not only physicians, but also
mathematicians, computer scientists, engineers and biologists. The principle ob-
jective of image processing is to process and analyze images in order to get high
quality information for disease diagnoses and treatment. Due to expanding imag-
ing possibilities and the higher information content, the automation of the image
processing becomes more and more important.
In this chapter, the theoretical basics of the main themes will be treated in detail
in order to make the rest of this thesis more easily accessible. It covers not only
the physical basics of OCT and the theory of the used image processing algorithms
but also a very general overview of the medical aspects.

5



2. Basics

2.1 Physics
2.1.1 Optical Coherence Tomography
Optical coherence tomography (OCT) is a fast developing imaging technique. The
deep interest for OCT originates from the fact that it has unique features that
are especially important in biomedical optics and medicine. Not only can tissue
pathology be imaged in situ and in real time, but also with good resolutions of
1–15µm, which is determined by the coherence length of the light source [5]. So
OCT closes the gap between ultrasound and microscopy, as can be seen in figure
2.1. Another great advantage of this imaging technique is that it is a non-invasive
procedure, making it more suitable for research studies.

Figure 2.1: Comparison of resolution and imaging depth for ultrasound, OCT
and confocal microscopy. OCT has an axial image resolution from
1-15µm [5].

In figure 2.2, a generic OCT system is illustrated. A beam gets emitted from a low-
coherence light source. After passing through various optical gadgets, the beam
is directed onto the sample. There, the beam is reflected. The reflected beam
interferes with a reference beam and is directed to a detector. After various signal
processing steps on the computer, the OCT image including depth information of
the sample can be observed.

6



2.1. Physics

Figure 2.2: Schematic of a generic OCT system [5]

The basic principle of OCT is similar to ultrasound imaging, but while ultrasound
imaging uses sound, OCT uses light. Though there are many different ways for
performing OCT, the essential imaging is performed by measuring the magnitude
and echo time delay of the beam that is backreflected from internal microstruc-
tures of the observed tissue. Depending on the optical properties and boundaries
between structures, the light beam is backreflected differently. By measuring the
‘echo time’, the dimension of these structures can be determined. Already in 1971,
Michel Duguay proposed that optical echoes can be used to see through biological
tissue [5]. The echo time is the time it takes for the light beam to be backreflected
or backscattered from the different structures at varying axial distances.

7



2. Basics

Figure 2.3: Basic principle of low-coherence interferometry [5]

Low-Coherence Interferometry [5]

Since OCT is based on the measurement of the magnitude and echo time delay of
backscattered light, a method which measures these parameters with a very high
sensitivity is required. An ideal optical measurement technique for this purpose is
low-coherence interferometry. The principle of interferometry can be seen in figure
2.3. A light beam is emitted from the light source onto a beam splitter, where it
gets divided. From there, one light beam Es(t) (signal beam) is directed onto the
sample and the other beam Er(t) (reference beam) to the reference path, where
the distance the light beam has traveled is known. The backreflected beams from
the sample path and reference path interfere and the electric field can be measured
at the detector. The measured intensity of the interference is proportional to the
square of the total field:

Io ∼ |Er|2 + |Es|2 + 2ErEscos(2k∆L), (2.1)

with Er as reference beam, Es as signal beam and ∆L as path length difference
between the signal and reference arms of the interferometer. For the detection
of optical echoes, a light source with low-coherent light is required. To observe
interference with low-coherence light, the path lengths of the reference and mea-
surement arms have to be matched within the coherence length of the light. By
demodulating the interference signal, the magnitude and echo time delay can be
measured. The axial image resolution depends on the coherence length of the used
light source.

The depth structure can be calculated from the observed interferogram. The depth
information of a single point is called ‘A-scan’ (see figure 2.4 left). With the help of
galvo-scanners, the depth information of an area or even a volume can be obtained.
If a line scan is performed, the single point depth information of all the A-scans

8



2.1. Physics

yields to a 2D image, which is called ‘B-scan’ (see figure 2.4 middle). When a
second scanner with a scanning direction perpendicular to the first one is used, a
full 3D image of a sample can be obtained (3D-OCT) (see figure 2.4 right).

Figure 2.4: An A-scan (left) measures the backreflection versus depth of a single
point, while a two-dimensional B-scan (middle) is generated by a se-
ries of A-scans at different transverse positions. A three-dimensional
data set (right) is gained with a second perpendicular scanner [5].

Because of its benefits, the research on OCT is intense, resulting in various imaging
methods with OCT systems. Depending on the way of the measurement domain,
there are two main principles of OCT systems, Time Domain OCT and Fourier
Domain OCT:

Time Domain OCT (TD-OCT)

Early OCT imaging systems used time domain detection, a method that operates
in direct depth-space. An A-scan can be obtained by measuring the interference
signal while the reference arm is moved in axial direction at constant speed. With
the help of a photodetector, the time delay between the reference and the sample
path can be measured. To obtain interference, the path length difference between
the backscattered light from the sample and the reference arm light has to be
smaller than the coherence length of the light. Since the reference arm has to be
moved mechanically, this method is time-consuming, which is an important factor
when it comes to in vivo measurements. In TD-OCT only a fraction of the light
from the sample that matches the instantaneous delay of the reference beam to
within the coherence length can actually contribute to the OCT signal. In addi-
tion, the signal SNR critically decreases with reference arm scanning speed and
optical bandwidth [13].

Fourier Domain OCT (FD-OCT)

9



2. Basics

Another possibility to perform the detection is the measurement of the interfer-
ence spectrum from the reference and sample beam. Hence, this principle operates
in the Fourier domain instead of the time domain. When measuring the spec-
tral interference pattern, the depth structure can be determined from the Fourier
transformation of the spectra with the help of the Wiener–Khinchin theorem (see
equation 2.9).
The Fourier domain detection has a powerful sensitivity advantage over the time
domain detection of approximately the ratio of the axial resolution to the axial
imaging depth [11]. Furthermore it can measure all the echoes of light simulta-
neously, which is a great benefit regarding the measuring time (up to 100 times),
since no movement in the reference arm is needed. Thus, an A-scan can be mea-
sured in a single exposure. Since the measuring time is an important factor for
avoiding movement artifacts while doing in vivo measurements, FD-OCT gives a
great boost in application possibilities for OCT. A disadvantage of FD-OCT is that
more expensive parts (such as fast swept sources or data acquisition electronics)
are required.
The FD-OCT can be split into two further detection types, the spectral domain
OCT (see figure 2.5 (left)) on the one hand and the swept source OCT (see figure
2.5 (right)) on the other hand:

• Spectral Domain OCT:
In spectral domain OCT (SD-OCT), the detector is replaced with an spec-
trometer. Furthermore, it uses a broad-bandwidth light source and a line
scan camera. With the setup of the SD-OCT, all spectra are gathered at
once, which gives a great improvement regarding the measuring time. An-
other advantage is that the setup is cheaper than e.g. a Swept Source OCT.
On the other hand, SD-OCT has the disadvantage of a signal fading or SNR
roll-off with increasing depth.

• Swept Source OCT:
The images that are used for this master thesis are recorded with a swept
source OCT (SS-OCT). It uses an interferometer with a narrow bandwidth
light source that sweeps its frequency in time. With the setup of a SS-OCT,
it is possible to record the spectral interference pattern over time and the
depth structure with one sweep. In comparison with SD-OCT, the SS-OCT
offers a better sensitivity and a lower SNR roll-off with increasing depth.
Due to the technical complexity of fast swept sources plus the advanced
data acquisition electronics, SS-OCT is still more expensive.

10



2.1. Physics

Figure 2.5: Schematics of FD-OCT principles: SD-OCT (left) and SS-OCT
(right). The SD-OCT uses a broadband light source and the spectrum
of the interference is measured with a spectrometer and a line scan
camera. The SS-OCT uses a narrow band, frequency swept laser
and detectors [5].

2.1.2 Interferometer
The basic interferometer theory is adapted from [5].

Figure 2.6: Schematic of a Michelson interferometer that is used in OCT [5].

A Michelson Morley interferometer forms the basis of FD-OCT. For the case of
SS-OCT, a Mach-Zehnder configuration is usually used due to balanced detection
configuration. Figure 2.6 shows a schematic build up of a Michelson interferometer.
A light source which illuminates the interferometer with a polychromatic plane
wave is used. A polychromatic plane wave Ei can be expressed with equation 2.2.

Ei = s(k, ω)ei(kz−ωt) (2.2)

11



2. Basics

s(k, ω) is the electric field amplitude dependent on the wavenumber k = 2π/λ
and the angular frequency ω = 2πν, t the time and z the optical axis coordinate.
The observed sample has a depth-dependent electric field reflectivity along the
sample beam axis rS(zS). The variable zS indicates the pathlength between the
beamsplitter and the sample arm. Since the refractive index of biological tissue
varies continuously, rS(zS) is continuous as well.
For a better understanding, we set an illustrative example with N discrete, real
delta function reflections of the form

rS(zS) =
N∑
n=1

rSnδ(zS − zSn), (2.3)

with the field reflectivities rS1, rS2, ... and the pathlengths from the beamsplitter
zS1, zS2, ..., as can be seen in figure 2.7. The power reflectivity is obtained by
squaring the magnitude of the electric field reflectivity (e.g. RS1 = |rS1|2). The aim
of low-coherence interferometry in OCT is to gather the function

√
RS(zS), which

gives the correlation between the power reflectivity and the depth coordinate.

Figure 2.7: Model of a sample with a series of discrete reflectors [5]

The reflected beam from the sample arm can be described with

ES = Ei√
2

[rS(zS)⊗ ei2kzS ]. (2.4)

Since normally the sample reflectivities are very small, the returned reference field
is stronger than the reflected sample field most of the time. Coming back to the
example with discrete reflectors, the reflected reference beam can be written as

ER = Ei√
2
rRe

i2kzR , (2.5)

while the reflected sample beam can be written as

12



2.1. Physics

ES = Ei√
2

N∑
n=1

rSne
i2kzSn . (2.6)

The detector signal (generated photocurrent at the detector) is proportional to the
square of the sum of the fields integrated over the response time of the detector
(see equation 2.7).

ID(k, ω) = ρ

2〈|ER + ES|2〉 (2.7)

with ρ as the responsivity of the detector (units Amperes/Watt). After expanding
the magnitude squared functions from equation (2.7), the dependency upon the
temporal angular frequency is eliminated. This leaves the temporally invariant
terms

ID(k) = ρ

4[S(k)(RR +RS1 +RS2 + ...)]

+ρ4[S(k)
N∑
n=1

√
RRRSn(ei2k(zR−zSn)e−i2k(zR−zSn))]

+ρ4[S(k)
N∑

n6=m=1

√
RSnRSm(ei2k(zSn−zSm)e−i2k(zSn−zSm))],

(2.8)

with S(k) = 〈|s(k, ω)|2〉 the power spectral dependence of the light source. Since
most light source spectra used in OCT systems have approximately a Gaussian-
shape, a Gaussian-shaped light source spectrum is used for S(k). Furthermore, it
has useful Fourier transform properties. The normalized Gaussian function S(k)
and its inverse Fourier transform γ(z) can be written in the form of

γ(z) = e−z
2∆k2 F←→ S(k) = 1

∆k
√
π
e−[ (k−k0)

∆k
]2 , (2.9)

with k0 the central wavenumber of the light source spectrum and ∆k its spectral
bandwidth. The inverse Fourier transform of the source spectrum γ(z) is called
‘coherence function’ and describes the axial point spread function (PSF) in OCT.
Its full width at half the maximum (FWHM) value is called coherence length lc of
the light source.
In order to get a relation between the detector signal and the depth dependent
structure information, a Fourier transformation has to be applied. With the help of
the convention for Fourier transformations (see equation 2.10) and the convolution
property of Fourier transformation (see equation 2.11), plus using the Euler’s rule
as well as shifting due to the delta function, the Fourier transform is calculated.

cos(kz0)↔ 1
2δ(z − z0) + 1

2δ(z + z0) (2.10)

f(z)⊗ g(z)↔ F (k) ∗G(k) (2.11)
This leads to the formula for an ‘A-scan’, which contains the depth informations:
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iD(z) = ρ

8[γ(z)[RR +RS1 +RS2 + ...]]

‘DCTerms′

+ρ4

N∑
n=1

√
RRRSn[γ[2(zR − zSn)] + γ[−2(zR − zSn)]]

‘Cross− correlationsTerms′

+ρ8

N∑
n6=m=1

√
RSnRSm[γ[2(zSn − zSm)] + γ[−2(zSn − zSm)]]

‘Auto− correlationTerms′

(2.12)

Equation 2.12 can be split into three parts:

• DC term: It is a constant, non-interferometric intensity term, dependent on
the sample and reference power reflectivities and the light source wavenumber
spectrum. If the reference reflectivity is far larger than the sample reflectivity,
the DC term is the dominant one.

• Cross-correlation term: It represents the interference between the matching
sample and the reference beam. Since this term contains the structural
information of the sample structure, it is the desired component for OCT
imaging.

• Auto-correlation term: It represents the interference, which occurs between
the different sample reflectors. In order to decrease autocorrelation artifacts,
the reference intensity can be increased.

For a better understanding of equation 2.12, it is illustrated in figure 2.8 with
different numbers of sample reflectors. In the case of a single reflector, only the
DC term and the cross-correlation term between the sample and the reference beam
are present. Its source spectrum is modulated by a simple cosinusoid, which has a
period that is proportional to the distance between the sample and the reference
beam, while in the case of multiple reflectors, the source spectrum is modulated
by multiple cosinusoids. The frequency and amplitude of each cosinusoid depends
on the sample reflection and position which gives rise to it. Another difference to
the single reflector is the fact that autocorrelation components appear.

14



2.1. Physics

Figure 2.8: The spectral interferogram: For a single sample reflector (left) the
cross-correlation component rides on top of the amplitude of the DC
term [RR+RS1]

2 . In the case of multiple reflectors (right), the cross-
correlation component is a superposition of cosinusoids [5].

Equation 2.12 is plotted in figure 2.9 for the example of discrete sample reflectors
and a Gaussian-shaped source spectrum.
The complex conjugated term of equation 2.12 can be seen on the left side of figure
2.10. Since it contains the same information as the right side, it gets removed
during the image processing process.

Figure 2.9: An illustration of the example field reflectivity function (top). The
resulting A-scan from FD low-coherence interferometry from equa-
tion 2.12 (bottom) [5].
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Figure 2.10: The detected signal at the photodetector with the DC-term of the
reference beam in the middle, the auto-correlation term from the
self-interference of the backscattered light and the cross-correlation
term with the structural information [6].

2.1.3 Resolution
Axial resolution [5]
For a Gaussian spectrum, the axial resolution lc is proportional to the squared
center wavelength λ0 of the light source, as can be seen in equation 2.13. Further-
more, it is inversely proportional to the full width at half maximum (FWHM) ∆λ
of the power spectrum.

lc = 2ln(2)λ2
0

π∆λ (2.13)

From this equation can be seen that in order to achieve high axial resolution of a
SS-OCT system, a broadband light source is required. This behavior is illustrated
in figure 2.11.

Figure 2.11: Axial resolution vs. bandwidth of light sources for different center
wavelengths (800nm, 1000nm, 1300nm)[5]
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Lateral resolution [5]
The full width at half maximum power of the PSF of an OCT system is charac-
terized by the lateral resolution δ(x). Equation 2.14 shows that while the lateral
resolution is proportional to the center wavelength λ0 of the light source, it is
inversely proportional to the numerical aperture NA. There is only the need to
describe one lateral dimension, since the optical system is cylindrically symmetric.

δ(x) = 0.37 λ0

NA
(2.14)

2.1.4 Angiography
The basic angiography theory is adapted from [5] and [6].
Angiography is a contrast agent based medical imaging technique that was devel-
oped in 1927 by Egas Moniz [1]. He used it for the imaging of cerebral vessels.
Nowadays, this imaging technique is used to visualize blood vessels and organs
in an organic sample in general. Compared to other angiography methods, OCT
angiography can provide vascular contrast in a depth resolving manner with high
resolution without the need of contrast agents. This is a great benefit for the pa-
tients in research studies, since contrast agents can have many side effects such as
nausea, allergic shock or vomiting. With the help of OCT angiography, biomarkers
for disease diagnoses of ocular vascularizations like glaucoma, diabetic retinopathy
or age-related macular degeneration can be found.
The basic of OCT angiography lies in the speckle and phase difference between
two B-scans imaged at the same lateral position. On the one hand, speckle (see
figure 2.12) is a source of noise, but on the other hand, it is a carrier of informa-
tion about tissue microstructure in images of highly scattering biological tissues.
Not only are speckles affected by the structure and the motion of the sample, but
also by the optics in the sample path and the properties of the light source. It is
an interference phenomenon that occurs when interfering coherent light with ran-
dom phases. Therefore, speckles are the result of superposition of many random
wavelets.

Figure 2.12: Laser speckle that appears on a white piece of paper that is illumi-
nated by coherent laser radiation (photographic image) [5]

The measured intensity depends on the detector efficiency and the intensity of
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the backscattered sample light. The latter changes over time. This leads to a
Rayleigh distribution for the speckle. Since speckle is sensitive to motion, it can
be used for vessel detection since they are perfused by moving blood particles. The
speckle changes during motion, while it behaves like noise in a static structure.
This behavior is used in the so-called speckle variance OCT (SV-OCT). When
calculating the intensity variance between two or more tomograms at the same
transverse position, microvasculature can be visualized. The contrast in an image
is generated by the speckle variance between static structure and blood flow. For
calculating the speckle variance, the logarithmic intensity of the tomograms is
used, as can be seen in equation 2.15.

I(x, y, z) = 20 ∗ log[|FFT (I(x, y, k))|] (2.15)
with k as the wavenumber that after the FFT corresponds to the depth coordinate z
and the tomograms I(x,y,z). For SV-OCT, the squared intensity speckle difference
between two successive tomograms is calculated (see equation 2.16).

D(x, yi, z) = [I(x, yi+1, z)− I(x, yi, z)]2 (2.16)
with i = 1...N, N as the number of tomograms taken at the same vertical position.
For the images used for this thesis, N equals 4, which means that four full B-scans
are acquired within 20 µs at the same position. To get rid of sample movement or
scanner position changes, a threshold for high speckle variances is set (see equation
2.17). Otherwise the speckle variance profile of the other B-scans couldn’t be
observed.

M(y) =
N−1∑
i=0

([
∑
x,y

D(x, yi, z)] < T ) (2.17)

with N as the number of tomograms taken at the same vertical position. Finally,
the vascular contrast V(x,y,z) is calculated by averaging over the thresholded vari-
ances M (see equation 2.18) [3].

V (x, y, z) = 1
M(y)

N−1∑
i=0

([
∑
x,y

D(x, yi, z)] < T ) ∗D(x, yi, z) (2.18)

2.2 Medical Image Processing
The main goal of this thesis was programming image processing algorithms for
images recorded with OCT. Another challenge was to make these algorithms fully
automatic, making them suitable for research studies with a great number of pa-
tients. Furthermore some already existing code had to be modified to be fully
automatic as well. The theoretical aspects of the used image processing techniques
are presented in this chapter.

18



2.2. Medical Image Processing

2.2.1 Shortest Path Problem
One task for this thesis was to adapt and improve an algorithm for a retinal
layer segmentation in order to get the desired retinal layer boundaries (see chapter
3.3.2). A very useful method for segmentation issues in image processing is using
a shortest path algorithm. To deal with the shortest path problem, an image
is divided into n nodes. Each of these nodes is connected to all its surrounding
nodes through edges, which represent a transition from node to node. In the next
step, a weighting factor wi,j is calculated with a cost function that indicates how
expensive the transition from node Ni to node Nj is. After setting a start point
N1, all possible paths to the end point Nn have to be found with the restriction
that one can only get from one node to another if they are linked with an edge.
The cost C of a path p can be attained by summing up all weights of the edges
that have been passed on the way to the end point.

Cn =
∑
p

wi,j (2.19)

After calculating the cost of every possible path, the shortest path, i.e. the path
with the lowest cost can be found.

shortest path = Min(Cn) (2.20)
The general shortest path problem can be seen in figure 2.13, where arrows are
used to indicate the edges between the nodes. The numbers close to each edge
indicate the weighting factor. The challenge of this approach is finding a suitable
cost function for the present problem (see chapter 3.3.2). Often, a gradient-based
cost function is used.
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Figure 2.13: Shortest path problem with nodes, edges represented with arrows
between the nodes and the corresponding weighting factors as num-
ber on the edges [15]

2.2.2 Clustering
The basic clustering theory is adapted from [2].

Another task for this thesis was to develop an algorithm for major vessel seg-
mentation. For this purpose, a clustering method was used. Clustering is an
unsupervised learning method to divide data into classes or groups. These classes
or groups are the so-called clusters. The difference between unsupervised and su-
pervised learning is that when using unsupervised learning methods, one does not
always know the number of clusters and the data does not have a class label. The
division of the data X = (x1, x2, ... , xN) into m Cluster C1, ... , Cm is called
m-clustering if the following conditions are true:

• Ci 6= 0, i = 1, ...,m

• ∪mi=1Ci = X

• Ci ∩ Cj = 0, i 6= j, i, j = 1, ...,m

The vectors xi from the cluster Ci are more similar to each other than to the
vectors in the other clusters. For finding clusters, criteria have to be defined to
match them into the according cluster. These criteria depend highly on the data.
Popular criteria for clustering are, for example, the distance between two data
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points or the scalar product or the Pearson correlations coefficient. A well-known
algorithm for clustering is, for example, the k-means algorithm.

2.2.3 Image Registration
The basic image registration theory is adapted from [10].

Movement of the eye during the measurement causes motion artifacts within the
B-scans. In order to get rid of these artifacts, an image registration algorithm has
been developed. Image registration is a process where two images (2D or 3D) are
tried to be matched by gaining correspondences between positions in each image
(see figure 2.14 (left)). In order to do so, the target image has to be transformed
in such way that the similarity between the target image and the source image is
minimized. What kind of similarity measurement is used depends on the present
problem. The transformation function can perform a simple translation or rota-
tion, but also non-rigid transformations. If source and target image are pictured
with a different modality, a multi-model registration has to be used, leading to
different kinds of similarity measurements ( see figure 2.14 (right)). Examples for
single-modal similarities are the sums of squared differences, sum of absolute dif-
ferences, correlation and the normalized cross correlation. For multi-modal image
registration, intensity remapping or gradient correlation can be used.

Figure 2.14: Image registration: Source and target image recorded with the
same modality (left) and with different modality (right) [10]

2.3 The Human Eye
The basics of this chapter are adapted from [7].
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Figure 2.15: Schematic diagram of the human eye [16]

Because of the importance of the eye – as one of the five sensory organs of the
human body – in our everyday life, it is mandatory to understand every single
detail of it and to therefore keep researching on it. When it comes to the progress
of seeing, the retina plays a significant role since it contains the sensory cells and
neurons that are responsible for converting and forwarding a light beam to the
brain. As can be seen in figure 2.15, the retina is the most inner layer of the eye.
After the light has entered the eye through the pupil, it gets refracted onto the
retina, where our photoreceptor cells – the cones and rods – are embedded. The
retina itself consists of ten layers (see figure 2.16 (from front exterior to back of
the head)):

• Inner limiting membrane (Membrana limitans interna, ILM)

• Nerve fiber layer (Stratum neurofibarum, NFL)

• Ganglion cell layer (Stratum ganglionare fasciculi optici, GCL)

• Inner plexiform layer (Stratum plexiforme internum, IPL)

• Inner nuclear layer (Stratum nucleare internum, INL)

• Outer plexiform layer (Stratum plexiforme externum, OPL)

• Outer nuclear layer (Stratum nucleare externum, ONL)

• External limiting membrane (Membrana limitans externa, OLM)

• Layer of rods and cones (Stratum neuroepitheliale retinae)

• Retinal pigment epithelium (Stratum pigmentosum retinae, RPE)

22



2.3. The Human Eye

The retina consists of three consecutively connected neurons: photoreceptors, bipo-
lar cells and the ganglion cells. The incoming light beam passes through all the
retinal layers until it reaches the photoreceptors (first neuron). The photorecep-
tor layer in the retina periphery consists of rods and cones. The retina contains
about 7 million cones and about 120 million rods. The second neuron consists of
bipolar cells, which are part of the INL. After the bipolar cells receive the signal
from the photoreceptors, they process it to the ganglion cells. The third neuron is
formed by the ganglion cells, whose axons meet at the papilla. From there, they
build the optic nerve from which the visual information is transmitted to the brain.

Within the retina there are two characteristic points: the optic nerve head (ONH)
and the fovea centralis. The fovea centralis is a small pit in the center of the
retina that contains no vessels. The pit is called Foveola and contains only cones.
Because of the highest density of photoreceptors in the fovea, it is the point of
sharpest vision. The cones are responsible for color vision, as there are three types
of cones for red, green and blue. In contrast, the ONH is the point with no vision
at all. It is not only the exit point for the ganglion cell axons but also the entry
point for the major blood vessels that supply the retina.

The vessels that enter the retina through the ONH are the arteria centralis reti-
nae and the vena centralis retinae. The arteria centralis retinae arises from the
arteria opthalmica and is responsible for the blood supply from the inner retinal
layer to the INL (included). It branches out into the NFL. Since the retinal ar-
terioles are auto-regulated, they adjust their vessel diameter and hence the blood
perfusion, depending on the demands. The vessel diameter is increased if a CO2-
accumulation or an O2-shortage occurs. The outer retinal layer is provided by the
arteriae chorioideae.
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Figure 2.16: Schematic cut through the retina and the choroid [7]

Figure 2.17: A B-scan of the retina recorded with an OCT compared to the
histological retinal structure [7]

Glaucoma:

The participating patients of the research studies for which the retinal perfusion
parameters were calculated (see chapter 3.3.5) suffer from the eye illness glaucoma.
Glaucoma is one of the most frequent reasons for blindness. Because of glaucoma,
around 6.7 million people go blind per year all over the world [7]. It is the sec-
ond most frequent reason for blindness in industrial countries and in developing
countries.
The glaucoma is defined as a potentially progressive and characteristic optic neu-
ropathy, that can lead to visual field defects if the harm continues. The intra-ocular
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pressure is the modifying key factor in the course of this disease. The diagnosis of
the glaucoma is based on morphological aspects such as the vitality of the margin,
the visibility of nerve fiber failures, the presence of papilla-margin-perfusion and
the functional examinations with the help of computational perimetry. Further-
more, it is based on morphometric medical findings, which currently are mainly
gained with the help of SD-OCT. The peripapillary NFL thickness was found to
be an important indicator for the diagnosis of glaucoma some years ago. Recent
commercial devices have the ability to measure the margin thickness. Clinical
studies have shown that the vessels which provide the NFL and their perfusion
play an important role in the pathophysiology of the glaucoma. It has been shown,
for example, that people with low blood pressure have a higher risk to develop a
glaucoma than people with a normal blood pressure [12]. With OCT, it is possible
to gain 3D vessel architecture within the NFL.

For an ongoing research study, data was provided to examine whether there is a
correlation between the vessel density and the NFL thickness in the cross section.
Patients with a notch-sign (localized nerve fiber breakdown on the edge of the
papilla) are imaged with the help of SD-OCT and OCT-A. The determination
of the NFL thickness to vessel density proportion could also give information on
whether the damaging of the vessels appears before the damaging of the NFL or if
this correlation is vice versa. This question is currently not clarified and is essential,
but missing information about the pathophysiology of the glaucoma. Therefore,
the NFL-thickness was calculated with the help of the retinal layer segmentation
(see chapter 3.3.2). Furthermore, microvascular perfusion parameters were defined
and calculated (see chapter 3.3.5).
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3 Methodology
The images of the retina used for developing and testing the segmentation algo-
rithms in this thesis were imaged with a SS-OCT by Laurin Ginner. The imaged
persons are participants of various medical research studies. The data process-
ing has been performed retrospectively and only anonymized patient data was
accessible. Depending on the research study, only one or both eyes were imaged.
Furthermore, some patients were imaged with two different Field of View (FOV)
settings. Before the retinal perfusion parameters can be calculated, several image
processing steps have to be made.
In this chapter, these necessary steps are explained in detail. Furthermore, it cov-
ers how the theoretical aspects described in chapter 2 are applied on the SS-OCT
data. Before the image processing methods are described, the general workflow
and the used SS-OCT are described in detail. At the end of this chapter, the
perfusion parameters are introduced.

3.1 Workflow
To obtain the microvascular parameters for the research studies, several steps have
to be made after the imaging of a patient. The general workflow from the imaging
of the patient to the microvascular parameters is described below.
The raw anonymized OCT data have been used in the post-processing. On the
OCT files, the k-mapping and the Fourier Transform are applied with the help of a
LabView algorithm, whereby the measured 1600 B-scans (four images at 400 lateral
positions) are gained with a resolution of 1600x400 pixels. After that, these 1600 B-
scans are combined into a tomogram from which the speckle variance angiography
is calculated with the help of a Matlab algorithm, resulting in a 1600x400x400
matrix. For this purpose, the four images recorded at the same lateral position are
merged into one image by calculating the mean value of them. In the next step, the
projection of the angiography is calculated with Matlab, so that the quality of each
measurement can be rated more easily. For the evaluation of the image quality,
each angiography projection has to be analyzed in detail. Afterwards, the images
with the highest axial resolution are gained from the measurement with the best
quality only, since processing all measurements from a patient would be very time-
consuming and would take a lot of disc space. On these images, the shortest path
algorithm coded in Matlab is applied in order to get the retinal layer segmentation.
The retinal layers can be converted so that they fit the corresponding angiography.
With the help of the retinal layer segmentation, the noise above the retina and
the layers that are not desired for the research study can be removed from the
angiography. After the maximum projection of the segmented angiography has
been calculated, the vessel segmentation algorithm coded in Matlab can be applied.
The last applied algorithm coded in Matlab removes the segmented vessels, divides
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the maximum projection or 3D stack into clusters and calculates the microvascular
parameters of the desired retinal layers within each cluster.

3.2 OCT
3.2.1 OCT System Setup
The images used for the medical image processing are recorded with the SS-OCT
setup as described in the thesis by Laurin Ginner [6]. In figure 3.1, the optical
setup of the used OCT can be seen.

Figure 3.1: Schematic of the OCT setup. The red and blue lines show the path-
way of the two beams [6]

It is a dual beam Doppler OCT system with a swept source, which operates at
a center wavelength of 1050nm. The used swept source is a multiplex source
by Axsun (A1300467) with an A-scan frequency of 200kHz and a bandwidth of
105.62nm. Thus, the axial resolution is around 5µm in air. A fiber couple (FC)
with a coupling ratio of 50:50 splits the light from the swept source into two beams.
Each of this beam is split again by a fiber coupler with a coupling ratio of 40:60,
leaving 40% of the intensity for the sample arm and 60% for the reference arm.
Afterwards, the sample beam passes through a Dove prism so that the beam can
be rotated by 360°, followed by a galvo scanner, which is able to scan over a
maximum of 16° field of view (FOV) horizontally and vertically. Next, the sample
beam travels to the eye. The reflected beam from the eye and the reference beam
interfere and are detected with a detector by Exalos (EBR37000x-01), which is
a dual-balanced detector. To match the coherence window with the sample arm,
the reference arm is axially movable. To get rid of the dispersion of the reference
beam, it travels through a dispersion compensating glass prism. A telescope (L3
and L4) with an angular magnification of 1.5 times is placed in the sample arm,
which enables a spot size on the retina of 25µm, from a beam with a size of about
1.3mm at the cornea. Each beam has a total power of about 1.2mW at the cornea,
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giving a sensitivity of about 94dB. This is consistent with the ANSI standards
safe exposure limits. For digitalizing the signal, a 12bit analog-to-digital converter
ATS9350 from Alazartech with a sample rate of 250MSamples/s is used. The 12
Bit binary spectral information is stored in OCT files. These files also include a
header with the information on the scanning angle, remapping and other notations.

3.2.2 Swept Source OCT
For a SS-OCT system, a fast tunable laser source is needed. Therefore, a SS-OCT
system with an integrated swept source from Axsun(A1300467) is used. It is a
multiplex swept source that consists of two interleaved lasers, each operating at
100kHz. They can sweep alternatingly so that after the sweep of the first laser
is done, the forward sweep of the other laser continues, while the backsweep of
the first laser gets suppressed. With this method, a duty cycle of nearly 100% is
reached, allowing the frequency of 100kHz to be doubled to 200kHz. This behavior
is illustrated in figure 3.2: The left curve shows the timing of the single source,
where the backsweep is suppressed after the first sweep. The right curve shows the
two interleaved sources, where the second source jumps in while the backsweep of
the first source is suppressed.

Figure 3.2: The sweep structure of the used Axsun laser [6]

In order to get the depth-profile, a Fast Fourier Transformation (FFT) needs to
be applied, leading to two images from each sweep. These can be interleaved in
post-processing. Due to the increase of the A-scan rate from 100kHz to 200kHz,
the lateral sampling can be doubled, leading to improved imaging performance.
The swept source has a central wavelength near the infrared at 1050nm and a
sweeping broad bandwidth of 105.62nm, leading to an axial resolution of 5µm in
air.
With a method based on splitting the optical spectrum, the SS-OCT system fur-
ther increases the acquisition speed and spatial sampling without increasing the
measurement time. For this split-spectrum approach, the recorded spectra are
split into two sub-spectra, each with half the optical frequency (see figure 3.3).
The spectra are recorded over time by using continuous laser scanning in fast axis
direction. The scanner records at a lateral position with the first half of the spec-
trum. During the recording with the other half of the spectrum, the scanner is
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already located at another lateral position.

Figure 3.3: Split spectra approach [6]

This allows to double the FOV from 8◦ with the 100kHz acquisition to 16◦ with
the 400kHz acquisition. Due to the spectral splitting, the bandwidth of each sub-
spectrum is 52.81nm, while preserving the same sampling density. This decreases
the axial resolution to 10µm (see equation (2.13)).
The 100kHz acquisition (one sweep) has 400 lateral sampling points, while the
200kHz acquisition (two sweeps) has 800 sampling points and the 400kHz acquisi-
tion (split-spectra) has 1600 sampling points. The acquisition time is 7.8 seconds.
Thus, the split spectra approach increases the number of lateral sampling by a
factor of four, allowing it to increase the FOV to 16◦ without any resolution and
contrast losses. The image intensity is saved as an unsigned 16bit TIF file. Further-
more, the angiography can be calculated by applying the speckle variance method
described in chapter 2.1.4. The difference in results from the three explained
methods can be seen in figure 3.4 on an OCT angiography maximum intensity
projection.
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Figure 3.4: Images recorded around the Fovea with different sweep structures:
(a) Standard 100 kHz SS-OCT with 8◦ FOV, (b) 400kHz acquisition
with 16◦ FOV and (c) the 8◦ FOV section of the 16◦ FOV image.
The latter shows the same vessel structure with a better SNR [6]

3.2.3 Remapping
The basic remapping theory is adapted from [6] and [5]. To obtain the depth
profile (A-scan) in FD-OCT, a Fourier transformation has to be applied to the
optical spectrum of the interference at the output of a Michelson interferometer.
In the A-scan, the structural information can be observed. With the help of the
Fourier transformation, the physical distance z can be related with the wave num-
ber (k = 2π/λ). After Fourier-transforming, a depth-dependent broadening of the
coherence peak can be observed, which destroys the exact depth position. This
broadening occurs due to the fact that the spectra obtained with FD-OCT does
not necessarily have to be evenly spaced in k-space. Therefore, the data has to
be preprocessed before the FFT can be applied in such a way that it is evenly
spaced in k-space, which is called remapping. For this purpose, the wavelength
requires an accurate assessment to each corresponding spectral element so that the
depth coordinate relates to a specific wavelength. Based on the research of A. F.
Fercher and R. Leitgeb, Wojtkowski et al. were the first to notice the importance
of proper wavelength assignment for SD-OCT [17]. One method for remapping
is to perform a separate measurement of a reflective surface at different positions
in the sample arm while another method is to impose a known modulation onto
the spectrum, which can be used for calibration. Another possibility is using a
hardware-k-triggering.

In the SS-OCT that imaged the used images, the reference interference pattern is
measured with a single reflector in the sample arm. The Hilbert transformation
is applied to this interference pattern, which allows getting its phase signal. Af-
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terwards, a spectral interval can be selected with an almost linear phase change.
This interval is used in order to get a spectrum that is evenly spaced in k-space.
This way, the axial resolution can be regained.

Since the used SS-OCT system uses different lasers for each sweep, the remapping
has to be calculated separately for each sweep. Furthermore, each sweep is split
into two halves which also need to be remapped separately. Hence a Hilbert
transformation is applied to all four spectra and an almost linear phase change
section is selected. This way, each sweep can be remapped separately.

Figure 3.5: No remapping vs proper remapping: Without remapping, a broad-
ening of the depth structure appears, which makes it impossible to
get the exact depth position [6]

3.3 Image Processing
This chapter describes how the theory of each image processing step (see chapter
2.2) is applied to the images recorded with the SS-OCT. Furthermore, some steps
of the programmed algorithm are explained in detail. For a better understanding
of the following chapter, the pixel indication used in Matlab is shown in figure 3.6.
Matlab uses a pixel coordinate system in which the images are treated as a grid of
discrete elements. It is arranged from top to bottom and from left to right. The
coordinate of a pixel uses the notation (row,column). In a 3D array (see figure
3.7), a pixel has the coordinate (row,column,page).

Figure 3.6: Matlab pixel coordinates notation [15]
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Figure 3.7: Matlab Multidimensional Arrays: To access e.g. the element in the
second row, third column of page 2, the subscription (2,3,2) is used
[15]

3.3.1 Image Registration
A disadvantage of in vivo measurements are motion artifacts in axial and lateral
directions obtained by movements of the patients. For a correct calculation of
the variance for the angiography (see equation 2.16), the motion artifacts have to
be removed. Also when calculating the microvascularity parameters (see chapter
3.3.5), the results would not be accurate if the lateral displacement was not back-
shifted. In order to deal with these motion artifacts, a subpixel image registration
algorithm by Manuel Guizar-Sicairos et al. is used [8]. The algorithm obtains
an initial estimate of the crosscorrelation peak by an FFT (fast Fourier Trans-
form). Afterwards, it refines the shift estimation by upsampling the DFT (discrete
Fourier transform) only in a small neighborhood of that estimate by means of a
matrix-multiply DFT. The algorithm is used on the angiography B-scans before
the variance is calculated. They have a lateral resolution of 1600px and an axial
resolution of 400px. Since 1600 B-scans are recorded, a 1600x400x1600 px matrix
is gained. The image registration algorithm is used on the data two times, once
for the lateral displacement and once for the axial displacement. The result are
one lateral and one axial displacement vector. The 200th B-scan has been cho-
sen as a reference image for the lateral displacement. The lateral displacement
vector indicates how much each B-scan has to be shifted laterally in relation to
the reference image. A pixel with the coordinate (m,n,o) gets the new coordinate
(m,n - lateralShift,o) for a negative shift, while it gets the new coordinate (m,n
+ lateralShift,o) for a positive shift. Therefore, a negative shift implies a shift
to the left, while a positive shift implies a shift to the right. After the lateral
shift, the B-scan size increases to (1600 + |minimum negative shift| + maximum
positive shift)x400x1600px. Instead of a specific reference image, the algorithm
for the axial displacement always uses the prior B-scan as reference image. Hence,
the axial shift for a pixel is the difference axialShift = m2 - m1, with (m2,n2,o)
as the coordinate for the registered pixel and (m1,n1,o-1) as the coordinate of the
correlated pixel from the prior B-scan. The new coordinate of a pixel after reg-
istration for a positive shift is (m + axialShift,n,o), while the new coordinate is
(m - axialShift,n,o) for a negative shift. This means that a positive shift is a shift
downwards in relation to the prior B-scan, while a negative shift is a shift upwards
in relation to the prior B-scan.
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3.3.2 Retinal Layer Detection
One aim of this thesis was to find the retinal layer boundaries shown in figure 3.8.

Figure 3.8: Segmentation Layers: Vitreous - Nerve Fiber Layer, Nerve Fiber
Layer - Ganglion Cell Layer, Inner Boundary of Inner Segment -
Outer Segment, Retinal pigment epithelium - Choroid

Since the eye is spherical, the retina of the human eye is curved as well. Before the
retinal layer segmentation algorithm is applied to the images, a flattening algo-
rithm is used on the tomograms. This makes the retinal layer segmentation easier.
Furthermore, it is helpful to get an en-face cut of a single layer of the retina from a
tomogram. For the flattening the curvature is converted to a static depth position.
In order to do this, the maximum intensity position of the RPE over one B-scan
has to be detected and afterwards, a low order polynomial fitting of this position
is done. With the help of the local difference between the polynomial fitting curve
and the constant depth position, each A-scan of a B-scan can be shifted properly
[6].

For the retinal layer detection, a shortest path algorithm is used, which is based on
the paper by Pratul P. Srinivasan et al. [14]. The algorithm was implemented with
Matlab. The algorithm is applied on the B-scans measured with the 100kHz acqui-
sition, since they have a better axial resolution, as has been described in chapter
2.1.3. One measurement of an eye contains 1600 B-scans, where four B-scans are
recorded on the same position for more reliable results. Thus, after calculating the
mean of these four B-scans, a total of 400 B-scans remain. Since each B-scan of
the 100kHz data consists of 400x400 pixels, a 400x400x400 matrix for applying the
shortest path algorithm is obtained. One pixel corresponds to an uint16 (16-bit
unsigned integer) value depending on its gray scale value, where 216 is a perfect
white pixel and 0 a perfect black pixel. For applying the algorithm, nodes and
edges have to be applied (see chapter 2.2.1). One pixel corresponds to one node.
Since the segmentation code was programmed with the farthest left pixel (m,0)
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as the starting point, each pixel only gets edges to pixels above (m-1,n), below
(m+1,n), right above (m-1,n+1), right below (m+1,n+1) or right (m,n+1) to it.
Building edges to pixels left (m,n-1), left above (m-1,n-1), left below (m+1,n-1) of
it would not be consistent with the biological form of a retinal layer.

As has been described in section 2.2.1, an important step for solving the shortest
path problem is to calculate weighting factor wi,j for each edge with a function
that fits the problem in question. In the segmentation code, the same function
for calculating the weighting factor as in the paper by Srinivasan et al. [14] (see
equation 3.1) has been used.

wi,j = (2− (gi + gj)) + λs(|Ii − Ij|) + wv + wmin, (3.1)
where:

wi,j is the weight of the edge connecting nodes i and j,

gk is the normalized vertical gradient of the image at node k ε i,j,

λs is the ‘similarity factor’ weight,

Ik is the normalized intensity of node k ε i,j,

wv is the ‘vertical penalty’ term to add extra weight to edges going up, down,
or diagonally,

wmin is the minimum weight term (1 · 10−5) added for numerical stability

Due to the gradient term (2 - (gi + gj)), pixels with large vertical gradients are
preferred as a boundary between two retinal layers. To prefer boundaries with sim-
ilar or hardly changing intensity pixels, the similarity term λs(|Ii − Ij|) is added.
They are normalized linearly so that the pixel values lie between zero and one.
At last, a vertical penalty term wv is added in order to prevent the segmentation
from jumping between boundaries.

A path has to traverse edges from the leftmost column to the rightmost column of
the image. After calculating the weighting factors for all paths, the shortest path
is found according to equation 2.20 in section 2.2.1. This leads to the first retinal
layer boundary (Vitreous - NFL). Once the first boundary is segmented, it is used
to limit the search space for the missing layer boundaries. Now the shortest path
algorithm is applied again to find the next boundary. This process is repeated
until all desired layers have been found.
The informations gained by the layer segmentation are used for the ONH segmen-
tation to create a mask of the ONH (see chapter 3.3.3). After finding the ONH
mask, a second run of the retinal layer segmentation algorithm is applied. How-
ever, this time the algorithm isn’t applied to the ONH area, resulting in a more
accurate layer segmentation. The segmentation algorithm returns a 400x400 array
for each boundary. The element in the cell (i,j) of an array contains the position
measured from the top of the boundary for the j-th A-scan in the i-th B-scan. If
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the cell (1,2) of the vitreous - NFL boundary array contains e.g. the number 150,
it means that the position of the boundary in the second A-scan of the first B-scan
is at the 150th pixel measured from the top.
As has been described in chapter 2.3, the determination of the NFL-thickness can
play an important role for patients with Glaucoma. The NFL-thickness along the
whole tomogram can be calculated by building the difference between the vitreous
- NFL boundary and the NFL - GCL.

3.3.3 Optic Nerve Head Segmentation
Not only does the retinal layer segmentation algorithm have its weakness in the
area around the optic nerve head (ONH), but also do later perfusion parameter
calculations require the exclusion of the ONH. The algorithm of the ONH segmen-
tation is applied after the first retinal layer segmentation run. The shortest path
algorithm returns a rather linear transition over the ONH area of the vitreous -
NFL boundary. This behavior is used for the ONH segmentation. The algorithm
looks at every pixel (z+1,j) over the whole B-scan, with z as the depth position of
the vitreous - NFL boundary and j = 1,2...,400 (lateral B-scan size), i.e. the pixel
under the boundary. If this pixel has an intensity beneath a certain threshold, it
is assumed that there is no retinal structure but the ONH area. The threshold
is used to get rid of noise which is under the vitreous - NFL boundary, although
there are still some outliers. To get rid of these outliers, a clustering algorithm
(see chapter 2.2.2) is applied to find the biggest cluster (see also chapter 3.3.4),
which is assumed to be the ONH. After applying some morphological functions,
the algorithm takes all gathered pixels, calculates its centroid and shapes a circle
with an area equal to all gathered pixels and the centroid as its center. This circle
is assumed to be the ONH mask. This leads to a 400x400px mask.
As a second approach, a semi-automatic method has been programmed. For self-
chosen images, the en face image is shown and one can drag a circle around the
ONH, creating a mask for its exclusion. This approach was used for images with
bad quality.

3.3.4 Major Vessel Segmentation
The segmentation of the major vessels is required due to their high intensity and
the shadow they produce, which disturb the perfusion parameter calculations. The
major vessel segmentation algorithm uses the en face maximum projection image of
the retinal angiography. It is resized into a 800x800px image, where each pixel has
a value between 0 and 216, representing the intensity. In the first step, an intensity
threshold T is applied to the image, as the vessels have a higher intensity on the
angiography than the microvascular structures do. To determine the threshold,
the mean value of the intensities is calculated. Next, a cluster method as has been
described in chapter 2.2.2 is applied. To initialize this cluster method, the first
non-zero value pixel from the top left corner is put into the cluster C1. A pixel
(i1,j1) with the intensity I fits into the cluster Cn if the following criteria apply to
any pixel (i,j) that is already in Cn:

35



3. Methodology

• | i - i1 | = 1 ∨ | i - i1 | = 0 ∧ | j - j1 | = 1 ∨ | j - j1 | = 0

• I > T

After all the pixels belonging to the first cluster have been found, this process is
repeated until all pixels are sorted into n clusters Cn. Afterwards, the group size
of each cluster, i.e. the number of pixels in each cluster, is calculated. Clusters
below a certain group size are cut out. Thereby, outliers are removed. In order to
find a satisfying intensity threshold and group size threshold, various multiples of
the mean value are combined with various group sizes. The results of the different
combinations are saved for each patient. By doing so, the best combination of
intensity and group size threshold can be found.

3.3.5 Microvascularity Perfusion Parameters
To examine the question whether there is a correlation between the density of
microvascular structure and the NFL-thickness, measurement parameters for the
microvascularity have to be defined. The parameters from the paper of Chieh-Li
Chen et al. have been used [4]. Chen et al. defined three parameters for cal-
culating the perfusion in the optic nerve head, namely flux, vessel area density
and normalized flux. In this thesis, the same parameters have been used but ap-
plied to the area around the optic nerve head and the fovea. Furthermore, the
formulas have been expanded from two dimensions into three dimensions, making
comparisons between the 3D data and their maximum projection possible. For the
research studies, other parameters such as O2-saturation have been measured in a
specific area by the doctors running the research study. The goal was to calculate
the perfusion parameters in the same area in oder to make the results comparable.

For a 2D image the perfusion parameters are defined as follows:

Flux =

∑
(x,y)εArea

IFlow(x,y)
216

Area
(3.2)

IFlow(x,y) is defined as the maximum projection along each A-scan of the angiogra-
phy intensity values. To normalize IFlow(x,y), it is divided by 216 since the loaded
image data are uint16 (unsigned integer with 16 bits), giving the values a range
between 0 and 216. Depending on the research study, these parameters are calcu-
lated for a different chosen area. For one research study, the area corresponds to
a circle with a chosen radius that fits the measured NFL-thickness area, while for
another research study, the radius is chosen that fits the measured O2-saturation
area. The center of this circle is in the center of the calculated ONH mask or in
the center of the fovea. Furthermore, the ONH itself or the center of the fovea is
excluded from the area.
The vessel area density is the ratio of the area with vessels to the total area.
To differentiate the vessels from noise, only flow signal intensities over a certain
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threshold value were taken into account. The threshold was selected by calculating
the first minimum of the histogram from the angiographic signal intensities.

V essel Area Density =

∑
(x,y)εArea

v(x, y)Area

Area
,

v(x, y)Area =
1, if (x, y) is a vessel

0, otherwise

(3.3)

To calculate the flux within the vessels only, the IFlow(x,y,z) is multiplied with 1
or 0, depending on whether it is found to be a vessel or not (Eq. (3.4)). Thus, it
only takes IFlow(x, y) values into account that are defined as a vessel.

Normalized F lux =

∑
(x,y)εArea

IFlow(x,y)×v(x,y)Area

216∑
(x,y)εArea

v(x, y)
,

v(x, y)Area =
1, if (x, y) is a vessel

0, otherwise

(3.4)

For calculating the perfusion parameters on 3D data, mainly the area is changed
into a volume. The parameters are defined as follows. When evaluating the 3D
angiography data, IFlow(x,y,z) is defined as the angiography intensity values.
The volume flux (Eq. (3.5)) is defined as the mean flow signal intensity over a
volume within a certain radius (size as mentioned above).

V olume F lux =

∑
(x,y,z)εV olume

IFlow(x,y,z)
216

V olume
(3.5)

The percentage of vessels within the chosen volume is calculated using the vessel
volume density ((3.6)).

V essel V olume Density =

∑
(x,y,z)εV olume

v(x, y, z)V olume

V olume
,

v(x, y, z)V olume =
1, if (x, y, z) is a vessel

0, otherwise

(3.6)

The normalized volume flux in equation 3.7 is defined as the flux within the vessels
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over the whole volume.

Normalized V olume F lux =

∑
(x,y,z)εV olume

IFlow(x,y,z)×v(x,y,z)V olume

216∑
(x,y,z)εV olume

v(x, y, z)
,

v(x, y, z)V olume =
1, if (x, y, z) is a vessel

0, otherwise

(3.7)

As requested by the doctor running the research study, the 2D and/or 3D values
were calculated. Furthermore, these parameters were not calculated over the whole
image but instead, the image itself was subdivided into a certain amount of clusters
as requested by the doctors of the research studies. For each of these clusters, the
parameters were calculated separately.
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4 Results and Discussion
This chapter contains the results of the data acquired with the help of the al-
gorithms that are described in chapter 3. Not all research studies for which the
algorithms were developed have been finished yet. Therefore, this chapter con-
tains information on how well the algorithms have worked on the data, plus a few
given examples. The sole research study that has already been published (effective
September 2018) is about regional patterns of retinal oxygen saturation by Julia
Hafner et al. [9].

4.1 Image Registration
As has been described in chapter 3.3.1, the image registration was applied to the
images gained with the 400kHz acquisition before calculating the speckle variance
in order to compensate movement artifacts. In figure 4.1 a), a maximum projection
of the retina around the ONH with lateral motion artifacts can be seen while in
figure 4.1 b), the same image can be seen after all B-scans have been shifted
according to the lateral displacement vector, which was calculated with the image
registration algorithm.

Figure 4.1: En face maximum projection of the angiography gained with the
400kHz acquisition before (left) and after (right) shifting the B-scans
with the lateral and axial displacement vectors.

This example illustrates how important the image registration is in order to get
a clear view of the vessel structure. With the help of the algorithm, the affected
regions were shifted laterally and axially. In figure 4.2, the lateral (a) and axial (b)
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displacement vector of the image in figure 4.1 can be seen. The different pattern
of these vectors results in the differently used reference image. While the lateral
displacement is calculated regrading one specific B-scan, the axial displacement
always uses the prior B-scan. All in all, the algorithm worked very well on the
used data.

Figure 4.2: Lateral (left) and axial (right) displacement vector from the shown
example in figure 4.1.

4.2 ONH Segmentation
After applying the ONH segmentation algorithm on the maximum projection of
the angiography as described in chapter 3.3.3, a 400x400px mask has been gained.
While a pixel with the value 1 (white) indicates that it is a part of the ONH, a
pixel with the value 0 (black) is not. This mask can be used to get rid of the ONH,
as figure 4.3 shows. Furthermore, a comparison between the original ONH mask
and the reshaped ONH mask after the morphological functions have been applied
can be seen in figure 4.4.
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Figure 4.3: En face maximum projection of the angiography gained with the
400kHz acquisition without (left) and with (right) ONH segmenta-
tion.

Figure 4.4: An example of an ONH mask calculated with the ONH segmentation
algorithm (left) and the same ONH mask after the application of the
morphological functions (right).

4.3 Retinal Layer Segmentation
For the purpose of retinal layer detection, the algorithm described in chapter 3.3.2
was used on the B-scan images recorded with the 100kHz acquisition. The quality
of the results of the retinal layer segmentation depends highly on the quality of
the images. Taking a look on the equation 3.1 in chapter 3.3.2 for calculating
the weighting factor for the shortest path algorithm, the vertical penalty wv can
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be chosen freely. To find the best value of wv for the faced problem, the layer
segmentation was tested on some data set. The algorithm was applied with various
wv values to each test data set. Afterwards, the test results were inspected to find
the most fitting value. It was found that the retinal layer segmentation was the
most accurate with a value of wv = 0.25.
Depending on the aim of the study, different layer segmentations were required.
For the research study of Julia Hafner et al. [9], the layers beginning with the
NFL to the RPE are needed. An example of the layer segmentation on a B-scan
measured around the fovea with the 100kHz acquisition used for this research study
can be seen in figure 4.5.

Figure 4.5: Retinal layer segmentation on B-scan acquired with the 100kHz ac-
quisition. The red line shows the vitreous - NFL boundary, while the
orange line shows the RPE - choroid boundary as detected by the
segmentation algorithm.

The red line indicating the Vitreous-NFL boundary can be detected very accu-
rately, since the gradient of the measured intensities is very high in this area. In
some cases, the image quality decreases on the edges of the B-scans, resulting in
a bad segmentation in this area. The orange line indicating the RPE-Choroid
boundary can be detected precisely. For this research study, the important in-
formation about the retina is located between the Vitreous-NFL and the RPE-
Choroid boundary. Since on these two boundaries the algorithm worked the best,
the overall results were highly satisfying.
For the calculation of the NFL-thickness, the NFL-GCL boundary has to be found.
This boundary can be seen as a blue line in figure 4.6. It has its weak points in
the vessel area, sometimes jumping away from the boundary, since the shadow of
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the vessels disturbs the gradient based segmentation algorithm. Sometimes when
the measured intensity of the NFL decreases on the edges, the blue line jumps
down to the next layer boundary. This problem can be solved most of the time by
increasing the vertical penalty to wv = 0.5.

Figure 4.6: Retinal layer segmentation on B-scan acquired with the 100kHz ac-
quisition. The red line shows the vitreous - NFL boundary, while
the blue line shows the NFL - GCL boundary as detected by the
segmentation algorithm.

In figure 4.7, the maximum projection of the angiography around the ONH can
be seen before and after the layer segmentation. Since the noise above the retina
is gone and the choroid is cut out, the image quality improves. Furthermore, the
parameters for the 2D and 3D retinal perfusion are less influenced by noise.
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Figure 4.7: En face maximum projection of the angiography gained with the
400kHz acquisition before (left) and after (right) the layer segmen-
tation

In figure 4.8 a comparison of the retinal layer segmentation between a B-scan
acquired with the 100kHz acquisition and an angiography B-scan gained with the
400kHz acquisition can be seen.

Figure 4.8: (a) B-scan acquired with 100kHz acquisition, (b) Retinal layer seg-
mentation on B-scan acquired with 100kHz acquisition, (c) B-scan
acquired with 400kHz acquisition, (d) Mask of the NFL on the B-
scan acquired with the 400kHz acquisition
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4.4 Major Vessel Segmentation
As has been described in chapter 3.3.4, the vessel segmentation algorithm is applied
on the en face maximum projection of the angiography after the layer segmentation.
It uses different combinations of intensity and cluster size threshold. Figure 4.9
shows the influence of the change of these parameters. The image on the left shows
a good vessel segmentation with an intensity threshold high enough to get rid of
the microvascular structure and a cluster size threshold low enough so that no
vessels are cut out. Furthermore, the cluster size threshold has to be high enough
to eliminate the outliers of the microvascular structure that have a higher intensity
than the threshold. In the middle image, the loss of vessels can be observed when
the cluster size threshold is too high. On the right side, the intensity threshold is
not high enough to separate the vessels from the microvascular structure.

Figure 4.9: Different vessel parameters for the major vessel segmentation:
Left: Intensity threshold: mean intensity value * 1.2, cluster size
threshold: 30,
Middle: Intensity threshold: mean intensity value * 1.2, cluster size
threshold: 300,
Right: Intensity threshold: mean intensity value * 1, cluster size
threshold: 30.

The angiography used for this example can be seen in figure 4.10 on the left side.
The image on the right side shows the final result without the ONH and the vessels,
making it suitable for the calculation of the microvascular perfusion parameters.
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Figure 4.10: En face maximum projection of the angiography gained with the
400kHz acquisition before (left) and after (right) the major vessel
and ONH segmentation

4.5 Retinal Perfusion
4.5.1 Comparison of NFL-thickness and retinal perfusion research study
The research study of Dr. Christoph Mitsch for which an algorithm was pro-
grammed along with the master thesis is still ongoing. This study examines
whether there is a correlation between the NFL-thickness and retinal perfusion
or not. The algorithm was tested on the data of participating patients that have
already been imaged to see if the proof of principle can be verified with the avail-
able concept. The result of the tests on the existing data has shown that with
the help of the algorithm, this issue can be examined. However, only five pa-
tients have been measured yet, which is not enough to present statistical results
in this chapter. For the proof, only the segmented NFL was taken into account
while the rest of the retina was excluded. Afterwards, the maximum projection
of the remaining angiography was calculated and the major vessels and the ONH
were excluded. After these exclusions, the image was subdivided in 6 divisions
as is shown in figure 4.11. With the help of the layer segmentation algorithm,
the average NFL-thickness can be calculated for each subdivision. Furthermore,
the retinal perfusion parameters as described in 3.3.5 can be calculated for each
subdivision and can be correlated with the corresponding NFL-thickness.
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Figure 4.11: Cluster division for the research study by Dr. C. Mitsch

The microvascular perfusion parameters calculated for the shown example are
listed in table 4.1. A comparison of the results of each division with the corre-
sponding division in the figure shows that the microvascular perfusion parameters
are reliable to reflect the actual situation. The nasal inferior, temporal inferior and
temporal divisions with the least microvascular structure have the lowest values
of the parameters, while the temporal superior and nasal superior divisions have
a very dense microvascular structure with the highest parameter values.

Table 4.1: Microvascular perfusion parameters measured in six divisions: tempo-
ral superior (TS), nasal superior (NS), nasal (N), nasal inferior (NI),
temporal inferior (TI), temporal (T)

Division Flux Vessel Area Density Normalized Flux
TS 0.1150 0.9901 0.1161
NS 0.0947 0.9921 0.0955
N 0.0818 0.9882 0.0828
NI 0.0735 0.9927 0.0740
TI 0.0691 0.9930 0.0696
T 0.0749 0.9918 0.0755

Figure 4.12 shows the correlation between the calculated flux and the NFL-thickness,
which was calculated from the segmented retinal layers (see chapter 3.3.2). The
positive slope of the regression lines shows that the higher the flux, the higher the
NFL-thickness. The only exception with a negative slope is patient 4.
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Figure 4.12: Correlation between the flux and the NFL-thickness calculated with
the layer segmentation of the five imaged patients.
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4.5.2 Retinal Oxygen Saturation and Microvascular Hemodynamic
Parameteres research study

Another algorithm was programmed for the study of Julia Hafner et al. [9]. The
purpose of this study was to investigate if retinal oxygen saturation (SO2) and mi-
crovascular hemodynamic parameters follow a distinct regional pattern in patients
with diabetes but without diabetic retinopathy.
For this investigation, not only the ONH region but also the region around the
fovea was imaged. The maximum projection of the angiography takes the retinal
layers between the vitreous-NFL boundary and the RPE-choroid boundary into
account. The images around the fovea were subdivided differently into four divi-
sions (see figure 4.13 (left)) such as the images around the ONH (see figure 4.13
(right)). Afterwards, the flux was calculated for each division.

Figure 4.13: Different cluster arrangements between the fovea images (left) and
the ONH images (right).
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Figure 4.14: Cluster parameter fovea

The conclusion of this study is that the SO2 differed significantly between the
quadrants while the peripapillary flux followed an increasing trend from nasal to
temporal, but demonstrated no significant regional variability.
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5 Conclusion
The aim of this thesis was to support doctors in their search for biomarkers in
the retina of the human eye. The discovery of biomarkers would help treat ill-
nesses like glaucoma, age-related macular degeneration or diabetic retinopathy in
an early stage or even before they occur. For that purpose, images of the retina
were acquired from several patients participating in research studies with the help
of a SS-OCT. The images were recorded by Laurin Ginner with the method he
described in his thesis [6]. All patient data has been anonymized and no personal
patient information was accessible for the master thesis. For this thesis, medical
image processing algorithms were developed for these images of the retina.
The needs of the doctors for their research studies were to gather the flux, the
vessel area density and the normalized flux of the retinal microvascular vessels,
parameters that have been defined in chapter 3.3.5.
The first step to acquire these parameters was to process all the measured raw
data into images. Because of the high number of measured patients, the already
existing algorithms for this purpose had to be improved and modified in a way
that allowed the processing to run automatically. Every patient from the research
study was imaged up to six times to ensure that images with a proper quality,
especially without motion artifacts, were available. In the first step, an algorithm
programmed with the software LabView was used to gather the angiography of all
measurements. After that, the maximum projection of the angiographies was cal-
culated to estimate the image quality of the measurement. This is important since
not all measurements of each patient could have been further processed because
of the processing time and the high capacity of disk space needed for the storage
of the data. To acquire the maximum projection, an image tool called ImageJ was
used. Since every maximum projection needed to be processed manually with this
tool, it would have been very time-consuming for a large amount of data. With
the help of the software Matlab, an algorithm was written which could acquire the
maximum projections of all needed data automatically. Once the measurement
with the highest quality was found, the images obtained with 100kHz A-scan rate
were processed with the help of an algorithm written in LabView. The images ob-
tained with 100kHz were used for the retinal layer segmentation because they have
a better depth resolution, making the segmentation more accurate. The algorithm
programmed for the retinal layer segmentation was also coded with Matlab. It is
a shortest path algorithm for which the cost function from the paper by Pratul
P. Srinivasan et al. [14] was used (see chapter 3.3.2). With the help of the layer
segmentation, the microvascular parameters were estimated in the desired layers
for the research study only. Furthermore, algorithms were implemented for the
segmentation of the ONH and the major vessels in order to get rid of the ONH
and the major vessels. After that, the calculation of the parameters (flux, vessel
area density and normalized flux) was applied to the microvascular structures only.
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The vessel segmentation was based on a clustering method.

Overall these algorithms worked out very well. Therefore, the required results
were provided satisfactorily for the research studies. However, the algorithms did
not work out well on images with bad quality. Since images with bad quality are
useless for research studies anyway, there was no need to focus on bad quality
images in this thesis.
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6. Outlook

6 Outlook
Since the retinal layer segmentation has its weak points in the area around major
vessels, a different approach for the segmentation could be considered. For this
thesis the vessels are segmented with the help of the maximum projections. Thus
only a 2D map of these vessels is gained. Another possibility for the vessel seg-
mentation could use every B-scan from the data set, where the cross section of
the vessels can be seen. The cross section of all vessels could be segmented with
the help of an active contour (or snake) algorithm. This segmentation technique
solves this task by minimizing an energy function. When all cross sections of each
vessels in every B-scan are segmented, a full 3D map of the major vessels can be
constructed. If the exact depth location of the vessels is known, this path of the
layer segmentation can be skipped, which may lead to a better layer segmentation.

The used cluster arrangement for the calculations of the microvascular parameters
as described in chapter 3.3.5 may not be best in terms of mathematics. Since it
is investigated whether there is a correlation between these parameters and the
NFL-thickness, it would be better if each cluster had the same size. With the
used cluster arrangement, minima and maxima could be overseen. Since some
clusters are relatively large, a cluster could contain a minimum and maximum,
leading to an average value. To find out whether another correlation between the
calculated perfusion parameters and the given parameters, such as O2 saturation
or NFL-thickness would change or not if the cluster arrangement is changed, the
given parameters have to be measured with the same arrangement.

The usage of the algorithms stated in this thesis requires advanced knowledge of
the softwares LabView and Matlab. If the coded algorithms were used for further
research studies, it would be a great help to develop a user-friendly interface. This
would give the doctors the possibility to gain the needed data by themselves, mak-
ing it easier to realize their research studies. Furthermore, the image processing
is highly time-consuming. To enhance the image processing speed, the algorithms
should be reprogrammed in another programming language such as C++ and fur-
ther use the fast processing speed of the GPU (graphics processing unit). It would
be best if the processing speed reached a point where the angiography images can
be observed close to real-time. This would allow to see if the imaging of a patient
was successful or if too much motion or blinking had destroyed the measurement
immediately after the recording.
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