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Abstract

The aim of evolutionary game theory is to describe biological phenomena using math-
ematical (game theoretical) models. Since about 20 years, evolutionary game theory is
used in medicine and biology: Natural processes are modelled with game theory by treat-
ing cells as players. In the present thesis fundamental concepts such as Nash equilibria,
evolutionarily stable strategies and different game dynamics are explored particularly
with regard to applications in medicine. Special attention is paid to explain the relation
between game theoretical concepts and the qualitative analysis of differential equations.
Models to analyse the progression of multiple myeloma bone disease, virus infections
and vaccinating behaviour in humans are presented. Replicator equations are used to
estimate the timely course of the multiple myeloma bone disease. A computer simula-
tion shows the effects of several factors on the prognosis of patients. It can also help
to determine recommendations for treatment and medical research. The application of
Lotka-Volterra equations to describe the immune reaction to viruses is discussed and the
model is adapted for more complicated use cases. Stability analysis of rest points yields
explanations for different reactions of the immune system. In the last section, imitation
dynamics is used to model human vaccinating behaviour. The model is introduced and
validated using data on measles incidence and immunisation coverage in the UK from
1980 to 2016.

Kurzfassung

Evolutionäre Spieltheorie nutzt mathematische (spieltheoretische) Modelle zur Beschrei-
bung biologischer Vorgänge. Seit etwa 20 Jahren findet evolutionäre Spieltheorie zu-
nehmend Beachtung in Medizin und Biologie: Zellen werden als Konkurrenten betra-
chtet und natürliche Vorgänge können realitätsnah modelliert werden. In der vorliegen-
den Arbeit werden grundlegende Konzepte wie Nash- Gleichgewichte, evolutionär stabile
Strategien und verschiedene Spieldynamiken insbesondere im Hinblick auf Anwendun-
gen in der Medizin behandelt. Dabei wird besonderer Wert auf den Zusammenhang
zwischen spieltheoretischen Konzepten und der qualitativen Analyse von Differentialgle-
ichungen gelegt. Es werden Modelle zur Analyse des Krankheitsverlaufs des multiplen
Myeloms und von Virusinfektionen vorgestellt, außerdem wird ein Modell zur Prognose
des Impfverhaltens bei Menschen erörtert. Mithilfe von Replikatorgleichungen wird der
zeitliche Verlauf einer Erkrankung an multiplem Myelom bestimmt. Eine Computersimu-
lation zeigt den Einfluss verschiedener Faktoren auf die Prognose von Patienten und Pati-
entinnen und kann Empfehlungen für die Behandlung und medizinische Forschung geben.
Die Anwendung von Lotka-Volterra Gleichungen zur Beschreibung von Viruserkrankun-
gen und entsprechenden Immunreaktionen wird diskutiert und das Modell für Spezialfälle
adaptiert. Die Stabilitätsanalyse von Gleichgewichtspunkten liefert Erklärungen für ver-
schiedene Reaktionen des Immunsystems. Zur Beschreibung menschlichen Verhaltens
wird eine spezielle Spieldynamik, die Imitationsdynamik, genutzt. Das Modell wird
hergeleitet und anhand von Daten zur Masernimpfung in Großbritanniern im Zeitraum
von 1980 bis 2016 validiert.
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1 Introduction

1.1 Definition of Evolutionary Game Theory

Evolutionary game theory can be defined as “the application of the mathematical theory

of games to biological contexts” (Alexander, 2009). When organisms rival for restricted

and vital resources such as food, territories or mates, conflicts arise frequently. However,

the application of game theory to model these conflicts is not straight forward as clas-

sical game theory was developed to model rational behaviour and a rational intellect or

conscience cannot be accredited to every animal or organism (van Damme, 1987).

Nevertheless, Maynard Smith & Price (1973) demonstrated the successful use of game

theory to describe animal contests in their paper “The Logic of Animal Conflict” (1973).

The applications are diverse: Fields included are without limitation sex ratio theory, an-

imal distribution and competition behaviours (Maynard Smith, 1982). Wei et al. (1995)

successfully applied game dynamical models to model virus dynamics for HIV, a year

later a similar model was applied to the hepatitis B virus infection (Nowak et al., 1996).

Brown (2016) suggested using game theory to model eco-evolutionary dynamics, niche

construction, ecosystem engineering and viewing cancer as an evolutionary game. Exten-

sive research on cancer from a game theoretical aspect has been done by Wu et al. (2018)

and Pacheco et al. (2014).

1.2 A Brief History of Evolutionary Game Theory

In 1944, John von Neumann and Oskar Morgenstern published “The Theory of Games

and Economic Behaviour”, introducing techniques to analyse games and applications to

economic and sociological problems. The first scientist who applied game theory to evo-

lutionary questions was R.A. Fisher in 1930 in order to explain sex ratios in populations.

In 1960, R.C. Lewontin considered a population playing against nature. But both Fisher

and Lewontin missed a crucial point: The connection between the success and the fre-

quency of a strategy (Sigmund, 2005).

In 1967, William D. Hamiltion applied game theory explicitly to intraspecific competition

and frequency-dependent fitness values and in 1970, George Price submitted a paper to

the journal Nature, investigating the advantages of the strategy “retaliation” in intraspe-

cific conflicts which was reviewed by John Maynard Smith.

It was not until 1973 though, that Maynard Smith and Price published a joint paper, “The

Logic of Animal Conflict”, which applied Maynard Smith’s concept of an evolutionarily

stable strategy (ESS) to animal conflicts (Alexander, 2009; Sigmund, 2005). This paper

had three fundamental consequences for evolutionary game theory: First, the develop-
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ment of ESS and consequently the “marriage of game theory and population dynamics”.

Second, the use of agent based computer simulation and third, the application of game

theoretical results to non-rational players (animals).

With the publication of the book “Evolution and the Theory of Games” in 1982, John

Maynard Smith made these results available to a wider audience and he himself became

popular as the “father of evolutionary game theory” (Sigmund, 2005). A more recent work

giving a detailed introduction to evolutionary game theory and population dynamics is

“Evolutionary Games and Population Dynamics” by Hofbauer & Sigmund (1998).

7



2 Normal Form Games

Let us first introduce some basic game theoretical terminology to model the behaviour of

our ’players’. We assume that the behavioural program of each player can be described

using a finite set of pure strategies. The definitions below are adapted from Hofbauer &

Sigmund (1998).

Definition 2.1. In a finite normal form game N pure strategies R1, . . . , RN are given.

Players may use mixed strategies, i.e. choose these pure strategies with probabilities p1, . . . , pN .

As there holds pi ≥ 0 and
∑N

i=1 pi = 1, each strategy corresponds to a point p in the sim-

plex

SN =

{
p = (p1, . . . , pN) ∈ RN : pi ≥ 0 and

N∑
i=1

pi = 1

}
.

The corners of the simplex defined above are the standard unit vectors ei, each corre-

sponding to a pure strategy Ri, the interior consists of completely mixed strategies with

pi > 0. The support

C(p) = {i : 1 ≤ i ≤ N, pi > 0}, p ∈ SN

is a proper subset of {1, . . . , N}.

Definition 2.2. The payoff matrix U = (uij) is defined such that the element uij denotes

the payoff of an Ri strategist against an Rj strategist. Hence (Uq)i =
∑N

j=1 uijqj denotes

the expected payoff of an Ri against a q strategist and p · Uq =
∑

i,j uijpiqj the expected

payoff of a p against a q strategist.

Another concept frequently used is the notion of “Darwinian fitness”:

Definition 2.3. The term “Darwinian fitness” describes “a relative measure of repro-

ductive success of an organism in passing its genes to the next generation’s gene pool”

(Mozo, 2018).

Whenever we use the term “fitness” in the following, we refer to the definition above

rather than physical fitness describing health.

Hawks and Doves

A famous example frequently used to illustrate ideas and results in the context of bio-

logical game theory is the Hawk-Dove game, introduced by Maynard Smith and Price in

8



1973. The name of the game refers to the character of the contestants rather than the

birds themselves. A contestant adopting the hawk strategy will fight as hard as possible

and only retreat when being seriously injured. A dove strategist, on the other hand,

retreats whenever being confronted and never lets a conflict escalate. Assuming that the

winner of a contest obtains a resource of value V and serious injury reduces the individ-

ual’s fitness by a cost C, one obtains the payoff matrix:

if it meets hawk if it meets dove

a hawk receives V−C
2

V

a dove receives 0 V
2

The success of either strategy depends on the constitution of the population and the

relation between the cost C of injury and profit V for the winner of a contest. In a

population consisting mostly of dove strategists, hawk strategists will fare better, as they

receive a value V against dove strategists, compared to V
2

for dove versus dove confronta-

tions. In a population consisting mostly of hawk strategists, the ratio V
C

determines the

success of a strategy (Hofbauer & Sigmund, 1998; van Damme, 1987).

• If V > C, a hawk strategist does better, as V−C
2

> 0.

• If V < C, neither strategy proves advantageous as strategy p1 = Hawk fares worse

than p2 = Dove, but the dove strategists would be invaded by hawks soon.

The solution is to consider a mixed population, denoting the frequency of hawks with

pH . Then the average increase in fitness for hawks and doves, respectively denotes:

pH ·
V − C

2
+ (1− pH) · V for hawk strategists

(1− pH) · V
2

for dove strategists

For pH = V
C

, equality holds and therefore we expect evolution to lead to the stable

state pH = V
C

(Hofbauer & Sigmund, 1998). In the following section the concepts of

evolutionarily stable states and Nash equilibria are introduced as tools for analysis.

2.1 Nash Equilibria and Evolutionarily Stable Strategies

A foundational concept of game theory is that of a Nash equilibrium. A strategy q is a

Nash equilibrium if it is a best reply to itself. It is a strict Nash equilibrium if it is the

unique best reply to itself. It is named after John Nash who has proved in 1950 that every

finite normal form game has at least one Nash equilibrium.
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Definition 2.4. (Hofbauer & Sigmund, 1998)

A strategy q is said to be a (strict) Nash equilibrium if there holds

p · Uq ≤ q · Uq (p · Uq < q · Uq) ∀p 6= q. (1)

Lemma 2.1. A strict Nash equilibrium q has to be a pure strategy.

Proof. Let q be a completely mixed strategy and a strict Nash equilibrium. Then (1) holds

for all p 6= q, especially for the pure strategies p = Ri, i ∈ {1, . . . , N}, i.e. (Uq)i < q·Uq ∀i.
As qi ≥ 0 ∀i the inequality may be multiplied by qi, then the sum over i is taken. Factoring

out q · Uq and using the property
∑
qi = 1 yields the contradiction 0 < 0.

N∑
i=1

qi(Uq)i −
N∑
i=1

qi(q · Uq) < 0

⇔

(
1−

N∑
i=1

qi

)
(q · Uq) < 0

⇔ 0 < 0

Hawks and Doves

It is easy to show that q = Hawk = (1, 0) is a strict Nash equilibrium if V > C. Let us

first recall that U =

(
V−C
2

V

0 V
2

)
.

First, we test q against the only other pure strategy p = Dove = (0, 1). There holds

p · Uq = 0 <
V − C

2
= q · Uq

if V > C.

Let p = (p1, 1− p1) now be an arbitrary mixed strategy, then there holds

p · Uq = p ·

(
V−C
2

0

)
<
V − C

2
= q · Uq

⇔ p1 < 1

which is always true for a mixed strategy.

If V < C, then there is no Nash equilibrium in pure strategies as the best reply to
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Dove is Hawk, but the best reply to Hawk would be Dove, therefore neither the hawk

nor the dove strategy yield an equilibrium.

There exists a mixed strategy Nash equilibrium, though: p̂ =
(
V
C
, C−V

C

)
. It can easily

computed by solving the equation

(1, 0) ·

(
V−C
2

V

0 V
2

)
·

(
p1

1− p1

)
= (0, 1) ·

(
V−C
2

V

0 V
2

)
·

(
p1

1− p1

)
⇔ p1 ·

V − C
2

+ (1− p1) · V = (1− p1) ·
V

2

⇔ p1 =
V

C
⇒ 1− p1 =

C − V
C

.

However, this equilibrium is not strict and it does not prove that a population applying

p̂ cannot be invaded by a minority adapting another strategy (Hofbauer & Sigmund,

1998). This consideration leads to the development of the concept of evolutionarily stable

strategies.

Definition 2.5. A strategy p̂ ∈ SN is evolutionarily stable, if for all p ∈ SN with p 6= p̂

the inequality

p · U(εp+ (1− ε)p̂) < p̂ · U(εp+ (1− ε)p̂) (2)

holds for all ε > 0 that are smaller than an appropriate invasion barrier ε̄(p).

Hofbauer & Sigmund (1998) give another definition of an evolutionarily stable strat-

egy:

Definition 2.6. A strategy p̂ ∈ SN is evolutionarily stable, if and only if it satisfies two

conditions:

1. equilibrium condition

p · Up̂ ≤ p̂ · Up̂ ∀p ∈ SN . (3)

2. stability condition

if p 6= p̂ and p · Up̂ = p̂ · Up̂, then p · Up < p̂ · Up. (4)

Lemma 2.2. The definitions of ESS given above are equivalent.
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Proof. Condition (2) in definition 2.5 is equivalent to:

(1− ε) (p̂ · Up̂− p · Up̂)︸ ︷︷ ︸
I

+ε (p̂ · Up− p · Up)︸ ︷︷ ︸
II

> 0. (5)

• “Definition 2.6 ⇒ Definition 2.5”.

I ≥ 0 denotes the equilibrium condition. If I = 0, the stability condition II ≥ 0

has to hold.

Let I = 0. Then II ≥ 0 has to hold and (5) holds for all ε.

Let I > 0 hold in the strict sense. Then both II > 0 and II < 0 are possible. If

II > 0, (5) follows directly for any ε > 0. If II < 0, (5) holds for all 0 < ε <

ε̄(p) := I
I−II :

(1− ε)I + εII > 0

⇔ I − ε(I − II) > 0

⇔ I > ε(I − II) | : (I − II) > 0

⇔ ε <
I

I − II
.

• “Definition 2.5 ⇒ Definition 2.6”.

– Case 1: I ≥ 0 and II ≥ 0. Both equilibrium and stability condition are

fulfilled. X

– Case 2a: I = 0 and II < 0.  The stability condition does not hold, but this

case cannot occur for I, II satisfying (5).

I > ε(I − II) | : (I − II) > 0

⇔ 0 > ε

in contradiction to the assumption ε > 0.

– Case 2b: I > 0 and II < 0. The equilibrium condition is fulfilled in a strict

sense, therefore the stability condition becomes obsolete. X

I > ε(I − II) | : (I − II) > 0

⇔ ε <
I

I − II
.

– Case 3: I < 0 and II ≥ 0.  Neither equilibrium nor stability condition hold,

12



but this case cannot occur for I, II satisfying (5).

I > ε(I − II) | : (I − II) < 0

⇔ I

I − II
< ε < 1

⇒ I < I − II ⇒ II < 0.

in contradiction to the assumption II ≥ 0.

– Case 4: I < 0 and II < 0.  This case cannot occur for I, II satisfying (5).

If I < II, (5) does not hold for all ε < 0 that are smaller than the invasion

barrier:

I > ε(I − II) | : (I − II) < 0 (I < II)

0 <
I

I − II
< ε.

If I < II, the computation leads to a contradiction to the assumption ε > 0:

I > ε(I − II) | : (I − II) > 0 (I > II)

0 >
I

I − II
> ε.

Lemma 2.3. If p̂ is a strict Nash equilibrium it is an ESS.

Proof. If p̂ is a strict Nash equilibrium it fulfills the equilibrium condition (3) trivially

in a strong sense. As equality can never hold for p 6= p̂, the stability condition (4) is

obsolete.

Lemma 2.4. If p̂ is an ESS it is a Nash equilibrium.

Proof. The equilibrium condition (3) is the defintion of a Nash equilibrium.

Theorem 2.5. (van Damme, 1987)

The strategy p̂ ∈ SN is an ESS if and only if there exists a neighbourhood W (p̂) such that

p̂ · Uq > q · Uq (6)

for all q ∈ W (p̂) with q 6= p̂.

Proof. Define pε(q) := (1−ε)p̂+εq for p̂, q ∈ SN , ε > 0. Then pε ∈ W (p̂) for any q ∈ SN if

ε is sufficiently small. Furthermore, definition 2.5 is equivalent to p̂·Upε(q) > pε(q)·Upε(q)

13



and the if part of the theorem is proven.

Let p̂ be an ESS. If p̂ is completely mixed (pi 6= 0, ∀ i = 1, . . . , N), condition (6) holds

for W (p̂) = SN , so assume that p̂ is not completely mixed. Define

S := {q ∈ SN : qi = 0 for some i, C(q) 6= C(p̂)} .

Next, define

ε(q) := sup {ε > 0 : p̂ · Upε(q) > q · Upε(q)}

ε∗ := inf {ε(q) : q ∈ S} .

If q 6= p̂, then ε(q) > 0 since p̂ is an ESS. Further ε∗ > 0 since ε is a continuous

function and S a compact set. Define W (p̂) := {pε(q) : q ∈ S, ε ∈ [0, ε∗)}. Then W is a

neighbourhood of p̂ and satisfies the condition of the theorem.

Lemma 2.6. Let p̂ ∈ int SN be a Nash equilibrium. Then p̂ is an ESS if and only if

ξ · Uξ < 0 ∀ ξ 6= 0 :
N∑
i=1

ξi = 0. (7)

Proof.

• Let p̂ ∈ int SN be an ESS according to definition 2.5. Then for all p 6= p̂ there

holds

p · U(εp+ (1− ε)p̂) < p̂ · U(εp+ (1− ε)p̂)

for an appropriate ε > 0.

This inequality may be rewritten as

(1− ε)(p̂ · Up̂− p · Up̂) + ε(p̂ · Up− p · Up) > 0.

Strategy p̂ ∈ int SN is a Nash equilibrium, hence (p̂ − p) · Up̂ = 0 which implies

(p̂− p) · Up > 0 and (p̂− p) · Up̂− (p̂− p) · Up < 0.

If we set ξ := p̂− p, there holds
∑

i ξi =
∑

i p̂i− pi =
∑

i p̂i−
∑

i pi = 1− 1 = 0 and

the claim is proven.

• Let now ξ · Uξ < 0 ∀ ξ 6= 0 :
∑N

i=1 ξi = 0 hold.

14



Set ξ := p̂− p for some p 6= p̂. Then

(p̂− p) · U(p̂− p) < 0

p̂ · Up̂− p · Up̂− p̂ · Up+ p · Up < 0 | · (−ε), ε > 0

−ε · p̂ · Up̂+ ε · p · Up̂+ ε · p̂ · Up− ε · p · Up > 0

As p̂ is a Nash equilibrium, we may add p̂ ·Up̂− p ·Up̂ ≥ 0 to the left side without

changing the inequality. We derive

(1− ε)(p̂ · Up̂− p · Up̂) + ε(p̂ · Up− p · Up) > 0

which is the definition of an ESS.

Definition 2.7. A set E is an evolutionarily stable set (ES), if

∀ x ∈ E ∃ a neighbourhood W (x) of x : x · Uy ≥ y · Uy y ∈ W (x) ∩ E (8)

x · Uy > y · Uy y ∈ W (x) \ E. (9)

Lemma 2.7. E consists of Nash equilibria, i.e. it is enough to restrict (8) to those y

which are best replies to x.

Proof. Let E be an ES. Let us further assume that x ∈ E is not a Nash equilibrium, i.e.

∃ z 6= x such that x · Ux < z · Ux. Then yε := (1 − ε)x + εz is in W (x) for sufficiently

small ε.

x · Uyε > yε · Uyε | − (1− ε)x · Uyε
εx · Uyε > εz · Uyε | : ε

x · Uyε > z · Uyε

If we now take the limit ε→ 0, we derive

x · Ux > z · Ux

in contradiction to our assumption that x is not a Nash equilibrium.

Lemma 2.8. {x} is an evolutionarily stable set if and only if x is an ESS.

Proof. This result directly follows from Theorem 2.5.
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Summary

The results of the lemmas above are summarised in Fig. 1:

• If p̂ is a strict Nash equilibrium it is an ESS.

• If p̂ is a Nash equilibrium and additionally satisfies the stability condition (4), it is

an ESS.

• If p̂ is an ESS it is a Nash equilibrium.

Figure 1: Relationship between Nash equilibria and ESS.
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3 Replicator Dynamics

The aim of replicator dynamics is to describe how frequencies of strategies in a population

evolve (Hofbauer & Sigmund, 1998). In contrast to the theory of Nash equilibria and ESS

in section 2, it is not assumed that individuals may choose to play a mixed strategy, but

that there is a heterogenous population of individuals only playing pure strategies (van

Damme, 1987).

3.1 The Replicator Equation

Let us first introduce the replicator equation. The following derivation is adapted from

Hofbauer & Sigmund (1998).

• Let the population be divided in n types E1, . . . , En and let x1, . . . , xn denote

the frequencies of the types E1, . . . , En.

• Let fi denote the fitness of type Ei, it is a function of x = (x1, . . . , xn). f̄(x)

then denotes the average fitness of the population: f̄(x) =
∑
xifi(x).

If the population is sufficiently large, it can be assumed that generations blend in

continiously and x(t) can be considered a differentiable function of t. The rate of increase

of type Ei,
ẋi
xi

, is one way to measure evolutionary success of type Ei. Another way to

measure success is to take the difference between the fitness fi of type Ei and the average

fitness f̄ . Hence we obtain the replicator equation

ẋi = xi(fi(x)− f̄(x)), i = 1, . . . , n. (10)

For modelling the evolution of a population it is crucial that a trajectory starting in the

simplex remains in SN . The next lemma shows that this is indeed true (van Damme,

1987).

Lemma 3.1. The simplex Sn is invariant under (10).

Proof. The replicator equation for each of the n types in the population can be written

out in full:

ẋ1 = x1(f1(x)− f̄(x))

ẋ2 = x2(f2(x)− f̄(x))

...

ẋn = xn(fi(x)− f̄(x))
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By taking the sum over all types 1, . . . , n the equation
∑n

i=1 ẋi =
∑n

i=1 xi(fi(x) − f̄(x))

is derived. Substituting S =
∑n

i=1 xi, this equation can be written as:

Ṡ = f̄ − Sf̄ ⇔ Ṡ = (1− S)f̄

The equation above has S(t) = 1 as a solution, therefore the solution of (10) stays in the

simplex if it starts there. Furthermore, if xi(0) = 0, then xi(t) = 0 for all t, hence the

faces of the simplex Sn and therefore Sn itself are invariant under (10).

There are several more very convenient characteristics.

Lemma 3.2. Addition Rule (Hofbauer & Sigmund, 1998)

The addition of a function Ψ : Sn → R to all fi does not change equation (10) on Sn.

Proof. Let gi(x) = fi(x) + Ψ(x). Then

ḡ(x) =
n∑
i=1

xigi(x) =

=
n∑
i=1

xifi(x) +
n∑
i=1

xiΨ(x) =

= f̄(x) + Ψ(x) on Sn.

Hence gi(x)− ḡ(x) = fi(x) + Ψ(x)− f̄(x)−Ψ(x) = fi(x)− f̄(x).

Lemma 3.3. Quotient Rule (Hofbauer & Sigmund, 1998)

For xj > 0 there holds (
xi
xj

).
=

(
xi
xj

)
(fi(x)− fj(x)). (11)

Proof. The replicator equation (10) reads ẋi = xi(fi(x)− f̄(x)) and ẋj = xj(fj(x)− f̄(x))

for type i and j, respectively. Applying the quotient rule of derivation leads to:(
xi
xj

).
=
ẋi · xj − xi · ẋj

x2j
=

=
xi · (fi(x)− f̄(x)) · xj − xi · xj · (fj(x)− f̄(x))

x2j
=

=
xixj · (fi(x)− f̄(x)− fj(x) + f̄(x))

x2j
=

=

(
xi
xj

)
(fi(x)− fj(x)).
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The special case of linear fi is of particular interest to game theory (Hofbauer &

Sigmund, 1998). For linear fi there exists a matrix A = (aij) ∈ Rn×n such that fi(x) =

(Ax)i. In this case, equation (10) can be written as

ẋi = xi((Ax)i − x · Ax), i = 1, . . . , n. (12)

The rest points of (12) in int Sn are the solutions of

(Ax)1 = · · · = (Ax)n (13)

x1 + · · ·+ xn = 1 (14)

satisfying xi > 0 for i = 1, . . . , n.

Lemma 3.4. (Hofbauer & Sigmund, 1998)

The addition of a constant cj to the j-th column of A does not change (12) on Sn.

Proof. The replicator equation for a linear fitness function fi reads

ẋi = xi((Ax)i − x · Ax) = xi((Ax)i −
∑
k

xk(Ax)k), i = 1, . . . , n

The term (Ax)i may be written as

(Ax)i =
n∑
k=1

aikxk.

Adding a constant cj to the j-th column yields

(Ãx)i = ai1x1 + . . .+ (aij + cj)xj + . . .+ ainxn =

= ai1x1 + . . .+ aijxj + . . .+ ainxn + cjxj =

= (Ax)i + cjxj.

19



Replacing the corresponding terms in the replicator equation completes the proof:

ẋi = xi((Ãx)i −
∑
k

xk(Ãx)k) =

= xi((Ax)i + cjxj −
∑
k

xk(Ax)k −
∑
k

xk︸ ︷︷ ︸
=1

cjxj) =

= xi((Ax)i −
∑
k

xk(Ax)k) =

= xi((Ax)i − x · Ax)

By adding appropriate constants it is possible to transform A into a simpler form (e.g.

having 0 in the diagonal).

Lemma 3.5. (Hofbauer & Sigmund, 1998)

The projective transformation x→ y

yi =
xici∑
j xjcj

cj > 0

transforms (12) into the replicator equation with matrix (aijc
−1
j ). A rest point p ∈ intSn

can thereby be moved to the barycentre
(
1
n
, . . . , 1

n

)
of Sn without changing its nature.

Proof.

Taking the derivative of yi yields

ẏi =
ẋici ·

∑
j xjcj − xici ·

∑
j ẋjcj(∑

j xjcj

)2 =

=
xici((Ax)i − x · Ax) ·

∑
j xjcj − xici

∑
j xjcj((Ax)j − x · Ax)(∑

j xjcj

)2 =

= yi · ((Ax)i −
∑
j

yj(Ax)j).
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Replacing ãij =
aij
cj

in the replicator equation ẏi = yi((Ãy)i − y · Ãy) yields

ẏi = yi(
∑
j

aij
cj

xjcj∑
j xjcj

−
∑
i

xici∑
j xjcj

∑
j

aij
cj

xjcj∑
j xjcj

) =

=
yi∑
j xjcj

((Ax)i −
∑
i

xici
∑
j

aijxj∑
j xjcj

) =

=
yi∑
j xjcj

((Ax)i −
∑
i

yi(Ax)i).

These terms are identical except for the scaling factor 1∑
j xjcj

which can be fixed by scaling

the time variable accordingly.

3.2 Game Theory and Replicator Dynamics

The objective of this chapter is to interpret replicator dynamics in a game theoretical

context. It will be explained how the differential equation corresponds to the underlying

normal form game and how the concepts of Nash equilibria and stability measures for rest

points coincide. This section mainly follows chapter 7 of Hofbauer and Sigmund (1998).

• Let us recall that there is an underlying normal form game in N pure strate-

gies R1, . . . , RN with a payoff matrix U .

• Any strategy corresponds to a point in SN ; therefore the types E1, . . . , En

coincide with n points p1, . . . , pn ∈ SN .

• The state of the population is given by the frequencies xi of type Ei which is

a point x ∈ Sn.

• The entries aij of the fitness matrix A ∈ Rn×n are given by the payoff of a

pi-strategist against a pj-strategist, namely

aij = pi · Upj

• The fitness fi(x) of type Ei can then be computed as

fi(x) =
∑
j

aijxj = (Ax)i

and the replicator equation (10) can be written in the easier form (12):

ẋi = xi((Ax)i − x · Ax), i = 1, . . . , n (12)
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3.2.1 Nash Equilibria and Evolutionarily Stable States

Before we can investigate the relation between rest points of the replication equation

and Nash equilibria we need to define Nash equilibria in this context and introduce

evolutionarily stable states.

Definition 3.1. A point x̂ ∈ Sn is a Nash equilibrium (with respect to payoff matrix A)

if

x · Ax̂ ≤ x̂ · Ax̂ ∀ x ∈ Sn. (15)

Definition 3.2. (compare theorem 2.5) A point x̂ ∈ Sn is an evolutionarily stable state

if

x̂ · Ax > x · Ax ∀ x 6= x̂ in a neighbourhood of x̂. (16)

Theorem 3.6. (Hofbauer & Sigmund, 1998)

1. If x̂ ∈ Sn is a Nash equilibrium of the game described by the payoff matrix A, then

x̂ is a rest point of (12).

2. If x̂ is the ω-limit of an orbit x(t) in int Sn, then x̂ is a Nash equilibrium.

3. If x̂ is Lyapunov stable, then it is a Nash equilibrium.

Proof. (Hofbauer & Sigmund, 1998)

1. Let x̂ be a Nash equilibrium. Then there exists a constant c such that (Ax̂)i = c

for all i with x̂i > 0. Hence x̂ satisfies the equations (13)-(14) for a rest point in

the face spanned by the ei with i ∈ supp(x̂).

2. Assume that x(t) ∈ Sn converges to x̂, but that x̂ is not a Nash equilibrium. Then

there exists an i and an ε > 0 such that (Ax̂)i− x̂ ·Ax̂ > ε. Hence ẋi
xi
> ε holds for

t sufficiently large, which is not possible.

3. Assume that x̂ is Lyapunov stable, but not a Nash equilibrium. Then there exists

an i and an ε > 0 such that (Ax)i − x · Ax > ε for all x in a neighbourhood of x̂

For such x the component ẋi increases exponentially which is a contradtiction to

Lyapunov stability.
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Theorem 3.7. (Hofbauer & Sigmund, 1998)

If x̂ is an evolutionarily stable state for the game with payoff matrix A, then it is an

asymptotically stable rest point of (12).

Proof. (Hofbauer & Sigmund, 1998)

The theorem is proven by showing that the function P (x) =
∏
xx̂ii is a strict local

Lyapunov function for (12).

1. P (x) has a unique maximum point x̂. This follows from Jensen’s inequality (68)

applied to the strictly convex function f = −log:

log(P (x))− log(P (x̂)) =
n∑
i=1

x̂ilog
xi
x̂i

=
n∑
i=1
x̂i>0

x̂ilog
xi
x̂i

≤ log

n∑
i=1
x̂i>0

xi ≤ log

n∑
i=1

xi = log 1

= 0.

As log is strictly increasing, there follows P (x) ≤ P (x̂) with equality only when

x = x̂.

2. If P > 0, then Ṗ > 0 for all x 6= x̂ in some neighbourhood of x̂.

For all x ∈ Sn with xi > 0 whenever x̂i > 0 there holds P > 0 and

Ṗ

P
= (log P ). =

(∑
x̂ilog xi

).
=
∑
x̂i>0

x̂i
ẋi
xi

=
∑

x̂i((Ax)i − x · Ax) =

= x̂ · Ax− x · Ax,

which is positive if x̂ is evolutionarily stable. Hence P is a strict local Lyapunov

function for (12) according to Lyapunov’s theorem (see theorem A.1).

Hawks and Doves

For this example we assume that the different types in the population correspond to the

pure strategies of the underlying normal form game (A = U and n = N). Let us recall

the payoff matrix for the Hawk and Dove game:

U =

(
V−C
C

V

0 V
2

)
.
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Inserting A = U into equation (12) assuming x1 = x and x2 = 1− x yields

ẋ =
1

2
x(1− x)(V − Cx) (17)

with rest points x̄1 = (0, 1), x̄2 = (1, 0) and x̄3 =
(
V
c
, C−V

C

)
corresponding to the two strict

Nash equilibria in pure strategies and the mixed strategy Nash equilibrium, respectively.

This result illustrates the statement of theorem 3.6.1.

3.3 The Lotka-Volterra Equation and Replicator Dynamics

The Lotka-Volterra model serves as the basic model for the dynamics of multiple inter-

acting species. It was first introduced by Alfred Lotka who used it to describe chemical

reactions in 1910. In 1926, Vito Volterra published the same equations for modeling the

effect of fishery in the Adriatic on predator and prey fish. In the case of two populations,

the Lotka-Volterra model is often called “predator-prey model”, but applications are di-

verse and include host-parasite dynamics as well as foodchains and cyclic competition in

higher dimensions (Goel et al., 1971).

Definition 3.3. The general Lotka-Volterra equation for n populations reads

ẋi = xi

(
ri +

n∑
j=1

aijxj

)
i = 1, . . . , n (18)

with

xi . . . densitiy of population i

ri . . . intrinsic growth or decay rates, respectively

aij . . . effect of the j-th on the i-th population

A = (Aij) is called interaction matrix.

The state x = (x1, . . . , xn) is an element of the space

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0 for i = 1, . . . , n},

whereas the replicator equation is an equation on the simplex Sn. Nonetheless it can

be shown that the replicator equation in n variables is equivalent to the Lotka-Volterra

equation in n− 1 variables.
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Theorem 3.8. (Hofbauer & Sigmund, 1998)

There exists a differentiable, invertible map from Ŝn = {x ∈ Sn : xn > 0} onto Rn−1
+

mapping the orbits of the replicator equation (12) onto the orbits of the Lotka-Volterra

equation

ẏi = yi

(
ri +

n−1∑
j=1

a′ijyj

)
, i = 1, . . . , n− 1 (19)

where ri = ain − ann and a′ij = aij − anj.

Proof. (Hofbauer, 1981; Hofbauer & Sigmund, 1998)

• The n − 1− dimensional Lotka-Volterra equation is defined on Rn−1
+ . Set yn = 1.

Then Rn−1
+ → Ŝn via the transformation

xi =
yi∑n
j=1 yj

.

• The inverse transformation Ŝn → Rn−1
+ is then defined as

yi =
yi
yn

=
xi
xn
.

• Let us assume that yi fulfills the Lotka-Volterra equation (19). Then there holds

ẋi =
ẏi ·
∑

j yj − yi ·
∑

j ẏj(∑
j yj

)2 =

= xi

(
ain − ann +

n−1∑
j=1

(aij − anj)
xj
xn
−

n∑
j=1

xj

(
ajn − ann +

n−1∑
k=1

(ajk − ank)
xk
xn

))
=

= xi

(
n∑
j=1

aijxj −
n∑
j=1

xj

n∑
k=1

ajkxk

)
1

xn
=

= xi ((Ax)i − x · Ax)
1

xn

if we set the last row of A, anj = 0 for all j. This can always be achieved due to

lemma 3.4. The term 1
xn

can be removed by a change in velocity.

• Let us now assume that xi fulfills the replicator equation (12) and anj = 0 ∀ j.
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Then there holds

ẏi =
˙(
xi
xn

)
=

(
xi
xn

)
((Ax)i − (Ax)n) =

= yi

(
n∑
j=1

aijxj −
n∑
j=1

anjxj

)
=

= yi

(
n∑
j=1

aijyj

)
xn =

= yi

(
ainyn +

n−1∑
j=1

aijyj

)
xn =

= yi

(
ain +

n−1∑
j=1

aijyj

)
xn

where the second equality follows from the quotient rule (lemma 3.3). Again, xn

can be removed by a change in velocity.

Therefore results about the replicator equation can be directly transferred to the

Lotka-Volterra equation and vice versa.
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4 Asymmetric Games

So far, only the symmtric case of evolutionary games has been considered. Most real

world contests, however, are not symmetrical: Strategies and payoffs differ depending on

a contestant’s position. For example, these differences can be due to size, gender, age

or the status in a group (van Damme, 1987). In this chapter, concepts such as Nash

equilibria will be extended to the asymmetric case and replicator dynamics to describe

the evolution of asymmetric populations will be discussed.

4.1 Bimatrix Games

In a symmetric game, the players’ start positions are the same, they have identical sets of

strategies and payoffs. The game can therefore be described by one n× n payoff matrix.

For players in asymmetric games, on the other hand, the starting position matters. If

this scenario is restricted to pairwise encounters and a finite set of pure strategies, we

speak of bimatrix games (Pfeiffer, 2014).

Players can be in different positions I and II: A contestant in position I has n, a

contestant in position II has m pure strategies. The corresponding payoffs are stored in

matrices A ∈ Rn×m and B ∈ Rm×n, respectively. If a player in position I uses strategy

i against a player in position II using strategy j, the payoff for player I is given by aij,

the payoff for player II is given by bji.

A mixed strategy for contestant I coincides with a point p in the simplex Sn, a mixed

strategy for contestant II with a point q in simplex Sm. The corresponding payoffs for a

p versus a q player are then given by p · Aq and q ·Bp, respectively.

Definition 4.1. (Hofbauer & Sigmund, 1998)

A pair (p̂, q̂) ∈ Sn × Sm is called a Nash equilibrium, if it satisfies the equations

p · Aq̂ ≤ p̂ · Aq̂ ∀ p ∈ Sn (20)

and q ·Bp̂ ≤ q̂ ·Bp̂ ∀ q ∈ Sm. (21)

It is called a strict Nash equilibrium, if strict inequalities hold in (20) and (21) for p 6= p̂

and q 6= q̂.

In other words, the pair (p̂, q̂) is a Nash equilibrium, if p̂ is a best answer to q̂ and

vice versa. The following lemma can be transferred almost directly from the symmetric

case (compare lemma 2.1).

Lemma 4.1. (Hofbauer & Sigmund, 1998)

A strict Nash equilibrium (p̂, q̂) consists of pure strategies.
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Proof. Assume that (p̂, q̂) is a strict Nash equilibrium with p̂ 6= ei for any vertex of Sn.

Then (20) has to hold for any p ∈ Sn, p 6= p̂ and especially for p = ei. As p̂i ≥ 0 for all i,

the inequality may be multiplied by p̂i without changing its sign. Then the sum over i is

taken. Factoring out p̂ · Aq̂ and using the property
∑n

i=1 p̂i = 1 yields the contradiction

0 < 0.

n∑
i=1

p̂i · (Aq̂)i −
n∑
i=1

p̂i · (p̂ · Aq̂) < 0

⇔

(
1−

n∑
i=1

p̂i

)
· (p̂ · Aq̂) < 0

⇔ 0 < 0.

4.2 Game Dynamics

In a similar approach as in section 3 we introduce differential equations for asymmetric

games. The derivation below follows Hofbauer & Sigmund (1998).

• Players in position I form population X, players in position II form popula-

tion Y .

• Let the populations be divided in types Ei, i = 1, . . . , n and Fj, j = 1, . . . ,m,

respectively. Let x ∈ Sn denote the frequencies of the types Ei in population

X and y ∈ Sm the frequencies of the types Fj in population Y .

• The average fitness of population X is denoted by x · Ay and the average

fitness of population Y is denoted by y ·Bx.

Equating the rate of increase ẋi
xi

of type Ei to the difference between its payoff and the

average payoff leads to the first equation (22). Applying the same thought to population

Y leads to the second equation (23).

ẋi = xi((Ay)i − x · Ay) i = 1, . . . , n (22)

ẏi = yi((Bx)j − y ·Bx) j = 1, . . . , n (23)

The state space Sn×Sm is invariant under (22)-(23) (compare lemma 3.1). The boundary

faces of Sn × Sm are obtained by setting some xi or yj to zero. Every one of those faces

can then be divided into boundary and interior- the boundary formed by faces again.
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Hence there is no loss of generality in restricting (22)-(23) to sets of the type

1. Sn × {f1} with f1 = {1, 0, . . . , 0} ∈ Sm

2. int Sn × Sm.

The formulas above describe two cases

1. at least one population consists of only one type

2. both populations consist of several types

and all other restrictions of this type are of the same form (Hofbauer & Sigmund, 1998).

The first case leads to the dynamics

ẋi = xi(a1i −
n∑
j=1

a1jxj). (24)

The idea that type i will succeed over the other types in the long term if its payoff a1i is

higher than the average payoff comes quite naturally and this is indeed the case:

Lemma 4.2. Whenever a1i in equation (24) is not maximal, there holds xi → 0.

Proof. see Hofbauer & Sigmund (1998)

Let us now consider case 2. The rest points in the interior int Sn × Sm are solutions

of

(Ay)1 = . . . = (Ay)n

m∑
j=1

yj = 1 (25)

(Bx)1 = . . . = (Bx)m

n∑
i=1

xi = 1 (26)

and are strictly positive. There are two possible cases:

• n > m. Solutions of (25) only exist if matrix A is degenerate. Solutions of (26)

form a linear manifold of dimension n−m. Hence the set of restpoints in intSn×Sm
is either empty or contains an (n−m)−dimensional subset.

• n = m. In this case, an isolated rest point can exist. If it exists, it is unique and

cannot be a source or a sink (Hofbauer & Sigmund, 1998).
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4.2.1 Nash Equilibria and Stability

In the special case n = m = 2, we can assume without loss of generality (see lemma 3.4)

that matrices A and B are of the form

A =

(
0 a

b 0

)
, B =

(
0 c

d 0

)
.

Equations (22)-(23) reduce to

ẋ = x(1− x)(a− (a+ b)y) (27)

ẏ = y(1− y)(c− (c+ d)x) (28)

and have a unique mixed equilibrium in the interior: P =
(

c
c+d

, a
a+b

)
. Schuster & Sigmund

(1981) have reached a qualitative result about this equilibrium:

Theorem 4.3. (Schuster & Sigmund, 1981)

Let the matrices A and B describe a 2 × 2 bimatrix game with a unique and completely

mixed Nash equilibrium. This equilibrium is a stable fixed point of the system (22)-(23)

that is not asymptotically stable. The orbits of (22)-(23) are closed and have the Nash

equilibrium as their time average.

Proof. (Schuster & Sigmund, 1981)

We only consider the cases ab < 0 and cd > 0 as otherwise ẋ or ẏ, respectively, do not

change sign and x (y) would either be constant or converge to 0 or 1. To analyse the

stability of rest point P , the Jacobian matrix of (27)-(28) is evaluated at P

J =

(
0 −(a+ b) cd

(c+d)2

−(c+ d) ab
(a+b)2

0

)

and the eigenvalues are computed:

λ1,2 = ±

√
abcd

(a+ b)(c+ d)

Under the assumption that ac > 0 holds, P is a saddle and the theorem of Poincaré-

Bendixon A.3 implies that there is no closed orbit in the interior of the unit square.

Depending on the sign of a, either (1, 0), (0, 1), (0, 0) or (1, 1) are sinks and almost all

orbits in the interior will have these sinks as ω-limits. If ac < 0, the eigenvalues λ1,2

are imaginary and P is of center type. Then the interior rest point P =
(

c
c+d

, a
a+b

)
of
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(27)-(28) is stable, but not asymptotically stable. Consider the function

V (x, y) = xc(1− x)dy−a(1− y)−b

which has a unique maximum at P . Furthermore there holds

V̇ =
∂V

∂x
ẋ+

∂V

∂y
ẏ = 0,

hence V is constant along every orbit. The orbits are level curves of V and therefore

periodic and closed. Equation (27) is equivalent to

ẋ

x(1− x)
= a− (a+ b)y =

˙
log

x

1− x

Integrating along an orbit of period T , using x(0) = x(T ) yields

0 = log
x(t)

1− x(t)

∣∣T
t=0 = aT − (a+ b)

∫ T

0

y(t)dt

⇒ 1

T

∫ T

0

y(t)dt =
a

a+ b
.

The identity for the time average of x follows analogously.

The following result can be transferred directly from the symmetric case (see theorem

3.6):

Theorem 4.4. (Hofbauer & Sigmund, 1998)

1. If (x̂, ŷ) ∈ Sn×Sm is a Nash equilibrium of the game described by the payoff matrix

A, then x̂ is a rest point of (27)-(28).

2. If (x̂, ŷ) is the ω-limit of an orbit in int Sn×Sm, then (x̂, ŷ) is a Nash equilibrium.

3. If (x̂, ŷ) is Lyapunov stable, then it is a Nash equilibrium.

4.2.2 Nash-Pareto pairs

There is no straightforward way to extend the concept of evolutionarily stable strategies

to asymmetric games as mixed strategy Nash equilibria for bimatrix games cannot be

evolutionarily stable. However, it was shown by Schuster & Sigmund (1981) that a

unique mixed strategy Nash equilibrium is an asymptotically stable rest point of the
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dynamics (22)-(23) (see theorem 4.3), therefore these mixed equilibrium points have to

be evolutionarily relevant in some sense.

This can be solved by introducing Nash-Pareto pairs, a concept relaxing the notion

of an ESS for mixed strategy equilibria of bimatrix games. (Hofbauer & Sigmund, 1998).

Definition 4.2. A pair of strategies (p, q) is called a Nash-Pareto pair for an asymmetric

game with payoff matrices A and B if two conditions hold:

1. Equilibrium condition:

p · Aq ≥ x · Aq and (29)

q ·Bp ≥ y ·Bp ∀ (x, y) ∈ Sn × Sm (30)

2. Stability condition: For all states (x, y) ∈ Sn × Sm for which equality holds in 1,

there holds

if x · Ay > p · Ay then y ·Bx < q ·Bx (31)

and if y ·Bx > q ·Bx then x · Ay < p · Ay. (32)

The first condition simply ensures that the pair (p, q) is a Nash equilibrium. If there

was another strategy (x, y) such that both players could maximise their payoffs at the

same time, they would surely switch to it and (p, q) would not be stable in any sense.

The idea behind the second condition is that it is impossible for both players to benefit

from a switch concurrently- one of them will always be put at disadvantage (Hofbauer &

Sigmund, 1998).

Summary

Figure 2 below is adapted from Schuster et al. (1981) and describes the development of

the game theoretical model and its connection to game dynamics. Figure 3 illustrates

lemmas 3.6 and 4.4: In the symmetric as well as in the asymmetric case, there is a

relationship between the concept of a Nash equilibrium and the results of the qualitative

analysis of the differential equations associated with game dynamics.
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Figure 2: Game Theory and Game Dynamics.

Figure 3: Rest points and Nash equilibria.
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5 Imitation Dynamics

Replicator dynamics model natural selection via inheritence of behaviour, which is not an

appropriate assumption for human populations. In a human society it is much more likely

that successful behaviour is imitated by others (Hofbauer & Sigmund, 1998). Children

start mimicking the actions of their parents at a very young age and continue to adapt

other (more successful) ways for the rest of their lives. There are various reasons for this

behaviour that are explored in specialised literature for psychology. In this chapter, a

model for imitation behaviour will be introduced and its similarity to replicator dynamics

explored.

Imitation Rules

Assume we have a symmetric game with an n× n payoff matrix A and R1, . . . , Rn pure

strategies. At time t, these pure strategies are adapted by a population of players with

frequency xi(t) and the state of a population is thereby given by a point in the simplex

x ∈ Sn. The payoff of a Ri strategist is given by (Ax)i and the average payoff is given by

x · Ax.

Suppose now that one player is picked out and is challenged to change his or her

strategy. He or she then samples another player randomly and mimics his or her strategy

with a certain probability. This scenario is described by the equation

ẋi = xi
∑
j

[fij(x)− fji(x)]xj (33)

where fij is defined as the rate at which a Rj strategist switches to Ri and it is assumed

that fij(x) depends on the expected payoff: fij(x) = f((Ax)i, (Ax)j). The function f is

called imitation rule.

Imitate the better

The simplest imitation rule one can use is “imitate the better”. It reads

f(u, v) =

{
0, u < v

1, u > v
. (34)

The disadvantage of this rule, however, is its discontinuity.
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Proportional Imitation Rule

This rule says “imitate actions that perform better, with a probability proportional to

the expected gain” (Hofbauer & Sigmund, 1998). We define

f(u, v) = Φ(u− v) with Φ monotonically increasing and (35)

Ψ(u− v) = Φ(u− v)− Φ(−u+ v) with Ψ odd and strictly increasing (36)

The imitation equation then reads

ẋi = xi
∑
j

xjΨ((Ax)i − (Ax)j). (37)

With the choice Φ(u) = max(0, u) we obtain Ψ(u) = u and the replicator equation (12):

ẋi = xi((Ax)i − x · Ax).

In the limit case α → 0 the “imitate the better” rule is obtained. It has been shown

by Björnerstedt & Weibull (1996) that the proportional imitation rule is in some way

optimal. In section 6.3 we will use these dynamics to model vaccination behaviour in

humans.

Other Imitation Rules

There are other versions of equation (33), e.g. with functions f only depending on the

success of the imitated player or the imitating player, respectively. These have been

studied by Björnerstedt & Weibull (1996) in more detail.
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6 Applications

6.1 Modeling Multiple Myeloma Bone Disease

Cancer is a collective term for “diseases in which abnormal cells divide without control

and can invade nearby tissues” (U.S. Department of Health and Human Services, 2018).

Multiple myeloma (MM) begin with a chain of mutations in white blood cells, plasma

cells that normally produce antibodies (Raab et al., 2009). Researchers have shown that a

“supportive” bone marrow microenvironment plays an essential role in the pathogenesis of

multiple myeloma, therefore evolutionary game theory can be used to better understand

the interactions between tumour cells and the environment. The mutant cells may be

seen as intruders to a population of normal cells (Pacheco et al., 2014).

Pacheco, Santos and Dingli (2014) have motivated the application of evolutionary game

theory to model tumour progression and used it to describe the dynamics of multiple

myeloma. In order to do this, several assumptions need to be made:

1. The normal as well as the mutant cell population need to be large enough to replace

absolute numbers with cell frequencies.

2. Every cell interacts with any other cell. This assumption restricts the use of evolu-

tionary game theory to tumours with high cell motility. Hence, the proposed model

cannot be applied to solid tumours, but it is feasible for blood cells and multiple

myeloma (MM), especially.

Overview of cell types involved

• osteoblast (OB) cells: bone formation

• osteoclast (OC) cells: bone resorption

• multiple myeloma (MM) cells: malignant tumour cell

6.1.1 Normal Bone Remodelling

In a healthy bone marrow, the bone metabolism is determined by a dynamic balance

between osteoclast (OC) cells and osteoblast (OB) cells, OC cells responsible for bone

resorption and OB cells responsible for bone formation. The interaction between these

two types is complex and depends on cytokines, small proteins that affect communication

between cells (Pacheco et al., 2014; U.S. Department of Health and Human Services,

2018).
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According to Pacheco, Santos and Dingli (2014), this dynamic balance can be modeled

assuming there is a game with a stable balance between the two populations OC and OB.

In this case, the payoff matrix reads:

A =

(
0 a

e 0

)
, a, e > 0.

There is no pure Nash equilibrium with respect to A, but a mixed one for (x̂1, x̂2) =(
a
a+e

, e
a+e

)
. Let x1 denote the frequency of OC cells and x2 the frequency of OB cells.

The replicator equations then read:

ẋ1 = x1(ax2 − (a+ e)x1x2) (38)

ẋ2 = x2(ex1 − (a+ e)x1x2) (39)

with rest points x̄1 = (0, 1), x̄2 = (1, 0) and x̄3 = ( a
a+e

, e
a+e

).

Stability Analysis

To analyse the stability of the rest points, we compute the Jacobi matrix for the system

(38)-(39)

J(x) =

(
ax2 − 2(a+ e)x1x2 ax1 − (a+ e)x21

ex2 − (a+ e)x22 ex1 − 2(a+ e)x1x2

)
. (40)

Substituting x̄1 yields

J(x̄1) =

(
a 0

−a 0

)

with eigenvalues λ1 = 0 and λ2 = a > 0, hence x̄1 is unstable. Substituting x̄2 yields

J(x̄2) =

(
0 −e
0 e

)

with eigenvalues λ1 = 0 and λ2 = e > 0, hence x̄2 is unstable, too. Inserting x̄3, on the

other hand, leads to

J(x̄3) =

(
− ae
a+e

0

0 − ae
a+e

)

with eigenvalue λ = − ae
a+e

< 0 and is therefore a stable rest point of (38)-(39).
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6.1.2 Pathological Bone Turnover

Figure 4: Schematic representation of pathological bone turnover. From “The ecology of
cancer from an evolutionary game theory perspective” by J. M. Pacheco, F. C. Santos,
and D. Dingli, 2006, Interface Focus, 4 (4) p. 5.

The transformation of plasma cells into malignant tumour cells is a complex process

and requires several mutations (Raab et al., 2009). Let us therefore assume that the first

myeloma (MM) cell has already appeared. The presence of MM cells now disrupts the

equilibrium between OC and OB cells in several ways (see Fig: 4):

• MM cells:

– produce cytokines that activate OC cells and increase bone resorption,

– produce cytokines that suppress OB activity (bone formation) and

– are unaffected by the presence of OB cells.

• OC cells stimulate increase of MM cells.

• Interactions between same cell types are neutral.

A more precise description of the types of messenger substances secreted and the

influence on each cell type is omitted here due to space reasons but can be found in

Pacheco, Santos, and Dingli (2014).

38



Knowing the dependencies above, the model for OB and OC cells can be expanded to

include MM cells and the new payoff matrix reads:

A =

0 a b

e 0 −d
c 0 0

 , a, b, c, d, e > 0.

Applying a projective transformation does not change the nature of the rest points (see

theorem 3.5), and taking β = c
e

and δ = dc
be

yields the minimum payoff matrix containing

only two unknowns:

Amin =

0 1 β

1 0 −δ
β 0 0

 , β, δ > 0.

Let x1 denote the frequency of OC cells, x2 of OB, and x3 of MM cells. Then the system

of replicator equations (12) for Amin reads:

ẋ1 = x1(x2 + βx3 − 2x1x2 − 2βx1x3 − δx2x3) (41)

ẋ2 = x2(x1 − δx3 − 2x1x2 − 2βx1x3 − δx2x3) (42)

ẋ3 = x3(βx1 − 2x1x2 − 2βx1x3 − δx2x3) (43)

6.1.3 Simulation

The parameter β denotes the ratio increase of MM activity
increase of OB activity (bone formation)

. Therefore the expected

behaviour in the case β < 1 would be a decline of MM cells and a return to the healthy

equilibrium between OC and OB cells. The case β > 1 describes a reduced activity of

OB cells, i.e. bone formation, and a heavier tumour load. In this case we expect the

restpoint between OC and MM to be stable.

To analyse the behaviour in the case β = 1, let us include δ in our consideration. The

parameter δ denotes the ratio β · suppression of OB cells (bone formation)
increase of OC activity (bone resorption)

. High δ corresponds to

suppressed bone formation, while bone resorption is increased, which can be observed

clinically as myeloma- induced osteoporosis Pacheco et al. (2014). High δ will accelerate

the progress of the disease, while low δ can slow it down.

The expectations above were tested by simulating the evolution of the dynamical system

(41)-(43) over time. This was done using Matlab 2017b on a Samsung Chronos 7 com-

puter, the code used for generating the images below can be found in appendix A.2. For

the simulation it has been assumed that a mutation has already occured (1% of observed

cells are MM cells); this scenario has been tested for a number of parameters.
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Figure 5: Stable equilibrium between OC and OB cells.

Figure 6: Stable equilibrium between OC and OB cells.
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Figure 7: Stable equilibrium between OC and OB cells.

Figure 8: The equilibrium between OC and OB cells is not stable, the dynamics lead to
an equilibrium between OC and MM cells.
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Figure 9: Stable equilibrium between OC and MM cells.

Figure 10: Stable equilibrium between OC and MM cells. Higher δ increases the velocity
of MM cell progression.
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6.1.4 Results and Recommendations

The results obtained meet the expectations explained in section 6.1.3: If the ratio β < 1,

the disease cannot progress independently from the value of δ. If β = 1, δ is impor-

tant: In the limit case δ = 0, the tumour cells cannot reproduce, in the case δ > 1,

they do and an equilibrium between OC and MM cells is reached. If β > 1, δ does not

determine whether MM cells spread, but influences the speed of tumour growth positively.

Several conclusions can be drawn from these results:

• The aim of a therapy should be to suppress or reduce β and δ to decrease the

speed of myeloma progression.

• Therapy that decreases β, reduces bone destruction and disease progression

speed.

• Therapy that decreases δ, reduces the myeloma burden and improves bone

mass.

• Therapy that reduces OC growth can indirectly benefit the patient as OC

cells contribute positively to MM cell growth.

Pacheco et al. (2014)

Although the dynamics introduced in this chapter describe the evolution of multiple

myeloma as observed clinically very well, Pacheco et al. (2014) point out that the pa-

rameters (payoff entries a, b, c, d, e) can vary widely between patients. Hence the location

of the rest points are patient specific. In the normal case β > 1, however, the prognosis

is very negative, which can also be observed clinically. The model can be extended to

include a bone marrow transplant as a therapy, which improves the prognosis significantly

(Pacheco et al., 2014).
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6.2 Immune Response to Viruses

Viruses are defined as “Intracellular parasites that depend on the host cell to survive and

replicate” (Nowak et al., 1996). There are several biologically important questions con-

cerned with viral replication dynamics, virus-host cell interaction and the consequences of

immune response. Fenton & Perkins (2010) have explored several basic models describing

said dynamics.

In order to do this, some simplifying assumptions have to be made:

1. The virus load determines the severity of the disease.

2. The human immune response is complex and has several components. However,

we will only focus on CTL cells (cytotoxic T lymphocytes) that are crucial for the

antiviral defense and attack virus- infected cells.

3. CTLs limit virus load.

Figure 11: Schematic representation of virus replication and immune response. From
“Population dynamics of immune responses to persistent viruses” by M. A. Nowak, S.
Bonhoeffer, A. M. Hill, R: Boehme, H. C. Thomas and H. McDade, 1996, Proceedings of
the National Academy of Sciences, 93 (9) p. 75.

Three different models will be explained in detail: The first and easiest one assumes

that the virus replicates within the host, the second and third one considers the more

complicated relationship shown in figure 11. The next definition is of great importance

in epidemology and will be needed throughout the chapter.

Definition 6.1. The basic reproductive ratio R0 is defined as the number of newly in-

fected cells arising from any one infected cell.
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6.2.1 Predator-Prey-Model

Fenton & Perkins (2010) regard cells as players in the game immune system versus para-

sites (e.g. viruses). It is assumed that parasite cells replicate within the host. The model

further assumes long-lived immune memory, therefore a constant immune response to

viruses. The active cells of the immune system are in the role of the predators, the virus

cells are the prey. The variables are defined as follows:

• Let P denote the parasite cell load, and I denote the load of active immune

system cells.

• Let α denote the growth rate of the parasite, β the consumption rate of par-

asites by the immune system, γ the immune system stimulation rate through

contact with parasites and δ the decay rate of immune system cells.

A classic Lotka-Volterra model is derived:

dP

dt
= αP − βIP (44)

dI

dt
= γβIP − δI (45)

The model (44)-(45) is a good approximation for some immune system- virus interactions,

even though it is quite simple. But as the replication process for most viruses is more

complicated, this basic model needs to be modified. The model used by Nowak et al.

(1996) to describe the process shown in figure 11 is investigated in the following sections.

6.2.2 Virus Replication

The virus replication model is a classic host- parasite model and contains three variables.

It was introduced by Nowak et al. (1996) and models the situation illustrated in figure

11 without immune response.
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• Uninfected cells are denoted by x, they are reproduced with rate λ and die

with rate d.

• Infected cells are denoted by y, they are reproduced with rate βxv and decline

by rate ay.

• Free virus particles are denoted by v, they are reproduced with rate ky and

die with rate uv.

The basic reproductive ratio of the virus reads R0 = βλk
adu

.

The resulting system of differential equations reads:

ẋ = λ− dx− βxv (46)

ẏ = βxv − ay (47)

v̇ = ky − uv (48)

with rest points x∗1 = λ
d
, y∗1 = 0 and v∗1 = 0 and x∗2 = au

βk
, y∗2 = λ

a
− du

βk
and v∗2 = λk

au
− d

β
.

Stability Analysis

To analyse the stability of the rest points, we compute the Jacobi matrix of the system

(46)-(48).

J =

−d− βv 0 −βx
βv −a βx

0 k −u

 (49)

Substituting x∗1, y
∗
1 and v∗1 yields:

J

(
λ

d
, 0, 0

)
=

−d 0 −βλ
d

0 −a βλ
d

0 k −u


with eigenvalues µ1 = −d and µ2,3 = −a+u

2
±
√(

a−u
2

)2
+ auR0. Under the assumption

R0 = βkλ
dau

< 1, i.e. less than one newly infected cell arising from any one infected cell,

(x∗1, y
∗
1, v
∗
1) is a stable rest point. This can be shown as follows:

• µ1 = −d < 0 follows directly.
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• Next we show µ2 < 0:

µ2 = −a+ u

2
−

√(
a+ u

2

)2

− au+ auR0

= −a+ u

2
−

√(
a+ u

2

)2

− au(1−R0)

< −a+ u

2
−

√(
a+ u

2

)2

− au

= −a+ u

2
− a− u

2
= −a < 0.

• Last, we prove µ3 < 0:

µ3 = −a+ u

2
+

√(
a+ u

2

)2

− au+ au ·R0

< −a+ u

2
+

√(
a+ u

2

)2

− au+ au

= −a+ u

2
+
a+ u

2
= 0.

Substituting x∗2, y
∗
2 and v∗2 yields:

J

(
au

βk
,
λ

a
− du

βk
,
λk

au
− d

β

)
=

 −
βλk
au

0 −au
k

βλk
au
− d −a au

k

0 k −u


The eigenvalues of this matrix are much harder to compute as a cubic equation has to

be solved. Using a computer algebra system one can compute the eigenvalues and show

that (x∗2, y
∗
2, v
∗
2) is stable if the condition R0 > 1 holds.

6.2.3 Immune Response

The basic model (46)-(47) is now extended with a variable describing the immune response

against infected cells.

• The CTL response is denoted by z, the CTL responsiveness is denoted by c.

CTL cells decay at rate b and kill infected cells at rate pyz.
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The resulting system of differential equations reads:

ẋ = λ− dx− βxv (50)

ẏ = βxv − ay − pyz (51)

v̇ = ky − uv (52)

ż = cyz − bz (53)

with rest points (x∗1, y
∗
1, v
∗
1, 0) and (x∗2, y

∗
2, v
∗
2, 0) as given above and an additional one:

x∗3 =
λcu

cdu+ βbk
, y∗3 =

b

c
, v∗3 =

bk

cu
, z∗3 =

1

p

(
λβck

cdu+ βbk
− a
)

(54)

Analysis

According to Nowak et al. (1996), there are two cases for the convergence of system

(50)-(53) to equilibria:

1. cy∗2 < b. Even though the immune system response may be activated, the system

will converge to the equilibrium (x∗2, y
∗
2, v
∗
2, 0) without immune system response.

2. cy∗2 > b. In this case, the system exhibits damped oscillations to the equilibirum

x∗3 =
λcu

cdu+ βbk

y∗3 =
b

c

v∗3 =
bk

cu

z∗3 =
1

p

(
λβck

cdu+ βbk
− a
)

6.2.4 Virus Mutation and Escape

The model can be extended to include virus diversity and escape from the immune system.

As the replication time for viruses is quite short, there is a high potential for mutations

and therefore diversification. Of course there is a positive correlation between virus load

and the number of mutant virus cells that cannot be spotted by the immune system-

these cells have a major advantage compared to other virus cells. The full model would

exceed the scope of this work, but is explained in detail in Nowak et al. (1996).
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6.3 Prediction of Vaccinating Behaviour

Immunisation benefits global health enormously by preventing illnesses, disability and

death from diseases such as diphteria, hepatitis B, measles, mumps, rubella or tetanus

(World Health Organization, 2017). The World Health Organization’s (WHO) goal is

to improve vaccine coverage in order to eradicate vaccine-preventable diseases. Due to

herd immunity it is not necessary to vaccinate everyone to achieve this goal, but just

a certain proportion of the population. There is more than one definition for the term

“herd immunity”: It is either referred to as the “proportion of subjects with immunity in

a given population” or the “reduction of infection or disease in the unimmunised segment

as a result of immunising a proportion of the population” (John & Samuel, 2000).

Herd immunity is important in the decision making process of whether to vaccinate a

child or not: The decision depends on the perceived risk of infection and the perceived

risk of vaccine-related side effects- and the risk of infection apparently depends on the

proportion of the population that is vaccinated. This complex process is visualised in

figure 12.

Figure 12: Vaccination Cycle: The more people are vaccinated- the lower the risk for
infection- the less likely it is for parents to vaccinate their children- the higher the preva-
lence.

6.3.1 Vaccinator and Non-Vaccinator Model

To model human vaccination behaviour, some assumptions need to be made.
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• Only childhood diseases with lifelong or long-term natural immunity are con-

sidered.

• The “players” are the parents who decide on the vaccination of their children.

• Vaccinations are scheduled at a young age and the decision whether to vac-

cinate is only made once.

• We further assume perfect vaccine efficacy.

Let fv and fn denote the perceived payoff for vaccinators and non-vaccinators, respec-

tively. Let rv and ri denote the perceived probability of morbidity from the vaccine and

upon infection, respectively. Then fv = −rv holds. Let I = I(t) denote the disease preva-

lence at time t and m the sensitivity of vaccinating behaviour to changes in prevalence.

The perceived payoff for non-vaccinators can be expressed in terms of disease prevalence:

fn(I) = −rimI (55)

Individuals randomly sample other members of population at some constant rate σ. The

payoff gain (or loss) for switching to the vaccinator strategy is given by

∆E = fv − fn(I) (56)

The imitation rule applied in this case is the “proportional imitation rule”: imitating

better performing actions with a probability proportional to the gain a player can expect

(see section 5). Let x denote the frequency of vaccinators and σ the rate at which a

vaccinator samples vaccinators. If ∆E > 0, non-vaccinators change to the vaccinator-

strategy with probability ρ∆E:

dx

dt
= (1− x)σxρ∆E (57)

If ∆E < 0, vaccinators may switch to the non-vaccinator strategy. Let k = σρ denote

the combined imitation rate, then the differential equation for x reads

dx

dt
= kx(1− x)(fv − fn(I)) = (58)

= kx(1− x)(−rv + rimI) (59)

The disease prevalence I is determined with a classic SIR- model: S denotes the suscep-

tible individuals of a population, I the infected proportion and R the immune (either
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naturally or through vaccination). Let µ denote the mean birth/ death rate per capita, β

the transmission rate and 1
γ

the mean duration of infectiousness. We derive the following

system of equations:

dS

dt
= µ(1− x)− βSI − µS (60)

dI

dt
= βSI − γI − µI (61)

dR

dt
= µx+ γI − µR (62)

dx

dt
= kx(1− x)(−rv + rimI) (63)

As S +R + I = 1, R can be eliminated and system (60)-(63) reduces to

dS

dt
= µ(1− x)− βSI − µS (64)

dI

dt
= βSI − γI − µI (65)

dx

dt
= κx(1− x)(−1 + ωI) (66)

with κ = krv and ω = mri
rv

.

The model above was introduced by Bauch (2005), who also derived the following

results about equilibrium points: The system (64)-(66) admits

• a pure disease free, non-vaccinator equilibrium: E1 = (1, 0, 0),

• a pure disease free, vaccinator equilibrium: E2 = (0, 0, 1),

• an endemic, non-vaccinator equilbrium E3 =
(

1
R0
, 1
ω0
, 0
)

if the basic reproductive

ratio R0 > 1 and where ω0 = ((γ + µ)/µ)/(1− (1/R0))),

• and an endemic equilibrium with a mixed state of vaccinators and non-vaccinators:

E4 =

(
1

R0

,
1

ω
, 1− 1

R0

− γ + µ

ωµ

)
if R0 > 1 and ω > ω0 hold.

6.3.2 Vaccine Scare 1998

In 1998, Andrew Wakefield et al. published a case series in the journal “Lancet”, linking

the MMR vaccine to autism. Even though the case studies only consisted of a small

sample size (n = 12) and the results were considered speculative, Wakefield and his col-

leagues reached wide publicity. Shortly after the publication several studies contradicting
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their results and refuting the claimed correlation between MMR vaccinations and autism

were published. The other authors and the journal retracted after it was revealed that

parents seeking to sue companies producing the vaccine had taken financial influence

on Wakefield. The scientists involved are not only charged with ethical misconduct and

scientific misinterpretation but also with deliberate fraud. As a result Andrew Wakefield

was removed from the UK Medical register.

An implication from this vaccine scare in Europe was a reduced immunisation rate in the

following years resulting in a measles outbreak in the early 2000 years. This statement is

illustrated in figure 13. In this chapter, we will model the evolution of MMR vaccination

rates in the United Kingdom from 1980 to 2016.

Figure 13: MCV1 vaccination rates and measles incidence in the UK 1980-2016. Data
retrieved from WHO.

Using equations (64)-(66), the evolution of vaccinators and measles incidence over the

years from 1980 to 2016 was modelled. The results in figure 14 were derived using the

parameters 1/γ = 22 days, 1/µ = 50 years, κ = 0.0025 and ω = 200000 in the beginning,

increasing the risk of vaccination 40−fold in 1997 and restoring it to its original value in

2005.
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Figure 14: MCV1 vaccination rates and measles incidence in the UK 1980-2016 compared
to model result. Data retrieved from WHO.
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A Appendix

A.1 Important Results for the Analysis of ODEs

The definitions and results below can be found in any textbook on ordinary differential

equations. For example, see Teschl (2012).

Definition A.1.

The ω − limit of x is the set of all accumulation points of x(t) for t→ +∞:

ω(x) = {y ∈ Rn : x(tk)→ y for some sequence tk → +∞}. (67)

Theorem A.1. Lyapunov’s theorem

Let ẋ = f(x) be a time-independent ODE defined on some subset G of Rn. Let V :

G → R be continuously differentiable. If for some solution x(t) the derivative V̇ of the

map t → V (x(t)) satisfies the inequality V̇ ≥ 0, then ω(x) ∩ G is contained in the set

{x ∈ G : V̇ (x) = 0}.
V is called a Lyapunov function.

Theorem A.2. Jensen’s inequality

If f is a strictly convex function defined on some interval I, then

f
(∑

pixi

)
≤
∑

pif(xi) (68)

for all x1, . . . , xn ∈ I and all p = (p1, . . . , pn) ∈ int Sn, with equality if and only if all x

coincide.

Theorem A.3. Poincaré- Bendixon

Let y′(t) = f(y(t) be a time-independent ODE on an open set G ⊂ R2. Let ω(y) 6= ∅ be

a bounded and closed ω-limit. If ω(y) does not contain a rest point, then is ω(y) a closed

orbit.

A.2 Matlab Code for simulation in section 6.1

close a l l

clear a l l

c lc

global b d

b = 1 . 5 ;
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d = 3 ;

i t e r = 100 ;

x0 =[0 . 495 ; 0 . 4 9 5 ; 0 . 0 1 ] ;

tspan = [ 0 i t e r ] ;

[ t , x ] = ode45 (@eoms , tspan , x0 ) ;

s=s ize ( x ) ;

x ( s (1 ) , : )

semilogx ( t , x ( : , 1 ) , ’b−. ’ , t , x ( : , 2 ) , ’ g−. ’ , t , x ( : , 3 ) , ’ r−. ’ )

axis ( [ 0 i t e r 0 1 ] )

xlabel ({ ’ t ime on l oga r i thmi c s c a l e ’ , [ ’ s t a r t i n g va lue s : x 1 = ’ ,

num2str( x0 (1 ) ) , ’ , x 2 = ’ , num2str( x0 (2 ) ) , ’ , x 3 = ’ ,num2str(

x0 (3 ) ) ] , [ ’ parameter va lue s : \beta = ’ ,num2str(b) , ’ , \ de l t a

= ’ , num2str(d) ] } )

ylabel ( ’ c e l l f r equency ’ )

legend ( ’OC c e l l s ’ , ’OB c e l l s ’ , ’MM c e l l s ’ )

hold on

function xprime = eoms ( t , x )

global b d

xprime = [ x (1 ) . ∗ ( x (2 )+b .∗ x (3 )−2.∗x (1 ) .∗ x (2 )−2.∗b .∗ x (1 ) .∗ x (3 )−d .∗
x (2 ) .∗ x (3 ) ) ;

x (2 ) . ∗ ( x (1 )−d .∗ x (3 )−2.∗x (1 ) .∗ x (2 )−2.∗b .∗ x (1 ) .∗ x (3 )−d .∗ x (2 ) .∗
x (3 ) ) ;

x (3 ) . ∗ ( b .∗ x (1 )−2.∗x (1 ) .∗ x (2 )−2.∗b .∗ x (1 ) .∗ x (3 )−d .∗ x (2 ) .∗ x (3 ) )

] ;

end

A.3 Matlab Code for simulation in section 6.3

close a l l ;

clear a l l ;

clc ;

year s = 1 9 8 0 : 1 : 2 0 1 6 ;

MCVprop = [NaN; 0 . 5 2 ; 0 . 5 5 ; 0 . 5 8 ; 0 . 6 2 ; NaN; 0 . 7 1 ; 0 . 7 6 ; 0 . 7 6 ;

0 . 8 4 ; 0 . 8 9 ; 0 . 9 ; 0 . 9 2 ; 0 . 9 2 ; 0 . 9 2 ; 0 . 9 2 ; 0 . 9 2 ; 0 . 9 1 ; 0 . 8 7 ;
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0 . 8 8 ; 0 . 8 8 ; 0 . 8 5 ; 0 . 8 5 ; 0 . 8 2 ; 0 . 8 1 ; 0 . 8 2 ; 0 . 8 5 ; 0 . 8 6 ; 0 . 8 6 ;

0 . 8 6 ; 0 . 8 9 ; 0 . 9 ; 0 . 9 2 ; 0 . 9 3 ; 0 . 9 3 ; 0 . 9 3 ; 0 . 9 2 ] ;

Measlesprop = [ 0 . 0 0 2 4 7 9 0 8 7 ; 0 .000940919 ; 0 .001671732 ;

0 .001839113 ; 0 .001100184 ; 0 .001725069 ; 0 .001449472 ;

0 .000742833 ; 0 .001511535 ; 0 .000459713 ; 0 .00023262 ;

0 .000168811 ; 0 .00017857 ; 0 . 0001667 ;

0 . 00028321 ;0 . 000128445 ;9 . 65055E−05;6.78804E−05;6.36592E

−05;4.14934E−05;4.03387E−05;3.79952E−05;5.43328E−05; 4 .16385E

−05;3.92539E−05; 3 .46511E−05; 6 .08467E−05; 5 .96799E−05;

8 .19339E−05; 8 .27873E−05; 3 .53042E−05; 3 .69557E−05; 6 .56347E

−05; 9 .45153E−05; 2 .84861E−05; 1 .82424E−05; 2 .49587E−05] ;

f igure (1 )

yyax i s r i g h t

plot ( years , MCVprop, ’−. ’ )

xlabel ( ’ year s ’ )

ylabel ( ’% o f s u r v i v i ng i n f a n t s having r e c e i v e d the MCV1 vacc ine ’

)

yyax i s l e f t

plot ( years , Measlesprop , ’− ’ )

ylabel ( ’ meas les i n c i d e n c e ’ )

global g m k w b

g = 1 / 0 . 0 6 ;

m = 1/50 ;

k = 0 . 0 0 2 5 ;

w = 200000;

b = 15∗( g+m) ;

x0 =[0 . 075 ; 0 . 00247 ; 0 . 5 2 ] ;

tspan = [1980 1 9 9 7 ] ;

[ t , x ] = ode45 (@eoms , tspan , x0 ) ;

s=s ize ( x ) ;

x ( s (1 ) , : )
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f igure (2 )

yyax i s l e f t

ylim ( [ 0 0 . 0 0 2 5 ] )

xlabel ( ’ year s ’ )

ylabel ( ’ meas les i n c i d e n c e ’ )

plot ( t , x ( : , 2 ) , ’ . ’ )

yyax i s r i g h t

ylabel ( ’% o f s u r v i v i ng i n f a n t s having r e c e i v e d the MCV1 vacc ine ’

)

plot ( t , x ( : , 3 ) , ’ o ’ )

%x l a b e l ( ’ time ’ )

hold on

x1 = x ( s (1 ) , : ) ’ ;

global k1 w1

k1 = 0 . 1 ;

w1 = 5000 ;

tspan2 = [1998 2 0 0 5 ] ;

[ t1 , x1 ] = ode45 (@eoms1 , tspan2 , x1 ) ;

yyax i s l e f t

xlabel ( ’ year s ’ )

ylabel ( ’ meas les i n c i d e n c e ’ )

ylim ( [ 0 0 . 0 0 2 5 ] )

plot ( t1 , x1 ( : , 2 ) , ’ . ’ )

yyax i s r i g h t

ylabel ( ’% o f s u r v i v i ng i n f a n t s having r e c e i v e d the MCV1 vacc ine ’

)

plot ( t1 , x1 ( : , 3 ) , ’ o ’ )

s = s ize ( x1 ) ;

x2 = x1 ( s (1 ) , : ) ’ ;

tspan3 = [2006 2 0 1 6 ] ;

[ t2 , x2 ] = ode45 (@eoms , tspan3 , x2 ) ;

yyax i s r i g h t
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ylabel ( ’% o f s u r v i v i ng i n f a n t s having r e c e i v e d the MCV1 vacc ine ’

)

plot ( t2 , x2 ( : , 3 ) , ’ o ’ )

yyax i s l e f t

xlabel ( ’ year s ’ )

ylabel ( ’ meas les i n c i d e n c e ’ )

ylim ( [ 0 0 . 0 0 2 5 ] )

plot ( t2 , x2 ( : , 2 ) , ’ . ’ )

yyax i s r i g h t

plot ( years , MCVprop, ’−. ’ )

yyax i s l e f t

plot ( years , Measlesprop , ’− ’ )

function xprime = eoms ( t , x )

global g m k w b

xprime = [m.∗(1−x (3 ) )−b .∗ x (1 ) .∗ x (2 )−m.∗ x (1 ) ;

b .∗ x (1 ) .∗ x (2 )−g .∗ x (2 )−m.∗ x (2 ) ;

k .∗ x (3 ) .∗(1−x (3 ) ) .∗(−1+w.∗ x (2 ) ) ] ;

end

function xprime = eoms1 ( t , x )

global g m k1 w1 b

xprime = [m.∗(1−x (3 ) )−b .∗ x (1 ) .∗ x (2 )−m.∗ x (1 ) ;

b .∗ x (1 ) .∗ x (2 )−g .∗ x (2 )−m.∗ x (2 ) ;

k1 .∗ x (3 ) .∗(1−x (3 ) ) .∗(−1+w1.∗ x (2 ) ) ] ;

end
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