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Abstract

The Virasoro algebra plays a fundamental role in modern research areas such as
condensed matter physics or quantum gravity. Applying the theory requires a
deep understanding of the underlying mathematical structure. Here, we define
the Virasoro algebra as the unique central extension to the Witt algebra. The
investigation of the Virasoro algebra leads to Verma modules and the Hermitian
Shapovalov form which is used to define unitary highest weight representations.
Subsequently, we investigate the Hermitian form and compute an explicit ex-
pression for the Kac-determinant. We use the determinant formula to obtain
first results about the classification of unitary highest weight representations.
To complete the classification, we explicitly construct unitary highest weight
representations of the Virasoro algebra from factor algebras of affine Lie alge-
bras. We conclude the investigation with some calculations regarding the Ising
model and a short introduction to the applications of the Virasoro algebra in
condensed matter physics and gravity.
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Chapter 1

Introduction

This work should serve as an introduction to the representation theory of the
Virasoro algebra. We will give a complete classification of its unitary highest
weight representations.

In chapter 2 we give a motivation for the Virasoro algebra. We will start
with the Witt algebra and obtain the Virasoro algebra as its unique central
extension.

In chapter 3 we explain the basic concepts needed to investigate the repre-
sentations of the Virasoro algebra. Furthermore we give a definition of highest
weight representations and proof basic results about Verma representations.

Chapter 4 covers the core results of this thesis that are the Kac-determinant
and the first part of the full classification of unitary highest weight representa-
tions of the Virasoro algebra.

In chapter 5 we give a sketch of the second part of the classification. We
start with a short introduction to affine Lie algebras and the definition of the
Sugawara tensor. Afterwards we show how one can use these tools to obtain
explicit constructions of unitary highest weight representations of the Virasoro
algebra.

We conclude the thesis with an application of the Virasoro algebra in chapter
6 where we describe the Ising model and investigate its coset theory. Further-
more we give short description of the tricritical Ising model that has an extension
of the Virasoro algebra, the super-Virasoro algebra, as its symmetry algebra.
We finish with a short overview over the applications in quantum gravity.

Because the main motivation for many people to study the Virasoro algebra
stems from physics, at the end of each chapter we give a short comment about
how the covered topics are related to physical structures. The general structure
of the thesis and most of the chapters 3 and 4 is based on the series of lectures
by Victor Kac [11]. The general discussion about affine Lie algebras was taken
from [3, 1] and description and construction of the Sugawara Tensor again from
Kac.
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2 CHAPTER 1. INTRODUCTION

Notationwise we use the Kronecker delta notation:

δn,k =

{
1 n = k

0 n 6= k

Vectors will be denoted by boldfaced latin characters e.g. v. Classical Lie
algebras will be written with fraktur characters e.g. sln for the special linear lie
algebra of n × n traceless matrices. The complex conjugation will be denoted
with a bar e.g. λ̄ for the complex conjugate of λ. The Virasoro algebra will be
denoted by Vir.



Chapter 2

From Witt to Virasoro

The Witt Algebra plays an important role in the study of conformal field theories
in physics. It also appears as algebra of vector fields in various situations as we
will now show.

2.1 The Witt algebra
Definition 2.1 (Witt algebra). Let C[z, z−1] denote the algebra of Laurent
polynomials in one variable. The Witt algebra is then the set of vector fields
with Laurent polynomial coefficients

W := {p(z) d
dz

: p(z) ∈ C[z, z−1]}.

equipped with the Lie brackets for vector fields.

Theorem 2.2. The commutation relations for W are

[dn, dm] = (n−m) dn+m, n,m ∈ Z,

where the
dn := −zn+1 d

dz
, n ∈ Z.

form a basis of W.

Proof. Vector fields are equipped with a canonical Lie bracket given by the Lie
derivative. We obtain for an arbitrary function f : C → C

[dm, dn]f(z) =

[
− zm+1 d

dz
,−zn+1 d

dz

]
f(z)

= zm+1 d

dz

(
zn+1f ′(z)

)
− zn+1 d

dz

(
zm+1f ′(z)

)
= (m− n) dm+nf(z)

for n,m ∈ Z.

3



4 CHAPTER 2. FROM WITT TO VIRASORO

Remark 1. The Witt algebra also appears in other places. Let S1 = R/[0, 2π)
be the circle, then every smooth vector field on S1 can be written as

ξ = f
d

dθ

with f being a smooth real valued function on S1. If we consider the set of
all vector fields ξ on S1 together with the Lie bracket for vector fields than we
obtain again the Witt algebra. A basis is given by the trigonometric polynomials

dn(θ) = i exp(inθ)
d

dθ
, n ∈ Z.

with θ ∈ [0, 2π).

2.2 The Virasoro algebra
The representation theory of the Witt algebra is relatively easy to understand.
In many applications of the Witt algebra however we are more interested in its
central extension. With the central extension of W we mean the Lie algebra

Vir := W ⊕ C

where C = Cĉ, with the commutation relations

[dm, dn] = (m− n)dm+n + a(m,n)ĉ, n,m ∈ Z
[dm, ĉ] = 0, ∀m ∈ Z.

where a(m,n) is a complex valued function. From now on, to prevent confusion,
we will use ĉ for the Lie algebra element and c for its eigenvalue in a given
representation. The Lie bracket relations are the most general ones so that the
new element ĉ lies in the center of Vir. The element ĉ (for representations of the
Virasoro algebra sometimes also its eigenvalue c) is called the central charge of
the algebra.

If {dn, n ∈ Z} is a basis of W then {dn : n ∈ Z} ∪ {ĉ} forms a basis of Vir.
It turns out that we can always find a basis of the central extension, so that the
function a is given by 1

12 (m
3−m)δm,−m, i.e. every non-trivial central extension

of W by a one-dimensional center is isomorphic to the Virasoro algebra Vir. To
see this we first note that the antisymmetry of the Lie brackets implies

a(m,n) = −a(n,m) ∀n,m ∈ Z. (2.1)

If we take a look at the Lie bracket of dn, n ∈ Z and d0

[dn, d0] = ndn + a(n, 0)ĉ

we can see that by redefining dn with

d̃n = dn +
a(n, 0)

n
ĉ
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we found a basis d̃n, n ∈ Z in which ã(n, 0) = 0 for all n ∈ Z. We can therefore
always assume that

ã(n, 0) = 0 ∀n ∈ Z. (2.2)
We can use the same trick for

[d1, d−1] = 2d0 + ã(1,−1)ĉ.

By redefining the basis element d0 to

d̃0 = d0 +
ã(1,−1)

2
ĉ

we can always find a basis ˜̃
dn, n ∈ Z in which also

˜̃a(1,−1) = 0 (2.3)

We denote the new basis elements ˜̃
dn for which eq. (2.2) and eq. (2.3) holds,

from now on with Ln, and will drop the tildes over a. Next we compute the
Jacobi identity for arbitrary n,m, k ∈ Z

[Ln, [Lm, Lk]] + [Lk, [Ln, Lm]] + [Lm, [Lk, Ln]] = . . .

= (m− k)a(n,m+ k)ĉ+ (n−m)a(k, n+m)ĉ+ (k − n)a(m,n+ k)ĉ.
(2.4)

This expression must be zero if the bracket should define a Lie algebra. We will
consider two special cases:

1. n = 0:
The Jacobi identity yields

(m−k)a(0,m+k)−ma(k,m)+ka(m, k) = (m+k)a(m, k) = 0 m, k ∈ Z

where we used eq. (2.1) and eq. (2.2). Thus a(m, k) = 0 for m 6= −k

2. n = 1,m = j and k = −(j + 1) for an arbitrary j ∈ N:
Inserting the values above in the Jacobi identity (with the notation from
eq. (2.4)) gives us

(1− j)a(−(j + 1), j + 1)− (j + 2)a(j,−j) = 0.

From which we can obtain a recursive formula for a(−j, j):

a(−j, j) = j + 1

j − 2
a(−(j − 1), j − 1)

=
j + 1

j − 2

j

j − 3
· · · 4

1
. . . a(−2, 2)

=

(
j + 1

3

)
a(−2, 2)

=
(j + 1)j(j − 1)

3!
a(−2, 2)

=
j3 − j

3!
a(−2, 2)
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The value for a(−2, 2) can in principle be set arbitrary, in physics however
mostly a(−2, 2) = 1

2 is used, because this simplifies certain computations
for the free boson (an important example for a theory with conformal
symmetry is the Ising model (see chapter 6). We will use this convention
for the rest of the thesis.

We summarize the discussion above in the following theorem.

Theorem 2.3. The Witt algebra W has a unique central extension Vir with the
basis {L−n}n∈Z ∪ ĉ Lie bracket

[Lm, Ln] = (m− n)Lm+n +
1

12
(m3 −m) δm,−n ĉ, n,m ∈ Z

[Lm, ĉ] = 0, ∀m ∈ Z.

Definition 2.4. The central extension Vir of the Witt algebra is called the
Virasoro Algebra.

2.3 Motivation from physics
In physics the so-called conformal field theories describe physical theories that
are invariant under conformal transformations.

If the geometry of a universe is described by a semi-Riemannian metric gµν
with respect to some coordinates xµ, then invariance under conformal transfor-
mations means that the metric with respect to a choice of coordinates x′µ is
proportional to the original metric, i.e.

g′µν(x
′µ) ∝ gµν(x

µ)

In most relevant cases this is equivalent to scale invariance.
Conformal field theories play an important role in phase transitions, like

for example in the transition from paramagnetic to a ferromagnetic state in a
metal, which is described by the Ising model.

One can show that in two dimensions the Lie algebra of the corresponding
group of conformal transformations is the Witt algebra. The elements of the
Witt algebra can then be understood as the terms in the mode expansion of the
energy momentum tensor. When one quantizes the theory1 one finds that the
corresponding Lie algebra changes to the Virasoro algebra (This is similar to the
quantization of classical mechanics where the position momentum commutator
gets an additional central term ih̄: [x̂, p̂] = ih̄). The central element c is in this
context called a quantum anomaly. The states and particles of the quantum
theory are connected to the unitary irreducible representations of the Virasoro
algebra. We will talk more about this in the next chapter.

1Quantization is a complicated process in which functions on the space of configurations
(for example the energy of the system) are mapped to operators on a separable Hilbert space
(the ”states” of the quantum theory).



Chapter 3

Highest weight
representations

3.1 Basic concepts
To better understand the Virasoro algebra we investigate its representations.
Definition 3.1. Let g, h be Lie algebras over K. A linear map φ : g → h is a
Lie algebra homomorphism if for all x, y ∈ g

φ([x, y]) = [φ(x), φ(y)].

If φ is bijective we call φ an Lie algebra isomorphism.
Definition 3.2. Let g be a Lie algebra over K. A representation of g is a Lie
algebra homomorphism

π : g → gl(V )

where V is a vector space over K (possibly of infinite dimension) and gl(V ) the
general linear algebra on V .
Remark 2. We will sometimes call a vector space a representation of L. This
means that there exists a Lie algebra homomorphism so that the Lie algebra
can be seen as a subalgebra of the general linear algebra on this vector space.

There are numerous representations for the Virasoro algebra, we are how-
ever only interested in the subclass of highest weight representations. These
representations have the nice feature that we can write them as a direct sum of
eigenspaces of a finite dimensional commutative subalgebra. This property is
inherited by subrepresentations as the following lemma shows.
Lemma 3.3 (Kac Cor. 1.1). Let V be a representation of Vir that decomposes
as a direct sum of eigenspaces Vn = {v ∈ V |L0v = λnv}, n ∈ I of L0, for an
(possibly infinite) Index set I.

V =
⊕
n∈I

Vn.

7



8 CHAPTER 3. HIGHEST WEIGHT REPRESENTATIONS

Then any subrepresentation U of V respects this decomposition in the sense that

U =
⊕
n

(U ∩ Vn)

Proof. For every v ∈ V we have a unique decomposition

v =

N∑
n=1

xn

with xn ∈ Vn. If we apply L0 we find

L0v =

N∑
n=1

L0xn

=

N∑
n=1

λnxn

where λi 6= λj for i 6= j. By induction

Lk
0v =

N∑
n=1

λknxn

Let v an arbitrary element in U , then

v = x1 + · · · + xN

L0v = λ1x1 + · · · + λNxN

...
...

. . .
...

LN−1
0 v = λN−1

1 x1 + · · · + λN−1
N xN

forms a linear system of equations. This can also be written in matrix form as
v
L0v

...
LN−1
0 v

 =


1 · · · 1
λ1 · · · λN
...

. . .
...

λN−1
1 . . . λN−1

N

 ·


x1

x2

...
xN


where the matrix is the transpose of a Vandermonde matrix. The system has
a unique solution because Vandermonde matrices are always invertible. This
implies that the elements (xn)n≤N lie in U and we found a unique decomposition
of the element v in elements of U ∩ Vn.

The standard example of a Lie algebra is gln, the Lie algebra of square
matrices, with the commutator as Lie bracket [x, y] = xy − yx. It turns out
that we can embed every Lie algebra g in a unital and associative algebra U(g)
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where the Lie bracket is realized as the commutator. To see this, note that
any associative algebra A is a Lie algebra with the commutator as Lie bracket.
Furthermore for a vectorspace g over K, define the tensor products

T k(g) :=

k times︷ ︸︸ ︷
g⊗ . . .⊗ g, k > 0

T 0(g) := K

The tensor algebra T (g) is then defined as

T (g) =

∞⊕
k=0

T k(g).

Definition 3.4. The universal enveloping algebra U(g) of a Lie algebra g is
defined by the unique unital and associative algebra

U(g) = T (g)/I

where I is the ideal generated by all elements x⊗ y − y ⊗ x =: [x, y]g = [x, y].

Remark 3. The universal enveloping algebra can also be understood by its uni-
versal property. Let U(g) be a unital and associative algebra such that there
exists an embedding h : g → U(g). Then the universal enveloping algebra is the
unique unital and associative algebra such that for every associative algebra A
and Lie algebra homomorphism φ : g → A (with Lie bracket in A given by the
commutator) there exists a unique φ̂ : U(g) → A and φ = φ̂ ◦ h so that the
following diagram commutes.

U(g)

g A

φ̂
h

φ

An important result about universal enveloping algebras that we will need
later is the following theorem.

Theorem 3.5 (Poincaré-Birkhoff-Witt). Let g be a Lie algebra, B an ordered
set and {xb : b ∈ B} ⊆ g a basis of g. Then the set of ordered monomials

{xi1b1 · · ·x
in
bn

: n ∈ N, b1 < · · · < bn, i1, . . . , in ∈ Z}

is a basis for U(g). Here we identified the elements of g with their images under
the embedding.

Proof. see for example [4].

Remark 4. The Poincaré-Birkhoff-Witt theorem gives an us a more intuitive
understanding of the universal enveloping algebra. The algebra U(g) allows us
to describe formal products xy of elements x, y of g and lets us understand the
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Lie brackets as commutator brackets. Furthermore it a representation π induces
a homomorphism of associative algebras via

π̃ : U(g) → gl(V )

x1 · · ·xn 7→ π(x1) · · ·π(xn).

This way, it is equivalent to consider a representation of g and a representation
of U(g.

3.2 Virasoro highest weights
We will first give a short introduction into what highest weight representa-
tions are and then begin the proof of the main result of this thesis: the Kac-
determinant formula

Definition 3.6. A highest weight representation of Vir is a representation π
on a vector space V over C with a non-zero vector v ∈ V such that there are
c, h ∈ C with

π(ĉ)v = cv

π(L0)v = hv

so that V is the linear span of vectors of the form

π(L−nk
) · · ·π(L−n1

)v, (0 < n1 ≤ . . . ≤ nk). (3.1)

with k ∈ N0. We call
k∑

i=1

ni

the level of the element (3.1). The pair of complex numbers (c, h) is then called
the highest weight and v the highest weight vector.

Remark 5. We will drop the π from now on to make the notation easier to read
i.e. we will always think of Ln as an element of gl(V ).

Proposition 3.7. The eigenspace that contains the highest weight vector v is
one dimensional. Equivalently: the only vectors with L0 eigenvalue h are the
highest weight vector and its multiples. Furthermore for w = L−nk

. . . L−n1v

L0w = (h+ n1 + · · ·+ nk)w.

Proof. Let v be such that L0v = hv. It follows from

L0L−nv = (L−nL0 + [L0, L−n])v

= (L−nL0 + nL−n)v

= (h+ n)L−nv
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that the element L−nv lies in the L0-eigenspace with eigenvalue h + n. A
generating set for Vir is given by eq. (3.1). One can show by induction that for
every such element w = L−nk

. . . L−n1
v

L0w = (h+ n1 + · · ·+ nk)w.

Hence the only basis element with L0-eigenvalue h is the highest weight vector
v and its multiples.

Proposition 3.8. For positive n, Ln annihilates the highest weight vector v,
i.e.

Lnv = 0, ∀n > 0

Proof. For a highest weight representation V of Vir every vector is a linear
combinations of elements of the form (3.1). We showed in Proposition 3.7 that
for every element w = L−nk

. . . L−n1
v

L0w = (h+ n1 + · · ·+ nk)w.

Because V is the linear span of such vectors we find that the representation
decomposes as a direct sum of the eigenspaces of L0

V =
⊕
n≥0

Vh+n (3.2)

where Vh+n denotes the eigenspace of L0 with eigenvalue h + n. In particular,
v has the smallest eigenvalue.

L0Lnv = (LnL0 + [L0, Ln])v

= (LnL0 − nLn)v

= (h− n)Lnv

implies that every Ln with n > 0 reduces the L0 eigenvalue. Thus Lnv must be
zero.

We are especially interested in unitary representations of the Virasoro al-
gebra. To define unitarity we need to know what an anti-involution on Vir
is.

Definition 3.9. An anti-involution on Vir is a map ω with

ω(λx) = λ̄ω(x)

ω([x, y]) = [ω(y), ω(x)]

where x, y are elements of Vir and λ ∈ C.

An anti-involution can be thought of as a generalization of Hermitian con-
jugation.
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Theorem 3.10. One realization of this on Vir is given by

ω(Ln) = L−n, n ∈ Z
ω(ĉ) = ĉ.

(3.3)

Proof. We will show that ω([Lm, Ln]) = [ω(Lm), ω(Ln)], ∀m,n ∈ Z.

ω([Lm, Ln]) = (n+m)ω(Lm+n) +
1

12
(m3 −m)δm,−nω(ĉ)

= (n+m)L−(m+n)) +
1

12
(m3 −m)δm,−nĉ

= [L−m), L−n] = [ω(Lm), ω(Ln)].

Definition 3.11. Let g be a Lie algebra with conjugate-linear anti-involution
ω : g → g. Let π be a representation of g with an Hermitian form 〈 · | · 〉. The
form 〈 · | · 〉 is called contravariant if

〈π(x)(u),v〉 = 〈u|π(ω(x))v〉 ∀x ∈ g, ∀u|v ∈ V

We call the representation unitary if the form is additionally positive Kac-
determinant, i.e.

〈v|v〉 > 0 ∀v ∈ V, v 6= 0

Remark 6. For representations of the Virasoro algebra unitarity can be under-
stood as the Hermitianity of the generators in eq. (3.3).

Theorem 3.12 (Kac Prop. 3.2). Every unitary highest weight representation
of Vir is irreducible.

Proof. Let V denote a highest weight representation of Vir. We assume that
there exists a non-trivial sub-representation U of V . Let U⊥ denote the orthogo-
nal complement of U with respect to our unitary form, i.e. U⊥ = {u|〈w|u〉 = 0},
then we have

V = U ⊕ U⊥.

We will show that either U or U⊥ is the trivial sub-representation. Because of
Lemma 3.3 U has a decomposition into spaces of the form U ∩Vh+n. According
to Proposition 3.7 the L0-eigenspace that contains the highest weight vector
is one dimensional, therefore either U or U⊥ must contain v. Without loss of
generality let the highest weight vector v be in U . Then, because V is the span
of elements of the form (3.1), U must already be the full vector space.

Definition 3.13. A highest weight representation of Vir in which all vectors of
the form (3.1) are linear independent is called Verma representation. We will
denote the Verma representation with highest weight (c, h) with M(c, h).

Theorem 3.14. For every c, h ∈ C there exists a unique Verma representation
M(c, h) of Vir.



3.2. VIRASORO HIGHEST WEIGHTS 13

Proof. Let I(c, h) be the ideal in the universal enveloping algebra U(V ir) of Vir
that is generated by the elements {Ln : n > 0}∪{L0−h·1U(Vir)}∪{ĉ−c·1U(Vir)}.
We define

M(c, h) = U(Vir)/I(c, h).

If we define the map π : Vir → gl(M(c, h)) with

π(x)(u+ I(c, h)) = xu+ I(c, h)

then π is a Lie algebra homomorphism

π([x, y])(u+ I(c, h)) = [x, y]u+ I(c, h)

= (xy − yx)u+ I(c, h)

= (π(x)π(y) + π(y)π(x))u+ I(c, h)

= [π(x), π(y)](u+ I(c, h)).

ThereforeM(c, h) together with π forms a representation of Vir. We want this to
be a highest weight representation. To show this define v := 1U(Vir) + I(c, h) ∈
M(c, h). This is a highest weight vector:

Lnv = Ln + I(c, h) = 0 + I(c, h)

L0v = L0 + I(c, h) = h · 1U(Vir) + I(c, h) = hv

ĉv = ĉ+ I(c, h) = c · 1U(Vir) + I(c, h) = cv

Thus M(c, h) is a highest weight representation of Vir with highest weight (c, h).
Theorem 3.5 tells us that the elements of the form (3.1) are linear independent in
U(V ir) and therefore also M(c, h) which shows that M(c, h) is indeed a Verma
representation. To see the uniqueness let V be a highest weight representation
of Vir with highest weight (c, h). Let v and w be the highest weight vectors of
V and M(c, h) respectively. By defining

fv = w

we find a unique surjective homomorphism from M(c, h) to an arbitrary highest
weight representation V of Vir. In fact one can also define the Verma module
as a representation of Vir so that for every other representation V there exists a
unique linear surjection from M(c, h) to V that maps highest weight vectors to
highest weight vectors. This shows that every highest weight representation of
Vir can be obtained as a quotient of the Verma representation. For two Verma
representations we obtain an isomorphism which shows that the highest weight
(c, h) determines the Verma representation uniquely.

Proposition 3.15 (Kac Prop. 3.3). The Verma representation M(c, h):

1. has the decomposition

M(c, h) =
⊕
k∈N0

M(c, h)h+k (3.4)

where M(c, h)h+k denotes the h+ k eigenspace of L0.
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2. is indecomposable, i.e. there are no nontrivial subrepresentations V,W
such that

M(c, h) = V ⊕W

3. has a unique maximal proper subrepresentation J(c, h) and

V (c, h) =M(c, h)/J(c, h) (3.5)

is the unique irreducible highest weight representation with highest weight
(c, h).

Proof. 1.) follows from the fact that a Verma representation is a highest weight
representation of Vir and eq. (3.2).

2.) The proof is identical to the argument in Theorem 3.12.

3.) According to Lemma 3.3 all proper subrepresentations U of M(c, h)
decompose into subspaces of the form U ∩ Vh+n. Therefore the sum of proper
subrepresentations also has a decomposition into subspaces of the form (

⊕
i Ui)∩

Vn. None of the Ui contains the highest weight vector (otherwise they would
already be equal to M(c, h) and therefore not be proper). Thus the direct sum
does not contain it either. It is therefore a proper subrepresentation of M(c, h).
This shows that we can obtain the maximal proper subrepresentation J(c, h) as
the sum of all proper subrepresentations. By defining

x(u+ J(c, h)) := x(u) + J(c, h), x ∈ g, u ∈M(c, h)

we obtain a Lie algebra structure on the factorspace M(c, h)/J(c, h). V (c, h)
is surely irreducible because for every proper subrepresentation U + J(c, h) 6=
J(c, h) of V (c, h) the algebra {u + j|u ∈ U, j ∈ J(c, h)} would be a proper
subrepresentation of M(c, h) which contradicts our choice of J(c, h) as the max-
imal proper subrepresentation. To prove the uniqueness of V (c, h) let V ′(c, h)
be another irreducible highest weight representation with highest weight (c, h).
From Theorem 3.14 it follows that there exists a proper subrepresentation
J ′(c, h) = ker f such that

V ′(c, h) =M(c, h)/J ′(c, h).

Because V ′(c, h) is irreducible J ′(c, h) must be maximal and thus equal to
J(c, h). This proves the uniqueness.

It turns out that in most cases M(c, h) is already equipped with a Hermitian
form which we can use to find J(c, h). To show this we need to make a definition
first. According to eq. (3.4) every vector u ∈M(c, h) can be written as

u = λ0v +

∞∑
k=1

λkuk, uk ∈Mh+k (3.6)

with the highest weight vector v ∈Mh.
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Definition 3.16. For every u ∈M(c, h) we define the expectation value 〈u〉 as
the coefficient λ0 of the highest weight vector v in the expansion eq. (3.6) of u.

Theorem 3.17 (Shapovalov form, Kac Prop. 3.4).

1. For c, h ∈ R, M(c, h) carries a unique contravariant Hermitian form 〈 · | · 〉
with 〈v|v〉 = 1 where v is the highest weight vector.

2. The eigenspaces of L0 are pairwise orthogonal.

3. The maximal proper subrepresentation from Proposition 3.15 is

J(c, h) = ker〈 · | · 〉 = {u ∈M(c, h)|〈u|w〉 = 0, ∀w ∈M(c, h)}. (3.7)

Therefore V (c, h) carries a unique contravariant Hermitian form such that
〈v|v〉 = 1, and this form is non-degenerate.

Proof. 1.) We can construct the contravariant form using the expectation value
defined above. For this we use the anti-involution ω acting on products of
elements of Vir which means we need to extend ω from Vir to its universal
enveloping algebra. We can do this by setting

ω((L−n1 . . . L−ni)(L
r
0ĉ

s)(Lm1 . . . Lmj )) =

(L−mj . . . L−m1)(L
r
0ĉ

s)(Lni . . . Ln1),

with n, k, r, s ∈ N.
Let X = L−ni

. . . L−n1
and Y = L−mj

. . . L−m1
be two elements of M(c, h)

then we can define a hermitian form through the expectation value by setting

〈X(v)|Y (v)〉 :=〈ω(X)(Y (v))〉
=〈Ln1

. . . Lni
L−mj

. . . L−m1
(v)〉.

This defines a Hermitian form because for monomials A,B, Y we have

〈A(v) + λB(v)|Y (v)〉 = 〈ω(A+ λB)(Y (v))〉
= 〈ω(A)(Y (v)) + λ̄ω(B)(Y (v))〉
= 〈ω(A)(Y (v))〉+ λ̄〈ω(B)(Y (v))〉

where the second equality is due to ω being an anti-involution and the third
equality due to eq. (3.6) being linear in u. The linearity in the second com-
ponent is trivial. This shows that we indeed defined a Hermitian form that,
because the monomials form a basis, can be extended uniquely to M(c, h) and
fulfills 〈v|v〉 = 1.

2.) The eigenspace to eigenvalue h+ k is the linear span of the elements

L−ni
. . . L−n1

(v) withn1 + . . . ni = k.



16 CHAPTER 3. HIGHEST WEIGHT REPRESENTATIONS

It is therefore sufficient to check the orthogonality for elements of this type. For
n1 + . . . ni > m1 + . . .mj we find that

〈Ln1
. . . Lni

L−mj
. . . L−m1

(v)〉 = 0 (3.8)

because the argument Ln1
. . . Lni

L−mj
. . . L−m1

(v) is already zero. For the
other case of n1 + . . . ni < m1 + . . .mj we find eq. (3.8) holds because the
coefficient of the highest weight vector in eq. (3.6) vanishes.

3.) We need to show that the kernel

ker〈 · | · 〉 = {u ∈M(c, h)|〈u|w〉 = 0, ∀w ∈M(c, h)}

is the unique maximal proper subrepresentation J(c, h). The kernel is clearly a
proper subrepresentation because it is a representation that does not contain the
highest weight vector v (because 〈v|v〉 = 1). We will show the other inclusion
with proof by contradiction. Let us assume there is a proper subrepesentation
U that is not contained in the kernel. This means for Y (v) ∈ U we can find
X(v) ∈M(c, h) such that

〈X(v)|Y (v)〉 = 〈ω(X)(Y (v))〉 6= 0.

Because U is a representation of Vir and ω(X) ∈ V ir, ω(x)(Y (v)) ∈ U . We
found an element of U with non-vanishing expectation value and therefore a
non-vanishing highest weight vector component in the direct sum expansion.
With Lemma 3.3 we can deduce that U contains the highest weight vector and
hence U =M(c, h) in contradiction U being a proper subrepresentation.

From now on we will always assume c and h to be real so that the Shapovalov
form above is always defined.

Corollary 3.18 (Kac Prop. 3.5). There exists at most one unitary highest
weight representation for every highest weight (c, h) with c, h ∈ R and that is
V (c, h).

Proof. Follows from remark 3.12 and Proposition 3.15 part 3.

Let us sum up everything we already know about the highest weight repre-
sentations of the Virasoro algebra. They are classified by their highest weights
(c, h). For every highest weight we obtain a Verma representation M(c, h). For
real c, h these representations each carry a unique Hermitian form 〈 · | · 〉.

We can now ask the question for which values of the highest weights (c, h) the
unique irreducible highest weight representations V (c, h) is unitary and identical
to the Verma representation. Because there always exists a Verma representa-
tion we can conclude the existence of a unitary highest weight representation of
Vir for these cases. Because of V (c, h) =M(c, h)/J(c, h) and J(c, h) = ker〈 · | · 〉
these are exactly the cases in which the Hermitian form is non-degenerate. We
therefore want to know when the kernel of 〈 · | · 〉 is non-trivial. Investigating the
Hermitian form will lead us to the Kac-determinant for which we will derive an
explicit formula in the next chapter.
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3.3 Quantum states of two-dimensional CFTs
In physics the current state of a physical object is described as a vector of
a separable Hilbert space. The object itself is then identified with the whole
Hilbert space. If we now have a physical theory that is invariant under a specific
transformation group then the Hilbert space of states must form a representation
of the corresponding Lie algebra. For conformal theories in two dimensions
(examples are the two dimensional Ising model or String Theory) the Lie algebra
corresponding to the conformal symmetry is the Virasoro algebra.

In this way we can identify representations of the Virasoro algebra with
physical in a two dimensional conformal field theory. The physical object in this
case are the so-called primary fields φ. There is a one-to-one correspondence
between these primary fields and highest weight vectors through φ 7→ |φ〉 =
limz→0 φ(z)|0〉 with |0〉 denoting the vacuum state. This also explains why
we are interested in unitary representations: The term 〈φ|φ〉 must be positive
because it is a probability distribution.

The irreducible highest weight representations take a special place among
all representations in that one can show that the representations V (c, h) with
h ≥ 0 are precisely the irreducible positive energy representations of Vir.
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Chapter 4

Kac-determinant

We want to investigate for which highest weights (c, h) the Shapovalov form
has non-trivial kernel. We will call such a Verma representation a degenerate
representation.

Every Verma representation comes with a basis of the form (3.1). We now
investigate the elements

〈L−ns
. . . L−n1

v|L−kt
. . . L−k1

v〉 (4.1)

where 1 ≤ n1 . . . ≤ ns and 1 ≤ k1 . . . ≤ kt. We know from Proposition 3.15
that Verma modules decompose into eigenspaces of L0. Therefore if we look
at the subspaces that consist of the linear span of all basis elements with a
level smaller than a certain N the matrix of the Shapovalov form consists of
block matrices for each eigenspace M(c, h)h+k (with k ∈ {1, . . . , N}) of L0. A
necessary and sufficient condition for M(c, h) to be a degenerate representation
is therefore that the determinant of the Shapovalov form matrix for elements of
level n vanishes for some N ≥ 0.

We denote the determinant of the Shapovalov form at level N with

detN (c, h) = det(Mi,j)i,j∈P (N).

Where P (N) denotes the set of number partitions of N and Mi,j denotes the
element from eq. (4.1) with indices n1, . . . , ns and k1, . . . , kt from the partitions
i and j respectively. As mentioned in the previous chapter we will always assume
c, h ∈ R to ensure the existence of a Hermitian form. Victor found an explicit
expression for the determinant at level N .

Theorem (Kac-determinant formula). For fixed c the function detN (c, h) is the
following polynomial in h

detN (c, h) = K(N)
∏

r,s∈N
1≤rs≤N

(h− hr,s(c))
p(N−rs)

19
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where hr,s is given by

hr,s(c) =
1

48
[(13− c)(r2 + s2) +

√
(c− 1)(c− 25)(r2 − s2)− 24rs− 2 + 2c]

for those pairs (r, s) so that 1 ≤ rs ≤ N .

We will proof this result in the next section.

4.1 Explicit computation of the determinant
To gain some intuition on the Kac-determinant formula and also the explicit
formula for its zeros we want to compute the determinant explicitly for some
small values of N .

At level N = 1 we have a 1× 1 matrix.

〈L−1v|L−1v〉 = 〈v|L1L−1v〉
= 〈v|(L−1L1 + [L1, L−1])v〉
= 〈v|2L0v〉 = 2h.

The determinant is therefore also 2h. And indeed, computing h1,1 from Lemma
4.9 we find that h1,1(c) = 1

48 [(13−c)2−24−2+2c] = 0 and our result coincides
with the Kac-determinant formula.

At level N = 2 we have 2× 2 matrix.(
〈L−2v|L−2v〉 〈L−1L−1v|L−2v〉

〈L−2v|L−1L−1v〉 〈L−1L−1v|L−1L−1v〉

)
Similar as in the case for N = 1 we can compute each component by using
covariance of the form, the Lie bracket relation an that Lnv = 0, n > 0. This
yields the matrix (

4h+ c
2 6h

6h 4h+ 8h2〉

)
,

with a determinant of 2ch− 20h2 + 4ch2 + 32h2 that has zeros at

{0, 1

16
(5− c±

√
(c− 1)(c− 25)}. (4.2)

The zeroes agree with the values for h1,1(c), h2,1(c) and h1,2(c) from Lemma 4.9
respectively.

4.2 Proof of the Kac-determinant formula
We investigate detN (c, h) as a polynomial in h. For two complex polynomials
p, q we will write

p ∼ q
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if the coefficients of the leading terms are equal. To find an explicit expression
for the determinant we will start off by computing the leading coefficient of
detN (c, h) as a polynomial in h. Then we compute its degree. At last we
calculate the zeroes of detN (c, h) and write the determinant as the product of
its linear factors. times the coefficient of the leading term. The derivation of
the Kac-determinant formula presented here holds for any fixed but arbitrary
N 3 N > 0.

Proposition 4.1 (Kac Prop. 8.1). detN (c, h) as a polynomial in h has degree∑
r,s∈N

1≤rs≤N

p(N − rs) (4.3)

where p is the number of integer partions. The coefficient of the leading term is

K =
∏

r,s∈N
1≤rs≤N

((2r)ss! )m(N,r,s) (4.4)

where m(r, s) is the number of partitions of N in which r appears exactly s
times.

Remark 7. The number of partitions of N in which r appears exactly s times is
nothing else as the number of partitions in which appears at least s minus the
number of partitions in which it appears at least s+ 1 times i.e.

m(r, s) = p(N − rs)− p(N − r(s+ 1))

To this proposition we need some easy lemmas first.

Lemma 4.2.

detN (c, h) ∼
∏

1≤n1≤...≤ns∑
ns=N

〈L−ns
. . . L−n1

v|L−ns
. . . L−n1

v〉

Proof. By definition

detN (c, h) =
∑

σ∈SP (N)

sgn(σ)
∏

MN
i,σ(j),

where P (N) denotes the set of number partitions of N and (MN
i,j) is the matrix

for the Hermitian form up to level N . For an arbitrary element of (MN
i,j),

contravariance gives us

〈L−ns
. . . L−n1

v|L−kt
. . . L−k1

v〉
〈Lk1

. . . Lkt
L−ns

. . . L−n1
v|v〉.

We get h every time L0 is acting on v. L0’s appear in the commutator of [Ln, Lm]
if and only if n = −m which means the expression 〈Lk1

. . . Lkt
L−ns

. . . L−n1
v|v〉

has maximal degree in h exactly for j = i.
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Lemma 4.3. For n ∈ Z and k ∈ N

[Ln, L
k
−n] = Lk−1

−n nk

(
n(k − 1) + 2L0 +

n2 − 1

12
ĉ

)
, (4.5)

Proof. Induction by k.

Lemma 4.4 (Kac. Lemma 8.1). Let k, n ∈ N, then

〈Lk
−nv|Lk

−nv〉 = k!nk
k∏

j=1

(2h+
n2 − 1

12
c+ n(j − 1))

Proof. We know from the lemma above that

[Ln, L
k
−n] = Lk−1

−n nk

(
n(k − 1) + 2L0 +

n2 − 1

12
ĉ

)
, (4.6)

for all n, k ∈ N. With this we can prove the result by induction. The case k = 1
has already been done in Corollary 4.11. We now show that if it is true for k−1
it must also be true for k.

〈Lk
−nv|Lk

−nv〉 = 〈Lk
nL

k
−nv|v〉

= 〈Lk−1
n Lk−1

−n nk(n(k − 1) + 2L0 +
n2 − 1

12
ĉ)v|v〉

IH
= nk(n(k − 1) + 2h+

n2 − 1

12
c)

(k − 1)!nk−1
k−1∏
j=1

(2h+
n2 − 1

12
c+ n(j − 1))

= k!nk
k∏

j=1

(2h+
n2 − 1

12
c+ n(j − 1))

Where we used 〈Lk−1
n Lk

−nLnv|v〉 = 0 and Lk−1
n LnL

k
−n = Lk−1

n [Ln, L
k
−n] −

Lk−1
n Lk

−nLn in the second equality.

This implies in particular

〈Lk
−nv|Lk

−nv〉 ∼ k! (2nh)k. (4.7)

We use this to prove the following lemma.

Lemma 4.5 (Kac Lemma 8.2).

〈Lks
−ns

. . . Lk1
−n1

v|Lks
−ns

. . . Lk1
−n1

v〉 ∼ 〈Lks
−ns

v|Lks
−ns

v〉 . . . 〈Lk1
−n1

v|Lk1
−n1

v〉

where n1, . . . , ns, k1, . . . , ks ∈ N and n1 6= n2 6= . . . 6= di.
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Proof. We prove this by induction on
∑s

i=1 ki = n. The base case of n = 1 is
trivially true. In the induction step we assume the statement to be true for n
and show that it must also hold for n+ 1. Let

∑s
i=1 ki = n.

〈Lks
−ns

. . . Lk1
−n1

v|Lks
−ns

. . . Lk1
−n1

v〉 = 〈L−nsL
ks−1
−ns

. . . Lk1
−n1

v|L−nsL
ks−1
−ns

. . . Lk1
−n1

v〉
= 〈Lks−1

−ns
. . . Lk1

−n1
v|Lns

L−ns
Lks−1
−ns

. . . Lk1
−n1

v〉

where we used the contravariance of the Hermitian form in the second equality.
We use the Virasoro commutation relations to move Lns to the right:

〈Lks−1
−ns

. . . Lk1
−n1

v|(2nsL0 +
n3s − ns

12
ĉ+ L−ns

Lns
)Lks−1

−ns
. . . Lk1

−n1
v〉

Repeating this ks− 1 times using eq. (4.5) we obtain for the term in the second
argument of the Hermitian form

nsksL
ks−1
−ns

(
ns(ks − 1) + 2L0 +

n2s − 1

12
ĉ

)
Lks−1
−ns

. . . Lk1
−n1

v

+Lks
−ns

Lns
L
ks−1

−ns−1
. . . Lk1

−n1
v

(4.8)

If we can show that the second term, as a polynomial in h, has a smaller degree
than the first term then we can neglect everything except the L0 term. With
this assumption we would find

〈Lks
−ns

. . . Lk1
−n1

v|Lks
−ns

. . . Lk1
−n1

v〉 ∼ 2nsksh〈Lks−1
−ns

. . . Lk1
−n1

v|Lks−1
−ns

. . . Lk1
−n1

v〉
IH∼ 2nsksh〈Lks−1

−ns
v|Lks−1

−ns
v〉 . . . 〈Lk1

−n1
v|Lk1

−n1
v〉

∼ 2〈Lks
−ns

v|Lks
−ns

v〉 . . . 〈Lk1
−n1

v|Lk1
−n1

v〉,

where in the first line we ignored all but the highest order terms in h from eq.
(4.8). In the second line we used the induction assumption and in the last line
we used eq. (4.7). To conclude the proof we need to show that the second term
in eq. (4.8) as a polynomial in h is negligible. To be more specific, we will prove
that

LnL−ns . . . L−n1

with n /∈ {n1, . . . , ns}, only consists of terms that either have a level smaller
than n1+ · · ·+ns do not contain L0 or vanish when acting on v. In the first case
the hermitian form in eq. (4.8) is equal to zero because of the orthogonality of
eigenspaces and in the second case the contribution is negligible as a polynomial
in h. We will proof this again by induction on s. The base case follows from

LnL−n1
= L−n1

Ln + [Ln, L−n1
]

= L−n1
Ln + (n+ n1)Ln−n1

.

The first term vanishes when acting on the highest weight vector and because
of n 6= n1 the second term does not contain L0 and has level smaller than n1.
For s+ 1 we obtain

LnL−ns . . . L−n1 = (L−nsLn + [Ln, L−ns ])L−ns−1 . . . L−n1 .
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For the first term we can use the induction assumption. The second term can
be written as

[Ln, L−ns ]L−ns−1 . . . L−n1 = (n+ n1)Ln−n1L−ns−1 . . . L−n1 .

For n − n1 < 0 the term does not contain L0 and for n − n1 > 0 we can again
use the induction assumption. This concludes the proof.

Lemma 4.6 (Kac Lemma 8.3).

detN (c, h) ∼
∏

r,s∈N
1≤rs≤N

〈Ls
−rv|Ls

−rv〉m(r,s)

where m(r, s) is the function from Proposition 4.1.
Proof. Follows directly from Lemma 4.5 applied to the expression in Lemma
4.2

With this we are set to prove Proposition 4.1.

Proof (of Proposition 4.1). Lemma 4.6 and eq. (4.7) tell us that

detN (c, h) ∼
∏

r,s∈N
1≤rs≤N

(s! (2rh)s)m(r,s)

which tells us that the coefficient of the leading term in detN (c, h) is given by∏
r,s∈N

1≤rs≤N

(s! (2r)s)m(r,s)

and the degree is ∑
r,s∈N

1≤rs≤N

sm(r, s). (4.9)

The only thing that is left to prove is that the term above coincides with eq.
(4.7). This follows from remark 7 which we can use to rewrite eq. (4.9)∑

r,s∈N
1≤rs≤N

sm(r, s) =
∑
r,s∈N

1≤rs≤N

(s p(N − rs)− s p(N − r(s+ 1)))

=
∑

1≤r≤N

bn
r c∑

s=1

(s p(N − rs)− s p(N − r(s+ 1))) (4.10)

=
∑

1≤r≤N

bn
r c∑

s=1

p(N − rs)

=
∑
r,s∈N

1≤rs≤N

p(N − rs)

where we used that expression (4.10) is a telescoping sum.
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Lemma 4.7 (Kac Lemma 8.4). Let A : R → End(V ) be a family of linear
operators acting on the n-dimensional vector space V where A(t) is a polynomial
in t i.e. A(t) = A0 +A1t+ · · ·+Amt

m with A0, . . . , Am being linear operators
on V . If dimkerA(0) = k, then detA(t) is divisible by tk.

Proof. Let {e1, . . . , ek} be a basis of kerA(0). We can write A(t) as

A(t) = A0 +A1t+ · · ·+Amt
m

with A0, . . . , Am being linear operators on V . Because of A(0)ei = 0 for all
i ∈ {1, . . . , k} we find that for A(t):

A(t)ei = t(A1 +A2t+ · · ·+Amt
m−1), ∀i ∈ {1, . . . , k}

Therefore the first k columns of A(t) are divisible by t and because of its defi-
nition the determinant is divisible by tk.

Lemma 4.8 (Kac Lemma 8.5). If detN (c, h) vanishes at h = h0 then detN (c, h)
is divisible by

(h− h0)
p(N−k) (4.11)

where 1 ≥ k ≥ N is the smallest positive integer smaller than N for which h0
is a zero of detk(c, h).

Proof. If detN (c, h0) = 0 at level N , detN (c, h), the vector space M(c, h0) must
have a nonzero maximal proper subrepresentation J(c, h0) with a nonzero Nth
component (by that we mean that it contains at least one non-zero vector with
level N) that we will denote

JN (c, h0) := J(c, h0) ∩M(c, h0)h0+N

= ker〈 · | · 〉
∣∣∣∣
M(c,h0)h0+N

Let k ∈ N be the smallest number such that Jk(c, h0) is non-trivial. Let 0 6=
u ∈ Jk(c, h0) be an arbitrary non-trivial element of Jk(c, h0) (which means it is
in the kernel of the Hermitian form). We will now use this vector to construct
a p(N − k)-dimensional subspace of JN (c, h0), to prove that the determinant is
indeed divisible by (4.11). The vector u satisfies

Lnu = 0, n > 0. (4.12)

To see this we use that u is in the kernel of the Hermitian form. This means in
particular that for every w we have

〈w|Lnu〉 = 〈L−nw|u〉 = 0,

which implies that also Lnu ∈ J(c, h0). Now if we assume the opposite, i.e.
that Lnu 6= 0 we would find

L0Lnu = LnL0u− nLnu = (h+ k − n)Lnu.
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This means that if Lnu 6= 0 we found a non-zero element, namely Lnu with level
smaller than k that is in the kernel of the Hermitian form in contradiction to
the minimality of k. This proves eq. (4.12). Applying the universal enveloping
algebra U(V ir) on u gives us a sub representations that is the linear span of
the vectors

L−ns · · ·L−n1u, 0 < n1 ≤ . . . ≤ ns. (4.13)

The vector u is from level k so at level N we find exactly the vectors (4.13) with∑
ni = N − k, i.e. exactly p(N − k) vectors. The vectors are all linearly inde-

pendent, this follows from the Poincaré-Birkhoff-Witt Theorem 3.5. We found
a p(N − k) dimensional subspace of JN (c, h0). By Lemma 4.7 the determinant
is divisible by (h−h0)p(N−k) and k is by construction the smallest integer where
the determinant vanishes.

For the proof of the Kac-determinant formula we will need one more result
that we will not prove in this thesis. It is proven in [11], p.87 and p.137 using
results from character theory.

Lemma 4.9 (Kac Lemma 8.6). The polynomial detN (c, h) has a zero at h =
hr,s(c) with

hr,s(c) =
1

48
[(13−c)(r2+s2)+

√
(c− 1)(c− 25)(r2−s2)−24rs−2+2c] (4.14)

for pairs (r, s) ∈ N2 such that 1 ≤ rs ≤ N is satisfied.

With this we can finally prove the main result of this thesis, the Kac-
determinant formula.

Theorem 4.10 (Kac-determinant formula, Kac Theorem 8.1). For fixed c the
function detN (c, h) is the following polynomial in h

detN (c, h) = K
∏

r,s∈N
1≤rs≤N

(h− hr,s(c))
p(N−rs) (4.15)

where hr,s is given by eq. (4.14) and K is the constant (it only depends on N)
given by eq. (4.4).

Proof. We learned from Lemma 4.9 that for the pairs (r, s) with 1 ≤ rs ≤ N ,
hr,s is a zero of detN (c, h). Together with Lemma 4.8 this implies that detN (c, h)
is divisible by ∏

r,s∈N
1≤rs≤N

(h− hr,s(c))
p(N−rs) (4.16)

The degree of this expression agrees with Lemma 4.1. Therefore (det)N (c, h)
can only differ by a constant from eq. (4.16). This constant is fixed by the
coefficient of the leading term which concludes the proof.
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Remark 8. For computations it is sometimes convenient to use a slightly different
representation of the Kac-determinant formula. For this we define

φr,r := h− hr,r = h+
(r2 − 1)(c− 1)

24
(4.17)

and for r 6= s
φr,s = (h− hr,s)(h− hs,r). (4.18)

With this we can write the Kac-determinant formula as

detN (c, h) = K
∏

r,s∈N
s≤r

1≤rs≤N

φp(N−rs)
r,s . (4.19)

4.3 Implication of the Kac determinat formula
With this powerful tool at our hand we can finally tackle the classification of
unitary highest weight representations of the Virasoro algebra for real highest
weights (c, h). We start with a necessary condition for (c, h).

Corollary 4.11 (Kac Prop. 8.2 a). If V (c, h) is a unitary highest weight
representation then

c ≥ 0 andh ≥ 0.

Proof. For unitarity we need

〈L−nv|L−nv〉 ≥ 0, ∀n ≥ 0

Contravariance of the Hermitian form and 〈v|v〉 = 1 gives us, for all n,

0
!
≤ 〈L−nv|L−nv〉 = 〈LnL−nv|v〉

= 2nh+
1

12
(n3 − n)c.

For n = 1 this is 2h ≥ 0. For big n only the term with n3 is relevant and we
obtain 1

12n
3c ≥ 0.

Proposition 4.12 (Kac Prop 8.2 b). For c > 1 and h > 0 the Kac-determinant
is positive at every level

detN (c, h) > 0, ∀N ∈ N

and V (c, h) is non-degenerate (i.e. V (c, h) =M(c, h)).

Proof. The non-degeneracy of V (c, h) follows directly from the positivity (in
particular this means it is non-zero) of the Kac-determinant. Therefore only
detN (c, h) > 0 is left to prove. We use the representation (4.19). Let 1 ≤ r ≤ N
then

φr,r = h+
(r2 − 1)(c− 1)

24
> 0, for c > 1, h > 0.
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For r 6= s we find

φr,s =(h− hr,s)(h− hs,r)

= (h− (r − s)2

4
)2 +

h

24
(r2 + s2 − 2)(c− 1)

+
1

576
(r2 − 1)(s2 − 1)(c− 1)2 +

1

48
(c− 1)(r − s)2(rs+ 1) > 0,

for all 1 ≤ rs ≤ n with s ≤ r and c > 1, h > 0. This shows that the Kac-
determinant is positive and therefore not zero.

Proposition 4.13 (Kac Prop 8.2 a). The (unique) irreducible highest weight
representation V (c, h) is unitary for

c ≥ 1 and h ≥ 0.

Proof. The Hermitian form is unitary if it is positive semi-definite. According
to the last proposition, the determinant is positive in the described regime.
Because the determinant is a continuous function, the Hermitian form can only
be positive or negative definite in the open set c > 1 andh > 0. Therefore it
suffices to show positive definiteness at a single point in this region c ≥ 1 andh ≥
0. An explicit construction of such a unitary representation of Vir (and therefore
with a positive definite Hermitian form) for c = 1, 2, 3, . . . and h ≥ 0 can be
found in [11] in chapter 3.4.

The two points c ∈ {0, 1} have to be considered separately:

Proposition 4.14 (Kac Prop 8.3).

1. V (1, h) is non-degenerate if and only if

h 6= m2

4
, m ∈ Z (4.20)

2. V (0, h) is non-degenerate if and only if

h 6= m2 − 1

24
, m ∈ Z (4.21)

Proof. We will show that for c = 1 and c = 0 the determinant is zero if and
only if h is as given in eq. (4.20) and eq. (4.21). For c = 1 the determinant
simplifies to

detN (1, h) = K
∏

r,s∈N
1≤rs≤N

(h− (r − s)2

4
)p(N−rs).

Exactly for h 6= m2

4 , m ∈ Z is the determinant not zero. Similarly for c = 0
the determinant simplifies to

detN (0, h) = K
∏

r,s∈N
1≤rs≤N

(h− (3r − 2s)2 − 1

24
)p(N−k).
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Exactly for h 6= m2−1
24 , m ∈ Z is the determinant not zero.

Let’s sum up what we just found out. For c ≥ 1 and h ≥ 0 propositions
(4.12) - (4.14) classify our unitary highest weight representations. Furthermore
corollary (4.11) excludes the region of highest weights with c < 0 or h < 0
from the list of candidates for unitary highest weight representations. Which
leaves us with c ∈ [0, 1) and h ≥ 0. The Kac-determinant formula gives us
a necessary condition for the unitarity of V (c, h). For this region Friedan-
Qiu-Shenker investigated the Kac-determinant formula and found that the only
points where V (c, h) can be unitary are the first intersections of the [0, 1) 3 c 7→
hr,s(c) curves. We will explain the term first intersection in the proof-sketch of
the following theorem.

Theorem 4.15 (Friedan-Qiu-Shenker). The highest weight representation V (c, h)
is non-unitary everywhere in (c, h) ∈ [0, 1)× R except for the points

(c(m), hr,s(m)), m, r, s ∈ Z+, 1 ≤ s ≤ r ≤ m+ 1 (4.22)

with the parametrized values for c, h given by

c(m) = 1− 6

(m+ 2)(m+ 3)
(4.23)

and
hr,s(m) =

[(m+ 3)r − (m+ 2)s]2 − 1

4(m+ 2)(m+ 3)
, (4.24)

which also simplifies the expression for hr,s given in Lemma 4.9 by making it
rational.

Proof. The theorem was proven first by Friedan, Qiu and Shenker in 1984 in
[7, 8] and later also worked out by Langlands in [14]. We will only give a
sketch of the proof. Unitarity is defined by the Hermitian form being positive
definite. Therefore if we find that for a given highest weight the Kac-determinant
is negative at one level we can exclude this highest weight from our possible
candidates for unitary representations. This is the idea of the proof. We will
start by showing that we can exclude every highest weight that does not lie
on the zero curves of the Kac-determinant given by Lemma 4.9. The Kac-
determinant at level N can be written as

detN (c, h) = K

N∏
n=1

Ψn(c, h)
p(N−rs),

with
Ψn(c, h) =

∏
r,s∈N
rs=n

(h− hr,s(c)).

We investigate the Kac-determinant level wise. At level 1 the determinant is
2h and therefore positive definit. Level 2 is shown in figure 4.1. The Kac-
determinant at level two is

detN (c, h) = K · 2h · (h− h1,2) · (h− h2,1).
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Figure 4.1: The two curves h2,1 and h1,2 as functions of c. Note that h1,1 =
0. The gray area shows the highest weights for which the Kac-determinant is
negative. Note that h1,1 = 0.

In the gray area between h1,2 and h2,1 the term is (h−h2,1) is negative and the
other terms are positive. therefore the determinant is negative and the highest
weight represenations for these highest weights (c, h) can not be unitary. In
the white areas above h2,1 or below h1,2 both bracket terms or none of them is
negative and the determinant as a whole is positive. We conclude that highest
weights in the gray area cannot be unitary but at level 2 we cannot say anything
about the rest of the parameter space. Figure 4.2 shows the situation at level
3. We can repeat the argument from level 2 everywhere between h3,1 and h1,3
except at the dark gray area. The dark gray however was already excluded in
the level 2 discussion. The Kac-determinant at level 3 is

det3(c, h) = KΨ3(c, h)

2∏
n=1

Ψn(c, h)
p(3−rs),

with
Ψ3(c, h) = (h− h3,1) · (h− h1,3).

For highest weights in the upper light gray area ΨN (c, h) is negative and the
other terms in the determinant are positive. Therefore the determinant as a
whole is negative. For highest weights in the dark gray are in the middle the
determinant would be positive but we could exclude this area already at level 2.
The fact that the determinant is negative means there are negative eigenvalues
of the matrix of the Hermitian form at a specific level. One can in fact show
that the amount of negative eigenvalues at level n is always smaller of equal the
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Figure 4.2: The two curves for h3,1 and h1,3 as a function of c. The gray area
shows the highest weights for which the Kac-determinant is negative. In the
dark area the determinant is positive but not positive definite.

number of negative eigenvalues at a higher level m > n (see for example [11]
p 138ff) which explains why it is sufficient to find negative eigenvalues at one
level to exclude these regions. We conclude that we can also exclude the region
between h1,3 and h3,1. Figure 4.3 shows the case of level 4. The procedure is
the same as before. At every new level we exclude more of the parameter space.
One can further show that not only all highest weights that do not lie on a zero
curve can be excluded but in fact also every point that does not lie on a first
intersection between two curves. By first intersection we mean the intersection
between two curves that, at one level are the intersections closest to c = 1. We
plotted the first of the first intersections up to level 6 in figure 4.4. Note for
example that the intersection between the gray line and the dotted line is non-
unitary. That is because it is not a first intersection. Repeating this analysis for
every level reveals that exactly the set of highest weights given by eq. 4.22 can
yield unitary highest weight representations. We will not give the full proof here
but instead refer to the literature given above where the arguments presented
here are worked out in more detail and with mathematical rigor.

With this the only question that is left to answer, to complete the classi-
fication of unitary highest weight representations for real highest weights, is
for which of these highest weights (4.23), (4.24) there exists a unitary highest
weight representation. The surprising answer is, that every pair (c(m), hr,s(m))
corresponds to a unitary highest weight representation. To show this we will
explicitly construct these representations using the so-called coset construction.
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Figure 4.3: Shows additionally the two curves for h2,1 and h1,2 as a function
of c with dotted lines. The gray area shows the highest weights for which the
Kac-determinant is negative. The dark gray areas were already excluded in
lower levels.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

c

h

(c(0), h1,1(0)) (c(1), h2,2(1))
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Figure 4.4: The zeroes at level 2 in black, at level 3 as dashed lines, at level 4
as dotted lines, at level 5 as dot-dashed lines and at level 6 in gray. The points
show the first few possibilities for unitary representations.
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4.4 Minimal models
As described in the last chapter there is a correspondence between unitary rep-
resentations of the Virasoro algebra and conformal field theories in two dimen-
sions. The conformal field theories corresponding to the set of points described
in eq. (4.22), for which we will prove in the next chapter that they are indeed
unitary highest weight representations, is call the class of Minimal Models. This
is a subset of the the bigger class of rational CFTs that have the neat property
that they only have a finite number of so-called primary fields (the theories are
in some way the simplest CFTs).

Many important CFTs, in particular many important models from statistical
mechanics, belong to this class of theories. We will later investigate the Ising
model in more detail which can be understood as the highest weight represen-
tation with c = 1

2 . Other examples are the three state Pots model for c = 4
5 or

the tricritical Ising model for c = 7
10 .
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Chapter 5

Coset construction

As explained in the last chapter, our goal is to construct highest weight repre-
sentation for every

(c(m), hr,s(m)), m, r, s ∈ Z+ and 1 ≤ s ≤ r ≤ m+ 1.

To do this we need some knowledge about affine Lie algebras. We will follow
the discussion in [3, 11].

5.1 Affine Lie algebras
Definition 5.1. For every Lie algebra g the Killing form is the bilinear form
defined by

K(X,Y ) = Tr(ad(X)ad(Y )), ∀X,Y ∈ g, (5.1)

where ad denotes the adjoint linear map.

Let g denote a finite dimensional simple Lie algebra. Then the loop algebra
is defined as follows.

Definition 5.2. The loop algebra g̃ of a Lie algebra g is the Lie algebra of
Laurent polynomials with coefficients in g:

g̃ = g⊗ C[t, t−1]

Let Ja with a in some index set, be a basis of g then the elements Ja(n) := Ja⊗tn
form a basis of g̃ with the Lie bracket

[Ja(n), Jb(m)] =
∑
c

ifabcJc(n+m), n,m ∈ Z

where the fabc are the structure constants of g.

35
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Note that the dimension of this Lie algebra is always infinite. We can now
build the central extension of the loop algebra and obtain its direct affine Lie
algebra

ĝ′ := g̃ ⊕K,

where K = Ck̂. The commutation relations are

[Ja(n), Jb(m)] =
∑
c

ifabcJc(n+m) + k̂ nK(Ja, Jb)δn,−m, n,m ∈ Z

[Ja(n), k̂] = 0, ∀a, n.

One can show (see [3]) that this is in fact the unique central extension of a
loop algebra. To analyze this algebra we represent it in the Cartan-Weyl basis
(ladder operators). To construct this basis for a finite Lie algebra g we first need
to find a maximal set of commuting elements Hi, i ∈ I (the Cartan subalgebra)

[Hi,Hj ] = 0, i, j ∈ I.

These elements can be diagonalized simultaneously in the adjoint representa-
tion. The Cartan-Weyl basis is then the Cartan subalgebra together with linear
independent eigenvectors Eα of the Hi in the adjoint representation, i.e. ele-
ments of g such that

[Hi, Eα] = αiEα.

The vector α = (α1, . . . , αn) of eigenvalues of the chosen Cartan subalgebra is
called a root. On the generalized affine Cartan-Weyl basis the Lie bracket is

[Hi(n),Hj(m)] = k̂nδn+m,0

[Hi(n), Eα(m)] = αiEα(n+m)

[Eα(n), Eβ(m)] =


2

|α|2

(
k̂nδn+m,0 +

∑n
i=1 αiHi(n+m)

)
if α = −β

Nα,βEα+β(n+m) if α+ β ∈ ∆

0 otherwise

[k̂, Hi(n)] = [k̂,Ei(n)] = 0, ∀n,m, i

where ∆ denotes the set of all roots and Nα,β is a constant. k̂ is commuting
with everything so its Lie brackets are vanishing. For a deeper discussion of the
Cartan-Weyl basis and on the roots of (affine) Lie algebras see [3]. From the
Lie brackets [Hi(0), Eα(m)] = αiEα(m) and [k̂, Eα(m)] = 0 we find that the
eigenspaces are all degenerate. Hence {H1(0), . . . , Hn(0), k̂} is not a maximal
Abelian subalgebra. We can therefore extend our algebra ĝ′ again

ĝ = ĝ′ ⊕D

where D = Cd̂, with an element d̂ such that

[d̂, Ja(n)] = −nJa(n), ∀a, n
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and {H1(0), . . . , Hn(0), k̂, d̂} is a maximal Cartan subalgebra.1

Definition 5.3. For a finite dimensional semi simple Lie algebra g we define
the corresponding affine Lie algebra as the algebra

ĝ = g̃⊕ Ck̂ ⊕ Cd̂

with Lie bracket given by

[d̂, k̂] = 0

[d̂, Ja(n)] = −nJa(n), ∀a, n

[k̂, Ja(n)] = 0, ∀a, n
[Ja(n), Jb(m)] = [Ja(n), Jb(m)]g̃

where [ · , · ]g̃ denotes the Lie bracket in the corresponding loop algebra g̃.

Remark 9. Affine Lie algebras are a special case of the more general class of
Kac-Moody algebras.
Remark 10. The direct affine Lie algebra can be understood as the derivation
of ĝ

ĝ′ = [ĝ, ĝ]

Affine Lie algebras are special insofar as that the representation theory is
very similar to the representation theory of semisimple Lie algebras. The Dynkin
diagrams of affine Lie algebras for example can be obtained by adding just one
extra node. Representations of affine Lie algebras ĝ can be obtained from the
representations of the associated finite Lie algebras g. We will only present
a small overview of the theory of highest weight representations for affine Lie
algebras.

Definition 5.4. A highest weight representation L(λ) of ĝ is a representation
π on a vector space V over C with a non-zero vector vλ such that there are
λi, i ∈ {1, . . . , n} and k, d so that

π(Eα(0))vλ = π(E±α(n))vλ = π(Hi(n))vλ = 0, ∀n > 0, α > 0

and

π(Hi(0))vλ = λivλ, ∀i ∈ {1, . . . , n}

π(k̂)vλ = kvλ

π(d̂)vλ = dvλ.

The eigenvalue k of π(k̂) is called the level of the representation L(λ). The
vector λ = (λ1, . . . , λn, k, d) is called the highest weight and the vector vλ is
called the highest weight vector.

1One possible choice for d̂ is

d̂ = −t
d

dt
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We can extend the Killing form of g to its affine Lie algebras ĝ. To do this
note first that eq. (5.1) implies the cyclic property

K([Z,X], Y ) +K(X, [Z, Y ]) = 0

Inserting X = Ja(n), Y = Jb(m) and Z = d̂ leads to

0
!
= K([d̂, Ja(n)], Jb(m)) +K(Ja(n), [d̂, Jb(m)])

= K(−nJa(n), Jb(m)) +K(Ja(n),−mJb(m))

= −(n+m)tn+mK(Ja, Jb)

If we repeat the calculation with Z = k̂ and again with Y = d̂ we obtain

Proposition 5.5. Let Ja an orthonormal basis of g with respect to the Killing
form then the Killing form on ĝ is the bilinear form K( · , · )

K(Ja(n), Jb(m)) = δa,bδn+m,0

K(Ja(n), k̂) = 0, ∀a, n

K(Ja(n), d̂) = 0, ∀a, n

K(k̂, k̂) = 0

K(d̂, d̂) = 0

With this we are adequately equipped to define the Sugawara tensor.

5.2 Sugawara tensor
From now on g will always denote a finite dimensional simple Lie algebra with
an orthonormal basis Ja, a ∈ A and ĝ its corresponding affine Lie algebra. If
not stated otherwise we will always work with highest weight representations
which implies in particular ĝ ⊆ gl(V ) for some vector space V .

Our goal in this section is to obtain a highest weight representation for the
Virasoro algebra gives a highest weight representation of a suitable affine Lie
algebra. Recall that we omit the representation π when talking about explicit
representations. To make this construction well defined we need our represen-
tation to have the following property:

Definition 5.6. A representation π : ĝ′ → gl(V ) of the direct affine Lie algebra
ĝ′ is called admissible if for every v ∈ V there exists a N0 > 0 such that

Ja(n)v = 0, ∀n > N0, a ∈ A

Our Lie algebra g carries a scalar product, the Killing form K( · , · ). For
every basis Ja of g we can define the dual basis Jb by2

Kg(Ja, J
b) = δa,b

2Index on top means it is an element of the dual space.
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For the corresponding elements in ĝ′ we find

Kg(Ja(n), J
b(m)) = δa,bδn,−m

Definition 5.7. We will use the normal ordering symbol. This is defined as

: Ja(n)J
a(m) : :=

{
Ja(n)J

a(m) ifn ≤ m

Ja(m)Ja(n) otherwise

Theorem 5.8 (Kac Prop 10.1). Let V be an admissible representation of a
direct affine Lie algebra ĝ′. Then the operators

Tn =
1

2

∑
m∈Z

∑
a∈A

: Ja(−m)Ja(m+ n) :

with n ∈ Z, together with k̂, are a Lie algebra with the commutation relations

[Tn, Tm] = (k + g)(n−m)Tn+m + δn,−m
n3 − n

12
(dim g)(k + g)k̂

[Tn, k̂] = 0, ∀n
(5.2)

where g denotes the dual Coxeter number of g. Furthermore for x(n)⊗ tn ∈ ĝ′

[x(n), Tm] = (k + g)nx(n+m). (5.3)

Proof. The normal ordering assures finiteness of the series i.e. that the Tk are
well defined. See [11] for more details.

Remark 11. The dual Coxeter number is half the eigenvalue of the Casimir
operator in the adjoint representation. It is well known for every simple finite
Lie algebra. We will later need the algebra sl2 for which g = 2 and dim sl2 = 3.

Eq. (5.2) looks suspiciously similar to the Virasoro algebra. The following
proposition shows that this is no coincidence.

Proposition 5.9. Let V be an admissible representation of a direct affine Lie
algebra ĝ′ with k̂ = k1 with k ≥ 0 such that k 6= −g then the operators defined
by

Ln =
1

k + g
Tn, n ∈ Z

form a Virasoro algebra with commutation relations

[Ln, Lm] = (n−m)Ln+m + δn,−m
n3 − n

12

k dim g

k + g
1

If the representation of ĝ′ is unitary we therefore obtain a unitary representation
of Vir with central charge

c =
k dim g

k + g
. (5.4)
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This is called the Sugawara construction. Furthermore by setting

d̂ := −L0 (5.5)

this representation can be extended to a representation of ĝ.

Proof. The expression for the Lie bracket follows from Theorem 5.8

[Ln, Lk] =
1

(c+ g)2
[Tn, Tk] = (n− k)Ln+k + δn+k,0

n3 − n

12

cdim g

c+ g
.

This is the Lie bracket of the Virasoro algebra. What is left to prove is that the
representation is indeed unitary. For this we need to show that

ω(Ln) = L−n, ∀n ∈ Z

for a conjugate-linear anti-involution ω that makes our Hermitian form con-
travariant. Both, the Hermitian form and ω are obtained by extending the
corresponding objects of our finite Lie algebra g suitably. This is done e.g. in
[11]. Applying ω to

Ln =
1

2(k + g)

∑
m∈Z

∑
a∈A

: Ja(−m)Ja(m+ n) :

we obtain ω(Ln) = L−n.

Remark 12. This result is quite remarkable. We showed that the Virasoro
algebra is contained in the enveloping algebra of the direct affine Lie algebra ĝ′.
This means that every representation of a direct affine Lie algebra ĝ′ contains
a unitary representation of a Virasoro algebra. In the next sections we will
show that in fact every so called minimal model (Virasoro algebras with highest
weights as given in eq. 4.22) can be understood this way.
Remark 13. The central charge eq. (5.4) is always greater or equal than 1. We
will show this for the case of g = sln, n ∈ N. The algebra sln has dimension
dim sln = n2 + 2n and dual Coxeter number g = n + 1. After inserting this in
eq. (5.4) we find that c < 1 if and only if

k <
n+ 1

n2 + 2n− 1
.

For unitary representations we have k ∈ Z+ (see for example [1] p.94) the right
hand side however is always smaller than or equa to l 1. One can perform similar
calculations for other simple Lie algebras.
Remark 14. Let gi be a family of simple Lie algebras. Then the direct affine
Lie algebra corresponding to the direct sum

g :=
⊕
i

gi (5.6)
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is the direct sum of the direct affine Lie algebras of the family gi, i.e.

ĝ′ =
⊕
i

ĝ′i. (5.7)

Furthermore ĝ′ acts on the tensor product of the ĝ′i representation spaces, so
that the L(i)

k commute with each other. We conclude that the

Lk :=
∑
i

L
(i)
k (5.8)

form a unitary representation of the Virasoro algebra with central charge

c =
∑
i

(dim gi)mi

mi + gi
(5.9)

with the dual Coxeter numbers gi and the levels mi of the corresponding repre-
sentations in the Sugawara constructions of the ĝi.

5.3 Coset construction
In the last section we found a way to construct representations of the Virasoro
given representations of affine Lie algebras. The central charge of these repre-
sentations however is always greater or equal 1 as discussed in remark 13 but
the Virasoro representations we were initially interested in had central charge
c ∈ [0, 1). How can we obtain those? The trick will be to use the difference
Lg
n−Lp

n of two Sugawara constructions. These will again form a Virasoro algebra
with central charge cg − cp.

Theorem 5.10 (Kac Theorem 10.2). Let g be a finite dimensional semisimple
Lie algebra and p a semisimple Lie-subalgebra of g. Let Lg

m, L
p
m, m ∈ Z denote

the operators obtained in the Sugawara constructions of ĝ′ and p̂′ for unitary
representations of g and p respectively. Then the operators

L(g/p)
n = Lg

n − Lp
n, m ∈ Z

form a unitary representation of Vir with central charge

c(g/p) = cg − cp. (5.10)

Proof. We start by showing that the unitary generators L(g/p)
n , n ∈ Z commute

with every element of ĝ′ and p̂′ respectively, i.e.

[L(g/p)
n , ĝ′] = 0, ∀n ∈ Z.

This follows from eq. (5.3), which implies that for x(m) ∈ p̂′

[Lg
n, x(m)] =

1

k + g
[T g

n , x(m)] = −nx(n+m).
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The same argument applies to the Sugawara tensors for p̂′. With this we can
compute the Lie bracket of the generators L(g/p)

n , n ∈ N with elements x(m) from
p̂′ (note that p is a Lie-subalgebra of g which allows us to identify x(m) ∈ p̂′ as
an element of ĝ).

[L(g/p)
n , x(m)] = [Lg

n − Lp
n, x(m)]

= [Lg
n, x(m)]− [Lp

n, x(m)]

= −nx(n+m) + nx(n+m) = 0,

and therefore
[L(g/p)

n , p̂′] = 0, ∀n ∈ Z

which implies furthermore that

[L(g/p)
n , Lp

m] = 0, ∀n,m ∈ Z

because Lp
m ∈ p̂′, ∀m ∈ Z. With this we can compute the Lie brackets

[L(g/p)
n , L(g/p)

m ] = [L(g/p)
n , Lp

m]

= [Lg
n, L

g
m]− [Lp

n, L
g
m]

= [Lg
n, L

g
m]− [Lp

n, L
(g/p)
m + Lg

m]

= [Lg
n, L

g
m]− [Lp

n, L
p
m]

= (n−m)(Lg
n+m − Lp

n+m) + δn+m,0
n3 − n

12
(cg − cp)

= (n−m)L
(g/p)
n+m + δn+m,0

n3 − n

12
(cg − cp)

Remark 15. We will call the construction above the coset construction. It is
also sometimes called the Goddard-Kent-Olive (GKO) construction.

We are in fact only interested in the special case of the Theoremabove where
g is the direct sum of two copies of a simple Lie algebra

g = p⊕ p.

This makes g a semisimple Lie algebra and p is a semisimple subalgebra of g. If
we have two representations L(λ), L(λ′) of p̂ with levels m and m′ then ĝ′ acts
on the tensor product L(λ)⊗ L(λ′) according to

(x⊕ y)(u⊗ v) = x(u)⊗ v + u⊗ y(v), x, y ∈ p̂′ (5.11)

for u ∈ L(λ) and v ∈ L(λ′). Because of this we can generalize the Sugawara
construction for this case along the lines of remark 14 by defining

Lg
k = Lp

k ⊗ 1+ 1⊗ Lp
k.
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For the central charge we obtain

cg = (dim p)

(
m

m+ g
+

m′

m′ + g

)
.

We can embed p̂′ diagonally in ĝ = p̂′ ⊕ p̂′, by that we mean the embedding

p̂′ → p̂′ ⊕ p̂′

x 7→ (x, x).

This embedding maps ĉ to (ĉ, ĉ) which shows that the level of p̂′ in this embed-
ding is m+m′. Combining these arguments we obtain the following proposition
that is a special case of Theorem5.10.

Proposition 5.11. Let p be a finite simple Lie algebra with dual Coxeter number
g. Let L(λ), L(λ′) be two highest weight representations of p̂ with levels m and
m′ respectively. Furthermore let L(p⊕p)

n , Lp
n, n ∈ Z denote the operators obtained

in the Sugawara constructions of ĝ and p̂. Then the operators

L(p⊕p/p)
n = L(p⊕p)

n − Lp
n, n ∈ Z

form a unitary representation of Vir on L(λ)⊗ L(λ′) with central charge

c(p⊕p/p) = c(p⊕p) − cp

= (dim p)

(
m

m+ g
+

m′

m′ + g
− m+m′

m+m′ + g

)
(5.12)

where g is the dual Coxeter number of p.

This proposition allows us to construct unitary representations of Vir with
a central charge c smaller than 1. What is left to do is to find a finite simple
Lie algebra p so that the construction above produces a representation of the
Virasoro algebra with a central charge given by eq. (4.23). Furthermore the
representation above does not have to be a highest weight representation. We
will see that both of these two problems have a solution.

It turns out that to obtain the central charges eq. (4.23) we need to use
sl(2) as our simple Lie algebra. We investigate the direct sum sl(2)⊕ sl(2) and
choose representations L(λ), L(λ′) of ŝl(2) with levels m and 1. We denote this
representation (L

(sl(2)⊕sl(2))/sl(2)
n )n∈Z with levels m,m′ by

ŝl
′
(2)m ⊕ ŝl

′
(2)1

ŝl
′
(2)m+1

(5.13)

where the indices are the levels of the chosen representations. In the literature
this is often called coset theory. The dimension is dim sl(2) = 3 and the dual
Coxeter number is gsl(2) = 2. Inserting these values and the levels m, 1 in eq.
(5.12) we obtain for the central charge

c = 1− 6

(m+ 2)(m+ 3)
, (5.14)
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i.e. exactly one of the central charges for which the existence of a unitary
highest weight representation of the Virasoro algebra is still in question. If we
vary the level m we find representations for every central charge given in eq.
(4.23). What is left is to construct a unitary highest weight representation out
of the unitary representation given by the coset construction. We will only give
a sketch of the proof, for further information see [3, 11]. We saw in the proof
of Theorem5.10 that the operators in L

g/p
m commute with the elements of p̂′.

This implies that for our case of the coset theory with p = sl(2) that we can
reduce the space L(λ) ⊗ L(λ′) with respect to Vir ⊕ ŝl

′
(2). If we can strip off

the ŝl
′
(2) content, we will be left with a representation of Vir that will turn

out to be the unitary highest weight representation we are looking for. This
can we done by computing the character decomposition of our representation.
Two representation are isomorphic if and only if their characters are identical.
And if one perform this computation (see for example [3], p.801ff.) one can
indeed find that the unitary representation given in the coset construction can be
reduced to a unitary highest weight representation of the Virasoro algebra with
central charge eq. (5.14). We will show how the coset theory looks like for the
Virasoro algebra with c = 1

2 (the Ising model) in chapter 6. This concludes our
classification of unitary highest weight representations of the Virasoro algebra.

5.4 WZW models
The coset construction actually shows a very interesting fact, namely that every
affine Lie algebra comes, in a way described by the Sugawara construction,
together with a Virasoro algebra. The affine Lie algebras can therefore be
understood as extensions to Virasoro algebras. We already explained in the last
chapters that Virasoro algebras correspond to quantum field theories that are
invariant under conformal transformations, i.e. quantum CFTs. It turns out
that similarly, affine Lie algebras correspond to Wess-Zumino-Witten models
(WZW models). These are CFTs with an affine Lie algebra as their symmetry
algebra. The connection between affine Lie algebras and Virasoro algebras can
in this context be understood as the fact that WZW models are CFTs.

The correspondence affine Lie algebra ↔ Virasoro algebra or quantum WZW
model ↔ quantum CFT is not bijective. This can be seen for example for the
minimal model with c = 1

2 (the so called two dimensional Ising model). We
found in the last section that a unitary highest weight representation for this
Virasoro algebra can be obtained with the coset theory eq. (5.13). However, if
we compute the central charge for the coset theory

(Ê8)1 ⊕ (Ê8)1

(Ê8)2
(5.15)

we find that since dimE8 = 248 and g = 30 this coset theory also contains
a Virasoro algebra with c = 1

2 . For other alternative descriptions of minimal
models see [3] p.814ff.



Chapter 6

Applications

In this chapter we will discuss some examples where the theory of the Virasoro
algebra can be applied. We will begin by discussing the 2d Ising model. This is
the physical model that corresponds to the c = 1

2 representation of the Virasoro
algebra. Next, we investigate the tricritical 2d Ising model that corresponds to
the representation with c = 7

10 . This physical model is interesting insofar, as it
also incorporates supersymmetry and has an extension of the Virasoro algebra,
the Super Virasoro algebra, as its symmetry Lie algebra.

We finish this chapter with a few words about the application in gravity,
where one can find an equivalence between the Virasoro algebra and asymptotic
Killing vectors in semi-Riemannian manifolds and in string theory where the
Virasoro algebra appears as the symmetry algebra of the Bosonic string.

6.1 Ising model
We will follow the discussion from [3, 15].

The Ising model is one the best understood models in condensed matter
physics. It is a mathematical model of ferromagnetic materials (”permanent
magnets”). It consists of a lattice of electrons, modeled by the spin variables
σi ∈ {1,−1} with i ∈ I where I is the set of all positions in the lattice. Two
adjacent electrons at positions i and j interact with each other with an energy
of

Eij = −Jσiσj , i, j ∈ I, i 6= j (6.1)

where J ∈ R+. For the total energy of a lattice configuration σ := {σi|i ∈ I}
we obtain

E[σ] = −
∑
i∈I

[
hσi + J

∑
j adj. to i

σiσj

]
(6.2)

where the inner sum of the second term sums over all j that are adjacent to i
and h ∈ R+ is a constant proportional to the external magnetic field. The first
term corresponds to the interaction between electrons and an external magnetic
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Figure 6.1: The left plot shows the lattice configuration for temperatures below
the Curie temperature. The electron spins have random orientations because the
thermic fluctuations are dominating. The plot on the right shows the same lat-
tice for temperatures above the Curie temperature. The spin-spin interactions
are dominating and we find a ordering of spin over large distances that leads
to macroscopically measurable effects. (This phenomena is called spontaneous
symmetry breaking)

field (This term is optional, one can also consider the model without an external
field) whereas the second term describes the interaction between the electrons.
In this classical description of the Ising model the spin variables σi can be seen
as random variables where the underlying probability measure is determined by
thermic fluctuations, in the quantum Ising model the spin variables are replaced
by the Pauli matrices and the energy becomes the Hamiltonian of the system.

With methods from statistical physics one can show, that if one turns on
the temperature, one can observe a phase transition1 at the so-called Curie
temperature Tc, where the metal experiences spontaneous magnetization and
where the interaction term in eq. (6.2) is dominating. The microscopic reasons
for this are explained in figure (6.1). As mentioned above, around the phase
transition the interaction term eq. (6.1) starts to dominate and the spins of the
electrons start to order on a macroscopic scale. This means the lattice is scale
invariant and shows a conformal symmetry close to the phase transition point.
This model, meaning the Ising model of interacting spins on a lattice at the
critical temperature Tc, is called the critical Ising model.

In physics literature, when speaking of the 2d Ising model as a conformal field
theory, what is normally meant, is the continuum limit of the model described
above. The continuum theory is obtained by making the lattice size (the distance
between two electrons) converge to zero. One way to do this, is to use the so-

1By a phase transition we mean a sudden change of the macroscopic properties of a mate-
rial when certain control parameters (more specifically: Thermodynamic state functions) are
varied.
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called Jordan-Wigner transformation (as was done first in [17]). Doing this one
obtains the theory of a free massless real fermion described by the action

S(ψ, ψ̄) =
1

2π

∫
dzdz̄

(
ψ(z, z̄)∂̄ψ(z, z̄) + ψ̄(z, z̄)∂ψ̄(z, z̄)

)
.

Here ψ denotes a so-called spinor field. That is a quantum field, i.e. a map
from spacetime (in this case the complexified two dimensional euclidian space-
time) into a representation space of the left-handed spinor representations of the
Lorentz group. ψ̄ denotes the adjoint spinor to ψ that maps into a right-handed
representation. ∂̄ denotes the derivative with respect to z̄. The stationary points
of the functional S can be shown to describe the physical trajectories. If one
wants to investigate the symmetries of this theory one has to calculate the vari-
ation of the action with respect to the background geometry (by that we mean
a variation of the underlying metric, i.e. gµν 7→ gµν + δgµν). Investigating this
one finds the energy-momentum tensor whose Laurent modes are the symmetry
generators. One can show that the Laurent modes of the energy-momentum
tensor are in fact exactly the operators Tn in Theorem5.8. If one performs these
calculations (see for example [1] 2.9.2.) one finds that indeed the Laurent modes
form a Virasoro algebra with c = 1

2 .
The Ising model belongs to the class of minimal models, a class of Virasoro

algebras where highest weight representations can be obtained using the coset
theories described in the last chapter. For the coset representation (eq. (5.13)
where m = 1)

ŝl
′
(2)1 ⊕ ŝl

′
(2)1

ŝl
′
(2)2

(6.3)

we showed in Proposition 5.11, that one can define operators on the tensor
product L(λ)⊗ L(λ′) of representations of ŝl(2) with levels m and 1, that form
a Virasoro with central charge (5.12), which equals 1

2 for our specific choice of
affine Lie algebras (6.3) where m = 1. We want to demonstrate for the Ising
model how one can find representation of the Virasoro algebra from representa-
tions of such a a coset theory. The minimal models have highest weights given
by the Friedan-Qiu-Shenker Theorem4.15:

(c(m), hr,s(m)), m, r, s ∈ Z+, 1 ≤ s ≤ r ≤ m+ 1.

For m = 1 we obtain

c(1) = 1− 6

(1 + 2)(1 + 3)

=
1

2

hr,s(1) =
(4r − 3s)2 − 1

48
,

which means, the possible values for h are

h1,1 = 0, h2,1 =
1

2
, h2,2 =

1

16
.
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This means, we should be able to find the Virasoro unitary highest weight repre-
sentations V ( 12 , 0), V ( 12 ,

1
2 ), V ( 12 ,

1
16 ) in the unitary representations of our coset

theory. The exact decomposition of L(λ)⊗ L(λ′) into representations of ŝl(2)2
and Vir is determined by its branching rules (for a discussion of this topic see
for example [3]) that describe more generally how representations of an algebra
ĝ decompose into a direct sum of tensor products of one of its subalgebras ĥ
and ĝ/ĥ. For the Ising model one can show that the representations of the coset
theory (6.3) contains representations of the Virasoro algebra in the following
way (see [1] p.105)

L(0, 1)⊗ L(0, 1) =

(
L(0, 2)⊗ V (

1

2
, 0)

)
⊕

(
L(2, 2)⊗ V (

1

2
,
1

2
)

)
L(0, 1)⊗ L(1, 1) =

(
L(1, 2)⊗ V (

1

2
,
1

16
)

)
L(1, 1)⊗ L(0, 1) =

(
L(1, 2)⊗ V (

1

2
,
1

16
)

)
L(1, 1)⊗ L(1, 1) =

(
L(0, 2)⊗ V (

1

2
,
1

2
)

)
⊕
(
L(2, 2)⊗ V (

1

2
, 0)

)

where L(h, k) is the representation space of ŝl(2) with level k where the under-
lying representation of sl(2) has highest weight h. The equations above show
how representations of the Virasoro algebra with c = 1

2 are contained in the
coset model (6.3). There are also other coset theories that contain the Virasoro
algebra with c = 1

2 and therefore the Ising model. We already mentioned one
of them, namely

(Ê8)1 ⊕ (Ê8)1

(Ê8)2

with the Lie algebra of the exceptional simple Lie group E8. Another coset that
describes the Ising model is given by (see [3])

ŝu(2)2
û(1)

.

6.2 Tricritical Ising model
Another model obtained by the coset construction is the tricritical Ising model
with a central charge c = 7

10 . ”Tricritical” refers to the fact that the model
contains a tricritical point in phase space, where three different phases exist
(similar to the tricritical point for water where liquid, solid and gaseous states
exist at the same time). The tricritical Ising model was investigated by Fried,
Qiu and Shenker in [6] and by Z. Qiu more detailed in [16].

Similarly to the Ising model it can be understood as electrons on a lattice,
with the difference that the spin is allowed to be zero as well. This is modeled
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with a spin variable σi ∈ {1,−1} and a density variable tI ∈ {0, 1}, where i ∈ I,
so that the energy of a given lattice configuration (σ, t) is given by

E[σ, t] = −
∑
i∈I

[
µti + β

∑
j adj. to i

σiσjtitj

]
,

with β, µ ∈ R+. In a similar way as for the Ising model one can also obtain
a continuum version of this model. The action for the continuum version can
be found for example in [5]. The tricritical Ising model has a central charge of
c = 7

10 and can be described with the coset theory

ŝl
′
(2)2 ⊕ ŝl

′
(2)1

ŝl
′
(2)3

.

As was described for the critical Ising model, one can investigate the energy-
tensor to find the symmetry algebra of the tricritical Ising model. An interesting
feature of of this model, and also the reason why we mention it in particular,
is that the symmetry algebra (The Laurent modes of the energy-momentum
tensor) is an extension of the Virasoro algebra, called the super-Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n + δm,−n
m3 −m

12
ĉ

{Gk, Gl} = 2Lk+l + δk,−l
1

3

(
k2 − 1

4

)
ĉ

[Lm, Gk] =

(
m

2
− n

)
Gm+k,

with m,n ∈ Z, k, l ∈ 1
2Z and ĉ is a central element. The curly brackets are anti-

commutation brackets. Depending on the specific choice of the Gk’s (Integer
or half-integer indices) the algebra is also called Ramond algebra or Neveu-
Schwarz algebra. The ’super’ comes from the fact that the additional structure
corresponds to supersymmetry in physical theories. In the Neveu-Schwarz case
every field has a so-called superpartner, an example being the chemical potential
being the superpartner of the energy density (see [3] 7.4.3).

Much of the theory of the Virasoro algebra can be generalized to the super-
Virasoro algebra as is described in [16]. Similar to the minimal models for the
Virasoro algebra one can also find a series of unitary highest weight representa-
tions of the super-Virasoro algebra at the discrete set of points

cs(m) =
3

2
− 12

m(m+ 2)
(6.4)

hsr,s =
[r(m+ 2)− sm]2 − 4

8m(m+ 2)
+

1

32
[1− (−1)r−s], (6.5)

where 1 ≤ r < m, 1 ≤ s < m + 2, called the minimal superconformal models.
If we set the central charge c of eq. (6.4) equal to the central charge for the
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minimal models of the Virasoro algebra from eq. (4.23) we find that the only
model that is both a minimal model to the Virasoro and super-Virasoro algebra
is the tricritical Ising model. Furthermore one can also obtain a determinant
formula similar to the Kac-determinant. The derivation is slightly more compli-
cated because one has to distinguish between the two cases of Ramond-algebra
and Neveau-Schwarz algebra. A short discussion can be found in the already
mentioned paper by Qiu [16] section 4 and the references therein.

6.3 Quantum gravity
The Virasoro algebra surprisingly also appears if one investigates the asymp-
totic symmetries of three dimensional gravity theories. Brown and Henneaux
investigated in 1986 in [2] gravity in negatively curved spaces. By that we mean
semi-Riemannian manifolds that are solutions to the Einstein field equations
with a negative cosmological constant (without matter content these are exactly
the anti deSitter spaces). What they found, is that the asymptotic symmetry
algebra (asymptotic with respect to the anti deSitter space) forms a Virasoro
algebra. This was the first hint to the more general holographic principle that
was postulated around a decade later.

Another appearance of the Virasoro algebra, and maybe the one that sparked
the biggest interest, is in string theory. We only want to give a short introduction
into the ideas behind this.

String theory can be understood as a two dimensional conformal field the-
ory. The two dimensional space on which the theory is defined is called the
”worldsheet” and is basically the surface of the propagating string in spacetime.
Bosonic string theory, a toy model and the first step to superstring theory, can
then be understood as a collection of D free Bosonic fields living on the world-
sheet with values in spacetime, with D denoting the dimension of spacetime.
A free2 Bosonic field lives in a representation of the Virasoro algebra with cen-
tral charge c = 1 (see [1] for a derivation), and therefore a collection of D free
bosons live in a representation with c = D. The central charge has therefore the
interpretation of being the spacetime dimension. Investigating the Lie brackets
of the Virasoro algebra one finds that the only consistent choice for the central
charge is c = 26 which is the reason for why in string theory one needs such a
high dimensional spacetime. In superstring theory things get more complicated
because the theory gets additional fermionic fields and the underlying symmetry
algebra is the super-Virasoro algebra described briefly in the section about the
tricritical Ising model.

2Free means without interactions.
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Summary

The Witt algebra has a unique central extension, called the Virasoro algebra.
The highest weight representations of this algebra can be shown to have a unique
Hermitian form, called the Shapovalov form, for all real highest weights (c, h).
The existence of this form allows us to talk about unitary representations. The
first step in the classification of unitary highest weight representations is to
derive an explicit expression for the definiteness of the Hermitian form, called
the Kac-determinant. This determinant allows us exclude highest weights (c, h)
from the list of candidate points for unitary highest weight representations.
An extensive investigation of the full parameter plane of highest weights shows
that only the points (c, h) with c ≥ 1, h ≥ 0 and a discrete set of points with
c ∈ [0, 1] and h ≥ 0 are possible unitary highest weight representations. For
the set {(c, h) | c ≥ 1, h ≥ 0} we can show easily the existence of a unitary
highest weight representation. For the discrete set, called the minimal models,
we can construct an explicit unitary highest weight representation using the
representations of affine Lie algebras. These infinite dimensional Lie algebras
are special insofar as that their representation theory is closely related to the
representation theory of semisimple finite Lie algebras, which is perfectly un-
derstood. Furthermore one can show that the highest weight representations of
affine Lie algebras contain unitary highest weight representations of the Vira-
soro algebra. Investigating the factor algebras of these affine Lie algebras, we
arrive at a specific model, namely

ŝl
′
(2)k ⊕ ŝl

′
(2)1

ŝl
′
(2)k+1

, k ≥ 1.

Investigating the characters of the unitary representation of the Vir obtained
from this model one finds that the representation can be reduced to a unitary
highest weight representation of Vir with the highest weights of the minimal
models. This shows that indeed all the points in this set are unitary highest
weight representations and we can fully classify the unitary highest weight rep-
resentations in the plane of highest weights (c, h) ∈ R2. The full classification is
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Figure 7.1: The black dots show exactly the highest weights with unitary highest
weight representations.

summarized in figure 7.1. The classification concerns only the Virasoro algebra,
however a lot of the development of the theory behind it has been done with
applications of the Virasoro algebra in mind. In most of these applications the
algebra appears as the symmetry algebra of quantum conformal field theories.
As such, it plays a huge role in investigating condensed matter systems near
phase transitions and even investigating quantum gravity theories in string the-
ory of through the holographic principle. Especially the holographic principle
is a vivid research topic in physics at the time of writing this thesis with 2-
dimensional conformal field theories (and therefore the Virasoro algebra) being
one of the few examples where explicit realizations are known. All of these top-
ics profit already from the theory of unitary highest weight representations and
may even lead to some new insight in the future.



Bibliography

[1] Ralph Blumenhagen and Erik Plauschinn. Boundary conformal field theory.
In Introduction to Conformal Field Theory, pages 205–256. Springer, 2009.

[2] J. David Brown and M. Henneaux. Central Charges in the Canonical Real-
ization of Asymptotic Symmetries: An Example from Three-Dimensional
Gravity. Commun. Math. Phys., 104:207–226, 1986.

[3] P. Di Francesco, P. Mathieu, and D. Senechal. Conformal Field The-
ory. Graduate Texts in Contemporary Physics. Springer-Verlag, New York,
1997.

[4] Jacques Dixmier. Enveloping algebras, volume 14. Newnes, 1977.

[5] D. Fioravanti, G. Mussardo, and P. Simon. Universal ratios in the 2-D
tricritical Ising model. Phys. Rev. Lett., 85:126–129, 2000.

[6] Daniel Friedan, Zong-an Qiu, and Stephen H. Shenker. Superconformal
Invariance in Two-Dimensions and the Tricritical Ising Model. Phys. Lett.,
151B:37–43, 1985.

[7] Daniel Friedan, Zongan Qiu, and Stephen Shenker. Conformal invariance,
unitarity, and critical exponents in two dimensions. Physical Review Letters,
52(18):1575, 1984.

[8] Daniel Friedan, Zongan Qiu, and Stephen Shenker. Details of the non-
unitarity proof for highest weight representations of the virasoro algebra.
Communications in Mathematical Physics, 107(4):535–542, 1986.

[9] P. Goddard, A. Kent, and David I. Olive. Unitary Representations of the
Virasoro and Supervirasoro Algebras. Commun. Math. Phys., 103:105–119,
1986.

[10] Philip J Higgins. Baer invariants and the birkhoff-witt theorem. Journal
of Algebra, 11(4):469–482, 1969.

[11] V. G. Kac and A. K. Raina. Bombay Lectures on Highest Weight Repre-
sentations of Infinite Dimensionsal Lie Algebras. Adv. Ser. Math. Phys.,
2:1–145, 1987.

53



54 BIBLIOGRAPHY

[12] Victor G. Kac. Some problems on infinite dimensional lie algebras and
their representations, pages 117–126. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1982.

[13] Victor G Kac. Infinite-dimensional Lie algebras, volume 44. Cambridge
university press, 1994.

[14] Robert P Langlands. On unitary representations of the virasoro algebra.
Infinite-Dimensional Lie Algebras and Their Applications. World Scientific,
Singapore, New Jersey, Hong Kong, pages 141–159, 1988.

[15] Wolfgang Nolting. Grundkurs Theoretische Physik 6: Statistische Physik.
Springer-Verlag, 2014.

[16] Z. A. Qiu. Supersymmetry, Two-dimensional Critical Phenomena and the
Tricritical Ising Model. Nucl. Phys., B270:205–234, 1986.

[17] T. D. Schultz, D. C. Mattis, and E. H. Lieb. Two-dimensional ising model
as a soluble problem of many fermions. Rev. Mod. Phys., 36:856–871, Jul
1964.

[18] Antony Wassermann. Kac-Moody and Virasoro algebras. 2010.


	Introduction
	From Witt to Virasoro
	The Witt algebra
	The Virasoro algebra
	Motivation from physics

	Highest weight representations
	Basic concepts
	Virasoro highest weights
	Quantum states of two-dimensional CFTs

	Kac-determinant
	Explicit computation of the determinant
	Proof of the Kac-determinant formula
	Implication of the Kac determinat formula
	Minimal models

	Coset construction
	Affine Lie algebras
	Sugawara tensor
	Coset construction
	WZW models

	Applications
	Ising model
	Tricritical Ising model
	Quantum gravity

	Summary
	Bibliography

