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Abstracts

Abstract

Next generation sequencing, transcribing parts of the DNA, underwent drastic de-
velopments in the last years. One of the newest developments enables researchers to
extract gene expression data from single cells. One of these techniques, micro-droplet
sequencing, managed to catapult single cell RNA (transcriptome) sequencing to the
top of the field, because it provides high throughput and high accuracy sequencing
information for a fraction of the costs. This new technology introduces researchers
to a new era of single cell sequencing and thereby understanding mechanisms in
biology on a single cell level. Different applications are the discovery of new cell
types, identification of targets for drug development or the observation of biological
phenomena on a cellular level, just to name a few.

With this new technology a new kind of data is generated. Therefore, new challenges
emerged in the field of computational biology, for example very high dimensionality
within large data sets, susceptibility to confounding factors, limitations in visualizing
the data, high levels of noise and lacking confidence in clustering results. The
literature recommends to address these challenges with procedures such as quality
control, normalization, confounding factor analysis, dimensionality reduction and
clustering. The major challenge is to determine the right methods and developing
a best practice workflow for the rigorous analysis of such data.

This work focuses on the development, verification and validation of such a workflow,
which addresses all the newly arisen challenges. The workflow is based on theoret-
ical considerations of our previous work [Reil8] in this field. The main goal is to
achieve a robust clustering by cell populations through the application of mostly
automated and comprehensible methods. Furthermore, the discovery of potential
sub populations inside of clusters or further downstream analyses are promoted by
the information provided within the results of the workflow.

The workflow is verified with the help of simulated datasets, which were specifi-
cally designed to resemble single cell RNA sequencing datasets. Every dataset was
parameterized to test for certain supported features of the workflow and its limits
concerning artificially added challenges as noise or confounding factors.

In the end we validate the workflow through the analysis of a real publicly available
dataset from the literature and by comparing the results and biological interpretation
with discoveries made by the community:.



Zusammenfassung

Die Sequenzierungsmethoden der zweiten Generation (engl. next generation se-
quencing), deren Ziel es ist Teile der DNA zu entschliisseln, durchliefen in den let-
zten Jahren rapide Entwicklungen. Eine der neuesten Entwicklungen ermdoglicht es
Wissenschaftlern, die Genexpression von einzelnen Zellen zu quantifizieren. Eine
dieser Technologien, “micro-droplet sequencing”, schaffte es, die Einzelzell-RNA (=
Transkriptom) Sequenzierung (engl. single cell RNA sequencing) an die Spitze dieses
Forschungsgebietes zu katapultieren, da sie einen hohen Durchsatz und prazise Se-
quenzierungsinformationen fiir einen Bruchteil der Kosten ermoglicht.

Diese neue Technologie ermdglicht es Forschern eine neue Ara der Einzelzell-RNA
Sequenzierung und damit die Erforschung von biologischen Mechanismen auf zel-
luldrer Ebene einzulduten. Verschiedene Anwendungen sind die Entdeckung neuer
Zelltypen, die Identifikation von Angriffspunkten fiir die Medikamentenentwicklung
oder die Beobachtung biologischer Phanomene auf zellularer Ebene, um nur einige
wenige zu nennen.

Durch die Anwendung dieser neuartigen Technologie wird eine noch nie da gewesene
Art von Daten generiert. Daraus resultieren neue Herausforderungen auf dem Gebiet
der Bioinformatik, zum Beispiel eine sehr hohe Dimensionalitit in groflen Daten-
sitzen, Anfalligkeit fiir Storfaktoren, Einschrénkungen bei Visualisierungen, hohe
Rauschanteile und unzulédngliche Ergebnisse in der Clusteranalyse. Die Literatur
empfiehlt, diese Herausforderungen mit Verfahren wie Qualitatskontrolle, Normal-
isierung, Storfaktoranalyse, Dimensionsreduktion und Clusteranalyse zu bewaltigen.
Jedoch besteht die grofite Herausforderung darin, die richtigen Methoden zu finden
und einen Workflow fiir die rigorose Analyse solcher Daten zu entwickeln.

Diese Arbeit konzentriert sich auf die Entwicklung, Verifizierung und Validierung
eines solchen Workflows, der alle neu entstandenen Herausforderungen adressiert.
Der Workflow basiert auf theoretischen Uberlegungen unserer vorherigen Arbeit
[Reil8] in diesem Bereich. Hauptziel ist eine robuste und nachvollziehbare Clus-
terfindung anhand von Zellpopulationen durch den Einsatz von hauptséchlich au-
tomatisierten Methoden. Dartiber hinaus wird die Entdeckung potenzieller Subpop-
ulationen innerhalb von identifizierten Clustern oder nachfolgende Analysen durch
die in den Ergebnissen des Workflows bereitgestellten Informationen geférdert.

Der Workflow wird mit Hilfe von simulierten Datenséitzen verifiziert, die gezielt
generiert wurden, um FEinzelzell-RNA-Sequenzierungsdaten zu entsprechen. Jeder
Datensatz wurde entsprechend parametrisiert, um bestimmte unterstiitzte Funktio-
nen des Workflows und seine Grenzen hinsichtlich kiinstlich hinzugefiigter Heraus-
forderungen in der Form von Rauschen oder Storfaktoren zu testen.

Am Ende validieren wir den Workflow durch die Analyse eines realen offentlich
verfiigbaren Datensatzes aus der Literatur und durch den Vergleich der Ergebnisse
und biologischen Interpretation mit bereits vorhandenen Erkenntnissen.
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1. Motivation

“Welcome those big, sticky, complicated problems. In them are your
most powerful opportunities.”
Ralph Marston

Next generation sequencing (NGS), is the name of a group of deep, high-throughput,
in-parallel DNA (deoxyribonucleic acid) sequencing technologies. The goal of (DNA)
sequencing, is to determine the order of nucleobases (for DNA or RNA: Adenine,
Cytosine, Guanine, Thymine or Uracil) within a DNA or RNA molecule of a given
organism. For the determination of the exact order of nucleotides different tech-
niques were developed.

Single cell RNA sequencing (scRNAseq) concerns itself with the quantification of
gene expression through RNA sequencing on a cellular level. Due to novel tech-
nological developments, which make this approach more accurate, affordable and
faster, scRNAseq experiences a new advent.

Applications for this kind of novel technologies are research in medicine, biology and
chemistry or the life sciences in general and a lot of developments in the respective
fields can be expected with the help of scRNAseq. Especially in the understanding
of biological mechanisms, differentiation of disease characteristics on a cellular level,
discovery of new cell types or drug development.

However, conducting experiments and generating data are only the first steps in
the process of applying this technology on the just stated challenges and fields.
Without robust and comprehensible analysis of the data, no further research can be
done. It is critical to have high quality data and rigorous analysis in research for
the development of new pharmaceutical components or discovering mechanisms in
biology.

The problem at hand can be formulated as the absence of a comprehensible and
holistic best practice approach for this kind of data, because firstly it comes with
novel characteristics and secondly ground truths or reference data, which are needed
to evaluate results, are scarce. Furthermore, there are not yet any widely spread or
accepted standards concerning formats or methods. As a matter of fact, there are a
lot of different methods out there for every aspect of analyzing scRNAseq data and
every week a new “best practice” algorithm is published. This especially holds true
for clustering algorithms, needed to detect populations within a sample for further
analysis. Sadly, most of the novel approaches only work on certain datasets and not
in general.
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Therefore, we identified the need for a robust, comprehensible, semi-automated,
modular and last but not least easy to use best practice for the analysis of scRNAseq
data. The results should represent a solid basis for further exploratory analysis and
research.

To have such a frame work, adhering to the stated goals, which deals with scRNAseq
data, in a semi-automated fashion is essential for the work of computational biol-
ogists and exploratory data analysts. Therefore, a well documented and modular
workflow is an ideal way to address this immanent need. Both attributes enable fur-
ther development or modifications without rendering the current workflow useless
in the future.

This work aims at presenting such a workflow for the rigorous analysis of scRNAseq
data, which adheres to the goals and challenges described above. The methods,
approaches and techniques applied within the workflow are mostly based on our
theoretical considerations in a previous work [Reil8] on that matter.

To position this work and to give the reader a proper understanding for the current
situation in this field, we start out with an introduction into the rather broad topic of
scRNAseq. This will also entail a quick review on the immediate past in the field of
next generation sequencing and also how scRNAseq differs from other technologies.
After that, one particular technique of micro-droplet sequencing will be presented
and we discuss the data, which is generated by that process. Naturally, this new
kind of data comes with a lot of challenges, which are tackled by proper scRNAseq
analysis.

The next part is dedicated to the construction and presentation of a semi-automated
workflow for scRNAseq analysis, which is the main subject of this work. There, we
will present concrete objectives concerning the functionalities, the general architec-
ture and the components, called modules, of the workflow. This will be done by
explaining a modules main objective, concrete implementation and results. Every
module is accompanied by the respective part of an analysis of a simulated dataset,
to make the explanations more comprehensible. At the end of this part we will
discuss some areas of application and how the workflow is intended to be used.

The last part concerns itself with the verification and validation of the workflow.
This is done with the help of eight simulated datasets to check for the designed
and required functionalities and a real dataset for testing the workflow’s real life
capabilities and applicability.

Every part is supplied with illustrations, visualizations and tables to promote better
understanding.



2. Introduction to Single Cell RNA
Sequencing

“It’s only those who are persistent, and willing to study things deeply,
who achieve the Master Work.”
Paulo Coelho, The Alchemist

In this introductory chapter, we start out by defining the term single cell RNA
sequencing (scRNAseq) and what differentiates this method from previous RNA se-
quencing approaches. After that, we briefly touch upon biomedical applications and
why this technology is very promising for scientists, patients and society in general.
To make the approach more tangible, we describe one specific technology, which en-
ables scRNAseq on a never seen before scale concerning throughput and accuracy.
We finish the chapter by describing the kind of data generated by scRNAseq, the
challenges resulting from it and how to deal with these novel challenges according
to the literature.

2.1. Single Cell RNA Sequencing (scRNAseq)

Single cell RNA sequencing (in the following scRNAseq) is a next generation se-
quencing (NGS) technology, which enables scientist to determine the gene expres-
sion levels of a single cell by quantifying the RNA molecules present within the cell
at a certain point in time. This can not only be done for one cell at a time, but for
thousands of cells simultaneously.

To make the novelty more understandable, we can have a look at the previous
state of the art technology for the determination of gene expression levels within
a sample, namely bulk RNA sequencing (bulk-RNAseq), using a work on NGS by
Kulski [Kull6]. The goal of this approach is to quantify the gene expression levels of
a biological sample consisting of cells. For that, the cells within the sample are lysed
and the RNA molecules are extracted with the help of some purification steps. To
use standardized NGS methods, which are designed for sequencing strands of DNA,
the RNA molecules are synthesized to complementary DNA (cDNA) by reverse
transcription. This ensures that a more robust structure (double stranded vs. single
stranded) carries the information and more importantly that standard sequencing
approaches can be applied. The result of bulk-RNAseq then is the quantification
of the number of RNA molecules relating to each gene within a sample or in other
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words we get one value for each gene representing in total the gene expression levels
of the whole sample.

This leads us directly to the main difference between bulk-RNAseq and scRNAseq.
In scRNAseq we determine the number of RNA molecules relating to one gene for
every gene within each cell of the sample. Therefore, the result is not one value per
gene, but one value per gene and cell within a sample.

This is achieved through new technological developments in the sample preparation
of the sequencing experiments. The cells need to be separated and “tagged” before-
hand to make the quantification of gene expression on a cellular level even possible.
As we will see, even the RNA molecules themselves have to be marked in a specific
way to ensure that they can be traced back to their cell of origin. Therefore, the
sample preparation in scRNAseq is a lot more sophisticated, compared to standard
DNA or even bulk-RNAseq. For this process of “cell-capturing” different methods
have been developed and they can be assigned to one of three categories: cell-sorting
based, micro-well based and micro-droplet based. To illustrate the whole process of
scRNAseq we will dedicate Chapter 2.3 to describe in detail a micro-droplet based
approach, which yields high throughput and accurate results.

Due to the fact that these two RNAseq approaches quantify the gene expression on
different levels (sample vs. cellular level) the data they generate is also different in
nature. Instead of having only one value per gene, as we have seen in bulk-RNAseq,
we encounter in scRNAseq a value for every gene in every cell. Therefore, data origi-
nating from scRNAseq experiments is different in structure, has an increased volume,
higher complexity and is a lot sparser. The exact characterization of scRNAseq data,
the resulting new challenges and how to deal with them by scRNAseq analysis are
addressed in Chapter 2.4.

The most important thing concerning this novel technology are the new possibilities
and potential applications in biomedical research. The next section of this part
will deal with this aspect by reflecting on the current applications of NGS and the
potential of scRNAseq in this context.

2.2. Biomedical Applications

The probably most famous project in DNA sequencing was the Human Genome
Project, which was initiated in 1990 and finalized in 2013, taking 13 years to sequence
and map all of the genes (= genome) of members of the human species, Homo
sapiens, costing approximately $2.7 billion [Nat15]. Today, thanks to NGS it only
takes one day to sequence up to 45 human genomes for one thousand dollars per
genome [I1117].

Due to the advances in NGS, increasing the throughput and quality and at the same
time lowering the costs, it is already widely used not only in research but also in
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clinical practice on patients. Three present applications of NGS can be found in
cancer research, infectious disease analysis and drug discovery. In cancer research it
is used to identify the best treatment for a patient by screening the tumor for certain
genetic mutations. This can also be used to identify the cause of cancerogenesis
and helps with the discovery of new mechanisms, which can be targeted by new
treatment options. Infectious disease outbreaks of viral or bacterial nature can be
stopped or contained by sequencing the respective vector and thereby finding a way
to destroy it with a valid therapeutic agent or discover its origin. Drug discovery
uses sequencing to understand the differences between healthy and diseased cells.
This aids in the development of therapeutic agents, by identifying potential targets
which inhibit the underlying mechanisms of the disease. Furthermore, NGS can be
used in experiments to study the effect of potential treatments on diseased cells.

With the advent of new approaches in scRNAseq concerning the cell capturing
techniques, advances in microfluidics and sequencing in general, it is now cheaper
and more accurate than ever to conduct scRNAseq experiments. Therefore, this
technology can be used in a wider field of applications. In general it can be said
that one of the main goals is to detect masked or hidden cellular variation, which
could help or lead to new discoveries and applications.

Future applications of scRNAseq or projects concerning the human health or genome,
of which some are already in discussion or being implemented, are:

e The human cell atlas, a global effort to build a comprehensive atlas of all
human cells with the help of scRNAseq [RTL*17].

o Newborn screening by sequencing the genome as soon as possible after birth
to anticipate potential health risk factors [Nat16].

o Regular check ups at the doctor could be complemented by scRNAseq of cer-
tain tissues to asses potential health risks and intervene immediately.

« By analyzing samples on a cellular level new cell types are discovered and new
biological mechanisms are found.

o Modeling of biological systems can be enhanced with deeper knowledge about
the roles of single cells. Simulations on a cellular level could lead to more
detailed and accurate insights.

» Patients in clinical trials could be stratified in better fitting groups to benefit
from a particular drug or avoid adverse events.

o Diseases could be described more detailed on a cellular level and therefore
more precise therapeutic agents or other more meaningful strategies can be
applied.

This list could be even longer, but should only demonstrate the huge inherent poten-
tial of the novel advances in scRNAseq technology. In the next part we will describe
one of various ways from the sample to the data generation.
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2.3. scRNAseq with the 10x Genomics Solution

In this part we want to describe the whole process from sample preparation until the
generation of the count matrix, which represents the starting point of our scRNAseq
analysis workflow. For the crucial part, the preparation in the beginning, we decided
to present one of the newest technologies in “micro-droplet” sequencing, which uses
microfluidics for the capturing of single cells, provided by 10x Genomics [10x16b]
and used by Zheng et al [ZTB'17|. The subsequent NGS sequencing protocol is
presented with the help of materials from NGS technology providers ABM [ABM]
and Ilumina [I1117].

From Cells to cDNA

We start out with the preparation of the sample of interest, consisting of thousands
of cells, for the subsequent sequencing process. For that, we need the 10x Barcoded
Gel Beads and the 10z Chromium machine, both provided by 10x Genomics, for
the process of capturing and tagging the individual cells.

ecee Z Poly(dT)VN
[ 1] /

°0e =

o0 e A

oo =R UMI

Figure 2.1.: A 10z Gel Bead. Figure adopted from 10x Genomics.

A 10x Gel Bead can be seen in Figure 2.1 and they host a multitude of oligonu-
cleotides (= short DNA or RNA strands with different applications), which consist
of 4 parts with different purposes. These parts are called R1, 10z Barcode, UMI
(Unique Molecular Identifier) and Poly(dT)VN. The first and the last part are used
to catch the RNA molecules and in the process of reverse transcription (RT) as
connectors or primers. The 10z Barcode is a unique sequence within every 10z Gel
Bead. The UMI is a randomly generate sequence, which is different for every RNA
molecule. Together, the 10x Barcode and the UMI, are used to precisely trace back
the RNA molecule to its cell of origin. Furthermore, it circumvents a common issue
in NGS called amplification bias, which we will touch upon later in this chapter.

Having now established the makeup of the 10x Barcoded Gel Beads, we will describe
the outlined 10x Genomics Chromium workflow from Figure 2.2. First, the sample,
oil and the 10z Barcoded Gel Beads are loaded on a microfluidics chip, which is
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especially designed for that purpose. Then, the 10x Genomics Chromium machine
pumps the cells into microfluidic channels, which are only a little broader than the
cells to avoid parallel transport. As we can see in the second step in Figure 2.2 at
the first intersection of the barcode- and the cell/enzyme channel the barcodes and
cells form (ideally) pairs and together they are put into micro droplets or GEMs
(= Gel Bead in Emulsion) at the following intersection with the oil channel. Inside
of each GEM lysis (= breaking down of the membrane of the cell) and barcoded
reverse transcription of polyadenylated RNA from the single cells are performed.
After removing the oil and some purification steps, this procedure yields barcoded
cDNA molecules for the next step in the sequencing workflow.

i u Collect i RT Renfg\?tleOil
— eoceeeeoOl0®] RN RN

10x Barcoded Cells oil
Gel Beads Enzyme ‘ ‘ ‘
Single Cell 10x Barcoded 10x Barcoded
GEMs cDNA cDNA

Figure 2.2.: Formation of GEMs, RT takes place inside each GEM, which is then
pooled for cDNA amplification and library preparation. [10x16b]

Library Preparation & Cluster Generation

With the cDNA molecules from the last step we can use the standard procedure of
NGS workflows as described by Illumina [I1117].

The library preparation step consists of random fragmentation of the cDNA molecules
and adapter ligation (= process of joining two nucleic acid fragments through the
action of an enzyme) on both ends of the fragment as can be seen in Figure 2.3.
Sometimes, these two steps are combined and called “tagmentation”. The adapter-
ligated fragments are then amplified with the help of polymerase chain reactions
(PCR) and purified. This collection of cDNA fragments with adapters ligated to
each end is called library.

Cluster Generation is crucial to ensure the detection of every nucleotide within each
fragment. For that, the library is loaded into a flow cell where the adapter-ligated
ends of the fragments are captured or hybridized by or to a lawn of surface-bound
oligonucleotides complementary to the library adapters. To generate clusters of
fragments, meaning a group of copies of each fragment close to the original one,
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bridge amplification (a special form of amplification conducted with the help of a
flow cell, which we will not explain here) is performed as illustrated in Figure 2.3.
This results in distinct clonal clusters of each fragment on the flow cell, which are
ready for the actual sequencing step.

Genomic DNA
l Fragmentation l Flow Cell
| I
Adapters _-— __ Bridge Ampilification
e Cycles
]
l Ligation l
I
Sequencing L] . |
Library F— ] nllO
I

Clusters

Figure 2.3.: NGS library preparation by fragmentation of DNA and ligation of
adapters on both ends (left) and cluster generation for four fragments on a flow
cell by bridge amplification (right). [I1117]

Sequencing by Synthesis

Finally, we have reached the point where the actual sequencing takes place. There
are a lot of different approaches on how to determine the exact sequence of nucle-
obases, but we will only describe sequencing by synthesis (SBS) as it is implemented
by Hlumina [11117].

As Figure 2.4 tries to illustrate, sequencing by synthesis, as most sequencing tech-
niques, is a cyclic endeavor, which is repeated until the sequencing reaction is com-
pleted or the desired read length is reached. In every cycle another nucleobase per
cluster is detected and this base-by-base sequencing yields highly accurate results.

In the following we will describe one cycle of the SBS process, as illustrated by
the right part of Figure 2.4. Sequencing reagents, including fluorescently labeled
nucleotides with a missing hydroxy group at the 3’ end, are added. Only one com-
plementary base per fragment is incorporated. Through the missing hydroxy group
it is ensured that no further base can be incorporated during this sequencing cy-
cle. During the incorporation the fluorescently labeled nucleotides emit light. This
process is recorded for each cluster. By analyzing the wavelength and intensity of
the emissions, the incorporated base per cluster can be determined. At last the
fluorophores are detached and washed away and a hydroxy group at the 3’ end is
recreated to enable the next cycle.
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The recorded and identified bases per cluster are then exported to an output file for
the next step, the alignment to a reference genome.

template
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Data is exported to an output file l

I
Cluster 1> Read 1: GAGT... i 3
Cluster 2 > Read 2: TTGA... o [
Cluster 3 > Read 3: CTAG... [

Cluster 4 > Read 4: ATAC... Text File cleavage

Figure 2.4.: NGS SBS overview from the flow cell to the data output [I1117] (left)
and a detailed view of one cycle performed on a single fragment [ABM] (right).

Data Alignment

The last step in the process of sequencing is mapping the sequenced reads to a known
reference genome, which is a fully sequenced and mapped genome used exactly for
that purpose. This is done with bioinformatics software. It is important to men-
tion that the alignment process in the case of scRNAseq needs more sophisticated
methods, due to the fact that we do not only want to count the number of RNA
molecules present per gene, but also want to know from which cell the molecule
originated from and avoid amplification biases to be introduced into the final re-
sults. To do all that 10x Genomics provides a set of analysis pipelines called Cell
Ranger to process Chromium scRNAseq output to align reads, aggregate sequences
and generate a gene by cell matrix, when supplied with a reference genome (for
example hgl9 for homo sapiens). In the end we have a gene by cell matrix, which
values are the UMI counts relating to the respective gene and cell.

Differences to standard DNA or bulk-RNAseq can be found mostly in the begin-
ning and the end of the sequencing process. DNA samples can directly start with
the library preparation step, whereas bulk-RNAseq also needs to generate cDNA
molecules for the standard NGS process. The data alignment step and especially
the subsequent data analysis are very different for DNA, bulk-RNA and scRNA
sequencing.



Chapter 2 Introduction to Single Cell RNA Sequencing

Amplification biases can be introduced through the different amplification steps
within the standard NGS workflow. Some molecules amplify faster than others,
therefore a bias can be introduced concerning the real number of RNA molecules.
To circumvent this issue the unique tag of each RNA molecule, the 10z Barcode
combined with the UMI, ensures, additionally to the information on the cell of
origin, that a single RNA molecule is only counted once. Thereby, it is guaranteed
that one UMI count in the final gene by cell matrix represents exactly one detected
RNA molecule within the respective cell and of the respective gene. This is done
during the aggregation step of the data alignment part. Other methods are not able
to account for that and have to deal with the effects on a computational level during
the data analysis.

ERCC RNA spike-ins are a common set of external RNA controls, basically arti-
ficial genes in different concentrations. They have been developed by the External
RNA Controls Consortium (ERCC) to control for sources of variability such as for
example sample quality, level of cellularity and RNA yield, used platform or ex-
periment operator. They can be added to the sample beforehand and used in the
analysis to apply certain quality control measures.

We described the whole process of scRNAseq starting out with a sample until the
point of the data generation and thereby conveyed background information on the
biological and biochemical side of scRNAseq. We think it is crucial to understand
how the data in question is generated, to process and analyze it in a rigorous way.
The next part is dedicated to the novel characteristics of the generated data and
the resulting challenges and goals in the analysis of it.

2.4. Data, Challenges & Analysis

After having explained how the data is generated through scRNAseq, this chapter
will start out by describing the general features of the data. After that, we will
address the challenges, resulting from this novel kind of data. At last, we will
discuss how to master these challenges and adhere to stated goals with the help of
scRNAseq analysis. This will give us a good foundation for the main part of this
work, where we describe a workflow for scRNAseq analysis.

Data

The last chapter ended with the generation of a gene by cell matrix, which represents
the basic structure of scRNAseq data. In this matrix every row represents a gene
and every column a cell. The values are the quantified gene expression levels of the
respective cell and gene. In the case of the 10x Genomics technique every value is
a UMI count and relates directly to the number of RNA molecules expressing the
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respective gene within the respective cell. This matrix is often referred to as expres-
sion matrix or count matrix and represents the starting point of every scRNAseq
analysis.

Before we describe the data from a technical perspective, we wanted to mention
the biological meaning of the data. The values of the matrix state which genes are
expressed within the cell. Furthermore, they even represent the level of expression.
This leads to the idea that we can also infer the number of proteins being synthesized
with the help of the detected RNA molecules, which in turn can be used to determine
the cell type, function or other protein related matters. Of course, we always have
to keep in mind that the data represents the state of a cell at a certain point in
time.

In the following list we will point out a few characteristics of the data.

o The major difference to DNA or bulk-RNAseq data lies in the structure. DNA
sequencing data consists of the detected genes and bulk-RNAseq data describes
the expression levels within the whole sample. However, scRNAseq data in-
forms about the gene expression levels of each cell within the sample.

o The volume of the data represented by the two dimensions of the matrix
depend on the used reference genome and the number of sequenced cells. The
human reference genome hgl9 consists of 32738 genes, relating to the same
number of rows. Sample sizes vary according to the experimental setup, but
reach from a few hundred to tens of thousands of cells.

o After the sequencing process, the matrix consists of zeros and positive values,
because there is no such thing as negative expression. Through the course of
the analysis and multiple manipulations, this can change.

o Zeros represent the majority of values, up to 95% of all values, within the
expression matrix. That is why we talk about sparse matrices, when dealing
with scRNAseq data. The zeros either represent the absence of RNA relating
to the respective gene or measurement errors due to insufficient sequencing
accuracy, sometimes called dropouts.

There is one additional kind of data, which is very important when dealing with
scRNAseq data, namely annotation or meta data. That is additional information,
most of the time cell specific, concerning the experimental setup. Common examples
are the processing batch of the sample, the donor from which the sample was taken
or the operator who conducted the sequencing. Annotation data is crucial in the
analysis of sScRNAseq data to unveil and remove unwanted sources of influence (batch
effect) or explain observed behavior within the data (treatment effect or donor). If
the annotation data describes unwanted or wanted variations always depends on the
experiments objective.

According to these new characteristics of scRNAseq data and the technical back-
ground of the data generation, novel challenges emerge in the field of computational
biology, when dealing with this data. At the same time new goals are formulated

11



Chapter 2 Introduction to Single Cell RNA Sequencing

due to the never seen before capabilities this technology provides. Both of these
aspects will be discussed in the next part.

Challenges

We can recognize two different kinds of challenges in the context of scRNAseq,
namely challenges occurring during the sequencing process and in the analysis of
the data. The consequences of these challenges are inseparably connected. Most
of them are inherent to the unprecedented level of sensitivity, which is present in
the process of scRNAseq. Also the novel characteristics of scRNAseq data lead to
challenges of their own.

We will briefly point out the most prominent challenges encountered, when con-
fronted with scRNAseq in general and the data in particular.

o A few problems can occur during GEM formation, as for example the GEM
only contains a Gel Bead or a cell. Another GEM related scenario entails
so called doublets or multiplets, in this case a GEM contains two or even
more cells. The problem at hand is that from this point on these two cells
are not distinguishable from each other, due to the nature of the process.
Multiplets are nearly impossible to detect during the analysis of the data, but
quality control measures can be applied. Last but not least, it can happen
that a GEM is formed with a Gel Bead and free floating RNA originating
from already lysed or damaged cells. This leads to poor quality in the data,
but usually can be easily removed. Therefore, dying or damaged cells should
be rigorously removed beforehand.

o The previously described sparsity of the data represents another major chal-
lenge, because it artificially inflates the data, leading to a greater volume.
Furthermore, a lot of mathematical and computational methods can not deal
with this shear mass of zeros.

» The increasing volume (number of cells per sample) and dimensions (number of
genes) of scRNAseq data require state of the art high performance computation
clusters for storage and analysis. Additionally, new and fast methods for large
high dimensional data sets have to be developed.

o The technical sensitivity inherent to the process of scRNAseq has also its down-
sides, namely the increased susceptibility to noise and confounding factors due
to biological (contamination, storage, handling) and technical (anything else)
influences.

o Cells of different cell types contain varying amounts of RNA and a lot of
samples are very inhomogeneous when it comes to their cell type distribution.
This makes the process of normalization, making different cells comparable
to each other, very difficult. Additionally, cells of the same cell type can be

12



2.4 Data, Challenges & Analysis

in different stages of their differentiation, cell cycle or apoptosis, leading to
varying expression profiles although they are all of the same cell type.

o Data sets in scRNAseq vary quite a lot even when the same scRNAseq process
was used to generate the data. Therefore, every experiment has to be processed
and analyzed individually.

Most of these challenges directly translate to responsibilities, which have to be ad-
dressed by the process of scRNAseq analysis. The next part discusses potential goals
of scRNAseq and how they can be achieved through proper analysis.

Goals & Analysis

In the last part of this introduction to scRNAseq, we want to present some goals and
how scRNAseq analysis should be designed to adhere to them and the previously
stated challenges. That means the analysis of scRNAseq data has to take care of the
above outlined challenges and goals formulated by researchers and medicals alike.

We now present three examples of potential applications with concrete goals in

scRNAseq.

o Identification and characterization of known or new cell types by differential
gene expression analysis to better understand biological makeup of healthy or
diseased tissue or identify biomarkers to describe certain pathologies. Further-
more, target and binding sites for pharmaceutical agents can be identified.

» Investigation of reactions and effects on a cellular level over the course of time,
caused by therapeutic interventions, with the help of pseudotime analysis.

» Comparing cell type distributions among different species to identify similari-
ties on a cellular level.

A good basis to reach these goals and answer all of the immanent questions is to
determine a robust and comprehensible clustering by cell types through rigorous
scRNAseq analysis. This of course raises the question: How does a best practice
scRNAseq analysis workflow look like? This work deals exactly with answering
this nontrivial question. Following the literature, as for example Stegle [STM15],
we can learn from the analysis of previous sequencing techniques, such as bulk-
RNAseq. They present general steps, which have to be taken to ensure rigorous
analysis of scRNAseq data, without specifying best practice methods. With the
goal of determining clustering by cell types, the following steps are recommended in
the presented order.

1. Alignment and generation of counts
2. Quality control
3. Normalization

4. Confounding factor analysis

13



Chapter 2 Introduction to Single Cell RNA Sequencing

5. Cell type identification
6. Cell type characterization

Due to the fact that a best practice workflow should solve the above outline chal-
lenges and adhere to the defined goals, the content of these individual steps has to
be developed and clearly defined.

In the following chapter, the main part of this work, we use these recommended
steps and describe the development of a best practice scRNAseq analysis workflow
with the goal of a robust and comprehensible clustering by cell populations.
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3. The Semi-Automated Workflow
for scRNAseq Analysis

“Start where you are. Use what you have. Do what you can.”
Arthur Robert Ashe Jr.

In the main part of this work we describe in detail the development and implemen-
tation of a best practice scRNAseq analysis workflow with automated components.
We will start out by presenting an overview of the whole workflow followed by an
introduction to the modular architecture. After that, we will discuss every module
of the workflow in the order in which the data is processed most of the time or at
least initially. In every chapter we will describe the concrete implementation, used
algorithms, given decision making support, automation aspects, visualizations and
results.

The workflow is based on the theoretical work of Reichl [Reil8] and we use the
recommendations given to select the concrete tools, methods and approaches, which
adhere to the stated requirements. Furthermore, we applied the new approach on the

validation of clustering results, presented in [Reil8], and describe its implementation
in Chapter 3.8.

The goal of this workflow is to have an implementation in place for the rigorous
analysis of scRNAseq data generated with the help of the 10x Genomics solution,
which we have already described in the introduction in Chapter 2.3, or found in the
literature or public databases. Therefore, the workflow should work for any kind of
scRNAseq data.

Although this goal is very broad in nature we tried to build a workflow, which detects
subtle differences within the data, accounts for confounding factors and yields robust
and comprehensible clustering results by cell populations. The main purpose is to
help the researcher (data scientist, data analyst, bioinformatician,...) in the analysis
and decision making process, when trying to answer a scientific question.

To make it more concrete the following requirements for the workflow should be met
e robust - small changes in the data or parameters lead to similar results
» transparent - every action performed by the workflow is comprehensible
» semi-automated - after initial configuration no further interaction is necessary

« modular - skipping, replacing or optimizing certain steps is enabled
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 the results represent a solid basis for further exploratory analysis
o best practice - the latest and validated methods are used
o easy to use - straight forward interaction with the workflow by the scientist

The whole workflow, therefore every module in this work, was implemented in R
version 3.4 [R C17]. Every other R package and function mentioned in the following
is written in dtalic and the packages are referenced in a glossary at the end of this
work. Additionally, a short description and the used version is provided. We will not
include or mention the respective dependencies. The backbone of this workflow is
built on the three packages scater, clusterFExperiment and Seurat. The main object
which will be generated right in the beginning and manipulated along the way is
from the SingleCellExperiment class.

On the infrastructural side, we wanted to mention that the computational effort
was quite a challenge, which resulted in the requirement of a High Performance
Computing (HPC) cluster and a lot of parallelization, which we will not discuss any
further.

3.1. Workflow Overview & Module Architecture

A scRNAseq analysis workflow has to consist of certain steps or components, which
can be realized in various ways and depths. As we have briefly shown in Chapter
2.4, where we presented the recommended steps of a general scRNAseq analysis, the
sequence of these steps is by design and it is important that the data is processed in
the given order. The following components, formulated as modules, constitute the
backbone of the presented workflow and try to adhere to all the steps, which are
required for a best practice scRNAseq analysis workflow according to the literature.

e Quality Control ensures that only relevant data, concerning the analytical
question at hand, is used in the process of analyzing the data. Messy, wrong
or incomplete data can distort the results in a significant way. To ensure a
robust result, we have to get rid of such datapoints within the dataset.

o Normalization is required to ensure comparability between different cells.
Without this step, certain datapoints could influence the analysis to a greater
degree than others, although it was simply a technical artifact that lead to the
imbalance or difference between them.

o Confounding Factor Analysis is one of the most important and novel chal-
lenges within the realm of scRNAseq analysis, because here every cell can be
influenced by certain factors and we are not using the overall expression levels
(as for example in bulk-RNAseq) in the analysis to derive insights. Further-
more, the used technologies are far more sensitive than before, after all they
have to detect every single RNA molecule within each cell in the sample.
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o Clustering by cell populations is one possible end point and for sure a very
important milestone within the analysis of scRNAseq data. Determining the
membership of one cell to a certain population has proven to be, at least, the
basis for further investigations. Therefore, it is incredibly important that the
user knows how the clustering results came to be and which methods were
used. A lot of challenges are met in scRNAseq analysis due to the fact that
the data landscape is quite heterogeneous and the algorithms in the literature
usually work perfectly on some datasets, but do not reach reasonable results
in other cases.

o Analysis of Clustering Results is formulated as a separate step (and mod-
ule), because we want to adhere to the goal of robustness and transparency.
As we just mentioned a lot of algorithms only deliver on certain types of data
reasonable results. Therefore, we presented in [Reil8] an approach for the val-
idation of clustering results in scRNAseq analysis and an aid in the decision
making process, which is implemented in the following workflow.

o Visualization is an integral part of every data driven analysis, therefore we
tried to integrate it whenever possible or sensible. This aids our comprehensi-
bility aspirations as well as in the decision making processes.

After this short introduction to our approach to scRNAseq analysis or to be more
precise the components of the scRNAseq analysis workflow, we will see that a mod-
ular architecture, which we have chosen for the implementation of the workflow,
makes intuitively sense.

The workflow operates in a standardized manner and is split in six different modules,
following the above outlined core components. Those modules are called and coor-
dinated by a central main function. Every module consists of a computational and
visualization part. The basic idea of this architecture is, that every module follows
the same two main steps in a consecutive order, which are computation followed by
the according visualization. In more detail, the steps for module M; would be

1. Load the post-module object O;_;, which was previously created and saved
by module M;_;, for the computational part.

2. Perform the module M; specific computations, manipulations and trans-
formations on the data.

3. Save the transformed or newly generated data in the post-module object O;.
4. Load the just created post-module object O;, for the visualization part.

5. Create and save relevant plots and diagrams, that explain which steps were
taken, why and the effect it had on the data, without changing the data in
any way.

All of these steps are controlled with the help of configuration files, which were
specifically designed for that purpose and have to be created or filled by the user.
Further explanations will be given in Chapter 3.2. Thereby, we ensure by design
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that a lot of requirements we stated in the goal proposition before, as for example
modularity, transparency, usability and the automation of certain steps within the
analysis, are met. Furthermore, it enables the user to be immensely flexible and
agile by skipping modules or pausing in between for parameter adjustments during
the analysis process, as we will explain and discuss in Chapter 3.10.

Each module within the workflow will be described by one of the following chapters.
Again, the order is by design and represents how the data should be processed,
assuming one complete run (= all modules are needed) is intended to be performed.
That means a dataset is passed from one module to the next. The workflow always
starts where it left off concerning the module architecture, this enables a more
interactive utilization. For better understanding we walk the reader in the last
section of every chapter through the analysis of a simulated dataset.

Visualizations will always be given and explained in the corresponding module as
every module has plots and diagrams as part of its output. These visualizations
additionally represent the basis for the decision making process on how to proceed
in the analysis. We will use one of the simulated datasets for the purpose of illus-
trating and demonstrating the concepts and functionality of the workflow. Further
information on the datasets mentioned in this work can be found in Appendix A.

For the sake of readability and structure, every module chapter will be constructed
in the same way, consisting of the following parts

o Main Objective of the module and significance in scRNAseq analysis
o Implementation

e Results & Output including visualizations, based on the simulated dataset
sim__2_ 2. Details concerning the dataset can be found in Appendix A.

We will not concern ourselves with technical details in this work such as hardware
requirements, naming conventions of files and command line implementations, be-
cause such infrastructural challenges are out of the scope of this work and would not
generate any value in different systems. Nevertheless, we wanted to mention that
all the files generated follow a strict nomenclature for better understanding and/or
automatic steps within the workflow.

3.2. Configuration & Control

Before we dive into the detailed explanation of the separate modules, which make
up the workflow, we wanted to mention how the workflow is controlled and how the
user can interact with it. As we stated before, all the interactions are performed
via configuration files, which have to be created by the user. These files consist of
parameters, flags, file paths and filter criteria.

We will describe in the following the information, which can be conveyed via the
configuration files for the purpose of understanding how the user can interact with
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the workflow, which border conditions have to be given and for later reference,
when the parameters are used in the example and result analyses. We grouped the
parameters together according to their application type and module dependencies.

Workflow control parameters:

o Flags for every (computational) module and its visualization part, which in-
dicate if the module should be executed or skipped. It can happen that data
is already preprocessed in some way, for example normalized, and repeating
this step is not advised. Turning off the visualization part of certain modules
can be convenient if only the end result is of interest or the analysis is time
critical. At last, there is a flag to indicate after which module to stop the work-

flow,

which is intended to be used in an step-wise analysis, where decisions

concerning module dependent parameters are made in-between modules.

» Paths to the source and annotation files of the data, configuration files and
output directories.

Module-dependent configuration parameters:

o Import Module

input.type - three different common types of data are supported (options:
10x for 10x Genomics derived data, matrix for a plain matrix or mm for
the sparse matrix format MatrixMarket)

MT .pattern - used to look for the given text pattern in gene names to
mark them as mitochondrial

spikein.pattern - used to look for the given text pattern in gene names to
mark them as spike-in “genes”

read10X_min_ total cell counts - total UMI/count minimum for cells
in case of 10x Genomics originated data (used during import module,
because the whole list of used barcodes is saved by 10x Genomics, which
does not necessarily resemble the number of cells in the sample)

« Quality Control Module (threshold parameters for filtering)

filter.cells.by.umi.min - total UMI/count minimum for cells
filter.cells.by.umi.max - total UMI/count maximum for cells
filter.cells.by.geneexpression - total gene count minimum for cells

filter.cells.by.MTpct - maximum percentage of mitochondrial genes al-
lowed per cell

filter.cells.by. ERCCpct - maximum percentage of spike-in genes allowed
per cell

filter.gene.by.cellexpression - number of cells, which have to "express" a
gene (what "express' means is defined by the next parameter) to avoid
the gene being filtered out
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— filter.gene.by.no.expression.per.cell - number of counts in a cell to call a
gene "expressed" in that cell

e Normalization Module

— norm.method - preferred normalization method (options: count, log2,
log2 cpm, cpm, SF, LSF, UQ, DS, TMM)

o Confounding Factor Analysis & Cluster Module

— pes.use™ - number of principal components, which should be used in the
confounding factor analysis and clustering

— cf.number.variable.features - number of variable genes used for dimension
reduction or certain clustering algorithms

— pc.threshold.pct - threshold for the automatic detection of the number
of principal components to use (unit: percentage of additional variation
explained per additional principal component) (default: 0.25)

— rsq.threshold.pct - R? threshold for the influence of a confounding factor
on a principal component or each other (default: 20)

— cf.blacklist* - metadata name, which effect is not allowed to be removed
(for example: treatment or diseased)

— no.of.clusters™ - number of assumed or anticipated clusters (often denoted
by k)

o Cluster Analysis Module

— biggest.cluster.max.pct - threshold for filtering clustering results. The
maximum percentage of cells assigned to the biggest cluster allowed, in
regard to all cells (default: 90)

— min.no.of.clusters - minimum number of clusters to be accepted in a clus-
tering result (default: 2)

— not.clustered.pct - threshold for filtering clustering results. The maxi-
mum percentage of not clustered cells (default: 20)

— minClusterSize.pct - minimum cluster size allowed in percentage, depend-
ing on the number of cells after the quality control module, which are used
in the combination step of the cluster analysis module

— n.top.clusterings - number of top clustering results to be used for the
combination step of the cluster analysis module and to be presented in
the end

— combine.proportion.use - proportion parameter used for combining the
computed top clustering results in the cluster analysis module (default:
0.51)

20



3.3 Import

— comparison® - metadata for which the ARI & NMI metrics will be cal-
culated (for example a classification result from another publication or a
previous clustering result)

« Visualization
— ValueOfInterest™ - metadata for which plots are generated (colored)

— GenesToPlot* - real gene names of interest for plots, not necessarily the
symbols, same names as used in the data source

In some cases we provided the default values, which were used in the later presented
analyses if not differently stated. All the other parameters depend highly on the
dataset at hand and have to be filled after initial inspection of the data or with
the help of prior knowledge about the data. In the following the parameters and
configurations are always stated in square brackets and italic, e.g. [ezampleCon-
fig=TRUE].

Every parameter marked with an asterisk (*) is allowed to be skipped (by using
NA), without impacting the functionality. Of course, more information leads to
better results.

3.3. Import

Although we did not mention this module in the beginning of the chapter, we want to
quickly state which formats are common and therefore supported by the workflow.
Also, the process of importing the data and generating the appropriate objects
will be explained. Furthermore, we show some visualizations, which are generated
automatically after the import module, to inform the user and aid in the decision
making process concerning the configuration of the workflow.

Main Objective

Load the data and its metadata (aka annotation) and prepare it for the processing
with the workflow. Ideally, get already rid of unnecessary components and calculate
metrics for an initial investigation of the data, on which upon decisions concerning
the further analysis can be made.

Implementation

The import module locates and loads the following two basic data sources, with the
help of the according path configurations.

« The sequencing data as a count/expression matrix. The three supported and
most common types are
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— 10x Genomics originated data, which consists of three files: genes, bar-
codes/cells and the UMI/count matrix [input.type=10X]. Only in this
case we apply a filter during the import process, due to the nature of the
data. 10x Genomics supplies all the used barcodes (e.g. droplet with a
barcode) as cells in the count matrix, although not every droplet neces-
sarily captured a cell. Therefore, we already apply a pre-filter to not even
import the “empty droplets” [read10X__min__total cell counts].

— a plain gene X cell count matrix in a text file [input.type=matriz].
— a count matrix in the MatrixMarket format (.mtx) for sparse matrices
[input.type=mm].
« Annotation or metadata file as cell X metadata matrix in a text file.
Due to the fact that the data can be very large but sparse, appropriate matrix
formats, such as the class dgCMatriz from the package Matriz and functions from

the package DelayedMatrizStats, are recommended. Otherwise the computational
effort is too high for most systems, even HPC clusters.

After loading the expression and annotation data, mitochondrial genes and ERCC
spike-ins get marked as “feature control” genes to be used in the quality con-
trol module, later on. This is only possible if the parameters [MT.pattern/ and
[spikein.pattern] are provided by the user.

The module creates a Single CellEzperiment object (a popular standard for scRNAseq
data) with the following information:

 the original expression matrix

« metadata aka annotation information

o detected mitochondrial genes, by gene name
o detected ERCCs as spike-ins, by gene name

With the function calculate@QQCMetrics from the package scater certain metrics,
based and depending on the supplied information, are calculated for the next step,
namely the quality control module.

Results & Output

Although, not a lot of computations were performed so far, it is critical to inspect the
data as soon as possible in the course of an analysis. Thereby, it is ensured that the
following manipulations take place in a controlled manner and the procedures are
comprehensible to the analyst. Furthermore, it is sometimes the case that the user
does not possess enough information on the data at hand to define the appropriate
parameters.
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For that purpose and general good practice, the import module delivers the following
visualizations as output, apart from the newly generated SingleCellExperiment ob-
ject, which is ready to be analyzed by the subsequent modules in a semi-automated
manner.

» Histograms to investigate the frequency of counts per cell, genes per cell and
counts per gene.

» Density plots to look at the distribution of counts per cell, genes per cell and
counts per gene.

o Kneeplots, which are practical plots for the investigation of trends, within the
data. The y-axis describes a condition (for example UMI counts) and the z-
axis the number of elements (for example cells), which fulfill that condition.
By looking for the “knee” (= a steep gradient in the curve) an initial cut off
value can be derived for example for the import parameter of 10x Genomics
originated data. Furthermore, these plots convey a good sense for the range
in which most elements can be found and complement histograms and density
plots nicely. The workflow provides counts vs. cells, counts vs. genes and cells
vs. genes kneeplots.

Figure 3.1.: Histogram of log;o UMI counts per cell (left) and density plot of logio
UMI counts per cell (right).

Figure 3.2.: Histogram of log;yo UMI counts per gene (left) and density plot of logio
UMI counts per gene (right).
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Figure 3.3.: Histogram of logyo genes per cell (left) and density plot of logyy genes
per cell (right).
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Figure 3.4.: Kneeplots of UMI counts vs. cells (top left), UMI counts vs. genes
(top right) and genes vs. cells (bottom).

Looking at Figure 3.1, 3.2 and 3.3, we already see that the data is very neat, which
of course is a consequence of the fact that the dataset is simulated. Especially in
Figure 3.1 and 3.3 we do not detect any large group of outliers or obvious low-
quality cells. In the search for irrelevant genes in Figure 3.2, we already detect a
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lot of candidates, which should be filtered out by the next module. Investigating
the kneeplots in Figure 3.4, we conclude that the initial import cut offs were either
chosen wisely or the data simply does not contain any cells with less than 500 total
UMI counts and 600 expressed genes (which is the case in this simulated dataset).
Nevertheless, some outliers can be spotted.

3.4. Quality Control

Coming from the import module, nothing much happened so far with the dataset.
This part tries to get rid of not relevant or messy datapoints and dimensions within
the dataset.

Main Objective

In the first part we try to loose as many useless or damaged datapoints, e.g. cells, to
ensure a more meaningful analysis. The second part gets rid of not-expressed and
“not-detectable” (we will define this term shortly) dimensions, e.g. genes.

Implementation

Here, we use all the filter configuration parameters from Chapter 3.2, to get rid of not
meaningful cells and genes concerning the analysis. These thresholds are difficult to
define and depend on the sample at hand. It is recommended to inspect the output
of the import module for the decision making process on these filter criteria. It does
not suffice to simply filter out cells at both ends of the count spectrum, because
considering for example highly proliferating tumor cells, which are expected to have
a lot more RNA molecules compared to healthy cells, we would remove potentially
interesting cells. This scenario represents legitimate very high total UMI count
values in cells we definitely do not want to remove from the data. Therefore, we see
how important the prior knowledge about the sample and experimental setup is.

We start out with the cells and filter each by

e a minimum number of total counts (= sum of all UMI counts of the cell)
detected, to ensure that the datapoint really consists of a cell and not only an
aggregation of free floating RNA or a damaged or dying cell with only a few
functional RNA molecules left [filter.cells.by.umi.min).

e a maximum number of total counts, due to the possibility of doublets or mul-
tiplets, which would distort the data immensely [filter.cells.by.umi.max/.

e a minimum number of expressed genes, determined by at least one UMI count
per gene [filter.cells.by.geneexpression).
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 the percentage of mitochondrial genes expressed by the cell, because very high

mitochondrial activity indicates apoptosis or other cell cycle specific processes,
which render the cell irrelevant for the analysis [filter.cells.by. M Tpct]. This
phenomenon was experimentally investigated by 10x Genomics in a technical
note [10X17], which was based on older publications from Wang [Wan01] and
Newmeyer and Ferguson-Miller [NFMO03].

the percentage of ERCC spike-in “genes” present, because high percentages
indicate that it is probably an empty droplet, which captured only free floating
RNA and the homogeneously distributed ERCC spike-ins

[filter.cells.by. ERCCpct].

After getting rid of low quality, damaged and therefore irrelevant cells, we look
at the dimensions, e.g. genes, and try to determine which convey no information
concerning the current dataset. Reducing dimensions in a rigorous manner simplifies
the following analysis drastically and increases the influence of the remaining ones
at the same time.

A gene is filtered out if

it is generally not expressed in the whole dataset.

e its expression is found to be “not-detectable”. ~We define the term “not-

detectable” in this context by two parameters as follows: a gene is detectable
if at least [filter.gene.by.cellexpression] cells contain at least
[filter.gene.by.no.expression.per.cell] counts of that gene, otherwise it is marked
as “not-detectable” and filtered out.

« it is an ERCC spike-in.

A few remarks on the quality control or filtering process we just described.
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o The filters are strict, which means all filtered cells and genes are removed from

the following analysis permanently.

The order of first filtering cells and then genes is important, due to the fact
that some genes can sometimes only be rendered meaningless, because of the
previous removal of cells, which expressed them.

We did not use any kind of outlier detection algorithms, although they are
often used in the realm of computational biology. The reason for that, as
we already discussed in [Reil8], lies in the fact that with scRNAseq data the
usual approaches do not work well, mostly because of the high dimensionality.
Additionally low-quality cells are often not recognized as outliers, because they
form some kind of clusters in the feature space and are consequently treated as
high-quality datapoints by most approaches. Therefore, we concluded that the
use of cut offs, e.g. filters, instead of sophisticated outlier detection methods
is recommended.



3.4 Quality Control

Results & Output

The result of this module is a clean dataset, which is ready for further manipulations.
As we stated above the filters are strict and therefore all the cells or genes which
did not pass the criteria are removed from the SingleCellFExperiment object and not
available any more from this point on.

To inform the analyst on the quality control measures, which were taken by the
module, the following visualizations and metrics, in form of a report as a plain text
file, summarize the whole process.

» Histograms which show UMI counts per cell and genes per cell before and
after being processed by the quality control module, with vertical red lines
indicating the cut offs.

o Scatter plots (each cell is a dot) to visualize the cell filtering process concerning
the mitochondrial and ERCC spike-in thresholds (percentage vs. total number
of expressed genes), again with the help of red lines to represent the threshold
parameters.

» Scatter plots of the data, after being processed by the quality control module
and logy transformed presented in a space reduced to two dimensions (for the
purpose of visualization). This is achieved either by Principal Component
Analysis (PCA) [Shl03], where the first two principal components are taken,
or by t-distributed Stochastic Neighbor Embedding (t-SNE) [VH08]. The size
of the dots indicate the number of expressed genes by the respective cell. The
plots are generated by the according plot functions (plotPCA and plotTSNE)
within the scater package.

o Filter metrics described in the report are expressed genes (number of genes
expressed at least once in one cell), relevant genes and relevant cells, concerning
the above described filtering criteria.

o Data metrics before and after the quality control module described in the
report are cells, genes and the sparsity. We define sparsity as the proportion
of zero values within the data.

o The metrics complement each other (for example the relevant cells correspond
to the number of cells after being processed by the quality control module), but
describe different matters, therefore the occasional redundancy is intentional.

’ \ true \ false ‘
expressed genes | 11343 | 20657
relevant cells 2995 5t
relevant genes | 6428 | 4915

Table 3.1.: Metrics summarizing the filtering process concerning cells and genes.
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‘ ‘ before ‘ after ‘
cells 3000 2995
genes 32000 6428

sparsity | 94.826% | 74.545%

Table 3.2.: Metrics of the data before and after the quality control module.

Figure 3.5.: Histograms of log;y UMI counts per cell before (left) and after (right)
being processed by the quality control module. The [filter.cells.by.umi.max] cut
off is indicated as a red vertical line.

Figure 3.6.: PCA (left) and t-SNE (right) plot of the logs transformed data after
being processed by the quality control module.
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Having a look at Table 3.1 and 3.2, we can see that, although it is a simulated
dataset, a lot of genes are not expressed, which is even more common in real datasets.
Furthermore, we get rid of even more genes through the filtering process, which fi-
nally leads to a drastic reduction of dimensions. Cells are not filtered that heavily
(only 5), because the simulation did not yield “damaged” cells or empty droplets as
would be the case in a real dataset. The last important remark concerning the met-
rics is the decrease in sparsity of approximately 20% by the quality control module.
As we have mentioned above, sparsity is a major challenge in scRNAseq analysis,
and therefore critical to be reduced. We will see that real datasets sometimes have
an even higher sparsity in the beginning.

Figure 3.5 nicely illustrates how the cut off parameters are used as thresholds for
the filtering process. As we did not have to loose a lot of cells, the change in the
histogram is not extreme, but the idea is apparent.

Having a first, simplified, look at the data in a space with reduced dimensions (two)
in Figure 3.6, we can not make out any distinct clusters or populations. This can
be explained by the rather high dispersion within the data, which we intentionally
chose during the data simulation in Appendix A to challenge the capabilities of the
workflow.

The plots describing the gene filtering process with the help of mitochondrial genes
and ERCC spike-ins are not shown, because the simulated data does not contain
any. We will see in Chapter 4.2 how important and impactful quality control with
the help of mitochondrial genes can be. Furthermore, the histograms in Chapter 4.2
will present a greater discrepancy before and after the quality control module was
performed.

3.5. Normalization

Having removed irrelevant data and dimensions, we need to account for the difference
in sequencing depth of each cell.

Main Objective

It is important to ensure that certain cells do not distort, influence or even dominate
the analysis to a greater degree than others, solely because of differences between
cells caused by technicalities during the sequencing process. Therefore, we basically
try to homogenize the data by different methods, without loosing real or relevant
biological differences, which should steer the downstream analysis and drive the
conclusions made by the analysis.
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Implementation

There are a lot of different approaches to normalization of sequencing data. Rang-
ing from standard methods, which are not very sophisticated, but established and
accepted within the community, to rather recently developed approaches to tackle
the novel challenges arising with the advent of scRNAseq data.

We will give an overview concerning the supported methods including a short de-
scription on the operating principles and its configuration shortcut. Mathematical
analyses of the underlying theoretical aspects and a comparison of the different
methods can be found in [Reil8]. We have also based the selection of normalization
approaches on the insights presented in [Reil8].

Through the course of an analysis every method is applied and the result of each nor-
malization is saved within a container of the SingleCellExperiment object. Thereby,
the analyst can easily switch between different normalization results at a later time.
The analyst chooses the normalization method, which should be used in the down-
stream analysis, with the parameter [norm.method] in the configuration file. If the
analyst wants to use the raw quality controlled data in the downstream analysis,
without loosing the flexibility of switching between different normalization meth-
ods at a later time (which would be the case if the whole module is skipped), the
configuration /norm.method=count] can be used. This module can be extended by
other normalization methods to ensure fast modifications and adaptions, when new
methods are developed.

If not stated otherwise we used the function normaliseEzprs from the package scater
for the normalization, which already supports most of the presented methods.

Standard methods for normalization are the logarithm, counts per million and
a combination of both. The application of the logarithm with the basis 2, in-
cluding an initial offset (otherwise zeros would pose a problem), on the elements
of the expression matrix is a wide spread first approach to normalization and was
implemented manually [norm.method=log2]. The counts per million (CPM) ap-
proach, scaling the counts such that the total counts of each cell (aka library size)
is one million, comes with the advantage of comparability across cells and therefore
represents a good basis for the goal of normalization [norm.method=cpm/]. We used
the function calculateCPM from the scater package for that. The basic principle
is to use the total number of counts of each cell as a size factor for the normal-
ization of that cell. A lot of the following methods build on that principle and
therefore make the results of different methods comparable. The combination of
both, first calculate CPM values and then apply the logarithm, is also supported
[norm.method=log2_cpm)].

Size Factor-, DESeq- or Relative Log Expression-normalization was developed
for the analysis of bulk-RNAseq data. The idea is to determine a cell specific size
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factor for the calculation of the effective library size (= an adjusted library size
per cell). With the effective library size we apply the principle of CPM to get a
comparable result /norm.method=SF].

Upper Quartile normalization is based on the idea of using each cell’s upper
quartile (= 75th percentile) value as its size factor. Due to the fact that it was
also developed with bulk-RNAseq data in mind the upper quartile is either zero
or very close to zero when applied on scRNAseq data. Therefore, we parametrized
the method with the 99th percentile as factor to determine the cell specific size
factor [norm.method=UQ)]. Again, we use the CPM approach and get normalized
and comparable results.

Weighted Trimmed-Mean of M-values normalization as the name suggests, uses
the weighted trimmed-mean of M-values (TMM) of each cell as size factor. The M-
values are the gene-wise log-fold-changes. The trimming is performed by removing
genes with M-values and absolute intensities outside of certain upper and lower
percentage boundaries /norm.method=TMM]. The calculation is rather tedious, but
tries to ensure robust results. With the obtained size factor per cell, the CPM
approach results in normalized and comparable data.

Downsampling as normalization is the only representative of stochastic normal-
ization methods in the workflow. The principle is to determine the smallest library
size within the data to obtain a cell specific probability. With this probability and
the actual count values of the cell we sample, with the help of a binomial distribu-
tion, the normalized expression values /norm.method=DS]. Unlike most of the other
methods, it is not leveraging the CPM approach and therefore lacks the means to
be compared to results of other normalization approaches in a meaningful manner.
This method was directly implemented as we have just described.

Size Factor by Pooling Across Cells normalization also loosely called Lun Size
Factor normalization due to the first authors name of the paper which presented it,
tries to overcome the biggest novel challenges in normalization of scRNAseq data,
namely sparsity and the assumption that most of the genes are not differentially
expressed among different cells. The approach accounts for the sparsity of the matrix
by pooling across cells with similar library size, summing them gene-wise up (to
reduce the incidence of those problematic zeros) and calculating size factors for these
pools [norm.method=LSF]. By solving a system of linear equations, the size factor
for each individual cell can be determined. It is by far the most scRNAseq specific
and at the same time sophisticated (and computational expensive) normalization
method within the workflow. We implemented it with the help of the functions
quickCluster for the pooling process and computeSumFactors for the size factor
calculation, both from the package scran. Finally, we used the function normalize
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from the package scater to normalize the values with the help of the calculated size
factors.

Results & Output

After the data has been normalized by this module we are confronted with a decision:
Which normalized dataset should be used for the downstream analysis? We want to
state that we have not found a general best practice method, due to the variation
across different datasets, based on biological and/or technical differences. Also it is
important to mention that the most sophisticated method is not necessarily the best,
because normalization naturally leads to distortion of the data to a certain extent
and therefore simpler approaches, which yield similar normalization results, should
be preferred. To help with this decision the workflow supplies the analyst with the
following plots to inspect the results of the different normalization methods.

o A correlation plot describing the correlation of the matrices resulting from the
application of different normalization methods with the help of miniaturized
scatter plots and the spearman correlation coefficient in a comprehensive for-
mat based on only 20% randomly sampled cells to reduce computational effort.
This format is provided by the function corrplot from the package corrplot.

« The Relative Log Expression (RLE) plots for each normalization result, which
are a preferred method for the exploration of high dimensional data, are pro-
vided by a scater function called plotRLE. Therefore, they are the chosen
means to easily compare normalization results. The goal is to find the method,
which trims or homogenizes the data the most.

o The output of the plotQ)C' function from the package scater visualizes the
top ten quality control metrics (which were calculated in the import module)
and metadata with the greatest influence on the data. These plots should
be used in a qualitative way, or in other words to check if an improvement
can be noticed by normalizing the data with different methods. The following
module (Chapter 3.6) will be concerned with the quantification, analysis and
possible removal of the influence from factors on/from the data. The plots are
generated based on the raw data and two normalized datasets, namely by the
combination of CPM and logarithm and the chosen one by the analyst (by the
configuration parameter [norm.method]). Thereby, the user can compare the
result when applying no, a standard or the preferred method.

As we already stated above, the workflow computes results for all the supported
normalization methods to ensure a smooth analysis experience in case of a change in
analysis strategy, which leads to the application of another normalization approach.
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Figure 3.7.: Correlation plot for the comparison of the matrices generated by the
supported normalization methods.

Figure 3.8.: RLE plots of the result matrices after applying the combination of
CPM and logarithm (left) ranging from > —1 to < 2, the TMM method (middle)
ranging from < —1 to > 2, and finally the LSF approach (right) ranging from
> —1 to < 2. The RLE values are on the y-axis and the cells on the z-axis.
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Figure 3.9.: QC plots of the top ten most influencing factors of the respective
matrix with no (left), the combination of CPM and logarithm (middle) and the
LSF normalization (right). Each color denotes a variable, not necessarily the same
in every plot. The x-axis denotes the % of variance explained (log,,—scale) and
the y-axis the density. The dashed lines indicate 0.1% and 1%, respectively.

With the help of the correlation plot in Figure 3.7 we can check that the normal-
ized as well as the raw data correlates (concerning the spearman rank correlation
coefficient) nicely and therefore we can assume that we did not mess up the intrinsic
structure of the data by the normalization process. Only the downsampling ap-
proach shows a significant difference compared to the other normalization results.
This can be explained by the fact that it was not implemented according to the CPM
approach, and therefore one can argue that there is no valid basis for a comparison
in this case.

Looking at the RLE plots in Figure 3.8, we can immediately see that the LSF
approach is the best option concerning the range of the RLE-values on the y-axis,
compared to the results of the other two methods.

Last but not least, we can inspect the three generated QC plots in Figure 3.9.
Here, we can see significant differences in the influence of certain metrics on the
partly normalized data. It is quite obvious that both (the standard and the LSF)
normalization approaches decrease the influence of certain metrics quite significantly
by the factor of 10 compared to the raw data. Further analysis of the nature, origin
and the influence on the data of these variables will be covered in the next Chapter.

Lets summarize the above stated observations: the correlation plot assures us that
we did not change the data in an unintended way, the RLE plots indicate that
the LSF approach homogenizes the data the most and the QC plots show that the
standard and the more sophisticated normalization approach LSF are effective in
reducing the influence of certain metrics on the data.

Therefore, we choose to use the LSF normalized data for the downstream analysis.
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3.6. Confounding Factor Analysis

After the normalization we are able to start looking for influencing factors, which
characterize the data. This is one of the most challenging and at the same time
novel tasks coming with the unique nature of scRNAseq data. That is why we treat
it as one of the centerpieces of the workflow.

Main Objective

This module tries to determine influencing factors and how much they describe
the data, but also each other. Our aim is to decide which ones should not be
allowed to describe the data to a certain degree, or in other words identify the
confounding factors, and finally remove their influence. Otherwise, the influencing
factors dominate the downstream analysis, although they do not represent valuable

information or characteristics, which are the subject of the scientific question at
hand.

Implementation

The module is manifold and we will start its description with a short theoretical in-
troduction to confounding factor analysis, namely a definition and potential origins,
which were assumed during the development of the workflow. After that, we work
through the following steps of the module: detection & identification of influenc-
ing factors (not necessarily confounders), analysis of the found factors to determine
their descriptive power concerning the data and each other, selection of the most
powerful confounders and finally removal of their influence on the data.

The theoretical aspects and a discussion on the statistical and mathematical meth-
ods, which lead to this approach, can be found in [Reil8]. There, we explain the
possibilities, complications and solutions, which lead to the following implementa-
tion.

Definition

The first thing we have to clarify and agree on is: What are potential confounding
factors? We define them as variables, which explain more than a certain degree of
the data’s internal structure. These variables are basically attributes of the cells
and can be seen as additional dimensions to the dataset (and not being genes) or
simply metadata.

This leads us to the second big question: Where do they originate from? Some
of them can be calculated directly from the data and others have to be provided
by the analyst. The second possibility in this answer is very important to the
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experimental setup, which generates the data, because if the variables in question
are not documented properly there is no chance of removing or even quantifying
their influence on the data.

Very common potential confounding factors of the first kind are the library size,
number of expressed genes or variations in different formats as for example the
influence of the top 500 expressed genes. Interesting examples of the second kind
are processing batch, sample donor or experiment operator.

A last remark should be made about the different data types, which can occur.
Mainly we have to differentiate between continuous and categorical variables. Often
the influencing factors, which have to be supplied externally are categorical in nature
(for example processing batch). The difference between those two data types has to
be taken into account when choosing methods for the analysis of their influence on
the data or each other.

Detection & ldentification

We start by reducing the dimensions of the normalized dataset to decrease the com-
putational effort. The strategy of our choosing is to perform Principal Component
Analysis (PCA) and only use the most informative components. To obtain the
number of the most informative components we implemented two ways. Either the
analyst supplies the workflow with a fixed number via the configuration [pes.use/
or an automated approach is applied. The automated approach first conducts a
PCA with the goal of keeping the first 50 principal components based on the ap-
proximate number of the most variable genes [cf.number.variable.features| provided
by the analyst through inspection of the data (also with the help of the plots gen-
erated by this module). This is achieved through the function runPCA from the
package scater. Next, we go through the calculated components from the most to
the least informative and determine in each step how much additional variation
was explained by the added principal component. If this value falls below a certain
threshold [pe.threshold.pct], then we have found the number of principal components
to be used, excluding the last component. For the detection process only these most
informative components are used in the following.

Now, we have to determine the influence of the supplied metadata on the data.
This is done by calculating the coefficient of determination R? [Gujo4] of a linear
regression model [Gri00], computed by the function ImFit of the limma package,
between every provided metadata variable and the chosen principal components.
With the help of a threshold [rsq.threshold.pct], we decide if the influence of a vari-
able on the data should be investigated further. This is the case if one calculated
R? value of a variable concerning any component is higher than or equal to the
threshold. Otherwise, the variable’s explanatory power is not of importance to the
downstream analysis. By sorting them according to the most informative princi-
pal component, which is influenced the most by a variable, we get a ranked list of
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potential confounders.

At last we apply a filter [cf.blacklist] on the remaining list of variables, because
oftentimes the effect of certain metadata variables lie within the scope of the whole
experiment and therefore will be subject to the analysis (for example treatment
effect). Therefore, the influence of such variables on the data is not allowed to be
removed. What we are left with is a ranked list of confounding factors.

Analysis

With a list of confounding factors we have to analyze their influence on each other.
This is important, because if two factors, which influence each other heavily, are
both removed, the effects potentially introduced and downstream results obtained
are not foreseeable. Of course, a more rigorous analysis of their relationship and
effect on the data may aid in the understanding of underlying mechanisms, but
it is not always practicable in the course of an analysis. Therefore, we chose the
pragmatic approach, which is automated, of determining their influence on each
other and keeping, among a group of mutually influencing factors, only the most
powerful one.

For the process of comparing the influence of confounding factors on each other,
we have to consider the respective type of variable. Different variable types can
not necessarily be compared by the same methods. The following list describes
the solution to every possible combination of variable types. The first term is the
type of the dependent variable and the second one the type of the explanatory or
independent variable in the respective regression model.

o Continuous versus Continuous is modeled with the help of simple linear re-
gression and the influence is determined by the standard R? as we have already
seen before, when we investigated the influence of the potential confounding
factors on the most informative principal components.

o Continuous versus Categorical is modeled with the help of multiple linear
regression [Gri00]. This is achieved with the help of a design matrix, where ev-
ery category of the categorical variable, but one, is seen as a single explanatory
variable in the model. The influence is, again, determined by the standard R?,
with the help of the above outlined functions.

o Categorical versus Continuous can be seen as the inverse situation of
the previous case and therefore we solve it by switching the positions of the
variables, before modeling it in the same way and using the standard R? to
determine the influence.

o Categorical versus Categorical can not be modeled with the help of stan-
dard linear regression models and therefore we have to build a multinomial
logistic regression model [Czel2] and use McFadden’s pseudo-R? [McF73] to
determine the influence of the variables on each other. This was done with
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the help of the function multinom from the package nnet to build multinomial
logistic regression models and logLik from the package stats to determine the
log-likelihood function of a model to obtain the McFadden pseudo-R? value.

One remark on the direction of influence. Only in the last case the "direction" of the
influence is important, because McFadden’s pseudo-R? is not-symmetric, in contrast
to the standard R?, which we use in the remaining scenarios.

The decision, if one factor influences another one in a significant way, is based on
the same threshold [rsq.threshold.pct] as before, when we discussed the influence of
potential confounding factors on principal components. In the end we are left with
a list of the most impactful confounding factors, which do not influence each other
in a significant way:.

Removal

At last, but not least, we want to remove the influence of the remaining confounding
factors from the data, because the influence has proven to be significant, unwanted
and independent of each other. For that purpose we use multiple linear regression
with all the confounding factors as explanatory variables and the dataset as depen-
dent variable(s). In the case of categorical variables we split them up by category,
as before. The residuals yielded by the multiple linear regression model are the
components, which are independent of the explanatory variables and therefore, rep-
resent the corrected data, which we use in the following downstream analysis. To
achieve that, we used the same method we have already used for the normalization
in Chapter 3.5, namely normaliseExprs from the package scater, just with a different
parametrization.

Results & Output

To navigate through this sophisticated process and comprehend the decisions made
by the workflow, according to the supplied configurations, a multitude of visualiza-
tions and a text file naming the confounding factors, whose influence on the data
has been removed, is provided. Of course, the SingleCellExperiment object was ex-
tended by a container with the corrected data on which the downstream analysis
will be performed.

Following the above outlined process of confounding factor analysis the following
outputs are supplied.

o A scree or elbow plot with the principal components ordered by their explana-
tory power on the z-axis and their respective eigenvalue on the y-axis. A
red line indicates the number of components, which were taken, determined
either through the provided parameter [pcs.use/ or the automated approach
explained above. It represents a common way to decide how many components
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should be taken for the downstream analysis by looking for an “elbow” in the
curve.

o Another way to investigate the PCA, is the plot with the principal compo-
nents ordered by their explanatory power on the z-axis and the accumulated
explained variance on the y-axis. This plot shows how much of the variance,
within the data, is explained by the according number of principal components.
Again, a red line indicates the chosen number for the analysis.

o For the analysis of the influence of potential confounding factors on the data or
to be more precise on the previously chosen most informative principal compo-
nents, a heatmap table is provided with the help of the function aheatmap from
the package NMF with the factors as rows and the components as columns.
The values are the respective R2-value of the linear regression model. The
whole table is reordered following a hierarchical clustering to show potential
structures or groups. Every heatmap table in the following, also in the fol-
lowing modules, is generated by the same function as this one, if not stated
otherwise.

« Analogue to the previous visualization, a heatmap table with the filtered con-
founding factors and their influence on each other is supplied. Here, it is im-
portant to take into account that the McFadden’s pseudo-R? is not-symmetric
and therefore the direction of the influence matters in the case of categori-
cal versus categorical variables. In that case the value shows how much the
respective variable in the row is influenced by the respective variable in the
column. Again, the heatmap is hierarchically clustered to reveal potential
intrinsic structures.

o The same quality control plot showing the influence of the top ten influencing
factors, as we have already supplied in the course of the normalization module,
is generated based on the confounding factor corrected matrix to visualize the
(hopefully) drastic improvement.

e For every confounding factor, whose effect on the data was removed, a plot is
generated visualizing the effect on the most influenced principal components
before and after the removal, including the degree of influence determined
by the R%-value. These are either scatter plots, in the case of a continuous
variable, or violin plots in the case of categorical variables. This feature is also
provided by the function plotQC' from scater.

» As already stated above, a text file is generated with the names of the most
influential confounding factors, whose effect has been removed from the data.
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Figure 3.10.: Scree plot (left) and cumulative variance explained plot (right) or-
dered by the principal components’ descriptive power within the data.
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Figure 3.11.: Heatmap table displaying the influence in percentage, determined
by the standard R?, of metadata variables on the ten most informative principal
components of the simulated dataset.
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Figure 3.12.: Heatmap table displaying the influence in percentage, determined by
the appropriate R?, of metadata variables on each other.
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Figure 3.13.: QC plots of the top ten most influencing factors of the respective
matrix with no normalization (left), the LSF normalization (middle) and the LSF
normalization and removed confounding factors’ influence (right). Each color
denotes a variable, not necessarily the same in every plot. The z-axis denotes
the % of variance explained (log;,—scale) and the y-axis the density. The dashed
lines indicate 0.1% and 1%, respectively.

41



Chapter 3 The Semi-Automated Workflow for scRNAseq Analysis

component 2 component 3
(R-squared 0.80) (R-squared 0.78)

oy, 1, 00704

component 429 component 69
(R-squared 0.00000000000000030) (R-squared 0.00000000000000030)

o

ABYEYDEEE) E)ENEH ) H)H

Figure 3.14.: Violin plots of the respective two most influenced principal compo-
nents by the categorical variable Batch_new before (top) and after (bottom) the
removal of the confounding factor’s influence.
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Figure 3.15.: Scatter plots of the respective two most influenced principal compo-
nents by the continuous variable pct__counts_top_ 500_features before (top) and
after (bottom) removal of the confounding factor’s influence.
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The scree plot in Figure 3.10 shows us clearly, that choosing the ten most informative
components was a very good estimation concerning the parametrization. Although,
we have to mention that the plot on the right in Figure 3.10 reminds us how low
the accumulated variance by those components really is.

The heatmap in Figure 3.11 is clearly indicating, that the factor Group_ new, which
is the true clustering as set up during the simulation of the data, and Batch new
are explaining a great proportion of the variance within the data, represented by
the first ten principal components. Furthermore, we can observe that all the other
variables influence the ninth component. This may indicate that they all describe a
similar aspect of the data.

Figure 3.12 consists of those factors, which influence at least one principal component
in a significant way and were not on the blacklist. Additionally, it confirms the
previously stated suspicion, that all the remaining confounding factors, apart from
Batch new, describe similar aspects in the data and therefore influence each other.

Following these observations the workflow concluded to remove the effect of the
variables Batch new and pct_counts top 500 features. The latter one was the
most descriptive factor compared to the other confounders, which it was influencing
or influenced by.

For the comparison between pre and post confounding factor analysis module results,
we have a look at Figure 3.13, where we see a drastic improvement from the raw
to the normalized and finally the confounding factor corrected data. The only
influencing factor left in the confounding factor corrected data plot is the variable
Group_ new, whose effect was not allowed to be removed.

Finally, Figure 3.14 and Figure 3.15 visualize how the respective confounder de-
scribes the data before and after it’s effect on the data was removed. Complementing
the visualization by violin or scatter plots respectively, we can compare two metrics.
First, the component which was influenced the most before and after. In the case of
Batch_new we have component 2 versus component 429 and in the case of variable
pct__counts top 500 features component 9 versus component 567. As if this was
not already enough, the influence, denoted by the R?-value, on the respective most
influenced component decreased by a magnitude of 10, which basically means that
there is nearly no influence left.

Although we are looking at a simulated dataset we can try to comment on the
nature of the found and removed effect of the confounding factors, as we would
with real data. The confounder Batch new was intentionally introduced during
the simulation of the dataset to test the confounding factor analysis capabilities of
the workflow, therefore any further interpretation is rather pointless. The second
confounding factor, pct_ counts_ top_ 500_features, on the other hand suggests that
the 500 most expressed genes by count values described the data in a very significant
way and would have dominated the following downstream analysis, although there
are still 5928 other genes expressed in the data, which can aid in the characterization
of each cell in a unique way.
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3.7. Clustering

After having removed the influences, which may have driven the clustering process,
but should not be allowed to characterize the data in a significant way, the con-
founding factors, we are ready to start with the final part of the workflow, namely
the clustering of cells by populations.

This part represents a possible endpoint in a scRNAseq analysis and at the same
time it is the starting point for every potential downstream analysis, which is based
on a sound clustering by cell populations. Examples of such are the analysis of a
specific cell type, pseudo time analysis to look for temporal changes or differential
gene expression analysis to characterize (sub-)populations by their gene expression.

Main Objective

To overcome the major challenge of currently not having a best practice method or
algorithm for the clustering of scRNAseq data, our approach is to implement every
valid method (valid means, that the method has proven to work at least on a subset
of scRNAseq datasets) and try to generate a lot of potentially meaningful results.
These results are then analyzed by the subsequent module to reach a final result, or
in our case a favorite and a consensus clustering.

Therefore, the main goal of this module is to produce a variety of potentially valid
clustering results for further analysis, but also to capture every aspect or intrinsic
structure within the data. This is ensured by looking at it from every possible
angle, represented by different algorithms or approaches and respective parameter
variations.

Implementation

We will start with some preparatory measures and then state the supported algo-
rithms with short remarks on their underlying mechanisms.

Preparation

First, the new data, with removed effects of confounding factors, is subject to di-
mensionality reduction, because it speeds up the clustering process and is often a
prerequisite for certain approaches. This is achieved by principal component analysis
(PCA) as before in the confounding factor analysis module. For further elaboration
on the implementation we refer at this point to the previous Chapter 3.6. As input
for the clustering algorithms we only use the most informative principal components,
determined by the above mentioned approach. Additionally, we use the previous and
following two components as input for every algorithm. This increases the variation
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of the input and thereby generates more, potentially valid, results, which help in
obtaining a robust final clustering result.

A big challenge in cluster analysis is the number of clusters k£ to look for. Classic
approaches, as for example k-means algorithms, need a k as input parameter. We
implemented two ways to circumvent that issue to a certain degree.

The user can supply the number of anticipated clusters k directly with the help of
the configuration parameter [no.of.clusters]. This is especially useful when domain
knowledge is available, because then a confident assumption on the potential number
of populations in a specific tissue type can be made. The provided assumption is
then transformed into an interval by the addition and subtraction of two, which
represent the boundaries of an integer interval for k, to enable a broader parameter
spectrum to search in.

The other approach we chose to implement is algorithmic in nature and complements
the parameter approach. Here, the expected number of clusters k is determined by
leveraging the results of a clustering algorithm (Seurat’s SNN-Cliq implementation,
more details below), which does not need a k as input parameter. After successful
application of that clustering approach, k is obtained by determining the median
across the number of clusters within all clustering results generated by this algo-
rithm, and rounding it down to get an integer value. Again, this value is transformed
into an integer interval by the same strategy as before described in the parameter
approach.

Both approaches are used, as long as the parameter is supplied by the analyst, and
the resulting intervals are unified to get a final list of k’s as input parameters.

Having now a dimensionality reduced dataset and a list of different numbers of
clusters k to look for as input parameters, we are ready for the clustering process.

Algorithms

We will outline all the approaches or algorithms, their implementation and involved
packages, which partly state that they were designed for and successful in clustering
certain scRNAseq datasets, in the following. To cover a large amount of reasonable
possibilities we always computed a lot of different results per approach with the help
of parameter variations. In every case we varied the number of clusters k to look
for and the number of principal components as input, to cover a wider spectrum
of potentially valid outcomes and avoid missing hidden structures. Furthermore,
approach specific parameters were always varied in a reasonable way, for the same
reason. We will not elaborate any further on the specific parametrization as it is
beyond the scope of this work.

The following clustering algorithms, approaches or implementations are supported.

 Seurat’s shared nearest neighbor (SNN)-Cliq implementation to find clusters
within preprocessed data, without the need of the parameter k.
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o ClusterExperiment (CE) package provides a variety of different algorithms for
the clustering of scRNAseq data, which can be divided in two categories.

— TypeK algorithms, which need a number of clusters k£ to look for: pam,
clara, kmeans, hierarchicalK and spectral.

— TypeO1 algorithms, which are hierarchical in nature: hierarchical01 and
tight.

o Single Cell Consensus Clustering (SC3 package), a k-means based consensus
approach with a standard implementation and one that is used instead in
the case of more than 10000 cells, to reduce the computational effort. The
second approach trains a support vector machine (SVM) on a clustered (by
the standard approach) subset of the data and then classifies the rest by means
of the trained SVM. We always force the second approach in addition to the
standard approach, even if there are less than 10000 cells to cluster, to get
additional variation in the results.

o The pcaReduce package provides a hierarchical clustering approach applied on
datasets, which dimensions were reduced by the means of PCA. Two variations
are presented, one based on sampling and the other one on merging in the
course of the hierarchical clustering process.

e t-SNE combined with k-means implementation, where the dataset is dimen-
sionality reduced by the means of t-SNE (runTSNE function from the scater
package) resulting in a two dimensional map on which a standard kmeans
implementation from the stats package is applied.

e Clustering through imputation and dimensionality reduction, provided by the
CIDR package.

In total there are 14 different approaches implemented, which all yield more than
one result depending on the number and variation of parameters. If one approach
or specific parameter configuration does not yield a result it is simply skipped. This
module can be easily extended by other clustering algorithms, whose results feed
directly into the workflow without any additional effort.

Results & Output

The result of this module is a vast amount of different clustering results, due to the
variety in algorithms and parameters. All of these clusterings are saved within the
SingleCellEzperiment object and two new objects, which are generated in the course
of the module. These new objects are derived from the Seurat and the ClusterEx-
periment package, respectively, and contain all the same information, just fitted to
the structure of the corresponding class. The workflow supports from this point on
all three objects and updates them on any changes, which occur in the course of the
subsequent module, because they have unique analysis and visualization capabilities
we want to use.
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The module does not generate any plots or visualizations, which is an exception to
the basic principle of the module architecture of computation and visualization in
an alternating manner. The reason is that this module is purely intended to cluster
the data by different means to get the biggest possible set of clustering results for a
more sophisticated analysis in the next module. Additionally, we have to mention
that a lot of results are simply meaningless and therefore the effort to visualize them
in different ways would be in vain. After the next module, the cluster analysis, we
will present comprehensive visualizations concerning the best clustering results and
how they came to be.

The only output, besides the above mentioned result objects, is a text file consisting
of a list of all the clustering results generated. The names follow a standardized
nomenclature and include the algorithm name, parameters, their values and the
number of determined clusters. Depending on the algorithm, which generated the
result, more or less parameters are stated in the name. One exemplary name would
be CEkmeans pcs12 k08 k8 cluster, which states the algorithm (CFEkmeans =
kmeans from ClusterExperiment), the number of used principal components used
(pcs12 = 12), the input parameter for the number of clusters to look for (k08 = 8)
and the number of determined clusters (k8 = 8).

At this point we are not able to say anything about the analysis of the simulated
dataset sim_2 2 except that there were 216 clustering results obtained by the
cluster module, without any information on their quality or validity. This represents
the basis for the next module, which is the rigorous and comprehensible analysis of
clustering results.

3.8. Cluster Analysis

The situation we see ourselves confronted with is having a huge amount of clustering
results of unknown quality and validity with our final goal of clustering the data by
cell populations. It is the result of applying a large amount of different clustering
approaches with varying parameters on the data. This situation represents a big
challenge and unsolved issue in general, but especially in scRNAseq analysis, due
to the lack of consensus or best practice concerning the clustering process. This
observation was confirmed in a recent publication by Freytag et al [FLNB17], which
called this situation actually a “Cluster Headache”. Due to the fact that we tackle
a critical, but very challenging issue with this module, we view it as the second
centerpiece of the workflow.

Main Objective

To reach the goal of having a final best clustering result by cell populations, we
implemented an approach, already theoretically presented in [Reil8]|. The presented
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approach did not concentrate on developing a new clustering algorithm (there are
already quite a lot), which works only on certain groups of datasets, but rather on a
broader framework to deal with that issue. Following that approach we quantify the
quality of each clustering result by certain indices, which check for different aspects
of the clusterings. With the help of these quantifications we sort the list of all results
by the quality derived from the indices. Thereby, we can get the best x clustering
results from the top of that list. Additionally, to these top clustering results, we
implemented the computation of a consensus clustering, to deliver a robust and
comprehensible solution. By implementing this approach, we hope to be able to
circumvent the above stated issue in cluster analysis within scRNAseq analysis and
solve it in a comprehensible and general way.

Implementation

Before we start with the rigorous analysis of the clustering results, we try to get rid
of obvious low quality results, by filtering according to certain rules. After that, we
strictly follow the outlined theoretical considerations of [Reil8] in the implementa-
tion process, which consists of

o the computation of various cluster indices per result,

o the determination of an order by quality by formulating and solving a multi-
criteria decision making problem,

« the combination of the best clustering results to obtain a consensus and

e an optional comparison to a provided solution or clustering result.

Cleanup

To get rid of low quality results we filter them by the following rules and remove
them from any further analysis.

o Clustering results which are empty (meaning that the algorithm could not
determine any cluster) or contain less than 2 clusters, hence only one cluster
was determined, are obviously of no further use. If more clusters are antici-
pated due to specific domain knowledge concerning the sample, the parameter
[min.no.of.clusters] can be adjusted to the analysts needs.

o If clusterings contain more than 20% of not-clustered cells we dismiss the
result, because it indicates that the approach in combination with the param-
eters did not seem capture the inherent structure within the data, which fit
to most of the cells. Some not-clustered cells usually occur, due to not previ-
ously filtered multiplets or low quality cells. In case of expected low quality
cells during the clustering process this threshold can be customized with the
parameter [not.clustered.pct].
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o If the largest cluster consists of more than 90% of all cells within the data, it
indicates significant under-clustering and we remove the result. Of course it is
not entirely impossible that one cell population dominates the sample in such
away. In that case the parameter [biggest.cluster.maz.pct] can be adjusted
accordingly.

o Clustering results with more clusters than twice the maximum of the antic-
ipated number indicated by the input variable k, are also removed, because
this indicates over-clustering. On the other hand, maybe there is some truth
to the over-clustering concerning some cell populations and thereby indicating
the existence of sub-populations. This could be investigated in an additional
run of the workflow on certain clusters of a clustering result as outlined in
Chapter 3.10.

Usually these measures lead to a significant reduction in the number of potentially
valid clustering results. Thereby, the computational burden of the following steps is
decreased drastically. All of the following computations and outputs only concern
and describe these remaining clustering results.

Quality Measures

To quantify the quality of the clustering results in an objective manner we calculate
for each result six different measures. Whereby we try to evaluate different aspects
within the structure of the clustering results as for example compactness, density,
distance between clusters and the statistical information of a clustering result con-
cerning the data. For the first four indices, in the following list, this is achieved with
the help of the function intCriteria from the package clusterCrit. The information
criteria approach was implemented manually by leveraging the Im function within
the stats package.

The following cluster indices were chosen for that purpose. A theoretical presenta-
tion and analysis of their properties and behavior can be found in [Reil8].

o Silhouette Index

» Calinski-Harabasz Index
o Tau Index

e C Index

o Akaike- & Bayesian information criteria approach, weighted with the help of
the most informative principal components, developed and presented in [Reil§]

This set of approaches for the quantification of clustering result quality can be
extended or edited at this point at any time to ensure flexibility, compatibility and
adaptability concerning novel developments in the field of predicting more accurately
the quality of clustering results derived from scRNAseq data.
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Decision Making & Combination

Now, we have filtered out the low quality clustering results according to parametrized,
specific rules. Then, we calculated for each of the remaining results six different
quality measures. The problem at hand is to find a way to determine a ranking by
all of the above mentioned quality measures. This is achieved by formulating it as
a multicriteria decision making problem, where the quality measures represent the
criteria and the clustering results the alternatives, between which a decision has to
be made.

For that purpose we chose to use TOPSIS (Technique for Order Preference by Sim-
ilarity to Ideal Solution) [PZKS12], realized in the function TOPSISLinear (or as
an alternative TOPSISVector) within the package MCDM. By applying TOPSIS
on the clustering results and their according measures (equally weighted) we ob-
tained a ranked list by quality. This approach directly yields the best clustering
result concerning the quality measures at the top of that ranked list. It represents
one potential endpoint of the analysis and we will call it in the following favorite
clustering,.

As we already argued in [Reil8], we do not want to loose the potential discoveries
or detected internal structures within the remaining clustering results, especially
derived from the top ranked ones, which were not chosen as the favorite clustering.
Therefore, we additionally implemented the presented approach on leveraging the
large amount of alternative clustering results to obtain a complementary solution.

Before, we present the final step of the implementation, the consensus, we have
to remove duplicates within the ranked list of clustering results to avoid potential
biases concerning an algorithm or number of clusters k. In other words, we remove
every clustering result which was obtained by the same algorithm and yielded the
same number of clusters k. Of course, we always remove the duplicates with lower
quality.

Finally, we choose the top [n.top.clustering] clustering results and combine them
to a consensus clustering. This is achieved by the function combineMany from
the package clusterEzperiment with a parameter for the smallest accepted cluster
size [minClusterSize.pct] and a proportion parameter [combine.proportion.use/. The
proportion parameter basically denotes the proportion of times in which a cell has to
be in a certain cluster to be allocated to that cluster in the final consensus clustering
result. We will call the result of this procedure the combined clustering. Thereby,
we used the knowledge within the top [n.top.clustering/ clustering results to obtain
an additional and robust final clustering result.

Comparison (optional)

An optional part of this module is the comparison of the final results with an ex-
ternally supplied clustering result in the form of metadata. This is for example a
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previous clustering result, a published classification result for that dataset or some
kind of rare ground truth (as in our case with the simulated dataset).

For the comparison we used two different measures, namely the Adjusted Rand Index
(ARI) [JD88] provided by the function adjustedRandIndex from the package mclust
and the Normalized Mutual Information (NMI) [WWO07] provided by the function
NMI from the package NMI. The metadata variable with which the comparison
should take place has to be supplied via the parameter [comparison*]. These two
metrics are measures for comparing two clustering results and yield values between
0 and 1, where 0 means absolutely no overlap and 1 that the two clustering results
are exactly the same. Therefore, they can be interpreted as similarity in percentage,
covering different aspects of a comparison. Of course, the comparison is performed
with both final results, the favorite and the combined clustering result.

Results & Output

This module generates by far the most results and outputs. This can be easily
explained by the fact that it is the end point of the analysis and tries to present the
results in the most comprehensible way possible.

First and foremost the module results in the three objects (SingleCellExperiment,
ClusterExperiment and Seurat) generated in the course of the clustering module,
filled only with the remaining clustering results (after filtering them) and the newly
generated combined clustering. We have not mentioned the favorite clustering sep-
arately, because it was not added by the module, only chosen.

To describe the results in more detail and a readable format the following files are
generated by the module.

o A text file with a list of the names of the [n.top.clustering] best clustering
results ranked by their quality according to TOPSIS.

o An object containing only the calculated clustering indices in the form of a
data frame for separate inspection or additional analysis.

e An optional text file containing the calculated ARI and NMI values of the
combined and favorite clustering compared to the supplied metadata variable
[comparison*].

Additionally, to make every step comprehensible and present the results in various
ways, the following visualizations are provided.

o Hierarchically clustered heatmaps of the ARI and NMI values comparing every
clustering result with each other. This is an easy way to check for similarities
and differences among the clustering results.

« Barplots of the final and the best clustering results, to visualize how the com-
bined clustering came to be and how similar the favorite clustering is com-
pared to the other best clustering results. They are generated by the function
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plotClusters from the package clusterFxperiment. Every row represents a clus-
tering result and every column a cell. The different clusters within a result are
indicated by colors. Optional a barplot is generated containing the combined
and favorite clustering and values of interest (which have to be provided as
metadata), if they were supplied by the parameter [ValueOfInterest], as rows.
Examples of such values are processing batch or ground truth.

o Hierarchically clustered consensus matrix of the best clustering results as a
heatmap, which is a cell by cell matrix describing the proportion of times that
one cell is in the same cluster as another cell in respect to the best clustering
results. It is provided by the consensusmap function of the NMF' package.
It can also be seen as the visualization of a similarity matrix, whose entries
represent the similarity of two cells, if clusters are interpreted as groups of
cells with similar features.

« Histograms of the number of found clusters within the clustering results.

e A heatmap table, similar to the one from the confounding factor analysis mod-
ule in Chapter 3.6, describing the influence of the metadata on the best clus-
tering results by the R2-values of the corresponding linear regression model.
This plot is useful to identify potential confounders in hindsight or to discover
factors that drove the clustering process and to which degree.

« Scatter plots, describing the correlation between every clustering index to help
understand their dependencies among each other. This is an important aspect
to consider, when using the above described approach for ranking the clustering
results by quality. The colored points represent the best clustering results.

« t-SNE maps of the data, colored by the combined and favorite clustering re-
sult are generated with the TSNEPlot function of the package Seurat. Fur-
thermore, if provided by the parameters [ValueOfInterest] or [GenesToPlot],
t-SNE maps colored by values of interest or specific genes (with Seurat’s func-
tion FeaturePlot) are provided.

o PCA plots of the data, colored by the combined and favorite clustering result,
are obtained with the help of Seurat’s function PCA Plot.

Before interpreting the visualizations and bringing the analysis of the simulated
dataset to its conclusion, we wanted to mention that we only present a certain
selection of plots and results due to lack of space and usefulness to the reader.

’ ground truth versus ‘ ARI ‘ NMI ‘
favorite clustering | 0.959 | 0.937
combined clustering | 0.998 | 0.99

Table 3.3.: ARI and NMI values of the comparison with the ground truth, which
was defined during the simulation of the data.
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Figure 3.16.: PCA plot (left) and t-SNE map (right) of the processed data colored
by the favorite clustering result, determined by the described approach.
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Figure 3.17.: PCA plot (left) and t-SNE map (right) of the processed data colored
by the combined clustering result, determined by the described approach.
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Figure 3.18.: t-SNE maps of the processed data colored by the values of interest
Batch_new (left) and Group_new (= ground truth) (right).
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Figure 3.19.: Barplots of the combined and best clustering results with the values
of interest Group and Batch (left) and of the combined and favorite clustering
and the values of interest Group and Batch (right).
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Figure 3.20.: Heatmap
best clustering results.
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Figure 3.21.: Histograms of the number of found clusters within all (left) and the
best clustering results (right).

Figure 3.22.: Consensus matrix of the best clustering results.

Starting out by looking at the two comparison metrics, the ARI and NMI values, in
Table 3.3 we can already state that the overlap with the ground truth clustering is
nearly perfect. Although, at this point the result is not the main concern, because
we want to present a full analysis of a simulated dataset with the workflow and not
discuss the accuracy or performance, which is the subject of Chapter 4, we wanted
to point out with how little effort on the analyst’s side, this excellent result was
achieved.

In Figure 3.16 and 3.17, we can see two different visualizations (PCA plot and t-SNE
map) of the processed data, colored by the final favorite and combined clustering
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results. Additionally, we present the t-SNE maps of two values of interest, namely
the Batch_new and the Group_ new (= ground truth) variables in Figure 3.18. Here,
it is apparent that the batch attribute is distributed evenly among all clusters, which
is very realistic when thinking about samples originating from the same source, but
processed in different batches.

We can immediately appreciate that the “clustering” by the t-SNE map, the final
clustering results and the ground truth correspond to each other to a high degree.
This is not necessarily always the case (due to higher dimensionality within the
data), even if the clustering is correct, but definitely a good indication of having
found a sound clustering result in neatly pre-processed data.

The differences between the two final clustering results and the ground truth are
distinguishable by comparing their respective t-SNE maps, but not easy to analyze
or quantify. This can be achieved in a better way by looking at the barplots in Figure
3.19. These plots demonstrate, in a very comprehensible way, how the combined
clustering came to be and visualize the similarity concerning the clustering among
the best clustering results. Furthermore, the relation between clustering results and
values of interest is presented in a clear way. For a close up inspection of the relation
between only the two final clustering results and the values of interest a separate
barplot is generated, as we can see in Figure 3.19 on the right. Here, we can see
how similar the combined and favorite clustering are to the ground truth. For the
purpose of quantifying their similarity we want to reference back to the comparison
by metrics shown in Table 3.3.

Even deeper analyses of the results can be undertaken with the help of Figures 3.20,
3.21 and 3.22. Figure 3.20 visualizes in a very comprehensible way, similar to the
confounding factor module, the influence of selected variables on the best clustering
results. As expected none of the presented variables influence the clustering results
in a significant way, apart from the ground truth denoted by Group new. Figure
3.21 presents an overview of the number of found clusters £ in all and especially the
best clustering results. This gives a good impression concerning the most probable
correct number of populations within the sample. We can see that the median among
all results represents the real number of 6 clusters within the data, whereas the best
clustering results yield 4 as their median. Nevertheless, the final combined clustering
result yields the correct number of 6 clusters. Last but not least, Figure 3.22, shows
the consensus matrix of the best clustering results and confirms what we have already
suspected in Figure 3.19, that the best clustering results did not differ in their cluster
allocation in significant ways. Only in the center of the matrix, representing the
smallest of the final clusters, we can spot some discrepancies between the different
clustering results.

In conclusion we can state that the analysis of the simulated dataset sim_2 2 was
more than successful and all the steps and decisions made by the workflow were
presented in a comprehensible manner.
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3.9. Final Result

This part quickly reiterates, but also puts an emphasize on, what the workflow
actually delivers in the end.

Two solutions, a favorite and a combined clustering result, by cell populations are
basically the final product of the workflow. Besides that, all of the analyses done by
the different modules and the manipulations on the data are provided in a compre-
hensible way with additional visualizations. Thereby, we tried to ensure to adhere
to the goals we defined in the beginning of this Chapter concerning the workflow.

The results of every module are always added to the preexisting ones, thereby it is
ensured that the changes made to the data can be traced back and that the analyst
is able to rerun specific modules at any given time. Therefore, in the end the user
is presented with the entire history and description of the whole analysis and every
decision made along the way.

The three final objects are the SingleCellExperiment object created in the first mod-
ule and the ClusterEzperiment and Seurat object, which were created in the course
of the clustering process. All of them contain nearly the same information on the
whole process, provided they support it. We recommend to keep working with the
SingleCellExperiment object, because it houses the entire analysis history and was
used from the beginning. The list of the best clustering results is also recommended
for further use, because other solutions ordered by quality are convenient when
alternatives are needed or the best clustering results are very different from each
other.

3.10. How to Use the Workflow

Most of the time the workflow can not be used in a one and done manner, but
rather as a tool in an iterative process of exploring the data at hand. The workflow
should enable a flexible and comprehensible way to explore scRNAseq data, without
doing repetitive tasks manually. Therefore, it is mostly automated. The results
should aid in the decision making process of next steps or be seen as a basis for
further exploration of different cell types, clusters or samples, always depending on
the question and data at hand.

Therefore, it is often necessary to perform multiple (partial) runs on the same data
until one gets a meaningful result or simply a robust basis for further exploratory
analyses. These partial runs can be performed as an iterative process with different
configuration parameter sets and comparisons.

A good example which uses the flexibility enabled by the workflows modular nature,
is the problem of determining the initial set of parameters. If the analyst does not
have any clue about the metrics or structure of the data at hand, we recommend to
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stop the workflow after the first module, the import module, was performed. Then,
investigate the output of the module by looking at the generated visualizations or
load the obtained object to explore it even further. Having done that, the user can
set the parameters in the configuration files in a more meaningful and informed way
and let the workflow continue where it left off. This is only one scenario, which
could occur quite often in the beginning of an analysis.

Another scenario, located on the opposite end of the workflow would be the following.
Imagine the subject of an analysis is to look for an effect on cellular level on the
sample as a reaction to a certain stimulus (treatment, radiation or disease). The
literature suggests that the effect only or primarily occurs on a specific subset of
cell populations. In this case the scientist could run the analysis as outlined above
with the goal of clustering by cell population. Of course, the effect of the stimulus
on the data has to be removed in the course of the confounding factor analysis
to ensure that it does not dominate the clustering process. After having obtained
a final clustering result, the targeted subset of populations, meaning one or more
clusters, can be extracted. By using the original raw data of the extracted cells, the
workflow can be rerun for the selected subset and the scientific question concerning
the effect of the stimulus on certain cell populations can be investigated further.

A general recommendation, when looking for internal structures in the data of any
nature is to go from rough clustering, with big but definite clusters, to smaller ones.
This can be achieved by the above outlined approach of first dividing the data in big
chunks and then rerun the workflow on one single cluster, which has the potential
to inhabit the subpopulation we are looking for.

There are endless scenarios such as using different parameters for the quality control,
switching normalization method or removing a certain confounding factor, which
lead to multiple iterations and reruns of specific parts of the workflow. Thereby,
different results for a comparison and exploratory analysis are generated.

For this reason, we called this approach a workflow and not a pipeline, because
loops and branches in the process are possible and very likely to occur and pipelines
usually operate in a “linear” way. After every module the analyst is encouraged to
inspect the output of the module to decide on next steps. The idea is to intervene
sooner and be a lot more flexible than with an one-off pipeline, which has no means
of configuring the independent steps of the analysis.
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4. Verification & Validation

“Knowing is not enough, we must apply. Willing is not enough, we
must do.”
Johann Wolfgang von Goethe

This chapter is dedicated to the process of verifying and validating the workflow,
which we just described in detail throughout the previous chapter.

We define verification as the act of ensuring that the workflow does exactly what we
intended it to do, provided that the assumptions we made are met by the data. This
entails among other things the correct determination of clusters and the removal of
real confounding factors. Validation on the other hand, describes the process of
ensuring that the workflow performs well in a real setting, represented by real world
datasets. In other words, by verification we check if the workflow does what it was
designed to do concerning the specifications, functions and goals we defined before.
By validation, we make sure that the workflow yields valid results according to its
desired real world application. Similar definitions of these terms can be found in the
field of software development and reliability [Pha03].

In concrete terms, the verification is achieved by applying the workflow on eight
different simulated datasets to ensure the proper technical functionality. The val-
idation, will be performed by applying the workflow on a real public dataset and
comparing the result with published ones by the community. Additionally, the re-
sults will undergo a thorough biological examination by the means of a discussion
at the end of the chapter.

We will always explain the setup of the respective process (verification or validation)
and discuss the results. In the case of validation we will additionally comment on the
analysis of the real dataset to ensure comprehensibility concerning the final results.

4.1. Verification of the Workflow with Simulated
Datasets

The verification chapter consists of two parts. First, we will shortly describe the
setup of the process. In the second part we will discuss the results and formulate a
conclusion concerning the verification of the workflow.

The goal is to show that the workflow addresses all the stated challenges and issues
in scRNAseq analysis and obtains, under controlled circumstances, excellent results.
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4.1.1. Setup of the Verification

To verify the correct functionality of the specifications and goals of the workflow we
simulated eight different datasets with the help of the package splatter. This package
was exactly made for that purpose, meaning that it is intended to be used for the
verification of programs like this workflow in a standardized way, by simulating
scRNAseq data. We even estimated the main parameters with the help of the
function splatEstimate, to base the simulated datasets on a real dataset.

We equipped all eight of the simulated datasets with an inherent clustering as ground
truth for the comparison with the final results of the workflow. Four of the datasets
were additionally separated into batches to simulate the common situation of hav-
ing a strong confounding factor present in the data. Furthermore, each of the four
datasets in each group (with and without batch separation) differ in their dispersion
parameter and therefore represent increasing levels of difficulty concerning the goal
of correct clustering. To be more precise the datasets ending with _ 1 are not very
disperse and should only check all the basic functions, because of that we expect
nearly perfect results. Datasets ending with 2 are significantly disperse, even more
than estimated by the function splatFstimate based on the real dataset. To test the
workflows limits, datasets with the ending _ & are unrealistically disperse. Until
now the dispersion has increased with the appended numbers. Datasets ending with
_ /4 represent an exception to that rule and are exactly as disperse as the function
splatEstimate has estimated, which means their level of difficulty is positioned be-
tween _ 1 and _ 2 datasets. Therefore, the datasets with the ending 2 represent
the benchmark we want to achieve, because they are a more difficult task than the
real dataset. The motivation for the datasets with the ending _ 4 was to analyze if
there could be any conclusions drawn concerning parametrization, like normaliza-
tion method selection, concerning the subsequent analysis of the real dataset. For
more details on the datasets, the simulation process, used parameters and the real
dataset they are based on, we refer to Appendix A.

The last important thing we have to discuss, concerning the verification setup, is the
following question: According to which metrics will the result be measured? As we
have already implemented and described the ARI and NMI measures, in Chapter
3.8, for the comparison of the final results with externally supplied metadata, we
propose to also use them for the quantification of success within the verification
process.

4.1.2. Results & Conclusions

We will present the results of the verification process in two tables, one with and one
without batch separation within the datasets. As in Chapter 3.8 we will display the
ARI and NMI values of the final clustering results, which are the combined and the
favorite clustering, compared to the simulated real clustering (= ground truth). Due
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to the nature of the datasets (simulated) this is the best way to evaluate the perfor-
mance of the workflow, because no biological knowledge can be applied to the results
to check for plausibility. We will not go into the details concerning the analyses of
the datasets. Each dataset was processed with the same configurations as input,
only differentiating in the applied normalization method. The exact configuration
parameters of the analyses are documented in Appendix A. To make the tables more
readable we always colored the lowest/worst value per dataset and comparison met-
ric (NMI and ARI) in orange and the highest/best in green. After presenting
the results, we will try to draw some conclusions and formulate hypotheses for the
analysis of the real dataset.

| dataset | normalization | ARI compined | NMI,ompined | ARI pavorite | N M qporite |

sim_1 1 DS
sim 1 1 log2cpm

sim_1 1 LSF

sim I SF
sim_1 1 TMM

sim 1 1 UuQ

sim_ 1 2 DS

sim_ 1 2 log2cpm 0.965 0.943

sim_1 2 LSF
sim_1 2 SF

sim_1 2 TMM 0.996 0.983 0.921 0.9
stm_1 2 [S[®)

sim 1 8 DS

sim_1_3 | Tog2epm
sim_ 1 8 LSF

sim_1_3 SF 0.26 0.537 0.872

sim_1_3 TMM 0.798 0.772 0.896 0.834
sim_1_3 UQ d 0.928 0.859
sim_1_4 DS 0.759

sim_1_4 log2cpm

sim 1§ | LSF

sim_1_4 SF

stm_1 4 TMM

sim_1 4 [S[®)

Table 4.1.: Results of the verification with simulated datasets without batch.

We will start with Table 4.1, where we present the results of the comparison to the
ground truth for all the datasets, which were not influenced by the batch confounding
factor. The results of the analysis of the first dataset, sim_1 1, are as expected
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and there is not even any value below 0.9, which stands for itself. We even see
a perfect match in the LSF normalized results of the combined clustering. The
most interesting dataset, sim_ 12, due to its realistic and increased difficulty and
similarity to the real dataset, yields also very good results with no value below 0.82
and in the section of the combined clustering not even below 0.9 as before. Another
situation is presented, when we look at the most disperse dataset in this group,
sim__1 3. Here, we can see that a lot of approaches do not work at all, with the
lowest value at 0.091, and others perform astonishingly well, with the highest values
around 0.93. Last but not least, the results of the most similar dataset, compared
to the real dataset, sim_ 1 4, present themselves very good with no values lower
than 0.756 and by excluding the four (from 24) lowest values not even lower than
0.949.

| dataset | normalization | ARLompined | NM Leompined | ARIfavorite | NMItavorite |

sim_2 1 DS
sim_2 1 log2cpm

stim_2 1 LSF 0.998 0.989 0.962 0.947

stm_ 2 1 SF

sim_2 1 TMM
sim_2 1 uQ
stm_2 2 DS

sim_2 2 log2cpm

sim_2_2 LSF 099 | 0959 0.937

sim_2 2 SF

sin_2 2| TMV
sim_2 2 uQ
stm_2 8 DS
sim_2 3 log2cpm
sim_2 8 LSF
sim_ 2 8 SF
stm_2 8 TMM
stm_ 2 8 uQ
sim_2 4 DS
sim_2 4 log2cpm
sim_2 4 LSF
sim_2 4 SF
stm_2 4 TMM
sim_2 4 UuQ

Table 4.2.: Results of the verification with simulated datasets with batch.

Moving on to the more challenging datasets in Table 4.2, where we present the results
of the comparison to the ground truth for all the datasets, which were additionally
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influenced by the batch confounding factor. Again, the results of the easiest dataset,
sim_2 1, are as expected and the lowest value is 0.941. In one case (UQ), the
combined clustering is even a perfect match when compared to the ground truth.
The dataset with increased difficulty, compared to the real dataset, sim__ 2 2, which
we have analyzed in detail in the course of Chapter 3, yielded very good results. To
be more precise apart from the four lowest values, there are none lower than 0.935.
As before the results from the most disperse and difficult dataset, sim_2 3, cover a
big range from 0.165 to 0.921, with some approaches performing over all bad, some
over all good and a few in a mixed manner. The most realistic dataset, sim_2 4,
yielded excellent results with no value lower than 0.927.

According to the results of this limited sample of eight datasets, which were intended
to check if all the specifications and goals of the workflow were met, we want to state
that the overall performance was better than anticipated. Additionally, we want to
mention that in all above listed configuration settings the batch confounding factor
was automatically identified and its effect removed from the data. Therefore, we
conclude that the workflow was verified by the above stated process and results.
Before we continue with the validation of the workflow, we try to extract some
knowledge, apart from the verification, out of the results from Table 4.1 and 4.2.

In the following we will list some conclusions and hypotheses, which we think can
be drawn from the presented results.

e A higher dispersion within the data does not lead necessarily to worse results.
This can for example be seen by comparing the results from sim_2 4 and
sim__2 2, where the latter one has a higher dispersion but not all the results
are worse than the results of the former one.

o It seems that the consensus approach, which yields the combined clustering
result, does not work so good with datasets, which have an extremely high
dispersion, as for example in sim_1 & and sim_2 3. The favorite cluster-
ing approach on the other hand still delivered very good results. Therefore,
we argue that the number of best clusterings [n.top.clusterings/, used in the
generation of the combined clustering, is of grave importance.

o We can see that the most sophisticated normalization methods, TMM or LSF,
do not always yield the best results. Therefore, we can not even formulate
for simulated datasets a recommendation concerning the best normalization
method. Following the fact that the datasets sim_1_ 4 and sim_2 4 are
the most similar to the real dataset, we could try to predict which normal-
ization method would yield the best results. Having said that, we will not
do such a thing, because of the just mentioned unclear dynamics in the back-
ground, which lead to good or bad results concerning the applied normalization
method.

o Another interesting observation is, that contrary to intuitive thinking, some
datasets in the first group (without batch effect) performed not as good as
their counterparts in the second group (with batch effect). This can be clearly
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seen when comparing the best results of the combined clustering results in
stm_ 1 2 and sim 2 2.

We think, that we have tested a lot of different configurations, even unrealistic
difficult ones, and reached satisfying and excellent results. Therefore, we conclude
that the chosen methods and approach on the matter is valid and worth further
investigation. In the next part we will investigate how good the workflow performs
on a real dataset and in comparison with an already published analysis of exactly
that dataset.

4.2. Validation of the Workflow with a Real Dataset

After having verified that the workflow meets its specifications and determines clus-
terings to a satisfactory degree, even in very disperse simulated datasets, we move
on to the validation of the workflow by using it to analyze a real public scRNAseq
dataset.

This chapter consists of three parts, in which we first describe the setup of the
validation process, then give a brief summary of the analysis of the real dataset and
finally discuss results and try to draw some conclusions.

4.2.1. Setup of the Validation

The basic idea is to analyze, with the help of the workflow, a publicly available
scRNAseq dataset. We chose a rather small one with approximately 3000 PBMC
cells (pbme8k) from a healthy human donor provided by 10x Genomics. Thereby,
we ensured reasonable computational effort and a sample which is made up of a
lot of differently sized cell populations. Therefore, it is a good candidate for the
validation of our workflow. A more detailed description, the origins and structure
of the dataset can be found in Appendix A.

The most important condition we have to agree on is the metric or measure which
decides if the workflow is validated or not. This is especially tricky, because we see
ourselves confronted with the fact that we do not and can not have a ground truth,
due to the fact that we deal with data from a real biological sample.

We propose two solutions to this conundrum. At first we will compare the results
of the workflow to an established, published and widely accepted result from the
authors of the package Seurat in form of a tutorial [Sat18]. The topic of the tutorial
is the analysis of the same dataset we have chosen for the validation process and
therefore provides a clustering, which we can use as standard of reference or pseudo
ground truth. The deciding metrics would be again represented by the ARI and NMI
values, which describe the overlap of the results of the workflow and the ones from
the tutorial. The second solution is the application of biological knowledge about
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the dataset in comparison to the results of the workflow. For example comparing
expected to detected or identified cell populations. Both described solutions are not
absolute, but the best we can do under these circumstances. We are convinced that
the presented approaches will prove to be sufficient to validate the workflow.

4.2.2. Analysis of the Data with the Workflow

This chapter describes a reduced and optimized analysis of the chosen publicly
available real dataset called pbmc3k. The goal is to briefly walk the reader through
the whole process of analyzing a real biological dataset, in comparison to a simulated
one as we have already seen in Chapter 3. The final results will be presented at the
end of this part, but discussed in the next chapter.

Starting with the import module, the most interesting plots are the kneeplots, which
are presented in Figure 4.1. Here, we can see in the UMI count vs. cells plot that
the cut off parameter was chosen wisely, because the knee is rather distinct. The
second kneeplot, describing the UMI counts vs. genes, shows us that the range of
UMI counts concerning the genes is very wide, reaching from 0 to one gene with
over 100000 counts. The last kneeplot, showing the relationship between genes and
cells, visualizes the fact that at least more than 2000 cells express more than 500
genes due to the position of the knee. With the help of these plots the decisions
concerning the filter parameters for the quality control module can be informed.

20,000

Figure 4.1.: Kneeplots of UMI counts vs. cells (left), UMI counts vs. genes (mid-
dle) and genes vs. cells (right) of the pbmcS3k dataset.

The other plots of the import module, namely the density plots and histograms, will
be partly shown in the output of the next module, the quality control module. There,
we compare the histograms of the data before and after the quality control module
was performed. This enables further fine tuning of the configuration parameters,
but also better control over the process. Let us look at Table 4.3, where a summary
of the quality control module is presented with the help of some metrics. We can
see that, compared to the analysis of the simulated dataset sim_2 2, a significant
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number of cells was filtered out. Furthermore, the sparsity before, but also after,
the quality control step was quite high. The reduction in dimensions, e.g. genes, is
again very drastic, but important.

’ ‘ true ‘ false ‘ ’ ‘ before ‘ after ‘
expressed genes | 16668 | 16070 cells 2967 2448
relevant cells 2448 519 genes 32738 6684
relevant genes | 6684 | 9984 sparsity | 97.609% | 88.217%

Table 4.3.: Metrics summarizing the filtering process concerning cells and genes
(left) and describing the data before and after the quality control module (right).

Figure 4.2.: Histograms of log;g UMI counts per cell (left half) and log;p number
of expressed genes per cell (right half) always before (left) and after (right) being
processed by the quality control module. The respective cut offs are indicated as
red vertical lines.

The histograms in Figure 4.2 visualize the cell filtering process with the help of the
cut off parameters. We can see that the cut offs were not too restrictive and we still
kept a lot of, hopefully viable, cells. Figure 4.3, describes the cell filtering process
according to the rules defined concerning the maximum percentage of mitochondrial
genes allowed and the minimum of expressed genes per cell. We notice that a
significant number of cells is filtered out due to high mitochondrial activity and that
they also do not express a lot of genes in general.

Having a first look at the data in a space of reduced dimensions, apart from
kneeplots, histograms or scatter plots of course, with the help of Figure 4.4, we
can already make out at least three distinctive cell populations by looking at the
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two dimensional t-SNE map and two populations by looking at the first two principal
components of the PCA plot.

Eg 1000 1500

Figure 4.3.: Scatter plots displaying mitochondrial gene percentage vs. number of
total genes expressed per cell before (left) and after (right) the quality control
module. The respective thresholds are indicated by the red dotted lines.

Figure 4.4.: t-SNE map (left) and PCA plot (right) of the logy transformed data
after being processed by the quality control module.

Moving on to the normalization module we are faced with the task of selecting a
normalization result, which hopefully leads to a good clustering result. We pro-
cessed the dataset with all of the available normalization results until the end and
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chose for this presentation of the analysis the weighted trimmed-mean of M-values
(TMM) method, because it delivers the best results when compared to the pseudo
ground truth provided by the Seurat tutorial. A comparison of the final results when
choosing different normalization approaches will be discussed in the next part.

After having normalized the data with the chosen method, the confounding factor
analysis module enters the stage. By looking at the heatmap tables of Figure 4.5
and 4.6 we can see how the workflow came to the conclusion of removing the effect
of the following factors from the data. In Figure 4.5 we can spot sixteen variables
from which fourteen influence one of the most informative principal components to
a significant degree. By determining their influence on each other, as illustrated
in Figure 4.6, we can make out three distinctive groups of factors, which describe
each other in a significant way. The most powerful from each group, concerning the
influence on the data, is selected and its effect on the data is removed.

I 60
pct_counts_top_200_features " 50
40
pct_counts_top_200_features_endogenous 30
20

pct_counts_top_100_features_endogenous
- 10
P

pct_counts_top_100_features

pct_counts_top_50_features_endogenous

pct_counts_top_50_features

log10_total_counts_feature_control

log10_total_features_feature_control

pct_counts_feature_control

pct_counts_endogenous

log10_total_features

log10_total_features_endogenous

log10_total_counts

log10_total_counts_endogenous

pct_counts_top_500_features_endogenous

44.03 pct_counts_top_500_features

PC3 PC10 PC9 PC8 PC5 PC4 PC7 PC6 PC2 PC1

Figure 4.5.: Heatmap table displaying the influence of metadata variables on the
ten most informative principal components of the pbmc3k dataset in percentage,
determined by the standard R2.
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Figure 4.6.: Heatmap table displaying the influence of metadata variables on each
other in percentage, determined by the appropriate R? measure.

N N

Figure 4.7.: QC plots of the top ten most influencing factors of the respective
matrix with no normalization (left), the TMM normalization (middle) and the
TMM normalization and removed confounding factors’ influence (right). FEach
color denotes a variable, not necessarily the same in every plot. The z-axis denotes
the % of variance explained (log;,—scale) and the y-axis the density. The dashed
lines indicate 0.1% and 1%, respectively.

69



Chapter 4 Verification & Validation

We will briefly state the identified confounding factors, their description and possible
implications and interpretations concerning their influence.

e pct_counts_top_100_features endogenous represents the percentage of count
values from the one hundred most expressed genes (= features), which are not
ERCC spike in genes and therefore endogenous, compared to the counts of all
genes. This significant influence indicates that the clustering process would
have been dominated by these one hundred most expressed genes.

o logl0 total counts endogenous describes the logarithm to the base ten of
the total counts, only from endogenous genes. We are basically confronted
with the fact that the library size (= total counts) still describes each cell in a
significant way and thereby cells with a greater library size would be deemed
as more important in the course of the clustering process.

o pct_counts_ feature control is the percentage of counts per cell only derived
from feature control genes, which are in this case the mitochondrial genes.
Although we filtered rigorously according to the expressed percentage of mi-
tochondrial genes in the course of the quality control module, they apparently
still describe the data in a significant way:.

Finally, the plots of Figure 4.7 show us how the normalization and the additional
removal of the effect of the identified confounding factors from the data transforms
the data in regards to the most influencing factors in general. Again we want
to mention that these plots should be used in a qualitative manner, because the
quantitative part was done by the workflow. Nevertheless, the plots visualize nicely
how the taken measures helped in this case with reducing the influence of these
factors.

The clustering module, as the exception to the underlying basic architecture of the
workflow, does not provide any visualizations. Only the number of initial and not
filtered cluttering results is supplied. The workflow computed 174 potentially valid
clustering results.

The last module, the cluster analysis module, on the other hand delivers a lot
of visualizations and results. The best fifteen clustering results according to the
described approach, ordered descending by quality, are

o CFEkmeans pcs8_ k06 k6 cluster

o CEclara_pcs10 k06 k6 cluster

o CFEhierarchical K _pcs8 k05 k5 cluster

o CFEhierarchical K _pcs10_k07 k7 _cluster
o CFEhierarchical K _pcs10_k08 k8 cluster
o CFEkmeans pcs10 k05 k5 cluster

o seurat k4 pcs12 res0.2_ cluster
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o CEclara_pcs10_k05 k5 cluster

o seurat kb5 pcs12 res0.3 cluster

e CEpam_pcsl0 k05 k5 cluster

o CFEhierarchical K _pcs10 k09 k9 cluster

o CEkmeans_pcs12 k08 k8 cluster

o seurat_ k6 pcs10_res0.5 cluster

o sc3std_k6__gfT _kmeanstarts50_cluster

o tSNEkmeans k5 perp30 _ntop1000 _cluster

1SNE_2
(XN X

eooe
SNE_2

E) o ]
1SNE_1 1SNE_1

Figure 4.8.: Two dimensional t-SNE maps of the processed data colored by the
final combined (left) and favorite (right) clustering result.

Median=7 Median=6

= - QD“DI

Figure 4.9.: Histograms of the number of found clusters k£ within all (left) and the
best 15 clustering results (right).
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Figure 4.11.: Consensus matrix of the 15 best clustering results.
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Figure 4.12.: Heatmap table visualizing the influence of selected factors on the 15
best clustering results.

By looking at the t-SNE maps in Figure 4.8 we can already see that the combined
and the favorite clustering differ concerning the cluster allocation in two ways. First,
in the top region of the t-SNE map, where the favorite clustering displays two and
the combined clustering one cluster. The second difference lies in the left bottom
quadrant of the t-SNE map, where the favorite clustering displays one, but the
combined clustering three clusters. Furthermore, we can see the t-SNE map itself
as an assurance that both final clustering results have found legitimate clusters,
because the colored clusters agree with the ones determined by the t-SNE map.

Moving on to the histograms in Figure 4.9, we see that the most probable real
number of clusters k£ within the data lies between six and seven, due to the fact that
the median of all clustering results is 7 and the median of the best clustering results
is 6. These numbers speak for the final clustering results, which have found six and
seven clusters, respectively.

The barplot in Figure 4.10 shows us how the combined clustering came to be and
how often the 15 best clustering results agree on the cluster allocation of cells.
Additionally, we can investigate which clusters are the same in every clustering
result as for example the orange one, which is cluster 4 in the combined clustering
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result. This indicates the robustness of that cluster. In other situations it informs on
potential subpopulations as for example it is the case in the first (blue), third (red)
and sixth (brown) cluster within the combined clustering (first row), whose cells
are all in the first cluster (red) of the favorite clustering (second row). We already
mentioned this discrepancy between the combined and the favorite clustering result
when we looked at the t-SNE maps in Figure 4.8.

Another way to investigate the robustness and composition of the clusters within
the combined clustering result is visualized by Figure 4.11. In the top left quadrant,
we can clearly see that three clusters were found in the same way by nearly all
of the 15 best clustering results. Three or even four more are not so distinctively
visible, but can be seen in the bottom right quadrant and could be subject to further
investigation.

At last we can take a look at the factors which describe the 15 best clustering re-
sults in a significant way. This can be achieved by analyzing the heatmap table
in Figure 4.12. Here we can for example see that the best clustering result, CEk-
means__pcsS_k06_k6__cluster, can not be described in a significant way by any of
the clustering results. In contrast to that, the 12th best clustering result, CFEk-
means_pcs12 k08 k8 cluster, which was determined by exactly the same algo-
rithm but different parameters and input data, is significantly influenced by multiple
factors.

The analysis and results presented in this part are comprehensible, give a well-
rounded and informative image and constitute a solid basis for further explanatory
data analysis. In the next and last part of the validation process we will try to
analyze these results and draw some final conclusions.

4.2.3. Results & Conclusion

At last we want to put the results of the previous analysis into context and try to
answer the question of validity concerning the workflow. This is done in two ways,
as we have already outlined. First, by the comparison to a standard of reference
or pseudo truth represented by the results of a tutorial analyzing the same dataset
[Sat18]. Secondly, we will apply biological knowledge to the results of the analysis
to figure out if the determined clusters represent known cell types, which can be
identified by characteristic marker genes.

Comparison to a Pseudo Ground Truth

Similar to the verification process we will simply compare the results of the workflow,
computed for every available normalization method, with the two different results
provided by the tutorial from SatijaLab [Sat18].

The two solutions provided by the tutorial differ only by one cluster in solution 1
(with 8 clusters), which is separated into two clusters in solution 2 (resulting in
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9 clusters). Due to the fact that they explain that phenomena biologically and
algorithmically we compare the results of the workflow to both solutions in the
following Tables 4.4 and 4.5. As before we always colored the best results per final
clustering result and quality measure (column) in green and the worst in orange.

’ normalization ‘ ARIcombined ‘ NM[combined ‘ AR[favorite ‘ NMIfavorite ‘

DS 0.875 0.831 0.724 0.795
log2cpm 0.614 0.767 0.338 0.509
LSF 0.872 0.821 0.346 0.52
SF 0.788 0.797 0.813 0.805
TMM 0.875 0.844 0.574 0.711
uQ 0.61 0.761 0.694 0.748

Table 4.4.: Comparison of the pbmc3k workflow results with solution 1.

When we compare the final results of the workflow, obtained by applying different
normalization methods, with the results of solution 1 in Table 4.4, we notice that
the best values are not as high as we have seen in the previous part, the verification.
This is the case, because the best result before were exceptionally good in terms of
the interpretation of the quality measures ARI or NMI, respectively, probably due
to the fact that we dealt with simulated data. Additionally, we have to mention that
we compare to a pseudo-truth and the sample is biological in nature and therefore
may be subject to more irregular distributed variation.

Furthermore, it gets apparent why we chose the weighted trimmed-mean of M-values
(TMM) method for the normalization when we presented the analysis of the pbmcS3k
dataset in the last section, because it yields the best results when comparing the
consensus clustering approach to the results of the tutorial. In general, the consensus
approach with the combined clustering as its results, yielded very good overlap to
solution 1 with the lowest ARI value being 0.61 and the lowest NMI value being
0.761. The favorite clusterings on the other hand cover quite a wide range of values
reaching from 0.338 to 0.813 in the ARI values and 0.509 up to 0.805 in the NMI

values.

Here, we want to focus more on the combined clustering results, because the second
best clustering result may overlap to a higher degree with solution 1 and this would
involve interaction by the analyst. By focussing on the initial results without more
intervention than necessary we can argue in respect of the automated aspect of the
workflow.

Moving on to Table 4.5, where we compare the workflows results with solution 2,
which, among other things, splits one cluster from solution 1 in two. The comparison
to this, more clustered solution, is not as good as we have seen before. The difference
between the two comparison results should not be surprising due to the fact that
the solutions are also different. Therefore, it is clear that one fits better to some
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results of the workflow than the other. Having said that, the results are still pretty
good, probably because the major difference between solution 1 and solution 2 is
the split of one cluster. Again, the range of quality measure values of the combined
clustering results is quite narrow with the ARI values stretching from 0.613 to 0.644
and the NMI values from 0.735 to 0.772. When comparing the favorite approach
with solution 2 we encounter a wide range of values for the ARI metric from 0.209 to
0.562 and the NMI measure from 0.448 to 0.734. By focusing rather on the combined
clustering results than the favorite ones we would chose the TMM result again as
the best to present in the analysis part from before.

‘ normalization ‘ ARIcombined ‘ NM]combined ‘ ARIfavom’te ‘ NM[favorite ‘

DS 0.644 0.765 0.484 0.719
log2cpm 0.642 0.741 0.209 0.448
LSF 0.618 0.752 0.214 0.456
SF 0.613 0.735 0.562 0.734
TMM 0.633 0.772 0.368 0.642
uQ 0.631 0.735 0.464 0.675

Table 4.5.: Comparison of the pbmc3k workflow results with solution 2.

Obviously, the dependency on the normalization method is much higher in real
datasets than in simulated datasets, which confirms the presented approach of always
calculating the normalized values with every implemented method to enable easy
switching between differently normalized datasets during an analysis.

The attentive reader will wonder how many clustering results within the best clus-
tering results, which make up the combined clustering, were obtained by applying
the SNN-Cliq clustering approach provided by the Seurat package, which was the
tool used in the tutorial to analyze the dataset. The answer depends of course on the
applied normalization method, but in the case of the TMM normalization method,
three of the best fifteen clustering results were obtained by the SNN-Cliq algorithm,
which is only a fifth and therefore not enough to represent the required majority for
the decision making within the consensus approach.

We wanted to mention again that the results, solution 1 and solution 2 from [Sat18],
do not represent a definite ground truth, but rather a standard of reference or
pseudo ground truth. Nevertheless, in the absence of a better alternative we are
confident that this comparison is meaningful as the authors of the tutorial have
already published a lot of analyses in respected journals as for example Butler et al
[BHS'18] in Nature Biotechnology. At last we want to emphasize that very similar
results were achieved with the here presented workflow, without the application of
any in depth biological know how (compared to the Satijal.ab analysis) and not a
lot of interaction was needed from the scientist.

In conclusion we can say that the comparison to the analysis results of Satijalab
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also yielded very good results, when looking at the final clustering results of both
approaches.

Identification of Cell Types by Gene Expression

The second approach in the validation process is to identify the obtained clusters’ cell
types by applying biological knowledge. In this case with the help of marker genes.
The question we want to ask ourselves is: Are the results biologically reasonable?
Or in other words: Do we find the typical cell types, which are usually present in a
PBMC sample?

For that purpose we present in Figure 4.13 fifteen t-SNE maps of which fourteen
are colored by (differentially) expressed genes compared to the other cells and one
is colored by the combined clustering result yielded by the workflow, as described in
the previous part on the analysis of the pbmc3k dataset. Here, the color grey denotes
no (significant) expression, violet weak expression and dark blue strong expression
compared to the other cells.

In the following Table 4.6 we will go through the found clusters by number and color
and try to determine the cell type with the help of the differentially expressed genes
visualized in Figure 4.13. We sorted the gene names within the table by expression
strength and marked the ones which were exclusively expressed by a certain cluster
in bold.

’ cluster \ color \ strong expression \ weak expression ‘
1 red NKG7, CDSA IL7R, S100A4, LYZ
2 brown MS4A1, CD79A LYZ
3 green IL7R, CCRT7 S100A4, LYZ, CD4
4 turquoise CST3, CD14, LYZ S100A4, CD4
5 blue CST3, MS4A7, FCGR3A, LYZ | S100A4, CD4, NKG7
6 violet GNLY, NKG7, FCGR3A S100A4, LYZ
7 pink - -

Table 4.6.: Gene expression of the clusters within the combined clustering result of
the pbmcS3k data ordered by expression strength and marked bold when exclusively
expressed.

We try to figure out which clusters represent certain cell populations to check if
they resemble the anticipated cell types of PBMCs outlined in Appendix A. This
is done with the help of the online platform Human Protein Atlas available from
www.proteinatlas.org and described in [TAW+17], which among other things con-
tains mRNA expression profiles from a diverse panel of human-derived cell lines and
provided the gene encoding and protein function information used below.

We primarily focus on exclusively expressed genes by certain clusters and subse-
quently on the most frequently expressed ones.
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o Cluster 1 is the only cluster expressing the gene CD8A, which is a cell surface
glycoprotein found on most cytotoxic T lymphocytes. Therefore, we think it
consists of CD8 T cells.

o Cluster 2 with two exclusively expressed genes, namely MS4A1 and CD79A
can be easily identified as B cell cluster, due to the fact that the first one
encodes a B-lymphocyte surface molecule and the second one encodes the Ig-
alpha protein of the B-cell antigen component.

e Cluster 3 the biggest cluster in our result, is a little harder to classify by our
gene selection, because both CCR7 and IL7R, which are the most expressed
genes, occur in more than one cell type. The receptor encoded by the CCR7
gene is expressed in various lymphoid tissues and activates B and T lympho-
cytes. The protein encoded by the IL7R gene has been shown to play a critical
role during lymphocyte development. Nevertheless, due to the fact that it ex-
presses additionally CD4 and we have already identified the B cell cluster, we
conclude that it mainly consists of CD4 T cells.

o Cluster 4 is the only cluster expressing the CD14 gene, which encodes a protein
mostly found in monocytes. Thats why we conclude that this cluster consists
of Monocytes expressing CD14 (CD14+ Monocytes).

o Cluster 5 characterizes itself by expressing the MS4A7 gene, which encodes
proteins associated with mature cellular function in the monocytic lineage.
Due to the fact that FCGR3A was also expressed very high, compared to the
other clusters we denote it as the FCGR3A+ Monocytes cluster.

e Cluster 6 can be described by the expression of the gene GNLY and NKGT.
The former gene encodes a protein, which is present in cytotoxic granules
of cytotoxic T lymphocytes and natural killer cells. The latter one has the
alternative name natural killer cell protein 7. This leads us to the conclusion
that the cluster consists of NK cells.

o Cluster 7 consists of not-clustered cells, which are distributed all over the
t-SNE map.

We want to mention that Satijalab also used a similar approach to identify the
clusters’ cell types, in their tutorial [Sat18]. We tried to apply the same tactic and
also used some of the same nomenclature concerning the cluster names to enable an
easier comparison.

The additional cluster, which differentiates solution 1 from solution 2 in the tutorial
of SatijalLab is founded in biological reasoning. They noticed that the CD4 T cell
cluster could be divided by their cells’ expression of the genes S100A4 and CCRY.
They argued that this indicates a separation between memory and naive CD4 T
cells. When looking at Figure 4.13, we can also see this separation in Cluster 3
(green) by those two markers. Furthermore, we see in Figure 4.10 that four of the
best clustering results divided cluster 3 into two sub clusters.
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Figure 4.13.: t-SNE maps of the processed pbmc3k dataset colored by gene ex-
pression or combined clustering result, respectively. From left to right and
top to bottom the t-SNE maps are colored by MS4A1, CD79A, CST3, CD14,
MS4A7, FCGR3A, GNLY, combined clustering result, NKG7, CDS8A, IL7R,

CCR7, S100A4, LYZ and CDA4.

79



Chapter 4 Verification & Validation

Finally, comparing the identified cell types with the ones expected in a PBMC
sample from Appendix A, we notice that the only cell type we could not find is
dendritic cells, which represents by far the smallest cell population within PBMCs.

We think the workflow is validated by the methods and results presented here. In
conclusion we state that the workflow does what it was designed for in an excellent
manner.

One final remark has to be made at this point. The results obtained by the work-
flow represent a starting point for the scientists. Therefore, the potential of the
applications for the workflow is greater than presented in this work. Starting out
with a robust and comprehensible clustering result and a lot of configuration options
or alternative solutions makes it easier to focus on what matters most in research:
asking questions and driving the decision making processes, which lead to answers,
with rigorous data analysis.
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“If there is effort, there is always accomplishment.”
Kano Jigoro, founder of Judo

5.1. Conclusion

We started out by stating our motivation for this work. Followed by that, we gave
a quick introduction to the topic of scRNAseq and how it is different compared
to standard DNA sequencing or bulk-RNAseq. Then we explained scRNAseq with
the 10x Genomics solution in detail, which enabled scRNAseq to rise to the top
of the next generation sequencing field, due to high throughput and quality at a
reduced price per experiment. This new approach results in scRNAseq data with
novel challenges for the field of computational biology. These challenges are tackled
by scRNAseq analysis with a variety of potential goals.

The next part of this work concerned itself with the development and presentation of
a semi-automated workflow for the analysis of scRNAseq data. The applied methods
and procedures were based on the theoretical considerations of Reichl [Reil8]. We
formulated definite goals to be met additionally to the fact that the challenges of
scRNAseq data have to be overcome. Therefore, we presented a specific module ar-
chitecture to meet the outlined objectives. We briefly discussed that the interaction
with the workflow is enabled via configuration files and explained their capabilities.
Then we described the goal, implementation and results of each module in detail.
To make it even more comprehensible we processed a simulated dataset along the
way. This entailed, among other things, decision making, interpretation of outputs
and discussion of visualizations. We put an emphasis on two modules, which we
denoted as centerpieces of the workflow. The confounding factor analysis module
and the cluster analysis module.

The confounding factor analysis module deals with a huge challenge in scRNAseq in
general, that is the high susceptibility to noise, technical errors or other factors which
influence the data generation in a significant way. Therefore, the identification and
rigorous analysis of potential confounding factors and the removal of their effect on
the data is critical during scRNAseq analysis. The cluster analysis module tackles
another unsolved challenge within the realm of scRNAseq analysis, which is the
robust and comprehensible clustering by cell populations according to the cells’
gene expression levels. A lot of algorithms have been proposed to solve this problem,

81



Chapter 5 Conclusion & Outlook

which showed excellent results on some datasets, but failed completely in other cases.
Therefore, we decided to focus on the analysis of potentially valid clustering results
and implemented an approach, theoretically proposed in [Reil8|, which yields two
final clustering results.

We ended this part by reiterating what the final results of the workflow are and how
the workflow is intended to be used in research.

The next part of this work was denoted to the verification and validation of the pre-
sented workflow. The purpose of the verification was to check if all the goals were
met and that the workflow solves the identified challenges in a satisfactory manner.
We conducted the verification with the help of eight simulated datasets, which inhab-
ited different characteristics relating to prominent challenges in scRNAseq analysis
such as confounding factors, high dispersion within the data and cell populations
of varying sizes. These populations or clusters were induced in the course of the
simulation process to have a real ground truth to determine the performance of the
workflow. Therefore, the verification was done by processing all the datasets and
comparing the final clustering results with the underlying simulated real clusterings.
The comparison yielded excellent outcomes and even the simulated datasets with
confounding factors and unrealistic high dispersion were analyzed properly.

The validation on the other hand concerned itself with the applicability of the work-
flow in a real world setting. Therefore, we analyzed a publicly available real world
dataset. We presented the analysis in a comprehensible way and guided the reader
through all the critical steps. The subsequent process of validation was split in two
approaches. First, we compared the final results of the workflow with the results of
a scRNAseq analysis tutorial, which analyzed the same dataset. In other words, we
used the clustering results from another group as pseudo ground truth to compare
our final clustering results with theirs. The outcome was very good and satisfactory.
The other approach was to analyze the results with the help of biological knowledge
about the sample and thereby identifying the cell type of each cluster with the help
of marker genes. The identified cell types were in line with our expectations and
therefore represented another confirmation concerning the validity of the workflow.

Therefore, we conclude that the developed and here presented semi-automated work-
flow for scRNAseq analysis met the outlined goals by rigorous verification of the
functionality with simulated datasets and validation through the analysis of a real
dataset and comparing the results to published ones.

Finally, we want to state that this workflow is not an one-off pipeline, but a dynamic
and interactive workflow with automated components to aid the scientist in the tasks
that cost time and effort so the focus can be on decision making, answering questions,
research and further exploration of the data on a solid and informed base. We are
confident that the workflow we developed and presented is more than the sum of its
parts or modules and delivers robust and comprehensible results.
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5.2. Outlook & Further Work

The work on such a workflow with the goal of developing a best practice way to
analyze scRNAseq data is never done, but nevertheless we have to come to a close.
The defined scope and goals were met and we obtained excellent results when putting
the workflow through rigorous verification and validation processes. In regards to
potential further work and outlooks the analysis of a lot more public datasets and
the associated comparisons with other analysis results come to mind. This could
aid in the understanding of the dynamics within scRNAseq datasets from different
sources in connection to certain methods. Furthermore, this could lead to better
understanding and selection of configuration parameters.

Apart from analyzing more data and comparing results with others, the modules
were developed to be easily extended by novel approaches or methods. Therefore,
we see the need for updates in this regard on a regular basis with the accompanied
testing and comparing to results of previous versions of the workflow.

As we have stated throughout this work, we think of the results obtained by the
workflow as a basis for further exploration and analysis. This leads to the idea
of developing further downstream analysis modules, which are based on the final
clustering results yielded by the workflow. Two examples of such downstream anal-
ysis modules would be tackling better differential gene analysis for a more accurate
identification of cell types or sub populations, or pseudo time analysis to look for
temporal changes within cell populations as a reaction to certain stimuli.

Another idea for next steps in the realm of scRNAseq analysis would be to involve
machine learning methods such as neural networks, which could be trained with
the knowledge generated by this workflow (the classification of cell populations).
Thereby, standard workflows could be replaced by models resulting from such ap-
proaches. Training unsupervised approaches on datasets from different sources (se-
quencing technology wise) could lead to new insights on the “real” characteristics of
certain cell populations. Of course, the discovery of new cell types or subpopulations
is usually not possible with the help of such approaches, because the best model is
only as good as its training set, which might not inhabit an unknown cell popula-
tion. Therefore, the generated model would not be able to recognize the unknown
population. However, exactly this kind of challenges make research interesting.

One last remark concerning standards and norms has to be made. Packages like
splatter, which enabled us to simulate scRNAseq data in a standardized, compre-
hensible and reproducible way, are very important to collaborate in a meaningful way
across the globe when working in such a field. Therefore, we argue that rigorous
and comprehensible standards and norms, concerning formats, methods, datasets
and procedures should be developed. We think that this is just the beginning of this
new discipline and that it will yield or contribute to quite a lot of new discoveries.
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A. Datasets & Configuration
Parameters

This appendix will provide all the necessary information about the datasets used
in the process of verification and validation concerning the presented scRNAseq
analysis workflow’s capabilities and functionalities.

The first part describes the real dataset we chose for the validation process, but also
to estimate the parameters for the simulation of datasets used in the verification
process. The second part deals with the simulated datasets and how they came to
be. The last part provides the configuration parameters, which were used to process
and analyze all datasets.

A.1. 3k PBMCs from a Healthy Donor

This dataset was used for the validation of the workflow and as a basis for the simu-
lation of the datasets used in the verification process. It is a sample of approximately
3000 peripheral blood mononuclear cells (PBMCs) from a healthy donor, hence the
abbreviated name pbmc3k. A PBMC is any peripheral blood cell having a round
nucleus. The dataset was provided publicly online by 10x Genomics [10x16a], the
company which micro-droplet capturing technique for scRNAseq was presented in
Chapter 2.3.

In the following we will list multiple reasons, which lead to the selection of this
dataset for the sake of validating the workflow and as a basis for the simulated
datasets.

o The data is provided by the company, which invented the micro-droplet cap-
turing technique we described in the beginning of this work.

o The sample size of approximately 2700 viable cells is high enough to encounter
the novel challenges, which we described in Chapter 2.4.

e The number of cells is low enough to work on the dataset in an iterative
manner for testing, refining and comparing of results without facing to much
computational effort.

« Peripheral blood mononuclear cells (PBMCs) from a healthy donor host a wide
range of cell types, compared to samples from specific organs or tissues (e.g.
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liver), with varying cell population size. Therefore, we thought of it as a very
good dataset for the validation process.

Using a sample from a human donor makes the purpose and goals of this
work more relatable and supports the claim of scRNAseq analysis position in
medical or pharmaceutical research.

In the following we directly state some technical metrics from 10x Genomics [10x16a]
concerning this dataset.

Single Cell Gene Expression Dataset by Cell Ranger 1.1.0.
Peripheral blood mononuclear cells (PBMCs) from a healthy donor.

PBMCs are primary cells with relatively small amounts of RNA (~1pg RNA /-
cell).

2,700 cells detected, sequenced on Illumina NextSeq 500 with ~69,000 reads
per cell 98bp readl (transcript), 8bp I5 sample barcode, 14bp 17 GemCode
barcode and 10bp read2 (UMI)

Analysis run with --cells=3000
Published on May 26, 2016

Furthermore, it is of interest which cell types are usually present in a sample of
PBMCs from a healthy donor. Therefore, we present a list of common cell types
in human PBMCs and their anticipated frequency (varies across individuals) from
Chapter 15 of [VCLE'15] on PBMCs.
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Lymphocytes 70 — 90%

— CD3+ T cells 70 — 85%, consisting of CD4+ and CD8+ T cells with an
approximate ratio of 2:1

— Bcells 5 — 10%
— NK cells 5 — 20%
Monocytes 10 — 20%

Dendritic cells are rare 1 — 2%



A.2 Simulated Datasets

A.2. Simulated Datasets

The eight simulated datasets served their purpose in the development and the verifi-
cation of the workflow. They were generated with the help of the R package splatter,
which provides a comprehensible and standardized way to simulate scRNAseq data.
The package even provides the means to estimate the simulation parameters based
on a real dataset with the function splatEstimate. We used this functionality to get
an initial and realistic estimate for the parametrization of the function, based on
the pbmc3k dataset.

The estimated parameters based on the pbmc3k dataset by the function splatEsti-
mate of the package splatter were as follows.

A Params object of class SplatParams

Parameters can be (estimable) or [not estimable], ’Default’ or ’'NOT DEFAULT’.
Global:

(GENES) (CELLS) [Seed]

32738 2967 362015

27 additional parameters

Batches:

[BATCHES] [BATCH CELLS] [Location] [Scale]
4 741, T42, 741, 743 0.1 0.1

Mean :

(RATE) (SHAPE)

13.1862567561821 0.513625055001981
Library size:

(LOCATION) (SCALE)
7.46950097836897 0.795782986717212

Exprs outliers:

(PROBABILITY) (LOCATION) (SCALE)
0.0192464082407156 5.13929002084815 0.994144591961186
Groups:
[GROUPS] [GROUP PROBS]
7 0.01, 0.25, 0.1, 0.05,...
Diff expr:
[Probability ] [Down Prob] [Location] [Scale]
0.1 0.5 0.1 0.4
BCV:
(COMMON DISP) (DOF)
0.291449770028786 28.9998030313448
Dropout:
[Present ] (MIDPOINT) (SHAPE)
FALSE —0.0200665832600224 —1.02201072763585
Paths:
[From] [Length] [Skew ] [Non—linear] [Sigma Factor]
0 100 0.5 0.1 0.8

The obtained parameters could have been used to simulate the desired datasets,
but we had to manipulate them to fit our needs. Most of the estimated parameters
were simply taken over from the estimation or simplified by rounding and only the
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following were adapted, due to our experimental setup of the verification process.

» Batches, were artificially added in four of eight simulated datasets denoted by
starting with sim__ 2 and served the purpose of testing the confounding factor
analysis capabilities of the workflow. We decided for six batches of equal sizes
to mimc a real scenario as good as possible.

« Groups, or clusters were very important to see if our cluster analysis approach
works. We decided for six clusters of different sizes, described by a probability
of a cell being in a group or cluster, due to the fact that this resembles usually
the real case.

 The biological coefficient of variation (BCV) for each gene in each cell describes
the underlying common dispersion across all genes. This is the main parameter
we used to make the data more difficult to analyze.

« Dropouts were added in the course of the simulation, because they represent
a major challenge in scRNAseq analysis.

Table A.1 presents the most important and only parameters we manipulated, be-
tween datasets, and used for the simulation. We did not include the parameters
[GROUPS] and [BATCHES], because they can be directly derived from the param-
eters [GROUP PROBS]| and [BATCH CELLS], respectively.

dataset [GROUP PROBS] [BATCH CELLS] [0%1}48%]0 N
sim 1 1] 0.01,0.4,0.1,0.05,0.3,0.14 3000 0.1
sim_1_2 | 0.01,0.4,0.1,0.05,0.3,0.14 3000 0.5
sim_1_3 | 0.01,0.4,0.1,0.05,0.3,0.14 3000 1.2
sim 1 4 | 0.01,0.4,0.1,0.05,0.3,0.14 3000 0.3
sim_2 1] 0.01,0.4,0.1,0.05,0.3,0.14 | 500,500, 500, 500, 500, 500 0.1
sim_2 2] 0.01,0.4,0.1,0.05,0.3,0.14 | 500,500, 500, 500, 500, 500 05
sim_2 5] 0.01,0.4,0.1,0.05,0.3,0.14 | 500,500, 500, 500, 500, 500 1.2
sim_2 4 | 0.01,0.4,0.1,0.05,0.3,0.14 | 500,500, 500, 500, 500, 500 0.3

Table A.1.: Estimated and used simulation parameters.

As we can see in Table A.1 and by comparing the parameters with the estimated ones
from above, apart from simulated datasets ending with _ 1, all the parameters are
chosen to make it more difficult for the workflow to detect the correct populations
within the data.

To conclude this part we present all of the final simulation parameters, which were
used to generate the eight simulated datasets. We used the symbol || in the pa-
rameter listing to distinguish between the different parameters depending on the
dataset.
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A.2 Simulated Datasets

A Params object of class SplatParams

Parameters can be (estimable) or [not estimable], ’Default’ or ’'NOT DEFAULT’.
Global:

(GENES) (CELLS) [Seed]

32000 3000 123456

27 additional parameters

Batches:

[BATCHES] [BATCH CELLS)] [Location] [Scale]
1]|6 3000/]500, 500, 500, 500, 500, 500 0.1 0.1

Mean :

(RATE) (SHAPE)

10 0.1

Library size:
(LOCATION)  (SCALE)
11 0.2

Exprs outliers:
(PROBABILITY) (LOCATION) (SCALE)

0.02 5 1
Groups:
[GROUPS] [GROUP PROBS]
6 0.01, 0.4, 0.1, 0.05, 0.3, 0.14
Diff expr:
[Probability ] [Down Prob] [Location] [Scale]
0.1 0.5 0.1 0.4
BCV:
(COMMON DISP) (DOF)
0.1]10.5[|1.2]]0.3 30
Dropout:
[Present] (MIDPOINT) (SHAPE)
TRUE 0 -1
Paths:
[From] [Length] [Skew ] [Non—linear| [Sigma Factor]
0 100 0.5 0.1

After the simulation process we manipulated the count values by dividing them by

10 to ensure that the quality control metrics resembled the model dataset pbmc3k
even more.
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Chapter A Datasets & Configuration Parameters

A.3. Configuration Parameters

In Table A.2 and A.3 we present the configuration parameters, which were used in
the analysis of the above described datasets. The analyses themselves are presented,
described and discussed in Chapter 3, 4.1 or 4.2, respectively.

Default (per Chapter 3.2) and the following three parameters are not mentioned in
the tables, namely all flags, normalization method [norm.method] and genes to plot

[GenesToPlot].

« All flags, were set TRUE, due to the fact that the presented analyses always
conducted a full run of every module, including its visualization part.

o For every dataset and normalization method we ran the entire analysis, there-
fore we did not state it in the tables.

o Genes to plot were only needed in the case of the pbmc3k dataset, due to the
fact that the others were simulated and did not contain any real genes. The
plotted genes, which were used for the identification of the found populations
as cell types, are listed in Chapter 4.2 and can be seen in Figure 4.13.

parameter name / dataset ‘ pbmc3k ‘ stm_1 1 ‘ stm_1 2| sim 1 8| sim 1 4 ‘

input.type 10X matrix matrix matrix matrix
MT.pattern “MT- “MT- “MT- “MT- “MT-
filter.cells.by.umi.min 1000 1000 1000 1000 1000
filter.cells.by.umi.max 5000 8000 8000 8000 8000
filter.cells.by.geneexpression| 200 200 200 200 200
filter.cells.by.MTpct 5 100 100 100 100
filter.cells.by. ERCCpct 100 100 100 100 100
filter.gene.by.cellexpression 2 2 2 2 2
filter. ge;ne.by.no.— 9 9 9 9 9
expression.per.cell
cf.blacklist NA Group Group Group Group
read]0X_min_- 100 NA NA NA NA
total cell counts
cf.number.variable.features 1000 1000 1000 1000 1000
no.of.clusters 7 7 7 7 7
pcs.use 10 10 10 10 10
ValueOflInterest NA Group Group Group Group
minClusterSize.pct 1 1 1 1 1
n.top.clusterings 15 20 20 20 20
comparison soll,sol2 |  Group Group Group Group

Table A.2.: Configuration parameters for the analysis of the datasets pbmc3k,
sim_1_ 1, stm_1 2, sim_ 1 8 and sim_ 1 4.
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A.3 Configuration Parameters

’ parameter name / dataset

sim_ 2 1| stm 2 2| sim 2 3 sz'm7274‘

input.type matrix matrix matrix matrix
MT.pattern “MT- “MT- “MT- “MT-
filter.cells.by.umi.min 1000 1000 1000 1000
filter.cells.by.umi.max 8000 8000 8000 8000
filter.cells.by.geneexpression 200 200 200 200
filter.cells.by. MTpct 100 100 100 100
filter.cells.by. ERCCpct 100 100 100 100
filter.gene.by.cellexpression 2 2 2 2
ﬁlter.ge;ne.by.no.— 9 5 5 5
expression.per.cell
cf.blacklist Group Group Group Group
read10X_min_ -
total cell counts NA NA NA NA
cf.number.variable.features 1000 1000 1000 1000
no.of.clusters 7 7 7 7
pcs.use 10 10 10 10
Group, Group, Group, Group,
ValueOfinterest Batch Batch Batch Batch
minClusterSize.pct 1 1 1 1
n.top.clusterings 20 20 20 20
comparison Group Group Group Group

Table A.3.: Configuration parameters for the analysis of the datasets sim 2 1,

sim_2 2. sim_2 3 and sim_2 4.
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