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Abstract

This diploma thesis deals with the analysis and the numerical implementation of integration
schemes for evolution equations, as well as asymptotically correct defect-based local error
estimators. Recent work in [5] introduced the symmetrized defect for the linear, autonomous
Schrödinger-type evolution equation, which proved to be of a higher asymptotical order than
the well known classical defect, in the case of symmetric time-stepping. In [3] this result was
proven to hold true also for nonlinear and nonautonomous evolution equations. In this thesis
we recapitulate these results in a concise, but complete manner, whereby we set citations in
a more general then detailed way. After that, we apply them to established, as well as newly
constructed splitting schemes. To provide numerical verification of the theory, we consider
several linear/nonlinear, autonomous/nonautonomous model problems.

I declare that I have authored this thesis independently, that I have not used other than the
declared sources or resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.
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Chapter 1

Introduction

In many fields of natural sciences one encounters a class of differential equations, where the
system is modelled over time, called evolution equations. Their most general form discussed
in this thesis is the nonlinear, nonautonomous initial value problem,

d
dt
u(t) = F (t, u(t)), u(t0) = u0. (1.1)

Prominent representatives of an evolution equation are Schrödinger-type evolution equations,
which provide the explicit problems presented in this thesis. Since the complexity of the un-
derlying problem often does not allow an analytically determinable solution u(t) of (1.1),
we desire numerical methods that approximate that solution. These methods are called in-
tegration schemes. Although there exists a distinct number of different approaches, in this
thesis we explicitly focus on so called splitting schemes and defect-based schemes.
A splitting/defect-based scheme is a so called one-step integrator that approximates the ex-
act solution (at a certain time) one time step after another. Consistent one-step integrators
are asymptotically correct, i.e., the error converges to 0 if the time step goes to 0. The
thereby occuring convergence order is called the order of the integration scheme.
Since one should always try to keep the computational costs of a numerical method as low
as possible, we desire schemes of a high order, which allow to iterate over bigger time steps
with the same accuracy as lower order schemes. However, as often in computer science, in
general this comes with the trade-off of more complex formulas for higher order schemes. It
is one of our main tasks here to find ‘cheap’ integration schemes that still are of high order.
Another approach to lower the computational costs are adaptive algorithms that adjust the
step size of the integration scheme as indicated by so called defect-based local error esti-
mators. Altough we do not discuss adaptivity in this thesis, we intensely talk about the
classical defect, as well as the newly developed symmetrized defect associated with an in-
tegration scheme. In the case of symmetric integration schemes the symmetrized defect
proves to be of a higher asymptotical order than the classical defect. This was initially
discussed in [5] for the linear, autonomous Schrödinger-type evolution equation, while in [3]
this interesting result was proven to remain true also for nonlinear, nonautonomous evolution
equations. The key elements for the construction of the symmetrized defect are the funda-
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mental identity associated with an evolution equation and the Gröbner-Alekseev Lemma.
Furthermore, with the help of these defect-based local error estimators one is able to con-
struct defect-based integration schemes associated with a basic integrator of order p. We
call these schemes also the corrected schemes associated with an integrator. The classical
defect-based corrected scheme has order p+1, while (in the symmetric case) the symmetrized
defect-based scheme proves to be of order p + 2. In this thesis we apply these methods to
various splitting schemes with the objective of finding efficient one-step integrators.
We remark that in this thesis we develop integrators suitable for linear and nonlinear, au-
tonomous and nonautonomous evolution equations, thus covering a wide range of applica-
tions in natural sciences. In many cases efficient algorithms are presented, which allow a
general numerical implementation of the integration schemes applied to different problems.

Outline
In Chapter 2 we introduce the nonlinear evolution equation and its associated flow, along
with the important fundamental identity. We define general one-step integration schemes
of order p and give a notion of the classical and symmetrized defect associated with it. We
present and prove important properties of the defects and their corrected schemes. More-
over, since in Chapter 4 we consider a specific composition method, we introduce this class
of integrators in general form.
Within the next Chapter 3 we generalize the theoretical results from Chapter 2 for nonlin-
ear evolution equations in nonautonomous form. We do this by introducing relative time
into the problem (1.1). Thereby we show that here an adapted version of the fundamental
identity still holds true, which yields representations of the defects in the case of nonlinear,
nonautonomous evolution equations. An important part of this thesis is presented in the
end of that chapter, when we develop efficient strategies for the evaluation of (non)linear,
nonautonomous defect-based integration schemes. We also provide these in algorithmic form,
which allow a numerical realization on the computer.
The results from Chapters 2 and 3 are then applied to specific integration schemes in Chap-
ter 4. We consider linear, nonautonomous integrators in Sections 4.1–4.4, while in Sec-
tions 4.5 and 4.6 nonlinear, nonautonomous schemes are presented.
Ultimately in Chapter 5 we introduce four different problems to empirically verify the ex-
pected orders of all the integration schemes in this thesis. These problems are:

• A linear, nonautonomous Schrödinger equation with exact solution,

• the same kind of problem, but with a numerically computed reference solution, ap-
proximated on a very fine mesh with a higher order scheme,

• a cubic, nonlinear, nonautonomous Schrödinger equation with known solution,

• and the Rosen-Zener model with a numerical approximation, sufficiently close to the
unknown exact solution.

The numerical verifications of the theoretical results are presented in the form of convergence
tables. Additional informations left out of the previous chapters are found in the Appendix.
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Chapter 2

Problem specification and definitions

2.1 Nonlinear evolution equation

We follow [3, pp.2sqq.] and consider the nonlinear evolution equation

d
dt
u(t) = F (u(t)), u(0) = u0, (2.1)

and denote the exact flow associated with (2.1) by E(t, u), so that

u(t) = E(t, u0). (2.2)

Throughout this thesis we denote partial derivatives by ∂1 and ∂2, so that in case of the flow
E we write

∂1E(t, u0) := ∂
∂t
E(t, u0),

∂2E(t, u0) := ∂
∂u0
E(t, u0).

(2.3)

Then, by definition E(t, u0) satisfies

∂1E(t, u0) = F (E(t, u0)), E(0, u0) = u0. (2.4)

The basis for the subsequent constructions is the following fundamental identity, which, as
stated in [3, p.2], is a consequence of the first-order variational equation for E(t, u), see [10,
Theorem I.14.3].

Theorem 2.1.1 (Fundamental identity). As a consequence of the initial value prob-
lem (2.1) there holds the fundamental identity[

∂1E(t, u0) =
]
F (E(t, u0)) = ∂2E(t, u0) · F (u0). (2.5)
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Proof. An elegant proof for the identity (2.5) is given in [3, p.3] and originates from [8,
(3.7)]. We present in this thesis a different proof with similar argumentation: From the
definition of the flow (2.2) we derive

u0 = E(−t, u(t)), (2.6)

and

u(t) = E(t, E(−t, u(t))). (2.7)

From the identities (2.6) and (2.7) and the chain rule we obtain:

∂
∂t
u(t) = ∂

∂t

(
E(t, E(−t, u(t)))

)
⇔ ∂

∂t
u(t) = ∂1E(t, E(−t, u(t))︸ ︷︷ ︸

=u0

) + ∂2E(t, E(−t, u(t))) · ∂
∂t

(
E(−t, u(t))

)
⇔ ∂

∂t
u(t) = ∂1E(t, u0) + ∂2E(t, u0) · ∂1E(−t, u(t))(−1)

+∂2E(t, E(−t, u(t))) · ∂2E(−t, u(t)) · ∂
∂t
u(t)

⇔ ∂
∂t
u(t) = ∂1E(t, u0)− ∂2E(t, u0) · F (E(−t, u(t)))

+ ∂
∂u0

(
E(−t, E(t, u0))

)
· ∂
∂t
u(t)

⇔ ∂
∂t
u(t) = ∂1E(t, u0)− ∂2E(t, u0) · F (u0) + Id · ∂

∂t
u(t)

⇔ ∂1E(t, u0) = ∂2E(t, u0) · F (u0),

since

Id = ∂
∂u0

(
u0

)
= ∂

∂u0

(
E(−t, E(t, u0)

)
= ∂2E(−t, E(t, u0)) · ∂

∂u0

(
E(t, u0)

)
= ∂2E(−t, E(t, u0)) · ∂2E(t, u0) = ∂2E(−t, u(t)) · ∂2E(t, E(−t, u(t)).

This concludes the proof. �

2.2 One-step integrators

Throughout this thesis we consider various approximation schemes to the problem (2.1).
In [3, p.3] or [4, pp.183–184] they are defined as follows.

Definition 2.2.2. A one-step approximation scheme S(t, u) to the initial value problem (2.1)
with exact flow (2.4), with stepsize t and starting point (0, u0) is characterized by the property

S(t, u0) ≈ E(t, u0), S(0, u0) = u0.

We say that the scheme has order p, if the local error, defined by

L(t, u) := S(t, u)− E(t, u), (2.8)

satisfies L(t, u0) = O(tp+1), for t→ 0.
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2.3 Classical and symmetrized defect for one-step in-

tegrators

In view of defining defect-based a-posteriori estimators of the local error (2.8) we introduce
the classical defect and the symmetrized defect.

2.3.1 Classical defect

The defining property (2.4) of the flow justifies to define the so-called classical defect asso-
ciated with an integrator S.

Definition 2.3.3. Consider a one-step approximation scheme S of order p as introduced in
Definition 2.2.2. The classical defect associated with S(t, u) is then defined as

Dc(t, u) := ∂1S(t, u)− F (S(t, u)). (2.9)

Due to its construction, we at least expect Dc(t, u0) = O(tp).

Remark 2.3.4. One observes Dc(t, u0) = O(tp) due to:

Dc(t, u0) = ∂1S(t, u0)− F (S(t, u0))−
(
∂1E(t, u0)− F (E(t, u0))︸ ︷︷ ︸

= 0, due to (2.4)

)
= ∂1

(
S(t, u0)− E(t, u0)︸ ︷︷ ︸

=O(tp+1), due to Def. 2.2.2

)
−
(
F (S(t, u0))− F (E(t, u0))︸ ︷︷ ︸

=O(tp+1), due to F Lip.-cont.

)
.

//

The following theorem allows us to represent the local error in terms of the classical defect
via the so-called Gröbner-Alekseev Lemma, which is for instance also stated in [3, Theorem
1] and [10, Theorem I.14.5].

Theorem 2.3.5. In terms of the classical defect (2.9), the local error defined in (2.8) satisfies
the integral representation

L(t, u0) =

∫ t

0

∂2E(t− s,S(s, u0)) · Dc(s, u0) ds. (2.10)

Proof. A concise proof originating from [8] is given in [3, p.4], making use of the fundamental
identity (2.5), see Theorem 2.1.1. �

This representation provides a way to derive the proposition

L(t, u0) = t
p+1
Dc(t, u0) +O(tp+2).

We discuss this in detail in Section 2.4.
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2.3.2 Symmetrized defect

We first define the adjoint scheme to a given scheme, as well as self-adjoint schemes, see [11,
p.42].

Definition 2.3.6. Consider a one-step approximation scheme S as introduced in Defini-
tion 2.2.2. The adjoint scheme S∗ of S is defined as

S∗(t, u0) := S−1(−t, u0),

i.e., it is the inverse map of the original scheme with reversed time step −t.
S is called symmetric (self-adjoint, time-reversible), if

S∗(t, u0) = S(t, u0),

which implies

S(−t,S(t, u0)) = u0. (2.11)

Remark 2.3.7. We remark that the exact flow E(t, u0) is self-adjoint, i.e., E(−t, E(t, u0)) =
u0, which was a key element in the proof of Theorem 2.1.1. //

Self-adjoint schemes have some interesting properties, in particular they have even order p.
We state this property in the next theorem.

Theorem 2.3.8. Consider the exact flow E from (2.2) and a corresponding scheme S of
order p, as defined in Definition 2.2.2. Due to (2.8) we can write

S(t, u0) = E(t, u0) + C(u0)tp+1 +O(tp+2),

where C is a function not depending on t. The adjoint scheme S∗ of S has the same order
p and can be written as

S∗(t, u0) = E(t, u0) + (−1)pC(u0)tp+1 +O(tp+2).

Moreover, if S is self-adjoint it inevitably has even order p.

Proof. A proof of these properties is given in [11, Theorem II.3.2]. �

In this thesis we apply the symmetrized defect only to self-adjoint schemes S, since later
results depend on this property. However, it is justified to define the symmetrized defect for
arbitrary schemes. The fundamental identity (2.5) motivates its definition, introduced in [3,
p.6]
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Definition 2.3.9. Consider a one-step approximation scheme S as introduced in Defini-
tion 2.2.2. The symmetrized defect associated with S(t, u) is defined as

Ds(t, u) := ∂1S(t, u)− 1
2

(
F (S(t, u)) + ∂2S(t, u) · F (u)

)
. (2.12)

Due to its construction, we at least expect Ds(t, u) = O(tp).

Remark 2.3.10. In addition to Ds(t, u) = O(tp) we even have

Ds(t, u) = Dc(t, u) +O(tp+1),

which can easily be deduced due to the fundamental identity (2.5):

Ds(t, u) = ∂1S(t, u)− 1
2

(
F (S(t, u)) + ∂2S(t, u) · F (u)

)
=
(
∂1S(t, u)− F (S(t, u))

)
+ 1

2

(
F (S(t, u))− ∂2S(t, u) · F (u)

)
=Dc(t, u) + 1

2

(
F (E(t, u))− ∂2E(t, u) · F (u)︸ ︷︷ ︸

= 0, due to (2.5)

)
+ 1

2

(
F (S(t, u))− F (E(t, u))︸ ︷︷ ︸
=O(tp+1), due to F Lip.-cont.

)
+ 1

2

(
∂2E(t, u)− ∂2S(t, u)︸ ︷︷ ︸

=O(tp+1), due to Def. 2.2.2

)
· F (u)

=Dc(t, u) +O(tp+1).

//

Just as with the classical defect (see Theorem 2.3.5) the local error can also be expressed in
terms of the symmetrized defect, which is the statement of the following theorem.

Theorem 2.3.11. In terms of the symmetrized defect (2.12) the local error defined in (2.8)
admits the integral representation

L(t, u0) =

∫ t

0

∂2E( t−s
2
,S(s, E( t−s

2
, u0))) · Ds(s, E( t−s

2
, u0)) ds. (2.13)

Proof. A detailed proof following the idea of [10, Theorem I.14.5] is given in [3, Theorem
2]. The proof expands the ideas of the proof to Theorem 2.3.5 and also makes use of the
fundamental identity (2.5). �

2.4 Classical and symmetrized, defect-based local er-

ror estimator

The idea for the defect-based local error estimator is due to [5] and [4]. We recall the local
error integral representations in (2.10) and (2.13) and denote the integrands by Θ(s). We also
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set D(t, u0) = Dc(t, u0) and Ds(t, u0), respectively. Due to the construction of the defects,
we at least expect D(s, u0) = O(sp), so Θ(s) = O(sp). Consequently

L(t, u0) =

∫ t

0

Θ(s) ds ≈
∫ t

0

sp

p!
Θ(p)(0) ds = tp+1

(p+1)!
Θ(p)(0)

≈ t
p+1

Θ(t) = t
p+1
D(t, u0),

(2.14)

where ≈ means asymptotic approximation at level O(tp+2). Hence,

L(t, u0) = t
p+1
D(t, u0) +O(tp+2), (2.15)

for D(t, u0) = Dc(t, u0) and D(t, u0) = Ds(t, u0), respectively. In the following we show that
in the self-adjoint case and with the symmetrized defect there even holds

L(t, u0) = t
p+1
Ds(t, u0) +O(tp+3). (2.16)

First we define the corrected schemes.

Definition 2.4.12. Consider a one-step approximation scheme S of order p as introduced
in Definition 2.2.2. The corrected scheme for the classical defect (2.9) is defined as

Ŝc(t, u) := S(t, u)− t
p+1
Dc(t, u). (2.17)

The corrected scheme for the symmetrized defect (2.12) is defined as

Ŝs(t, u) := S(t, u)− t
p+1
Ds(t, u). (2.18)

We formulate (2.15) and (2.16) as theorems. These are the central theorems of [3].

Theorem 2.4.13. Consider a one-step approximation scheme S of order p, applied to an
evolution equation (2.1). The local error of the corrected scheme (2.17), L̂c(t, u) := Ŝc(t, u)−
E(t, u) satisfies

L̂c(t, u0) = O(tp+2), (2.19)

i.e., Ŝc has order p+ 1.

Proof. The proposition in (2.19) is simply a reformulation of (2.15), since

L̂c(t, u0) = Ŝc(t, u0)− E(t, u0)
(2.17)
= S(t, u0)− t

p+1
Dc(t, u0)− E(t, u0)

(2.8)
= L(t, u0)− t

p+1
Dc(t, u0)

(2.15)
= O(tp+2).
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The proof for (2.15) is given in (2.14). �

Theorem 2.4.14. Consider a self-adjoint one-step scheme S of (even) order p ≥ 2, sat-
isfying (2.11), applied to an evolution equation (2.1). Then the corrected scheme (2.18) is
almost self-adjoint, i.e.,

Ŝs(−t, Ŝs(t, u0)) = u0 +O(t2p+2). (2.20)

Moreover, the local error L̂s(t, u) := Ŝs(t, u)− E(t, u) of the corrected scheme satisfies

L̂s(t, u0) = O(tp+3), (2.21)

i.e., Ŝs has even order p+ 2.

Proof. The proof for this theorem is given in [3, pp.7–9]. In consideration of its significance
for this thesis we present it here.
We apply Taylor expansion to

Ŝs(−t, Ŝs(t, u0)) = S(−t, Ŝs(t, u0)) + t
p+1
Ds(−t, Ŝs(t, u0))

= S(−t,S(t, u0)− t
p+1
Ds(t, u0)) + t

p+1
Ds(−t,S(t, u0)− t

p+1
Ds(t, u0))

in S(t, u0)− t
p+1
Ds(t, u0), around S(t, u0). Because S is by assumption self-adjoint and due

to the fact that tDs(t, u0) = O(tp+1), we have:

Ŝs(−t, Ŝs(t, u0)) = S(−t,S(t, u0)) + ∂2S(−t,S(t, u0)) ·
(
− t

p+1
Ds(t, u0)

)
+O(t2p+2)

+ t
p+1
Ds(−t,S(t, u0)) +O(t2p+2)

= u0 − t
p+1

(
∂2S(−t,S(t, u0)) · Ds(t, u0)−Ds(−t,S(t, u0))︸ ︷︷ ︸

critical term

)
+O(t2p+2).

(2.22)

To prove (2.20), we have to show that the critical term equals 0. Hence, we collect the
contributions to the critical term . First, since

0 = ∂
∂t

(
S(−t,S(t, u0))︸ ︷︷ ︸

=u0

)
= −∂1S(−t,S(t, u0)) + ∂2S(−t,S(t, u0)) · ∂1S(t, u0), (2.23)

we have

Ds(−t,S(t, u0)) =

= ∂1S(−t,S(t, u0))− 1
2

(
F (S(−t,S(t, u0))︸ ︷︷ ︸

=u0

) + ∂2S(−t,S(t, u0)) · F (S(t, u0))
)

(2.23)
= ∂2S(−t,S(t, u0)) · ∂1S(t, u0)− 1

2
F (u0)− 1

2
∂2S(−t,S(t, u0)) · F (S(t, u0))

= ∂2S(−t,S(t, u0)) ·
(
∂1S(t, u0)− 1

2
F (S(t, u0))

)
− 1

2
F (u0).

(2.24)
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By making use of identity (2.24) and the definition of the symmetrized defect (2.12) it holds:

critical term = ∂2S(−t,S(t, u0)) · Ds(t, u0)−Ds(−t,S(t, u0))

= ∂2S(−t,S(t, u0)) ·
(
∂1S(t, u0)− 1

2
F (S(t, u0)) − 1

2
∂2S(t, u0) · F (u0)

)
−∂2S(−t,S(t, u0)) ·

(
∂1S(t, u0)− 1

2
F (S(t, u0))

)
+ 1

2
F (u0)

= − 1
2

(
∂2S(−t,S(t, u0)) · ∂2S(t, u0)− Id

)
· F (u0)

= − 1
2

(
∂
∂u0

(
S(−t,S(t, u0))

)︸ ︷︷ ︸
= Id

−Id
)
· F (u0) = 0.

(2.25)

Thus, (2.22) indeed simplifies to (2.20). To prove (2.21) we proceed in the same way as for
the linear case [5, Theorem 1], following the argument from [11, Theorem II.3.2]. From (2.15)
we know that for some function C independent of t:

Ŝs(t, u0) = E(t, u0) + Ctp+2 +O(tp+3). (2.26)

We use (2.26), the property (2.20) and Taylor expansion in E(t, u0)+Ctp+2 +O(tp+3) around
E(t, u0) to proceed in the following way:

u0 +O(t2p+2)
(2.20)
= Ŝs(−t, Ŝs(t, u0))

(2.26)
= Ŝs(−t, E(t, u0) + Ctp+2 +O(tp+3))

(2.26)
= E(−t, E(t, u0) + Ctp+2 +O(tp+3)) + Ctp+2 +O(tp+3)

= E(−t, E(t, u0))︸ ︷︷ ︸
=u0

+∂2E(−t, E(t, u0)) · (Ctp+2 +O(tp+3)) + Ctp+2 +O(tp+3)

= u0 + (∂2E(−t, E(t, u0)) + Id︸ ︷︷ ︸
6= 0

)Ctp+2 +O(tp+3).

(2.27)

This implies C = 0, and (2.26) equals (2.21). To justify ∂2E(−t, E(t, u0)) 6= −Id in (2.27) we
assume the opposite and argue:

Id = ∂
∂u0

(
E(−t, E(t, u0))

)
= ∂2E(−t, E(t, u0))︸ ︷︷ ︸

=−Id

∂2E(t, u0)

⇒ ∂2E(t, u0) = −Id ⇔ E(t, u0) = −u0, for all t ≥ 0,

which contradicts E(0, u0) = u0. This concludes the proof of Theorem 2.4.14. �

Remark 2.4.15. Analogously to [3, Remark 1] the proof to Theorem 2.4.14 remains valid,
if S is no longer self-adjoint, but satisfies the weaker condition

S(−t,S(t, u0)) = u0 +O(tq), for q > p+ 2. (2.28)
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To understand this, we revisit the key parts of the proof:
Equation (2.23) in this case reads

O(tq−1) = ∂
∂t

(
S(−t,S(t, u0))︸ ︷︷ ︸

=u0+O(tq)

)
= −∂1S(−t,S(t, u0)) + ∂2S(−t,S(t, u0)) · ∂1S(t, u0),

which alters equation (2.24) in the following way:

Ds(−t,S(t, u0)) =

= ∂1S(−t,S(t, u0))− 1
2

(
F (S(−t,S(t, u0))︸ ︷︷ ︸

=u0+O(tq)

) + ∂2S(−t,S(t, u0)) · F (S(t, u0))
)

= O(tq−1) + ∂2S(−t,S(t, u0)) · ∂1S(t, u0)

− 1
2
F (u0 +O(tq))︸ ︷︷ ︸
Taylor

= F (u0)+O(tq)

−1
2
∂2S(−t,S(t, u0)) · F (S(t, u0))

= ∂2S(−t,S(t, u0)) ·
(
∂1S(t, u0)− 1

2
F (S(t, u0))

)
− 1

2
F (u0) +O(tq−1).

It is now easy to see that analogous calculations as in (2.25) do not eliminate the critial
term , but an error term O(tq−1) remains:

critical term = ∂2S(−t,S(t, u0)) · Ds(t, u0)−Ds(−t,S(t, u0))

= −1
2

(
∂
∂u0

(S(−t,S(t, u0)))︸ ︷︷ ︸
= Id

−Id
)
· F (u0) +O(tq−1) = O(tq−1).

Thus, we have a weaker proposition in comparison to (2.20):

Ŝs(−t, Ŝs(t, u0)) = u0 +O(tq). (2.29)

However, the weaker condition (2.29) is sufficient to argue that C = 0 in (2.27), since
q > p+ 2.

This shows that Theorem 2.4.14 can be applied to the corrected scheme Ŝs of a self-adjoint
scheme S of (even) order p ≥ 4: Since it holds that

Ŝs(−t, Ŝs(t, u0)) = u0 +O(t2p+2),

see (2.20), and Ŝs has order ps := p+ 2, the weaker condition (2.28) is fulfilled, if

q = 2p+ 2 > (p+ 2) + 2 = ps + 2, (2.30)

which is true for (even) order p ≥ 4. This argument can be repeated inductively, which leads
to integrators of arbitrary order. However, this method of increasing the order by defect
correction is usually not very relevant in practice due to prohibitive computational effort in
comparison to a straightforward higher-order method.
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This approach does not work, if we start with a basic scheme of order p = 2 and its sym-
metrized corrected scheme of order 4, since here (2.30) is not fulfilled. Nonetheless, since we
fit into the usual setting of (2.15), we still expect order 5 for its subsequent symmetrized
corrected scheme. In the case of some integrators it proves to be reasonable in terms of
computational effort to proceed like this. We explore this possibility in Section 4.1. //

In Chapter 5 we consider the application of corrected schemes based on a number of specific
integrators, introduced in Chapter 4, and find numerical verifications of Theorems 2.4.13
and 2.4.14, as well as the considerations in Remark 2.4.15.

2.5 Composition methods

In this section we give a theoretical discussion of a particular family of integration schemes.
We follow [11, pp.42–44] and introduce compositions of basic, given one-step integrators of
order p. They are compositions of the basic method with different step sizes and aim to
increase the order while preserving some desirable properties of the basic method. This
idea has mainly been developed in papers of Suzuki ([19], 1990), Yoshida ([20], 1990), and
McLachlan ([17], 1995), see also [11].

Definition 2.5.16. Consider a one-step approximation scheme S of order p as introduced
in Definition 2.2.2. We call its composition with s step-sizes γ1t,γ2t,. . . ,γst, i.e.,

C(t, u0) := S(γst, . . .S(γ2t,S(γ1t, u0))), (2.31)

the corresponding composition method.

The following theorem sets the path for an order-increasing composition method.

Theorem 2.5.17. Consider a one-step approximation scheme S of order p and a composition
method C (2.31) with s step-sizes γ1t,γ2t,. . . ,γst. If

γ1 + γ2 + · · ·+ γs = 1,

γp+1
1 + γp+1

2 + · · ·+ γp+1
s = 0,

(2.32)

then C is at least of order p+ 1.

Proof. A proof of this property is given in [11, Theorem II.4.1] and is related to the proof
of Theorem 2.3.8. �

2.5.1 The triple jump

As stated in [11, p.44], the system of equations (2.32) has no real solutions for odd p.
Consequently we aim for order-increase only in the case of integrators of even order p. In
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this case the smallest s that provides a real solution is s = 3. If we impose symmetry γ1 = γ3,
we obtain

γ1 = γ3 =
1

2− 2
1
p+1

, γ2 = 1− 2γ1 = − 2
1
p+1

2− 2
1
p+1

, (2.33)

and due to Theorem 2.5.17 the resulting composition method is at least of order p+ 1. We
call this method the triple jump. So, if we start with a basic one-step integration scheme
of order p = 2, the composition method defined through (2.33) at least has order p = 3.
Moreover, because we rooted for γ1 = γ3 and thus retrieved a self-adjoint integrator, we
make use of Theorem 2.3.8 and know that we can actually expect even order p = 4.

Remark 2.5.18. A single application of the triple jump on a basic integration scheme of
even order 2 increases the order to 4. One can repeat this step and retrieve a scheme of even
order 6. Repetition leads to schemes of any desired even order. However, since γ2 < 0, this
involves integration backward in time. It even holds that γ1 + γ2 < 0, so a full time step
of the triple jump combined with iterative applications involves a heavy fractal-like zigzag,
see [11, p.44]. //
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Chapter 3

Nonautonomous evolution equations

In prior work ([9],[5]) specific integration schemes and their defects were already applied to
linear, autonomous evolution equations of the form

d
dt
u(t) = Hu(t), u(0) = u0, (3.1)

where H = A + B, or H = A + B + C. In this chapter these results are generalized to the
linear and nonlinear, nonautonomous case. For these cases we find representations of the
classical (2.9) and symmetrized defect (2.12).

3.1 The nonautonomous case

We consider a general nonautonomous evolution equation

d
dt
u(t) = F (t, u(t)), u(t0) = u0. (3.2)

Here, we prefer to use local time τ relative to the initial time t0, so that t = t0+τ . Thus, (3.2)
is reformulated as

∂
∂τ
u(t0 + τ) = F (t0 + τ, u(t0 + τ)), u(t0) = u0. (3.3)

The exact flow associated with (3.2) ((3.3), respectively) is denoted by E(τ, t0, u0), which
satisfies

∂
∂τ
E(τ, t0, u0) = F (t0 + τ, E(τ, t0, u0)), E(0, t0, u0) = u0.

Analogously to (2.3) we define the partial derivatives:

∂1E(τ, t0, u0) := ∂
∂τ
E(τ, t0, u0),

∂2E(τ, t0, u0) := ∂
∂t0
E(τ, t0, u0),

∂3E(τ, t0, u0) := ∂
∂u0
E(τ, t0, u0).
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Next we follow [3, pp.13sqq.] and reformulate (3.3) in autonomous form, showing that the
theoretical background of Theorems 2.4.13 and 2.4.14 directly carries over to the nonau-
tonomous case.

3.2 Reformulation as an autonomous problem

We reformulate the problem (3.2) into an autonomous, yet nonlinear system for
U(t) := (v(t), u(t))T , where v : t 7→ t. With(

d
dt
v(t)

d
dt
u(t)

)
=

(
1

F (v(t), u(t))

)
=: F (U(t)),

(
v(t0)
u(t0)

)
=

(
t0
u0

)
=: U0,

the system (3.2) reads
d
dt
U(t) = F (U(t)), U(t0) = U0,

i.e., it is in autonomous form. As already mentioned above, we use the more specific notation,

U =

(
t0 + τ
u

)
,

whence system (3.3) reads

d
dτ
U(τ) = F (U(τ)), U(0) = U0,

with the flow

E(τ, U) = E(τ, t0, u) =

(
t0 + τ
E(τ, t0, u)

)
.

The fundamental identity (2.5) reads[
∂1E(τ, U) =

]
F (E(τ, U)) = ∂2E(τ, U) · F (U). (3.4)

We desire to have representations of ∂1E(τ, U0), ∂2E(τ, U0) and F (U0):

∂1E(τ, U0) = F (E(τ, U0)) =

(
1

F (t0 + τ, E(τ, t0, u0))

)
, E(0, U0) = U0,

∂2E(τ, U0) =

(
1 0

∂2E(τ, t0, u0) ∂3E(τ, t0, u0)

)
,

F (U0) =

(
1

F (t0, u0)

)
.

Evaluating the second component of (3.4) now yields the fundamental identity for the nonau-
tonomous problem (3.2):[

∂1E(τ, t0, u0) =
]
F (t0 + τ, E(τ, t0, u0)) = ∂2E(τ, t0, u0) + ∂3E(τ, t0, u0) · F (t0, u0).
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We formulate this result as a distinct theorem.

Theorem 3.2.1. As a consequence of the initial value problem (3.2) there holds the funda-
mental identity for the nonautonomous case,[

∂1E(τ, t0, u0) =
]
F (t0 + τ, E(τ, t0, u0)) = ∂2E(τ, t0, u0) + ∂3E(τ, t0, u0) · F (t0, u0). (3.5)

Proof. A verification of (3.5) based on the fundamental identity for the autonomous
case (2.5) was given in the lines before the theorem. Moreover, in [3, Lemma 5] one finds an
explicit proof of this proposition. �

Over the course of the next sections we shall discuss the evaluation of the classical and the
symmetrized defect for the linear and nonlinear (nonautonomous) cases.

3.3 Defect evaluation in the linear, nonautonomous

case

We expand the ideas from [3, pp.14–15] and consider a linear, nonautonomous evolution
equation of the form

d
dt
u(t) = F (t, u(t)) = Au(t) +B(t)u(t), u(t0) = u0, (3.6)

and its reformulation analogously to (3.3),

d
dτ
u(t0 + τ) = F (t0 + τ, u(t0 + τ)) = Au(t0 + τ) +B(t0 + τ)u(t0 + τ), u(t0) = u0. (3.7)

Observe that the operator B depends on the time t, making the problem (3.6) a nonau-
tonomous one. Since in this case the flow E is linear in u0, it is written as

E(τ, t0, u0) =: E(τ, t0)u0,

satisfying

∂1E(τ, t0) = (A+B(t0 + τ))E(τ, t0), E(0, t0) = Id.

Here, a one-step approximation scheme S(τ, t0, u0) ≈ E(τ, t0, u0) is also typically linear in
u0:

S(τ, t0, u0) =: S(τ, t0)u0 ≈ E(τ, t0)u0. (3.8)
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In particular, in view of Theorem 2.4.14 we again focus on self-adjoint integrators, which are
characterized by the identity

S(−τ, t0 + τ)S(τ, t0) = Id, (3.9)

see also (2.11). Here, since

∂3E(τ, t0, u0) = ∂
∂u0

(
E(τ, t0)u0

)
= E(τ, t0),

and

F (t0 + τ, E(τ, t0, u0)) = (A+B(t0 + τ))E(τ, t0)u0,

F (t0, u0) = (A+B(t0))u0,

the fundamental identity (3.5) takes the form[
∂1E(τ, t0)u0 =

]
(A+B(t0 + τ))E(τ, t0)u0 = ∂2E(τ, t0)u0 + E(τ, t0)(A+B(t0))u0. (3.10)

The (linear) subflows of problem (3.7) and their partial derivatives are:

EA(τ, t0)u0 = eτAu0 ∂1EA(τ, t0)u0 = eτAAu0 ∂2EA(τ, t0) = 0
EB(τ, t0)u0 ∂1EB(τ, t0)u0 ∂2EB(τ, t0)u0

(3.11)

Remark 3.3.2. The existences of the partial derivatives to the subflow EB(τ, t0)u0 depend on
its concrete form. Since in the specific linear, nonautonomous evolution equations considered
for this thesis B(t) is a time-dependent diagonal matrix, there is EB(τ, t0)u0 = eτB(t0+τ)u0,
which is well defined. In these cases the representations of the partial derivatives do exist.
We present those in Section 3.5. //

Since we apply a specific kind of integrator to the linear, nonautonomous problem (3.7), we
extend Definition 2.2.2:

Definition 3.3.3. A typical splitting scheme of order p ≥ 2 and J ≥ 1 stages, applied to the
initial value problem (3.7), with stepsize τ and starting point t0 has the form

S(τ, t0) = EB(bJτ, tJ)EA(aJτ, tJ−1) · · · EB(b1τ, t1)EA(a1τ, t0), (3.12)

with the subflows of (3.11), appropriate coefficients aj, bj, j = 1, . . . , J, and

tj := tj−1 + ajτ, j = 1, . . . , J.

I.e., the operator EA propagates the time for the t0-dependent operator EB.

Because the fundamental identity here takes the form (3.10), we derive the following represen-
tations of the defects (see Definitions 2.3.3 and 2.3.9) for the integrator S in Definition 3.3.3:
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• Classical defect:
Dc(τ, t0, u0) = Dc(τ, t0)u0, (3.13a)

with
Dc(τ, t0) = ∂1S(τ, t0)−

(
(A+B(t0 + τ))S(τ, t0)

)
. (3.13b)

• Symmetrized defect:
Ds(τ, t0, u0) = Ds(τ, t0)u0, (3.14a)

with

Ds(τ, t0) = ∂1S(τ, t0)− 1
2

(
(A+B(t0 + τ))S(τ, t0) + ∂2S(τ, t0) + S(τ, t0)(A+B(t0))

)
=
(
∂1 − 1

2
∂2

)
S(τ, t0)− 1

2

(
(A+B(t0 + τ))S(τ, t0) + S(τ, t0)(A+B(t0))

)
.

(3.14b)

Remark 3.3.4. It is immediately clear that since E and S are linear in u0, so are Dc and
Ds. This justifies the syntax D(τ, t0). //

Applied to concrete splitting schemes of the form (3.12) the evaluation of the defects requires
to evaluate the partial derivatives ∂1S(τ, t0) and ∂2S(τ, t0). For notational reasons we define

uAj := EA(ajτ, tj−1) · · · EB(b1τ, t1)EA(a1τ, t0)u0,

uBj := EB(bjτ, tj)u
A
j ,

(3.15)

for j = 1, . . . , J . The chain and the product rules give us general representations of the
partial derivatives:

∂1S(τ, t0) = bJ∂1EB(bJτ, tJ)uAJ + EB(bJτ, tJ)
(
aJ∂1EA(aJτ, tJ−1)uBJ−1 + EA(aJτ, tJ−1)(

· · · b1∂1EB(b1τ, t1)uA1 + EB(b1τ, t1)a1∂1EA(a1τ, t0)u0 . . .
))
,

∂2S(τ, t0) = ∂2EB(bJτ, tJ)uAJ + EB(bJτ, tJ)EA(aJτ, tJ−1)
(
· · · ∂2EB(b1τ, t1)uA1 . . .

)
.

(3.16)

Under the assumption for the subflow EB(τ, t0)u0 made in Remark 3.3.2, we give in the
subsequent Section 3.6 algorithms for the evaluation of general splitting schemes of the
form (3.12) and their defects (3.13) and (3.14), that incorporate (3.16).
However, since for specific splitting schemes the algorithmic evaluation in the form (3.16)
may be inefficient, we also look for explicit, efficiently computable representations. This is
the main task of Chapter 4.

3.4 Defect evaluation in the nonlinear, nonautonomous

case

We now consider a nonlinear, nonautonomous evolution equation of the form

d
dt
u(t) = F (t, u(t)) = Au(t) +B(t)u(t) + C(u(t)), u(t0) = u0, (3.17)
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and its reformulation analogously to (3.3),

d
dτ
u(t0 + τ) = F (t0 + τ, u(t0 + τ)) = Au(t0 + τ) +B(t0 + τ)u(t0 + τ) + C(u(t0 + τ)),

u(t0) = u0.

(3.18)

The nonlinear flow E(τ, t0, u0) fulfills the fundamental identity (3.10), which here takes the
form [

∂1E(t, u0) =
]
(A+B(t0 + τ))E(τ, t0, u0) + C(E(τ, t0, u0))

= ∂2E(τ, t0, u0) + ∂3E(τ, t0, u0) ·
(
(A+B(t0))u0 + C(u0)

)
.

(3.19)

The subflows of problem (3.18) and their partial derivatives are:

EA(τ, t0)u0 = eτAu0, EB(τ, t0)u0, EC(τ, t0, u0),
∂1EA(τ, t0)u0 = eτAAu0, ∂1EB(τ, t0)u0, ∂1EC(τ, t0, u0),
∂2EA(τ, t0)u0 = 0, ∂2EB(τ, t0)u0, ∂2EC(τ, t0, u0) = 0,
∂3EA(τ, t0, u0) · φ = EA(τ, t0)φ, ∂3EB(τ, t0, u0) · φ = EB(τ, t0)φ, ∂3EC(τ, t0, u0) · φ.

(3.20)

Remark 3.4.5. Since the existences of the partial derivatives to the subflows EB(τ, t0)u0

and EC(τ, t0, u0) depend on their concrete forms, we state them here in general form. In the
specific linear, nonautonomous evolution equations considered for this thesis the nonlinearity
is a cubic term in u(t), and B(t) is a time-dependent diagonal matrix, whence EB(τ, t0)u0 =

eτB(t0+τ)u0. //

Analogously to Definition 3.3.3 we define:

Definition 3.4.6. A typical splitting scheme of order p ≥ 2 and J ≥ 1 stages to the initial
value problem (3.18), with stepsize τ and starting point t0 has the form

S(τ, t0, u0) = EC
(
cJτ, tJ , EB(bJτ, tJ)EA(aJτ, tJ−1) · · · EC

(
c1τ, t1, EB(b1τ, t1)EA(a1τ, t0)u0

)
. . .
)
,

(3.21)

with the subflows of (3.20), appropriate coefficients aj, bj, cj, j = 1, . . . , J , and

tj := tj−1 + ajτ, j = 1, . . . , J.

I.e., the operator EA propagates the time for the t0-dependent operator EB.

With the fundamental identity (3.19) we get theses representations of the defects for the
integrator S in Definition 3.4.6:

• Classical defect:

Dc(τ, t0, u0) = ∂1S(τ, t0, u0)−
(
(A+B(t0 + τ))S(τ, t0, u0) + C(S(τ, t0, u0))

)
. (3.22)
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• Symmetrized defect:

Ds(τ, t0, u0) = ∂1S(τ, t0, u0)− 1
2

(
(A+B(t0 + τ))S(τ, t0, u0) + C(S(τ, t0, u0))

+ ∂2S(τ, t0, u0) + ∂3S(τ, t0, u0) · ((A+B(t0))u0 + C(u0))
)
.

(3.23)

Analogously to (3.15) we define

uAj := EA(ajτ, tj−1)EC
(
cj−1τ, tj−1, EB(bj−1τ, tj−1) · · · EA(a1τ, t0)u0 . . .

)
,

uBj := EB(bjτ, tj)u
A
j ,

uCj := EC(cjτ, tj, u
B
j ),

for j = 1, . . . , J . The chain and the product rules give us general representations of the
partial derivatives:

∂1S(τ, t0, u0) = cJ∂1EC(cJτ, tJ , u
B
J ) + ∂3EC(cJτ, tJ , u

B
J ) ·

(
bJ∂1EB(bJτ, tJ)uAJ

+ EB(bJτ, tJ)
(
aJ∂1EA(aJτ, tJ−1)uCJ−1 + EA(aJτ, tJ−1)(

· · · c1∂1EC(c1τ, t1, u
B
1 ) + ∂3EC(c1τ, t1, u

B
1 ) ·

(
b1∂1EB(b1τ, t1)uA1

+ EB(b1τ, t1)a1∂1EA(a1τ, t0)u0

)
. . .
)))

,

∂2S(τ, t0, u0) = ∂3EC(cJτ, tJ , u
B
J ) ·

(
∂2EB(bJτ, tJ)uAJ + EB(bJτ, tJ)EA(aJτ, tJ−1)(

· · · ∂3EC(c1τ, t1, u
B
1 ) ·

(
∂2EB(b1τ, t1)uA1 + EB(b1τ, t1)uA1

)
. . .
))
,

∂3S(τ, t0, u0) · φ = ∂3EC(cJτ, tJ , u
B
J ) ·

(
EB(bJτ, tJ)EA(aJτ, tJ−1) · · · ∂3EC(c1τ, t1, u

B
1 ) · φ . . .

)
.

(3.24)

Under the assumptions for EB(τ, t0)u0 in Remark 3.4.5 and for general integrators of the
form (3.21) algorithms for the evaluation of (3.22) and (3.23), that incorporate (3.24), are
presented in Section 3.6.

3.5 Derivatives of matrix exponentials occuring in our

splitting schemes

In anticipation of Section 3.6 and the upcoming Chapter 4 we desire numerically computable
representations of ∂1EB(τ, t0) and ∂2EB(τ, t0) (see (3.16), (3.24) for their occurrence in the
partial derivatives of S(τ, t0, u0)), under the assumption that EB(τ, t0)u0 = eτB(t0+τ)u0, with
a time-dependent diagonal matrix B(t). To do this, we need to know the partial derivatives
of the matrix exponential, occuring in our splitting schemes,( t0

τ

)
7→ eΩ(τ,t0), Ω(τ, t0) := ατB(t0 + βτ). (3.25)
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Here α, β are arbitrary, real constants. We have:

∂
∂τ

Ω(τ, t0) = α
(
B(t0 + βτ) + βτB′(t0 + βτ)

)
,

∂
∂t0

Ω(τ, t0) = ατB′(t0 + βτ).

The formulas (6.5) in Appendix 6.2.2, along with the integral substitution sτ = σ result
in the following representations of the partial derivatives of the matrix exponential (3.25),
which we denote by R(τ, t0):

R(τ, t0)
(
∂
∂τ

Ω(τ, t0)
)

= ∂
∂τ
eΩ(τ,t0) =

∫ 1

0

esΩ(τ,t0)
(
∂
∂τ

Ω(τ, t0)
)
e(1−s)Ω(τ,t0) ds

= α
1

τ

(∫ τ

0

eσαB(t0+βτ)
(
B(t0 + βτ) + βτB′(t0 + βτ)

)
e−σαB(t0+βτ) dσ

)
· eατB(t0+βτ)

= α
(
B(t0 + βτ) + β

∫ τ

0

F (σ; τ) dσ
)
· eατB(t0+βτ), (3.26)

and

R(τ, t0)
(
∂
∂t0

Ω(τ, t0)
)

= ∂
∂t0
eΩ(τ,t0) = α

(∫ τ

0

F (σ; τ) dσ
)
· eατB(t0+βτ), (3.27)

where

F (σ; τ) := eσαB(t0+βτ)B′(t0 + βτ)e−σαB(t0+βτ). (3.28)

The last simplification in (3.26) is possible, because B(t0 + βτ) commutes with the matrix
exponentials. One may think about R(τ, t0)

(
·
)

as a matrix-operator dependent on τ and
t0.

Remark 3.5.7. For second-order integrators we evaluate the integral term
∫ τ

0
F (σ; τ) dσ

numerically by applying the second-order trapezoidal quadrature formula stated in (6.7):(∫ τ

0

F (σ; τ) dσ
)
· eτB(t0+ τ

2
) ≈ 1

2
τ
(
F (0; τ) + F (τ ; τ)

)
eτB(t0+ τ

2
)

= 1
2
τ
(
B′(t0 + τ

2
)eτB(t0+ τ

2
) + eτB(t0+ τ

2
)B′(t0 + τ

2
)
)
,

(3.29)

see Section 6.3.1 of the Appendix. Consequently, in numerical applications of second-order
integrators we use the following asymptotically correct formulas based on (3.29) to evaluate
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the partial derivatives of the matrix exponentials (3.26) and (3.27):

R(τ, t0)
(
∂
∂τ

Ω(τ, t0)
)

= α
(
B(t0 + βτ) + β

∫ τ

0

F (σ; τ) dσ
)
· eατB(t0+βτ)

(3.29)
≈ αB(t0 + βτ)eατB(t0+βτ) + 1

2
ταβ

(
B′(t0 + βτ)eατB(t0+βτ) + eατB(t0+βτ)B′(t0 + βτ)

)
,

R(τ, t0)
(
∂
∂t0

Ω(τ, t0)
)

= α
(∫ τ

0

F (σ; τ) dσ
)
· eατB(t0+βτ)

(3.29)
≈ 1

2
τα
(
B′(t0 + βτ)eατB(t0+βτ) + eατB(t0+βτ)B′(t0 + βτ)

)
.

(3.30)

//

Remark 3.5.8. For fourth-order integrators we evaluate the occurring integral terms numer-
ically by applying the fourth-order modified trapezoidal quadrature formulas of Hermite-type
stated in (6.8):(∫ τ

0

F (σ; τ) dσ
)
· eατB(t0+βτ)

≈ 1
2
τ
(
F (0; τ) + F (τ ; τ)

)
eατB(t0+βτ) + 1

12
τ 2
(
∂
∂σ
F (σ; τ)

∣∣
σ=0
− ∂

∂σ
F (σ; τ)

∣∣
σ=τ

)
eατB(t0+βτ)

= 1
2
τ
(
B′(t0 + βτ)eατB(t0+βτ) + eατB(t0+βτ)B′(t0 + βτ)

)
+ 1

12
τ 2α
([
B(t0 + βτ), B′(t0 + βτ)

]
eατB(t0+βτ) − eατB(t0+βτ)

[
B(t0 + βτ), B′(t0 + βτ)

])
,

(3.31)

see Section 6.3.2 of the Appendix. The partial derivatives of the integrand (3.28),

∂
∂σ
F (σ; τ) = α

(
B(t0 + βτ)F (σ; τ)− F (σ; τ)B(t0 + βτ)

)
,

in combination with evaluation at σ = 0 and σ = τ are responsible for the occurrence of the
commutator

[
B(t0 +βτ), B′(t0 +βτ)

]
. In numerical applications of second-order integrators

we use the following asymptotically correct formulas based on (3.31) to evaluate the partial
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derivatives of the matrix exponentials (3.26) and (3.27):

R(τ, t0)
(
∂
∂τ

Ω(τ, t0)
)

= α
(
B(t0 + βτ) + β

∫ τ

0

F (σ; τ) dσ
)
· eατB(t0+βτ)

(3.31)
≈ αB(t0 + βτ)eατB(t0+βτ) + 1

2
ταβ

(
B′(t0 + βτ)eατB(t0+βτ) + eατB(t0+βτ)B′(t0 + βτ)

)
+ 1

12
τ 2α2β

([
B(t0 + βτ), B′(t0 + βτ)

]
eατB(t0+βτ) − eατB(t0+βτ)

[
B(t0 + βτ), B′(t0 + βτ)

])
,

R(τ, t0)
(
∂
∂t0

Ω(τ, t0)
)

= α
(∫ τ

0

F (σ; τ) dσ
)
· eατB(t0+βτ)

(3.31)
≈ 1

2
τα
(
B′(t0 + βτ)eατB(t0+βτ) + eατB(t0+βτ)B′(t0 + βτ)

)
+ 1

12
τ 2α2

([
B(t0 + βτ), B′(t0 + βτ)

]
eατB(t0+βτ) − eατB(t0+βτ)

[
B(t0 + βτ), B′(t0 + βτ)

])
.

(3.32)

//

3.6 Algorithmic realization of the defect evaluations

Here we present the corresponding algorithms for the defect-evaluations in Sections 3.3
and 3.4. Algorithms 1 and 2 take the inital values t0, u0, as well as the time step τ and
have the approximation S(τ, t0, u0), as well as the defects (3.13) and (3.14) as outputs. Al-
gorithms 3 and 4 do the same for the defects (3.22) and (3.23). For instance in [18, pp.14sqq.]
and [3, p.12] similar algorithms for related problems are stated.

In our algorithms the evaluations of

∂1EB(τ, t0)u0 = ∂
∂τ
eτB(t0+τ)u0 and ∂2EB(τ, t0)u0 = ∂

∂t0
eτB(t0+τ)u0

are denoted by

R(τ, t0)
(
∂
∂τ

(
τB(t0 + τ)

))
and R(τ, t0)

(
∂
∂t0

(
τB(t0 + τ)

))
,

respectively (cf. the previous Section 3.5), which eases a numerical implementation involving
the formulas (3.30) and (3.32).
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Algorithm 1 Algorithmic realization of S(τ, t0)u0 (3.12) and Dc(τ, t0)u0 (3.13)

Require: t0, u0, τ
t := t0
β := 0
u := u0

d := 0
for j = 1 . . . J do
d = d+ ajAu
d = eajτAd
u = eajτAu
β = β + aj
t = t+ ajτ
d = ebjτB(t)d+R(τ, t)

(
bjB(t) + bjβτB

′(t)
)
u

u = ebjτB(t)u
end for
d = d−

(
Au+B(t)u

)
return u, d

Algorithm 2 Algorithmic realization of S(τ, t0)u0 (3.12) and Ds(τ, t0)u0 (3.14)

Require: t0, u0, τ
t := t0
β := 0
u := u0

d := −1
2
B(t)u

δ := 0
for j = 1 . . . J do

d = d+

{
(aj − 1

2
)Au, j = 1

ajAu, j > 1

d = eajτAd
δ = eajτAδ
u = eajτAu
β = β + aj
t = t+ ajτ
d = ebjτB(t)d+R(τ, t)

(
bjB(t) + bjβτB

′(t)
)
u

δ = ebjτB(t)δ +R(τ, t)
(
bjτB

′(t)
)
u

u = ebjτB(t)u
end for
d = d− 1

2

(
Au+B(t)u+ δ

)
return u, d
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Algorithm 3 Algorithmic realization of S(τ, t0, u0) (3.21) and Dc(τ, t0, u0) (3.22)

Require: t0, u0, τ
t := t0
β := 0
u := u0

d := 0
for j = 1 . . . J do
d = d+ ajAu
d = eajτAd
u = eajτAu
β = β + aj
t = t+ ajτ
d = ebjτB(t)d+R(τ, t)

(
bjB(t) + bjβτB

′(t)
)
u

u = ebjτB(t)u
d = ∂3EC(cjτ, t, u) · d+ cj∂1EC(cjτ, t, u)
u = EC(cjτ, t, u)

end for
d = d−

(
Au+B(t)u+ C(u)

)
return u, d
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Algorithm 4 Algorithmic realization of S(τ, t0, u0) (3.21) and Ds(τ, t0, u0) (3.23)

Require: t0, u0, τ
t := t0
β := 0
u := u0

d := −1
2

(
B(t)u+ C(u)

)
δ := 0
for j = 1 . . . J do

d = d+

{
(aj − 1

2
)Au, j = 1

ajAu, j > 1

d = eajτAd
δ = eajτAδ
u = eajτAu
β = β + aj
t = t+ ajτ
d = ebjτB(t)d+R(τ, t)

(
bjB(t) + bjβτB

′(t)
)
u

δ = ebjτB(t)δ +R(τ, t)
(
bjτB

′(t)
)
u

u = ebjτB(t)u
d = ∂3EC(cjτ, t, u) · d+ cj∂1EC(cjτ, t, u)
δ = ∂3EC(cjτ, t, u) · d
u = EC(cjτ, t, u)

end for
d = d− 1

2

(
Au+B(t)u+ C(u) + δ

)
return u, d
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Chapter 4

Integration schemes

In this chapter we introduce specific self-adjoint integration schemes S(τ, t0, u0) ≈ E(τ, t0, u0),
i.e., they satisfy

S(−τ, t0 + τ,S(τ, t0, u0)) = u0,

and compute efficient representations of the integrators’ defects.

In the case of linear problems the integrator usually is a splitting scheme of the form (3.12),
see the upcoming Sections 4.1–4.3. In Section 4.4 we also consider a symplectic integration
scheme which is not of the form (3.12). In any case, the integrator is typically linear in u0,
whence there holds (3.8). We remark that in these cases the self-adjoint property reads as
in (3.9),

S(−τ, t0 + τ)S(τ, t0)u0 = u0.

However, one presented integrator, introduced in Section 4.1, is only almost self-adjoint, i.e.,

S(−τ, t0 + τ)S(τ, t0)u0 = u0 +O(tq),

for some sufficiently large q.

Towards the end of this chapter in Section 4.5 we ultimately discuss nonlinear splitting
schemes of the form (3.21) for a nonlinear problem.

4.1 Exponential midpoint scheme

Consider (3.7), with A = 0, i.e.,

d
dτ
u(t0 + τ) = B(t0 + τ)u(t0 + τ), u(t0) = u0. (4.1)

The second-order (self-adjoint) exponential midpoint rule, applied to (4.1), is given by

S(τ, t0) = eτB(t0+ τ
2

). (4.2)
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This scheme is taken from [3, pp.15–16]. Since p = 2, it holds that(
S(τ, t0)− E(τ, t0)

)
u0 = L(τ, t0)u0 = O(τ 3).

The integrator (4.2) is a splitting scheme (3.12) with J = 1 and a1 = 1
2
, b1 = 1. So, one

could easily apply Algorithms 1 and 2 for the defect evaluations. However, we discuss the
defects in more detail here.

In [3, p.16] the classical and the symmetrized defect to (4.2) are already calculated:

• Classical defect (3.13):

Dc(τ, t0) = R(τ, t0)
(
B(t0 + τ

2
) + 1

2
τB′(t0 + τ

2
)
)
−B(t0 + τ)S(τ, t0). (4.3)

• Symmetrized defect (3.14):

Ds(τ, t0) = S(τ, t0)
(
B(t0 + τ

2
)− 1

2
B(t0)

)
− 1

2
B(t0 + τ)S(τ, t0). (4.4)

Remark 4.1.1. For (4.3) we recall Section 3.5 and the representaion of the derivatives of
the matrix exponential in (3.26):

R(τ, t0)
(
∂
∂τ

(τB(t0 + τ
2
)
)

= R(τ, t0)
(
B(t0 + τ

2
) + 1

2
τB′(t0 + τ

2
)
)
,

which we evaluate numerically by applying the quadrature formula from Remark 3.5.7.
The symmetrized defect (4.4) on the other hand is crucially simplified, since here the deriva-
tives of the matrix exponential conveniently cancel out. This leaves a computational cost of
only two evaluations of the matrix exponential. //

Next, we take a closer look at the corrected schemes

Ŝc(τ, t0) = S(τ, t0)− τ
3
Dc(τ, t0), (4.5)

and

Ŝs(τ, t0) = S(τ, t0)− τ
3
Ds(τ, t0), (4.6)

to (4.2) (see (2.17) and (2.18) in Definition 2.4.12). From Theorem 2.4.13 we see that

L̂c(τ, t0)u0 = O(τ 4),

i.e., Ŝc has order 3, and from Theorem 2.4.14, that

L̂s(τ, t0)u0 = O(τ 5),

i.e., Ŝs has order 4.
We continue by choosing Ŝs as the basic scheme:

S(4)(τ, t0) := Ŝs(τ, t0), (4.7)
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of order p = 4. Due to Theorem 2.4.14 we observed that

S(4)(−τ, t0 + τ)S(4)(τ, t0) = Id +O(τ 6),

thus, S(4) is no longer self-adjoint. However, as reasoned in Remark 2.4.15 we still expect
the symmetrized corrected scheme to (4.7), i.e.,

Ŝ(4)
s (τ, t0) = S(4)(τ, t0)− τ

5
D(4)
s (τ, t0), (4.8)

to be of order 5, thus L̂(4)
s (τ, t0)u0 = O(τ 6). Here D(4)

s denotes the symmetrized defect

to (4.7) and L̂(4)
s the local error L̂(4)

s (τ, t0) = Ŝ(4)
s (τ, t0)− E(τ, t0).

Since the symmetrized defect Ds(τ, t0) in (4.4)

(i) requires only two evaluations of the matrix exponential and

(ii) is evaluated exactly, due to the absence of derivatives of the matrix exponential,

the scheme S(4)(τ, t0) is a proper candidate for taking a closer look at its symmetrized
corrected scheme (4.8), although it ‘only’ has order 5. On that account, we collect the
contributions of

D(4)
s (τ, t0) =

(
∂1 − 1

2
∂2

)
S(4)(τ, t0)− 1

2

(
B(t0 + τ)S(4)(τ, t0) + S(4)(τ, t0)B(t0)

)
.

They are:

• ∂1S(4)(τ, t0):

∂1S(4)(τ, t0) = ∂1S(τ, t0)− ∂
∂τ

(
τ
3
Ds(τ, t0)

)
= ∂1S(τ, t0)− 1

3
Ds(τ, t0)− τ

3
∂1Ds(τ, t0),

where

∂1Ds(τ, t0) = ∂1S(τ, t0)
(
B(t0 + τ

2
)− 1

2
B(t0)

)
+ S(τ, t0)

(
1
2
B′(t0 + τ

2
)
)

− 1
2
B′(t0 + τ)S(τ, t0)− 1

2
B(t0 + τ)∂1S(τ, t0).

(4.9)

• ∂2S(4)(τ, t0):

∂2S(4)(τ, t0) = ∂2S(τ, t0)− ∂
∂t0

(
τ
3
Ds(τ, t0)

)
= ∂2S(τ, t0)− τ

3
∂2Ds(τ, t0),

where

∂2Ds(τ, t0) = ∂2S(τ, t0)
(
B(t0 + τ

2
)− 1

2
B(t0)

)
+ S(τ, t0)

(
B′(t0 + τ

2
)− 1

2
B′(t0)

)
− 1

2
B′(t0 + τ)S(τ, t0)− 1

2
B(t0 + τ)∂2S(τ, t0).

(4.10)
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This sums up to

D(4)
s (τ, t0) =

(
∂1 − 1

2
∂2

)
S(4)(τ, t0)− 1

2

(
B(t0 + τ)S(4)(τ, t0) + S(4)(τ, t0)B(t0)

)
=
(
∂1 − 1

2
∂2

)
S(τ, t0)− 1

3
Ds(τ, t0)− τ

3
∂1Ds(τ, t0) + 1

2
τ
3
∂2Ds(τ, t0)

− 1
2

(
B(t0 + τ)S(4)(τ, t0) + S(4)(τ, t0)B(t0)

)
.

(4.11)

Since(
∂1 − 1

2
∂2

)
S(τ, t0) = R(τ, t0)

(
B(t0 + τ

2
) + 1

2
τB′(t0 + τ

2
)
)
− 1

2
R(τ, t0)

(
τB′(t0 + τ

2
)
)

= R(τ, t0)
(
B(t0 + τ

2
)
)

= B(t0 + τ
2
)S(τ, t0) = S(τ, t0)B(t0 + τ

2
),

(4.12)

and with the identities (4.9) and (4.10), we simplify (4.11) further:

D(4)
s (τ, t0) = S(τ, t0)B(t0 + τ

2
)− 1

3

[
S(τ, t0)

(
B(t0 + τ

2
)− 1

2
B(t0)

)
− 1

2
B(t0 + τ)S(τ, t0)

]
− τ

3

[
∂1S(τ, t0)

(
B(t0 + τ

2
)− 1

2
B(t0)

)
+ S(τ, t0)

(
1
2
B′(t0 + τ

2
)
)

− 1
2
B′(t0 + τ)S(τ, t0)− 1

2
B(t0 + τ)∂1S(τ, t0)

]
+ τ

6

[
∂2S(τ, t0)

(
B(t0 + τ

2
)− 1

2
B(t0)

)
+ S(τ, t0)

(
B′(t0 + τ

2
) − 1

2
B′(t0)

)
− 1

2
B′(t0 + τ)S(τ, t0)− 1

2
B(t0 + τ)∂2S(τ, t0)

]
− 1

2

(
B(t0 + τ)S(4)(τ, t0) + S(4)(τ, t0)B(t0)

)
= S(τ, t0)B(t0 + τ

2
)− 1

3

[
S(τ, t0)

(
B(t0 + τ

2
)− 1

2
B(t0)

)
− 1

2
B(t0 + τ)S(τ, t0)

]
− τ

3

[ (
∂1 − 1

2
∂2

)
S(τ, t0)︸ ︷︷ ︸

=S(τ,t0)B(t0+ τ
2

), (4.12)

(
B(t0 + τ

2
)− 1

2
B(t0)

)
− 1

2
B(t0 + τ)

(
∂1 − 1

2
∂2

)
S(τ, t0)︸ ︷︷ ︸

=B(t0+ τ
2

)S(τ,t0), (4.12)

− 1
4
B′(t0 + τ)S(τ, t0) + 1

4
S(τ, t0)B′(t0)

]
− 1

2

(
B(t0 + τ)S(4)(τ, t0) + S(4)(τ, t0)B(t0)

)
.

Summarizing the corresponding terms results in

D(4)
s (τ, t0) = S(τ, t0)1

3

[
B(t0 + τ

2
)
(
2 Id− τB(t0 + τ

2
) + τ

2
B(t0)

)
+ 1

2
B(t0)− τ

4
B′(t0)

]
+ 1

6

[
B(t0 + τ)

(
Id + τB(t0 + τ

2
)
)

+ τ
2
B′(t0 + τ)

]
S(τ, t0)

− 1
2

(
B(t0 + τ)S(4)(τ, t0) + S(4)(τ, t0)B(t0)

)
.

(4.13)

With the computable representations of the defects (4.3), (4.4) and (4.13) it is now possible

to perform numerical experiments that verify the expected orders of the schemes Ŝc, Ŝs and
Ŝ(4)
s . We do this in Section 5.2.1.
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4.2 Strang splitting combined with exponential mid-

point scheme

A second-order (self-adjoint) splitting scheme, applied to the linear, nonautonomous evolu-
tion equation (3.7) is given by

S(τ, t0) = e
τ
2
AeτB(t0+ τ

2
)e

τ
2
A. (4.14)

This is a combination of second-order Strang splitting with the exponential midpoint scheme
(cf. Section 4.1) for the time dependent part B(t). This scheme was introduced in [16, p.10].
The integrator (4.14) has the form (3.12), with J = 2 and

a1 = 1
2
, b1 = 1,

a2 = 1
2
, b2 = 0.

One could apply Algorithms 1 and 2 to evaluate the defects. However, since a closer look
at the symmetrized defect shows some crucial simplifications, we discuss the defects in more
detail here.

In this case the partial derivatives (3.16) become

∂1S(τ, t0) = 1
2
AS(τ, t0) + e

τ
2
AR(τ, t0)

(
∂
∂τ

Ω(τ, t0)
)
e
τ
2
A + 1

2
S(τ, t0)A,

∂2S(τ, t0) = e
τ
2
AR(τ, t0)

(
∂
∂t0

Ω(τ, t0)
)
e
τ
2
A.

(4.15)

Here, Ω(τ, t0) = τB(t0 + τ
2
), so the formulas (3.25)–(3.28) can be applied with α = 1 and

β = 1
2
. Consequently the symmetrized defect (3.14) simplifies to

Ds(τ, t0) =
(
∂1 − 1

2
∂2

)
S(τ, t0)− 1

2

(
(A+B(t0 + τ))S(τ, t0) + S(τ, t0)(A+B(t0))

)
= 1

2
AS(τ, t0) + e

τ
2
AR(τ, t0)

(
∂
∂τ

Ω(τ, t0)
)
e
τ
2
A + 1

2
S(τ, t0)A

− 1
2
e
τ
2
AR(τ, t0)

(
∂
∂t0

Ω(τ, t0)
)
e
τ
2
A

− 1
2

(
A +B(t0 + τ)

)
S(τ, t0)− 1

2
S(τ, t0)

(
A +B(t0)

)
= e

τ
2
A
(
B(t0 + τ

2
) + 1

2

∫ τ

0

F (σ; τ) dσ
)
· eτB(t0+ τ

2
)e

τ
2
A

−1
2
e
τ
2
A
(∫ τ

0

F (σ; τ) dσ
)
· eτB(t0+ τ

2
)e

τ
2
A

− 1
2
B(t0 + τ)S(τ, t0)− 1

2
S(τ, t0)B(t0)

= − 1
2
B(t0 + τ)S(τ, t0) + e

τ
2
AB(t0 + τ

2
)eτB(t0+ τ

2
)e
τ
2
A − 1

2
S(τ, t0)B(t0). (4.16)

Remark 4.2.2. This is a crucial simplification of the symmetrized defect, since we do
not have to numerically evaluate the integral term

∫ τ
0
F (σ; τ) dσ. On the other hand, the
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classical defect involves a single evaluation of this term, which we evaluate numerically by
applying the quadrature formula from Remark 3.5.7. //

With (3.30) the classical defect (3.13) here has the (slightly simplified) explicit representation:

Dc(τ, t0) = ∂1S(τ, t0)−
(
AS(τ, t0) +B(t0 + τ)S(τ, t0)

)
= 1

2
AS(τ, t0) + e

τ
2
AR(τ, t0)

(
∂
∂τ

Ω(τ, t0)
)
e
τ
2
A + 1

2
S(τ, t0)A

−
(
AS(τ, t0) +B(t0 + τ)S(τ, t0)

)
= e

τ
2
AB(t0 + τ

2
)eτB(t0+ τ

2
)e

τ
2
A + 1

2
e
τ
2
A
(∫ τ

0

F (σ; τ) dσ
)
· eτB(t0+ τ

2
)e

τ
2
A

+ 1
2
S(τ, t0)A− 1

2
AS(τ, t0)−B(t0 + τ)S(τ, t0)

(3.30)
≈ − 1

2

(
A+ 2B(t0 + τ)

)
S(τ, t0) + e

τ
2
A
(
B(t0 + τ

2
) + 1

4
τB′(t0 + τ

2
)
)
eτB(t0+ τ

2
)e

τ
2
A

+ e
τ
2
AeτB(t0+ τ

2
) 1

4
τB′(t0 + τ

2
)e

τ
2
A + 1

2
S(τ, t0)A.

(4.17)

Since we do not apply the Algorithms 1 and 2, the evaluation of the defects (4.16) and (4.17)
was implemented in the most efficient way to combine as many evaluation steps as possible.
Numerical tests are discussed in Section 5.2.2.

4.3 Triple Jump applied to Strang-midpoint-scheme

We recall the composition method introduced in Section 4.2 and apply it to the basic second-
order scheme (4.14),

S(τ, t0) = e
τ
2
AeτB(t0+ τ

2
)e

τ
2
A,

which leads to the triple jump

C(τ, t0) = S(γ1τ, t0 + (γ1 + γ2)τ)S(γ2τ, t0 + γ1τ)S(γ1τ, t0)

= e
γ1
2
τAeγ1τB(t0+(1− γ1

2
)τ)e

γ1+γ2
2

τAeγ2τB(t0+ 1
2
τ)e

γ1+γ2
2

τAeγ1τB(t0+
γ1
2
τ)e

γ1
2
τA,

(4.18)

with time steps

γ1 = γ3 =
1

2− 2
1
3

, γ2 = 1− 2γ1 = − 2
1
3

2− 2
1
3

.

A closer look at (4.18), or the reasoning in Section 2.5.1 shows that C(τ, t0) is self-adjoint,
which allows it to fit into the setting of Theorem 2.4.14. Due to Theorem 2.5.17 and Re-
mark 2.5.18, we expect the integrator (4.18) to be of order p = 4. It also is a splitting scheme
of the form (3.12) with J = 4 and coefficients aj, bj, j = 1, . . . , 4, displayed in Table 4.1.
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j aj bj

1 γ1
2 γ1

2 γ1+γ2
2 γ2

3 γ1+γ2
2 γ1

4 γ1
2 0

Table 4.1: Coefficients for the splitting scheme (4.18) of stage J = 4.

We can evaluate the classical defect

Dc(τ, t0) = ∂1C(τ, t0)−
(
(A+B(t0 + τ))C(τ, t0)

)
,

and the symmetrized defect

Ds(τ, t0) =
(
∂1 − 1

2
∂2

)
C(τ, t0)− 1

2

(
(A+B(t0 + τ))C(τ, t0) + C(τ, t0)(A+B(t0))

)
,

with the Algorithms 1 and 2.

Remark 4.3.3. We define

Ω1(τ, t0) := γ1τB(t0 + γ1
2
τ),

Ω2(τ, t0) := γ2τB(t0 + τ
2
),

Ω3(τ, t0) := γ1τB(t0 + (1− γ1
2

)τ),

(4.19)

and for the occurring partial derivatives of the matrix exponentials R(τ, t0)
(
∂
∂τ

Ωi(τ, t0)
)

and
R(τ, t0)

(
∂
∂t0

Ωi(τ, t0)
)

we remind again of Section 3.5. Since the operators Ωi(τ, t0), i = 1, 2, 3,
are defined as in (4.19), the formulas (3.25)–(3.28) can be applied with α = γ1, γ2, γ1 and
β = γ1

2
, 1

2
, (1 − γ1

2
). The numerical evaluation is effected using the fourth-order quadrature

formulas in (3.32) from Remark 3.5.8. //

Numerical tests for the triple jump and its corrected schemes are realized in Section 5.2.3.

4.4 Symplectic integrators with time dependent poten-

tial

Again, consider the linear, nonautonomous problem (3.7). We present the self-adjoint and
linear, so called gradient symplectic fourth-order scheme, introduced in [7, p.5]. To define
it, we introduce the operator

Ã := A+D, with D :=
←−
∂
∂t
, (4.20)
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where D denotes the forward time derivative operator. With it we introduce the gradient
symplectic scheme (p = 4):

S(τ, t0) = e
1
6
τB(t0+τ)e

1
2
τAe

2
3
τB̃(t0+ τ

2
)e

1
2
τAe

1
6
τB(t0), (4.21)

with the commutator-containing operator

B̃(t) := B(t) + 1
48
t2[B(t), [Ã, B(t)]]

= B(t) + 1
48
t2[B(t), [A,B(t)]]. (4.22)

The simplification in the last equation arises from the fact that

[B(t), [Ã, B(t)]] = [B(t), [A,B(t)]] + [B(t), [D,B(t)]]

and [B(t), [D,B(t)]] = 0, since

[B(t), [D,B(t)]]ψ(x, t) =
(
2B(t)DB(t)−DB(t)B(t)−B(t)B(t)D

)
ψ(x, t)

= 2B(t)
←−
∂
∂t

(
B(t)ψ(x, t)

)
−
←−
∂
∂t

(
B(t)2ψ(x, t)

)
−B(t)2

←−
∂
∂t
ψ(x, t)

= 2B(t)B′(t)ψ(x, t) + 2B(t)2
←−
∂
∂t
ψ(x, t)− 2B(t)B′(t)ψ(x, t)

−B(t)2
←−
∂
∂t
ψ(x, t)−B(t)2

←−
∂
∂t
ψ(x, t) = 0,

for a t-differentiable function ψ(x, t). The integrator (4.21) proves to be self-adjoint, since

S(−τ, t0 + τ) = e−
1
6
τB((t0+τ)−τ)e−

1
2
τAe−

2
3
τB̃((t0+τ)− τ

2
)e−

1
2
τAe−

1
6
τB(t0+τ)

= e−
1
6
τB(t0)e−

1
2
τAe−

2
3
τB̃(t0+ τ

2
)e−

1
2
τAe−

1
6
τB(t0+τ) = S−1(τ, t0),

which allows (4.21) to fit into the setting of Theorem 2.4.14.

We apply the integrator (4.21) to special linear, nonautonomous evolution equations of
type (3.6) depending on space and time, i.e.,

∂
∂t
ψ(x, t) = i∆ψ(x, t) + (−i)V (x, t)ψ(x, t), x ∈ Rn, t ≥ 0, (4.23)

where ∆ denotes the Laplace operator and V (x, t) represents a (complex-valued) potential.

Remark 4.4.4. After spatial discretization i∆ψ(x, t) plays the role of Au(t), while
−iV (x, t)ψ(x, t) becomes B(t)u(t). In Sections 5.1.1 and 5.1.2 this procedure is described in
more detail. //

The setting (4.23) allows a crucial simplification of the operator (4.22). We formulate this
in the following theorem.

Theorem 4.4.5. For problems of the kind (4.23) the operator [B(t), [A,B(t)]] in (4.22), with
A = i∆ and B(t) = −iV (x, t), simplifies to

[−iV (x, t), [i∆,−iV (x, t)]] = −2
n∑
i=1

(
∂
∂xi
V (x, t)

)2
. (4.24)
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Proof. We understand (4.24) by applying the generalized product rule for the Laplace
operator (see (6.2)) multiple times. For simplification we may ignore the complex unit i due
to linearity:

[V (x, t), [∆, V (x, t)]]ψ(x, t) =
(
2V (x, t)∆V (x, t)− V (x, t)2∆−∆V (x, t)2

)
ψ(x, t)

= 2V (x, t)∆(V (x, t)ψ(x, t))− V (x, t)2∆ψ(x, t)−∆(V (x, t)2ψ(x, t))

= 2V (x, t)2∆ψ(x, t) + 4V (x, t)∇V (x, t) · ∇ψ(x, t) + 2V (x, t)ψ(x, t)∆V (x, t)

− V (x, t)2∆ψ(x, t) − V (x, t)2∆ψ(x, t) − 2∇(V (x, t)2) · ∇ψ(x, t) + ψ(x, t)∆(V (x, t)2)

= 4V (x, t)∇V (x, t) · ∇ψ(x, t) + 2V (x, t)ψ(x, t)∆V (x, t)− 4V (x, t)∇V (x, t) · ∇ψ(x, t)

− ψ(x, t)V (x, t)∆V (x, t) + 2ψ(x, t)∇V (x, t) · ∇V (x, t)− ψ(x, t)V (x, t)∆V (x, t)

= 2∇V (x, t) · ∇V (x, t)ψ(x, t)

= 2
n∑
i=1

(
∂
∂xi
V (x, t)

)2
ψ(x, t).

�

In all further considerations of this section we assume the setting (4.23), whence (4.24)
applies. For notational reasons we define

B̂(t) := [−iV (x, t), [i∆,−iV (x, t)]] = −2
n∑
i=1

(
∂
∂xi
V (x, t)

)2
,

and rewrite the integrator (4.21),

S(τ, t0) = e
1
6
τB(t0+τ)e

1
2
τA︸ ︷︷ ︸

=:S3(τ,t0)

e
2
3
τB̃(t0+ τ

2
)︸ ︷︷ ︸

=:S2(τ,t0)

e
1
2
τAe

1
6
τB(t0)︸ ︷︷ ︸

=:S1(τ,t0)

= S3(τ, t0)S2(τ, t0)S1(τ, t0), (4.25)

and define the operators

Ω1(τ, t0) := 1
6
τB(t0),

Ω̂2(τ, t0) := 1
72
τ 3B̂(t0 + τ

2
),

Ω2(τ, t0) := 2
3
τB(t0 + τ

2
),

Ω3(τ, t0) := 1
6
τB(t0 + τ).

(4.26)

So, with (4.22), (4.24), (4.26) and the fact that B(t) and B̂(t) commute, since they are
diagonal matrices in the setting (4.23):

S2(τ, t0) = e
2
3
τB̃(t0+ τ

2
) = e

2
3
τB(t0+ τ

2
)e

1
72
τ3B̂(t0+ τ

2
) = eΩ2(τ,t0)eΩ̂2(τ,t0).
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Applying the product and chain rule, the partial derivatives of (4.25) take the form

∂1S(τ, t0) = ∂1S3(τ, t0)S2(τ, t0)S1(τ, t0)

+ S3(τ, t0)∂1S2(τ, t0)S1(τ, t0)

+ S3(τ, t0)S2(τ, t0)∂1S1(τ, t0),

(4.27)

where

∂1S1(τ, t0) = 1
2
AS1(τ, t0) + e

1
2
τAR(τ, t0)

(
∂
∂τ

Ω1(τ, t0)
)
,

∂1S2(τ, t0) = ∂
∂τ

(
eΩ2(τ,t0)eΩ̂2(τ,t0)

)
= R(τ, t0)

(
∂
∂τ

Ω2(τ, t0)
)
eΩ̂2(τ,t0) + eΩ2(τ,t0)R(τ, t0)

(
∂
∂τ

Ω̂2(τ, t0)
)
,

∂1S3(τ, t0) = R(τ, t0)
(
∂
∂τ

Ω3(τ, t0)
)
e

1
2
τA + S3(τ, t0) 1

2
A,

(4.28)

and

∂2S(τ, t0) = ∂2S3(τ, t0)S2(τ, t0)S1(τ, t0)

+ S3(τ, t0)∂2S2(τ, t0)S1(τ, t0)

+ S3(τ, t0)S2(τ, t0)∂2S1(τ, t0),

(4.29)

where

∂2S1(τ, t0) = e
1
2
τAR(τ, t0)

(
∂
∂t0

Ω1(τ, t0)
)
,

∂2S2(τ, t0) = ∂
∂t0

(
eΩ2(τ,t0)eΩ̂2(τ,t0)

)
= R(τ, t0)

(
∂
∂t0

Ω2(τ, t0)
)
eΩ̂2(τ,t0) + eΩ2(τ,t0)R(τ, t0)

(
∂
∂t0

Ω̂2(τ, t0)
)
,

∂2S3(τ, t0) = R(τ, t0)
(
∂
∂t0

Ω3(τ, t0)
)
e

1
2
τA.

(4.30)

Remark 4.4.6. Just as with the triple jump from Section 4.3, the terms

R(τ, t0)
(
∂
∂τ

Ωi(τ, t0)
)
, R(τ, t0)

(
∂
∂t0

Ωi(τ, t0)
)
, i = 1, 2, 3,

are numerically evaluated with the formulas (3.32) in Remark 3.5.8. Here, α = 1
6
, 2

3
, 1

6
and

β = 0, 1
2
, 1 in those formulas. //

What is left, is a computable formula for the partial derivatives

R(τ, t0)
(
∂
∂τ

Ω̂2(τ, t0)
)
, R(τ, t0)

(
∂
∂t0

Ω̂2(τ, t0)
)
,

originating from the partial derivatives of the matrix exponential with exponent Ω̂2(τ, t0) =
1
72
τ 3B̂(t0 + τ

2
). Since it differs in structure from the other operators in (4.26), we can not

simply refer to the formulas (3.25)–(3.28) in Section 3.5. However, these formulas require
only minor adaptation: With α := 1

72
, β := 1

2
and the integrand

F̂ (σ; τ) := eσατ
2B̂(t0+βτ)B̂′(t0 + βτ)e−σατ

2B̂(t0+βτ),
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we get

∂
∂τ
eΩ̂2(τ,t0) = R(τ, t0)

(
∂
∂τ

Ω̂2(τ, t0)
)

= ατ 2
(

3B̂(t0 + βτ) + β

∫ τ

0

F̂ (σ; τ) dσ
)
· eατ3B̂(t0+βτ),

(4.31)

and

∂
∂t0
eΩ̂2(τ,t0) = R(τ, t0)

(
∂
∂t0

Ω̂2(τ, t0)
)

= ατ 2
(∫ τ

0

F̂ (σ; τ) dσ
)
· eατ3B̂(t0+βτ). (4.32)

Analogously to (3.32) we apply the fourth-order quadrature formula in (6.8) to numerically
evalute the terms (4.31) and (4.32):(∫ τ

0

F̂ (σ; τ) dσ
)
· eατ3B̂(t0+βτ)

≈
(

1
2
τ
(
F̂ (0; τ) + F̂ (τ ; τ)

)
+ 1

12
τ 2
(
∂
∂σ
F̂ (σ; τ)

∣∣
σ=0
− ∂

∂σ
F̂ (σ; τ)

∣∣
σ=τ

))
eατ

3B̂(t0+βτ)

= 1
2
τ
(
B̂′(t0 + βτ)eατ

3B̂(t0+βτ) + eατ
3B̂(t0+βτ)B̂′(t0 + βτ)

)
+ 1

12
τ 4α
([
B̂(t0 + βτ), B̂′(t0 + βτ)

]
eατ

3B̂(t0+βτ) − eατ3B̂(t0+βτ)
[
B̂(t0 + βτ), B̂′(t0 + βτ)

])
.

(4.33)

Collecting all the identities and formulas in (4.25)–(4.33), we are able to evaluate the defects
for the symplectic integration scheme (4.21):

• Classical defect (3.13):

Dc(τ, t0) = ∂1S(τ, t0)−
(
(A+B(t0 + τ))S(τ, t0)

)
. (4.34)

• Symmetrized defect (3.14):

Ds(τ, t0) =
(
∂1 − 1

2
∂2

)
S(τ, t0)− 1

2

(
(A+B(t0 + τ))S(τ, t0) + S(τ, t0)(A+B(t0))

)
.

(4.35)

In numerical tests of the symplectic integration scheme and its corrected schemes, which
are realized in Section 5.2.4, we evaluate the lengthy representations of the defects (4.34)
and (4.35) in the most efficient way.

4.5 Nonlinear Strang splitting combined with expo-

nential midpoint scheme

We now focus on the nonlinear problem (3.18). The second-order nonlinear Strang splitting
to (3.18) is given by (3.21), with J = 3 stages and coefficients aj, bj, cj, j = 1, 2, 3, displayed
in Table 4.2:

S(τ, t0, u0) = e
1
2
τAe

1
2
τB(t0+ τ

2
)EC
(
τ, t0 + τ

2
, e

1
2
τB(t0+ τ

2
)e

1
2
τAu0

)
. (4.36)
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j aj bj cj

1 1
2

1
2 1

2 0 1
2 0

3 1
2 0 0

Table 4.2: Coefficients for the splitting scheme (4.36) of stage J = 3.

The scheme is taken from Winfried Auzinger’s website [14]. We evaluate the nonlinear
integrator (4.36) and its defects (3.22) and (3.22) with Algorithm 3 and Algorithm 4, re-
spectively. For the occuring integral terms we rely on the second-order quadrature formulas
in Remark 3.5.7. Numerical tests that verify the expected orders of the corrected schemes,
are presented in Section 5.2.5.

4.6 Nonlinear fourth-order splitting scheme

A fourth-order nonlinear splitting scheme for the nonlinear problem (3.18) is given by (3.21),
with J = 11 stages and coefficients aj, bj, cj, j = 1, . . . , 11, displayed in Table 4.3. The
scheme is also taken from Winfried Auzinger’s website [14, Auzinger/Ketcheson 2014] and
is named AK 11-4.

j aj bj cj

1 0.257069044488538534 0.296061717549380091 0.592448417648034871
2 0.432582164538475621 0.704720077493718759 0.819259857623654322
3 −0.031637836548173035 −0.046163676369010239 −0.911708275271689193
4 −0.158013372478841120 −0.909236237348177222 0
5 a4 0 c3

6 0 b3 0
7 a3 0 c2

8 0 b2 0
9 a2 0 c1

10 0 b1 0
11 a1 0 0

Table 4.3: Coefficients for the splitting scheme AK 11-4 of stage J = 11.

We evaluate the integrator AK 11-4 and its defects (3.22) and (3.22) with Algorithms 3
and Algorithms 4, respectively. For the occuring integral terms we rely on the fourth-order
quadrature formulas in Remark 3.5.8. Numerical tests that verify the expected orders of the
corrected schemes, are presented in Section 5.2.6.
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Chapter 5

Numerical results

In this chapter we present the numerical results of the integration schemes discussed in
Chapter 4 applied to several specific problems, introduced in the subsequent Section 5.1.

5.1 Tested examples

We introduce suitable examples of linear, nonautonomous, as well as nonlinear, nonauto-
nomous evolution equations.

5.1.1 Linear, nonautonomous Schrödinger equation with known
solution

We state the linear, nonautonomous Schrödinger equation with time-dependent potential
t 7→ V (x, t),

∂
∂t
ψ(x, t) = 1

2
i ∂

2

∂x2
ψ(x, t)− iV (x, t)ψ(x, t), x ∈ [−16, 16], t ≥ 0, (5.1)

where the potential has the form

V (x, t) = −1
2
|ψex(x, t)|2.

The exact solution is known:

ψex(x, t) =
2e

3
2

it−ix

cosh(2t+ 2x)
,

u0 := ψex(x, 0) =
2e−ix

cosh(2x)
.
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We choose final time T = 1 and impose periodic boundary conditions on the interval
[−16, 16]. Spectral collocation at 1024 equidistant mesh points transforms (5.1) into a lin-
ear, nonautonomous ODE-system of the form (3.6). Here the spatially discretized potential
t 7→ −iV (x, t) plays the role of B(t), in the form

B(t) = diag(-iV (x, t)), (5.2)

while the kinetic term 1
2
i ∂

2

∂x2
ψ(x, t) plays the role of Au(t). The latter is discretized in space

using pseudospectral Fourier-type collocation. For more details, we refer to Appendix 6.4.
In Figure 5.1 the reference solution of problem (5.1) with potential (5.2) is displayed.
In the subsequent Section 5.2 we present numerical results for suitable integrators (introduced
in Chapter 4) applied to problem (5.1) with potential (5.2).

−3 0 3
x

−2

−1

0

1

2 V(x, 0)/2
|u0|
|u(T)|

Figure 5.1: Plots of the potential V (x, 0), as well as the absolute values of the initial value
u0 and the complex-valued solution u(T ) at the final time T = 1, over x = [−16, 16]. The
solution evolves from u0 consistently to the left under the influence of V .
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5.1.2 Linear, nonautonomous Schrödinger equation with unknown
solution

This example is taken from [13, pp.21–22]. We state the linear, nonautonomous Schrödinger
equation with time-dependent potential t 7→ V (x, t),

∂
∂t
ψ(x, t) = i ∂

2

∂x2
ψ(x, t)− iV (x, t)ψ(x, t), x ∈ [−10, 10], t ≥ 0. (5.3)

The initial condition is a Gaussian wave packet

u0(x) = (δπ)−1/4 exp
(
− 1

2δ
(x− x0)2), x0 = −2.5, δ = 0.2,

which sits in the left well of a double well potential

VD(x) = x4 − 20x2.

We choose [−10, 10] as the spatial domain and [0, 5] as the temporal domain of our problem.
When we allow the wave function to evolve under VD, it remains largely confined to the left
well at the final time, T = 5 (see Figure 5.2). Superimposing a time dependent excitation to
the potential, we are able to exert control on the wave function. The effective time-varying
potential in this case is

VS(x, t) = VD(x, t) + 10S10,T (t)x,

with Sω,T (t) = sin((πt/T )2) sin(ωT ). Again, spectral collocation at 512 equidistant mesh
points leads to the linear, nonautonomous ODE-system (3.6). Choosing the potential VD(x)
implies

B = B(t) = diag(-iVD(x)), (5.4)

which makes (5.3) an autonomous problem. Choosing the potential VS(x, t), we obtain

B(t) = diag(-iVS(x, t)). (5.5)

We proceed analogously to the previous Section 5.1.1 to determine the evaluation of Au(t).
In Figure 5.2 the (numerically approximated) solutions to the problem (5.3) are displayed.
In the subsequent Section 5.2 we present numerical results for suitable integrators (introduced
in Chapter 4) applied to the example (5.3) with potentials (5.4) and (5.5).
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−5 0 5
x

−0.5

0.0

0.5

1.0

VD
VD(x, 0)/200
|u0|
|uD(T)|

−5 0 5
x

−0.5

0.0

0.5

1.0

VS
VS(x, 0)/200
|u0|
|uS(T)|

Figure 5.2: Plots of the real-valued potential VD(x, 0) = VS(x, 0), as well as the absolute
values of the initial value u0 and the complex-valued solutions uD(T ) and uS(T ) at final time
T = 5, over x = [−10, 10]. The solutions evolve from u0 under the influence of VD and VS,
respectively.
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5.1.3 Rosen-Zener model

This example is taken from [6] and was also used in [3, p.22]. The linear, nonautonomous
Schrödinger equation is given by

iψ̇(t) = H(t)ψ(t), (5.6)

with

H(t) = f1(t)σ1 ⊗ Ik×k + f2(t)σ2 ⊗R ∈ C2k×2k, k = 100,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

R = tridiag(1, 0, 1) ∈ Rk×k, f1(t) = V0 cos(ωt)(cosh(t/T0))−1,

f2(t) = V0 sin(ωt)(cosh(t/T0))−1, ω = 1
2
, T0 = 1, V0 = 1.

We consider the initial condition

ψ(0) = (1, . . . , 1)T .

In Section 5.2.1 we give the local error and the deviations for the integrators introduced in
Section 4.1 applied to the problem (5.6).

5.1.4 Cubic, nonlinear, nonautonomous Schrödinger equation

For this nonlinear, nonautonomous problem we merge two examples from [1, p.10] and [4,
p.197]. We state the cubic, nonlinear, nonautonomous Schrödinger equation with time-
dependent potential t 7→ Vα(x, t) = (1− α)κ|ψex(x, t)|2,

∂
∂t
ψ(x, t) = i

2
∂2

∂x2
ψ(x, t)− iVα(x, t)ψ(x, t)− iακ|ψ(x, t)|2ψ(x, t), x ∈ [−16, 16], t ≥ 0.

(5.7)

The exact solution is given by

ψex(x, t) =
2e

3
2

it−ix

cosh(2t+ 2x)
,

u0 := ψex(x, 0) =
2e−ix

cosh(2x)
.

We choose κ = −1, α = 1
2
, final time T = 1 and impose periodic boundary conditions on

the interval [−16, 16]. Spectral collocation at 1024 equidistant mesh points transforms (5.7)
into a nonlinear, nonautonomous ODE system of the form (3.17).

Remark 5.1.1. This example is constructed, so that it represents the same problem with
the same solution as the one from Section 5.1.1, however with an ‘artificially’ constructed
nonlinear component. Therefore, one observes the solution in Figure 5.1. //
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The evaluations of Au(t) and B(t)u(t) and their respective subflows work in the same way as
in the purely linear cases above. The evaluation of C(u(t)) = −iακ|u(t)|2u(t) works point-
wise. For the problem (5.7) the subflow associated with C(u(t)) and its partial derivatives
(cf. (3.20)) are known and stated in [4, pp.194,197]:

EC(τ, t0, u0) = e−iακτ |u0|2u0,

∂1EC(τ, t0, u0) = −iακ|u0|2e−iακτ |u0|2u0,

∂2EC(τ, t0, u0) = 0,

∂3EC(τ, t0, u0) · φ = e−iακτ |u0|2
(
φ− iακτ(|u0|2φ+ (u0)2φ)

)
.

In the subsequent Section 5.2 we present numerical results for the nonlinear splitting schemes
introduced in Sections 4.5 and 4.6 applied to problem (5.7).

5.2 Empirical local errors and deviations

In this section we conclude this thesis by presenting the numerical data, that verify the
expected local errors and deviations for the integrators introduced in Chapter 4. The Codes
for the numerical experiments were written in the Julia Language Version 1.0.0, its
first official release. The codes were run on a MacBook Air (13 inch, mid 2012) with
1,8 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 ram.

5.2.1 Exponential midpoint scheme

We test the exponential midpoint scheme (4.2),

S(τ, t0) = eτB(t0+ τ
2

),

of order p = 2 and its corresponding corrected schemes Ŝc and Ŝs, introduced in (4.5)
and (4.6), respectively (see Section 4.1), by applying them to the Rosen-Zener model from
Section 5.1.3. Table 5.1 displays the local error and the deviations, as well as the empirical
convergence rates.
Moreover, in Table 5.2 we display the results for the symmetrized corrected scheme Ŝ(4)

s to
the corrected scheme S(4) = Ŝs, introduced in (4.8). According to the theory we expect Ŝ(4)

s

to be of order 5, which we verify. We remark that S,S(4) and Ŝ(4)
s can be evaluated exactly,

due to the absence of derivatives of the matrix exponential.
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t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 u− Lψ0‖2 order

1.00e+00 1.73e-01 4.83e-02 2.10e-02
5.00e-01 2.79e-02 2.63 2.65e-03 4.19 9.24e-04 4.51

2.50e-01 3.74e-03 2.90 1.38e-04 4.26 3.19e-05 4.86

1.25e-01 4.76e-04 2.97 7.98e-06 4.11 1.02e-06 4.96

6.25e-02 5.98e-05 2.99 4.87e-07 4.03 3.22e-08 4.99

3.13e-02 7.48e-06 3.00 3.03e-08 4.01 1.01e-09 5.00

1.56e-02 9.35e-07 3.00 1.89e-09 4.00 3.15e-11 5.00

7.81e-03 1.17e-07 3.00 1.18e-10 4.00 9.83e-13 5.00

3.91e-03 1.46e-08 3.00 7.38e-12 4.00 3.07e-14 5.00

Table 5.1: Local error, deviations and empirical convergence rates for the exponential midpoint
scheme (order p = 2) and its corrected schemes, applied to the Rosen-Zener model from Sec-
tion 5.1.3.

t ‖Lψ0‖2 order ‖L̃(4)
s ψ0 u− Lψ0‖2 order

1.00e+00 2.10e-02 2.73e-03
5.00e-01 9.24e-04 4.51 5.99e-05 5.51

2.50e-01 3.19e-05 4.86 1.02e-06 5.88

1.25e-01 1.02e-06 4.96 1.62e-08 5.97

6.25e-02 3.22e-08 4.99 2.54e-10 5.99

3.13e-02 1.01e-09 5.00 3.97e-12 6.00

1.56e-02 3.15e-11 5.00 6.25e-14 5.99

Table 5.2: Local error, deviations and empirical convergence rates for the scheme S(4) (order p = 4)
and its symmetrized corrected scheme, applied to the Rosen-Zener model from Section 5.1.3.

5.2.2 Strang splitting with exponential midpoint scheme

In this section we examine the numerical tests for the second-order integration scheme in-
troduced in (4.14),

S(τ, t0) = e
τ
2
AeτB(t0+ τ

2
)e

τ
2
A,

as well as its corresponding corrected schemes Ŝc and Ŝs (see Section 4.2). We apply these
schemes to both linear, nonautonomous Schrödinger equations in Sections 5.1.1 and 5.1.2:
Table 5.3 displays the local errors and the deviations, as well as the empirical convergence
rates for the problem in Section 5.1.1, while Table 5.4 displays the same quantities for the
problem in Section 5.1.2. We see that the expected convergence rates can be verified.
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t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 u− Lψ0‖2 order

1.00e+00 1.94e+00 4.86e+00 1.43e+00
5.00e-01 6.46e-01 1.59 9.91e-01 2.29 3.39e-01 2.08

2.50e-01 1.56e-01 2.05 1.64e-01 2.60 5.30e-02 2.68

1.25e-01 2.83e-02 2.46 1.92e-02 3.09 5.00e-03 3.41

6.25e-02 4.17e-03 2.76 1.63e-03 3.56 2.87e-04 4.12

3.13e-02 5.51e-04 2.92 1.14e-04 3.84 1.15e-05 4.64

1.56e-02 7.00e-05 2.98 7.33e-06 3.95 3.89e-07 4.89

7.81e-03 8.78e-06 2.99 4.62e-07 3.99 1.24e-08 4.97

3.91e-03 1.10e-06 3.00 2.89e-08 4.00 3.90e-10 4.99

1.95e-03 1.37e-07 3.00 1.81e-09 4.00 1.22e-11 5.00

9.77e-04 1.72e-08 3.00 1.13e-10 4.00 3.82e-13 5.00

Table 5.3: Local error, deviations and empirical convergence rates for the splitting scheme (4.14)
of order p = 2 and its corrected schemes, applied to the evolution equation from Section 5.1.1.

t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 u− Lψ0‖2 order

1.56e-01 6.85e-01 1.01 7.63e-01 6.74 4.04e-01 6.50

7.81e-02 1.09e-01 2.65 1.90e-02 5.32 8.38e-03 5.59

3.91e-02 1.43e-02 2.94 9.61e-04 4.31 1.49e-04 5.81

1.95e-02 1.81e-03 2.98 5.87e-05 4.03 2.98e-06 5.64

9.77e-03 2.26e-04 3.00 3.66e-06 4.00 7.41e-08 5.33

4.88e-03 2.83e-05 3.00 2.29e-07 4.00 2.14e-09 5.11

2.44e-03 3.54e-06 3.00 1.43e-08 4.00 6.54e-11 5.03

1.22e-03 4.43e-07 3.00 8.94e-10 4.00 2.03e-12 5.01

6.10e-04 5.53e-08 3.00 5.59e-11 4.00 6.32e-14 5.01

3.05e-04 6.91e-09 3.00 3.49e-12 4.00 1.99e-15 4.99

Table 5.4: Local error, deviations and empirical convergence rates for the splitting scheme (4.14)
of order p = 2 and its corrected schemes, applied to the evolution equation from Section 5.1.2.

5.2.3 Triple Jump applied to Strang-midpoint-scheme

We continue our numerical experiments with the natural successor of the previous section,
the triple jump introduced in (4.18) of order p = 4,

C(τ, t0) = e
γ1
2
τAeγ1τB(t0+(1− γ1

2
)τ)e

γ1+γ2
2

τAeγ2τB(t0+ 1
2
τ)e

γ1+γ2
2

τAeγ1τB(t0+
γ1
2
τ)e

γ1
2
τA,

with time steps

γ1 = γ3 =
1

2− 2
1
3

, γ2 = 1− 2γ1 = − 2
1
3

2− 2
1
3

,

see Section 4.3. We apply the triple jump and its corrected schemes to both linear, nonauto-
nomous Schrödinger equations in Sections 5.1.1 and 5.1.2: Table 5.5 displays the local error
and the deviations, as well as the empirical convergence rates for the problem in Section 5.1.1,
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while Table 5.6 displays the same quantities for the problem in Section 5.1.2. The tables
verify the convergence rates expected from theory.

t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 u− Lψ0‖2 order

1.00e+00 1.85e+00 6.07e+00 2.44e+00
5.00e-01 6.29e-01 1.55 8.61e-01 2.82 4.11e-01 2.57

2.50e-01 8.20e-02 2.94 8.27e-02 3.38 3.41e-02 3.59

1.25e-01 6.29e-03 3.70 4.95e-03 4.06 1.58e-03 4.44

6.25e-02 3.14e-04 4.32 1.66e-04 4.90 3.59e-05 5.46

3.13e-02 1.18e-05 4.74 3.55e-06 5.55 4.54e-07 6.30

1.56e-02 3.88e-07 4.92 6.12e-08 5.86 4.18e-09 6.76

7.81e-03 1.23e-08 4.98 9.82e-10 5.96 3.42e-11 6.93

3.91e-03 3.86e-10 4.99 1.54e-11 5.99 2.70e-13 6.98

1.95e-03 1.21e-11 5.00 2.42e-13 6.00 5.30e-15 5.67

9.77e-04 3.77e-13 5.00 5.63e-15 5.42 4.21e-15 0.33

Table 5.5: Local error, deviations and empirical convergence rates for the triple jump (4.18) of
order p = 4 and its corrected schemes, applied to the problem from Section 5.1.1.

t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 u− Lψ0‖2 order

1.56e-01 7.59e-01 0.91 1.36e+01 3.62 6.42e+00 4.12

7.81e-02 2.83e-02 4.74 7.20e-03 10.88 4.04e-03 10.63

3.91e-02 8.68e-04 5.03 4.14e-05 7.44 1.56e-05 8.02

1.95e-02 2.69e-05 5.01 5.56e-07 6.22 1.15e-07 7.08

9.77e-03 8.40e-07 5.00 8.41e-09 6.05 8.85e-10 7.02

4.88e-03 2.63e-08 5.00 1.30e-10 6.01 6.89e-12 7.01

2.44e-03 8.20e-10 5.00 2.03e-12 6.00 5.38e-14 7.00

1.22e-03 2.56e-11 5.00 3.20e-14 5.99 2.19e-15 4.62

Table 5.6: Local error, deviations and empirical convergence rates for the triple jump (4.18) of
order p = 4 and its corrected schemes, applied to the problem from Section 5.1.2.

5.2.4 Symplectic integrators with time dependent potential

We now apply the integrator (4.21),

S(τ, t0) = e
1
6
τB(t0+τ)e

1
2
τAe

2
3
τB̃(t0+ τ

2
)e

1
2
τAe

1
6
τB(t0),

and its corresponding corrected schemes Ŝc and Ŝs (see Section 4.4) to the linear, nonau-
tonomous Schrödinger equation in Section 5.1.1: Table 5.7 displays the local error and the
deviations, as well as the empirical convergence rates for this problem. We verify the ex-
pected convergence rates of the integrators.
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t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 u− Lψ0‖2 order

1.00e+00 1.12e+00 2.13e+00 9.12e-01
5.00e-01 2.69e-01 2.06 3.38e-01 2.66 1.83e-01 2.32

2.50e-01 4.42e-02 2.61 4.44e-02 2.93 2.23e-02 3.04

1.25e-01 4.30e-03 3.36 3.25e-03 3.77 1.35e-03 4.04

6.25e-02 2.50e-04 4.11 1.25e-04 4.70 3.78e-05 5.16

3.13e-02 1.00e-05 4.64 2.92e-06 5.42 5.41e-07 6.12

1.56e-02 3.39e-07 4.89 5.22e-08 5.81 5.24e-09 6.69

7.81e-03 1.08e-08 4.97 8.47e-10 5.95 4.35e-11 6.91

3.91e-03 3.40e-10 4.99 1.34e-11 5.99 3.46e-13 6.98

1.95e-03 1.07e-11 5.00 2.09e-13 6.00 5.48e-15 5.98

9.77e-04 3.33e-13 5.00 5.19e-15 5.33 4.07e-15 0.43

Table 5.7: Local error, deviations and empirical convergence rates for the symplectic integration
scheme (4.21) of order p = 4 and its corrected schemes, applied to the problem from Section 5.1.1.

5.2.5 Nonlinear Strang splitting combined with exponential mid-
point scheme

To conclude this thesis we test the introduced nonlinear splitting schemes for the nonlinear
problem (5.7), which we introduced in Section 5.1.4.

Table 5.8 displays the local error and the deviations, as well as the expected empirical
convergence rates of the nonlinear Strang splitting scheme (4.36) and its corrected schemes
from Section 4.5 applied to problem (5.7).

t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 u− Lψ0‖2 order

1.00e+00 1.52e+00 2.20e+00 1.03e+00
5.00e-01 4.66e-01 1.71 5.46e-01 2.01 2.33e-01 2.14

2.50e-01 1.07e-01 2.12 1.01e-01 2.44 3.67e-02 2.67

1.25e-01 1.92e-02 2.48 1.20e-02 3.06 3.45e-03 3.41

6.25e-02 2.82e-03 2.77 1.03e-03 3.55 2.13e-04 4.02

3.13e-02 3.73e-04 2.92 7.57e-05 3.77 1.03e-05 4.37

1.56e-02 4.74e-05 2.98 5.10e-06 3.89 4.01e-07 4.69

7.81e-03 5.94e-06 2.99 3.26e-07 3.96 1.35e-08 4.90

3.91e-03 7.44e-07 3.00 2.05e-08 3.99 4.29e-10 4.97

1.95e-03 9.30e-08 3.00 1.29e-09 4.00 1.35e-11 4.99

9.77e-04 1.16e-08 3.00 8.04e-11 4.00 4.22e-13 5.00

Table 5.8: Local error, deviations and empirical convergence rates for the nonlinear splitting
scheme (4.36) of order p = 2 and its corrected schemes, applied to the nonlinear problem from
Section 5.1.4.
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5.2.6 Nonlinear fourth-order splitting scheme

Table 5.9 displays the local error and the deviations, as well as the expected empirical
convergence rates of the nonlinear splitting scheme AK 11-4 and its corrected schemes from
Section 4.6 applied to problem (5.7).

t ‖Lψ0‖2 order ‖L̃c ψ0 − Lψ0‖2 order ‖L̃s ψ0 u− Lψ0‖2 order

1.00e+00 1.86e+00 8.68e+00 4.73e+00
5.00e-01 4.04e-01 2.20 6.52e-01 3.73 3.14e-01 3.91

2.50e-01 5.13e-02 2.97 4.96e-02 3.72 2.28e-02 3.79

1.25e-01 4.27e-03 3.59 3.19e-03 3.96 1.16e-03 4.29

6.25e-02 2.19e-04 4.29 1.17e-04 4.76 2.72e-05 5.41

3.13e-02 7.88e-06 4.79 2.44e-06 5.59 2.60e-07 6.71

1.56e-02 2.51e-07 4.97 3.99e-08 5.93 1.59e-09 7.35

7.81e-03 7.85e-09 5.00 6.33e-10 5.98 1.19e-11 7.07

3.91e-03 2.45e-10 5.00 9.95e-12 5.99 9.47e-14 6.97

1.95e-03 7.67e-12 5.00 1.56e-13 5.99 5.90e-15 4.01

Table 5.9: Local error, deviations and empirical convergence rates for the nonlinear fourth-order
splitting scheme AK 11-4 from Section 4.6 and its corrected schemes, applied to the nonlinear
problem from Section 5.1.4.
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Chapter 6

Appendix

We use the Appendix to list various well known definitions, theorems and methods, that
would disrupt the reading flow, but are key parts of this thesis.

6.1 Definitions and theorems

Definition 6.1.1 (Commutator, [2]). For two elements a, b of an associative algebra A,
the shared commutator is defined as

[a, b] := ab− ba. (6.1)

If a, b ∈ A commute, then [a, b] = 0.

Theorem 6.1.2 (Product rule for the Laplace operator). For two functions f, g :
Rn ⊃ U → R, with f, g ∈ C2(U) there holds the generalized product rule

∆
(
f(x)g(x)

)
= f(x)∆g(x) + 2∇f(x) · ∇g(x) + g(x)∆f(x), x ∈ U . (6.2)

Here, · denotes the standard scalar product on Rn.

Proof. (6.2) is an immediate consequence of the conventional product rule,

∂2

∂x2i

(
f(x)g(x)

)
= f(x) ∂2

∂x2i
g(x) + 2 ∂

∂xi
f(x) ∂

∂xi
g(x) + g(x) ∂2

∂x2i
f(x), i = 1, . . . , n,

with x = (x1, . . . , xn), since ∆ = ∂2

∂x21
+ · · ·+ ∂2

∂x2n
. �
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6.2 Fréchet derivative of the matrix exponential

Throughout this thesis we encounter matrix exponentials of the form

t 7→ eΩ(t), (6.3)

where the exponent is a time dependent operator. Differentiation of (6.3) with respect
to t involves to know its Fréchet derivative d

dΩ
eΩ
∣∣
Ω=Ω(t)

(·), which is not straightforward to

compute. The key is the following theorem, which is presented in [12, p.238]. It provides us
with an explicit representation of the Fréchet derivative of the matrix exponential.

Theorem 6.2.3. The Fréchet derivative of the matrix exponential, i.e., d
dΩ
eΩ(·) has the

explicit representation

d
dΩ
eΩ(V ) =

∫ 1

0

esΩV e(1−s)Ω ds. (6.4)

In this thesis we often abbreviate the operator (6.4) by R(V ).

Proof. The reasoning for (6.4) is given in [12, p.238]. �

6.2.1 The case eΩ(t)

We now wish to calculate d
dt
eΩ(t). With the help of Theorem 6.2.3 the time-derivative of the

time dependent matrix exponential t 7→ eΩ(t) takes the form

R(t)(Ω′(t)) := d
dΩ
eΩ
∣∣
Ω=Ω(t)

(Ω′(t)) =

∫ 1

0

esΩ(t)Ω′(t)e(1−s)Ω(t) ds.

6.2.2 The case eΩ(τ,t0)

Here we apply our knowledge from the previous section to the generalized matrix exponential( t0
τ

)
7→ eΩ(τ,t0)
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that we introduced in Section 3.1. We want a representation of the partial derivatives
∂
∂τ
eΩ(τ,t0) and ∂

∂t0
eΩ(τ,t0). Again with the help of Theorem 6.2.3 we obtain:

R(τ, t0)( ∂
∂τ

Ω(τ, t0)) := ∂
∂τ
eΩ(τ,t0)

= d
dΩ
eΩ
∣∣
Ω=Ω(τ,t0)

( ∂
∂τ

Ω(τ, t0)) =

∫ 1

0

esΩ(τ,t0) ∂
∂τ

Ω(τ, t0)e(1−s)Ω(τ,t0) ds,

R(τ, t0)( ∂
∂t0

Ω(τ, t0)) := ∂
∂t0
eΩ(τ,t0)

= d
dΩ
eΩ
∣∣
Ω=Ω(τ,t0)

( ∂
∂t0

Ω(τ, t0)) =

∫ 1

0

esΩ(τ,t0) ∂
∂t0

Ω(τ, t0)e(1−s)Ω(τ,t0) ds.

(6.5)

The formulas in (6.5) are not (always) analytically computable. In these cases one needs
numerical approximations, which are also asymptotically correct for t → 0 or τ → 0, re-
spectively, with some sufficiently high order. Therefore, the next section discusses suitable
quadrature formulas.

6.3 Quadrature formulas

To evaluate integrals of the form ∫ τ

0

F (σ; τ) dσ, (6.6)

with some integrable (matrix-valued) integrand F (σ; τ), we make use of the following quadra-
ture formulas. These formulas are significant parts in the evaluation of the defects to inte-
gration schemes, where integrals of the form (6.6) occur, compare Sections 4.1–4.4.

6.3.1 Second-order trapezoidal quadrature

This second-order quadrature formula can be found in [15, p.9]:∫ τ

0

F (σ; τ) dσ ≈ 1
2
τ
(
F (0; τ) + F (τ ; τ)

)
. (6.7)

6.3.2 Fourth-order modified trapezoidal quadrature of Hermite-
type

This fourth-order quadrature formula can also be found in [15, p.9]:∫ τ

0

F (σ; τ) dσ ≈ 1
2
τ
(
F (0; τ) + F (τ ; τ)

)
+ 1

12
τ 2
(
∂
∂σ
F (σ; τ)

∣∣
σ=0
− ∂

∂σ
F (σ; τ)

∣∣
σ=τ

)
. (6.8)
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Remark 6.3.4. For all integrators that have to make use of a quadrature formula when
numerically evaluated, it is inevitable to consider quadrature formulas of a sufficiently high
order, to obtain the asymptotically correct evaluation of its defects. Clearly, the order must
be at least as high as the order of the considered integration scheme. //

6.4 Pseudospectral Fourier-type collocation

We devote this section to the realization of the numerical evaluation of the operator

i ∂
2

∂x2
ψ(x, t),

which takes the form Au(t) after some spatial discretization,

ψ(x, t)
spat. discr.

=⇒ u(t).

The evaluation is effected by applying the method of pseudospectral Fourier method. For
simplification we consider it in one dimension:

Consider the symmetric interval [−L,L], L > 0, with N interior points,

xj = x0 + jh, h =
2L

N
, k = 0, . . . , N − 1.

We introduce the space of L2-functions on [−L,L] with periodic boundary conditions:

L2
per([−L,L]) := {u ∈ L2([−L,L]) : u(−L) = u(L)},

with inner product

〈u, v〉 :=
1

N

N−1∑
j=0

u(xj)v(xj).

On L2
per([−L,L]) we introduce the Fourier basis, given by

ϕk(x) := exp(iπk x
L

), k = 0, . . . , N − 1,

which satisfies 〈ϕk, ϕ`〉 = δk,`. With it we can define the trigonometric interpolant ũ(x) of a
function u ∈ L2

per([−L,L]):

ũ(x) :=
N−1∑
k=0

γkϕk(x), γk := 〈ϕk, u〉. (6.9)
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Due to 〈ϕk, ϕ`〉 = δk,`, there holds for ũ(x) ≈ u(x) the interpolation property ũ(xj) =
u(xj), j = 0, . . . , N − 1. For notational reasons we abbreviate uj := u(xj) and ob-
serve that the vector (γ0, γ1, . . . , γN−1) is the discrete Fourier transform F of the vector
(u0, u1, . . . , uN−1):

γ := (γ0, γ1, . . . , γN−1) = F(u0, u1, . . . , uN−1).

Remark 6.4.5. We remark that

d2

dx2ϕk(x) = ϕ′′k(x) = −
(kπ
L

)2

ϕk(x),

i.e., the Fourier basis functions are eigenfunctions of the differential operator d2

dx2 on
L2

per([−L,L]), while

−
(kπ
L

)2

, k = 0, . . . , N − 1,

are the corresponding eigenvalues. //

Differentiation of (6.9) gives

d2

dx2 ũ(x) = ũ′′(x) =
N−1∑
k=0

−
(kπ
L

)2

γkϕk(x), (6.10)

where ũ′′(x) is an approximation of u′′(x). A look at (6.10) shows that (ũ′′0, ũ
′′
1, . . . , ũ

′′
N−1)

represents exactly the inverse Fourier transform F−1 of(
0,−

(
π
L

)2
, . . . ,−

( (N−1)π
L

)2) · γT ,
i.e.,

(ũ′′0, ũ
′′
1, . . . , ũ

′′
N−1) = F−1

((
0,−

(
π
L

)2
, . . . ,−

( (N−1)π
L

)2) · F(u0, u1, . . . , uN−1)T
)
. (6.11)

In combination with spatial discretization, (6.11) is now applied to numerically evaluate the
kinetic term

i ∂
2

∂x2
ψ(x, t),

in (5.1).

This approach also shows that the operator A is a diagonal matrix, whence the flow associated
with problem (6.12) has the form etAu(t). Consequently, its (approximated) evaluation is
likewise done by pseudospectral Fourier-type method, which we show in the next section.
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6.5 Pseudospectral Fourier-type approximation

We can proceed analogously to approximate the solution of

∂
∂t
ψ(x, t) = i ∂

2

∂x2
ψ(x, t), ψ0(x) = ψ(x, 0), t ≥ 0. (6.12)

The solution to (6.12) is formally given by

ψ(x, t) = eit
∂2

∂x2ψ0(x), (6.13)

while the operator eit
∂2

∂x2 has the eigenvalues

eitλk , k = 0, . . . , N − 1, with λk = −
(kπ
L

)2

. (6.14)

With the insights that we got from the previous section we have

(ψ0
1, ψ

1
1, . . . , ψ

N−1
1 ) ≈ F−1

((
1, eit̃λ1 , . . . , eit̃λN−1

)
· F(ψ0

0, ψ
1
0, . . . , ψ

N−1
0 )T

)
, (6.15)

where ψ0(x) =: (ψ0
0, ψ

1
0, . . . , ψ

N−1
0 ), while ψ(x, t̃) =: (ψ0

1, ψ
1
1, . . . , ψ

N−1
1 ) is the solution after

one time-step t̃ ≥ 0.
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